WorldWideScience

Sample records for suspended graphene devices

  1. Quantum Hall effect in multi-terminal suspended graphene devices

    Science.gov (United States)

    Ghahari, Fereshte; Zhao, Yue; Bolotin, Kirill; Kim, Philip

    2010-03-01

    The integer and fractional quantum hall effects have been already observed in two terminal suspended graphene devices. However in this two probe device geometry, mixing between magnetoresistance ρxx and Hall resistance ρxy for incompletely developed quantum Hall states leads to substantial deviation of conductance plateaus values. In this talk, we present the experimental results from four terminal suspended graphene devices. The quality of quantum Hall effect will be discussed in muti-terminal device geometry in conjunction with the current-induced annealing process to improve the quality of graphene samples.

  2. Spin Transport in High-Quality Suspended Graphene Devices

    NARCIS (Netherlands)

    Guimaraes, Marcos H. D.; Veligura, A.; Zomer, P. J.; Maassen, T.; Vera-Marun, I. J.; Tombros, N.; van Arees, B. J.; Wees, B.J. van

    We measure spin transport in high mobility suspended graphene (mu approximate to 10(5)cm(2)/(V s)), obtaining a (spin) diffusion coefficient of 0.1 m(2)/s and giving a lower bound on the spin relaxation time (tau(s) approximate to 150 ps) and spin relaxation length (lambda(s) = 4.7 mu m) for

  3. Suspended graphene devices with local gate control on an insulating substrate.

    Science.gov (United States)

    Ong, Florian R; Cui, Zheng; Yurtalan, Muhammet A; Vojvodin, Cameron; Papaj, Michał; Orgiazzi, Jean-Luc F X; Deng, Chunqing; Bal, Mustafa; Lupascu, Adrian

    2015-10-09

    We present a fabrication process for graphene-based devices where a graphene monolayer is suspended above a local metallic gate placed in a trench. As an example we detail the fabrication steps of a graphene field-effect transistor. The devices are built on a bare high-resistivity silicon substrate. At temperatures of 77 K and below, we observe the field-effect modulation of the graphene resistivity by a voltage applied to the gate. This fabrication approach enables new experiments involving graphene-based superconducting qubits and nano-electromechanical resonators. The method is applicable to other two-dimensional materials.

  4. Large yield production of high mobility freely suspended graphene electronic devices on a polydimethylglutarimide based organic polymer

    NARCIS (Netherlands)

    Tombros, Nikolaos; Veligura, Alina; Junesch, Juliane; Berg, J. Jasper van den; Zomer, Paul J.; Wojtaszek, Magdalena; Vera Marun, Ivan J.; Jonkman, Harry T.; Wees, Bart J. van

    2011-01-01

    The recent observation of a fractional quantum Hall effect in high mobility suspended graphene devices introduced a new direction in graphene physics, the field of electron–electron interaction dynamics. However, the technique used currently for the fabrication of such high mobility devices has

  5. Influence of charge carriers on corrugation of suspended graphene

    Science.gov (United States)

    Kirilenko, Demid A.; Gorodetsky, Andrei; Baidakova, Marina V.

    2018-02-01

    Electronic degrees of freedom are predicted to play a significant role in mechanics of two-dimensional crystalline membranes. Here we show that appearance of charge carriers may cause a considerable impact on suspended graphene corrugation, thus leading to additional mechanism resulting in charge carriers mobility variation with their density. This finding may account for some details of suspended graphene conductivity dependence on its doping level and suggests that proper modeling of suspended graphene-based device properties must include the influence of charge carriers on its surface corrugation.

  6. Colorimetry Technique for Scalable Characterization of Suspended Graphene.

    Science.gov (United States)

    Cartamil-Bueno, Santiago J; Steeneken, Peter G; Centeno, Alba; Zurutuza, Amaia; van der Zant, Herre S J; Houri, Samer

    2016-11-09

    Previous statistical studies on the mechanical properties of chemical-vapor-deposited (CVD) suspended graphene membranes have been performed by means of measuring individual devices or with techniques that affect the material. Here, we present a colorimetry technique as a parallel, noninvasive, and affordable way of characterizing suspended graphene devices. We exploit Newton's rings interference patterns to study the deformation of a double-layer graphene drum 13.2 μm in diameter when a pressure step is applied. By studying the time evolution of the deformation, we find that filling the drum cavity with air is 2-5 times slower than when it is purged.

  7. Suspended graphene device fabrication

    OpenAIRE

    Hiltunen, Vesa-Matti

    2016-01-01

    Tämän pro gradu -tutkielman aiheena oli tutkia itsekantavien grafeeninäytteiden valmistusta. Grafeeni syntetisoitiin kaasufaasikasvatuksella ilmakehän paineessa kupariohutkalvoille. Kupariohutkalvot valmistattiin käyttämällä elektronisuihkuhöyrystystä. Projektin aikana synteesiprosessia parannettiin optimoimalla synteesiparametreja. Syntetisoinnin jälkeen grafeeninäytteet siirrettiin piinitridikalvoille, joihin oli valmistettu reikiä. Viimeinen vaihe siirrossa on PMMA tukikerro...

  8. Wavelength-Tunable IR Detector based on Suspended Bilayer Graphene Micro Ribbons

    Science.gov (United States)

    2013-11-05

    high purity copper foil using a low pressure CVD furnace at 1000 oC in a hydrogen, argon and methane environment. Raman spectrum of the graphene ...characterized in Year One a device with suspended graphene microribbons, and found that fully suspended CVD -grown graphene devices are dominated by the...photoelectric effect, which is promising towards CVD -grown graphene photodetectors approaching THz cut-off frequencies. chemical vapor deposition, strain

  9. Optomechanics for thermal characterization of suspended graphene

    Science.gov (United States)

    Dolleman, Robin J.; Houri, Samer; Davidovikj, Dejan; Cartamil-Bueno, Santiago J.; Blanter, Yaroslav M.; van der Zant, Herre S. J.; Steeneken, Peter G.

    2017-10-01

    The thermal response of graphene is expected to be extremely fast due to its low heat capacity and high thermal conductivity. In this work, the thermal response of suspended single-layer graphene membranes is investigated by characterization of their mechanical motion in response to a high-frequency modulated laser. A characteristic delay time τ between the optical intensity and mechanical motion is observed, which is attributed to the time required to raise the temperature of the membrane. We find, however, that the measured time constants are significantly larger than the predicted ones based on values of the specific heat and thermal conductivity. In order to explain the discrepancy between measured and modeled τ , a model is proposed that takes a thermal boundary resistance at the edge of the graphene drum into account. The measurements provide a noninvasive way to characterize thermal properties of suspended atomically thin membranes, providing information that can be hard to obtain by other means.

  10. Fluorine and sulfur simultaneously co-doped suspended graphene

    Science.gov (United States)

    Struzzi, C.; Sezen, H.; Amati, M.; Gregoratti, L.; Reckinger, N.; Colomer, J.-F.; Snyders, R.; Bittencourt, C.; Scardamaglia, M.

    2017-11-01

    Suspended graphene flakes are exposed simultaneously to fluorine and sulfur ions produced by the μ-wave plasma discharge of the SF6 precursor gas. The microscopic and spectroscopic analyses, performed by Raman spectroscopy, scanning electron microscopy and photoelectron spectromicroscopy, show the homogeneity in functionalization yield over the graphene flakes with F and S atoms covalently bonded to the carbon lattice. This promising surface shows potential for several applications ranging from biomolecule immobilization to lithium battery and hydrogen storage devices. The present co-doping process is an optimal strategy to engineer the graphene surface with a concurrent hydrophobic character, thanks to the fluorine atoms, and a high affinity with metal nanoparticles due to the presence of sulfur atoms.

  11. Graphene device and method of using graphene device

    Science.gov (United States)

    Bouchiat, Vincent; Girit, Caglar; Kessler, Brian; Zettl, Alexander K.

    2015-08-11

    An embodiment of a graphene device includes a layered structure, first and second electrodes, and a dopant island. The layered structure includes a conductive layer, an insulating layer, and a graphene layer. The electrodes are coupled to the graphene layer. The dopant island is coupled to an exposed surface of the graphene layer between the electrodes. An embodiment of a method of using a graphene device includes providing the graphene device. A voltage is applied to the conductive layer of the graphene device. Another embodiment of a method of using a graphene device includes providing the graphene device without the dopant island. A dopant island is placed on an exposed surface of the graphene layer between the electrodes. A voltage is applied to the conductive layer of the graphene device. A response of the dopant island to the voltage is observed.

  12. Graphene-based structure, method of suspending graphene membrane, and method of depositing material onto graphene membrane

    Science.gov (United States)

    Zettl, Alexander K.; Meyer, Jannik Christian

    2013-04-02

    An embodiment of a method of suspending a graphene membrane across a gap in a support structure includes attaching graphene to a substrate. A pre-fabricated support structure having the gap is attached to the graphene. The graphene and the pre-fabricated support structure are then separated from the substrate which leaves the graphene membrane suspended across the gap in the pre-fabricated support structure. An embodiment of a method of depositing material includes placing a support structure having a graphene membrane suspended across a gap under vacuum. A precursor is adsorbed to a surface of the graphene membrane. A portion of the graphene membrane is exposed to a focused electron beam which deposits a material from the precursor onto the graphene membrane. An embodiment of a graphene-based structure includes a support structure having a gap, a graphene membrane suspended across the gap, and a material deposited in a pattern on the graphene membrane.

  13. High-field electrical and thermal transport in suspended graphene.

    Science.gov (United States)

    Dorgan, Vincent E; Behnam, Ashkan; Conley, Hiram J; Bolotin, Kirill I; Pop, Eric

    2013-10-09

    We study the intrinsic transport properties of suspended graphene devices at high fields (≥1 V/μm) and high temperatures (≥1000 K). Across 15 samples, we find peak (average) saturation velocity of 3.6 × 10(7) cm/s (1.7 × 10(7) cm/s) and peak (average) thermal conductivity of 530 W m(-1) K(-1) (310 W m(-1) K(-1)) at 1000 K. The saturation velocity is 2-4 times and the thermal conductivity 10-17 times greater than in silicon at such elevated temperatures. However, the thermal conductivity shows a steeper decrease at high temperature than in graphite, consistent with stronger effects of second-order three-phonon scattering. Our analysis of sample-to-sample variation suggests the behavior of "cleaner" devices most closely approaches the intrinsic high-field properties of graphene. This study reveals key features of charge and heat flow in graphene up to device breakdown at ~2230 K in vacuum, highlighting remaining unknowns under extreme operating conditions.

  14. Simultaneous measurement of electrical and thermal conductivities of suspended monolayer graphene

    Science.gov (United States)

    Wang, Haidong; Kurata, Kosaku; Fukunaga, Takanobu; Ago, Hiroki; Takamatsu, Hiroshi; Zhang, Xing; Ikuta, Tatsuya; Takahashi, Koji; Nishiyama, Takashi; Takata, Yasuyuki

    2016-06-01

    We measured both in-plane electrical and thermal properties of the same suspended monolayer graphene using a novel T-type sensor method. At room temperature, the values are about 240 000 Ω-1 m-1 and 2100 W m-1 K-1 for the electrical and thermal conductivities, respectively. Based on the Wiedemann-Franz law, the electrons have negligible contribution to the thermal conductivity of graphene, while the in-plane LA and TA modes phonons are the dominant heat carriers. In monolayer graphene, the absence of layer-layer and layer-substrate interactions enhances the contribution of long wave-length phonons to the heat transport and increases the thermal conductivity accordingly. The reported method and experimental data of suspended monolayer graphene are useful for understanding the basic physics and designing the future graphene electronic devices.

  15. Simultaneous measurement of electrical and thermal conductivities of suspended monolayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haidong; Kurata, Kosaku; Fukunaga, Takanobu; Takamatsu, Hiroshi, E-mail: takamatsu@mech.kyushu-u.ac.jp, E-mail: x-zhang@tsinghua.edu.cn [Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Ago, Hiroki [Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 816-8580 (Japan); Zhang, Xing, E-mail: takamatsu@mech.kyushu-u.ac.jp, E-mail: x-zhang@tsinghua.edu.cn [Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Ikuta, Tatsuya; Takahashi, Koji; Nishiyama, Takashi [Department of Aeronautics and Astronautics, Kyushu University, Fukuoka 819-0395 (Japan); Takata, Yasuyuki [International Institute for Carbon-Neutral Energy Research, Kyushu University, Fukuoka 819-0395 (Japan)

    2016-06-28

    We measured both in-plane electrical and thermal properties of the same suspended monolayer graphene using a novel T-type sensor method. At room temperature, the values are about 240 000 Ω{sup −1} m{sup −1} and 2100 W m{sup −1} K{sup −1} for the electrical and thermal conductivities, respectively. Based on the Wiedemann-Franz law, the electrons have negligible contribution to the thermal conductivity of graphene, while the in-plane LA and TA modes phonons are the dominant heat carriers. In monolayer graphene, the absence of layer-layer and layer-substrate interactions enhances the contribution of long wave-length phonons to the heat transport and increases the thermal conductivity accordingly. The reported method and experimental data of suspended monolayer graphene are useful for understanding the basic physics and designing the future graphene electronic devices.

  16. The Electromechanical Responses of Suspended Graphene Ribbons for Electrostatic Discharge Applications

    Science.gov (United States)

    Zhang, Wei

    This dissertation presents a novel suspended graphene ribbon device for electrostatic discharge (ESD) applications. The device structure is proposed and fabricated after careful design considerations. Compared to the conventional ESD devices such as diodes, bipolar junction transistors (BJTs), and metal-oxide-semiconductor field-effect transistors (MOSFETs), the proposed device structure is believed to render several advantages including zero leakage, low parasitic effects, fast response, and high current carrying capability, etc. A process flow is developed for higher yield and reliability of the suspended graphene ribbon device which is very delicate in nature. Direct current (DC) and transmission-line pulse test (TLP) measurements are carried out to investigate the switch-on behavior of the device which is crucial for ESD protection. DC measurement with a different configuration is used to characterize the mechanical shape evolution of the graphene ribbon upon biasing. Finite Element Simulations are also conducted to verify the experimental results, which are in good agreements. Furthermore, the breakdown properties of graphene ribbons are tested using TLP. It is found that graphene has a better current drivability compared to copper wires which is widely used as interconnects in integrated circuits (ICs). Also, bi-layer graphene has a higher breakdown current than monolayer graphene which indicates that multilayer graphene should be superior in current discharging. Last, Ab inito calculations are carried out to study the growth mechanism of multilayer graphene which is needed for graphene homo-epitaxy with precise control. It is found that a carbon cluster with six carbon atoms has the smallest kinetic barrier thus largest surface diffusivity during surface diffusion. So it is believed to be the most favorable diffusing species for graphene homo-epitaxy.

  17. The electro-mechanical responses of suspended graphene ribbons for electrostatic discharge applications

    Science.gov (United States)

    Zhang, Wei; Ma, Rui; Chen, Qi; Xia, Ming; Ng, Jimmy; Wang, Albert; Xie, Ya-Hong

    2016-04-01

    This work presents a suspended graphene ribbon device for electrostatic discharge (ESD) applications. The device structure was proposed and fabricated after careful design considerations. Compared to the conventional ESD devices such as diodes, bipolar junction transistors, and metal-oxide-semiconductor field effect transistors, the proposed device structure is believed to render several advantages including zero leakage, low parasitic effects, fast response, and high critical current density. A process flow was developed for higher yield and reliability of the suspended graphene ribbons. Direct current (DC) and transmission-line pulse (TLP) measurements were carried out to investigate the switching behavior of the device, which is crucial for ESD operation. DC measurements with a different configuration were used to assess the mechanical shape evolution of the graphene ribbon upon biasing. Finite Element Simulations were conducted and agreed well with the experimental results. Furthermore, the current carrying capability of non-suspended graphene ribbons was tested using TLP. It was found that the critical current density of graphene is higher than that of copper wires widely used as interconnects in integrated circuits (ICs).

  18. Surface-enhanced Raman scattering of suspended monolayer graphene

    Science.gov (United States)

    Huang, Cheng-Wen; Lin, Bing-Jie; Lin, Hsing-Ying; Huang, Chen-Han; Shih, Fu-Yu; Wang, Wei-Hua; Liu, Chih-Yi; Chui, Hsiang-Chen

    2013-11-01

    The interactions between phonons and electrons induced by the dopants or the substrate of graphene in spectroscopic investigation reveal a rich source of interesting physics. Raman spectra and surface-enhanced Raman spectra of supported and suspended monolayer graphenes were measured and analyzed systemically with different approaches. The weak Raman signals are greatly enhanced by the ability of surface-enhanced Raman spectroscopy which has attracted considerable interests. The technique is regarded as wonderful and useful tool, but the dopants that are produced by depositing metallic nanoparticles may affect the electron scattering processes of graphene. Therefore, the doping and substrate influences on graphene are also important issues to be investigated. In this work, the peak positions of G peak and 2D peak, the I 2D/ I G ratios, and enhancements of G and 2D bands with suspended and supported graphene flakes were measured and analyzed. The peak shifts of G and 2D bands between the Raman and SERS signals demonstrate the doping effect induced by silver nanoparticles by n-doping. The I 2D/ I G ratio can provide a more sensitive method to carry out the doping effect on the graphene surface than the peak shifts of G and 2D bands. The enhancements of 2D band of suspended and supported graphenes reached 138, and those of G band reached at least 169. Their good enhancements are helpful to measure the optical properties of graphene. The different substrates that covered the graphene surface with doping effect are more sensitive to the enhancements of G band with respect to 2D band. It provides us a new method to distinguish the substrate and doping effect on graphene.

  19. Graphene-based energy devices

    CERN Document Server

    Yusoff, A Rashid bin Mohd

    2015-01-01

    This first book dedicated to the topic provides an up-to-date account of the many opportunities graphene offers for robust, workable energy generation and storage devices. Following a brief overview of the fundamentals of graphene, including the main synthesis techniques, characterization methods and properties, the first part goes on to deal with graphene for energy storage applications, such as lithium-ion batteries, supercapacitors and hydrogen storage. The second part is concerned with graphene-based energy-generation devices, in particular conventional as well as microbial and enzymatic f

  20. Microscopic characterisation of suspended graphene grown by chemical vapour deposition

    NARCIS (Netherlands)

    Bignardi, L.; Dorp, W.F. van; Gottardi, S.; Ivashenko, O.; Dudin, P.; Barinov, A.; de Hosson, J.T.M.; Stöhr, M.; Rudolf, P.

    2013-01-01

    We present a multi-technique characterisation of graphene grown by chemical vapour deposition (CVD) and thereafter transferred to and suspended on a grid for transmission electron microscopy (TEM). The properties of the electronic band structure are investigated by angle-resolved photoelectron

  1. Discrete Dynamics of Nanoparticle Channelling in Suspended Graphene

    DEFF Research Database (Denmark)

    Booth, Tim; Pizzocchero, Filippo; Andersen, Henrik

    2011-01-01

    We have observed a previously undescribed stepwise oxidation of mono- and few layer suspended graphene by silver nanoparticles in situ at subnanometer scale in an environmental transmission electron microscope. Over the range of 600–850 K, we observe crystallographically oriented channelling...

  2. Measurement of the ν=1/3 Fractional Quantum Hall Energy Gap in Suspended Graphene

    Science.gov (United States)

    Ghahari, Fereshte; Zhao, Yue; Cadden-Zimansky, Paul; Bolotin, Kirill; Kim, Philip

    2011-01-01

    We report on magnetotransport measurements of multiterminal suspended graphene devices. Fully developed integer quantum Hall states appear in magnetic fields as low as 2 T. At higher fields the formation of longitudinal resistance minima and transverse resistance plateaus are seen corresponding to fractional quantum Hall states, most strongly for ν=1/3. By measuring the temperature dependence of these resistance minima, the energy gap for the 1/3 fractional state in graphene is determined to be at ˜20K at 14 T.

  3. Simulation of Strain Induced Pseudomagnetic Fields in Graphene Suspended on MEMS Chevron Actuators

    Science.gov (United States)

    Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna

    Graphene has been shown to withstand remarkable levels of mechanical strain an order of magnitude larger than bulk crystalline materials. This exceptional stretchability of graphene allows for the direct tuning of fundamental material properties, as well as for the investigation of novel physics such as generation of strain induced pseudomagnetic fields. However, current methods for strain such as polymer elongation or pressurized wells do not integrate well into devices. We propose microelectromechanical (MEMS) Chevron actuators as a reliable platform for applying strain to graphene. In addition to their advantageous controllable output force, low input power and ease of integration into existing technologies, MEMS allow for different strain orientations to optimize pseudomagnetic field generation in graphene. Here, we model nonuniform strain in suspended graphene on Chevron actuators using COMSOL Multiphysics. By simulating the deformation of the graphene geometry under the device actuation, we explore the pseudomagnetic field map induced by numerically calculating the components of the strain tensor. Our models provide the theoretical framework with which experimental analysis is compared, and optimize our MEMS designs for further exploration of novel physics in graphene. The authors would like to thank NSF DMR 1411008 for their support on this project.

  4. Giant magneto-photoelectric effect in suspended graphene

    Science.gov (United States)

    Sonntag, Jens; Kurzmann, Annika; Geller, Martin; Queisser, Friedemann; Lorke, Axel; Schützhold, Ralf

    2017-06-01

    We study the optical response of a suspended, monolayer graphene field-effect transistor structure in magnetic fields of up to 9 T (quantum Hall regime). With an illumination power of only 3 μW, we measure a photocurrent of up to 400 nA (without an applied bias) corresponding to a photo-responsivity of 0.13 A W-1, which we believe to be one of the highest values ever measured in single-layer graphene. We discuss possible mechanisms for generating this strong photo-response (17 electron-hole pairs per 100 incident photons). Based on our experimental findings, we believe that the most likely scenario is a ballistic two-stage process including carrier multiplication via Auger-type inelastic Coulomb scattering at the graphene edge.

  5. Modeling of graphene nanoribbon devices

    Science.gov (United States)

    Guo, Jing

    2012-08-01

    Recent advances in graphene nanoribbon (GNR) electronic devices provide a concrete context for developing simulation methods, comparing theories to experiments, and using simulations to explore device physics. We present a review on modeling of graphene nanoribbon devices, with an emphasis on electronic and magnetoresistive devices. Device modeling is reviewed in a synergistic perspective with GNR material properties, device characteristics, and circuit requirements. Similarity with and difference to carbon nanotube devices are discussed. Device modeling and simulation results are compared to experimental data, which underlines the importance of theory-experiment collaborations in this field. Importance of the GNR edges, which have a negative impact on the carrier mobility due to edge roughness but offer new possibilities of spintronic devices and edge doping, is emphasized. Advanced device modeling of GNRs needs to have the capability to describe GNR device physics, including three-dimensional electrostatics, quantum and atomistic scale effects, elastic and inelastic scattering processes, electron-electron interaction, edge chemistry, magnetic field modulation, and spintronic and thermoelectric device phenomena.

  6. Signatures of evanescent transport in ballistic suspended graphene-superconductor junctions

    Science.gov (United States)

    Kumaravadivel, Piranavan; Du, Xu

    2016-04-01

    In Dirac materials, the low energy excitations behave like ultra-relativistic massless particles with linear energy dispersion. A particularly intriguing phenomenon arises with the intrinsic charge transport behavior at the Dirac point where the charge density approaches zero. In graphene, a 2-D Dirac fermion gas system, it was predicted that charge transport near the Dirac point is carried by evanescent modes, resulting in unconventional “pseudo-diffusive” charge transport even in the absence of disorder. In the past decade, experimental observation of this phenomenon remained challenging due to the presence of strong disorder in graphene devices which limits the accessibility of the low carrier density regime close enough to the Dirac point. Here we report transport measurements on ballistic suspended graphene-Niobium Josephson weak links that demonstrate a transition from ballistic to pseudo-diffusive like evanescent transport below a carrier density of ~1010 cm-2. Approaching the Dirac point, the sub-harmonic gap structures due to multiple Andreev reflections display a strong Fermi energy-dependence and become increasingly pronounced, while the normalized excess current through the superconductor-graphene interface decreases sharply. Our observations are in qualitative agreement with the long standing theoretical prediction for the emergence of evanescent transport mediated pseudo-diffusive transport in graphene.

  7. Sub-harmonic gap structure and Magneto-transport in suspended graphene -Superconductor ballistic junctions

    Science.gov (United States)

    Kumaravadivel, Piranavan; Du, Xu

    2015-03-01

    Inducing superconductivity in graphene via the proximity effect enables to study the rich transport of the massless Dirac fermions at the Superconductor(S) - Graphene (G) interface. Some of the predictions are pseudo diffusive transport in Ballistic SGS junctions at low carrier densities and the unique specular and retro Andreev reflections in graphene. One of the challenges in observing these experimentally is to fabricate highly transparent ballistic SGS junctions that can be probed at low carrier densities near the Dirac point. In this talk we will present our recent results on suspended graphene- Niobium Josephson weak links. Our devices exhibit a mobility of ~ 350000 cm2V-1s-1 with a carrier density as low as 109 cm-2. Below the Superconducting transition temperature (Tc) ~ 9K, the devices show supercurrent and sub-harmonic gap structure due to Multiple Andreev reflections. In the vicinity of the Dirac point, the sub-harmonic gap structure becomes more pronounced, which as predicated, is indicative of pseudo-diffusive transport. With a fine scanning of gate voltage close to Dirac point we see emergence of some unusual sub- gap structures. We also report on our study of these samples below the upper critical field of Nb (~ 3.5T), where superconducting proximity effect coexists with Quantum Hall effect.

  8. Broken-Symmetry States and Divergent Resistance in Suspended Bilayer Graphene

    Science.gov (United States)

    Feldman, Benjamin; Martin, Jens; Weitz, Thomas; Allen, Monica; Yacoby, Amir

    2010-03-01

    We report the fabrication of suspended bilayer graphene devices with very little disorder. Transport measurements at zero magnetic field indicate that charge inhomogeneity in these flakes reaches as low as 10^10 cm-2. We observe quantum Hall states that are fully quantized at a magnetic field of 0.2 T, as well as broken-symmetry states at intermediate filling factors ν = 0, ±1, ±2 and ±3. In the ν = 0 state, the resistance of the flakes increases exponentially with applied magnetic field and scales as magnetic field divided by temperature. This resistance is predominantly affected by the perpendicular component of the applied field and the extracted gap size is larger than expected from Zeeman splitting, indicating that the broken-symmetry states arise from many-body interactions and underscoring the importance of Coulomb interactions in bilayer graphene.

  9. Low-energy electron point projection microscopy/diffraction study of suspended graphene

    Science.gov (United States)

    Hsu, Wei-Hao; Chang, Wei-Tse; Lin, Chun-Yueh; Chang, Mu-Tung; Hsieh, Chia-Tso; Wang, Chang-Ran; Lee, Wei-Li; Hwang, Ing-Shouh

    2017-11-01

    In this work, we present our study of suspended graphene with low-energy electrons based on a point projection microscopic/diffractive imaging technique. Both exfoliated and chemical vapor deposition (CVD) graphene samples were studied in an ultra-high vacuum chamber. This method allows imaging of individual adsorbates at the nanometer scale and characterizing graphene layers, graphene lattice orientations, ripples on graphene membranes, etc. We found that long-duration exposure to low-energy electron beams induced aggregation of adsorbates on graphene when the electron dose rate was above a certain level. We also discuss the potential of this technique to conduct coherent diffractive imaging for determining the atomic structures of biological molecules adsorbed on suspended graphene.

  10. Tunable graphene dc superconducting quantum interference device.

    Science.gov (United States)

    Girit, Caglar; Bouchiat, V; Naaman, O; Zhang, Y; Crommie, M F; Zettl, A; Siddiqi, I

    2009-01-01

    Graphene exhibits unique electrical properties on account of its reduced dimensionality and "relativistic" band structure. When contacted with two superconducting electrodes, graphene can support Cooper pair transport, resulting in the well-known Josephson effect. We report here the fabrication and operation of a two junction dc superconducting quantum interference device (SQUID) formed by a single graphene sheet contacted with aluminum/palladium electrodes in the geometry of a loop. The supercurrent in this device can be modulated not only via an electrostatic gate but also by an applied magnetic fielda potentially powerful probe of electronic transport in graphene and an ultrasensitive platform for nanomagnetometry.

  11. The device application of electrochemical exfoliated graphene

    Science.gov (United States)

    Tan, Chee Kiat; Beh, Khi Poay; Suhaimi, Faris Hidayat Ahmad; Ng, Yu Zhang; Yam, Fong Kwong; Lim, Hwee San; Jafri, Mohd. Zubir Mat

    2017-08-01

    In this work, graphene was exfoliated by introducing the constant Galvano Static Current (GSC) at the range of 300-600mA with the incremental of 100mA. The Graphene produced through this exfoliation technique was also investigated through optical characterization using Field Emission Scanning Electron Microscope (FESEM), Ultraviolet Visible (UV-vis) spectroscopy and Raman spectroscopy to comprehend the quality behavior. To further understand the graphene characteristic, we applied the produced graphene on top of fabricated interdigitated electrode (IDE) device to investigate the electrical reaction.

  12. Graphene doping methods and device applications.

    Science.gov (United States)

    Oh, Jong Sik; Kim, Kyong Nam; Yeom, Geun Young

    2014-02-01

    Graphene has recently been studied as a promising material to replace and enhance conventional electronic materials in various fields such as electronics, photovoltaics, sensors, etc. However, for the electronic applications of graphene prepared by various techniques such as chemical vapor deposition, chemical exfoliation, mechanical exfoliation, etc., critical limitations are found due to the defects in the graphene in addition to the absence of a semiconducting band gap. For that, many researchers have investigated the doped graphene which is effective to tailor its electronic property and chemical reactivity. This work presents a review of the various graphene doping methods and their device applications. As doping methods, direct synthesis method and post treatment method could be categorized. Because the latter case has been widely investigated and used in various electronic applications, we will focus on the post treatment method. Post treatment method could be further classified into wet and dry doping methods. In the case of wet doping, acid treatment, metal chloride, and organic material coating are the methods used to functionalize graphene by using dip-coating, spin coating, etc. Electron charge transfer achieved from graphene to dopants or from dopants to graphene makes p-type or n-type graphenes, respectively, with sheet resistance reduction effect. In the case of dry doping, it can be further categorized into electrostatic field method, evaporation method, thermal treatment method, plasma treatment method, etc. These doping techniques modify Fermi energy level of graphene and functionalize the property of graphene. Finally, some perspectives and device applications of doped graphene are also briefly discussed.

  13. High thermoelectricpower factor in graphene/hBN devices

    National Research Council Canada - National Science Library

    Duan, Junxi; Wang, Xiaoming; Lai, Xinyuan; Li, Guohong; Watanabe, Kenji; Taniguchi, Takashi; Zebarjadi, Mona; Andrei, Eva Y

    2016-01-01

    .... Although passive cooling in graphene-based devices is quite effective due to graphene's extraordinary heat conduction, active cooling has not been considered feasible due to graphene's low thermoelectric power factor...

  14. Suppressing thermal conductivity of suspended tri-layer graphene by gold deposition.

    Science.gov (United States)

    Wang, Jiayi; Zhu, Liyan; Chen, Jie; Li, Baowen; Thong, John T L

    2013-12-17

    A simple and general strategy for suppressing the thermal conductivity in graphene is shown. The strategy uses gold nano-particles physically deposited on graphene to continuously reduce the thermal conductivity of graphene with increasing coverage, which demonstrates the potential for practical development of graphene-based devices with tunable thermal conductivity for thermal management. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Length-dependent thermal conductivity in suspended single-layer graphene.

    Science.gov (United States)

    Xu, Xiangfan; Pereira, Luiz F C; Wang, Yu; Wu, Jing; Zhang, Kaiwen; Zhao, Xiangming; Bae, Sukang; Tinh Bui, Cong; Xie, Rongguo; Thong, John T L; Hong, Byung Hee; Loh, Kian Ping; Donadio, Davide; Li, Baowen; Özyilmaz, Barbaros

    2014-04-16

    Graphene exhibits extraordinary electronic and mechanical properties, and extremely high thermal conductivity. Being a very stable atomically thick membrane that can be suspended between two leads, graphene provides a perfect test platform for studying thermal conductivity in two-dimensional systems, which is of primary importance for phonon transport in low-dimensional materials. Here we report experimental measurements and non-equilibrium molecular dynamics simulations of thermal conduction in suspended single-layer graphene as a function of both temperature and sample length. Interestingly and in contrast to bulk materials, at 300 K, thermal conductivity keeps increasing and remains logarithmically divergent with sample length even for sample lengths much larger than the average phonon mean free path. This result is a consequence of the two-dimensional nature of phonons in graphene, and provides fundamental understanding of thermal transport in two-dimensional materials.

  16. Towards intrinsic graphene biosensor: A label-free, suspended single crystalline graphene sensor for multiplex lung cancer tumor markers detection.

    Science.gov (United States)

    Li, Peng; Zhang, Bo; Cui, Tianhong

    2015-10-15

    Graphene biosensors reported so far are based on polycrystalline graphene flakes which are anchored on supporting substrates. The influence of grain boundary and the scattering from substrate drastically degrade the properties of graphene and conceal the performance of intrinsic graphene as a sensor. Here we report a label-free biosensor based on suspended single crystalline graphene (SCG), which can get rid of grain boundary and substrate scattering, revealing the biosensing mechanism of intrinsic graphene for the first time. Monolayer SCG flakes were derived from low pressure chemical vapor deposition (LPCVD) method. Multiplex detection of three different lung cancer tumor markers was realized. The suspended structure can largely improve the sensitivity and detection limit (0.1 pg/ml) of the sensor, and the single crystalline nature of SCG enable the biosensor to have superior uniformity compared to polycrystalline ones. The SCG sensors exhibit superb specificity and large linear detection range from 1 pg/ml to 1 μg/ml, showing the prominent advantages of graphene as a sensing material. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Experimental study of thermal rectification in suspended monolayer graphene

    Science.gov (United States)

    Wang, Haidong; Hu, Shiqian; Takahashi, Koji; Zhang, Xing; Takamatsu, Hiroshi; Chen, Jie

    2017-06-01

    Thermal rectification is a fundamental phenomenon for active heat flow control. Significant thermal rectification is expected to exist in the asymmetric nanostructures, such as nanowires and thin films. As a one-atom-thick membrane, graphene has attracted much attention for realizing thermal rectification as shown by many molecular dynamics simulations. Here, we experimentally demonstrate thermal rectification in various asymmetric monolayer graphene nanostructures. A large thermal rectification factor of 26% is achieved in a defect-engineered monolayer graphene with nanopores on one side. A thermal rectification factor of 10% is achieved in a pristine monolayer graphene with nanoparticles deposited on one side or with a tapered width. The results indicate that the monolayer graphene has great potential to be used for designing high-performance thermal rectifiers for heat flow control and energy harvesting.

  18. Sticking of Hydrogen on Supported and Suspended Graphene at Low Temperature

    Science.gov (United States)

    Lepetit, Bruno; Jackson, Bret

    2011-12-01

    The physisorption of atomic hydrogen on graphene is investigated quantum mechanically using a semiempirical model for the lattice dynamics. A thermally averaged wave packet propagation describes the motion of the H atoms with respect to the membrane. Two graphene configurations, either supported on a silicone oxide substrate or suspended over a hole in the substrate, are considered. In both cases, the phonon spectrum is modified in such a way that graphene is stabilized with respect to thermal fluctuations. The sticking probabilities of hydrogen on these stabilized membranes at 10 K are high at low collision energies, and larger than on graphite.

  19. Measuring the height-to-height correlation function of corrugation in suspended graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kirilenko, D.A., E-mail: Demid.Kirilenko@mail.ioffe.ru [Ioffe Institute, Politekhnicheskaya ul. 26, 194021 St-Petersburg (Russian Federation); EMAT, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Brunkov, P.N. [Ioffe Institute, Politekhnicheskaya ul. 26, 194021 St-Petersburg (Russian Federation); ITMO University, Kronverksky pr. 49, 197101 St. Petersburg (Russian Federation)

    2016-06-15

    Nanocorrugation of 2D crystals is an important phenomenon since it affects their electronic and mechanical properties. The corrugation may have various sources; one of them is flexural phonons that, in particular, are responsible for the thermal conductivity of graphene. A study of corrugation of just the suspended graphene can reveal much of valuable information on the physics of this complicated phenomenon. At the same time, the suspended crystal nanorelief can hardly be measured directly because of high flexibility of the 2D crystal. Moreover, the relief portion related to rapid out-of-plane oscillations (flexural phonons) is also inaccessible by such measurements. Here we present a technique for measuring the Fourier components of the height–height correlation function H(q) of suspended graphene which includes the effect of flexural phonons. The technique is based on the analysis of electron diffraction patterns. The H(q) is measured in the range of wavevectors q≈0.4–4.5 nm{sup −1}. At the upper limit of this range H(q) does follow the T/κq{sup 4} law. So, we measured the value of suspended graphene bending rigidity κ=1.2±0.4 eV at ambient temperature T≈300 K. At intermediate wave vectors, H(q) follows a slightly weaker exponent than theoretically predicted q{sup −3.15} but is closer to the results of the molecular dynamics simulation. At low wave vectors, the dependence becomes even weaker, which may be a sign of influence of charge carriers on the dynamics of undulations longer than 10 nm. The technique presented can be used for studying physics of flexural phonons in other 2D materials. - Highlights: • A technique for measuring free-standing 2D crystal corrugation is proposed. • The height-to-height correlation function of the suspended graphene corrugation is measured. • Various parameters of the intrinsic graphene properties are experimentally determined.

  20. An atomistic investigation of the effect of strain on frictional properties of suspended graphene

    Directory of Open Access Journals (Sweden)

    Qingshun Bai

    2016-05-01

    Full Text Available We performed molecular dynamics (MD simulations of a diamond probe scanned on a suspended graphene to reveal the effect of strain on the frictional properties of suspended graphene. The graphene was subjected to some certain strain along the scanning direction. We compared the friction coefficient obtained from different normal loads and strain. The results show that the friction coefficient can be decreased about one order of magnitude with the increase of the strain. And that can be a result of the decreased asymmetry of the contact region which is caused by strain. The synthetic effect of potential energy and the fluctuation of contact region were found to be the main reason accounting for the fluctuation of the friction force. The strain can reduce the fluctuation of the contact region and improve the stability of friction.

  1. An atomistic investigation of the effect of strain on frictional properties of suspended graphene

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Qingshun; He, Xin; Bai, Jinxuan [School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Tong, Zhen [Centre for precision technologies, University of Huddersfield, Huddersfield, HD1 3DH (United Kingdom)

    2016-05-15

    We performed molecular dynamics (MD) simulations of a diamond probe scanned on a suspended graphene to reveal the effect of strain on the frictional properties of suspended graphene. The graphene was subjected to some certain strain along the scanning direction. We compared the friction coefficient obtained from different normal loads and strain. The results show that the friction coefficient can be decreased about one order of magnitude with the increase of the strain. And that can be a result of the decreased asymmetry of the contact region which is caused by strain. The synthetic effect of potential energy and the fluctuation of contact region were found to be the main reason accounting for the fluctuation of the friction force. The strain can reduce the fluctuation of the contact region and improve the stability of friction.

  2. Suspended graphene with periodic dimer nanostructure on Si cavities for surface-enhanced Raman scattering applications

    Science.gov (United States)

    Ho, Hsin-Chia; Nien, Li-Wei; Li, Jia-Han; Hsueh, Chun-Hway

    2017-04-01

    Periodic gold dimer nanoantennas on a one-atomic-layer graphene sheet elevated above Si cavities were fabricated to systematically study the effects of the cavity depth on surface-enhanced Raman scattering (SERS). The periodic trend of Raman intensity as a function of the cavity depth resulting from the interference effect between the plasmonic resonance of the gold dimer and the cavity resonance of the underlying Si cavity was observed, and the electric field was greatly enhanced compared with the non-suspended system. The finite-difference time-domain method was used to simulate the interaction between the electromagnetic wave and the suspended system and to verify the observed SERS response in experiments. Our work has the advantages of combining the superior properties of graphene with suspended metallic nanostructures to result in the enhanced electric field for SERS applications.

  3. Thermal conductivity of suspended few-layer graphene by a modified T-bridge method

    Science.gov (United States)

    Jang, W.; Bao, W.; Jing, L.; Lau, C. N.; Dames, C.

    2013-09-01

    We measured the in-plane thermal conductivity of suspended few-layer graphene flakes by a modified T-bridge technique from 300 K to below 100 K. The thermal conductivities at room temperature are 389, 344, 302, and 596 W/m K for 2-, 3-, 4-, and 8-layer graphene, respectively. The thinner (2-, 3-, 4-layer) graphene samples did not show any clear thickness dependence, while the thicker (8-layer) sample clearly has higher thermal conductivity. In situ current annealing was used to remove polymer residues from the central portion of the 3- and 8-layer graphene samples, as confirmed by electrical transport measurements and post-experiment characterization by Raman and scanning electron microscopy, although some residues still remained near both ends (heater and heat sink). Comparing the 2, 3, and 4-layer samples suggests the annealing had little effect near room temperature but leads to increased thermal conductivity at low temperature. These results also show that the thermal conductivities of suspended few-layer graphene are higher than those of encased few-layer graphene of similar thickness measured previously [Jang et al., Nano Lett. 10, 3909 (2010)].

  4. Modeling and simulation of graphene devices

    Science.gov (United States)

    Chauhan, Jyotsna

    Graphene has been explored as one of the promising materials to sustain Moore's law especially with silicon approaching its limits. The extraordinary electronic properties of graphene like high mobility, high saturation velocity etc. have created a gold rush for graphene based electronics. The numerical study in this dissertation provides valuable insights into device physics and characteristics of graphene Field Effect Transistors (FETs). First part of dissertation studies the effect of inelastic phonon scattering in graphene FETs using semi classical approach. A kink behavior due to ambipolar transport is observed. Even the low field mobility is affected by inelastic phonon scattering in recent graphene FET experiments reporting high mobilities. Physical mechanisms for good linearity are explained. The high frequency performance limits of graphene FETs are studied by running quantum simulations. Although Klein band-to-band tunneling is significant for sub-100nm graphene FETs, it is possible to achieve a good transconductance and ballistic on-off ratio larger than 3 even at a channel length of 20nm. At a channel length of 20nm, the intrinsic cut-off frequency remains at a couple of THz for various gate insulator thickness values, but a thin gate insulator is necessary for a good transconductance and smaller degradation of cut-off frequency in the presence of parasitic capacitance. With a thin high-kappa gate insulator, the intrinsic ballistic fT is above 5THz for gate length of 10nm. The source and drain resistance severely degrade RF parameters, fMAX and f T. It is found that the intrinsic fT is close to the LC characteristic frequency set by graphene kinetic inductance and quantum capacitance. Graphene on silicon contacts are modeled. Graphene on silicon forms Schottky contact with a flexibility to tune the Schottky barrier height (SBH) by silicon doping and gate voltage. Multiple layers of graphene at the interface as well as donor type interface states reduce

  5. A Passively-Suspended Tesla Pump Left Ventricular Assist Device

    Science.gov (United States)

    Izraelev, Valentin; Weiss, William J.; Fritz, Bryan; Newswanger, Raymond K.; Paterson, Eric G.; Snyder, Alan; Medvitz, Richard B.; Cysyk, Joshua; Pae, Walter E.; Hicks, Dennis; Lukic, Branka; Rosenberg, Gerson

    2009-01-01

    The design and initial test results of a new passively suspended Tesla type LAVD blood pump are described. CFD analysis was used in the design of the pump. Overall size of the prototype device is 50 mm in diameter and 75 mm in length. The pump rotor has a density lower than that of blood and when spinning inside the stator in blood it creates a buoyant centering force that suspends the rotor in the radial direction. The axial magnetic force between the rotor and stator restrain the rotor in the axial direction. The pump is capable of pumping up to 10 liters/min at a 70 mmHg head rise at 8000 RPM. The pump has demonstrated a normalized index of hemolysis level below .02 mg/dL for flows between 2 and 9.7 L/min. An inlet pressure sensor has also been incorporated into the inlet cannula wall and will be used for control purposes. One initial in vivo study showed an encouraging result. Further CFD modeling refinements are planned as well as endurance testing of the device. PMID:19770799

  6. Self-assembly of suspended graphene wrinkles with high pre-tension and elastic property

    Science.gov (United States)

    Yang, Liusi; Niu, Tianxiao; Zhang, Hui; Xu, Wenjing; Zou, Mingchu; Xu, Lu; Cao, Guoxin; Cao, Anyuan

    2017-12-01

    Wrinkles exist universally in graphene-based structures, yet their controlled fabrication remains challenging; most graphene wrinkles have been produced either in attachment to elastic substrates or limited in small single sheets. Here, we utilize the phenomenon of gel-cracking to generate uniaxial strains locally on solution-precipitated graphene oxide (GO) sheets, thus creating suspended and aligned wrinkles over the trenches between cracked TiO2 islands. In particular, those GO wrinkles are subjected to a high pre-tension, which is important for making stable suspended configuration, as confirmed by theoretical calculations based on the wrinkle geometry and measured spring constants, respectively. As a result, in situ atomic force microscope indentation reveals elastic deformation with tunable spring constants depending on the gap width. We further obtain chemically reduced GO wrinkles with enhanced spring constants and reversible behavior after 1000 indentation cycles. Our suspended and aligned graphene wrinkles have potential applications in many areas such as sensors, actuators, and micro/nano electromechanical systems.

  7. A Simple Transmission Electron Microscopy Method for Fast Thickness Characterization of Suspended Graphene and Graphite Flakes.

    Science.gov (United States)

    Rubino, Stefano; Akhtar, Sultan; Leifer, Klaus

    2016-02-01

    We present a simple, fast method for thickness characterization of suspended graphene/graphite flakes that is based on transmission electron microscopy (TEM). We derive an analytical expression for the intensity of the transmitted electron beam I 0(t), as a function of the specimen thickness t (tgraphene/graphite, the method we propose has the advantage of being simple and fast, requiring only the acquisition of bright-field images.

  8. Fractional quantum Hall effect in suspended graphene: Transport coefficients and electron interaction strength

    Science.gov (United States)

    Abanin, D. A.; Skachko, I.; Du, X.; Andrei, E. Y.; Levitov, L. S.

    2010-03-01

    Recently, fractional-quantized Hall effect was observed in suspended graphene (SG), a free-standing monolayer of carbon, where it was found to persist up to T=10K . The best results in those experiments were obtained on micron-size flakes, on which only two-terminal transport measurements could be performed. Here we address the problem of extracting transport coefficients of a fractional quantum Hall state from the two-terminal conductance. We develop a general method, based on the conformal invariance of two-dimensional magnetotransport, and employ it to analyze the measurements on SG. From the temperature dependence of longitudinal conductivity, extracted from the measured two-terminal conductance, we estimate the energy gap of quasiparticle excitations in the fractional-quantized ν=1/3 state. The gap is found to be significantly larger than in GaAs-based structures, signaling much stronger electron interactions in suspended graphene. Our approach provides a tool for the studies of quantum transport in suspended graphene and other nanoscale systems.

  9. Superconducting quantum interference devices with graphene junctions

    Science.gov (United States)

    Thompson, Michael; Prance, Jonathan; Haley, Richard; Pashkin, Yuri; Ben Shalom, Moshe; Fal'Ko, Vladimir; Matthews, Anthony; White, Jeremy; Viznichenko, Roman; Melhem, Ziad

    We present measurements of DC superconducting quantum interference devices based on Nb/graphene/Nb Josephson junctions. The superconducting proximity effect in graphene can be used to build Josephson junctions whose critical current can be controlled by field-effect gates. These junctions combine the tunability of semiconductor Josephson junctions with the high critical currents and low contact resistances of metal SNS junctions. By using local gates, the SQUID junction critical currents can be modified individually and this allows the sensitivity and symmetry of the SQUID to be controlled in-situ. We compare the critical current of the SQUID with simulations that include a non-sinusoidal current phase relation in the junctions, as expected for ballistic graphene junctions. We also investigate the transfer function of the device in both symmetric and asymmetric configurations and find a highest transfer function of 300 μV/Φ0. Graphene Josephson junctions have the potential to add functionality to existing technologies; for example, to make SQUID magnetometers with tunable sensitivity or superconducting qubits with fast electrical control.

  10. One-step synthesis of a suspended ultrathin graphene oxide film: application in transmission electron microscopy.

    Science.gov (United States)

    Kirilenko, D A; Dideykin, A T; Aleksenskiy, A E; Sitnikova, A A; Konnikov, S G; Vul', A Ya

    2015-01-01

    Ultrathin graphene films find their use as advantageous support for nano- and biomaterials investigations. Thin film causes a very slight deterioration to measured signals, thus providing more details of the object's structure at nanoscale. The ultimate thinness of graphene works in the best way for this purpose. However, obtaining suspended thin film of a large-area, which is convenient for applications, is often a relatively complicated and time-consuming task. Here we present a one-step 1-min technique for synthesis of an extremely thin (about 1-2 nm) continuous film suspended over cells of a conventional copper grid (50-400 μm mesh). This technique enables us to acquire a large-area film which is water-resistant, stable in organic solvents and can act as a support when studying nanoparticles or biomaterials. Moreover, the very mechanism of the film formation can be interesting from the point of view of other applications of ultrathin graphene oxide papers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Reexamination of basal plane thermal conductivity of suspended graphene samples measured by electro-thermal micro-bridge methods

    Directory of Open Access Journals (Sweden)

    Insun Jo

    2015-05-01

    Full Text Available Thermal transport in suspended graphene samples has been measured in prior works and this work with the use of a suspended electro-thermal micro-bridge method. These measurement results are analyzed here to evaluate and eliminate the errors caused by the extrinsic thermal contact resistance. It is noted that the room-temperature thermal resistance measured in a recent work increases linearly with the suspended length of the single-layer graphene samples synthesized by chemical vapor deposition (CVD, and that such a feature does not reveal the failure of Fourier’s law despite the increase in the reported apparent thermal conductivity with length. The re-analyzed apparent thermal conductivity of a single-layer CVD graphene sample reaches about 1680 ± 180 W m−1 K−1 at room temperature, which is close to the highest value reported for highly oriented pyrolytic graphite. In comparison, the apparent thermal conductivity values measured for two suspended exfoliated bi-layer graphene samples are about 880 ± 60 and 730 ± 60 Wm−1K−1 at room temperature, and approach that of the natural graphite source above room temperature. However, the low-temperature thermal conductivities of these suspended graphene samples are still considerably lower than the graphite values, with the peak thermal conductivities shifted to much higher temperatures. Analysis of the thermal conductivity data reveals that the low temperature behavior is dominated by phonon scattering by polymer residue instead of by the lateral boundary.

  12. Improved photoresponse with enhanced photoelectric contribution in fully suspended graphene photodetectors.

    Science.gov (United States)

    Patil, Vikram; Capone, Aaron; Strauf, Stefan; Yang, Eui-Hyeok

    2013-09-27

    Graphene's unique optoelectronic properties are promising to realize photodetectors with ultrafast photoresponse over a wide spectral range from far-infrared to ultraviolet radiation. The underlying mechanism of the photoresponse has been a particular focus of recent work and was found to be either photoelectric or photo-thermoelectric in nature and enhanced by hot carrier effects. Graphene supported by a substrate was found to be dominated by the photo-thermoelectric effect, which is known to be an order of magnitude slower than the photoelectric effect. Here we demonstrate fully-suspended chemical vapor deposition grown graphene microribbon arrays that are dominated by the faster photoelectric effect. Substrate removal was found to enhance the photoresponse by four-fold compared to substrate-supported microribbons. Furthermore, we show that the light-current input/output curves give valuable information about the underlying photophysical process responsible for the generated photocurrent. These findings are promising towards wafer-scale fabrication of graphene photodetectors approaching THz cut-off frequencies.

  13. Dry-transferred CVD graphene for inverted spin valve devices

    Science.gov (United States)

    Drögeler, Marc; Banszerus, Luca; Volmer, Frank; Taniguchi, Takashi; Watanabe, Kenji; Beschoten, Bernd; Stampfer, Christoph

    2017-10-01

    Integrating high-mobility graphene grown by chemical vapor deposition (CVD) into spin transport devices is one of the key tasks in graphene spintronics. We use a van der Waals pick-up technique to transfer CVD graphene by hexagonal boron nitride (hBN) from the copper growth substrate onto predefined Co/MgO electrodes to build inverted spin valve devices. Two approaches are presented: (i) a process where the CVD-graphene/hBN stack is first patterned into a bar and then transferred by a second larger hBN crystal onto spin valve electrodes and (ii) a direct transfer of a CVD-graphene/hBN stack. We report record high spin lifetimes in CVD graphene of up to 1.75 ns at room temperature. Overall, the performances of our devices are comparable to devices fabricated from exfoliated graphene also revealing nanosecond spin lifetimes. We expect that our dry transfer methods pave the way towards more advanced device geometries not only for spintronic applications but also for CVD-graphene-based nanoelectronic devices in general where patterning of the CVD graphene is required prior to the assembly of final van der Waals heterostructures.

  14. Local doping of graphene devices by selective hydrogen adsorption

    Directory of Open Access Journals (Sweden)

    Min Park

    2015-01-01

    Full Text Available N-type graphene fabricated by exposure to hydrogen gas has been previously studied. Based on this property of graphene, herein, we demonstrate local doping in single-layer graphene using selective adsorption of dissociative hydrogen at 350 K. A graphene field effect transistor was produced covered with PMMA on half of the graphene region. The charge neutrality point of the PMMA-window region shifted to a negative gate voltage (VG region prominently compared with that of the PMMA-covered region. Consequently, a single graphene p-n junction was obtained by measuring the VG-dependent resistance of the whole graphene region. This method presents opportunities for developing and controlling the electronic structure of graphene and device applications.

  15. Dry-transferred CVD graphene for inverted spin valve devices

    OpenAIRE

    Drögeler, Marc; Banszerus, Luca; Volmer, Frank; Taniguchi, Takashi; Watanabe, Kenji; Beschoten, Bernd; Stampfer, Christoph

    2017-01-01

    Integrating high-mobility graphene grown by chemical vapor deposition (CVD) into spin transport devices is one of the key tasks in graphene spintronics. We use a van der Waals pickup technique to transfer CVD graphene by hexagonal boron nitride (hBN) from the copper growth substrate onto predefined Co/MgO electrodes to build inverted spin valve devices. Two approaches are presented: (i) a process where the CVD-graphene/hBN stack is first patterned into a bar and then transferred by a second l...

  16. Measuring the size dependence of thermal conductivity of suspended graphene disks using null-point scanning thermal microscopy.

    Science.gov (United States)

    Hwang, Gwangseok; Kwon, Ohmyoung

    2016-03-07

    Using null-point scanning thermal microscopy (NP SThM), we have measured and analyzed the size dependence of the thermal conductivity of graphene. To do so, we rigorously re-derived the principal equation of NP SThM in terms of thermal property measurements so as to explain how this technique can be effectively used to quantitatively measure the local thermal resistance with nanoscale spatial resolution. This technique has already been proven to resolve the major problems of conventional SThM, and to quantitatively measure the temperature profile. Using NP SThM, we measured the variation in the thermal resistance of suspended chemical vapor deposition (CVD)-grown graphene disks with radii of 50-3680 nm from the center to the edge with respect to the size. By thoroughly analyzing the size dependence of the thermal resistance, we show that, with increasing graphene size, the ballistic resistance becomes more dominant in the thermal resistance experienced by a heat source of finite size and that the thermal conductivity experienced by such a heat source can even decrease. The results of this study reveal that the thermal conductivity of graphene detected by a heat source depends on the size of the heat source relative to that of the suspended graphene and on how the heat source and graphene are connected. As demonstrated in this study, NP SThM will be very useful for quantitative thermal characterization of not only CVD-grown graphene but also various other nanomaterials and nanodevices.

  17. Reducing contact resistance in graphene devices through contact area patterning.

    Science.gov (United States)

    Smith, Joshua T; Franklin, Aaron D; Farmer, Damon B; Dimitrakopoulos, Christos D

    2013-04-23

    Performance of graphene electronics is limited by contact resistance associated with the metal-graphene (M-G) interface, where unique transport challenges arise as carriers are injected from a 3D metal into a 2D-graphene sheet. In this work, enhanced carrier injection is experimentally achieved in graphene devices by forming cuts in the graphene within the contact regions. These cuts are oriented normal to the channel and facilitate bonding between the contact metal and carbon atoms at the graphene cut edges, reproducibly maximizing "edge-contacted" injection. Despite the reduction in M-G contact area caused by these cuts, we find that a 32% reduction in contact resistance results in Cu-contacted, two-terminal devices, while a 22% reduction is achieved for top-gated graphene transistors with Pd contacts as compared to conventionally fabricated devices. The crucial role of contact annealing to facilitate this improvement is also elucidated. This simple approach provides a reliable and reproducible means of lowering contact resistance in graphene devices to bolster performance. Importantly, this enhancement requires no additional processing steps.

  18. Fabrication of quantum-dot devices in graphene

    Directory of Open Access Journals (Sweden)

    Satoshi Moriyama, Yoshifumi Morita, Eiichiro Watanabe, Daiju Tsuya, Shinya Uji, Maki Shimizu and Koji Ishibashi

    2010-01-01

    Full Text Available We describe our recent experimental results on the fabrication of quantum-dot devices in a graphene-based two-dimensional system. Graphene samples were prepared by micromechanical cleavage of graphite crystals on a SiO2/Si substrate. We performed micro-Raman spectroscopy measurements to determine the number of layers of graphene flakes during the device fabrication process. By applying a nanofabrication process to the identified graphene flakes, we prepared a double-quantum-dot device structure comprising two lateral quantum dots coupled in series. Measurements of low-temperature electrical transport show the device to be a series-coupled double-dot system with varied interdot tunnel coupling, the strength of which changes continuously and non-monotonically as a function of gate voltage.

  19. Thermal Stability of Epitaxial Graphene Electrodes for Conductive Polymer Nanofiber Devices

    National Research Council Canada - National Science Library

    Kyung Ho Kim; Samuel Lara-Avila; Hans He; Hojin Kang; Yung Woo Park; Rositsa Yakimova; Sergey Kubatkin

    2017-01-01

    .... Our fabrication process, which avoids polymer resist residues on the graphene surface, results in graphene-polyaniline nanofiber devices with Ohmic contacts and electrical conductivity comparable...

  20. Effective Surface Conductivity Approach for Graphene Metamaterials Based Terahertz Devices

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim

    2013-01-01

    We propose a description of graphene metamaterials properties through the effective surface conductivity. On the example of tunable absorber we demonstrate that this approach allows for fast and efficient design of functional terahertz devices.......We propose a description of graphene metamaterials properties through the effective surface conductivity. On the example of tunable absorber we demonstrate that this approach allows for fast and efficient design of functional terahertz devices....

  1. Electronic transport in disordered graphene antidot lattice devices

    DEFF Research Database (Denmark)

    Power, Stephen; Jauho, Antti-Pekka

    2014-01-01

    Nanostructuring of graphene is in part motivated by the requirement to open a gap in the electronic band structure. In particular, a periodically perforated graphene sheet in the form of an antidot lattice may have such a gap. Such systems have been investigated with a view towards application...... range of finite graphene antidot devices to determine the effect of such disorders on their performance. Modest geometric disorder is seen to have a detrimental effect on devices containing small, tightly packed antidots, which have optimal performance in pristine lattices. Larger antidots display...

  2. Photoresponsive memory device based on Graphene/Boron Nitride heterostructure

    Science.gov (United States)

    Kahn, Salman; Velasco, Jairo, Jr.; Ju, Long; Wong, Dillon; Lee, Juwon; Tsai, Hsin Zon; Taniguchi, Takashi; Watanabe, Kenji; Zettl, Alex; Wang, Feng; Crommie, Michael

    2015-03-01

    Recent technological advancements have allowed the stacking of two dimensional layered material in order to create van der Waals heterostructures (VDH), enabling the design of novel properties by exploiting the proximal interaction between layers with different electronic properties. We report the creation of an optoelectronic memory device using a Graphene/Boron Nitride (hBN) heterostructure. Using the photo-induced doping phenomenon, we are able to spatially ``write'' a doping profile on graphene and ``read'' the profile through electrical transport and local probe techniques. We then utilize defect engineering to enhance the optoelectronic response of graphene and explore the effect of defects in hBN. Our work introduces a simple device architecture to create an optoelectronic memory device and contributes towards understanding the proximal effects of hBN on Graphene.

  3. Tunable infrared plasmonic devices using graphene/insulator stacks.

    Science.gov (United States)

    Yan, Hugen; Li, Xuesong; Chandra, Bhupesh; Tulevski, George; Wu, Yanqing; Freitag, Marcus; Zhu, Wenjuan; Avouris, Phaedon; Xia, Fengnian

    2012-04-22

    The collective oscillation of carriers--the plasmon--in graphene has many desirable properties, including tunability and low loss. However, in single-layer graphene, the dependence on carrier concentration of both the plasmonic resonance frequency and magnitude is relatively weak, limiting its applications in photonics. Here, we demonstrate transparent photonic devices based on graphene/insulator stacks, which are formed by depositing alternating wafer-scale graphene sheets and thin insulating layers, then patterning them together into photonic-crystal-like structures. We show experimentally that the plasmon in such stacks is unambiguously non-classical. Compared with doping in single-layer graphene, distributing carriers into multiple graphene layers effectively enhances the plasmonic resonance frequency and magnitude, which is different from the effect in a conventional semiconductor superlattice and is a direct consequence of the unique carrier density scaling law of the plasmonic resonance of Dirac fermions. Using patterned graphene/insulator stacks, we demonstrate widely tunable far-infrared notch filters with 8.2 dB rejection ratios and terahertz linear polarizers with 9.5 dB extinction ratios. An unpatterned stack consisting of five graphene layers shields 97.5% of electromagnetic radiation at frequencies below 1.2 THz. This work could lead to the development of transparent mid- and far-infrared photonic devices such as detectors, modulators and three-dimensional metamaterial systems.

  4. Very large scale characterization of graphene mechanical devices using a colorimetry technique.

    Science.gov (United States)

    Cartamil-Bueno, Santiago Jose; Centeno, Alba; Zurutuza, Amaia; Steeneken, Peter Gerard; van der Zant, Herre Sjoerd Jan; Houri, Samer

    2017-06-08

    We use a scalable optical technique to characterize more than 21 000 circular nanomechanical devices made of suspended single- and double-layer graphene on cavities with different diameters (D) and depths (g). To maximize the contrast between suspended and broken membranes we used a model for selecting the optimal color filter. The method enables parallel and automatized image processing for yield statistics. We find the survival probability to be correlated with a structural mechanics scaling parameter given by D4/g3. Moreover, we extract a median adhesion energy of Γ = 0.9 J m-2 between the membrane and the native SiO2 at the bottom of the cavities.

  5. Time flow in graphene and its implications on the cutoff frequency of ballistic graphene devices

    Science.gov (United States)

    Dragoman, D.; Dragoman, M.

    2011-07-01

    This manuscript deals with time flow in ballistic graphene devices. It is commonly believed that in the ballistic regime the traversal time of carriers in gated graphene at normal incidence is just the ratio of the length of the device and the Fermi velocity. However, we show that the traversal time is much slower if the influence of metallic contacts on graphene is considered. Even the transmission at normal incidence becomes smaller than 1, contradicting yet another common belief. These unexpected effects are due to the transformation of Schrödinger electrons in the metallic contact into Dirac electrons in graphene and vice versa. As a direct consequence of these transformations, the ultimate performance of gated ballistic devices are much lower than expected, in agreement with experimental results.

  6. Electrical detection of individual skyrmions in graphene devices

    Science.gov (United States)

    Finocchiaro, F.; Lado, J. L.; Fernandez-Rossier, J.

    2017-10-01

    We study a graphene Hall probe located on top of a magnetic surface as a detector of skyrmions, using as a working principle the anomalous Hall effect produced by the exchange interaction of the graphene electrons with the noncoplanar magnetization of the skyrmion. We study the magnitude of the effect as a function of the exchange interaction, skyrmion size, and device dimensions. Our calculations for multiterminal graphene nanodevices, working in the ballistic regime, indicate that for realistic exchange interactions a single skyrmion would give Hall voltages well within reach of the experimental state of the art. The proposed device could act as an electrical transducer that marks the presence of a single skyrmion in a nanoscale region, paving the way towards the integration of skyrmion-based spintronics and graphene electronics.

  7. Organic photovoltaic devices based on a novel acceptor material: graphene

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zunfeng; Huang, Yi; Ma, Yanfeng; Zhang, Xiaoyan; Sun, Wei; Chen, Yongsheng [Centre for Nanoscale Science and Technology Institute of Polymer Chemistry College of Chemistry, Nankai University, Tianjin (China); Liu, Qian; Yin, Shougen [Key Laboratory of Display Materials and Photoelectric Devices Institute of Material Physics, Tianjin University of Technology (China)

    2008-10-17

    Solution-processable functionalized graphene (SPFGraphene) is used as the electron-accepting material in organic photovoltaic (OPV) devices for the first time, showing that it is a competitive alternative. The fabrication and performance of bulk heterojunction OPV devices with SPFGraphene and different donor materials is presented, together with the impact of post-fabrication annealing. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  8. Batch fabrication of nanopatterned graphene devices via nanoimprint lithography

    DEFF Research Database (Denmark)

    Mackenzie, David; Smistrup, Kristian; Whelan, Patrick Rebsdorf

    2017-01-01

    Previous attempts to tune the electrical properties of large-scale graphene via nanopatterning have led to serious degradation of the key electrical parameters that make graphene a desirable material for electronic devices. We use thermal nanoimprint lithography to pattern wafer-scale graphene...... on a 4-in. wafer with prefabricated 25mm2 devices. The nanopatterning process introduces a modest decrease in carrier mobility and only a minor change in residual doping. Due to the rapid fabrication time of approximately 90 min per wafer, this method has potential for large-scale industrial production....... The chemiresistive gas sensing response towards NO2 was assessed in humid synthetic air and dry air, with devices showing a response to 50 ppb of NO2 only when nanopatterned....

  9. Frontiers of graphene and carbon nanotubes devices and applications

    CERN Document Server

    2015-01-01

    This book focuses on carbon nanotubes and graphene as representatives of nano-carbon materials, and describes the growth of new technology and applications of new devices. As new devices and as new materials, nano-carbon materials are expected to be world pioneers that could not have been realized with conventional semiconductor materials, and as those that extend the limits of conventional semiconductor performance. This book introduces the latest achievements of nano-carbon devices, processes, and technology growth. It is anticipated that these studies will also be pioneers in the development of future research of nano-carbon devices and materials. This book consists of 18 chapters. Chapters 1 to 8 describe new device applications and new growth methods of graphene, and Chapters 9 to 18, those of carbon nanotubes. It is expected that by increasing the advantages and overcoming the weak points of nanocarbon materials, a new world that cannot be achieved with conventional materials will be greatly expanded. W...

  10. Low-frequency 1/f noise in graphene devices

    Science.gov (United States)

    Balandin, Alexander A.

    2013-08-01

    Low-frequency noise with a spectral density that depends inversely on frequency has been observed in a wide variety of systems including current fluctuations in resistors, intensity fluctuations in music and signals in human cognition. In electronics, the phenomenon, which is known as 1/f noise, flicker noise or excess noise, hampers the operation of numerous devices and circuits, and can be a significant impediment to the development of practical applications from new materials. Graphene offers unique opportunities for studying 1/f noise because of its two-dimensional structure and widely tunable two-dimensional carrier concentration. The creation of practical graphene-based devices will also depend on our ability to understand and control the low-frequency noise in this material system. Here, the characteristic features of 1/f noise in graphene and few-layer graphene are reviewed, and the implications of such noise for the development of graphene-based electronics including high-frequency devices and sensors are examined.

  11. Evaluating Graphene as a Channel Material in Spintronic Logic Devices

    Science.gov (United States)

    Anugrah, Yoska

    Spintronics, a class of devices that exploit the spin properties of electrons in addition to the charge properties, promises the possibility for nonvolatile logic and memory devices that operate at low power. Graphene is a material in which the spin orientation of electrons can be conserved over a long distance, which makes it an attractive channel material in spintronics devices. In this dissertation, the properties of graphene that are interesting for spintronics applications are explored. A robust fabrication process is described for graphene spin valves using Al2O3 tunnel tunnel barriers and Co ferromagnetic contacts. Spin transport was characterized in both few-layer exfoliated and single-layer graphene, and spin diffusion lengths and spin relaxation times were extracted using the nonlocal spin valve geometry and Hanle measurements. The effect of input-output asymmetry on the spin transport was investigated. The effect of an applied drift electric field on spin transport was investigated and the spin diffusion length was found to be tunable by a factor of 8X (suppressed to 1.6 microm and enhanced to 13 microm from the intrinsic length of 4.6 microm using electric field of +/-1800 V/cm). A mechanism to induce asymmetry without excess power dissipation is also described which utilizes a double buried-gate structure to tune the Fermi levels on the input and output sides of a graphene spin logic device independently. It was found that different spin scattering mechanisms were at play in the two halves of a small graphene strip. This suggests that the spin properties of graphene are strongly affected by its local environment, e.g. impurities, surface topography, defects. Finally, two-dimensional materials beyond graphene have been explored as spin channels. One such material is phosphorene, which has low spin-orbit coupling and high mobility, and the interface properties of ferromagnets (cobalt and permalloy) with this material were explored. This work could

  12. Daylighting and Thermo-Electrical performance of an Autonomous Suspended Particle Device Evacuated Glazing

    OpenAIRE

    Ghosh, Aritra

    2016-01-01

    Suspended particle device (SPD) glazing is an AC powered switchable glazing. PV powered SPD evacuated (vacuum) glazing was proposed with the potential of reducing the heating demand, cooling demand and artificial lighting demand of a building. To achieve an autonomous SPD vacuum glazing, semi empirical simulation and outdoor characterisation was explored in this thesis. Transmission of SPD glazing (area 0.058 m2) varied from 5% when opaque to 55% when transparent in the presence of 110 V, 0.0...

  13. Force sensitivity of multilayer graphene optomechanical devices.

    Science.gov (United States)

    Weber, P; Güttinger, J; Noury, A; Vergara-Cruz, J; Bachtold, A

    2016-08-09

    Mechanical resonators based on low-dimensional materials are promising for force and mass sensing experiments. The force sensitivity in these ultra-light resonators is often limited by the imprecision in the measurement of the vibrations, the fluctuations of the mechanical resonant frequency and the heating induced by the measurement. Here, we strongly couple multilayer graphene resonators to superconducting cavities in order to achieve a displacement sensitivity of 1.3 fm Hz(-1/2). This coupling also allows us to damp the resonator to an average phonon occupation of 7.2. Our best force sensitivity, 390 zN Hz(-1/2) with a bandwidth of 200 Hz, is achieved by balancing measurement imprecision, optomechanical damping, and measurement-induced heating. Our results hold promise for studying the quantum capacitance of graphene, its magnetization, and the electron and nuclear spins of molecules adsorbed on its surface.

  14. Low-temperature thermal reduction of suspended graphene oxide film for electrical sensing of DNA-hybridization.

    Science.gov (United States)

    Wang, Tun; Guo, Hong-Chen; Chen, Xin-Yi; Lu, Miao

    2017-03-01

    A reduced graphene oxide (RGO) based capacitive real time bio-sensor was presented. Suspended graphene oxide (GO) film was assembled electrophoretically between the source and drain electrodes of a transistor and then reduced by annealing in hydrogen/nitrogen forming gas to optimize the surface functional groups and conductivity. The resonance frequency of the transmission coefficient (S21) of the transistor was observed to shift with deoxyribonucleic acid (DNA)-hybridization, with a detecting limit of ~5nM. The advantages of the bio-sensing approach include low-noise frequency output, solution based real time detection and capable of on-chip integration. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Thermoelectric Power in Bilayer Graphene Device with Ionic Liquid Gating.

    Science.gov (United States)

    Chien, Yung-Yu; Yuan, Hongtao; Wang, Chang-Ran; Lee, Wei-Li

    2016-02-08

    The quest for materials showing large thermoelectric power has long been one of the important subjects in material science and technology. Such materials have great potential for thermoelectric cooling and also high figure of merit ZT thermoelectric applications. We have fabricated bilayer graphene devices with ionic-liquid gating in order to tune its band gap via application of a perpendicular electric field on a bilayer graphene. By keeping the Fermi level at charge neutral point during the cool-down, we found that the charge puddles effect can be greatly reduced and thus largely improve the transport properties at low T in graphene-based devices using ionic liquid gating. At (Vig, Vbg) = (-1 V, +23 V), a band gap of about 36.6 ± 3 meV forms, and a nearly 40% enhancement of thermoelectric power at T = 120 K is clearly observed. Our works demonstrate the feasibility of band gap tuning in a bilayer graphene using ionic liquid gating. We also remark on the significant influence of the charge puddles effect in ionic-liquid-based devices.

  16. Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing.

    Science.gov (United States)

    Liu, Zhike; Lau, Shu Ping; Yan, Feng

    2015-08-07

    Graphene is the thinnest two-dimensional (2D) carbon material and has many advantages including high carrier mobilities and conductivity, high optical transparency, excellent mechanical flexibility and chemical stability, which make graphene an ideal material for various optoelectronic devices. The major applications of graphene in photovoltaic devices are for transparent electrodes and charge transport layers. Several other 2D materials have also shown advantages in charge transport and light absorption over traditional semiconductor materials used in photovoltaic devices. Great achievements in the applications of 2D materials in photovoltaic devices have been reported, yet numerous challenges still remain. For practical applications, the device performance should be further improved by optimizing the 2D material synthesis, film transfer, surface functionalization and chemical/physical doping processes. In this review, we will focus on the recent advances in the applications of graphene and other 2D materials in various photovoltaic devices, including organic solar cells, Schottky junction solar cells, dye-sensitized solar cells, quantum dot-sensitized solar cells, other inorganic solar cells, and perovskite solar cells, in terms of the functionalization techniques of the materials, the device design and the device performance. Finally, conclusions and an outlook for the future development of this field will be addressed.

  17. Graphene nanocomposites as thermal interface materials for cooling energy devices

    Science.gov (United States)

    Dmitriev, A. S.; Valeev, A. R.

    2017-11-01

    The paper describes the technology of creating samples of graphene nanocomposites based on graphene flakes obtained by splitting graphite with ultrasound of high power. Graphene nanocomposites in the form of samples are made by the technology of weak sintering at high pressure (200-300 bar) and temperature up to 150 0 C, and also in the form of compositions with polymer matrices. The reflection spectra in the visible range and the near infrared range for the surface of nanocomposite samples are studied, the data of optical and electronic spectroscopy of such samples are givenIn addition, data on the electrophysical and thermal properties of the nanocomposites obtained are presented. Some analytical models of wetting and spreading over graphene nanocomposite surfaces have been constructed and calculated, and their effective thermal conductivity has been calculated and compared with the available experimental data. Possible applications of graphene nanocomposites for use as thermal interface materials for heat removal and cooling for power equipment, as well as microelectronics and optoelectronics devices are described.

  18. Analysis and characterization of graphene-on-substrate devices

    Science.gov (United States)

    Berdebes, Dionisis

    The purpose of this MS Thesis is the analysis and characterization of graphene on substrate structures prepared at the Birck Nanotechnology Center-Purdue University/IBM Watson Research Center-N.Y., and characterized under low-field transport conditions. First, a literature survey is conducted, both in theoretical and experimental work on graphene transport phenomena, and the open issues are reported. Next, the theory of low-field transport in graphene is reviewed within a Landauer framework. Experimental results of back-gated graphene-on-substrate devices, prepared by the Appenzeller group, are then presented, followed by an extraction of an energy/temperature dependent backscattering mean free path as the main characterization parameter. A key conclusion is the critical role of contacts in two-probe measurements. In this framework, a non-self-consistent Non Equilibrium Green's Function method is employed for the calculation of the odd and even metal-graphene ballistic interfacial resistance. A good agreement with the relevant experimental work is observed.

  19. Suppression of intrinsic roughness in encapsulated graphene

    Science.gov (United States)

    Thomsen, Joachim Dahl; Gunst, Tue; Gregersen, Søren Schou; Gammelgaard, Lene; Jessen, Bjarke Sørensen; Mackenzie, David M. A.; Watanabe, Kenji; Taniguchi, Takashi; Bøggild, Peter; Booth, Timothy J.

    2017-07-01

    Roughness in graphene is known to contribute to scattering effects which lower carrier mobility. Encapsulating graphene in hexagonal boron nitride (hBN) leads to a significant reduction in roughness and has become the de facto standard method for producing high-quality graphene devices. We have fabricated graphene samples encapsulated by hBN that are suspended over apertures in a substrate and used noncontact electron diffraction measurements in a transmission electron microscope to measure the roughness of encapsulated graphene inside such structures. We furthermore compare the roughness of these samples to suspended bare graphene and suspended graphene on hBN. The suspended heterostructures display a root mean square (rms) roughness down to 12 pm, considerably less than that previously reported for both suspended graphene and graphene on any substrate and identical within experimental error to the rms vibrational amplitudes of carbon atoms in bulk graphite. Our first-principles calculations of the phonon bands in graphene/hBN heterostructures show that the flexural acoustic phonon mode is localized predominantly in the hBN layer. Consequently, the flexural displacement of the atoms in the graphene layer is strongly suppressed when it is supported by hBN, and this effect increases when graphene is fully encapsulated.

  20. Mechanical properties of freely suspended semiconducting graphene-like layers based on MoS2

    NARCIS (Netherlands)

    Castellanos-Gomez, A.; Poot, M.; Steele, G.A.; Van der Zant, H.S.J.; Agrait, N.; Rubio-Bollinger, G.

    2012-01-01

    We fabricate freely suspended nanosheets of molybdenum disulphide (MoS2) which are characterized by quantitative optical microscopy and high-resolution friction force microscopy. We study the elastic deformation of freely suspended nanosheets of MoS2 using an atomic force microscope. The Young’s

  1. A combined use of acoustic and optical devices to investigate suspended sediment in rivers

    Science.gov (United States)

    Guerrero, Massimo; Rüther, Nils; Haun, Stefan; Baranya, Sandor

    2017-04-01

    The use of acoustic and optic devices has become more and more common for estimating suspended sediment loads in rivers. The echo intensity levels (EIL) recorded by means of an Acoustic Doppler Current Profiler (ADCP) have been applied in different methods, which provided relationships between scattering particles features derived from samples (i.e., concentration and grain size) and corresponding backscattering strength and sound attenuation. At the same time, the laser diffraction was applied by an in-stream sampler (LISST-SL) to measure suspended sediment concentration and the corresponding particle size distribution (PSD). These two techniques exhibited different limitations in terms of the measured range of concentration, sensitivity to a certain spectrum of particle sizes, and instruments deploy feasibility especially in large rivers, in a way that the use of sampled PSD by LISST-SL to validate ADCP methods may not be trivial. The aim of this study was to combine the vertical profiling of EIL by an ADCP with results from LISST-SL, eventually demonstrating the possibility of using moving ADCP measurements to detect different suspended matters along a Danube River section characterized by a small tributary junction. At the same time, this work elucidates optical to acoustic method deviations that hinders an actual validation of ADCP methods based on LISST-SL rather than with physical samplings.

  2. Suspended p-n junction InGaN/GaN multiple quantum wells device with bottom silver reflector

    Science.gov (United States)

    Gao, Xumin; Li, Xin; Yang, Yongchao; Yuan, Wei; Xu, Yin; Cai, Wei; Wang, Yongjin

    2017-07-01

    In this study, we propose, fabricate, and characterize suspended p-n junction InGaN/GaN multiple quantum wells (MQWs) device with a bottom silver reflector for diverse applications. The suspended device was achieved through a double-side process on the GaN-on-silicon platform and tested by using a micro-reflectance/transmittance setup. When the suspended device operates under the light-emitting diode mode, a fraction of the emitted light reflected by the bottom silver reflector can enter into the air through the top escape cone, leading to improved light extraction efficiency. When the suspended device operates under the photodiode mode, part of the transmitted light can be reflected back by the bottom silver reflector to enhance the photovoltaic effect. The experimental results demonstrate that such suspended device can be used as both transmitter and receiver for visible light communication. And the detecting features even when the suspended structure is under turn-on state, demonstrating a potential realization of light emission and photodetection simultaneously.

  3. Graphene-Based Integrated Photovoltaic Energy Harvesting/Storage Device.

    Science.gov (United States)

    Chien, Chih-Tao; Hiralal, Pritesh; Wang, Di-Yan; Huang, I-Sheng; Chen, Chia-Chun; Chen, Chun-Wei; Amaratunga, Gehan A J

    2015-06-24

    Energy scavenging has become a fundamental part of ubiquitous sensor networks. Of all the scavenging technologies, solar has the highest power density available. However, the energy source is erratic. Integrating energy conversion and storage devices is a viable route to obtain self-powered electronic systems which have long-term maintenance-free operation. In this work, we demonstrate an integrated-power-sheet, consisting of a string of series connected organic photovoltaic cells (OPCs) and graphene supercapacitors on a single substrate, using graphene as a common platform. This results in lighter and more flexible power packs. Graphene is used in different forms and qualities for different functions. Chemical vapor deposition grown high quality graphene is used as a transparent conductor, while solution exfoliated graphene pastes are used as supercapacitor electrodes. Solution-based coating techniques are used to deposit the separate components onto a single substrate, making the process compatible with roll-to-roll manufacture. Eight series connected OPCs based on poly(3-hexylthiophene)(P3HT):phenyl-C61-butyric acid methyl ester (PC60 BM) bulk-heterojunction cells with aluminum electrodes, resulting in a ≈5 V open-circuit voltage, provide the energy harvesting capability. Supercapacitors based on graphene ink with ≈2.5 mF cm(-2) capacitance provide the energy storage capability. The integrated-power-sheet with photovoltaic (PV) energy harvesting and storage functions had a mass of 0.35 g plus the substrate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Mini array of quantum Hall devices based on epitaxial graphene

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, S.; Lebedeva, N. [Department of Micro and Nanosciences, Aalto University, Micronova, Tietotie 3, Espoo (Finland); Hämäläinen, J.; Iisakka, I.; Immonen, P.; Manninen, A. J.; Satrapinski, A. [VTT Technical Research Centre of Finland Ltd., Centre for Metrology MIKES, P.O. Box 1000, 02044 VTT (Finland)

    2016-05-07

    Series connection of four quantum Hall effect (QHE) devices based on epitaxial graphene films was studied for realization of a quantum resistance standard with an up-scaled value. The tested devices showed quantum Hall plateaux R{sub H,2} at a filling factor v = 2 starting from a relatively low magnetic field (between 4 T and 5 T) when the temperature was 1.5 K. The precision measurements of quantized Hall resistance of four QHE devices connected by triple series connections and external bonding wires were done at B = 7 T and T = 1.5 K using a commercial precision resistance bridge with 50 μA current through the QHE device. The results showed that the deviation of the quantized Hall resistance of the series connection of four graphene-based QHE devices from the expected value of 4×R{sub H,2} = 2 h/e{sup 2} was smaller than the relative standard uncertainty of the measurement (<1 × 10{sup −7}) limited by the used resistance bridge.

  5. Fabrication of patterned flexible graphene devices via facile direct transfer of as-grown bi-layer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Park, Heun; Kim, Kyung Hoon; Yoon, Jangyeol [Department of Chemical and Biological Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Kuk Ki; Park, Seung Min [Department of Chemistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Ha, Jeong Sook, E-mail: jeongsha@korea.ac.kr [Department of Chemical and Biological Engineering, Korea University, Seoul 136-701 (Korea, Republic of); KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701 (Korea, Republic of)

    2015-02-15

    Highlights: • Patterned bi-layer graphene was directly transferred onto various polymer substrates by using micro-contact printing technique. • Coating of dimethylformamide onto the polydimethylsiloxane (PDMS) stamp enhanced the adhesion between the bi-layer graphene and the PDMS stamp. • Patterned graphene devices showed mechanically stable electrical properties upon repeated bending cycles. - Abstract: We report on the fabrication of patterned flexible graphene devices via a facile direct transfer of bi-layer graphene grown on alumina (Al{sub 2}O{sub 3}) substrate, and the use of Ag nanowire stickers as flexible electrodes. Patterned polydimethylsiloxane (PDMS) stamps coated with vaporized dimethylformamide (DMF) are utilized to transfer as-grown graphene directly onto a flexible polyethylene terephthalate (PET) substrate. The facile direct transfer is attributed to the enhanced adhesion of the bi-layer graphene to PDMS, due to DMF-coating, as well as the weak adhesion between the bi-layer graphene and the Al{sub 2}O{sub 3} substrate. In this way, flexible patterned graphene devices have been fabricated with Ag nanowire stickers as electrodes. Stable electrical conduction characteristics were measured over repetitive bending with a bending radius down to 5 mm.

  6. Double graphene-layer structures for adaptive devices

    Science.gov (United States)

    Mitin, V.; Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Shur, M. S.

    2014-06-01

    Among different carbon materials (diamond, graphite, fullerene, carbon nanotubes), graphene and more complex graphene-based structures attracted a considerable attention. The gapless energy spectrum of graphene implies that graphene can absorb and emit photons with rather low energies corresponding to terahertz (THz) and infrared (IR) ranges of the electromagnetic spectrum. In this presentation, the discussion is focused on the double-graphene-layer (double-GL) structures. In these structures, GLs are separated by a barrier layer (Boron Nitride, Silicon Carbide, and so on). Applying voltage between GLs, one can realize the situation when one GL is filled with electrons while the other is filled with holes. The variation of the applied voltage leads to the variations of the Fermi energies and, hence, to the change of the interband and intraband absorption of electromagnetic radiation and to the variation of the tunneling current. The plasma oscillations in double-GL structures exhibit interesting features. This is mainly because each GL serves as the gate for the other GL. The spectrum of the plasma oscillations in the double-GL structures falls into the terahertz range (THz) of frequencies and can be effectively controlled by the bias voltage. In this paper, we discuss the effects of the excitation of the plasma oscillations by incoming THz radiation and by optical radiation of two lasers with close frequencies as well as negative differential conductivity of the N-type and Z-type. These effects can be used in resonant THz detectors and THz photomixers. The models of devices based on double-GL structures as well as their characteristics are discussed.

  7. Graphene devices with bottom-up contacts by area-selective atomic layer deposition

    Science.gov (United States)

    Thissen, Nick F. W.; Vervuurt, René H. J.; Mackus, Adriaan J. M.; Mulders, Johannes J. L.; Weber, Jan-Willem; Kessels, Wilhelmus M. M.; Bol, Ageeth A.

    2017-06-01

    Graphene field-effect transistor devices were fabricated using a bottom-up and resist-free method, avoiding common compatibility issues such as contamination by resist residues. Large-area CVD graphene sheets were structured into device channels by patterning with a focused ion beam. Platinum contacts were then deposited by direct-write atomic layer deposition (ALD), which is a combination between electron beam induced deposition (EBID) and bottom-up area-selective ALD. This is a unique approach that enables nucleation of Pt ALD on graphene, and therefore these devices are the first reported graphene devices with contacts deposited by ALD. Electrical characterization of the devices confirms ambipolar transistor behaviour with typical field-effect mobilities in the range of 1000-1800 cm2 V-1 s-1. We observe clear signs of strong Pt-graphene coupling and contact induced hole doping, implying good contact properties in contrast to the conventionally weak bonding between Pt and graphene. We attribute these observations to the reduced amount of resist residue under the contacts, the improved wettability of the Pt due to the use of ALD, and the formation of a graphitic interlayer that bonds the Pt more strongly to the graphene. We conclude that direct-write ALD is a very suitable technique for metallization of graphene devices and to study the intrinsic properties of metal-graphene contacts in more detail. In addition, it offers unique opportunities to control the metal-graphene coupling strength.

  8. CFD Design and Analysis of a Passively Suspended Tesla Pump Left Ventricular Assist Device

    Science.gov (United States)

    Medvitz, Richard B.; Boger, David A.; Izraelev, Valentin; Rosenberg, Gerson; Paterson, Eric G.

    2012-01-01

    This paper summarizes the use of computational fluid dynamics (CFD) to design a novelly suspended Tesla LVAD. Several design variants were analyzed to study the parameters affecting device performance. CFD was performed at pump speeds of 6500, 6750 and 7000 RPM and at flow rates varying from 3 to 7 liter-per-minute (LPM). The CFD showed that shortening the plates nearest the pump inlet reduced the separations formed beneath the upper plate leading edges and provided a more uniform flow distribution through the rotor gaps, both of which positively affected the device hydrodynamic performance. The final pump design was found to produce a head rise of 77 mmHg with a hydraulic efficiency of 16% at the design conditions of 6 LPM throughflow and a 6750 RPM rotation rate. To assess the device hemodynamics the strain rate fields were evaluated. The wall shear stresses demonstrated that the pump wall shear stresses were likely adequate to inhibit thrombus deposition. Finally, an integrated field hemolysis model was applied to the CFD results to assess the effects of design variation and operating conditions on the device hemolytic performance. PMID:21595722

  9. Quantifying the response of optical backscatter devices and transmissometers to variations in suspended particulate matter

    Science.gov (United States)

    Bunt, Jamie A. C.; Larcombe, Piers; Jago, Colin F.

    1999-07-01

    Optical instruments have been used effectively in studies of sediment dynamics for several decades. Without accurate instrument calibrations, calculated concentrations of suspended particulate matter (SPM) may be unreliable, with implications for interpretations of sedimentary processes and sediment fluxes. This review aims to quantify the effect of variations in SPM characteristics on the response of optical instruments (optical backscatter sensors OBS and transmissometers) and to note the implications for users of these instruments. A number of factors have a significant impact on instrument response, for example; a change in grain size from medium sands to fine silts may lead to a×100 increase in instrument response; flocculation of fine particles may decrease instrument response by×2; and the presence of plankton in suspension may lead to poor instrument calibrations of SPM concentration. Calibrations carried out in environments either with multi-modal bottom sediments, where flocculation of fine-grained sediments is likely, or where the hydrodynamics or grain type are highly variable must also include a determination of the changing nature of the suspended load in space and time. A more complete understanding of instrument response to SPM and of calibration requirements may enable optical devices to be used to a greater potential as long-term measures of SPM concentration, and also enable improvements in calculations of net sediment fluxes.

  10. Graphene synthesis on cubic SiC/Si wafers. perspectives for mass production of graphene-based electronic devices.

    Science.gov (United States)

    Aristov, Victor Yu; Urbanik, Grzegorz; Kummer, Kurt; Vyalikh, Denis V; Molodtsova, Olga V; Preobrajenski, Alexei B; Zakharov, Alexei A; Hess, Christian; Hänke, Torben; Büchner, Bernd; Vobornik, Ivana; Fujii, Jun; Panaccione, Giancarlo; Ossipyan, Yuri A; Knupfer, Martin

    2010-03-10

    The outstanding properties of graphene, a single graphite layer, render it a top candidate for substituting silicon in future electronic devices. The so far exploited synthesis approaches, however, require conditions typically achieved in specialized laboratories and result in graphene sheets whose electronic properties are often altered by interactions with substrate materials. The development of graphene-based technologies requires an economical fabrication method compatible with mass production. Here we demonstrate for the fist time the feasibility of graphene synthesis on commercially available cubic SiC/Si substrates of >300 mm in diameter, which result in graphene flakes electronically decoupled from the substrate. After optimization of the preparation procedure, the proposed synthesis method can represent a further big step toward graphene-based electronic technologies.

  11. A novel thermal acoustic device based on porous graphene

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Lu-Qi; Liu, Ying; Ju, Zhen-Yi; Xie, Qian-Yi; Yang, Yi; Ren, Tian-Ling, E-mail: RenTL@tsinghua.edu.cn [Institute of Microelectronics, Tsinghua University, Beijing 10084 (China); Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing 100084 (China); Tian, He [Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089 (United States)

    2016-01-15

    A thermal acoustic (TA) device was fabricated by laser scribing technology. Polyimide (PI) can be converted into patterned porous graphene (PG) by laser’s irradiation in one step. The sound pressure level (SPL) of such TA device is related to laser power. The theoretical model of TA effect was established to analyze the relationship between the SPL and laser power. The theoretical results are in good agreement with experiment results. It was found that PG has a flat frequency response in the range of 5-20 kHz. This novel TA device has the advantages of one-step procedure, high flexibility, no mechanical vibration, low cost and so on. It can open wide applications in speakers, multimedia, medical, earphones, consumer electronics and many other aspects.

  12. Measurement of specific heat and thermal conductivity of supported and suspended graphene by a comprehensive Raman optothermal method.

    Science.gov (United States)

    Li, Qin-Yi; Xia, Kailun; Zhang, Ji; Zhang, Yingying; Li, Qunyang; Takahashi, Koji; Zhang, Xing

    2017-08-03

    The last decade has seen the rapid growth of research on two-dimensional (2D) materials, represented by graphene, but research on their thermophysical properties is still far from sufficient owing to the experimental challenges. Herein, we report the first measurement of the specific heat of multilayer and monolayer graphene in both supported and suspended geometries. Their thermal conductivities were also simultaneously measured using a comprehensive Raman optothermal method without needing to know the laser absorption. Both continuous-wave (CW) and pulsed lasers were used to heat the samples, based on consideration of the variable laser spot radius and pulse duration as well as the heat conduction within the substrate. The error from the laser absorption was eliminated by comparing the Raman-measured temperature rises for different spot radii and pulse durations. The thermal conductivity and specific heat were extracted by analytically fitting the temperature rise ratios as a function of spot size and pulse duration, respectively. The measured specific heat was about 700 J (kg K)(-1) at room temperature, which is in accordance with theoretical predictions, and the measured thermal conductivities were in the range of 0.84-1.5 × 10(3) W (m K)(-1). The measurement method demonstrated here can be used to investigate in situ and comprehensively the thermophysical properties of many other emerging 2D materials.

  13. 3D Printed Graphene Based Energy Storage Devices

    Science.gov (United States)

    Foster, Christopher W.; Down, Michael P.; Zhang, Yan; Ji, Xiaobo; Rowley-Neale, Samuel J.; Smith, Graham C.; Kelly, Peter J.; Banks, Craig E.

    2017-03-01

    3D printing technology provides a unique platform for rapid prototyping of numerous applications due to its ability to produce low cost 3D printed platforms. Herein, a graphene-based polylactic acid filament (graphene/PLA) has been 3D printed to fabricate a range of 3D disc electrode (3DE) configurations using a conventional RepRap fused deposition moulding (FDM) 3D printer, which requires no further modification/ex-situ curing step. To provide proof-of-concept, these 3D printed electrode architectures are characterised both electrochemically and physicochemically and are advantageously applied as freestanding anodes within Li-ion batteries and as solid-state supercapacitors. These freestanding anodes neglect the requirement for a current collector, thus offering a simplistic and cheaper alternative to traditional Li-ion based setups. Additionally, the ability of these devices’ to electrochemically produce hydrogen via the hydrogen evolution reaction (HER) as an alternative to currently utilised platinum based electrodes (with in electrolysers) is also performed. The 3DE demonstrates an unexpectedly high catalytic activity towards the HER (-0.46 V vs. SCE) upon the 1000th cycle, such potential is the closest observed to the desired value of platinum at (-0.25 V vs. SCE). We subsequently suggest that 3D printing of graphene-based conductive filaments allows for the simple fabrication of energy storage devices with bespoke and conceptual designs to be realised.

  14. Graphene-on-dielectric micromembrane for optoelectromechanical hybrid devices

    DEFF Research Database (Denmark)

    Schmid, Silvan; Bagci, Tolga; Zeuthen, Emil

    2013-01-01

    Due to their exceptional mechanical and optical properties, dielectric silicon nitride (SiN) micromembranes have become the centerpiece of many optomechanical experiments. Efficient capacitive coupling of the membrane to an electrical system would facilitate exciting hybrid optoelectromechanical...... devices. However, capacitive coupling of such SiN membranes is rather weak. Here we add a single layer of graphene on SiN micromembranes (SiN-G) and compare the electromechanical coupling and mechanical properties to bare SiN membranes and to membranes coated with an aluminium layer (Si...

  15. Direct CVD Graphene Growth on Semiconductors and Dielectrics for Transfer-Free Device Fabrication.

    Science.gov (United States)

    Wang, Huaping; Yu, Gui

    2016-07-01

    Graphene is the most broadly discussed and studied two-dimensional material because of its preeminent physical, mechanical, optical, and thermal properties. Until now, metal-catalyzed chemical vapor deposition (CVD) has been widely employed for the scalable production of high-quality graphene. However, in order to incorporate the graphene into electronic devices, a transfer process from metal substrates to targeted substrates is inevitable. This process usually results in contamination, wrinkling, and breakage of graphene samples - undesirable in graphene-based technology and not compatible with industrial production. Therefore, direct graphene growth on desired semiconductor and dielectric substrates is considered as an effective alternative. Over the past years, there have been intensive investigations to realize direct graphene growth using CVD methods without the catalytic role of metals. Owing to the low catalytic activity of non-metal substrates for carbon precursor decomposition and graphene growth, several strategies have been designed to facilitate and engineer graphene fabrication on semiconductors and insulators. Here, those developed strategies for direct CVD graphene growth on semiconductors and dielectrics for transfer-free fabrication of electronic devices are reviewed. By employing these methods, various graphene-related structures can be directly prepared on desired substrates and exhibit excellent performance, providing versatile routes for varied graphene-based materials fabrication. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Graphene Based Reversible Nano-Switch/Sensor Schottky Diode (NANOSSSD) Device

    Science.gov (United States)

    Miranda, Felix A. (Inventor); Theofylaktos, Onoufrios (Inventor); Pinto, Nicholas J. (Inventor); Mueller, Carl H. (Inventor); Santos, Javier (Inventor); Meador, Michael A. (Inventor)

    2015-01-01

    A nanostructure device is provided and performs dual functions as a nano-switching/sensing device. The nanostructure device includes a doped semiconducting substrate, an insulating layer disposed on the doped semiconducting substrate, an electrode formed on the insulating layer, and at least one layer of graphene formed on the electrode. The at least one layer of graphene provides an electrical connection between the electrode and the substrate and is the electroactive element in the device.

  17. Analysis of transient electromagnetic wave interactions on graphene-based devices using integral equations

    KAUST Repository

    Shi, Yifei

    2015-10-26

    Graphene is a monolayer of carbon atoms structured in the form of a honeycomb lattice. Recent experimental studies have revealed that it can support surface plasmons at Terahertz frequencies thanks to its dispersive conductivity. Additionally, characteristics of these plasmons can be dynamically adjusted via electrostatic gating of the graphene sheet (K. S. Novoselov, et al., Science, 306, 666–669, 2004). These properties suggest that graphene can be a building block for novel electromagnetic and photonic devices for applications in the fields of photovoltaics, bio-chemical sensing, all-optical computing, and flexible electronics. Simulation of electromagnetic interactions on graphene-based devices is not an easy task. The thickness of the graphene sheet is orders of magnitude smaller than any other geometrical dimension of the device. Consequently, discretization of such a device leads to significantly large number of unknowns and/or ill-conditioned matrix systems.

  18. Clean graphene electrodes on organic thin-film devices via orthogonal fluorinated chemistry.

    Science.gov (United States)

    Beck, Jonathan H; Barton, Robert A; Cox, Marshall P; Alexandrou, Konstantinos; Petrone, Nicholas; Olivieri, Giorgia; Yang, Shyuan; Hone, James; Kymissis, Ioannis

    2015-04-08

    Graphene is a promising flexible, highly transparent, and elementally abundant electrode for organic electronics. Typical methods utilized to transfer large-area films of graphene synthesized by chemical vapor deposition on metal catalysts are not compatible with organic thin-films, limiting the integration of graphene into organic optoelectronic devices. This article describes a graphene transfer process onto chemically sensitive organic semiconductor thin-films. The process incorporates an elastomeric stamp with a fluorinated polymer release layer that can be removed, post-transfer, via a fluorinated solvent; neither fluorinated material adversely affects the organic semiconductor materials. We used Raman spectroscopy, atomic force microscopy, and scanning electron microscopy to show that chemical vapor deposition graphene can be successfully transferred without inducing defects in the graphene film. To demonstrate our transfer method's compatibility with organic semiconductors, we fabricate three classes of organic thin-film devices: graphene field effect transistors without additional cleaning processes, transparent organic light-emitting diodes, and transparent small-molecule organic photovoltaic devices. These experiments demonstrate the potential of hybrid graphene/organic devices in which graphene is deposited directly onto underlying organic thin-film structures.

  19. First Principles Study of Band Structure and Band Gap Engineering in Graphene for Device Applications

    Science.gov (United States)

    2015-03-20

    successfully to realise the full applications of graphene? What is the current status of the graphene based devices or Electronics ? How the graphene...adsorption of foreign molecules . The vacant sites are like trapping centers such that they have a high tendency to adsorb the atoms/ molecules such that...thermodynamically favorable. In this case there is no band gap opening, only bands shifting , for the doping of N and B individually [29]. We then tried co

  20. Graphene-Nanodiamond Heterostructures and their application to High Current Devices

    OpenAIRE

    Fang Zhao; Andrei Vrajitoarea; Qi Jiang; Xiaoyu Han; Aysha Chaudhary; Welch, Joseph O.; Jackman, Richard B.

    2015-01-01

    Graphene on hydrogen terminated monolayer nanodiamond heterostructures provides a new way to improve carrier transport characteristics of the graphene, offering up to 60% improvement when compared with similar graphene on SiO2/Si substrates. These heterostructures offers excellent current-carrying abilities whilst offering the prospect of a fast, low cost and easy methodology for device applications. The use of ND monolayers is also a compatible technology for the support of large area graphe...

  1. Synthesis of graphene-conjugated polymer nanocomposites for electronic device applications.

    Science.gov (United States)

    Qi, Xiaoying; Tan, Chaoliang; Wei, Jun; Zhang, Hua

    2013-02-21

    Graphene-based polymer nanocomposites have attracted increasing interest because of their superior physicochemical properties over polymers. Semiconductor conjugated polymers (CPs) with excellent dispersibility and stability, and efficient electronic and optical properties have been recently integrated with graphene to form a new class of functional nanomaterials. In this minireview, we will summarize the recent advances in the development of graphene-CP nanocomposites for electronic device applications.

  2. Fullerene-Grafted Graphene for Efficient Bulk Heterojunction Polymer Photovoltaic Devices

    Science.gov (United States)

    2011-04-22

    synergetic effects. Examples include graphene SnO2 hybrids as anode materials for batteries with improved capacity and cyclic stability,14 and Pd...S.-M.; Yoo, E.; Honma, I. Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2 / Graphene Nanoporous Electro- des with Three-Dimensionally...pubs.acs.org/JPCL Fullerene-Grafted Graphene for Efficient Bulk Heterojunction Polymer Photovoltaic Devices Dingshan Yu,† Kyusoon Park,‡ Michael Durstock

  3. Wafer-scale fabrication and growth dynamics of suspended graphene nanoribbon arrays

    National Research Council Canada - National Science Library

    Suzuki, Hiroo; Kaneko, Toshiro; Shibuta, Yasushi; Ohno, Munekazu; Maekawa, Yuki; Kato, Toshiaki

    2016-01-01

    Adding a mechanical degree of freedom to the electrical and optical properties of atomically thin materials can provide an excellent platform to investigate various optoelectrical physics and devices...

  4. Infrared two-wave mixing technique for characterization of graphene THz plasmonic devices

    Science.gov (United States)

    Drew, Dennis; Jadidi, Mohammad; Sushkov, Andrei; Cai, Xinghan; Suess, Ryan; Mittendorff, Martin; Murphy, Thomas; Fuhrer, Michael; Daniels, Kevin; Gaskill, Kurt

    We have studied the heterodyne mixing of two beams from infrared lasers on graphene plasmonic devices and detectors. The nonlinear thermal response of graphene allows us to measure a DC photovoltage that depends on the heterodyne difference frequency and gate voltage. The inversion symmetry of the graphene device is broken by using dissimilar metal contacts to allow a net photo-thermoelectric signal. The power, frequency, and temperature dependence of the photoresponse are used to probe the graphene hot-electron cooling rates and mechanisms. We will discuss the use of photothermal effects in graphene to excite surface plasmons at the difference frequency. The high mobility of the free carriers in graphene is important for this experiment. We have measured exfoliated graphene on SiO2/Si substrate detector and we are working on BN graphene and intercalated SiC graphene devices. This work was sponsored by the U.S. ONR (N000141310865) and the U.S. NSF (ECCS 1309750).

  5. Exploring graphene field effect transistor devices to improve spectral resolution of semiconductor radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Richard Karl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Jeffrey B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hamilton, Allister B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    Graphene, a planar, atomically thin form of carbon, has unique electrical and material properties that could enable new high performance semiconductor devices. Graphene could be of specific interest in the development of room-temperature, high-resolution semiconductor radiation spectrometers. Incorporating graphene into a field-effect transistor architecture could provide an extremely high sensitivity readout mechanism for sensing charge carriers in a semiconductor detector, thus enabling the fabrication of a sensitive radiation sensor. In addition, the field effect transistor architecture allows us to sense only a single charge carrier type, such as electrons. This is an advantage for room-temperature semiconductor radiation detectors, which often suffer from significant hole trapping. Here we report on initial efforts towards device fabrication and proof-of-concept testing. This work investigates the use of graphene transferred onto silicon and silicon carbide, and the response of these fabricated graphene field effect transistor devices to stimuli such as light and alpha radiation.

  6. Orientation Control of Graphene Flakes by Magnetic Field: Broad Device Applications of Macroscopically Aligned Graphene.

    Science.gov (United States)

    Lin, Feng; Zhu, Zhuan; Zhou, Xufeng; Qiu, Wenlan; Niu, Chao; Hu, Jonathan; Dahal, Keshab; Wang, Yanan; Zhao, Zhenhuan; Ren, Zhifeng; Litvinov, Dimitri; Liu, Zhaoping; Wang, Zhiming M; Bao, Jiming

    2017-01-01

    Owing to a large diamagnetism, graphene flakes can respond and be aligned to magnetic field like a ferromagnetic material. Aligned graphene flakes exhibit emergent properties approaching single-layer graphene. Anisotropic optical properties also give rise to a magnetic writing board using graphene suspension and a bar magnet as a pen. This simple alignment technique opens up enormous applications of graphene. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fabrication of graphene and ZnO nanocones hybrid structure for transparent field emission device

    Energy Technology Data Exchange (ETDEWEB)

    Zulkifli, Zurita [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology (Japan); Faculty of Electrical Engineering, Universiti Teknologi Mara (Malaysia); Shinde, Sachin M.; Suguira, Takatoshi [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology (Japan); Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology (Japan); Center for Fostering Young and Innovative Researchers, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Tanemura, Masaki [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology (Japan)

    2015-11-30

    Graphical abstract: Fabrication of a transparent field emission device with chemical vapor deposited graphene and zinc oxide nanocones showing low turn-on field due to locally enhance electric field. - Highlights: • Demonstrated transparent field emission device with CVD graphene and ZnO nanocones. • Graphene film was coated on carbon doped ZnO nanocone prepared by ion irradiation. • Low turn-on field for the graphene/C:ZnO nanocones hybrid structure is achieved. • Graphene/C:ZnO heterostructure is promising for transparent field emission devices. - Abstract: Fabrication of a transparent and high performance electron emission device is the key challenge for suitable display applications. Here, we demonstrate fabrication of a transparent and efficient field emission device integrating large-area chemical vapor deposited graphene and carbon doped zinc oxide (C:ZnO) nanocones. The ZnO nanocones were obtained with ion irradiation process at room temperature, over which the graphene film was transferred without destroying nanocone tips. Significant enhancement in field emission properties were observed with the transferred graphene film on C:ZnO nanocones. The threshold field for hybrid and pristine C:ZnO nanocones film at current density of 1 μA/cm{sup 2} was obtained as 4.3 V/μm and 6.5 V/μm, respectively. The enhanced field emission properties with low turn-on field for the graphene/C:ZnO nanocones can be attributed to locally enhance electric field. Our finding shows that a graphene/C:ZnO hybridized structure is very promising to fabricate field emission devices without compromising with high transparency.

  8. Graphene based Photonics Devices for Remote Sensing Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop scalable graphene-based bolometer technology. Use low pressure chemical vapor deposition (LPCVD) technique to grow large area graphene. Develop a process to...

  9. Tunability of 1/f Noise at Multiple Dirac Cones in hBN Encapsulated Graphene Devices.

    Science.gov (United States)

    Kumar, Chandan; Kuiri, Manabendra; Jung, Jeil; Das, Tanmoy; Das, Anindya

    2016-02-10

    The emergence of multiple Dirac cones in hexagonal boron nitride (hBN)-graphene heterostructures is particularly attractive because it offers potentially better landscape for higher and versatile transport properties than the primary Dirac cone. However, the transport coefficients of the cloned Dirac cones is yet not fully characterized and many open questions, including the evolution of charge dynamics and impurity scattering responsible for them, have remained unexplored. Noise measurements, having the potential to address these questions, have not been performed to date in dual-gated hBN-graphene-hBN devices. Here, we present the low-frequency 1/f noise measurements at multiple Dirac cones in hBN encapsulated single and bilayer graphene in dual-gated geometry. Our results reveal that the low-frequency noise in graphene can be tuned by more than two-orders of magnitude by changing carrier concentration as well as by modifying the band structure in bilayer graphene. We find that the noise is surprisingly suppressed at the cloned Dirac cone compared to the primary Dirac cone in single layer graphene device, while it is strongly enhanced for the bilayer graphene with band gap opening. The results are explained with the calculation of dielectric function using tight-binding model. Our results also indicate that the 1/f noise indeed follows the Hooge's empirical formula in hBN-protected devices in dual-gated geometry. We also present for the first time the noise data in bipolar regime of a graphene device.

  10. A 1 V supercapacitor device with nanostructured graphene oxide ...

    Indian Academy of Sciences (India)

    Polyaniline and graphene oxide composite on activated carbon cum reduced graphene oxide-supported supercapacitor electrodes are fabricated and electrochemically characterized in a three-electrode cell assembly. Attractive supercapacitor performance, namely high-power capability and cycling stability for graphene ...

  11. Flexible Graphene-based Energy Storage Devices for Space Application Project

    Science.gov (United States)

    Calle, Carlos I.

    2014-01-01

    Develop prototype graphene-based reversible energy storage devices that are flexible, thin, lightweight, durable, and that can be easily attached to spacesuits, rovers, landers, and equipment used in space.

  12. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper.

    Science.gov (United States)

    Banszerus, Luca; Schmitz, Michael; Engels, Stephan; Dauber, Jan; Oellers, Martin; Haupt, Federica; Watanabe, Kenji; Taniguchi, Takashi; Beschoten, Bernd; Stampfer, Christoph

    2015-07-01

    Graphene research has prospered impressively in the past few years, and promising applications such as high-frequency transistors, magnetic field sensors, and flexible optoelectronics are just waiting for a scalable and cost-efficient fabrication technology to produce high-mobility graphene. Although significant progress has been made in chemical vapor deposition (CVD) and epitaxial growth of graphene, the carrier mobility obtained with these techniques is still significantly lower than what is achieved using exfoliated graphene. We show that the quality of CVD-grown graphene depends critically on the used transfer process, and we report on an advanced transfer technique that allows both reusing the copper substrate of the CVD growth and making devices with mobilities as high as 350,000 cm(2) V(-1) s(-1), thus rivaling exfoliated graphene.

  13. Large-Area, Transparent And Conductive Graphene Electrode For Bulk-Heterojunction Photovoltaic Devices

    Science.gov (United States)

    Choe, Minhyeok; Lee, Byoung Hoon; Jo, Gunho; Park, June; Park, Woojin; Lee, Sangchul; Hong, Woong-Ki; Seong, Maeng-Je; Kahng, Yung Ho; Lee, Kwanghee; Lee, Takhee

    2011-12-01

    We present application results of synthesized graphene films as transparent and conductive electrodes of organic photovoltaic devices. The graphene films were synthesized by chemical vapor deposition (CVD) technique on nickel substrates and showed a low sheet resistance of ˜605 Ω/⃞ and transmittance of 87% in the visible wavelength range. The performance of graphene-applied organic photovoltaic cell was enhanced by intermediating TiOX layer to yield an overall power conversion efficiency of 2.60% which is the higher efficiency among the efficiencies of photovoltaic cells with graphene electrodes. Our demonstration of highly efficient graphene-adopted photovoltaic cells may foster thrusting the fast-progressing graphene technology into the practical realm of organic photovoltaic cells.

  14. Rational design of multifunctional devices based on molybdenum disulfide and graphene hybrid nanostructures

    Science.gov (United States)

    Lim, Yi Rang; Lee, Young Bum; Kim, Seong Ku; Kim, Seong Jun; Kim, Yooseok; Jeon, Cheolho; Song, Wooseok; Myung, Sung; Lee, Sun Sook; An, Ki-Seok; Lim, Jongsun

    2017-01-01

    We rationally designed a new type of hybrid materials, molybdenum disulfide (MoS2) synthesized by Mo pre-deposition followed by subsequent sulfurization process directly on thermal chemical vapor deposition (TCVD)-grown graphene, for applications in a multifunctional device. The synthesis of stoichiometric and uniform multilayer MoS2 and high-crystalline monolayer graphene was evaluated by X-ray photoelectron spectroscopy and Raman spectroscopy. To examine the electrical transport and photoelectrical properties of MoS2-graphene hybrid films, field effect transistors (FETs) and visible-light photodetectors based on MoS2-graphene were both fabricated. As a result, the extracted mobility for MoS2-graphene hybrid FETs was two times higher than that of MoS2 FETs. In addition, the MoS2-graphene photodetectors revealed a significant photocurrent with abrupt switching behavior under periodic illumination.

  15. Germanium-Assisted Direct Growth of Graphene on Arbitrary Dielectric Substrates for Heating Devices.

    Science.gov (United States)

    Wang, Ziwen; Xue, Zhongying; Zhang, Miao; Wang, Yongqiang; Xie, Xiaoming; Chu, Paul K; Zhou, Peng; Di, Zengfeng; Wang, Xi

    2017-07-01

    Direct growth of graphene on dielectric substrates is a prerequisite to the development of graphene-based electronic and optoelectronic devices. However, the current graphene synthesis methods on dielectric substrates always involve a metal contamination problem, and the direct production of graphene patterns still remains unattainable and challenging. Herein, a semiconducting, germanium (Ge)-assisted, chemical vapor deposition approach is proposed to produce monolayer graphene directly on arbitrary dielectric substrates. By the prepatterning of a catalytic Ge layer, the graphene with desired pattern can be achieved conveniently and readily. Due to the catalysis of Ge, monolayer graphene is able to form on Ge-covered dielectric substrates including SiO2 /Si, quartz glass, and sapphire substrates. Optimization of the process parameters leads to complete sublimation of the catalytic Ge layer during or immediately after formation of the monolayer graphene, enabling direct deposition of large-area and continuous graphene on dielectric substrates. The large-area, highly conductive graphene synthesized on a transparent dielectric substrate using the proposed approach has exhibited a wide range of applications, including in both defogger and thermochromic displays, as already successfully demonstrated here. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Graphene and permalloy integration in functional fluidic and solid-state devices

    NARCIS (Netherlands)

    van den Beld, Wesley Theodorus Eduardus

    2016-01-01

    The aim of the work of this thesis is to develop novel technologies for functional micro- and nanofluidic devices, as well as exploring the functionality of first examples of such devices. The research thereby is mainly centered round graphene,and involved its synthesis, device fabrication, raman

  17. Chemically Integrated Inorganic-Graphene Two-Dimensional Hybrid Materials for Flexible Energy Storage Devices.

    Science.gov (United States)

    Peng, Lele; Zhu, Yue; Li, Hongsen; Yu, Guihua

    2016-12-01

    State-of-the-art energy storage devices are capable of delivering reasonably high energy density (lithium ion batteries) or high power density (supercapacitors). There is an increasing need for these power sources with not only superior electrochemical performance, but also exceptional flexibility. Graphene has come on to the scene and advancements are being made in integration of various electrochemically active compounds onto graphene or its derivatives so as to utilize their flexibility. Many innovative synthesis techniques have led to novel graphene-based hybrid two-dimensional nanostructures. Here, the chemically integrated inorganic-graphene hybrid two-dimensional materials and their applications for energy storage devices are examined. First, the synthesis and characterization of different kinds of inorganic-graphene hybrid nanostructures are summarized, and then the most relevant applications of inorganic-graphene hybrid materials in flexible energy storage devices are reviewed. The general design rules of using graphene-based hybrid 2D materials for energy storage devices and their current limitations and future potential to advance energy storage technologies are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Toward wafer scale fabrication of graphene based spin valve devices.

    Science.gov (United States)

    Avsar, Ahmet; Yang, Tsung-Yeh; Bae, Sukang; Balakrishnan, Jayakumar; Volmer, Frank; Jaiswal, Manu; Yi, Zheng; Ali, Syed Rizwan; Güntherodt, Gernot; Hong, Byung Hee; Beschoten, Bernd; Özyilmaz, Barbaros

    2011-06-08

    We demonstrate injection, transport, and detection of spins in spin valve arrays patterned in both copper based chemical vapor deposition (Cu-CVD) synthesized wafer scale single layer and bilayer graphene. We observe spin relaxation times comparable to those reported for exfoliated graphene samples demonstrating that chemical vapor deposition specific structural differences such as nanoripples do not limit spin transport in the present samples. Our observations make Cu-CVD graphene a promising material of choice for large scale spintronic applications.

  19. Synthesis of Large Area Graphene for High Performance in Flexible Optoelectronic Devices

    Science.gov (United States)

    Polat, Emre O.; Balci, Osman; Kakenov, Nurbek; Uzlu, Hasan Burkay; Kocabas, Coskun; Dahiya, Ravinder

    2015-11-01

    This work demonstrates an attractive low-cost route to obtain large area and high-quality graphene films by using the ultra-smooth copper foils which are typically used as the negative electrodes in lithium-ion batteries. We first compared the electronic transport properties of our new graphene film with the one synthesized by using commonly used standard copper foils in chemical vapor deposition (CVD). We observed a stark improvement in the electrical performance of the transistors realized on our graphene films. To study the optical properties on large area, we transferred CVD based graphene to transparent flexible substrates using hot lamination method and performed large area optical scanning. We demonstrate the promise of our high quality graphene films for large areas with ~400 cm2 flexible optical modulators. We obtained a profound light modulation over a broad spectrum by using the fabricated large area transparent graphene supercapacitors and we compared the performance of our devices with the one based on graphene from standard copper. We propose that the copper foils used in the lithium-ion batteries could be used to obtain high-quality graphene at much lower-cost, with the improved performance of electrical transport and optical properties in the devices made from them.

  20. Rational design of multifunctional devices based on molybdenum disulfide and graphene hybrid nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yi Rang; Lee, Young Bum; Kim, Seong Ku; Kim, Seong Jun [Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong, Post Office Box 107, Daejeon 305-600 (Korea, Republic of); Kim, Yooseok; Jeon, Cheolho [Nano-Surface Research Group, Korea Basic Science Institute, Daejeon, 302-333 (Korea, Republic of); Song, Wooseok, E-mail: wssong@krict.re.kr [Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong, Post Office Box 107, Daejeon 305-600 (Korea, Republic of); Myung, Sung; Lee, Sun Sook; An, Ki-Seok [Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong, Post Office Box 107, Daejeon 305-600 (Korea, Republic of); Lim, Jongsun, E-mail: jslim@krict.re.kr [Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong, Post Office Box 107, Daejeon 305-600 (Korea, Republic of)

    2017-01-15

    Highlights: • We fabricated MoS{sub 2}-graphene hybrid thin films for multifunctional applications. • Large-area, uniform multilayer MoS{sub 2} was synthesized on TCVD-grown graphene. • The mobility and photocurrent of the hybrid devices were improved significantly. - Abstract: We rationally designed a new type of hybrid materials, molybdenum disulfide (MoS{sub 2}) synthesized by Mo pre-deposition followed by subsequent sulfurization process directly on thermal chemical vapor deposition (TCVD)-grown graphene, for applications in a multifunctional device. The synthesis of stoichiometric and uniform multilayer MoS{sub 2} and high-crystalline monolayer graphene was evaluated by X-ray photoelectron spectroscopy and Raman spectroscopy. To examine the electrical transport and photoelectrical properties of MoS{sub 2}-graphene hybrid films, field effect transistors (FETs) and visible-light photodetectors based on MoS{sub 2}-graphene were both fabricated. As a result, the extracted mobility for MoS{sub 2}-graphene hybrid FETs was two times higher than that of MoS{sub 2} FETs. In addition, the MoS{sub 2}-graphene photodetectors revealed a significant photocurrent with abrupt switching behavior under periodic illumination.

  1. The fast fabrication of flexible electronic devices of graphene composites

    Science.gov (United States)

    Wang, Shihu; Wang, Wei; Yu, Lingke; Zhan, Zhan; Sun, Daoheng

    2016-08-01

    The rapid production and accurate deposition of graphene composites are first integrated into one process, due to the strong interaction between the polymer bond with sodium dodecyl sulfonate (SDS) and graphene. It is demonstrated that tension-shear exfoliation in high viscosity fluid may get a higher graphene production rate than in N-methyl-pyrrolidone. In addition, the micro-scale patterns of graphene nanomaterials produced by this method show high electrical conductivity and superior sensitivity to pressure due to their porous structure.

  2. Interactions of DNA with graphene and sensing applications of graphene field-effect transistor devices: a review.

    Science.gov (United States)

    Green, Nathaniel S; Norton, Michael L

    2015-01-01

    Graphene field-effect transistors (GFET) have emerged as powerful detection platforms enabled by the advent of chemical vapor deposition (CVD) production of the unique atomically thin 2D material on a large scale. DNA aptamers, short target-specific oligonucleotides, are excellent sensor moieties for GFETs due to their strong affinity to graphene, relatively short chain-length, selectivity, and a high degree of analyte variability. However, the interaction between DNA and graphene is not fully understood, leading to questions about the structure of surface-bound DNA, including the morphology of DNA nanostructures and the nature of the electronic response seen from analyte binding. This review critically evaluates recent insights into the nature of the DNA graphene interaction and its affect on sensor viability for DNA, small molecules, and proteins with respect to previously established sensing methods. We first discuss the sorption of DNA to graphene to introduce the interactions and forces acting in DNA based GFET devices and how these forces can potentially affect the performance of increasingly popular DNA aptamers and even future DNA nanostructures as sensor substrates. Next, we discuss the novel use of GFETs to detect DNA and the underlying electronic phenomena that are typically used as benchmarks for characterizing the analyte response of these devices. Finally, we address the use of DNA aptamers to increase the selectivity of GFET sensors for small molecules and proteins and compare them with other, state of the art, detection methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Interactions of DNA with graphene and sensing applications of graphene field-effect transistor devices: A review

    Energy Technology Data Exchange (ETDEWEB)

    Green, Nathaniel S.; Norton, Michael L., E-mail: norton@marshall.edu

    2015-01-01

    Highlights: • The interaction of DNA, including DNA nanostructures, and graphene is reviewed. • Comparison of DNA graphene field-effect transistor (GFET) with other detection methods. • Discussion of challenges present in the detection mechanism of GFETs. • Use of DNA aptamer GFET sensors for the detection of small molecules and proteins. - Abstract: Graphene field-effect transistors (GFET) have emerged as powerful detection platforms enabled by the advent of chemical vapor deposition (CVD) production of the unique atomically thin 2D material on a large scale. DNA aptamers, short target-specific oligonucleotides, are excellent sensor moieties for GFETs due to their strong affinity to graphene, relatively short chain-length, selectivity, and a high degree of analyte variability. However, the interaction between DNA and graphene is not fully understood, leading to questions about the structure of surface-bound DNA, including the morphology of DNA nanostructures and the nature of the electronic response seen from analyte binding. This review critically evaluates recent insights into the nature of the DNA graphene interaction and its affect on sensor viability for DNA, small molecules, and proteins with respect to previously established sensing methods. We first discuss the sorption of DNA to graphene to introduce the interactions and forces acting in DNA based GFET devices and how these forces can potentially affect the performance of increasingly popular DNA aptamers and even future DNA nanostructures as sensor substrates. Next, we discuss the novel use of GFETs to detect DNA and the underlying electronic phenomena that are typically used as benchmarks for characterizing the analyte response of these devices. Finally, we address the use of DNA aptamers to increase the selectivity of GFET sensors for small molecules and proteins and compare them with other, state of the art, detection methods.

  4. Fabrication of graphene-based flexible devices utilizing a soft lithographic patterning method.

    Science.gov (United States)

    Jung, Min Wook; Myung, Sung; Kim, Ki Woong; Song, Wooseok; Jo, You-Young; Lee, Sun Suk; Lim, Jongsun; Park, Chong-Yun; An, Ki-Seok

    2014-07-18

    There has been considerable interest in soft lithographic patterning processing of large scale graphene sheets due to the low cost and simplicity of the patterning process along with the exceptional electrical or physical properties of graphene. These properties include an extremely high carrier mobility and excellent mechanical strength. Recently, a study has reported that single layer graphene grown via chemical vapor deposition (CVD) was patterned and transferred to a target surface by controlling the surface energy of the polydimethylsiloxane (PDMS) stamp. However, applications are limited because of the challenge of CVD-graphene functionalization for devices such as chemical or bio-sensors. In addition, graphene-based layers patterned with a micron scale width on the surface of biocompatible silk fibroin thin films, which are not suitable for conventional CMOS processes such as the patterning or etching of substrates, have yet to be reported. Herein, we developed a soft lithographic patterning process via surface energy modification for advanced graphene-based flexible devices such as transistors or chemical sensors. Using this approach, the surface of a relief-patterned elastomeric stamp was functionalized with hydrophilic dimethylsulfoxide molecules to enhance the surface energy of the stamp and to remove the graphene-based layer from the initial substrate and transfer it to a target surface. As a proof of concept using this soft lithographic patterning technique, we demonstrated a simple and efficient chemical sensor consisting of reduced graphene oxide and a metallic nanoparticle composite. A flexible graphene-based device on a biocompatible silk fibroin substrate, which is attachable to an arbitrary target surface, was also successfully fabricated. Briefly, a soft lithographic patterning process via surface energy modification was developed for advanced graphene-based flexible devices such as transistors or chemical sensors and attachable devices on a

  5. High-performance sound source devices based on graphene woven fabrics

    Science.gov (United States)

    Zhang, Zihan; Tian, He; Lv, Peng; Yang, Yi; Yang, Qiuyun; Yang, Shaolin; Wang, Guanzhong; Ren, Tianling

    2017-02-01

    Graphene woven fabrics (GWFs) consisting of a large number of overlapping graphene micro-ribbons were fabricated by chemical vapor deposition. We demonstrated that GWF films can emit sound efficiently once they are actuated by a sound-frequency electric field owing to the thermoacoustic effect. Because of its ultra-low heat capacity per unit area, the GWF shows sound generation performance comparable to single-layer graphene and carbon nanotubes, and would perform better than them when it is suspended on a high porosity substrate. This sound source can be used in a wide variety of applications, taking advantage of its transparency, flexibility, ultrathin nature, absence of moving parts, and biologically compatible characteristics.

  6. Chemical vapor deposition of graphene : A route to device integration

    NARCIS (Netherlands)

    Zhu, S.

    2015-01-01

    In this thesis, I have shown that the quality of synthetic graphene can be as high as mechanically exfoliated graphene if we can get rid of the wrinkles. Any defects, impurities and grain boundaries will induce scattering, preventing ballistic transport. The experiment described in chapter 4 was the

  7. Direct patterning of highly-conductive graphene@copper composites using copper naphthenate as a resist for graphene device applications.

    Science.gov (United States)

    Bi, Kaixi; Xiang, Quan; Chen, Yiqin; Shi, Huimin; Li, Zhiqin; Lin, Jun; Zhang, Yongzhe; Wan, Qiang; Zhang, Guanhua; Qin, Shiqiao; Zhang, Xueao; Duan, Huigao

    2017-11-09

    We report an electron-beam lithography process to directly fabricate graphene@copper composite patterns without involving metal deposition, lift-off and etching processes using copper naphthenate as a high-resolution negative-tone resist. As a commonly used industrial painting product, copper naphthenate is extremely cheap with a long shelf time but demonstrates an unexpected patterning resolution better than 10 nm. With appropriate annealing under a hydrogen atmosphere, the produced graphene@copper composite patterns show high conductivity of ∼400 S cm(-1). X-ray diffraction, conformal Raman spectroscopy and X-ray photoelectron spectroscopy were used to analyze the chemical composition of the final patterns. With the properties of high resolution and high conductivity, the patterned graphene@copper composites could be used as conductive pads and interconnects for graphene electronic devices with ohmic contacts. Compared to common fabrication processes involving metal evaporation and lift-off steps, this pattern-transfer-free fabrication process using copper naphthenate resist is direct and simple but allows comparable device performance in practical device applications.

  8. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy

    Science.gov (United States)

    Lee, Hyunjae; Choi, Tae Kyu; Lee, Young Bum; Cho, Hye Rim; Ghaffari, Roozbeh; Wang, Liu; Choi, Hyung Jin; Chung, Taek Dong; Lu, Nanshu; Hyeon, Taeghwan; Choi, Seung Hong; Kim, Dae-Hyeong

    2016-06-01

    Owing to its high carrier mobility, conductivity, flexibility and optical transparency, graphene is a versatile material in micro- and macroelectronics. However, the low density of electrochemically active defects in graphene synthesized by chemical vapour deposition limits its application in biosensing. Here, we show that graphene doped with gold and combined with a gold mesh has improved electrochemical activity over bare graphene, sufficient to form a wearable patch for sweat-based diabetes monitoring and feedback therapy. The stretchable device features a serpentine bilayer of gold mesh and gold-doped graphene that forms an efficient electrochemical interface for the stable transfer of electrical signals. The patch consists of a heater, temperature, humidity, glucose and pH sensors and polymeric microneedles that can be thermally activated to deliver drugs transcutaneously. We show that the patch can be thermally actuated to deliver Metformin and reduce blood glucose levels in diabetic mice.

  9. On-chip photonic system using suspended p-n junction InGaN/GaN multiple quantum wells device and multiple waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yongjin, E-mail: wangyj@njupt.edu.cn; Zhu, Guixia; Gao, Xumin; Yang, Yongchao; Yuan, Jialei; Shi, Zheng; Zhu, Hongbo [Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing 210003 (China); Cai, Wei [Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing 210003 (China); School of Computer Engineering, Nanjing Institute of Technology, Nanjing 211167 (China)

    2016-04-18

    We propose, fabricate, and characterize the on-chip integration of suspended p-n junction InGaN/GaN multiple quantum wells (MQWs) device and multiple waveguides on the same GaN-on-silicon platform. The integrated devices are fabricated via a wafer-level process and exhibit selectable functionalities for diverse applications. As the suspended p-n junction InGaN/GaN MQWs device operates under a light emitting diode (LED) mode, part of the light emission is confined and guided by the suspended waveguides. The in-plane propagation along the suspended waveguides is measured by a micro-transmittance setup. The on-chip data transmission is demonstrated for the proof-of-concept photonic integration. As the suspended p-n junction InGaN/GaN MQWs device operates under photodiode mode, the light is illuminated on the suspended waveguides with the aid of the micro-transmittance setup and, thus, coupled into the suspended waveguides. The guided light is finally sensed by the photodiode, and the induced photocurrent trace shows a distinct on/off switching performance. These experimental results indicate that the on-chip photonic integration is promising for the development of sophisticated integrated photonic circuits in the visible wavelength region.

  10. Graphene-coated meshes for electroactive flow control devices utilizing two antagonistic functions of repellency and permeability

    Science.gov (United States)

    Tabassian, Rassoul; Oh, Jung-Hwan; Kim, Sooyeun; Kim, Donggyu; Ryu, Seunghwa; Cho, Seung-Min; Koratkar, Nikhil; Oh, Il-Kwon

    2016-10-01

    The wettability of graphene on various substrates has been intensively investigated for practical applications including surgical and medical tools, textiles, water harvesting, self-cleaning, oil spill removal and microfluidic devices. However, most previous studies have been limited to investigating the intrinsic and passive wettability of graphene and graphene hybrid composites. Here, we report the electrowetting of graphene-coated metal meshes for use as electroactive flow control devices, utilizing two antagonistic functions, hydrophobic repellency versus liquid permeability. Graphene coating was able to prevent the thermal oxidation and corrosion problems that plague unprotected metal meshes, while also maintaining its hydrophobicity. The shapes of liquid droplets and the degree of water penetration through the graphene-coated meshes were controlled by electrical stimuli based on the functional control of hydrophobic repellency and liquid permeability. Furthermore, using the graphene-coated metal meshes, we developed two active flow devices demonstrating the dynamic locomotion of water droplets and electroactive flow switching.

  11. Graphene-Au nanoparticle based vertical heterostructures: a novel route towards high- ZT Thermoelectric devices

    KAUST Repository

    Juang, Zhen-Yu

    2017-06-03

    Monolayer graphene exhibits impressive in-plane thermal conductivity (>1000Wm–1 K–1). However, the out-of-plane thermal transport is limited due to the weak van der Waals interaction, indicating the possibility of constructing a vertical thermoelectric (TE) device. Here, we propose a cross-plane TE device based on the vertical heterostructures of few-layer graphene and gold nanoparticles (AuNPs) on Si substrates, where the incorporation of AuNPs further inhibits the phonon transport and enhances the electrical conductivity along vertical direction. A measurable Seebeck voltage is produced vertically between top graphene and bottom Si when the device is put on a hot surface and the figure of merit ZT is estimated as 1 at room temperature from the transient Harman method. The polarity of the output voltage is determined by the carrier polarity of the substrate. The device concept is also applicable to a flexible and transparent substrate as demonstrated.

  12. Family of graphene-assisted resonant surface optical excitations for terahertz devices

    Science.gov (United States)

    Lin, I.-Tan; Liu, Jia-Ming; Tsai, Hsin-Cheng; Wu, Kaung-Hsiung; Syu, Jheng-Yuan; Su, Ching-Yuan

    2016-10-01

    The majority of the proposed graphene-based THz devices consist of a metamaterial that can optically interact with graphene. This coupled graphene-metamaterial system gives rise to a family of resonant modes such as the surface plasmon polariton (SPP) modes of graphene, the geometrically induced SPPs, also known as the spoof SPP modes, and the Fabry-Perot (FP) modes. In the literature, these modes are usually considered separately as if each could only exist in one structure. By contrast, in this paper, we show that even in a simple metamaterial structure such as a one-dimensional (1D) metallic slit grating, these modes all exist and can potentially interact with each other. A graphene SPP-based THz device is also fabricated and measured. Despite the high scattering rate, the effective SPP resonances can still be observed and show a consistent trend between the effective frequency and the grating period, as predicted by the theory. We also find that the excitation of the graphene SPP mode is most efficient in the terahertz spectral region due to the Drude conductivity of graphene in this spectral region.

  13. An MOT-TDIE solver for analyzing transient fields on graphene-based devices

    KAUST Repository

    Shi, Yifei

    2016-11-02

    A marching on-in-time (MOT) scheme for analyzing transient electromagnetic wave interactions on devices consisting of graphene sheets and dielectric substrates is proposed. The MOT scheme discretizes time domain resistive boundary condition (TD-RBC) and Poggio-Miller-Chang-Harrington-Wu-Tsai (TD-PMCHWT) integral equation, which are enforced on the surfaces of the graphene and dielectric substrate, respectively. The expressions of the time domain resistivity and conductivity of the graphene sheet are obtained analytically from the intra-band contribution formulated in frequency domain. Numerical results, which demonstrate the applicability of the proposed scheme, are presented.

  14. Quantitative scanning thermal microscopy of graphene devices on flexible polyimide substrates

    Science.gov (United States)

    Sadeghi, Mir Mohammad; Park, Saungeun; Huang, Yu; Akinwande, Deji; Yao, Zhen; Murthy, Jayathi; Shi, Li

    2016-06-01

    A triple-scan scanning thermal microscopy (SThM) method and a zero-heat flux laser-heated SThM technique are investigated for quantitative thermal imaging of flexible graphene devices. A similar local tip-sample thermal resistance is observed on both the graphene and metal areas of the sample, and is attributed to the presence of a polymer residue layer on the sample surface and a liquid meniscus at the tip-sample junction. In addition, it is found that the tip-sample thermal resistance is insensitive to the temperature until it begins to increase as the temperature increases to 80 °C and exhibits an abrupt increase at 110 °C because of evaporation of the liquid meniscus at the tip-sample junction. Moreover, the variation in the tip-sample thermal resistance due to surface roughness is within the experimental tolerance except at areas with roughness height exceeding tens of nanometers. Because of the low thermal conductivity of the flexible polyimide substrate, the SThM measurements have found that the temperature rise in flexible graphene devices is more than one order of magnitude higher than those reported for graphene devices fabricated on a silicon substrate with comparable dimensions and power density. Unlike a graphene device on a silicon substrate where the majority of the electrical heating in the graphene device is conducted vertically through the thin silicon dioxide dielectric layer to the high-thermal conductivity silicon substrate, lateral heat spreading is important in the flexible graphene devices, as shown by the observed decrease in the average temperature rise normalized by the power density with decreasing graphene channel length from about 30 μm to 10 μm. However, it is shown by numerical heat transfer analysis that this trend is mainly caused by the size scaling of the thermal spreading resistance of the polymer substrate instead of lateral heat spreading by the graphene. In addition, thermoelectric effects are found to be negligible

  15. Technology ready use of single layer graphene as a transparent electrode for hybrid photovoltaic devices

    OpenAIRE

    Wang, Zhibing; Puls, Conor P.; Staley, Neal E.; Zhang, Yu; Todd, Aaron; Xu, Jian; Howsare, Casey A.; Hollander, Matthew J.; Robinson, Joshua A.; Liu, Ying

    2011-01-01

    Graphene has been used recently as a replacement for indium tin oxide (ITO) for the transparent electrode of an organic photovoltaic device. Due to its limited supply, ITO is considered as a limiting factor for the commercialization of organic solar cells. We explored the use of large-area graphene grown on copper by chemical vapor deposition (CVD) and then transferred to a glass substrate as an alternative transparent electrode. The transferred film was shown by scanning Raman spectroscopy m...

  16. Tunable Ultrafast Photon Source and Imaging System for Studying Carrier Dynamics in Graphene Devices

    Science.gov (United States)

    2015-07-23

    and phonons in graphene through a combination of two optical techniques – tunable wavelength ultrafast optical spectroscopy and Raman spectroscopy ...Fig 2. The set up for Raman spectroscopy showing the NIR CCD camera (BaySpec) in the bottom left corner. purchased from BaySpec using... Tunable ultrafast photon source and imaging system for studying carrier dynamics in graphene devices This project enabled the acquisition of a

  17. Graphene Quantum Dots Interfaced with Single Bacterial Spore for Bio-Electromechanical Devices: A Graphene Cytobot

    Science.gov (United States)

    Sreeprasad, T. S.; Nguyen, Phong; Alshogeathri, Ahmed; Hibbeler, Luke; Martinez, Fabian; McNeil, Nolan; Berry, Vikas

    2015-01-01

    The nanoarchitecture and micromachinery of a cell can be leveraged to fabricate sophisticated cell-driven devices. This requires a coherent strategy to derive cell's mechanistic abilities, microconstruct, and chemical-texture towards such microtechnologies. For example, a microorganism's hydrophobic membrane encapsulating hygroscopic constituents allows it to sustainably withhold a high aquatic pressure. Further, it provides a rich surface chemistry available for nano-interfacing and a strong mechanical response to humidity. Here we demonstrate a route to incorporate a complex cellular structure into microelectromechanics by interfacing compatible graphene quantum dots (GQDs) with a highly responsive single spore microstructure. A sensitive and reproducible electron-tunneling width modulation of 1.63 nm within a network of GQDs chemically-secured on a spore was achieved via sporal hydraulics with a driving force of 299.75 Torrs (21.7% water at GQD junctions). The electron-transport activation energy and the Coulomb blockade threshold for the GQD network were 35 meV and 31 meV, respectively; while the inter-GQD capacitance increased by 1.12 folds at maximum hydraulic force. This is the first example of nano/bio interfacing with spores and will lead to the evolution of next-generation bio-derived microarchitectures, probes for cellular/biochemical processes, biomicrorobotic-mechanisms, and membranes for micromechanical actuation. PMID:25774962

  18. Spin coated graphene films as the transparent electrode in organic photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Kymakis, E., E-mail: kymakis@staff.teicrete.gr [Electrical Engineering Department and Center of Advanced Materials and Photonics, Technological Educational Institute (TEI) of Crete, P.B 1939, Heraklion, Crete (Greece); Stratakis, E. [Electrical Engineering Department and Center of Advanced Materials and Photonics, Technological Educational Institute (TEI) of Crete, P.B 1939, Heraklion, Crete (Greece); Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete (Greece); Materials Science and Technology Department, University of Crete, Heraklion 710 03 (Greece); Stylianakis, M.M.; Koudoumas, E. [Electrical Engineering Department and Center of Advanced Materials and Photonics, Technological Educational Institute (TEI) of Crete, P.B 1939, Heraklion, Crete (Greece); Fotakis, C. [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete (Greece)

    2011-12-01

    Many research efforts have been devoted to the replacement of the traditional indium-tin-oxide (ITO) electrode in organic photovoltaics. Solution-based graphene has been identified as a potential replacement, since it has less than two percent absorption per layer, relative high carrier mobility, and it offers the possibility of deposition on large area and flexible substrates, compatible with roll to roll manufacturing methods. In this work, soluble reduced graphene films with high electrical conductivity and transparency were fabricated and incorporated in poly(3-hexylthiophene) [6,6]-phenyl-C{sub 61}-butyric acid methyl ester photovoltaic devices, as the transparent electrode. The graphene films were spin coated on glass from an aqueous dispersion of functionalized graphene, followed by a reduction process combining hydrazine vapor and annealing under argon, in order to reduce the sheet resistance. The photovoltaic devices obtained from the graphene films showed lower performance than the reference devices with ITO, due to the higher sheet resistance (2 k{Omega}/sq) and the poor hydrophilicity of the spin coated graphene films.

  19. Integrated graphene-based devices for optoelectronic applications

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    Graphene opens up for novel optoelectronic applications thanks to its high carrier mobility, ultralarge absorption bandwidth, and extremely fast material response. Here I present novel integrated grapheneplasmonic waveguide modulator showing high modulation depth, thus giving a promising way...

  20. Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices

    Science.gov (United States)

    Wang, Yu; Chen, Xiaohong; Zhong, Yulin; Zhu, Furong; Loh, Kian Ping

    2009-08-01

    Large-area, continuous, transparent, and highly conducting few-layered graphene films produced by chemical vapor deposition method were used as anode for application in photovoltaic devices. The noncovalent modification of the graphene films with pyrene buanoic acid succidymidyl ester improved the power conversion efficiency (PCE) to 1.71%. This performance corresponds to ˜55.2% of the PCE of a control device based on indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/poly(3-hexyl)thiophene: phenyl-C61-butyric acid methyl ester/LiF/Al electrodes (PCE=3.1%). This finding paves the way for the substitution of ITO in photovoltaic and electroluminescent devices with low cost graphene films.

  1. Bioinspired Graphene-Based Nanocomposites and Their Application in Flexible Energy Devices.

    Science.gov (United States)

    Wan, Sijie; Peng, Jingsong; Jiang, Lei; Cheng, Qunfeng

    2016-09-01

    Graphene is the strongest and stiffest material ever identified and the best electrical conductor known to date, making it an ideal candidate for constructing nanocomposites used in flexible energy devices. However, it remains a great challenge to assemble graphene nanosheets into macro-sized high-performance nanocomposites in practical applications of flexible energy devices using traditional approaches. Nacre, the gold standard for biomimicry, provides an excellent example and guideline for assembling two-dimensional nanosheets into high-performance nanocomposites. This review summarizes recent research on the bioinspired graphene-based nanocomposites (BGBNs), and discusses different bioinspired assembly strategies for constructing integrated high-strength and -toughness graphene-based nanocomposites through various synergistic effects. Fundamental properties of graphene-based nanocomposites, such as strength, toughness, and electrical conductivities, are highlighted. Applications of the BGBNs in flexible energy devices, as well as potential challenges, are addressed. Inspired from the past work done by the community a roadmap for the future of the BGBNs in flexible energy device applications is depicted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Graphene Quantum Dots: Molecularly Designed, Nitrogen-Functionalized Graphene Quantum Dots for Optoelectronic Devices (Adv. Mater. 23/2016).

    Science.gov (United States)

    Tetsuka, Hiroyuki; Nagoya, Akihiro; Fukusumi, Takanori; Matsui, Takayuki

    2016-06-01

    H. Tetsuka and co-workers develop a versatile technique to tune the energy levels and energy gaps of nitrogen-functionalized graphene quantum dots (NGQDs) continuously through molecular structure design, as described on page 4632. The incorporation of layers of NGQDs into the structures markedly improves the performance of optoelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Model for multi-filamentary conduction in graphene/hexagonal-boron-nitride/graphene based resistive switching devices

    Science.gov (United States)

    Pan, Chengbin; Miranda, Enrique; Villena, Marco A.; Xiao, Na; Jing, Xu; Xie, Xiaoming; Wu, Tianru; Hui, Fei; Shi, Yuanyuan; Lanza, Mario

    2017-06-01

    Despite the enormous interest raised by graphene and related materials, recent global concern about their real usefulness in industry has raised, as there is a preoccupying lack of 2D materials based electronic devices in the market. Moreover, analytical tools capable of describing and predicting the behavior of the devices (which are necessary before facing mass production) are very scarce. In this work we synthesize a resistive random access memory (RRAM) using graphene/hexagonal-boron-nitride/graphene (G/h-BN/G) van der Waals structures, and we develop a compact model that accurately describes its functioning. The devices were fabricated using scalable methods (i.e. CVD for material growth and shadow mask for electrode patterning), and they show reproducible resistive switching (RS). The measured characteristics during the forming, set and reset processes were fitted using the model developed. The model is based on the nonlinear Landauer approach for mesoscopic conductors, in this case atomic-sized filaments formed within the 2D materials system. Besides providing excellent overall fitting results (which have been corroborated in log-log, log-linear and linear-linear plots), the model is able to explain the dispersion of the data obtained from cycle-to-cycle in terms of the particular features of the filamentary paths, mainly their confinement potential barrier height.

  4. Graphene Ink as a Conductive Templating Interlayer for Enhanced Charge Transport of C60-Based Devices.

    Science.gov (United States)

    Gonzalez Arellano, D Leonardo; Lee, Hyunbok; Secor, Ethan B; Burnett, Edmund K; Hersam, Mark C; Watkins, James J; Briseno, Alejandro L

    2016-11-02

    We demonstrate conductive templating interlayers of graphene ink, integrating the electronic and chemical properties of graphene in a solution-based process relevant for scalable manufacturing. Thin films of graphene ink are coated onto ITO, following thermal annealing, to form a percolating network used as interlayer. We employ a benchmark n-type semiconductor, C60, to study the interface of the active layer/interlayer. On bare ITO, C60 molecules form films of homogeneously distributed grains; with a graphene interlayer, a preferential orientation of C60 molecules is observed in the individual graphene plates. This leads to crystal growth favoring enhanced charge transport. We fabricate devices to characterize the electron injection and the effect of graphene on the device performance. We observe a significant increase in the current density with the interlayer. Current densities as high as ∼1 mA/cm2 and ∼70 mA/cm2 are realized for C60 deposited with the substrate at 25 °C and 150 °C, respectively.

  5. Varistor characteristics of a nano-device containing graphene and oxidized graphene: Verification by DFT + NEGF

    OpenAIRE

    Ghavami, Badie; Rastkar-Ebrahimzadeh, Alireza

    2014-01-01

    Electron transport and quantum conductance through an armchair graphene and its oxidized graphene- containing form were investigated by the density functional theory (DFT) method and the implementation of the non-equilibrium Green function (NEGF) approach. The computed $I-V_b$(current as a function of bias voltage) characteristic of the studied systems showed the tunneling phenomenon in bias and gate voltages considered. Along with the transport properties, electronic properties including den...

  6. Technology ready use of single layer graphene as a transparent electrode for hybrid photovoltaic devices

    Science.gov (United States)

    Wang, Zhibing; Puls, Conor P.; Staley, Neal E.; Zhang, Yu; Todd, Aaron; Xu, Jian; Howsare, Casey A.; Hollander, Matthew J.; Robinson, Joshua A.; Liu, Ying

    2011-11-01

    Graphene has been used recently as a replacement for indium tin oxide (ITO) for the transparent electrode of an organic photovoltaic device. Due to its limited supply, ITO is considered as a limiting factor for the commercialization of organic solar cells. We explored the use of large-area graphene grown on copper by chemical vapor deposition (CVD) and then transferred to a glass substrate as an alternative transparent electrode. The transferred film was shown by scanning Raman spectroscopy measurements to consist of >90% single layer graphene. Optical spectroscopy measurements showed that the layer-transferred graphene has an optical absorbance of 1.23% at a wavelength of 532 nm. We fabricated organic hybrid solar cells utilizing this material as an electrode and compared their performance with those of ITO devices fabricated using the same procedure. We demonstrated power conversion efficiency up to 3.98%, higher than that of the ITO device (3.86%), showing that layer-transferred graphene promises to be a high quality, low-cost, flexible material for transparent electrodes in solar cell technology.

  7. Platform for enhanced light-graphene interaction length and miniaturizing fiber stereo-devices

    CERN Document Server

    Xu, Fei; Chen, Jin-hui; Chen, Ye; Lu, Yan-qing

    2014-01-01

    Sufficient light-matter interactions are important for waveguide-coupled graphene optoelectronic devices. Using a microfiber-based lab-on-a-rod technique, we present a platform for ultra-long light-graphene interaction and design graphene-integrated helical microfiber (MF) devices. Using this approach, we experimentally demonstrate an in-line stereo polarizer by wrapping an MF on a rod pretreated with a graphene sheet. The device operates as a broadband (450 nm wavelength) polarizer capable of achieving an extinction ratio (ER) as high as ~8 dB/coil in the telecommunication band. Furthermore, we extend this approach to successfully demonstrate a high-Q graphene-based single-polarization resonator, which operates with an ER of ~11 dB with excellent suppression of polarization noise. The fiber-coil resonator shows great potential for sensing applications and gyro-integration. By specializing the rod surface and coil geometry, we believe the preliminary results reported herein could contribute to advancing the r...

  8. Multifunctional tunneling devices based on graphene/h-BN/MoSe2 van der Waals heterostructures

    Science.gov (United States)

    Cheng, Ruiqing; Wang, Feng; Yin, Lei; Xu, Kai; Ahmed Shifa, Tofik; Wen, Yao; Zhan, Xueying; Li, Jie; Jiang, Chao; Wang, Zhenxing; He, Jun

    2017-04-01

    The vertically stacked devices based on van der Waals heterostructures (vdWHs) of two-dimensional layered materials (2DLMs) have attracted considerable attention due to their superb properties. As a typical structure, graphene/hexagonal boron nitride (h-BN)/graphene vdWH has been proved possible to make tunneling devices. Compared with graphene, transition metal dichalcogenides possess intrinsic bandgap, leading to high performance of electronic devices. Here, tunneling devices based on graphene/h-BN/MoSe2 vdWHs are designed for multiple functions. On the one hand, the device shows a typical tunneling field-effect transistor behavior. A high on/off ratio of tunneling current (5 × 103) and an ultrahigh current rectification ratio (7 × 105) are achieved, which are attributed to relatively small electronic affinity of MoSe2 and optimized thickness of h-BN. On the other hand, the same structure also realizes 2D non-volatile memory with a high program/erase current ratio (>105), large memory window (˜150 V from ±90 V), and good retention characteristic. These results could enhance the fundamental understanding of tunneling behavior in vdWHs and contribute to the design of ultrathin rectifiers and memory based on 2DLMs.

  9. Determination of the Thermal Noise Limit of Graphene Biotransistors.

    Science.gov (United States)

    Crosser, Michael S; Brown, Morgan A; McEuen, Paul L; Minot, Ethan D

    2015-08-12

    To determine the thermal noise limit of graphene biotransistors, we have measured the complex impedance between the basal plane of single-layer graphene and an aqueous electrolyte. The impedance is dominated by an imaginary component but has a finite real component. Invoking the fluctuation-dissipation theorem, we determine the power spectral density of thermally driven voltage fluctuations at the graphene/electrolyte interface. The fluctuations have 1/f(p) dependence, with p = 0.75-0.85, and the magnitude of fluctuations scales inversely with area. Our results explain noise spectra previously measured in liquid-gated suspended graphene devices and provide realistic targets for future device performance.

  10. Porous graphene sheets as positive electrode material for supercapacitor - battery hybrid energy storage devices

    Science.gov (United States)

    Mohanapriya, K.; Jha, Neetu

    2017-05-01

    Porous graphene (PG) based positive supercapacitor electrode for hybrid supercapacitor - battery energy storage device has been fabricated successfully and studied in 1M AlCl3 electrolyte for the first time. PG was prepared by simple and easy reduction and activation process by focusing solar light on acid treated graphene oxide (a-GO) film. This material exhibits electric double layer capacitance (EDLC) performance and high specific capacitance of 270.1 F/g at 2 A/g current density as well as high rate capability. This porous graphene based positive supercapacitor electrode in Al3+ based electrolyte can be commercialised in near future for high energy and power densities hybrid energy storage device.

  11. Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization

    DEFF Research Database (Denmark)

    Mackenzie, David; Buron, Jonas Christian Due; Whelan, Patrick Rebsdorf

    2015-01-01

    Selective laser ablation of a wafer-scale graphene film is shown to provide flexible, high speed (1 wafer/hour) device fabrication while avoiding the degradation of electrical properties associated with traditional lithographic methods. Picosecond laser pulses with single pulse peak fluences of 1...

  12. Contactless graphene conductance measurements: the effect of device fabrication on terahertz time-domain spectroscopy

    DEFF Research Database (Denmark)

    Mackenzie, David; Buron, Jonas Christian Due; Bøggild, Peter

    2016-01-01

    We perform contactless full-wafer maps of the electrical conductance of a 4-inch wafer of single-layer CVD graphene using terahertz time-domain spectroscopy both before and after deposition of metal contacts and fabrication of devices via laser ablation. We find that there is no significant chang...

  13. Large thermoelectric figure of merit in graphene layered devices at low temperature

    Science.gov (United States)

    Olaya, Daniel; Hurtado-Morales, Mikel; Gómez, Daniel; Alejandro Castañeda-Uribe, Octavio; Juang, Zhen-Yu; Hernández, Yenny

    2018-01-01

    Nanostructured materials have emerged as an alternative to enhance the figure of merit (ZT) of thermoelectric (TE) devices. Graphene exhibits a high electrical conductivity (in-plane) that is necessary for a high ZT; however, this effect is countered by its impressive thermal conductivity. In this work TE layered devices composed of electrochemically exfoliated graphene (EEG) and a phonon blocking material such as poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), polyaniline (PANI) and gold nanoparticles (AuNPs) at the interface were prepared. The figure of merit, ZT, of each device was measured in the cross-plane direction using the Transient Harman Method (THM) and complemented with AFM-based measurements. The results show remarkable high ZT values (0.81  devices at the nanoscale.

  14. Negative differential resistance and rectifying performance induced by doped graphene nanoribbons p-n device

    Science.gov (United States)

    Zhou, Yuhong; Qiu, Nianxiang; Li, Runwei; Guo, Zhansheng; Zhang, Jian; Fang, Junfeng; Huang, Aisheng; He, Jian; Zha, Xianhu; Luo, Kan; Yin, Jingshuo; Li, Qiuwu; Bai, Xiaojing; Huang, Qing; Du, Shiyu

    2016-03-01

    Employing nonequilibrium Green's Functions in combination with density functional theory, the electronic transport properties of armchair graphene nanoribbon (GNR) devices with various widths are investigated in this work. In the adopted model, two semi-infinite graphene electrodes are periodically doped with boron or nitrogen atoms. Our calculations reveal that these devices have a striking nonlinear feature and show notable negative differential resistance (NDR). The results also indicate the diode-like properties are reserved and the rectification ratios are high. It is found the electronic transport properties are strongly dependent on the width of doped nanoribbons and the positions of dopants and three distinct families are elucidated for the current armchair GNR devices. The NDR as well as rectifying properties can be well explained by the variation of transmission spectra and the relative shift of discrete energy states with applied bias voltage. These findings suggest that the doped armchair GNR is a promising candidate for the next generation nanoscale device.

  15. Unique properties of graphene quantum dots and their applications in photonic/electronic devices

    Science.gov (United States)

    Choi, Suk-Ho

    2017-03-01

    In recent years, graphene quantum dots (GQDs) have been recognized as an attractive building block for electronic, photonic, and bio-molecular device applications. This paper reports the current status of studies on the novel properties of GQDs and their hybrids with conventional and low-dimensional materials for device applications. In this review, more emphasis is placed on the structural, electronic, and optical properties of GQDs, and device structures based on the combination of GQDs with various semiconducting/insulating materials such as graphene, silicon dioxide, Si quantum dots, silica nanoparticles, organic materials, and so on. Because of GQDs’ unique properties, their hybrid structures are employed in high-efficiency devices, including photodetectors, solar cells, light-emitting diodes, flash memory, and sensors.

  16. Bright visible light emission from graphene.

    Science.gov (United States)

    Kim, Young Duck; Kim, Hakseong; Cho, Yujin; Ryoo, Ji Hoon; Park, Cheol-Hwan; Kim, Pilkwang; Kim, Yong Seung; Lee, Sunwoo; Li, Yilei; Park, Seung-Nam; Yoo, Yong Shim; Yoon, Duhee; Dorgan, Vincent E; Pop, Eric; Heinz, Tony F; Hone, James; Chun, Seung-Hyun; Cheong, Hyeonsik; Lee, Sang Wook; Bae, Myung-Ho; Park, Yun Daniel

    2015-08-01

    Graphene and related two-dimensional materials are promising candidates for atomically thin, flexible and transparent optoelectronics. In particular, the strong light-matter interaction in graphene has allowed for the development of state-of-the-art photodetectors, optical modulators and plasmonic devices. In addition, electrically biased graphene on SiO2 substrates can be used as a low-efficiency emitter in the mid-infrared range. However, emission in the visible range has remained elusive. Here, we report the observation of bright visible light emission from electrically biased suspended graphene devices. In these devices, heat transport is greatly reduced. Hot electrons (∼2,800 K) therefore become spatially localized at the centre of the graphene layer, resulting in a 1,000-fold enhancement in thermal radiation efficiency. Moreover, strong optical interference between the suspended graphene and substrate can be used to tune the emission spectrum. We also demonstrate the scalability of this technique by realizing arrays of chemical-vapour-deposited graphene light emitters. These results pave the way towards the realization of commercially viable large-scale, atomically thin, flexible and transparent light emitters and displays with low operation voltage and graphene-based on-chip ultrafast optical communications.

  17. Electrically Addressable Optical Devices Using A System Of Composite Layered Flakes Suspended In A Fluid Host To Obtain Angularly Depende

    Science.gov (United States)

    Kosc, Tanya Z.; Marshall, Kenneth L.; Jacobs, Stephen D.

    2004-12-07

    Composite or layered flakes having a plurality of layers of different materials, which may be dielectric materials, conductive materials, or liquid crystalline materials suspended in a fluid host and subjected to an electric field, provide optical effects dependent upon the angle or orientation of the flakes in the applied electric field. The optical effects depend upon the composition and thickness of the layers, producing reflectance, interference, additive and/or subtractive color effects. The composition of layered flakes may also be selected to enhance and/or alter the dielectric properties of flakes, whereby flake motion in an electric field is also enhanced and/or altered. The devices are useful as active electro-optical displays, polarizers, filters, light modulators, and wherever controllable polarizing, reflecting and transmissive optical properties are desired.

  18. Fabrication of flexible, all-reduced graphene oxide non-volatile memory devices.

    Science.gov (United States)

    Liu, Juqing; Yin, Zongyou; Cao, Xiehong; Zhao, Fei; Wang, Lianhui; Huang, Wei; Zhang, Hua

    2013-01-11

    A flexible, all reduced graphene oxide non-volatile memory device, with lightly reduced GO as an active layer and highly reduced GO as both top and bottom electrodes, is fabricated by a full-solution process and its performance is characterized. It provides a convenient method to construct other all-carbon devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Graphene nano-devices and nano-composites for structural, thermal and sensing applications

    Science.gov (United States)

    Yavari, Fazel

    In this dissertation we have developed graphene-based nano-devices for applications in integrated circuits and gas sensors; as well as graphene-based nano-composites for applications in structures and thermal management. First, we have studied the bandgap of graphene for semiconductor applications. Graphene as a zero-bandgap material cannot be used in the semiconductor industry unless an effective method is developed to open the bandgap in this material. We have demonstrated that a bandgap of 0.206 eV can be opened in graphene by adsorption of water vapor molecules on its surface. Water molecules break the molecular symmetries of graphene resulting in a significant bandgap opening. We also illustrate that the lack of bandgap in graphene can be used to our advantage by making sensors that are able to detect low concentrations of gas molecules mixed in air. We have shown that 1-2 layers of graphene synthesized by chemical vapor deposition enables detection of trace amounts of NO 2 and NH3 in air at room temperature and atmospheric pressure. The gas species are detected by monitoring changes in electrical resistance of the graphene film due to gas adsorption. The sensor response time is inversely proportional to the gas concentration. Heating the film expels chemisorbed molecules from the graphene surface enabling reversible operation. The detection limits of ~100 parts-per-billion (ppb) for NO2 and ~500 ppb for NH3 obtained using this device are markedly superior to commercially available NO2 and NH3 detectors. This sensor is fabricated using individual graphene sheets that are exquisitely sensitive to the chemical environment. However, the fabrication and operation of devices that use individual nanostructures for sensing is complex, expensive and suffers from poor reliability due to contamination and large variability from sample-to-sample. To overcome these problems we have developed a gas sensor based on a porous 3D network of graphene sheets called graphene foam

  20. Switching behaviors of butadienimine molecular devices sandwiched between graphene nanoribbons electrodes

    Science.gov (United States)

    Xia, Cai-Juan; Ye, Meng; Zhang, Bo-Qun; Su, Yao-Heng; Tu, Zhe-Yan

    2017-10-01

    The switching behavior of butadienimine molecule with two tautomeric forms sandwiched between different graphene nanoribbons (GNRs) electrodes are investigated by applying nonequilibrium Green’s function formalism combined with first-principles density functional theory. The calculated results show that the edge geometry of GNRs electrodes play a significant role in determining the electronic transport properties and switching behavior of the butadienimine molecular junctions. A higher current switching ratio can be obtained for the molecular junctions with zigzag edged graphene nanoribbons, which suggests that this system has a broader application in future logic and memory devices.

  1. Numerical investigation of a multi-functional optical device based on graphene-silica metamaterial

    Science.gov (United States)

    Liu, Huaiqing; Ren, Guobin; Gao, Yixiao; Zhu, Bofeng; Li, Haisu; Wu, Beilei; Jian, Shuisheng

    2016-06-01

    We propose a permittivity-tunable metamaterial channel, which is composed of alternative layers of graphene and silica. Optical waves can pass through the metamaterial channel only if its permittivity is tuned to zero. Taking advantage of the permittivity tunable property of the metamaterial, a multi-functional optical device, which can act as a wavelength demultiplexer, switch, and optical splitter without changing the geometric parameters has been proposed and numerically investigated by using the Finite Element Method. Owing to the permittivity tunable property of graphene, the working wavelength of the multi-functional device can be flexibly controlled by tuning the gate voltage applied on the metamaterial. This tunable ultracompact multi-functional optical device may find potential applications in highly integrated photonic circuits.

  2. Gold Nanoparticle-Graphene Oxide Nanocomposites That Enhance the Device Performance of Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Ming-Kai Chuang

    2014-01-01

    Full Text Available Metal nanoparticle-decorated graphene oxides are promising materials for use in various optoelectronic applications because of their unique plasmonic properties. In this paper, a simple, environmentally friendly method for the synthesis of gold nanoparticle-decorated graphene oxide that can be used to improve the efficiency of organic photovoltaic devices (OPVs is reported. Here, the amino acid glycine is employed as an environmentally friendly reducing reagent for the reduction of gold ions in the graphene oxide solutions. Transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, UV-Vis spectroscopy, and Raman spectroscopy are used to characterize the material properties of the resulting nanomaterials. Furthermore, these nanocomposites are employed as the anode buffer layer in OPVs to trigger surface plasmonic resonance, which improved the efficiency of the OPVs. The results indicate that such nanomaterials appear to have great potential for application in OPVs.

  3. Internal transmission coefficient in charges carrier generation layer of graphene/Si based solar cell device

    Energy Technology Data Exchange (ETDEWEB)

    Rosikhin, Ahmad, E-mail: a.rosikhin86@yahoo.co.id; Winata, Toto, E-mail: toto@fi.itb.ac.id [Department of physics, physics of electronic materials research division Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesha 10, Bandung 40132, Jawa Barat – Indonesia (Indonesia)

    2016-04-19

    Internal transmission profile in charges carrier generation layer of graphene/Si based solar cell has been explored theoretically. Photovoltaic device was constructed from graphene/Si heterojunction forming a multilayer stuck with Si as generation layer. The graphene/Si sheet was layered on ITO/glass wafer then coated by Al forming Ohmic contact with Si. Photon incident propagate from glass substrate to metal electrode and assumed that there is no transmission in Al layer. The wavelength range spectra used in this calculation was 200 – 1000 nm. It found that transmission intensity in the generation layer show non-linear behavior and partitioned by few areas which related with excitation process. According to this information, it may to optimize the photons absorption to create more excitation process by inserting appropriate material to enhance optical properties in certain wavelength spectra because of the exciton generation is strongly influenced by photon absorption.

  4. Chemical-Vapor-Deposited Graphene as Charge Storage Layer in Flash Memory Device

    Directory of Open Access Journals (Sweden)

    W. J. Liu

    2016-01-01

    Full Text Available We demonstrated a flash memory device with chemical-vapor-deposited graphene as a charge trapping layer. It was found that the average RMS roughness of block oxide on graphene storage layer can be significantly reduced from 5.9 nm to 0.5 nm by inserting a seed metal layer, which was verified by AFM measurements. The memory window is 5.6 V for a dual sweep of ±12 V at room temperature. Moreover, a reduced hysteresis at the low temperature was observed, indicative of water molecules or −OH groups between graphene and dielectric playing an important role in memory windows.

  5. Inactivation of model viruses suspended in fresh frozen plasma using novel methylene blue based device.

    Science.gov (United States)

    Elikaei, Ameneh; Sharifi, Zohreh; Hosseini, Seyed Masoud; Latifi, Hamid; Musavi Hosseini, Mir Kamaran

    2014-02-01

    There is a concern on safety of human Fresh Frozen Plasma (FFP) as it is a source of some medicinal products. The possibility of transmission of blood-borne are reported often due to emerging viruses. There are some Pathogen Reduction Technologies (PRT) to inactivate viruses. Methylene Blue (MB) based method is one of them. The aim of this study was to examine new designated device to inactivate model viruses. Four model viruses were used in this study:Vesicular stomatitis virus (VSV), Herpes Simplex Virus I (HSV-1), Bovine Viral DiarrheaVirus(BVDV) and Polio Virus.50% Tissue Culture Infective Dose (TCID 50) and Reed-Muench Methods were used to titer the viruses. MB in two final concentration of 0.1 μM and 1 μM and illumination in about 627nm with red LED (Lamp Emitting Diode) for 15, 30, 45 and 60 minutes were used. Three replicates employed for each experiments. 1μMconcentration of MB showed more effective than 0.1μMin all designed illumination period for inactivation of HSV, VSV and BVDV. This method also demonstrated best results for enveloped model viruses. The most Log reduction for HSV, VSV and BVDV were6.28, 5.54 and 6.22, respectively. For HSV and BVDV inactivation, the best illumination period was 45 minutes. Model viruses showed sensitivity combination of MB and illumination using red LEDs. As results show this device could inactivate model viruses and reduce their titer very close to approved commercial devices, in compare.

  6. Graphene-Decorated Nanocomposites for Printable Electrodes in Thin Wafer Devices

    Science.gov (United States)

    Bakhshizadeh, N.; Sivoththaman, S.

    2017-08-01

    Printable electrodes that induce less stress and require lower curing temperatures compared to traditional screen-printed metal pastes are needed in thin wafer devices such as future solar cells, and in flexible electronics. The synthesis of nanocomposites by incorporating graphene nanopowders as well as silver nanowires into epoxy-based electrically conductive adhesives (ECA) is examined to improve electrical conductivity and to develop alternate printable electrode materials that induce less stress on the wafer. For the synthesized graphene and Ag nanowire-decorated ECA nanocomposites, the curing kinetics were studied by dynamic and isothermal differential scanning calorimetry measurements. Thermogravimetric analysis on ECA, ECA-AG and ECA/graphene nanopowder nanocomposites showed that the temperatures for onset of decomposition are higher than their corresponding glass transition temperature (T g) indicating an excellent thermal resistance. Printed ECA/Ag nanowire nanocomposites showed 90% higher electrical conductivity than ECA films, whereas the ECA/graphene nanocomposites increased the conductivity by over two orders of magnitude. Scanning electron microscopy results also revealed the effect of fillers morphology on the conductivity improvement and current transfer mechanisms in nanocomposites. Residual stress analysis performed on Si wafers showed that the ECA and nanocomposite printed wafers are subjected to much lower stress compared to those printed with metallic pastes. The observed parameters of low curing temperature, good thermal resistance, reasonably high conductivity, and low residual stress in the ECA/graphene nanocomposite makes this material a promising alternative in screen-printed electrode formation in thin substrates.

  7. Graphene-Decorated Nanocomposites for Printable Electrodes in Thin Wafer Devices

    Science.gov (United States)

    Bakhshizadeh, N.; Sivoththaman, S.

    2017-12-01

    Printable electrodes that induce less stress and require lower curing temperatures compared to traditional screen-printed metal pastes are needed in thin wafer devices such as future solar cells, and in flexible electronics. The synthesis of nanocomposites by incorporating graphene nanopowders as well as silver nanowires into epoxy-based electrically conductive adhesives (ECA) is examined to improve electrical conductivity and to develop alternate printable electrode materials that induce less stress on the wafer. For the synthesized graphene and Ag nanowire-decorated ECA nanocomposites, the curing kinetics were studied by dynamic and isothermal differential scanning calorimetry measurements. Thermogravimetric analysis on ECA, ECA-AG and ECA/graphene nanopowder nanocomposites showed that the temperatures for onset of decomposition are higher than their corresponding glass transition temperature ( T g) indicating an excellent thermal resistance. Printed ECA/Ag nanowire nanocomposites showed 90% higher electrical conductivity than ECA films, whereas the ECA/graphene nanocomposites increased the conductivity by over two orders of magnitude. Scanning electron microscopy results also revealed the effect of fillers morphology on the conductivity improvement and current transfer mechanisms in nanocomposites. Residual stress analysis performed on Si wafers showed that the ECA and nanocomposite printed wafers are subjected to much lower stress compared to those printed with metallic pastes. The observed parameters of low curing temperature, good thermal resistance, reasonably high conductivity, and low residual stress in the ECA/graphene nanocomposite makes this material a promising alternative in screen-printed electrode formation in thin substrates.

  8. Comparative experiments of graphene covalently and physically binding CdSe quantum dots to enhance the electron transport in flexible photovoltaic devices

    Science.gov (United States)

    Jung, Mi-Hee; Chu, Moo-Jung

    2014-07-01

    In this research, we prepared composite films via covalent coupling of CdSe quantum dots (QDs) to graphene through the direct binding of aryl radicals to the graphene surface. To compare the carrier transport with the CdSe aryl binding graphene film, we prepared CdSe pyridine capping graphene films through the pi-pi interactions of noncovalent bonds between the graphene and pyridine molecules. The photovoltaic devices were fabricated from the two hybrid films using the electrophoretic deposition method on flexible substrates. Even though the two hybrid films have the same amount of QDs and graphene, time-resolved fluorescence emission decay results show that the emission lifetime of the CdSe aryl group binding graphene film is significantly shorter than that of the pyridine capping CdSe-graphene. The quantum efficiency and photocurrent density of the device fabricated from CdSe aryl binding graphene were also higher than those of the device fabricated from pyridine capping CdSe-graphene. These results indicated that the carrier transport of the QD-graphene system is not related to the additive effect from the CdSe and graphene components but rather is a result of the unique interactions between the graphene and QDs. We could expect that these results can be useful in designing QD-graphene composite materials, which are applied in photovoltaic devices.

  9. Epitaxial graphene homogeneity and quantum Hall effect in millimeter-scale devices.

    Science.gov (United States)

    Yang, Yanfei; Cheng, Guangjun; Mende, Patrick; Calizo, Irene G; Feenstra, Randall M; Chuang, Chiashain; Liu, Chieh-Wen; Liu, Chieh-I; Jones, George R; Hight Walker, Angela R; Elmquist, Randolph E

    2017-05-01

    Quantized magnetotransport is observed in 5.6 × 5.6 mm 2 epitaxial graphene devices, grown using highly constrained sublimation on the Si-face of SiC(0001) at high temperature (1900 °C). The precise quantized Hall resistance of [Formula: see text] is maintained up to record level of critical current I xx = 0.72 mA at T = 3.1 K and 9 T in a device where Raman microscopy reveals low and homogeneous strain. Adsorption-induced molecular doping in a second device reduced the carrier concentration close to the Dirac point ( n ≈ 10 10 cm -2 ), where mobility of 18760 cm 2 /V is measured over an area of 10 mm 2 . Atomic force, confocal optical, and Raman microscopies are used to characterize the large-scale devices, and reveal improved SiC terrace topography and the structure of the graphene layer. Our results show that the structural uniformity of epitaxial graphene produced by face-to-graphite processing contributes to millimeter-scale transport homogeneity, and will prove useful for scientific and commercial applications.

  10. Effect of annealing on graphene incorporated poly-(3-hexylthiophene):CuInS2 photovoltaic device

    Science.gov (United States)

    Kumari, Anita; Singh, Inderpreet; Dixit, Shiv Kumar

    2014-10-01

    The effect of thermal annealing on the power conversion efficiency (PCE) of poly(3-hexylthiophene) (P3HT):CuInS2 quantum dot:graphene photovoltaic device has been studied by analyzing optical characteristics of composite films and electrical characteristics of the device with structure indium tin oxide/poly[ethylene dioxythiophene]:poly[styrene sulfonate] (ITO/PEDOT:PSS)/P3HT:CIS:graphene/LiF/aluminum. It was observed that after annealing at 120°C for 15 min a typical device containing 0.005 % w/w of graphene shows the best performance with a PCE of 1.3%, an open-circuit voltage of 0.44V, a short-circuit current density of 7.6 mA/cm2, and a fill factor of 0.39. It is observed that the thermal annealing considerably enhances the efficiency of solar cells. However, an annealing at higher temperature such as at 140°C results in a decrease in the device efficiency.

  11. Fully reconfigurable terahertz devices enabled by T-shaped graphene two-parallel-sheet

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Han, E-mail: hanren@my.unt.edu [Electrical Engineering Department, University of North Texas, 3940 N. Elm St., Denton, TX 76207 (United States); Ding, Jun, E-mail: stevendingjun@gmail.com [Electrical and Computer Engineering Department, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Arigong, Bayaner; Zhou, Mi [Electrical Engineering Department, University of North Texas, 3940 N. Elm St., Denton, TX 76207 (United States); Lin, Yuankun [Electrical Engineering Department, University of North Texas, 3940 N. Elm St., Denton, TX 76207 (United States); Physics Department, University of North Texas, Denton, TX 76203 (United States); Zhang, Hualiang, E-mail: hualiang_zhang@uml.edu [Electrical and Computer Engineering Department, University of Massachusetts Lowell, Lowell, MA 01854 (United States)

    2017-01-30

    In this letter, we investigate fully reconfigurable terahertz (THz) devices enabled by a T-shaped graphene two-parallel-sheet (GTPS). The proposed T-shaped GTPS is constructed by two series-connected GTPS sections and one shunt-connected open-ended GTPS section. By applying electrical gating to the T-shaped GTPS, both electrical length and characteristic impedance of the terahertz waveguide (i.e. T-shaped GTPS) can be fully tuned. To demonstrate the tuning feature of the T-shaped GTPS, a variety of tunable THz devices are designed based on it, including reconfigurable tunable THz transmission lines and a tunable THz coupler. The simulation results verify the large tuning range and multifunction of proposed devices. - Highlights: • Tunable terahertz devices are achieved by a T-shaped graphene two-parallel-sheet. • Electrical length and characteristic impedance of the THz waveguide can be tuned. • Waveguide can be tuned by the bias voltage on the top and bottom graphene sheets. • The simulation results verify the large tuning range and multifunction.

  12. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices.

    Science.gov (United States)

    Seo, Hong-Kyu; Kim, Tae-Sik; Park, Chibeom; Xu, Wentao; Baek, Kangkyun; Bae, Sang-Hoon; Ahn, Jong-Hyun; Kim, Kimoon; Choi, Hee Cheul; Lee, Tae-Woo

    2015-11-16

    We have developed a simple, scalable, transfer-free, ecologically sustainable, value-added method to convert inexpensive coal tar pitch to patterned graphene films directly on device substrates. The method, which does not require an additional transfer process, enables direct growth of graphene films on device substrates in large area. To demonstrate the practical applications of the graphene films, we used the patterned graphene grown on a dielectric substrate directly as electrodes of bottom-contact pentacene field-effect transistors (max. field effect mobility ~0.36 cm(2)·V(-1)·s(-1)), without using any physical transfer process. This use of a chemical waste product as a solid carbon source instead of commonly used explosive hydrocarbon gas sources for graphene synthesis has the dual benefits of converting the waste to a valuable product, and reducing pollution.

  13. Graphene a new paradigm in condensed matter and device physics

    CERN Document Server

    Wolf, E L

    2014-01-01

    The book is an introduction to the science and possible applications of Graphene, the first one-atom-thick crystalline form of matter. Discovered in 2004 by now Nobelists Geim and Novoselov, the single layer of graphite, a hexagonal network of carbon atoms, has astonishing electrical and mechanical properties. It supports the highest electrical current density of any material, far exceeding metals copper and silver. Its absolute minimum thickness, 0.34 nanometers, provides an inherent advantage in possible forms of digital electronics past the era of Moore's Law. The book describes the unusual physics of the material, that it offers linear rather than parabolic energy bands. The Dirac-like electron energy bands lead to high constant carrier speed, similar to light photons. The lattice symmetry further implies a two-component wave-function, which has a practical effect of cancelling direct backscattering of carriers. The resulting high carrier mobility allows observation of the Quantum Hall Effect at room temp...

  14. Characterizing Graphene-modified Electrodes for Interfacing with Arduino®-based Devices.

    Science.gov (United States)

    Arris, Farrah Aida; Ithnin, Mohamad Hafiz; Salim, Wan Wardatul Amani Wan

    2016-08-01

    Portable low-cost platform and sensing systems for identification and quantitative measurement are in high demand for various environmental monitoring applications, especially in field work. Quantifying parameters in the field requires both minimal sample handling and a device capable of performing measurements with high sensitivity and stability. Furthermore, the one-device-fits-all concept is useful for continuous monitoring of multiple parameters. Miniaturization of devices can be achieved by introducing graphene as part of the transducer in an electrochemical sensor. In this project, we characterize graphene deposition methods on glassy-carbon electrodes (GCEs) with the goal of interfacing with an Arduino-based user-friendly microcontroller. We found that a galvanostatic electrochemical method yields the highest peak current of 10 mA, promising a highly sensitive electrochemical sensor. An Atlas Scientific™ printed circuit board (PCB) was connected to an Arduino® microcontroller using a multi-circuit connection that can be interfaced with graphene-based electrochemical sensors for environmental monitoring.

  15. Graphene, a material for high temperature devices; intrinsic carrier density, carrier drift velocity, and lattice energy

    CERN Document Server

    Yin, Yan; Wang, Li; Jin, Kuijuan; Wang, Wenzhong

    2016-01-01

    Heat has always been a killing matter for traditional semiconductor machines. The underlining physical reason is that the intrinsic carrier density of a device made from a traditional semiconductor material increases very fast with a rising temperature. Once reaching a temperature, the density surpasses the chemical doping or gating effect, any p-n junction or transistor made from the semiconductor will fail to function. Here, we measure the intrinsic Fermi level (|E_F|=2.93k_B*T) or intrinsic carrier density (n_in=3.87*10^6 cm^-2 K^-2*T^2), carrier drift velocity, and G mode phonon energy of graphene devices and their temperature dependencies up to 2400 K. Our results show intrinsic carrier density of graphene is an order of magnitude less sensitive to temperature than those of Si or Ge, and reveal the great potentials of graphene as a material for high temperature devices. We also observe a linear decline of saturation drift velocity with increasing temperature, and identify the temperature coefficients of ...

  16. Design of optical metamaterial mirror with metallic nanoparticles for floating-gate graphene optoelectronic devices

    Science.gov (United States)

    Lee, Seungwoo; Kim, Juyoung

    2015-08-01

    A general metallic mirror (i.e., a flat metallic surface) has been a popular optical component that can contribute broadband light absorption to thin-film optoelectronic devices; nonetheless, such electric mirror with a reversal of reflection phase inevitably causes the problem of minimized electric field near at the mirror surface (maximized electric field at one quarter of wavelength from mirror). This problem becomes more elucidated, when the deep-subwavelength-scaled two-dimensional (2D) material (e.g., graphene and molybdenum disulfide) is implemented into optoelectronic device as an active channel layer. The purpose of this work was to conceive the idea for using a charge storage layer (spherical Au nanoparticles (AuNPs), embedded into dielectric matrix) of the floating-gate graphene photodetector as a magnetic mirror, which allows the device to harness the increase in broadband light absorption. In particular, we systematically examined whether the versatile assembly of spherical AuNP monolayer within a dielectric matrix (i.e., optical metamaterial mirror), which should be designed to be placed right below the graphene channel layer for floating-gate device, can be indeed treated as the effective magnetic mirror. In addition to being capable of the enhancement of broadband light absorption, versatile access to various structural motifs of AuNPs benefitting from recent advances in chemical synthesis promises compelling opportunities for sophisticated engineering of optical metamaterial mirror. High amenability of the AuNP assembly with the semiconductor-related procedures may make this strategy widely applicable to various thin film optoelectronic devices. Our study thereby illustrates advantages in advancing the design of mirror for rational engineering of light-matter interaction within deep-subwavelength-scaled optoelectronic devices.

  17. Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices.

    Science.gov (United States)

    Strong, Veronica; Dubin, Sergey; El-Kady, Maher F; Lech, Andrew; Wang, Yue; Weiller, Bruce H; Kaner, Richard B

    2012-02-28

    Engineering a low-cost graphene-based electronic device has proven difficult to accomplish via a single-step fabrication process. Here we introduce a facile, inexpensive, solid-state method for generating, patterning, and electronic tuning of graphene-based materials. Laser scribed graphene (LSG) is shown to be successfully produced and selectively patterned from the direct laser irradiation of graphite oxide films under ambient conditions. Circuits and complex designs are directly patterned onto various flexible substrates without masks, templates, post-processing, transferring techniques, or metal catalysts. In addition, by varying the laser intensity and laser irradiation treatments, the electrical properties of LSG can be precisely tuned over 5 orders of magnitude of conductivity, a feature that has proven difficult with other methods. This inexpensive method for generating LSG on thin flexible substrates provides a mode for fabricating a low-cost graphene-based NO(2) gas sensor and enables its use as a heterogeneous scaffold for the selective growth of Pt nanoparticles. The LSG also shows exceptional electrochemical activity that surpasses other carbon-based electrodes in electron charge transfer rate as demonstrated using a ferro-/ferricyanide redox couple.

  18. Graphene-based Material Systems for Nanoelectronics and Energy Storage Devices

    Science.gov (United States)

    Guo, Shirui

    hybrids provides an attractive pathway for the fabrication of novel 3-Dimensional hybrid nanostructures. The second type hybrid is graphene oxide (GO) and SWCNT composite ink (GO-SWCNT ink). SWCNTs are dispersed using a GO aqueous solution (2mg/ml) with sonication support to achieve a SWCNT concentration of 12mg/ml, the highest reported value so far without surfactant assistance. Paper based electrodes for supercapacitors are fabricated using GO-SWCNT composite ink via dip casting method. By employing different concentrations of SWCNT inside the ink, supercapacitors demonstrated different capacitance values. The highest value of specific capacitance reaches up to 295 F/g at a current density of 0.5A/g with a GO/SWCNT weight ratio of 1:5. The cycling stability for the GO-SWCNT paper electrode supercapacitors indicates capacitance retention of 85% over 60,000 cycles. Finally, engineered interactions between nanomaterials, polymers, molecules and graphene/carbon nanotube can lead to the development of new types of devices for myriad applications.

  19. Quantum Hall resistance standard in graphene devices under relaxed experimental conditions

    Science.gov (United States)

    Ribeiro-Palau, R.; Lafont, F.; Brun-Picard, J.; Kazazis, D.; Michon, A.; Cheynis, F.; Couturaud, O.; Consejo, C.; Jouault, B.; Poirier, W.; Schopfer, F.

    2015-11-01

    The quantum Hall effect provides a universal standard for electrical resistance that is theoretically based on only the Planck constant h and the electron charge e. Currently, this standard is implemented in GaAs/AlGaAs, but graphene's electronic properties have given hope for a more practical device. Here, we demonstrate that the experimental conditions necessary for the operation of devices made of high-quality graphene grown by chemical vapour deposition on silicon carbide can be extended and significantly relaxed compared with those for state-of-the-art GaAs/AlGaAs devices. In particular, the Hall resistance can be accurately quantized to within 1 × 10-9 over a 10 T wide range of magnetic flux density, down to 3.5 T, at a temperature of up to 10 K or with a current of up to 0.5 mA. This experimental simplification highlights the great potential of graphene in the development of user-friendly and versatile quantum standards that are compatible with broader industrial uses beyond those in national metrology institutes. Furthermore, the measured agreement of the quantized Hall resistance in graphene and GaAs/AlGaAs, with an ultimate uncertainty of 8.2 × 10-11, supports the universality of the quantum Hall effect. This also provides evidence of the relation of the quantized Hall resistance with h and e, which is crucial for the new Système International d'unités to be based on fixing such fundamental constants of nature.

  20. Resistive switching behavior of reduced graphene oxide memory cells for low power nonvolatile device application.

    Science.gov (United States)

    Pradhan, Sangram K; Xiao, Bo; Mishra, Saswat; Killam, Alex; Pradhan, Aswini K

    2016-05-31

    Graphene Oxide (GO) based low cost flexible electronics and memory cell have recently attracted more attention for the fabrication of emerging electronic devices. As a suitable candidate for resistive random access memory technology, reduced graphene oxide (RGO) can be widely used for non-volatile switching memory applications because of its large surface area, excellent scalability, retention, and endurance properties. We demonstrated that the fabricated metal/RGO/metal memory device exhibited excellent switching characteristics, with on/off ratio of two orders of magnitude and operated threshold switching voltage of less than 1 V. The studies on different cell diameter, thickness, scan voltages and period of time corroborate the reliability of the device as resistive random access memory. The microscopic origin of switching operation is governed by the establishment of conducting filaments due to the interface amorphous layer rupturing and the movement of oxygen in the GO layer. This interesting experimental finding indicates that device made up of thermally reduced GO shows more reliability for its use in next generation electronics devices.

  1. Static Capacitive Pressure Sensing Using a Single Graphene Drum.

    Science.gov (United States)

    Davidovikj, Dejan; Scheepers, Paul H; van der Zant, Herre S J; Steeneken, Peter G

    2017-12-13

    To realize nanomechanical graphene-based pressure sensors, it is beneficial to have a method to electrically readout the static displacement of a suspended graphene membrane. Capacitive readout, typical in micro-electromechanical systems, gets increasingly challenging as one starts shrinking the dimensions of these devices because the expected responsivity of such devices is below 0.1 aF/Pa. To overcome the challenges of detecting small capacitance changes, we design an electrical readout device fabricated on top of an insulating quartz substrate, maximizing the contribution of the suspended membrane to the total capacitance of the device. The capacitance of the drum is further increased by reducing the gap size to 110 nm. Using an external pressure load, we demonstrate the successful detection of capacitance changes of a single graphene drum down to 50 aF, and pressure differences down to 25 mbar.

  2. Effect of edge modification on the rectification in graphene ribbons device

    Science.gov (United States)

    Yuan, Peipei; Han, Xiaoxiao; Yang, Jingjuan; Bian, Baoan; Li, Weibao; Wang, Yuming; Luo, Xu; Liao, Bin

    2018-01-01

    We perform first-principles calculations based on density functional theory and non-equilibrium Green's function to investigate the electronic transport properties of the 12-ZGNRs devices with edge modification of OH/NH2, OH/NO2 and OH/SO2. The device with modified edge by OH/SO2 shows the maximum (reverse) rectification ratio of 2076.33(1937.33). We discuss the effect of edge modification on rectifying phenomenon by calculating the transmission spectra and the energy band structures of the related electrodes as well as the PDOS at different bias. And the observed negative differential resistance effect is explained by the transmission spectra for device with modified edge by OH/NH2 and OH/NO2. The results indicate that the edge modification of the OH/SO2 that causes a asymmetric energy band improves the electron transport of the device, suggesting a method to design graphene rectifier with good performance.

  3. Work function modulation and thermal stability of reduced graphene oxide gate electrodes in MOS devices.

    Science.gov (United States)

    Misra, Abhishek; Kalita, Hemen; Kottantharayil, Anil

    2014-01-22

    Work function (WF) tuning of the contact electrodes is a key requirement in several device technologies, including organic photovoltaics (OPVs), organic light-emitting diodes (OLEDs), and complementary metal oxide semiconductor (CMOS) transistors. Here, we demonstrate that the WF of the gate electrode in an MOS structure can be modulated from 4.35 eV (n-type metal) to 5.28 eV (p-type metal) by sandwiching different thicknesses of reduced graphene oxide (rGO) layers between top contact metals and gate dielectric SiO2. The WF of the gate electrode shows strong dependence on the rGO thickness and is seen to be nearly independent of the contact metals used. The observed WF modulation is attributed to the different amounts of oxygen concentrations in different thicknesses of rGO layers. Importantly, this oxygen concentration can also be varied by the reduction extent of the graphene oxide as experimentally demonstrated. The results are verified by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analyses. The obtained WF values are thermally stable up to 800 °C. At further high temperatures, diffusion of metal through the rGO sheets is the main cause for WF instability, as confirmed by cross-sectional high-resolution transmission electron microscopy analysis. These findings are not limited to MOS devices, and the WF modulation technique has the potential for applications in other technologies such as OLEDs and OPVs involving graphene as conducting electrodes.

  4. Bioavailability of Pyrene Associated with Suspended Sediment of Different Grain Sizes to Daphnia magna as Investigated by Passive Dosing Devices.

    Science.gov (United States)

    Zhang, Xiaotian; Xia, Xinghui; Li, Husheng; Zhu, Baotong; Dong, Jianwei

    2015-08-18

    Suspended sediment (SPS) is widely present in rivers around the world. However, the bioavailability of hydrophobic organic compounds (HOCs) associated with SPS is not well understood. In this work, the influence of SPS grain size on the bioavailability of SPS-associated pyrene to Daphnia magna was studied using a passive dosing device, which maintained a constant freely dissolved pyrene concentration (Cfree) in the exposure systems. The immobilization and protein as well as enzymatic activities of Daphnia magna were investigated to study the bioavailability of SPS-associated pyrene. With Cfree of pyrene ranging from 20.0 to 60.0 μg L(-1), the immobilization of Daphnia magna in the presence of 1 g L(-1) SPS was 1.11-2.89 times that in the absence of SPS. The immobilization caused by pyrene associated with different grain size SPS was on the order of 50-100 μm > 0-50 μm > 100-150 μm. When pyrene Cfree was 20.0 μg L(-1), the immobilization caused by pyrene associated with 50-100 μm SPS was 1.42 and 2.43 times that with 0-50 and 100-150 μm SPS, respectively. The protein and enzymatic activities of Daphnia magna also varied with the SPS grain size. The effect of SPS grain size on the bioavailability of SPS-associated pyrene was mainly due to the difference in SPS ingestion by Daphnia magna and SPS composition, especially the organic carbon type, among the three size fractions. This study suggests that not only the concentration but also the size distribution of SPS should be considered for the development of a biological effect database and establishment of water quality criteria for HOCs in natural waters.

  5. Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices.

    Science.gov (United States)

    Kim, Ki Kang; Hsu, Allen; Jia, Xiaoting; Kim, Soo Min; Shi, Yumeng; Dresselhaus, Mildred; Palacios, Tomas; Kong, Jing

    2012-10-23

    Hexagonal boron nitride (h-BN) is a promising material as a dielectric layer or substrate for two-dimensional electronic devices. In this work, we report the synthesis of large-area h-BN film using atmospheric pressure chemical vapor deposition on a copper foil, followed by Cu etching and transfer to a target substrate. The growth rate of h-BN film at a constant temperature is strongly affected by the concentration of borazine as a precursor and the ambient gas condition such as the ratio of hydrogen and nitrogen. h-BN films with different thicknesses can be achieved by controlling the growth time or tuning the growth conditions. Transmission electron microscope characterization reveals that these h-BN films are polycrystalline, and the c-axis of the crystallites points to different directions. The stoichiometry ratio of boron and nitrogen is close to 1:1, obtained by electron energy loss spectroscopy. The dielectric constant of h-BN film obtained by parallel capacitance measurements (25 μm(2) large areas) is 2-4. These CVD-grown h-BN films were integrated as a dielectric layer in top-gated CVD graphene devices, and the mobility of the CVD graphene device (in the few thousands cm(2)/(V·s) range) remains the same before and after device integration.

  6. A reliable and controllable graphene doping method compatible with current CMOS technology and the demonstration of its device applications

    Science.gov (United States)

    Kim, Seonyeong; Shin, Somyeong; Kim, Taekwang; Du, Hyewon; Song, Minho; Kim, Ki Soo; Cho, Seungmin; Lee, Sang Wook; Seo, Sunae

    2017-04-01

    The modulation of charge carrier concentration allows us to tune the Fermi level (E F) of graphene thanks to the low electronic density of states near the E F. The introduced metal oxide thin films as well as the modified transfer process can elaborately maneuver the amounts of charge carrier concentration in graphene. The self-encapsulation provides a solution to overcome the stability issues of metal oxide hole dopants. We have manipulated systematic graphene p-n junction structures for electronic or photonic application-compatible doping methods with current semiconducting process technology. We have demonstrated the anticipated transport properties on the designed heterojunction devices with non-destructive doping methods. This mitigates the device architecture limitation imposed in previously known doping methods. Furthermore, we employed E F-modulated graphene source/drain (S/D) electrodes in a low dimensional transition metal dichalcogenide field effect transistor (TMDFET). We have succeeded in fulfilling n-type, ambipolar, or p-type field effect transistors (FETs) by moving around only the graphene work function. Besides, the graphene/transition metal dichalcogenide (TMD) junction in either both p- and n-type transistor reveals linear voltage dependence with the enhanced contact resistance. We accomplished the complete conversion of p-/n-channel transistors with S/D tunable electrodes. The E F modulation using metal oxide facilitates graphene to access state-of-the-art complimentary-metal-oxide-semiconductor (CMOS) technology.

  7. Hall devices based on transfer print of CVD graphene onto 75 μm-thick PVC film via lamination

    Science.gov (United States)

    Inkaya, Ugur; Oral, Ahmet

    Having high mobility even for low density of charge carriers and large tensile strength, graphene is a favorable material for the fabrication of flexible Hall sensors. Laminating graphene obtained on 20 μm-thick Cu foil via atmospheric-pressure CVD with 75 μm-thick PVC film, we developed a simple and low-cost scheme for manufacturing graphene-based flexible Hall devices, without resorting to metallization techniques such as evaporation or sputtering. Instead of these techniques, electrical contacts are provided by the pieces of copper foils preserved during the chemical etching with an aqueous solution of ferric chloride. By using this scheme, we manufactured 95 μm-thick flexible Hall sensors with resistances and Hall coefficients of the order of 1 k Ω and 100 Ω/T. Moreover, we made Hall devices by iterating our manufacture scheme multiple times, thereby forming few- or multi-layer graphene and hence we were able to both observe the dependence of the characteristics of the Hall sensors upon the number of graphene layers and characterize the resulting graphene structures. The fabrication and the characterization of the 95 μm-thick flexible Hall sensors, and the characterization of the multi-layer graphene will be presented.

  8. Direct growth of graphene-dielectric bi-layer structure on device substrates from Si-based polymer

    Science.gov (United States)

    Seo, Hong-Kyu; Kim, Kyunghun; Min, Sung-Yong; Lee, Yeongjun; Eon Park, Chan; Raj, Rishi; Lee, Tae-Woo

    2017-06-01

    To facilitate the utilization of graphene films in conventional semiconducting devices (e.g. transistors and memories) which includes an insulating layer such as gate dielectric, facile synthesis of bi-layers composed of a graphene film and an insulating layer by one-step thermal conversion will be very important. We demonstrate a simple, inexpensive, scalable and patternable process to synthesize graphene-dielectric bi-layer films from solution-processed polydimethylsiloxane (PDMS) under a Ni capping layer. This method fabricates graphene-dielectric bi-layer structure simultaneously directly on substrate by thermal conversion of PDMS without using additional graphene transfer and patterning process or formation of an expensive dielectric layer, which makes the device fabrication process much easier. The graphene-dielectric bi-layer on a conducting substrate was used in bottom-contact pentacene field-effect transistors that showed ohmic contact and small hysteresis. Our new method will provide a way to fabricate flexible electronic devices simply and inexpensively.

  9. Fabrication of hybrid molecular devices using multi-layer graphene break junctions.

    Science.gov (United States)

    Island, J O; Holovchenko, A; Koole, M; Alkemade, P F A; Menelaou, M; Aliaga-Alcalde, N; Burzurí, E; van der Zant, H S J

    2014-11-26

    We report on the fabrication of hybrid molecular devices employing multi-layer graphene (MLG) flakes which are patterned with a constriction using a helium ion microscope or an oxygen plasma etch. The patterning step allows for the localization of a few-nanometer gap, created by electroburning, that can host single molecules or molecular ensembles. By controlling the width of the sculpted constriction, we regulate the critical power at which the electroburning process begins. We estimate the flake temperature given the critical power and find that at low powers it is possible to electroburn MLG with superconducting contacts in close proximity. Finally, we demonstrate the fabrication of hybrid devices with superconducting contacts and anthracene-functionalized copper curcuminoid molecules. This method is extendable to spintronic devices with ferromagnetic contacts and a first step towards molecular integrated circuits.

  10. Synthesis of graphene and related two-dimensional materials for bioelectronics devices.

    Science.gov (United States)

    Zhang, Tao; Liu, Jilun; Wang, Cheng; Leng, Xuanye; Xiao, Yao; Fu, Lei

    2017-03-15

    In recent years, graphene and related two-dimensional (2D) materials have emerged as exotic materials in nearly every fields of fundamental science and applied engineering. The latest progress has shown that these 2D materials could have a profound impact on bioelectronics devices. For the construction of these bioelectronics devices, these 2D materials were generally synthesized by the processes of exfoliation and chemical vapor deposition. In particular, the macrostructures of these 2D materials have also been realized by these two processes, which have shown great potentials in the self-supported and special-purpose biosensors. Due to the high specific surface area, subtle electron properties, abundant surface atoms of these 2D materials, the as-constructed bioelectronics devices have exhibited enhanced performance in the sensing of small biomolecules, heavy metals, pH, protein and DNA. The aim of this review article is to provide a comprehensive scientific progress in the synthesis of 2D materials for the construction of five typical bioelectronics devices (electrochemical biosensors, FET-based biosensors, piezoelectric devices, electrochemiluminescence devices and supercapacitors) and to overview the present status and future perspective of the applications of these bioelectronics devices based on 2D materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Integration of graphene sensor with electrochromic device on modulus-gradient polymer for instantaneous strain visualization

    Science.gov (United States)

    Yang, Tingting; Zhong, Yujia; Tao, Dashuai; Li, Xinming; Zang, Xiaobei; Lin, Shuyuan; Jiang, Xin; Li, Zhihong; Zhu, Hongwei

    2017-09-01

    In nature, some animals change their deceptive coloration for camouflage, temperature preservation or communication. This astonishing function has inspired scientists to replicate the color changing abilities of animals with artificial skin. Recently, some studies have focused on the smart materials and devices with reversible color changing or light-emitting properties for instantaneous strain visualization. However, most of these works only show eye-detectable appearance change when subjected to large mechanical deformation (100%-500% strain), and conspicuous color change at small strain remains rarely explored. In the present study, we developed a user-interactive electronic skin with human-readable optical output by assembling a highly sensitive resistive strain sensor with a stretchable organic electrochromic device (ECD) together. We explored the substrate effect on the electromechanical behavior of graphene and designed a strategy of modulus-gradient structure to employ graphene as both the highly sensitive strain sensing element and the insensitive stretchable electrode of the ECD layer. Subtle strain (0-10%) was enough to evoke an obvious color change, and the RGB value of the color quantified the magnitude of the applied strain. Such high sensitivity to smaller strains (0-10%) with color changing capability will potentially enhance the function of wearable devices, robots and prosthetics in the future.

  12. Graphene and Carbon Quantum Dot-Based Materials in Photovoltaic Devices: From Synthesis to Applications

    Directory of Open Access Journals (Sweden)

    Sofia Paulo

    2016-08-01

    Full Text Available Graphene and carbon quantum dots have extraordinary optical and electrical features because of their quantum confinement properties. This makes them attractive materials for applications in photovoltaic devices (PV. Their versatility has led to their being used as light harvesting materials or selective contacts, either for holes or electrons, in silicon quantum dot, polymer or dye-sensitized solar cells. In this review, we summarize the most common uses of both types of semiconducting materials and highlight the significant advances made in recent years due to the influence that synthetic materials have on final performance.

  13. Graphene and Carbon Quantum Dot-Based Materials in Photovoltaic Devices: From Synthesis to Applications.

    Science.gov (United States)

    Paulo, Sofia; Palomares, Emilio; Martinez-Ferrero, Eugenia

    2016-08-25

    Graphene and carbon quantum dots have extraordinary optical and electrical features because of their quantum confinement properties. This makes them attractive materials for applications in photovoltaic devices (PV). Their versatility has led to their being used as light harvesting materials or selective contacts, either for holes or electrons, in silicon quantum dot, polymer or dye-sensitized solar cells. In this review, we summarize the most common uses of both types of semiconducting materials and highlight the significant advances made in recent years due to the influence that synthetic materials have on final performance.

  14. Graphene and Carbon Quantum Dot-Based Materials in Photovoltaic Devices: From Synthesis to Applications

    Science.gov (United States)

    Paulo, Sofia; Palomares, Emilio; Martinez-Ferrero, Eugenia

    2016-01-01

    Graphene and carbon quantum dots have extraordinary optical and electrical features because of their quantum confinement properties. This makes them attractive materials for applications in photovoltaic devices (PV). Their versatility has led to their being used as light harvesting materials or selective contacts, either for holes or electrons, in silicon quantum dot, polymer or dye-sensitized solar cells. In this review, we summarize the most common uses of both types of semiconducting materials and highlight the significant advances made in recent years due to the influence that synthetic materials have on final performance. PMID:28335285

  15. Effect of chemically converted graphene as an electrode interfacial modifier on device-performances of inverted organic photovoltaic cells

    Science.gov (United States)

    Kang, Tae-Woon; Noh, Yong-Jin; Yun, Jin-Mun; Yang, Si-Young; Yang, Yong-Eon; Lee, Hae-Seong; Na, Seok-In

    2015-06-01

    This study examined the effects of chemically converted graphene (CCG) materials as a metal electrode interfacial modifier on device-performances of inverted organic photovoltaic cells (OPVs). As CCG materials for interfacial layers, a conventional graphene oxide (GO) and reduced graphene oxide (rGO) were prepared, and their functions on OPV-performances were compared. The inverted OPVs with CCG materials showed all improved cell-efficiencies compared with the OPVs with no metal/bulk-heterojunction (BHJ) interlayers. In particular, the inverted OPVs with reduction form of GO showed better device-performances than those with GO and better device-stability than poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)-based inverted solar cells, showing that the rGO can be more desirable as a metal/BHJ interfacial material for fabricating inverted-configuration OPVs.

  16. Graphene Spintronics

    OpenAIRE

    Han, Wei; Kawakami, Roland K.; Gmitra, Martin; Fabian, Jaroslav

    2015-01-01

    The isolation of graphene has triggered an avalanche of studies into the spin-dependent physical properties of this material and of graphene-based spintronic devices. Here, we review the experimental and theoretical state-of-art concerning spin injection and transport, defect-induced magnetic moments, spin–orbit coupling and spin relaxation in graphene. Future research in graphene spintronics will need to address the development of applications such as spin transistors and spin logic devices,...

  17. Toward practical gas sensing with highly reduced graphene oxide: a new signal processing method to circumvent run-to-run and device-to-device variations.

    Science.gov (United States)

    Lu, Ganhua; Park, Sungjin; Yu, Kehan; Ruoff, Rodney S; Ocola, Leonidas E; Rosenmann, Daniel; Chen, Junhong

    2011-02-22

    Graphene is worth evaluating for chemical sensing and biosensing due to its outstanding physical and chemical properties. We first report on the fabrication and characterization of gas sensors using a back-gated field-effect transistor platform with chemically reduced graphene oxide (R-GO) as the conducting channel. These sensors exhibited a 360% increase in response when exposed to 100 ppm NO(2) in air, compared with thermally reduced graphene oxide sensors we reported earlier. We then present a new method of signal processing/data interpretation that addresses (i) sensing devices with long recovery periods (such as required for sensing gases with these R-GO sensors) as well as (ii) device-to-device variations. A theoretical analysis is used to illuminate the importance of using the new signal processing method when the sensing device suffers from slow recovery and non-negligible contact resistance. We suggest that the work reported here (including the sensor signal processing method and the inherent simplicity of device fabrication) is a significant step toward the real-world application of graphene-based chemical sensors.

  18. Toward practical gas sensing with highly reduced graphene oxide: a new signal processing method to circumvent run-to-run and device-to-device variations

    Energy Technology Data Exchange (ETDEWEB)

    Lu, G.; Park, S.; Ruoff, R. S.; Ocola, L. E.; Chen, J. (Center for Nanoscale Materials); (Univ. of Wisconsin); (Univ. of Texas)

    2011-01-01

    Graphene is worth evaluating for chemical sensing and biosensing due to its outstanding physical and chemical properties. We first report on the fabrication and characterization of gas sensors using a back-gated field-effect transistor platform with chemically reduced graphene oxide (R-GO) as the conducting channel. These sensors exhibited a 360% increase in response when exposed to 100 ppm NO{sub 2} in air, compared with thermally reduced graphene oxide sensors we reported earlier. We then present a new method of signal processing/data interpretation that addresses (i) sensing devices with long recovery periods (such as required for sensing gases with these R-GO sensors) as well as (ii) device-to-device variations. A theoretical analysis is used to illuminate the importance of using the new signal processing method when the sensing device suffers from slow recovery and non-negligible contact resistance. We suggest that the work reported here (including the sensor signal processing method and the inherent simplicity of device fabrication) is a significant step toward the real-world application of graphene-based chemical sensors.

  19. Toward practical gas sensing with highly reduced graphene oxide : a new signal processing method to circumvent run-to-run and device-to-device variations.

    Energy Technology Data Exchange (ETDEWEB)

    Ocola, L. E.; Park, S.; Yu, K.; Ruoff, R. S.; Ocola, L. E.; Rosenmann, D.; Chen, J.; Univ. of Wisconsin at Milwaukee; Univ. of Texas at Austin

    2011-01-04

    Graphene is worth evaluating for chemical sensing and biosensing due to its outstanding physical and chemical properties. We first report on the fabrication and characterization of gas sensors using a back-gated field-effect transistor platform with chemically reduced graphene oxide (R-GO) as the conducting channel. These sensors exhibited a 360% increase in response when exposed to 100 ppm NO{sub 2} in air, compared with thermally reduced graphene oxide sensors we reported earlier. We then present a new method of signal processing/data interpretation that addresses (i) sensing devices with long recovery periods (such as required for sensing gases with these R-GO sensors) as well as (ii) device-to-device variations. A theoretical analysis is used to illuminate the importance of using the new signal processing method when the sensing device suffers from slow recovery and non-negligible contact resistance. We suggest that the work reported here (including the sensor signal processing method and the inherent simplicity of device fabrication) is a significant step toward the real-world application of graphene-based chemical sensors.

  20. Improving the efficiency of a poly(3-hexylthiophene)-CuInS2 photovoltaic device by incorporating graphene nanopowder

    Science.gov (United States)

    Kumari, Anita; Singh, Inderpreet; Prasad, Neetu; Dixit, Shiv Kumar; Rao, Peta Koteswara; Bhatnagar, Pramod Kumar; Mathur, Parmatma Chandra; Bhatia, Charanjit Singh; Nagpal, Swati

    2014-01-01

    In the present work, the effect of incorporation of graphene on the poly(3-hexylthiophene) (P3HT):CuInS2 quantum dot (CIS QD)-based solar cell has been studied. For this purpose, the concentration of graphene is varied from 0 to 0.01% w/w in P3HT-CIS (1:0.5) film. It is found that graphene does not deteriorate the absorption of the composite film. It assists in dissociating the photogenerated excitons (both in P3HT and QDs) owing to its two-dimensional structure and high electron affinity as is evident by photoluminescence (PL) quenching. At 0.01% w/w concentration of graphene about ˜95% of PL is quenched. The electrical characteristics show that the incorporation of graphene enhances the efficiency of the device by establishing interconnected conducting pathways in the volume of polymer matrix. The maximum efficiency is observed to be 1.5% at 0.005% w/w content of graphene. However, at higher concentration, i.e., 0.01% w/w, the device starts deteriorating.

  1. Graphene hot-electron light bulb: incandescence from hBN-encapsulated graphene in air

    Science.gov (United States)

    Son, Seok-Kyun; Šiškins, Makars; Mullan, Ciaran; Yin, Jun; Kravets, Vasyl G.; Kozikov, Aleksey; Ozdemir, Servet; Alhazmi, Manal; Holwill, Matthew; Watanabe, Kenji; Taniguchi, Takashi; Ghazaryan, Davit; Novoselov, Kostya S.; Fal’ko, Vladimir I.; Mishchenko, Artem

    2018-01-01

    The excellent electronic and mechanical properties of graphene allow it to sustain very large currents, enabling its incandescence through Joule heating in suspended devices. Although interesting scientifically and promising technologically, this process is unattainable in ambient environment, because graphene quickly oxidises at high temperatures. Here, we take the performance of graphene-based incandescent devices to the next level by encapsulating graphene with hexagonal boron nitride (hBN). Remarkably, we found that the hBN encapsulation provides an excellent protection for hot graphene filaments even at temperatures well above 2000 K. Unrivalled oxidation resistance of hBN combined with atomically clean graphene/hBN interface allows for a stable light emission from our devices in atmosphere for many hours of continuous operation. Furthermore, when confined in a simple photonic cavity, the thermal emission spectrum is modified by a cavity mode, shifting the emission to the visible range spectrum. We believe our results demonstrate that hBN/graphene heterostructures can be used to conveniently explore the technologically important high-temperature regime and to pave the way for future optoelectronic applications of graphene-based systems.

  2. Noninvasive Scanning Raman Spectroscopy and Tomography for Graphene Membrane Characterization.

    Science.gov (United States)

    Wagner, Stefan; Dieing, Thomas; Centeno, Alba; Zurutuza, Amaia; Smith, Anderson D; Östling, Mikael; Kataria, Satender; Lemme, Max C

    2017-03-08

    Graphene has extraordinary mechanical and electronic properties, making it a promising material for membrane-based nanoelectromechanical systems (NEMS). Here, chemical-vapor-deposited graphene is transferred onto target substrates to suspend it over cavities and trenches for pressure-sensor applications. The development of such devices requires suitable metrology methods, i.e., large-scale characterization techniques, to confirm and analyze successful graphene transfer with intact suspended graphene membranes. We propose fast and noninvasive Raman spectroscopy mapping to distinguish between free-standing and substrate-supported graphene, utilizing the different strain and doping levels. The technique is expanded to combine two-dimensional area scans with cross-sectional Raman spectroscopy, resulting in three-dimensional Raman tomography of membrane-based graphene NEMS. The potential of Raman tomography for in-line monitoring is further demonstrated with a methodology for automated data analysis to spatially resolve the material composition in micrometer-scale integrated devices, including free-standing and substrate-supported graphene. Raman tomography may be applied to devices composed of other two-dimensional materials as well as silicon micro- and nanoelectromechanical systems.

  3. Hexagonal boron nitride: a promising substrate for graphene with high heat dissipation

    Science.gov (United States)

    Zhang, Zhongwei; Hu, Shiqian; Chen, Jie; Li, Baowen

    2017-06-01

    Supported graphene on a standard SiO2 substrate exhibits unsatisfactory heat dissipation performance that is far inferior to the intrinsic ultrahigh thermal conductivity of a suspended sample. A suitable substrate for enhancing thermal transport in supported graphene is highly desirable for the development of graphene devices for thermal management. By using molecular dynamics simulations, here we demonstrate that bulk hexagonal boron nitride (h-BN) is a more appealing substrate to achieve high performance heat dissipation in supported graphene. Notable length dependence and high thermal conductivity are observed in h-BN-supported single-layer graphene (SLG), suggesting that the thermal transport characteristics are close to that of suspended SLG. At room temperature, the thermal conductivity of h-BN-supported SLG is as high as 1347.3 ± 20.5 Wm-1 K-1, which is about 77% of that for the suspended case, and is more than twice that of the SiO2-supported SLG. Furthermore, we find that the smooth and atomically flat h-BN substrate gives rise to a regular and weak stress distribution in graphene, resulting in a less affected phonon relaxation time and dominant phonon mean free path. We also find that stacking and rotation significantly impacts the thermal transport in h-BN-supported graphene. Our study provides valuable insights towards the design of graphene devices on realistic substrate for high performance heat dissipation applications.

  4. External amplitude and frequency modulation of a terahertz quantum cascade laser using metamaterial/graphene devices.

    Science.gov (United States)

    Kindness, S J; Jessop, D S; Wei, B; Wallis, R; Kamboj, V S; Xiao, L; Ren, Y; Braeuninger-Weimer, P; Aria, A I; Hofmann, S; Beere, H E; Ritchie, D A; Degl'Innocenti, R

    2017-08-09

    Active control of the amplitude and frequency of terahertz sources is an essential prerequisite for exploiting a myriad of terahertz applications in imaging, spectroscopy, and communications. Here we present a optoelectronic, external modulation technique applied to a terahertz quantum cascade laser which holds the promise of addressing a number of important challenges in this research area. A hybrid metamaterial/graphene device is implemented into an external cavity set-up allowing for optoelectronic tuning of feedback into a quantum cascade laser. We demonstrate powerful, all-electronic, control over the amplitude and frequency of the laser output. Full laser switching is performed by electrostatic gating of the metamaterial/graphene device, demonstrating a modulation depth of 100%. External control of the emission spectrum is also achieved, highlighting the flexibility of this feedback method. By taking advantage of the frequency dispersive reflectivity of the metamaterial array, different modes of the QCL output are selectively suppressed using lithographic tuning and single mode operation of the multi-mode laser is enforced. Side mode suppression is electrically modulated from ~6 dB to ~21 dB, demonstrating active, optoelectronic modulation of the laser frequency content between multi-mode and single mode operation.

  5. Graphene Aerogel Templated Fabrication of Phase Change Microspheres as Thermal Buffers in Microelectronic Devices.

    Science.gov (United States)

    Wang, Xuchun; Li, Guangyong; Hong, Guo; Guo, Qiang; Zhang, Xuetong

    2017-11-16

    Phase change materials, changing from solid to liquid and vice versa, are capable of storing and releasing a large amount of thermal energy during the phase change, and thus hold promise for numerous applications including thermal protection of electronic devices. Shaping these materials into microspheres for additional fascinating properties is efficient but challenging. In this regard, a novel phase change microsphere with the design for electrical-regulation and thermal storage/release properties was fabricated via the combination of monodispersed graphene aerogel microsphere (GAM) and phase change paraffin. A programmable method, i.e., coupling ink jetting-liquid marbling-supercritical drying (ILS) techniques, was demonstrated to produce monodispersed graphene aerogel microspheres (GAMs) with precise size-control. The resulting GAMs showed ultralow density, low electrical resistance, and high specific surface area with only ca. 5% diameter variation coefficient, and exhibited promising performance in smart switches. The phase change microspheres were obtained by capillary filling of phase change paraffin inside the GAMs and exhibited excellent properties, such as low electrical resistance, high latent heat, well sphericity, and thermal buffering. Assembling the phase change microsphere into the microcircuit, we found that this tiny device was quite sensitive and could respond to heat as low as 0.027 J.

  6. Synthesis of Graphene Nanoribbons by Ambient-Pressure Chemical Vapor Deposition and Device Integration.

    Science.gov (United States)

    Chen, Zongping; Zhang, Wen; Palma, Carlos-Andres; Lodi Rizzini, Alberto; Liu, Bilu; Abbas, Ahmad; Richter, Nils; Martini, Leonardo; Wang, Xiao-Ye; Cavani, Nicola; Lu, Hao; Mishra, Neeraj; Coletti, Camilla; Berger, Reinhard; Klappenberger, Florian; Kläui, Mathias; Candini, Andrea; Affronte, Marco; Zhou, Chongwu; De Renzi, Valentina; Del Pennino, Umberto; Barth, Johannes V; Räder, Hans Joachim; Narita, Akimitsu; Feng, Xinliang; Müllen, Klaus

    2016-11-30

    Graphene nanoribbons (GNRs), quasi-one-dimensional graphene strips, have shown great potential for nanoscale electronics, optoelectronics, and photonics. Atomically precise GNRs can be "bottom-up" synthesized by surface-assisted assembly of molecular building blocks under ultra-high-vacuum conditions. However, large-scale and efficient synthesis of such GNRs at low cost remains a significant challenge. Here we report an efficient "bottom-up" chemical vapor deposition (CVD) process for inexpensive and high-throughput growth of structurally defined GNRs with varying structures under ambient-pressure conditions. The high quality of our CVD-grown GNRs is validated by a combination of different spectroscopic and microscopic characterizations. Facile, large-area transfer of GNRs onto insulating substrates and subsequent device fabrication demonstrate their promising potential as semiconducting materials, exhibiting high current on/off ratios up to 6000 in field-effect transistor devices. This value is 3 orders of magnitude higher than values reported so far for other thin-film transistors of structurally defined GNRs. Notably, on-surface mass spectrometry analyses of polymer precursors provide unprecedented evidence for the chemical structures of the resulting GNRs, especially the heteroatom doping and heterojunctions. These results pave the way toward the scalable and controllable growth of GNRs for future applications.

  7. Electron-electron interaction, weak localization and spin valve effect in vertical-transport graphene devices

    Energy Technology Data Exchange (ETDEWEB)

    Long, Mingsheng; Gong, Youpin; Wei, Xiangfei; Zhu, Chao; Xu, Jianbao; Liu, Ping; Guo, Yufen; Li, Weiwei; Liu, Liwei, E-mail: lwliu2007@sinano.ac.cn [Key Laboratory of Nanodevices and Applications-CAS and Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Liu, Guangtong [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-04-14

    We fabricated a vertical structure device, in which graphene is sandwiched between two asymmetric ferromagnetic electrodes. The measurements of electron and spin transport were performed across the combined channels containing the vertical and horizontal components. The presence of electron-electron interaction (EEI) was found not only at low temperatures but also at moderate temperatures up to ∼120 K, and EEI dominates over weak localization (WL) with and without applying magnetic fields perpendicular to the sample plane. Moreover, spin valve effect was observed when magnetic filed is swept at the direction parallel to the sample surface. We attribute the EEI and WL surviving at a relatively high temperature to the effective suppress of phonon scattering in the vertical device structure. The findings open a way for studying quantum correlation at relatively high temperature.

  8. A new type of graphene oxide and its application in laser devices

    Science.gov (United States)

    Bi, Jijun; Wang, Zhaozheng; Cui, Yiping; Chang, Jianhua; Lu, Changgui

    2017-04-01

    Laser materials are very important in development of efficient laser devices. In this paper, a new type of graphene oxide (GO) was synthesized for developing pulse laser devices. The GO was characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared, elemental analysis. Experimental data show that percentage of oxygen (46.85 wt%) of the GO is higher than that (27.97 wt%) of GO which was prepared by a Hummers' method. Main oxygen-containing groups at the GO are hydroxyl groups. The GO could be potential optoelectronic materials, because the increase of oxygen percentage would improve electrochemical pseudocapacitor. Optoelectronic properties of the GO were demonstrated by a Q-switching laser which has an optical-optical conversion efficiency of 11.3%. The GO shows very high stability under 6 W pump power over 1 h. Experimental results suggested that this kind of GO would be potential pulse laser materials.

  9. Gold nanoparticle-decorated graphene oxides for plasmonic-enhanced polymer photovoltaic devices

    Science.gov (United States)

    Chuang, Ming-Kai; Lin, Shih-Wei; Chen, Fang-Chung; Chu, Chih-Wei; Hsu, Chain-Shu

    2014-01-01

    In this work, gold nanoparticle/graphene oxide (AuNP/GO) nanocomposites are synthesized and used as anodic buffer layers in organic photovoltaic devices (OPVs). The application of thiol-terminated polyethylene glycol as a capping agent prevents the aggregation of AuNPs on the GO surface and further improves the solubility and stability of these nanomaterials in solutions. When AuNP/GO nanomaterials served as the buffer layers, they introduced localized surface plasmon resonance (LSPR) in the OPVs, leading to noticeable enhancements in the photocurrent and the efficiencies of the OPVs. We attribute the primary origin of the improvement in device performance to local field enhancement induced by the LSPR. We anticipate that this study might open up new avenues for constructing plasmon-enhancing layers on the nanoscale to improve the performance of solar cells.In this work, gold nanoparticle/graphene oxide (AuNP/GO) nanocomposites are synthesized and used as anodic buffer layers in organic photovoltaic devices (OPVs). The application of thiol-terminated polyethylene glycol as a capping agent prevents the aggregation of AuNPs on the GO surface and further improves the solubility and stability of these nanomaterials in solutions. When AuNP/GO nanomaterials served as the buffer layers, they introduced localized surface plasmon resonance (LSPR) in the OPVs, leading to noticeable enhancements in the photocurrent and the efficiencies of the OPVs. We attribute the primary origin of the improvement in device performance to local field enhancement induced by the LSPR. We anticipate that this study might open up new avenues for constructing plasmon-enhancing layers on the nanoscale to improve the performance of solar cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05077g

  10. Fabrication of poly(methyl methacrylate)-MoS{sub 2}/graphene heterostructure for memory device application

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, Sachin M.; Tanemura, Masaki [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Center for Fostering Young and Innovative Researchers, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2014-12-07

    Combination of two dimensional graphene and semi-conducting molybdenum disulfide (MoS{sub 2}) is of great interest for various electronic device applications. Here, we demonstrate fabrication of a hybridized structure with the chemical vapor deposited graphene and MoS{sub 2} crystals to configure a memory device. Elongated hexagonal and rhombus shaped MoS{sub 2} crystals are synthesized by sulfurization of thermally evaporated molybdenum oxide (MoO{sub 3}) thin film. Scanning transmission electron microscope studies reveal atomic level structure of the synthesized high quality MoS{sub 2} crystals. In the prospect of a memory device fabrication, poly(methyl methacrylate) (PMMA) is used as an insulating dielectric material as well as a supporting layer to transfer the MoS{sub 2} crystals. In the fabricated device, PMMA-MoS{sub 2} and graphene layers act as the functional and electrode materials, respectively. Distinctive bistable electrical switching and nonvolatile rewritable memory effect is observed in the fabricated PMMA-MoS{sub 2}/graphene heterostructure. The developed material system and demonstrated memory device fabrication can be significant for next generation data storage applications.

  11. Ultrahigh-throughput exfoliation of graphite into pristine 'single-layer' graphene using microwaves and molecularly engineered ionic liquids.

    Science.gov (United States)

    Matsumoto, Michio; Saito, Yusuke; Park, Chiyoung; Fukushima, Takanori; Aida, Takuzo

    2015-09-01

    Graphene has shown much promise as an organic electronic material but, despite recent achievements in the production of few-layer graphene, the quantitative exfoliation of graphite into pristine single-layer graphene has remained one of the main challenges in developing practical devices. Recently, reduced graphene oxide has been recognized as a non-feasible alternative to graphene owing to variable defect types and levels, and attention is turning towards reliable methods for the high-throughput exfoliation of graphite. Here we report that microwave irradiation of graphite suspended in molecularly engineered oligomeric ionic liquids allows for ultrahigh-efficiency exfoliation (93% yield) with a high selectivity (95%) towards 'single-layer' graphene (that is, with thicknesses graphene sheets show negligible structural deterioration. They are also readily redispersible in oligomeric ionic liquids up to ~100 mg ml(-1), and form physical gels in which an anisotropic orientation of graphene sheets, once induced by a magnetic field, is maintained.

  12. Graphene nanoribbon based negative resistance device for ultra-low voltage digital logic applications

    Science.gov (United States)

    Khatami, Yasin; Kang, Jiahao; Banerjee, Kaustav

    2013-01-01

    Negative resistance devices offer opportunities in design of compact and fast analog and digital circuits. However, their implementation in logic applications has been limited due to their small ON current to OFF current ratios (peak to valley ratio). In this paper, a design for a 2-port negative resistance device based on arm-chair graphene nanoribbon is presented. The proposed structure takes advantage of electrostatic doping, and offers high ON current (˜700 μA/μm) as well as ON current to OFF current ratio of more than 105. The effects of several design parameters such as doping profile, gate workfunction, bandgap, and hetero-interface characteristics are investigated to improve the performance of the proposed devices. The proposed device offers high flexibility in terms of the design and optimization, and is suitable for digital logic applications. A complementary logic is developed based on the proposed device, which can be operated down to 200 mV of supply voltage. The complementary logic is used in design of an ultra-compact bi-stable switching static memory cell. Due to its compactness and high drive current, the proposed memory cell can outperform the conventional static random access memory cells in terms of switching speed and power consumption.

  13. Fabrication of a Graphene/ZnO based p-n junction device and its ultraviolet photoresponse properties

    Science.gov (United States)

    Kwon, Young-Tae; Kang, Sung-Oong; Cheon, Ji-Ae; Song, Yoseb; Lee, Jong-Jin; Choa, Yong-Ho

    2017-09-01

    Graphene with a zero-bandgap energy is easily doped using a chemical dopant, and a shift upwards or downwards in the Fermi level is generated. Moreover, the integration of inorganic material into the doped graphene changes the physical and chemical properties of the material. For this purpose, we successfully fabricated a p-n junction device by depositing an n-typed ZnO layer on p-doped graphene and studied the ultraviolet (UV) photoresponse properties under a photocurrent (UV light on) and a dark current (UV light off). Two devices, lateral and vertical, were developed by alternating the thickness of the ZnO layer, and the photoresponse mechanisms were described on the basis of the contact potential difference.

  14. On the Structural and Chemical Characteristics of Co/Al2O3/graphene Interfaces for Graphene Spintronic Devices.

    Science.gov (United States)

    Canto, Bárbara; Gouvea, Cristol P; Archanjo, Bráulio S; Schmidt, João E; Baptista, Daniel L

    2015-09-23

    We report a detailed investigation of the structural and chemical characteristics of thin evaporated Al2O3 tunnel barriers of variable thickness grown onto single-layer graphene sheets. Advanced electron microscopy and spectrum-imaging techniques were used to investigate the Co/Al2O3/graphene/SiO2 interfaces. Direct observation of pinhole contacts was achieved using FIB cross-sectional lamellas. Spatially resolved EDX spectrum profiles confirmed the presence of direct point contacts between the Co layer and the graphene. The high surface diffusion properties of graphene led to cluster-like Al2O3 film growth, limiting the minimal possible thickness for complete barrier coverage onto graphene surfaces using standard Al evaporation methods. The results indicate a minimum thickness of nominally 3 nm Al2O3, resulting in a 0.6 nm rms rough film with a maximum thickness reaching 5 nm.

  15. Large-scale and patternable graphene: direct transformation of amorphous carbon film into graphene/graphite on insulators via Cu mediation engineering and its application to all-carbon based devices.

    Science.gov (United States)

    Chen, Yu-Ze; Medina, Henry; Lin, Hung-Chiao; Tsai, Hung-Wei; Su, Teng-Yu; Chueh, Yu-Lun

    2015-02-07

    Chemical vapour deposition of graphene was the preferred way to synthesize graphene for multiple applications. However, several problems related to transfer processes, such as wrinkles, cleanness and scratches, have limited its application at the industrial scale. Intense research was triggered into developing alternative synthesis methods to directly deposit graphene on insulators at low cost with high uniformity and large area. In this work, we demonstrate a new concept to directly achieve growth of graphene on non-metal substrates. By exposing an amorphous carbon (a-C) film in Cu gaseous molecules after annealing at 850 °C, the carbon (a-C) film surprisingly undergoes a noticeable transformation to crystalline graphene. Furthermore, the thickness of graphene could be controlled, depending on the thickness of the pre-deposited a-C film. The transformation mechanism was investigated and explained in detail. This approach enables development of a one-step process to fabricate electrical devices made of all carbon material, highlighting the uniqueness of the novel approach for developing graphene electronic devices. Interestingly, the carbon electrodes made directly on the graphene layer by our approach offer a good ohmic contact compared with the Schottky barriers usually observed on graphene devices using metals as electrodes.

  16. A light-stimulated synaptic device based on graphene hybrid phototransistor

    Science.gov (United States)

    Qin, Shuchao; Wang, Fengqiu; Liu, Yujie; Wan, Qing; Wang, Xinran; Xu, Yongbing; Shi, Yi; Wang, Xiaomu; Zhang, Rong

    2017-09-01

    Neuromorphic chips refer to an unconventional computing architecture that is modelled on biological brains. They are increasingly employed for processing sensory data for machine vision, context cognition, and decision making. Despite rapid advances, neuromorphic computing has remained largely an electronic technology, making it a challenge to access the superior computing features provided by photons, or to directly process vision data that has increasing importance to artificial intelligence. Here we report a novel light-stimulated synaptic device based on a graphene-carbon nanotube hybrid phototransistor. Significantly, the device can respond to optical stimuli in a highly neuron-like fashion and exhibits flexible tuning of both short- and long-term plasticity. These features combined with the spatiotemporal processability make our device a capable counterpart to today’s electrically-driven artificial synapses, with superior reconfigurable capabilities. In addition, our device allows for generic optical spike processing, which provides a foundation for more sophisticated computing. The silicon-compatible, multifunctional photosensitive synapse opens up a new opportunity for neural networks enabled by photonics and extends current neuromorphic systems in terms of system complexities and functionalities.

  17. Non-aqueous energy storage devices using graphene nanosheets synthesized by green route

    Directory of Open Access Journals (Sweden)

    Dattakumar Mhamane

    2013-04-01

    Full Text Available In this paper we report the use of triethylene glycol reduced graphene oxide (TRGO as an electrode material for non-aqueous energy storage devices such as supercapacitors and Li-ion batteries. TRGO based non–aqueous symmetric supercapacitor is constructed and shown to deliver maximum energy and power densities of 60.4 Wh kg–1 and 0.15 kW kg–1, respectively. More importantly, symmetric supercapacitor shows an extraordinary cycleability (5000 cycles with over 80% of capacitance retention. In addition, Li-storage properties of TRGO are also evaluated in half-cell configuration (Li/TRGO and shown to deliver a reversible capacity of ∼705 mAh g–1 with good cycleability at constant current density of 37 mA g–1. This result clearly suggests that green-synthesized graphene can be effectively used as a prospective electrode material for non-aqueous energy storage systems such as Li-ion batteries and supercapacitors.

  18. Large-Scale Self-Consistent Simulation of Multilayered Graphene Devices

    Science.gov (United States)

    Areshkin, Denis; Nikolić, Branislav K.

    2008-03-01

    We use the Density Functional Theory-based Self-Consistent Environment-Dependent Tight-Binding (SC-EDTB) and self-consistent Non-equilibrium Green function formalism (NEGF) to test the all-graphene multilayer circuit concept. The key element of multi-layered circuits, which are expected to become available through press-print technology, is the heavily perforated graphene layer. The latter serves as an electrical insulator due to its relatively large band gap, and poor ballistic coupling to the conductive parts of the circuit. High bias I-V characteristics for various normally-ON and normally-OFF transistor configurations were simulated, and transistor tolerance to manufacturing defects and imperfections was tested. The usage of SC-EDTB-NEGF makes it possible to model quantum transport through realistic devices composed of large number of carbon atoms (˜10000), which are within the reach of presently available processing techniques. Other circuit elements, such as electric interconnects between different layers, wire crossings, and electric interconnects within the same layer are also considered.

  19. Energy consumption analysis of graphene based all spin logic device with voltage controlled magnetic anisotropy

    Directory of Open Access Journals (Sweden)

    Zhizhong Zhang

    2017-05-01

    Full Text Available All spin logic device (ASLD is a promising option to realize the ultra-low power computing systems. However, the low spin transport efficiency and the non-local switching of the detector have become two key challenges of the ASLD. In this paper, we analyze the energy consumption of a graphene based ASLD with the ferromagnetic layer switching assistance by voltage control magnetic anisotropy (VCMA effect. This structure has significant potential towards ultra-low power consumption: the applied voltage can not only shorten switching time of the ferromagnetic layer, but also decreases the critical injection current; the graphene channel enhances greatly the spin transport efficiency. By applying the approximate circuit model, the impact of material configurations, interfaces and geometry can be synthetically studied. An accurate physic model was also developed, based on which, we carry out the micro-magnetic simulations to analyze the magnetization dynamics. Combining these electrical and magnetic investigations, the energy consumption of the proposed ASLD can be estimated. With the optimizing parameters, the energy consumption can be reduced to 2.5 pJ for a logic operation.

  20. Reduced graphene oxide and vertically aligned carbon nanotubes superhydrophilic films for supercapacitors devices

    Energy Technology Data Exchange (ETDEWEB)

    Zanin, H., E-mail: hudsonzanin@gmail.com [Associated Laboratory of Sensors and Materials of the National Institute for Space Research, Av. dos Astronautas 1758, Sao Jose dos Campos CEP 12227-010, SP (Brazil); Departamento de Semicondutores, Instrumentos e Fotônica, Faculdade de Engenharia Elétrica e Computação, Universidade Estadual de Campinas, UNICAMP, Campinas 13083-970 (Brazil); Saito, E., E-mail: esaito135@gmail.com [Associated Laboratory of Sensors and Materials of the National Institute for Space Research, Av. dos Astronautas 1758, Sao Jose dos Campos CEP 12227-010, SP (Brazil); Ceragioli, H.J., E-mail: helderjc@gmail.com [Departamento de Semicondutores, Instrumentos e Fotônica, Faculdade de Engenharia Elétrica e Computação, Universidade Estadual de Campinas, UNICAMP, Campinas 13083-970 (Brazil); Baranauskas, V., E-mail: vitor@dsif.fee.unicamp.br [Departamento de Semicondutores, Instrumentos e Fotônica, Faculdade de Engenharia Elétrica e Computação, Universidade Estadual de Campinas, UNICAMP, Campinas 13083-970 (Brazil); Corat, E.J., E-mail: corat@las.inpe.br [Associated Laboratory of Sensors and Materials of the National Institute for Space Research, Av. dos Astronautas 1758, Sao Jose dos Campos CEP 12227-010, SP (Brazil)

    2014-01-01

    Graphical abstract: - Highlights: • Graphene nanosheets were produced onto wire rods. • RGO and VACNT-O were evaluated and compared as supercapacitor electrode. • RGO and VACNT-O have structural and electrochemical properties quite similars. • The materials present good specific capacitance, energy storage and power delivery. - Abstract: Reduced graphene oxide (RGO) and vertically aligned carbon nanotubes (VACNT) superhydrophilic films were prepared by chemical vapor deposition techniques for electrical energy storage investigations. These electrodes were characterized in terms of their material and electrochemical properties by scanning electron microscopy (SEM), surface wettability, Fourier transform infrared spectroscopy (FTIR), energy dispersive and Raman spectroscopies, cyclic voltammetry (CV) and galvanostatic charge–discharge. We observed several physical structural and electrochemical similarities between these carbon-based materials with particular attention to very good specific capacitance, ultra-high energy storage and fast power delivery. Our results showed that the main difference between specific capacitance values is attributed to pseudocapacitive contribution and high density of multiwall nanotubes tips. In this work we have tested a supercapacitor device using the VACNT electrodes.

  1. The Application of Graphene and Its Derivatives to Energy Conversion, Storage, and Environmental and Biosensing Devices.

    Science.gov (United States)

    Ali Tahir, Asif; Ullah, Habib; Sudhagar, Pitchaimuthu; Asri Mat Teridi, Mohd; Devadoss, Anitha; Sundaram, Senthilarasu

    2016-06-01

    Graphene (GR) and its derivatives are promising materials on the horizon of nanotechnology and material science and have attracted a tremendous amount of research interest in recent years. The unique atom-thick 2D structure with sp(2) hybridization and large specific surface area, high thermal conductivity, superior electron mobility, and chemical stability have made GR and its derivatives extremely attractive components for composite materials for solar energy conversion, energy storage, environmental purification, and biosensor applications. This review gives a brief introduction of GR's unique structure, band structure engineering, physical and chemical properties, and recent energy-related progress of GR-based materials in the fields of energy conversion (e.g., photocatalysis, photoelectrochemical water splitting, CO2 reduction, dye-sensitized and organic solar cells, and photosensitizers in photovoltaic devices) and energy storage (batteries, fuel cells, and supercapacitors). The vast coverage of advancements in environmental applications of GR-based materials for photocatalytic degradation of organic pollutants, gas sensing, and removal of heavy-metal ions is presented. Additionally, the use of graphene composites in the biosensing field is discussed. We conclude the review with remarks on the challenges, prospects, and further development of GR-based materials in the exciting fields of energy, environment, and bioscience. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Graphene photonics for resonator-enhanced electro-optic devices and all-optical interactions

    Science.gov (United States)

    Englund, Dirk R.; Gan, Xuetao

    2017-03-21

    Techniques for coupling light into graphene using a planar photonic crystal having a resonant cavity characterized by a mode volume and a quality factor and at least one graphene layer positioned in proximity to the planar photonic crystal to at least partially overlap with an evanescent field of the resonant cavity. At least one mode of the resonant cavity can couple into the graphene layer via evanescent coupling. The optical properties of the graphene layer can be controlled, and characteristics of the graphene-cavity system can be detected. Coupling light into graphene can include electro-optic modulation of light, photodetection, saturable absorption, bistability, and autocorrelation.

  3. First principles design of divacancy defected graphene nanoribbon based rectifying and negative differential resistance device

    Directory of Open Access Journals (Sweden)

    Soubhik Chakrabarty

    2015-08-01

    Full Text Available We have studied using density functional theory and non-equilibrium Green’s function based approach, the electronic structures of 555-777 divacancy (DV defected armchair edged graphene nanoribbons (AGNR as well as the transport properties of AGNR based two-terminal devices constructed with one defected electrode and one N doped electrode. Introduction of 555-777 DV defect into AGNR results in shifting of the π and π∗ bands towards the higher energy value indicating a downward shift of the Fermi level. Formation of a potential barrier, analogous to that of conventional p-n junction, has been observed across the junction of defected and N-doped AGNR. The two terminal devices show diode like property with high rectifying efficiency for a wide range of bias voltages. The devices also show robust negative differential resistance with very high peak-to-valley ratio. Shift of the electrode energy states and modification of the transmission function with applied bias have been analyzed, in order to gain an insight into the nonlinear and asymmetric behavior of the current-voltage characteristics. Variation of the transport properties on the width of the ribbons has also been discussed.

  4. Plasmonic organic photovoltaic devices with graphene based buffer layers for stability and efficiency enhancement

    Science.gov (United States)

    Stratakis, Emmanuel; Stylianakis, Minas M.; Koudoumas, Emmanuel; Kymakis, Emmanuel

    2013-05-01

    Enhancement of photoconversion efficiency (PCE) and stability in bulk heterojunction (BHJ) plasmonic organic photovoltaic devices (OPVs) incorporating graphene oxide (GO) thin films as the hole transport layer (HTL) and surfactant free Au nanoparticles (NPs) between the GO HTL and the photoactive layers is demonstrated. In particular the plasmonic GO-based devices exhibited a performance enhancement by 30% compared to the devices using the traditional PEDOT:PSS layer. Likewise, they preserved 50% of their initial PCE after 45 h of continuous illumination, contrary to the PEDOT:PSS-based ones that die after 20 h. The performance increase is attributed to the improved photocurrent and fill factor owing to the enhanced exciton generation rate due to NP-induced plasmon absorption enhancement. Besides this, the stability enhancement can be attributed to limited oxygen and/or indium diffusion from the indium tin oxide (ITO) electrode into the active layer. The industrial exploitation of composite GO/NPs as efficient buffer layers in OPVs is envisaged.

  5. Memristive Devices with Highly Repeatable Analog States Boosted by Graphene Quantum Dots.

    Science.gov (United States)

    Wang, Changhong; He, Wei; Tong, Yi; Zhang, Yishu; Huang, Kejie; Song, Li; Zhong, Shuai; Ganeshkumar, Rajasekaran; Zhao, Rong

    2017-05-01

    Memristive devices, having a huge potential as artificial synapses for low-power neural networks, have received tremendous attention recently. Despite great achievements in demonstration of plasticity and learning functions, little progress has been made in the repeatable analog resistance states of memristive devices, which is, however, crucial for achieving controllable synaptic behavior. The controllable behavior of synapse is highly desired in building neural networks as it helps reduce training epochs and diminish error probability. Fundamentally, the poor repeatability of analog resistance states is closely associated with the random formation of conductive filaments, which consists of oxygen vacancies. In this work, graphene quantum dots (GQDs) are introduced into memristive devices. By virtue of the abundant oxygen anions released from GQDs, the GQDs can serve as nano oxygen-reservoirs and enhance the localization of filament formation. As a result, analog resistance states with highly tight distribution are achieved with nearly 85% reduction in variations. In addition the insertion of GQDs can alter the energy band alignment and boost the tunneling current, which leads to significant reduction in both switching voltages and their distribution variations. This work may pave the way for achieving artificial neural networks with accurate and efficient learning capability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Hole injection enhancement in organic light emitting devices using plasma treated graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Jesuraj, P. Justin; Parameshwari, R. [Centre for Nanoscience and Nanotechnology, School of Physics, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu (India); Kanthasamy, K.; Koch, J. [Institut für Festkörperphysik, ATMOS, Appelstr. 2, D-30167, Hannover (Germany); Pfnür, H. [Institut für Festkörperphysik, ATMOS, Appelstr. 2, D-30167, Hannover (Germany); Laboratorium für Nano- und Quantene$ngineering, Schneiderberg 30, D-30167, Hannover (Germany); Jeganathan, K., E-mail: kjeganathan@yahoo.com [Centre for Nanoscience and Nanotechnology, School of Physics, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu (India)

    2017-03-01

    Graphical abstract: Plasma treated Graphene oxide for hole injection enhancement in OLEDs. - Highlights: • Oxygen (O{sub 2}) and hydrogen (H{sub 2}) plasma exposed graphene oxide (GO) sheets have been demonstrated as hole buffer layers in OLEDs. • O{sub 2} plasma exposure induces assimilation of oxygen contents in GO lattice resulting in improved work function that reduced the hole injection barrier further. Whereas, H{sub 2} plasma contrastingly reduced the GO by excluding oxygen which ensuing lower work function. • X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy investigations reveal the capricious amount of oxygen in GO lattice and its corresponding work function variations. • GO and O{sub 2} plasma treated GO significantly improves the current efficiency of OLEDs more than one order with notable reduction in turn on voltage. - Abstract: The hole injection layer (HIL) with high work function (WF) is desirable to reduce the injection barrier between anode and hole transport layer in organic light emitting devices (OLED). Here, we report a novel approach to tune the WF of graphene oxide (GO) using oxygen and hydrogen plasma treatment and its hole injection properties in OLEDs. The mild exposure of oxygen plasma on GO (O{sub 2}-GO) significantly reduces the injection barrier by increasing the WF of anode (4.98 eV) through expansion of C−O bonds. In contrast, the hole injection barrier was drastically increased for hydrogen plasma treated GO (H{sub 2}-GO) layers as the WF is lowered by the contraction of C−O bond. By employing active O{sub 2}-GO as HIL in OLEDs found to exhibit superior current efficiency of 4.2 cd/A as compared to 3.3 cd/A for pristine GO. Further, the high injection efficiency of O{sub 2}-GO infused hole only device can be attributed to the improved energy level matching. Ultraviolet and X-ray photoelectron spectroscopy were used to correlate the WF of HIL infused anode towards the enhanced performance of

  7. Beyond Graphene: Advanced 2D Electronic and Optoelectronic Crystals and Devices for Next Generation Applications

    Science.gov (United States)

    2015-06-25

    growth, and copper and nickel were the best choices for extensive graphene growth due to low cost and carbon solubility at 1000C. Graphene growth...SECURITY CLASSIFICATION OF: The discovery of graphene , made of an individual atomic-thick layer of carbon, could be considered as a defining point in...2013 31-May-2014 Approved for Public Release; Distribution Unlimited Final Report: Beyond Graphene : Advanced 2D Electronic and Optoelectronic Crystals

  8. Modulation of the Dirac point voltage of graphene by ion-gel dielectrics and its application to soft electronic devices.

    Science.gov (United States)

    Kim, Un Jeong; Kim, Tae Geun; Shim, Youngseon; Park, Yeonsang; Lee, Chang-Won; Kim, Tae-Ho; Lee, Hyo Sug; Chung, Dae-Young; Kihm, Jineun; Roh, Young-Geun; Lee, Jaesoong; Son, Hyungbin; Kim, Sangsig; Hur, Jaehyun; Hwang, Sung Woo

    2015-01-27

    We investigated systematic modulation of the Dirac point voltage of graphene transistors by changing the type of ionic liquid used as a main gate dielectric component. Ion gels were formed from ionic liquids and a non-triblock-copolymer-based binder involving UV irradiation. With a fixed cation (anion), the Dirac point voltage shifted to a higher voltage as the size of anion (cation) increased. Mechanisms for modulation of the Dirac point voltage of graphene transistors by designing ionic liquids were fully understood using molecular dynamics simulations, which excellently matched our experimental results. It was found that the ion sizes and molecular structures play an essential role in the modulation of the Dirac point voltage of the graphene. Through control of the position of their Dirac point voltages on the basis of our findings, complementary metal-oxide-semiconductor (CMOS)-like graphene-based inverters using two different ionic liquids worked perfectly even at a very low source voltage (V(DD) = 1 mV), which was not possible for previous works. These results can be broadly applied in the development of low-power-consumption, flexible/stretchable, CMOS-like graphene-based electronic devices in the future.

  9. The development of graphene-based devices for cell biology research

    Science.gov (United States)

    Yan, Zhi-Qin; Zhang, Wei

    2014-06-01

    Graphene has emerged as a new carbon nanoform with great potential in many applications due to its exceptional physical and chemical properties. Especially, graphene and its derivatives are also gaining a lot of interest in the biomedical field as new components for biosensors, tissue engineering, and drug delivery. This review presents unique properties of graphene, the bio-effects of graphene and its derivatives, especially their interactions with cells and the development of graphene-based biosensors and nanomedicines for cancer diagnosis and treatment.

  10. Effects of basal-plane thermal conductivity and interface thermal conductance on the hot spot temperature in graphene electronic devices

    Science.gov (United States)

    Choi, David; Poudel, Nirakar; Cronin, Stephen B.; Shi, Li

    2017-02-01

    Electrostatic force microscopy and scanning thermal microscopy are employed to investigate the electric transport and localized heating around defects introduced during transfer of graphene grown by chemical vapor deposition to an oxidized Si substrate. Numerical and analytical models are developed to explain the results based on the reported basal-plane thermal conductivity, κ, and interfacial thermal conductance, G, of graphene and to investigate their effects on the peak temperature. Irrespective of the κ values, increasing G beyond 4 × 107 W m-2 K-1 can reduce the peak temperature effectively for graphene devices made on sub-10 nm thick gate dielectric, but not for the measured device made on 300-nm-thick oxide dielectric, which yields a cross-plane thermal conductance (Gox) much smaller than the typical G of graphene. In contrast, for typical G values reported for graphene, increasing κ from 300 W m-1 K-1 toward 3000 W m-1 K-1 is effective in reducing the hot spot temperature for the 300-nm-thick oxide devices but not for the sub-10 nm gate dielectric case, because the heat spreading length (l) can be appreciably increased relative to the micron-scale localized heat generation spot size (r0) only when the oxide layer is sufficiently thick. As such, enhancement of κ increases the vertical heat transfer area above the gate dielectric only for the thick oxide case. In all cases considered, the hot spot temperature is sensitive to varying G and κ only when the G/Gox ratio and r0/l ratio are below about 5, respectively.

  11. Main principles of passive devices based on graphene and carbon films in microwave-THz frequency range

    Science.gov (United States)

    Kuzhir, Polina P.; Paddubskaya, Alesia G.; Volynets, Nadezhda I.; Batrakov, Konstantin G.; Kaplas, Tommi; Lamberti, Patrizia; Kotsilkova, Rumiana; Lambin, Philippe

    2017-07-01

    The ability of thin conductive films, including graphene, pyrolytic carbon (PyC), graphitic PyC (GrPyC), graphene with graphitic islands (GrI), glassy carbon (GC), and sandwich structures made of all these materials separated by polymer slabs to absorb electromagnetic radiation in microwave-THz frequency range, is discussed. The main physical principles making a basis for high absorption ability of these heterostructures are explained both in the language of electromagnetic theory and using representation of equivalent electrical circuits. The idea of using carbonaceous thin films as the main working elements of passive radiofrequency (RF) devices, such as shields, filters, polarizers, collimators, is proposed theoretically and proved experimentally. The important advantage of PyC, GrI, GrPyC, and GC is that, in contrast to graphene, they either can be easily deposited onto a dielectric substrate or are strong enough to allow their transfer from the catalytic substrate without a shuttle polymer layer. This opens a new avenue toward the development of a scalable protocol for cost-efficient production of ultralight electromagnetic shields that can be transferred to commercial applications. A robust design via finite-element method and design of experiment for RF devices based on carbon/graphene films and sandwiches is also discussed in the context of virtual prototyping.

  12. Effect of annealing on graphene incorporated poly-(3-hexylthiophene):CuInS{sub 2} photovoltaic device

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Anita, E-mail: anita.20188@gmail.com; Dixit, Shiv Kumar [Department of Electronic Science, University of Delhi, South Campus, Benito Juarez Road, New Delhi-110021 (India); Singh, Inderpreet [Department of Electronic Science, University of Delhi, South Campus, Benito Juarez Road, New Delhi-110021, India and SGTB Khalsa College, University of Delhi, Delhi-110007 (India)

    2014-10-15

    The effect of thermal annealing on the power conversion efficiency (PCE) of poly(3-hexylthiophene) (P3HT):CuInS{sub 2} quantum dot:graphene photovoltaic device has been studied by analyzing optical characteristics of composite films and electrical characteristics of the device with structure indium tin oxide/poly[ethylene dioxythiophene]:poly[styrene sulfonate] (ITO/PEDOT:PSS)/P3HT:CIS:graphene/LiF/aluminum. It was observed that after annealing at 120°C for 15 min a typical device containing 0.005 % w/w of graphene shows the best performance with a PCE of 1.3%, an open-circuit voltage of 0.44V, a short-circuit current density of 7.6 mA/cm{sup 2}, and a fill factor of 0.39. It is observed that the thermal annealing considerably enhances the efficiency of solar cells. However, an annealing at higher temperature such as at 140°C results in a decrease in the device efficiency.

  13. Graphene-Based Hybrid Composites for Efficient Thermal Management of Electronic Devices.

    Science.gov (United States)

    Shtein, Michael; Nadiv, Roey; Buzaglo, Matat; Regev, Oren

    2015-10-28

    Thermal management has become a critical aspect in next-generation miniaturized electronic devices. Efficient heat dissipation reduces their operating temperatures and insures optimal performance, service life, and efficacy. Shielding against shocks, vibrations, and moisture is also imperative when the electronic circuits are located outdoors. Potting (or encapsulating) them in polymer-based composites with enhanced thermal conductivity (TC) may provide a solution for both thermal management and shielding challenges. In the current study, graphene is employed as a filler to fabricate composites with isotropic ultrahigh TC (>12 W m(-1) K(-1)) and good mechanical properties (>30 MPa flexural and compressive strength). To avoid short-circuiting the electronic assemblies, a dispersion of secondary ceramic-based filler reduces the electrical conductivity and synergistically enhances the TC of composites. When utilized as potting materials, these novel hybrid composites effectively dissipate the heat from electronic devices; their operating temperatures decrease from 110 to 37 °C, and their effective thermal resistances are drastically reduced, by up to 90%. The simple filler dispersion method and the precise manipulation of the composite transport properties via hybrid filling offer a universal approach to the large-scale production of novel materials for thermal management and other applications.

  14. Graphene oxide/carbon nanoparticle thin film based IR detector: Surface properties and device characterization

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Farzana Aktar [Experimental Physics Division, Atomic Energy Centre, 4, Kazi Nazrul Islam Avenue, Dhaka-1000 (Bangladesh); Hossain, Mohammad Abul [Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka-1000 (Bangladesh); Uchida, Koji; Tamura, Takahiro; Sugawa, Kosuke; Mochida, Tomoaki; Otsuki, Joe [College of Science and Technology, Nihon University, 1-8-14 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Mohiuddin, Tariq [Department of Physics, College of Science, Sultan Qaboos University, Muscat (Oman); Boby, Monny Akter [Department of Physics, Faculty of Science, University of Dhaka, Dhaka-1000 (Bangladesh); Alam, Mohammad Sahabul, E-mail: msalam@ksu.edu.sa [Department of Physics, Faculty of Science, University of Dhaka, Dhaka-1000 (Bangladesh); Department of Chemical Engineering, College of Engineering & King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2015-10-15

    This work deals with the synthesis, characterization, and application of carbon nanoparticles (CNP) adorned graphene oxide (GO) nanocomposite materials. Here we mainly focus on an emerging topic in modern research field presenting GO-CNP nanocomposite as a infrared (IR) radiation detector device. GO-CNP thin film devices were fabricated from liquid phase at ambient condition where no modifying treatments were necessary. It works with no cooling treatment and also for stationary objects. A sharp response of human body IR radiation was detected with time constants of 3 and 36 sec and radiation responsivity was 3 mAW{sup −1}. The current also rises for quite a long time before saturation. This work discusses state-of-the-art material developing technique based on near-infrared photon absorption and their use in field deployable instrument for real-world applications. GO-CNP-based thin solid composite films also offer its potentiality to be utilized as p-type absorber material in thin film solar cell, as well.

  15. Graphene oxide/carbon nanoparticle thin film based IR detector: Surface properties and device characterization

    Directory of Open Access Journals (Sweden)

    Farzana Aktar Chowdhury

    2015-10-01

    Full Text Available This work deals with the synthesis, characterization, and application of carbon nanoparticles (CNP adorned graphene oxide (GO nanocomposite materials. Here we mainly focus on an emerging topic in modern research field presenting GO-CNP nanocomposite as a infrared (IR radiation detector device. GO-CNP thin film devices were fabricated from liquid phase at ambient condition where no modifying treatments were necessary. It works with no cooling treatment and also for stationary objects. A sharp response of human body IR radiation was detected with time constants of 3 and 36 sec and radiation responsivity was 3 mAW−1. The current also rises for quite a long time before saturation. This work discusses state-of-the-art material developing technique based on near-infrared photon absorption and their use in field deployable instrument for real-world applications. GO-CNP-based thin solid composite films also offer its potentiality to be utilized as p-type absorber material in thin film solar cell, as well.

  16. Observation of the fractional quantum Hall effect in graphene

    Science.gov (United States)

    Bolotin, Kirill; Ghahari, Fereshte; Shulman, Michael D.; Stormer, Horst L.; Kim, Philip

    2010-03-01

    Only a glimpse of correlated electron physics has been observed in graphene so far, mostly due to the strong electron scattering caused by charged impurities in the substrate. To overcome this limitation,we fabricate devices where electrically contacted and electrostatically gated graphene samples are suspended over a substrate. The measured low-temperature sample mobility is found to exceed 100,000 cm2/Vs in such devices. The very high mobility of our specimens allows us to observe previously inaccessible transport regimes in graphene. We report the observation of the fractional quantum Hall effect, supporting the existence of interaction induced correlated electron states in the presence of a magnetic field. In addition, at low carrier density graphene becomes an insulator with an energy gap tunable by magnetic field.

  17. Large-scale and patternable graphene: direct transformation of amorphous carbon film into graphene/graphite on insulators via Cu mediation engineering and its application to all-carbon based devices

    Science.gov (United States)

    Chen, Yu-Ze; Medina, Henry; Lin, Hung-Chiao; Tsai, Hung-Wei; Su, Teng-Yu; Chueh, Yu-Lun

    2015-01-01

    Chemical vapour deposition of graphene was the preferred way to synthesize graphene for multiple applications. However, several problems related to transfer processes, such as wrinkles, cleanness and scratches, have limited its application at the industrial scale. Intense research was triggered into developing alternative synthesis methods to directly deposit graphene on insulators at low cost with high uniformity and large area. In this work, we demonstrate a new concept to directly achieve growth of graphene on non-metal substrates. By exposing an amorphous carbon (a-C) film in Cu gaseous molecules after annealing at 850 °C, the carbon (a-C) film surprisingly undergoes a noticeable transformation to crystalline graphene. Furthermore, the thickness of graphene could be controlled, depending on the thickness of the pre-deposited a-C film. The transformation mechanism was investigated and explained in detail. This approach enables development of a one-step process to fabricate electrical devices made of all carbon material, highlighting the uniqueness of the novel approach for developing graphene electronic devices. Interestingly, the carbon electrodes made directly on the graphene layer by our approach offer a good ohmic contact compared with the Schottky barriers usually observed on graphene devices using metals as electrodes.Chemical vapour deposition of graphene was the preferred way to synthesize graphene for multiple applications. However, several problems related to transfer processes, such as wrinkles, cleanness and scratches, have limited its application at the industrial scale. Intense research was triggered into developing alternative synthesis methods to directly deposit graphene on insulators at low cost with high uniformity and large area. In this work, we demonstrate a new concept to directly achieve growth of graphene on non-metal substrates. By exposing an amorphous carbon (a-C) film in Cu gaseous molecules after annealing at 850 °C, the carbon (a

  18. Plasmon enhanced organic devices utilizing highly ordered nanoimprinted gold nanodisks and nitrogen doped graphene

    Science.gov (United States)

    Mat Teridi, Mohd Asri; Sookhakian, Mehran; Basirun, Wan Jefrey; Zakaria, R.; Schneider, Fabio Kurt; da Silva, Wilson Jose; Kim, Jaeyeon; Lee, Seung Joo; Kim, Hyeong Pil; Mohd Yusoff, Abd. Rashid Bin; Jang, Jin

    2015-04-01

    High performance organic devices including polymer solar cells (PSCs) and light emitting diodes (PLEDs) were successfully demonstrated with the presence of highly ordered nanoimprinted Au nanodisks (Au NDs) in their solution-processed active/emissive layers, respectively. PSCs and PLEDs were fabricated using a low bandgap polymer and acceptor, nitrogen doped multiwalled carbon nanotubes poly[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b]-thiophenediyl] (n-MWCNTs:PTB7), and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) and (4,4-N,N-dicarbazole) biphenyl (CBP) doped with tris(2-phenylpyridine) iridium(iii) (Ir(ppy)3) as active/emissive layers, respectively. We synthesized nitrogen doped graphene and used it as anodic buffer layer in both devices. The localized surface plasmon resonance (LSPR) effect from Au NDs clearly contributed to the increase in light absorption/emission in the active layers from electromagnetic field enhancement, which originated from the excited LSPR in PSCs and PLEDs. In addition to the high density of LSPR and strong exciton-SP coupling, the electroluminescent (EL) enhancement is ascribed to enhanced spontaneous emission rates. This is due to the plasmonic near-field effect induced by Au NDs. The PSCs and PLEDs exhibited 14.98% (8.08% to 9.29%) under one sun of simulated air mass 1.5 global (AM1.5G) illumination (100 mW cm-2) and 19.18% (8.24 to 9.82 lm W-1) enhancement in the power conversion efficiencies (PCEs) compared to the control devices without Au NDs.

  19. Organic photovoltaic devices based on graphene as an electron-acceptor material and P3OT as a donor material

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiteng; He, Dawei; Wang, Yongsheng; Liu, Zhiyong; Wu, Hongpeng; Wang, Jigang [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing (China)

    2011-10-15

    We present the fabrication and performance studies of organic photovoltaic (OPV) devices with bulk heterojunction (BHJ) structure that use organic solution-processable functionalized graphene (SPFGraphene) as an electron-acceptor material and poly(3-octylthiophene) (P3OT) as a donor material. The structural configuration of the device is ITO/PEDOT:PSS/P3OT:PCBM-SPFGraphene/LiF/Al. After mixing graphene into the device, the performance enhanced significantly. Given illumination at 100 mW/cm{sup 2} AM1.5 and P3OT/PCBM (1:1) mixture with 9 wt% of SPFGraphene, we recorded the best performances. The open-circuit voltage (V{sub oc}) is 0.67 V. The short-circuit current density (J{sub sc}) is 4.6 mA/cm{sup 2}. The FF is 0.37. And the power conversion efficiency is 1.14%. In the P3OT:PCBM-SPFGraphene composite, the SPFGraphene acts as exciton dissociation sites and provides the transport pathway of LUMO-graphene-Al. Adding SPFGraphene into P3OT produces an appropriate energetic distance between the HOMO and the LUMO of the donor/acceptor, which leads to a high open-circuit voltage. Besides, doping SPFGraphene provides a higher exciton dissociation volume mobility of carrier transport, which leads to a large short-circuit current density. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Fabrication and characterization of an integrated ionic device from suspended polypyrrole and alamethicin-reconstituted lipid bilayer membranes

    Science.gov (United States)

    Northcutt, Robert; Sundaresan, Vishnu-Baba

    2012-09-01

    Conducting polymers are electroactive materials that undergo conformal relaxation of the polymer backbone in the presence of an electrical field through ion exchange with solid or aqueous electrolytes. This conformal relaxation and the associated morphological changes make conducting polymers highly suitable for actuation and sensing applications. Among smart materials, bioderived active materials also use ion transport for sensing and actuation functions via selective ion transport. The transporter proteins extracted from biological cell membranes and reconstituted into a bilayer lipid membrane in bioderived active materials regulate ion transport for engineering functions. The protein transporter reconstituted in the bilayer lipid membrane is referred to as the bioderived membrane and serves as the active component in bioderived active materials. Inspired by the similarities in the physics of transduction in conducting polymers and bioderived active materials, an integrated ionic device is formed from the bioderived membrane and the conducting polymer membrane. This ionic device is fabricated into a laminated thin-film membrane and a common ion that can be processed by the bioderived and the conducting polymer membranes couple the ionic function of these two membranes. An integrated ionic device, fabricated from polypyrrole (PPy) doped with sodium dodecylbenzenesulfonate (NaDBS) and an alamethicin-reconstituted DPhPC bilayer lipid membrane, is presented in this paper. A voltage-gated sodium current regulates the electrochemical response in the PPy(DBS) layer. The integrated device is fabricated on silicon-based substrates through microfabrication, electropolymerization, and vesicle fusion, and ionic activity is characterized through electrochemical measurements.

  1. Large scale integration of CVD-graphene based NEMS with narrow distribution of resonance parameters

    Science.gov (United States)

    Arjmandi-Tash, Hadi; Allain, Adrien; (Vitto Han, Zheng; Bouchiat, Vincent

    2017-06-01

    We present a novel method for the fabrication of the arrays of suspended micron-sized membranes, based on monolayer pulsed-CVD graphene. Such devices are the source of an efficient integration of graphene nano-electro-mechanical resonators, compatible with production at the wafer scale using standard photolithography and processing tools. As the graphene surface is continuously protected by the same polymer layer during the whole process, suspended graphene membranes are clean and free of imperfections such as deposits, wrinkles and tears. Batch fabrication of 100 μm-long multi-connected suspended ribbons is presented. At room temperature, mechanical resonance of electrostatically-actuated devices show narrow distribution of their characteristic parameters with high quality factor and low effective mass and resonance frequencies, as expected for low stress and adsorbate-free membranes. Upon cooling, a sharp increase of both resonant frequency and quality factor is observed, enabling to extract the thermal expansion coefficient of CVD graphene. Comparison with state-of-the-art graphene NEMS is presented.

  2. Far-field and near-field monitoring of hybridized optical modes from Au nanoprisms suspended on a graphene/Si nanopillar array.

    Science.gov (United States)

    Nien, Li-Wei; Chen, Kai; Dao, Thang Duy; Ishii, Satoshi; Hsueh, Chun-Hway; Nagao, Tadaaki

    2017-11-09

    The optical hybridization of localized surface plasmons and photonic modes of dielectric nanostructures provides us wide arenas of opportunities for designing tunable nanophotonics with excellent spectral selectivity, signal enhancement, and light harvesting for many optical applications. Graphene-supported Au nanoprisms on a periodic Si nanopillar array will be an ideal model system for examining such an optical hybridization effect between plasmonic modes and photonic modes. Here, through the measurement of the reflectance spectra as well as graphene phonons by surface-enhanced Raman scattering (SERS), we investigated both the far-field and near-field properties of these optically hybridized modes. The effects of photonic modes and Mie resonances of the Si nanopillars on the localized surface plasmons of the Au nanoprisms and on their near-field enhancement were experimentally elucidated through the measurements of graphene phonons using two excitation lasers with wavelengths of 532 and 785 nm. The wavelength-dependent SERS intensities of monolayer graphene are clearly understood in terms of the optical hybridization, and the SERS enhancement factor estimated from finite-difference time-domain simulations exhibited good agreement with the measurements. The elucidated spectral tunability in the near-field light-matter interaction would be useful for potential applications in various types of graphene-based photonics.

  3. Nonlinear Nanomechanical Resonators using CVD Graphene

    Science.gov (United States)

    Knobel, Robert; Chaudhuri, Arnab

    Graphene is an ideal material for high quality nanoelectromechanical resonators due to high Young's modulus, low mass, ability to sustain high in-plane strain, and unique electrical properties. In this work, atmospheric pressure chemical vapour deposition is employed to obtain monolayer graphene on copper. Scanning electron microscopy, Raman imaging and two-terminal electrical measurements reveal the presence of high quality, monolayer graphene. The graphene is transferred to Si/SiO2 substrate and electron beam lithography is used to fabricate suspended doubly-clamped resonators. The devices are electrostatically actuated and their motion is read out using nonlinear mixing of graphene's electrical conductivity. Modeling the devices as Duffing resonators shows the presence of mechanical nonlinearity in response to an applied force even at moderate bias voltages. We discuss implications of this nonlinearity for parametric amplification, mode-mixing and the generation and measurement of squeezed thermomechanical states. The models are compared with experimental data and prospects for developing measurement techniques for high precision sensors and quantum-limited mechanical measurements of graphene are explored.

  4. Electron and heat transport in graphene-based single-molecule devices

    Science.gov (United States)

    Mol, Jan; Gehring, Pascal; Lau, Chit; Briggs, Andrew

    Graphene nano-electrodes provide a versatile platform for contacting individual molecules. Unlike metal electrodes, graphene is atomically stable at room temperature and screening of the gate electric field is strongly reduced by the two-dimensional nature of the electrodes. Molecules can be anchored to the graphene via π- π stacking bonds. We will present single electron transport measurements of single pyrene-functionalised C60 molecules. Strong electron-phonon coupling in these molecules leads to the observation of Franck-Condon blockade. In addition to spectroscopic transport features arising from the electronic and mechanical degrees of freedom of the fullerene molecule, we observe the effect of quantum interference in the graphene leads. Density-of-states fluctuations due to multi-mode Fabry-Perot interference in graphene result in energy dependent coupling between the graphene leads and the molecule. Finally, we will present thermoelectric measurements of our graphene-based nanostructures, and show the energy dependent Seebeck coefficient both in the sequential electron tunnelling and quantum interference regime. Our experiments demonstrate the capability of graphene-based molecular junctions for studying transport in single molecules, and highlight spectroscopic features that cannot readily be observed in metal-molecule junctions.

  5. Electrochemically active functionalization of graphene for development of prototype biosensing devices

    DEFF Research Database (Denmark)

    Halder, Arnab; Ulstrup, Jens; Chi, Qijin

    Development of low-cost, robust and ultra-sensing material platforms for clinically important analytes is one of the key steps for new-generation biosensors. As a promising 2D material, graphene has emerged to fulfill such purposes. Graphene based materials have shown the potential to be an ideal...... support for chemosensors and biosensors. Functionalization of graphene can further transform this 2D material into various versatile platforms for different applications. In this presentation, we will address some of our recent investigations: (1) electrochemically active functionalization of graphene...... nanosheets, (2) loading of different enzymes on functionalized graphene matrix, and (3) electrochemical performances of the functionalized nanaohybrid materials based prototype sensors. These latest advancements could be crucial for the design and fabrication of low-cost, flexible and disposable biosensors....

  6. Integration of hexagonal boron nitride with quasi-freestanding epitaxial graphene: toward wafer-scale, high-performance devices.

    Science.gov (United States)

    Bresnehan, Michael S; Hollander, Matthew J; Wetherington, Maxwell; LaBella, Michael; Trumbull, Kathleen A; Cavalero, Randal; Snyder, David W; Robinson, Joshua A

    2012-06-26

    Hexagonal boron nitride (h-BN) is a promising dielectric material for graphene-based electronic devices. Here we investigate the potential of h-BN gate dielectrics, grown by chemical vapor deposition (CVD), for integration with quasi-freestanding epitaxial graphene (QFEG). We discuss the large scale growth of h-BN on copper foil via a catalytic thermal CVD process and the subsequent transfer of h-BN to a 75 mm QFEG wafer. X-ray photoelectron spectroscopy (XPS) measurements confirm the absence of h-BN/graphitic domains and indicate that the film is chemically stable throughout the transfer process, while Raman spectroscopy indicates a 42% relaxation of compressive stress following removal of the copper substrate and subsequent transfer of h-BN to QFEG. Despite stress-induced wrinkling observed in the films, Hall effect measurements show little degradation (Graphene transistors utilizing h-BN gates exhibit peak intrinsic cutoff frequencies >30 GHz (2.4× that of HfO(2)-based devices).

  7. Graphene oxide functionalized with silver nanoparticles as conducting electrodes for solar cells and electrochemical energy storage devices

    Science.gov (United States)

    Reddy, Kakarla Raghava; Alonso-Marroquin, Fernando

    2017-06-01

    We present the development of novel electrochemical supercapacitor and sensor based on silver (Ag) nanoparticles coated graphene oxide (GO). 10-20 nm diameter of Ag nanoparticles were well dispersed on the surface of graphene oxide through the chemical reduction method. Ag-coated GO nanohybrids were characterized by transmission electron microscopy (TEM), X-ray diffraction, Raman spectroscopy, electrical and an electrochemical analysis for the energy storage (supercapacitors), energy conversion (solar cells) and sensor applications. It is found that nanohybrid electrodes showed good specific capacitance and electrochemical sensing performance in comparison to pristine GO. The improvement in the electrochemical characteristics can be attributed to the sensitizing effect between Ag nanparticles and GO. These GO/Ag hybrid transparent conducting films also show low resistance and good transmittance, suggesting they are good electrodes for the opto-electronic devices (e.g. solar cells).

  8. Suspended microfluidics

    OpenAIRE

    Casavant, Benjamin P.; Berthier, Erwin; Theberge, Ashleigh B.; Jean BERTHIER; Montanez-Sauri, Sara I.; Bischel, Lauren L.; Brakke, Kenneth; Hedman, Curtis J.; Bushman, Wade; Keller, Nancy P.; Beebe, David J.

    2013-01-01

    Although the field of microfluidics has made significant progress in bringing new tools to address biological questions, the accessibility and adoption of microfluidics within the life sciences are still limited. Open microfluidic systems have the potential to lower the barriers to adoption, but the absence of robust design rules has hindered their use. Here, we present an open microfluidic platform, suspended microfluidics, that uses surface tension to fill and maintain a fluid in microscale...

  9. The possibility of chemically inert, graphene-based all-carbon electronic devices with 0.8 eV gap.

    Science.gov (United States)

    Qi, Jing Shan; Huang, Jian Yu; Feng, Ji; Shi, Da Ning; Li, Ju

    2011-05-24

    Graphene is an interesting electronic material. However, flat monolayer graphene does not have significant gap in the electronic density of states, required for a large on-off ratio in logic applications. We propose here a novel device architecture, composed of self-folded carbon nanotube-graphene hybrids, which have been recently observed experimentally in Joule-heated graphene. These experiments demonstrated the feasibility of cutting, folding, and welding few-layer graphene in situ to form all-carbon nanostructures with complex topologies. The electronic gap of self-folded nanotubes can be combined with the semimetallicity of graphene electrodes to form a "metal-semiconductor-metal" junction. By ab initio calculations we demonstrate large energy gaps in the transmission spectra of such junctions, which preserve the intrinsic transport characteristics of the semiconducting nanotubes despite topologically necessary disinclinations at the flat graphene-curved nanotube interface. These all-carbon devices are proposed to be constructed by contact probe cutting and high-temperature annealing and, if produced, would be chemically stable at room temperature under normal gas environments.

  10. Omnidirectional Harvesting of Weak Light Using a Graphene Quantum Dot-Modified Organic/Silicon Hybrid Device

    KAUST Repository

    Tsai, Meng-Lin

    2017-04-21

    Despite great improvements in traditional inorganic photodetectors and photovoltaics, more progress is needed in the detection/collection of light at low-level conditions. Traditional photodetectors tend to suffer from high noise when operated at room temperature; therefore, these devices require additional cooling systems to detect weak or dim light. Conventional solar cells also face the challenge of poor light-harvesting capabilities in hazy or cloudy weather. The real world features such varying levels of light, which makes it important to develop strategies that allow optical devices to function when conditions are less than optimal. In this work, we report an organic/inorganic hybrid device that consists of graphene quantum dot-modified poly(3,4-ethylenedioxythiophene) polystyrenesulfonate spin-coated on Si for the detection/harvest of weak light. The hybrid configuration provides the device with high responsivity and detectability, omnidirectional light trapping, and fast operation speed. To demonstrate the potential of this hybrid device in real world applications, we measured near-infrared light scattered through human tissue to demonstrate noninvasive oximetric photodetection as well as characterized the device\\'s photovoltaic properties in outdoor (i.e., weather-dependent) and indoor weak light conditions. This organic/inorganic device configuration demonstrates a promising strategy for developing future high-performance low-light compatible photodetectors and photovoltaics.

  11. Hydrophilic and size-controlled graphene nanopores for protein detection

    Science.gov (United States)

    Goyal, Gaurav; Bok Lee, Yong; Darvish, Armin; Ahn, Chi Won; Kim, Min Jun

    2016-12-01

    This paper describes a general approach for transferring clean single-layer graphene onto silicon nitride nanopore devices and the use of the electron beam of a transmission electron microscope (TEM) to drill size-controlled nanopores in freely suspended graphene. Besides nanopore drilling, we also used the TEM to heal and completely close the unwanted secondary holes formed by electron beam damage during the drilling process. We demonstrate electron beam assisted shrinking of irregularly shaped 40-60 nm pores down to 2 nm, exhibiting an exquisite control of graphene nanopore diameter. Our fabrication workflow also rendered graphene nanopores hydrophilic, allowing easy wetting and use of the pores for studying protein translocation and protein-protein interaction with a high signal to noise ratio.

  12. Flexible Graphene-Based Energy Storage Devices for Space Application Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Several methods for the production of graphene have been developed in recent years. The most promising techniques for the production of high-quality bulk...

  13. Single gate p-n junctions in graphene-ferroelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    Hinnefeld, J. Henry; Mason, Nadya, E-mail: nadya@illinois.edu [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Xu, Ruijuan; Pandya, Shishir; Martin, Lane W. [Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Rogers, Steven; Shim, Moonsub [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2016-05-16

    Graphene's linear dispersion relation and the attendant implications for bipolar electronics applications have motivated a range of experimental efforts aimed at producing p-n junctions in graphene. Here we report electrical transport measurements of graphene p-n junctions formed via simple modifications to a PbZr{sub 0.2}Ti{sub 0.8}O{sub 3} substrate, combined with a self-assembled layer of ambient environmental dopants. We show that the substrate configuration controls the local doping region, and that the p-n junction behavior can be controlled with a single gate. Finally, we show that the ferroelectric substrate induces a hysteresis in the environmental doping which can be utilized to activate and deactivate the doping, yielding an “on-demand” p-n junction in graphene controlled by a single, universal backgate.

  14. High-density 3D graphene-based monolith and related materials, methods, and devices

    Science.gov (United States)

    Worsley, Marcus A.; Baumann, Theodore F.; Biener, Juergen; Charnvanichborikarn, Supakit; Kucheyev, Sergei; Montalvo, Elizabeth; Shin, Swanee; Tylski, Elijah

    2017-03-21

    A composition comprising at least one high-density graphene-based monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds and having a density of at least 0.1 g/cm.sup.3. Also provided is a method comprising: preparing a reaction mixture comprising a suspension and at least one catalyst, said suspension selected from a graphene oxide (GO) suspension and a carbon nanotube suspension; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel, said drying step is substantially free of supercritical drying and freeze drying; and pyrolyzing the dry gel to produce a high-density graphene-based monolith. Exceptional combinations of properties are achieved including high conductive and mechanical properties.

  15. Band Gap Engineering of Boron Nitride by Graphene and Its Application as Positive Electrode Material in Asymmetric Supercapacitor Device.

    Science.gov (United States)

    Saha, Sanjit; Jana, Milan; Khanra, Partha; Samanta, Pranab; Koo, Hyeyoung; Murmu, Naresh Chandra; Kuila, Tapas

    2015-07-08

    Nanostructured hexagonal boron nitride (h-BN)/reduced graphene oxide (RGO) composite is prepared by insertion of h-BN into the graphene oxide through hydrothermal reaction. Formation of the super lattice is confirmed by the existence of two separate UV-visible absorption edges corresponding to two different band gaps. The composite materials show enhanced electrical conductivity as compared to the bulk h-BN. A high specific capacitance of ∼824 F g(-1) is achieved at a current density of 4 A g(-1) for the composite in three-electrode electrochemical measurement. The potential window of the composite electrode lies in the range from -0.1 to 0.5 V in 6 M aqueous KOH electrolyte. The operating voltage is increased to 1.4 V in asymmetric supercapacitor (ASC) device where the thermally reduced graphene oxide is used as the negative electrode and the h-BN/RGO composite as the positive electrode. The ASC exhibits a specific capacitance of 145.7 F g(-1) at a current density of 6 A g(-1) and high energy density of 39.6 W h kg(-1) corresponding to a large power density of ∼4200 W kg(-1). Therefore, a facile hydrothermal route is demonstrated for the first time to utilize h-BN-based composite materials as energy storage electrode materials for supercapacitor applications.

  16. Thermal conductivity of giant mono- to few-layered CVD graphene supported on an organic substrate

    Science.gov (United States)

    Liu, Jing; Wang, Tianyu; Xu, Shen; Yuan, Pengyu; Xu, Xu; Wang, Xinwei

    2016-05-01

    The thermal conductivity (k) of supported graphene is a critical property that reflects the graphene-substrate interaction, graphene structure quality, and is needed for thermal design of a graphene device. Yet the related k measurement has never been a trivial work and very few studies are reported to date, only at the μm level. In this work, for the first time, the k of giant chemical vapor decomposition (CVD) graphene supported on poly(methyl methacrylate) (PMMA) is characterized using our transient electro-thermal technique based on a differential concept. Our graphene size is ~mm, far above the samples studied in the past. This giant graphene measurement eliminates the thermal contact resistance problems and edge phonon scattering encountered in μm-scale graphene k measurement. Such mm-scale measurement is critical for device/system-level thermal design since it reflects the effect of abundant grains in graphene. The k of 1.33-layered, 1.53-layered, 2.74-layered and 5.2-layered supported graphene is measured as 365 W m-1 K-1, 359 W m-1 K-1, 273 W m-1 K-1 and 33.5 W m-1 K-1, respectively. These values are significantly lower than the k of supported graphene on SiO2, and are about one order of magnitude lower than the k of suspended graphene. We speculate that the abundant C atoms in the PMMA promote more ready energy and momentum exchange with the supported graphene, and give rise to more phonon scattering than the SiO2 substrate. This leads to a lower k of CVD graphene on PMMA than that on SiO2. We attribute the existence of disorder in the sp2 domain, graphene oxide (GO) and stratification in the 5.2-layered graphene to its more k reduction. The Raman linewidth (G peak) of the 5.2-layered graphene is also twice larger than that of the other three kinds of graphene, indicating the much more phonon scattering and shorter phonon lifetime in it. Also the electrical conductivity of the 5.2-layered graphene is about one-fifth of that for the other three. This

  17. Thermal conductivity of giant mono- to few-layered CVD graphene supported on an organic substrate.

    Science.gov (United States)

    Liu, Jing; Wang, Tianyu; Xu, Shen; Yuan, Pengyu; Xu, Xu; Wang, Xinwei

    2016-05-21

    The thermal conductivity (k) of supported graphene is a critical property that reflects the graphene-substrate interaction, graphene structure quality, and is needed for thermal design of a graphene device. Yet the related k measurement has never been a trivial work and very few studies are reported to date, only at the μm level. In this work, for the first time, the k of giant chemical vapor decomposition (CVD) graphene supported on poly(methyl methacrylate) (PMMA) is characterized using our transient electro-thermal technique based on a differential concept. Our graphene size is ∼mm, far above the samples studied in the past. This giant graphene measurement eliminates the thermal contact resistance problems and edge phonon scattering encountered in μm-scale graphene k measurement. Such mm-scale measurement is critical for device/system-level thermal design since it reflects the effect of abundant grains in graphene. The k of 1.33-layered, 1.53-layered, 2.74-layered and 5.2-layered supported graphene is measured as 365 W m(-1) K(-1), 359 W m(-1) K(-1), 273 W m(-1) K(-1) and 33.5 W m(-1) K(-1), respectively. These values are significantly lower than the k of supported graphene on SiO2, and are about one order of magnitude lower than the k of suspended graphene. We speculate that the abundant C atoms in the PMMA promote more ready energy and momentum exchange with the supported graphene, and give rise to more phonon scattering than the SiO2 substrate. This leads to a lower k of CVD graphene on PMMA than that on SiO2. We attribute the existence of disorder in the sp(2) domain, graphene oxide (GO) and stratification in the 5.2-layered graphene to its more k reduction. The Raman linewidth (G peak) of the 5.2-layered graphene is also twice larger than that of the other three kinds of graphene, indicating the much more phonon scattering and shorter phonon lifetime in it. Also the electrical conductivity of the 5.2-layered graphene is about one-fifth of that for the

  18. Graphene Chemical Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The sensor uses graphene based devices to sense the surface potential of a graphene channel exposed to an analyte. When analyte molecules adsorb onto the...

  19. Graphene-ferroelectric hybrid devices for multi-valued memory system

    Science.gov (United States)

    Jandhyala, S.; Mordi, G.; Mao, D.; Ha, M.-W.; Quevedo-Lopez, M. A.; Gnade, B. E.; Kim, J.

    2013-07-01

    We demonstrate and explain the operation of a multi-level nonvolatile memory system using dual-gated single-layer graphene field-effect transistor with a polymer ferroelectric as top-gate dielectric and a linear bottom-gate dielectric. The multiple memory states are represented by various levels of graphene channel resistance obtained by changing the doping type and the number of p-n junctions in graphene. This is achieved by controlling the polarity of the domains in the ferroelectric thin film using a biased metal-coated atomic force microscope tip. We show a five level memory with the resistance change between the lowest and highest state greater than 200%.

  20. Enhanced Analytical Performance of Paper Microfluidic Devices by Using Fe3O4 Nanoparticles, MWCNT, and Graphene Oxide.

    Science.gov (United States)

    Figueredo, Federico; Garcia, Paulo T; Cortón, Eduardo; Coltro, Wendell K T

    2016-01-13

    Spheres, tubes, and planar-shaped nanomaterials as Fe3O4 nanoparticles (MNPs), multiwalled carbon nanotubes (MWCNT), and graphene oxide (GO) were used for the first time to treat microfluidic paper-based analytical devices (μPADs) and create a biocompatible layer with high catalytic surface. Once glucose measurements are critical for diabetes or glycosuria detection and monitoring, the analytical performance of the proposed devices was studied by using bienzymatic colorimetric detection of this carbohydrate. The limit of detection values achieved for glucose with μPADs treated with MNPs, MWCNT, and GO were 43, 62, and 18 μM, respectively. The paper surface modification solves problems associated with the lack of homogeneity on color measurements that compromise the sensitivity and detectability levels in clinical diagnosis.

  1. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride

    NARCIS (Netherlands)

    Zomer, P. J.; Dash, S. P.; Tombros, N.; van Wees, B. J.

    2011-01-01

    We present electronic transport measurements of single and bilayer graphene on commercially available hexagonal boron nitride. We extract mobilities as high as 125 000 cm(2) V-1 s(-1) at room temperature and 275 000 cm(2) V-1 s(-1) at 4.2 K. The excellent quality is supported by the early

  2. A spectrally tunable all-graphene-based flexible field-effect light-emitting device.

    Science.gov (United States)

    Wang, Xiaomu; Tian, He; Mohammad, Mohammad Ali; Li, Cheng; Wu, Can; Yang, Yi; Ren, Tian-Ling

    2015-07-16

    The continuous tuning of the emission spectrum of a single light-emitting diode (LED) by an external electrical bias is of great technological significance as a crucial property in high-quality displays, yet this capability has not been demonstrated in existing LEDs. Graphene, a tunable optical platform, is a promising medium to achieve this goal. Here we demonstrate a bright spectrally tunable electroluminescence from blue (∼450 nm) to red (∼750 nm) at the graphene oxide/reduced-graphene oxide interface. We explain the electroluminescence results from the recombination of Poole-Frenkel emission ionized electrons at the localized energy levels arising from semi-reduced graphene oxide, and holes from the top of the π band. Tuning of the emission wavelength is achieved by gate modulation of the participating localized energy levels. Our demonstration of current-driven tunable LEDs not only represents a method for emission wavelength tuning but also may find applications in high-quality displays.

  3. Absence of hyperfine effects in 13C-graphene spin-valve devices

    NARCIS (Netherlands)

    Wojtaszek, M.; Vera-Marun, I.J.; Whiteway, E.; Hilke, M.; Wees, B.J. van

    2014-01-01

    The carbon isotope 13C, in contrast to 12C, possesses a nuclear magnetic moment and can induce electron spin dephasing in graphene. This effect is usually neglected due to the low abundance of 13C in natural carbon allotropes (~1%). Chemical vapor deposition (CVD) allows for artificial synthesis of

  4. Three-dimensional Graphene with MoS 2 Nanohybrid as Potential Energy Storage/Transfer Device.

    Science.gov (United States)

    Singh, Kulvinder; Kumar, Sushil; Agarwal, Kushagra; Soni, Khushboo; Ramana Gedela, Venkata; Ghosh, Kaushik

    2017-08-25

    Portable and matured energy storage devices are in high demand for future flexible electronics. Flowery shaped MoS2 nanostructures with porous and flake like morphology was used to study the supercapacitive nature with specific capacitance (C sp ) of 169.37F/g, the energy density of 28.43 Wh/Kg and power density of 10.18 W/Kg. This nanoflower like architecture was decorated on 3D-graphene on Graphite electrode to design the solid-state-supercapacitor prototype device of dimensions of 23.6 × 22.4 × 0.6 mm3 having considerable high Csp of 58.0F/g and energy density of 24.59 Wh/Kg, and power density of 8.8 W/Kg. Four fabricated supercapacitors were connected in series for real state practical demonstration using the light emitting diode that remains enlightened for 40 s by charging it only for 25 s. This study demonstrates the 3D-graphene/MoS2 nanohybrid has a quite high overall potential window nearly about 2.7 V (-1.5 to +1.2 V) in KOH-PVA medium which can be used for the development of solid-state supercapacitors thereby completely eliminating the need for any expensive ionic liquid mediums thus building an exciting potential for high-performance energy storage/transfer devices.

  5. Flexible resistive random access memory devices by using NiO x /GaN microdisk arrays fabricated on graphene films

    Science.gov (United States)

    Lee, Keundong; Park, Jong-woo; Tchoe, Youngbin; Yoon, Jiyoung; Chung, Kunook; Yoon, Hosang; Lee, Sangik; Yoon, Chansoo; Park, Bae Ho; Yi, Gyu-Chul

    2017-05-01

    We report flexible resistive random access memory (ReRAM) arrays fabricated by using NiO x /GaN microdisk arrays on graphene films. The ReRAM device was created from discrete GaN microdisk arrays grown on graphene films produced by chemical vapor deposition, followed by deposition of NiO x thin layers and Au metal contacts. The microdisk ReRAM arrays were transferred to flexible plastic substrates by a simple lift-off technique. The electrical and memory characteristics of the ReRAM devices were investigated under bending conditions. Resistive switching characteristics, including cumulative probability, endurance, and retention, were measured. After 1000 bending repetitions, no significant change in the device characteristics was observed. The flexible ReRAM devices, constructed by using only inorganic materials, operated reliably at temperatures as high as 180 °C.

  6. Effects of low energy E-beam irradiation on graphene and graphene field effect transistors and raman metrology of graphene on split gate test structures

    Science.gov (United States)

    Rao, Gayathri S.

    2011-12-01

    Apart from its compelling performance in conventional nanoelectronic device geometries, graphene is an appropriate candidate to study certain interesting phenomenon (e.g. the Veselago lens effect) predicted on the basis of its linear electron dispersion relation. A key requirement for the observation of such phenomenon in graphene and for its use in conventional field-effect transistor (FET) devices is the need to minimize defects such as consisting of -- or resulting from -- adsorbates and lattice non-uniformities, and reduce deleterious substrate effects. Consequently the investigation of the origin and interaction of defects in the graphene lattice is essential to improve and tailor graphene-based device performance. In this thesis, optical spectroscopic studies on the influence of low-energy electron irradiation on adsorbate-induced defectivity and doping for substrate supported and suspended graphene were carried out along with spectroscopic and transport measurements on graphene FETs. A comparative investigation of the effects of single-step versus multi-step, low-energy electron irradiation (500 eV) on suspended, substrate supported graphene and on graphene FETs is reported. E-beam irradiation (single-step and multi-step) of substrate-supported graphene resulted in an increase in the Raman ID/IG ratio largely from hydrogenation due to radiolysis of the interfacial water layer between the graphene and the SiO2 substrate and from irradiated surface adsorbates. GFETs subjected to single and multi-step irradiation showed n-doping from CNP (charge neutrality point) shift of ˜ -8 and ˜ -16 V respectively. Correlation of this data with Raman analysis of suspended and supported graphene samples implied a strong role of the substrate and irradiation sequence in determining the level of doping. A correspondingly higher reduction in mobility per incident electron was also observed for GFETs subjected to multi-step irradiation compared to single step, in line with

  7. Quasi-periodic nanoripples in graphene grown by chemical vapor deposition and its impact on charge transport.

    Science.gov (United States)

    Ni, Guang-Xin; Zheng, Yi; Bae, Sukang; Kim, Hye Ri; Pachoud, Alexandre; Kim, Young Soo; Tan, Chang-Ling; Im, Danho; Ahn, Jong-Hyun; Hong, Byung Hee; Ozyilmaz, Barbaros

    2012-02-28

    The technical breakthrough in synthesizing graphene by chemical vapor deposition methods (CVD) has opened up enormous opportunities for large-scale device applications. To improve the electrical properties of CVD graphene grown on copper (Cu-CVD graphene), recent efforts have focused on increasing the grain size of such polycrystalline graphene films to 100 μm and larger. While an increase in grain size and, hence, a decrease of grain boundary density is expected to greatly enhance the device performance, here we show that the charge mobility and sheet resistance of Cu-CVD graphene is already limited within a single grain. We find that the current high-temperature growth and wet transfer methods of CVD graphene result in quasi-periodic nanoripple arrays (NRAs). Electron-flexural phonon scattering in such partially suspended graphene devices introduces anisotropic charge transport and sets limits to both the highest possible charge mobility and lowest possible sheet resistance values. Our findings provide guidance for further improving the CVD graphene growth and transfer process.

  8. Biomedical applications of graphene and graphene oxide.

    Science.gov (United States)

    Chung, Chul; Kim, Young-Kwan; Shin, Dolly; Ryoo, Soo-Ryoon; Hong, Byung Hee; Min, Dal-Hee

    2013-10-15

    Graphene has unique mechanical, electronic, and optical properties, which researchers have used to develop novel electronic materials including transparent conductors and ultrafast transistors. Recently, the understanding of various chemical properties of graphene has facilitated its application in high-performance devices that generate and store energy. Graphene is now expanding its territory beyond electronic and chemical applications toward biomedical areas such as precise biosensing through graphene-quenched fluorescence, graphene-enhanced cell differentiation and growth, and graphene-assisted laser desorption/ionization for mass spectrometry. In this Account, we review recent efforts to apply graphene and graphene oxides (GO) to biomedical research and a few different approaches to prepare graphene materials designed for biomedical applications. Because of its excellent aqueous processability, amphiphilicity, surface functionalizability, surface enhanced Raman scattering (SERS), and fluorescence quenching ability, GO chemically exfoliated from oxidized graphite is considered a promising material for biological applications. In addition, the hydrophobicity and flexibility of large-area graphene synthesized by chemical vapor deposition (CVD) allow this material to play an important role in cell growth and differentiation. The lack of acceptable classification standards of graphene derivatives based on chemical and physical properties has hindered the biological application of graphene derivatives. The development of an efficient graphene-based biosensor requires stable biofunctionalization of graphene derivatives under physiological conditions with minimal loss of their unique properties. For the development graphene-based therapeutics, researchers will need to build on the standardization of graphene derivatives and study the biofunctionalization of graphene to clearly understand how cells respond to exposure to graphene derivatives. Although several

  9. Graphene-Composite Carbon Nanofiber-Based Electrodes for Energy Storage Devices

    Science.gov (United States)

    2014-04-18

    TYPE Final 3. DATES COVERED (From - To) 18 Sep 12 to 17 Sep 13 4. TITLE AND SUBTITLE Nucleation and growth control of ZnO via impurity...control of ZnO via impurity-mediated crystallization 5a. CONTRACT NUMBER FA2386-12-1-4094 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F 6...carbon nanotubes (CNTs), carbon nanofibers (CNFs), and graphenes, have attracted a considerable amount of attention in energy conversion and storage

  10. Approach to Multifunctional Device Platform with Epitaxial Graphene on Transition Metal Oxide (Postprint)

    Science.gov (United States)

    2015-09-23

    layers, respectively. 15. SUBJECT TERMS Heterostructures, two-dimensional materials, van der Waals interaction , 2D graphene, metal oxide (TiO2...sample holder with a 10.6 μ m CO2 IR laser . The laser output power was adjusted until the target temperature was reached. The temperature of the sample... Laser Deposited Transition- Metal Carbides for Field-Emission Cathode Coatings. ACS Appl. Mater. Interfaces 5, 9241–9246 (2013). 13. Swift, G. A

  11. Simulation of Graphene Mechanics

    NARCIS (Netherlands)

    Jain, S.K.|info:eu-repo/dai/nl/412769646

    2017-01-01

    Graphene is a one atom thick layer of carbon atoms arranged in hexagonal lattice in two-dimensions. The discovery of graphene has provoked a revolution in nanotechnology, as the structural, thermal, and electronic properties of graphene make it a very useful component for a large variety of devices.

  12. Rippling instabilities in suspended nanoribbons

    Science.gov (United States)

    Wang, Hailong; Upmanyu, Moneesh

    2012-11-01

    Morphology mediates the interplay between the structure and electronic transport in atomically thin nanoribbons such as graphene as the relaxation of edge stresses occurs preferentially via out-of-plane deflections. In the case of end-supported suspended nanoribbons that we study here, past experiments and computations have identified a range of equilibrium morphologies, in particular, for graphene flakes, yet a unified understanding of their relative stability remains elusive. Here, we employ atomic-scale simulations and a composite framework based on isotropic elastic plate theory to chart out the morphological stability space of suspended nanoribbons with respect to intrinsic (ribbon elasticity) and engineered (ribbon geometry) parameters, and the combination of edge and body actuation. The computations highlight a rich morphological shape space that can be naturally classified into two competing shapes, bendinglike and twistlike, depending on the distribution of ripples across the interacting edges. The linearized elastic framework yields exact solutions for these rippled shapes. For compressive edge stresses, the body strain emerges as a key variable that controls their relative stability and in extreme cases stabilizes coexisting transverse ripples. Tensile edge stresses lead to dimples within the ribbon core that decay into the edges, a feature of obvious significance for stretchable nanoelectronics. The interplay between geometry and mechanics that we report should serve as a key input for quantifying the transport along these ribbons.

  13. Charge Transfer Properties Through Graphene Layers in Gas Detectors

    CERN Document Server

    Thuiner, P.; Jackman, R.B.; Müller, H.; Nguyen, T.T.; Oliveri, E.; Pfeiffer, D.; Resnati, F.; Ropelewski, L.; Smith, J.A.; van Stenis, M.; Veenhof, R.

    2016-01-01

    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical, electrical and optical properties. For the first time graphene layers suspended on copper meshes were installed into a gas detector equipped with a gaseous electron multiplier. Measurements of low energy electron and ion transfer through graphene were conducted. In this paper we describe the sample preparation for suspended graphene layers, the testing procedures and we discuss the preliminary results followed by a prospect of further applications.

  14. Electrospun Graphene-TiO2 Nanocomposite Fiber Mats for High Efficient Electron Conductor in Photovoltaic Devices

    Science.gov (United States)

    Zhang, Xiang; Truong Nguyen, Son; Tien Nguyen, Hoa; Duong, Hai Minh; Ramakrishna, Seeram

    2012-02-01

    The photovoltaic performance of dye-sensitized solar cells can be rationally improved by incorporating graphene nanosheet in n-type TiO2 semiconductor because of the high electron mobility of graphene. However, the incorporation of graphene into TiO2 semiconductor to achieve high performance is still challenging. We report a facile method to synthesize 1 dimensional graphene-TiO2 nanofibers by chemical exfoliation and electrospinning. Functionalized graphene was prepared from commercial graphite using a modified Hummers method, following by sonication and reduction with NaBH4. The effect of oxidation time during chemical exfoliation process, the content of graphene during electrospinning and proper film thickness of graphene-TiO2 nanofibers mat with respect to power conversion efficiency was investigated. Compared to TiO2 film, the graphene-TiO2 nanofibers mat significantly improves the conductivity. Further improvements could be expected by optimizing electron diffusion distance and fabrication process.

  15. Resistive switching effect in the planar structure of all-printed, flexible and rewritable memory device based on advanced 2D nanocomposite of graphene quantum dots and white graphene flakes

    Science.gov (United States)

    Muqeet Rehman, Muhammad; Uddin Siddiqui, Ghayas; Kim, Sowon; Choi, Kyung Hyun

    2017-08-01

    Pursuit of the most appropriate materials and fabrication methods is essential for developing a reliable, rewritable and flexible memory device. In this study, we have proposed an advanced 2D nanocomposite of white graphene (hBN) flakes embedded with graphene quantum dots (GQDs) as the functional layer of a flexible memory device owing to their unique electrical, chemical and mechanical properties. Unlike the typical sandwich type structure of a memory device, we developed a cost effective planar structure, to simplify device fabrication and prevent sneak current. The entire device fabrication was carried out using printing technology followed by encapsulation in an atomically thin layer of aluminum oxide (Al2O3) for protection against environmental humidity. The proposed memory device exhibited attractive bipolar switching characteristics of high switching ratio, large electrical endurance and enhanced lifetime, without any crosstalk between adjacent memory cells. The as-fabricated device showed excellent durability for several bending cycles at various bending diameters without any degradation in bistable resistive states. The memory mechanism was deduced to be conductive filamentary; this was validated by illustrating the temperature dependence of bistable resistive states. Our obtained results pave the way for the execution of promising 2D material based next generation flexible and non-volatile memory (NVM) applications.

  16. EDITORIAL: Epitaxial graphene Epitaxial graphene

    Science.gov (United States)

    de Heer, Walt A.; Berger, Claire

    2012-04-01

    Graphene is widely regarded as an important new electronic material with interesting two-dimensional electron gas properties. Not only that, but graphene is widely considered to be an important new material for large-scale integrated electronic devices that may eventually even succeed silicon. In fact, there are countless publications that demonstrate the amazing applications potential of graphene. In order to realize graphene electronics, a platform is required that is compatible with large-scale electronics processing methods. It was clear from the outset that graphene grown epitaxially on silicon carbide substrates was exceptionally well suited as a platform for graphene-based electronics, not only because the graphene sheets are grown directly on electronics-grade silicon carbide (an important semiconductor in its own right), but also because these sheets are oriented with respect to the semiconductor. Moreover, the extremely high temperatures involved in production assure essentially defect-free and contamination-free materials with well-defined interfaces. Epitaxial graphene on silicon carbide is not a unique material, but actually a class of materials. It is a complex structure consisting of a reconstructed silicon carbide surface, which, for planar hexagonal silicon carbide, is either the silicon- or the carbon-terminated face, an interfacial carbon rich layer, followed by one or more graphene layers. Consequently, the structure of graphene films on silicon carbide turns out to be a rich surface-science puzzle that has been intensively studied and systematically unravelled with a wide variety of surface science probes. Moreover, the graphene films produced on the carbon-terminated face turn out to be rotationally stacked, resulting in unique and important structural and electronic properties. Finally, in contrast to essentially all other graphene production methods, epitaxial graphene can be grown on structured silicon carbide surfaces to produce graphene

  17. Surface doping of conjugated polymers by graphene oxide and its application for organic electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yan [Department of Materials Science and Engineering, University of Washington, Box 352120, Seattle, WA 98195 (United States); State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310027 (China); Yip, Hin-Lap; Chen, Kung-Shih; Acton, Orb; Sun, Ying [Department of Materials Science and Engineering, University of Washington, Box 352120, Seattle, WA 98195 (United States); O' Malley, Kevin M.; Ting, Guy [Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195 (United States); Chen, Hongzheng [State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310027 (China); Jen, Alex K.Y. [Department of Materials Science and Engineering, University of Washington, Box 352120, Seattle, WA 98195 (United States); Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195 (United States)

    2011-04-26

    Surface doping of conjugated polymers is realized by depositing a thin layer of graphene oxide (GO) on top of the polymers. The high proton density and the unique 2D structure of GO facilitate the protonic surface doping of conjugated polymers to achieve high conductivities. This finding represents a new strategy for improving charge transport across the metal/conjugated polymer interface to achieve much improved performance in organic solar cells. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Spintronic devices based on graphene nanoribbons with transition metal impurities. Towards space applications

    Directory of Open Access Journals (Sweden)

    Daniela ENCIU

    2014-03-01

    Full Text Available Very recent publications draw the attention to a possible revolution that nanotechnology can cause in aviation. The effervescence in the peak field of nanomaterials is remarkable, as evidenced by the number of Nobel prizes recently awarded. A class of nanomaterials, the nanosensors, whose object of study is the present work, represents a special interest in space applications. More specifically, this article proposes the synthesis of a nanosensor based on active control and manipulation of spin degrees of freedom in the graphene nanoribbons (GNR, the strongest known substance. Thus, the physical model, a GNR, is electrically connected to two electrodes. Different variations of Mn (Manganese impurities in graphene, with the spins having preset configurations, are considered. When a magnetic field is detected, their spin change causing changes in the total energy and hence the variation of transmission function. Therefore, the concept of active control, which originated in the flight control and structural vibration problems, is naturally extended herein to the nanosensors synthesis. The used physico-mathematical model to determine the spin transport and the transmission function is based on density functional theory, Kohn-Sham equations and the SIESTA package. The differences between distinct GNR excited states were determined and it was established that the energy range overlaps the mid-infrared wavelengths. Therefore, structures of this kind may serve in spatial applications which exploit the infrared atmospheric window.

  19. Sulfur and Nitrogen co-doped graphene quantum dot decorated ZnO nanorod/polymer hybrid flexible device for photosensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Hmar, Jehova Jire L.; Majumder, Tanmoy; Dhar, Saurab; Mondal, Suvra Prakash, E-mail: suvraphy@gmail.com

    2016-08-01

    S and N co-doped graphene quantum dots (S,N-GQDs) have been synthesized by a hydrothermal process. S,N-GQDs are made up of 1–5 monolayer of graphene with average diameter 13.3 nm. The absorption peaks at 336 and 621 nm, are attributed to n → Π{sup ⁎} transitions of electrons in C=O and S=O bonds, respectively. S,N-GQDs are highly luminescent and showed excitation dependent emission behaviors. Hybrid photosensing device has been fabricated with S,N-GQD sensitized ZnO nanorods and a conjugated polymer poly(3-hexylthiophene) (P3HT). S,N-GQD decorated ZnO nanorod demonstrated higher photoresponse compared to pristine ZnO nanorod based device. S,N-GQD/ZnO nanorod hybrid device showed superior incident photon to electron conversion efficiency (IPCE), photoresponsivity and detectivity compared to the control samples. The flexibility study of the samples has been monitored by measuring current-voltage characteristics at different bending angles. - Highlights: • S and N co-doped graphene quantum dots (S,N-GQDs) were synthesized. • ZnO nanorods were grown on ITO coated flexible PET substrates. • S,N-GQDs were attached with ZnO nanorods and used as a green sensitizer. • Photosensing properties of S,N-GQD/ZnO and P3HT polymer hybrid device was studied.

  20. Optothermal Raman Studies of Thermal Properties of Graphene Based Films

    Science.gov (United States)

    Malekpour, Hoda

    Efficient thermal management is becoming a critical issue for development of the next generation of electronics. As the size of electronic devices shrinks, the dissipated power density increases, demanding a better heat removal. The discovery of graphene's unique electrical and thermal properties stimulated interest of electronic industry to development of graphene based technologies. In this dissertation, I report the results of my investigation of thermal properties of graphene derivatives and their applications in thermal management. The dissertation consists of three parts. In the first part, I investigated thermal conductivity of graphene laminate films deposited on thermally insulating polyethylene terephthalate substrates. Graphene laminate is made of chemically derived graphene and few layer graphene flakes packed in overlapping structure. Two types of graphene laminate were studied: as deposited and compressed. The thermal conductivity of the laminate was found to be in the range from 40 W/mK to 90 W/mK at room temperature. It was established that the average size and the alignment of graphene flakes are parameters dominating the heat conduction. In the second part of this dissertation, I investigated thermal conductivity of chemically reduced freestanding graphene oxide films. It was found that the in-plane thermal conductivity of graphene oxide can be increased significantly using chemical reduction and temperature treatment. Finally, I studied the effect of defects on thermal conductivity of suspended graphene. The knowledge of the thermal conductivity dependence on the concentration of defects can shed light on the strength of the phonon - point defect scattering in two-dimensional materials. The defects were introduced to graphene in a controllable way using the low-energy electron beam irradiation. It was determined that as the defect density increases the thermal conductivity decreases down to about 400 W/mK, and then reveal saturation type behavior

  1. Graphene Meets Microbubbles: A Superior Contrast Agent for Photoacoustic Imaging.

    Science.gov (United States)

    Toumia, Yosra; Domenici, Fabio; Orlanducci, Silvia; Mura, Francesco; Grishenkov, Dmitry; Trochet, Philippe; Lacerenza, Savino; Bordi, Federico; Paradossi, Gaio

    2016-06-29

    Coupling graphene with a soft polymer surface offers the possibility to build hybrid constructs with new electrical, optical, and mechanical properties. However, the low reactivity of graphene is a hurdle in the synthesis of such systems which is often bypassed by oxidizing its carbon planar structure. However, the defects introduced with this process jeopardize the properties of graphene. In this paper we present a different approach, applicable to many different polymer surfaces, which uses surfactant assisted ultrasonication to exfoliate, and simultaneously suspend, graphene in water in its intact form. Tethering pristine graphene sheets to the surfaces is accomplished by using suitable reactive functional groups of the surfactant scaffold. We focused on applying this approach to the fabrication of a hybrid system, made of pristine graphene tethered to poly(vinyl alcohol) based microbubbles (PVA MBs), designed for enhancing photoacoustic signals. Photoacoustic imaging (PAI) is a powerful preclinical diagnostic tool which provides real time images at a resolution of 40 μm. The leap toward clinical imaging has so far been hindered by the limited tissues penetration of near-infrared (NIR) pulsed laser radiation. Many academic and industrial research laboratories have met this challenge by designing devices, each with pros and cons, to enhance the photoacoustic (PA) signal. The major advantages of the hybrid graphene/PVA MBs construct, however, are (i) the preservation of graphene properties, (ii) biocompatibility, a consequence of the robust anchoring of pristine graphene to the bioinert surface of the PVA bubble, and (iii) a very good enhancement in a NIR spectral region of the PA signal, which does not overlap with the signals of PA active endogenous molecules such as hemoglobin.

  2. Towards the Synthesis of Graphene Azide from Graphene Oxide.

    Science.gov (United States)

    Halbig, Christian E; Rietsch, Philipp; Eigler, Siegfried

    2015-11-26

    In the last decades, organic azides haven proven to be very useful precursors in organic chemistry, for example in 1,3-dipolar cycloaddition reactions (click-chemistry). Likewise, azides can be introduced into graphene oxide with an almost intact carbon framework, namely oxo-functionalized graphene (oxo-G₁), which is a highly oxidized graphene derivative and a powerful precursor for graphene that is suitable for electronic devices. The synthesis of a graphene derivative with exclusively azide groups (graphene azide) is however still a challenge. In comparison also hydrogenated graphene, called graphene or halogenated graphene remain challenging to synthesize. A route to graphene azide would be the desoxygenation of azide functionalized oxo-G₁. Here we show how treatment of azide functionalized oxo-G₁ with HCl enlarges the π-system and removes strongly adsorbed water and some oxo-functional groups. This development reflects one step towards graphene azide.

  3. Mechanochemistry of graphene: Tuning ion absorption on graphene via strain

    Science.gov (United States)

    Hu, Yonghong; Wu, Yunyi; Yan, Zhong; Mao, Caixia; Xue, Li; Sun, Tieyu; Wang, Yu

    2017-12-01

    The ultra-high specific surface area of graphene endows this two-dimensional material with an excellent capacity of ion absorption. Here we show that the ion absorption properties of graphene can be tailored via mechanical deformation. By using density function theory (DFT) analysis, we found that strain could enhance the ion absorption capacity of graphene. Our results provide perspective for the development of graphene-based electrochemical devices, such as stress difference battery and mechanochemistry sensors with graphene electrodes.

  4. Graphene oxide-deposited microfiber: a new photothermal device for various microbubble generation.

    Science.gov (United States)

    Xing, Xiaobo; Zheng, Jiapeng; Sun, Chao; Li, Fengjia; Zhu, Debin; Lei, Liang; Cai, Xiang; Wu, Ting

    2013-12-30

    This study makes a claim of utilizing the photothermal effect of graphene oxide nanosheets (GONs) to effectively produce various microbubbles in an optical microfiber system at infrared optical communications band. A low power continuous-wave light at wavelength of 1527-1566 nm was launched into the microfiber to form GONs-deposition which acted as a linear heat source for creating various microbubbles. Both thermal convection flow and optical gradient force were responsible for the driving force to assemble GONs onto the microfiber. This simple optical fiber system can be used for assembling other micro/nanoscale particles and biomolecules, which has prospective applications in sensing, microfluidics, virus detection, and other biochip techniques.

  5. Fabrication of graphene-nanoflake/poly(4-vinylphenol) polymer nanocomposite thin film by electrohydrodynamic atomization and its application as flexible resistive switching device

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyung Hyun; Ali, Junaid [Department of Mechatronics Engineering, Jeju National University, Jeju 690-756 (Korea, Republic of); Na, Kyoung-Hoan, E-mail: khna@dankook.ac.kr [College of Engineering, Dankook University, Yongin-si, Gyeonggi-do 448-701 (Korea, Republic of)

    2015-10-15

    This paper describes synthesis of graphene/poly(4-vinylphenol) (PVP) nanocomposite and deposition of thin film by electrohydrodynamic atomization (EHDA) for fabrication flexible resistive switching device. EHDA technique proved its viability for thin film deposition after surface morphology analyses by field emission scanning electron microscope (FESEM) and non-destructive 3D Nano-profilometry, as the deposited films were, devoid of abnormalities. The commercially available graphene micro-flakes were exfoliated and broken down to ultra-small (20 nm–200 nm) nano-flakes by ultra-sonication in presence of N-methyl-pyrrolidone (NMP). These graphene nanoflakes with PVP nanocomposite, were successfully deposited as thin films (thickness ~140±7 nm, R{sub a}=2.59 nm) on indium–tin-oxide (ITO) coated polyethylene terephthalate (PET) substrate. Transmittance data revealed that thin films are up to ~87% transparent in visible and NIR region. Resistive switching behaviour of graphene/PVP nanocomposite thin film was studied by using the nanocomposite as active layer in Ag/active layer/ITO sandwich structure. The resistive switching devices thus fabricated, showed characteristic OFF to ON (high resistance to low resistance) transition at low voltages, when operated between ±3 V, characterized at 10 nA compliance currents. The devices fabricated by this approach exhibited a stable room temperature, low power current–voltage hysteresis and well over 1 h retentivity, and R{sub OFF}/R{sub ON}≈35:1. The device showed stable flexibility up to a minimum bending diameter of 1.8 cm.

  6. Optical devices having flakes suspended in a host fluid to provide a flake/fluid system providing flakes with angularly dependent optical properties in response to an alternating current electric field due to the dielectric properties of the system

    Science.gov (United States)

    Kosc, Tanya Z [Rochester, NY; Marshall, Kenneth L [Rochester, NY; Jacobs, Stephen D [Pittsford, NY

    2006-05-09

    Optical devices utilizing flakes (also called platelets) suspended in a host fluid have optical characteristics, such as reflective properties, which are angular dependent in response to an AC field. The reflectivity may be Bragg-like, and the characteristics are obtained through the use of flakes of liquid crystal material, such as polymer liquid crystal (PLC) materials including polymer cholesteric liquid crystal (PCLC) and polymer nematic liquid crystal (PNLC) material or birefringent polymers (BP). The host fluid may be propylene carbonate, poly(ethylene glycol) or other fluids or fluid mixtures having fluid conductivity to support conductivity in the flake/host system. AC field dependent rotation of 90.degree. can be obtained at rates and field intensities dependent upon the frequency and magnitude of the AC field. The devices are useful in providing displays, polarizers, filters, spatial light modulators and wherever switchable polarizing, reflecting, and transmission properties are desired.

  7. Nonlinear graphene plasmonics

    Science.gov (United States)

    Ooi, Kelvin J. A.; Tan, Dawn T. H.

    2017-10-01

    The rapid development of graphene has opened up exciting new fields in graphene plasmonics and nonlinear optics. Graphene's unique two-dimensional band structure provides extraordinary linear and nonlinear optical properties, which have led to extreme optical confinement in graphene plasmonics and ultrahigh nonlinear optical coefficients, respectively. The synergy between graphene's linear and nonlinear optical properties gave rise to nonlinear graphene plasmonics, which greatly augments graphene-based nonlinear device performance beyond a billion-fold. This nascent field of research will eventually find far-reaching revolutionary technological applications that require device miniaturization, low power consumption and a broad range of operating wavelengths approaching the far-infrared, such as optical computing, medical instrumentation and security applications.

  8. Graphene and Graphene Nanomesh Spintronics

    Directory of Open Access Journals (Sweden)

    Junji Haruyama

    2013-12-01

    Full Text Available Spintronics, which manipulate spins but not electron charge, are highly valued as energy and thermal dissipationless systems. A variety of materials are challenging the realization of spintronic devices. Among those, graphene, a carbon mono-atomic layer, is very promising for efficient spin manipulation and the creation of a full spectrum of beyond-CMOS spin-based nano-devices. In the present article, the recent advancements in graphene spintronics are reviewed, introducing the observation of spin coherence and the spin Hall effect. Some research has reported the strong spin coherence of graphene. Avoiding undesirable influences from the substrate are crucial. Magnetism and spintronics arising from graphene edges are reviewed based on my previous results. In spite of carbon-based material with only sp2 bonds, the zigzag-type atomic structure of graphene edges theoretically produces spontaneous spin polarization of electrons due to mutual Coulomb interaction of extremely high electron density of states (edge states localizing at the flat energy band. We fabricate honeycomb-like arrays of low-defect hexagonal nanopores (graphene nanomeshes; GNMs on graphenes, which produce a large amount of zigzag pore edges, by using a nonlithographic method (nanoporous alumina templates and critical temperature annealing under high vacuum and hydrogen atmosphere. We observe large-magnitude ferromagnetism, which arises from polarized spins localizing at the hydrogen-terminated zigzag-nanopore edges of the GNMs, even at room temperature. Moreover, spin pumping effects are found for magnetic fields applied in parallel with the few-layer GNM planes. Strong spin coherence and spontaneously polarized edge spins of graphene can be expected to lead to novel spintronics with invisible, flexible, and ultra-light (wearable features.

  9. Magnetocapacitance and dissipation factor of epitaxial graphene-based quantum Hall effect devices

    Science.gov (United States)

    Schurr, J.; Kalmbach, C.-C.; Ahlers, F. J.; Hohls, F.; Kruskopf, M.; Müller, A.; Pierz, K.; Bergsten, T.; Haug, R. J.

    2017-10-01

    We investigate the properties of the magnetocapacitance and dissipation factor of epitaxial graphene Hall bars with different electrode configurations to gain insight into the underlying physical mechanisms. The dependence of magnetocapacitance and dissipation factor on the magnetic field shows how the screening ability of the two-dimensional electron gas (2DEG) changes at the transition from the nonquantized to the quantized state. Both magnetocapacitance and dissipation factor exhibit a characteristic and correlated voltage dependence, which is attributed to the alternating contraction and expansion of the nonscreening 2DEG regions due to the alternating local electric field. Two regimes with seemingly different voltage dependencies are explained as the limiting cases of weak and strong electric fields of the same general voltage dependence. Electric fields in the plane of the 2DEG are found to cause about three orders of magnitude more ac dissipation than perpendicular electric fields. This strong directionality is attributed to the fact that the electrons are mobile in the plane of the 2DEG but are confined in the third dimension. In the quantized state, not only the screening edge of the 2DEG but also compressible puddles embedded in the bulk cause ac dissipation, as follows from the measured frequency dependence. Finally, characteristic parameters like the width of the screening edge, the threshold voltage, and the charging time of the compressible puddles are determined.

  10. A new device to measure the settling properties of suspended particles : instrumental development and first applications during runoff events in small watersheds

    Science.gov (United States)

    Legoût, Cédric; Wendling, Valentin; Gratiot, Nicolas; Mercier, Bernard; Coulaud, Catherine; Nord, Guillaume; Droppo, Ian; Ribolzi, Olivier

    2016-04-01

    Most equations describing suspended particle transport balances the settling flux of particles against the turbulent flux of the flow. Although in-situ techniques have been developed to measure settling velocities of suspended particles in coastal areas, floodplain rivers and estuaries, they are not easily transferable to small and meso-scale watersheds. The main limitation lies in the range of concentrations frequently reaching several tens of grams per liter during runoff events. To overcome this instrumental limitation we developed an original System for the Characterization of Aggregates and Flocs (SCAF). An optical settling column, equipped with a vertical array of 16 optical sensors, was used to provide light transmission through a suspension during quiescent settling. It was specifically designed to be inserted in plastic bottles contained in classical sequential samplers, in order to obtain automatic measurements of the suspension immediately after its collection in the river. From the SCAF measurements, we calculate both the particle settling velocity distributions and the propensity of particles to flocculate. The prototypes were tested in laboratory conditions for a wide range of concentrations and material types, leading to consistent measurements with flocculation indices comprised between 0 and 80, respectively for non-cohesive and cohesive materials. First measurements in the field were achieved during runoff events at the outlet of small nested catchments in Lao PDR (MSEC network of environmental observatories) in order to explore the non-conservative behavior of the settling properties of eroded soil aggregates during their transfer.

  11. Characterization of Deposited Platinum Contacts onto Discrete Graphene Flakes for Electrical Devices

    KAUST Repository

    Holguin Lerma, Jorge A.

    2016-05-03

    For years, electron beam induced deposition has been used to fabricate electrical contacts for micro and nanostructures. The role of the contact resistance is key to achieve high performance and efficiency in electrical devices. The present thesis reports on the electrical, structural and chemical characterization of electron beam deposited platinum electrodes that are exposed to different steps of thermal annealing and how they are used in four-probe devices of ultrathin graphite (uG) flakes (<100nm thickness). The device integration of liquid phase exfoliated uG is demonstrated, and its performance compared to devices made with analogous mechanically exfoliated uG. For both devices, similar contact resistances of ~2kΩ were obtained. The electrical measurements confirm a 99.5% reduction in contact resistance after vacuum thermal annealing at 300 °C. Parallel to this, Raman characterization confirms the formation of a nanocrystalline carbon structure over the electrode. While this could suggest an enhancement of the electrical transport in the device, an additional thermal annealing step in air at 300 °C, promoted the oxidation and removal of the carbon shell and confirmed that the contact resistance remained the same. Overall this shows that the carbon shell along the electrode has no significant role in the contact resistance. Finally, the challenges based on topographical analysis of the deposited electrodes are discussed. Reduction of the electrode’s height down to one-third of the initial value, increased surface roughness, formation of voids along the electrodes and the onset of platinum nanoparticles near the area of deposition, represent a challenge for future work.

  12. Synthesis and Characterisation of Reduced Graphene Oxide/Bismuth Composite for Electrodes in Electrochemical Energy Storage Devices.

    Science.gov (United States)

    Wang, Jiabin; Zhang, Han; Hunt, Michael R C; Charles, Alasdair; Tang, Jie; Bretcanu, Oana; Walker, David; Hassan, Khalil T; Sun, Yige; Šiller, Lidija

    2017-01-20

    A reduced graphene oxide/bismuth (rGO/Bi) composite was synthesized for the first time using a polyol process at a low reaction temperature and with a short reaction time (60 °C and 3 hours, respectively). The as-prepared sample is structured with 20-50 nm diameter bismuth particles distributed on the rGO sheets. The rGO/Bi composite displays a combination of capacitive and battery-like charge storage, achieving a specific capacity value of 773 C g-1 at a current density of 0.2 A g-1 when charged to 1 V. The material not only has good power density but also shows moderate stability in cycling tests with current densities as high as 5 A g-1 . The relatively high abundance and low price of bismuth make this rGO/Bi material a promising candidate for use in electrode materials in future energy storage devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The defect level and ideal thermal conductivity of graphene uncovered by residual thermal reffusivity at the 0 K limit.

    Science.gov (United States)

    Xie, Yangsu; Xu, Zaoli; Xu, Shen; Cheng, Zhe; Hashemi, Nastaran; Deng, Cheng; Wang, Xinwei

    2015-06-14

    Due to its intriguing thermal and electrical properties, graphene has been widely studied for potential applications in sensor and energy devices. However, the reported value for its thermal conductivity spans from dozens to thousands of W m(-1) K(-1) due to different levels of alternations and defects in graphene samples. In this work, the thermal diffusivity of suspended four-layered graphene foam (GF) is characterized from room temperature (RT) down to 17 K. For the first time, we identify the defect level in graphene by evaluating the inverse of thermal diffusivity (termed "thermal reffusivity": Θ) at the 0 K limit. By using the Debye model of Θ = Θ0 + C× e(-θ/2T) and fitting the Θ-T curve to the point of T = 0 K, we identify the defect level (Θ0) and determine the Debye temperature of graphene. Θ0 is found to be 1878 s m(-2) for the studied GF and 43-112 s m(-2) for three highly crystalline graphite materials. This uncovers a 16-43-fold higher defect level in GF than that in pyrolytic graphite. In GF, the phonon mean free path solely induced by defects and boundary scattering is determined as 166 nm. The Debye temperature of graphene is determined to be 1813 K, which is very close to the average theoretical Debye temperature (1911 K) of the three acoustic phonon modes in graphene. By subtracting the defect effect, we report the ideal thermal diffusivity and conductivity (κideal) of graphene presented in the 3D foam structure in the range of 33-299 K. Detailed physics based on chemical composition and structure analysis are given to explain the κideal-T profile by comparing with those reported for suspended graphene.

  14. Graphene/semiconductor silicon modified BiFeO3/indium tin oxide ferroelectric photovoltaic device for transparent self-powered windows

    Science.gov (United States)

    Gupta, Surbhi; Medwal, Rohit; Limbu, Tej B.; Katiyar, Rajesh K.; Pavunny, Shojan P.; Tomar, Monika; Morell, G.; Gupta, Vinay; Katiyar, R. S.

    2015-08-01

    We report photovoltaic response of highly transparent graphene/BiFe0.95Si0.05O3 (BFSiO)/ITO/glass derived from bottom-up spin coating technique. The device exhibits short-circuit-current (ISC 0.75 mA) with 1000 fold upsurge and open-circuit-voltage (VOC ˜ 0.45 V) under standard AM 1.5 illumination through graphene. In combination, ISC of 0.63 mA and VOC of 0.35 V for same illumination through ITO, reveals the prospects of harvesting indoor light. Also, crystallographic structure, red shift in band gap, leakage behavior, and ferroelectric characteristics of BFSiO thin films are reported. Reproducible transient response of ISC and VOC with quick switching (<100 ms) for 20 consecutive cycles and stability (95%) over test period of 16 weeks signifies high endurance and retentivity, promising for building integrated self-powered windows.

  15. Graphene-on-silicon hybrid plasmonic-photonic integrated circuits.

    Science.gov (United States)

    Xiao, Ting-Hui; Cheng, Zhenzhou; Goda, Keisuke

    2017-06-16

    Graphene surface plasmons (GSPs) have shown great potential in biochemical sensing, thermal imaging, and optoelectronics. To excite GSPs, several methods based on the near-field optical microscope and graphene nanostructures have been developed in the past few years. However, these methods suffer from their bulky setups and low GSP-excitation efficiency due to the short interaction length between free-space vertical excitation light and the atomic layer of graphene. Here we present a CMOS-compatible design of graphene-on-silicon hybrid plasmonic-photonic integrated circuits that achieve the in-plane excitation of GSP polaritons as well as localized surface plasmon (SP) resonance. By employing a suspended membrane slot waveguide, our design is able to excite GSP polaritons on a chip. Moreover, by utilizing a graphene nanoribbon array, we engineer the transmission spectrum of the waveguide by excitation of localized SP resonance. Our theoretical and computational study paves a new avenue to enable, modulate, and monitor GSPs on a chip, potentially applicable for the development of on-chip electro-optic devices.

  16. Beating of magnetic oscillations in a graphene device probed by quantum capacitance

    KAUST Repository

    Tahir, M.

    2012-07-05

    We report the quantum capacitance of a monolayergraphene device in an external perpendicular magnetic field including the effects of Rashba spin-orbit interaction(SOI). The SOI mixes the spin up and spin down states of neighbouring Landau levels into two (unequally spaced) energy branches. In order to investigate the role of the SOI for the electronic transport, we study the density of states to probe the quantum capacitance of monolayergraphene.SOIeffects on the quantum magnetic oscillations (Shubnikov de Haas and de Hass-van Alphen) are deduced from the quantum capacitance.

  17. Graphene based biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Gürel, Hikmet Hakan, E-mail: hhakan.gurel@kocaeli.edu.tr [Kocaeli University, Kocaeli (Turkey); Salmankurt, Bahadır [Sakarya University, Sakarya (Turkey)

    2016-03-25

    Nanometer-sized graphene as a 2D material has unique chemical and electronic properties. Because of its unique physical, chemical, and electronic properties, its interesting shape and size make it a promising nanomaterial in many biological applications. It is expected that biomaterials incorporating graphene will be developed for the graphene-based drug delivery systems and biomedical devices. The interactions of biomolecules and graphene are long-ranged and very weak. Development of new techniques is very desirable for design of bioelectronics sensors and devices. In this work, we present first-principles calculations within density functional theory to calculate effects of charging on nucleobases on graphene. It is shown that how modify structural and electronic properties of nucleobases on graphene by applied charging.

  18. Graphene based biosensors

    Science.gov (United States)

    Gürel, Hikmet Hakan; Salmankurt, Bahadır

    2016-03-01

    Nanometer-sized graphene as a 2D material has unique chemical and electronic properties. Because of its unique physical, chemical, and electronic properties, its interesting shape and size make it a promising nanomaterial in many biological applications. It is expected that biomaterials incorporating graphene will be developed for the graphene-based drug delivery systems and biomedical devices. The interactions of biomolecules and graphene are long-ranged and very weak. Development of new techniques is very desirable for design of bioelectronics sensors and devices. In this work, we present first-principles calculations within density functional theory to calculate effects of charging on nucleobases on graphene. It is shown that how modify structural and electronic properties of nucleobases on graphene by applied charging.

  19. Graphene nanophotonics: From fundamentals to applications

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    With unique possibilities for controlling light in nanoscale devices, graphene has opened new perspectives to the nanophotonics community with potential applications in metamaterials, modulators, photodetectors, and sensors. Following a brief introduction of graphene, I will address some...... fundamentals, such as excitation of graphene plasmon polartions [1], pushing graphene plasmons to low wavelengths, and investigating of graphene plasmon-phonon interactions [2] and light-matter interactions in graphene-metal hybrid structures [3]. Then I will discuss graphene-based optical modulators......, particularly focusing on graphene-silicon platforms for electro-absorption modulating [4]....

  20. Graphene nanophotonics: From fundamentals to applications

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    With unique possibilities for controlling light in nanoscale devices, graphene has opened new perspectives to the nanophotonics community with potential applications in metamaterials, modulators, photodetectors, and sensors. Following a brief introduction of graphene, I will address some...... fundamentals, such as excitation of graphene plasmon polartions [1], pushing graphene plasmons to low wavelengths, and investigating of graphene plasmon-phonon interactions [2] and light-matter interactions in graphene-metal hybrid structures [3]. Then I will discuss graphene-based optical modulators......, particularly focusing on graphene-silicon platforms for electro-absorption modulating...

  1. Graphene-graphene oxide floating gate transistor memory.

    Science.gov (United States)

    Jang, Sukjae; Hwang, Euyheon; Lee, Jung Heon; Park, Ho Seok; Cho, Jeong Ho

    2015-01-21

    A novel transparent, flexible, graphene channel floating-gate transistor memory (FGTM) device is fabricated using a graphene oxide (GO) charge trapping layer on a plastic substrate. The GO layer, which bears ammonium groups (NH3+), is prepared at the interface between the crosslinked PVP (cPVP) tunneling dielectric and the Al2 O3 blocking dielectric layers. Important design rules are proposed for a high-performance graphene memory device: (i) precise doping of the graphene channel, and (ii) chemical functionalization of the GO charge trapping layer. How to control memory characteristics by graphene doping is systematically explained, and the optimal conditions for the best performance of the memory devices are found. Note that precise control over the doping of the graphene channel maximizes the conductance difference at a zero gate voltage, which reduces the device power consumption. The proposed optimization via graphene doping can be applied to any graphene channel transistor-type memory device. Additionally, the positively charged GO (GO-NH3+) interacts electrostatically with hydroxyl groups of both UV-treated Al2 O3 and PVP layers, which enhances the interfacial adhesion, and thus the mechanical stability of the device during bending. The resulting graphene-graphene oxide FGTMs exhibit excellent memory characteristics, including a large memory window (11.7 V), fast switching speed (1 μs), cyclic endurance (200 cycles), stable retention (10(5) s), and good mechanical stability (1000 cycles). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Operating mechanisms of highly-reproducible write-once-read-many-times memory devices based on graphene quantum dot:poly(methyl silsesquioxane) nanocomposites

    Science.gov (United States)

    Bok, Chang Han; Wu, Chaoxing; Kim, Tae Whan

    2017-01-01

    Resistive switching memory devices were fabricated utilizing graphene quantum dot (GQD):poly(methyl silsesquioxane) (PMSSQ) hybrid nanocomposites. Current-voltage curves for the Al/GQD:PMSSQ/indium-tin-oxide devices at room temperature showed write-once-read-many-times memory (WORM) characteristics with an ON/OFF ratio of as large as 106 due to the homogeneous dispersion of the GQDs in the PMSSQ matrix. The WORM devices maintained retention times larger than 2 × 104 s under ambient conditions. The devices showed high device-to-device reproducibility with threshold-voltage distributions between 3 and 5 V. The ON state currents remained between 10-6 and 10-3 A, and the OFF state currents maintained between 10-12 and 10-9 A. The operating mechanisms concerning the interaction between the GQDs and the PMSSQ matrix for the resistive-switch phenomenon were analyzed on the basis of the I-V results and with the aid of the energy band diagram.

  3. Relativistic Dynamics of Graphene

    Science.gov (United States)

    Semenoff, Gordon

    2011-10-01

    Graphene is a one-atom thick layer of carbon atoms where electrons obey an emergent Dirac equation. Only seven years after it first became available in the laboratory, graphene has captured the attention of a wide spectrum of scientists: from particle physicists interested in using graphene's emergent relativistic dynamics to study quantum field theory phenomena to condensed matter physicists fascinated by its unusual electronic propertied and technologists searching for materials for the nest generation of electronic devices. This presentation will review the basics of graphene and some questions, such as the possibility of chiral symmetry breaking, which have overlap with similar ones in strong interaction particle physics.

  4. A large-scale NEMS light-emitting array based on CVD graphene (Conference Presentation)

    Science.gov (United States)

    Kim, Hyungsik; Kim, Young Duck; Lee, Changhyuk; Lee, Sunwoo; Seo, Dong-jea; Jerng, Sahng-Kyoon; Chun, Seung-Hyun; Hone, James; Shepard, Kenneth L.

    2017-02-01

    Graphene has received much interest from optical communities largely owing to its photon-like linear energy band structure called Dirac cone. While majority of the recent research has dealt with plasmon and polariton of the two-dimensional material, a recently reported graphene light emitter could render a new dimension of applications, particularly in high-speed optical communication. Moreover chemical vapor deposition (CVD) growth technique for graphene is available today providing means for scalable high quality graphene. The reported graphene emitter provides broadband light emission from visible to mid-infrared which could be instrumental in multi-color display units and optical communications, however a truly large scale implementation has not previously been achieved. Here we demonstrate a CMOS-compatible 262,144 light-emitting pixels array (10 x 10 mm2) based on suspended CVD graphene nano-electro-mechanical systems (GNEMS). A single photoemission area is 19.6 µm2 and a unit pixel is consisting of 512 photoemission devices (16 x 16) where a multiplexer and a digital to analog converter (DAC) are used to control each pixel. This work clearly demonstrates scalability of multi-channel GNEMS light-emitting array, an atomically thin electro-optical module, and further paves a path for its commercial implementation transparent display or high-speed optical communication.

  5. Vertical and In-Plane Current Devices Using NbS2/n-MoS2van der Waals Schottky Junction and Graphene Contact.

    Science.gov (United States)

    Shin, Hyung Gon; Yoon, Hyong Seo; Kim, Jin Sung; Kim, Minju; Lim, June Yeong; Yu, Sanghyuck; Park, Ji Hoon; Yi, Yeonjin; Kim, Taekyeong; Jun, Seong Chan; Im, Seongil

    2018-02-08

    A van der Waals (vdW) Schottky junction between two-dimensional (2D) transition metal dichalcogenides (TMDs) is introduced here for both vertical and in-plane current devices: Schottky diodes and metal semiconductor field-effect transistors (MESFETs). The Schottky barrier between conducting NbS 2 and semiconducting n-MoS 2 appeared to be as large as ∼0.5 eV due to their work-function difference. While the Schottky diode shows an ideality factor of 1.8-4.0 with an on-to-off current ratio of 10 3 -10 5 , Schottky-effect MESFET displays little gate hysteresis and an ideal subthreshold swing of 60-80 mV/dec due to low-density traps at the vdW interface. All MESFETs operate with a low threshold gate voltage of -0.5 ∼ -1 V, exhibiting easy saturation. It was also found that the device mobility is significantly dependent on the condition of source/drain (S/D) contact for n-channel MoS 2 . The highest room temperature mobility in MESFET reaches to approximately more than 800 cm 2 /V s with graphene S/D contact. The NbS 2 /n-MoS 2 MESFET with graphene was successfully integrated into an organic piezoelectric touch sensor circuit with green OLED indicator, exploiting its predictable small threshold voltage, while NbS 2 /n-MoS 2 Schottky diodes with graphene were applied to extract doping concentrations in MoS 2 channel.

  6. Enabling graphene nanoelectronics.

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei; Ohta, Taisuke; Biedermann, Laura Butler; Gutierrez, Carlos; Nolen, C. M.; Howell, Stephen Wayne; Beechem Iii, Thomas Edwin; McCarty, Kevin F.; Ross, Anthony Joseph, III

    2011-09-01

    Recent work has shown that graphene, a 2D electronic material amenable to the planar semiconductor fabrication processing, possesses tunable electronic material properties potentially far superior to metals and other standard semiconductors. Despite its phenomenal electronic properties, focused research is still required to develop techniques for depositing and synthesizing graphene over large areas, thereby enabling the reproducible mass-fabrication of graphene-based devices. To address these issues, we combined an array of growth approaches and characterization resources to investigate several innovative and synergistic approaches for the synthesis of high quality graphene films on technologically relevant substrate (SiC and metals). Our work focused on developing the fundamental scientific understanding necessary to generate large-area graphene films that exhibit highly uniform electronic properties and record carrier mobility, as well as developing techniques to transfer graphene onto other substrates.

  7. Negligible environmental sensitivity of graphene in a hexagonal boron nitride/graphene/h-BN sandwich structure.

    Science.gov (United States)

    Wang, Lei; Chen, Zheyuan; Dean, Cory R; Taniguchi, Takashi; Watanabe, Kenji; Brus, Louis E; Hone, James

    2012-10-23

    Using Raman spectroscopy, we study the environmental sensitivity of mechanically exfoliated and electrically floating single-layer graphene transferred onto a hexagonal boron nitride (h-BN) substrate, in comparison with graphene deposited on a SiO(2) substrate. In order to understand and isolate the substrate effect on graphene electrical properties, we model and correct for Raman optical interference in the substrates. As-deposited and unannealed graphene shows a large I(2D)/I(G) ratio on both substrates, indicating extremely high quality, close to that of graphene suspended in vacuum. Thermal annealing strongly activates subsequent environmental sensitivity on the SiO(2) substrate; such activation is reduced but not eliminated on the h-BN substrate. In contrast, in a h-BN/graphene/h-BN sandwich structure, with graphene protected on both sides, graphene remains pristine despite thermal processing. Raman data provide a deeper understanding of the previously observed improved graphene electrical conductivity on h-BN substrates. In the sandwich structure, the graphene 2D Raman feature has a higher frequency and narrower line width than in pristine suspended graphene, implying that the local h-BN environment modestly yet measurably changes graphene electron and phonon dispersions.

  8. The role of multilayer graphene in the improved electrical and optical characteristics of a P3HT-based photovoltaic device

    Science.gov (United States)

    Singh, Joginder; Prasad, Neetu; Rao Peta, Koteswara; Bhatnagar, P. K.

    2017-08-01

    In the present work, we have studied in detail the effect of the incorporation of multilayer graphene (MLG) on the electrical and optical properties of P3HT (poly (3-hexylthiophene))-based photovoltaic (PV) devices. The PV devices were fabricated with a P3HT:MLG composite and significant improvement in the performance was observed in terms of enhanced short circuit current density (J sc) and open circuit voltage (V oc) at the optimized MLG concentration of 0.1 wt%. The dark I-V measurements exhibit a remarkable reduction in the total series resistance (R s) of about 63% in our typical device which is attributed to the increase in the mobility of charge carriers in the P3HT:MLG (0.1 wt%) composite film. A prominent quenching in the photoluminescence (PL) of P3HT on the addition of MLG indicates efficient electron extraction from P3HT and therefore, the increase in the J sc is the combined effect of both the efficient charge transfer and reduction in the R s of the device. Further, cyclic voltammetry (CV) measurements reveal that on adding MLG, there is a downshift of the highest occupied molecular orbital energy level of P3HT which in turn increases the V oc of the device by ~0.28 V.

  9. Transport and dynamics of nanostructured graphene

    DEFF Research Database (Denmark)

    Gunst, Tue

    This thesis is concerned with the heating and electronic properties of nanoscale devices based on nanostructured graphene. As electronic devices scale down to nanometer dimensions, the operation depends on the detailed atomic structure. Emerging carbon nano-materials such as graphene, carbon...... nanotubes and graphene nanoribbons, exhibit promising electronic and heat transport properties. Much research addresses the electron mobility of pristine graphene devices. However, the thermal transport properties, as well as the effects of e-ph interaction, in nanoscale devices, based on nanostructured...... graphene, have received much less attention. This thesis contributes to the understanding of the thermal properties of nanostructured graphene. The computational analysis is based on DFT/TB-NEGF. We show how a regular nanoperforation of a graphene layer - a graphene antidot lattice (GAL) - may...

  10. Properties and applications of chemically functionalized graphene.

    Science.gov (United States)

    Craciun, M F; Khrapach, I; Barnes, M D; Russo, S

    2013-10-23

    The vast and yet largely unexplored family of graphene materials has great potential for future electronic devices with novel functionalities. The ability to engineer the electrical and optical properties in graphene by chemically functionalizing it with a molecule or adatom is widening considerably the potential applications targeted by graphene. Indeed, functionalized graphene has been found to be the best known transparent conductor or a wide gap semiconductor. At the same time, understanding the mechanisms driving the functionalization of graphene with hydrogen is proving to be of fundamental interest for energy storage devices. Here we discuss recent advances on the properties and applications of chemically functionalized graphene.

  11. Infrared detection and photon energy up-conversion in graphene layer infrared photodetectors integrated with LEDs based on van der Waals heterostructures: Concept, device model, and characteristics

    Science.gov (United States)

    Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Karasik, V. E.; Shur, M. S.

    2017-09-01

    We propose the concept of the infrared detection and photon energy up-conversion in the devices using the integration of the graphene layer infrared detectors (GLIPs) and the light emitting diodes (LEDs) based on van der Waals (vdW) heterostructures. Using the developed device model of the GLIP-LEDs, we calculate their characteristics. The GLIP-LED devices can operate as the detectors of far- and mid infrared radiation (FIR and MIR) with an electrical output or with near-infrared radiation (NIR) or visible radiation (VIR) output. In the latter case, GLIP-LED devices function as the photon energy up-converters of FIR and MIR to NIR or VIR. The operation of GLIP-LED devices is associated with the injection of the electron photocurrent produced due to the interband absorption of the FIR/MIR photons in the GLIP part into the LED emitting NIR/VIR photons. We calculate the GLIP-LED responsivity and up-conversion efficiency as functions the structure parameters and the energies of the incident FIR/MIR photons and the output NIR/VIR photons. The advantages of the GLs in the vdW heterostructures (relatively high photoexcitation rate from and low capture efficiency into GLs) combined with the reabsorption of a fraction of the NIR/FIR photon flux in the GLIP (which can enable an effective photonic feedback) result in the elevated GLIP-LED device responsivity and up-conversion efficiency. The positive optical feedback from the LED section of the device lead to increasing current injection enabling the appearance of the S-type current-voltage characteristic with a greatly enhanced responsivity near the switching point and current filamentation.

  12. Magnetic Graphene Nanosheet-Based Microfluidic Device for Homogeneous Real-Time Electronic Monitoring of Pyrophosphatase Activity Using Enzymatic Hydrolysate-Induced Release of Copper Ion.

    Science.gov (United States)

    Lin, Youxiu; Zhou, Qian; Li, Juan; Shu, Jian; Qiu, Zhenli; Lin, Yuping; Tang, Dianping

    2016-01-05

    A novel flow-through microfluidic device based on a magneto-controlled graphene sensing platform was designed for homogeneous electronic monitoring of pyrophosphatase (PPase) activity; enzymatic hydrolysate-induced release of inorganic copper ion (Cu(2+)) from the Cu(2+)-coordinated pyrophosphate ions (Cu(2+)-PPi) complex was assessed to determine enzyme activity. Magnetic graphene nanosheets (MGNS) functionalized with negatively charged Nafion were synthesized by using the wet-chemistry method. The Cu(2+)-PPi complexes were prepared on the basis of the coordination reaction between copper ion and inorganic pyrophosphate ions. Upon target PPase introduction into the detection system, the analyte initially hydrolyzed pyrophosphate ions into phosphate ions and released the electroactive copper ions from Cu(2+)-PPi complexes. The released copper ions could be readily captured through the negatively charged Nafion on the magnetic graphene nanosheets, which could be quantitatively monitored by using the stripping voltammetry on the flow-through detection cell with an external magnet. Under optimal conditions, the obtained electrochemical signal exhibited a high dependence on PPase activity within a dynamic range from 0.1 to 20 mU mL(-1) and allowed the detection at a concentration as low as 0.05 mU mL(-1). Coefficients of variation for reproducibility of the intra-assay and interassay were below 7.6 and 9.8%, respectively. The inhibition efficiency of sodium fluoride (NaF) also received good results in pyrophosphatase inhibitor screening research. In addition, the methodology afforded good specificity and selectivity, simplification, and low cost without the need of sample separations and multiple washing steps, thus representing a user-friendly protocol for practical utilization in a quantitative PPase activity.

  13. Thermal conductivity of twisted bilayer graphene.

    Science.gov (United States)

    Li, Hongyang; Ying, Hao; Chen, Xiangping; Nika, Denis L; Cocemasov, Alexandr I; Cai, Weiwei; Balandin, Alexander A; Chen, Shanshan

    2014-11-21

    We have investigated experimentally the thermal conductivity of suspended twisted bilayer graphene. The measurements were performed using an optothermal Raman technique. It was found that the thermal conductivity of twisted bilayer graphene is lower than that of monolayer graphene and the reference, Bernal stacked bilayer graphene in the entire temperature range examined (∼300-700 K). This finding indicates that the heat carriers - phonons - in twisted bilayer graphene do not behave in the same manner as that observed in individual graphene layers. The decrease in the thermal conductivity found in twisted bilayer graphene was explained by the modification of the Brillouin zone due to plane rotation and the emergence of numerous folded phonon branches that enhance the phonon Umklapp and normal scattering. The results obtained are important for understanding thermal transport in two-dimensional systems.

  14. Graphene/semiconductor silicon modified BiFeO{sub 3}/indium tin oxide ferroelectric photovoltaic device for transparent self-powered windows

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Surbhi; Medwal, Rohit, E-mail: rohitmedwal@gmail.com; Limbu, Tej B.; Katiyar, Rajesh K.; Pavunny, Shojan P.; Morell, G.; Katiyar, R. S., E-mail: rkatiyar@hpcf.upr.edu [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, P.O. Box 70377, San Juan, Puerto Rico 00936-8377 (United States); Tomar, Monika [Physics Department, Miranda House, University of Delhi, Delhi 110007 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2015-08-10

    We report photovoltaic response of highly transparent graphene/BiFe{sub 0.95}Si{sub 0.05}O{sub 3} (BFSiO)/ITO/glass derived from bottom-up spin coating technique. The device exhibits short-circuit-current (I{sub SC} 0.75 mA) with 1000 fold upsurge and open-circuit-voltage (V{sub OC} ∼ 0.45 V) under standard AM 1.5 illumination through graphene. In combination, I{sub SC} of 0.63 mA and V{sub OC} of 0.35 V for same illumination through ITO, reveals the prospects of harvesting indoor light. Also, crystallographic structure, red shift in band gap, leakage behavior, and ferroelectric characteristics of BFSiO thin films are reported. Reproducible transient response of I{sub SC} and V{sub OC} with quick switching (<100 ms) for 20 consecutive cycles and stability (95%) over test period of 16 weeks signifies high endurance and retentivity, promising for building integrated self-powered windows.

  15. Photosensitive graphene transistors.

    Science.gov (United States)

    Li, Jinhua; Niu, Liyong; Zheng, Zijian; Yan, Feng

    2014-08-20

    High performance photodetectors play important roles in the development of innovative technologies in many fields, including medicine, display and imaging, military, optical communication, environment monitoring, security check, scientific research and industrial processing control. Graphene, the most fascinating two-dimensional material, has demonstrated promising applications in various types of photodetectors from terahertz to ultraviolet, due to its ultrahigh carrier mobility and light absorption in broad wavelength range. Graphene field effect transistors are recognized as a type of excellent transducers for photodetection thanks to the inherent amplification function of the transistors, the feasibility of miniaturization and the unique properties of graphene. In this review, we will introduce the applications of graphene transistors as photodetectors in different wavelength ranges including terahertz, infrared, visible, and ultraviolet, focusing on the device design, physics and photosensitive performance. Since the device properties are closely related to the quality of graphene, the devices based on graphene prepared with different methods will be addressed separately with a view to demonstrating more clearly their advantages and shortcomings in practical applications. It is expected that highly sensitive photodetectors based on graphene transistors will find important applications in many emerging areas especially flexible, wearable, printable or transparent electronics and high frequency communications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Wettability of graphene.

    Science.gov (United States)

    Raj, Rishi; Maroo, Shalabh C; Wang, Evelyn N

    2013-04-10

    the graphene sheet and the underlying substrate. The fundamental insights on graphene-water interactions reported in this study is an important step towards developing graphene-assisted surface coatings for heat transfer and microfluidics devices.

  17. An Approach To Fabricate PDMS Encapsulated All-Solid-State Advanced Asymmetric Supercapacitor Device with Vertically Aligned Hierarchical Zn-Fe-Co Ternary Oxide Nanowire and Nitrogen Doped Graphene Nanosheet for High Power Device Applications.

    Science.gov (United States)

    Maitra, Anirban; Das, Amit Kumar; Bera, Ranadip; Karan, Sumanta Kumar; Paria, Sarbaranjan; Si, Suman Kumar; Khatua, Bhanu Bhusan

    2017-02-22

    We highlight the design and fabrication of a polydimethylsiloxane (PDMS) encapsulated advanced all-solid-state asymmetric supercapacitor (ASC) device consisting of hierarchical mesoporous zinc-iron-cobalt ternary oxide (ZICO) nanowire coated nickel (Ni) foam (ZICO@Ni foam) as a promising positive electrode and nitrogen doped graphene coated Ni foam (N-G@Ni foam) as negative electrode in the presence of PVA-KOH gel electrolyte. Owing to outstanding electrochemical behavior and ultrahigh specific capacitance of ZICO (≈ 2587.4 F/g at 1 A/g) and N-G (550 F/g at 1 A/g) along with their mutual synergistic outputs, the assembled all-solid-state ASC device exhibits an outstanding energy density of ≈40.5 Wh/kg accompanied by a remarkable long-term cycle stability with ≈95% specific capacitance retention even after 5000 charge-discharge cycles. The exclusive hierarchical ZICO nanowires were synthesized by a facile two-step process comprising of a hydrothermal protocol followed by an annealing treatment on a quartz substrate. While Zn2+ gives the stability of the oxide system, Fe and Co ions provide better electronic conductivity and capacitive response under vigorous cyclic condition. The extraordinary performance of as-fabricated ASC device resembles its suitability for the construction of advanced energy storage devices in modern electronic industries.

  18. Contactless Microwave Characterization of Encapsulated Graphene p -n Junctions

    Science.gov (United States)

    Ranjan, V.; Zihlmann, S.; Makk, P.; Watanabe, K.; Taniguchi, T.; Schönenberger, C.

    2017-05-01

    Accessing intrinsic properties of a graphene device can be hindered by the influence of contact electrodes. Here, we capacitively couple graphene devices to superconducting resonant circuits and observe clear changes in the resonance frequency and widths originating from the internal charge dynamics of graphene. This allows us to extract the density of states and charge relaxation resistance in graphene p -n junctions without the need for electrical contacts. The presented characterization paves a fast, sensitive, and noninvasive measurement of graphene nanocircuits.

  19. Modifying Surface Energy of Graphene via Plasma-Based Chemical Functionalization to Tune Thermal and Electrical Transport at Metal Interfaces.

    Science.gov (United States)

    Foley, Brian M; Hernández, Sandra C; Duda, John C; Robinson, Jeremy T; Walton, Scott G; Hopkins, Patrick E

    2015-08-12

    The high mobility exhibited by both supported and suspended graphene, as well as its large in-plane thermal conductivity, has generated much excitement across a variety of applications. As exciting as these properties are, one of the principal issues inhibiting the development of graphene technologies pertains to difficulties in engineering high-quality metal contacts on graphene. As device dimensions decrease, the thermal and electrical resistance at the metal/graphene interface plays a dominant role in degrading overall performance. Here we demonstrate the use of a low energy, electron-beam plasma to functionalize graphene with oxygen, fluorine, and nitrogen groups, as a method to tune the thermal and electrical transport properties across gold-single layer graphene (Au/SLG) interfaces. We find that while oxygen and nitrogen groups improve the thermal boundary conductance (hK) at the interface, their presence impairs electrical transport leading to increased contact resistance (ρC). Conversely, functionalization with fluorine has no impact on hK, yet ρC decreases with increasing coverage densities. These findings indicate exciting possibilities using plasma-based chemical functionalization to tailor the thermal and electrical transport properties of metal/2D material contacts.

  20. Graphene-based frequency tripler.

    Science.gov (United States)

    Chen, Hong-Yan; Appenzeller, Joerg

    2012-04-11

    Graphene has captured the imagination of researchers worldwide as an ideal two-dimensional material with exceptional electrical transport properties. The high electron and hole mobility quickly inspired scientists to search for electronic applications that require high-performance channel materials. However, the absence of a bandgap in graphene immediately revealed itself in terms of ambipolar device characteristics and the nonexistence of a device off-state. The question is: How can the superior electronic properties of graphene be harvested while dealing appropriately with its unique characteristics rather than enforcing conventional device concepts? Here, we report a novel device idea, a graphene-based frequency tripler, an application that employs an innovative electrostatic doping approach and exploits the unique ambipolar behavior of graphene. © 2012 American Chemical Society

  1. Promising applications of graphene and graphene-based nanostructures

    Science.gov (United States)

    Nguyen, Bich Ha; Hieu Nguyen, Van

    2016-06-01

    The present article is a review of research works on promising applications of graphene and graphene-based nanostructures. It contains five main scientific subjects. The first one is the research on graphene-based transparent and flexible conductive films for displays and electrodes: efficient method ensuring uniform and controllable deposition of reduced graphene oxide thin films over large areas, large-scale pattern growth of graphene films for stretchble transparent electrodes, utilization of graphene-based transparent conducting films and graphene oxide-based ones in many photonic and optoelectronic devices and equipments such as the window electrodes of inorganic, organic and dye-sensitized solar cells, organic light-emitting diodes, light-emitting electrochemical cells, touch screens, flexible smart windows, graphene-based saturated absorbers in laser cavities for ultrafast generations, graphene-based flexible, transparent heaters in automobile defogging/deicing systems, heatable smart windows, graphene electrodes for high-performance organic field-effect transistors, flexible and transparent acoustic actuators and nanogenerators etc. The second scientific subject is the research on conductive inks for printed electronics to revolutionize the electronic industry by producing cost-effective electronic circuits and sensors in very large quantities: preparing high mobility printable semiconductors, low sintering temperature conducting inks, graphene-based ink by liquid phase exfoliation of graphite in organic solutions, and developing inkjet printing technique for mass production of high-quality graphene patterns with high resolution and for fabricating a variety of good-performance electronic devices, including transparent conductors, embedded resistors, thin-film transistors and micro supercapacitors. The third scientific subject is the research on graphene-based separation membranes: molecular dynamics simulation study on the mechanisms of the transport of

  2. A new reducing agent to prepare single-layer, high-quality reduced graphene oxide for device applications.

    Science.gov (United States)

    Mao, Shun; Yu, Kehan; Cui, Shumao; Bo, Zheng; Lu, Ganhua; Chen, Junhong

    2011-07-01

    We report on a novel, efficient, and one-step approach to prepare single-layer reduced graphene oxide (RGO) suspensions and films using hydroxylamine hydrochloride. The effective chemical reduction of GO was evidenced by a significant increase in the C/O ratio and five orders of magnitude decrease in the GO resistance. Field-effect transistor gas sensors were fabricated using as-produced RGO sheets and the resulting sensor exhibited a fast response and a high sensitivity to low-concentration target gases at room temperature.

  3. Industrial graphene metrology.

    Science.gov (United States)

    Kyle, Jennifer Reiber; Ozkan, Cengiz S; Ozkan, Mihrimah

    2012-07-07

    Graphene is an allotrope of carbon whose structure is based on one-atom-thick planar sheets of carbon atoms that are densely packed in a honeycomb crystal lattice. Its unique electrical and optical properties raised worldwide interest towards the design and fabrication of future electronic and optical devices with unmatched performance. At the moment, extensive efforts are underway to evaluate the reliability and performance of a number of such devices. With the recent advances in synthesizing large-area graphene sheets, engineers have begun investigating viable methodologies for conducting graphene metrology and quality control at industrial scales to understand a variety of reliability issues including defects, patternability, electrical, and physical properties. This review summarizes the current state of industrial graphene metrology and provides an overview of graphene metrology techniques. In addition, a recently developed large-area graphene metrology technique based on fluorescence quenching is introduced. For each metrology technique, the industrial metrics it measures are identified--layer thickness, edge structure, defects, Fermi level, and thermal conductivity--and a detailed description is provided as to how the measurements are performed. Additionally, the potential advantages of each technique for industrial use are identified, including throughput, scalability, sensitivity to substrate/environment, and on their demonstrated ability to achieve quantified results. The recently developed fluorescence-quenching metrology technique is shown to meet all the necessary criteria for industrial applications, rendering it the first industry-ready graphene metrology technique.

  4. Photocatalytic Nanostructuring of Graphene Guided by Block Copolymer Self-Assembly

    DEFF Research Database (Denmark)

    Wang, Zhongli; Li, Tao; Schulte, Lars

    2016-01-01

    graphene nanomesh was fabricated by photocatalysis of single-layer graphene suspended on top of TiO2-covered nanopillars, which were produced by combining block copolymer nanolithography with atomic layer deposition. Graphene nanoribbons were also prepared by the same method applied to a line-forming block...

  5. Nanostructured graphene for spintronics

    DEFF Research Database (Denmark)

    Gregersen, Søren Schou; Power, Stephen; Jauho, Antti-Pekka

    2017-01-01

    Zigzag edges of the honeycomb structure of graphene exhibit magnetic polarization, making them attractive as building blocks for spintronic devices. Here, we show that devices with zigzag-edged triangular antidots perform essential spintronic functionalities, such as spatial spin splitting or spin...

  6. Graphene-ionic liquid composites

    Energy Technology Data Exchange (ETDEWEB)

    Aksay, Ilhan A.; Korkut, Sibel; Pope, Michael; Punckt, Christian

    2016-11-01

    Method of making a graphene-ionic liquid composite. The composite can be used to make elec-trodes for energy storage devices, such as batteries and supercapacitors. Dis-closed and claimed herein is method of making a graphene-ionic liquid com-posite, comprising combining a graphene source with at least one ionic liquid and heating the combination at a temperature of at least about 130 .degree. C.

  7. How to make graphene superconducting

    OpenAIRE

    Profeta, Gianni; Calandra, Matteo; Mauri, Francesco

    2011-01-01

    Graphene is the physical realization of many fundamental concepts and phenomena in solid state-physics, but in the long list of graphene remarkable properties, a fundamental block is missing: superconductivity. Making graphene superconducting is relevant as the easy manipulation of this material by nanolytographic techniques paves the way to nanosquids, one-electron superconductor-quantum dot devices, superconducting transistors at the nano-scale and cryogenic solid-state coolers. Here we exp...

  8. Electronic components embedded in a single graphene nanoribbon

    NARCIS (Netherlands)

    Jacobse, P. H.; Kimouche, A.; Gebraad, T.; Ervasti, M. M.; Thijssen, J.M.; Liljeroth, P; Swart, I.

    2017-01-01

    The use of graphene in electronic devices requires a band gap, which can be achieved by creating nanostructures such as graphene nanoribbons. A wide variety of atomically precise graphene nanoribbons can be prepared through on-surface synthesis, bringing the concept of graphene nanoribbon

  9. Electronic components embedded in a single graphene nanoribbon

    NARCIS (Netherlands)

    Jacobse, P H|info:eu-repo/dai/nl/412769506; Kimouche, A; Gebraad, T; Ervasti, M.; Thijssen, J M|info:eu-repo/dai/nl/073430331; Liljeroth, P|info:eu-repo/dai/nl/314007423; Swart, I|info:eu-repo/dai/nl/304837652

    2017-01-01

    The use of graphene in electronic devices requires a band gap, which can be achieved by creating nanostructures such as graphene nanoribbons. A wide variety of atomically precise graphene nanoribbons can be prepared through on-surface synthesis, bringing the concept of graphene nanoribbon

  10. First-principle study of nanostructures of functionalized graphene

    Indian Academy of Sciences (India)

    2014-06-04

    Jun 4, 2014 ... pristine graphene results in a metal–semiconductor transition [6–16]. Hydrogenation of graphene has been found to be reversible [10]. The reverse engineering on graphene has great potential in the design of functional nanomaterials and fuel storage devices. Fully hydrogenated graphene, i.e., graphane, ...

  11. Thermal conductivity of graphene laminate.

    Science.gov (United States)

    Malekpour, H; Chang, K-H; Chen, J-C; Lu, C-Y; Nika, D L; Novoselov, K S; Balandin, A A

    2014-09-10

    We have investigated thermal conductivity of graphene laminate films deposited on polyethylene terephthalate substrates. Two types of graphene laminate were studied, as deposited and compressed, in order to determine the physical parameters affecting the heat conduction the most. The measurements were performed using the optothermal Raman technique and a set of suspended samples with the graphene laminate thickness from 9 to 44 μm. The thermal conductivity of graphene laminate was found to be in the range from 40 to 90 W/mK at room temperature. It was found unexpectedly that the average size and the alignment of graphene flakes are more important parameters defining the heat conduction than the mass density of the graphene laminate. The thermal conductivity scales up linearly with the average graphene flake size in both uncompressed and compressed laminates. The compressed laminates have higher thermal conductivity for the same average flake size owing to better flake alignment. Coating plastic materials with thin graphene laminate films that have up to 600× higher thermal conductivity than plastics may have important practical implications.

  12. Cable suspended windmill

    Science.gov (United States)

    Farmer, Moses G. (Inventor)

    1990-01-01

    A windmill is disclosed which includes an airframe having an upwind end and a downwind end. The first rotor is rotatably connected to the airframe, and a generator is supported by the airframe and driven by the rotor. The airframe is supported vertically in an elevated disposition by poles which extend vertically upwardly from the ground and support cables which extend between the vertical poles. Suspension cables suspend the airframe from the support cable.

  13. Deposition SnO(2)/nitrogen-doped graphene nanocomposites on the separator: a new type of flexible electrode for energy storage devices.

    Science.gov (United States)

    Liang, Junfei; Cai, Zhi; Tian, Yu; Li, Lidong; Geng, Jianxin; Guo, Lin

    2013-11-27

    It is currently very urgent to develop flexible energy storage devices because of the growing academic interest in and strong technical demand of flexible electronics. Exploration of high-performance electrode materials and a corresponding assembly method for fabrication of flexible energy storage devices plays a critical role in fulfilling this demand. Here, we have developed a facile, economic, and green hydrothermal process to synthesize ultrasmall SnO2 nanocrystallites/nitrogen-doped graphene nanocomposites (USNGs) as a high-performance electrode material for Li-ion batteries (LIBs). Furthermore, using the glass microfiber filters (GMFs) as supporting substrate, the novel flexible USNG-GMF bilayered films have been prepared by depositing the as-prepared USNG on GMF through a simple vacuum filtration. Significantly, for the first time, the flexible USNG-GMF bilayered films have directly been used for assembling LIBs, where the GMF further functions as a separator. The obtained highly robust, binder-free, conducting agent-free, and current collector-free new type of flexible electrodes show excellent LIB performance.

  14. Pulse-Driven Capacitive Lead Ion Detection with Reduced Graphene Oxide Field-Effect Transistor Integrated with an Analyzing Device for Rapid Water Quality Monitoring.

    Science.gov (United States)

    Maity, Arnab; Sui, Xiaoyu; Tarman, Chad R; Pu, Haihui; Chang, Jingbo; Zhou, Guihua; Ren, Ren; Mao, Shun; Chen, Junhong

    2017-11-22

    Rapid and real-time detection of heavy metals in water with a portable microsystem is a growing demand in the field of environmental monitoring, food safety, and future cyber-physical infrastructure. Here, we report a novel ultrasensitive pulse-driven capacitance-based lead ion sensor using self-assembled graphene oxide (GO) monolayer deposition strategy to recognize the heavy metal ions in water. The overall field-effect transistor (FET) structure consists of a thermally reduced graphene oxide (rGO) channel with a thin layer of Al 2 O 3 passivation as a top gate combined with sputtered gold nanoparticles that link with the glutathione (GSH) probe to attract Pb 2+ ions in water. Using a preprogrammed microcontroller, chemo-capacitance based detection of lead ions has been demonstrated with this FET sensor. With a rapid response (∼1-2 s) and negligible signal drift, a limit of detection (LOD) lead ions 1 order of magnitude higher than that of interfering ions) can be achieved for Pb 2+ measurements. The overall assay time (∼10 s) for background water stabilization followed by lead ion testing and calculation is much shorter than common FET resistance/current measurements (∼minutes) and other conventional methods, such as optical and inductively coupled plasma methods (∼hours). An approximate linear operational range (5-20 ppb) around 15 ppb (the maximum contaminant limit by US Environmental Protection Agency (EPA) for lead in drinking water) makes it especially suitable for drinking water quality monitoring. The validity of the pulse method is confirmed by quantifying Pb 2+ in various real water samples such as tap, lake, and river water with an accuracy ∼75%. This capacitance measurement strategy is promising and can be readily extended to various FET-based sensor devices for other targets.

  15. Proximity coupling in superconductor-graphene heterostructures

    OpenAIRE

    Lee, Gil-Ho; Lee, Hu-Jong

    2017-01-01

    This review discusses the electronic properties and the prospective research directions of superconductor-graphene heterostructures. The basic electronic properties of graphene are introduced to highlight the unique possibility of combining two seemingly unrelated physics, superconductivity and relativity. We then focus on graphene-based Josephson junctions, one of the most versatile superconducting quantum devices. The various theoretical methods that have been developed to describe graphene...

  16. Applications of graphene an overview

    CERN Document Server

    Wolf, Edward L

    2014-01-01

    Graphene is presented and analyzed as a replacement for silicon. The Primary focus is on solar cell and CMOS device technologies, with attention to the fabrication methods, including extensions needed, in each case. Specialized applications for graphene within the existing silicon technology are discussed and found to be promising.

  17. Tuning Fano Resonances with Graphene

    DEFF Research Database (Denmark)

    Emani, Naresh K.; Chung, Ting-Fung; Prokopeva, Ludmila

    2013-01-01

    We demonstrate strong electrical control of plasmonic Fano resonances in dolmen structures using tunable interband transitions in graphene. Such graphene-plasmonic hybrid devices can have applications in light modulation and sensing. OCIS codes: (250.5403) Plasmonics; (160.4670) Optical materials...

  18. Charge transfer modeling in monolayer circular graphene quantum dots-ZnO nanowires system for application in photovoltaic devices

    Science.gov (United States)

    Tamandani, Shahryar; Darvish, Ghafar

    2017-01-01

    We investigate electron transport between circular graphene quantum dots (CGQDs) and ZnO nanowires (ZnO NWs). This structure can be used as donor and acceptor in hybrid solar cells. We consider circular quantum dots (QDs) and use analytical calculation in order to estimate wavefunctions of GQD and ZnO NWs. After calculating the wavefunctions overlap, we use Marcus relation in order to calculate electron transfer rate. Also, we calculate this transfer rate for CdSe QDs-ZnO NWs system. Results from analytical calculation show that the transfer rate is limited to 1013 s-1. This result is in agreement with experimental results which are reported earlier. Such systems could be suitable for solar cells.

  19. Graphene-Si heterogeneous nanotechnology

    Science.gov (United States)

    Akinwande, Deji; Tao, Li

    2013-05-01

    It is widely envisioned that graphene, an atomic sheet of carbon that has generated very broad interest has the largest prospects for flexible smart systems and for integrated graphene-silicon (G-Si) heterogeneous very large-scale integrated (VLSI) nanoelectronics. In this work, we focus on the latter and elucidate the research progress that has been achieved for integration of graphene with Si-CMOS including: wafer-scale graphene growth by chemical vapor deposition on Cu/SiO2/Si substrates, wafer-scale graphene transfer that afforded the fabrication of over 10,000 devices, wafer-scalable mitigation strategies to restore graphene's device characteristics via fluoropolymer interaction, and demonstrations of graphene integrated with commercial Si- CMOS chips for hybrid nanoelectronics and sensors. Metrology at the wafer-scale has led to the development of custom Raman processing software (GRISP) now available on the nanohub portal. The metrology reveals that graphene grown on 4-in substrates have monolayer quality comparable to exfoliated flakes. At room temperature, the high-performance passivated graphene devices on SiO2/Si can afford average mobilities 3000cm2/V-s and gate modulation that exceeds an order of magnitude. The latest growth research has yielded graphene with high mobilities greater than 10,000cm2/V-s on oxidized silicon. Further progress requires track compatible graphene-Si integration via wafer bonding in order to translate graphene research from basic to applied research in commercial R and D laboratories to ultimately yield a viable nanotechnology.

  20. Graphene-Based Superconducting Weak Links in Low Magnetic Field

    Science.gov (United States)

    Mills, Scott; Kumaravadivel, Piranavan; Du, Xu

    The impact of magnetic field on Andreev reflection is studied in graphene-based superconducting weak links. We found, through studying weak links with different adhesion layers and superconducting leads (including Graphene-Ti/Au-Nb, Graphene-Ti/Pd-Nb, Graphene-V-Nb, Graphene-Ti-Nb, Graphene-Ti/Pd-NbN), that in low field (B graphene-superconductor interface. As the effective gap of the weak link approaches the intrinsic gap of the superconducting leads, a remnant of Andreev reflection can survive into the quantum Hall regime, allowing study of the interplay between the quantum Hall effect and Andreev reflection in high quality suspended graphene-superconductor weak links.

  1. Extremely High Thermal Conductivity of Graphene: Experimental Study

    OpenAIRE

    Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N.

    2008-01-01

    We report on the first measurement of the thermal conductivity of a suspended single layer graphene. The measurements were performed using a non-contact optical technique. The near room-temperature values of the thermal conductivity in the range ~ 4840 to 5300 W/mK were extracted for a single-layer graphene. The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction.

  2. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.

    Science.gov (United States)

    Kim, Hyungki; Song, Intek; Park, Chibeom; Son, Minhyeok; Hong, Misun; Kim, Youngwook; Kim, Jun Sung; Shin, Hyun-Joon; Baik, Jaeyoon; Choi, Hee Cheul

    2013-08-27

    We report that high-quality single-layer graphene (SLG) has been successfully synthesized directly on various dielectric substrates including amorphous SiO2/Si by a Cu-vapor-assisted chemical vapor deposition (CVD) process. The Cu vapors produced by the sublimation of Cu foil that is suspended above target substrates without physical contact catalyze the pyrolysis of methane gas and assist nucleation of graphene on the substrates. Raman spectra and mapping images reveal that the graphene formed on a SiO2/Si substrate is almost defect-free and homogeneous single layer. The overall quality of graphene grown by Cu-vapor-assisted CVD is comparable to that of the graphene grown by regular metal-catalyzed CVD on a Cu foil. While Cu vapor induces the nucleation and growth of SLG on an amorphous substrate, the resulting SLG is confirmed to be Cu-free by synchrotron X-ray photoelectron spectroscopy. The SLG grown by Cu-vapor-assisted CVD is fabricated into field effect transistor devices without transfer steps that are generally required when SLG is grown by regular CVD process on metal catalyst substrates. This method has overcome two important hurdles previously present when the catalyst-free CVD process is used for the growth of SLG on fused quartz and hexagonal boron nitride substrates, that is, high degree of structural defects and limited size of resulting graphene, respectively.

  3. New routes to graphene, graphene oxide and their related applications.

    Science.gov (United States)

    Zhu, Yu; James, Dustin K; Tour, James M

    2012-09-18

    Recent research has focused upon the growth of the graphene, with a concentration on the synthesis of graphene and related materials using both solution processes and high temperature chemical vapor and solid growth methods. Protocols to prepare high aspect ratio graphene nanoribbons from multi-walled carbon nanotubes have been developed as well as techniques to grow high quality graphene for electronics and other applications where high quality is needed. Graphene materials have been manipulated and modified for use in applications such as transparent electrodes, field effect transistors, thin film transistors and energy storage devices. This review summarizes the development of graphene and related materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Graphene antidot lattice transport measurements

    DEFF Research Database (Denmark)

    Mackenzie, David; Cagliani, Alberto; Gammelgaard, Lene

    2017-01-01

    We investigate graphene devices patterned with a narrow band of holes perpendicular to the current flow, a few-row graphene antidot lattice (FR-GAL). Theoretical reports suggest that a FR-GAL can have a bandgap with a relatively small reduction of the transmission compared to what is typical...... for antidot arrays devices. Graphene devices were fabricated using 100 keV electron beam lithography (EBL) for nanopatterning as well as for defining electrical contacts. Patterns with hole diameter and neck widths of order 30 nm were produced, which is the highest reported pattern density of antidot lattices...... in graphene reported defined by EBL. Electrical measurements showed that devices with one and five rows exhibited field effect mobility of ∼100 cm2/Vs, while a larger number of rows, around 40, led to a significant reduction of field effect mobility (

  5. Visible Light-Assisted Photoreduction of Graphene Oxide Using CdS Nanoparticles and Gas Sensing Properties

    Directory of Open Access Journals (Sweden)

    Amirhossein Hasani

    2015-01-01

    Full Text Available Graphene oxide sheets suspended in ethanol interact with excited CdS nanoparticles and contributed to photocatalytic reduction by accepting electron from nanoparticle. The UV-Vis measurement showed that electrical absorbance of the CdS/graphene oxide sheets increased by decreasing the irradiation time and after 2 h it remained constant which indicates the optimum reduction time. Furthermore, the direct interaction between CdS nanoparticles and graphene sheets hinders the collapse of exfoliated sheets of graphene. The 4-point probe measurement of nanocomposite with different ratios of graphene oxide in CdS solution after irradiation shows that the conductivity of them increased by increasing the amount of GO, but further increasing causes incomplete photo reduction process due to exorbitance increasing GO sheets which contribute to decreasing the conductivity. The CdS/RGO composite material can be used as a gas sensor for CO2 based on its electrocatalytic behavior. The low-cost and easy fabrication sensor shows rapid response and high sensitivity. By varying the amount of GO the optimum concentration which shows high sensitivity is found and its good performance compared with other is attributed to its higher conductivity due to complete reduction. Moreover, the effects of thermal annealing on the conductivity of CdS/RGO film and the performance of devices are researched.

  6. Introducing lattice strain to graphene encapsulated in hBN

    Science.gov (United States)

    Tomori, Hikari; Hiraide, Rineka; Ootuka, Youiti; Watanabe, Kenji; Taniguchi, Takashi; Kanda, Akinobu

    Due to the characteristic lattice structure, lattice strain in graphene produces an effective gauge field. Theories tell that by controlling spatial variation of lattice strain, one can tailor the electronic state and transport properties of graphene. For example, under uniaxial local strain, graphene exhibits a transport gap at low energies, which is attractive for a graphene application to field effect devices. Here, we develop a method for encapsulating a strained graphene film in hexagonal boron-nitride (hBN). It is known that the graphene carrier mobility is significantly improved by the encapsulation of graphene in hBN, which has never been applied to strained graphene. We encapsulate graphene in hBN using the van der Waals assembly method. Strain is induced by sandwiching a graphene film between patterned hBN sheets. Spatial variation of strain is confirmed with micro Raman spectroscopy. Transport measurement of encapsulated strained graphene is in progress.

  7. Seed-mediated growth of patterned graphene nanoribbon arrays

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Michael Scott; Way, Austin James; Jacobberger, Robert Michael

    2017-09-12

    Graphene nanoribbon arrays, methods of growing graphene nanoribbon arrays, and electronic and photonic devices incorporating the graphene nanoribbon arrays are provided. The graphene nanoribbons in the arrays are formed using a seed-mediated, bottom-up, chemical vapor deposition (CVD) technique in which the (001) facet of a semiconductor substrate and the orientation of the seed particles on the substrate are used to orient the graphene nanoribbon crystals preferentially along a single [110] direction of the substrate.

  8. Transformation optics using graphene.

    Science.gov (United States)

    Vakil, Ashkan; Engheta, Nader

    2011-06-10

    Metamaterials and transformation optics play substantial roles in various branches of optical science and engineering by providing schemes to tailor electromagnetic fields into desired spatial patterns. We report a theoretical study showing that by designing and manipulating spatially inhomogeneous, nonuniform conductivity patterns across a flake of graphene, one can have this material as a one-atom-thick platform for infrared metamaterials and transformation optical devices. Varying the graphene chemical potential by using static electric field yields a way to tune the graphene conductivity in the terahertz and infrared frequencies. Such degree of freedom provides the prospect of having different "patches" with different conductivities on a single flake of graphene. Numerous photonic functions and metamaterial concepts can be expected to follow from such a platform.

  9. Encapsulation of graphene in Parylene

    Science.gov (United States)

    Skoblin, Grigory; Sun, Jie; Yurgens, August

    2017-01-01

    Graphene encapsulated between flakes of hexagonal boron nitride (hBN) demonstrates the highest known mobility of charge carriers. However, the technology is not scalable to allow for arrays of devices. We are testing a potentially scalable technology for encapsulating graphene where we replace hBN with Parylene while still being able to make low-ohmic edge contacts. The resulting encapsulated devices show low parasitic doping and a robust Quantum Hall effect in relatively low magnetic fields <5 T.

  10. Reduced Graphene Oxide-Cadmium Zinc Sulfide Nanocomposite with Controlled Band Gap for Large-Area Thin-Film Optoelectronic Device Application

    Science.gov (United States)

    Ibrahim, Sk; Chakraborty, Koushik; Pal, Tanusri; Ghosh, Surajit

    2017-12-01

    Herein, we report the one pot single step solvothermal synthesis of reduced grapheme oxide-cadmium zinc sulfide (RGO-Cd0.5Zn0.5S) composite. The reduction in graphene oxide (GO), synthesis of Cd0.5Zn0.5S (mentioned as CdZnS in the text) nanorod and decoration of CdZnS nanorods onto RGO sheet were done simultaneously. The structural, morphological and optical properties were studied thoroughly by different techniques, such as XRD, TEM, UV-Vis and PL. The PL intensity of CdZnS nanorods quenches significantly after the attachment of RGO, which confirms photoinduced charge transformation from CdZnS nanorods to RGO sheet through the interface of RGO-CdZnS. An excellent photocurrent generation in RGO-CdZnS thin-film device has been observed under simulated solar light irradiation. The photocurrent as well as photosensitivity increases linearly with the solar light intensity for all the composites. Our study establishes that the synergistic effect of RGO and CdZnS in the composite is capable of getting promising applications in the field of optoelectronic devising.

  11. Enhanced Device and Circuit-Level Performance Benchmarking of Graphene Nanoribbon Field-Effect Transistor against a Nano-MOSFET with Interconnects

    Directory of Open Access Journals (Sweden)

    Huei Chaeng Chin

    2014-01-01

    Full Text Available Comparative benchmarking of a graphene nanoribbon field-effect transistor (GNRFET and a nanoscale metal-oxide-semiconductor field-effect transistor (nano-MOSFET for applications in ultralarge-scale integration (ULSI is reported. GNRFET is found to be distinctly superior in the circuit-level architecture. The remarkable transport properties of GNR propel it into an alternative technology to circumvent the limitations imposed by the silicon-based electronics. Budding GNRFET, using the circuit-level modeling software SPICE, exhibits enriched performance for digital logic gates in 16 nm process technology. The assessment of these performance metrics includes energy-delay product (EDP and power-delay product (PDP of inverter and NOR and NAND gates, forming the building blocks for ULSI. The evaluation of EDP and PDP is carried out for an interconnect length that ranges up to 100 μm. An analysis, based on the drain and gate current-voltage (Id-Vd and Id-Vg, for subthreshold swing (SS, drain-induced barrier lowering (DIBL, and current on/off ratio for circuit implementation is given. GNRFET can overcome the short-channel effects that are prevalent in sub-100 nm Si MOSFET. GNRFET provides reduced EDP and PDP one order of magnitude that is lower than that of a MOSFET. Even though the GNRFET is energy efficient, the circuit performance of the device is limited by the interconnect capacitances.

  12. Development of hybrid materials based on sponge supported reduced graphene oxide and transition metal hydroxides for hybrid energy storage devices.

    Science.gov (United States)

    Dubal, Deepak P; Holze, Rudolf; Gomez-Romero, Pedro

    2014-12-08

    Earnest efforts have been taken to design hybrid energy storage devices using hybrid electrodes based on capacitive (rGO) and pseudocapacitive (Ni(OH)2 and Co(OH)2) materials deposited on the skeleton of 3D macroporous (indicate sponge material) sponge support. Conducting framework was formed by coating rGO on macroporous sponge on which subsequent deposition of Ni(OH)2 and Co(OH)2 was carried out. The synergetic combination of rGO and Ni(OH)2 or Co(OH)2) provides dual charge-storing mechanisms whereas 3D framework of sponge allows excellent accessibility of electrolyte to hybrid electrodes. Moreover, to further increase the energy density, hybrid devices have been fabricated with SP@rGO@Ni or SP@rGO@Co and SP@rGO as positive and negative electrodes, respectively. These hybrid devices operate with extended operating voltage windows and achieve remarkable electrochemical supercapacitive properties which make them truly promising energy storage devices for commercial production.

  13. Transport Properties of Nanostructured Graphene

    DEFF Research Database (Denmark)

    Jauho, Antti-Pekka

    2017-01-01

    Despite of its many wonderful properties, pristine graphene has one major drawback: it does not have a band gap, which complicates its applications in electronic devices. Many routes have been suggested to overcome this difficulty, such as cutting graphene into nanoribbons, using chemical methods...... device operation. In this talk I elaborate these ideas and review the state-of-the-art both from the theoretical and the experimental points of view. I also introduce two new ideas: (1) triangular antidots, and (2) nanobubbles formed in graphene. Both of these nanostructuring methods are predicted...

  14. Advances in graphene-based optoelectronics, plasmonics and photonics

    Science.gov (United States)

    Nguyen, Bich Ha; Hieu Nguyen, Van

    2016-03-01

    Since the early works on graphene it has been remarked that graphene is a marvelous electronic material. Soon after its discovery, graphene was efficiently utilized in the fabrication of optoelectronic, plasmonic and photonic devices, including graphene-based Schottky junction solar cells. The present work is a review of the progress in the experimental research on graphene-based optoelectronics, plasmonics and photonics, with the emphasis on recent advances. The main graphene-based optoelectronic devices presented in this review are photodetectors and modulators. In the area of graphene-based plasmonics, a review of the plasmonic nanostructures enhancing or tuning graphene-light interaction, as well as of graphene plasmons is presented. In the area of graphene-based photonics, we report progress on fabrication of different types of graphene quantum dots as well as functionalized graphene and graphene oxide, the research on the photoluminescence and fluorescence of graphene nanostructures as well as on the energy exchange between graphene and semiconductor quantum dots. In particular, the promising achievements of research on graphene-based Schottky junction solar cells is presented.

  15. Graphene on graphene antidot lattices

    DEFF Research Database (Denmark)

    Gregersen, Søren Schou; Pedersen, Jesper Goor; Power, Stephen

    2015-01-01

    Graphene bilayer systems are known to exhibit a band gap when the layer symmetry is broken by applying a perpendicular electric field. The resulting band structure resembles that of a conventional semiconductor with a parabolic dispersion. Here, we introduce a bilayer graphene heterostructure......, where single-layer graphene is placed on top of another layer of graphene with a regular lattice of antidots. We dub this class of graphene systems GOAL: graphene on graphene antidot lattice. By varying the structure geometry, band-structure engineering can be performed to obtain linearly dispersing...

  16. Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications.

    Science.gov (United States)

    Ruan, Yinlan; Ding, Liyun; Duan, Jingjing; Ebendorff-Heidepriem, Heike; Monro, Tanya M

    2016-02-22

    Integration of conductive materials into optical fibres can largely expand functions of fibre devices including surface plasmon resonator/metamaterial, modulators/detectors, or biosensors. Some early attempts have been made to incorporate metals such as tin into fibres during the fibre drawing process. Due to the restricted range of materials that have compatible melting temperatures with that of silica glass, the methods to incorporate metals along the length of the fibres are very challenging. Moreover, metals are nontransparent with strong light absorption, which causes high fibre loss. This article demonstrates a novel but simple method for creating transparent conductive reduced graphene oxide film onto microstructured silica fibres for potential optoelectronic applications. The strongly confined evanescent field of the suspended core fibres with only 2 μW average power was creatively used to transform graphene oxide into reduced graphene oxide with negligible additional loss. Existence of reduced graphene oxide was confirmed by their characteristic Raman signals, shifting of their fluorescence peaks as well as largely decreased resistance of the bulk GO film after laser beam exposure.

  17. Evaluating arbitrary strain configurations and doping in graphene with Raman spectroscopy

    Science.gov (United States)

    Mueller, Niclas S.; Heeg, Sebastian; Peña Alvarez, Miriam; Kusch, Patryk; Wasserroth, Sören; Clark, Nick; Schedin, Fredrik; Parthenios, John; Papagelis, Konstantinos; Galiotis, Costas; Kalbáč, Martin; Vijayaraghavan, Aravind; Huebner, Uwe; Gorbachev, Roman; Frank, Otakar; Reich, Stephanie

    2018-01-01

    The properties of graphene depend sensitively on strain and doping affecting its behavior in devices and allowing an advanced tailoring of this material. A knowledge of the strain configuration, i.e. the relative magnitude of the components of the strain tensor, is particularly crucial, because it governs effects like band-gap opening, pseudo-magnetic fields, and induced superconductivity. It also enters critically in the analysis of the doping level. We propose a method for evaluating unknown strain configurations and simultaneous doping in graphene using Raman spectroscopy. In our analysis we first extract the bare peak shift of the G and 2D modes by eliminating their splitting due to shear strain. The shifts from hydrostatic strain and doping are separated by a correlation analysis of the 2D and G frequencies, where we find Δ ω_2D/Δ ωG = 2.21 +/- 0.05 for pure hydrostatic strain. We obtain the local hydrostatic strain, shear strain and doping without any assumption on the strain configuration prior to the analysis, as we demonstrate for two model cases: Graphene under uniaxial stress and graphene suspended on nanostructures that induce strain. Raman scattering with circular corotating polarization is ideal for analyzing frequency shifts, especially for weak strain when the peak splitting by shear strain cannot be resolved.

  18. Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications

    Science.gov (United States)

    Ruan, Yinlan; Ding, Liyun; Duan, Jingjing; Ebendorff-Heidepriem, Heike; Monro, Tanya M.

    2016-02-01

    Integration of conductive materials into optical fibres can largely expand functions of fibre devices including surface plasmon resonator/metamaterial, modulators/detectors, or biosensors. Some early attempts have been made to incorporate metals such as tin into fibres during the fibre drawing process. Due to the restricted range of materials that have compatible melting temperatures with that of silica glass, the methods to incorporate metals along the length of the fibres are very challenging. Moreover, metals are nontransparent with strong light absorption, which causes high fibre loss. This article demonstrates a novel but simple method for creating transparent conductive reduced graphene oxide film onto microstructured silica fibres for potential optoelectronic applications. The strongly confined evanescent field of the suspended core fibres with only 2 μW average power was creatively used to transform graphene oxide into reduced graphene oxide with negligible additional loss. Existence of reduced graphene oxide was confirmed by their characteristic Raman signals, shifting of their fluorescence peaks as well as largely decreased resistance of the bulk GO film after laser beam exposure.

  19. Contactless Microwave Characterization of Encapsulated Graphene p-n Junctions

    OpenAIRE

    Ranjan, Vishal; Zihlmann, Simon; Makk, Péter; Watanabe, Kenji; Taniguchi, Takashi; Schönenberger, Christian

    2017-01-01

    Accessing intrinsic properties of a graphene device can be hindered by the influence of contact electrodes. Here, we capacitively couple graphene devices to superconducting resonant circuits and observe clear changes in the resonance-frequency and -widths originating from the internal charge dynamics of graphene. This allows us to extract the density of states and charge relaxation resistance in graphene p-n junctions without the need of electrical contacts. The presented characterizations pa...

  20. Absorption enhancement in graphene with an efficient resonator

    DEFF Research Database (Denmark)

    Xiao, Binggang; Gu, Mingyue; Qin, Kang

    2017-01-01

    Graphene can be utilized in designing tunable terahertz (THz) devices due to its tunability of sheet conductivity, suffering however with weak light-graphene interactions. In this paper, an absorption enhancement in graphene using a Fabry–Perot resonator is presented, and its performance has been...... of graphene which could be conveniently achieved by applying a bias voltage. The proposed structure here has a promising potential for developing advanced THz optics-electronics devices....

  1. Dispersive suspended microextraction.

    Science.gov (United States)

    Yang, Zhong-Hua; Liu, Yu; Lu, Yue-Le; Wu, Tong; Zhou, Zhi-Qiang; Liu, Dong-Hui

    2011-11-14

    A novel sample pre-treatment technique termed dispersive suspended microextraction (DSME) coupled with gas chromatography-flame photometric detection (GC-FPD) has been developed for the determination of eight organophosphorus pesticides (ethoprophos, malathion, chlorpyrifos, isocarbophos, methidathion, fenamiphos, profenofos, triazophos) in aqueous samples. In this method, both extraction and two phases' separation process were performed by the assistance of magnetic stirring. After separating the two phases, 1 μL of the suspended phase was injected into GC for further instrument analysis. Varieties of experiment factors which could affect the experiment results were optimized and the following were selected: 12.0 μL p-xylene was selected as extraction solvent, extraction speed was 1200 rpm, extraction time was 30 s, the restoration speed was 800 rpm, the restoration time was 8 min, and no salt was added. Under the optimum conditions, limits of detections (LODs) varied between 0.01 and 0.05 μg L(-1). The relative standard deviation (RSDs, n=6) ranged from 4.6% to 12.1%. The linearity was obtained by five points in the concentration range of 0.1-100.0 μg L(-1). Correlation coefficients (r) varied from 0.9964 to 0.9995. The enrichment factors (EFs) were between 206 and 243. In the final experiment, the developed method has been successfully applied to the determination of organophosphorus pesticides in wine and tap water samples and the obtained recoveries were between 83.8% and 101.3%. Compared with other pre-treatment methods, DSME has its own features and could achieve satisfied results for the analysis of trace components in complicated matrices. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Reliable processing of graphene using metal etchmasks

    Directory of Open Access Journals (Sweden)

    Peltekis Nikos

    2011-01-01

    Full Text Available Abstract Graphene exhibits exciting properties which make it an appealing candidate for use in electronic devices. Reliable processes for device fabrication are crucial prerequisites for this. We developed a large area of CVD synthesis and transfer of graphene films. With patterning of these graphene layers using standard photoresist masks, we are able to produce arrays of gated graphene devices with four point contacts. The etching and lift off process poses problems because of delamination and contamination due to polymer residues when using standard resists. We introduce a metal etch mask which minimises these problems. The high quality of graphene is shown by Raman and XPS spectroscopy as well as electrical measurements. The process is of high value for applications, as it improves the processability of graphene using high-throughput lithography and etching techniques.

  3. Broadband optical modulators based on graphene supercapacitors.

    Science.gov (United States)

    Polat, Emre O; Kocabas, Coskun

    2013-01-01

    Optical modulators are commonly used in communication and information technology to control intensity, phase, or polarization of light. Electro-optic, electroabsorption, and acousto-optic modulators based on semiconductors and compound semiconductors have been used to control the intensity of light. Because of gate tunable optical properties, graphene introduces new potentials for optical modulators. The operation wavelength of graphene-based modulators, however, is limited to infrared wavelengths due to inefficient gating schemes. Here, we report a broadband optical modulator based on graphene supercapacitors formed by graphene electrodes and electrolyte medium. The transparent supercapacitor structure allows us to modulate optical transmission over a broad range of wavelengths from 450 nm to 2 μm under ambient conditions. We also provide various device geometries including multilayer graphene electrodes and reflection type device geometries that provide modulation of 35%. The graphene supercapacitor structure together with the high-modulation efficiency can enable various active devices ranging from plasmonics to optoelectronics.

  4. Modeling and Design of a New Flexible Graphene-on-Silicon Schottky Junction Solar Cell

    OpenAIRE

    Francesco Dell’Olio; Michele Palmitessa; Caterina Ciminelli

    2016-01-01

    A new graphene-based flexible solar cell with a power conversion efficiency >10% has been designed. The environmental stability and the low complexity of the fabrication process are the two main advantages of the proposed device with respect to other flexible solar cells. The designed solar cell is a graphene/silicon Schottky junction whose performance has been enhanced by a graphene oxide layer deposited on the graphene sheet. The effect of the graphene oxide is to dope the graphene and t...

  5. Development of hybrid materials based on sponge supported reduced graphene oxide and transition metal hydroxides for hybrid energy storage devices

    OpenAIRE

    Dubal, Deepak P.; Rudolf Holze; Pedro Gomez-Romero

    2014-01-01

    Earnest efforts have been taken to design hybrid energy storage devices using hybrid electrodes based on capacitive (rGO) and pseudocapacitive (Ni(OH)2 and Co(OH)2) materials deposited on the skeleton of 3D macroporous (indicate sponge material) sponge support. Conducting framework was formed by coating rGO on macroporous sponge on which subsequent deposition of Ni(OH)2 and Co(OH)2 was carried out. The synergetic combination of rGO and Ni(OH)2 or Co(OH)2) provides dual charge-storing mechanis...

  6. Environmentally responsive graphene systems.

    Science.gov (United States)

    Zhang, Jing; Song, Long; Zhang, Zhipan; Chen, Nan; Qu, Liangti

    2014-06-12

    Graphene materials have been attracting significant research interest in the past few years, with the recent focuses on graphene-based electronic devices and smart stimulus-responsive systems that have a certain degree of automatism. Owing to its huge specific surface area, large room-temperature electron mobility, excellent mechanical flexibility, exceptionally high thermal conductivity and environmental stability, graphene is identified as a beneficial additive or an effective responding component by itself to improve the conductivity, flexibility, mechanical strength and/or the overall responsive performance of smart systems. In this review article, we aim to present the recent advances in graphene systems that are of spontaneous responses to external stimulations, such as environmental variation in pH, temperature, electric current, light, moisture and even gas ambient. These smart stimulus-responsive graphene systems are believed to have great theoretical and practical interests to a wide range of device applications including actuators, switches, robots, sensors, drug/gene deliveries, etc. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Safety Harness For Work Under Suspended Load

    Science.gov (United States)

    Sunoo, Su Young

    1994-01-01

    Safety device protects worker under suspended engine or other heavy load. Mechanically linked with load so if load should fall, worker yanked safely away. Worker wears chest-plate vest with straps crossing eye on back. Lower safety cable connected to eye extends horizontally away from worker to nearby wall, wrapped on pulley and extends upward to motion amplifier or reducer. Safety cables transform any sudden downward motion of overhanging load into rapid sideways motion of worker. Net catches worker, preventing worker from bumping against wall.

  8. Graphene aerogels

    Science.gov (United States)

    Pauzauskie, Peter J; Worsley, Marcus A; Baumann, Theodore F; Satcher, Jr., Joe H; Biener, Juergen

    2015-03-31

    Graphene aerogels with high conductivity and surface areas including a method for making a graphene aerogel, including the following steps: (1) preparing a reaction mixture comprising a graphene oxide suspension and at least one catalyst; (2) curing the reaction mixture to produce a wet gel; (3) drying the wet gel to produce a dry gel; and (4) pyrolyzing the dry gel to produce a graphene aerogel. Applications include electrical energy storage including batteries and supercapacitors.

  9. Near Room-Temperature Memory Devices Based on Hybrid Spin-Crossover@SiO2 Nanoparticles Coupled to Single-Layer Graphene Nanoelectrodes.

    Science.gov (United States)

    Holovchenko, Anastasia; Dugay, Julien; Giménez-Marqués, Mónica; Torres-Cavanillas, Ramón; Coronado, Eugenio; van der Zant, Herre S J

    2016-09-01

    The charge transport properties of SCO [Fe(Htrz)2 (trz)](BF4 ) NPs covered with a silica shell placed in between single-layer graphene electrodes are reported. A reproducible thermal hysteresis loop in the conductance above room-temperature is evidenced. This bistability combined with the versatility of graphene represents a promising scenario for a variety of technological applications but also for future sophisticated fundamental studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A graphene based frequency quadrupler

    Science.gov (United States)

    Cheng, Chuantong; Huang, Beiju; Mao, Xurui; Zhang, Zanyun; Zhang, Zan; Geng, Zhaoxin; Xue, Ping; Chen, Hongda

    2017-04-01

    Benefit from exceptional electrical transport properties, graphene receives worldwide attentions, especially in the domain of high frequency electronics. Due to absence of effective bandgap causing off-state the device, graphene material is extraordinarily suitable for analog circuits rather than digital applications. With this unique ambipolar behavior, graphene can be exploited and utilized to achieve high performance for frequency multipliers. Here, dual-gated graphene field-effect transistors have been firstly used to achieve frequency quadrupling. Two Dirac points in the transfer curves of the designed GFETs can be observed by tuning top-gate voltages, which is essential to generate the fourth harmonic. By applying 200 kHz sinusoid input, arround 50% of the output signal radio frequency power is concentrated at the desired frequency of 800 kHz. Additionally, in suitable operation areas, our devices can work as high performance frequency doublers and frequency triplers. Considered both simple device structure and potential superhigh carrier mobility of graphene material, graphene-based frequency quadruplers may have lots of superiorities in regards to ultrahigh frequency electronic applications in near future. Moreover, versatility of carbon material system is far-reaching for realization of complementary metal-oxide-semiconductor compatible electrically active devices.

  11. Enhancements of the memory margin and the stability of an organic bistable device due to a graphene oxide:mica nanocomposite sandwiched between two polymer (9-vinylcarbazole) buffer layers

    Science.gov (United States)

    Kim, Woo Kyum; Wu, Chaoxing; Lee, Dea Uk; Kim, Hyoun Woo; Kim, Tae Whan

    2018-01-01

    Current-voltage (I-V) curves for the Al/polymer (9-vinylcarbazole) (PVK)/graphene oxide (GO):mica/PVK/indium-tin oxide (ITO) devices at 300 K showed a current bistability with a maximum high conductivity (ON)/low conductivity (OFF) ratio of 2 × 104, which was approximately 10 times larger than that of the device without a PVK layer. The endurance number of ON/OFF switchings for the Al/PVK/GO:mica/PVK/ITO device was 1 × 102 cycles, which was 20 times larger than that for the Al/GO:mica/ITO device. The ;erase; voltages were distributed between 2.3 and 3 V, and the ;write; voltages were distributed between -1.2 and -0.5 V. The retention time for the Al/PVK/GO:mica/PVK/ITO device was above 1 × 104 s, indicative of the memory stability of the device. The carrier transport mechanisms occurring in the Al/PVK/GO:mica/PVK/ITO and the Al/GO:mica/ITO devices are described on the basis of the I-V results and the energy band diagrams.

  12. Tunable beam steering enabled by graphene metamaterials.

    Science.gov (United States)

    Orazbayev, B; Beruete, M; Khromova, I

    2016-04-18

    We demonstrate tunable mid-infrared (MIR) beam steering devices based on multilayer graphene-dielectric metamaterials. The effective refractive index of such metamaterials can be manipulated by changing the chemical potential of each graphene layer. This can arbitrarily tailor the spatial distribution of the phase of the transmitted beam, providing mechanisms for active beam steering. Three different beam steerer (BS) designs are discussed: a graded-index (GRIN) graphene-based metamaterial block, an array of metallic waveguides filled with graphene-dielectric metamaterial and an array of planar waveguides created in a graphene-dielectric metamaterial block with a specific spatial profile of graphene sheets doping. The performances of the BSs are numerically analyzed, showing the tunability of the proposed designs for a wide range of output angles (up to approximately 70°). The proposed graphene-based tunable beam steering can be used in tunable transmitter/receiver modules for infrared imaging and sensing.

  13. Dopant-Induced Plasmon Decay in Graphene

    Science.gov (United States)

    Novko, Dino

    2017-11-01

    Chemically doped graphene could support plasmon excitations up to telecommunication or even visible frequencies. Apart from that, the presence of dopant may influence electron scattering mechanisms in graphene and thus impact the plasmon decay rate. Here I study from first principles these effects in single-layer and bilayer graphene doped with various alkali and alkaline earth metals. I find new dopant-activated damping channels: loss due to out-of-plane graphene and in-plane dopant vibrations, and electron transitions between graphene and dopant states. The latter excitations interact with the graphene plasmon and together they form a new hybrid mode. The study points out a strong dependence of these features on the type of dopants and the number of layers, which could be used as a tuning mechanism in future graphene-based plasmonic devices.

  14. Observing Graphene Grow: Catalyst–Graphene Interactions during Scalable Graphene Growth on Polycrystalline Copper

    Science.gov (United States)

    2013-01-01

    Complementary in situ X-ray photoelectron spectroscopy (XPS), X-ray diffractometry, and environmental scanning electron microscopy are used to fingerprint the entire graphene chemical vapor deposition process on technologically important polycrystalline Cu catalysts to address the current lack of understanding of the underlying fundamental growth mechanisms and catalyst interactions. Graphene forms directly on metallic Cu during the high-temperature hydrocarbon exposure, whereby an upshift in the binding energies of the corresponding C1s XPS core level signatures is indicative of coupling between the Cu catalyst and the growing graphene. Minor carbon uptake into Cu can under certain conditions manifest itself as carbon precipitation upon cooling. Postgrowth, ambient air exposure even at room temperature decouples the graphene from Cu by (reversible) oxygen intercalation. The importance of these dynamic interactions is discussed for graphene growth, processing, and device integration. PMID:24041311

  15. Observing graphene grow: catalyst-graphene interactions during scalable graphene growth on polycrystalline copper.

    Science.gov (United States)

    Kidambi, Piran R; Bayer, Bernhard C; Blume, Raoul; Wang, Zhu-Jun; Baehtz, Carsten; Weatherup, Robert S; Willinger, Marc-Georg; Schloegl, Robert; Hofmann, Stephan

    2013-10-09

    Complementary in situ X-ray photoelectron spectroscopy (XPS), X-ray diffractometry, and environmental scanning electron microscopy are used to fingerprint the entire graphene chemical vapor deposition process on technologically important polycrystalline Cu catalysts to address the current lack of understanding of the underlying fundamental growth mechanisms and catalyst interactions. Graphene forms directly on metallic Cu during the high-temperature hydrocarbon exposure, whereby an upshift in the binding energies of the corresponding C1s XPS core level signatures is indicative of coupling between the Cu catalyst and the growing graphene. Minor carbon uptake into Cu can under certain conditions manifest itself as carbon precipitation upon cooling. Postgrowth, ambient air exposure even at room temperature decouples the graphene from Cu by (reversible) oxygen intercalation. The importance of these dynamic interactions is discussed for graphene growth, processing, and device integration.

  16. Fabrication of nanoporous graphene/polymer composite membranes.

    Science.gov (United States)

    Madauß, Lukas; Schumacher, Jens; Ghosh, Mandakranta; Ochedowski, Oliver; Meyer, Jens; Lebius, Henning; Ban-d'Etat, Brigitte; Toimil-Molares, Maria Eugenia; Trautmann, Christina; Lammertink, Rob G H; Ulbricht, Mathias; Schleberger, Marika

    2017-07-27

    Graphene is currently investigated as a promising membrane material in which selective pores can be created depending on the requirements of the application. However, to handle large-area nanoporous graphene a stable support material is needed. Here, we report on composite membranes consisting of large-area single layer nanoporous graphene supported by a porous polymer. The fabrication is based on ion-track nanotechnology with swift heavy ions directly creating atomic pores in the graphene lattice and damaged tracks in the polymer support. Subsequent chemical etching converts the latent ion tracks in the supporting polymer foil, here polyethylene terephthalate (PET), into open microchannels while the perfectly aligned pores in the graphene top layer remain unaffected. To avoid unintentional damage creation and delamination of the graphene layer from the substrate, the graphene is encapsulated by a protecting poly(methyl methacrylate) (PMMA) layer. By this procedure a stable composite membrane is obtained consisting of nanoporous graphene (coverage close to 100%) suspended across selfaligned track-etched microchannels in a polymer support film. Our method presents a facile way to create high quality suspended graphene of tunable pore size supported on a flexible porous polymeric support, thus enabling the development of membranes for fast and selective ultrafiltration separation processes.

  17. Protection from Below: Stabilizing Hydrogenated Graphene Using Graphene Underlayers.

    Science.gov (United States)

    Whitener, Keith E; Robinson, Jeremy T; Sheehan, Paul E

    2017-12-05

    We show that dehydrogenation of hydrogenated graphene proceeds much more slowly for bilayer systems than for single layer systems. We observe that an underlayer of either pristine or hydrogenated graphene will protect an overlayer of hydrogenated graphene against a number of chemical oxidants, thermal dehydrogenation, and degradation in an ambient environment over extended periods of time. Chemical protection depends on the ease of oxidant intercalation, with good intercalants such as Br 2 demonstrating much higher reactivity than poor intercalants such as 1,2-dichloro-4,5-dicyanonbenzoquinone (DDQ). Additionally, the rate of dehydrogenation of hydrogenated graphene at 300 °C in H 2 /Ar was reduced by a factor of roughly 10 in the presence of a protective underlayer of graphene or hydrogenated graphene. Finally, the slow dehydrogenation of hydrogenated graphene in air at room temperature, which is normally apparent after a week, could be completely eliminated in samples with protective underlayers over the course of 39 days. Such protection will be critical for ensuring the long-term stability of devices made from functionalized graphene.

  18. Frequency response of electrolyte-gated graphene electrodes and transistors

    Science.gov (United States)

    Drieschner, Simon; Guimerà, Anton; Cortadella, Ramon G.; Viana, Damià; Makrygiannis, Evangelos; Blaschke, Benno M.; Vieten, Josua; Garrido, Jose A.

    2017-03-01

    The interface between graphene and aqueous electrolytes is of high importance for applications of graphene in the field of biosensors and bioelectronics. The graphene/electrolyte interface is governed by the low density of states of graphene that limits the capacitance near the Dirac point in graphene and the sheet resistance. While several reports have focused on studying the capacitance of graphene as a function of the gate voltage, the frequency response of graphene electrodes and electrolyte-gated transistors has not been discussed so far. Here, we report on the impedance characterization of single layer graphene electrodes and transistors, showing that due to the relatively high sheet resistance of graphene, the frequency response is governed by the distribution of resistive and capacitive circuit elements along the graphene/electrolyte interface. Based on an analytical solution for the impedance of the distributed circuit elements, we model the graphene/electrolyte interface both for the electrode and the transistor configurations. Using this model, we can extract the relevant material and device parameters such as the voltage-dependent intrinsic sheet and series resistances as well as the interfacial capacitance. The model also provides information about the frequency threshold of electrolyte-gated graphene transistors, above which the device exhibits a non-resistive response, offering an important insight into the suitable frequency range of operation of electrolyte-gated graphene devices.

  19. Reduction of graphene oxide and its effect on square resistance of reduced graphene oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Zhaoxia; Zhou, Yin; Li, Guang Bin; Wang, Shaohong; Wang, Mei Han; Hu, Xiaodan; Li, Siming [Liaoning Province Key Laboratory of New Functional Materials and Chemical Technology, School ofMechanical Engineering, Shenyang University, Shenyang (China)

    2015-06-15

    Graphite oxide was prepared via the modified Hummers’ method and graphene via chemical reduction. Deoxygenation efficiency of graphene oxide was compared among single reductants including sodium borohydride, hydrohalic acids, hydrazine hydrate, and vitamin C. Two-step reduction of graphene oxide was primarily studied. The reduced graphene oxide was characterized by XRD, TG, SEM, XPS, and Raman spectroscopy. Square resistance was measured as well. Results showed that films with single-step N2H4 reduction have the best transmittance and electrical conductivity with square resistance of ~5746 Ω/sq at 70% transmittance. This provided an experimental basis of using graphene for electronic device applications.

  20. Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons.

    Science.gov (United States)

    Chitara, Basant; Panchakarla, L S; Krupanidhi, S B; Rao, C N R

    2011-12-01

    The use of reduced graphene oxide (RGO) and graphene nanoribbons (GNRs) as infrared photodetectors is explored, based on recent results dealing with solar cells, light-emitting devices, photodetectors, and ultrafast lasers. IR detection is demonstrated by both RGO and GNRs in terms of the time-resolved photocurrent and photoresponse. The responsivity of the detectors and their functioning are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Graphene-based tunable SQUIDs

    Science.gov (United States)

    Thompson, M. D.; Ben Shalom, M.; Geim, A. K.; Matthews, A. J.; White, J.; Melhem, Z.; Pashkin, Yu. A.; Haley, R. P.; Prance, J. R.

    2017-04-01

    The superconducting proximity effect in graphene can be used to create Josephson junctions with critical currents that can be tuned using local field-effect gates. These junctions have the potential to add functionality to existing technologies; for example, superconducting quantum interference device (SQUID) magnetometers with adaptive dynamic range and superconducting qubits with fast electrical control. Here, we present measurements of graphene-based superconducting quantum interference devices incorporating ballistic Josephson junctions that can be controlled individually. We investigate the magnetic field response of the SQUIDs as the junctions are gated and as the device is tuned between symmetric and asymmetric configurations. We find a highest transfer function ≈ 300 μV/Φ0, which compares favorably with conventional, low temperature DC SQUIDs. With low noise readout electronics and optimised geometries, devices based on ballistic graphene Josephson junctions have the potential to match the sensitivity of traditional SQUIDs while also providing additional functionality.

  2. Graphene as a thin-film catalyst booster: graphene-catalyst interface plays a critical role.

    Science.gov (United States)

    Chae, Sieun; Jin Choi, Won; Sang Chae, Soo; Jang, Seunghun; Chang, Hyunju; Lee, Tae Il; Kim, Youn Sang; Lee, Jeong-O

    2017-12-08

    Due to its extreme thinness, graphene can transmit some surface properties of its underlying substrate, a phenomenon referred to as graphene transparency. Here we demonstrate the application of the transparency of graphene as a protector of thin-film catalysts and a booster of their catalytic efficiency. The photocatalytic degradation of dye molecules by ZnO thin films was chosen as a model system. A ZnO thin film coated with monolayer graphene showed greater catalytic efficiency and long-term stability than did bare ZnO. Interestingly, we found the catalytic efficiency of the graphene-coated ZnO thin film to depend critically on the nature of the bottom ZnO layer; graphene transferred to a relatively rough, sputter-coated ZnO thin film showed rather poor catalytic degradation of the dye molecules while a smooth sol-gel-synthesized ZnO covered with monolayer graphene showed enhanced catalytic degradation. Based on a systematic investigation of the interface between graphene and ZnO thin films, we concluded the transparency of graphene to be critically dependent on its interface with a supporting substrate. Graphene supported on an atomically flat substrate was found to efficiently transmit the properties of the substrate, but graphene suspended on a substrate with a rough nanoscale topography was completely opaque to the substrate properties. Our experimental observations revealed the morphology of the substrate to be a key factor affecting the transparency of graphene, and should be taken into account in order to optimally apply graphene as a protector of catalytic thin films and a booster of their catalysis.

  3. Graphene as a thin-film catalyst booster: graphene-catalyst interface plays a critical role

    Science.gov (United States)

    Chae, Sieun; Choi, Won Jin; Chae, Soo Sang; Jang, Seunghun; Chang, Hyunju; Lee, Tae Il; Kim, Youn Sang; Lee, Jeong-O.

    2017-12-01

    Due to its extreme thinness, graphene can transmit some surface properties of its underlying substrate, a phenomenon referred to as graphene transparency. Here we demonstrate the application of the transparency of graphene as a protector of thin-film catalysts and a booster of their catalytic efficiency. The photocatalytic degradation of dye molecules by ZnO thin films was chosen as a model system. A ZnO thin film coated with monolayer graphene showed greater catalytic efficiency and long-term stability than did bare ZnO. Interestingly, we found the catalytic efficiency of the graphene-coated ZnO thin film to depend critically on the nature of the bottom ZnO layer; graphene transferred to a relatively rough, sputter-coated ZnO thin film showed rather poor catalytic degradation of the dye molecules while a smooth sol–gel-synthesized ZnO covered with monolayer graphene showed enhanced catalytic degradation. Based on a systematic investigation of the interface between graphene and ZnO thin films, we concluded the transparency of graphene to be critically dependent on its interface with a supporting substrate. Graphene supported on an atomically flat substrate was found to efficiently transmit the properties of the substrate, but graphene suspended on a substrate with a rough nanoscale topography was completely opaque to the substrate properties. Our experimental observations revealed the morphology of the substrate to be a key factor affecting the transparency of graphene, and should be taken into account in order to optimally apply graphene as a protector of catalytic thin films and a booster of their catalysis.

  4. Graphene Charge Transfer, Spectroscopy, and Photochemical Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Brus, Louis [Columbia Univ., New York, NY (United States)

    2017-01-31

    This project focused on the special electronic and optical properties of graphene and adsorbed molecular species. Graphene makes an excellent substrate for current collection in nanostructured photovoltaic designs. Graphene is almost transparent, and can be used as a solar cell window. It also has no surface states, and thus current is efficiently transported over long distances. Progress in graphene synthesis indicates that there will soon be practical methods for making large pieces of graphene for devices. We now need to understand exactly what happens to both ground state and electronically excited molecules and Qdots near graphene, if we are going to use them to absorb light in a nano-structured photovoltaic device using graphene to collect photocurrent. We also need to understand how to shift the graphene Fermi level, to optimize the kinetics of electron transfer to graphene. And we need to learn how to convert local graphene areas to semiconductor structure, to make useful spatially patterned graphenes. In this final report, we describe how we addressed these goals. We explored the question of possible Surface Enhanced Raman spectroscopy from molecular Charge Transfer onto Graphene substrates. We observed strong hole doping of graphene by adsorbed halogens as indicated by the shift of the graphene G Raman band. In the case of iodine adsorption, we also observed the anionic species made by hole doping. At low frequency in the Raman spectrum, we saw quite intense lines from I3- and I5- , suggesting possible SERS. We reported on Fresnel calculations on this thin film system, which did not show any net electromagnetic field enhancement.

  5. Graphene-on-semiconductor substrates for analog electronics

    Science.gov (United States)

    Lagally, Max G.; Cavallo, Francesca; Rojas-Delgado, Richard

    2016-04-26

    Electrically conductive material structures, analog electronic devices incorporating the structures and methods for making the structures are provided. The structures include a layer of graphene on a semiconductor substrate. The graphene layer and the substrate are separated by an interfacial region that promotes transfer of charge carriers from the surface of the substrate to the graphene.

  6. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach.

    Science.gov (United States)

    Andryieuski, Andrei; Lavrinenko, Andrei V

    2013-04-08

    In this paper we present the efficient design of functional thin-film metamaterial devices with the effective surface conductivity approach. As an example, we demonstrate a graphene based perfect absorber. After formulating the requirements to the perfect absorber in terms of surface conductivity we investigate the properties of graphene wire medium and graphene fishnet metamaterials and demonstrate both narrowband and broadband tunable absorbers.

  7. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Lavrinenko, Andrei

    2013-01-01

    In this paper we present the efficient design of functional thin-film metamaterial devices with the effective surface conductivity approach. As an example, we demonstrate a graphene based perfect absorber. After formulating the requirements to the perfect absorber in terms of surface conductivity...... we investigate the properties of graphene wire medium and graphene fishnet metamaterials and demonstrate both narrowband and broadband tunable absorbers....

  8. Electrostatic Stabilization of Graphene in Organic Dispersions

    OpenAIRE

    Rodgers, Andrew N. J.; Velicky, Matej; Dryfe, Robert A.W.

    2015-01-01

    The exfoliation of graphite to give graphene dispersions in nonaqueous solvents is an important area with regards to scalable production of graphene in bulk quantities and its ultimate application in devices. Understanding the mechanisms governing the stability of these dispersions is therefore of both scientific interest and technological importance. Herein, we have used addition of an indifferent electrolyte to perturb few-layer graphene dispersions in a nonaqueous solvent (1,2-dichloroetha...

  9. Resistance noise in electrically biased bilayer graphene.

    Science.gov (United States)

    Pal, Atindra Nath; Ghosh, Arindam

    2009-03-27

    We demonstrate that the low-frequency resistance fluctuations, or noise, in bilayer graphene are strongly connected to its band structure and display a minimum when the gap between the conduction and valence band is zero. Using double-gated bilayer graphene devices we have tuned the zero gap and charge neutrality points independently, which offers a versatile mechanism to investigate the low-energy band structure, charge localization, and screening properties of bilayer graphene.

  10. Graphene Coatings

    DEFF Research Database (Denmark)

    Stoot, Adam Carsten; Camilli, Luca; Bøggild, Peter

    2014-01-01

    Owing to its remarkable electrical and mechanical properties, graphene has been attracting tremendous interest in materials science. In particular, its chemical stability and impermeability make it a promising protective membrane. However, recent investigations reveal that single layer graphene...... cannot be used as a barrier in the long run, due to galvanic corrosion phenomena arising when oxygen or water penetrate through graphene cracks or domain boundaries. Here, we overcome this issue by using a multilayered (ML) graphene coating. Our lab- as well as industrial-scale tests demonstrate that ML...... graphene can effectively protect Ni in harsh environments, even after long term exposure. This is made possible by the presence of a high number of graphene layers, which can efficiently mask the cracks and domain boundaries defects found in individual layers of graphene. Our findings thus show...

  11. Expansion and exfoliation of graphite to form graphene

    KAUST Repository

    Patole, Shashikan P.

    2017-07-27

    Graphene production methods are described based on subjecting non- covalent graphite intercalated compounds, such as graphite bisulfate, to expansion conditions such as shocks of heat and/or microwaves followed by turbulence-assisted exfoliation to produce few-layer, high quality graphene flakes. Depending on the approach selected for the exfoliation step, free-flowing graphene powder, graphene slurry, or an aqueous graphene mixture can be obtained. Surfactants can aid in dispersion, and graphene inks can be formed. The parameters of the process are simple, efficient and low-cost enabling therefore the scale- up of production. Applications include electrodes and energy storage devices.

  12. Model Development for Graphene Spintronics

    Science.gov (United States)

    2015-09-21

    5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Minnesota 200 Union...SUPPLEMENTARY NOTES 14. ABSTRACT The goal is to develop charge and spin carrier scattering models and device models, and to explore the physics...that enable and limit the operation of graphene spin valves. The models are based on the low energy linear dispersion relation of the graphene band

  13. Ballistic transport in graphene nanostructures

    OpenAIRE

    Terrés, Bernat

    2017-01-01

    This work aims to contribute to the progress and understanding of the sources of disorder in nano-structured graphene devices. The first part of the thesis starts with the introduction of disordered two-terminal graphene nanoribbons of different aspect ratio, in order to unveil and characterize the amount of potential fluctuations on silicon dioxide ($SiO_2$) substrates. The experimental results reveal the diffusive nature of the transport behavior and a Coulomb blockade dominated transport r...

  14. Thinnest two-dimensional nanomaterial-graphene for solar energy.

    Science.gov (United States)

    Hu, Yun Hang; Wang, Hui; Hu, Bo

    2010-07-19

    Graphene is a rapidly rising star in materials science. This two-dimensional material exhibits unique properties, such as low resistance, excellent optical transmittance, and high mechanical and chemical stabilities. These exceptional advantages possess great promise for its potential applications in photovoltaic devices. In this Review, we present the status of graphene research for solar energy with emphasis on solar cells. Firstly, the preparation and properties of graphene are described. Secondly, applications of graphene as transparent conductive electrodes and counter electrodes are presented. Thirdly, graphene-based electron- (or hole) accepting materials for solar energy conversion are evaluated. Fourthly, the promoting effect of graphene on photovoltaic devices and the photocatalytic property of graphene-semiconductor composites are discussed. Finally, the challenges to increase the power conversion efficiency of graphene-based solar cells are explored.

  15. Inkjet printing of graphene.

    Science.gov (United States)

    Arapov, Kirill; Abbel, Robert; de With, Gijsbertus; Friedrich, Heiner

    2014-01-01

    The inkjet printing of graphene is a cost-effective, and versatile deposition technique for both transparent and non-transparent conductive films. Printing graphene on paper is aimed at low-end, high-volume applications, i.e., in electromagnetic shielding, photovoltaics or, e.g., as a replacement for the metal in antennas of radio-frequency identification devices, thereby improving their recyclability and biocompatibility. Here, we present a comparison of two graphene inks, one prepared by the solubilization of expanded graphite in the presence of a surface active polymer, and the other by covalent graphene functionalization followed by redispersion in a solvent but without a surfactant. The non-oxidative functionalization of graphite in the form of a donor-type graphite intercalation compound was carried out by a Birch-type alkylation, where graphene can be viewed as a macrocarbanion. To increase the amount of functionalization we employed a graphite precursor with a high edge to bulk carbon ratio, thus, allowing us to achieve up to six weight percent of functional groups. The functionalized graphene can be readily dispersed at concentrations of up to 3 mg ml(-1) in non-toxic organic solvents, and is colloidally stable for more than 2 months. The two inks are readily inkjet printable with good to satisfactory spreading. Analysis of the sheet resistance of the deposited films demonstrated that the inks based on expanded graphite outperform the functionalized graphene inks, possibly due to the significantly larger graphene sheet size in the former, which minimizes the number of sheet-to-sheet contacts along the conductive path. We found that the sheet resistance of printed large-area films decreased with an increase of the number of printed layers. Conductivity levels reached approximately 1-2 kΩ □(-1) for 15 printing passes, which roughly equals a film thickness of 800 nm for expanded graphite based inks, and 2 MΩ □(-1) for 15 printing passes of

  16. Development of a microfluidic interface for suspended microchannel resonators

    OpenAIRE

    Maillard, Damien

    2016-01-01

    Suspended microchannel resonators (SMRs) are devices that detect particles in liquid samples. In comparison with similar resonating devices that must be immersed, SMRs allow the fluids to flow through microfluidic resonators. This principle of operation leads to a great reduction of the required sample and to enhanced quality factors. As such, SMRs show great potential for a variety of sensing applications. This thesis reports on the final steps of the microfabrication of SMRs and on the deve...

  17. Programmed synthesis of freestanding graphene nanomembrane arrays.

    Science.gov (United States)

    Waduge, Pradeep; Larkin, Joseph; Upmanyu, Moneesh; Kar, Swastik; Wanunu, Meni

    2015-02-04

    Freestanding graphene membranes are unique materials. The combination of atomically thin dimensions, remarkable mechanical robustness, and chemical stability make porous and non-porous graphene membranes attractive for water purification and various sensing applications. Nanopores in graphene and other 2D materials have been identified as promising devices for next-generation DNA sequencing based on readout of either transverse DNA base-gated current or through-pore ion current. While several ground breaking studies of graphene-based nanopores for DNA analysis have been reported, all methods to date require a physical transfer of the graphene from its source of production onto an aperture support. The transfer process is slow and often leads to tears in the graphene that render many devices useless for nanopore measurements. In this work, we report a novel scalable approach for site-directed fabrication of pinhole-free graphene nanomembranes. Our approach yields high quality few-layer graphene nanomembranes produced in less than a day using a few steps that do not involve transfer. We highlight the functionality of these graphene devices by measuring DNA translocation through electron-beam fabricated nanopores in such membranes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Bioapplications of graphene constructed functional nanomaterials.

    Science.gov (United States)

    Gulzar, Arif; Yang, Piaoping; He, Fei; Xu, Jiating; Yang, Dan; Xu, Liangge; Jan, Mohammad Omar

    2017-01-25

    Graphene has distinctive mechanical, electronic, and optical properties, which researchers have applied to develop innovative electronic materials including transparent conductors and ultrafast transistors. Lately, the understanding of various chemical properties of graphene has expedited its application in high-performance devices that generate and store energy. Graphene is now increasing its terrain outside electronic and chemical applications toward biomedical areas such as precise bio sensing through graphene-quenched fluorescence, graphene-enhanced cell differentiation and growth, and graphene-assisted laser desorption/ionization for mass spectrometry. In this Account, we evaluate recent efforts to apply graphene and graphene oxides (GO) to biomedical research and a few different approaches to prepare graphene materials designed for biomedical applications and a brief perspective on their future applications. Because of its outstanding aqueous processability, amphiphilicity, surface functionalizability, surface enhanced Raman scattering (SERS), and fluorescence quenching ability, GO chemically exfoliated from oxidized graphite is considered a promising material for biological applications. In addition, the hydrophobicity and flexibility of large-area graphene synthesized by chemical vapor deposition (CVD) allow this material to play an important role in cell growth and differentiation. Graphene is considered to be an encouraging and smart candidate for numerous biomedical applications such as NIR-responsive cancer therapy and fluorescence bio-imaging and drug delivery. To that end, suitable preparation and unique approaches to utilize graphene-based materials such as graphene oxides (GOs), reduced graphene oxides (rGOs), and graphene quantum dots (GQDs) in biology and medical science are gaining growing interest. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Interlayer reliant magnetotransport in graphene spin valve

    Science.gov (United States)

    Iqbal, Muhammad Zahir; Hussain, Ghulam; Siddique, Salma; Iqbal, Muhammad Waqas

    2017-11-01

    Here the magnetotransport properties of vertical spin valve structures incorporating graphene (Gr), Gr/Au and Gr/Al2O3 intervening layers are elucidated. An in-plane magnetic field is obliquely applied to the device with the purpose to vary the relative magnetizations of ferromagnetic electrodes (Co and Ni). The relative magnetoresistance (MR) of Co/Gr/Ni is enhanced from ∼0.16% to 0.57% by simply passivating the bottom Ni electrode with thin Au film. On the other hand, depositing Al2O3 on the bottom ferromagnetic layer in such a spin valve junction not only increases the magnitude of MR (∼-0.52%) but also reverses its polarity. Furthermore, the linear current-voltage characteristics for graphene and graphene/Au spin valve devices specifies ohmic contact, while non-linear curves indicate tunneling behavior for graphene/Al2O3 device.

  20. Graphene mobility mapping.

    Science.gov (United States)

    Buron, Jonas D; Pizzocchero, Filippo; Jepsen, Peter U; Petersen, Dirch H; Caridad, José M; Jessen, Bjarke S; Booth, Timothy J; Bøggild, Peter

    2015-07-24

    Carrier mobility and chemical doping level are essential figures of merit for graphene, and large-scale characterization of these properties and their uniformity is a prerequisite for commercialization of graphene for electronics and electrodes. However, existing mapping techniques cannot directly assess these vital parameters in a non-destructive way. By deconvoluting carrier mobility and density from non-contact terahertz spectroscopic measurements of conductance in graphene samples with terahertz-transparent backgates, we are able to present maps of the spatial variation of both quantities over large areas. The demonstrated non-contact approach provides a drastically more efficient alternative to measurements in contacted devices, with potential for aggressive scaling towards wafers/minute. The observed linear relation between conductance and carrier density in chemical vapour deposition graphene indicates dominance by charged scatterers. Unexpectedly, significant variations in mobility rather than doping are the cause of large conductance inhomogeneities, highlighting the importance of statistical approaches when assessing large-area graphene transport properties.

  1. Enhanced magnetoresistance in graphene spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Zahir, E-mail: zahir.upc@gmail.com [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Hussain, Ghulam [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Siddique, Salma [Department of Bioscience & Biotechnology, Sejong University, Seoul 143-747 (Korea, Republic of); Iqbal, Muhammad Waqas [Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, Lahore (Pakistan)

    2017-05-01

    Graphene has been explored as a promising candidate for spintronics due to its atomically flat structure and novel properties. Here we fabricate two spin valve junctions, one from directly grown graphene on Ni electrode (DG) and other from transferred graphene (TG). The magnetoresistance (MR) ratio for DG device is found to be higher than TG device i.e. ~0.73% and 0.14%, respectively. Also the spin polarization of Ni electrode is determined to be 6.03% at room temperature in case of DG device, however it reduces to 2.1% for TG device. From this analysis, we infer how environmental exposure of the sample degrades the spin properties of the magnetic junctions. Moreover, the transport measurements reveal linear behavior for current-voltage (I-V) characteristics, indicating ohmic behavior of the junctions. Our findings unveil the efficiency of direct growth of graphene for spin filtering mechanism in spin valve devices.

  2. Graphene-Based Systems for Energy Storage

    Science.gov (United States)

    Calle, Carlos I.; Mackey, Paul J.; Johansen, Michael R.; Phillips, James, III; Hogue, Michael; Kaner, Richard B.; El-Kady, Maher

    2016-01-01

    Development of graphene-based energy storage devices based on the Laser Scribe system developed by the University of California Los Angeles. These devices These graphene-based devices store charge on graphene sheets and take advantage of the large accessible surface area of graphene (2,600 m2g) to increase the electrical energy that can be stored. The proposed devices should have the electrical storage capacity of thin-film-ion batteries but with much shorter charge discharge cycle times as well as longer lives The proposed devices will be carbon-based and so will not have the same issues with flammability or toxicity as the standard lithium-based storage cells.

  3. Charge Transfer Properties Through Graphene for Applications in Gaseous Detectors

    CERN Document Server

    Franchino, S.; Hall-Wilton, R.; Jackman, R.B.; Muller, H.; Nguyen, T.T.; de Oliveira, R.; Oliveri, E.; Pfeiffer, D.; Resnati, F.; Ropelewski, L.; Smith, J.; van Stenis, M.; Streli, C.; Thuiner, P.; Veenhof, R.

    2016-07-11

    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical and electrical properties. Regarded as the thinnest and narrowest conductive mesh, it has drastically different transmission behaviours when bombarded with electrons and ions in vacuum. This property, if confirmed in gas, may be a definitive solution for the ion back-flow problem in gaseous detectors. In order to ascertain this aspect, graphene layers of dimensions of about 2x2cm$^2$, grown on a copper substrate, are transferred onto a flat metal surface with holes, so that the graphene layer is freely suspended. The graphene and the support are installed into a gaseous detector equipped with a triple Gaseous Electron Multiplier (GEM), and the transparency properties to electrons and ions are studied in gas as a function of the electric fields. The techniques to produce the graphene samples are described, and we report on preliminary tests of graphene-coated GEMs.

  4. Reduced graphene oxide for room-temperature gas sensors

    Energy Technology Data Exchange (ETDEWEB)

    Lu Ganhua; Chen Junhong [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Ocola, Leonidas E, E-mail: jhchen@uwm.ed [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2009-11-04

    We demonstrated high-performance gas sensors based on graphene oxide (GO) sheets partially reduced via low-temperature thermal treatments. Hydrophilic graphene oxide sheets uniformly suspended in water were first dispersed onto gold interdigitated electrodes. The partial reduction of the GO sheets was then achieved through low-temperature, multi-step annealing (100, 200, and 300 {sup 0}C) or one-step heating (200 {sup 0}C) of the device in argon flow at atmospheric pressure. The electrical conductance of GO was measured after each heating cycle to interpret the level of reduction. The thermally-reduced GO showed p-type semiconducting behavior in ambient conditions and was responsive to low-concentration NO{sub 2} and NH{sub 3} gases diluted in air at room temperature. The sensitivity can be attributed mainly to the electron transfer between the reduced GO and adsorbed gaseous molecules (NO{sub 2}/NH{sub 3}). Additionally, the contact between GO and the Au electrode is likely to contribute to the overall sensing response because of the adsorbates-induced Schottky barrier variation. A simplified model is used to explain the experimental observations.

  5. Reduced graphene oxide for room-temperature gas sensors.

    Science.gov (United States)

    Lu, Ganhua; Ocola, Leonidas E; Chen, Junhong

    2009-11-04

    We demonstrated high-performance gas sensors based on graphene oxide (GO) sheets partially reduced via low-temperature thermal treatments. Hydrophilic graphene oxide sheets uniformly suspended in water were first dispersed onto gold interdigitated electrodes. The partial reduction of the GO sheets was then achieved through low-temperature, multi-step annealing (100, 200, and 300 degrees C) or one-step heating (200 degrees C) of the device in argon flow at atmospheric pressure. The electrical conductance of GO was measured after each heating cycle to interpret the level of reduction. The thermally-reduced GO showed p-type semiconducting behavior in ambient conditions and was responsive to low-concentration NO2 and NH3 gases diluted in air at room temperature. The sensitivity can be attributed mainly to the electron transfer between the reduced GO and adsorbed gaseous molecules (NO2/NH3). Additionally, the contact between GO and the Au electrode is likely to contribute to the overall sensing response because of the adsorbates-induced Schottky barrier variation. A simplified model is used to explain the experimental observations.

  6. Reduced graphene oxide for room-temperature gas sensors

    Science.gov (United States)

    Lu, Ganhua; Ocola, Leonidas E.; Chen, Junhong

    2009-11-01

    We demonstrated high-performance gas sensors based on graphene oxide (GO) sheets partially reduced via low-temperature thermal treatments. Hydrophilic graphene oxide sheets uniformly suspended in water were first dispersed onto gold interdigitated electrodes. The partial reduction of the GO sheets was then achieved through low-temperature, multi-step annealing (100, 200, and 300 °C) or one-step heating (200 °C) of the device in argon flow at atmospheric pressure. The electrical conductance of GO was measured after each heating cycle to interpret the level of reduction. The thermally-reduced GO showed p-type semiconducting behavior in ambient conditions and was responsive to low-concentration NO2 and NH3 gases diluted in air at room temperature. The sensitivity can be attributed mainly to the electron transfer between the reduced GO and adsorbed gaseous molecules (NO2/NH3). Additionally, the contact between GO and the Au electrode is likely to contribute to the overall sensing response because of the adsorbates-induced Schottky barrier variation. A simplified model is used to explain the experimental observations.

  7. Experimental Methods for Implementing Graphene Contacts to Finite Bandgap Semiconductors

    DEFF Research Database (Denmark)

    Meyer-Holdt, Jakob

    Present Ph.D. thesis describes my work on implanting graphene as electrical contact to finite bandgap semiconductors. Different transistor architectures, types of graphene and finite bandgap semiconductors have been employed. The device planned from the beginning of my Ph.D. fellowship...... contacts to semiconductor nanowires, more specifically, epitaxially grown InAs nanowires. First, we tried a top down method where CVD graphene was deposited on substrate supported InAs nanowires followed by selective graphene ashing to define graphene electrodes. While electrical contact between...... was a graphene-C60 monolayergraphene vertical transistor named the Carbon Burger. The fabrication of such device proved increasingly difficult to achieve and many experimental methods to handle graphene were implemented and improved in attempt to fabricate the Carbon Burger. In the end, a device platform...

  8. Oxide-Graphene Interfaces for Graphene Spintronics

    Science.gov (United States)

    Stuart, Sean Clayton

    Graphene's high carrier mobility and low spin-orbit scattering allow for efficient spin transport, which has been demonstrated by several publications over useful length scales. Spintronic devices require an oxide tunneling barrier to allow for efficient spin injection from a magnetic contact and can employ magnetic oxide gates for spin manipulation. This thesis concerns the production and characterization of oxide films for graphene based spintronics. Pulsed laser deposition (PLD) was used to grow thin, uniform MgO films on graphene of suitable quality for tunneling barriers. This was an important result, improving on previous deposition techniques significantly. Progress toward more sophisticated spintronic devices requires controllable manipulation of spin polarized charge carriers. We have identified Cr 2O3 as a material whose magnetoelectric properties would enable voltage controlled switching of the exchange interaction. Magnetoelectric Cr2O3 filmswere produced by PLD. These films were characterized by x-ray diffraction, photoelectron spectroscopy and atomic force microscopy (AFM). The magnetoelectric properties of Cr2O 3 were characterized by a novel combination of electrostatic (EFM) and magnetic force microscopy (MFM). Magnetoelectric annealing was used to produce varying sized magnetoelectric domains imaged by MFM. A local electric field was applied with a conducting AFM tip, and the local switching of the polarization and magnetization produced by the applied field was measured.

  9. A novel method for transferring graphene onto PDMS

    Energy Technology Data Exchange (ETDEWEB)

    Hiranyawasit, Witchawate; Punpattanakul, Krirktakul; Pimpin, Alongkorn [Department of Mechanical Engineering, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand); Kim, Houngkyung; Jeon, Seokwoo [Department of Materials Science and Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Srituravanich, Werayut, E-mail: werayut.s@chula.ac.th [Department of Mechanical Engineering, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand)

    2015-12-15

    Graphical abstract: - Highlights: • A novel method for graphene transfer onto PDMS substrates established. • SU-8 layer is used to strengthen the adhesion between graphene and PDMS substrate. • A great potential for the development of graphene-based microfluidic devices. - Abstract: Graphene has been attracting great attention from scientific community due to its astonishing mechanical, optical, and electrical properties, especially, graphene films synthesized by chemical vapor deposition (CVD) method are large, uniform and high-quality. CVD-grown graphene films have been successfully transferred onto various kinds of substrates such as SiO{sub 2}/Si, quartz, PET, and plastics. However, graphene transfer onto polydimethylsiloxane (PDMS) substrates for device development has been limited due to the very low surface energy of PDMS. Here, we present a novel method to transfer graphene onto PDMS substrates by utilizing a thin layer of SU-8 as an adhesion layer. The SU-8 adhesion layer significantly improves the adhesion between the graphene layer and the PDMS substrate resulting in successful graphene transfer onto the PDMS substrate. This opens up a great potential of using graphene on PDMS substrates for the development of a wide range of graphene-based transparent and flexible devices.

  10. Linear Correlation Between Binding Energy and Young’s Modulus in Graphene Nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Zeinalipour-Yazdi, Constantinos D.; Christofides, Constantinos

    2009-09-15

    Graphene nanoribbons (GNRs) have been suggested as a promising material for its use as nanoelectromechanical reasonators for highly sensitive force, mass, and charge detection. Therefore the accurate determination of the size-dependent elastic properties of GNRs is desirable for the design of graphene-based nanoelectromechanical devices. In this study we determine the size-dependent Young’s modulus and carbon-carbon binding energy in a homologous series of GNRs, C4n2+6n+2H6n+4 (n=2–12), with the use of all electron first principles computations. An unexpected linearity between the binding energy and Young’s modulus is observed, making possible the prediction of the size-dependent Young’s modulus of GNRs through a single point energy calculation of the GNR ground state. A quantitative-structure-property relationship is derived, which correlates Young’s modulus to the total energy and the number of carbon atoms within the ribbon. In the limit of extended graphene sheets we determine the value of Young’s modulus to be 1.09 TPa, in excellent agreement with experimental estimates derived for graphite and suspended grapheme sheets.

  11. Electromechanical control of nitrogen-vacancy defect emission using graphene NEMS

    Science.gov (United States)

    Reserbat-Plantey, Antoine; Schädler, Kevin G.; Gaudreau, Louis; Navickaite, Gabriele; Güttinger, Johannes; Chang, Darrick; Toninelli, Costanza; Bachtold, Adrian; Koppens, Frank H. L.

    2016-01-01

    Despite recent progress in nano-optomechanics, active control of optical fields at the nanoscale has not been achieved with an on-chip nano-electromechanical system (NEMS) thus far. Here we present a new type of hybrid system, consisting of an on-chip graphene NEMS suspended a few tens of nanometres above nitrogen-vacancy centres (NVCs), which are stable single-photon emitters embedded in nanodiamonds. Electromechanical control of the photons emitted by the NVC is provided by electrostatic tuning of the graphene NEMS position, which is transduced to a modulation of NVC emission intensity. The optomechanical coupling between the graphene displacement and the NVC emission is based on near-field dipole-dipole interaction. This class of optomechanical coupling increases strongly for smaller distances, making it suitable for nanoscale devices. These achievements hold promise for selective control of emitter arrays on-chip, optical spectroscopy of individual nano-objects, integrated optomechanical information processing and open new avenues towards quantum optomechanics.

  12. Graphene as gain medium for broadband lasers

    Science.gov (United States)

    Jago, Roland; Winzer, Torben; Knorr, Andreas; Malic, Ermin

    2015-08-01

    Efficient nonradiative carrier recombination strongly counteracts the appearance of optical gain in graphene. Based on a microscopic and fully quantum-mechanical study of the coupled carrier, phonon, and photon dynamics in graphene, we present a strategy to obtain a long-lived gain: Integrating graphene into a high quality photonic crystal nanocavity and applying a high-dielectric substrate suppresses the nonradiative recombination channels and gives rise to pronounced coherent light emission. This suggests the design of graphene-based laser devices covering a broad spectral range.

  13. Graphene-protected copper and silver plasmonics

    DEFF Research Database (Denmark)

    Kravets, V. G.; Jalil, R.; Kim, Y. J.

    2014-01-01

    suitable for plasmonic applications. To this end, there has been a continuous search for alternative plasmonic materials that are also compatible with complementary metal oxide semiconductor technology. Here we show that copper and silver protected by graphene are viable candidates. Copper films covered...... with one to a few graphene layers show excellent plasmonic characteristics. They can be used to fabricate plasmonic devices and survive for at least a year, even in wet and corroding conditions. As a proof of concept, we use the graphene-protected copper to demonstrate dielectric loaded plasmonic...... waveguides and test sensitivity of surface plasmon resonances. Our results are likely to initiate wide use of graphene-protected plasmonics....

  14. Electronic properties of graphene antidot lattices

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Pedersen, Jesper Goor; Flindt, C.

    2009-01-01

    into a semiconductor. We calculate the electronic band structure of graphene antidot lattices using three numerical approaches with different levels of computational complexity, efficiency and accuracy. Fast finite-element solutions of the Dirac equation capture qualitative features of the band structure, while full......Graphene antidot lattices constitute a novel class of nano-engineered graphene devices with controllable electronic and optical properties. An antidot lattice consists of a periodic array of holes that causes a band gap to open up around the Fermi level, turning graphene from a semimetal...

  15. Noncommutative Graphene

    OpenAIRE

    Bastos, C.; Bertolami, O.; Dias, N.; Prata, J.

    2012-01-01

    We consider a noncommutative description of graphene. This description consists of a Dirac equation for massless Dirac fermions plus noncommutative corrections, which are treated in the presence of an external magnetic field. We argue that, being a two-dimensional Dirac system, graphene is particularly interesting to test noncommutativity. We find that momentum noncommutativity affects the energy levels of graphene, but that it does not entail any kind of correction to the Hall conductivity.

  16. Epitaxial graphene

    OpenAIRE

    de Heer, Walt A.; Berger, Claire; Wu, Xiaosong; First, Phillip N.; Conrad, Edward H.; Li, Xuebin; Li, Tianbo; Sprinkle, Michael; Hass, Joanna; Sadowski, Marcin L.; Potemski, Marek; Martinez, Gerard

    2007-01-01

    Graphene multilayers are grown epitaxially on single crystal silicon carbide. This system is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undoped. Unlike graphite the charge carriers show Dirac particle properties (i.e. an anomalous Berry's phase, weak anti-localization and square root field dependence of the Landau level energies). Epitaxial graphene shows quasi-ballistic transport and l...

  17. Aromatic graphene

    Energy Technology Data Exchange (ETDEWEB)

    Das, D. K., E-mail: gour.netai@gmail.com [Department of Metallurgical and Material Science Engineering, National Institute of Technology Durgapur-713209, West Bengal (India); Sahoo, S., E-mail: sukadevsahoo@yahoo.com [Department of Physics, National Institute of Technology Durgapur-713209, West Bengal (India)

    2016-04-13

    In recent years graphene attracts the scientific and engineering communities due to its outstanding electronic, thermal, mechanical and optical properties and many potential applications. Recently, Popov et al. [1] have studied the properties of graphene and proved that it is aromatic but without fragrance. In this paper, we present a theory to prepare graphene with fragrance. This can be used as scented pencils, perfumes, room and car fresheners, cosmetics and many other useful household substances.

  18. Enhanced solar light absorption of graphene by interaction with anisole

    KAUST Repository

    Kahaly, M. Upadhyay

    2014-10-01

    We study suspended graphene in contact with the organic molecule anisole to analyse the implications of the interaction for the optical absorption, using first principle calculations. Because of a weak interaction multiple orientations of the molecule with respect to the graphene sheet are possible. A substantial enhancement of the optical absorption independent of the specific orientation is observed, which is promising for energy harvesting. © 2014 Elsevier Ltd. All rights reserved.

  19. Boron nitride encapsulated graphene infrared emitters

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, H. R.; Zossimova, E.; Mahlmeister, N. H.; Lawton, L. M.; Luxmoore, I. J.; Nash, G. R., E-mail: g.r.nash@exeter.ac.uk [College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF (United Kingdom)

    2016-03-28

    The spatial and spectral characteristics of mid-infrared thermal emission from devices containing a large area multilayer graphene layer, encapsulated using hexagonal boron nitride, have been investigated. The devices were run continuously in air for over 1000 h, with the emission spectrum covering the absorption bands of many important gases. An approximate solution to the heat equation was used to simulate the measured emission profile across the devices yielding an estimated value of the characteristic length, which defines the exponential rise/fall of the temperature profile across the device, of 40 μm. This is much larger than values obtained in smaller exfoliated graphene devices and reflects the device geometry, and the increase in lateral heat conduction within the devices due to the multilayer graphene and boron nitride layers.

  20. Graphene Origami

    Science.gov (United States)

    Blees, Melina; Barnard, Arthur; Roberts, Samantha; Ong, Peijie; Zaretski, Aliaksandr; Wang, Si Ping; McEuen, Paul

    2012-02-01

    Graphene, which features unparalleled in-plane strength and low out-of-plane bending energy, is an ideal material with which to tackle the challenge of building three-dimensional structures and moving parts at the nanoscale. Here we demonstrate laser-induced folding and scrolling of large-area monolayer graphene in solution. Monolayer graphene is typically well-adhered to its substrate, but we have achieved control of the adhesion using a combination of an aluminum sacrificial layer and surfactants. Once the graphene can move, local heating with an infrared laser and the interfacial tension of laser-nucleated bubbles allow us to lift, fold, and scroll the graphene. We have also formed a regular array of polymer dots on the graphene surface which can be easily imaged in three dimensions, allowing us to optically track the shape of the graphene as it moves. And finally, we establish graphene's viability as a strong but flexible sheet hinge by building and manipulating structures of rigid metallic panels connected by strips of graphene.

  1. Nanoscale phase change memory with graphene ribbon electrodes

    Science.gov (United States)

    Behnam, Ashkan; Xiong, Feng; Cappelli, Andrea; Wang, Ning C.; Carrion, Enrique A.; Hong, Sungduk; Dai, Yuan; Lyons, Austin S.; Chow, Edmond K.; Piccinini, Enrico; Jacoboni, Carlo; Pop, Eric

    2015-09-01

    Phase change memory (PCM) devices are known to reduce in power consumption as the bit volume and contact area of their electrodes are scaled down. Here, we demonstrate two types of low-power PCM devices with lateral graphene ribbon electrodes: one in which the graphene is patterned into narrow nanoribbons and the other where the phase change material is patterned into nanoribbons. The sharp graphene "edge" contacts enable switching with threshold voltages as low as ˜3 V, low programming currents (100. Large-scale fabrication with graphene grown by chemical vapor deposition also enables the study of heterogeneous integration and that of variability for such nanomaterials and devices.

  2. High gain hybrid graphene-organic semiconductor phototransistors.

    Science.gov (United States)

    Huisman, Everardus H; Shulga, Artem G; Zomer, Paul J; Tombros, Nikolaos; Bartesaghi, Davide; Bisri, Satria Zulkarnaen; Loi, Maria A; Koster, L Jan Anton; van Wees, Bart J

    2015-06-03

    Hybrid phototransistors of graphene and the organic semiconductor poly(3-hexylthiophene-2,5-diyl) (P3HT) are presented. Two types of phototransistors are demonstrated with a charge carrier transit time that differs by more than 6 orders of magnitude. High transit time devices are fabricated using a photoresist-free recipe to create large-area graphene transistors made out of graphene grown by chemical vapor deposition. Low transit time devices are fabricated out of mechanically exfoliated graphene on top of mechanically exfoliated hexagonal boron nitride using standard e-beam lithography. Responsivities exceeding 10(5) A/W are obtained for the low transit time devices.

  3. Electroactive and Optoelectronically Active Graphene Nanofilms

    DEFF Research Database (Denmark)

    Chi, Qijin

    applications ranging from catalysis, electronic devices, sensors to advanced energy conversion and storage [3]. This talk highlights our recent studies on electroactive and optoelectronically active graphene ultrathin films for chemical sensors and energy technology. The presentation includes a general theme...

  4. Experimental Investigations of Thermal Transport in Carbon Nanotubes, Graphene and Nanoscale Point Contacts

    Science.gov (United States)

    Pettes, Michael Thompson

    As silicon-based transistor technology continues to scale ever downward, anticipation of the fundamental limitations of ultimately-scaled devices has driven research into alternative device technologies as well as new materials for interconnects and packaging. Additionally, as power dissipation becomes an increasingly important challenge in highly miniaturized devices, both the implementation and verification of high mobility, high thermal conductivity materials, such as low dimensional carbon nanomaterials, and the experimental investigation of heat transfer in the nanoscale regime are requisite to continued progress. This work furthers the current understanding of structure-property relationships in low dimensional carbon nanomaterials, specifically carbon nanotubes (CNTs) and graphene, through use of combined thermal conductance and transmission electron microscopy (TEM) measurements on the same individual nanomaterials suspended between two micro-resistance thermometers. Through the development of a method to measure thermal contact resistance, the intrinsic thermal conductivity, kappa, of multi-walled (MW) CNTs is found to correlate with TEM observed defect density, linking phonon-defect scattering to the low kappa in these chemical vapor deposition (CVD) synthesized nanomaterials. For single- (S) and double- (D) walled (W) CNTs, the kappa is found to be limited by thermal contact resistance for the as-grown samples but still four times higher than that for bulk Si. Additionally, through the use of a combined thermal transport-TEM study, the kappa of bi-layer graphene is correlated with both crystal structure and surface conditions. Theoretical modeling of the kappa temperature dependence allows for the determination that phonon scattering mechanisms in suspended bi-layer graphene with a thin polymeric coating are similar to those for the case of graphene supported on SiO2. Furthermore, a method is developed to investigate heat transfer through a nanoscale

  5. The use of graphene based materials for fuel cell, photovoltaics, and supercapacitor electrode materials

    Science.gov (United States)

    Tsang, Alpha C. H.; Kwok, Holly Y. H.; Leung, Dennis Y. C.

    2017-05-01

    This manuscript presents the methodology of the production of 2D and 3D graphene based material, and their applications in fuel cell, supercapacitor, and photovoltic in recent years. Due to the uniqueness and attractive properties of graphene nanosheets, a large number of techniques have been developed for raw graphene preparation, from a chemical method to a physical deposition of carbon vapor under extreme conditions. A variety of graphene based materials were also prepared from raw graphene or graphene oxide, including the metal loaded, metal oxides loaded, to the foreign elements doped graphene. Both two-dimensional (2D) to three-dimensional (3D) structured graphene were covered. These materials included the bulk or template hybrid composite, containing graphene hydrogel, graphene aerogel, or graphene foam and its derived products. They were widely used in green energy device research, which exhibited strong activity, and developed some special usage in recent research.

  6. Tuning of light-graphene interactions

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    Graphene opens up for novel optoelectronic applications thanks to its high carrier mobility, ultra-large absorption bandwidth, and extremely fast material response. In particular, the opportunity to control optoelectronic properties through Fermi-level tuning enables electrooptical modulation......, optical-optical switching, and other optoelectronics applications. Except for the statistic gating and chemical doping, the Fermi level of graphene can also be optically tuned. With the aid of external optical pumping, electrons can be excited in the substrate, then move to the graphene layer, leading...... to the electrical doping in graphene. In this talk, I will firstly discuss how the graphene property changes when applying the optical pumping with different incident power. Then I will discuss graphene-silicon microring devices with having a high modulation depth and with a relatively low bias voltage. Finally, I...

  7. Elastic properties of suspended multilayer WSe2

    Science.gov (United States)

    Zhang, Rui; Koutsos, Vasileios; Cheung, Rebecca

    2016-01-01

    We report the experimental determination of the elastic properties of suspended multilayer WSe2, a promising two-dimensional (2D) semiconducting material combined with high optical quality. The suspended WSe2 membranes have been fabricated by mechanical exfoliation of bulk WSe2 and transfer of the exfoliated multilayer WSe2 flakes onto SiO2/Si substrates pre-patterned with hole arrays. Then, indentation experiments have been performed on these membranes with an atomic force microscope. The results show that the 2D elastic modulus of the multilayer WSe2 membranes increases linearly while the prestress decreases linearly as the number of layers increases. The interlayer interaction in WSe2 has been observed to be strong enough to prevent the interlayer sliding during the indentation experiments. The Young's modulus of multilayer WSe2 (167.3 ± 6.7 GPa) is statistically independent of the thickness of the membranes, whose value is about two thirds of other most investigated 2D semiconducting transition metal dichalcogenides, namely, MoS2 and WS2. Moreover, the multilayer WSe2 can endure ˜12.4 GPa stress and ˜7.3% strain without fracture or mechanical degradation. The 2D WSe2 can be an attractive semiconducting material for application in flexible optoelectronic devices and nano-electromechanical systems.

  8. Josephson coupling in junctions made of monolayer graphene on SiC

    OpenAIRE

    Jouault, B.; Charpentier, S.; Massarotti, D.; Michon, A.; Paillet, M.; Huntzinger, J. -R.; Tiberj, A.; Zahab, A.; Bauch, T.; Lucignano, P.; Tagliacozzo, A.; Lombardi, F.; Tafuri, F.

    2016-01-01

    Graphene on silicon carbide (SiC) has proved to be highly successful in Hall conductance quantization for its homogeneity at the centimetre scale. Robust Josephson coupling has been measured in co-planar diffusive Al/monololayer graphene/Al junctions. Graphene on SiC substrates is a concrete candidate to provide scalability of hybrid Josephson graphene/superconductor devices, giving also promise of ballistic propagation.

  9. Applications of graphene electrophoretic deposition. A review.

    Science.gov (United States)

    Chavez-Valdez, A; Shaffer, M S P; Boccaccini, A R

    2013-02-14

    This Review summarizes research progress employing electrophoretic deposition (EPD) to fabricate graphene and graphene-based nanostructures for a wide range of applications, including energy storage materials, field emission devices, supports for fuel cells, dye-sensitized solar cells, supercapacitors and sensors, among others. These carbonaceous nanomaterials can be dispersed in organic solvents, or more commonly in water, using a variety of techniques compatible with EPD. Most deposits are produced under constant voltage conditions with deposition time also playing an important role in determining the morphology of the resulting graphene structures. In addition to simple planar substrates, it has been shown that uniform graphene-based layers can be deposited on three-dimensional, porous, and even flexible substrates. In general, electrophoretically deposited graphene layers show excellent properties, e.g., high electrical conductivity, large surface area, good thermal stability, high optical transparency, and robust mechanical strength. EPD also enables the fabrication of functional composite materials, e.g., graphene combined with metallic nanoparticles, with other carbonaceous materials (e.g., carbon nanotubes) or polymers, leading to novel nanomaterials with enhanced optical and electrical properties. In summary, the analysis of the available literature reveals that EPD is a simple and convenient processing method for graphene and graphene-based materials, which is easy to apply and versatile. EPD has, therefore, a promising future for applications in the field of advanced nanomaterials, which depend on the reliable manipulation of graphene and graphene-containing systems.

  10. Suspended animation for delayed resuscitation.

    Science.gov (United States)

    Safar, Peter J; Tisherman, Samuel A

    2002-04-01

    'Suspended animation for delayed resuscitation' is a new concept for attempting resuscitation from cardiac arrest of patients who currently (totally or temporarily) cannot be resuscitated, such as traumatic exsanguination cardiac arrest. Suspended animation means preservation of the viability of brain and organism during cardiac arrest, until restoration of stable spontaneous circulation or prolonged artificial circulation is possible. Suspended animation for exsanguination cardiac arrest of trauma victims would have to be induced within the critical first 5 min after the start of cardiac arrest no-flow, to buy time for transport and resuscitative surgery (hemostasis) performed during no-flow. Cardiac arrest is then reversed with all-out resuscitation, usually requiring cardiopulmonary bypass. Suspended animation has been explored and documented as effective in dogs in terms of long-term survival without brain damage after very prolonged cardiac arrest. In the 1990s, the Pittsburgh group achieved survival without brain damage in dogs after cardiac arrest of up to 90 min no-flow at brain (tympanic) temperature of 10 degrees C, with functionally and histologically normal brains. These studies used emergency cardiopulmonary bypass with heat exchanger or a single hypothermic saline flush into the aorta, which proved superior to pharmacologic strategies. For the large number of normovolemic sudden cardiac death victims, which currently cannot be resuscitated, more research in large animals is needed.

  11. Surface-Engineered Graphene Quantum Dots Incorporated into Polymer Layers for High Performance Organic Photovoltaics

    National Research Council Canada - National Science Library

    Kim, Jung Kyu; Kim, Sang Jin; Park, Myung Jin; Bae, Sukang; Cho, Sung-Pyo; Du, Qing Guo; Wang, Dong Hwan; Park, Jong Hyeok; Hong, Byung Hee

    2015-01-01

    Graphene quantum dots (GQDs), a newly emerging 0-dimensional graphene based material, have been widely exploited in optoelectronic devices due to their tunable optical and electronic properties depending on their functional groups...

  12. A low-temperature method to produce highly reduced graphene oxide

    National Research Council Canada - National Science Library

    Feng, Hongbin; Cheng, Rui; Zhao, Xin; Duan, Xiangfeng; Li, Jinghong

    2013-01-01

    Chemical reduction of graphene oxide can be used to produce large quantities of reduced graphene oxide for potential application in electronics, optoelectronics, composite materials and energy-storage devices...

  13. Graphene Nanodevices

    NARCIS (Netherlands)

    Calado, V.E.

    2013-01-01

    This thesis describes a divergent set of experiments on graphene, a one-atom thin sheet of carbon. We employ graphene’s unique properties to explore fundamental physics and novel applications. This is done by nano fabricating graphene to nanodevices, which are subject to experiments. Here we first

  14. Design consideration for magnetically suspended flywheel systems

    Science.gov (United States)

    Anand, D.; Kirk, J. A.; Frommer, D. A.

    1985-01-01

    Consideration is given to the design, fabrication, and testing of a magnetically suspended flywheel system for energy storage applications in space. The device is the prototype of a system combining passive suspension of the flywheel plate by samarium cobalt magnets and active control in the radial direction using eight separate magnetic coils. The bearing assembly was machined from a nickel-iron alloy, and the machine parts are all hydrogen annealed. Slots in the magnetic plate allow four independent quadrants for control. The motor/generator component of the system is a brushless dc-permanent magnetic/ironless engine using electronic communication. The system has been tested at over 2500 rpm with satisfactory results. The system characteristics of the flywheel for application in low earth orbit (LEO) are given in a table.

  15. Spin transport in fully hexagonal boron nitride encapsulated graphene

    NARCIS (Netherlands)

    Gurram, M.; Omar, S.; Zihlmann, S.; Makk, P.; Schoenenberger, C.; van Wees, B. J.

    2016-01-01

    We study fully hexagonal boron nitride (hBN) encapsulated graphene spin valve devices at room temperature. The device consists of a graphene channel encapsulated between two crystalline hBN flakes: thick-hBN flake as a bottom gate dielectric substrate which masks the charge impurities from SiO2/Si

  16. Nanoscale Direct Mapping of Noise Source Activities on Graphene Domains.

    Science.gov (United States)

    Lee, Hyungwoo; Cho, Duckhyung; Shekhar, Shashank; Kim, Jeongsu; Park, Jaesung; Hong, Byung Hee; Hong, Seunghun

    2016-11-22

    An electrical noise is one of the key parameters determining the performance of modern electronic devices. However, it has been extremely difficult, if not impossible, to image localized noise sources or their activities in such devices. We report a "noise spectral imaging" strategy to map the activities of localized noise sources in graphene domains. Using this method, we could quantitatively estimate sheet resistances and noise source densities inside graphene domains, on domain boundaries and on the edge of graphene. The results show high activities of noise sources and large sheet resistance values at the domain boundary and edge of graphene. Additionally, we showed that the top layer in double-layer graphene had lower noises than single-layer graphene. This work provides valuable insights about the electrical noises of graphene. Furthermore, the capability to directly map noise sources in electronic channels can be a major breakthrough in electrical noise research in general.

  17. Substrate wettability requirement for the direct transfer of graphene

    Science.gov (United States)

    Du, F.; Duan, H. L.; Xiong, C. Y.; Wang, J. X.

    2015-10-01

    The direct transfer method, wherein graphene is transferred from its growth metal to a soft substrate, is widely used to fabricate various devices, and the interfacial bonding condition between the substrate and the graphene is vital for transfer success. In this letter, we present a theoretical model to derive the wettability requirements of the soft substrate to sustain the direct transfer of graphene, and verify the theoretical analysis with experiments. We find that the surface energy components of the substrate have a crucial effect upon the graphene transfer, and that substrates possessing a strong polar surface energy are not suitable for transfer. The theoretical model predicts the critical water contact angle of the soft substrate for graphene transfer to be about 50°, and the experiments measure it to be about 60°. These results provide guidelines for choosing proper substrates to transfer graphene during the fabrication of graphene-based flexible devices.

  18. Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yijun [Institute of Optoelectronic Technology, Department of Electronic Engineering, Xiamen University, Xiamen 361005 (China); Institute of Electromagnetics and Acoustics, Department of Electronic Science, Xiamen University, Xiamen 361005 (China); Zhu, Jinfeng, E-mail: nanoantenna@hotmail.com [Institute of Electromagnetics and Acoustics, Department of Electronic Science, Xiamen University, Xiamen 361005 (China); Liu, Qing Huo [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States)

    2015-01-26

    Enhancement and manipulation of light absorption in graphene is a significant issue for applications of graphene-based optoelectronic devices. In order to achieve this purpose in the visible region, we demonstrate a design of a graphene optical absorber inspired by metal-dielectric-metal metamaterial for perfect absorption of electromagnetic waves. The optical absorbance ratios of single and three atomic layer graphene are enhanced up to 37.5% and 64.8%, respectively. The graphene absorber shows polarization-dependence and tolerates a wide range of incident angles. Furthermore, the peak position and bandwidth of graphene absorption spectra are tunable in a wide wavelength range through a specific structural configuration. These results imply that graphene in combination with plasmonic perfect absorbers have a promising potential for developing advanced nanophotonic devices.

  19. Graphene Electrodes

    DEFF Research Database (Denmark)

    Pizzocchero, Filippo

    The production of graphene and the other 2D materials is presented in the beginning of this thesis. Micromechanical exfoliation is the best method for obtaining relatively small and top quality samples. The invention of Graphene Finder simplifies the procedure of finding the exfoliated flakes...... in copper thin films is studied and found to be detrimental for the growth of graphene. The modified synthesis of rGO is introduced, as rGO represents a cheap alternative to CVD for large scale production of graphene. The transfer of flakes is performed by several methods, such as with PVA/PMMA support, CAB...... wedging and the pick-up technique with hBN. Several important improvements of the pick-up technique are introduced. These allowed us to transfer any 2D crystals and patterned graphene flakes with PMMA residues. We also developed the drop-down technique, which is used to release any crystal on the surface...

  20. Graphene-Based Materials for Biosensors: A Review

    Science.gov (United States)

    Suvarnaphaet, Phitsini; Pechprasarn, Suejit

    2017-01-01

    The advantages conferred by the physical, optical and electrochemical properties of graphene-based nanomaterials have contributed to the current variety of ultrasensitive and selective biosensor devices. In this review, we present the points of view on the intrinsic properties of graphene and its surface engineering concerned with the transduction mechanisms in biosensing applications. We explain practical synthesis techniques along with prospective properties of the graphene-based materials, which include the pristine graphene and functionalized graphene (i.e., graphene oxide (GO), reduced graphene oxide (RGO) and graphene quantum dot (GQD). The biosensing mechanisms based on the utilization of the charge interactions with biomolecules and/or nanoparticle interactions and sensing platforms are also discussed, and the importance of surface functionalization in recent up-to-date biosensors for biological and medical applications. PMID:28934118

  1. Graphene-based materials: synthesis, characterization, properties, and applications.

    Science.gov (United States)

    Huang, Xiao; Yin, Zongyou; Wu, Shixin; Qi, Xiaoying; He, Qiyuan; Zhang, Qichun; Yan, Qingyu; Boey, Freddy; Zhang, Hua

    2011-07-18

    Graphene, a two-dimensional, single-layer sheet of sp(2) hybridized carbon atoms, has attracted tremendous attention and research interest, owing to its exceptional physical properties, such as high electronic conductivity, good thermal stability, and excellent mechanical strength. Other forms of graphene-related materials, including graphene oxide, reduced graphene oxide, and exfoliated graphite, have been reliably produced in large scale. The promising properties together with the ease of processibility and functionalization make graphene-based materials ideal candidates for incorporation into a variety of functional materials. Importantly, graphene and its derivatives have been explored in a wide range of applications, such as electronic and photonic devices, clean energy, and sensors. In this review, after a general introduction to graphene and its derivatives, the synthesis, characterization, properties, and applications of graphene-based materials are discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. CVD graphene films and its application in organic photovoltaic cells

    Science.gov (United States)

    Gomez, Lewis; Zhang, Yi; Schlenker, Cody; Ryu, Koungmin; Thompson, Mark; Zhou, Chongwu

    2010-03-01

    In this work, CVD of graphene was used as a simple, scalable and cost-efficient method to prepare single and few-layer graphene films over large areas. CVD-G was characterized by Raman spectroscopy and TEM. Back-gated thin-film transistors were used to evaluate transport properties of the synthesized films. In addition, CVD graphene films were transferred to transparent substrates for photovoltaic cell fabrication. Solar cells obtained from the synthesized graphene films showed comparable performance to those fabricated with the standard indium tin oxide film (ITO) and showed superior performance under bending conditions due to the high flexibility of graphene. CVD Graphene constitutes a significant advance towards the production of transparent conductive films of graphene at large scale and has great implications for future graphene-related electronic devices.

  3. Graphene-Based Materials for Biosensors: A Review

    Directory of Open Access Journals (Sweden)

    Phitsini Suvarnaphaet

    2017-09-01

    Full Text Available The advantages conferred by the physical, optical and electrochemical properties of graphene-based nanomaterials have contributed to the current variety of ultrasensitive and selective biosensor devices. In this review, we present the points of view on the intrinsic properties of graphene and its surface engineering concerned with the transduction mechanisms in biosensing applications. We explain practical synthesis techniques along with prospective properties of the graphene-based materials, which include the pristine graphene and functionalized graphene (i.e., graphene oxide (GO, reduced graphene oxide (RGO and graphene quantum dot (GQD. The biosensing mechanisms based on the utilization of the charge interactions with biomolecules and/or nanoparticle interactions and sensing platforms are also discussed, and the importance of surface functionalization in recent up-to-date biosensors for biological and medical applications.

  4. Carbon nanoelectronics: unzipping tubes into graphene ribbons.

    Science.gov (United States)

    Santos, H; Chico, L; Brey, L

    2009-08-21

    We report on the transport properties of novel carbon nanostructures made of partially unzipped carbon nanotubes, which can be regarded as a seamless junction of a tube and a nanoribbon. We find that graphene nanoribbons act at certain energy ranges as perfect valley filters for carbon nanotubes, with the maximum possible conductance. Our results show that a partially unzipped carbon nanotube is a magnetoresistive device, with a very large value of magnetoresistance. We explore the properties of several structures combining nanotubes and graphene nanoribbons, demonstrating that they behave as optimal contacts for each other, and opening a new route for the design of mixed graphene-nanotube devices.

  5. Exposure monitoring of graphene nanoplatelets manufacturing workplaces.

    Science.gov (United States)

    Lee, Ji Hyun; Han, Jong Hun; Kim, Jae Hyun; Kim, Boowook; Bello, Dhimiter; Kim, Jin Kwon; Lee, Gun Ho; Sohn, Eun Kyung; Lee, Kyungmin; Ahn, Kangho; Faustman, Elaine M; Yu, Il Je

    2016-01-01

    Graphenes have emerged as a highly promising, two-dimensional engineered nanomaterial that can possibly substitute carbon nanotubes. They are being explored in numerous R&D and industrial applications in laboratories across the globe, leading to possible human and environmental exposures to them. Yet, there are no published data on graphene exposures in occupational settings and no readily available methods for their detection and quantitation exist. This study investigates for the first time the potential exposure of workers and research personnel to graphenes in two research facilities and evaluates the status of the control measures. One facility manufactures graphene using graphite exfoliation and chemical vapor deposition (CVD), while the other facility grows graphene on a copper plate using CVD, which is then transferred to a polyethylene terephthalate (PET) sheet. Graphene exposures and process emissions were investigated for three tasks - CVD growth, exfoliation, and transfer - using a multi-metric approach, which utilizes several direct reading instruments, integrated sampling, and chemical and morphological analysis. Real-time instruments included a dust monitor, condensation particle counter (CPC), nanoparticle surface area monitor, scanning mobility particle sizer, and an aethalometer. Morphologically, graphenes and other nanostructures released from the work process were investigated using a transmission electron microscope (TEM). Graphenes were quantified in airborne respirable samples as elemental carbon via thermo-optical analysis. The mass concentrations of total suspended particulate at Workplaces A and B were very low, and elemental carbon concentrations were mostly below the detection limit, indicating very low exposure to graphene or any other particles. The real-time monitoring, especially the aethalometer, showed a good response to the released black carbon, providing a signature of the graphene released during the opening of the CVD reactor

  6. Graphene nanoribbons with wings

    Energy Technology Data Exchange (ETDEWEB)

    Bischoff, D., E-mail: dominikb@phys.ethz.ch; Eich, M.; Ihn, T.; Ensslin, K. [Solid State Physics Laboratory, ETH Zurich, CH-8093 Zurich (Switzerland); Libisch, F. [Institute for Theoretical Physics, Vienna University of Technology, A-1040 Vienna (Austria)

    2015-11-16

    We have investigated electronic transport in graphene nanoribbon devices with additional bar-shaped extensions (“wings”) at each side of the device. We find that the Coulomb-blockade dominated transport found in conventional ribbons is strongly modified by the presence of the extensions. States localized far away from the central ribbon contribute significantly to transport. We discuss these findings within the picture of multiple coupled quantum dots. Finally, we compare the experimental results with tight-binding simulations which reproduce the experiment both qualitatively and quantitatively.

  7. Integrated graphene waveguide modulators based on low-loss plasmonic slot waveguides

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    2017-01-01

    Graphene based electro-absorption modulators involving dielectric optical waveguides have been recently explored, suffering however from weak graphene-light interaction. Surface plasmon polaritons enable light concentration within subwavelength regions opening thereby new avenues for strengthening...... graphene-light interactions. I present novel integrated graphene plasmonic waveguide modulator showing high modulation depth and low insertion loss, thus giving a promising way to miniaturize the device without jeopardizing the performance of the device....

  8. Direct Measurement of the Surface Energy of Graphene.

    Science.gov (United States)

    van Engers, Christian D; Cousens, Nico E A; Babenko, Vitaliy; Britton, Jude; Zappone, Bruno; Grobert, Nicole; Perkin, Susan

    2017-06-14

    Graphene produced by chemical vapor deposition (CVD) is a promising candidate for implementing graphene in a range of technologies. In most device configurations, one side of the graphene is supported by a solid substrate, wheras the other side is in contact with a medium of interest, such as a liquid or other two-dimensional material within a van der Waals stack. In such devices, graphene interacts on both faces via noncovalent interactions and therefore surface energies are key parameters for device fabrication and operation. In this work, we directly measured adhesive forces and surface energies of CVD-grown graphene in dry nitrogen, water, and sodium cholate using a modified surface force balance. For this, we fabricated large (∼1 cm(2)) and clean graphene-coated surfaces with smooth topography at both macro- and nanoscales. By bringing two such surfaces into contact and measuring the force required to separate them, we measured the surface energy of single-layer graphene in dry nitrogen to be 115 ± 4 mJ/m(2), which was similar to that of few-layer graphene (119 ± 3 mJ/m(2)). In water and sodium cholate, we measured interfacial energies of 83 ± 7 and 29 ± 6 mJ/m(2), respectively. Our work provides the first direct measurement of graphene surface energy and is expected to have an impact both on the development of graphene-based devices and contribute to the fundamental understanding of surface interactions.

  9. 7 CFR 1206.21 - Suspend.

    Science.gov (United States)

    2010-01-01

    ... part thereof during a particular period of time specified in the rule. ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE MANGO PROMOTION, RESEARCH, AND INFORMATION Mango Promotion, Research, and Information Order Definitions § 1206.21 Suspend. Suspend means to...

  10. Three dimensional graphene transistor for ultra-sensitive pH sensing directly in biological media

    Energy Technology Data Exchange (ETDEWEB)

    Ameri, Shideh Kabiri; Singh, Pramod K.; Sonkusale, Sameer R., E-mail: sameer@ece.tufts.edu

    2016-08-31

    In this work, pH sensing directly in biological media using three dimensional liquid gated graphene transistors is presented. The sensor is made of suspended network of graphene coated all around with thin layer of hafnium oxide (HfO{sub 2}), showing high sensitivity and sensing beyond the Debye-screening limit. The performance of the pH sensor is validated by measuring the pH of isotonic buffered, Dulbecco's phosphate buffered saline (DPBS) solution, and of blood serum derived from Sprague-Dawley rat. The pH sensor shows high sensitivity of 71 ± 7 mV/pH even in high ionic strength media with molarities as high as 289 ± 1 mM. High sensitivity of this device is owing to suspension of three dimensional graphene in electrolyte which provides all around liquid gating of graphene, leading to higher electrostatic coupling efficiency of electrolyte to the channel and higher gating control of transistor channel by ions in the electrolyte. Coating graphene with hafnium oxide film (HfO{sub 2}) provides binding sites for hydrogen ions, which results in higher sensitivity and sensing beyond the Debye-screening limit. The 3D graphene transistor offers the possibility of real-time pH measurement in biological media without the need for desaltation or sample preparation. - Graphical abstract: (a) Test setup – Direct rat blood serum pH measurements (b) Measured transfer characteristics of the transistor for blood serum at different pH values, and (c) Zoomed in version around direct point. - Highlights: • A three-dimensional graphene transistor for pH sensing is presented. • It shows sensitivity of 71 ± 7 mV/pH even in high ionic strength media. • High sensitivity attributed to 3D foam structure and all-around liquid gating. • Enables real-time pH sensing in biological media without need of desaltation.

  11. Development of Graphene Ion-Chamber for Radiation Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaegi; Ye, Sung-Joon [Seoul National University, Seoul (Korea, Republic of)

    2016-10-15

    Graphene is an exciting material due to its high electrical and thermal conductivity. Recently, scientific research using graphene has been divided by two types of graphene. One is a pure graphene, and the other is graphene oxide (GO), which is chemically synthesized from graphite. A pure graphene is a single layer of graphite, and its physical characteristics are very exciting. However, making process and cost are quite complex and expensive to apply an industry. On the other hand, graphene oxide is easy to make and apply a real device. Until now, radiation dosimetry using an ion-chamber has been a standard protocol. For its high electrical conductivity, graphite is usually used as a wall material of ion-chamber. Graphene can be a possible alternative to graphite due to its superior electrical conductivity and mechanical integrity. In this study, Monte Carlo simulations for graphene-walled and graphite-walled ion-chambers were performed to characterize their dosimetric properties. A world-first prototype of a graphene ion-chamber was fabricated. A graphene ion-chamber was designed and its prototype was successfully fabricated. The percent depth dose curve calculated by Monte Carlo simulations for a graphene ion-chamber was compatible to the curve using a conventional graphite ion-chamber. Therefore, due to its superior electric conductivity and mechanical integrity, graphene can be a promising alternative to graphite as a wall material of ion-chamber for radiation dosimetry.

  12. All-graphene edge contacts

    DEFF Research Database (Denmark)

    Jacobsen, Kåre Wedel; Falkenberg, Jesper Toft; Papior, Nick Rübner

    2016-01-01

    Using ab-initio methods we investigate the possibility of three-terminalgraphene "T-junction" devices and show that these all-graphene edge contactsare energetically feasible when the 1D interface itself is free from foreignatoms. We examine the energetics of various junction structures as a func......Using ab-initio methods we investigate the possibility of three-terminalgraphene "T-junction" devices and show that these all-graphene edge contactsare energetically feasible when the 1D interface itself is free from foreignatoms. We examine the energetics of various junction structures...... to be in therange of 1-10 kΩμm which is comparable to the best contact resistance reportedfor edge-contacted graphene-metal contacts. We conclude that conductingall-carbon T-junctions should be feasible....

  13. Graphene: A Dynamic Platform for Electrical Control of Plasmonic Resonance

    DEFF Research Database (Denmark)

    Emani, Naresh Kumar; Kildishev, Alexander V.; Shalaev, Vladimir M.

    2015-01-01

    Graphene has recently emerged as a viable platform for integrated optoelectronic and hybrid photonic devices because of its unique properties. The optical properties of graphene can be dynamically controlled by electrical voltage and have been used to modulate the plasmons in noble metal nanostru......Graphene has recently emerged as a viable platform for integrated optoelectronic and hybrid photonic devices because of its unique properties. The optical properties of graphene can be dynamically controlled by electrical voltage and have been used to modulate the plasmons in noble metal...... nanostructures. Graphene has also been shown to support highly confined intrinsic plasmons, with properties that can be tuned in the wavelength range of 2 μm to 100 μm. Here we review the recent development in graphene-plasmonic devices and identify some of the key challenges for practical applications...

  14. Impact of graphene polycrystallinity on the performance of graphene field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez, David; Chaves, Ferney [Departament d' Enginyeria Electrònica, Escola d' Enginyeria, Universitat Autònoma de Barcelona, 08193-Bellaterra (Spain); Cummings, Aron W.; Van Tuan, Dinh [ICN2, Institut Català de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain); Kotakoski, Jani [Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Wien (Austria); Department of Physics, University of Helsinki, P.O. Box 43, 00014 University of Helsinki (Finland); Roche, Stephan [ICN2, Institut Català de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain); ICREA, Institució Catalana de Recerca i Estudis Avançats, 08070 Barcelona (Spain)

    2014-01-27

    We have used a multi-scale physics-based model to predict how the grain size and different grain boundary morphologies of polycrystalline graphene will impact the performance metrics of graphene field-effect transistors. We show that polycrystallinity has a negative impact on the transconductance, which translates to a severe degradation of the maximum and cutoff frequencies. On the other hand, polycrystallinity has a positive impact on current saturation, and a negligible effect on the intrinsic gain. These results reveal the complex role played by graphene grain boundaries and can be used to guide the further development and optimization of graphene-based electronic devices.

  15. Strong light-matter interaction in graphene - Invited talk

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    of graphene with noble-metal nanostructures is currently being explored for strong light-graphene interaction. We introduce a novel hybrid graphene-metal system for studying light-matter interactions with gold-void nanostructures exhibiting resonances in the visible range[1]. The hybrid system is further......Graphene has attracted lots of attention due to its remarkable electronic and optical properties, thus providing great promise in photonics and optoelectronics. However, the performance of these devices is generally limited by the weak light-matter interaction in graphene. The combination...

  16. Folded structured graphene paper for high performance electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fei; Song, Shuyan; Xue, Dongfeng; Zhang, Hongjie [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (China)

    2012-02-21

    A novel method to fabricate graphene paper with folded structured graphene sheets is described. When used as an electrode for LIBs and supercapacitors, the as-prepared graphene paper can show much higher performances compared to conventional graphene paper fabricated by a flow-directed assembly method. The unique graphene paper obtained here is promising to act as a new kind of flexible electrode for wearable or rolling-up devices. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Graphene field effect transistors with parylene gate dielectric

    Science.gov (United States)

    Sabri, S. S.; Lévesque, P. L.; Aguirre, C. M.; Guillemette, J.; Martel, R.; Szkopek, T.

    2009-12-01

    We report the fabrication and characterization of graphene field effect transistors with parylene back gate and exposed graphene top surface. A back gate stack of 168 nm parylene on 94 nm thermal silicon oxide permitted optical reflection microscopy to be used for identifying exfoliated graphene flakes. Room temperature mobilities of 10 000 cm2/Vs at 1012/cm2 electron/hole densities were observed in electrically contacted graphene. Parylene gated devices exhibited stable neutrality point gate voltage under ambient conditions and less hysteresis than that observed in graphene flakes directly exfoliated on silicon oxide.

  18. Touch-mode capacitive pressure sensor with graphene-polymer heterostructure membrane

    Science.gov (United States)

    Berger, Christian; Phillips, Rory; Pasternak, Iwona; Sobieski, Jan; Strupinski, Wlodek; Vijayaraghavan, Aravind

    2018-01-01

    We describe the fabrication and characterisation of a touch-mode capacitive pressure sensor (TMCPS) with a robust design that comprises a graphene-polymer heterostructure film, laminated onto the silicon dioxide surface of a silicon wafer, incorporating a SU-8 spacer grid structure. The spacer grid structure allows the flexible graphene-polymer film to be partially suspended above the substrate, such that a pressure on the membrane results in a reproducible deflection, even after exposing the membrane to pressures over 10 times the operating range. Sensors show reproducible pressure transduction in water submersion at varying depths under static and dynamic loading. The measured capacitance change in response to pressure is in good agreement with an analytical model of clamped plates in touch mode. The device shows a pressure sensitivity of 27.1 +/- 0.5 fF Pa‑1 over a pressure range of 0.5 kPa–8.5 kPa. In addition, we demonstrate the operation of this device as a force-touch sensor in air.

  19. Superlubricating graphene and graphene oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Sumant, Anirudha V.; Erdemir, Ali; Choi, Junho; Berman, Diana

    2018-02-13

    A system and method for forming at least one of graphene and graphene oxide on a substrate and an opposed wear member. The system includes graphene and graphene oxide formed by an exfoliation process or solution processing method to dispose graphene and/or graphene oxide onto a substrate. The system further includes an opposing wear member disposed on another substrate and a gas atmosphere of an inert gas like N2, ambient, a humid atmosphere and a water solution.

  20. CVD-Graphene-Based Flexible, Thermoelectrochromic Sensor

    Directory of Open Access Journals (Sweden)

    Adam Januszko

    2017-01-01

    Full Text Available The main idea behind this work was demonstrated in a form of a new thermoelectrochromic sensor on a flexible substrate using graphene as an electrically reconfigurable thermal medium (TEChrom™. Our approach relies on electromodulation of thermal properties of graphene on poly(ethylene terephthalate (PET via mechanical destruction of a graphene layer. Graphene applied in this work was obtained by chemical vapor deposition (CVD technique on copper substrate and characterized by Raman and scanning tunneling spectroscopy. Electrical parameters of graphene were evaluated by the van der Pauw method on the transferred graphene layers onto SiO2 substrates by electrochemical delamination method. Two configurations of architecture of sensors, without and with the thermochromic layer, were investigated, taking into account the increase of voltage from 0 to 50 V and were observed by thermographic camera to define heat energy. Current-voltage characteristics obtained for the sensor with damaged graphene layer are linear, and the resistivity is independent from the current applied. The device investigated under 1000 W/m2 exhibited rise of resistivity along with increased temperature. Flexible thermoelectrochromic device with graphene presented here can be widely used as a sensor for both the military and civil monitoring.

  1. Atomic-Scale Topographic and Electronic Structure of Graphene Films on Ultraflat Insulating Materials

    Science.gov (United States)

    Gutierrez, Christopher; Zhao, Liuyan; Ghahari, Fereshte; Dean, Cory; Rim, Kwang; Hone, James; Flynn, George; Kim, Philip; Pasupathy, Abhay

    2011-03-01

    Graphene, a unique two-dimensional material, has attracted much attention for its exotic electronic properties. But owing to its nature as a single monolayer, many of these interesting properties depend heavily on the substrate on which the graphene rests. Scanning tunneling microscope (STM) experiments offer the unique ability to investigate the effect of the substrate on the surface roughness (via topography maps) as well as the local electronic properties (via spectroscopy maps) of graphene. In this talk we will present such experimental results of graphene on atomically flat insulating substrates such as mica and boron nitride, as well as suspended graphene sheets. We will describe experiments performed both on exfoliated graphene flakes as well as large-area graphene films grown by chemical vapor deposition (CVD).

  2. Synthesis of reduced graphene oxide/ZnO nanorods composites on graphene coated PET flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lei, E-mail: leihuang@shnu.edu.cn; Guo, Guilue; Liu, Yang; Chang, Quanhong; Shi, Wangzhou

    2013-10-15

    Graphical abstract: - Highlights: • ZnO nanorods synthesized on CVD-graphene and rGO surfaces, respectively. • ZnO/CVD-graphene and ZnO/rGO form a distinctive porous 3D structure. • rGO/ZnO nanostructures possibility in energy storage devices. - Abstract: In this work, reduced graphene oxide (rGO)/ZnO nanorods composites were synthesized on graphene coated PET flexible substrates. Both chemical vapor deposition (CVD) graphene and reduced graphene oxide (rGO) films were prepared following by hydrothermal growth of vertical aligned ZnO nanorods. Reduced graphene sheets were then spun coated on the ZnO materials to form a three dimensional (3D) porous nanostructure. The morphologies of the ZnO/CVD graphene and ZnO/rGO were investigated by SEM, which shows that the ZnO nanorods grown on rGO are larger in diameters and have lower density compared with those grown on CVD graphene substrate. As a result of fact, the rough surface of nano-scale ZnO on rGO film allows rGO droplets to seep into the large voids of ZnO nanorods, then to form the rGO/ZnO hierarchical structure. By comparison of the different results, we conclude that rGO/ZnO 3D nanostructure is more desirable for the application of energy storage devices.

  3. Graphene single crystals: size and morphology engineering.

    Science.gov (United States)

    Geng, Dechao; Wang, Huaping; Yu, Gui

    2015-05-13

    Recently developed chemical vapor deposition (CVD) is considered as an effective way to large-area and high-quality graphene preparation due to its ultra-low cost, high controllability, and high scalability. However, CVD-grown graphene film is polycrystalline, and composed of numerous grains separated by grain boundaries, which are detrimental to graphene-based electronics. Intensive investigations have been inspired on the controlled growth of graphene single crystals with the absence of intrinsic defects. As the two most concerned parameters, the size and morphology serve critical roles in affecting properties and understanding the growth mechanism of graphene crystals. Therefore, a precise tuning of the size and morphology will be of great significance in scale-up graphene production and wide applications. Here, recent advances in the synthesis of graphene single crystals on both metals and dielectric substrates by the CVD method are discussed. The review mainly covers the size and morphology engineering of graphene single crystals. Furthermore, recent progress in the growth mechanism and device applications of graphene single crystals are presented. Finally, the opportunities and challenges are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Enhanced infrared light harvesting of inorganic nanocrystal photovoltaic and photodetector on graphene electrode

    Science.gov (United States)

    Lin, Chih-Cheng; Wang, Di-Yan; Tu, Kun-Hua; Jiang, You-Ting; Hsieh, Meng-Hsiang; Chen, Chia-Chun; Chen, Chun-Wei

    2011-06-01

    We demonstrate an enhancement of infrared light harvesting of inorganic PbS nanocrystal photovoltaic and photodetector devices based on the transparent graphene electrode. Due to high infrared transparency of the graphene electrode with respect to indium tin oxide (ITO), the infrared photoresponse of the graphene-based device is superior to the ITO-based counterpart, in spite of a higher sheet resistance of the graphene electrode. The outstanding infrared characteristics of the devices based on the graphene electrode make it a promising candidate for infrared optoelectronic applications such as solar cells, imaging and sensing, or optical communication.

  5. Quantum elasticity of graphene: Thermal expansion coefficient and specific heat

    NARCIS (Netherlands)

    Burmistrov, I.S.; Gornyi, I.V.; Kachorovskii, V.Y.; Katsnelson, M.I.; Mirlin, A.D.

    2016-01-01

    We explore thermodynamics of a quantum membrane, with a particular application to suspended graphene membrane and with a particular focus on the thermal expansion coefficient. We show that an interplay between quantum and classical anharmonicity-controlled fluctuations leads to unusual elastic

  6. Nanomechanical properties of few-layer graphene membranes

    NARCIS (Netherlands)

    Poot, M.; Van der Zant, H.S.J.

    2008-01-01

    We have measured the mechanical properties of few-layer graphene and graphite flakes that are suspended over circular holes. The spatial profile of the flake’s spring constant is measured with an atomic force microscope. The bending rigidity of and the tension in the membranes are extracted by

  7. Theory of graphene saturable absorption

    Science.gov (United States)

    Marini, A.; Cox, J. D.; García de Abajo, F. J.

    2017-03-01

    Saturable absorption is a nonperturbative nonlinear optical phenomenon that plays a pivotal role in the generation of ultrafast light pulses. Here we show that this effect emerges in graphene at unprecedentedly low light intensities, thus opening avenues to new nonlinear physics and applications in optical technology. Specifically, we theoretically investigate saturable absorption in extended graphene by developing a semianalytical nonperturbative single-particle approach, describing electron dynamics in the atomically-thin material using the two-dimensional Dirac equation for massless Dirac fermions, which is recast in the form of generalized Bloch equations. By solving the electron dynamics nonperturbatively, we account for both interband and intraband contributions to the intensity-dependent saturated conductivity and conclude that the former dominates regardless of the intrinsic doping state of the material. We obtain results in qualitative agreement with atomistic quantum-mechanical simulations of graphene nanoribbons including electron-electron interactions, finite-size, and higher-band effects. Remarkably, such effects are found to affect mainly the linear absorption, while the predicted saturation intensities are in good quantitative agreement in the limit of extended graphene. Additionally, we find that the modulation depth of saturable absorption in graphene can be electrically manipulated through an externally applied gate voltage. Our results are relevant for the development of graphene-based optoelectronic devices, as well as for applications in mode-locking and random lasers.

  8. Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials.

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Kim, Jin-Hoi

    2016-01-01

    Graphene is a two-dimensional atomic crystal, and since its development it has been applied in many novel ways in both research and industry. Graphene possesses unique properties, and it has been used in many applications including sensors, batteries, fuel cells, supercapacitors, transistors, components of high-strength machinery, and display screens in mobile devices. In the past decade, the biomedical applications of graphene have attracted much interest. Graphene has been reported to have antibacterial, antiplatelet, and anticancer activities. Several salient features of graphene make it a potential candidate for biological and biomedical applications. The synthesis, toxicity, biocompatibility, and biomedical applications of graphene are fundamental issues that require thorough investigation in any kind of applications related to human welfare. Therefore, this review addresses the various methods available for the synthesis of graphene, with special reference to biological synthesis, and highlights the biological applications of graphene with a focus on cancer therapy, drug delivery, bio-imaging, and tissue engineering, together with a brief discussion of the challenges and future perspectives of graphene. We hope to provide a comprehensive review of the latest progress in research on graphene, from synthesis to applications.

  9. Graphene on plasmonic metamaterials for infrared detection

    Science.gov (United States)

    Ogawa, Shinpei; Fujisawa, Daisuke; Shimatani, Masaaki; Matsumoto, Kazuhiko

    2016-05-01

    Graphene consists of a single layer of carbon atoms with a two-dimensional hexagonal lattice structure. Recently, it has been the subject of increasing interest due to its excellent optoelectronic properties and interesting physics. Graphene is considered to be a promising material for use in optoelectronic devices due to its fast response and broadband capabilities. However, graphene absorbs only 2.3% of incident white light, which limits the performance of photodetectors based on it. One promising approach to enhance the optical absorption of graphene is the use of plasmonic resonance. The field of plasmonics has been receiving considerable attention from the viewpoint of both fundamental physics and practical applications, and graphene plasmonics has become one of the most interesting topics in optoelectronics. In the present study, we investigated the optical properties of graphene on a plasmonic metamaterial absorber (PMA). The PMA was based on a metal-insulator-metal structure, in which surface plasmon resonance was induced. The graphene was synthesized by chemical vapor deposition and transferred onto the PMA, and the reflectance of the PMA in the infrared (IR) region, with and without graphene, was compared. The presence of the graphene layer was found to lead to significantly enhanced absorption only at the main plasmon resonance wavelength. The localized plasmonic resonance induced by the PMA enhanced the absorption of graphene, which was attributed to the enhancement of the total absorption of the PMA with graphene. The results obtained in the present study are expected to lead to improvements in the performance of graphene-based IR detectors.

  10. Stable configurations of graphene on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Javvaji, Brahmanandam; Shenoy, Bhamy Maithry [Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012 (India); Mahapatra, D. Roy, E-mail: droymahapatra@aero.iisc.ernet.in [Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012 (India); Ravikumar, Abhilash [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal 575025 (India); Hegde, G.M. [Center for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012 (India); Rizwan, M.R. [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal 575025 (India)

    2017-08-31

    Highlights: • Simulations of epitaxial growth process for silicon–graphene system is performed. • Identified the most favourable orientation of graphene sheet on silicon substrate. • Atomic local strain due to the silicon–carbon bond formation is analyzed. - Abstract: Integration of graphene on silicon-based nanostructures is crucial in advancing graphene based nanoelectronic device technologies. The present paper provides a new insight on the combined effect of graphene structure and silicon (001) substrate on their two-dimensional anisotropic interface. Molecular dynamics simulations involving the sub-nanoscale interface reveal a most favourable set of temperature independent orientations of the monolayer graphene sheet with an angle of ∽15° between its armchair direction and [010] axis of the silicon substrate. While computing the favorable stable orientations, both the translation and the rotational vibrations of graphene are included. The possible interactions between the graphene atoms and the silicon atoms are identified from their coordination. Graphene sheet shows maximum bonding density with bond length 0.195 nm and minimum bond energy when interfaced with silicon substrate at 15° orientation. Local deformation analysis reveals probability distribution with maximum strain levels of 0.134, 0.047 and 0.029 for 900 K, 300 K and 100 K, respectively in silicon surface for 15° oriented graphene whereas the maximum probable strain in graphene is about 0.041 irrespective of temperature. Silicon–silicon dimer formation is changed due to silicon–carbon bonding. These results may help further in band structure engineering of silicon–graphene lattice.

  11. Graphene Exfoliation at a Ferroelectric Domain Wall Induced by the Piezoelectric Effect: Impact on the Conductance of the Graphene Channel

    Science.gov (United States)

    Morozovska, Anna N.; Kurchak, Anatolii I.; Strikha, Maksym V.

    2017-11-01

    p -n junctions in graphene on ferroelectric substrates have been actively studied, but the impact of the piezoelectric effect in ferroelectric substrate with ferroelectric domain walls (FDWs) on graphene characteristics was not considered. Because of the piezoeffect, ferroelectric domain stripes with opposite spontaneous polarizations elongate or contract depending on the polarity of voltage applied to the substrate. We show that the alternating piezoelectric displacement of the ferroelectric domain surfaces can lead to the alternate stretching and separation of graphene areas at the steps between elongated and contracted domains. Graphene separation at FDWs induced by the piezoeffect can cause unusual effects. In particular, the conductance of the graphene channel in a field-effect transistor increases significantly because electrons in the stretched section scatter on acoustic phonons. At the same time, the graphene conductance is determined by ferroelectric spontaneous polarization and varies greatly in the presence of FDWs. The revealed piezomechanism of graphene conductance control is promising for next generations of graphene-based field-effect transistors, modulators, electrical transducers, and piezoresistive elements. Also, our results propose the method of suspended graphene fabrication based on the piezoeffect in a ferroelectric substrate that does not require any additional technological procedures.

  12. Gelatin/graphene systems for low cost energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Landi, Giovanni [Faculty of Mathematics and Computer Science, FernUniversität Hagen, 58084 Hagen (Germany); Fedi, Filippo; Sorrentino, Andrea; Iannace, Salvatore [Institute for Composite and Biomedical Materials (IMCB-CNR), Piazzale Enrico Fermi 1, 80055 Portici (Italy); Neitzert, Heinz C. [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Italy)

    2014-05-15

    In this work, we introduce the possibility to use a low cost, biodegradable material for temporary energy storage devices. Here, we report the use of biologically derived organic electrodes composed of gelatin ad graphene. The graphene was obtained by mild sonication in a mixture of volatile solvents of natural graphite flakes and subsequent centrifugation. The presence of exfoliated graphene sheets was detected by atomic force microscopy (AFM) and Raman spectroscopy. The homogeneous dispersion in gelatin demonstrates a good compatibility between the gelatin molecules and the graphene particles. The electrical characterization of the resulting nanocomposites suggests the possible applications as materials for transient, low cost energy storage device.

  13. [Design of SCM inoculation device].

    Science.gov (United States)

    Qian, Mingli; Xie, Haiyuan

    2014-01-01

    The first step of bacilli culture is inoculation bacteria on culture medium. Designing a device to increase efficiency of inoculation is significative. The new device is controlled by SCM. The stepper motor can drive the culture medium rotating, accelerating, decelerating, overturn and suspending. The device is high practicability and efficient, let inoculation easy for operator.

  14. Effect of doping on photovoltaic characteristics of graphene

    Science.gov (United States)

    Deepshikha

    2016-12-01

    Chemical doping of CVD grown graphene by introducing PTSA ( n-type) and NBD ( p-type) dopants is explored. This type of doping is key building block for photovoltaic and optoelectronic devices. Doped graphene samples display (1) high transmittance in the visible and near-infrared spectrum and (2) tunable graphene sheet resistance and work function. Large area and uniform graphene films were produced by chemical vapor deposition on copper foils and transferred onto quartz as transparent substrates. For n doping, a solution of p-toluenesulfonic acid (PTSA) was first dropped and spin-coated on the graphene/quartz and then annealed at 100°C for 10 min to make graphene uniformly n-type. Subsequently, a bare graphene was transferred on another quartz substrate, a solution of 4-nitrobenzenediazonium tetrafluoroborate (NBD) was dropped and spin-coated on the surface of graphene and similarly annealed. As a result, the graphene was p and n doped on the different quartz substrates. Doped graphene samples were characterized by different techniques. Experimental results suggested that doped graphene sheets with tunable electrical resistance and high optical transparency can be incorporated into photovoltaics and optoelectronics devices.

  15. Beyond graphene

    National Research Council Canada - National Science Library

    Service, Robert F

    2015-01-01

      In 2013, researchers around the globe published more than 15000 papers on single-layer graphite, called graphene, a number that has grown exponentially since the material was invented 11 years ago...

  16. Rebar Graphene

    Science.gov (United States)

    2015-01-01

    As the cylindrical sp2-bonded carbon allotrope, carbon nanotubes (CNTs) have been widely used to reinforce bulk materials such as polymers, ceramics, and metals. However, both the concept demonstration and the fundamental understanding on how 1D CNTs reinforce atomically thin 2D layered materials, such as graphene, are still absent. Here, we demonstrate the successful synthesis of CNT-toughened graphene by simply annealing functionalized CNTs on Cu foils without needing to introduce extraneous carbon sources. The CNTs act as reinforcing bar (rebar), toughening the graphene through both π–π stacking domains and covalent bonding where the CNTs partially unzip and form a seamless 2D conjoined hybrid as revealed by aberration-corrected scanning transmission electron microscopy analysis. This is termed rebar graphene. Rebar graphene can be free-standing on water and transferred onto target substrates without needing a polymer-coating due to the rebar effects of the CNTs. The utility of rebar graphene sheets as flexible all-carbon transparent electrodes is demonstrated. The in-plane marriage of 1D nanotubes and 2D layered materials might herald an electrical and mechanical union that extends beyond carbon chemistry. PMID:24694285

  17. Chemical control of graphene architecture: tailoring shape and properties.

    Science.gov (United States)

    Whitby, Raymond L D

    2014-10-28

    Single layer graphene and graphene oxide feature useful and occasionally unique properties by virtue of their two-dimensional structure. Given that there is a strong correlation between graphene architecture and its conductive, mechanical, chemical, and sorptive properties, which lead to useful technologies, the ability to systematically deform graphene into three-dimensional structures, therefore, provides a controllable, scalable route toward tailoring such properties in the final system. However, the advent of chemical methods to control graphene architecture is still coming to fruition and requires focused attention. The flexibility of the graphene system and the direct and indirect methods available to induce morphology changes of graphene sheets are first discussed in this review. Focus is then given toward chemical reactions that influence the shape of presynthesized graphene and graphene oxide sheets, from which a toolbox can be extrapolated and used in controlling the spatial arrangement of graphene sheets within composite materials and ultimately tailoring graphene-based device performance. Finally, the properties of three-dimensionally controlled graphene-based systems are highlighted for their use as batteries, strengthening additives, gas or liquid sorbents, chemical reactor platforms, and supercapacitors.

  18. Integration of Graphene, Nano Sulfur, and Conducting Polymer into Compact, Flexible Lithium-Sulfur Battery Cathodes with Ultrahigh Volumetric Capacity and Superior Cycling Stability for Foldable Devices.

    Science.gov (United States)

    Xiao, Peitao; Bu, Fanxing; Yang, Guanhui; Zhang, Yu; Xu, Yuxi

    2017-10-01

    Lithium-sulfur batteries, as one of the most promising next-generation batteries, attract tremendous attentions due to their high energy density and low cost. However, their practical application is hindered by their short cycling life and low volumetric capacity. Herein, compact, flexible, and free-standing films with a sandwich structure are designed simply by vacuum filtration, in which nanosulfur is homogenously coated by graphene and poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). This unique hierarchical structure not only provides a highly conductive network and intimate contacts between nanosulfur and graphene/PEDOT:PSS for effective charge transportation, but also offers synergistic physical restriction and chemical confinement of dissoluble intermediate lithium polysulfides during electrochemical processes. Therefore, these conductive compact films, used directly as cathodes, show the highest reversible volumetric capacity of 1432 Ah L-1 at 0.1 C and 1038 Ah L-1 at 1 C, and excellent cycling stability with a minimal decay rate of 0.04% per cycle over 500 cycles at 1 C. Meanwhile, remarkable rate performance with a high capacity of 701 mAh g-1 at 4 C is also achieved. Soft-packaged batteries based on this flexible cathode are further fabricated and demonstrate excellent mechanical and electrochemical properties with little capacity decay under folded state, highlighting the practical application of our deliberately designed electrode in a flexible power system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Growth of three dimensional flower-like molybdenum disulfide hierarchical structures on graphene/carbon nanotube network: An advanced heterostructure for energy storage devices

    Science.gov (United States)

    Lingappan, Niranjanmurthi; Van, Ngoc Huynh; Lee, Suok; Kang, Dae Joon

    2015-04-01

    We report the design and synthesis of three dimensional flower-like molybdenum disulphide (f-MoS2) hierarchical structures, on reduced graphene oxide (RGO)/oxidized multi-walled carbon nanotube (o-MWCNT) backbone (f-MoS2/RGO/o-MWCNT), through one-pot hydrothermal method. Control experiments reveal that the homogenously distributed o-MWCNTs on RGO play an essential role for the formation of such morphology. As an anode for lithium ion batteries, the f-MoS2/RGO/o-MWCNT hybrid delivers a high reversible capacity of 1275 mAh g-1 at the current density of 100 mA g-1, superior rate capability and excellent long cycle life, with capacity retention of 93% after 100 cycles. The outstanding electrochemical performance can be attributed to the large surface area, short diffusion length and continuous electron transport pathway, as a consequence of the intimate contact between f-MoS2, graphene, and o-MWCNTs.

  20. High concentration suspended sediment measurments using acontinuous fiber optic in-stream transmissometer

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Chris G.; Laycak, Danny T.; Hoppes, William; Tran,Nguyen T.; Shi, Frank G.

    2004-05-26

    Suspended sediment loads mobilized during high flow periods in rivers and streams are largely uncharacterized. In smaller and intermittent streams, a large storm may transport a majority of the annual sediment budget. Therefore monitoring techniques that can measure high suspended sediment concentrations at semi-continuous time intervals are needed. A Fiber optic In-stream Transmissometer (FIT) is presented for continuous measurement of high concentration suspended sediment in storm runoff. FIT performance and precision were demonstrated to be reasonably good for suspended sediment concentrations up to 10g/L. The FIT was compared to two commercially available turbidity devices and provided better precision and accuracy at both high and low concentrations. Both turbidity devices were unable to collect measurements at concentrations greater than 4 g/L. The FIT and turbidity measurements were sensitive to sediment particle size. Particle size dependence of transmittance and turbidity measurement poses the greatest problem for calibration to suspended sediment concentration. While the FIT was demonstrated to provide acceptable measurements of high suspended sediment concentrations, approaches to real-time suspended sediment detection need to address the particle size dependence in concentration measurements.

  1. 21 CFR 886.4360 - Ocular surgery irrigation device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ocular surgery irrigation device. 886.4360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4360 Ocular surgery irrigation device. (a) Identification. An ocular surgery irrigation device is a device intended to be suspended over the...

  2. Electrostatic Stabilization of Graphene in Organic Dispersions.

    Science.gov (United States)

    Rodgers, Andrew N J; Velický, Matěj; Dryfe, Robert A W

    2015-12-08

    The exfoliation of graphite to give graphene dispersions in nonaqueous solvents is an important area with regards to scalable production of graphene in bulk quantities and its ultimate application in devices. Understanding the mechanisms governing the stability of these dispersions is therefore of both scientific interest and technological importance. Herein, we have used addition of an indifferent electrolyte to perturb few-layer graphene dispersions in a nonaqueous solvent (1,2-dichloroethane) as a way to probe the importance of interparticle electrostatic repulsions toward the overall dispersion stability. At a sufficient electrolyte concentration, complete sedimentation of the dispersions occurred over 24 h, and the relationship between dispersed graphene concentration and electrolyte concentration was consistent with a dispersion stabilized by electrostatic repulsions. We also found that an increased oxygen content in the graphite starting material produced dispersions of greater stability, indicating that the extent of oxidation is an important parameter in determining the extent of electrostatic stabilization in nonaqueous graphene dispersions.

  3. Mechanical Properties of Graphene-Rubber Nanocomposites

    Science.gov (United States)

    Anhar, N. A. M.; Ramli, M. M.; Hambali, N. A. M. A.; Aziz, A. A.; Mat Isa, S. S.; Danial, N. S.; Abdullah, M. M. A. B.

    2017-11-01

    This research focused on development of wearable sensor device by using Prevulcanized Natural Rubber (PV) and Epoxidized Natural Rubber (ENR 50) latex incorporated with graphene oxide (GO), graphene paste, graphene powder and reduced graphene oxide (rGO) powder. The compounding formulation and calculation were based on phr (parts per hundred rubber) and all the samples were then tested for mechanical properties using Instron 5565 machine. It was found that the sonication effects on tensile strength may have better quality of tensile strength compared to non-sonicated GO. For PV incorporate GO, the optimum loading was best determined at loading 1.5 phr with or without sonication and similar result was recorded for PV/G. For ENR 50 incorporate graphene paste and rGO powder nanocomposite shows the best optimum was at 3.0 phr with 24 hours’ sonication.

  4. Nanoscale control of phonon excitations in graphene

    Science.gov (United States)

    Kim, Hyo Won; Ko, Wonhee; Ku, Jiyeon; Ryu, Seunghwa; Hwang, Sung Woo

    Phonons, which are collective excitations in a lattice of atoms or molecules, play a major role in determining various physical properties of condensed matter, such as thermal and electrical conductivities. In particular, phonons in graphene interact strongly with electrons; however, unlike in usual metals, these interactions between phonons and massless Dirac fermions appear to mirror the rather complicated physics of those between light and relativistic electrons. Therefore, a fundamental understanding of the underlying physics through systematic studies of phonon interactions and excitations in graphene is crucial for realizing graphene-based devices. In this study, we demonstrate that the local phonon properties of graphene can be controlled at the nanoscale by tuning the interaction strength between graphene and an underlying Pt substrate. Using scanning probe methods, we determine that the reduced interaction due to embedded Ar atoms facilitates electron-phonon excitations, further influencing phonon-assisted inelastic electron tunneling.

  5. Ultrasensitive graphene far-infrared power detectors.

    Science.gov (United States)

    McKitterick, C B; Prober, D E; Vora, H; Du, X

    2015-04-29

    We describe the properties of ultrasensitive graphene photon detectors for use in the far-infrared/terahertz spectral region and present theoretical predictions for their power detection sensitivity. These predictions are based on two graphene contacting schemes with superconducting contacts: contacts with a thin insulating barrier, and direct superconducting contacts. To quantitatively assess these predictions, we perform thermal measurements of graphene at low temperatures and analyse them to extract information on electron-phonon cooling in graphene. These new results for the electron-phonon cooling channel allow reliable prediction of the noise equivalent power (NEP) that can be expected from an optimized graphene detector, using measurement of the Johnson noise emission as the thermometry method. We find that an NEP of 2 × 10(-19) W Hz(-1/2) should be achievable under certain biasing conditions with an ideal device.

  6. Interface engineering of graphene for universal applications as both anode and cathode in organic photovoltaics

    Science.gov (United States)

    Park, Hyesung; Chang, Sehoon; Smith, Matthew; Gradečak, Silvija; Kong, Jing

    2013-04-01

    The high transparency of graphene, together with its good electrical conductivity and mechanical robustness, enable its use as transparent electrodes in optoelectronic devices such as solar cells. While initial demonstrations of graphene-based organic photovoltaics (OPV) have been promising, realization of scalable technologies remains challenging due to their performance and, critically, poor device reproducibility and yield. In this work, we demonstrate by engineering the interface between graphene and organic layers, device performance and yield become close to devices using indium tin oxide. Our study confirms that the key issue leading to the poor performance or irreproducibility in graphene-based OPV originates from the graphene interface, and can be addressed by a simple interface modification method introduced in this work. We also show similar approach allows graphene to be used as cathode in inverted OPV geometry, thereby demonstrating the universal application of graphene as transparent conductors for both the anode and cathode.

  7. Interface engineering of graphene for universal applications as both anode and cathode in organic photovoltaics

    Science.gov (United States)

    Park, Hyesung; Chang, Sehoon; Smith, Matthew; Gradečak, Silvija; Kong, Jing

    2013-01-01

    The high transparency of graphene, together with its good electrical conductivity and mechanical robustness, enable its use as transparent electrodes in optoelectronic devices such as solar cells. While initial demonstrations of graphene-based organic photovoltaics (OPV) have been promising, realization of scalable technologies remains challenging due to their performance and, critically, poor device reproducibility and yield. In this work, we demonstrate by engineering the interface between graphene and organic layers, device performance and yield become close to devices using indium tin oxide. Our study confirms that the key issue leading to the poor performance or irreproducibility in graphene-based OPV originates from the graphene interface, and can be addressed by a simple interface modification method introduced in this work. We also show similar approach allows graphene to be used as cathode in inverted OPV geometry, thereby demonstrating the universal application of graphene as transparent conductors for both the anode and cathode. PMID:23545570

  8. Versatile Flexible Graphene Multielectrode Arrays.

    Science.gov (United States)

    Kireev, Dmitry; Seyock, Silke; Ernst, Mathis; Maybeck, Vanessa; Wolfrum, Bernhard; Offenhäusser, Andreas

    2016-12-23

    Graphene is a promising material possessing features relevant to bioelectronics applications. Graphene microelectrodes (GMEAs), which are fabricated in a dense array on a flexible polyimide substrate, were investigated in this work for their performance via electrical impedance spectroscopy. Biocompatibility and suitability of the GMEAs for extracellular recordings were tested by measuring electrical activities from acute heart tissue and cardiac muscle cells. The recordings show encouraging signal-to-noise ratios of 65 ± 15 for heart tissue recordings and 20 ± 10 for HL-1 cells. Considering the low noise and excellent robustness of the devices, the sensor arrays are suitable for diverse and biologically relevant applications.

  9. Versatile Flexible Graphene Multielectrode Arrays

    Directory of Open Access Journals (Sweden)

    Dmitry Kireev

    2016-12-01

    Full Text Available Graphene is a promising material possessing features relevant to bioelectronics applications. Graphene microelectrodes (GMEAs, which are fabricated in a dense array on a flexible polyimide substrate, were investigated in this work for their performance via electrical impedance spectroscopy. Biocompatibility and suitability of the GMEAs for extracellular recordings were tested by measuring electrical activities from acute heart tissue and cardiac muscle cells. The recordings show encouraging signal-to-noise ratios of 65 ± 15 for heart tissue recordings and 20 ± 10 for HL-1 cells. Considering the low noise and excellent robustness of the devices, the sensor arrays are suitable for diverse and biologically relevant applications.

  10. Bandgap Opening in Graphene Induced by Patterned Hydrogen Adsorption

    DEFF Research Database (Denmark)

    Balog, Richard; Jørgensen, Bjarke; Nilsson, Louis

    2010-01-01

    fermions, and graphene shows ballistic charge transport, turning it into an ideal material for circuit fabrication. However, graphene lacks a bandgap around the Fermi level, which is the defining concept for semiconductor materials and essential for controlling the conductivity by electronic means. Theory......Graphene, a single layer of graphite, has recently attracted considerable attention owing to its remarkable electronic and structural properties and its possible applications in many emerging areas such as graphene-based electronic devices. The charge carriers in graphene behave like massless Dirac...... predicts that a tunable bandgap may be engineered by periodic modulations of the graphene lattice, but experimental evidence for this is so far lacking. Here, we demonstrate the existence of a bandgap opening in graphene, induced by the patterned adsorption of atomic hydrogen onto the Moiré superlattice...

  11. Synthesis of S-doped graphene by liquid precursor.

    Science.gov (United States)

    Gao, Hui; Liu, Zheng; Song, Li; Guo, Wenhua; Gao, Wei; Ci, Lijie; Rao, Amrita; Quan, Weijin; Vajtai, Robert; Ajayan, Pulickel M

    2012-07-11

    Doping is a common and effective approach to tailor semiconductor properties. Here, we demonstrate the growth of large-area sulfur (S)-doped graphene sheets on copper substrate via the chemical vapor deposition technique by using liquid organics (hexane in the presence of S) as the precursor. We found that S could be doped into graphene's lattice and mainly formed linear nanodomains, which was proved by elemental analysis, high resolution transmission microscopy and Raman spectra. Measurements on S-doped graphene field-effect transistors (G-FETs) revealed that S-doped graphene exhibited lower conductivity and distinctive p-type semiconductor properties compared with those of pristine graphene. Our approach has produced a new member in the family of graphene based materials and is promising for producing graphene based devices for multiple applications.

  12. Substrate-induced band gap opening in epitaxial graphene

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, S.Y.; Gweon, G.-H.; Fedorov, A.V.; First, P.N.; de Heer,W.A.; Lee, D.-H.; Guinea, F.; Castro Neto, A.H.; Lanzara, A.

    2007-09-08

    Graphene has shown great application potential as the hostmaterial for next-generation electronic devices. However, despite itsintriguing properties, one of the biggest hurdles for graphene to beuseful as an electronic material is the lack of an energy gap in itselectronic spectra. This, for example, prevents the use of graphene inmaking transistors. Although several proposals have been made to open agap in graphene's electronic spectra, they all require complexengineering of the graphene layer. Here, we show that when graphene isepitaxially grown on SiC substrate, a gap of ~;0.26 eV is produced. Thisgap decreases as the sample thickness increases and eventually approacheszero when the number of layers exceeds four. We propose that the originof this gap is the breaking of sublattice symmetry owing to thegraphene-substrate interaction. We believe that our results highlight apromising direction for band gap engineering of graphene.

  13. A Review of Graphene on NEMS.

    Science.gov (United States)

    Tian, Wenchao; Zhang, Xiangyang; Chen, Zhiqiang; Ji, Haoyue

    2016-01-01

    Graphene is a new type of two-dimensional crystal material, and its single atomic layer structure shows many excellent physical and chemical properties such as large specific surface area, good electrical conductivity and high Young's modulus. However, few relevant patents to the topic have been reviewed and cited. This paper mainly deals with the methods of the preparations of graphene and graphene applications in NEMS sensors, NEMS devices, optics, energy storage, and biomedical fields. At present, compared with the less effective experimental research method, the numerical simulation method has become an effective research approach. Molecular dynamics is widely used in the numerical simulation calculation. Molecular dynamics can simulate the change process of graphene in real environments. Molecular dynamics reveals the microscopic deformation under the action of external load. The analysis process of two structures is mainly through the external stretched or compressed force exerted on the graphene. The Young's modulus of the simulated graphene is about 0.86TPa. The simulated tensile strength is about 121GPa.The resonance frequency of graphene resonators can be changed by the tension of both ends of the beam. As the initial strain increases, the resonance frequencies also increase. For very small initial axial -strain, the tunable range reached above several hundred gigahertz. As the initial axial -strain of graphene increased, the tunable range decreased. Due to the unique properties and potential applications of graphene, it has aroused an extensive research boom in nano science world. Graphene is considered as one of the most promising materials of next generation electronic devices.

  14. Chemical detection demonstrated using an evanescent wave graphene optical sensor

    Energy Technology Data Exchange (ETDEWEB)

    Maliakal, Ashok; Reith, Leslie; Cabot, Steve [LGS Innovations, 15 Vreeland Rd., Florham Park, New Jersey 07932 (United States)

    2016-04-11

    Graphene devices have been constructed on silicon mirrors, and the graphene is optically probed through an evanescent wave interaction in an attenuated total reflectance configuration using an infrared spectrometer. The graphene is electrically biased in order to tune its optical properties. Exposure of the device to the chemicals iodine and ammonia causes observable and reversible changes to graphene's optical absorption spectra in the mid to near infrared range which can be utilized for the purpose of sensing. Electrical current measurements through the graphene are made simultaneously with optical measurements allowing for simultaneous sensing using two separate detection modalities. Our current results reveal sub-ppm detection limits for iodine and approximately 100 ppm detection limits for ammonia. We have also demonstrated that this approach will work at 1.55 μm, which opens up the possibility for graphene optical sensors that leverage commercial telecom light sources.

  15. Graphene-based vertical-junction diodes and applications

    Science.gov (United States)

    Choi, Suk-Ho

    2017-09-01

    In the last decade, graphene has received extreme attention as an intriguing building block for electronic and photonic device applications. This paper provides an overview of recent progress in the study of vertical-junction diodes based on graphene and its hybrid systems by combination of graphene and other materials. The review is especially focused on tunnelling and Schottky diodes produced by chemical doping of graphene or combination of graphene with various semiconducting/ insulating materials such as hexagonal boron nitrides, Si-quantum-dots-embedded SiO2 multilayers, Si wafers, compound semiconductors, Si nanowires, and porous Si. The uniqueness of graphene enables the application of these convergence structures in high-efficient devices including photodetectors, solar cells, resonant tunnelling diodes, and molecular/DNA sensors.

  16. Synthesis and Characterization of Reduced Graphene Oxide/Rhodamine 101 (rGO-Rh101) Nanocomposites and Their Heterojunction Performance in rGO-Rh101/p-Si Device Configuration

    Science.gov (United States)

    Batır, G. Güven; Arık, Mustafa; Caldıran, Zakir; Turut, Abdulmecit; Aydogan, Sakir

    2017-09-01

    Reduced graphene oxide (rGO)-rhodamine 101 (Rh101) nanocomposites with different ratios of rGO have been synthesized in aqueous medium by ultrasonic homogenization. The fluorescence of Rh101 as measured using a laser dye with high fluorescence quantum yield was substantially quenched with increasing amount of rGO in the nanocomposite. Formation of rGO-Rh101 nanocomposites was confirmed by x-ray diffraction analysis, scanning electron microscopy, ultraviolet-visible (UV-Vis) spectroscopy, and fluorescence microscopy. Furthermore, rGO-Rh101 nanocomposite/p-Si heterojunctions were synthesized, all of which showed good rectifying behavior. The electrical characteristics of these devices were analyzed using current-voltage (I-V) measurements to determine the ideality factor and barrier height. The experimental results confirmed the presence of lateral inhomogeneity in the effective barrier height of the rGO-Rh101 nanocomposite/p-Si heterojunctions. In addition to I-V measurements, one device was analyzed in more detail using frequency-dependent capacitance-voltage measurements. All electrical measurements were carried out at room temperature and in the dark.

  17. Synthesis and Characterization of Reduced Graphene Oxide/Rhodamine 101 (rGO-Rh101) Nanocomposites and Their Heterojunction Performance in rGO-Rh101/ p-Si Device Configuration

    Science.gov (United States)

    Batır, G. Güven; Arık, Mustafa; Caldıran, Zakir; Turut, Abdulmecit; Aydogan, Sakir

    2018-01-01

    Reduced graphene oxide (rGO)-rhodamine 101 (Rh101) nanocomposites with different ratios of rGO have been synthesized in aqueous medium by ultrasonic homogenization. The fluorescence of Rh101 as measured using a laser dye with high fluorescence quantum yield was substantially quenched with increasing amount of rGO in the nanocomposite. Formation of rGO-Rh101 nanocomposites was confirmed by x-ray diffraction analysis, scanning electron microscopy, ultraviolet-visible (UV-Vis) spectroscopy, and fluorescence microscopy. Furthermore, rGO-Rh101 nanocomposite/ p-Si heterojunctions were synthesized, all of which showed good rectifying behavior. The electrical characteristics of these devices were analyzed using current-voltage ( I- V) measurements to determine the ideality factor and barrier height. The experimental results confirmed the presence of lateral inhomogeneity in the effective barrier height of the rGO-Rh101 nanocomposite/ p-Si heterojunctions. In addition to I- V measurements, one device was analyzed in more detail using frequency-dependent capacitance-voltage measurements. All electrical measurements were carried out at room temperature and in the dark.

  18. Coating of graphene

    OpenAIRE

    Schneider, G.F.; Dekker, C.

    2014-01-01

    The present invention is in the field of highly crystalline graphene and coating said graphene with a layer. Said graphene may have further structures, such as nanopores, nanogaps, and nanoribbons. The coated graphene can be used for biomolecular analysis and modification, such as DNA-sequencing, as a sensor, etc. The invention therefor also relates to use of coated graphene.

  19. Comparison of gold- and graphene-based resonant nanostructures for terahertz metamaterials and an ultrathin graphene-based modulator

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Nian-Hai [Ames Laboratory; Tassin, Philippe [Ames Laboratory; Koschny, Thomas [Ames Laboratory; Soukoulis, Costas M [Ames Laboratory

    2014-09-01

    Graphene exhibits unique material properties, and in electromagnetic wave technology it raises the prospect of devices miniaturized down to the atomic length scale. Here we study split-ring resonator metamaterials made from graphene and we compare them to gold-based metamaterials. We find that graphene's huge reactive response derived from its large kinetic inductance allows for deeply subwavelength resonances, although its resonance strength is reduced due to higher dissipative loss damping and smaller dipole coupling. Nevertheless, tightly stacked graphene rings may provide for negative permeability and the electric dipole resonance of graphene meta-atoms turns out to be surprisingly strong. Based on these findings, we present a terahertz modulator based on a metamaterial with a multilayer stack of alternating patterned graphene sheets separated by dielectric spacers. Neighboring graphene flakes are biased against each other, resulting in modulation depths of over 75% at a transmission level of around 90%.

  20. Polymer Masks for nanostructuring of graphene

    DEFF Research Database (Denmark)

    Shvets, Violetta

    This PhD project is a part of Center for Nanostructured Graphene (CNG) activities. The aim of the project is to develop a new lithography method for creation of highly ordered nanostructures with as small as possible feature and period sizes. The method should be applicable for graphene...... polymer masks is developed. Mask fabrication is realized by microtoming of 30-60 nm thin sections from pre-aligned polymer monoliths with different morphologies. The resulting polymer masks are then transferred to both silicon and graphene substrates. Hexagonally packed hole patterns with 10 nm hole...... diameter and 20 nm periodicity are successfully transferred to both substrates. The method allowed to realize the first ever transfer of moiré patterns to silicon. Furthermore, in collaboration with CNG, device with nanostructured graphene are fabricated and electrical measurements made on these devices...