WorldWideScience

Sample records for suspended flywheel energy

  1. Final prototype of magnetically suspended flywheel energy storage system

    Science.gov (United States)

    Anand, D. K.; Kirk, J. A.; Zmood, R. B.; Pang, D.; Lashley, C.

    1991-01-01

    A prototype of a 500 Wh magnetically suspended flywheel energy storage system was designed, built, and tested. The authors present the work done and include the following: (1) a final design of the magnetic bearing, control system, and motor/generator, (2) construction of a prototype system consisting of the magnetic bearing stack, flywheel, motor, container, and display module, and (3) experimental results for the magnetic bearings, motor, and the entire system. The successful completion of the prototype system has achieved: (1) manufacture of tight tolerance bearings, (2) stability and spin above the first critical frequency, (3) use of inside sensors to eliminate runout problems, and (4) integration of the motor and magnetic bearings.

  2. A high efficiency motor/generator for magnetically suspended flywheel energy storage system

    Science.gov (United States)

    Niemeyer, W. L.; Studer, P.; Kirk, J. A.; Anand, D. K.; Zmood, R. B.

    1989-01-01

    The authors discuss the theory and design of a brushless direct current motor for use in a flywheel energy storage system. The motor design is optimized for a nominal 4.5-in outside diameter operating within a speed range of 33,000-66,000 revolutions per minute with a 140-V maximum supply voltage. The equations which govern the motor's operation are used to compute a series of acceptable design parameter combinations for ideal operation. Engineering tradeoffs are then performed to minimize the irrecoverable energy loss while remaining within the design constraint boundaries. A final integrated structural design whose features allow it to be incorporated with the 500-Wh magnetically suspended flywheel is presented.

  3. Design consideration for magnetically suspended flywheel systems

    Science.gov (United States)

    Anand, D.; Kirk, J. A.; Frommer, D. A.

    1985-01-01

    Consideration is given to the design, fabrication, and testing of a magnetically suspended flywheel system for energy storage applications in space. The device is the prototype of a system combining passive suspension of the flywheel plate by samarium cobalt magnets and active control in the radial direction using eight separate magnetic coils. The bearing assembly was machined from a nickel-iron alloy, and the machine parts are all hydrogen annealed. Slots in the magnetic plate allow four independent quadrants for control. The motor/generator component of the system is a brushless dc-permanent magnetic/ironless engine using electronic communication. The system has been tested at over 2500 rpm with satisfactory results. The system characteristics of the flywheel for application in low earth orbit (LEO) are given in a table.

  4. Flywheel energy storage workshop

    Energy Technology Data Exchange (ETDEWEB)

    O`Kain, D.; Carmack, J. [comps.

    1995-12-31

    Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

  5. Energy Storage Flywheels on Spacecraft

    Science.gov (United States)

    Bartlett, Robert O.; Brown, Gary; Levinthal, Joel; Brodeur, Stephen (Technical Monitor)

    2002-01-01

    With advances in carbon composite material, magnetic bearings, microprocessors, and high-speed power switching devices, work has begun on a space qualifiable Energy Momentum Wheel (EMW). An EMW is a device that can be used on a satellite to store energy, like a chemical battery, and manage angular momentum, like a reaction wheel. These combined functions are achieved by the simultaneous and balanced operation of two or more energy storage flywheels. An energy storage flywheel typically consists of a carbon composite rotor driven by a brushless DC motor/generator. Each rotor has a relatively large angular moment of inertia and is suspended on magnetic bearings to minimize energy loss. The use of flywheel batteries on spacecraft will increase system efficiencies (mass and power), while reducing design-production time and life-cycle cost. This paper will present a discussion of flywheel battery design considerations and a simulation of spacecraft system performance utilizing four flywheel batteries to combine energy storage and momentum management for a typical LEO satellite. A proposed set of control laws and an engineering animation will also be presented. Once flight qualified and demonstrated, space flywheel batteries may alter the architecture of most medium and high-powered spacecraft.

  6. Flywheel energy storage; Schwungmassenspeicher

    Energy Technology Data Exchange (ETDEWEB)

    Bornemann, H.J. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany)

    1996-12-31

    Energy storages may be chemical systems such as batteries, thermal systems such as hot-water tanks, electromagnetic systems such as capacitors and coils, or mechanical systems such as pumped storage power systems or flywheel energy storages. In flywheel energy storages the energy is stored in the centrifugal mass in the form of kinetic energy. This energy can be converted to electricity via a motor/generator unit and made available to the consumer. The introduction of magnetic bearings has greatly enhanced the potential of flywheel energy storages. As there is no contact between the moving parts of magnetic bearings, this technology provides a means of circumventing the engineering and operational problems involved in the we of conventional bearings (ball, roller, plain, and gas bearings). The advantages of modern flywheel energy storages over conventional accumulators are an at least thousandfold longer service life, low losses during long-time storage, greater power output in the case of short-time storage, and commendable environmental benignity. (orig./HW) [Deutsch] Als Enegiespeicher kommen chemische Systeme, z.B. Batterien, thermische Systeme, z.B. Warmwassertanks, elektromagnetische Systeme, z.B. Kondensatoren und Spulen, sowie mechanische Systeme, z.B. Pumpspeicherwerke und Schwungmassenspeicher in Frage. In einem Schwungmassenspeicher wird Energie in Form von kinetischer Energie in der Schwungmasse gespeichert. Ueber eine Moter/Generator Einheit wird diese Energie in elektrischen Strom umgewandelt und dem Verbraucher zugefuehrt. Mit der Einfuehrung von magnetischen Lagern konnte die Leistungsfaehigkeit von Schwungmassenspeichern erheblich gesteigert werden. Da in einem Magnetlager keine Beruehrung zwischen sich bewegenden Teilen besteht, wird ein Grossteil der mit dem Einsatz konventioneller Lager (Kugel- und Rollenlager, Gleitlager und Gaslager) verbundenen ingenieurtechnischen und betriebstechnischen Probleme vermieden. Die Vorteile von modernen

  7. Flywheels

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Donald Arthur [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-05-01

    In use since ancient times, the flywheel has smoothed the flow of energy in rotating machinery from small, hand held devices to the largest engines. Today, standalone flywheel systems are being developed to store electrical energy. These systems are deployed in applications as diverse as uninterruptible power supplies, gantry cranes, and large research facilities. This chapter presents the technical foundation of flywheel design, a comparison with other energy storage technologies, and a survey of applications where flywheel energy storage systems are currently in service.

  8. Flywheel Energy Storage for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Magnus Hedlund

    2015-09-01

    Full Text Available A review of flywheel energy storage technology was made, with a special focus on the progress in automotive applications. We found that there are at least 26 university research groups and 27 companies contributing to flywheel technology development. Flywheels are seen to excel in high-power applications, placing them closer in functionality to supercapacitors than to batteries. Examples of flywheels optimized for vehicular applications were found with a specific power of 5.5 kW/kg and a specific energy of 3.5 Wh/kg. Another flywheel system had 3.15 kW/kg and 6.4 Wh/kg, which can be compared to a state-of-the-art supercapacitor vehicular system with 1.7 kW/kg and 2.3 Wh/kg, respectively. Flywheel energy storage is reaching maturity, with 500 flywheel power buffer systems being deployed for London buses (resulting in fuel savings of over 20%, 400 flywheels in operation for grid frequency regulation and many hundreds more installed for uninterruptible power supply (UPS applications. The industry estimates the mass-production cost of a specific consumer-car flywheel system to be 2000 USD. For regular cars, this system has been shown to save 35% fuel in the U.S. Federal Test Procedure (FTP drive cycle.

  9. Start It up: Flywheel Energy Storage Efficiency

    Science.gov (United States)

    Dunn, Michelle

    2011-01-01

    The purpose of this project was to construct and test an off-grid photovoltaic (PV) system in which the power from a solar array could be stored in a rechargeable battery and a flywheel motor generator assembly. The mechanical flywheel energy storage system would in turn effectively power a 12-volt DC appliance. The voltage and current of…

  10. Flywheel Energy Storage technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    O`Kain, D.; Howell, D. [comps.

    1993-12-31

    Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in Flywheel Energy Storage (FES) technologies. FES offers several advantages over conventional electro-chemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

  11. Structural analysis considering electromagnetic force on motor/generator for flywheel energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Ko, W. S.; Ryu, D. W.; Oh, S. D. [Hyosung Heavy Industries R and D Center, Seoul (Korea, Republic of); Sung, T. H.; Han, S. C.; Han, Y. H. [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    Flywheel Energy Storage System(FESS) consists of a high speed flywheel with an integral motor/generator suspended on non contact bearings and in an evacuated housing. Permanent magnet machines as the FESS motor/generator are a popular choice, since there are no excitation losses which means substantial increase in the efficiency. In this paper, the structural design method of rotor retainer for a high speed motor/generator are presented.

  12. Reluctance apparatus for flywheel energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Downers Grove, IL)

    2000-01-01

    A motor generator for providing high efficiency, controlled voltage output or storage of energy in a flywheel system. A motor generator includes a stator of a soft ferromagnetic material, a motor coil and a generator coil, and a rotor has at least one embedded soft ferromagnetic piece. Control of voltage output is achieved by use of multiple stator pieces and multiple rotors with controllable gaps between the stator pieces and the soft ferromagnetic piece.

  13. Regenerative flywheel energy storage system. Volume 1: Executive summary

    Science.gov (United States)

    1980-06-01

    The development, fabrication, and test of a regenerative flywheel energy storage and recovery system for a battery/flywheel electric vehicle of the 3000 pound class are described. The vehicle propulsion system was simulated on a digital computer in order to determine the optimum system operating strategies and to establish a calculated range improvement over a nonregenerative, all electric vehicle. Fabrication of the inductor motor, the flywheel, the power conditioner, and the system control are described. Test results of the system operating over the SAE J227a Schedule D driving cycle are given and are compared to the calculated value. The flywheel energy storage system consists of a solid rotor, synchronous, inductor type, flywheel drive machine electrically coupled to a dc battery electric propulsion system through a load commutated inverter. The motor/alternator unit is coupled mechanically to a small steel flywheel which provides a portion of the vehicle's accelerating energy and regenerates the vehicle's braking energy.

  14. Composite flywheel material design for high-speed energy storage

    Directory of Open Access Journals (Sweden)

    Michael A. Conteh

    2016-06-01

    Full Text Available Lamina and laminate mechanical properties of materials suitable for flywheel high-speed energy storage were investigated. Low density, low modulus and high strength composite material properties were implemented for the constant stress portion of the flywheel while higher density, higher modulus and strength were implemented for the constant thickness portion of the flywheel. Design and stress analysis were used to determine the maximum energy densities and shape factors for the flywheel. Analytical studies along with the use of the CADEC-online software were used to evaluate the lamina and laminate properties. This study found that a hybrid composite of M46J/epoxy–T1000G/epoxy for the flywheel exhibits a higher energy density when compared to known existing flywheel hybrid composite materials such as boron/epoxy–graphite/epoxy. Results from this study will contribute to further development of the flywheel that has recently re-emerged as a promising application for energy storage due to significant improvements in composite materials and technology.

  15. FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

    2007-10-26

    This project’s mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS).

  16. Flywheels for Low-Speed Kinetic Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Portnov, G.; Cruz, I.; Arias, F.; Fiffe, R. P.

    2003-07-01

    A brief overview of different steel disc-type flywheels is presented. It contents the analysis of relationship between stress-state and kinetic energy of rotating body, comparison of the main characteristics of flywheels and description of their optimization procedures. It is shown that profiles of the discs calculated on a basis of plane stress-state assumption may be considered only as a starting point for its further improvement using 3-D approach. The aim of the review is to provide a designer for a insight into problem of shaping of steel flywheels. (Author) 19 refs.

  17. Flywheel Energy Storage System Designed for the International Space Station

    Science.gov (United States)

    Delventhal, Rex A.

    2002-01-01

    Following successful operation of a developmental flywheel energy storage system in fiscal year 2000, researchers at the NASA Glenn Research Center began developing a flight design of a flywheel system for the International Space Station (ISS). In such an application, a two-flywheel system can replace one of the nickel-hydrogen battery strings in the ISS power system. The development unit, sized at approximately one-eighth the size needed for ISS was run at 60,000 rpm. The design point for the flight unit is a larger composite flywheel, approximately 17 in. long and 13 in. in diameter, running at 53,000 rpm when fully charged. A single flywheel system stores 2.8 kW-hr of useable energy, enough to light a 100-W light bulb for over 24 hr. When housed in an ISS orbital replacement unit, the flywheel would provide energy storage with approximately 3 times the service life of the nickel-hydrogen battery currently in use.

  18. MIMO active vibration control of magnetically suspended flywheels for satellite IPAC service

    Science.gov (United States)

    Park, Junyoung

    Theory and simulation results have demonstrated that four, variable speed flywheels could potentially provide the energy storage and attitude control functions of existing batteries and control moment gyros (CMGs) on a satellite. Past modeling and control algorithms were based on the assumption of rigidity in the flywheel's bearings and the satellite structure. This dissertation provides simulation results and theory which eliminates this assumption utilizing control algorithms for active vibration control (AVC), flywheel shaft levitation and integrated power transfer and attitude control (IPAC) that are effective even with low stiffness active magnetic bearings (AMB), and flexible satellite appendages. The flywheel AVC and levitation tasks are provided by a multi input multi output (MIMO) control law that enhances stability by reducing the dependence of the forward and backward gyroscopic poles with changes in flywheel speed. The control law is shown to be effective even for (1) Large polar to transverse inertia ratios which increases the stored energy density while causing the poles to become more speed dependent and, (2) Low bandwidth controllers shaped to suppress high frequency noise. These two main tasks could be successfully achieved by MIMO (Gyroscopic) control algorithm, which is unique approach. The vibration control mass (VCM) is designed to reduce the vibrations of flexible appendages of the satellite. During IPAC maneuver, the oscillation of flywheel spin speeds, torque motions and satellite appendages are significantly reduced compared without VCM. Several different properties are demonstrated to obtain optimal VCM. Notch, band-pass and low-pass filters are implemented in the AMB system to reduce and cancel high frequency, dynamic bearing forces and motor torques due to flywheel mass imbalance. The transmitted forces and torques to satellite are considerably decreased in the present of both notch and band-pass filter stages. Successful IPAC simulation

  19. Energy optimization for a wind DFIG with flywheel energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Hamzaoui, Ihssen, E-mail: hamzaoui-ihssen2000@yahoo.fr [Laboratory of Instrumentation, Faculty of Electronics and Computer, University of Sciences and Technology Houari Boumediene, BP 32 El-Alia 16111 Bab-Ezzouar (Algeria); Laboratory of Instrumentation, Faculty of Electronics and Computer, University of Khemis Miliana, Ain Defla (Algeria); Bouchafaa, Farid, E-mail: fbouchafa@gmail.com [Laboratory of Instrumentation, Faculty of Electronics and Computer, University of Sciences and Technology Houari Boumediene, BP 32 El-Alia 16111 Bab-Ezzouar (Algeria)

    2016-07-25

    The type of distributed generation unit that is the subject of this paper relates to renewable energy sources, especially wind power. The wind generator used is based on a double fed induction Generator (DFIG). The stator of the DFIG is connected directly to the network and the rotor is connected to the network through the power converter with three levels. The objective of this work is to study the association a Flywheel Energy Storage System (FESS) in wind generator. This system is used to improve the quality of electricity provided by wind generator. It is composed of a flywheel; an induction machine (IM) and a power electronic converter. A maximum power tracking technique « Maximum Power Point Tracking » (MPPT) and a strategy for controlling the pitch angle is presented. The model of the complete system is developed in Matlab/Simulink environment / to analyze the results from simulation the integration of wind chain to networks.

  20. Flywheel energy storage with superconductor magnetic bearings

    Science.gov (United States)

    Weinberger, Bernard R.; Lynds, Jr., Lahmer; Hull, John R.

    1993-01-01

    A flywheel having superconductor bearings has a lower drag to lift ratio that translates to an improvement of a factor of ten in the rotational decay rate. The lower drag results from the lower dissipation of melt-processed YBCO, improved uniformity of the permanent magnet portion of the bearings, operation in a different range of vacuum pressure from that taught by the art, and greater separation distance from the rotating members of conductive materials.

  1. Rotor's Suspension for Vernier-gimballing magnetically suspended flywheel with conical magnetic bearing.

    Science.gov (United States)

    Tang, Jiqiang; Xiang, Biao; Wang, Chun'e

    2015-09-01

    A novel Vernier-gimballing magnetically suspended flywheel with conical magnetic bearing (conical MB) can generate great gyroscopic moment by tilting the high-speed rotor. To output the gyroscopic moment, the high-speed rotor must be suspended stably and can be tilted. But when the rotor tilts, the gap between the stator and rotor of conical MB changes nonlinearly, what will cause the magnetic force and current stiffness of this conical MB to be serious nonlinear. To solve these problems, one kind of adaptive controller based on Lyapunov stability theory is designed by regarding the current stiffness of this conical MB as uncertain parameter. The validity of this adaptive control method is verified on a Vernier-gimballing MSFW with 68 Nms angular momentum and 1.7° maximum tilting angle. All experimental results indicated that this adaptive control has better performances on controlling rotor's stable suspension than existing PID control when the rotor translates or tilts. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Performance Analysis of a Flywheel Energy Storage System

    Directory of Open Access Journals (Sweden)

    K. Ghedamsi

    2008-06-01

    Full Text Available The flywheel energy storage systems (FESSs are suitable for improving the quality of the electric power delivered by the wind generators and to help these generators to contribute to the ancillary services. In this paper, a flywheel energy storage system associated to a grid connected variable speed wind generation (VSWG scheme using a doubly fed induction generator (DFIG is investigated. Therefore, the dynamic behavior of a wind generator, including models of the wind turbine (aerodynamic, DFIG, matrix converter, converter control (algorithm of VENTURINI and power control is studied. This paper investigates also, the control method of the FESS with a classical squirrel-cage induction machine associated to a VSWG using back-to-back AC/AC converter. Simulation results of the dynamic models of the wind generator are presented, for different operating points, to show the good performance of the proposed system.

  3. Dynamics of a Flywheel Energy Storage System Supporting a Wind Turbine Generator in a Microgrid

    Science.gov (United States)

    Nair S, Gayathri; Senroy, Nilanjan

    2016-02-01

    Integration of an induction machine based flywheel energy storage system with a wind energy conversion system is implemented in this paper. The nonlinear and linearized models of the flywheel are studied, compared and a reduced order model of the same simulated to analyze the influence of the flywheel inertia and control in system response during a wind power change. A quantification of the relation between the inertia of the flywheel and the controller gain is obtained which allows the system to be considered as a reduced order model that is more controllable in nature. A microgrid setup comprising of the flywheel energy storage system, a two mass model of a DFIG based wind turbine generator and a reduced order model of a diesel generator is utilized to analyse the microgrid dynamics accurately in the event of frequency variations arising due to wind power change. The response of the microgrid with and without the flywheel is studied.

  4. Bearingless Flywheel Systems, Winding and Control Schemes, and Sensorless Control

    Science.gov (United States)

    Jansen, Ralph H (Inventor); Trase, Larry M (Inventor); Dever, Timothy P (Inventor); Kascak, Peter E (Inventor); Kraft, Thomas G (Inventor)

    2016-01-01

    Flywheel systems are disclosed that provide increased energy density and operational effectiveness. A first bearingless motor and a second bearingless motor may be configured to simultaneously suspend the central rotor in a radial direction and to rotate the central rotor. However, certain implementations may have one motor or more than two motors, depending on the design. A plurality of the flywheel systems may be collectively controlled to perform community energy storage with higher storage capacities than individual flywheel systems.

  5. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, James Gerald [ORNL

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

  6. Design and Performance Improvements of the Prototype Open Core Flywheel Energy Storage System

    Science.gov (United States)

    Pang, D.; Anand, D. K. (Editor); Kirk, J. A. (Editor)

    1996-01-01

    A prototype magnetically suspended composite flywheel energy storage (FES) system is operating at the University of Maryland. This system, designed for spacecraft applications, incorporates recent advances in the technologies of composite materials, magnetic suspension, and permanent magnet brushless motor/generator. The current system is referred to as an Open Core Composite Flywheel (OCCF) energy storage system. This paper will present design improvements for enhanced and robust performance. Initially, when the OCCF prototype was spun above its first critical frequency of 4,500 RPM, the rotor movement would exceed the space available in the magnetic suspension gap and touchdown on the backup mechanical bearings would occur. On some occasions it was observed that, after touchdown, the rotor was unable to re-suspend as the speed decreased. Additionally, it was observed that the rotor would exhibit unstable oscillations when the control system was initially turned on. Our analysis suggested that the following problems existed: (1) The linear operating range of the magnetic bearings was limited due to electrical and magnetic saturation; (2) The inductance of the magnetic bearings was affecting the transient response of the system; (3) The flywheel was confined to a small movement because mechanical components could not be held to a tight tolerance; and (4) The location of the touchdown bearing magnifies the motion at the pole faces of the magnetic bearings when the linear range is crucial. In order to correct these problems an improved design of the flywheel energy storage system was undertaken. The magnetic bearings were re-designed to achieve a large linear operating range and to withstand load disturbances of at least 1 g. The external position transducers were replaced by a unique design which were resistant to magnetic field noise and allowed cancellation of the radial growth of the flywheel at high speeds. A central rod was utilized to ensure the concentricity

  7. Regenerative flywheel energy storage system. Volume 3: Life cycle and cost-benefit analysis of a battery-flywheel electric car

    Science.gov (United States)

    1980-06-01

    Fabrication of the inductor motor, the flywheel, the power conditioner, and the system control is described. Test results of the system operating over the SAE j227a Schedule D driving cycle are given and are compared to the calculated value. The flywheel energy storage system consists of a solid rotor, synchronous, inductor-type, flywheel drive machine electrically coupled to a dc battery electric propulsion system through a load-commutated inverter. The motor/alernator unit is coupled mechanically to a small steel flywheel which provides a portion of the vehicle's accelerating energy and regenerates the vehicle's braking energy. Laboratory simulation of the electric vehicle propulsion system included a 108 volt, lead-acid battery bank and a separately excited dc propulsion motor coupled to a flywheel and generator which simulate the vehicle's inertia and losses.

  8. An overview of flywheel energy systems.

    Energy Technology Data Exchange (ETDEWEB)

    Wolsky, A. M.; Energy Systems

    2002-05-01

    Passive magnetic bearings incorporating permanent magnets and ReBaCuO, together with carbon fibre, offer the possibility of increasing the stored, volumetric energy density of FES and unprecedentedly low idling loss of FES. Its stored energy need only satisfy customers needs for the time it takes to bring on conventional 'back-up'. The FES itself must come up to power quickly enough to avoid any disruption in the customer's operation (e.g., continuous industrial processes involving fragile materials, for example paper forming). Such customers do not care about the price of electricity nearly as much as they care about not ruining their product, damaging their machines or having 'clean ups' that stop or slow output. Firms that engage in electronic commerce and/or telecommunications also value uninterruptible power. Another set of potential customers (construction, electric railroads) may wish to avoid fluctuations in their electrical supply or they may wish to avoid causing harm to others who may hold them liable for poor power quality. Finally, real time prices (e.g., every 15 s) and real time commands, disseminated via internet, and distributed storage might enable reduced system generation costs. Generators and FES makers would have to cooperate to make this feasible. Now, the central techno-economic challenge is to build a high-power, low-loss motor generator that reaches full power in a very short time.

  9. Flywheel Technology

    Science.gov (United States)

    Ritchie, Lisa M.

    2004-01-01

    Throughout the summer of 2004, I am working on a number of different projects. While located in the Space Power and Propulsion Test Engineering branch, my main area of study is flywheel technology. I have been exposed to flywheels, their components, and their uses in today's society. I have been able to experience numerous flywheels here in the flywheel lab at NASA Glenn. My first main project was to explore the attributes and physical characteristics of a flywheel. Our branch was constructing a flywheel demonstration to be presented at the public open house taking place in June. Our Flywheel Interactive Demo, or FIDO, represents a real life multi-flywheel system here at NASA. I was given the opportunity to learn about how these flywheels store energy and are able to position a satellite. With all of this new knowledge, I was able to create the posters that explained how our demonstration worked. I also composed a step-by-step process made up of four experiments that any visitor could follow and perform on FIDO. By stepping through these experiments, the individual learns how a flywheel works. They not only read the explanation of what is happening, but they are also able to see it happen. Creating these two posters not only taught me, but also helped teach the general public during the open house, how flywheel technology is a very important part of our future. Through my research, I have learned that flywheels are able to store massive amounts of energy. They can be described as an electro-mechanical battery that stores kinetic energy while rotating. The faster it rotates, the more energy it stores. Their lifetime is about triple that of an ordinary battery. Flywheels also have the ability to combine energy storage with attitude control all in a single system. Attitude control is the ability to position a satellite as required. FIDO helps us to understand the rotational force (torque) that is applied upon a turn-table or satellite during wheel acceleration

  10. Demonstration of Single Axis Combined Attitude Control and Energy Storage Using Two Flywheels

    Science.gov (United States)

    Kenny, Barbara H.; Jansen, Ralph; Kascak, Peter; Dever, Timothy; Santiago, Walter

    2004-01-01

    The energy storage and attitude control subsystems of the typical satellite are presently distinct and separate. Energy storage is conventionally provided by batteries, either NiCd or NiH, and active attitude control is accomplished with control moment gyros (CMGs) or reaction wheels. An overall system mass savings can be realized if these two subsystems are combined using multiple flywheels for simultaneous kinetic energy storage and momentum transfer. Several authors have studied the control of the flywheels to accomplish this and have published simulation results showing the feasibility and performance. This paper presents the first experimental results showing combined energy storage and momentum control about a single axis using two flywheels.

  11. Investigation of stress-strain state in the flywheel and estimation their specific energy capacity

    Directory of Open Access Journals (Sweden)

    Berezhnoi Dmitri V.

    2017-01-01

    Full Text Available In this paper, the specific energy intensity of the kinetic energy storage devices, including the flywheel-casing scheme in the potential field, is investigated. The possibilities of using various structural materials in the manufacture of structural elements of a mechanical accumulator are analyzed, the stress-strain state of the flywheel and the casing under quasistatic increase in the rotational speed of the rotor part of the structure is investigated. It is noted that the presence of a potential field in the flywheel-casing system makes it possible to increase the specific energy intensity of the kinetic energy storage.

  12. Development of a high-efficiency motor/generator for flywheel energy storage

    Science.gov (United States)

    Lashley, Christopher; Anand, Dave K.; Kirk, James A.; Zmood, Ronald B.

    This study addresses the design changes and extensions necessary to construct and test a working prototype of a motor/generator for a magnetically suspended flywheel energy storage system. The brushless motor controller for the motor was specified and the electronic commutation arrangement designed. The laminations were redesigned and fabricated using laser machining. Flux density measurements were made and the results used to redesign the armature windings. A test rig was designed and built, and the motor/generator was installed and speed tested to 9000 rpm. Experimental methods of obtaining the machine voltage and torque constants Kv and Kt, obtaining the useful air-gap flux density, and characterizing the motor and other system components are described. The measured Kv and Kt were approximately 40 percent greater than predicted by theory and initial experiment.

  13. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

    1999-06-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

  14. Quantum flywheel

    Science.gov (United States)

    Levy, Amikam; Diósi, Lajos; Kosloff, Ronnie

    2016-05-01

    In this work we present the concept of a quantum flywheel coupled to a quantum heat engine. The flywheel stores useful work in its energy levels, while additional power is extracted continuously from the device. Generally, the energy exchange between a quantum engine and a quantized work repository is accompanied by heat, which degrades the charging efficiency. Specifically when the quantum harmonic oscillator acts as a work repository, quantum and thermal fluctuations dominate the dynamics. Quantum monitoring and feedback control are applied to the flywheel in order to reach steady state and regulate its operation. To maximize the charging efficiency one needs a balance between the information gained by measuring the system and the information fed back to the system. The dynamics of the flywheel are described by a stochastic master equation that accounts for the engine, the external driving, the measurement, and the feedback operations.

  15. Motor Control and Regulation for a Flywheel Energy Storage System

    Science.gov (United States)

    Kenny, Barbara; Lyons, Valerie

    2003-01-01

    This talk will focus on the motor control algorithms used to regulate the flywheel system at the NASA Glenn Research Center. First a discussion of the inner loop torque control technique will be given. It is based on the principle of field orientation and is implemented without a position or speed sensor (sensorless control). Then the outer loop charge and discharge algorithm will be presented. This algorithm controls the acceleration of the flywheel during charging and the deceleration while discharging. The algorithm also allows the flywheel system to regulate the DC bus voltage during the discharge cycle.

  16. Clean energy storage technology in the making: An innovation systems perspective on flywheel energy storage.

    Science.gov (United States)

    Wicki, Samuel; Hansen, Erik G

    2017-09-20

    The emergence and diffusion of green and sustainable technologies is full of obstacles and has therefore become an important area of research. We are interested in further understanding the dynamics between entrepreneurial experimentation, market formation, and institutional contexts, together playing a decisive role for successful diffusion of such technologies. Accordingly, we study these processes by adopting a technological innovation system perspective focusing on actors, networks, and institutions as well as the functions provided by them. Using a qualitative case study research design, we focus on the high-speed flywheel energy storage technology. As flywheels are based on a rotating mass allowing short-term storage of energy in kinetic form, they represent an environmentally-friendly alternative to electrochemical batteries and therefore can play an important role in sustainable energy transitions. Our contribution is threefold: First, regarding the flywheel energy storage technology, our findings reveal two subsystems and related markets in which development took different courses. In the automotive sector, flywheels are developing well as a braking energy recovery technology under the influence of two motors of innovation. In the electricity sector, they are stagnating at the stage of demonstration projects because of two important system weaknesses that counteract demand for storage. Second, we contribute to the theory of technological innovation systems by better understanding the internal dynamics between different functions of an innovation system as well as between the innovation system and its (external) contextual structures. Our third contribution is methodological. According to our best knowledge, we are the first to use system dynamics to (qualitatively) analyze and visualize dynamics between the diverse functions of innovation systems with the aim of enabling a better understanding of complex and iterative system processes. The paper also

  17. COMPARATIVE ANALYSIS OF ENERGY ACCUMULATION SYSTEMS AND DETERMINATION OF OPTIMAL APPLICATION AREAS FOR MODERN SUPER FLYWHEELS

    Directory of Open Access Journals (Sweden)

    M. A. Sokolov

    2014-07-01

    Full Text Available The paper presents a review and comparative analysis of late years native and foreign literature on various energy storage devices: state of the art designs, application experience in various technical fields. Comparative characteristics of energy storage devices are formulated: efficiency, quality and stability. Typical characteristics are shown for such devices as electrochemical batteries, super capacitors, pumped hydroelectric storage, power systems based on compressed air and superconducting magnetic energy storage systems. The advantages and prospects of high-speed super flywheels as means of energy accumulation in the form of rotational kinetic energy are shown. High output power of a super flywheels energy storage system gives the possibility to use it as a buffer source of peak power. It is shown that super flywheels have great life cycle (over 20 years and are environmental. A distinctive feature of these energy storage devices is their good scalability. It is demonstrated that super flywheels are especially effective in hybrid power systems that operate in a charge/discharge mode, and are used particularly in electric vehicles. The most important factors for space applications of the super flywheels are their modularity, high efficiency, no mechanical friction and long operating time without maintenance. Quick response to network disturbances and high power output can be used to maintain the desired power quality and overall network stability along with fulfilling energy accumulation needs.

  18. THE WIDE-AREA ENERGY STORAGE AND MANAGEMENT SYSTEM PHASE II Final Report - Flywheel Field Tests

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.; Rudolph, Frank; Murthy, Shashikala; Arseneaux, Jim; Loutan, Clyde; Chowdhury, S.

    2010-08-31

    This research was conducted by Pacific Northwest National Laboratory (PNNL) operated for the U.S. department of Energy (DOE) by Battelle Memorial Institute for Bonneville Power Administration (BPA), California Institute for Energy and Environment (CIEE) and California Energy Commission (CEC). A wide-area energy management system (WAEMS) is a centralized control system that operates energy storage devices (ESDs) located in different places to provide energy and ancillary services that can be shared among balancing authorities (BAs). The goal of this research is to conduct flywheel field tests, investigate the technical characteristics and economics of combined hydro-flywheel regulation services that can be shared between Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) controlled areas. This report is the second interim technical report for Phase II of the WAEMS project. This report presents: 1) the methodology of sharing regulation service between balancing authorities, 2) the algorithm to allocate the regulation signal between the flywheel and hydro power plant to minimize the wear-and-tear of the hydro power plants, 3) field results of the hydro-flywheel regulation service (conducted by the Beacon Power), and 4) the performance metrics and economic analysis of the combined hydro-flywheel regulation service.

  19. A Review of Flywheel Energy Storage System Technologies and Their Applications

    Directory of Open Access Journals (Sweden)

    Mustafa E. Amiryar

    2017-03-01

    Full Text Available Energy storage systems (ESS provide a means for improving the efficiency of electrical systems when there are imbalances between supply and demand. Additionally, they are a key element for improving the stability and quality of electrical networks. They add flexibility into the electrical system by mitigating the supply intermittency, recently made worse by an increased penetration of renewable generation. One energy storage technology now arousing great interest is the flywheel energy storage systems (FESS, since this technology can offer many advantages as an energy storage solution over the alternatives. Flywheels have attributes of a high cycle life, long operational life, high round-trip efficiency, high power density, low environmental impact, and can store megajoule (MJ levels of energy with no upper limit when configured in banks. This paper presents a critical review of FESS in regards to its main components and applications, an approach not captured in earlier reviews. Additionally, earlier reviews do not include the most recent literature in this fast-moving field. A description of the flywheel structure and its main components is provided, and different types of electric machines, power electronics converter topologies, and bearing systems for use in flywheel storage systems are discussed. The main applications of FESS are explained and commercially available flywheel prototypes for each application are described. The paper concludes with recommendations for future research.

  20. The New Structure Design and Analysis of Energy Storage of Flywheel of Split Rotor

    Directory of Open Access Journals (Sweden)

    Peng Xu

    2015-02-01

    Full Text Available The braking of the rail transit train consumes a great quantity of energy, and the thermal energy produced in the process of braking can affect the normal operation of the transit train. Thus recycling the braking energy becomes a research hotspot of urban rail train. This paper made an overall analysis of regenerative braking process, the rationale, and the main features and then put forward the optimizing the structure of the composite flywheel concept and design calculation method. This paper also designs a new flywheel structure which can be applied on urban rail operating system. The new flywheel structure should be checked by finite element method and the radius of the rotor should be defined under the condition of meeting the requirements of carbon fiber material strength. Meanwhile, compared with the solid flywheel under the same condition, analysis shows that the maximum rotary inertia of the new flywheel and the quality energy density increased, and the discharge depth also perks up.

  1. Rotor position and vibration control for aerospace flywheel energy storage devices and other vibration based devices

    Science.gov (United States)

    Alexander, B. X. S.

    Flywheel energy storage has distinct advantages over conventional energy storage methods such as electrochemical batteries. Because the energy density of a flywheel rotor increases quadratically with its speed, the foremost goal in flywheel design is to achieve sustainable high speeds of the rotor. Many issues exist with the flywheel rotor operation at high and varying speeds. A prominent problem is synchronous rotor vibration, which can drastically limit the sustainable rotor speed. In a set of projects, the novel Active Disturbance Rejection Control (ADRC) is applied to various problems of flywheel rotor operation. These applications include rotor levitation, steady state rotation at high speeds and accelerating operation. Several models such as the lumped mass model and distributed three-mass models have been analyzed. In each of these applications, the ADRC has been extended to cope with disturbance, noise, and control effort optimization; it also has been compared to various industry-standard controllers such as PID and PD/observer, and is proven to be superior. The control performance of the PID controller and the PD/observer currently used at NASA Glenn has been improved by as much as an order of magnitude. Due to the universality of the second order system, the results obtained in the rotor vibration problem can be straightforwardly extended to other vibrational systems, particularly, the MEMS gyroscope. Potential uses of a new nonlinear controller, which inherits the ease of use of the traditional PID, are also discussed.

  2. Properties of fiber composites for advanced flywheel energy storage devices

    Energy Technology Data Exchange (ETDEWEB)

    DeTeresa, S J; Groves, S E

    2001-01-12

    The performance of commercial high-performance fibers is examined for application to flywheel power supplies. It is shown that actual delivered performance depends on multiple factors such as inherent fiber strength, strength translation and stress-rupture lifetime. Experimental results for recent stress-rupture studies of carbon fibers will be presented and compared with other candidate reinforcement materials. Based on an evaluation of all of the performance factors, it is concluded that carbon fibers are preferred for highest performance and E-glass fibers for lowest cost. The inferior performance of the low-cost E-glass fibers can be improved to some extent by retarding the stress-corrosion of the material due to moisture and practical approaches to mitigating this corrosion are discussed. Many flywheel designs are limited not by fiber failure, but by matrix-dominated failure modes. Unfortunately, very few experimental results for stress-rupture under transverse tensile loading are available. As a consequence, significant efforts are made in flywheel design to avoid generating any transverse tensile stresses. Recent results for stress-rupture of a carbon fiber/epoxy composite under transverse tensile load reveal that these materials are surprisingly durable under the transverse loading condition and that some radial tensile stress could be tolerated in flywheel applications.

  3. Two-Level Control for Fast Electrical Vehicle Charging Stations with Multi Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    SUN, BO; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2015-01-01

    This paper applies a hierarchical control for a fast charging station (FCS) composed of paralleled PWM rectifier and dedicated paralleled multiple flywheel energy storage systems (FESSs), in order to mitigate peak power shock on grid caused by sudden connection of electrical vehicle (EV) chargers....... Distributed DC-bus signaling (DBS) and method resistive virtual impedance are employed in the power coordination of grid and flywheel converters, and a centralized secondary controller generates DC voltage correction term to adjust the local voltage set point. The control system is able to realize the power...

  4. Modified Cross Feedback Control for a Magnetically Suspended Flywheel Rotor with Significant Gyroscopic Effects

    Directory of Open Access Journals (Sweden)

    Yuan Ren

    2014-01-01

    Full Text Available For magnetically suspended rigid rotors (MSRs with significant gyroscopic effects, phase lag of the control channel is the main factor influencing the system nutation stability and decoupling performance. At first, this paper proves that the phase lag of the cross channel instead of the decentralized channel is often the main factor influencing the system nutation stability at high speeds. Then a modified cross feedback control strategy based on the phase compensation of cross channel is proposed to improve the stability and decoupling performances. The common issues associated with the traditional control methods have been successfully resolved by this method. Analysis, simulation, and experimental results are presented to demonstrate the feasibility and superiority of the proposed control method.

  5. Advanced Motor Control Test Facility for NASA GRC Flywheel Energy Storage System Technology Development Unit

    Science.gov (United States)

    Kenny, Barbara H.; Kascak, Peter E.; Hofmann, Heath; Mackin, Michael; Santiago, Walter; Jansen, Ralph

    2001-01-01

    This paper describes the flywheel test facility developed at the NASA Glenn Research Center with particular emphasis on the motor drive components and control. A four-pole permanent magnet synchronous machine, suspended on magnetic bearings, is controlled with a field orientation algorithm. A discussion of the estimation of the rotor position and speed from a "once around signal" is given. The elimination of small dc currents by using a concurrent stationary frame current regulator is discussed and demonstrated. Initial experimental results are presented showing the successful operation and control of the unit at speeds up to 20,000 rpm.

  6. A Flywheel Energy Storage System Based on a Doubly Fed Induction Machine and Battery for Microgrid Control

    Directory of Open Access Journals (Sweden)

    Thai-Thanh Nguyen

    2015-06-01

    Full Text Available Microgrids are eco-friendly power systems because they use renewable sources such as solar and wind power as the main power source. However, the stochastic nature of wind and solar power is a considerable challenge for the efficient operation of microgrids. Microgrid operations have to satisfy quality requirements in terms of the frequency and voltage. To overcome these problems, energy storage systems for short- and long-term storage are used with microgrids. Recently, the use of short-term energy storage systems such as flywheels has attracted significant interest as a potential solution to this problem. Conventional flywheel energy storage systems exhibit only one control mode during operation: either smoothing wind power control or frequency control. In this paper, we propose a new flywheel energy storage system based on a doubly fed induction machine and a battery for use with microgrids. The new flywheel energy storage system can be used not only to mitigate wind power fluctuations, but also to control the frequency as well as the voltage of the microgrid during islanded operation. The performance of the proposed flywheel energy storage system is investigated through various simulations using MATLAB/Simulink software. In addition, a conventional flywheel energy storage system based on a doubly fed induction machine is simulated and its performance compared with that of the proposed one.

  7. Enhanced Control for a Direct-driven Permanent Synchronous Generator Wind-power Generation System with Flywheel Energy Storage Unit Under Unbalanced Grid Fault

    DEFF Research Database (Denmark)

    Yao, Jun; Zhou, Te; Hu, Weihao

    2015-01-01

    This article presents an enhanced control strategy for a direct-driven permanent synchronous generator based wind-power generation system with a flywheel energy storage unit. The behaviors of the direct-driven permanent magnet synchronous generator system with a flywheel energy storage unit under......, the proposed coordinated control strategy for the direct-driven permanent magnet synchronous generator system with a flywheel energy storage unit has been validated by the simulation results of a 1-MW direct-driven permanent magnet synchronous generator wind power generation system with a flywheel energy......, the DC-link voltage oscillations can be effectively suppressed during the unbalanced grid fault by controlling the flywheel energy storage unit. Furthermore, a proportional–integral-resonant controller is designed for the flywheel motor to eliminate the oscillations in the DC-link voltage. Finally...

  8. Load test of Superconducting Magnetic Bearing for MW-class Flywheel Energy Storage System

    Science.gov (United States)

    Mukoyama, S.; Nakao, K.; Sakamoto, H.; Nagashima, K.; Ogata, M.; Yamashita, T.; Miyazaki, K.; Shimizu, H.; Sawamura, H.

    2017-07-01

    A flywheel energy storage system (FESS) stores electrical power as kinetic energy of a rotating flywheel rotor. Since the storage energy of the FESS is proportional to the weight of the rotor and the square of the rotating speed, the heavy weight and high speed rotor leads a FESS to a high power and a high capacity. However a conventional FESS limits in both the rotor weight and the rotating speed because of using mechanical bearings. A superconducting FESS (SFESS) utilizes a superconducting magnetic bearing (SMB) to levitate and rotate the flywheel rotor that has ton class weight and high speed rotation without mechanical contact. As the SFESS with 300 kW demonstrated at Mt. Komekura in Yamanashi prefecture, the SMB in the SFESS levitated the 4-ton rotor. The SMB consisted of a high temperature superconducting magnet (HTS magnet) and a HTS bulk, and utilized a repulsive force between the HTS magnet and the HTS bulk. The demonstration of the SFESS has been carried out successfully at Mt. Komekura. Now the next step development was started to aim a MW-class SFESS. The MW-class SFESS needs the SMB levitated and withstood a 10 ton-class load. This paper describes a design of the 10 ton-class SMB and the result of the load test of the developed SMB

  9. Benefits from flywheel energy storage for area regulation in California - demonstration results : a study for the DOE Energy Storage Systems program.

    Energy Technology Data Exchange (ETDEWEB)

    Eyer, James M. (Distributed Utility Associates, Livermore, CA)

    2009-10-01

    This report documents a high-level analysis of the benefit and cost for flywheel energy storage used to provide area regulation for the electricity supply and transmission system in California. Area regulation is an 'ancillary service' needed for a reliable and stable regional electricity grid. The analysis was based on results from a demonstration, in California, of flywheel energy storage developed by Beacon Power Corporation (the system's manufacturer). Demonstrated was flywheel storage systems ability to provide 'rapid-response' regulation. Flywheel storage output can be varied much more rapidly than the output from conventional regulation sources, making flywheels more attractive than conventional regulation resources. The performance of the flywheel storage system demonstrated was generally consistent with requirements for a possible new class of regulation resources - 'rapid-response' energy-storage-based regulation - in California. In short, it was demonstrated that Beacon Power Corporation's flywheel system follows a rapidly changing control signal (the ACE, which changes every four seconds). Based on the results and on expected plant cost and performance, the Beacon Power flywheel storage system has a good chance of being a financially viable regulation resource. Results indicate a benefit/cost ratio of 1.5 to 1.8 using what may be somewhat conservative assumptions. A benefit/cost ratio of one indicates that, based on the financial assumptions used, the investment's financial returns just meet the investors target.

  10. Lightweight flywheel containment

    Science.gov (United States)

    Smith, James R.

    2004-06-29

    A lightweight flywheel containment composed of a combination of layers of various material which absorb the energy of a flywheel structural failure. The various layers of material act as a vacuum barrier, momentum spreader, energy absorber, and reaction plate. The flywheel containment structure has been experimentally demonstrated to contain carbon fiber fragments with a velocity of 1,000 m/s and has an aerial density of less than 6.5 g/square centimeters. The flywheel containment, may for example, be composed of an inner high toughness structural layer, and energy absorbing layer, and an outer support layer. Optionally, a layer of impedance matching material may be utilized intermediate the flywheel rotor and the inner high toughness layer.

  11. Distributed Cooperative Control of Multi Flywheel Energy Storage System for Electrical Vehicle Fast Charging Stations

    DEFF Research Database (Denmark)

    Sun, Bo; Dragicevic, Tomislav; Quintero, Juan Carlos Vasquez

    2015-01-01

    Plug-in electrical vehicles will play a critical role in future smart grid and sudden connection of electrical vehicles chargers may cause huge power-peaks with high slew-rates on grid. In order to cope with this issue, this paper applies a distributed cooperative control for fast charging station...... with dedicated paralleled flywheel-based energy storage system. The distributed DC-bus signaling method is employed in the power coordination of grid and flywheel converters, and a distributed secondary controller generates DC voltage correction term to adjust the local voltage set-point through a dynamic...... consensus based voltage observer by communicating with its neighbors. The control system can realize the power balancing and DC voltage regulation with low reliance on communications. Finally, real-time hardware-in-the-loop results have been reported in order to verify the feasibility of proposed approach....

  12. Recommended Practices for the Safe Design and Operation of Flywheels

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Donald Arthur [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    Flywheel energy storage systems are in use globally in increasing numbers . No codes pertaining specifically to flywheel energy storage exist. A number of industrial incidents have occurred. This protocol recommends a technical basis for safe flywheel de sign and operation for consideration by flywheel developers, users of flywheel systems and standards setting organizations.

  13. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Science.gov (United States)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-11-01

    This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  14. Application of thermal and flywheel energy storage in orbiting nuclear burst power systems

    Energy Technology Data Exchange (ETDEWEB)

    Wichner, R.P.; Olszewski, M.

    1987-03-01

    A survey was conducted of currently available thermal energy storage and flywheel energy storage technology and development programs as they may apply to nuclear-based, burst power systems. The manner in which such storage systems may be used in closed cycle, regenerable burst systems is described for a number of cases utilizing the Boiling Potassium Rankine and Dual Loop Lithium Cooled LMRs and the Direct Cycle Brayton HTGR. In general, energy storage devices for such systems enable use of smaller power system components by allowing continuous operation over the duration of both the bursts and the regeneration time. The degree of size reduction depends principally on the required regeneration time.

  15. Dynamic characteristics of a flywheel energy storage system using superconducting magnetic bearings

    CERN Document Server

    Kim, J S

    2003-01-01

    The high-temperature superconducting magnetic bearing flywheel energy storage system (SMB-FESS) is proposed as an efficient energy storage system. It is important to identify the dynamic behaviour and the characteristics of the SMB-FESS. First, a new method for identifying SMB characteristics has been suggested. The suggested modelling method is verified by comparing the experimental and analytical frequency response functions. In this study, the analyses of critical speed and unbalance response are performed using the analytical model. The experimental test has been carried out to verify the result of simulation. A good agreement has been observed between the experiment and the simulation result.

  16. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks

    Science.gov (United States)

    Ogata, M.; Matsue, H.; Yamashita, T.; Hasegawa, H.; Nagashima, K.; Maeda, T.; Matsuoka, T.; Mukoyama, S.; Shimizu, H.; Horiuchi, S.

    2016-05-01

    Energy storage systems are necessary for renewable energy sources such as solar power in order to stabilize their output power, which fluctuates widely depending on the weather. Since ‘flywheel energy storage systems’ (FWSSs) do not use chemical reactions, they do not deteriorate due to charge or discharge. This is an advantage of FWSSs in applications for renewable energy plants. A conventional FWSS has capacity limitation because of the mechanical bearings used to support the flywheel. Therefore, we have designed a superconducting magnetic bearing composed of a superconducting coil stator and a superconducting bulk rotor in order to solve this problem, and have experimentally manufactured a large scale FWSS with a capacity of 100 kWh and an output power of 300 kW. The superconducting magnetic bearing can levitate 4 tons and enables the flywheel to rotate smoothly. A performance confirmation test will be started soon. An overview of the superconducting FWSS is presented in this paper.

  17. The New Structure Design and Analysis of Energy Storage of Flywheel of Split Rotor

    National Research Council Canada - National Science Library

    Peng Xu; Wei Wang; Jin Yan; Shaoyang Han

    2015-01-01

    ..., the rationale, and the main features and then put forward the optimizing the structure of the composite flywheel concept and design calculation method. This paper also designs a new flywheel structure which can be applied on urban rail operating system. The new flywheel structure should be checked by finite element method and the radius of...

  18. Design of a Permanent Magnet Synchronous Machine for a Flywheel Energy Storage System within a Hybrid Electric Vehicle

    Science.gov (United States)

    Jiang, Ming

    As an energy storage device, the flywheel has significant advantages over conventional chemical batteries, including higher energy density, higher efficiency, longer life time, and less pollution to the environment. An effective flywheel system can be attributed to its good motor/generator (M/G) design. This thesis describes the research work on the design of a permanent magnet synchronous machine (PMSM) as an M/G suitable for integration in a flywheel energy storage system within a large hybrid electric vehicle (HEV). The operating requirements of the application include wide power and speed ranges combined with high total system efficiency. Along with presenting the design, essential issues related to PMSM design including cogging torque, iron losses and total harmonic distortion (THD) are investigated. An iterative approach combining lumped parameter analysis with 2D Finite Element Analysis (FEA) was used, and the final design is presented showing excellent performance.

  19. A Control Algorithm for Electric Vehicle Fast Charging Stations Equipped with Flywheel Energy Storage Systems

    DEFF Research Database (Denmark)

    Sun, Bo; Dragicevic, Tomislav; Freijedo Fernandez, Francisco Daniel

    2016-01-01

    This paper proposes a control strategy for plugin electric vehicle (PEV) fast charging station (FCS) equipped with a flywheel energy storage system (FESS). The main role of the FESS is not to compromise the predefined charging profile of PEV battery during the provision of a hysteresis-type active...... power ancillary service to the overhead power system. In that sense, when the active power is not being extracted from the grid, FESS provides the power required to sustain the continuous charging process of PEV battery. A key characteristic of the whole control system is that it is able to work without...

  20. Performance evaluation of permanent magnet synchronous motor/generator for superconductor flywheel energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.P.; Sung, T.H.; Jung, S.V.; Han, Y.H. [Korea Electric Power Energy Research Inst., Daejeon (Korea, Republic of); You, D.J.; Jang, S.M. [Chung Nam National Univ., Daejeon (Korea, Republic of)

    2007-07-01

    Superconductor flywheel energy storage (SFES) systems are used to supply energy when needed during periods of peak electrical use. Stored energy decreases when the rotational speed of the flywheel decreases. Rotational losses occur as a result of induced currents in the superconductors caused by inhomogeneous fields of the permanent magnet (PM) rotor and the eddy current in the rotor induced by the magnetic field of the superconductor. The aim of this modelling study was to improve the storage efficiency of the SFES by reducing rotational losses. A permanent magnet synchronous motor (PMSM) for a SFES system was designed using magnetic field and dynamic modelling. The model consisted of a surface-mounted permanent magnet (PM) rotor with diametrical magnetization and a slotless iron-cored stator. Rotor and stator performance were evaluated in both operational and idling modes. Electromagnetic analyses were conducted to determine PM volume and winding rotations. A 2-D analytical solution was used to characterize the distribution of magnetized materials. Ampere's law was used to solve the field quantities and boundary conditions of the PM. The electrical dynamic equation was characterized as a 3-phase winding in a rotating time domain. Results of the study showed that the PMSM design provided the correct amount of power. It was concluded that magnetic field analyses can be used to accurately calculate core losses for PMSM systems. 6 refs., 1 tab., 12 figs.

  1. Experiment and analysis for a small-sized flywheel energy storage system with a high-temperature superconductor bearing

    Science.gov (United States)

    Kim, Bongsu; Ko, Junseok; Jeong, Sangkwon; Lee, Seung S.

    2006-02-01

    This paper presents a small-sized flywheel energy storage system that uses a high-temperature superconductor (HTS) bearing characterized by a non-contacting bearing with no active control. The small-sized flywheel is made up several magnets for a motor/generator as well as an HTS bearing, and they are fitted into a 34 mm diameter, 3 mm thick aluminium disc. For simplicity and miniaturization of the whole system, the small-sized flywheel takes torque directly from a planar stator, which consists of an axial flux-type brushless DC motor/generator. The small-sized flywheel successfully rotated up to 38 000 rpm in a vacuum while levitated above the stator with a gap of about 1 mm. However, there are some eddy current losses in the stator and non-axisymmetry in the magnetic field causing large drag torque. In order to solve these problems, an improved magnet array in the flywheel, including magnetic screening, is proposed and 3D electromagnetic simulations have been conducted.

  2. Assessment of flywheel energy storage for spacecraft power systems

    Science.gov (United States)

    Rodriguez, G. E.; Studer, P. A.; Baer, D. A.

    1983-01-01

    The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension, and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, which evolved at the Goddard Space Flight Center (GSFC), is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides a potential alternative configurations that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions. Critical technologies identified are those pertaining to the energy storage element and are prioritized as composite wheel development, magnetic suspension, motor/generator, containment, and momentum control. Comparison with a 3-kW, 250-Vdc power system using either NiCd or NiH2 for energy storage results in a system in which inertial energy storage offers potential advantages in lifetime, operating temperature, voltage regulation, energy density, charge control, and overall system weight reduction.

  3. An overview of flywheel energy systems with HTS bearings

    Energy Technology Data Exchange (ETDEWEB)

    Wolsky, A.M. [Argonne National Laboratory, Argonne, IL (United States)]. E-mail: AWolsky@ANL.gov

    2002-05-01

    Passive magnetic bearings incorporating permanent magnets and ReBaCuO, together with carbon fibre, offer the possibility of increasing the stored, volumetric energy density of FES and unprecedentedly low idling loss of FES. Its stored energy need only satisfy customers' needs for the time it takes to bring on conventional 'back-up'. The FES itself must come up to power quickly enough to avoid any disruption in the customer's operation (e.g., continuous industrial processes involving fragile materials, for example paper forming). Such customers do not care about the price of electricity nearly as much as they care about not ruining their product, damaging their machines or having 'clean ups' that stop or slow output. Firms that engage in electronic commerce and/or telecommunications also value uninterruptible power. Another set of potential customers (construction, electric railroads) may wish to avoid fluctuations in their electrical supply or they may wish to avoid causing harm to others who may hold them liable for poor power quality. Finally, real time prices (e.g., every 15 s) and real time commands, disseminated via internet, and distributed storage might enable reduced system generation costs. Generators and FES makers would have to cooperate to make this feasible. Now, the central techno-economic challenge is to build a high-power, low-loss motor generator that reaches full power in a very short time. (author)

  4. An overview of flywheel energy systems with HTS bearings

    Science.gov (United States)

    Wolsky, A. M.

    2002-05-01

    Passive magnetic bearings incorporating permanent magnets and ReBaCuO, together with carbon fibre, offer the possibility of increasing the stored, volumetric energy density of FES and unprecedentedly low idling loss of FES. Its stored energy need only satisfy customers' needs for the time it takes to bring on conventional 'back-up'. The FES itself must come up to power quickly enough to avoid any disruption in the customer's operation (e.g., continuous industrial processes involving fragile materials, for example paper forming). Such customers do not care about the price of electricity nearly as much as they care about not ruining their product, damaging their machines or having 'clean ups' that stop or slow output. Firms that engage in electronic commerce and/or telecommunications also value uninterruptible power. Another set of potential customers (construction, electric railroads) may wish to avoid fluctuations in their electrical supply or they may wish to avoid causing harm to others who may hold them liable for poor power quality. Finally, real time prices (e.g., every 15 s) and real time commands, disseminated via internet, and distributed storage might enable reduced system generation costs. Generators and FES makers would have to cooperate to make this feasible. Now, the central techno-economic challenge is to build a high-power, low-loss motor generator that reaches full power in a very short time.

  5. Energy content of suspended detritus from Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnakumari, L.; Sumitra-Vijayaraghavan; Royan, J.P.

    Energy components of suspended matter included phytoplankton, zooplankton and detritus inclusive of microorganisms adsorbed to detritus. Of these, detritus contributed most of the energy (98%). The average caloric content of suspended detritus...

  6. Bearingless AC Homopolar Machine Design and Control for Distributed Flywheel Energy Storage

    Science.gov (United States)

    Severson, Eric Loren

    The increasing ownership of electric vehicles, in-home solar and wind generation, and wider penetration of renewable energies onto the power grid has created a need for grid-based energy storage to provide energy-neutral services. These services include frequency regulation, which requires short response-times, high power ramping capabilities, and several charge cycles over the course of one day; and diurnal load-/generation-following services to offset the inherent mismatch between renewable generation and the power grid's load profile, which requires low self-discharge so that a reasonable efficiency is obtained over a 24 hour storage interval. To realize the maximum benefits of energy storage, the technology should be modular and have minimum geographic constraints, so that it is easily scalable according to local demands. Furthermore, the technology must be economically viable to participate in the energy markets. There is currently no storage technology that is able to simultaneously meet all of these needs. This dissertation focuses on developing a new energy storage device based on flywheel technology to meet these needs. It is shown that the bearingless ac homopolar machine can be used to overcome key obstacles in flywheel technology, namely: unacceptable self-discharge and overall system cost and complexity. Bearingless machines combine the functionality of a magnetic bearing and a motor/generator into a single electromechanical device. Design of these machines is particularly challenging due to cross-coupling effects and trade-offs between motor and magnetic bearing capabilities. The bearingless ac homopolar machine adds to these design challenges due to its 3D flux paths requiring computationally expensive 3D finite element analysis. At the time this dissertation was started, bearingless ac homopolar machines were a highly immature technology. This dissertation advances the state-of-the-art of these machines through research contributions in the areas of

  7. Development of REBCO HTS Magnet of Magnetic Bearing for Large Capacity Flywheel Energy Storage System

    Science.gov (United States)

    Mukoyama, Shinichi; Matsuoka, Taro; Furukawa, Makoto; Nakao, Kengo; Nagashima, Ken; Ogata, Masafumi; Yamashita, Tomohisa; Hasegawa, Hitoshi; Yoshizawa, Kazuhiro; Arai, Yuuki; Miyazaki, Kazuki; Horiuchi, Shinichi; Maeda, Tadakazu; Shimizu, Hideki

    A flywheel energy storage system (FESS) is a promising electrical storage system that moderates fluctuation of electrical power from renewable energy sources. The FESS can charge and discharge the surplus electrical power repetitively with the rotating energy. Particularly, the FESS that utilizes a high temperature superconducting magnetic bearing (HTS bearing) is lower loss than conventional FESS that has mechanical bearing, and has property of longer life operation than secondary batteries. The HTS bearing consists of a HTS bulk and double-pancake coils used 2nd generation REBCO wires. In the development, the HTS double-pancake coils were fabricated and were provided for a levitation test to verify the possibility of the HTS bearing. We successfully confirmed the magnetic field was achieved to design value, and levitation force in the configuration of one YBCO bulk and five double pan-cake coils was obtained to a satisfactory force of 39.2 kN (4 tons).

  8. Coordinated Control for Flywheel Energy Storage Matrix Systems for Wind Farm Based on Charging/Discharging Ratio Consensus Algorithms

    DEFF Research Database (Denmark)

    Cao, Qian; Song, Y. D.; Guerrero, Josep M.

    2016-01-01

    This paper proposes a distributed algorithm for coordination of flywheel energy storage matrix system (FESMS) cooperated with wind farm. A simple and distributed ratio consensus algorithm is proposed to solve FESMS dispatch problem. The algorithm is based on average consensus for both undirected...

  9. High-performance sensorless nonlinear power control of a flywheel energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Amodeo, S.J.; Chiacchiarini, H.G.; Solsona, J.A.; Busada, C.A. [Departamento de Ingenieria Electrica y de Computadoras, Instituto de Investigaciones en Ingenieria Electrica ' ' Alfredo Desages' ' , Universidad Nacional del Sur y CONICET, Avda. Alem 1253 (B8000CPB) Bahaa Blanca (Argentina)

    2009-07-15

    The flywheel energy storage systems (FESS) can be used to store and release energy in high power pulsed systems. Based on the use of a homopolar synchronous machine in a FESS, a high performance model-based power flow control law is developed using the feedback linearization methodology. This law is based on the voltage space vector reference frame machine model. To reduce the magnetic losses, a pulse amplitude modulation driver for the armature is more adequate. The restrictions in amplitude and phase imposed by the driver are also included. A full order Luenberger observer for the torque angle and rotor speed is developed to implement a sensorless control strategy. Simulation results are presented to illustrate the performance. (author)

  10. Operation of a Wind Turbine-Flywheel Energy Storage System under Conditions of Stochastic Change of Wind Energy

    Science.gov (United States)

    2014-01-01

    The paper presents the issues of a wind turbine-flywheel energy storage system (WT-FESS) operation under real conditions. Stochastic changes of wind energy in time cause significant fluctuations of the system output power and as a result have a negative impact on the quality of the generated electrical energy. In the author's opinion it is possible to reduce the aforementioned effects by using an energy storage of an appropriate type and capacity. It was assumed that based on the technical parameters of a wind turbine-energy storage system and its geographical location one can determine the boundary capacity of the storage, which helps prevent power cuts to the grid at the assumed probability. Flywheel energy storage was selected due to its characteristics and technical parameters. The storage capacity was determined based on an empirical relationship using the results of the proposed statistical and energetic analysis of the measured wind velocity courses. A detailed algorithm of the WT-FESS with the power grid system was developed, eliminating short-term breaks in the turbine operation and periods when the wind turbine power was below the assumed level. PMID:25215326

  11. Operation of a wind turbine-flywheel energy storage system under conditions of stochastic change of wind energy.

    Science.gov (United States)

    Tomczewski, Andrzej

    2014-01-01

    The paper presents the issues of a wind turbine-flywheel energy storage system (WT-FESS) operation under real conditions. Stochastic changes of wind energy in time cause significant fluctuations of the system output power and as a result have a negative impact on the quality of the generated electrical energy. In the author's opinion it is possible to reduce the aforementioned effects by using an energy storage of an appropriate type and capacity. It was assumed that based on the technical parameters of a wind turbine-energy storage system and its geographical location one can determine the boundary capacity of the storage, which helps prevent power cuts to the grid at the assumed probability. Flywheel energy storage was selected due to its characteristics and technical parameters. The storage capacity was determined based on an empirical relationship using the results of the proposed statistical and energetic analysis of the measured wind velocity courses. A detailed algorithm of the WT-FESS with the power grid system was developed, eliminating short-term breaks in the turbine operation and periods when the wind turbine power was below the assumed level.

  12. Reactive Power Support of Electrical Vehicle Charging Station Upgraded with Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    SUN, BO; Dragicevic, Tomislav; Savaghebi, Mehdi

    2015-01-01

    Electrical vehicles (EVs) are presenting increasingly potential to replace the conventional fossil fuel based vehicles due to environmental friendly characteristic. Accordingly, Charging Stations (CS), as an intermediate between grid and large numbers of EVs, are supposed to have more critical...... influence on future smart transportation network. This paper explores an off-board charging station upgraded with flywheel energy storage system that could provide a reactive power support to the grid utility. A supervisory control scheme based on distributed bus signaling is proposed to coordinate...... the operation of each component in the system. As a result, the charging station could supply the reactive power support to the utility grid without compromising the charging algorithm and preserve the battery’s lifetime. Finally, the real-time simulation results based on dSPACE1006 verifies the proposed...

  13. Smoothing of wind farm output power using prediction based flywheel energy storage system

    Science.gov (United States)

    Islam, Farzana

    Being socially beneficial, economically competitive and environment friendly, wind energy is now considered to be the world's fastest growing renewable energy source. However, the stochastic nature of wind imposes a considerable challenge in the optimal management and operation of wind power system. Wind speed prediction is critical for wind energy conversion system since it greatly influences the issues related to effective energy management, dynamic control of wind turbine, and improvement of the overall efficiency of the power generation system. This thesis focuses on integration of energy storage system with wind farm, considering wind speed prediction in the control scheme to overcome the problems associated with wind power fluctuations. In this thesis, flywheel energy storage system (FESS) with adjustable speed rotary machine has been considered for smoothing of output power in a wind farm composed of a fixed speed wind turbine generator (FSWTG). Since FESS has both active and reactive power compensation ability, it enhances the stability of the system effectively. An efficient energy management system combined with supervisory control unit (SCU) for FESS and wind speed prediction has been developed to improve the smoothing of the wind farm output effectively. Wind speed prediction model is developed by artificial neural network (ANN) which has advantages over the conventional prediction scheme including data error tolerance and ease in adaptability. The model for prediction with ANN is developed in MATLAB/Simulink and interfaced with PSCAD/EMTDC. Effectiveness of the proposed control system is illustrated using real wind speed data in various operating conditions.

  14. Electrochemical Batteries: Flywheels for temporary energy storage; Baterias electromecanicas: volantes de inercia para el almacenamiento temporal de energia

    Energy Technology Data Exchange (ETDEWEB)

    Pena Alzola, R.; Sebastian Fernandez, R.

    2008-07-01

    In the Electromechanical batteries (EMB) a flywheel stores mechanical energy that interchanges in form of electrical energy by means of an electrical machine with a bidirectional power converter. EMB are suitable whenever numerous charge and recharge cycles (hundred of thousands) are needed with medium to high power (kW to MW) during short periods (seconds). The materials of the flywheel, the type of the electrical machine, the type of the bearings and the atmosphere inside the housing determine the energy efficiency of the EMB. EMB are commercially available with more than a dozen of manufacturers. Amongst the applications of BEM are: uninterrupted power supplies, hybrid power systems, power grids feeding trains, hybrid vehicles and space satellites. (Author) 15 refs.

  15. Flywheel driving system study

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Seop Koh; Choi, Jae Ho; Jeoung, Hwan Myoung; Lee, Byoung Gu [Chungbuk National University, Cheongju (Korea)

    1999-03-01

    In this research, the superconductivity flywheel energy storage system, which transform the D.C electric power to mechanical energy by rotating the flywheel very high speed and vice verse, is designed and constructed. The system has a power converter and BLDC motor as a driver. In order to increase the efficiency of the motor, a special Halbach array of Nd-Fe-B permanent magnet, which remnant magnetic flux density is about 1.2(T), is used. The developed power converter employed PLL and Sin ROM for the accurate phase detection at the very high speed, and sine wave control of the input current is achieved by using hysteresis current control techniques. The flywheel energy storage system is experimental using both the superconducting bearing and ball bearing. (author). 20 refs., 55 figs., 4 tabs.

  16. GSFC Flywheel Status

    Science.gov (United States)

    Rodriguez, G. E.

    1983-01-01

    The assessment of flywheel energy storage for spacecraft power system is based on the conceptual flywheel design. This conceptual design of an integrated flywheel is based on the Mechanical Capacitor which evolved from development of magnetic bearings and permanent magnet ironless-brushless DC motors. The mechanical capacitor is based on three key technologies: (1) a composite rotor with a low ID to OD ratio for high energy density (weight and volume); (2) magnetic suspension close to the geometric center of the rotating mass to minimize loads normally encountered on the ends of a shaft, a no-wear mechanism in a vacuum environment, and to minimize losses at high rotational speeds; (3) permanent magnet ironless-brushless DC motor/generator for high efficiency of conversion and low losses at high rotational speeds. The complete system would include the necessary electronics for the motor/generator, containment, and counterrotating wheels for attitude control compatibility.

  17. High Temperature Superconducting Levitation Energy Storage Flywheel having Stable Levitation without Control and Its Vibration Control Electromagnetic Damper

    OpenAIRE

    福室, 允央; 大関, 健一郎; 斎藤, 正人; 葛, 徳梁; 村上, 岩範; 長屋, 幸助

    2004-01-01

    A simple and stable energy-storage flywheel system with high temperature superconducting levitation is presented. In order to have stable levitation, a superconductor and a permanent magnet are used, and 3 permanent magnets support the top of the shaft. In the part of drive system, 8-poles permanent magnet and 8 coils are used to cancel electromagnetic forces in the radial direction. An electromagnetic damper consisting of permanent magnet for levitation and 4 coils is presented which lies at...

  18. Design, Modeling and Control of Magnetic Bearings for a Ring-Type Flywheel Energy Storage System

    Directory of Open Access Journals (Sweden)

    Chow-Shing Toh

    2016-12-01

    Full Text Available This study is concerned with the magnetic force models of magnetic bearing in a flywheel energy storage system (FESS. The magnetic bearing is of hybrid type, with axial passive magnetic bearing (PMB and radial hybrid magnetic bearing (HMB. For the PMB, a pair of ring-type Halbach arrays of permanent magnets are arranged vertically to support the rotor weight. For the HMB, a set of ring-type Halbach array is placed on the rotor side, which corresponds to coil sets on the stator side. The HMB can produce both attraction and repulsion forces on the radial direction, depending on the direction of the coil currents. It is found that the ring-type configuration and the differential winding scheme for coil sets can yield linear magnetic force models for both PMB and HMB. Based on the obtained magnetic force model, an integral sliding mode controller is designed for the stable rotor levitation in the radial direction. The experimental results show that the rotor can be stabilized to the bearing center, verifying the accuracy of the magnetic force models and effectiveness of the levitation controller.

  19. Dynamical investigation and parameter stability region analysis of a flywheel energy storage system in charging mode

    Science.gov (United States)

    Zhang, Wei-Ya; Li, Yong-Li; Chang, Xiao-Yong; Wang, Nan

    2013-09-01

    In this paper, the dynamic behavior analysis of the electromechanical coupling characteristics of a flywheel energy storage system (FESS) with a permanent magnet (PM) brushless direct-current (DC) motor (BLDCM) is studied. The Hopf bifurcation theory and nonlinear methods are used to investigate the generation process and mechanism of the coupled dynamic behavior for the average current controlled FESS in the charging mode. First, the universal nonlinear dynamic model of the FESS based on the BLDCM is derived. Then, for a 0.01 kWh/1.6 kW FESS platform in the Key Laboratory of the Smart Grid at Tianjin University, the phase trajectory of the FESS from a stable state towards chaos is presented using numerical and stroboscopic methods, and all dynamic behaviors of the system in this process are captured. The characteristics of the low-frequency oscillation and the mechanism of the Hopf bifurcation are investigated based on the Routh stability criterion and nonlinear dynamic theory. It is shown that the Hopf bifurcation is directly due to the loss of control over the inductor current, which is caused by the system control parameters exceeding certain ranges. This coupling nonlinear process of the FESS affects the stability of the motor running and the efficiency of energy transfer. In this paper, we investigate into the effects of control parameter change on the stability and the stability regions of these parameters based on the averaged-model approach. Furthermore, the effect of the quantization error in the digital control system is considered to modify the stability regions of the control parameters. Finally, these theoretical results are verified through platform experiments.

  20. Energy values of suspended detritus in Andaman Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnakumari, L.; Royan, J.P.; Sumitra-Vijayaraghavan

    Energy content of suspended detritus was determined in Andaman Sea waters during April-May 1988. The caloric content of suspended detritus ranged from 987 to 7040 cal. per gram dry wt with an average value of 5530 cal. per gram dry wt. The results...

  1. Improved flywheel materials :

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, Timothy J.; Bell, Nelson S; Ehlen, Mark Andrew; Anderson, Benjamin John; Miller, William Kenneth

    2013-09-01

    As alternative energy generating devices (i.e., solar, wind, etc) are added onto the electrical energy grid (AC grid), irregularities in the available electricity due to natural occurrences (i.e., clouds reducing solar input or wind burst increasing wind powered turbines) will be dramatically increased. Due to their almost instantaneous response, modern flywheel-based energy storage devices can act a mechanical mechanism to regulate the AC grid; however, improved spin speeds will be required to meet the necessary energy levels to balance these green energy variances. Focusing on composite flywheels, we have investigated methods for improving the spin speeds based on materials needs. The so-called composite flywheels are composed of carbon fiber (C-fiber), glass fiber, and a glue (resin) to hold them together. For this effort, we have focused on the addition of fillers to the resin in order to improve its properties. Based on the high loads required for standard meso-sized fillers, this project investigated the utility of ceramic nanofillers since they can be added at very low load levels due to their high surface area. The impact that TiO2 nanowires had on the final strength of the flywheel material was determined by a three-point-bend test. The results of the introduction of nanomaterials demonstrated an increase in strength of the flywheels C-fiber-resin moiety, with an upper limit of a 30% increase being reported. An analysis of the economic impact concerning the utilization of the nanowires was undertaken and after accounting for new-technology and additional production costs, return on improved-nanocomposite investment was approximated at 4-6% per year over the 20-year expected service life. Further, it was determined based on the 30% improvement in strength, this change may enable a 20-30% reduction in flywheel energy storage cost ($/kW-h).

  2. Flywheels Upgraded for Systems Research

    Science.gov (United States)

    Jansen, Ralph H.

    2003-01-01

    With the advent of high-strength composite materials and microelectronics, flywheels are becoming attractive as a means of storing electrical energy. In addition to the high energy density that flywheels provide, other advantages over conventional electrochemical batteries include long life, high reliability, high efficiency, greater operational flexibility, and higher depths of discharge. High pulse energy is another capability that flywheels can provide. These attributes are favorable for satellites as well as terrestrial energy storage applications. In addition to energy storage for satellites, the several flywheels operating concurrently can provide attitude control, thus combine two functions into one system. This translates into significant weight savings. The NASA Glenn Research Center is involved in the development of this technology for space and terrestrial applications. Glenn is well suited for this research because of its world-class expertise in power electronics design, rotor dynamics, composite material research, magnetic bearings, and motor design and control. Several Glenn organizations are working together on this program. The Structural Mechanics and Dynamics Branch is providing magnetic bearing, controls, and mechanical engineering skills. It is working with the Electrical Systems Development Branch, which has expertise in motors and generators, controls, and avionics systems. Facility support is being provided by the Space Electronic Test Engineering Branch, and the program is being managed by the Space Flight Project Branch. NASA is funding an Aerospace Flywheel Technology Development Program to design, fabricate, and test the Attitude Control/Energy Storage Experiment (ACESE). Two flywheels will be integrated onto a single power bus and run simultaneously to demonstrate a combined energy storage and 1-degree-of-freedom momentum control system. An algorithm that independently regulates direct-current bus voltage and net torque output will be

  3. Superconducting bearings for flywheel applications

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.

    2001-01-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings...

  4. Regenerative flywheel storage system, volume 2

    Science.gov (United States)

    1980-06-01

    A vehicle propulsion system was simulated on a digital computer in order to determine the optimum system operating strategies and to establish a calculated range improvement over a nonregenerative, all electric vehicle. Fabrication of the inductor motor, the flywheel, the power conditioner, and the system control are described. Test results of the system operating over the SAE J227a Schedule D driving cycle are given and are compared to the calculated value. The flywheel energy storage system consists of a solid rotor, synchronous, inductor type, flywheel drive machine electrically coupled to a dc battery electric propulsion system through a load commutated inverter. The motor/alternator unit is coupled mechanically to a small steel flywheel which provides a portion of the vehicle's accelerating energy and regenerates the vehicle's braking energy.

  5. Research on the Torque and Back EMF Performance of a High Speed PMSM Used for Flywheel Energy Storage

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2015-04-01

    Full Text Available Due to advantages such as high energy density, high power density, rapid charge and discharge, high cyclic-life, and environmentally friendly, flywheel energy storage systems (FESs are widely used in various fields. However, the performance of FES systems depends on the performance of a high speed machine, therefore, the design and optimization of a high efficiency and high power density machine are very crucial to improve the performance of the whole FES system. In this paper, a high speed permanent-magnet synchronous machine (PMSM is researched. Considering the requirement of low torque ripple in low speed and loss caused by back electromotive force (EMF harmonics, the electromagnetic performance is improved from points of view of slot/pole matching, magnetic-pole embrace with the finite element method (FEM. Furthermore, the magnetic-pole eccentricity, the slot opening, the thickness of PM and air-gap length are also optimized with Taguchi method. The electromagnetic performance, such as torque ripple, cogging torque, average torque and back EMF wave are much improved after optimization. Finally, experiments are carried out to verify the calculated results.

  6. Models of energy sources for EV and HEV: fuel cells, batteries, ultracapacitors, flywheels and engine-generators

    Science.gov (United States)

    Van Mierlo, Joeri; Van den Bossche, Peter; Maggetto, Gaston

    Resulting from a Ph.D. research a Vehicle Simulation Programme (VSP) is proposed and continuously developed. It allows simulating the behaviour of electric, hybrid, fuel cell and internal combustion vehicles while driving any reference cycle [Simulation software for comparison and design of electric, hybrid electric and internal combustion vehicles with respect to energy, emissions and performances, Ph.D. Thesis, Department Electrical Engineering, Vrije Universiteit Brussel, Belgium, April 2000]. The goal of the simulation programme is to study power flows in vehicle drive trains and the corresponding component losses, as well as to compare different drive train topologies. This comparison can be realised for energy consumption and emissions as well as for performances (acceleration, range, maximum slope, etc.). The software package and its validation are described in [J. Automot. Eng., SAE IEE 215 (9) (2001) 1043L]. Different hybrid and electric drive trains are implemented in the software [Views on hybrid drive train power management strategies, in: Proceedings of the EVS-17, Montreal, Canada, October 2000]. The models used for the energy sources like fuel cells, batteries, ultracapacitors, flywheels and engine-generator units will be discussed in this paper in three stages: first their functionality and characteristics are described, next the way these characteristics can be implemented in a simulation model will be explained and finally some calculation results will illustrate the approach. This paper is aimed to give an overview of simulation models of energy sources for battery, hybrid and fuel cell electric vehicles. Innovative is the extreme modularity and exchangeability of different components functioning as energy sources. The unique iteration algorithm of the simulation programme allows to accurately simulate drive train maximum performances as well as all kind of power management strategies in different types of hybrid drive trains [IEEE Trans. Veh

  7. Flywheel Rotor Safe-Life Technology

    Science.gov (United States)

    Ratner, J. K. H.; Chang, J. B.; Christopher, D. A.; McLallin, Kerry L. (Technical Monitor)

    2002-01-01

    Since the 1960s, research has been conducted into the use of flywheels as energy storage systems. The-proposed applications include energy storage for hybrid and electric automobiles, attitude control and energy storage for satellites, and uninterruptible power supplies for hospitals and computer centers. For many years, however, the use of flywheels for space applications was restricted by the total weight of a system employing a metal rotor. With recent technological advances in the manufacturing of composite materials, however, lightweight composite rotors have begun to be proposed for such applications. Flywheels with composite rotors provide much higher power and energy storage capabilities than conventional chemical batteries. However, the failure of a high speed flywheel rotor could be a catastrophic event. For this reason, flywheel rotors are classified by the NASA Fracture Control Requirements Standard as fracture critical parts. Currently, there is no industry standard to certify a composite rotor for safe and reliable operation forth( required lifetime of the flywheel. Technical problems hindering the development of this standard include composite manufacturing inconsistencies, insufficient nondestructive evaluation (NDE) techniques for detecting defects and/or impact damage, lack of standard material test methods for characterizing composite rotor design allowables, and no unified proof (over-spin) test for flight rotors. As part of a flywheel rotor safe-life certification pro-ram funded b the government, a review of the state of the art in composite rotors is in progress. The goal of the review is to provide a clear picture of composite flywheel rotor technologies. The literature review has concentrated on the following topics concerning composites and composite rotors: durability (fatigue) and damage tolerance (safe-life) analysis/test methods, in-service NDE and health monitoring techniques, spin test methods/ procedures, and containment options

  8. G2 Flywheel Module Design

    Science.gov (United States)

    Jensen, Ralph H.; Dever, Timothy P.

    2006-01-01

    Design of a flywheel module, designated the G2 module, is described. The G2 flywheel is a 60,000 RPM, 525 W-hr, 1 kW system designed for a laboratory environment; it will be used for component testing and system demonstrations, with the goal of applying flywheels to aerospace energy storage and integrated power and attitude control (IPACS) applications. G2 has a modular design, which allows for new motors, magnetic bearings, touchdown bearings, and rotors to be installed without a complete redesign of the system. This design process involves several engineering disciplines, and requirements are developed for the speed, energy storage, power level, and operating environment. The G2 rotor system consists of a multilayer carbon fiber rim with a titanium hub on which the other components mount, and rotordynamics analysis is conducted to ensure rigid and flexible rotor modes are controllable or outside of the operating speed range. Magnetic bearings are sized using 1-D magnetic circuit analysis and refined using 3-D finite element analysis. The G2 magnetic bearing system was designed by Texas A&M and has redundancy which allows derated operation after the loss of some components, and an existing liquid cooled two pole permanent magnet motor/generator is used. The touchdown bearing system is designed with a squeeze film damper system allowing spin down from full operating speed in case of a magnetic bearing failure. The G2 flywheel will enable module level demonstrations of component technology, and will be a key building block in system level attitude control and IPACS demonstrations.

  9. Hubless Flywheel with Null-E Magnetic Bearings Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For space-born energy storage systems, the energy to weight ratio is extremely important. From this perspective, a hubless flywheel energy storage design is very...

  10. Low-cost flywheel demonstration program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    The Applied Physics Laboratory/Department of Energy Low Cost Flywheel Demonstration Program was initiated on 1 October 1977 and was successfully concluded on 31 December 19'9. The total cost of this program was $355,190. All primary objectives were successfully achieved as follows: demonstration of a full-size, 1)kWh flywheel having an estimated cost in large-volume production of approximately $50/kWh; developmeNt of a ball-bearing system having losses comparable to the losses in a totally magnetic suspension system; successful and repeated demonstration of the low-cost flywheel in a complete flywheel energy-storage system based on the use of ordinary house voltage and frequency; and application of the experience gained in the hardware program to project the system design into a complete, full-scale, 30-kWh home-type flywheel energy-storage system.

  11. Motor/generator and electronic control considerations for energy storage flywheels

    Science.gov (United States)

    Nola, F. J.

    1984-01-01

    A spacecraft electric power supply system is described. Requirements of the system are to accelerate a momentum wheel to a fixed maximum speed when solar energy is available and to maintain a constant voltage on the spacecraft bus under varying loads when solar energy is not available. Candidate motor types, pulse width modulated current control systems, and efficiency considerations are discussed. In addition, the Lunar Roving Vehicle motors are described along with their respective efficiencies.

  12. Reactor coolant pump flywheel

    Science.gov (United States)

    Finegan, John Raymond; Kreke, Francis Joseph; Casamassa, John Joseph

    2013-11-26

    A flywheel for a pump, and in particular a flywheel having a number of high density segments for use in a nuclear reactor coolant pump. The flywheel includes an inner member and an outer member. A number of high density segments are provided between the inner and outer members. The high density segments may be formed from a tungsten based alloy. A preselected gap is provided between each of the number of high density segments. The gap accommodates thermal expansion of each of the number of segments and resists the hoop stress effect/keystoning of the segments.

  13. Composite flywheel development completion report, May 1--September 30, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Huddleston, R. L.; Kelly, J. J.; Knight, C. E.

    1977-05-01

    The program to design, fabricate, and performance test a prototype, vehicular-sized, composite flywheel is described. The overall program scope encompasses development of both the flywheel and its containment; however, the FY 1976-1976T objective was directed toward development of the flywheel and testing it in existing facilities. The development effort was successful, leading to successful testing of a flywheel design which demonstrated an energy density performance of 10.1 Wh/lb during spin testing. The initial application selected for development of the composite flywheel was the heat engine/flywheel hybrid propulsion system for a vehicle. This application was selected by the ERDA Advanced Physical Methods Branch staff because of its high potential for conservation of petroleum fuel in both the near and far-term time frames. Other applications, such as utility load leveling, represent potential areas for significant energy savings but require more extensive development programs and funding resources. Successful development of a high-performance, composite, vehicular flywheel represents one step along the development path leading toward larger, higher-energy storage flywheel applications.

  14. Modeling and Control of Flexible HEV Charging Station upgraded with Flywheel Energy Storage

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Shafiee, Qobad; Wu, Dan

    2014-01-01

    of power introduced by HEV charger, avoiding big initial stress in grid converter and also is able to limit the maximum extracted power. In addition, feed-forward compensation has been implemented to reduce the voltage dip within the station. Real time simulation results, that prove the validity......This paper deals with the design of a fast DC charging station (FCS) for hybrid electric vehicles (HEVs) that is connected at a remote location. Power rating of this new technology can go up to a hundred kW and it represents a main challenge for its broad acceptance in distribution systems....... In that sense, growing number of these stations, if operated in a nonflexible regime, will start to cause problems in future distribution systems such as overloads of local network’s corridors and reduction of its total equivalent spinning reserves. A power balancing strategy based on a local energy storage...

  15. Auto-reinforce Magnetic Flywheel as Recent Advancement of Automobile Flywheel

    Directory of Open Access Journals (Sweden)

    Akbar Ahmad Radikal

    2014-07-01

    Full Text Available A new feature for flywheel energy storage device is proposed, considering the deficiencies on existing technology. This feature is introduced as auto-reinforce performance which means an ability to recover the kinetic energy after speed-down occurred as impact of sudden loading or sudden braking. The performance will significantly keep longer the stored energy of a flywheel device. This novel concept of flywheel is engineered by installing a number of Permanent Magnets (PM. The magnetism configuration such magnetic strength, magnetic energy density, pole direction, geometry, and dimension are influential parameters to its performance. By executing Finite Element Magnetic Modeling, it is possible to predict the design parameters such magnetic force and magnetic torque. Finally by evaluating these mechanical parameters, the key performance of this device such as percentage of energy reinforcement and percentage of discharge elongation can be predicted for prototyping references.

  16. Sub-Area. 2.5 Demonstration of Promising Energy Storage Technologies Project Type. Flywheel Energy Storage Demonstration Revision: V1.0

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-12-30

    In this program, Amber Kinetics designed, built, and tested a sub-­scale 5 kWh engineering prototype flywheel system. Applying lessons learned from the engineering prototype, Amber Kinetics then designed, built and tested full-­size, commercial-­scale 25 kWh flywheel systems. The systems underwent basic functional qualification testing before being installed, sequentially, at the company’s outdoor test site in Alameda, CA for full-­speed field-testing. The primary considerations in testing the prototype units were to demonstrate the functionality of the system, verify the frequencies of resonant modes, and quantify spinning losses and motor/generator efficiency.

  17. Simulation of a Flywheel Electrical System for Aerospace Applications

    Science.gov (United States)

    Truong, Long V.; Wolff, Frederick J.; Dravid, Narayan V.

    2000-01-01

    A Flywheel Energy Storage Demonstration Project was initiated at the NASA Glenn Research Center as a possible replacement for the battery energy storage system on the International Space Station (ISS). While the hardware fabrication work was being performed at a university and contractor's facility, the related simulation activity was begun at Glenn. At the top level, Glenn researchers simulated the operation of the ISS primary electrical system (as described in another paper) with the Flywheel Energy Storage Unit (FESU) replacing one Battery Charge and Discharge Unit (BCDU). The FESU consists of a Permanent Magnet Synchronous Motor/Generator (PMSM), which is connected to the flywheel; the power electronics that connects the PMSM to the ISS direct-current bus; and the associated controller. The PMSM model is still under development, but this paper describes the rest of the FESU model-the simulation of the converter and the associated control system that regulates energy transfer to and from the flywheel.

  18. Flywheel Magnetic Suspension Developments

    Science.gov (United States)

    Palazzolo, Alan; Kenny, Andrew; Sifford, Curtiss; Thomas, Erwin; Bhuiyan, Mohammad; Provenza, Andrew; Kascak, Albert; Montague, Gerald; Lei, Shuliang; Kim, Yeonkyu; hide

    2002-01-01

    The paper provides an overview of many areas of the flywheel magnetic suspension (MS) R&D being performed at the Texas A&M Vibration Control and Electromechanics Lab (TAMU-VCEL). This includes system response prediction, actuator optimization and redundancy, controller realizations and stages, sensor enhancements and backup bearing reliability.

  19. Motor Control of Two Flywheels Enabling Combined Attitude Control and Bus Regulation

    Science.gov (United States)

    Kenny, Barbara H.

    2004-01-01

    This presentation discussed the flywheel technology development work that is ongoing at NASA GRC with a particular emphasis on the flywheel system control. The "field orientation" motor/generator control algorithm was discussed and explained. The position-sensorless angle and speed estimation algorithm was presented. The motor current response to a step change in command at low (10 kRPM) and high (60 kRPM) was discussed. The flywheel DC bus regulation control was explained and experimental results presented. Finally, the combined attitude control and energy storage algorithm that controls two flywheels simultaneously was presented. Experimental results were shown that verified the operational capability of the algorithm. shows high speed flywheel energy storage (60,000 RPM) and the successful implementation of an algorithm to simultaneously control both energy storage and a single axis of attitude with two flywheels. Overall, the presentation demonstrated that GRC has an operational facility that

  20. Design Of An Electrical Flywheel For Surge Power Applications In Mobile Robots

    Science.gov (United States)

    Wright, David D.

    1987-01-01

    An energy boost system based on a flywheel has been designed to supply the surge power needs of mobile robots for operating equipment like transmitters, drills, manipulator arms, mobility augmenters, and etc. This flywheel increases the average power available from a battery, fuel cell, generator, RPG or solar array by one or more orders of magnitude for short periods. Flywheels can be charged and discharged for thousands of battery lifetimes. Flywheels can deliver more than ten times the power per unit weight of batteries. The electromechanical details of a reliable, energy efficient and (relatively) low cost flywheel are described. This flywheel is the combination of a highly efficient brushless motor and a laminated steel rotor operating in an hermetically sealed container with only electrical input and output. This design approach overcomes the inefficiencies generally associated with mechanically geared devices. Electrical round trip efficiency is 94% under optimum operating conditions.

  1. Modelling and optimization of a permanent-magnet machine in a flywheel

    NARCIS (Netherlands)

    Holm, S.R.

    2003-01-01

    This thesis describes the derivation of an analytical model for the design and optimization of a permanent-magnet machine for use in an energy storage flywheel. A prototype of this flywheel is to be used as the peak-power unit in a hybrid electric city bus. The thesis starts by showing the

  2. Low-cost flywheel demonstration program. Final report, 1 October 1977-31 December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Rabenhorst, D.W.; Small, T.R.; Wilkinson, W.O.

    1980-04-01

    The Applied Physics Laboratory/Department of Energy Low Cost Flywheel Demonstration Program was initiated on 1 October 1977 and was successfully concluded on 31 December 1979. The total cost of this program was $355,190. All primary objectives were successfully achieved as follows: demonstration of a full-size, 1-kWh flywheel having an estimated cost in large-volume production of approximately $50/kWh; development of a ball-bearing system having losses comparable to the losses in a totally magnetic suspension system; successful and repeated demonstration of the low-cost flywheel in a complete flywheel energy-storage system based on the use of ordinary house voltage and frequency; and application of the experience gained in the hardware program to project the system design into a complete, full-scale, 30-kWh home-type flywheel energy-storage system.

  3. A composite-flywheel burst-containment study

    Science.gov (United States)

    Sapowith, A. D.; Handy, W. E.

    1982-01-01

    A key component impacting total flywheel energy storage system weight is the containment structure. This report addresses the factors that shape this structure and define its design criteria. In addition, containment weight estimates are made for the several composite flywheel designs of interest so that judgements can be made as to the relative weights of their containment structure. The requirements set down for this program were that all containment weight estimates be based on a 1 kWh burst. It should be noted that typical flywheel requirements for regenerative braking of small automobiles call for deliverable energies of 0.25 kWh. This leads to expected maximum burst energies of 0.5 kWh. The flywheels studied are those considered most likely to be carried further for operational design. These are: The pseudo isotropic disk flywheel, sometimes called the alpha ply; the SMC molded disk; either disk with a carbon ring; the subcircular rim with cruciform hub; and Avco's bi-directional circular weave disk.

  4. Third Generation Flywheels for electric storage

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, Michael, R.; Fiske, O. James

    2008-02-29

    Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel — the "Power Ring" — with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing – a radial gap “shear-force levitator” – that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid

  5. 20 MW Flywheel frequency regulation plant

    Energy Technology Data Exchange (ETDEWEB)

    Arseneaux, James [Beacon Power LLC, Wilmington, MA (United States)

    2015-02-05

    Hazle designed, built, commissioned, and operates a utility-scale 20 MW flywheel energy storage plant in Hazle Township, Pennsylvania (the Hazle Facility) using flywheel technology developed by its affiliate, Beacon Power, LLC (Beacon Power). The Hazle Facility provides frequency regulation services to the regional transmission organization, PJM Interconnection, LLC (PJM), through its participation in PJM’s Regulation Market (a market-based system for the purchase and sale of the Regulation ancillary service). The zero emission Hazle Facility is designed for a 20 year-life over which it is capable of performing at least 100,000 full depth of discharge cycles. To achieve its 20 MW capacity, the Hazle Facility is comprised of two hundred of Beacon Power’s 100 kilowatt (kW)/25 kilowatt/hour (kWh) flywheels connected in parallel. The Hazle Facility can fully respond to a signal from PJM in less than 2 seconds. The Hazle facility was constructed in an economic development zone designated by the Commonwealth of Pennsylvania and its construction relied on local contractors and labor for completion.

  6. Flywheel rotor and containment technology development for FY 1982

    Science.gov (United States)

    Kulkarni, S. V.

    1982-12-01

    The status of technology development for an efficient, economical, and practical composite flywheel having an energy density of 88 Wh/kg (20 to 25 E Wh/lb) and an energy storge capacity of approximately 1 kWh is reported. Progress is also reported in the development of a fail-safe, lightweight, and low cost composite containment for the flywheel. One containment design was selected for prototype fabrication and testing. Flywheel rotor cyclic test capability was also demonstrated and evaluated. High strength Kevlar and graphite fibers are being studied. Tests of the elastomeric bond between the rotor and hub indicate that the bond strength exceeds the minimum torque requirements for automobile applications.

  7. 1977 flywheel technology symposium proceedings. [Fifty-two papers

    Energy Technology Data Exchange (ETDEWEB)

    Chang, G.C.; Stone, R.G. (eds.)

    1978-03-01

    Fifty-two papers, four paper abstracts, and four brief summaries of panel discussions are presented on flywheel energy storage technology. A separate abstract was prepared for each of 41 papers for inclusion in DOE Energy Research Abstracts (ERA). Eleven papers were processed previously for inclusion in the data base. (PMA)

  8. Low-energy electron point projection microscopy/diffraction study of suspended graphene

    Science.gov (United States)

    Hsu, Wei-Hao; Chang, Wei-Tse; Lin, Chun-Yueh; Chang, Mu-Tung; Hsieh, Chia-Tso; Wang, Chang-Ran; Lee, Wei-Li; Hwang, Ing-Shouh

    2017-11-01

    In this work, we present our study of suspended graphene with low-energy electrons based on a point projection microscopic/diffractive imaging technique. Both exfoliated and chemical vapor deposition (CVD) graphene samples were studied in an ultra-high vacuum chamber. This method allows imaging of individual adsorbates at the nanometer scale and characterizing graphene layers, graphene lattice orientations, ripples on graphene membranes, etc. We found that long-duration exposure to low-energy electron beams induced aggregation of adsorbates on graphene when the electron dose rate was above a certain level. We also discuss the potential of this technique to conduct coherent diffractive imaging for determining the atomic structures of biological molecules adsorbed on suspended graphene.

  9. A fully superconducting bearing system for flywheel applications

    Science.gov (United States)

    Xu, Ke-xi; Wu, Dong-jie; Jiao, Y. L.; Zheng, M. H.

    2016-06-01

    A fully superconducting magnetic suspension structure has been designed and constructed for the purpose of superconducting bearing applications in flywheel energy storage systems. A thrust type bearing and two journal type bearings, those that are composed of melt textured high-Tc superconductor YBCO bulks and Nd-Fe-B permanent magnets, are used in the bearing system. The rotor dynamical behaviors, including critical speeds and rotational loss, are studied. Driven by a variable-frequency three-phase induction motor, the rotor shaft attached with a 25 kg flywheel disc can be speeded up to 15 000 rpm without serious resonance occurring. Although the flywheel system runs stably in the supercritical speeds region, very obvious rotational loss is unavoidable. The loss mechanism has been discussed in terms of eddy current loss and hysteresis loss.

  10. Development of the composite superconducting magnetic bearing for superconducting flywheel

    Energy Technology Data Exchange (ETDEWEB)

    Nagaya, S.; Komura, K.; Kashima, N.; Kawashima, H.; Unisuga, S.; Kakiuchi, Y

    2003-10-15

    Superconducting magnetic bearing for flywheel requires the characteristics such as higher stiffness, lower loss and higher stability. There are two types of superconducting magnetic bearings, one is axial gap type and another is radial gap type and the characteristics of these types are quite different. We think that the supporting system of superconducting flywheel should support the rotor at one position near the center of gravity to minimize the cooling energy loss. We propose that the bearing composed of axial gap type and radial gap type is necessary from the result of this investigation, because the characteristics about both types of bearings should be compensated each other.

  11. Provision of Flexible Load Control by Multi-Flywheel-Energy-Storage System in Electrical Vehicle Charging Stations

    DEFF Research Database (Denmark)

    Sun, Bo; Dragicevic, Tomislav; Andrade, Fabio

    2015-01-01

    Electrical vehicle (EV) chargers are going to occupy a considerable portion of total energy consumption in the future smart grid. Fast charging stations (FCS), as the most demanding representatives of charging infrastructure, will be requested to provide some ancillary services to the power system...

  12. The influence of flywheel micro vibration on space camera and vibration suppression

    Science.gov (United States)

    Li, Lin; Tan, Luyang; Kong, Lin; Wang, Dong; Yang, Hongbo

    2018-02-01

    Studied the impact of flywheel micro vibration on a high resolution optical satellite that space-borne integrated. By testing the flywheel micro vibration with six-component test bench, the flywheel disturbance data is acquired. The finite element model of the satellite was established and the unit force/torque were applied at the flywheel mounting position to obtain the micro vibration data of the camera. Integrated analysis of the data of the two parts showed that the influence of flywheel micro vibration on the camera is mainly concentrated around 60-80 Hz and 170-230 Hz, the largest angular displacement of the secondary mirror along the optical axis direction is 0.04″ and the maximum angular displacement vertical to optical axis is 0.032″. After the design and installation of vibration isolator, the maximum angular displacement of the secondary mirror is 0.011″, the decay rate of root mean square value of the angular displacement is more than 50% and the maximum is 96.78%. The whole satellite was suspended to simulate the boundary condition on orbit; the imaging experiment results show that the image motion caused by the flywheel micro vibrationis less than 0.1 pixel after installing the vibration isolator.

  13. Integrated Power and Attitude Control for a Spacecraft with Flywheels and Control Moment Gyroscopes

    Science.gov (United States)

    Roithmayr, Carlos M.; Karlgaard, Christopher D.; Kumar, Renjith R.; Bose, David M.

    2003-01-01

    A law is designed for simultaneous control of the orientation of an Earth-pointing spacecraft, the energy stored by counter-rotating flywheels, and the angular momentum of the flywheels and control moment gyroscopes used together as all integrated set of actuators for attitude control. General. nonlinear equations of motion are presented in vector-dyadic form, and used to obtain approximate expressions which are then linearized in preparation for design of control laws that include feedback of flywheel kinetic energy error as it means of compensating for damping exerted by rotor bearings. Two flywheel 'steering laws' are developed such that torque commanded by all attitude control law is achieved while energy is stored or discharged at the required rate. Using the International Space Station as an example, numerical simulations are performed to demonstrate control about a torque equilibrium attitude and illustrate the benefits of kinetic energy error feedback.

  14. 5 MJ flywheel based on bulk HTS magnetic suspension

    Science.gov (United States)

    Poltavets, V.; Kovalev, K.; Ilyasov, R.; Glazunov, A.; Maevsky, V.; Verzbitsky, L.; Akhmadyshev, V.; Shikov, A.

    2014-05-01

    Nowadays the flywheel energy storage systems (FES) are developed intensively as uninterruptible power supply (UPS) devices for on-land and transport (especially airborne) applications worldwide. This work is devoted to the FES with magnetic suspension on the base of bulk HTS YBCO elements and permanent magnets. The developed FES is intended to be used as UPS in Russian atomic industry in case of an emergency. For the successful design of the FES the following questions should be solved: design of the motor/generator, design of the rotor (flywheel), design of the bearing system, design of the control system and system of power load matching, design of the cooling system. The developed small-scale FES with the stored energy 0.5 MJ was used to solve these basic questions. The elaborated FES consists of the synchronous electric machine with permanent magnets, the solid flywheel with axial magnetic suspension on the base of YBCO bulks and permanent magnets, the system of control and power load matching, and the system of liquid nitrogen cooling. The results of theoretical modeling of different schematics of magnetic suspension and experimental investigations of the constructed FES are presented. The design of the future full-scale FES with the stored energy ~5 MJ and output power up to 100 kW is described. The test results of the flywheel rotor and HTS magnetic suspension of 5 MJ FES are presented. This work is done under support of Rosatom within the frames of Russian Project "Superconducting Industry"

  15. Single Axis Attitude Control and DC Bus Regulation with Two Flywheels

    Science.gov (United States)

    Kascak, Peter E.; Jansen, Ralph H.; Kenny, Barbara; Dever, Timothy P.

    2002-01-01

    A computer simulation of a flywheel energy storage single axis attitude control system is described. The simulation models hardware which will be experimentally tested in the future. This hardware consists of two counter rotating flywheels mounted to an air table. The air table allows one axis of rotational motion. An inertia DC bus coordinator is set forth that allows the two control problems, bus regulation and attitude control, to be separated. Simulation results are presented with a previously derived flywheel bus regulator and a simple PID attitude controller.

  16. Measurement of the ν=1/3 Fractional Quantum Hall Energy Gap in Suspended Graphene

    Science.gov (United States)

    Ghahari, Fereshte; Zhao, Yue; Cadden-Zimansky, Paul; Bolotin, Kirill; Kim, Philip

    2011-01-01

    We report on magnetotransport measurements of multiterminal suspended graphene devices. Fully developed integer quantum Hall states appear in magnetic fields as low as 2 T. At higher fields the formation of longitudinal resistance minima and transverse resistance plateaus are seen corresponding to fractional quantum Hall states, most strongly for ν=1/3. By measuring the temperature dependence of these resistance minima, the energy gap for the 1/3 fractional state in graphene is determined to be at ˜20K at 14 T.

  17. Flywheel-Based Fast Charging Station - FFCS for Electric Vehicles and Public Transportation

    Science.gov (United States)

    Gabbar, Hossam A.; Othman, Ahmed M.

    2017-08-01

    This paper demonstrates novel Flywheel-based Fast Charging Station (FFCS) for high performance and profitable charging infrastructures for public electric buses. The design criteria will be provided for fast charging stations. The station would support the private and open charging framework. Flywheel Energy storage system is utilized to offer advanced energy storage for charging stations to achieve clean public transportation, including electric buses with reducing GHG, including CO2 emission reduction. The integrated modelling and management system in the station is performed by a decision-based control platform that coordinates the power streams between the quick chargers, the flywheel storage framework, photovoltaic cells and the network association. There is a tidy exchange up between the capacity rate of flywheel framework and the power rating of the network association.”

  18. On the Optimally Controlled Hydrostatic Mechanical Drive in Case of Flywheel Acceleration

    Directory of Open Access Journals (Sweden)

    V. A. Korsunskii

    2016-01-01

    Full Text Available An improving dynamic quality of vehicles and enhanced fuel efficiency are gained thanks to the combined power system (CPS, comprising a main energy source - internal combustion engine (ICE with an attained level of the power source - and an auxiliary energy source, i.e. an energy storage device (a flywheel.To solve this problem was developed a mathematical model of CPS comprising internal combustion engine and flywheel energy storage (FES with stepless drive.The stepless drive of the flywheel is made to be hydrostatic mechanical to raise the system efficiency. To reduce the drive weight and simplify the control system in the hydraulic part of the flywheel drive is used only one hydraulic unit being controlled.The paper presents a kinematic diagram of the track-type vehicle equipped with the CPS that has a hydrostatic mechanical drive of the flywheel and a mechanical transmission.A mathematical model of the system comprising an ICE, hydrostatic mechanical drive, and FES with stepless drive has been developed. This mathematical model was used to study the influence of ICE and flywheel drive parameters on the dynamic characteristics of the system.The paper estimates the impact of flywheel energy consumption, pressure in the hydraulic system, and control parameter of hydrostatic mechanical drive on the charging time of FES.The obtained piecewise linear law to control the regulation parameter of the hydraulic unit allows us to minimize the charging time of the flywheel at the short-term stops and in the parking area of a tracked vehicle equipped with a CPS.The causes affecting the performance of ‘ICE – drive – flywheel’ system in the course of the flywheel acceleration are a restricted maximum power of the engine, as well as a limited generating capacity, and a maximum flywheel drive hydro-system pressure.The obtained results allow us to determine rational parameters of the flywheel and the laws of drive control to provide their further

  19. Velocity feedback control with a flywheel proof mass actuator

    Science.gov (United States)

    Kras, Aleksander; Gardonio, Paolo

    2017-08-01

    This paper presents four new proof mass actuators to be used in velocity feedback control systems for the control of vibrations of machines and flexible structures. A classical proof mass actuator is formed by a coil-magnet linear motor, with either the magnet or the armature-coil proof mass suspended on soft springs. This arrangement produces a net force effect at frequencies above the fundamental resonance frequency of the springs-proof mass system. Thus, it can be used to implement point velocity feedback loops, although the dynamic response and static deflection of the springs-proof mass system poses some stability and control performance limitations. The four proof mass actuators presented in this study include a flywheel element, which is used to augment the inertia effect of the suspended proof mass. The paper shows that the flywheel element modifies both the dynamic response and static deflection of the springs-proof mass system in such a way as the stability and control performance of velocity feedback loops using these actuators are significantly improved.

  20. Modeling, Optimization, and Detailed Design of a Hydraulic Flywheel-Accumulator

    Science.gov (United States)

    Strohmaier, Kyle Glenn

    Improving mobile energy storage technology is an important means of addressing concerns over fossil fuel scarcity and energy independence. Traditional hydraulic accumulator energy storage, though favorable in power density, durability, cost, and environmental impact, suffers from relatively low energy density and a pressure-dependent state of charge. The hydraulic flywheel-accumulator concept utilizes both the hydro-pneumatic and rotating kinetic energy domains by employing a rotating pressure vessel. This thesis provides an in-depth analysis of the hydraulic flywheel-accumulator concept and an assessment of the advantages it offers over traditional static accumulator energy storage. After specifying a practical architecture for the hydraulic flywheel-accumulator, this thesis addresses the complex fluid phenomena and control implications associated with multi-domain energy storage. To facilitate rapid selection of the hydraulic flywheel-accumulator dimensions, computationally inexpensive material stress models are developed for each component. A drive cycle simulation strategy is also developed to assess the dynamic performance of the device. The stress models and performance simulation are combined to form a toolset that facilitates computationally-efficient model-based design. The aforementioned toolset has been embedded into a multi-objective optimization algorithm that aims to minimize the mass of the hydraulic flywheel-accumulator system and to minimize the losses it incurs over the course of a drive cycle. Two optimizations have been performed - one with constraints that reflect a vehicle-scale application, and one with constraints that reflect a laboratory application. At both scales, the optimization results suggest that the hydraulic flywheel-accumulator offers at least an order of magnitude improvement over traditional static accumulator energy storage, while operating at efficiencies between 75% and 93%. A particular hydraulic flywheel-accumulator design

  1. [Effects of Chinese herb compound on myocardial SDH, ATP-ase and energy reserves in tail-suspended rats].

    Science.gov (United States)

    Wang, Bao-zhen; Li, Yong-zhi; Xin, Bing-mu; Fan, Quan-chun; Bai, Gui-e

    2004-10-01

    To investigate effects of Chinese herb compound on myocardial SDH, ATP-ase and energy reserves in tail-suspended rats. Male SD rats were randomly divided into three groups (n=10 each): (A) normal control group; (B) tail-suspended group; (C) tail-suspended + Chinese Medical herb compound group. Rats in group B and C were tail-suspended (-30 degrees) for 5 d to simulate weightlessness. All rats B were decapitated after the experiment. Myocardial SDH (method of Anderson N-BT), ATP-ase (method of Wachstein and Meisel) and energy reserves (method of HPLC) were examined. Compared with rats in groups A and C, SDH activity increased, SDH staining deepened, value of OD SDH enhanced, ATP-ase activity and OD value increased and enhanced significantly (PSDH and ATP-ase, at the same time decrease, myocardial energy reserves. Normal are maintained the low level of metabolism by the medical herb compound used which shows a protecting effects through mitigation, tranguilization and replenishment of Qi.

  2. Study of advanced electric propulsion system concept using a flywheel for electric vehicles

    Science.gov (United States)

    Younger, F. C.; Lackner, H.

    1979-01-01

    Advanced electric propulsion system concepts with flywheels for electric vehicles are evaluated and it is predicted that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the compromises that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywheel power energy storage device can provide excellent acceleration under adverse conditions of battery degradation due either to very low temperatures or high degrees of discharge. Both electrical and mechanical means of transfer of energy to and from the flywheel appear attractive; however, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs and to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach to a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.

  3. Dynamic simulation of flywheel-type fuses

    Directory of Open Access Journals (Sweden)

    Editorial Office

    1996-07-01

    Full Text Available Rounds of ammunition are normally armed with a fuse. In this study, a fuse is developed which uses a flywheel-type mechanism controlled by time or distance. Due to its simplicity of operation and construction, the concept is expected to have high reliabil­ity. The dynamic response of all the components of this flywheel-type fuse is mathematically modelled. Simulation software was developed which connects the mathematical models of the various components. With the definition of boundary values, the response of the projectile, flywheel and other components can be determined continuously for firing and in-flight conditions.

  4. Time-Dependent Material Data Essential for the Durability Analysis of Composite Flywheels Provided by Compressive Experiments

    Science.gov (United States)

    Thesken, John C.; Bowman, Cheryl L.; Arnold, Steven M.

    2003-01-01

    Successful spaceflight operations require onboard power management systems that reliably achieve mission objectives for a minimal launch weight. Because of their high specific energies and potential for reduced maintenance and logistics, composite flywheels are an attractive alternative to electrochemical batteries. The Rotor Durability Team, which comprises members from the Ohio Aerospace Institute (OAI) and the NASA Glenn Research Center, completed a program of elevated temperature testing at Glenn' s Life Prediction Branch's Fatigue Laboratory. The experiments provided unique design data essential to the safety and durability of flywheel energy storage systems for the International Space Station and other manned spaceflight applications. Analysis of the experimental data (ref. 1) demonstrated that the compressive stress relaxation of composite flywheel rotor material is significantly greater than the commonly available tensile stress relaxation data. Durability analysis of compression preloaded flywheel rotors is required for accurate safe-life predictions for use in the International Space Station.

  5. Flywheel for an electro-mechanical fastener driving tool

    Energy Technology Data Exchange (ETDEWEB)

    Crutcher, J. P.

    1985-05-28

    An improved flywheel for an electro-mechanical tool, such as a nailer or stapler. The tool is of the type provided with a driver which is frictionally moved through a working stroke by means of an electrically driven flywheel which presses the driver against a support element, such as a counterrotating flywheel, a low inertia roller, or the like. The flywheel is provided with circumferential grooves while maintaining the optimum contact area between the flywheel and the driver. The grooves provide voids along the travelling driver-flywheel contact line into which foreign material on the driver and flywheel flows to prevent build-up of such foreign material at the driver-flywheel contact area sufficient to result in loss of friction therebetween.

  6. Integrated Power and Attitude Control System Demonstrated With Flywheels G2 and D1

    Science.gov (United States)

    Jansen, Ralph H.

    2005-01-01

    On September 14, 2004, NASA Glenn Research Center's Flywheel Development Team experimentally demonstrated a full-power, high-speed, two-flywheel system, simultaneously regulating a power bus and providing a commanded output torque. Operation- and power-mode transitions were demonstrated up to 2000 W in charge and 1100 W in discharge, while the output torque was simultaneously regulated between plus or minus 0.8 N-m. The G2 and D1 flywheels--magnetically levitated carbon-fiber wheels with permanent magnet motors--were used for the experiment. The units were mounted on an air bearing table in Glenn's High Energy Flywheel Facility. The operational speed range for these tests was between 20,000 and 60,000 rpm. The bus voltage was regulated at 125 V during charge and discharge, and charge-discharge and discharge-charge transitions were demonstrated by changing the amount of power that the power supply provided between 300 and 0 W. In a satellite system, this would be the equivalent of changing the amount of energy that the solar array provides to the spacecraft. In addition to regulating the bus voltage, we simultaneously controlled the net torque produced by the two flywheel modules. Both modules were mounted on an air table that was restrained by a load cell. The load cell measured the force on the table, and the torque produced by the two flywheels on the table could be calculated from that measurement. This method was used to measure the torque produced by the modules, yielding net torques from -0.8 to 0.8 N-m. This was the first Glenn demonstration of the Integrated Power and Attitude Control System (IPACS) at high power levels and speeds.

  7. G2 Flywheel Module Operated at 41,000 rpm

    Science.gov (United States)

    Jansen, Ralph H.; McLallin, Kerry L.

    2005-01-01

    NASA Glenn Research Center s Flywheel Development Team designed, built, and successfully operated the new G2 flywheel to 41,000 rpm on September 2, 2004. This work was supported by the Aerospace Flywheel Technology Program--a NASA Office of Aerospace Technology ETC Program funded by the Energetics Project. The work was performed by a team of civil servants, contractors, and grantees managed by Glenn s Electrical Systems Development Branch, Structural Mechanics and Dynamics Branch, and Space Power & Propulsion Test Engineering Branch. The G2 flywheel was designed to be a low-cost modular testbed for flywheel system integration and component demonstrations.

  8. Pump Coastdown with the Submerged Flywheel

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyun-Gi; Seo, KyoungWoo; Kim, Seong Hoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Many research reactors are generally designed as open pool types in consideration of the heat removal of the nuclear fuels, reactor operation and accessibility. Reactor structure assembly is generally placed at the pool bottom as shown in Fig. 1. Primary cooling system pump circulates the coolant from the reactor structure to the heat exchanger in order to continuously remove the heat generated from the reactor core in the research reactor as shown in Fig. 1. The secondary cooling system releases the transferred heat to the atmosphere by the cooling tower. Coastdown flow rate of the primary cooling system pump with the submerged flywheel are calculated analytically in case of the accident situation. Coastdown flow rate is maintained until almost 80 sec when the pump stops normally. But, coastdown flow rate is rapidly decreased when the flywheel is submerged because of the friction load on the flywheel surface.

  9. Dynamics and Control of Attitude, Power, and Momentum for a Spacecraft Using Flywheels and Control Moment Gyroscopes

    Science.gov (United States)

    Roithmayr, Carlos M.; Karlgaard, Christopher D.; Kumar, Renjith R.; Seywald, Hans; Bose, David M.

    2003-01-01

    Several laws are designed for simultaneous control of the orientation of an Earth-pointing spacecraft, the energy stored by counter-rotating flywheels, and the angular momentum of the flywheels and control moment gyroscopes used together as an integrated set of actuators for attitude control. General, nonlinear equations of motion are presented in vector-dyadic form, and used to obtain approximate expressions which are then linearized in preparation for design of control laws that include feedback of flywheel kinetic energy error as a means of compensating for damping exerted by rotor bearings. Two flywheel steering laws are developed such that torque commanded by an attitude control law is achieved while energy is stored or discharged at the required rate. Using the International Space Station as an example, numerical simulations are performed to demonstrate control about a torque equilibrium attitude, and illustrate the benefits of kinetic energy error feedback. Control laws for attitude hold are also developed, and used to show the amount of propellant that can be saved when flywheels assist the CMGs. Nonlinear control laws for large-angle slew maneuvers perform well, but excessive momentum is required to reorient a vehicle like the International Space Station.

  10. Fault detection of flywheel system based on clustering and principal component analysis

    Directory of Open Access Journals (Sweden)

    Wang Rixin

    2015-12-01

    Full Text Available Considering the nonlinear, multifunctional properties of double-flywheel with closed-loop control, a two-step method including clustering and principal component analysis is proposed to detect the two faults in the multifunctional flywheels. At the first step of the proposed algorithm, clustering is taken as feature recognition to check the instructions of “integrated power and attitude control” system, such as attitude control, energy storage or energy discharge. These commands will ask the flywheel system to work in different operation modes. Therefore, the relationship of parameters in different operations can define the cluster structure of training data. Ordering points to identify the clustering structure (OPTICS can automatically identify these clusters by the reachability-plot. K-means algorithm can divide the training data into the corresponding operations according to the reachability-plot. Finally, the last step of proposed model is used to define the relationship of parameters in each operation through the principal component analysis (PCA method. Compared with the PCA model, the proposed approach is capable of identifying the new clusters and learning the new behavior of incoming data. The simulation results show that it can effectively detect the faults in the multifunctional flywheels system.

  11. Determining power outputs for cycle ergometers with different sized flywheels.

    Science.gov (United States)

    Gledhill, N; Jamnik, R

    1995-01-01

    A number of cycle ergometers are presently being used in a variety of laboratory applications for which the quantification of power output is required. To calculate the power output of cycle ergometers with varying sized flywheels, the circumference of the resistance track on the flywheel is multiplied by the number of flywheel revolutions produced with one complete revolution of the pedal. This provides the "effective distance travelled," and by selecting an appropriate combination of pedalling rate plus flywheel resistance, any desired power output can be produced.

  12. Scanning Ultrasonic Spectroscopy System Developed for the Inspection of Composite Flywheels

    Science.gov (United States)

    Martin, Richard E.; Baaklini, George Y.

    2002-01-01

    Composite flywheels are being considered as replacements for chemical batteries aboard the International Space Station. A flywheel stores energy in a spinning mass that can turn a generator to meet power demands. Because of the high rotational speeds of the spinning mass, extensive testing of the flywheel system must be performed prior to flight certification. With this goal in mind, a new scanning system has been developed at the NASA Glenn Research Center for the nondestructive inspection of composite flywheels and flywheel subcomponents. The system uses ultrasonic waves to excite a material and examines the response to detect and locate flaws and material variations. The ultrasonic spectroscopy system uses a transducer to send swept-frequency ultrasonic waves into a test material and then receives the returning signal with a second transducer. The received signal is then analyzed in the frequency domain using a fast Fourier transform. A second fast Fourier transform is performed to examine the spacing of the peaks in the frequency domain. The spacing of the peaks is related to the standing wave resonances that are present in the material because of the constructive and destructive interferences of the waves in the full material thickness as well as in individual layers within the material. Material variations and flaws are then identified by changes in the amplitudes and positions of the peaks in both the frequency and resonance spacing domains. This work, conducted under a grant through the Cleveland State University, extends the capabilities of an existing point-by-point ultrasonic spectroscopy system, thus allowing full-field automated inspection. Results of an ultrasonic spectroscopy scan of a plastic cylinder with intentionally seeded flaws. The result of an ultrasonic spectroscopy scan of a plastic cylinder used as a proof-of-concept specimen is shown. The cylinder contains a number of flat bottomed holes of various sizes and shapes. The scanning system

  13. Reluctance Machine for a Hollow Cylinder Flywheel

    Directory of Open Access Journals (Sweden)

    Magnus Hedlund

    2017-03-01

    Full Text Available A hollow cylinder flywheel rotor with a novel outer rotor switched reluctance machine (SRM mounted on the interior rim is presented, with measurements, numerical analysis and analytical models. Practical experiences from the construction process are also discussed. The flywheel rotor does not have a shaft and spokes and is predicted to store 181 Wh / kg at ultimate tensile strength (UTS according to simulations. The novel SRM is an axial flux machine, chosen due to its robustness and tolerance for high strain. The computed maximum tip speed of the motor at UTS is 1050 m / s . A small-scale proof-of-concept electric machine prototype has been constructed, and the machine inductance has been estimated from measurements of voltage and current and compared against results from analytical models and finite element analysis (FEA. The prototype measurements were used to simulate operation during maximal speed for a comparison towards other high-speed electric machines, in terms of tip speed and power. The mechanical design of the flywheel was performed with an analytical formulation assuming planar stress in concentric shells of orthotropic (unidirectionally circumferentially wound carbon composites. The analytical approach was verified with 3D FEA in terms of stress and strain.

  14. Suspended microfluidics

    OpenAIRE

    Casavant, Benjamin P.; Berthier, Erwin; Theberge, Ashleigh B.; Jean BERTHIER; Montanez-Sauri, Sara I.; Bischel, Lauren L.; Brakke, Kenneth; Hedman, Curtis J.; Bushman, Wade; Keller, Nancy P.; Beebe, David J.

    2013-01-01

    Although the field of microfluidics has made significant progress in bringing new tools to address biological questions, the accessibility and adoption of microfluidics within the life sciences are still limited. Open microfluidic systems have the potential to lower the barriers to adoption, but the absence of robust design rules has hindered their use. Here, we present an open microfluidic platform, suspended microfluidics, that uses surface tension to fill and maintain a fluid in microscale...

  15. Metallic Rotor Sizing and Performance Model for Flywheel Systems

    Science.gov (United States)

    Moore, Camille J.; Kraft, Thomas G.

    2012-01-01

    The NASA Glenn Research Center (GRC) is developing flywheel system requirements and designs for terrestrial and spacecraft applications. Several generations of flywheels have been designed and tested at GRC using in-house expertise in motors, magnetic bearings, controls, materials and power electronics. The maturation of a flywheel system from the concept phase to the preliminary design phase is accompanied by maturation of the Integrated Systems Performance model, where estimating relationships are replaced by physics based analytical techniques. The modeling can incorporate results from engineering model testing and emerging detail from the design process.

  16. Energy storage cells

    Energy Technology Data Exchange (ETDEWEB)

    Gulia, N.V.

    1980-01-01

    The book deals with the characteristics and potentialities of energy storage cells of various types. Attention is given to electrical energy storage cells (electrochemical, electrostatic, and electrodynamic cells), mechanical energy storage cells (mechanical flywheel storage cells), and hybrid storage systems.

  17. Power Balance Control in an AC/DC/AC Converter for Regenerative Braking in a Two-Voltage-Level Flywheel-Based Driveline

    Directory of Open Access Journals (Sweden)

    Janaína G. Oliveira

    2011-01-01

    Full Text Available The integration of a flywheel as a power handling can increase the energy storage capacity and reduce the number of battery charge/discharge cycles. Furthermore, the ability of recovering energy of the vehicle during breaking can increase the system efficiency. The flywheel-based all-electric driveline investigated here has its novelty in the use of a double-wound flywheel motor/generator, which divides the system in two different voltage levels, enhancing the efficiency of the electric driveline. The connection of two AC electrical machines (i.e., the flywheel and the wheel motor with different and variable operation frequency is challenging. A power matching control applied to an AC/DC/AC converter has been implemented. The AC/DC/AC converter regenerates the electric power converted during braking to the flywheel machine, used here as power handling device. By controlling the power balance, the same hardware can be used for acceleration and braking, providing the reduction of harmonics and robust response. A simulation of the complete system during braking mode has been performed both in Matlab and Simulink, and their results have been compared. The functionality of the proposed control has been shown and discussed, with full regeneration achieved. A round-trip efficiency (wheel to wheel higher than 80% has been obtained.

  18. Water Containment Systems for Testing High-Speed Flywheels

    Science.gov (United States)

    Trase, Larry; Thompson, Dennis

    2006-01-01

    Water-filled containers are used as building blocks in a new generation of containment systems for testing high-speed flywheels. Such containment systems are needed to ensure safety by trapping high-speed debris in the event of centrifugal breakup or bearing failure. Traditional containment systems for testing flywheels consist mainly of thick steel rings. The effectiveness of this approach to shielding against high-speed debris was demonstrated in a series of tests.

  19. Instantaneous flywheel torque of IC engine grey-box identification

    Science.gov (United States)

    Milašinović, A.; Knežević, D.; Milovanović, Z.; Škundrić, J.

    2018-01-01

    In this paper a mathematical model developed for the identification of excitation torque acting on the IC engine flywheel is presented. The excitation torque gained through internal combustion of the fuel in the IC engine is transmitted from the flywheel to the transmission. The torque is not constant but variable and is a function of the crank angle. The verification of the mathematical model was done on a 4-cylinder 4-stroke diesel engine for which the in-cylinder pressure was measured in one cylinder and the instantaneous angular speed of the crankshaft at its free end. The research was conducted on a hydraulic engine brake. Inertial forces of all rotational parts, from flywheel to the turbine wheel of the engine brake, are acting on the flywheel due to the nonuniform motion of the flywheel. It is known from the theory of turbomachinery that the torque on the hydraulic brake is a quadratic function of angular speed. Due to that and the variable angular speed of the turbine wheel of the engine brake, the torque during one engine cycle is also variable. The motivation for this research was the idea (intention) to determine the instantaneous torque acting on the flywheel as a function of the crank angle with a mathematical model without any measuring and based on this to determine the quality of work of specific cylinders of the multi-cylinder engine. The crankshaft was considered elastic and also its torsional vibrations were taken into account.

  20. Low eddy loss axial hybrid magnetic bearing with gimballing control ability for momentum flywheel

    Science.gov (United States)

    Tang, Jiqiang; Sun, Jinji; Fang, Jiancheng; Shuzhi Sam, Ge

    2013-03-01

    For a magnetically suspended momentum flywheel (MSMF), the spinning rotor can be tilted by a pair of the presented axial hybrid magnetic bearing (AHMB) with eight poles and rotates around the radial axes to generate a large torque to maneuver the spacecraft. To improve the control performance and gimballing control ability of the AHMB, characteristics such as magnetic suspension force, angular stiffness and tilting momentum are researched. These segmented stator poles cause the magnetic density in the thrust rotor plate to be uneven unavoidably and the rotational loss is large at high speed, but we optimized the stator poles configuration and caused the thrust rotor plate formed by bulk DT4C and laminated material to make the magnetic density in the thrust rotor plate change less and be smoother. Laminated material such as 1J50 film with a thickness of 0.1 mm can make the variation of the magnetic density in DT4C become very small and the eddy loss of it be negligible, but the stress produced in the “O” shape stacks by reeling has a bad effect on its power loss. Nanocrystalline can reduce eddy losses and is not affected by the reeling process. Based on the AHBM consisting of the stator with eight improved poles and the presented thrust rotor plate with DT4 and nanocrystalline, the rotational loss of 5-DOF magnetically suspended momentum flywheel with angular momentum of 15 N m s at 5000 rpm has reduced from 23.4 W to 3.2 W, which proved that this AHMB has low eddy loss for the gimballing control ability.

  1. Linear control of the flywheel inverted pendulum.

    Science.gov (United States)

    Olivares, Manuel; Albertos, Pedro

    2014-09-01

    The flywheel inverted pendulum is an underactuated mechanical system with a nonlinear model but admitting a linear approximation around the unstable equilibrium point in the upper position. Although underactuated systems usually require nonlinear controllers, the easy tuning and understanding of linear controllers make them more attractive for designers and final users. In a recent paper, a simple PID controller was proposed by the authors, leading to an internally unstable controlled plant. To achieve global stability, two options are developed here: first by introducing an internal stabilizing controller and second by replacing the PID controller by an observer-based state feedback control. Simulation and experimental results show the effectiveness of the design. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Improvement and enlarging of the CFRP flywheel with superconducting magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Nagaya, S.; Komura, K.; Kashima, N.; Kawashima, H.; Kakiuchi, Y.; Minami, M

    2003-10-15

    Superconducting flywheel usually adopts carbon fiber resin mold plastic (CFRP) material that has the basic characteristics such as higher strength and lighter weight. Stabilized rotation of flywheel requires lower unbalance individually about flywheel and supporting disc. And supporting disc is needed to steadily follow the expansion of the inside diameter on the flywheel by centrifugal force and keep the concentricity of the flywheel and its own rotating axis. We developed the flywheel rotor, which was composed of CFRP flywheel, and partially spherical supporting disc made of high strength aluminum. They were combined with expanse fitting each other and most precisely machined to realize the extremely precise axial symmetric shape and enable to be supported and driven at the point near the center of gravity. We manufactured and confirmed that the flywheel rotor rotated up to peripheral speed of 628 m/s quietly without permanent set.

  3. Energy Horizons: A Science and Technology Vision for Air Force Energy

    Science.gov (United States)

    2012-04-01

    Systems (F) and Small Modular Nuclear for Ground Stations (F) En er gy St or ag e Flywheels for Space systems (L) Nanomaterials for High-Power...storage technologies such as flywheels could provide the required energy with the added feature of reaction wheels, having the potential to assist with...lever- age hybrid technologies, including traditional lead-acid batteries and large flywheels . Propulsion and Power The third section of table 2

  4. Nonlinear dynamical model of an automotive dual mass flywheel

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2015-06-01

    Full Text Available The hysteresis, stick–slip, and rotational speed-dependent characteristics in a basic dual mass flywheel are obtained from a static and a dynamic experiments. Based on the experimental results, a nonlinear model of the transferred torque in this dual mass flywheel is developed, with the overlying form of nonlinear elastic torque and frictional torque. The nonlinearities of stiffness are investigated, deriving a nonlinear model to describe the rotational speed-dependent stiffness. In addition, Bouc–Wen model is used to model the hysteretic frictional torque. Thus, the nonlinear 2-degree-of-freedom system of this dual mass flywheel is set up. Then, the Levenberg–Marquardt method is adopted for the parameter estimation of the frictional torque. Finally, taking the nonlinear stiffness in this model into account, the parameters of Bouc–Wen model are estimated based on the dynamic test data.

  5. THE REDUCTION OF VIBRATIONS IN A CAR – THE PRINCIPLE OF PNEUMATIC DUAL MASS FLYWHEEL

    Directory of Open Access Journals (Sweden)

    Robert GREGA

    2014-09-01

    Full Text Available The dual-mass flywheel replaces the classic flywheel in such way that it is divided into two masses (the primary mass and the secondary mass, which are jointed together by means of a flexible interconnection. This kind of the flywheel solution enables to change resonance areas of the engine with regard to the engine dynamic behaviour what leads to a reduction of vibrations consequently. However, there is also a disadvantage of the dualmass flywheels. The disadvantage is its short-time durability. There was projected a new type of the dual-mass flywheel in the framework of our workplace in order to eliminate disadvantages of the present dual-mass flywheels, i.e. we projected the pneumatic dual-mass flywheel, taking into consideration our experiences obtained during investigation of vibrations.

  6. Energy conservation through utilization of mechanical energy storage

    Science.gov (United States)

    Eisenhaure, D. B.; Bliamptis, T. E.; Downer, J. R.; Heinemann, P. C.

    Potential benefits regarding fuel savings, necessary technology, and evaluation criteria for the development of flywheel-hybrid vehicles are examined. A case study is quoted in which adoption of flywheel-hybrid vehicles in a taxi fleet would result in an increase of 10 mpg average to 32 mpg. Two proposed systems are described, one involving direct engine power to the flywheel and the second regenerating the flywheel from braking energy through a continuously variable transmission. Fuel consumption characteristics are considered the ultimate determinant in the choice of configuration, while material properties and housing shape determine the flywheel speed range. Vehicle losses are characterized and it is expected that a flywheel at 12,000 rpm will experience less than one hp average parasitic power loss. Flywheel storage is suitable for smaller engines because larger engines dominate the power train mass. Areas considered important for further investigation include reliability of an engine run near maximum torque, noise and vibration associated with flywheel operation, start up delays, compatibility of driver controls, integration of normal with regenerative braking systems, and, most importantly, the continuously variable transmission.

  7. An assessment innovation as flywheel for changing teaching and learning

    NARCIS (Netherlands)

    Gulikers, Judith T.M.; Runhaar, Piety; Mulder, Martin

    2017-01-01

    This contribution shows an example of how an assessment innovation can serve as a flywheel for changing teaching and learning. This article first explains the development of an authentic, competence-based performance assessment in pre-vocational secondary education (pre-VET). Using these

  8. Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow.

    Science.gov (United States)

    Angelsky, O V; Bekshaev, A Ya; Maksimyak, P P; Maksimyak, A P; Mokhun, I I; Hanson, S G; Zenkova, C Yu; Tyurin, A V

    2012-05-07

    Non-spherical dielectric microparticles were suspended in a water-filled cell and exposed to a coherent Gaussian light beam with controlled state of polarization. When the beam polarization is linear, the particles were trapped at certain off-axial position within the beam cross section. After switching to the right (left) circular polarization, the particles performed spinning motion in agreement with the angular momentum imparted by the field, but they were involved in an orbital rotation around the beam axis as well, which in previous works [Y. Zhao et al, Phys. Rev. Lett. 99, 073901 (2007)] was treated as evidence for the spin-to orbital angular momentum conversion. Since in our realization the moderate focusing of the beam excluded the possibility for such a conversion, we consider the observed particle behavior as a demonstration of the macroscopic "spin energy flow" predicted by the theory of inhomogeneously polarized paraxial beams [A. Bekshaev et al, J. Opt. 13, 053001 (2011)].

  9. Low eddy loss axial hybrid magnetic bearing with gimballing control ability for momentum flywheel

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jiqiang, E-mail: tjq_72@163.com [School of Instrument Science and Opto-electronics Engineering, Beihang University, Beijing 100191 (China); Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Sun, Jinji; Fang, Jiancheng [School of Instrument Science and Opto-electronics Engineering, Beihang University, Beijing 100191 (China); Shuzhi Sam, Ge [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2013-03-15

    For a magnetically suspended momentum flywheel (MSMF), the spinning rotor can be tilted by a pair of the presented axial hybrid magnetic bearing (AHMB) with eight poles and rotates around the radial axes to generate a large torque to maneuver the spacecraft. To improve the control performance and gimballing control ability of the AHMB, characteristics such as magnetic suspension force, angular stiffness and tilting momentum are researched. These segmented stator poles cause the magnetic density in the thrust rotor plate to be uneven unavoidably and the rotational loss is large at high speed, but we optimized the stator poles configuration and caused the thrust rotor plate formed by bulk DT4C and laminated material to make the magnetic density in the thrust rotor plate change less and be smoother. Laminated material such as 1J50 film with a thickness of 0.1 mm can make the variation of the magnetic density in DT4C become very small and the eddy loss of it be negligible, but the stress produced in the 'O' shape stacks by reeling has a bad effect on its power loss. Nanocrystalline can reduce eddy losses and is not affected by the reeling process. Based on the AHBM consisting of the stator with eight improved poles and the presented thrust rotor plate with DT4 and nanocrystalline, the rotational loss of 5-DOF magnetically suspended momentum flywheel with angular momentum of 15 N m s at 5000 rpm has reduced from 23.4 W to 3.2 W, which proved that this AHMB has low eddy loss for the gimballing control ability. - Highlights: Black-Right-Pointing-Pointer Control methods of rotor driven by AHMBs and their characteristics are researched. Black-Right-Pointing-Pointer Optimized stator and rotor of AHMB reduce its eddy losses greatly. Black-Right-Pointing-Pointer Presented the factors affecting the eddy losses of AHMBs. Black-Right-Pointing-Pointer The good performances of AHMB with low eddy loss are proved by experiments.

  10. Energy Storage.

    Science.gov (United States)

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  11. Observer-Based Magnetic Bearing Controller Developed for Aerospace Flywheels

    Science.gov (United States)

    Le, Dzu K.; Provenza, Andrew J.

    2002-01-01

    A prototype of a versatile, observer-based magnetic bearing controller for aerospace flywheels was successfully developed and demonstrated on a magnetic bearing test rig (see the photograph) and an actual flywheel module. The objective of this development included a fast, yet low risk, control development process, and a robust, high-performance controller for a large variety of flywheels. This required a good system model, an efficient development procedure, and a model-based controller that addressed the key problems associated with flywheel and bearing imbalance, sensor error, and vibration. The model used in this control development and tuning procedure included the flexible rotor dynamics and motor-induced vibrations. Such a model was essential for low-risk scheduling of speed-dependent control parameters and for reliable evaluation of novel control strategies. The successfully tested control prototype utilized an extended Kalman filter to estimate the true rotor principal-axis motion from the raw sensor position feedback. For control refinement, the extended Kalman filter also estimated and eliminated the combined effects of mass-imbalance and sensor runouts from the input data. A key advantage of the design based on the extended Kalman filter is its ability to accurately estimate both the rotor's principal-axis position and gyroscopic rates with the least amount of phase lag. This is important for control parameter scheduling to dampen the gyroscopic motions. Because of large uncertainties in the magnetic bearing and imbalance characteristics, this state-estimation scheme alone is insufficient for containing the rotor motion within the desired 1-mil excursion radius. A nonlinear gain adjustment based on an estimation of the principal-axis orbit size was needed to provide a coarse (nonoptimal), but robust, control of the orbit growth. Control current minimization was achieved with a (steepest gradient) search of synchronous errors in the principal

  12. Temporal variation of suspended particulate matter and turbulence in a high energy, tide-stirred, coastal sea: Relative contributions of resuspension and disaggregation

    Science.gov (United States)

    Jago, C. F.; Jones, S. E.; Sykes, P.; Rippeth, T.

    2006-11-01

    Measurements of turbulence and suspended particulate matter (SPM) were measured over a 50 h period at a site in high tidal energy, mixed waters of the Irish Sea, NW European shelf. Turbulence parameters included both production (variance method from seabed ADCP) and dissipation (FLY profiler); SPM parameters included mass and volume concentrations and particle size (LISST 100 C). It is shown that the resultant SPM time series was due to a combination of time-varying turbulence at the measurement site and space-varying turbulence advecting through the site. Time asymmetry in turbulence at the site produced an asymmetric M 4 signal in SPM volume concentration due to resuspension and disaggregation of flocs at times of peak turbulent energy. In terms of mass, the disaggregation contribution was 43% as much as the resuspension contribution near the bed, and 20% as much integrated throughout the water column. There was aggregation of flocs at high and low slack waters but the largest flocs occurred at low slack waters. Space-varying ambient turbulence was responsible for a horizontal gradient in floc size with small and large flocs at the high and low ends of the gradient, respectively; this generated a M 2 signal in SPM properties. SPM concentrations and properties at any time resulted from combination of M 2 and M 4 variations which are responsible for the well-known twin peaks signature seen in transmissometer time series in tidal waters.

  13. Power System and Energy Storage Models for Laser Integration on Naval Platforms

    Science.gov (United States)

    2015-09-30

    battery, flywheel , and capacitor energy storage in support of laser weapons. The models allow the user to develop comparative studies of the three...lithium- ion), flywheels , and capacitors. Three different laser power levels likely to be employed within the next decade have also been considered: 30...lower value of approximately 20% state of charge. Plots similar to the ones shown in Figures 3-5 can be obtained also this case. C. Flywheel

  14. Magnetic bearing development for support of satellite flywheels

    Science.gov (United States)

    Palazzolo, Alan; Li, Mu; Kenny, Andrew; Lei, Shuliang; Havelka, Danny; Kascak, Albert

    1998-01-01

    The use of magnetic bearings (MB) for support of space based flywheels can provide significant improvement in efficiency due to reduction in drag torque. A NASA supported program directed through the Texas A&M Center for Space Power has been formed to advance the technology of MB's for satellite flywheel applications. The five areas of the program are: (a) Magnetic Field Simulation, (b) MB controller Development, (c) Electromechanical Rotordynamics Modeling, (d) Testing and (e) Technology Exchange. Planned innovations in these tasks include eddy current drag torque and power loss determination including moving conductor effects, digital (DSP) based control for high speed operation, MATLAB-based coupled flexible rotor/controller/actuator electromechanical model with fuzzy logic nonlinear control, and ultra high speed>100 krpm measurement of drag torque. The paper examines these areas and provides an overview of the project.

  15. Thirty year operational experience of the JET flywheel generators

    Energy Technology Data Exchange (ETDEWEB)

    Rendell, Daniel, E-mail: dan.rendell@ccfe.ac.uk; Shaw, Stephen R.; Pool, Peter J.; Oberlin-Harris, Colin

    2015-10-15

    Highlights: • The pony-motor rotor circuit's liquid resistor requires frequent maintenance. • A crowned profile on the thrust pads is desirable. • Both plug braking transformers have been replaced after flashovers occurred. • Two-plane balancing of one of the flywheel generators has improved vibration levels but also provided information to lead further investigations. • A half-life inspection on the flywheel generators has shown no major issues after 30 year of operating. - Abstract: The JET flywheel generator converters have operated since 1983 and for over 85,000 pulses. Problems with this plant are discussed, including corrosion, unbalanced flow and arcing within the liquid resistors; starting difficulties on both machines; and failure of the plug-braking transformers at energisiation. In 2012/13 two sets of thrust bearing pads have required refurbishment, a process which highlighted the importance of their profile. Extensive half-life inspections have shown that there are no serious problems with either generator.

  16. Characterization of viscoelastic response and damping of composite materials used in flywheel rotors

    Science.gov (United States)

    Chen, Jianmin

    The long-term goal for spacecraft flywheel systems with higher energy density at the system level requires new and innovative composite material concepts. Multi-Direction Composite (MDC) offers significant advantages over traditional filament-wound and multi-ring press-fit filament-wound wheels in providing higher energy density (i.e., less mass), better crack resistance, and enhanced safety. However there is a lack of systematic characterization for dynamic properties of MDC composite materials. In order to improve the flywheel materials reliability, durability and life time, it is very important to evaluate the time dependent aging effects and damping properties of MDC material, which are significant dynamic parameter for vibration and sound control, fatigue endurance, and impact resistance. The physical aging effects are quantified based on a set of creep curves measured at different aging time or different aging temperature. One parameter (tau) curve fit was proposed to represent the relationship of aging time and aging temperature between different master curves. The long term mechanical behavior was predicted by obtained master curves. The time and temperature shift factors of matrix were obtained from creep curves and the aging time shift rate were calculated. The aging effects on composite are obtained from experiments and compared with prediction. The mechanical quasi-behavior of MDC composite was analyzed. The correspondence principle was used to relate quasi-static elastic properties of composite materials to time-dependent properties of its constituent materials (i.e., fiber and matrix). The Prony series combined with the multi-data fitting method was applied to inverse Laplace transform and to calculate the time dependent stiffness matrix effectively. Accelerated time-dependent deformation of two flywheel rim designs were studied for a period equivalent to 31 years and are compared with hoop reinforcement only composite. Damping of pure resin and T700

  17. Flywheel Energy Storage for Lunar Rovers & Other Small Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA continues to be interested in returning to the Lunar surface. The Lunar surface is a harsh and unforgiving environment. Perhaps most challenging is the drastic...

  18. Is inertial flywheel resistance training superior to gravity-dependent resistance training in improving muscle strength?

    DEFF Research Database (Denmark)

    Vicens-Bordas, J; Esteve, E; Fort-Vanmeerhaeghe, A

    2018-01-01

    OBJECTIVE: The primary aim of this systematic review was to determine if inertial flywheel resistance training is superior to gravity-dependent resistance training in improving muscle strength. The secondary aim was to determine whether inertial flywheel resistance training is superior to gravity...... could not be performed. CONCLUSION: Based on the available data, inertial flywheel resistance training was not superior to gravity-dependent resistance training in enhancing muscle strength. Data for other strength variables and other muscular adaptations was insufficient to draw firm conclusions from....

  19. Design and Mathematical Analysis of a Novel Reluctance Force-Type Hybrid Magnetic Bearing for Flywheel with Gimballing Capability

    Directory of Open Access Journals (Sweden)

    Chun'e Wang

    2013-01-01

    Full Text Available Magnetically suspended flywheel (MSFW with gimballing capability fulfills requirements of precision and maneuvers for space applications. A novel reluctance force-type hybrid magnetic bearing (RFHMB is presented based on analysis of demerits of Lorentz force-type magnetic bearing and common RFHMB. It features that radial and axial magnetic bearing units are integrated into a compact assembly with four separate biased permanent magnets and two conical stators; four radial poles with shoes and rotor made of iron-based amorphousness can reduce eddy loss. Equivalent magnetic circuits of permanent magnets and their control currents are presented. Simulation results indicate flux density fluctuates from 0.272 T to 0.41 T; rotor tilting does not affect the suspension force when rotor only tilts around X-axis or Y-axis. When rotor drifts in X, Y, or Z direction and tilts around X-axis or Y-axis simultaneously, force in corresponding directions slightly increases with tilting angle’s enlargement, but the maximum change does not exceed 14%. Additional tilting torque mainly determined by uniformity of flux density in conical air gaps is 0.05 Nm which is far smaller than 11 Nm in common RFHMB; magnetic suspension force is effectively decoupled among X, Y, and Z directions; results prove that MSFW with gimballing capability theoretically meets maneuvering requirement of spacecraft.

  20. Cable suspended windmill

    Science.gov (United States)

    Farmer, Moses G. (Inventor)

    1990-01-01

    A windmill is disclosed which includes an airframe having an upwind end and a downwind end. The first rotor is rotatably connected to the airframe, and a generator is supported by the airframe and driven by the rotor. The airframe is supported vertically in an elevated disposition by poles which extend vertically upwardly from the ground and support cables which extend between the vertical poles. Suspension cables suspend the airframe from the support cable.

  1. Does Flywheel Paradigm Training Improve Muscle Volume and Force? A Meta-Analysis.

    Science.gov (United States)

    Nuñez Sanchez, Francisco J; Sáez de Villarreal, Eduardo

    2017-11-01

    Núñez Sanchez, FJ and Sáez de Villarreal, E. Does flywheel paradigm training improve muscle volume and force? A meta-analysis. J Strength Cond Res 31(11): 3177-3186, 2017-Several studies have confirmed the efficacy of flywheel paradigm training for improving or benefiting muscle volume and force. A meta-analysis of 13 studies with a total of 18 effect sizes was performed to analyse the role of various factors on the effectiveness of flywheel paradigm training. The following inclusion criteria were employed for the analysis: (a) randomized studies; (b) high validity and reliability instruments; (c) published in a high quality peer-reviewed journal; (d) healthy participants; (e) studies where the eccentric programme were described; and (f) studies where increases in muscle volume and force were measured before and after training. Increases in muscle volume and force were noted through the use of flywheel systems during short periods of training. The increase in muscle mass appears was not influenced by the existence of eccentric overload during the exercise. The increase in force was significantly higher with the existence of eccentric overload during the exercise. The responses identified in this analysis are essential and should be considered by strength and conditioning professionals regarding the most appropriate dose response trends for flywheel paradigm systems to optimize the increase in muscle volume and force.

  2. Radial stiffness improvement of a flywheel system using multi-surface superconducting levitation

    Science.gov (United States)

    Basaran, Sinan; Sivrioglu, Selim

    2017-03-01

    The goal of this research study is the maximization of the levitation force in a flywheel system by the use of more than one permanent magnet with a single ring-shaped HTS material. An analytical model for the radial stiffness of the ring HTS-PM is derived using the frozen image approach. The experimental works are carried out for different polarizations of the permanent magnets, and radial stiffness values are obtained from the radial force measurements. The rotational test of the flywheel system is also realized for different cases. Finally, natural frequencies of the flywheel superconducting magnetic bearing system are experimentally obtained for different combinations of the permanent magnets using a frequency analyzer.

  3. GyroVR: Simulating Inertia in Virtual Reality using Head Worn Flywheels

    DEFF Research Database (Denmark)

    Gugenheimer, Jan; Wolf, Dennis; Eiríksson, Eyþór Rúnar

    2016-01-01

    We present GyroVR, head worn flywheels designed to render inertia in Virtual Reality (VR. Motions such as flying, diving or floating in outer space generate kinesthetic forces onto our body which impede movement and are currently not represented in VR. We simulate those kinesthetic forces...... by attaching flywheels to the users head, leveraging the gyroscopic effect of resistance when changing the spinning axis of rotation. GyroVR is an ungrounded, wireless and self contained device allowing the user to freely move inside the virtual environment. The generic shape allows to attach it to different...

  4. Wind-energy storage

    Science.gov (United States)

    Gordon, L. H.

    1980-01-01

    Program SIMWEST can model wind energy storage system using any combination of five types of storage: pumped hydro, battery, thermal, flywheel, and pneumatic. Program is tool to aid design of optional system for given application with realistic simulation for further evaluation and verification.

  5. Phase 1 STTR flywheel motor/alternator for hybrid electric vehicles. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    McKeever, J.W.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P. [Oak Ridge National Lab., TN (United States); Kessinger, R.L. Jr.; Robinson, S.T.; Seymour, K.P.; Dockstadter, K.D. [Visual Computer Systems Corp., Greenville, IN (United States)

    1997-12-31

    Visual Computing Systems (VCS) and the Oak Ridge National Laboratory (ORNL) have teamed, through a Phase 1 Small Business Technology Transfer (STTR) grant from the US Department of Energy (DOE), to develop an advanced, low-cost motor/alternator drive system suitable for Flywheel Energy Storage (FES) applications. During Phase 1, system performance and design requirements were established, design concepts were generated, and preliminary motor/alternator designs were developed and analyzed. ORNL provided mechanical design and finite element collaboration and Lynx Motion Technology, a spin-off from VCS to commercialize their technology, constructed a proof-of-concept axial-gap permanent magnet motor/alternator that employed their Segmented Electromagnetic Array (SEMA) with a survivable design speed potential of 10,000 rpm. The VCS motor/alternator was successfully tested in ORNL`s Motor Test Tank using an ORNL inverter and ORNL control electronics. It was first operated as an unloaded motor to 6,000 rpm and driven as an unloaded generator to 6,000 rpm. Output from the generator was then connected to a resistance bank, which caused the loaded generator to decelerate to 3,860 rpm where data was collected. After about 4-1/2 minutes, the test was terminated because of an impact noise. Subsequent inspection and operation at low speeds did not reveal the source of the noise. Electrical performance of the motor was excellent, encouraging continued development of this technology. Phase 2 efforts will focus on further design development and optimization, manufacturing development and prototype construction, testing, and evaluation.

  6. Dispersive suspended microextraction.

    Science.gov (United States)

    Yang, Zhong-Hua; Liu, Yu; Lu, Yue-Le; Wu, Tong; Zhou, Zhi-Qiang; Liu, Dong-Hui

    2011-11-14

    A novel sample pre-treatment technique termed dispersive suspended microextraction (DSME) coupled with gas chromatography-flame photometric detection (GC-FPD) has been developed for the determination of eight organophosphorus pesticides (ethoprophos, malathion, chlorpyrifos, isocarbophos, methidathion, fenamiphos, profenofos, triazophos) in aqueous samples. In this method, both extraction and two phases' separation process were performed by the assistance of magnetic stirring. After separating the two phases, 1 μL of the suspended phase was injected into GC for further instrument analysis. Varieties of experiment factors which could affect the experiment results were optimized and the following were selected: 12.0 μL p-xylene was selected as extraction solvent, extraction speed was 1200 rpm, extraction time was 30 s, the restoration speed was 800 rpm, the restoration time was 8 min, and no salt was added. Under the optimum conditions, limits of detections (LODs) varied between 0.01 and 0.05 μg L(-1). The relative standard deviation (RSDs, n=6) ranged from 4.6% to 12.1%. The linearity was obtained by five points in the concentration range of 0.1-100.0 μg L(-1). Correlation coefficients (r) varied from 0.9964 to 0.9995. The enrichment factors (EFs) were between 206 and 243. In the final experiment, the developed method has been successfully applied to the determination of organophosphorus pesticides in wine and tap water samples and the obtained recoveries were between 83.8% and 101.3%. Compared with other pre-treatment methods, DSME has its own features and could achieve satisfied results for the analysis of trace components in complicated matrices. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Blood lactate and hormonal responses to prototype flywheel ergometer workouts.

    Science.gov (United States)

    Caruso, John F; Coday, Michael A; Monda, Julie K; Ramey, Elizabeth S; Hastings, Lori P; Vingren, Jakob L; Potter, William T; Kraemer, William J; Wickel, Eric E

    2010-03-01

    The purpose of the study was to compare blood lactate and hormonal responses with flywheel ergometer (FERG) leg presses for preliminary assessment of workouts best suited for future in-flight resistance exercise. Comprised of 10 repetition sets, the workouts entailed 3 sets of concentric and eccentric (CE3) actions, or concentric-only actions done for 3 (CO3) or 6 (CO6) sets. Methods employed included assessment of blood lactate concentrations ([BLa-]) before and 5 minutes postexercise. Venous blood was also collected before and at 1 and 30 minutes postexercise to assess growth hormone, testosterone, cortisol concentrations ([GH], [T], [C]) and [T/C] ratios. [BLa-] were compared with 2 (time) x 3 (workout) analysis of variance. Hormones were assessed with 2 (gender) x 3 (time) x 3 (workout) analysis of covariances. Results showed [BLa-] had a time effect. Growth hormone concentration showed gender x workout, gender x time, and workout x time interactions, whereas [T] had a 3-way interaction. [C] had gender, time, and workout effects. [T/C] yielded a gender x time interaction. It was concluded that, because CO6 and CE3 yielded similar anabolic hormonal data but the latter had a lower [C] 30 minutes postexercise, CE3 served as the best workout. Although the FERG was originally designed for microgravity, the effort put forth by current subjects was like that for workouts aimed at greater athletic performance and conditioning. Practical applications suggest that eccentric actions should be used for FERG workouts geared toward muscle mass and strength improvement.

  8. Battery Recharging Issue for a Two-Power-Level Flywheel System

    Directory of Open Access Journals (Sweden)

    Janaína Gonçalves de Oliveira

    2010-01-01

    Full Text Available A novel battery recharging system for an all-electric driveline comprising a flywheel with a permanent magnet double wound synchronous machine (motor/generator is presented. The double winding enables two voltage levels and two different power levels. This topology supersedes other all-electric drivelines. The battery operates in a low-power regime supplying the average power whereas the flywheel delivers and absorbs power peaks, which are up to a higher order of magnitude. The topology presents new challenges for the power conversion system, which is the focus of this investigation. The main challenge is the control of the power flow to the battery when the vehicle is parked despite the decay of the flywheel machine voltage; which is dependent on its charge state, that is, rotational speed. The design and simulation of an unidirectional DC/DC buck/boost converter for a variable rotational speed flywheel is presented. Conventional power electronic converters are used in a new application, which can maintain a constant current or voltage on the battery side. Successful PI current control has been implemented and simulated, together with the complete closed loop system.

  9. Coasting characteristic of the flywheel system under anisotropy effect of bulk high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.F., E-mail: wujf@ciomp.ac.cn; Li, Y.

    2014-10-15

    Highlights: • Coasting time was investigated from the point-view of HTS flywheel applications. • The coasting time of aligned growth section boundary pattern (AGSBP) is shorter than that of MGSBP. • The electric magnetic drag force with AGSBP is larger than that of MGSBP. • This result may also exist in the maglev guideline when the maglev train stops freely. - Abstract: High-temperature superconductors (HTSCs) array with aligned growth section boundary (GSB) pattern (AGSBP) exhibits larger levitation force and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP) has been studied in maglev train application (Zheng et al., 2013). This result maybe helpful and support a new way for the HTS bearing design for flywheel systems. So, in this paper, we further examine this growth anisotropy effect on the maglev performance of flywheel system. Levitation force and coasting time were investigated from the point-view of HTS flywheel applications. The GS/GSB alignment of AGSBP bulk HTSCs produces larger levitation force than that of MGSBP, but the coasting time is shorter than that of MGSBP, that is to say, the electric magnetic drag force with AGSBP is larger than that of MGSBP. This result may also exist in the maglev guideline when the maglev train stops freely.

  10. Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.

    2012-01-01

    )] was treated as evidence for the spin-to orbital angular momentum conversion. Since in our realization the moderate focusing of the beam excluded the possibility for such a conversion, we consider the observed particle behavior as a demonstration of the macroscopic “spin energy flow” predicted by the theory...

  11. Experimental Performance Evaluation of a High Speed Permanent Magnet Synchronous Motor and Drive for a Flywheel Application at Different Frequencies

    Science.gov (United States)

    Nagorny, Aleksandr S.; Jansen, Ralph H.; Kankam, M. David

    2007-01-01

    This paper presents the results of an experimental performance characterization study of a high speed, permanent magnet motor/generator (M/G) and drive applied to a flywheel module. Unlike the conventional electric machine the flywheel M/G is not a separated unit; its stator and rotor are integrated into a flywheel assembly. The M/G rotor is mounted on a flywheel rotor, which is magnetically levitated and sealed within a vacuum chamber during the operation. Thus, it is not possible to test the M/G using direct load measurements with a dynamometer and torque transducer. Accordingly, a new in-situ testing method had to be developed. The paper describes a new flywheel M/G and drive performance evaluation technique, which allows the estimation of the losses, efficiency and power quality of the flywheel high speed permanent magnet M/G, while working in vacuum, over wide frequency and torque ranges. This method does not require any hardware modification nor any special addition to the test rig. This new measurement technique is useful for high-speed applications, when applying an external load is technically difficult.

  12. Determination of heavy metals in suspended waste water collected from Oued El Harrach Algiers River by Energy Dispersive X-Ray Fluorescence

    Science.gov (United States)

    Ouziane, S.; Amokrane, A.; Toumert, I.

    2013-12-01

    A preliminary study of the atmospheric pollution in the centre of Algiers is one of the important fields of applications in the environmental science. Nowadays, we need to evaluate the level of the contamination which has an unfavourable effect on physicochemical properties of soils and plants and namely also on human health. In the present work, water samples collected from Oued El-Harrach Algiers River, have been filtered in 0.45 μm Millipore filters to be analysed by Energy Dispersive X-Ray Fluorescence technique using 109Cd radioisotope source. Concentrations of the toxic elements like heavy metals are determined and compared with the published ones values by Yoshida [1] and those obtained using PIXE and NAA techniques [6].

  13. North Atlantic blue and fin whales suspend their spring migration to forage in middle latitudes: building up energy reserves for the journey?

    Directory of Open Access Journals (Sweden)

    Mónica A Silva

    Full Text Available The need to balance energy reserves during migration is a critical factor for most long-distance migrants and an important determinant of migratory strategies in birds, insects and land mammals. Large baleen whales migrate annually between foraging and breeding sites, crossing vast ocean areas where food is seldom abundant. How whales respond to the demands and constraints of such long migrations remains unknown. We applied a behaviour discriminating hierarchical state-space model to the satellite tracking data of 12 fin whales and 3 blue whales tagged off the Azores, to investigate their movements, behaviour (transiting and area-restricted search, ARS and daily activity cycles during the spring migration. Fin and blue whales remained at middle latitudes for prolonged periods, spending most of their time there in ARS behaviour. While near the Azores, fin whale ARS behaviour occurred within a restricted area, with a high degree of overlap among whales. There were noticeable behavioural differences along the migratory pathway of fin whales tracked to higher latitudes: ARS occurred only in the Azores and north of 56°N, whereas in between these areas whales travelled at higher overall speeds while maintaining a nearly direct trajectory. This suggests fin whales may alternate periods of active migration with periods of extended use of specific habitats along the migratory route. ARS behaviour in blue whales occurred over a much wider area as whales slowly progressed northwards. The tracks of these whales terminated still at middle latitudes, before any behavioural switch was detected. Fin whales exhibited behavioural-specific diel rhythms in swimming speed but these varied significantly between geographic areas, possibly due to differences in the day-night cycle across areas. Finally, we show a link between fin whales seen in the Azores and those summering in eastern Greenland-western Iceland along a migratory corridor located in central Atlantic

  14. North Atlantic blue and fin whales suspend their spring migration to forage in middle latitudes: building up energy reserves for the journey?

    Science.gov (United States)

    Silva, Mónica A; Prieto, Rui; Jonsen, Ian; Baumgartner, Mark F; Santos, Ricardo S

    2013-01-01

    The need to balance energy reserves during migration is a critical factor for most long-distance migrants and an important determinant of migratory strategies in birds, insects and land mammals. Large baleen whales migrate annually between foraging and breeding sites, crossing vast ocean areas where food is seldom abundant. How whales respond to the demands and constraints of such long migrations remains unknown. We applied a behaviour discriminating hierarchical state-space model to the satellite tracking data of 12 fin whales and 3 blue whales tagged off the Azores, to investigate their movements, behaviour (transiting and area-restricted search, ARS) and daily activity cycles during the spring migration. Fin and blue whales remained at middle latitudes for prolonged periods, spending most of their time there in ARS behaviour. While near the Azores, fin whale ARS behaviour occurred within a restricted area, with a high degree of overlap among whales. There were noticeable behavioural differences along the migratory pathway of fin whales tracked to higher latitudes: ARS occurred only in the Azores and north of 56°N, whereas in between these areas whales travelled at higher overall speeds while maintaining a nearly direct trajectory. This suggests fin whales may alternate periods of active migration with periods of extended use of specific habitats along the migratory route. ARS behaviour in blue whales occurred over a much wider area as whales slowly progressed northwards. The tracks of these whales terminated still at middle latitudes, before any behavioural switch was detected. Fin whales exhibited behavioural-specific diel rhythms in swimming speed but these varied significantly between geographic areas, possibly due to differences in the day-night cycle across areas. Finally, we show a link between fin whales seen in the Azores and those summering in eastern Greenland-western Iceland along a migratory corridor located in central Atlantic waters.

  15. Alternate Propulsion Energy Sources

    Science.gov (United States)

    1983-12-01

    ion drive solar heat collector prime power antigravity inertia cancellation drive flywheels inertia redistribution drive fusion ramjet microwave phase...antihydrogen "fuel" are then transferred to the using vehicle . When propulsive energy is desired, the antiprotons are extracted from the antihydrogen ice...environments with minimum energy input to the antihydrogen ice. The "fuel tanks" with their antihydrogen ice "fuel" will be transferred to the using vehicle

  16. Suspended animation for delayed resuscitation.

    Science.gov (United States)

    Safar, Peter J; Tisherman, Samuel A

    2002-04-01

    'Suspended animation for delayed resuscitation' is a new concept for attempting resuscitation from cardiac arrest of patients who currently (totally or temporarily) cannot be resuscitated, such as traumatic exsanguination cardiac arrest. Suspended animation means preservation of the viability of brain and organism during cardiac arrest, until restoration of stable spontaneous circulation or prolonged artificial circulation is possible. Suspended animation for exsanguination cardiac arrest of trauma victims would have to be induced within the critical first 5 min after the start of cardiac arrest no-flow, to buy time for transport and resuscitative surgery (hemostasis) performed during no-flow. Cardiac arrest is then reversed with all-out resuscitation, usually requiring cardiopulmonary bypass. Suspended animation has been explored and documented as effective in dogs in terms of long-term survival without brain damage after very prolonged cardiac arrest. In the 1990s, the Pittsburgh group achieved survival without brain damage in dogs after cardiac arrest of up to 90 min no-flow at brain (tympanic) temperature of 10 degrees C, with functionally and histologically normal brains. These studies used emergency cardiopulmonary bypass with heat exchanger or a single hypothermic saline flush into the aorta, which proved superior to pharmacologic strategies. For the large number of normovolemic sudden cardiac death victims, which currently cannot be resuscitated, more research in large animals is needed.

  17. High Energy Density, High Power Density, High Cycle Life Flywheel Energy Storage Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Balcones Technologies (BT), LLC proposes to leverage technologies developed by and resident in BT, The University of Texas Center for Electromechanics (CEM) and...

  18. 7 CFR 1206.21 - Suspend.

    Science.gov (United States)

    2010-01-01

    ... part thereof during a particular period of time specified in the rule. ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE MANGO PROMOTION, RESEARCH, AND INFORMATION Mango Promotion, Research, and Information Order Definitions § 1206.21 Suspend. Suspend means to...

  19. Motion of a satellite equipped with a pitch flywheel and magnetic coils in gravitational field

    Science.gov (United States)

    Ovchinnikov, M. Yu.; Roldugin, D. S.; Penkov, V. I.; Varatarao, R.; Ryabikov, V. S.

    2017-05-01

    A satellite equipped with a magnetic attitude control system and a pitch flywheel has been considered. The system performance in the transient mode has been investigated. The characteristic exponent of the system have been approximated for a satellite on a circumpolar orbit. In the steady-state mode of gravitational attitude, small motions are considered in the vicinity of equilibrium. The attitude accuracy has been analyzed. The algorithm of an arbitrary but given attitude of the satellite in the orbital plane has been investigated. A numerical simulation has been performed.

  20. Flywheel induction motor-generator for magnet power supply in small fusion device

    Energy Technology Data Exchange (ETDEWEB)

    Hatakeyma, S., E-mail: hatakeyama.shoichi@torus.nr.titech.ac.jp; Yoshino, F.; Tsutsui, H.; Tsuji-Iio, S. [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2016-04-15

    A flywheel motor-generator (MG) for the toroidal field (TF) coils of a small fusion device was developed which utilizes a commercially available squirrel-cage induction motor. Advantages of the MG are comparably-long duration, quick power response, and easy implementation of power control compared with conventional capacitor-type power supply. A 55-kW MG was fabricated, and TF coils of a small fusion device were energized. The duration of the current flat-top was extended to 1 s which is much longer than those of conventional small devices (around 10–100 ms).

  1. Operation of NRL Homopolar Generator into Parallel Energy Storage Inductor

    Science.gov (United States)

    2013-06-01

    brushes on each flywheel are connected to separate collectors which are in turn attached to the busbars leading to the energy storage coil. 1.4mH...exciter coil into two coils which can be parted to connect the energy storage coil busbars to the HPG and extension of the center conductor to connect

  2. Storage exploratory project. Energy program. Final report; Projet exploratoire Stockage. Programme Energie. Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, Y. [Laboratoire d' Electrotechnique de Grenoble, UMR 5529 INPG/UJF - CNRS, ENSIEG, 38 - Saint-Martin-d' Heres (France); Ozil, P. [Laboratoire d' Electrochimie et de Physico-Chimie des Materiaux et des Interfaces (LEPMI), ENSEEG, 38 - Saint Martin d' Heres (France); Cheron, Y. [Laboratoire d' Electrotechnique et d' Electronique Industrielle, CNRS, 31 - Toulouse (France); Multon, B. [Laboratoire des Sciences de l' Information et des Systemes et Applications des Technologies de l' Information et de l' Energie (SATIE), 94 - Cachan (France); Carillo, S. [Centre Interuniversitaire de recherche et d' Ingenierie sur les Materiaux (CIRIMAT), 31 - Toulouse (France)

    2004-07-01

    The aim of this exploratory project was the analysis of the most efficient possibilities of electric power storage. It was limited to the electrochemical storage, the lead batteries which behavior is not completely characterized, the flywheel energy storage and the development of simulation. This report presents the results of the works. (A.L.B.)

  3. Torsional Vibration Semiactive Control of Drivetrain Based on Magnetorheological Fluid Dual Mass Flywheel

    Directory of Open Access Journals (Sweden)

    Qing-hua Zu

    2015-01-01

    Full Text Available The damping characteristics of the traditional dual mass flywheel (DMF cannot be changed and can only meet one of the damping requirements. Given that the traditional DMF cannot avoid the resonance interval in start/stop conditions, it tends to generate high-resonance amplitude, which reduces the lifetime of a vehicle’s parts and leads to vehicle vibration and noise. The problems associated with the traditional DMF can be solved through the magnetorheological fluid dual mass flywheel (MRF-DMF, which was designed in this study with adjustable damping performance under different conditions. The MRF-DMF is designed based on the rheological behavior of the magnetorheological fluid (MRF, which can be changed by magnetic field strength. The damping torque of the MRF-DMF, which is generated by the MRF effect, is derived in detail. Thus, the cosimulation between the drivetrain model built in AMESim and the control system model developed in Simulink is conducted. The controller of MRF-DMF is developed, after which the torsional vibration control test of drivetrain is carried out. The cosimulation and test results indicate that MRF-DMF with the controller effectively isolates torque fluctuation of the engine in the driving condition and exhibits high performance in suppressing the resonance amplitude in the start/stop conditions.

  4. High-intensity flywheel exercise and recovery of atrophy after 90 days bed-­rest­

    Science.gov (United States)

    Ohshima, Hiroshi; Rittweger, Jörn; Felsenberg, Dieter

    2017-01-01

    Aims To investigate differential muscle atrophy during bed-rest, the impact of a high-intensity concentric-eccentric (flywheel) resistance exercise countermeasure and muscle recovery after bed-rest. Methods Twenty-five healthy male subjects underwent 90 dayshead-down tilt bed-rest. Volume of individual lower-limb muscles was measured via MRI before, twice during and four times up to 1 year after bed-rest. Subjects were either inactive (n=16) or performed flywheel exercise every third day of bed-rest (n=9). Functional performance was assessed via countermovement jump. Results On ‘intent-to-treat’ analysis, flywheel prevented atrophy in the vasti (pFlywheel exercise was not effective for the hamstrings, gracilis, sartorius, peroneals and anterior tibial muscles. Muscle atrophy in vasti, soleus, gastrocnemius medialis, gastrocnemius lateralis and adductor magnus correlated with losses in countermovement jump performance. Muscle volume recovered within 90 days after bed-rest, however long-term after bed-rest, the inactive subjects only showed significantly increased muscle volume versus prebed-rest in a number of muscles including soleus (+4.3%), gastrocnemius medialis (+3.9%) and semimembranosus (+4.3%). This was not associated with greater countermovement jump performance. Conclusion The exercise countermeasure was effective in preventing or reducing atrophy in the vasti, adductor magnus and ankle dorsiflexors/toe flexors but not the hamstrings, medial thigh muscles or peroneals and dorsiflexor muscles. Trial registration number NCT00311571; results. PMID:28761699

  5. Rippling instabilities in suspended nanoribbons

    Science.gov (United States)

    Wang, Hailong; Upmanyu, Moneesh

    2012-11-01

    Morphology mediates the interplay between the structure and electronic transport in atomically thin nanoribbons such as graphene as the relaxation of edge stresses occurs preferentially via out-of-plane deflections. In the case of end-supported suspended nanoribbons that we study here, past experiments and computations have identified a range of equilibrium morphologies, in particular, for graphene flakes, yet a unified understanding of their relative stability remains elusive. Here, we employ atomic-scale simulations and a composite framework based on isotropic elastic plate theory to chart out the morphological stability space of suspended nanoribbons with respect to intrinsic (ribbon elasticity) and engineered (ribbon geometry) parameters, and the combination of edge and body actuation. The computations highlight a rich morphological shape space that can be naturally classified into two competing shapes, bendinglike and twistlike, depending on the distribution of ripples across the interacting edges. The linearized elastic framework yields exact solutions for these rippled shapes. For compressive edge stresses, the body strain emerges as a key variable that controls their relative stability and in extreme cases stabilizes coexisting transverse ripples. Tensile edge stresses lead to dimples within the ribbon core that decay into the edges, a feature of obvious significance for stretchable nanoelectronics. The interplay between geometry and mechanics that we report should serve as a key input for quantifying the transport along these ribbons.

  6. Effects of Inertial Setting on Power, Force, Work, and Eccentric Overload During Flywheel Resistance Exercise in Women and Men.

    Science.gov (United States)

    Martinez-Aranda, Luis M; Fernandez-Gonzalo, Rodrigo

    2017-06-01

    Exercise load is a key component in determining end-point adaptations to resistance exercise. Yet, there is no information regarding the use of different inertia (i.e., loads) during isoinertial flywheel resistance exercise, a very popular high-intensity training model. Thus, this study examined power, work, force, and eccentric overload produced during flywheel resistance exercise with different inertial settings in men and women. Twenty-two women (n = 11) and men (n = 11) performed unilateral (in both legs) isolated concentric (CON) and coupled CON and eccentric (ECC) exercise in a flywheel knee extension device employing 6 inertias (0.0125, 0.025, 0.0375, 0.05, 0.075, 0.1 kg·m). Power decreased as higher inertias were used, with men showing greater (p ≤ 0.05) decrements than women (-36 vs. -29% from lowest to highest inertia). In contrast, work increased as higher inertias were employed, independent of sex (p ≤ 0.05; ∼48% from lowest to highest inertia). Women increased CON and ECC mean force (46-55%, respectively) more (p ≤ 0.05) than men (34-50%, respectively) from the lowest to the highest inertia evaluated, although the opposite was found for peak force data (i.e., peak force increased more in men than in women as inertia was increased). Men, but not women, increased ECC overload from inertia 0.0125 to 0.0375 kg·m2. Although estimated stretch-shorting cycle use during flywheel exercise was higher (p ≤ 0.05) in men (6.6%) than women (4.9%), values were greater for both sexes when using low-to-medium inertias. The information gained in this study could help athletes and sport and health professionals to better understand the impact of different inertial settings on skeletal muscle responses to flywheel resistance exercise.

  7. Effects of Traditional Versus Horizontal Inertial Flywheel Power Training on Common Sport-Related Tasks

    Directory of Open Access Journals (Sweden)

    de Hoyo Moisés

    2015-09-01

    Full Text Available This study aimed to analyze the effects of power training using traditional vertical resistance exercises versus direction specific horizontal inertial flywheel training on performance in common sport-related tasks. Twenty-three healthy and physically active males (age: 22.29 ± 2.45 years volunteered to participate in this study. Participants were allocated into either the traditional training (TT group where the half squat exercise on a smith machine was applied or the horizontal flywheel training (HFT group performing the front step exercise with an inertial flywheel. Training volume and intensity were matched between groups by repetitions (5-8 sets with 8 repetitions and relative intensity (the load that maximized power (Pmax over the period of six weeks. Speed (10 m and 20 m, countermovement jump height (CMJH, 20 m change of direction ability (COD and strength during a maximal voluntary isometric contraction (MVIC were assessed before and after the training program. The differences between groups and by time were assessed using a two-way analysis of variance with repeated measures, followed by paired t-tests. A significant group by time interaction (p=0.004 was found in the TT group demonstrating a significantly higher CMJH. Within-group analysis revealed statistically significant improvements in a 10 m sprint (TT: −0.17 0.27 s vs. HFT: −0.11 0.10 s, CMJH (TT: 4.92 2.58 cm vs. HFT: 1.55 2.44 cm and MVIC (TT: 62.87 79.71 N vs. HFT: 106.56 121.63 N in both groups (p < 0.05. However, significant differences only occurred in the 20 m sprint time in the TT group (−0.04 0.12 s; p = 0.04. In conclusion, the results suggest that TT at the maximal peak power load is more effective than HFT for counter movement jump height while both TT and HFT elicited significant improvements in 10 m sprint performance while only TT significantly improved 20 m sprint performance.

  8. On the motion of a flywheel in the presence of attracting center

    Science.gov (United States)

    Amer, W. S.

    In this work, the rotational motion of a body fixed at one point is investigated when the effectiveness of a Newtonian field is taken into consideration. It is assumed that the center of mass of the body lies on one of the principal planes of inertia. The attained solutions are obtained when the body carrying rotating masses represented by a flywheel or may be multiply-connected cavities containing circulated liquid. Two special cases are evaluated. The Runge-Kutta algorithms from fourth order is applied to achieve the numerical solution of the equations of motion and represented graphically to show the variation of the body's parameters on the motion. The importance of this work is due to its wide applications in many fields such as in physics, engineering and industrial applications.

  9. Development of the axial gap type motor/generator for the flywheel with superconducting magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Nagaya, S.; Kashima, N.; Kawashima, H.; Kakiuchi, Y.; Hoshino, A.; Isobe, S

    2003-10-15

    Flywheel with superconducting magnetic bearings requires the characteristics for the motor/generator such as lower loss, higher efficiency, lower bearing load and more displacement tolerance of the radial directions. We developed an extremely flat shape axial gap type motor/generator which consists of a rotor with permanent magnets and slotless windings to satisfy these characteristics. We introduced the system for adjusting intensity of the excitation to decrease the eddy current loss during the storage and to get the controllability of electromotive force for variable speed operation during charging and discharging. We manufactured the motor/generator of output power 17 kW at 10,000 rpm. It was tested to perform the fundamental functions of motor and generator at partial speeds up to 4000 rpm.

  10. 23 Elemental Composition of Suspended Particulate Matter ...

    African Journals Online (AJOL)

    `123456789jkl''''#

    Elemental Composition of Suspended Particulate Matter Collected at Two Different. Heights above the Ground in A Sub-Urban Site in Kenya. Gitari W. M1, Kinyua A. M. 2, Kamau G. N3 and C. K. Gatebe C. K4. Abstract. Suspended particulate matter samples were collected in a sub-urban area in Nairobi over a 12 month ...

  11. An analysis of bedload and suspended load interactions

    Science.gov (United States)

    Recking, alain; Navratil, Oldrich

    2013-04-01

    Several approaches were used to develop suspension equations. It includes semi-theoretical equations based on the convection diffusion equation (Einstein 1950; Van Rijn 1984; Camenen and Larson 2008; Julien 2010), semi-empirical tools based on energy concept (Velikanov 1954; Bagnold 1966), empirical adjustments (Prosser and Rusttomji 2000). One essential characteristic of all these equations is that most of them were developed by considering continuity between bedload and suspended load, and that the partitioning between these two modes of transport evolves progressively with increasing shear stress, which is the case for fine bed materials. The use of these equations is thus likely to be welcome in estuaries or lowland sandy rivers, but may be questionable in gravel-bed rivers and headwater streams where the bed is usually structured vertically and fine sediments potentially contributing to suspension are stored under a poorly mobile surface armour comprising coarse sediments. Thus one question this work aimed to answer is does the presence of an armour at the bed surface influence suspended load? This was investigated through a large field data set comprising instantaneous measurements of both bedload and suspension. We also considered the river characteristics, distinguishing between lowland rivers, gravel bed rivers and headwater streams. The results showed that a correlation exist between bedload and suspension for lowland and gravel bed rivers. This suggests that in gravel bed rivers a large part of the suspended load is fed by subsurface material, and depends on the remobilization of the surface material. No correlation was observed for head water streams where the sediment production is more likely related to hillslope processes. These results were used with a bedload transport equation for proposing a method for suspended load estimate. The method is rough, but especially for gravel bed rivers, it predicts suspended load reasonably well when compared to

  12. Some Issues of Development and Mathematical Modeling of Superconducting Electrokinetic Energy Storage Unit

    Science.gov (United States)

    Smolentsev, N. I.; Kondrin, S. A.; Bondarev, Yu L.; Gilmetdinov, M. F.; Kazantsev, A. M.; Sirekanyan, V. V.

    2017-10-01

    In this research paper, some results of experimental sample elaboration of the superconducting electrokinetic energy storage unit (SCEESU-1), mathematical modeling and the practical application are given. The inflexibility of the superconducting contactless suspension of rotor-flywheel of the energy storage unit is calculated. The results of computer simulation of suspension stability under the external disturbing effects are presented.

  13. Cost analysis of energy storage systems for electric utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  14. Improving suspended sediment measurements by automatic samplers.

    Science.gov (United States)

    Gettel, Melissa; Gulliver, John S; Kayhanian, Masoud; DeGroot, Gregory; Brand, Joshua; Mohseni, Omid; Erickson, Andrew J

    2011-10-01

    Suspended solids either as total suspended solids (TSS) or suspended sediment concentration (SSC) is an integral particulate water quality parameter that is important in assessing particle-bound contaminants. At present, nearly all stormwater runoff quality monitoring is performed with automatic samplers in which the sampling intake is typically installed at the bottom of a storm sewer or channel. This method of sampling often results in a less accurate measurement of suspended sediment and associated pollutants due to the vertical variation in particle concentration caused by particle settling. In this study, the inaccuracies associated with sampling by conventional intakes for automatic samplers have been verified by testing with known suspended sediment concentrations and known particle sizes ranging from approximately 20 μm to 355 μm under various flow rates. Experimental results show that, for samples collected at a typical automatic sampler intake position, the ratio of sampled to feed suspended sediment concentration is up to 6600% without an intake strainer and up to 300% with a strainer. When the sampling intake is modified with multiple sampling tubes and fitted with a wing to provide lift (winged arm sampler intake), the accuracy of sampling improves substantially. With this modification, the differences between sampled and feed suspended sediment concentration were more consistent and the sampled to feed concentration ratio was accurate to within 10% for particle sizes up to 250 μm.

  15. Characterization and morphology of solids suspended in rain water; Caracterizacion y morfologia de solidos suspendidos en agua de lluvia

    Energy Technology Data Exchange (ETDEWEB)

    Iturbe G, J.L.; Lopez M, B.E.; Torre O, J. De la [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Mexico D.F. (Mexico)

    2000-07-01

    This work presents the results obtained from the analysis of rain water in Mexico. The study treats over the characterization and morphology of the solids suspended in form of particles in the atmosphere. The solids suspended were obtained of the pluvial precipitations after these have been centrifuged. Subsequently of the separation, the particulate matter was analysed by Sem and X-ray dispersive energy.

  16. Superconducting Magnetic Bearings for Space-Based Flywheel Energy Storage Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Balcones Technologies, LLC proposes to adapt technologies developed by and resident in The University of Texas at Austin Center for Electromechanics (CEM) in the...

  17. Bearing design for flywheel energy storage using high-TC superconductors

    Science.gov (United States)

    Hull, John R.; Mulcahy, Thomas M.

    2000-01-01

    A high temperature superconductor material bearing system (38) This system (38) includes a rotor (50) having a ring permanent magnet (60), a plurality of permanent magnets (16, 20 and 70) for interacting to generate levitation forces for the system (38). This group of magnets are a push/pull bearing (75). A high temperature superconductor structure (30) interacts with the ting permanent magnet (60) to provide stabilizing forces for the system (38).

  18. Distributed Bus Signaling Control for a DC Charging Station with Multi Paralleled Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    Sun, Bo; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2015-01-01

    Fast charging stations (FCS) will become an essential part of future transportation systems with an increasing number of electrical vehicles. However, since these FCS plugs have power ratings of up to 100 kW, serious stress caused by large number of FCS could threaten the stability of the main po...

  19. Energy storage device based on flywheel, power converters and Simulink real-time

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Kedra, Bartosz; Malkowski, Robert

    2017-01-01

    as well as proposed and introduced functions are listed. Implementation details are given in third section of paper. Hardware structure is presented and described. Information about used communication interface, data maintenance and storage solution, as well as used Simulink realtime features...

  20. Control of Flywheel Energy Storage Systems in Electrical Vehicle Charging Stations

    DEFF Research Database (Denmark)

    Sun, Bo

    Growing environmental awareness and strong political impetus have resulted in plug-in electric vehicles (PEV) becoming ever more attractive means of transportation. They are expected to have a significant impact to the overall loading of future distribution networks. Thus, current distribution...... grids need to be updated in order to accommodate PEV fleets, which are recognized in smart grid (SG) objective. The prevailing concern in that sense is the combined impact of a large number of randomly connected PEVs in the distribution network. On the other hand, continually growing PEVs are likely...... of it as secondary layer. Control design is hence carried out by following the common principle for management of both large interconnected and small distributed generation (DG) systems. For the purpose of control optimization and parameter tuning of the primary layer, detailed modeling of grid ac/dc and FESS...

  1. Coupling between electronic transport and longitudinal phonons in suspended nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Sapmaz, S; Jarillo-Herrero, P; Blanter, Ya M; Zant, H S J van der [Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft (Netherlands)

    2005-11-15

    Current-voltage characteristics of suspended single-wall carbon nanotube (NT) quantum dots show a series of steps equally spaced in voltage. The energy scale of this harmonic, low-energy excitation spectrum is consistent with that of the longitudinal low-k phonon mode in the NT. Agreement is found with a Franck-Condon-based model in which the phonon-assisted tunnelling process is modelled as a coupling of electronic levels to underdamped quantum harmonic oscillators. Comparison with this model indicates a rather strong electron-phonon coupling factor of order unity. We investigate different electron-phonon coupling mechanisms and give estimates of the coupling factor.

  2. A Review of Energy Storage Technologies

    DEFF Research Database (Denmark)

    Connolly, David

    2010-01-01

    ), Battery Energy Storage (BES), Flow Battery Energy Storage (FBES), Flywheel Energy Storage (FES), Supercapacitor Energy Storage (SCES), Superconducting Magnetic Energy Storage (SMES), Hydrogen Energy Storage System (HESS), Thermal Energy Storage (TES), and Electric Vehicles (EVs). The objective...... than PHES depending on the availability of suitable sites. FBES could also be utilised in the future for the integration of wind, but it may not have the scale required to exist along with electric vehicles. The remaining technologies will most likely be used for their current applications...

  3. Increased fuel economy in transportation systems by use of energy management. Third year's program. Final report, May 1, 1976--July 1, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Beachley, N.H.; Frank, A.A.

    1976-07-01

    A report is given of the results accomplished during the third year of a three-year research program, the overall goal of which has been to conceive and evaluate practical ways to increase automobile fuel economy by energy management within the engine-transmission-vehicle system. The third year was devoted primarily to the detailed design, construction, and preliminary evaluation of a Flywheel Energy Management Powerplant (FEMP) installed in a Pinto. The vehicle has been built to experimentally verify performance simulations and to allow the practical aspects of a real flywheel vehicle to be studied. The FEMP consists basically of an internal combustion engine, a high-speed energy-storage flywheel, and a hydrostatic power-split continuously-variable transmission (CVT) system. The flywheel drives the car, and the engine comes on to ''recharge'' it (with efficient wide-open throttle operation) only when the flywheel speed drops below a predetermined value. The concept also permits effective and efficient regenerative braking. Computer simulations have indicated an improvement in city fuel mileage of about 50%, with improvements of 100% appearing feasible with further research. Preliminary testing of the car shows favorable performance.

  4. Dynamics of the Gyroscopic Power Take-Off Wave Energy Absorber in Irregular Sea States

    DEFF Research Database (Denmark)

    Zhang, Zili; Nielsen, Søren R. K.; Olsen, Jan

    2017-01-01

    Dynamic modelling and analysis of a newly proposed wave energy point absorber, the Gyroscopic power take-off (GyroPTO) absorber, is presented in this study. Inside the float of the GyroPTO, there is a mechanical system made up of a spinning flywheel with its spin axis in rolling contact to a ring....... Linear wave theory has been applied together with rational approximation of the radiation damping moments, leading to an extended state vector formulation of the coupled structure- wave system. Simulation results show that magnetic coupling successfully improves the stability of the flywheel in irregular...

  5. Dynamics and Control of the GyrpPTO Wave Energy Point Absorber under Sea Waves

    DEFF Research Database (Denmark)

    Zhang, Zili; Nielsen, Søren R. K.; Basu, Biswajit

    2017-01-01

    The Gyroscopic Power Take-Off (GyroPTO) wave energy point absorber has the operational principle somewhat similar to the so-called gyroscopic hand wrist exerciser. Inside the float of GyroPTO, there is a mechanical system made up of a spinning flywheel with its spin axis in rolling contact...... between the spin axis and the flywheel, which also makes semi-active control of the device possible. A 4-DOF model is then established, and simulation results show the introduced magnetic coupling successfully enables synchronization of the device under non-harmonic sea waves....

  6. Letter of professional groups. Energies and fuel cells; La lettre des Groupe Professionnels, energies et piles a combustible

    Energy Technology Data Exchange (ETDEWEB)

    Meunier, M. [Supelec, 91 - Gif sur Yvette (France); Serre Combe, P. [CEA Grenoble, 38 (France); Sartorelli, G. [Maxwell Technologie, San Diego, CA (United States); Lafont, G. [PILLER France S.A., 92 - Nanterre (France); Green, A. [SAFT, 93170 Bagnolet (France); Perrin, M. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Fregere, J.P.

    2004-07-01

    These proceedings of the 'Arts et Metiers' professional groups treats of energy storage solutions for delocalized power generation units. Four types of energy storage systems are presented with their operation principle, advantages and drawbacks: fuel cells and hydrogen, super-capacitors, flywheels, conventional batteries (lithium-ion, lead, redox, nickel-cadmium, zinc-air), and comparison between the different energy storage solutions including compressed air. (J.S.)

  7. On the motion of a flywheel in the presence of attracting center

    Directory of Open Access Journals (Sweden)

    W.S. Amer

    Full Text Available In this work, the rotational motion of a body fixed at one point is investigated when the effectiveness of a Newtonian field is taken into consideration. It is assumed that the center of mass of the body lies on one of the principal planes of inertia. The attained solutions are obtained when the body carrying rotating masses represented by a flywheel or may be multiply-connected cavities containing circulated liquid. Two special cases are evaluated. The Runge-Kutta algorithms from fourth order is applied to achieve the numerical solution of the equations of motion and represented graphically to show the variation of the body’s parameters on the motion. The importance of this work is due to its wide applications in many fields such as in physics, engineering and industrial applications. MSC (2010: 70E05, 70E15, 70E17, 70E20, Keywords: Euler’s equations, Newtonian field, Gyrostatic moment, First integrals

  8. Resonant tunnelling features in a suspended silicon nanowire single-hole transistor

    Energy Technology Data Exchange (ETDEWEB)

    Llobet, Jordi; Pérez-Murano, Francesc, E-mail: francesc.perez@csic.es, E-mail: z.durrani@imperial.ac.uk [Institut de Microelectrònica de Barcelona (IMB-CNM CSIC), Campus UAB, E-08193 Bellaterra, Catalonia (Spain); Krali, Emiljana; Wang, Chen; Jones, Mervyn E.; Durrani, Zahid A. K., E-mail: francesc.perez@csic.es, E-mail: z.durrani@imperial.ac.uk [Department of Electrical and Electronic Engineering, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Arbiol, Jordi [Institució Catalana de Recerca i Estudis Avançats (ICREA) and Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, 08193 Bellaterra, Catalonia (Spain); CELLS-ALBA Synchrotron Light Facility, 08290 Cerdanyola, Catalonia (Spain)

    2015-11-30

    Suspended silicon nanowires have significant potential for a broad spectrum of device applications. A suspended p-type Si nanowire incorporating Si nanocrystal quantum dots has been used to form a single-hole transistor. Transistor fabrication uses a novel and rapid process, based on focused gallium ion beam exposure and anisotropic wet etching, generating <10 nm nanocrystals inside suspended Si nanowires. Electrical characteristics at 10 K show Coulomb diamonds with charging energy ∼27 meV, associated with a single dominant nanocrystal. Resonant tunnelling features with energy spacing ∼10 meV are observed, parallel to both diamond edges. These may be associated either with excited states or hole–acoustic phonon interactions, in the nanocrystal. In the latter case, the energy spacing corresponds well with reported Raman spectroscopy results and phonon spectra calculations.

  9. Energy Storage System

    Science.gov (United States)

    1996-01-01

    SatCon Technology Corporation developed the drive train for use in the Chrysler Corporation's Patriot Mark II, which includes the Flywheel Energy Storage (FES) system. In Chrysler's experimental hybrid- electric car, the hybrid drive train uses an advanced turboalternator that generates electricity by burning a fuel; a powerful, compact electric motor; and a FES that eliminates the need for conventional batteries. The FES system incorporates technology SatCon developed in more than 30 projects with seven NASA centers, mostly for FES systems for spacecraft attitude control and momentum recovery. SatCon will continue to develop the technology with Westinghouse Electric Corporation.

  10. Dynamics and Control of the GyrpPTO Wave Energy Point Absorber under Sea Waves

    DEFF Research Database (Denmark)

    Zhang, Zili; Nielsen, Søren R. K.; Basu, Biswajit

    2017-01-01

    The Gyroscopic Power Take-Off (GyroPTO) wave energy point absorber has the operational principle somewhat similar to the so-called gyroscopic hand wrist exerciser. Inside the float of GyroPTO, there is a mechanical system made up of a spinning flywheel with its spin axis in rolling contact...

  11. Fractional Order AGC for Distributed Energy Resources Using Robust Optimization

    OpenAIRE

    Pan, Indranil; Das, Saptarshi

    2016-01-01

    The applicability of fractional order (FO) automatic generation control (AGC) for power system frequency oscillation damping is investigated in this paper, employing distributed energy generation. The hybrid power system employs various autonomous generation systems like wind turbine, solar photovoltaic, diesel engine, fuel-cell and aqua electrolyzer along with other energy storage devices like the battery and flywheel. The controller is placed in a remote location while receiving and sending...

  12. 9 CFR 201.81 - Suspended registrants.

    Science.gov (United States)

    2010-01-01

    ... 201.81 Animals and Animal Products GRAIN INSPECTION, PACKERS AND STOCKYARDS ADMINISTRATION (PACKERS AND STOCKYARDS PROGRAMS), DEPARTMENT OF AGRICULTURE REGULATIONS UNDER THE PACKERS AND STOCKYARDS ACT Services § 201.81 Suspended registrants. No stockyard owner, packer, market agency, or dealer shall employ...

  13. Electrodialytic remediation of suspended mine tailings

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Rojo, Adrian; Pino, Denisse

    2008-01-01

    experiment at 40 mA, with approximately 137.5 g mine tailings on dry basis. The removal for a static (baseline) experiment only amounted 15% when passing approximately the same amount of charge through 130 g of mine tailings. The use of air bubbling to keep the tailings suspended increased the removal...

  14. Environmental toxicology: Acute effects of suspended particulate ...

    African Journals Online (AJOL)

    ... from the control values were found significant at 99% confidence level. Possible inhalatory problems are thus anticipated from prolonged accumulation of the dust in the respiratory system. KEY WORDS: Environmental toxicology, Suspended particulate matter, Dust analysis, Hematological indices, Wister albino rats. Bull.

  15. Suspended sediment concentration and particle size distribution ...

    Indian Academy of Sciences (India)

    face area, shape, minerals and source) and conse- quent interaction with heavy metal concentrations. (HMCs). Recent studies have shown a growing awareness of the wider environmental significance of the suspended sediment loads transported by rivers and streams. This includes the importance of fine grain sediment in ...

  16. Environmental toxicology: Acute effects of suspended particulate ...

    African Journals Online (AJOL)

    The elemental contents of suspended particulate matter (dust) samples from Maiduguri, Nigeria, were determined which showed appreciably high levels for especially Pb, Fe, Cu, Zn, K, Ca, and. Na. Wister albino rats were exposed to graded doses of phosphate buffered saline carried dust particles. The hematological ...

  17. A depth integrated model for suspended transport

    NARCIS (Netherlands)

    Galappatti, R.

    1983-01-01

    A new depth averaged model for suspended sediment transport in open channels has been developed based on an asymptotic solution to the two dimensional convection-diffusion equation in the vertical plane. The solution for the depth averaged concentration is derived from the bed boundary condition and

  18. The Shape of Breasts Suspended in Liquid

    NARCIS (Netherlands)

    De Kleijn, S.C.; Rensen, W.H.J.

    2007-01-01

    Philips has designed an optical mammography machine. In this machine the breast is suspended into a cup in which the measurements take place. A special fluid is inserted into the cup to prevent the light from going around the breast instead of going through it but this fluid also weakens the signal.

  19. Flow Laminarization and Acceleration by Suspended Particles

    NARCIS (Netherlands)

    Bertsch, M.; Hulshof, J.; Prostokishin, V.M.

    2015-01-01

    In [Comm. Appl. Math. Comput. Sci., 4(2009), pp. 153-175], Barenblatt presents a model for partial laminarization and acceleration of shear flows by the presence of suspended particles of different sizes, and provides a formal asymptotic analysis of the resulting velocity equation. In the present

  20. Emulsifying and Suspending Properties of Enterolobium ...

    African Journals Online (AJOL)

    Background:The thermodynamic instability of emulsions and suspensions necessitate the incorporation of emulsifiers and suspending agents respectively, in order to stabilize the formulations and ensure administration of accurate doses. Objective:Enterolobium cyclocarpum gum was characterized and evaluated for its ...

  1. Performance enhanced design of chaos controller for the mechanical centrifugal flywheel governor system via adaptive dynamic surface control

    Directory of Open Access Journals (Sweden)

    Shaohua Luo

    2016-09-01

    Full Text Available This paper addresses chaos suppression of the mechanical centrifugal flywheel governor system with output constraint and fully unknown parameters via adaptive dynamic surface control. To have a certain understanding of chaotic nature of the mechanical centrifugal flywheel governor system and subsequently design its controller, the useful tools like the phase diagrams and corresponding time histories are employed. By using tangent barrier Lyapunov function, a dynamic surface control scheme with neural network and tracking differentiator is developed to transform chaos oscillation into regular motion and the output constraint rule is not broken in whole process. Plugging second-order tracking differentiator into chaos controller tackles the “explosion of complexity” of backstepping and improves the accuracy in contrast with the first-order filter. Meanwhile, Chebyshev neural network with adaptive law whose input only depends on a subset of Chebyshev polynomials is derived to learn the behavior of unknown dynamics. The boundedness of all signals of the closed-loop system is verified in stability analysis. Finally, the results of numerical simulations illustrate effectiveness and exhibit the superior performance of the proposed scheme by comparing with the existing ADSC method.

  2. Heat Transfer Correlations for Free Convection from Suspended Microheaters

    Directory of Open Access Journals (Sweden)

    David GOSSELIN

    2016-08-01

    Full Text Available Portability and autonomy for biomedical diagnostic devices are two rising requirements. It is recognized that low-energy heating of such portable devices is of utmost importance for molecular recognition. This work focuses on screen-printed microheaters based on on Joule effect, which constitute an interesting solution for low-energy heating. An experimental study of the natural convection phenomena occurring with such microheaters is conducted. When they are suspended in the air, and because of the thinness of the supporting film, it is shown that the contributions of both the upward and downward faces have to be taken into account. A total Nusselt number and a total convective heat transfer coefficient have been used to describe the natural convection around these microheaters. In addition a relation between the Nusselt number and the Rayleigh number is derived, leading to an accurate prediction of the heating temperature (MRE< 2 %.

  3. Energy Storage/Conservation and Carbon Emissions Reduction Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Bigelow, Erik [Center For Transportation And The Environment, Inc., Atlanta, GA (United States)

    2013-01-01

    The U.S. Department of Energy (DOE) awarded the Center for Transportation and the Environment (CTE) federal assistance for the management of a project to develop and test a prototype flywheel-based energy recovery and storage system in partnership with Test Devices, Inc. (TDI). TDI specializes in the testing of jet engine and power generation turbines, which uses a great deal of electrical power for long periods of time. In fact, in 2007, the company consumed 3,498,500 kW-­hr of electricity in their operations, which is equivalent to the electricity of 328 households. For this project, CTE and TDI developed and tested a prototype flywheel-based energy recovery and storage system. This technology is being developed at TDI’s facilities to capture and reuse the energy necessary for the company’s core process. The new technology and equipment is expected to save approximately 80% of the energy used in the TDI process, reducing total annual consumption of power by approximately 60%, saving approximately two million kilowatt-hours annually. Additionally, the energy recycling system will allow TDI and other end users to lower their peak power demand and reduce associated utility demand charges. The use of flywheels in this application is novel and requires significant development work from TDI. Flywheels combine low maintenance costs with very high cycle life with little to no degradation over time, resulting in lifetimes measured in decades. All of these features make flywheels a very attractive option compared to other forms of energy storage, including batteries. Development and deployment of this energy recycling technology will reduce energy consumption during jet engine and stationary turbine development. By reengineering the current inefficient testing process, TDI will reduce risk and time to market of efficiency upgrades of gas turbines across the entire spectrum of applications. Once in place the results from this program will also help other US industries

  4. The suspended sentence in French Criminal Law

    Directory of Open Access Journals (Sweden)

    Jovašević Dragan

    2016-01-01

    Full Text Available From the ancient times until today, criminal law has provided different criminal sanctions as measures of social control. These coercive measures are imposed on the criminal offender by the competent court and aimed at limitting the offender's rights and freedoms or depriving the offender of certain rights and freedoms. These sanctions are applied to the natural or legal persons who violate the norms of the legal order and injure or endanger other legal goods that enjoy legal protection. In order to effectively protect social values, criminal legislations in all countries predict a number of criminal sanctions. These are: 1 imprisonment, 2 precautions, 3 safety measures, 4 penalties for juveniles, and 5 sanctions for legal persons. Apart and instead of punishment, warning measures have a significant role in the jurisprudence. Since they emerged in the early 20th century in the system of criminal sanctions, there has been an increase in their application to criminal offenders, especially when it comes to first-time offenders who committed a negligent or accidental criminal act. Warnings are applied in case of crimes that do not have serious consequences, and whose perpetrators are not hardened and incorrigible criminals. All contemporary criminal legislations (including the French legilation provide a warning measure of suspended sentence. Suspended sentence is a conditional stay of execution of sentence of imprisonment for a specified time, provided that the convicted person does not commit another criminal offense and fulfills other obligations. This sanction applies if the following two conditions are fulfilled: a forma! -which is attached to the sentence of imprisonment; and b material -which is the court assessment that the application of this sanction is justified and necessary in a particular case. In many modern criminal legislations, there are two different types of suspended (conditional sentence: 1 ordinary (classical suspended

  5. Damping and scattering of electromagnetic waves by small ferrite spheres suspended in an insulator

    Science.gov (United States)

    Englert, Gerald W.

    1992-01-01

    The intentional degradation of electromagnetic waves by their penetration into a media comprised of somewhat sparsely distributed energy absorbing ferrite spheres suspended in an electrical insulator is investigated. Results are presented in terms of generalized parameters involving wave length and sphere size, sphere resistivity, permeability, and spacing; their influence on dissipation of wave power by eddy currents, magnetic hysteresis, and scattering is shown.

  6. Estuarine Suspended Sediment Dynamics: Observations Derived from over a Decade of Satellite Data

    Directory of Open Access Journals (Sweden)

    Anthony Reisinger

    2017-12-01

    Full Text Available Suspended sediment dynamics of Corpus Christi Bay, Texas, USA, a shallow-water wind-driven estuary, were investigated by combining field and satellite measurements of total suspended solids (TSS. An algorithm was developed to transform 500-m Moderate Resolution Imaging Spectroradiometer (MODIS Aqua satellite reflectance data into estimated TSS values. The algorithm was developed using a reflectance ratio regression of MODIS Band 1 (red and Band 3 (green with TSS measurements (n = 54 collected by the Texas Commission on Environmental Quality for Corpus Christi Bay and other Texas estuaries. The algorithm was validated by independently collected TSS measurements during the period of 2011–2014 with an uncertainty estimate of 13%. The algorithm was applied to the period of 2002–2014 to create a synoptic time series of TSS for Corpus Christi Bay. Potential drivers of long-term variability in suspended sediment were investigated. Median and IQR composites of suspended sediments were generated for seasonal wind regimes. From this analysis it was determined that long-term, spatial patterns of suspended sediment in the estuary are related to wind-wave resuspension during the predominant northerly and prevalent southeasterly seasonal wind regimes. The impact of dredging is also apparent in long-term patterns of Corpus Christi Bay as concentrations of suspended sediments over dredge spoil disposal sites are higher and more variable than surrounding areas, which is most likely due to their less consolidated sediments and shallower depths requiring less wave energy for sediment resuspension. This study highlights the advantage of how long-synoptic time series of TSS can be used to elucidate the major drivers of suspended sediments in estuaries.

  7. Estimating total suspended sediment yield with probability sampling

    Science.gov (United States)

    Robert B. Thomas

    1985-01-01

    The ""Selection At List Time"" (SALT) scheme controls sampling of concentration for estimating total suspended sediment yield. The probability of taking a sample is proportional to its estimated contribution to total suspended sediment discharge. This procedure gives unbiased estimates of total suspended sediment yield and the variance of the...

  8. Optomechanics for thermal characterization of suspended graphene

    Science.gov (United States)

    Dolleman, Robin J.; Houri, Samer; Davidovikj, Dejan; Cartamil-Bueno, Santiago J.; Blanter, Yaroslav M.; van der Zant, Herre S. J.; Steeneken, Peter G.

    2017-10-01

    The thermal response of graphene is expected to be extremely fast due to its low heat capacity and high thermal conductivity. In this work, the thermal response of suspended single-layer graphene membranes is investigated by characterization of their mechanical motion in response to a high-frequency modulated laser. A characteristic delay time τ between the optical intensity and mechanical motion is observed, which is attributed to the time required to raise the temperature of the membrane. We find, however, that the measured time constants are significantly larger than the predicted ones based on values of the specific heat and thermal conductivity. In order to explain the discrepancy between measured and modeled τ , a model is proposed that takes a thermal boundary resistance at the edge of the graphene drum into account. The measurements provide a noninvasive way to characterize thermal properties of suspended atomically thin membranes, providing information that can be hard to obtain by other means.

  9. Electromechanical Battery EMB Mass Minimization taking into Account its Electrical Machines Rotor Energy

    OpenAIRE

    Podgornovs Andrejs; Sipovichs Antons

    2014-01-01

    In this paper the electromechanical battery (EMB) with synchronous machine is described. Theoretically, if electrical machines rotor stored energy is known, it is possible to reduce the flywheel mass of electromechanical battery. For example, the efficiency of energy recovery (kilowatt-hours out versus kilowatthours in) in nowadays appliances exceeds 95 % which is considerably better than of any electrochemical battery, such as lead-acid battery. For the rotor stored energy amount calculation...

  10. Thermoelectric unipolar spin battery in a suspended carbon nanotube

    Science.gov (United States)

    Cao, Zhan; Fang, Tie-Feng; He, Wan-Xiu; Luo, Hong-Gang

    2017-04-01

    A quantum dot formed in a suspended carbon nanotube exposed to an external magnetic field is predicted to act as a thermoelectric unipolar spin battery which generates pure spin current. The built-in spin flip mechanism is a consequence of the spin-vibration interaction resulting from the interplay between the intrinsic spin-orbit coupling and the vibrational modes of the suspended carbon nanotube. On the other hand, utilizing thermoelectric effect, the temperature difference between the electron and the thermal bath to which the vibrational modes are coupled provides the driving force. We find that both magnitude and direction of the generated pure spin current are dependent on the strength of spin-vibration interaction, the sublevel configuration in dot, the temperatures of electron and thermal bath, and the tunneling rate between the dot and the pole. Moreover, in the linear response regime, the kinetic coefficient is non-monotonic in the temperature T and it reaches its maximum when {{k}\\text{B}}T is about one phonon energy. The existence of a strong intradot Coulomb interaction is irrelevant for our spin battery, provided that high-order cotunneling processes are suppressed.

  11. Thermoelectric unipolar spin battery in a suspended carbon nanotube.

    Science.gov (United States)

    Cao, Zhan; Fang, Tie-Feng; He, Wan-Xiu; Luo, Hong-Gang

    2017-04-26

    A quantum dot formed in a suspended carbon nanotube exposed to an external magnetic field is predicted to act as a thermoelectric unipolar spin battery which generates pure spin current. The built-in spin flip mechanism is a consequence of the spin-vibration interaction resulting from the interplay between the intrinsic spin-orbit coupling and the vibrational modes of the suspended carbon nanotube. On the other hand, utilizing thermoelectric effect, the temperature difference between the electron and the thermal bath to which the vibrational modes are coupled provides the driving force. We find that both magnitude and direction of the generated pure spin current are dependent on the strength of spin-vibration interaction, the sublevel configuration in dot, the temperatures of electron and thermal bath, and the tunneling rate between the dot and the pole. Moreover, in the linear response regime, the kinetic coefficient is non-monotonic in the temperature T and it reaches its maximum when [Formula: see text] is about one phonon energy. The existence of a strong intradot Coulomb interaction is irrelevant for our spin battery, provided that high-order cotunneling processes are suppressed.

  12. IUTAM symposium on hydrodynamic diffusion of suspended particles

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.H. [ed.

    1995-12-31

    Hydrodynamic diffusion refers to the fluctuating motion of nonBrownian particles (or droplets or bubbles) which occurs in a dispersion due to multiparticle interactions. For example, in a concentrated sheared suspension, particles do not move along streamlines but instead exhibit fluctuating motions as they tumble around each other. This leads to a net migration of particles down gradients in particle concentration and in shear rate, due to the higher frequency of encounters of a test particle with other particles on the side of the test particle which has higher concentration or shear rate. As another example, suspended particles subject to sedimentation, centrifugation, or fluidization, do not generally move relative to the fluid with a constant velocity, but instead experience diffusion-like fluctuations in velocity due to interactions with neighboring particles and the resulting variation in the microstructure or configuration of the suspended particles. In flowing granular materials, the particles interact through direct collisions or contacts (rather than through the surrounding fluid); these collisions also cause the particles to undergo fluctuating motions characteristic of diffusion processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  13. Sedimentation of suspended solids in ultrasound field

    Directory of Open Access Journals (Sweden)

    Vikulina Vera

    2018-01-01

    Full Text Available Physical and chemical effects of aquatic environment that occur in an ultrasonic field change the sedimentation rate of coagulated suspension. This might only happen in case of cavitation of ultrasonic filed that causes a change of potentials of the medium. Research of the influence of ultrasonic vibrations on coagulation of suspended solids within water purification allows expanding their scope of implementation. The objective of the research is to estimate the effect of ultrasound on the sedimentation of the suspended solids, to determine of the efficiency of the process in relation to the dose of the coagulant, and to calculate the numerical values of the constants in the theoretical equation. The experiment condition was held in the water with the clay substances before the introduction of the coagulant. The method of magnetostriction ultrasonic generator was applied to receive ultrasonic vibration. Estimate of concentration of clay particles in water was performed using photometry. As a result of the research, the obtained data allow determining the increase in efficiency of suspended particles sedimentation related to the dose of coagulant, depending on time of ultrasonic treatment. The experiments confirmed the connection between the effect of sedimentation in the coagulation process, the coagulant dose and the time of scoring. Studies have shown that the increase in the duration of ultrasonic treatment causes a decrease of administered doses of coagulant.

  14. Suspended sediments limit coral sperm availability

    Science.gov (United States)

    Ricardo, Gerard F.; Jones, Ross J.; Clode, Peta L.; Humanes, Adriana; Negri, Andrew P.

    2015-01-01

    Suspended sediment from dredging activities and natural resuspension events represent a risk to the reproductive processes of coral, and therefore the ongoing maintenance of reefal populations. To investigate the underlying mechanisms that could reduce the fertilisation success in turbid water, we conducted several experiments exposing gametes of the corals Acropora tenuis and A. millepora to two sediment types. Sperm limitation was identified in the presence of siliciclastic sediment (230 and ~700 mg L−1), with 2–37 fold more sperm required to achieve maximum fertilisation rates, when compared with sediment-free treatments. This effect was more pronounced at sub-optimum sperm concentrations. Considerable (>45%) decreases in sperm concentration at the water’s surface was recorded in the presence of siliciclastic sediment and a >20% decrease for carbonate sediment. Electron microscopy then confirmed sediment entangled sperm and we propose entrapment and sinking is the primary mechanism reducing sperm available to the egg. Longer exposure to suspended sediments and gamete aging further decreased fertilisation success when compared with a shorter exposure. Collectively, these findings demonstrate that high concentrations of suspended sediments effectively remove sperm from the water’s surface during coral spawning events, reducing the window for fertilisation with potential subsequent flow-on effects for recruitment. PMID:26659008

  15. DTU International Energy Report 2013

    DEFF Research Database (Denmark)

    One of the great challenges in the transition to a non-fossil energy system with a high share of fluctuating renewable energy sources such as solar and wind is to align consumption and production in an economically satisfactory manner. Energy storage could provide the necessary balancing power...... to make this possible. This energy report addresses energy storage from a broad perspective: It analyses smaller stores that can be used locally in for example heat storage in the individual home or vehicle, such as electric cars or hydrogen cars. The report also addresses decentralized storage...... as flywheels and batteries linked to decentralized energy systems. In addition it addresses large central storages as pumped hydro storage and compressed air energy storage and analyse this in connection with international transmission and trading over long distances. The report addresses electrical storage...

  16. Pulse Power Hybrid Energy Storage Module Development Program

    Science.gov (United States)

    2015-05-01

    Fig. Fig. Fig. Fig. Fig. 27 Flowchart of the energy storage control methodology for the MPM program modeling. 47 LIST OF TABLES Table 1...Most symbols comply to IEEE Sid 315-1975: Graphic symbols for electrical and electronics diagrams 240 Hz w ^ A single compartment for both PFN... symbols comply to IEEE Std 315-1975: Graphic symbols for electrical and electronics diagrams 240 Hz^-;r^nZ-r Feeder for HESM unit 2 HESM 2 flywheel

  17. Monitoring of suspended sediment in South Tyrol

    Science.gov (United States)

    Nadalet, Rudi; Dinale, Roberto; Pernter, Martin; Maraldo, Luca; Peterlin, Dieter; Richter, Arnold; Comiti, Francesco

    2016-04-01

    In the context of the EU Water Framework Directive (WFD), which aims to achieve a good status of European water bodies, the Hydrographic Office of the Autonomous Province of Bolzano (Italy) extended in 2014 its institutional activities including the monitoring of suspended sediment in the river channel network. Currently, the only active monitoring station is on the Adige River at the gauging station of Ponte Adige near Bolzano (drainage area 2705 km2). The applied monitoring strategy and the data analysis concept are both based on the guidelines issued by the Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management (BMLFUW). The results indicates that the temporal variability strongly differs during the investigated period (2014-2015). In addition to the analysis of precipitation and water discharge, temperature and lightning activity were also included to better understand the sediment transport dynamics observed at the station. In summer 2015, the combination of constantly high daily temperature throughout the Adige basin (which drove intense glacier melting in the headwaters) with a high frequency of convective rainfall events (90% more than in 2014, obtained through lightning detection), led to an annual mass of transported suspended sediment of 260000 t. Interestingly, this value is similar to the one estimated for 2014 (300000 t), which was characterized by very different meteorological conditions (colder and wetter summer), but with the occurrence of an important flood in August, which transported half of the annual amount. Finally, we can conclude that the adopted monitoring strategy is applicable for institutional aims in terms of costs as well as in terms of time effort. During the next years, other stations for suspended sediment monitoring are planned to be installed in the Province to cover the most important river segments.

  18. Active noise cancellation in a suspended interferometer

    CERN Document Server

    Driggers, Jennifer C; Pepper, Keenan; Adhikari, Rana

    2011-01-01

    We demonstrate feed-forward vibration isolation on a suspended Fabry-Perot interferometer using Wiener filtering and a variant of the common Least Mean Square (LMS) adaptive filter algorithm. We compare the experimental results with theoretical estimates of the cancellation efficiency. Using data from the recent LIGO Science Run, we also estimate the impact of this technique on full scale gravitational wave interferometers. In the future, we expect to use this technique to also remove acoustic, magnetic, and gravitational noise perturbations from the LIGO interferometers. This noise cancellation technique is simple enough to implement in standard laboratory environments and can be used to improve SNR for a variety of high precision experiments.

  19. Geodetic monitoring of suspended particles in rivers

    Science.gov (United States)

    Kamnik, Rok; Maksimova, Daria; Kovačič, Boštjan

    2017-10-01

    There is a trend in modern approach to the management of space of collecting the spatial data, in order to obtain useful information. In this paper a research of suspended particles in the river Drava and Mura will be introduced. The goal is to connect different fields of water management in countries where the rivers Drava and Mura flows in purpose of water management sustainability. The methods such as GNSS for mapping cross sections of the river, the use of ADCP (Acoustic Doppler Current Profiler) measurement system and water sampling to monitor sediment in the water will be presented.

  20. Safety Harness For Work Under Suspended Load

    Science.gov (United States)

    Sunoo, Su Young

    1994-01-01

    Safety device protects worker under suspended engine or other heavy load. Mechanically linked with load so if load should fall, worker yanked safely away. Worker wears chest-plate vest with straps crossing eye on back. Lower safety cable connected to eye extends horizontally away from worker to nearby wall, wrapped on pulley and extends upward to motion amplifier or reducer. Safety cables transform any sudden downward motion of overhanging load into rapid sideways motion of worker. Net catches worker, preventing worker from bumping against wall.

  1. Self powered Autonomous Underwater Vehicles (AUVs): Results from a gyroscopic energy scavenging prototype

    OpenAIRE

    TOWNSEND, NICHOLAS

    2016-01-01

    This paper describes and presents preliminary experimental results from a novel prototype energy scavenging system installed in a model 2m cylindrical Autonomous Underwater Vehicle (AUV). The system, which is based on control moment gyroscope (CMG) principles, utilises the gyroscopic response of a gimballed flywheel mounted within an AUV body to generate energy from the wave induced rotational motions of the vehicle. This method, of using the reaction of a spinning wheel under an input torque...

  2. Kinetic energy recovery systems in motor vehicles

    Science.gov (United States)

    Śliwiński, C.

    2016-09-01

    The article draws attention to the increasing environmental pollution caused by the development of vehicle transport and motorization. Different types of design solutions used in vehicles for the reduction of fuel consumption, and thereby emission of toxic gasses into the atmosphere, were specified. Historical design solutions concerning energy recovery devices in mechanical vehicles which used flywheels to accumulate kinetic energy were shown. Developmental tendencies in the area of vehicle manufacturing in the form of hybrid electric and electric devices were discussed. Furthermore, designs of energy recovery devices with electrical energy storage from the vehicle braking and shock absorbing systems were presented. A mechanical energy storing device using a flywheel operating under vacuum was presented, as were advantages and disadvantages of both systems, the limitations they impose on individual constructions and safety issues. The paper also discusses a design concept of an energy recovery device in mechanical vehicles which uses torsion springs as the main components of energy accumulation during braking. The desirability of a cooperation of both the mechanical- and electrical energy recovery devices was indicated.

  3. Elastic properties of suspended multilayer WSe2

    Science.gov (United States)

    Zhang, Rui; Koutsos, Vasileios; Cheung, Rebecca

    2016-01-01

    We report the experimental determination of the elastic properties of suspended multilayer WSe2, a promising two-dimensional (2D) semiconducting material combined with high optical quality. The suspended WSe2 membranes have been fabricated by mechanical exfoliation of bulk WSe2 and transfer of the exfoliated multilayer WSe2 flakes onto SiO2/Si substrates pre-patterned with hole arrays. Then, indentation experiments have been performed on these membranes with an atomic force microscope. The results show that the 2D elastic modulus of the multilayer WSe2 membranes increases linearly while the prestress decreases linearly as the number of layers increases. The interlayer interaction in WSe2 has been observed to be strong enough to prevent the interlayer sliding during the indentation experiments. The Young's modulus of multilayer WSe2 (167.3 ± 6.7 GPa) is statistically independent of the thickness of the membranes, whose value is about two thirds of other most investigated 2D semiconducting transition metal dichalcogenides, namely, MoS2 and WS2. Moreover, the multilayer WSe2 can endure ˜12.4 GPa stress and ˜7.3% strain without fracture or mechanical degradation. The 2D WSe2 can be an attractive semiconducting material for application in flexible optoelectronic devices and nano-electromechanical systems.

  4. Method for forming suspended micromechanical structures

    Science.gov (United States)

    Fleming, James G.

    2000-01-01

    A micromachining method is disclosed for forming a suspended micromechanical structure from {111} crystalline silicon. The micromachining method is based on the use of anisotropic dry etching to define lateral features of the structure which are etched down into a {111}-silicon substrate to a first etch depth, thereby forming sidewalls of the structure. The sidewalls are then coated with a protection layer, and the substrate is dry etched to a second etch depth to define a spacing of the structure from the substrate. A selective anisotropic wet etchant (e.g. KOH, EDP, TMAH, NaOH or CsOH) is used to laterally undercut the structure between the first and second etch depths, thereby forming a substantially planar lower surface of the structure along a {111} crystal plane that is parallel to an upper surface of the structure. The lateral extent of undercutting by the wet etchant is controlled and effectively terminated by either timing the etching, by the location of angled {111}-silicon planes or by the locations of preformed etch-stops. This present method allows the formation of suspended micromechanical structures having large vertical dimensions and large masses while allowing for detailed lateral features which can be provided by dry etch definition. Additionally, the method of the present invention is compatible with the formation of electronic circuitry on the substrate.

  5. Utilization of rotor kinetic energy storage for hybrid vehicles

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN

    2011-05-03

    A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

  6. Is inertial flywheel resistance training superior to gravity-dependent resistance training in improving muscle strength? A systematic review with meta-analyses.

    Science.gov (United States)

    Vicens-Bordas, J; Esteve, E; Fort-Vanmeerhaeghe, A; Bandholm, T; Thorborg, K

    2017-10-18

    The primary aim of this systematic review was to determine if inertial flywheel resistance training is superior to gravity-dependent resistance training in improving muscle strength. The secondary aim was to determine whether inertial flywheel resistance training is superior to gravity-dependent resistance training in improving other muscular adaptations. A systematic review with meta-analyses of randomised and non-randomised controlled trials. We searched MEDLINE, Scopus, SPORTDiscus, Web of Science and Cochrane Central Register of Controlled Trials with no publication date restrictions until November 2016. We performed meta-analyses on randomised and non-randomised controlled trials to determine the standardized mean difference between the effects of inertial flywheel and gravity-dependent resistance training on muscle strength. A total of 76 and 71 participants were included in the primary and secondary analyses, respectively. After systematic review, we included three randomised and four non-randomised controlled trials. In the primary analysis for the primary outcome muscle strength, the pooled results from randomised controlled trials showed no difference (SMD=-0.05; 95%CI -0.51 to 0.40; p=0.82; I2=0%). In the secondary analyses of the primary outcome, the pooled results from non-randomised controlled trials showed no difference (SMD=0.02; 95%CI -0.45 to 0.49; p=0.93; I2=0%; and SMD=0.03; 95%CI -0.43 to 0.50; p=0.88; I2=0%). Meta-analysis on secondary outcomes could not be performed. Based on the available data, inertial flywheel resistance training was not superior to gravity-dependent resistance training in enhancing muscle strength. Data for other strength variables and other muscular adaptations was insufficient to draw firm conclusions from. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  7. Environmentally-suspended sediment production of the Nasia River ...

    African Journals Online (AJOL)

    The study assessed the level of suspended sediment produced in the Nasia River Basin. Hydrological and meteorological data and water samples were used for the study. Average suspended sediment yield (33 years) in the basin was 19.90 t/km2/yr. With mean annual runoff of 439.13m3/s, 322.43 t/yr suspended sediment ...

  8. Near bed suspended sediment flux by single turbulent events

    Science.gov (United States)

    Amirshahi, Seyed Mohammad; Kwoll, Eva; Winter, Christian

    2018-01-01

    The role of small scale single turbulent events in the vertical mixing of near bed suspended sediments was explored in a shallow shelf sea environment. High frequency velocity and suspended sediment concentration (SSC; calibrated from the backscatter intensity) were collected using an Acoustic Doppler Velocimeter (ADV). Using quadrant analysis, the despiked velocity time series was divided into turbulent events and small background fluctuations. Reynolds stress and Turbulent Kinetic Energy (TKE) calculated from all velocity samples, were compared to the same turbulent statistics calculated only from velocity samples classified as turbulent events (Reevents and TKEevents). The comparison showed that Reevents and TKEevents was increased 3 and 1.6 times, respectively, when small background fluctuations were removed and that the correlation with SSC for TKE could be improved through removal of the latter. The correlation between instantaneous vertical turbulent flux (w ‧) and SSC fluctuations (SSC ‧) exhibits a tidal pattern with the maximum correlation at peak ebb and flood currents, when strong turbulent events appear. Individual turbulent events were characterized by type, strength, duration and length. Cumulative vertical turbulent sediment fluxes and average SSC associated with individual turbulent events were calculated. Over the tidal cycle, ejections and sweeps were the most dominant events, transporting 50% and 36% of the cumulative vertical turbulent event sediment flux, respectively. Although the contribution of outward interactions to the vertical turbulent event sediment flux was low (11%), single outward interaction events were capable of inducing similar SSC ‧ as sweep events. The results suggest that on time scales of tens of minutes to hours, TKE may be appropriate to quantify turbulence in sediment transport studies, but that event characteristics, particular the upward turbulent flux need to be accounted for when considering sediment transport

  9. Net transport of suspended matter due to tidal straining

    Science.gov (United States)

    Jones, S. E.; Jago, C. F.; Simpson, J. H.; Rippeth, T. P.

    2003-04-01

    Net transport of suspended particulate matter (SPM) is well-known in tidal regions where there is time-velocity asymmetry due to frictional modification of the tide in shallow water. We present here observations which show a new mechanism for net flux of SPM in response to tidal straining in a region of freshwater influence (ROFI). In situ measurements of the particle size of suspended particulate matter (SPM) and turbulent energy dissipation have been made at a site in Liverpool Bay (Irish Sea) where there is significant resuspension of particles from the muddy sand substrate during spring tides. This is a ROFI where tidal straining dominates the temporal development of turbulence. On a spring tide the water column tries to stratify on the ebb and destratify on the flood, but these tendencies are masked by mixing due to tidal stirring. Nevertheless, there is a marked excess of TKE dissipation rate E on the flood, especially in the upper part of the water column. Resuspension occurs on both flood and ebb, but SPM flux is strongly asymmetric with a net shorewards component. Asymmetry is most pronounced for the larger particles which comprise most of the mass. Enhanced ? on the flood mixes large particles upwards into faster flowing water, which increases the flux. Comparable upwards mixing of large particles does not occur on the ebb where enhanced E is confined to slower bottom waters. The net flux is not seen on neap tides because, although there is more stratification due to tidal straining, there is essentially no resuspension. The net flux on springs is undoubtedly an important component of SPM transport (and any comparable particulates) in coastal regions.

  10. Energy

    CERN Document Server

    Graybill, George

    2007-01-01

    Unlock the mysteries of energy! Energy is more than ""the ability to do work""; we present these concepts in a way that makes them more accessible to students and easier to understand. The best way to understand energy is to first look at all the different kinds of energy including: What Is Energy, Mechanical Energy, Thermal, Sound Energy and Waves, as well as Light Energy.

  11. Suspended sediment yield in Texas watersheds

    Science.gov (United States)

    Coonrod, Julia Ellen Allred

    The Texas Water Development Board collected suspended sediment samples across the state of Texas for approximately 60 years. Until this research, no comprehensive analysis of the data had been conducted. This study compiles the suspended sediment data along with corresponding streamflow and rainfall. GIS programs are developed which characterize watersheds corresponding to the sediment gauging stations. The watersheds are characterized according to topography, climate, soils, and land use. All of the data is combined to form several SAS data sets which can subsequently be analyzed using regression. Annual data for all of the stations across the state are classified temporally and spatially to determine trends in the sediment yield. In general, the suspended sediment load increases with increasing runoff but no correlation exists with rainfall. However, the annual average rainfall can be used to classify the watersheds according to climate, which improves the correlation between sediment load and runoff. The watersheds with no dams have higher sediment loads than watersheds with dams. Dams in the drier parts of Texas reduce the sediment load more than dams in the wetter part of the state. Sediment rating curves are developed separately for each basin in Texas. All but one of the curves fall into a band which varies by about two orders of magnitude. The study analyzes daily time series data for the Lavaca River near Edna station. USGS data are used to improve the sediment rating curve by the addition of physically related variables and interaction terms. The model can explain an additional 41% of the variability in sediment concentration compared to a simple bivariate regression of sediment load and flow. The TWDB daily data for the Lavaca River near Edna station are used to quantify temporal trends. There is a high correlation between sediment load and flowrate for the Lavaca River. The correlation can be improved by considering a flow-squared term and by

  12. Organics and Suspended Solids Removal from Hospital

    Directory of Open Access Journals (Sweden)

    Fakhri Y. Hmood

    2013-05-01

    Full Text Available The Sequencing Batch Reactor (SBR method is used for treating samples of waste water taken from hospitals in Mosul. Many run periods are used (6-24 hours for             6 months. It is found that the organics and suspended solids removal increase with increasing the period of run, it is in the range ( 96-82 % and ( 100-95 % respectively, while the pH values are nearly neutral (7.05 to 7.5.     BOD5 and SS concentrations of the effluent are within the limits of Iraqi standards,  40:30 mg/l respectively. Hence, SBR method could be used for treating hospitals, small factories and some  residential sectors waste waters.  

  13. Batch fabrication of nanotubes suspended between microelectrodes

    DEFF Research Database (Denmark)

    Mateiu, Ramona Valentina; Stöckli, T.; Knapp, H. F.

    2007-01-01

    We report a fabrication method, which uses standard UV-lithography to pattern the catalyst for the chemical vapour deposition(CVD) of suspended double clamped single walled carbon nanotubes. By using an aqueous solution of Fe(NO3)3 the patterning of the catalyst material onto microelectrodes can...... be done with a simple lift-off process with standard photolithographic resist. An applied electric field is sustained between the microelectrodes during CVD to guide the nanotube growth. Comparison with simulations shows that the location and the orientation of the grown carbon nanotubes (CNT) correspond...... to the regions of maximum electric field, enabling accurate positioning of a nanotube by controlling the shape of the microelectrodes. The CNT bridges are deflected tens of nm when a DC voltage is applied between the nanotube and a gate microelectrode indicating that the clamping through the catalyst particles...

  14. Surface tension of Nanofluid-type fuels containing suspended nanomaterials.

    Science.gov (United States)

    Tanvir, Saad; Qiao, Li

    2012-04-18

    The surface tension of ethanol and n-decane based nanofluid fuels containing suspended aluminum (Al), aluminum oxide (Al2O3), and boron (B) nanoparticles as well as dispersible multi-wall carbon nanotubes (MWCNTs) were measured using the pendant drop method by solving the Young-Laplace equation. The effects of nanoparticle concentration, size and the presence of a dispersing agent (surfactant) on surface tension were determined. The results show that surface tension increases both with particle concentration (above a critical concentration) and particle size for all cases. This is because the Van der Waals force between particles at the liquid/gas interface increases surface free energy and thus increases surface tension. At low particle concentrations, however, addition of particles has little influence on surface tension because of the large distance between particles. An exception is when a surfactant was used or when (MWCNTs) was involved. For such cases, the surface tension decreases compared to the pure base fluid. The hypothesis is the polymer groups attached to (MWCNTs) and the surfactant layer between a particle and the surround fluid increases the electrostatic force between particles and thus reduce surface energy and surface tension.

  15. Surface tension of Nanofluid-type fuels containing suspended nanomaterials

    Science.gov (United States)

    2012-01-01

    The surface tension of ethanol and n-decane based nanofluid fuels containing suspended aluminum (Al), aluminum oxide (Al2O3), and boron (B) nanoparticles as well as dispersible multi-wall carbon nanotubes (MWCNTs) were measured using the pendant drop method by solving the Young-Laplace equation. The effects of nanoparticle concentration, size and the presence of a dispersing agent (surfactant) on surface tension were determined. The results show that surface tension increases both with particle concentration (above a critical concentration) and particle size for all cases. This is because the Van der Waals force between particles at the liquid/gas interface increases surface free energy and thus increases surface tension. At low particle concentrations, however, addition of particles has little influence on surface tension because of the large distance between particles. An exception is when a surfactant was used or when (MWCNTs) was involved. For such cases, the surface tension decreases compared to the pure base fluid. The hypothesis is the polymer groups attached to (MWCNTs) and the surfactant layer between a particle and the surround fluid increases the electrostatic force between particles and thus reduce surface energy and surface tension. PMID:22513039

  16. Simulation of suspended sediment transport initialized with satellite derived suspended sediment concentrations

    Science.gov (United States)

    Ramakrishnan, Ratheesh; Rajawat, A. S.

    2012-10-01

    Suspended sediment transport in the Gulf of Kachchh is simulated utilizing the suspended sediment concentration (SSC) derived from Oceansat OCM imagery, as the initial condition in MIKE-21 Mud Transport model. Optimization of the model mud parameters, like settling velocity and critical shear stress for erosion are realized with respect to the sediment size distribution and the bottom bed materials observed in the Gulf. Simulated SSCs are compared with alternate OCM derived SSC. The results are observed to be impetus where the model is able to generate the spatial dynamics of the sediment concentrations. Sediment dynamics like deposition, erosion and dispersion are explained with the simulated tidal currents and OCM derived sediment concentrations. Tidal range is observed as the important physical factor controlling the deposition and resuspension of sediments within the Gulf. From the simulation studies; maximum residual current velocities, tidal fronts and high turbulent zones are found to characterise the islands and shoals within the Gulf, which results in high sediment concentrations in those regions. Remarkable variability in the bathymetry of the Gulf, different bed materials and varying tidal conditions induces several circulation patterns and turbulence creating the unique suspended sediment concentration pattern in the Gulf.

  17. A suspended sediment yield predictive equation for river basins in ...

    African Journals Online (AJOL)

    An empirical equation that can be used for estimating the suspended sediment yields of river drainage basins without sediment data has been established for basins in the sub-tropical forest Southwestern river basin system of Ghana. The power law equation relates mean annual specific suspended sediment yield (t km-2 ...

  18. Simulation of suspended sediment transport initialized with satellite ...

    Indian Academy of Sciences (India)

    Suspended sediment transport in the Gulf of Kachchh is simulated utilizing the suspended sediment concentration (SSC) derived from Oceansat OCM imagery, as the initial condition in MIKE-21 Mud. Transport model. Optimization of the model mud parameters, like settling velocity and critical shear stress for erosion are ...

  19. A wave-resolving model for nearshore suspended sediment transport

    Science.gov (United States)

    Ma, Gangfeng; Chou, Yi-Ju; Shi, Fengyan

    2014-05-01

    This paper presents a wave-resolving sediment transport model, which is capable of simulating sediment suspension in the field-scale surf zone. The surf zone hydrodynamics is modeled by the non-hydrostatic model NHWAVE (Ma et al., 2012). The turbulent flow and suspended sediment are simulated in a coupled manner. Three effects of suspended sediment on turbulent flow field are considered: (1) baroclinic forcing effect; (2) turbulence damping effect and (3) bottom boundary layer effect. Through the validation with the laboratory measurements of suspended sediment under nonbreaking skewed waves and surfzone breaking waves, we demonstrate that the model can reasonably predict wave-averaged sediment profiles. The model is then utilized to simulate a rip current field experiment (RCEX) and nearshore suspended sediment transport. The offshore sediment transport by rip currents is captured by the model. The effects of suspended sediment on self-suspension are also investigated. The turbulence damping and bottom boundary layer effects are significant on sediment suspension. The suspended sediment creates a stably stratified water column, damping fluid turbulence and reducing turbulent diffusivity. The suspension of sediment also produces a stably stratified bottom boundary layer. Thus, the drag coefficient and bottom shear stress are reduced, causing less sediment pickup from the bottom. The cross-shore suspended sediment flux is analyzed as well. The mean Eulerian suspended sediment flux is shoreward outside the surf zone, while it is seaward in the surf zone.

  20. Evaluation of the suspending properties of Cola acuminata gum on ...

    African Journals Online (AJOL)

    Many natural gums are employed as suspending agents in the formulation of pharmaceutical suspensions. The search to develop locally available natural gum from apparently a waste product as an alternative suspending agent stimulated the interest in this present study. Cola acuminata gum (CAG) extracted from Cola ...

  1. 40 CFR 230.21 - Suspended particulates/turbidity.

    Science.gov (United States)

    2010-07-01

    ... time. These new levels may reduce light penetration and lower the rate of photosynthesis and the... suspended particulates persist. The biological and the chemical content of the suspended material may react with the dissolved oxygen in the water, which can result in oxygen depletion. Toxic metals and organics...

  2. Simulation of suspended sediment transport initialized with satellite ...

    Indian Academy of Sciences (India)

    Suspended sediment transport in the Gulf of Kachchh is simulated utilizing the suspended sediment concentration (SSC) derived from Oceansat OCM imagery, as the initial condition in MIKE-21 Mud Transport model. Optimization of the model mud parameters, like settling velocity and critical shear stress for erosion are ...

  3. Evaluation of the suspending property of grewia gum in ...

    African Journals Online (AJOL)

    The suspending property of grewia gum in sulphadimidine suspension was evaluated. The gum was extracted by maceration, filtration, precipitation and drying techniques. It was used at 0.3 to 1% w/v as a suspending agent for sulphadimidine. Sodiumcarboxymethylcellulose (SCMC) and tragacanth were used as basis for ...

  4. Evaluation of the suspending properties of Adansonia digitata gum ...

    African Journals Online (AJOL)

    Sedimentation volume and rate, rheology, and ease of redispersion were employed as evaluation parameters. The results showed that both hot and cold water extracts of the gum used at 2-3 % w/v produced a better suspending property than 4 % w/v Compound Tragacanth gum. The suspending ability of the gums was in ...

  5. Evaluation of the Suspending Property of Grewia Gum in ...

    African Journals Online (AJOL)

    The suspending property of grewia gum in metronidazole suspension was evaluated. The gum was extracted by maceration, filtration, precipitation and drying techniques. It was used at 0.3 to 1% w/v as a suspending agent for metronidazole. Sodiumcarboxymethylcellulose (SCMC) and tragacanth were used as basis for ...

  6. 1998 Annual Study Report. Research and development of power storage by high-temperature superconducting flywheels (research and development of permanent magnet); 1998 nendo seika hokokusho. Koon chodendo flywheel denryoku chozo kenkyu kaihatsu (eikyu jishaku no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The permanent magnets have been investigated and developed, for eventual commercialization of a 10 MWh power storage system by high-temperature superconducting flywheel. The permanent magnet rotors have been already developed in the previous years using a praseodymium-based magnet (Pr magnet) and neodymium-based sintered magnet (Nd sintered magnet), and the target rotational speed of 30,000 rpm has been attained. For development of the magnetic circuit to produce a stronger and smoother magnetic field, magnetic flux density of the Nd sintered magnet is measured. It shows a lower magnetic flux irregularity than the Pd magnet, but there is still room for further improvement. For development of large-size permanent magnet fabrication techniques, it is confirmed that the large-size Nd sintered magnet can be easily magnetized by partial magnetizing, as is the case with the Pr magnet. In this year, the irregular magnetic flux is three-dimensionally simulated, based on the results obtained in the previous years, to find that the simulated results are in good agreement with the observed ones. The measures to solve the problems are also investigated. It is also confirmed that the large-size ring magnet can be easily magnetized by partial magnetization. (NEDO)

  7. FVB Energy Inc. Technical Assistance Project

    Energy Technology Data Exchange (ETDEWEB)

    DeSteese, John G.

    2011-05-17

    The request made by FVB asked for advice and analysis regarding the value of recapturing the braking energy of trains operating on electric light rail transit systems. A specific request was to evaluate the concept of generating hydrogen by electrolysis. The hydrogen would, in turn, power fuel cells that could supply electric energy back into the system for train propulsion or, possibly, also to the grid. To allow quantitative assessment of the potential resource, analysis focused on operations of the SoundTransit light rail system in Seattle, Washington. An initial finding was that the full cycle efficiency of producing hydrogen as the medium for capturing and reusing train braking energy was quite low (< 20%) and, therefore, not likely to be economically attractive. As flywheel energy storage is commercially available, the balance of the analysis focused the feasibility of using this alternative on the SoundTransit system. It was found that an investment in a flywheel with a 25-kWh capacity of the type manufactured by Beacon Power Corporation (BPC) would show a positive 20-year net present value (NPV) based on the current frequency of train service. The economic attractiveness of this option would increase initially if green energy subsidies or rebates were applicable and, in the future, as the planned frequency of train service grows.

  8. Flexible Local Load Controller for Fast ElectricVehicle Charging Station Supplemented with Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; SUN, BO; Schaltz, Erik

    2014-01-01

    Electric vehicle charging infrastructure is hitting the stage where its impact on performance and operation of power systems becomes more and more pronounced. Aiming to utilize the existing power distribution infrastructure and delay its expansion, an approach that includes installation of dedica...

  9. Functional and Muscle-Size Effects of Flywheel Resistance Training with Eccentric-Overload in Professional Handball Players.

    Science.gov (United States)

    Maroto-Izquierdo, Sergio; García-López, David; de Paz, José A

    2017-12-01

    The aim of the study was to analyse the effects of 6 week (15 sessions) flywheel resistance training with eccentric-overload (FRTEO) on different functional and anatomical variables in professional handball players. Twenty-nine athletes were recruited and randomly divided into two groups. The experimental group (EXP, n = 15) carried out 15 sessions of FRTEO in the leg-press exercise, with 4 sets of 7 repetitions at a maximum-concentric effort. The control group (CON, n = 14) performed the same number of training sessions including 4 sets of 7 maximum repetitions (7RM) using a weight-stack leg-press machine. The results which were measured included maximal dynamic strength (1RM), muscle power at different submaximal loads (PO), vertical jump height (CMJ and SJ), 20 m sprint time (20 m), T-test time (T-test), and Vastus-Lateralis muscle (VL) thickness. The results of the EXP group showed a substantially better improvement (p handball requires repeated short, explosive effort such as accelerations and decelerations during sprints with changes of direction, these results suggest that FRTEO affects functional and anatomical changes in a way which improves performance in well-trained professional handball players.

  10. The ground stone components of drills in the ancient Near East: Sockets, flywheels, cobble weights, and drill bits

    Directory of Open Access Journals (Sweden)

    David Ilan

    2016-10-01

    Full Text Available Three types of drills are known from antiquity: the bow drill, the pump drill and the crank drill. Each type often included ground stone components - sockets, weights and flywheels. However, these components are inconspicuous; on their own they are almost never associated with drills. The result is that the drill is nearly invisible in many assemblages, particularly those of the proto-historic and historic periods, from the Chalcolithic through to late antiquity. In this article I focus on the identification of the possible ground stone components of each of these drill types. The means by which these components were attached or applied to the drill shaft is examined and the way that they related to the rotary motion of drills is laid out. I briefly discuss the historical development of each type, referencing more detailed studies, where available. This study should be seen as a prelude to a more comprehensive study that will test hypotheses by means of experiment and catalogue more completely and precisely the ground stone components of drills that have been unidentified or misidentified in archaeological contexts.

  11. 2011 Naval Energy Forum. Volume 2

    Science.gov (United States)

    2011-10-14

    of history hits a curve, the intellectuals fall off.” - Karl Marx 2 …when conventional wisdom makes no sense 3 Source: New Scientist - http...Demonstration • In Field Demonstration FY11 FY12 FY13 FY14 • Workshop • Threshold Req. • Joint BAA Materials R&D Device R&D • Advanced Flywheels...Metal-air Battery • Workshop • Threshold Req. • Joint BAA ARPA-E: Advanced Energy Storage Devices Silicon Carbide (SiC) Wide Band-Gap High

  12. Diffusion processes in freely suspended smectic films

    Science.gov (United States)

    Śliwa, I.; Zakharov, A. V.

    2017-08-01

    A molecular model describing translational diffusion in freely suspended smectic films (FSSFs) in air is proposed. This model is based on the random walk theory and allows calculation of the translational diffusion coefficient (TDC) across smectic layers (along the director). All values necessary for calculating the TDC are obtained within the generalized mean-field model considering not only anisotropic interactions between nearest neighbors of molecules forming FSSFs, but also the stabilizing effect of the smectic/air interface. The spatial inhomogeneity of order parameters over the FSSF section, arising in this case, results in the fact that the surface tension at the smectic/air interface not only suppresses thermal fluctuations in surface layers, but also completely suppresses translational diffusion of molecules from the FSSF to air. The results of calculations of dimensional translational diffusion in the bulk of the FSSF formed by 5- n-alkyl-2-(4- n-(perfluoroalkyl-metyleneoxy))pentyl molecules during its thinning show that the TDC monotonically increases as the smectic film is thinned.

  13. Energy

    CERN Document Server

    Foland, Andrew Dean

    2007-01-01

    Energy is the central concept of physics. Unable to be created or destroyed but transformable from one form to another, energy ultimately determines what is and isn''t possible in our universe. This book gives readers an appreciation for the limits of energy and the quantities of energy in the world around them. This fascinating book explores the major forms of energy: kinetic, potential, electrical, chemical, thermal, and nuclear.

  14. The science of energy

    CERN Document Server

    Newton, Roger G

    2012-01-01

    This book aims to describe the scientific concepts of energy. Accessible to readers with no scientific education beyond high-school chemistry, it starts with the basic notion of energy and the fundamental laws that govern it, such as conservation, and explains the various forms of energy, such as electrical, chemical, and nuclear. It then proceeds to describe ways in which energy is stored for very long times in the various fossil fuels (petroleum, gas, coal) as well as for short times (flywheels, pumped storage, batteries, fuel cells, liquid hydrogen). The book also discusses the modes of transport of energy, especially those of electrical energy via lasers and transmission lines, as well as why the latter uses alternating current at high voltages. The altered view of energy introduced by quantum mechanics is also discussed, as well as how almost all the Earth's energy originates from the Sun. Finally, the history of the forms of energy in the course of development of the universe is described, and how this ...

  15. An atomistic investigation of the effect of strain on frictional properties of suspended graphene

    Directory of Open Access Journals (Sweden)

    Qingshun Bai

    2016-05-01

    Full Text Available We performed molecular dynamics (MD simulations of a diamond probe scanned on a suspended graphene to reveal the effect of strain on the frictional properties of suspended graphene. The graphene was subjected to some certain strain along the scanning direction. We compared the friction coefficient obtained from different normal loads and strain. The results show that the friction coefficient can be decreased about one order of magnitude with the increase of the strain. And that can be a result of the decreased asymmetry of the contact region which is caused by strain. The synthetic effect of potential energy and the fluctuation of contact region were found to be the main reason accounting for the fluctuation of the friction force. The strain can reduce the fluctuation of the contact region and improve the stability of friction.

  16. An atomistic investigation of the effect of strain on frictional properties of suspended graphene

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Qingshun; He, Xin; Bai, Jinxuan [School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Tong, Zhen [Centre for precision technologies, University of Huddersfield, Huddersfield, HD1 3DH (United Kingdom)

    2016-05-15

    We performed molecular dynamics (MD) simulations of a diamond probe scanned on a suspended graphene to reveal the effect of strain on the frictional properties of suspended graphene. The graphene was subjected to some certain strain along the scanning direction. We compared the friction coefficient obtained from different normal loads and strain. The results show that the friction coefficient can be decreased about one order of magnitude with the increase of the strain. And that can be a result of the decreased asymmetry of the contact region which is caused by strain. The synthetic effect of potential energy and the fluctuation of contact region were found to be the main reason accounting for the fluctuation of the friction force. The strain can reduce the fluctuation of the contact region and improve the stability of friction.

  17. Influence of charge carriers on corrugation of suspended graphene

    Science.gov (United States)

    Kirilenko, Demid A.; Gorodetsky, Andrei; Baidakova, Marina V.

    2018-02-01

    Electronic degrees of freedom are predicted to play a significant role in mechanics of two-dimensional crystalline membranes. Here we show that appearance of charge carriers may cause a considerable impact on suspended graphene corrugation, thus leading to additional mechanism resulting in charge carriers mobility variation with their density. This finding may account for some details of suspended graphene conductivity dependence on its doping level and suggests that proper modeling of suspended graphene-based device properties must include the influence of charge carriers on its surface corrugation.

  18. Elemental Spatiotemporal Variations of Total Suspended Particles in Jeddah City

    Directory of Open Access Journals (Sweden)

    Mohammad W. Kadi

    2014-01-01

    Full Text Available Elements associated with total suspended particulate matter (TSP in Jeddah city were determined. Using high-volume samplers, TSP samples were simultaneously collected over a one-year period from seven sampling sites. Samples were analyzed for Al, Ba, Ca, Cu, Mg, Fe, Mn, Zn, Ti, V, Cr, Co, Ni, As, and Sr. Results revealed great dependence of element contents on spatial and temporal variations. Two sites characterized by busy roads, workshops, heavy population, and heavy trucking have high levels of all measured elements. Concentrations of most elements at the two sites exhibit strong spatial gradients and concentrations of elements at these sites are higher than other locations. The highest concentrations of elements were observed during June–August because of dust storms, significant increase in energy consumption, and active surface winds. Enrichment factors of elements at the high-level sites have values in the range >10~60 while for Cu and Zn the enrichment factors are much higher (~0–>700 indicating that greater percentage of TSP composition for these three elements in air comes from anthropogenic activities.

  19. Servo-Drive Amplifier for Micro-Satellite Superconductor-Levitated Flywheels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new servo-drive technology is available to support energy storage and navigation for micro-satellites. Exploiting the ?pinning? effect of high-temperature...

  20. Introduction to suspended-sediment sampling

    Science.gov (United States)

    Nolan, K. Michael; Gray, John R.; Glysson, G. Douglas

    2005-01-01

    Knowledge of the amount and timing of sediment transport in streams is important to those directly or indirectly responsible for developing and managing water and land resources. Such data are often used to judge the health of watershed and the success or failure of activities designed to mitigate adverse impacts of sediment on streams and stream habitats. This training class presents an introduction to methods currently used by the U.S. Geological Survey (USGS) to sample suspended-sediment concentrations in streams. The presentation is narrated, but you control the pace of the presentation. If the computer you are using can view 'MPEG' videos you will be able to take advantage of videos interspersed in the presentation. A test, found at the end of the presentation, can be taken to assess how well you understood the training material. The class, which is registered as class SW4416 with the National Training Center of the USGS, should take two or three hours to complete. In order to use the presentation provided via this Web page, you will need to download a large disc images (linked below) and 'burn' it to a blank CD-ROM using a CD-ROM recorder on your computer. The presentation will only run on a Windows-based personal computer (PC). The presentation was developed using Macromedia Director MX 20041 and is contained in the file 'SIR05-5077.exe' which should autolaunch. If it does not, the presentation can be started by double-clicking on the file name. A sound card and speakers are necessary to take advantage of narrations that accompany the presentation. Text of narrations is provided, if you are unable to listen to narrations. Instructions for installing and running the presentation are included in the file 'Tutorial.htm', which is on the CD. 1 Registered Trademark: Macromedia Incorporated

  1. Ratios of total suspended solids to suspended sediment concentrations by particle size

    Science.gov (United States)

    Selbig, W.R.; Bannerman, R.T.

    2011-01-01

    Wet-sieving sand-sized particles from a whole storm-water sample before splitting the sample into laboratory-prepared containers can reduce bias and improve the precision of suspended-sediment concentrations (SSC). Wet-sieving, however, may alter concentrations of total suspended solids (TSS) because the analytical method used to determine TSS may not have included the sediment retained on the sieves. Measuring TSS is still commonly used by environmental managers as a regulatory metric for solids in storm water. For this reason, a new method of correlating concentrations of TSS and SSC by particle size was used to develop a series of correction factors for SSC as a means to estimate TSS. In general, differences between TSS and SSC increased with greater particle size and higher sand content. Median correction factors to SSC ranged from 0.29 for particles larger than 500m to 0.85 for particles measuring from 32 to 63m. Great variability was observed in each fraction-a result of varying amounts of organic matter in the samples. Wide variability in organic content could reduce the transferability of the correction factors. ?? 2011 American Society of Civil Engineers.

  2. Controls on suspended aggregate size in partially mixed estuaries

    Science.gov (United States)

    Fugate, David C.; Friedrichs, Carl T.

    2003-10-01

    Knowledge of aggregate size in estuaries is important to determining the fate and transport of suspended sediment and particle adherent contaminants. We have used a suite of in situ instruments to determine the controls of aggregate size distributions in three muddy, partially mixed estuaries in the mid-Atlantic USA. A novel method is presented to estimate turbulent kinetic energy (TKE) production and the resulting Kolmogorov microscale ( λK) using a profiling acoustic Doppler velocimeter that has been contaminated by boat motion. The physical processes that control particle size distribution differ in the three estuaries due to the different hydrodynamics and benthic characteristics. Controls within each estuary also vary with different depth regimes. Surface particle size dynamics in all the studied estuaries are affected by irregular advection events. In the hydrodynamically energetic York River, mid-depth regions are controlled tidally by the combined processes of small λK decreasing particle size at high TKE and differential settling increasing particle size during lower TKE, more stratified conditions. Mid-depth regions in the lower energy Elizabeth River are controlled by irregular resuspension and trapping at the pycnocline of large low density particles. Bottom regions in all estuaries are most strongly influenced by resuspension, tidally in the energetic estuaries and irregularly in the low energy estuary. Near-bed particle size distributions are controlled by both λK and the distribution of particles in the bed in the higher energy estuaries. Just above the bed, large porous particles survive resuspension in the lower energy Elizabeth River, particles become smaller with decreased λK in the more energetic York River, and biological aggregation causes large dense particles to resist turbulent breakup in the Chesapeake Bay, which has a more active benthic community. The net result just above the bed is that particle size and settling velocity are

  3. Suspended sediment concentration profiles from synoptic satellite observations

    Digital Repository Service at National Institute of Oceanography (India)

    Ramakrishnan, R.; Rajawat, A; Chauhan, O.S.

    A method is developed to estimate vertical suspended sediment concentration (SSC) profiles in Gulf of Kachchh, from the sediment concentration values derived from synoptic observations of Ocean Colour Monitor (OCM). Under the influence of currents...

  4. Monosaccharide composition of suspended particles from the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Sankaran, P.D.; Wagh, A.B.

    Neutral carbohydrates were determined as alditol acetates by capillary gas chromatography in the hydrolysates of suspended particulate samples (40) collected from 8 depths (approx 1 to 1,000 m) at 5 stations of the Bay of Bengal. Eight individual...

  5. Particles matter: Transformation of suspended particles in constructed wetlands

    NARCIS (Netherlands)

    Mulling, B.T.M.

    2013-01-01

    This thesis shows that constructed wetlands transform suspended particles in (treated) municipal wastewater through selective precipitation in ponds, biological filtering by plankton communities and physical and biological retention in reed beds. These processes effectively remove faecal indicator

  6. Energy

    CERN Document Server

    Robertson, William C

    2002-01-01

    Confounded by kinetic energy? Suspect that teaching about simple machines isn t really so simple? Exasperated by electricity? If you fear the study of energy is beyond you, this entertaining book will do more than introduce you to the topic. It will help you actually understand it. At the book s heart are easy-to-grasp explanations of energy basics work, kinetic energy, potential energy, and the transformation of energy and energy as it relates to simple machines, heat energy, temperature, and heat transfer. Irreverent author Bill Robertson suggests activities that bring the basic concepts of energy to life with common household objects. Each chapter ends with a summary and an applications section that uses practical examples such as roller coasters and home heating systems to explain energy transformations and convection cells. The final chapter brings together key concepts in an easy-to-grasp explanation of how electricity is generated. Energy is the second book in the Stop Faking It! series published by NS...

  7. Suspended-sediment and suspended-sand concentrations and loads for selected streams in the Mississippi River Basin, 1940-2009

    Science.gov (United States)

    Heimann, David C.; Cline, Teri L.; Glaspie, Lori M.

    2011-01-01

    This report presents suspended-sediment concentration and streamflow data, describes load-estimation techniques used in the computation of annual suspended-sediment loads, and presents annual suspended-sediment loads for 48 streamgaging stations within the Mississippi River Basin. Available published, unpublished, and computed annual total suspended-sediment and suspended-sand loads are presented for water years 1940 through 2009. When previously published annual loads were not available, total suspended-sediment and sand loads were computed using available data for water years 1949 through 2009. A table of suspended-sediment concentration and daily mean streamflow data used in the computation of annual loads is presented along with a table of compiled and computed annual suspended-sediment and suspended-sand loads, annual streamflows, and flow-weighted concentrations for the 48 stations.

  8. Suspended sediment apportionment in a South-Korean mountain catchment

    Science.gov (United States)

    Birkholz, Axel; Meusburger, Katrin; Park, Ji-Hyung; Alewell, Christine

    2016-04-01

    Due to the rapid agricultural expansion and intensification during the last decades in South-Korea, large areas of hill slope forests were transformed to paddies and vegetable fields. The intensive agriculture and the easily erodible soils in our catchment are a major reason for the increased erosion causing suspended sediments to infiltrate into the close drinking water reservoir. The drinking water reservoir Lake Soyang provides water supply for over ten million people in Seoul. Landscape managers need to know the exact origin of these sediments before they can create landscape amelioration schemes. We applied a compound-specific stable isotope (CSSI) approach (Alewell et al., 2015) to apportion the sources of the suspended sediments between forest and agricultural soil contribution to the suspended sediments in a different catchment and applied the same approach to identify and quantify the different sources of the suspended sediments in the river(s) contributing to Lake Soyang. We sampled eight soil sites within the catchment considering the different landuse types forest, rice paddies, maize and vegetables. Suspended sediments were sampled at three outlets of the different sub-catchments. Soils and suspended sediments are analysed for bulk carbon and nitrogen isotopes, compound-specific carbon isotopes of plant-wax derived long-chain fatty acids and long-chain n-alkanes. Fatty acid and alkane isotopes are then used in mixing calculations and the mixing model software IsoSource to find out the contribution of the different source soils to the suspended sediments. We present first data of the source soils and the suspended sediments. C. Alewell, A. Birkholz, K. Meusburger, Y. Schindler-Wildhaber, L. Mabit, 2015. Sediment source attribution from multiple land use systems with CSIA. Biogeosciences Discuss. 12: 14245-14269.

  9. Turbulence control of suspended matter aggregate size

    Science.gov (United States)

    Jago, C. F.; Jones, S. E.; Rippeth, T. P.; Simpson, J. H.

    2003-04-01

    The size and properties of the aggregates which comprise suspended particulate matter (SPM) change on short time and length scales in shelf seas. There is experimental and theoretical evidence to suggest that turbulence plays a key role in aggregation but there is contradictory evidence with respect to disaggregation: it has been proposed that sinking stresses, rather than turbulent stresses, are the dominant control of disaggregation. But there is little observational evidence for turbulence control of particle properties. New observations are presented which provide compelling evidence for turbulence control of both aggregation and disaggregation. TKE dissipation and particle size were measured in situ at stratified sites in the northern North Sea in 110 m water depth during the period of weakening of the seasonal thermocline (in October/November) and in the Clyde Sea in 55 m water depth (April). There were similar vertical distributions of TKE dissipation E, SPM concentration C, and particle size D at both sites. At the base of the thermocline, there were minima in E and C, but a maximum in D, indicating that enhanced aggregation was occurring in this region of low turbulent stress. In the bottom mixed layer, E and C increased, while D decreased due to disaggregation in this region of increasing turbulent stress towards the seabed. Particles settling out of the low stress region at the base of the thermocline began to disaggregate when E increased to 3.2x10-6 watts m-2. D did not correlate directly with E because aggregation is a function of collision frequency (and hence of both C and E): this can be accounted for using a simplified theoretical aggregation model which treats flocs as self-similar fractal entities and allows simultaneous floc formation and break up, specified as functions of C and E. It was found that in the northern North Sea the measured D represents an equilibrium size predicted by the model, while in the Clyde Sea tidal variation in both C

  10. Combined Discrete Space Voltage Vector with Direct Torque Control for Bearingless Brushless DC Motor and Closed-Loop Suspended Force Control

    Directory of Open Access Journals (Sweden)

    Weiran Wang

    2013-06-01

    Full Text Available In order to improve the performance of bearingless brushless DC motor, a closed-loop suspended force controller combining the discrete space voltage vector modulation is applied and the direct torque control is presented in this paper. Firstly, we increase the number of the control vector to reduce the torque ripple. Then, the suspending equation is constructed which is spired by the direct torque control algorithm. As a result, the closed-loop suspended force controller is built. The simulated and experimental results evaluate the performance of the proposed method. The more advantage is that the proposed algorithm can achieve the fast torque response, reduce the torque ripple, and follow ideal stator flux track. Furthermore, the motor which implants the closed-loop suspended force controller cannot onlyobtain the dynamic response rapidly and displacement control accurately, but also has the characteristics of bearingless brushless DC motor (such as simple structure, high energy efficiency, small volume and low failure rate.

  11. NOTE: Effects of powder additives suspended in dielectric on crater characteristics for micro electrical discharge machining

    Science.gov (United States)

    Yeo, S. H.; Tan, P. C.; Kurnia, W.

    2007-11-01

    The effects of using powder additives suspended in dielectric on crater characteristics for micro electrical discharge machining (PSD micro-EDM) are investigated through the conduct of single RC discharge experiments at low discharge energies of 2.5 µJ, 5 µJ and 25 µJ. Through the introduction of additive particles into the dielectric, results of the single discharge experiments show the formation of craters with smaller diameters and depths, and having more consistent circular shapes than those produced in dielectric without additive. These craters also possess a noticeable morphological difference compared to those generated in dielectric without additive. In addition, discharge current measurements show a smaller amount of charges flowing between the tool electrode and workpiece, and at a slower flow rate when additives are present in the dielectric. Furthermore, based on the experimental results and findings from studies done in nanofluids, a hypothesis is made on the effects of powder suspended dielectric on the crater formation mechanism. The increased viscosity and enhanced thermal conductivity of a powder suspended dielectric lower the plasma heat flux into the electrode and raise the rate of heat dissipation away from the molten cavity. As a result, a smaller-sized crater having a larger amount of resolidified material within the crater cavity is formed.

  12. Acoustic backscatter by suspended cohesive sediments: Field observations, Seine Estuary, France

    Science.gov (United States)

    Sahin, Cihan; Verney, Romaric; Sheremet, Alexandru; Voulgaris, George

    2017-02-01

    Observations of suspended sediment size and concentration, flow and acoustic backscatter intensity collected on the Seine Estuary (France) are used to study the acoustic response in cohesive-sediment dominated environments. Estimates of suspended sediment concentration based on optical backscatter sensors and water samples are used to calibrate the acoustic backscatter intensity. The vertical structure of suspended sediment concentration is then estimated from acoustic backscatter information. To our knowledge, this is the first field application of the recently proposed model of acoustic scattering by flocculating suspensions based on the variation of particle density (floc-scattering model). The estimates of sediment concentration reproduce well the observations under different tidal (neap/spring) conditions, confirming the applicability of the new model in the field when detailed particle size measurements are available. When particle size measurements are not available, using estimated floc sizes based on the turbulence intensities may provide reasonable SSC profiles. During spring tide events (associated with strong currents, small flocs and large concentrations), the performances of the new floc-scattering model and the previous models given for solid particle-scattering are comparable. The floc-scattering model increases the quality of the SSC estimates especially during low-energy conditions characterized with larger flocs.

  13. Fractional quantum Hall effect in suspended graphene: Transport coefficients and electron interaction strength

    Science.gov (United States)

    Abanin, D. A.; Skachko, I.; Du, X.; Andrei, E. Y.; Levitov, L. S.

    2010-03-01

    Recently, fractional-quantized Hall effect was observed in suspended graphene (SG), a free-standing monolayer of carbon, where it was found to persist up to T=10K . The best results in those experiments were obtained on micron-size flakes, on which only two-terminal transport measurements could be performed. Here we address the problem of extracting transport coefficients of a fractional quantum Hall state from the two-terminal conductance. We develop a general method, based on the conformal invariance of two-dimensional magnetotransport, and employ it to analyze the measurements on SG. From the temperature dependence of longitudinal conductivity, extracted from the measured two-terminal conductance, we estimate the energy gap of quasiparticle excitations in the fractional-quantized ν=1/3 state. The gap is found to be significantly larger than in GaAs-based structures, signaling much stronger electron interactions in suspended graphene. Our approach provides a tool for the studies of quantum transport in suspended graphene and other nanoscale systems.

  14. Energy Management Analysis under Different Operating Modes for a Euro-6 Plug-in Hybrid Passenger Car

    OpenAIRE

    CUBITO CLAUDIO; ROLANDO LUCIANO; MILLO FEDERICO; CIUFFO BIAGIO; SERRA SIMONE; TRENTADUE GERMANA; OTURA GARCIA MARCOS; FONTARAS GEORGIOS

    2016-01-01

    This article analyses the Energy Management System (EMS) of a Euro 6 C-segment parallel Plug-In Hybrid (PHEV) available on the European market, equipped with a Flywheel Alternator Starter (FAS). The car has various selectable operating modes, such as the Zero Emission Vehicle (ZEV), Blended and Sport, characterized by a different usage of the electric driving with significant effects on the electric range and on CO2 emissions. The different hybrid control strategies were investigated apply...

  15. Gaseous Mediators and Mitochondrial Function: The Future of Pharmacologically Induced Suspended Animation?

    Directory of Open Access Journals (Sweden)

    Clair Hartmann

    2017-09-01

    Full Text Available The role of nitric oxide (NO, carbon monoxide (CO, and hydrogen sulfide (H2S as poisonous gases is well-established. However, they are not only endogenously produced but also, at low concentrations, exert beneficial effects, such as anti-inflammation, and cytoprotection. This knowledge initiated the ongoing debate, as to whether these molecules, also referred to as “gaseous mediators” or “gasotransmitters,” could serve as novel therapeutic agents. In this context, it is noteworthy, that all gasotransmitters specifically target the mitochondria, and that this interaction may modulate mitochondrial bioenergetics, thereby subsequently affecting metabolic function. This feature is of crucial interest for the possible induction of “suspended animation.” Suspended animation, similar to mammalian hibernation (and/or estivation, refers to an externally induced hypometabolic state, with the intention to preserve organ function in order to survive otherwise life-threatening conditions. This hypometabolic state is usually linked to therapeutic hypothermia, which, however, comes along with adverse effects (e.g., coagulopathy, impaired host defense. Therefore, inducing an on-demand hypometabolic state by directly lowering the energy metabolism would be an attractive alternative. Theoretically, gasotransmitters should reversibly interact and inhibit the mitochondrial respiratory chain during pharmacologically induced suspended animation. However, it has to be kept in mind that this effect also bears the risk of cytotoxicity resulting from the blockade of the mitochondrial respiratory chain. Therefore, this review summarizes the current knowledge of the impact of gasotransmitters on modulating mitochondrial function. Further, we will discuss their role as potential candidates in inducing a suspended animation.

  16. Suspended matter and fluid mud off Alleppey, southwest coast of India

    Science.gov (United States)

    Shynu, R.; Rao, V. Purnachandra; Samiksha, S. V.; Vethamony, P.; Naqvi, S. W. A.; Kessarkar, Pratima M.; Babu, M. T.; Dineshkumar, P. K.

    2017-02-01

    Time series measurements on suspended particulate matter (SPM) were made at one non-mud bank (M1) and two mud bank stations (M2 and M3) off Alleppey, south west coast of India. The mean SPM was low in surface (6.2 mg/l) and mid-depth (3.7 mg/l) waters and higher in bottom-depth waters (24.6 mg/l) of these stations, during both pre-monsoon and monsoon seasons. Near bed suspended sediment results indicated low SPM during July (0.042 g/l) and September (0.018 g/l) at M1, but very high SPM at M2 (9.2 g/l) and M3 (6.2 g/l) during July that decreased (M2: 0.033 g/l; M3: 0.1 g/l) again in September. Observations based on LISST-25X indicated that optical transmission (OT) was high (80-100%) in surface and mid-depth waters but decreased with increasing depth. Near bed waters at M2 and M3 stations showed ∼1 m thick fluid layer with 0% OT and with high particle volume concentrations (150-200 μl/l) during monsoon. Bottom sediments were clayey silts. Sediments of fluid mud close to the bottom at M2 and M3 stations. As the wave height decreased from ∼3 m in May to 0.76 m in July, the dissipated wave energy probably liquefied, eroded and re-suspended the bottom sediment to form fluid mud. Upwelling currents may have been involved in the up keep and transportation of fluid mud. The suspended mud resettled at the bottom soon after the monsoon event.

  17. Elemental Composition of Suspended Particulate Matter Collected ...

    African Journals Online (AJOL)

    The samples were analysed by energy dispersive x-ray fluorescence (EDXRF) and atomic absorption spectroscopy (AAS) for up to 10 elements. It was found that 66% of the samples collected at two metres and 50% of the samples collected at four metres height exceeded the WHO 24 guideline of 70μg m-3. Reduction in ...

  18. Temperature signal in suspended sediment export from an Alpine catchment

    Science.gov (United States)

    Costa, Anna; Molnar, Peter; Stutenbecker, Laura; Bakker, Maarten; Silva, Tiago A.; Schlunegger, Fritz; Lane, Stuart N.; Loizeau, Jean-Luc; Girardclos, Stéphanie

    2018-01-01

    Suspended sediment export from large Alpine catchments ( > 1000 km2) over decadal timescales is sensitive to a number of factors, including long-term variations in climate, the activation-deactivation of different sediment sources (proglacial areas, hillslopes, etc.), transport through the fluvial system, and potential anthropogenic impacts on the sediment flux (e.g. through impoundments and flow regulation). Here, we report on a marked increase in suspended sediment concentrations observed near the outlet of the upper Rhône River Basin in the mid-1980s. This increase coincides with a statistically significant step-like increase in basin-wide mean air temperature. We explore the possible explanations of the suspended sediment rise in terms of changes in water discharge (transport capacity), and the activation of different potential sources of fine sediment (sediment supply) in the catchment by hydroclimatic forcing. Time series of precipitation and temperature-driven snowmelt, snow cover, and ice melt simulated with a spatially distributed degree-day model, together with erosive rainfall on snow-free surfaces, are tested to explore possible reasons for the rise in suspended sediment concentration. We show that the abrupt change in air temperature reduced snow cover and the contribution of snowmelt, and enhanced ice melt. The results of statistical tests show that the onset of increased ice melt was likely to play a dominant role in the suspended sediment concentration rise in the mid-1980s. Temperature-driven enhanced melting of glaciers, which cover about 10 % of the catchment surface, can increase suspended sediment yields through an increased contribution of sediment-rich glacial meltwater, increased sediment availability due to glacier recession, and increased runoff from sediment-rich proglacial areas. The reduced extent and duration of snow cover in the catchment are also potential contributors to the rise in suspended sediment concentration through

  19. Sticking of Hydrogen on Supported and Suspended Graphene at Low Temperature

    Science.gov (United States)

    Lepetit, Bruno; Jackson, Bret

    2011-12-01

    The physisorption of atomic hydrogen on graphene is investigated quantum mechanically using a semiempirical model for the lattice dynamics. A thermally averaged wave packet propagation describes the motion of the H atoms with respect to the membrane. Two graphene configurations, either supported on a silicone oxide substrate or suspended over a hole in the substrate, are considered. In both cases, the phonon spectrum is modified in such a way that graphene is stabilized with respect to thermal fluctuations. The sticking probabilities of hydrogen on these stabilized membranes at 10 K are high at low collision energies, and larger than on graphite.

  20. Hydrodynamic and suspended sediment transport controls on river mouth morphology

    Science.gov (United States)

    Falcini, F.; Piliouras, A.; Garra, R.; Guerin, A.; Jerolmack, D. J.; Rowland, J.; Paola, C.

    2014-01-01

    mouths building into standing bodies of water have strikingly varied growth habits. This presents a compelling pattern formation problem that is also of great practical relevance for subsurface prediction and managing coastal wetlands. Here we present a generalized 2.5-dimensional potential vorticity (PV) theory that explains sedimentation patterns of a sediment-laden stationary jet by coupling an understanding of vorticity with suspended sediment concentration fields. We explore the physical meaning of this new sediment-PV definition, and its impact on outflow depositional patterns, by analyzing data from a shallow wall-bounded plane jet experiment and by discussing new theoretical insights. A key result is that lateral advection and diffusion of suspended sediment are directly proportional to jet vorticity, a feature that reveals the mechanistic process that forms elongated channels by focused levee deposition. The new PV theory constitutes a more generalized mathematical framework that expands the Rouse theory for the equilibrium of suspended sediment.

  1. Dynamic transport of suspended sediment by solitary wave: Experimental study

    Science.gov (United States)

    cho, JaeNam; Kim, DongHyun; Hwang, KyuNam; Lee, SeungOh

    2016-04-01

    Solitary waves are able to transport a large amount of suspended sediment when approaching on the beach, which sometimes causes - serious beach erosion, especially in the east and south coastal lines in Korea. But it has rarely been known about the method how to evaluate or estimate the amount of beach erosion caused by solitary waves. Experimental assessment is necessary to comprehend the process of sediment transport on a slope. The prismatic rectangular channel is 12 m long, 0.8 m wide, and 0.75 m high. A sluice gate is applied at prismatic channel in order to produce the solitary waves. Upstream water depth is more than channel water depth and the sluice gate is suddenly opened to simulate conditions of solitary waves. A sand slope with a 1/6 and a sediment thickness is 0.03 m. The experimental sediments are used anthracite (d_50=1.547 mm ,C_u=1.38) and Jumoonjin sand (d_50=0.627 mm ,C_u=1.68). Specific laboratory equipment are designed to collect suspended sediment samples at the same time along the wave propagation at 5 points with evenly space. Each amount of sampling is approximately 25 ml and they are completely dried in oven over 24 hours according to the USGS (Guideline and standard techniques and method 3-C4). Two video cameras (Model No. : Sony, HDR-XR550) are mounted for capturing images at top and side-view when the processes of solitary wave and run up/down on slope. Also, this study are analyzed the correlation between Suspended sediment concentration and turbidity. Also, this study are analyzed the correlation between suspended sediment concentration and turbidity. Turbidity is used to verify suspended sediment concentration. Dimensionless analyses of experimental results carried out in this study. One dimensionless parameter is expressed with pressure of solitary wave on a slope to suspended sediment concentration, which is concerned about lifting force. The other is relate to drag force presenting with run up/down velocity on a slope and

  2. Design of a LC-tuned magnetically suspended rotating gyroscope

    Science.gov (United States)

    Jin, Lichuan; Zhang, Huaiwu; Zhong, Zhiyong

    2011-04-01

    A inductor-capacitor (LC) tuned magnetically suspended rotating gyroscope prototype is designed and analyzed. High permeability ferrite cores are used for providing suspension force, and the rotation system is designed using the switched reluctance motor (SRM) principle. According to the LC-tuned principle, magnetic suspension force expression has been derived. The electromagnetic properties of the gyroscope are simulated by the Ansoft Maxwell software. And our result is expected to be able to serve as a prototype of micro-electromechanical system (MEMS) magnetically suspended rotating gyroscope in future practical applications.

  3. Quantum Hall effect in multi-terminal suspended graphene devices

    Science.gov (United States)

    Ghahari, Fereshte; Zhao, Yue; Bolotin, Kirill; Kim, Philip

    2010-03-01

    The integer and fractional quantum hall effects have been already observed in two terminal suspended graphene devices. However in this two probe device geometry, mixing between magnetoresistance ρxx and Hall resistance ρxy for incompletely developed quantum Hall states leads to substantial deviation of conductance plateaus values. In this talk, we present the experimental results from four terminal suspended graphene devices. The quality of quantum Hall effect will be discussed in muti-terminal device geometry in conjunction with the current-induced annealing process to improve the quality of graphene samples.

  4. Colorimetry Technique for Scalable Characterization of Suspended Graphene.

    Science.gov (United States)

    Cartamil-Bueno, Santiago J; Steeneken, Peter G; Centeno, Alba; Zurutuza, Amaia; van der Zant, Herre S J; Houri, Samer

    2016-11-09

    Previous statistical studies on the mechanical properties of chemical-vapor-deposited (CVD) suspended graphene membranes have been performed by means of measuring individual devices or with techniques that affect the material. Here, we present a colorimetry technique as a parallel, noninvasive, and affordable way of characterizing suspended graphene devices. We exploit Newton's rings interference patterns to study the deformation of a double-layer graphene drum 13.2 μm in diameter when a pressure step is applied. By studying the time evolution of the deformation, we find that filling the drum cavity with air is 2-5 times slower than when it is purged.

  5. Assessment and preliminary design of an energy buffer for regenerative braking in electric vehicles

    Science.gov (United States)

    Buchholz, R.; Mathur, A. K.

    1979-01-01

    Energy buffer systems, capable of storing the vehicle energy during braking and reusing this stored energy during acceleration, were examined. Some of these buffer systems when incorporated in an electric vehicle would result in an improvement in the performance and range under stop and go driving conditions. Buffer systems considered included flywheels, hydropneumatic, pneumatic, spring, and regenerative braking. Buffer ranking and rating criteria were established. Buffer systems were rated based on predicted range improvements, consumer acceptance, driveability, safety, reliability and durability, and initial and life cycle costs. A hydropneumatic buffer system was selected.

  6. Simulation model for wind energy storage systems. Volume I. Technical report. [SIMWEST code

    Energy Technology Data Exchange (ETDEWEB)

    Warren, A.W.; Edsinger, R.W.; Chan, Y.K.

    1977-08-01

    The effort developed a comprehensive computer program for the modeling of wind energy/storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel and pneumatic). An acronym for the program is SIMWEST (Simulation Model for Wind Energy Storage). The level of detail of SIMWEST is consistent with a role of evaluating the economic feasibility as well as the general performance of wind energy systems. The software package consists of two basic programs and a library of system, environmental, and load components. Volume I gives a brief overview of the SIMWEST program and describes the two NASA defined simulation studies.

  7. Spatial distribution of soil erosion and suspended sediment ...

    Indian Academy of Sciences (India)

    sediment transport rate for Chou-Shui river basin ... 5, Anzhong Road,. Tainan 70970, Taiwan. 4. Department of Hydraulics and Ocean Engineering, National Cheng-Kung University, No. 1,. University Road, Tainan ... surface runoff discharge, suspended sediment transport rate, quantity of soil erosion, and spatial distribu-.

  8. Calamine lotion: experimenting with a new suspending agent.

    Science.gov (United States)

    Al-Achi, A; Greenwood, R; Akin-Isijola, A; Bullard, J

    1999-01-01

    The use of a new suspending agent is investigated. Calamine lotion, USP contains bentonite magma as a suspending agent. In this study, bentonite magma was partially or completely replaced with a new suspending agent called tahini. Tahini is sesame paste composed of crushed sesame seeds in sesame oil. It is frequently used in middle eastern food as a thickening and suspending agent. Calamine lotion was prepared, generally, according to the USP method. The formula contained 40% v/v magma. Tahini was added instead of bentonite magma by replacing 100%, 99%, 90%, 75%, 50% and 25% of the magma. The sedimentation volume and the degree of flocculation were calculated for the resulting preparations. Rheological characteristics of bentonite- and tahini-containing lotions were also determined. Sedimentation volume showed 0.723 and 0.851 (p=0.05) for the lotions containing 100% bentonite and 100% tahini, respectively. The degree of flocculation was 2.00 and 2.35 (p=0.05) for the 100% bentonite and 100% tahini lotions, respectively. The rheograms of all the suspensions showed pseudoplastic flow. Overall, the use of tahini in calamine lotion has improved the physical stability of the formula.

  9. Turbulence Flow Characteristics of Suspended Sediments and its ...

    African Journals Online (AJOL)

    These are inturn integrated to give the hydraulic resistance law for sediment laden flow. The law of velocity distribution in open channel flow with suspended sediments was derived introducing Monin-Obukhov Length L . The distribution equation agrees well with the observation of velocity profile in the experiments.

  10. Microscopic characterisation of suspended graphene grown by chemical vapour deposition

    NARCIS (Netherlands)

    Bignardi, L.; Dorp, W.F. van; Gottardi, S.; Ivashenko, O.; Dudin, P.; Barinov, A.; de Hosson, J.T.M.; Stöhr, M.; Rudolf, P.

    2013-01-01

    We present a multi-technique characterisation of graphene grown by chemical vapour deposition (CVD) and thereafter transferred to and suspended on a grid for transmission electron microscopy (TEM). The properties of the electronic band structure are investigated by angle-resolved photoelectron

  11. Geochemistry of suspended and settling solids in two freshwater lakes.

    NARCIS (Netherlands)

    Koelmans, A.A.

    1998-01-01

    This study describes the 1987–1992 time variationof the bulk chemical composition, levels of heavymetals, arsenic, nitrogen and phosporous insuspended and settling solids in Lake Volkerak andLake Zoom (The Netherlands). Suspended and setlingsolids were collected with continuous flowcentrifuges and

  12. Comparison of Suspended Solid Separation in Advanced Storm Overflow Structures

    DEFF Research Database (Denmark)

    Larsen, Torben; Sørensen, Morten Steen

    1990-01-01

    This paper describes a laboratory investigation of the separation of suspended solids in a circular weir overflow and a vortex separator. The basic idea is to evaluate the efficiency of a vortical flow in the overflow chamber, and to compare these results with other overflow structures....

  13. Current-use insecticides, phosphates and suspended solids in the ...

    African Journals Online (AJOL)

    In Western Cape orchard areas, the last pesticide application of the growing season in summer takes place at the end of February. Pesticides, total phosphates and total suspended solids (TSS) were measured in the Lourens River at the beginning of April 1999 prior to the first rainfall of the rainy season and in the middle of ...

  14. Reduction in density of suspended - sediment - laden natural waters

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Desa, E.; Desa, E.; Smith, D.; Peshwe, V.B.; VijayKumar, K.; Desa, J.A.E.

    to 0.4% - 4.5%) that of the density of the same water without suspended sediment. Teh values of peff in a given site differed from one tidal cycle to another (approx equal to 1.9%). These values varied slightly (less than 0.8%) from mid-tide to slack...

  15. Transport of suspended particles in turbulent open channel flows

    NARCIS (Netherlands)

    Breugem, W.A.

    2012-01-01

    Two experiments are performed in order to investigate suspended sediment transport in a turbulent open channel flow. The first experiment used particle image velocimetry (PIV) to measure the fluid velocity with a high spatial resolution, while particle tracking velocimetry (PTV) was used to measure

  16. Spatial Distribution of Suspended Particulate Matter in Mtwapa ...

    African Journals Online (AJOL)

    Surface water concentrations of inorganic nutrients and suspended particulate matter (SPM) components from Mtwapa and Shirazi creeks in Kenya were measured and compared. This was aimed at assessing the contribution of phytoplankton carbon, particulate organic carbon (POC) and detritus on the total SPM pool, and ...

  17. Nature of suspended particulate matter and concentrations of heavy ...

    African Journals Online (AJOL)

    The concentrations of metals in bottom sediment in the Tanzanian waters of Lake Victoria and the nature of suspended particulate matter (SPM) were analysed. The objective of the study was to compare levels of metals in sediment from different locations and to establish their sources. Metal concentrations were higher in ...

  18. Amino sugars in suspended particulate matter from the Bay of ...

    Indian Academy of Sciences (India)

    Amino sugars (AS)are important constituents of organic matter.However,very little is known about their cycling in marine waters.In this research,we assessed the distribution and cycling of these compounds in waters of the Bay of Bengal.For this purpose,samples of suspended particulate matter (SPM)were collected from 8 ...

  19. Stabilised suspending efficiency of Laponite XLG and sodium ...

    African Journals Online (AJOL)

    Charged drugs like Sulphamerazine may make pseudoplastic/plastic materials become Newtonian and loose their suspending power. In this study ... For this purpose, the rheograms of the systems were obtained by the use of a Haake rotoviscometer RV 12 utilizing a cup and rotor sensor system MV 1. In the absence of ...

  20. Self-Suspended Suspensions of Covalently Grafted Hairy Nanoparticles

    KAUST Repository

    Choudhury, Snehashis

    2015-03-17

    © 2015 American Chemical Society. Dispersions of small particles in liquids have been studied continuously for almost two centuries for their ability to simultaneously advance understanding of physical properties of fluids and their widespread use in applications. In both settings, the suspending (liquid) and suspended (solid) phases are normally distinct and uncoupled on long length and time scales. In this study, we report on the synthesis and physical properties of a novel family of covalently grafted nanoparticles that exist as self-suspended suspensions with high particle loadings. In such suspensions, we find that the grafted polymer chains exhibit unusual multiscale structural transitions and enhanced conformational stability on subnanometer and nanometer length scales. On mesoscopic length scales, the suspensions display exceptional homogeneity and colloidal stability. We attribute this feature to steric repulsions between grafted chains and the space-filling constraint on the tethered chains in the single-component self-suspended materials, which inhibits phase segregation. On macroscopic length scales, the suspensions exist as neat fluids that exhibit soft glassy rheology and, counterintuitively, enhanced elasticity with increasing temperature. This feature is discussed in terms of increased interpenetration of the grafted chains and jamming of the nanoparticles. (Chemical Presented).

  1. Spin Transport in High-Quality Suspended Graphene Devices

    NARCIS (Netherlands)

    Guimaraes, Marcos H. D.; Veligura, A.; Zomer, P. J.; Maassen, T.; Vera-Marun, I. J.; Tombros, N.; van Arees, B. J.; Wees, B.J. van

    We measure spin transport in high mobility suspended graphene (mu approximate to 10(5)cm(2)/(V s)), obtaining a (spin) diffusion coefficient of 0.1 m(2)/s and giving a lower bound on the spin relaxation time (tau(s) approximate to 150 ps) and spin relaxation length (lambda(s) = 4.7 mu m) for

  2. 40 CFR 52.330 - Control strategy: Total suspended particulates.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: Total suspended... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.330 Control strategy..., the State must repromulgate Regulation No. 1 to satisfy reasonably available control technology...

  3. Evaluation of the suspending properties of Abizia zygia gum on ...

    African Journals Online (AJOL)

    Method: The suspending properties of Albizia zygia gum (family Mimosoideae) were evaluated comparatively with those of Compound Tragacanth, Acacia and Gelatin at concentration range of 0.5 – 4.0%w/v in Sulphadimidine suspension. Characterization tests were carried out on purified Albizia zygia gum. Sedimentation ...

  4. Discrete Dynamics of Nanoparticle Channelling in Suspended Graphene

    DEFF Research Database (Denmark)

    Booth, Tim; Pizzocchero, Filippo; Andersen, Henrik

    2011-01-01

    We have observed a previously undescribed stepwise oxidation of mono- and few layer suspended graphene by silver nanoparticles in situ at subnanometer scale in an environmental transmission electron microscope. Over the range of 600–850 K, we observe crystallographically oriented channelling...

  5. Method for separating biological cells. [suspended in aqueous polymer systems

    Science.gov (United States)

    Brooks, D. E. (Inventor)

    1980-01-01

    A method for separating biological cells by suspending a mixed cell population in a two-phase polymer system is described. The polymer system consists of droplet phases with different surface potentials for which the cell populations exhibit different affinities. The system is subjected to an electrostatic field of sufficient intensity to cause migration of the droplets with an attendant separation of cells.

  6. Opportunities Suspended: The Disparate Impact of Disciplinary Exclusion from School

    Science.gov (United States)

    Losen, Daniel J.; Gillespie, Jonathan

    2012-01-01

    Well over three million children, K-12, are estimated to have lost instructional "seat time" in 2009-2010 because they were suspended from school, often with no guarantee of adult supervision outside the school. That's about the number of children it would take to fill every seat in every major league baseball park and every NFL stadium…

  7. Investigation of suspended sediment transport using ultrasonic techniques

    DEFF Research Database (Denmark)

    Bjørnø, Irina; Jensen, Leif Bjørnø

    1994-01-01

    The results of the initial experimental studies involving the scattering of ultrasonic signals from canonical and non-canonical shaped suspended particles with known elastical qualities are reported. These results have formed the basis for the development of a numerical model for ultrasound...

  8. Microwave-induced nonequilibrium temperature in a suspended carbon nanotube

    NARCIS (Netherlands)

    Hortensius, H.L.; Öztürk, A.; Zeng, P.; Driessen, E.F.C.; Klapwijk, T.M.

    2012-01-01

    Antenna-coupled suspended single carbon nanotubes exposed to 108?GHz microwave radiation are shown to be selectively heated with respect to their metal contacts. This leads to an increase in the conductance as well as to the development of a power-dependent DC voltage. The increased conductance

  9. Scanning tunneling spectroscopy of suspended single-wall carbon nanotubes

    NARCIS (Netherlands)

    LeRoy, B.J.; Lemay, S.G.; Kong, J.; Dekker, C.

    2004-01-01

    We have performed low-temperature scanning tunneling microscopy measurements on single-wall carbon nanotubes that are freely suspended over a trench. The nanotubes were grown by chemical vapor deposition on a Pt substrate with predefined trenches etched into it. Atomic resolution was obtained on the

  10. Evaluation of the Suspending Properties of the Coprecipitate of ...

    African Journals Online (AJOL)

    The suspending ability of the different ratios was evaluated in magnesium trisilicate suspension, and compared with a suspension prepared with Compound Tragacanth Powder BP (CTP) as well as a commercially available magnesium trisilicate suspension (MTS). The parameters tested were sedimentation rate, flow rate, ...

  11. Suspended microstructures of epoxy based photoresists fabricated with UV photolithography

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Anhøj, Thomas Aarøe; Caviglia, Claudia

    2017-01-01

    In this work we present an easy, fast, reliable and low cost microfabrication technique for fabricating suspended microstructures of epoxy based photoresistswith UV photolithography. Two different fabrication processes with epoxy based resins (SU-8 and mr-DWL) using UV exposures at wavelengths...

  12. Limited effect of fly-wheel and spinal mobilization exercise countermeasures on lumbar spine deconditioning during 90 d bed-rest in the Toulouse LTBR study

    Science.gov (United States)

    Belavý, Daniel L.; Ohshima, Hiroshi; Bareille, Marie-Pierre; Rittweger, Jörn; Felsenberg, Dieter

    2011-09-01

    We examined the effect of high-load fly-wheel (targeting the lower-limb musculature and concurrent loading of the spine via shoulder restraints) and spinal movement countermeasures against lumbar spine muscle atrophy, disc and spinal morphology changes and trunk isokinetic torque loss during prolonged bed-rest. Twenty-four male subjects underwent 90 d head-down tilt bed-rest and performed either fly-wheel (FW) exercises every three days, spinal movement exercises in lying five times daily (SpMob), or no exercise (Ctrl). There was no significant impact of countermeasures on losses of isokinetic trunk flexion/extension ( p≥0.65). Muscle volume change by day-89 of bed-rest in the psoas, iliacus, lumbar erector spinae, lumbar multifidus and quadratus lumborum, as measured via magnetic resonance imaging (MRI), was statistically similar in all three groups ( p≥0.33). No significant effect on MRI-measures of lumbar intervertebral disc volume, spinal length and lordosis ( p≥0.09) were seen either, but there was some impact ( p≤0.048) on axial plane disc dimensions (greater reduction than in Ctrl) and disc height (greater increases than in Ctrl). MRI-data from subjects measured 13 and 90-days after bed-rest showed partial recovery of the spinal extensor musculature by day-13 after bed-rest with this process complete by day-90. Some changes in lumbar spine and disc morphology parameters were still persistent 90-days after bed-rest. The present results indicate that the countermeasures tested were not optimal to maintain integrity of the spine and trunk musculature during bed rest.

  13. Hybrid Shipboard Microgrids: System Architectures and Energy Management Aspects

    DEFF Research Database (Denmark)

    Othman @ Marzuki, Muzaidi Bin; Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2017-01-01

    Strict regulation on emissions of air pollutants imposed by the maritime authorities has led to the introduction of hybrid microgrids to the shipboard power systems (SPSs) which acts toward energy efficient ships with less pollution. A hybrid energy system can include different means of generation...... such as renewables (e.g., solar PV, wind power) and conventionals (e.g., diesel engines) as well as energy storage systems (ESSs) such as batteries, fuel cells and flywheels. To optimally manage different energy sources in a shipboard microgrid while meeting different technical/environmental constraints......, it is necessary to set up an energy management system. This paper provides an overview of hybrid shipboard microgrids and discusses different methods of power and energy management in such systems which are essential for control, monitoring and optimizing the overall system performance in various mission profiles....

  14. Hybrid Shipboard Microgrids: System Architectures and Energy Management Aspects

    DEFF Research Database (Denmark)

    Othman @ Marzuki, Muzaidi Bin; Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2017-01-01

    such as renewables (e.g., solar PV, wind power) and conventionals (e.g., diesel engines) as well as energy storage systems (ESSs) such as batteries, fuel cells and flywheels. To optimally manage different energy sources in a shipboard microgrid while meeting different technical/environmental constraints......, it is necessary to set up an energy management system. This paper provides an overview of hybrid shipboard microgrids and discusses different methods of power and energy management in such systems which are essential for control, monitoring and optimizing the overall system performance in various mission profiles.......Strict regulation on emissions of air pollutants imposed by the maritime authorities has led to the introduction of hybrid microgrids to the shipboard power systems (SPSs) which acts toward energy efficient ships with less pollution. A hybrid energy system can include different means of generation...

  15. Energy Storage Systems as a Compliment to Wind Power

    Science.gov (United States)

    Sieling, Jared D.; Niederriter, C. F.; Berg, D. A.

    2006-12-01

    As Gustavus Adolphus College prepares to install two wind turbines on campus, we are faced with the question of what to do with the excess electricity that is generated. Since the College pays a substantial demand charge, it would seem fiscally responsible to store the energy and use it for peak shaving, instead of selling it to the power company at their avoided cost. We analyzed six currently available systems: hydrogen energy storage, flywheels, pumped hydroelectric storage, battery storage, compressed air storage, and superconducting magnetic energy storage, for energy and financial suitability. Potential wind turbine production is compared to consumption to determine the energy deficit or excess, which is fed into a model for each of the storage systems. We will discuss the advantages and disadvantages of each of the storage systems and their suitability for energy storage and peak shaving in this situation.

  16. Temperature signal in suspended sediment export from an Alpine catchment

    Directory of Open Access Journals (Sweden)

    A. Costa

    2018-01-01

    Full Text Available Suspended sediment export from large Alpine catchments ( >  1000 km2 over decadal timescales is sensitive to a number of factors, including long-term variations in climate, the activation–deactivation of different sediment sources (proglacial areas, hillslopes, etc., transport through the fluvial system, and potential anthropogenic impacts on the sediment flux (e.g. through impoundments and flow regulation. Here, we report on a marked increase in suspended sediment concentrations observed near the outlet of the upper Rhône River Basin in the mid-1980s. This increase coincides with a statistically significant step-like increase in basin-wide mean air temperature. We explore the possible explanations of the suspended sediment rise in terms of changes in water discharge (transport capacity, and the activation of different potential sources of fine sediment (sediment supply in the catchment by hydroclimatic forcing. Time series of precipitation and temperature-driven snowmelt, snow cover, and ice melt simulated with a spatially distributed degree-day model, together with erosive rainfall on snow-free surfaces, are tested to explore possible reasons for the rise in suspended sediment concentration. We show that the abrupt change in air temperature reduced snow cover and the contribution of snowmelt, and enhanced ice melt. The results of statistical tests show that the onset of increased ice melt was likely to play a dominant role in the suspended sediment concentration rise in the mid-1980s. Temperature-driven enhanced melting of glaciers, which cover about 10 % of the catchment surface, can increase suspended sediment yields through an increased contribution of sediment-rich glacial meltwater, increased sediment availability due to glacier recession, and increased runoff from sediment-rich proglacial areas. The reduced extent and duration of snow cover in the catchment are also potential contributors to the rise in suspended sediment

  17. Effects of Suspended Sediment on Early Life Stages of Smallmouth Bass (Micropterus dolomieu).

    Science.gov (United States)

    Suedel, Burton C; Wilkens, Justin L; Kennedy, Alan J

    2017-01-01

    The resuspension of sediments caused by activities, such as dredging operations, is a concern in Great Lakes harbors where multiple fish species spawn. To address such concerns, smallmouth bass (Micropterus dolomieu) were exposed to uncontaminated suspended sediment (nominally 0, 100, 250, and 500 mg/L) continuously for 72 h to determine the effects on egg-hatching success and swim-up fry survival and growth. The test sediments were collected from two harbors: (1) fine-grained sediment in Grand Haven Harbor, Lake Michigan, and (2) coarser-grained sediment in Fairport Harbor, Lake Erie. Eggs exposed to total suspended solids (TSS) concentrations >100 mg/L resulted in decreased survival of post-hatch larval fish. Fry survival was >90 % at the highest exposure concentration (500 mg/L), but growth was decreased when the exposure concentration was >100 mg/L. Growth and survival of swim-up fry held for a 7- and 26-day post-exposure the grow-out period was variable suggesting that the sediment grain size and strain of fish may influence lingering effects after the cessation of exposure. The results suggest that exposed eggs hatched normally; however, newly hatched larvae, which are temporarily immobile, are more vulnerable to the effects of suspended sediment. The swim-up fry were found to be more sensitive to high TSS concentrations in sandy relative to silty sediment. These data represent a conservative exposure scenario that can be extrapolated to high-energy systems in the field to inform management decisions regarding the necessity for dredging windows or need to implement controls to protect M. dolomieu.

  18. Suspended sediment profiles derived from spectral attenuation coefficients measurements using neural network method

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, G.; Suresh, T.; Matondkar, S.G.P.; Desa, E.; Kamath, S.S.

    total suspended matter values from water samples obtained at discrete depths at the same location. An artificial neural network (ANN) model has been used to derive suspended matter from the spectral values of beam attenuation coefficients measured using...

  19. Impact of sound attenuation by suspended sediment on ADCP backscatter calibrations

    NARCIS (Netherlands)

    Sassi, M.G.; Hoitink, A.J.F.; Vermeulen, B.

    2012-01-01

    Although designed for velocity measurements, acoustic Doppler current profilers (ADCPs) are widely being used to monitor suspended particulate matter in rivers and in marine environments. To quantify mass concentrations of suspended matter, ADCP backscatter is generally calibrated with in situ

  20. Effect of Martian Suspended Dust on Albedo Measurements from the MGS-TES Data

    OpenAIRE

    A. Zinzi; Palomba, E.; Rinaldi, G.; d'Amore, M.

    2010-01-01

    Suspended dust on Mars influences albedo measurements by orbiting instruments, but not necessary the real surface albedo. The aim of this study is to characterize the role of suspended aerosols on albedo measurement by remote sensing instruments.

  1. Design, analysis and control of cable-suspended parallel robots and its applications

    CERN Document Server

    Zi, Bin

    2017-01-01

    This book provides an essential overview of the authors’ work in the field of cable-suspended parallel robots, focusing on innovative design, mechanics, control, development and applications. It presents and analyzes several typical mechanical architectures of cable-suspended parallel robots in practical applications, including the feed cable-suspended structure for super antennae, hybrid-driven-based cable-suspended parallel robots, and cooperative cable parallel manipulators for multiple mobile cranes. It also addresses the fundamental mechanics of cable-suspended parallel robots on the basis of their typical applications, including the kinematics, dynamics and trajectory tracking control of the feed cable-suspended structure for super antennae. In addition it proposes a novel hybrid-driven-based cable-suspended parallel robot that uses integrated mechanism design methods to improve the performance of traditional cable-suspended parallel robots. A comparative study on error and performance indices of hybr...

  2. 48 CFR 52.209-6 - Protecting the Government's Interest When Subcontracting With Contractors Debarred, Suspended, or...

    Science.gov (United States)

    2010-10-01

    ...'s Interest When Subcontracting With Contractors Debarred, Suspended, or Proposed for Debarment. 52....209-6 Protecting the Government's Interest When Subcontracting With Contractors Debarred, Suspended... Government's Interest When Subcontracting With Contractors Debarred, Suspended, or Proposed for Debarment...

  3. 78 FR 48145 - Lemon Juice From Argentina: Continuation of Suspended Antidumping Duty Investigation

    Science.gov (United States)

    2013-08-07

    ... Doc No: 2013-19067] DEPARTMENT OF COMMERCE International Trade Administration [A-357-818] Lemon Juice... of the suspended investigation on lemon juice from Argentina would likely lead to continuation or... of the suspended antidumping duty investigation on lemon juice from Argentina (``suspended...

  4. Suspended 3D pyrolytic carbon microelectrodes for electrochemistry

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Caviglia, Claudia; Keller, Stephan Sylvest

    2017-01-01

    Carbon microelectrodes have a wide range of applications because of their unique material properties and biocompatibility. This work presents the fabrication and characterization of suspended pyrolytic carbon microstructures serving as three-dimensional (3D) carbon microelectrodes for electrochem...... resistance as compared to 2D carbon electrodes. The higher sensitivity of 3D carbon microelectrodes for electrochemical sensing was illustrated by dopamine detection.......Carbon microelectrodes have a wide range of applications because of their unique material properties and biocompatibility. This work presents the fabrication and characterization of suspended pyrolytic carbon microstructures serving as three-dimensional (3D) carbon microelectrodes...... for electrochemical applications. A 3D polymer template in epoxy based photoresist (SU-8) was fabricated with multiple steps of UV photolithography and pyrolysed at 900 °C to obtain 3D carbon microelectrodes. The pyrolytic carbon microstructures were characterized by SEM, Raman spectroscopy and XPS to determine...

  5. Approximate Series Solutions for Nonlinear Free Vibration of Suspended Cables

    Directory of Open Access Journals (Sweden)

    Yaobing Zhao

    2014-01-01

    Full Text Available This paper presents approximate series solutions for nonlinear free vibration of suspended cables via the Lindstedt-Poincare method and homotopy analysis method, respectively. Firstly, taking into account the geometric nonlinearity of the suspended cable as well as the quasi-static assumption, a mathematical model is presented. Secondly, two analytical methods are introduced to obtain the approximate series solutions in the case of nonlinear free vibration. Moreover, small and large sag-to-span ratios and initial conditions are chosen to study the nonlinear dynamic responses by these two analytical methods. The numerical results indicate that frequency amplitude relationships obtained with different analytical approaches exhibit some quantitative and qualitative differences in the cases of motions, mode shapes, and particular sag-to-span ratios. Finally, a detailed comparison of the differences in the displacement fields and cable axial total tensions is made.

  6. [Light absorption by suspended particulate matter in Chagan Lake, Jilin].

    Science.gov (United States)

    Wang, Yuan-Dong; Liu, Dian-Wei; Song, Kai-Shan; Zhang, Bai; Wang, Zong-Ming; Jiang, Guang-Ji; Tang, Xu-Guang; Lei, Xiao-Chun; Wu, Yan-Qing

    2011-01-01

    Spectral characteristics and the magnitudes of light absorption by suspended particulate matter were determined by spectrophotometry in this optically complex Lake Chagan waters for the purpose of surveying the natural variability of the absorption coefficients to parameterize the bio-optical models for converting satellite or in-situ water reflectance signatures into water quality information. Experiments were carried out on seasonal frozen Lake Chagan, one representative inland case-2 water body in Northeast of China. Particulate absorption properties analyzed using the field data on July 15th and October 12th 2009 were measured using the quantitative filter technique to produce absorption spectra containing several fractions that could be attributed to two main optical active constituents (OACs) phytoplankton pigments and non-algal particulates (mineral sediments, and organic detritus). Results suggested that the suspended particulate matter (SPM) concentration was higher while phytoplankton biomass (chlorophyll-a concentration) was lower in July and that in October. The spectral shape of total suspended particulate matter resembled that of non-algal particulates which contributed greater than phytoplankton in total particulate absorption during both periods. An obvious absorption peak occurring at around 440 nm exhibited an increase in phytoplankton contribution in October. Non-algal particulate absorption at 440 nm (a(NAP) (440)) had better correlation with total suspended particulate matter concentration than that with chlorophyll-a over the two periods. Light absorption by phytoplankton pigments in the Chagan lake region was generally lower than that of non-algal components. Chl. a dominating phytoplankton pigment composition functioned exponentially with its absorption coefficients at 440 and 675 nm specifically, the average values of which in July were 0.146 8 m2 x mg(-1) and 0.050 3 respectively while in October they were 0.153 3 and 0.013 2 m2 x mg(-1

  7. Remote Sensing of Suspended Sediment Dynamics in the Mississippi Sound

    Science.gov (United States)

    Merritt, D. N.; Skarke, A. D.; Silwal, S.; Dash, P.

    2016-02-01

    The Mississippi Sound is a semi-enclosed estuary between the coast of Mississippi and a chain of offshore barrier islands with relatively shallow water depths and high marine biodiversity that is wildly utilized for commercial fishing and public recreation. The discharge of sediment-laden rivers into the Mississippi Sound and the adjacent Northern Gulf of Mexico creates turbid plumes that can extend hundreds of square kilometers along the coast and persist for multiple days. The concentration of suspended sediment in these coastal waters is an important parameter in the calculation of regional sediment budgets as well as analysis of water-quality factors such as primary productivity, nutrient dynamics, and the transport of pollutants as well as pathogens. The spectral resolution, sampling frequency, and regional scale spatial domain associated with satellite based sensors makes remote sensing an ideal tool to monitor suspended sediment dynamics in the Northern Gulf of Mexico. Accordingly, the presented research evaluates the validity of published models that relate remote sensing reflectance with suspended sediment concentrations (SSC), for similar environmental settings, with 51 in situ observations of SSC from the Mississippi Sound. Additionally, regression analysis is used to correlate additional in situ observations of SSC in Mississippi Sound with coincident observations of visible and near-infrared band reflectance collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Aqua satellite, in order to develop a site-specific empirical predictive model for SSC. Finally, specific parameters of the sampled suspended sediment such as grain size and mineralogy are analyzed in order to quantify their respective contributions to total remotely sensed reflectance.

  8. Development of a microfluidic interface for suspended microchannel resonators

    OpenAIRE

    Maillard, Damien

    2016-01-01

    Suspended microchannel resonators (SMRs) are devices that detect particles in liquid samples. In comparison with similar resonating devices that must be immersed, SMRs allow the fluids to flow through microfluidic resonators. This principle of operation leads to a great reduction of the required sample and to enhanced quality factors. As such, SMRs show great potential for a variety of sensing applications. This thesis reports on the final steps of the microfabrication of SMRs and on the deve...

  9. On the Design of Suspended Roofs with Paraboloidal Surfaces

    Directory of Open Access Journals (Sweden)

    N. Ungureanu

    2006-01-01

    Full Text Available Some considerations concerning the design of the paraboloidal suspended roofs are made. The main geometric aspects are first time presented. For the roofs we propose, as pattern, the equivalent continuum membranes, and the efforts in the cable are determined by using the membrane efforts and their equations. Two examples are analyzed: elliptic paraboloide and hyperbolic paraboloide, with horizontal projection under the form of an ellipse.

  10. Technological advances in suspended-sediment surrogate monitoring

    Science.gov (United States)

    Gray, John R.; Gartner, Jeffrey W.

    2009-01-01

    Surrogate technologies to continuously monitor suspended sediment show promise toward supplanting traditional data collection methods requiring routine collection and analysis of water samples. Commercially available instruments operating on bulk optic (turbidity), laser optic, pressure difference, and acoustic backscatter principles are evaluated based on cost, reliability, robustness, accuracy, sample volume, susceptibility to biological fouling, and suitable range of mass concentration and particle size distribution. In situ turbidimeters are widely used. They provide reliable data where the point measurements can be reliably correlated to the river's mean cross section concentration value, effects of biological fouling can be minimized, and concentrations remain below the sensor's upper measurement limit. In situ laser diffraction instruments have similar limitations and can cost 6 times the approximate $5000 purchase price of a turbidimeter. However, laser diffraction instruments provide volumetric-concentration data in 32 size classes. Pressure differential instruments measure mass density in a water column, thus integrating substantially more streamflow than a point measurement. They are designed for monitoring medium-to-large concentrations, are generally unaffected by biological fouling, and cost about the same as a turbidimeter. However, their performance has been marginal in field applications. Acoustic Doppler profilers use acoustic backscatter to measure suspended sediment concentrations in orders of magnitude more streamflow than do instruments that rely on point measurements. The technology is relatively robust and generally immune to effects of biological fouling. Cost of a single-frequency device is about double that of a turbidimeter. Multifrequency arrays also provide the potential to resolve concentrations by clay silt versus sand size fractions. Multifrequency hydroacoustics shows the most promise for revolutionizing collection of continuous

  11. Segment Fixed Priority Scheduling for Self Suspending Real Time Tasks

    Science.gov (United States)

    2016-08-11

    for soft real- time systems [15]. Table 1 shows a brief... for execution are the times when a job of task arrives. For 2 ≤ ≤ , when , finishes its execution, it suspends itself for a time duration that lies...assume , and , can take non-negative values such that , ≤ , and let , = , . For each job, a segment , executes for a time duration that lies in

  12. Suspended biofilm carrier and activated sludge removal of acidic pharmaceuticals

    DEFF Research Database (Denmark)

    Falås, Per; Baillon-Dhumez, Aude; Andersen, Henrik Rasmus

    2012-01-01

    Removal of seven active pharmaceutical substances (ibuprofen, ketoprofen, naproxen, diclofenac, clofibric acid, mefenamic acid, and gemfibrozil) was assessed by batch experiments, with suspended biofilm carriers and activated sludge from several full-scale wastewater treatment plants. A distinct...... and attached solids for the carriers) of diclofenac, ketoprofen, gemfibrozil, clofibric acid and mefenamic acid compared to the sludges. Among the target pharmaceuticals, only ibuprofen and naproxen showed similar removal rates per unit biomass for the sludges and biofilm carriers. In contrast...

  13. Buckling analysis of stiff thin films suspended on a substrate with tripod surface relief structure

    Science.gov (United States)

    Yu, Qingmin; Chen, Furong; Li, Ming; Cheng, Huanyu

    2017-09-01

    A wavy configuration is a simple yet powerful structural design strategy, which has been widely used in flexible and stretchable electronics. A buckled structure created from a prestretch-contact-release process represents an early effort. Substrates with engineered surface relief structures (e.g., rectangular islands or tripod structure) have enabled stretchability to the devices without sacrificing their electric performance (e.g., high areal coverage for LEDs/photovoltaics/batteries/supercapacitors). In particular, the substrate with a tripod surface relief structure allows wrinkled devices to be suspended on a soft tripod substrate. This minimizes the contact area between devices and the deformed substrate, which contributes to a significantly reduced interfacial stress/strain. To uncover the underlying mechanism of such a design, we exploit the energy method to analytically investigate the buckling and postbuckling behaviors of stiff films suspended on a stretchable polymeric substrate with a tripod surface relief structure. Validated by finite element analysis, the predications from such an analytical study elucidate the deformed profile and maximum strain in the buckled and postbuckled stiff thin device films, providing a useful toolkit for future experimental designs.

  14. Strain sensitivity enhancement in suspended core fiber tapers

    Science.gov (United States)

    André, Ricardo M.; Silva, Susana O.; Becker, Martin; Schuster, Kay; Rothardt, M.; Bartelt, H.; Marques, Manuel B.; Frazão, Orlando

    2013-06-01

    Suspended core fiber tapers with different cross sections (with diameters from 70 μm to 120 μm) are produced by filament heating. Before obtaining the taper, the spectral behavior of the suspended core fiber is a multimode interference structure. When the taper is made, an intermodal interference between a few modes is observed. This effect is clearly visible for low taper core dimensions. Since the core and cladding do not collapse, two taper regions exist, one in the core and the other in the cladding. The cladding taper does not affect the light transmission, only the core is reduced to a microtaper. The spectral response of the microtaper based-suspended core fiber is similar to a beat of two interferometers. The strain is applied to the microtaper, and with the reduction in the transverse area, an increase in sensitivity is observed. When the taper is immersed in a liquid with a different index of refraction or subjected to temperature variations, no spectral change occurs.

  15. Optimal control of suspended sediment distribution model of Talaga lake

    Science.gov (United States)

    Ratianingsih, R.; Resnawati, Azim, Mardlijah, Widodo, B.

    2017-08-01

    Talaga Lake is one of several lakes in Central Sulawesi that potentially to be managed in multi purposes scheme because of its characteristic. The scheme is addressed not only due to the lake maintenance because of its sediment but also due to the Algae farming for its biodiesel fuel. This paper governs a suspended sediment distribution model of Talaga lake. The model is derived from the two dimensional hydrodynamic shallow water equations of the mass and momentum conservation law of sediment transport. An order reduction of the model gives six equations of hyperbolic systems of the depth, two dimension directional velocities and sediment concentration while the bed elevation as the second order of turbulent diffusion and dispersion are neglected. The system is discreted and linearized such that could be solved numerically by box-Keller method for some initial and boundary condition. The solutions shows that the downstream velocity is play a role in transversal direction of stream function flow. The downstream accumulated sediment indicate that the suspended sediment and its changing should be controlled by optimizing the downstream velocity and transversal suspended sediment changing due to the ideal algae growth need.

  16. Abrasion properties of self-suspended hairy titanium dioxide nanomaterials

    Science.gov (United States)

    Zhang, Jiao-xia; Liu, Si; Yan, Chao; Wang, Xiao-jing; Wang, Lei; Yu, Ya-ming; Li, Shi-yun

    2017-10-01

    Considering the excellent solubility of pyrrolidone ring organic compounds, the synthesized N-(trimethoxysilyl) propyl-N-methyl-2-pyrrolidone chlorides was tethered onto titanium dioxide (TiO2) nanoparticles to improve dispersion of TiO2, and then polyethylene oxide (PEO) oligomer through ion exchange embraced the tethered TiO2 to obtain a novel self-suspended hairy TiO2 nanomaterials without any solvent. A variety of techniques were carried out to illustrate the structure and properties of the self-suspended hairy TiO2 nanomaterials. It was found that TiO2 nanoparticles embody monodispersity in the hybrid system though the "false reunion" phenomenon occurring due to nonpermanent weak physical cross-linking. Remarkably, self-suspended hairy TiO2 nanomaterials exhibit lower viscosity, facilitating maneuverable and outstanding antifriction and wear resistance properties, due to the synergistic lubricating effect between spontaneously forming lubricating film and nano-lubrication of TiO2 cores, overcoming the deficiency of both solid and liquid lubricants. This make them promising candidates for the micro-electromechanic/nano-electromechanic systems (MEMS/NEMS).

  17. Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume II. Photovoltaic systems with energy storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This volume of the General Electric study was directed at an evaluation of those energy storage technologies deemed best suited for use in conjunction with a photovoltaic energy conversion system in utility, residential and intermediate applications. Break-even cost goals are developed for several storage technologies in each application. These break-even costs are then compared with cost projections presented in Volume I of this report to show technologies and time frames of potential economic viability. The form of the presentation allows the reader to use more accurate storage system cost data as they become available. The report summarizes the investigations performed and presents the results, conclusions and recommendations pertaining to use of energy storage with photovoltaic energy conversion systems. Candidate storage concepts studied include (1) above ground and underground pumped hydro, (2) underground compressed air, (3) electric batteries, (4) flywheels, and (5) hydrogen production and storage. (WHK)

  18. National Assessment of Energy Storage for Grid Balancing and Arbitrage: Phase 1, WECC

    Energy Technology Data Exchange (ETDEWEB)

    Kintner-Meyer, Michael CW; Balducci, Patrick J.; Colella, Whitney G.; Elizondo, Marcelo A.; Jin, Chunlian; Nguyen, Tony B.; Viswanathan, Vilayanur V.; Zhang, Yu

    2012-06-01

    To examine the role that energy storage could play in mitigating the impacts of the stochastic variability of wind generation on regional grid operation, the Pacific Northwest National Laboratory (PNNL) examined a hypothetical 2020 grid scenario in which additional wind generation capacity is built to meet renewable portfolio standard targets in the Western Interconnection. PNNL developed a stochastic model for estimating the balancing requirements using historical wind statistics and forecasting error, a detailed engineering model to analyze the dispatch of energy storage and fast-ramping generation devices for estimating size requirements of energy storage and generation systems for meeting new balancing requirements, and financial models for estimating the life-cycle cost of storage and generation systems in addressing the future balancing requirements for sub-regions in the Western Interconnection. Evaluated technologies include combustion turbines, sodium sulfur (Na-S) batteries, lithium ion batteries, pumped-hydro energy storage, compressed air energy storage, flywheels, redox flow batteries, and demand response. Distinct power and energy capacity requirements were estimated for each technology option, and battery size was optimized to minimize costs. Modeling results indicate that in a future power grid with high-penetration of renewables, the most cost competitive technologies for meeting balancing requirements include Na-S batteries and flywheels.

  19. The Wide-area Energy Management System Phase 2 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.

    2010-08-31

    The higher penetration of intermittent generation resources (including wind and solar generation) in the Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) balancing authorities (BAs) raises issue of requiring expensive additional fast grid balancing services in response to additional intermittency and fast up and down power ramps in the electric supply system. The overall goal of the wide-area energy management system (WAEMS) project is to develop the principles, algorithms, market integration rules, a functional design, and a technical specification for an energy storage system to help cope with unexpected rapid changes in renewable generation power output. The resulting system will store excess energy, control dispatchable load and distributed generation, and utilize inter-area exchange of the excess energy between the California ISO and Bonneville Power Administration control areas. A further goal is to provide a cost-benefit analysis and develop a business model for an investment-based practical deployment of such a system. There are two tasks in Phase 2 of the WAEMS project: the flywheel field tests and the battery evaluation. Two final reports, the Wide-area Energy Management System Phase 2 Flywheel Field Tests Final Report and the Wide-area Energy Storage and Management System Battery Storage Evaluation, were written to summarize the results of the two tasks.

  20. Efficient generation of linearly polarized Cerenkov radiation in a photonic crystal fiber with suspended rectangle core

    Science.gov (United States)

    Luo, Xing; Cheng, Lan; Peng, Jinggang; Yang, Luyun; Dai, Nengli; Li, Haiqing; Li, Jinyan

    2017-10-01

    We report high efficiency linearly polarized Cerenkov radiation (CR) generation in a photonic crystal fiber with suspended rectangle core. The frequency up-conversion via the Cerenkov radiation upon pumping of Yb-doped femtosecond fiber laser is discussed in details. Experiment results show that the output spectrum contains, besides the infrared supercontinuum, intense green Cerenkov radiation around 536 nm, which carry about 43% of the pump energy at best. The influence of the high birefringence and dispersion character on the Cerenkov radiation generation is discussed. Experiment and simulation results indicate that the rectangle core photonic crystal fiber acts like single-mode single-polarization fiber at the pump wavelength. Only the pulse component along with the slow axis could be confined in the rectangle core well and release Cerenkov radiation efficiently. The Output green Cerenkov radiation is also demonstrated to be linearly polarized. Experiments results agree well with the theoretical predictions.

  1. Optimal Sizing of Energy Storage System in Solar Energy Electric Vehicle Using Genetic Algorithm and Neural Network

    Science.gov (United States)

    Zhou, Shiqiong; Kang, Longyun; Cheng, Miaomiao; Cao, Binggang

    Owing to sun's rays distributing randomly and discontinuously and load fluctuation, energy storage system is very important in Solar Energy Electric Vehicle (SEEV). The combinatorial optimization by genetic algorithm and neural network was used to optimize the energy storage system (including storage batteries and flywheel).In the optimization design, the operation strategy of the system was fixed and used to instruct the simulation about the system's operation. And the optimal objective was selected as minimizing the total capital cost of the energy storage system, subject to the main constraint of the Loss of Power Supply Probability (LPSP). Studies have proved that the combinatorial optimization by genetic algorithm and neural network converges well, lessen calculation time and it is feasible.

  2. Laboratory investigation of oil–suspended particulate matter aggregation under different mixing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Juan, E-mail: juan.sun@upc.edu.cn [College of Chemistry Engineering, China University of Petroleum, Qingdao, Shandong Province 266580 (China); Khelifa, Ali [Emergencies Science and Technology Section, Environment Canada, Ottawa, ON, Canada K1A0H3 (Canada); Zhao, Chaocheng; Zhao, Dongfeng [College of Chemistry Engineering, China University of Petroleum, Qingdao, Shandong Province 266580 (China); Wang, Zhendi [Emergencies Science and Technology Section, Environment Canada, Ottawa, ON, Canada K1A0H3 (Canada)

    2014-03-01

    Oil–suspended particulate matter aggregation (OSA) has been recognized by the oil spill remediation community to effectively enhance the cleansing of spilled oil in the marine environment. While studies have investigated the application of mineral fines as an effective method to facilitate oil dispersion, decision-makers still lack information on the role of mixing energy in OSA formation and its significance to oil dispersion in real spills. This work studied the effect of level and duration of mixing energy on OSA formation using the standard reference material 1941b and Arabian light crude oil. The results showed that dispersed small oil droplets increased with an increase of both the level and duration of mixing energy to form multi-droplet OSAs. The sizes of the dispersed droplets varied between 5 and 10 μm under different conditions studied. The maximum oil trapping efficiency increased from 23% to 33%, the oil to sediment ratio increased from 0.30 to 0.43 g oil/g sediment, and the required shaking time decreased from 2.3 to 1.1 h as the shaking rate increased from 2.0 to 2.3 Hz. Based on the size measurement results, a breakage effect on the formed OSAs and sediment flocs was confirmed under high mixing energy level. - Highlights: • Dispersed oil droplets increased as the mixing energy increased. • Size of dispersed droplets increased from 5 to 10 μm as the mixing time increased. • Both level and duration of mixing energy increased the oil trapping efficiency. • The oil to sediment ratio increased from 0.2 to 0.5 as the mixing energy increased. • The higher the mixing energy, the stronger the breakage effect on formed aggregates exists.

  3. Progress towards Acoustic Suspended Sediment Transport Monitoring: Fraser River, BC

    Science.gov (United States)

    Attard, M. E.; Venditti, J. G.; Church, M. A.; Kostaschuk, R. A.

    2011-12-01

    Our ability to predict the timing and quantity of suspended sediment transport is limited because fine sand, silt and clay delivery are supply limited, requiring empirical modeling approaches of limited temporal stability. A solution is the development of continuous monitoring techniques capable of tracking sediment concentrations and grain-size. Here we examine sediment delivery from upstream sources to the lower Fraser River. The sediment budget of the lower Fraser River provides a long-term perspective of the net changes in the channels and in sediment delivery to Fraser Delta. The budget is based on historical sediment rating curves developed from data collected from 1965-1986 by the Water Survey of Canada. We explore the possibility of re-establishing the sediment-monitoring program using hydro-acoustics by evaluating the use of a 300 kHz side-looking acoustic Doppler current profiler (aDcp), mounted just downstream of the sand-gravel transition at Mission, for continuous measurement of suspended sediment transport. Complementary field observations include conventional bottle sampling with a P-63 sampler, vertical profiles with a downward-looking 600 kHz aDcp, and 1200 kHz aDcp discharge measurements. We have successfully completed calibration of the downward-looking aDcp with the P-63 samples; the side-looking aDcp signals remain under investigation. A comparison of several methods for obtaining total sediment flux indicates that suspended sediment concentration (SSC) closely follows discharge through the freshet and peaks in total SSC and sand SSC coincide with peak measurements of discharge. Low flows are dominated by fine sediment and grain size increases with higher flows. This research assesses several techniques for obtaining sediment flux and contributes to the understanding of sediment delivery to sand-bedded portions of the river.

  4. Surface-enhanced Raman scattering of suspended monolayer graphene

    Science.gov (United States)

    Huang, Cheng-Wen; Lin, Bing-Jie; Lin, Hsing-Ying; Huang, Chen-Han; Shih, Fu-Yu; Wang, Wei-Hua; Liu, Chih-Yi; Chui, Hsiang-Chen

    2013-11-01

    The interactions between phonons and electrons induced by the dopants or the substrate of graphene in spectroscopic investigation reveal a rich source of interesting physics. Raman spectra and surface-enhanced Raman spectra of supported and suspended monolayer graphenes were measured and analyzed systemically with different approaches. The weak Raman signals are greatly enhanced by the ability of surface-enhanced Raman spectroscopy which has attracted considerable interests. The technique is regarded as wonderful and useful tool, but the dopants that are produced by depositing metallic nanoparticles may affect the electron scattering processes of graphene. Therefore, the doping and substrate influences on graphene are also important issues to be investigated. In this work, the peak positions of G peak and 2D peak, the I 2D/ I G ratios, and enhancements of G and 2D bands with suspended and supported graphene flakes were measured and analyzed. The peak shifts of G and 2D bands between the Raman and SERS signals demonstrate the doping effect induced by silver nanoparticles by n-doping. The I 2D/ I G ratio can provide a more sensitive method to carry out the doping effect on the graphene surface than the peak shifts of G and 2D bands. The enhancements of 2D band of suspended and supported graphenes reached 138, and those of G band reached at least 169. Their good enhancements are helpful to measure the optical properties of graphene. The different substrates that covered the graphene surface with doping effect are more sensitive to the enhancements of G band with respect to 2D band. It provides us a new method to distinguish the substrate and doping effect on graphene.

  5. Regional volume changes in canine lungs suspended in air

    Science.gov (United States)

    Abbrecht, Peter H.; Kyle, Richard R.; Bryant, Howard J.; Feuerstein, Irwin

    1995-01-01

    The purpose of this study was to determine the effect of the absence of a pleural pressure gradient (simulating the presumed condition found in microgravity) upon regional expansion of the lung. We attempted to produce a uniform pressure over the surface of the lung by suspending excised lungs in air. Such studies should help determine whether or not the absence of a pleural pressure gradient leads to uniform ventilation. A preparation in which there is no pleural pressure gradient should also be useful in studying non-gravitational effects on ventilation distribution.

  6. The Ages in a Self-Suspended Nanoparticle Liquid

    KAUST Repository

    Agarwal, Praveen

    2010-01-13

    Telomers ionically tethered to nanometer-sized particles yield self-suspended, nanoparticle-Iaden liquids with unusual dynamical features. By subjecting these suspensions to controlled, modest shear strains, we find that their flow behaviors observed using experiments performed on time scales of tens of seconds can be projected to obtain maps of their dynamical response on geological time scales. That such extraordinarily slow dynamic processes can be uncovered from real-time measurements by simply stretching a system provides a simple but powerful tool for interrogating extremely slow motions in other jammed physical states. © 2010 American Chemical Society.

  7. Suspended liminality: Vacillating affects in cyberbullying/research

    OpenAIRE

    Kofoed, J.; Stenner, Paul

    2017-01-01

    This paper develops a concept of liminal hotspots in the context of i) a secondary analysis of a cyberbullying case involving a group of school children from a Danish school, and ii) an altered auto-ethnography in which the authors ‘entangle’ their own experiences with the case analysis. These two sources are used to build an account of a liminal hotspot conceived as an occasion of troubled and suspended transformative transition in which a liminal phase is extended and remains unresolved. Th...

  8. Oscillation of a diamagnetic liquid bubble suspended by magnetic force

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, R. E-mail: yamane@kokushikan.ac.jp; Tomita, S.; Mai, J.; Park, M.K.; Oshima, S

    2002-11-01

    The levitation of the diamagnetic liquid droplet with the strong magnetic field is experimentally simulated, using the magnetic fluid as the surrounding fluid in place of air or gas, and the water bubble is levitated with the conventional permanent magnet. When the stepwise magnetic field is superposed, the suspended bubble behaves as a typical step response with the overshoot and viscous damping. The effects of the volume of the bubble, the strength of the magnetic field and the concentration of the magnetic fluid are investigated.

  9. Remote Sensing Studies of Suspended Sediment Concentration Variation in Barito Delta

    Science.gov (United States)

    Arisanty, Deasy; Nur Saputra, Aswin

    2017-12-01

    The dynamic of suspended sediment concentration in Barito Delta depend on the process in upstream. Agriculture, mining, and illegal logging in Barito River upstream has an effect for suspended sediment concentration in Barito Delta. The objective of research is to estimate the variation of suspended sediment concentration in Barito Delta. The data of research consist of Landsat 7 in year 2011 and measurement result data of suspended sediment concentration both in wet season and dry season in year 2011. Data analysis is regression analysis to estimates the variation of suspended sediment concentration in Barito Delta. The method of research compares three types of spectral transformation for suspended sediment that is Normalized Suspended Material Index (NSMI), Normalized Differences Suspended Sediment Index (NDSSI), and band ratio (green/blue). The result of the transformation is compared with the value of the field measurement. Based on the result of the comparison can be known the suitable type of transformation for the suspended sediment estimation in Barito Delta. The result of research explains that NSMI has the highest value to estimate the variation of suspended sediment concentration in Barito Delta.

  10. Dynamics and control of the GyroPTO wave energy point absorber under sea waves

    DEFF Research Database (Denmark)

    Zhang, Zili; Nielsen, Søren R.K.; Basu, Biswajit

    2017-01-01

    The Gyroscopic Power Take-Off (GyroPTO) wave energy point absorber has the operational principle somewhat similar to the so-called gyroscopic hand wrist exerciser. Inside the float of GyroPTO, there is a mechanical system made up of a spinning flywheel with its spin axis in rolling contact...... to a ring. At certain conditions, the ring starts to rotate at a frequency equal to the excitation angular frequency. In this synchronized state, the generator is running at almost constant speed and the generated power becomes constant. In this paper, theoretical modeling of the GyroPTO device is carried...

  11. Solar photovoltaic energy and electric vehicles: natural synergism of two technologies

    Energy Technology Data Exchange (ETDEWEB)

    Stirewalt, E.N.

    1982-06-01

    Because of acid rain and CO/sub 2/ emission problems, electric vehicle technology must be advanced. The photovoltaic cell used to ''fuel'' electric cars is a possibility. The PV cell converts light directly into electricity. Automated PV manufacturing techniques are being developed. PV already is used in stand-alone systems and residential systems. Improved battery technology will benefit both PV and electric car technology. Another means of energy storage, the flywheel, is also applicable to both technologies.

  12. Suspended animation-like state protects mice from lethal hypoxia.

    Science.gov (United States)

    Blackstone, Eric; Roth, Mark B

    2007-04-01

    Joseph Priestley observed the high burn rate of candles in pure oxygen and wondered if people would "live out too fast" if we were in the same environment. We hypothesize that sulfide, a natural reducer of oxygen that is made in many cell types, acts as a buffer to prevent unrestricted oxygen consumption. To test this, we administered sulfide in the form of hydrogen sulfide (H2S) to mice (Mus musculus). As we have previously shown, H2S decreases the metabolic rate of mice by approximately 90% and induces a suspended animation-like state. Mice cannot survive for longer than 20 min when exposed to 5% oxygen. However, if mice are first put into a suspended animation-like state by a 20-min pretreatment with H2S and then are exposed to low oxygen, they can survive for more than 6.5 h in 5% oxygen with no apparent detrimental effects. In addition, if mice are exposed to a 20-min pretreatment with H2S followed by 1 h at 5% oxygen, they can then survive for several hours at oxygen tensions as low as 3%. We hypothesize that prior exposure to H2S reduces oxygen demand, therefore making it possible for the mice to survive with low oxygen supply. These results suggest that H2S may be useful to prevent damage associated with hypoxia.

  13. Skin permeation of lidocaine from crystal suspended oily formulations.

    Science.gov (United States)

    Matsui, Rakan; Hasegawa, Masaaki; Ishida, Masami; Ebata, Toshiya; Namiki, Noriyuki; Sugibayashi, Kenji

    2005-09-01

    In vitro permeation of lidocaine (lidocaine base, LID) through excised rat skin was investigated using several LID-suspended oily formulations. The first skin permeation of LID from an LID-suspended oily solution such as liquid paraffin (LP), isopropyl myristate (IPM), polyoxyethylene (2) oleylether (BO-2), and diethyl sebacate (DES) was evaluated and compared with that from polyethylene glycol 400 (PEG400) solution, a hydrophilic base. The obtained permeation rate of LID, Japp, from PEG400, LP, IPM, BO-2, and DES was in the order of DES>BO-2=IPM>LP>PEG400, and increased with LID solubility in the oily solvents, although LID crystals were dispersed in all solvents. Subsequently, oily formulations that consisted of different ratios of the first oily solvent (IPM, BO-2, or DES) (each 0-20%), the second oily solvent (LP) and an oily mixture of microcrystalline wax/white petrolatum/paraffin (1/5/4) were evaluated. BO-2 groups at a concentration of 5% and 10% had the highest Japp among the oily formulations, although a higher BO-2 resulted in lower skin permeation. In addition, pretreatment with BO-2 increased the skin permeation of LID. These results suggest that the penetration enhancing effect by the system may be related to the skin penetration of BO-2 itself. Finally, mathematical analysis was done to evaluate the effect of BO-2, and it was shown that BO-2 improved the LID solubility in stratum corneum lipids to efficiently enhance the LID permeation through skin.

  14. A Passively-Suspended Tesla Pump Left Ventricular Assist Device

    Science.gov (United States)

    Izraelev, Valentin; Weiss, William J.; Fritz, Bryan; Newswanger, Raymond K.; Paterson, Eric G.; Snyder, Alan; Medvitz, Richard B.; Cysyk, Joshua; Pae, Walter E.; Hicks, Dennis; Lukic, Branka; Rosenberg, Gerson

    2009-01-01

    The design and initial test results of a new passively suspended Tesla type LAVD blood pump are described. CFD analysis was used in the design of the pump. Overall size of the prototype device is 50 mm in diameter and 75 mm in length. The pump rotor has a density lower than that of blood and when spinning inside the stator in blood it creates a buoyant centering force that suspends the rotor in the radial direction. The axial magnetic force between the rotor and stator restrain the rotor in the axial direction. The pump is capable of pumping up to 10 liters/min at a 70 mmHg head rise at 8000 RPM. The pump has demonstrated a normalized index of hemolysis level below .02 mg/dL for flows between 2 and 9.7 L/min. An inlet pressure sensor has also been incorporated into the inlet cannula wall and will be used for control purposes. One initial in vivo study showed an encouraging result. Further CFD modeling refinements are planned as well as endurance testing of the device. PMID:19770799

  15. Self-suspended permanent magnetic FePt ferrofluids

    KAUST Repository

    Dallas, Panagiotis

    2013-10-01

    We present the synthesis and characterization of a new class of self-suspended ferrofluids that exhibit remanent magnetization at room temperature. Our system relies on the chemisorption of a thiol-terminated ionic liquid with very low melting point on the surface of L10 FePt nanoparticles. In contrast, all types of ferrofluids previously reported employ either volatile solvents as the suspending media or superparamagnetic iron oxide nanoparticles (that lacks permanent magnetization) as the inorganic component. The ferrofluids do not show any sign of flocculation or phase separation, despite the strong interactions between the magnetic nanoparticles due to the strong chemisorption of the ionic liquid as evidenced by Raman spectroscopy and thermal analysis. Composites with high FePt loading (40 and 70. wt%) exhibit a pseudo solid-like rheological behavior and high remanent magnetization values (10.1 and 12.8. emu/g respectively). At lower FePt loading (12. wt%) a liquid like behavior is observed and the remanent and saturation magnetization values are 3.5 and 6.2. emu/g, respectively. The magnetic and flow properties of the materials can be easily fine tuned by controlling the type and amount of FePt nanoparticles used. © 2013 Elsevier Inc.

  16. Assessment of CO, CO2 and Suspended Particulate Matter Emissions

    Directory of Open Access Journals (Sweden)

    Bala Isah ABDULKARIM

    2007-09-01

    Full Text Available The concentrations of carbon oxides (CO and CO2 and suspended particulate matter at Benue Cement Company (BCC and Tse-Kucha community was investigated. Results obtained, shows that concentrations of carbon dioxide of 34.40ppm, 39.50 ppm, 48.50 ppm, 78.55 ppm, 65.25 ppm, 26.80 ppm and 29.5 ppm for quarry, raw mill, cement mill, Kiln, packing house, limestone stockpile and Tse-Kucha community respectively were below the maximum standard natural concentration of CO2 in atmosphere of 600ppm while concentrations of CO (1.25ppm - 4.00ppm measured in all the sample stations were below the Nigerian Ambient Air Quality Standards (NAAQS and WHO max limit of 10 ppm - 20 ppm for an 8-hourly average time. Lastly, the concentrations of suspended particulate matter of 375 μg/m3, 338 μg/m3 and 290 μg/m3 at the cement mill, packing house and raw mill respectively were also above the World Health Organization’s (WHO’s Guidelines and Standards for Ambient Air Quality which stipulates a range of 150 μg/m3 to 230 μg/m3 for a 24- hourly average.

  17. Development of an Integrated Suspended Sediment Sampling System - Prototype Results

    Science.gov (United States)

    Nerantzaki, Sofia; Moirogiorgou, Konstantia; Efstathiou, Dionissis; Giannakis, George; Voutsadaki, Stella; Zervakis, Michalis; Sibetheros, Ioannis A.; Zacharias, Ierotheos; Karatzas, George P.; Nikolaidis, Nikolaos P.

    2015-04-01

    The Mediterranean region is characterized by a unique micro-climate and a complex geologic and geomorphologic environment caused by its position in the Alpine orogenesis belt. Unique features of the region are the temporary rivers that are dry streams or streams with very low flow for most of the time over decadal time scales. One of their key characteristics is that they present flashy hydrographs with response times ranging from minutes to hours. It is crucial to monitor flash-flood events and observe their behavior since they can cause environmental degradation of the river's wider location area. The majority of sediment load is transferred during these flash events. Quantification of these fluxes through the development of new measuring devices is of outmost importance as it is the first step for a comprehensive understanding of the water quality, the soil erosion and erosion sources, and the sediment and nutrient transport routes. This work proposes an integrated suspended sediment sampling system which is implemented in a complex semi-arid Mediterranean watershed (i.e. the Koiliaris River Basin of Crete) with temporary flow tributaries and karstic springs. The system consists of sensors monitoring water stage and turbidity, an automated suspended sediment sampler, and an online camera recording video sequence of the river flow. Water stage and turbidity are continuously monitored and stage is converted to flow with the use of a rating curve; when either of these variables exceeds certain thresholds, the pump of the sediment sampler initiates sampling with a rotation proportional to the stage (flow weighted sampling). The water passes through a filter that captures the sediment, the solids are weighted after each storm and the data are converted to a total sediment flux. At the same time, the online camera derives optical measurements for the determination of the two-dimensional river flow velocity and the spatial sediment distribution by analyzing the Hue

  18. Electromechanical Battery EMB Mass Minimization taking into Account its Electrical Machines Rotor Energy

    Directory of Open Access Journals (Sweden)

    Podgornovs Andrejs

    2014-12-01

    Full Text Available In this paper the electromechanical battery (EMB with synchronous machine is described. Theoretically, if electrical machines rotor stored energy is known, it is possible to reduce the flywheel mass of electromechanical battery. For example, the efficiency of energy recovery (kilowatt-hours out versus kilowatthours in in nowadays appliances exceeds 95 % which is considerably better than of any electrochemical battery, such as lead-acid battery. For the rotor stored energy amount calculation, it is necessary to find all geometrical dimensions of the electrical machine. To achieve this goal the iterative calculation method was used. Electromechanical battery mass was analyzed as a discharge process rotation speed function. Taking into account the rotor stored energy, we can increase the minimum rotation speed thus reducing the electrical machine mass and increasing the flywheel mass, which provides EMB cost reduction. Additionally, the possibilities of using numerical approximation calculations of magnetization curves are discussed. Each iteration of numerical application necessary for the method for rapid calculation is essential when calculating the field problems. Nowadays there are a lot of computer added design programs for electromagnetic field calculation in different types of applications, electrical machines and apparatus. For the electromagnetic field calculation process some more commonly used magnetization curve approximation methods are described, and the machine calculation time is tested for different numbers of calculations.

  19. Signatures of evanescent transport in ballistic suspended graphene-superconductor junctions

    Science.gov (United States)

    Kumaravadivel, Piranavan; Du, Xu

    2016-04-01

    In Dirac materials, the low energy excitations behave like ultra-relativistic massless particles with linear energy dispersion. A particularly intriguing phenomenon arises with the intrinsic charge transport behavior at the Dirac point where the charge density approaches zero. In graphene, a 2-D Dirac fermion gas system, it was predicted that charge transport near the Dirac point is carried by evanescent modes, resulting in unconventional “pseudo-diffusive” charge transport even in the absence of disorder. In the past decade, experimental observation of this phenomenon remained challenging due to the presence of strong disorder in graphene devices which limits the accessibility of the low carrier density regime close enough to the Dirac point. Here we report transport measurements on ballistic suspended graphene-Niobium Josephson weak links that demonstrate a transition from ballistic to pseudo-diffusive like evanescent transport below a carrier density of ~1010 cm-2. Approaching the Dirac point, the sub-harmonic gap structures due to multiple Andreev reflections display a strong Fermi energy-dependence and become increasingly pronounced, while the normalized excess current through the superconductor-graphene interface decreases sharply. Our observations are in qualitative agreement with the long standing theoretical prediction for the emergence of evanescent transport mediated pseudo-diffusive transport in graphene.

  20. Suspended Integrated Strip-line Transition Design for Highly Integrated Radar Systems

    Science.gov (United States)

    2017-03-01

    Frequency Structural Figure 3. Internal-view of SISL thru structure. Figure 2. Suspended substrate strip- line side -view. Figure 4. Top-view of trace and...response, you can see that the measured response is shifted to Figure 2. Suspended Substrate Strip- line Side -View Figure 5. Fabricated thru line ...Suspended Integrated Strip- line Transition Design for Highly Integrated Radar Systems Jay W. McDaniel, Shahrokh Saeedi, Mark B. Yeary, and

  1. Dynamics of Single Chains of Suspended Ferrofluid Particles

    Science.gov (United States)

    Cutillas, S.; Liu, J.

    1999-01-01

    We present an experimental study of the dynamics of isolated chains made of super-paramagnetic particles under the influence of a magnetic field. The motivation of this work is to understand if the chain fluctuations exist and, if it does, how does the fluctuation affect chain aggregation. We find that single chains strongly fluctuate and that the characteristic frequency of their fluctuations is inversely proportional to the magnetic field strength. The higher the field the lower the characteristic frequency of the chain fluctuations. In the high magnetic field limit, chains behave like rigid rods without any internal motions. In this work, we used ferrofluid particles suspended in water. These particles do not have any intrinsic magnetization. Once a magnetic field is applied, a dipole moment is induced in each particle, proportional to the magnetic field. A dipolar magnetic interaction then occurs between particles. If dipole-dipole magnetic energy is higher than the thermal energy, the result is a structure change inside the dipolar fluid. The ratio of these two energies is expressed by a coupling constant lambda as: lambda = (pi(a(exp 3))(chi(exp 2))(mu(sub 0))(H(sub 0))(exp 2))/18kT Where a is the particle radius, mu(sub 0) is the vacuum magnetic permeability, H(sub 0) the applied magnetic field, k the Boltzmann constant and T the absolute temperature. If lambda > 1, magnetic particles form chains along the field direction. The lateral coalescence of several chains may form bigger aggregates especially if the particle volume fraction is high. While many studies and applications deal with the rheological properties and the structural changes of these dipolar fluids, this work focuses on the understanding of the chain dynamics. In order to probe the chain dynamics, we used dynamic light scattering (DLS) in self-beating mode as our experimental technique. The experimental geometry is such that the scattering plane is perpendicular to the magnetic field

  2. Energies; Energies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    In the framework of the National Debate on the energies in a context of a sustainable development some associations for the environment organized a debate on the nuclear interest facing the renewable energies. The first part presents the nuclear energy as a possible solution to fight against the greenhouse effect and the associated problem of the wastes management. The second part gives information on the solar energy and the possibilities of heat and electric power production. A presentation of the FEE (French wind power association) on the situation and the development of the wind power in France, is also provided. (A.L.B.)

  3. Thermal Conductivity Measurement of Liquids by Using a Suspended Microheater

    Science.gov (United States)

    Oh, Dong-Wook

    2017-10-01

    In this paper, the traditional 3ω method is modified in order to measure the thermal conductivity of a droplet of liquid. The 3ω sensor is microfabricated using bulk silicon etching on a silicon wafer to form a microheater on a suspended bridge structure. The Si substrate of over 400 μ m thickness beneath the microheater is etched away so that the sample liquid can fill the gap created between the heater and the bottom boundary of the sensor. The frequency of the sinusoidal heating pulses that are generated from the heater is controlled such that the thermal penetration depth is much smaller than the thickness of the liquid layer. The temperature oscillation of the sample fluid is measured at the thin-film heater to calculate the thermal conductivity of the surrounding fluid. The thermal conductivity and measured values of the de-ionized water and ethanol show a good agreement with the theoretical values at room temperature.

  4. Suspended sediment in a high-Arctic river

    DEFF Research Database (Denmark)

    Ladegaard-Pedersen, Pernille; Sigsgaard, Charlotte; Kroon, Aart

    2017-01-01

    Quantifying fluxes of water, sediment and dissolved compounds through Arctic rivers is important for linking the glacial, terrestrial and marine ecosystems and to quantify the impact of a warming climate. The quantification of fluxes is not trivial. This study uses a 8-years data set (2005......-2012) of daily measurements from the high-Artic Zackenberg River in Northeast Greenland to estimate annual suspended sediment fluxes based on four commonly used methods: M1) is the discharge weighted mean and uses direct measurements, while M2-M4) are one uncorrected and two bias corrected rating curves......-daily sampling together with a sampling frequency of 2h during extreme events. The most consistent estimation method was an uncorrected rating curve of bi-daily measurements (M2), combined with a linear interpolation of extreme event fluxes. Sampling can be reduced to every fourth day, with both method...

  5. Fluorine and sulfur simultaneously co-doped suspended graphene

    Science.gov (United States)

    Struzzi, C.; Sezen, H.; Amati, M.; Gregoratti, L.; Reckinger, N.; Colomer, J.-F.; Snyders, R.; Bittencourt, C.; Scardamaglia, M.

    2017-11-01

    Suspended graphene flakes are exposed simultaneously to fluorine and sulfur ions produced by the μ-wave plasma discharge of the SF6 precursor gas. The microscopic and spectroscopic analyses, performed by Raman spectroscopy, scanning electron microscopy and photoelectron spectromicroscopy, show the homogeneity in functionalization yield over the graphene flakes with F and S atoms covalently bonded to the carbon lattice. This promising surface shows potential for several applications ranging from biomolecule immobilization to lithium battery and hydrogen storage devices. The present co-doping process is an optimal strategy to engineer the graphene surface with a concurrent hydrophobic character, thanks to the fluorine atoms, and a high affinity with metal nanoparticles due to the presence of sulfur atoms.

  6. Giant magneto-photoelectric effect in suspended graphene

    Science.gov (United States)

    Sonntag, Jens; Kurzmann, Annika; Geller, Martin; Queisser, Friedemann; Lorke, Axel; Schützhold, Ralf

    2017-06-01

    We study the optical response of a suspended, monolayer graphene field-effect transistor structure in magnetic fields of up to 9 T (quantum Hall regime). With an illumination power of only 3 μW, we measure a photocurrent of up to 400 nA (without an applied bias) corresponding to a photo-responsivity of 0.13 A W-1, which we believe to be one of the highest values ever measured in single-layer graphene. We discuss possible mechanisms for generating this strong photo-response (17 electron-hole pairs per 100 incident photons). Based on our experimental findings, we believe that the most likely scenario is a ballistic two-stage process including carrier multiplication via Auger-type inelastic Coulomb scattering at the graphene edge.

  7. Detection of suspended nanoparticles with near-ambient pressure x-ray photoelectron spectroscopy

    Science.gov (United States)

    Kjærvik, Marit; Hermanns, Anja; Dietrich, Paul; Thissen, Andreas; Bahr, Stephan; Ritter, Benjamin; Kemnitz, Erhard; Unger, Wolfgang E. S.

    2017-11-01

    Two systems of suspended nanoparticles have been studied with near-ambient pressure x-ray photoelectron spectroscopy: silver nanoparticles in water and strontium fluoride—calcium fluoride core-shell nanoparticles in ethylene glycol. The corresponding dry samples were measured under ultra high vacuum for comparison. The results obtained under near-ambient pressure were overall comparable to those obtained under ultra high vacuum, although measuring silver nanoparticles in water requires a high pass energy and a long acquisition time. A shift towards higher binding energies was found for the silver nanoparticles in aqueous suspension compared to the corresponding dry sample, which can be assigned to a change of surface potential at the water-nanoparticle interface. The shell-thickness of the core-shell nanoparticles was estimated based on simulated spectra from the National Institute of Standards and Technology database for simulation of electron spectra for surface analysis. With the instrumental set-up presented in this paper, nanoparticle suspensions in a suitable container can be directly inserted into the analysis chamber and measured without prior sample preparation.

  8. 76 FR 6462 - Notice of Intent To Suspend Certain Pesticide Registrations

    Science.gov (United States)

    2011-02-04

    ... hearing is made by a person adversely affected by the Notice of Intent to Suspend or the registrant has... this notice (i.e., how to request a hearing or how to comply fully with the requirements that served as... name notice of intent No. to suspend The Fountainhead Group, Inc.... Resmethrin 53853-1 Burgess Insect...

  9. 19 CFR 351.222 - Revocation of orders; termination of suspended investigations.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Revocation of orders; termination of suspended investigations. 351.222 Section 351.222 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE... orders; termination of suspended investigations. (a) Introduction. “Revocation” is a term of art that...

  10. Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data

    NARCIS (Netherlands)

    Shen, F.; Verhoef, W.; Zhou, Y.; Salama, M.S.; Liu, X.

    2010-01-01

    The Changjiang (Yangtze) estuarine and coastal waters are characterized by suspended sediments over a wide range of concentrations from 20 to 2,500 mg l-1. Suspended sediment plays important roles in the estuarine and coastal system and environment. Previous algorithms for satellite estimates of

  11. 75 FR 60720 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Science.gov (United States)

    2010-10-01

    ... Goldberger, (202) 482-4136. from South Korea (A-580-836) (2rd Review). Granular Polytetrafluoroethylene Resin... South Korea (C-580-837) (2rd Review). Suspended Investigations No Sunset Review of suspended...; Advance Notification of Sunset Reviews AGENCY: Import Administration, International Trade Administration...

  12. Mechanical properties of freely suspended semiconducting graphene-like layers based on MoS2

    NARCIS (Netherlands)

    Castellanos-Gomez, A.; Poot, M.; Steele, G.A.; Van der Zant, H.S.J.; Agrait, N.; Rubio-Bollinger, G.

    2012-01-01

    We fabricate freely suspended nanosheets of molybdenum disulphide (MoS2) which are characterized by quantitative optical microscopy and high-resolution friction force microscopy. We study the elastic deformation of freely suspended nanosheets of MoS2 using an atomic force microscope. The Young’s

  13. 40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.

    Science.gov (United States)

    2010-07-01

    ... MATERIALS Definitions § 227.32 Liquid, suspended particulate, and solid phases of a material. (a) For the... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Liquid, suspended particulate, and solid phases of a material. 227.32 Section 227.32 Protection of Environment ENVIRONMENTAL PROTECTION...

  14. Cricket inspired sensory hairs on suspended membranes with capacitive displacement detection

    NARCIS (Netherlands)

    van Baar, J.J.J.; Dijkstra, Marcel; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.

    2004-01-01

    This paper presents the fabrication of artificial hairs of siliconnitride and SU-8 on suspended membranes for flow sensing applications. The suspended membranes contain electrodes for capacitive sensing of the rotation of the hairs. For the siliconnitride hairs a silicon wafer is used as mould and

  15. High suspended solids as a factor in reproductive failure of a freshwater mussel

    Science.gov (United States)

    Andrew M. Gascho-Landis; Wendell R. Haag; James A. Stoeckel

    2013-01-01

    Elevated suspended solids are a widespread stressor of aquatic ecosystems, but their effects on growth and reproduction in freshwater mussels are largely unknown. We fertilized experimental ponds to create a gradient in total suspended solids (TSS) and examined the effects of TSS on growth, nutritional status, reproduction, and clearance rate in Ligumia subrostrata....

  16. 76 FR 28730 - Notice of Intent To Suspend the Agricultural Labor Survey and Farm Labor Reports

    Science.gov (United States)

    2011-05-18

    ... National Agricultural Statistics Service Notice of Intent To Suspend the Agricultural Labor Survey and Farm Labor Reports AGENCY: National Agricultural Statistics Service, USDA. ACTION: Notice of suspension of... Agricultural Statistics Service (NASS) to suspend a currently approved information collection, the Agricultural...

  17. Physical and biological changes of suspended particles in a free surface flow constructed wetland

    NARCIS (Netherlands)

    Mulling, B.T.M.; van den Boomen, R.M.; Claassen, T.H.L.; van der Geest, H.G.; Kappelhof, J.W.N.M.; Admiraal, W.

    2013-01-01

    Suspended particles are considered as contaminants in treated wastewater and can have profound effects on the biological, physical and chemical properties of receiving aquatic ecosystems, depending on the concentration, type and nature of the suspended particles. Constructed wetlands are known to

  18. Quantitative suspended sediment mapping using aircraft remotely sensed multispectral data. [in Virginia

    Science.gov (United States)

    Johnson, R. W.

    1975-01-01

    Suspended sediment is an important environmental parameter for monitoring water quality, water movement, and land use. Quantitative suspended sediment determinations were made from analysis of aircraft remotely sensed multispectral digital data. A statistical analysis and derived regression equation were used to determine and plot quantitative suspended sediment concentration contours in the tidal James River, Virginia, on May 28, 1974. From the analysis, a single band, Band 8 (0.70-0.74 microns), was adequate for determining suspended sediment concentrations. A correlation coefficient of 0.89 was obtained with a mean inaccuracy of 23.5 percent for suspended sediment concentrations up to about 50 mg/l. Other water quality parameters - secchi disc depth and chlorophyll - also had high correlations with the remotely sensed data. Particle size distribution had only a fair correlation with the remotely sensed data.

  19. Tracing suspended sediment sources in the Upper Sangamon River Basin using fingerprinting techniques

    Science.gov (United States)

    Yu, M.; Rhoads, B. L.; Neal, C.; Anders, A. M.

    2014-12-01

    As the awareness of water pollution, eutrophication and other water related environmental concerns grows, the significance of sediment in the transport of nutrients and contaminants from agricultural areas to streams has received increasing attention. Both the physical and geochemical properties of suspended sediment are strongly controlled by sediment sources. Thus, tracing sources of suspended sediment in watersheds is important for the design of management practices to reduce sediment loads and contributions of sediment-adsorbed nutrients from agricultural areas to streams. However, the contributions of different sediment sources to suspended sediment loads within intensively managed watersheds in the Midwest still remain insufficiently explored. This study aims to assess the provenance of suspended sediment and the relation between channel morphology and production of suspended sediment in the Upper Sangamon River Basin, Illinois. The 3,690-km2 Upper Sangamon River Basin is characterized by low-relief, agricultural lands dominated by row-crop agriculture. Sediment source samples were collected in the Saybrook and Wildcat Slough sub-watersheds from six potential sources: row-crop agriculture, forest, floodplains, river banks, pastures, and grasslands. Event-based suspended sediment samples were collected by in situ suspended sediment samplers and ISCO automatic pump samplers from the streams. A quantitative geochemical fingerprinting technique, combining statistically verified multicomponent signatures and an unmixing model, was employed to estimate the relative contributions of sediment from six potential sources to the suspended sediment loads. Our preliminary results indicate that the majority of suspended sediment is derived from channel banks and forest adjacent to meandering reaches in the downstream portions of the watersheds, while only minor amounts of suspended sediment are derived from upland areas adjacent to channelized rivers in the low

  20. Quantification of suspended sediment transfers in a lowland agricultural catchment

    Science.gov (United States)

    Salvador-Blanes, Sebastien; Manière, Louis; Grangeon, Thomas; Cerdan, Olivier; Evrard, Olivier; Foucher, Anthony; Vandromme, Rosalie

    2017-04-01

    Lowland agricultural landscapes underwent important changes since the second half of the XXth century such as hedges removal, implementation of drainage systems, stream redesign and land reallocation. It resulted in changes in sediment transfer processes, and in widespread morphological alterations of water bodies. However, little is known about the sediment dynamics in these environments. The Louroux catchment (25 km2) is located in central France. It is a typical intensively cultivated and tile drained lowland catchment. The Xth century pond located at its outlet (52 ha) is undergoing large siltation, with a current sedimentation rate 60 fold higher than the pre-1950 period. Five monitoring stations, measuring water levels and turbidity at high frequency (15 mn and 1 mn respectively), combined with automatic samplers, were implemented in 2013. Three stations are located at the main tributaries outlets of the pond, one in a sub-catchment, and one at a tile drain outlet. 45 floods were observed during the three studied hydrological years. They occurred mostly between December and March (33 floods) and in May-June (8 floods). Specific sediment yields ranged from 0.02 to 0.38 t.ha-1.yr-1 depending on the monitoring site and the considered year. The vast majority of suspended sediment transfers occur during the winter floods. While large water volumes were also measured during spring floods, the sediment yields remained low. Suspended sediment yields present large inter-annual (ratio ranging between 2 and 6 depending on the monitoring station) and spatial variations, due to significant differences in total rainfall amounts during the winter season and variations in land use, respectively. The processes related to sediment transfers are most likely linked to soil saturation during winter despite the presence of a tile drainage network, with transfers occurring both at the soil surface and through the drainage system. While sediment transfer rates can be considered as

  1. Tidal influence on suspended sediment distribution and dispersal in the northern Andaman Sea and Gulf of Martaban

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaswamy, V.; Rao, P.S.; Rao, K.H.; Thwin, S.; Rao, N.S.; Raiker, V.

    Surface and water column profiles of suspended matter collected during April-May 2002, and satellite images were used to study factors influencing suspended sediment concentrations (SSCs) and dispersal in the northern Andaman Sea and Gulf...

  2. Salinity and suspended matter variations in the Tay estuary

    Science.gov (United States)

    McManus, John

    2005-03-01

    The concept of salinity-induced density layering in estuaries was first demonstrated from the upper reaches of the Tay. In this study the nature of the layering and its variation through the tidal cycle is demonstrated from time series of observations taken at many locations within this estuary. Thorough mixing of the waters on the rising tide, as defined by depth profiles of salinity, is commonly replaced by salinity layering during the high water slack period. This condition continues into the falling tide. Frequently the mixed waters are abruptly replaced by stratified waters within the half-hourly sampling interval. This is attributed to the activity of longitudinal fronts, manifest as surficial foam bands, along which water masses shear past each other on both the flood and ebb tides. Offsetting of transverse salinity coutours along the fronts is introduced to explain apparent complexities in surface water salinity distributions measured at high water slack. Suspended particulate matter concentrations increase towards the limit of the saline water intrusion before decreasing headwards into the freshwater zone of the estuary. The suspensions in the water column may also be displaced by the lateral offsetting of the waters along the fronts. The recognition of the presence of fronts, and a knowledge of their impact on the estuarine waters may provide an alternative means of understanding the flow characteristics of these challenging water bodies. The techniques of spatial and temporal averaging normally widely used today may not be the most realistic approach to analysis of the flows.

  3. High-field electrical and thermal transport in suspended graphene.

    Science.gov (United States)

    Dorgan, Vincent E; Behnam, Ashkan; Conley, Hiram J; Bolotin, Kirill I; Pop, Eric

    2013-10-09

    We study the intrinsic transport properties of suspended graphene devices at high fields (≥1 V/μm) and high temperatures (≥1000 K). Across 15 samples, we find peak (average) saturation velocity of 3.6 × 10(7) cm/s (1.7 × 10(7) cm/s) and peak (average) thermal conductivity of 530 W m(-1) K(-1) (310 W m(-1) K(-1)) at 1000 K. The saturation velocity is 2-4 times and the thermal conductivity 10-17 times greater than in silicon at such elevated temperatures. However, the thermal conductivity shows a steeper decrease at high temperature than in graphite, consistent with stronger effects of second-order three-phonon scattering. Our analysis of sample-to-sample variation suggests the behavior of "cleaner" devices most closely approaches the intrinsic high-field properties of graphene. This study reveals key features of charge and heat flow in graphene up to device breakdown at ~2230 K in vacuum, highlighting remaining unknowns under extreme operating conditions.

  4. Deterministic separation of suspended particles in a reconfigurable obstacle array

    CERN Document Server

    Du, Siqi

    2015-01-01

    We use a macromodel of a flow-driven deterministic lateral displacement (DLD) microfluidic system to investigate conditions leading to size-separation of suspended particles. This model system can be easily reconfigured to establish an arbitrary orientation between the average flow field and the array of obstacles comprising the stationary phase (forcing angle). We also investigate the effect of obstacle size using two arrays with different obstacles but same surface-to-surface distance between them. In all cases, we observe the presence of a locked mode at small forcing angles, in which particles move along a principal direction in the lattice until a locked-to-zigzag transition takes place when the driving force reaches a critical angle. We show that the transition occurs at increasing angles for larger particles, thus enabling particle separation at specific forcing angles. Moreover, we observe a linear correlation between the critical angle and the size of the particles that could be used in the design of...

  5. Remote Sensing of Suspended Sediment Over Gulf of Martaban

    Directory of Open Access Journals (Sweden)

    Matamin Abd Rahman

    2015-03-01

    Full Text Available Gulf of Martaban is located at the north of Andaman, and is one of the world most turbid areas. The presence of suspended sediment concentration (SSC in the water body could reduce the underwater transmittance. This study has been conducted to investigate the variation of SSC over the Gulf of Martaban. Remote sensing reflectance (Rrs of 667 nm is used as a proxy to represent the sediment SSC variation over the study area. The data for the period of July 2002 to March 2014 acquired from MODIS Aqua 4 km resolution are used in this study. As a result, there is no obvious yearly variation in the SSC cover area. The SSC variation over this study area is found to be seasonal. High homogenous SSC covers area observably during the northeast (NE monsoon season that occurs from December to January. The sediment cover area could reach the latitude of 15°N that located at the south of the gulf. During southwest (SW monsoon season that occurs from May to September, low and sparse SSC cover area is observed. As a consequence, the area covered by the SSC is higher during the NE monsoon season as compared to the SW monsoon season. Hence, the SSC cover area during the NE monsoon season is greater than the yearly averaged SSC cover area. Meanwhile the SSC cover area during the rainy SW monsoon season is less than the yearly and NE monsoon season.

  6. Ensemble Modeling of Suspended Sediment in Steep Mountain Catchments

    Science.gov (United States)

    Stewart, J.; Raseman, W. J.; Kasprzyk, J. R.; Livneh, B.

    2016-12-01

    Climatic and land cover changes present important uncertainties into the rates of soil erosion and sedimentation in watersheds. Soil erosion adds constituents to streams, altering water chemistry and streambed morphology, which can adversely affect aquatic life and poses a critical challenge for water treatment and reservoir management. The goal of this research is to establish estimates of sediment transport within large-scale mountainous catchments (>1000 km2). As sedimentation rates are impacted by numerous physical processes including soil, land cover, slope and climate; the results from seven models will be presented to quantify uncertainty and improve predictability. A broader inquiry made here is into the efficacy of model structure under different conditions. We present the results from empirical, stochastic, conceptual and physical models. These include empirical models: monovariate rating curve, multivariate regression and the Modified Universal Soil Loss Equation (MUSLE), to models with conceptual components: Soil Water Assessment Tool (SWAT) to more physically based models: Water Erosion Prediction Project (WEPP), Precipitation Runoff Modeling System (PRMS) and Distributed Hydrology Soil Vegetation Model (DHSVM). Key uncertainties will be characterized resulting from forcing inputs, parameter selection, scale discretization, and model structure. Calibration results from a multi-objective optimization routine will be presented that optimize parameters and identify performance trade-offs that will be used to develop uncertainty estimates in both streamflow and sediment projections. The outcomes of this research will highlight critical issues relevant to large-scale hydrologic and suspended sediment prediction initiatives.

  7. Event-based total suspended sediment particle size distribution model

    Science.gov (United States)

    Thompson, Jennifer; Sattar, Ahmed M. A.; Gharabaghi, Bahram; Warner, Richard C.

    2016-05-01

    One of the most challenging modelling tasks in hydrology is prediction of the total suspended sediment particle size distribution (TSS-PSD) in stormwater runoff generated from exposed soil surfaces at active construction sites and surface mining operations. The main objective of this study is to employ gene expression programming (GEP) and artificial neural networks (ANN) to develop a new model with the ability to more accurately predict the TSS-PSD by taking advantage of both event-specific and site-specific factors in the model. To compile the data for this study, laboratory scale experiments using rainfall simulators were conducted on fourteen different soils to obtain TSS-PSD. This data is supplemented with field data from three construction sites in Ontario over a period of two years to capture the effect of transport and deposition within the site. The combined data sets provide a wide range of key overlooked site-specific and storm event-specific factors. Both parent soil and TSS-PSD in runoff are quantified by fitting each to a lognormal distribution. Compared to existing regression models, the developed model more accurately predicted the TSS-PSD using a more comprehensive list of key model input parameters. Employment of the new model will increase the efficiency of deployment of required best management practices, designed based on TSS-PSD, to minimize potential adverse effects of construction site runoff on aquatic life in the receiving watercourses.

  8. Design of Experimental Suspended Footbridge with Deck Made of UHPC

    Directory of Open Access Journals (Sweden)

    Blank Marek

    2016-01-01

    Full Text Available This paper deals with the static and dynamic design of experimental footbridge for pedestrians and cyclists in the municipality Lužec nad Vltavou in Czech Republic, Europe. This work aims to familiarize the reader with calculations carried out and the results obtained, describing the static and dynamic properties of proposed footbridge. The construction of footbridge is designed as a suspended structure with prestressed bridge deck consisting of prefabricated UHPC panels and reversed “V” shaped steel pylon with height of approximately 40 meters. The deck is anchored using 24 steel hangers in one row in a steel pylon - 17 ropes in the main span and 7 cables on the other side. Range of the main span is 99.18 meters and the secondary span is 31.9 m. Deck width is 4.5 meters with 3.0 meters passing space. The bridge is designed for the possibility of passage of vehicles weighting up to 3.5 tons. Deck panels are made of UHPC with reinforcement. At the edge of the bridge on the side of the shorter span the bridge deck is firmly connected with abutment and on the other deck it is stored using a pair of sliding bearings. The utilization of the excellent properties of UHPC allows to design a very thin and lightweight construction of the deck, which could not be achieved with the use of normal concrete.

  9. Suspended sediment dynamics in the Amazon River of Peru

    Science.gov (United States)

    Armijos, Elisa; Crave, Alain; Vauchel, Philippe; Fraizy, Pascal; Santini, William; Moquet, Jean-Sèbastien; Arevalo, Nore; Carranza, Jorge; Guyot, Jean-Loup

    2013-07-01

    The erosion and transport of sediments allow us to understand many activities of significance, such as crust evolution, climate change, uplift rates, continental processes, the biogeochemical cycling of pollutants and nutrients. The Amazon basin of Peru has contrasting physiographic and climatic characteristics between the Andean piedmont and the plains and between the north and south of the basin which is why there are 8 gauging stations located along the principal rivers of the Andean piedmont (Marañón, Huallaga, Ucayali) and the plain (Marañón, Tigre, Napo, Ucayali and Amazon rivers). Since 2003, the ORE-Hybam (IRD-SENAMHI-UNALM) observatory has performed out regular measurements at strategic points of the Amazon basin to understand and model the systems, behavior and long-term dynamics. On the Andean piedmont, the suspended yields are governed by a simple model with a relationship between the river discharge and the sediment concentration. In the plain, the dilution effect of the concentrations can create hysteresis in this relationship on a monthly basis. The Amazon basin of Peru has a sediment yield of 541 *106 t year-1, 70% comes from the southern basin.

  10. Freely suspended nanocomposite membranes as highly sensitive sensors.

    Science.gov (United States)

    Jiang, Chaoyang; Markutsya, Sergiy; Pikus, Yuri; Tsukruk, Vladimir V

    2004-10-01

    Highly sensitive sensor arrays are in high demand for prospective applications in remote sensing and imaging. Measuring microscopic deflections of compliant micromembranes and cantilevers is developing into one of the most versatile approaches for thermal, acoustic and chemical sensing. Here, we report on an innovative fabrication of compliant nanocomposite membranes with nanoscale thickness showing extraordinary sensitivity and dynamic range, which makes them candidates for a new generation of membrane-based sensor arrays. These nanomembranes with a thickness of 25-70 nm, which can be freely suspended over large (hundred micrometres) openings are fabricated with molecular precision by time-efficient, spin-assisted layer-by-layer assembly. They are designed as multilayered molecular composites made of a combination of polymeric monolayers and a metal nanoparticle intralayer. We demonstrate that these nanocomposite membranes possess unparalleled sensitivity and a unique autorecovering ability. The membrane nanostructure that is responsible for these outstanding properties combines multilayered polymer/nanoparticle organization, high polymer-chain orientation, and a pre-stretched state.

  11. Investigating suspended sediment dynamics in contrasting agricultural catchments using ex situ turbidity-based suspended sediment monitoring

    Science.gov (United States)

    Sherriff, S. C.; Rowan, J. S.; Melland, A. R.; Jordan, P.; Fenton, O.; hUallachain, D. O.

    2015-08-01

    Soil erosion and suspended sediment (SS) pose risks to chemical and ecological water quality. Agricultural activities may accelerate erosional fluxes from bare, poached or compacted soils, and enhance connectivity through modified channels and artificial drainage networks. Storm-event fluxes dominate SS transport in agricultural catchments; therefore, high temporal-resolution monitoring approaches are required, but can be expensive and technically challenging. Here, the performance of in situ turbidity sensors, conventionally installed submerged at the river bankside, is compared with installations where river water is delivered to sensors ex situ, i.e. within instrument kiosks on the riverbank, at two experimental catchments (Grassland B and Arable B). The in situ and ex situ installations gave comparable results when calibrated against storm-period, depth-integrated SS data, with total loads at Grassland B estimated at 12 800 and 15 400 t, and 22 600 and 24 900 t at Arable B, respectively. The absence of spurious turbidity readings relating to bankside debris around the in situ sensor and its greater security make the ex situ sensor more robust. The ex situ approach was then used to characterise SS dynamics and fluxes in five intensively managed agricultural catchments in Ireland which feature a range of landscape characteristics and land use pressures. Average annual suspended sediment concentration (SSC) was below the Freshwater Fish Directive (78/659/EEC) guideline of 25 mg L-1, and the continuous hourly record demonstrated that exceedance occurred less than 12 % of the observation year. Soil drainage class and proportion of arable land were key controls determining flux rates, but all catchments reported a high degree of inter-annual variability associated with variable precipitation patterns compared to the long-term average. Poorly drained soils had greater sensitivity to runoff and soil erosion, particularly in catchments with periods of bare soils. Well

  12. International Conference on Energy Storage, Brighton, Sussex, England, April 29-May 1, 1981, Proceedings

    Science.gov (United States)

    Current developmental, experimental, and production prototype energy storage systems are surveyed, with an emphasis on European programs and products. Attention is given to chemical, thermochemical/heat pump combinations, and reversible reaction heat storage methods. Applications of zeolite, hydrogenated cyclohexane, and fluidized media are examined, as are thermal storage options for industry and utilities. Phase change materials in bulk, encapsulated, and sodium acetate forms are reviewed, particularly for solar energy thermal storage. The compatibility of construction materials with latent heat storage is discussed. Battery systems for transport vehicles, load leveling, and storage of solar and wind-derived electricity are described. Aquifer storage is explored, together with underground pumped hydro and compressed air energy storage, a two-basin tidal power scheme, and kinetic energy rings such as flywheels.

  13. Aerial Photo Utilization in Estimating Suspended Sediment in the Wuryantoro Watershed, Wonogiri

    Directory of Open Access Journals (Sweden)

    Sugiharto Budi Santoso

    2004-01-01

    Full Text Available Suspended sediment load flowing out from a watershed is normally predicated by analysis os suspended sediment of water sample, and the volume of suspended sediment be calculated based on sediment concentration and river discharge. Such field measurements need a lot of field data and they are time consuming. Another method for prediction of suspended sediment by using remote sensing imagery data and recorded rainfall data. The objective of this research is to 1 examine the capability of remote sensing technique to obtain the parameters of the physical data of land in the prediction of suspended sediment; 2 examine the accuracy of the model for prediction suspended sediment. This research is carried out in Wuryantoro watershed, Wonogiri. The main data to obtain the parameters of the physical data of land is infrared aerial photograph on scale 1 : 10.000. the method that used in this research is interpretation of remote sensing imagery data, combined with rainfall data. The result show that the accuracy of landuse is 88.5%, the accuracy of slope is 87.67%. the accuracy of the prediction of suspended sediment by model A3 87.07%, model C1 86.63%, model C2 90.57%, model A8 84.13%, model A9 80.1%, and model C4 78.6%.

  14. High concentration suspended sediment measurments using acontinuous fiber optic in-stream transmissometer

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Chris G.; Laycak, Danny T.; Hoppes, William; Tran,Nguyen T.; Shi, Frank G.

    2004-05-26

    Suspended sediment loads mobilized during high flow periods in rivers and streams are largely uncharacterized. In smaller and intermittent streams, a large storm may transport a majority of the annual sediment budget. Therefore monitoring techniques that can measure high suspended sediment concentrations at semi-continuous time intervals are needed. A Fiber optic In-stream Transmissometer (FIT) is presented for continuous measurement of high concentration suspended sediment in storm runoff. FIT performance and precision were demonstrated to be reasonably good for suspended sediment concentrations up to 10g/L. The FIT was compared to two commercially available turbidity devices and provided better precision and accuracy at both high and low concentrations. Both turbidity devices were unable to collect measurements at concentrations greater than 4 g/L. The FIT and turbidity measurements were sensitive to sediment particle size. Particle size dependence of transmittance and turbidity measurement poses the greatest problem for calibration to suspended sediment concentration. While the FIT was demonstrated to provide acceptable measurements of high suspended sediment concentrations, approaches to real-time suspended sediment detection need to address the particle size dependence in concentration measurements.

  15. How are macroinvertebrates of slow flowing lotic systems directly affected by suspended and deposited sediments?

    Energy Technology Data Exchange (ETDEWEB)

    Kefford, Ben J., E-mail: ben.kefford@rmit.edu.a [Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, PO Box 71, Bundoora, Victoria 3083 (Australia); Zalizniak, Liliana [Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, PO Box 71, Bundoora, Victoria 3083 (Australia); Dunlop, Jason E. [Department of Environment and Resource Management (DERM), 120 Meiers Rd, Indooroopilly, Queensland 4068 (Australia); Smart Water Research Facility, Griffith University, Queensland (Australia); Nugegoda, Dayanthi [Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, PO Box 71, Bundoora, Victoria 3083 (Australia); Choy, Satish C. [Department of Environment and Resource Management (DERM), 120 Meiers Rd, Indooroopilly, Queensland 4068 (Australia)

    2010-02-15

    The effects of suspended and deposited sediments on the macroinvertebrates are well documented in upland streams but not in slower flowing lowland rivers. Using species found in lowland lotic environments, we experimentally evaluate mechanisms for sediments to affect macroinvertebrates, and in one experiment whether salinity alters the effect of suspended sediments. Suspended kaolin clay reduced feeding of Ischnura heterosticta (Odonata: Coenagrionidae) at high turbidity (1000-1500 NTU) but had no effects on feeding of Hemianax papuensis (Odonata: Aeshnidae) and Micronecta australiensis (Hemiptera: Corixidae). In freshwater (0.1 mS/cm), survival of Ischnura aurora was poor in clear water, but improved with suspended kaolin. Growth and feeding of I. aurora were unaffected by suspended sediments and salinity. Burial (1-5 mm) of eggs with kaolin or sand reduced hatching in Physa acuta (Gastropoda: Physidae), Gyraulus tasmanica (Gastropoda: Planorbidae) and Chironomus cloacalis (Diptera: Chironomidae). Settling sediments may pose greater risk to lowland lotic invertebrates than suspended sediments. - Sediment deposition may be more directly detrimental to macroinvertebrates of lowland rivers than suspended sediments.

  16. Suspended-sediment loads and reservoir sediment trap efficiency for Clinton Lake, Kansas, 2010-12

    Science.gov (United States)

    Juracek, Kyle E.

    2013-01-01

    Continuous streamflow and turbidity data collected from October 1, 2010, to September 30, 2012, at a site upstream and downstream from Clinton Lake, Kansas, were used to compute the total suspended-sediment load delivered to and released from the reservoir as well as the sediment trap efficiency for the reservoir. Ongoing sedimentation is inhibiting the ability of Clinton Lake to serve several purposes including flood control, water supply, and recreation. The inflow suspended-sediment load was substantially larger than the outflow load and most of the suspended-sediment load was delivered during short-term, high-discharge periods. Respectively, the total 2-year inflow and outflow suspended-sediment loads were computed to be 44.4 and 1.49 million pounds. Sediment trap efficiency for the reservoir was estimated to be 97 percent. The mean annual suspended-sediment yield from the upstream basin was estimated to be 60,500 pounds per square mile. Because this study was completed during a drought, the estimated inflow suspended-sediment load and suspended-sediment yield likely are substantially less than what would occur during a period of average or above average precipitation and runoff.

  17. Mucous Secretion and Cilia Beating Defend Developing Coral Larvae from Suspended Sediments.

    Directory of Open Access Journals (Sweden)

    Gerard F Ricardo

    Full Text Available Suspended sediments produced from dredging activities, or added to the sediment budget via river runoff, are a concern for marine resource managers. Understanding the impact of suspended sediments on critical life history stages of keystone species like corals is fundamental to effective management of coastlines and reefs. Coral embryos (Acropora tenuis and A. millepora and larvae (A. tenuis, A. millepora and Pocillopora acuta were subjected to a range of suspended sediment concentrations of different sediment types (siliciclastic and carbonate to assess concentration-response relationships on ecologically relevant endpoints, including survivorship and ability to metamorphose. Embryos were subjected to short (12 h suspended sediment exposures from ages of 3-12 hours old or a long (30 h exposure at 6 hours old. Neither the survivorship nor metamorphosis function of embryos were significantly affected by realistic sediment exposures to ~1000 mg L-1. However, some embryos exhibited a previously undescribed response to dynamically suspended sediments, which saw 10% of the embryos form negatively buoyant cocoons at siliciclastic suspended sediment concentrations ≥35 mg L-1. Scanning electron and optical microscopy confirmed the presence of a coating on these embryos, possibly mucus with incorporated sediment particles. Cocoon formation was common in embryos but not in larvae, and occurred more often after exposure to siliciclastic rather than carbonate sediments. Once transferred into sediment-free seawater, functional ~36-h-old embryos began emerging from the cocoons, coinciding with cilia development. Ciliated (> 36-h-old larvae exposed to suspended sediments for 60 h were also observed to secrete mucus and were similarly unaffected by suspended sediment concentrations to ~800 mg L-1. This study provides evidence that mucous secretion and cilia beating effectively protect coral embryos and larvae from suspended sediment and that these mechanisms

  18. 40 CFR 1042.330 - Selling engines from an engine family with a suspended certificate of conformity.

    Science.gov (United States)

    2010-07-01

    ... with a suspended certificate of conformity. 1042.330 Section 1042.330 Protection of Environment... engines from an engine family with a suspended certificate of conformity. You may sell engines that you produce after we suspend the engine family's certificate of conformity under § 1042.315 only if one of the...

  19. 5 CFR 1620.45 - Suspending TSP loans, restoring post-employment withdrawals, and reversing taxable distributions.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Suspending TSP loans, restoring post... Employment and Reemployment Rights Act (USERRA)-Covered Military Service § 1620.45 Suspending TSP loans, restoring post-employment withdrawals, and reversing taxable distributions. (a) Suspending TSP loans during...

  20. Determining annual suspended sediment and sediment-associated trace element and nutrient fluxes

    Science.gov (United States)

    Horowitz, A.J.

    2008-01-01

    Suspended sediment is a major factor in the biological and geochemical cycling of trace elements and nutrients in aquatic systems. The design of effective studies involving the collection, processing, and subsequent chemical analysis of suspended sediment requires a clear understanding of the problems associated with using this sample medium. This review summarizes the current state of knowledge relative to the various issues/problems associated with the collection of representative suspended sediment samples in fluvial systems. It also addresses issues associated with accurately determining the concentrations and fluxes of sediment-associated trace elements and nutrients.

  1. H2S induces a suspended animation-like state in mice.

    Science.gov (United States)

    Blackstone, Eric; Morrison, Mike; Roth, Mark B

    2005-04-22

    Mammals normally maintain their core body temperature (CBT) despite changes in environmental temperature. Exceptions to this norm include suspended animation-like states such as hibernation, torpor, and estivation. These states are all characterized by marked decreases in metabolic rate, followed by a loss of homeothermic control in which the animal's CBT approaches that of the environment. We report that hydrogen sulfide can induce a suspended animation-like state in a nonhibernating species, the house mouse (Mus musculus). This state is readily reversible and does not appear to harm the animal. This suggests the possibility of inducing suspended animation-like states for medical applications.

  2. Electromechanical coupling in suspended nanomechanical resonators with a two-dimensional electron gas

    Science.gov (United States)

    Shevyrin, A. A.; Pogosov, A. G.; Bakarov, A. K.; Shklyaev, A. A.

    2017-06-01

    A physical model describing the piezoelectric-effect-mediated influence of bending of a thin suspended cantilever with a two-dimensional electron gas on the conductivity is proposed. The model shows that the conductivity change is almost entirely caused by the rapid change in mechanical stress near the boundary of suspended and non-suspended areas, rather than by the stress itself. An experiment confirming that the electromechanical coupling is associated with the piezoelectric effect is performed. The experimentally measured conductance sensitivity to the cantilever’s vibrations agree with the developed physical model.

  3. Basic hydraulic experiment on the saturated concentration of suspended load due to tsunamis

    Science.gov (United States)

    Takahashi, Tomoyuki; Somekawa, Shiho

    2016-04-01

    When tsunamis arrive in the shallow sea, a huge amount of suspended load is generated by large velocity and strong turbulence. The suspended load causes the geomorphic processes of erosion and deposition. Because the suspended load cannot be increased endlessly, it should have the saturated concentration. Many numerical models of sediment transport due to tsunamis have assumed a constant value of 1% for the saturated concentration empirically. However, it is supposed as a function of velocity. In this study, a hydraulic experiment was carried out to investigate a relationship between velocity and the saturated concentration of suspended load when tsunamis attack. A water circulation pipe used in the experiment was 10 cm in a diameter, 260 cm in length and 50 cm in width. A velocity of water flow in the pipe had been controlled by two pumps and two valves. It was changed from 0.24 to 1.22 m/s. Various amounts of sand was spread on the bottom of pipe. The amount of sand was changed from 0.1 to 10% as converted in the concentration of suspended load if all sand suspended. A diameter and a density of the sand were 0.267 mm and 2.64 x 103 kg/m^3. A condition of sediment transport in the pipe was recorded by video camera from a transparent window at the side of pipe. The condition was judged as all sand particles were suspended or not. The former condition indicates that the concentration of suspended load is saturated and the latter does it is not saturated. When velocity was smaller than 0.47 m/s, there was no suspended load because of a weak tractive force. When velocity became larger, the suspended load was generated and the concentration also became higher. However, the concentration had the upper limit and surplus sand appeared on the bed of pipe when velocity became much larger. The condition gave the saturated concentration of suspended load. When velocity was 0.665 m/s, the saturated concentration was smaller than 1% which is used in many numerical simulations

  4. THE HYDROLOGIC CYCLE, UNIDIRECTIONAL CHARTER OF THE DISSOLVED SALTS AND SUSPENDED LOAD

    Directory of Open Access Journals (Sweden)

    Nicolae Florea

    2012-12-01

    Full Text Available In this paper it is underlined that the hydrologic cycle in nature, reversible and regenerating of fresh water, carries out also an unidirectional and irreversible circulation – by means of a fragment of the hydrologic cycle – of the dissolved salts and stream’s suspended load, entailed by the water drained from continents to ocean. The trend is to transfer soluble salts from land to ocean in the same time with the running water on land in the portion of the hydrologic cycle which refers to the water transfer from continents to ocean in order to equilibrate the annual water balance of the hydrologic cycle. But, one can realize here and there some local salt accumulations in salt soils or in salt lakes within areas without drainage in arid climate; these salts accumulations are cases of local hydrologic cycles „grafted” along the way of water on land (to ocean. The energy necessary to the hydrologic cycle in nature is delivered by the Sun, and the entropy remains at a low level as a consequence of the elimination in this cycle of water vapors with high entropy, and of the receiving of liquid or solid water with low entropy, so that the annual level of entropy is maintained at a low level.

  5. Mixing Performance of a Suspended Stirrer for Homogenizing Biodegradable Food Waste from Eatery Centers

    Directory of Open Access Journals (Sweden)

    Olumide Babarinsa

    2014-08-01

    Full Text Available Numerical simulation of a suspended stirrer within a homogenizing system is performed towards determining the mixing performance of a homogenizer. A two-dimensional finite volume formulation is developed for the cylindrical system that is used for the storage and stirring of biodegradable food waste from eatery centers. The numerical solver incorporates an analysis of the property distribution for viscous food waste in a storage tank, while coupling the impact of mixing on the slurry fluid. Partial differential equations, which describe the conservation of mass, momentum and energy, are applied. The simulation covers the mixing and heating cycles of the slurry. Using carrot-orange soup as the operating fluid (and its thermofluid properties and assuming constant density and temperature-dependent viscosity, the velocity and temperature field distribution under the influence of the mixing source term are analyzed. A parametric assessment of the velocity and temperature fields is performed, and the results are expected to play a significant role in designing a homogenizer for biodegradable food waste.

  6. Parameterization of Time-Averaged Suspended Sediment Concentration in the Nearshore

    Directory of Open Access Journals (Sweden)

    Hyun-Doug Yoon

    2015-11-01

    Full Text Available To quantify the effect of wave breaking turbulence on sediment transport in the nearshore, the vertical distribution of time-averaged suspended sediment concentration (SSC in the surf zone was parameterized in terms of the turbulent kinetic energy (TKE at different cross-shore locations, including the bar crest, bar trough, and inner surf zone. Using data from a large-scale laboratory experiment, a simple relationship was developed between the time-averaged SSC and the time-averaged TKE. The vertical variation of the time-averaged SSC was fitted to an equation analogous to the turbulent dissipation rate term. At the bar crest, the proposed equation was slightly modified to incorporate the effect of near-bed sediment processes and yielded reasonable agreement. This parameterization yielded the best agreement at the bar trough, with a coefficient of determination R2 ≥ 0.72 above the bottom boundary layer. The time-averaged SSC in the inner surf zone showed good agreement near the bed but poor agreement near the water surface, suggesting that there is a different sedimentation mechanism that controls the SSC in the inner surf zone.

  7. Reduced-Pressure Chemical Vapor Deposition Growth of Isolated Ge Crystals and Suspended Layers on Micrometric Si Pillars.

    Science.gov (United States)

    Skibitzki, Oliver; Capellini, Giovanni; Yamamoto, Yuji; Zaumseil, Peter; Schubert, Markus Andreas; Schroeder, Thomas; Ballabio, Andrea; Bergamaschini, Roberto; Salvalaglio, Marco; Miglio, Leo; Montalenti, Francesco

    2016-10-05

    In this work, we demonstrate the growth of Ge crystals and suspended continuous layers on Si(001) substrates deeply patterned in high aspect-ratio pillars. The material deposition was carried out in a commercial reduced-pressure chemical vapor deposition reactor, thus extending the "vertical-heteroepitaxy" technique developed by using the peculiar low-energy plasma-enhanced chemical vapor deposition reactor, to widely available epitaxial tools. The growth process was thoroughly analyzed, from the formation of small initial seeds to the final coalescence into a continuous suspended layer, by means of scanning and transmission electron microscopy, X-ray diffraction, and μ-Raman spectroscopy. The preoxidation of the Si pillar sidewalls and the addition of hydrochloric gas in the reactants proved to be key to achieve highly selective Ge growth on the pillars top only, which, in turn, is needed to promote the formation of a continuous Ge layer. Thanks to continuum growth models, we were able to single out the different roles played by thermodynamics and kinetics in the deposition dynamics. We believe that our findings will open the way to the low-cost realization of tens of micrometers thick heteroepitaxial layer (e.g., Ge, SiC, and GaAs) on Si having high crystal quality.

  8. Monitoring suspended sediments and turbidity in Sahelian basins

    Science.gov (United States)

    Robert, Elodie; Grippa, Manuela; Kergoat, Laurent; Martinez, Jean-Michel; Pinet, Sylvain; Nogmana, Soumaguel

    2017-04-01

    Suspended matter can carry viruses and bacteria that are pathogenic to humans and can foster their development. Therefore, turbidity can be considered a vector of microbiological contaminants, which cause diarrheal diseases, and it can be used as a proxy for fecal bacteria. Few studies have focused on water turbidity in rural Africa, where many cases of intestinal parasitic infections are due to the consumption of unsafe water from ponds, reservoirs, lakes and rivers. Diarrheal diseases are indeed the second cause of infant mortality in sub-Saharan Africa. Furthermore, in this region, environment survey is minimal or inexistent. Monitoring water turbidity therefore represents a challenge for health improvement. Turbidity refers to the optical properties of water and it is well suited to monitoring by remote sensing. Because it varies in space and time and because the small water bodies (remote sensing and questions the methods developed for less turbid waters. In addition, high aerosol loadings (mineral dust and biomass burning) may be detrimental to turbidity retrieval in this region because of inaccurate atmospheric corrections. We propose a method to monitor water quality of Sahelian ponds, lakes and rivers using in-situ and remote sensing data, which is tested at different sites for which in-situ water turbidity and suspended sediments concentration (SSSC) measurements are acquired. Water sample are routinely collected at two sites within the AMMA-CATCH observatory part of the Réseau de Bassin Versants (RBV) French network: the Agoufou pond in northern Mali (starting September 2014), and the Niger River at Niamey in Niger (starting June 2015). These data are used to evaluate different indexes to derive water turbidity from the reflectance in the visible and infrared bands of high resolution optical sensors (LANDSAT, SENTINEL2). The temporal evolution of the turbidity of ponds, lakes and rivers is well captured at the seasonal and interannual scales with the

  9. Characteristics of sediment data and annual suspended-sediment loads and yields for selected lower Missouri River mainstem and tributary stations, 1976-2008

    Science.gov (United States)

    Heimann, David C.; Rasmussen, Patrick P.; Cline, Teri L.; Pigue, Lori M.; Wagner, Holly R.

    2010-01-01

    Suspended-sediment data from 18 selected surface-water monitoring stations in the lower Missouri River Basin downstream from Gavins Point Dam were used in the computation of annual suspended-sediment and suspended-sand loads for 1976 through 2008. Three methods of suspended-sediment load determination were utilized and these included the subdivision method, regression of instantaneous turbidity with suspended-sediment concentrations at selected stations, and regression techniques using the Load Estimator (LOADEST) software. Characteristics of the suspended-sediment and streamflow data collected at the 18 monitoring stations and the tabulated annual suspended-sediment and suspended-sand loads and yields are presented.

  10. Storage filters upland suspended sediment signals delivered from watersheds

    Science.gov (United States)

    Pizzuto, James E.; Keeler, Jeremy; Skalak, Katherine; Karwan, Diana

    2017-01-01

    Climate change, tectonics, and humans create long- and short-term temporal variations in the supply of suspended sediment to rivers. These signals, generated in upland erosional areas, are filtered by alluvial storage before reaching the basin outlet. We quantified this filter using a random walk model driven by sediment budget data, a power-law distributed probability density function (PDF) to determine how long sediment remains stored, and a constant downstream drift velocity during transport of 157 km/yr. For 25 km of transport, few particles are stored, and the median travel time is 0.2 yr. For 1000 km of transport, nearly all particles are stored, and the median travel time is 2.5 m.y. Both travel-time distributions are power laws. The 1000 km travel-time distribution was then used to filter sinusoidal input signals with periods of 10 yr and 104 yr. The 10 yr signal is delayed by 12.5 times its input period, damped by a factor of 380, and is output as a power law. The 104 yr signal is delayed by 0.15 times its input period, damped by a factor of 3, and the output signal retains its sinusoidal input form (but with a power-law “tail”). Delivery time scales for these two signals are controlled by storage; in-channel transport time is insignificant, and low-frequency signals are transmitted with greater fidelity than high-frequency signals. These signal modifications are essential to consider when evaluating watershed restoration schemes designed to control sediment loading, and where source-area geomorphic processes are inferred from the geologic record.

  11. Particle size distribution of suspended solids in the Chesapeake Bay entrance and adjacent shelf waters

    Science.gov (United States)

    Byrnes, M. R.; Oertel, G. F.

    1981-01-01

    Characteristics of suspended solids, including total suspended matter, total suspended inorganics, total suspended organics, particle size distribution, and the presence of the ten most prominent particle types were determined. Four research vessels simultaneously collected samples along four transects. Samples were collected within a 2-hour period that coincided with the maximum ebb penetration of Chesapeake Bay outwelling. The distribution of primary and secondary particle size modes indicate the presence of a surface or near-surface plume, possibly associated with three sources: (1) runoff, (2) resuspension of material within the Bay, and/or (3) resuspension of material in the area of shoals at the Bay mouth. Additional supportive evidence for this conclusion is illustrated with ocean color scanner data.

  12. Residual fluxes of water, salt and suspended sediment in the Beypore Estuary

    Digital Repository Service at National Institute of Oceanography (India)

    AnilKumar, N.; Revichandran, C.; Sankaranarayanan, V.N.; Josanto, V.

    The monthly trends of the residual fluxes of salt and water and the transportation of suspended sediments in the Beypore estuarine system, Kerala, India were examined. At the river mouth the water flux was directed seaward during the postmonsoon...

  13. Suspended sediment fluxes in a tropical estuary, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    AnilKumar, N.; DineshKumar, P.K.; Srinivas, K.

    Annual transport processes of suspended sediments in Beypore estuary - a tropical estuary along the south west coast of India - were investigated based on time series measurements within the system. It's observed that the sediment transport...

  14. Chlorophyll 'a' particulate organic carbon and suspended load from the mangrove areas of Cochin backwaters

    Digital Repository Service at National Institute of Oceanography (India)

    Sheeba, P.; Devi, K.S.; Balasubramanian, T.; Sankaranarayanan, V.N.

    Chlorophyll 'a' Particulate Organic Carbon and suspended load were estimated for one year from two distinct mangrove areas of Cochin backwaters, viz. Puthuvypeen and Nettoor. Environmental parameters like tau degrees C, S ppt and pH were also...

  15. Evaluation of Spinacia oleracea L. leaves mucilage as an innovative suspending agent.

    Science.gov (United States)

    Nayak, Amit Kumar; Pal, Dilipkumar; Pany, Dipti Ranjan; Mohanty, Biswaranjan

    2010-07-01

    The present study was undertaken to evaluate the mucilage isolated from Spinacia oleracea L. leaves, commonly named spinach (family: Amaranthaceae) as an innovative suspending agent. Zinc oxide suspensions (20% w/v) were prepared using the mucilage of S. oleracea L. leaves as a suspending agent, and it was evaluated for its stability by using parameters like, sedimentation profile, degree of flocculation, and redispersibility. The effect of the tested mucilage on the suspension was compared with various commonly used suspending agents, such as, tragacanth, bentonite, and sodium carboxymethyl cellulose (NaCMC) at concentrations of 0.5, 1.0, and 2.0% w/v. The results obtained indicated that the mucilage of S. oleracea L. leaves could be used as a suspending agent, and the performance was found to be superior to both tragacanth and bentonite.

  16. Evaluation of Spinacia oleracea L. leaves mucilage as an innovative suspending agent

    Directory of Open Access Journals (Sweden)

    Amit Kumar Nayak

    2010-01-01

    Full Text Available The present study was undertaken to evaluate the mucilage isolated from Spinacia oleracea L. leaves, commonly named spinach (family: Amaranthaceae as an innovative suspending agent. Zinc oxide suspensions (20% w/v were prepared using the mucilage of S. oleracea L. leaves as a suspending agent, and it was evaluated for its stability by using parameters like, sedimentation profile, degree of flocculation, and redispersibility. The effect of the tested mucilage on the suspension was compared with various commonly used suspending agents, such as, tragacanth, bentonite, and sodium carboxymethyl cellulose (NaCMC at concentrations of 0.5, 1.0, and 2.0% w/v. The results obtained indicated that the mucilage of S. oleracea L. leaves could be used as a suspending agent, and the performance was found to be superior to both tragacanth and bentonite.

  17. 76 FR 80982 - International Cyclotron, Inc., Hato Rey, Puerto Rico; Order Suspending Licensed Activities

    Science.gov (United States)

    2011-12-27

    ...-0292] International Cyclotron, Inc., Hato Rey, Puerto Rico; Order Suspending Licensed Activities I International Cyclotron, Inc. (International Cyclotron; Licensee) is the holder of Byproduct Materials License... International Cyclotron submitted its NRC license application related to the cyclotron, it requested...

  18. Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland

    NARCIS (Netherlands)

    Overeem, I.; Hudson, Brian D; Syvitski, James P. M.; Mikkelsen, Andreas B.; Hasholt, B.; van den Broeke, M. R.; Noel, B. P. Y.; Morlighem, M.

    2017-01-01

    Limited measurements along Greenland’s remote coastline hamper quantification of the sediment and associated nutrients draining the Greenland ice sheet, despite the potential influence of river-transported suspended sediment on phytoplankton blooms and carbon sequestration. Here we calibrate

  19. Seasonal variations of total suspended matter (TSM) in the Gulf of Khambhat, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Misra, A.; ManiMurali, R.; Sukumaran, S.; Vethamony, P.

    Total Suspended Matter (TSM)is an important parameter for determining the water quality in coastal regions as it is responsible for the reduction in the light available to the aquatic vegetation which subsequently alters the health and quality...

  20. Natural isotopic composition of nitrogen in suspended particulate matter in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, S.; Ramesh, R.; Bhosle, N.B.; Sardessai, S.; Sheshshayee, M.S.

    The first measurements of nitrogen isotopic composition (delta sup(15) N) in suspended particulate matter (SPM) of the surface Bay of Bengal (BOB) at 24 different locations during pre- (April-May 2003) and post- (September-October 2002) monsoon...

  1. Experimental realization of suspended atomic chains composed of different atomic species

    Energy Technology Data Exchange (ETDEWEB)

    Bettini, Jefferson; Ugarte, Daniel [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil); Sato, Fernando; Galvao, Douglas Soares [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin; Coura, Pablo Zimmerman; Dantas, Socrates de Oliveira [Universidade Federal de Juiz de Fora (UFJF), MG (Brazil). Inst. de Ciencias Exatas. Dept. de Fisica

    2006-07-01

    We report high resolution transmission electron microscopy (HRTEM) and molecular dynamics results of the first experimental test of suspended atomic chains composed of different atomic species formed from spontaneous stretching of metallic nanowires. (author)

  2. Continuous-flow centrifugation to collect suspended sediment for chemical analysis

    Science.gov (United States)

    Conn, Kathleen E.; Dinicola, Richard S.; Black, Robert W.; Cox, Stephen E.; Sheibley, Richard W.; Foreman, James R.; Senter, Craig A.; Peterson, Norman T.

    2016-12-22

    Recent advances in suspended-sediment monitoring tools and surrogate technologies have greatly improved the ability to quantify suspended-sediment concentrations and to estimate daily, seasonal, and annual suspended-sediment fluxes from rivers to coastal waters. However, little is known about the chemical composition of suspended sediment, and how it may vary spatially between water bodies and temporally within a single system owing to climate, seasonality, land use, and other natural and anthropogenic drivers. Many water-quality contaminants, such as organic and inorganic chemicals, nutrients, and pathogens, preferentially partition in sediment rather than water. Suspended sediment-bound chemical concentrations may be undetected during analysis of unfiltered water samples, owing to small water sample volumes and analytical limitations. Quantification of suspended sediment‑bound chemical concentrations is needed to improve estimates of total chemical concentrations, chemical fluxes, and exposure levels of aquatic organisms and humans in receiving environments. Despite these needs, few studies or monitoring programs measure the chemical composition of suspended sediment, largely owing to the difficulty in consistently obtaining samples of sufficient quality and quantity for laboratory analysis.A field protocol is described here utilizing continuous‑flow centrifugation for the collection of suspended sediment for chemical analysis. The centrifuge used for development of this method is small, lightweight, and portable for the field applications described in this protocol. Project scoping considerations, deployment of equipment and system layout options, and results from various field and laboratory quality control experiments are described. The testing confirmed the applicability of the protocol for the determination of many inorganic and organic chemicals sorbed on suspended sediment, including metals, pesticides, polycyclic aromatic hydrocarbons, and

  3. Microgrid Study: Energy Security for DoD Installations

    Science.gov (United States)

    2012-06-18

    of technologies, including batteries and flywheels , could help ameliorate this problem, but further research and development will be required. For...quality issues could arise with fast load transients. Various technologies, including batteries and flywheels , could help ameliorate this problem, but

  4. A study of metal ion adsorption at low suspended-solid concentrations

    Science.gov (United States)

    Chang, Cecily C.Y.; Davis, J.A.; Kuwabara, J.S.

    1987-01-01

    A procedure for conducting adsorption studies at low suspended solid concentrations in natural waters (NaCl) concentration (0??1-0??002 m) and particle concentration (2-50 mg l-1). The lack of success of the Davis Leckie site bonding model in describing Zn(II) adsorption emphasizes the need for further studies of adsorption at low suspended-solid concentrations. ?? 1987.

  5. Wavelength-Tunable IR Detector based on Suspended Bilayer Graphene Micro Ribbons

    Science.gov (United States)

    2013-11-05

    high purity copper foil using a low pressure CVD furnace at 1000 oC in a hydrogen, argon and methane environment. Raman spectrum of the graphene ...characterized in Year One a device with suspended graphene microribbons, and found that fully suspended CVD -grown graphene devices are dominated by the...photoelectric effect, which is promising towards CVD -grown graphene photodetectors approaching THz cut-off frequencies. chemical vapor deposition, strain

  6. Measurement of Suspended Sediment Transport Processes off the Holderness Coast - Southern North Sea, England

    OpenAIRE

    Blewett, Joanna Catherine

    1998-01-01

    A field campaign was set up as part of the LOIS-RACS coastal program (1994-1996), to identify the near-bed physical processes responsible for suspended sediment movement in shallow water (10-20m depth) off the Holdemess coast, NE England. A new benthic tripod system Boundary Layer Intelligent Sensor System (BLISS) has been developed and deployed along a transect at three sites, normal to the coastline at Tunstall. Measurements of current velocity, suspended sediment concentrati...

  7. Thermal instability of Walters B' viscoelastic fluid permeated with suspended particles in hydromagnetics in porous medium

    Directory of Open Access Journals (Sweden)

    Kumar Pardeep

    2004-01-01

    Full Text Available The effect of suspended particles on the thermal instability of Walters B' viscoelastic fluid in hydromantic in porous medium is considered. For stationary convection, Walters B' viscoelastic fluid behaves like a Newtonian fluid. The medium permeability and suspended particles has ten the onset of convection whereas the magnetic field postpones the onset of convection, for the case of stationary convection. The magnetic field and viscoelasticity intro duce oscillatory modes in the system which was non-existent in their absence.

  8. A Generalized Mathematical Model for the Fracture Problem of the Suspended Highway

    Directory of Open Access Journals (Sweden)

    Zhao Ying

    2017-01-01

    Full Text Available In order to answer dangling fracture problems of highway, the suspended pavement equivalent for non - suspended pavement, through the special boundary conditions has been suspended highway stress field of expression, in accordance with the 3D fracture model of crack formation, and establish a vacant, a general mathematics model for fracture problems of highway and analysis in highway suspended segment weight and vehicle load limit of highway capacity of Pu For overturning road inPu is less than the force of carrying more than compared to the work and fruit Bridge Hydropower Station Road engineering examples to verify suspended highway should force field expressions for the correctness and applicability. The results show that: when the hanging ratio R 0. 243177 limits of Pu design axle load 100kN. When the vertical crack in the vacant in the direction of length greater than 0. 1, the ultimate bearing capacity is less than the design axle load 100kN; when the hanging ratio R is less than 0. 5, the road to local fracture, the ultimate bearing capacity of suspended stress field expressions in solution; when the hanging ratio is greater than or equal to 0. 5, the road does not reach the limit bearing capacity of the whole body; torque shear surface of the effect is far less than the bending moments on shear planes.

  9. Spatial and temporal variability of suspended-sediment concentrations in a shallow estuarine environment

    Directory of Open Access Journals (Sweden)

    Catherine A. Ruhl

    2004-05-01

    Full Text Available Shallow subembayments respond differently than deep channels to physical forces acting in estuaries. The U.S. Geological Survey measured suspended-sediment concentrations at five locations in Honker Bay, a shallow subembayment of San Francisco Bay, and the adjacent channel to investigate the spatial and temporal differences between deep and shallow estuarine environments. During the first freshwater pulse of the wet season, the channel tended to transport suspended sediments through the system, whereas the shallow area acted as off-channel storage where deposition would likely occur. Following the freshwater pulse, suspended-sediment concentrations were greater in Honker Bay than in the adjacent deep channel, due to the larger supply of erodible sediment on the bed. However, the tidal variability of suspended-sediment concentrations in both Honker Bay and in the adjacent channel was greater after the freshwater pulse than before. During wind events, suspended-sediment concentrations in the channel were not affected; however, wind played a crucial role in the resuspension of sediments in the shallows. Despite wind-wave sediment resuspension in Honker Bay, tidally averaged suspended-sediment flux was controlled by the flood-dominated currents.

  10. Modelling of Diesel Generator Sets That Assist Off-Grid Renewable Energy Micro-grids

    Directory of Open Access Journals (Sweden)

    Johanna Salazar

    2015-08-01

    Full Text Available This paper focuses on modelling diesel generators for off-grid installations based on renewable energies. Variations in Environmental Variables (for example, Solar Radiation and Wind Speed make necessary to include these auxiliary systems in off-grid renewable energy installations, in order to ensure minimal services when the produced renewable energy is not sufficient to fulfill the demand. This paper concentrates on modelling the dynamical behaviour of the diesel generator, in order to use the models and simulations for developing and testing advanced controllers for the overall off-grid system. The Diesel generator is assumed to consist of a diesel motor connected to a synchronous generator through an electromagnetic clutch, with a flywheel to damp variations. Each of the components is modelled using physical models, with the corresponding control systems also modelled: these control systems include the speed and the voltage regulation (in cascade regulation.

  11. Simulation model for wind energy storage systems. Volume III. Program descriptions. [SIMWEST CODE

    Energy Technology Data Exchange (ETDEWEB)

    Warren, A.W.; Edsinger, R.W.; Burroughs, J.D.

    1977-08-01

    The effort developed a comprehensive computer program for the modeling of wind energy/storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel and pneumatic). An acronym for the program is SIMWEST (Simulation Model for Wind Energy Storage). The level of detail of SIMWEST is consistent with a role of evaluating the economic feasibility as well as the general performance of wind energy systems. The software package consists of two basic programs and a library of system, environmental, and load components. Volume III, the SIMWEST program description contains program descriptions, flow charts and program listings for the SIMWEST Model Generation Program, the Simulation program, the File Maintenance program and the Printer Plotter program. Volume III generally would not be required by SIMWEST user.

  12. Simulation model for wind energy storage systems. Volume II. Operation manual. [SIMWEST code

    Energy Technology Data Exchange (ETDEWEB)

    Warren, A.W.; Edsinger, R.W.; Burroughs, J.D.

    1977-08-01

    The effort developed a comprehensive computer program for the modeling of wind energy/storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel and pneumatic). An acronym for the program is SIMWEST (Simulation Model for Wind Energy Storage). The level of detail of SIMWEST is consistent with a role of evaluating the economic feasibility as well as the general performance of wind energy systems. The software package consists of two basic programs and a library of system, environmental, and load components. Volume II, the SIMWEST operation manual, describes the usage of the SIMWEST program, the design of the library components, and a number of simple example simulations intended to familiarize the user with the program's operation. Volume II also contains a listing of each SIMWEST library subroutine.

  13. SEASONAL DISTRIBUTION OF TOTAL SUSPENDED MATTER IN SUMBAWA SEA

    Directory of Open Access Journals (Sweden)

    IGAG SWANDANA

    2015-05-01

    Full Text Available Distribusi Musiman Total Suspended Matter (TSM di Laut Surnbawa (117" - us· Edan s· - 9· S telah dilakukan. Data TSM tersebut diperoleh dari 75 stasiun pengukuran pada bulan September 2005 dan 98 stasiun pengukuran pada bulan November 2005 dan April 2006. Besaran sebaran TSM diperoleh dari hasil perhitungan besaran turbidity yang diperoleh dari pengukuran dengan menggunakan alat CTD ( Conductivity, Temperature and Depth Sensors. Besaran TSM yang diperoleh dari besaran turbidity menggunakan rurnus TSM = 0,65 Tur+ 1,17 (r = 0,85 (Hoshika dan Tanimoto, 1997.  Distribusi sebaran TSM pada saat musim hujan menunjukkan bahwa besarnya bervariasi dari L060 sam­pai 2.951 mg/1 dengan rata-rata sebesar 1.152 mg/1 (n=98, di lain pihak pada saat musim kemarau distribusi sebaran TSM menunjukkan bahwa besarnya bervariasi dari 1.060 sampai 2.899 mg/1 dengan rata-rata sebesar 1.111 mg/I (n=75. Distribusi sebaran TSM secara vertical dari permukaan laut sampai dengan kedalaman 20 meter menunjukkan bahwa terjadi perbedaan yang signifikan antara musim kemarau dan musim hujan. Pada saat musim kemarau distribusi sebaran TSM pada permukaan laut sampai dengan kedalaman 20 meter mem­punyai variasi yang kecil (dari 1.079 sampai 1.599 mg/1; Pada saat musim hujan distribusi sebaran TSM pada permukaan laut sampai dengan kedalaman 20 meter mempunyai variasi yang sangat besar (dari 1.079 sampai 2.698 mg/1. Distribusi sebaran TSM dari kedalaman 20 meter sampai dengan 100 meter menunjukkan pola yang sama antara musim kemarau dan musim hujan.  Distribusi sebaran TSM pada permukaan laut (dekat sungai/muara menunjukkan bahwa terjadi perbedaan sebaran antara musim kemarau dan musim hujan. Demikian juga dengan distribusi sebaran TSM yang diper­oleh dari data satelit menunjukkan bahwa terjadi perbedaan sebaran antara musim kemarau dan musim hujan. Perbandingan antara data in situ dengan data satelit menunjukkan bahwa koefisen korelasinya sebesar -0-753 untuk periode penelitian

  14. Evaluation of the Suspending Properties of the Co- precipitate of ...

    African Journals Online (AJOL)

    filtered through a clean muslin cloth to obtain a viscous filtrate (gum). The filtrate ..... Form Design, Churchill Livingston, Spain; 2007. Chap. 23; pp 383-405. 2. ... Wu S. Interfacial energy, structure and adhesion between polymers. In: Paul Dr.

  15. Suspended-sediment concentrations, yields, total suspended solids, turbidity, and particle-size fractions for selected rivers in Minnesota, 2007 through 2011

    Science.gov (United States)

    Ellison, Christopher A.; Savage, Brett E.; Johnson, Gregory D.

    2015-01-01

    Excessive sediment transport in rivers causes problems for flood control, soil conservation, irrigation, aquatic health, and navigation, as well as transporting harmful contaminants like organic chemicals and eutrophication-causing nutrients. In Minnesota, more than 5,800 miles of streams are identified as impaired by the Minnesota Pollution Control Agency (MPCA) due to elevated levels of suspended sediment. The U.S. Geological Survey, in cooperation with the MPCA, established a sediment monitoring network in 2007 and began systematic sampling of suspended-sediment concentration (SSC), total suspended solids (TSS), and turbidity in rivers across Minnesota to improve the understanding of fluvial sediment transport relations. Suspended-sediment samples were collected from 14 sites from 2007 through 2011. Analyses of these data indicated that the Zumbro River at Kellogg in southeast Minnesota had the highest mean SSC of 226 milligrams per liter (mg/L) followed by the Minnesota River at Mankato with a mean SSC of 193 mg/L. The single highest SSC of 1,250 mg/L was measured at the Zumbro River during the 2011 spring runoff. The lowest mean SSC of 21 mg/L was measured at Rice Creek in the northern Minneapolis-St. Paul metropolitan area. Total suspended solids (TSS) have been used as a measure of fluvial sediment by the MPCA since the early 1970s; however, TSS concentrations have been known to underrepresent the amount of suspended sediment. For this study, comparisons between concurrently sampled SSC and TSS indicated significant differences at every site, with SSC on average two times larger than TSS concentrations. Regression analysis indicated that 7 out of 14 sites had poor or no relation between SSC and streamflow. Only two sites, the Knife River and the Wild Rice River at Twin Valley, had strong correlations between SSC and streamflow, with coefficient of determination (R2) values of 0.82 and 0.80, respectively. In contrast, turbidity had moderate to strong

  16. Suspended-sediment concentrations, loads, total suspended solids, turbidity, and particle-size fractions for selected rivers in Minnesota, 2007 through 2011

    Science.gov (United States)

    Ellison, Christopher A.; Savage, Brett E.; Johnson, Gregory D.

    2014-01-01

    Sediment-laden rivers and streams pose substantial environmental and economic challenges. Excessive sediment transport in rivers causes problems for flood control, soil conservation, irrigation, aquatic health, and navigation, and transports harmful contaminants like organic chemicals and eutrophication-causing nutrients. In Minnesota, more than 5,800 miles of streams are identified as impaired by the Minnesota Pollution Control Agency (MPCA) due to elevated levels of suspended sediment. The U.S. Geological Survey, in cooperation with the MPCA, established a sediment monitoring network in 2007 and began systematic sampling of suspended-sediment concentrations (SSC), total suspended solids (TSS), and turbidity in rivers across Minnesota to improve the understanding of fluvial sediment transport relations. Suspended-sediment samples collected from 14 sites from 2007 through 2011 indicated that the Zumbro River at Kellogg in the driftless region of southeast Minnesota had the highest mean SSC of 226 milligrams per liter (mg/L) followed by the Minnesota River at Mankato with a mean SSC of 193 mg/L. During the 2011 spring runoff, the single highest SSC of 1,250 mg/L was measured at the Zumbro River. The lowest mean SSC of 21 mg/L was measured at Rice Creek in the northern Minneapolis- St. Paul metropolitan area. Total suspended solids (TSS) have been used as a measure of fluvial sediment by the MPCA since the early 1970s; however, TSS concentrations have been determined to underrepresent the amount of suspended sediment. Because of this, the MPCA was interested in quantifying the differences between SSC and TSS in different parts of the State. Comparisons between concurrently sampled SSC and TSS indicated significant differences at every site, with SSC on average two times larger than TSS concentrations. The largest percent difference between SSC and TSS was measured at the South Branch Buffalo River at Sabin, and the smallest difference was observed at the Des Moines

  17. Optimal Power Management Strategy for Energy Storage with Stochastic Loads

    Directory of Open Access Journals (Sweden)

    Stefano Pietrosanti

    2016-03-01

    Full Text Available In this paper, a power management strategy (PMS has been developed for the control of energy storage in a system subjected to loads of random duration. The PMS minimises the costs associated with the energy consumption of specific systems powered by a primary energy source and equipped with energy storage, under the assumption that the statistical distribution of load durations is known. By including the variability of the load in the cost function, it was possible to define the optimality criteria for the power flow of the storage. Numerical calculations have been performed obtaining the control strategies associated with the global minimum in energy costs, for a wide range of initial conditions of the system. The results of the calculations have been tested on a MATLAB/Simulink model of a rubber tyre gantry (RTG crane equipped with a flywheel energy storage system (FESS and subjected to a test cycle, which corresponds to the real operation of a crane in the Port of Felixstowe. The results of the model show increased energy savings and reduced peak power demand with respect to existing control strategies, indicating considerable potential savings for port operators in terms of energy and maintenance costs.

  18. Impact of robotics and a suspended lead suit on physician radiation exposure during percutaneous coronary intervention

    Energy Technology Data Exchange (ETDEWEB)

    Madder, Ryan D., E-mail: ryan.madder@spectrumhealth.org; VanOosterhout, Stacie; Mulder, Abbey; Elmore, Matthew; Campbell, Jessica; Borgman, Andrew; Parker, Jessica; Wohns, David

    2017-04-15

    Background: Reports of left-sided brain malignancies among interventional cardiologists have heightened concerns regarding physician radiation exposure. This study evaluated the impact of a suspended lead suit and robotic system on physician radiation exposure during percutaneous coronary intervention (PCI). Methods: Real-time radiation exposure data were prospectively collected from dosimeters worn by operating physicians at the head- and chest-level during consecutive PCI cases. Exposures were compared in three study groups: 1) manual PCI performed with traditional lead apparel; 2) manual PCI performed using suspended lead; and 3) robotic PCI performed in combination with suspended lead. Results: Among 336 cases (86.6% manual, 13.4% robotic) performed over 30 weeks, use of suspended lead during manual PCI was associated with significantly less radiation exposure to the chest and head of operating physicians than traditional lead apparel (chest: 0.0 [0.1] μSv vs 0.4 [4.0] μSv, p < 0.001; head: 0.5 [1.9] μSv vs 14.9 [51.5] μSv, p < 0.001). Chest-level radiation exposure during robotic PCI performed in combination with suspended lead was 0.0 [0.0] μSv, which was significantly less chest exposure than manual PCI performed with traditional lead (p < 0.001) or suspended lead (p = 0.046). In robotic PCI the median head-level exposure was 0.1 [0.2] μSv, which was 99.3% less than manual PCI performed with traditional lead (p < 0.001) and 80.0% less than manual PCI performed with suspended lead (p < 0.001). Conclusions: Utilization of suspended lead and robotics were observed to result in significantly less radiation exposure to the chest and head of operating physicians during PCI. - Highlights: • Use of suspended lead during manual PCI reduced cranial radiation among operators by 97%. • Robotic PCI reduced cranial radiation among operators by 99%. • Suspended lead and robotics together achieved the lowest levels of radiation exposure.

  19. Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume I. Study summary and concept screening. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This study was directed at a review of storage technologies, and particularly those which might be best suited for use in conjunction with wind and photovoltaics. The potential ''worth'' added by incorporating storage was extensively analyzed for both wind and photovoltaics. Energy storage concepts studied include (1) above ground pumped hydro storage, (2) underground pumped hydro storage, (3) thermal storage-oil, (4) thermal storage-steam, (5) underground compressed air storage, (6) pneumatic storage, (7) lead-acid batteries, (8) advanced batteries, (9) inertial storage (flywheel), (10) hydrogen generation and storage, and (11) superconducting magnetic energy storage. The investigations performed and the major results, conclusions, and recommendations are presented in this volume. (WHK)

  20. A Multiagent Energy Management System for a Small Microgrid Equipped with Power Sources and Energy Storage Units

    Science.gov (United States)

    Radziszewska, Weronika; Nahorski, Zbigniew

    An Energy Management System (EMS) for a small microgrid is presented, with both demand and production side management. The microgrid is equipped with renewable and controllable power sources (like a micro gas turbine), energy storage units (batteries and flywheels). Energy load is partially scheduled to avoid extreme peaks of power demand and to possibly match forecasted energy supply from the renewable power sources. To balance the energy in the network on line, a multiagent system is used. Intelligent agents of each device are proactively acting towards balancing the energy in the network, and at the same time optimizing the cost of operation of the whole system. A semi-market mechanism is used to match a demand and a production of the energy. Simulations show that the time of reaching a balanced state does not exceed 1 s, which is fast enough to let execute proper balancing actions, e.g. change an operating point of a controllable energy source. Simulators of sources and consumption devices were implemented in order to carry out exhaustive tests.

  1. Long-term continuous acoustical suspended-sediment measurements in rivers - Theory, application, bias, and error

    Science.gov (United States)

    Topping, David J.; Wright, Scott A.

    2016-05-04

    It is commonly recognized that suspended-sediment concentrations in rivers can change rapidly in time and independently of water discharge during important sediment‑transporting events (for example, during floods); thus, suspended-sediment measurements at closely spaced time intervals are necessary to characterize suspended‑sediment loads. Because the manual collection of sufficient numbers of suspended-sediment samples required to characterize this variability is often time and cost prohibitive, several “surrogate” techniques have been developed for in situ measurements of properties related to suspended-sediment characteristics (for example, turbidity, laser-diffraction, acoustics). Herein, we present a new physically based method for the simultaneous measurement of suspended-silt-and-clay concentration, suspended-sand concentration, and suspended‑sand median grain size in rivers, using multi‑frequency arrays of single-frequency side‑looking acoustic-Doppler profilers. The method is strongly grounded in the extensive scientific literature on the incoherent scattering of sound by random suspensions of small particles. In particular, the method takes advantage of theory that relates acoustic frequency, acoustic attenuation, acoustic backscatter, suspended-sediment concentration, and suspended-sediment grain-size distribution. We develop the theory and methods, and demonstrate the application of the method at six study sites on the Colorado River and Rio Grande, where large numbers of suspended-sediment samples have been collected concurrently with acoustic attenuation and backscatter measurements over many years. The method produces acoustical measurements of suspended-silt-and-clay and suspended-sand concentration (in units of mg/L), and acoustical measurements of suspended-sand median grain size (in units of mm) that are generally in good to excellent agreement with concurrent physical measurements of these quantities in the river cross sections at

  2. Recent Trends in Suspended Sediment Load & Water Quality in the Upper Chesapeake Bay

    Science.gov (United States)

    Freeman, L. A.; Ackleson, S. G.

    2016-02-01

    The Chesapeake Bay spans several major cities on the US east coast and drains a large watershed (164,200 km2) to the Atlantic Ocean. Upstream deforestation and agriculture have led to a major decline in water quality (increased sediment and nutrient load) of the Bay over the past century. Sediment flux into the Chesapeake Bay is a natural process, but has become an environmental concern as land use changes have exacerbated natural suspended sediment loads and saturated the capacity of the estuary to filter and remove sediments. In situ measurements of suspended sediments and surface reflectance from the Potomac, Patapsco, and Severn River were used to develop algorithms that convert surface reflectance from Landsat (1-3, 4-5, 7, 8) imagery to suspended sediment concentration for the entire Chesapeake Bay. A unique time series of suspended sediment load in the Chesapeake Bay was compiled from Landsat imagery dating from 1977-2015. Particular focus is given to the upper Chesapeake Bay near Washington, DC and Baltimore, MD to understand urban effects. In particular, the Potomac, Patapsco, and Severn River are examined from both remote sensing and in situ measurements. Landsat imagery combined with in situ monitoring provides environmental scientists and resource managers with detailed trends in sediment distribution and concentration, a key measure of water quality. Trends of suspended sediment load in several rivers and the upper Chesapeake Bay will be presented, along with a discussion of suspended sediment algorithms for Landsat imagery. Advantages of Landsat 8 (improved signal-to-noise performance and more bands) versus previous sensors will be examined for suspended sediment applications.

  3. Suspended and Bedload Sand dynamics in the Mekong River Channel and Export to the Coastal Ocean

    Science.gov (United States)

    Stephens, J. D.; Di Leonardo, D. R.; Weathers, H. D., III; Allison, M. A.

    2016-02-01

    Two field campaigns were conducted in the tidal and estuarine reach of the Song Hau distributary of the Mekong River to examine the dynamics of sand transport and export to the coastal ocean. This study examines variation in suspended sand concentration and net transport with respect to changes in discharge between the October 2014 high discharge and March 2015 low discharge studies, and over semi-diurnal and spring-neap tidal cycles between Can Tho and the Tran De and Dinh An distributary channels in the Mekong Delta. Suspended sand concentrations were measured using a P-61 isokinetic suspended sediment sampler and a Sequoia Scientific LISST-100X used in vertical profiling mode. Stationary ADCP data are used to examine bed stress at cast sites. Bed load transport rates were calculated using a repeat multibeam transect methodology and dune translation rates with flow. Preliminary results indicate that suspended sand concentration increases towards the bed and is positively correlated with increasing shear stress controlled by river discharge and tides. However, sites with non-sandy bottoms, as indicated by multibeam bathymetry, have low suspended sand concentrations, suggesting a close linkage with a bed sand source. Bed load transport rates vary cross-sectionally with shear stress and are linked to dune size. Most bed load transport is taking place in or near the thalweg. The reduction in ebb flows at low discharge and the mantling of sand fields by salinity driven mud deposition, is suspected to control the low suspended sand concentrations observed in March. Results to date suggest that net sand export (suspended plus bed load) to the ocean occurs predominantly during the high discharge monsoon season.

  4. Effects of cadmium accumulation from suspended sediments and phytoplankton on the Oyster Saccostrea glomerata

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Helena A.; Maher, William A., E-mail: bill.maher@canberra.edu.au; Taylor, Anne M.; Krikowa, Frank

    2015-03-15

    Highlights: • Saccostrea glomerata accumulated cadmium from sediments and phytoplankton. • Effects were similar for both pathways. • Antioxidant capacity, lipid peroxidation and lysosomal destabilisation were affected. • Clear exposure–dose–response relationships were demonstrated. - Abstract: Metals are accumulated by filter feeding organisms via water, ingestion of suspended sediments or food. The uptake pathway can affect metal toxicity. Saccostrea glomerata were exposed to cadmium through cadmium-spiked suspended sediments (19 and 93 μg/g dry mass) and cadmium-enriched phytoplankton (1.6–3 μg/g dry mass) and cadmium uptake and effects measured. Oysters accumulated appreciable amounts of cadmium from both low and high cadmium spiked suspended sediment treatments (5.9 ± 0.4 μg/g and 23 ± 2 μg/g respectively compared to controls 0.97 ± 0.05 μg/g dry mass). Only a small amount of cadmium was accumulated by ingestion of cadmium-enriched phytoplankton (1.9 ± 0.1 μg/g compared to controls 1.2 ± 0.1 μg/g). In the cadmium spiked suspended sediment experiments, most cadmium was desorbed from sediments and cadmium concentrations in S. glomerata were significantly related to dissolved cadmium concentrations (4–21 μg/L) in the overlying water. In the phytoplankton feeding experiment cadmium concentrations in overlying water were <0.01 μg/L. In both exposure experiments, cadmium-exposed oysters showed a significant reduction in total antioxidant capacity and significantly increased lipid peroxidation and percentage of destabilised lysosomes. Destabilised lysosomes in the suspended sediments experiments also resulted from stress of exposure to the suspended sediments. The study demonstrated that exposure to cadmium via suspended sediments and to low concentrations of cadmium through the ingestion of phytoplankton, can cause sublethal stress to S. glomerata.

  5. Real Time Energy Management Control Strategies for Hybrid Powertrains

    Science.gov (United States)

    Zaher, Mohamed Hegazi Mohamed

    In order to improve fuel efficiency and reduce emissions of mobile vehicles, various hybrid power-train concepts have been developed over the years. This thesis focuses on embedded control of hybrid powertrain concepts for mobile vehicle applications. Optimal robust control approach is used to develop a real time energy management strategy for continuous operations. The main idea is to store the normally wasted mechanical regenerative energy in energy storage devices for later usage. The regenerative energy recovery opportunity exists in any condition where the speed of motion is in opposite direction to the applied force or torque. This is the case when the vehicle is braking, decelerating, or the motion is driven by gravitational force, or load driven. There are three main concepts for regernerative energy storing devices in hybrid vehicles: electric, hydraulic, and flywheel. The real time control challenge is to balance the system power demand from the engine and the hybrid storage device, without depleting the energy storage device or stalling the engine in any work cycle, while making optimal use of the energy saving opportunities in a given operational, often repetitive cycle. In the worst case scenario, only engine is used and hybrid system completely disabled. A rule based control is developed and tuned for different work cycles and linked to a gain scheduling algorithm. A gain scheduling algorithm identifies the cycle being performed by the machine and its position via GPS, and maps them to the gains.

  6. Electric utility applications of hydrogen energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Sen, R.K.

    1997-10-15

    This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

  7. SEBARAN TOTAL SUSPENDED SOLID (TSS PADA PROFIL VERTIKAL DI PERAIRAN SELAT MADURA KABUPATEN BANGKALAN

    Directory of Open Access Journals (Sweden)

    Aries Dwi Siswanto

    2015-04-01

    Full Text Available Sebaran sedimen tersuspensi (Total Suspended Solid (TSS dapat dipelajari secara horizontal maupun vertikal. Akumulasi sedimen tersuspensi (TSS secara horizontal sangat dipengaruhi oleh arus permukaan maupun gelombang yang dibangkitkan oleh angin. Keterdapatan TSS ini diduga berpengaruh terhadap sebarannya pada profil vertical. Kedua kondisi sebaran sedimen tersuspensi (TSS berpengaruh terhadap optimalisasi penetrasi cahaya matahari di perairan. Sedimen tersuspensi (TSS menjadi salah satu factor fisika yang penting sebagai indicator kondisi perairan. Penelitian ini bertujuan untuk mengetahui sebaran Total Suspended Solid (TSS di perairan Kabupaten Bangkalan. Materi utama yang digunakan dalam penelitian ini adalah contoh air dan data parameter lingkungan (pasang surut dan kecerahan yang diambil pada 7 stasiun pada bulan Agustus-September 2013 di Perairan Selat Madura, Kabupaten Bangkalan. Metode gravimetric (SNI-06-6989.3-2004 digunakan untuk analisa Total Suspended Solid (TSS. Data parameter lingkungan dianalisa secara deskriptif. Analisa TSS menunjukkan nilai yang berbeda pada beberapa stasiun penelitian untuk setiap minggunya. Konsentrasi TSS terendah sebesar 35 mg/L (Stasiun 3, profil permukaan, minggu pertama dan tertinggi sebesar 620 mg/L (Stasiun 4, profil dasar, minggu pertama. Secara umum, konsentrasi TSS secara vertikal (dari permukaan-dasar cenderung semakin besar, diduga dipengaruhi oleh jenis substrat dan parameter arus yang berpeluang untuk menimbulkan pengadukan di profil dasar. Kondisi lingkungan (kecerahan dan arus menunjukkan bahwa daerah dengan konsentrasi TSS yang tinggi cenderung memilki nilai kecerahan yang rendah dengan kecepatan arus yang lebih besar.Kata Kunci: kecerahan, pola arus, Total Suspended Solid (TSS DISTRIBUTION OF TOTAL SUSPENDED SOLID (TSS IN THE VERTICAL PROFILE IN THE MADURA STRAIT WATERS BANGKALAN DISTRICTABSTRACTDistribution of suspended sediment (Total Suspended Solid (TSS can be studied through

  8. Phonon Spectra Prediction in Carbon Nanotubes Using a Manifold-Based Continuum Finite Element Approach

    Science.gov (United States)

    2012-10-11

    flywheels Discovery Channel – 10 Uses for Carbon Nanotubes Page 6 “Theoretically 100 times stronger than steel and six times lighter.” CBCNews...fibers could be the material of choice for better, lighter body armor. 10. Faster flywheels A flywheel is like a battery in that it stores energy. But... Flywheels offer certain advantages over batteries. But a flywheel , if spun too fast, can shatter because of the strength limits of its material. Because of

  9. Tellurite suspended nanowire surrounded with large holes for single-mode SC and THG generations

    Science.gov (United States)

    Liao, Meisong; Qin, Guanshi; Yan, Xin; Chaudhari, Chitrarekha; Suzuki, Takenobu; Ohishi, Yasutake

    2011-05-01

    For a suspended nanowire, the holes surrounding the core are expected to be as large as possible to propagate the light at wavelengths as long as possible. However, the fabrication of nanowire surrounded with large holes is still a challenge so far. In this paper, a method which involves pumping positive pressure of nitrogen gas in both the cane fabrication and fiber-drawing processes, is proposed. A suspended nanowire, with a core diameter of 480 nm and an unprecedented large diameter ratio of holey region to core (DRHC) of at least 62, is fabricated in the length of several hundred meters. Owing to the large holes, the confinement loss of the suspended nanowire is insignificant when the wavelength of light propagated in it is 1700 nm. Additionally, the tube-shaped glass cladding of the suspended nanowire shifts the singlemode cutoff wavelength to 810 nm, which is much shorter than the cutoff wavelength, 1070 nm, of a naked nanowire with the same diameter. A single-mode supercontinuum (SC) generation covering a wavelength range of 900-1600 nm is obtained under 1064 nm pump pulse with the peak power as low as 24 W. A single-mode third harmonic generation (THG) is observed by this nanowire under the pump of a 1557 nm femtosecond fiber laser. This work indicates that the suspended nanowire with large holes can provide high nonlinearity together with single-mode propagation, which leads to interesting applications in compact nonlinear devices.

  10. A Case Study of Dynamic Response Analysis and Safety Assessment for a Suspended Monorail System

    Directory of Open Access Journals (Sweden)

    Yulong Bao

    2016-11-01

    Full Text Available A suspended monorail transit system is a category of urban rail transit, which is effective in alleviating traffic pressure and injury prevention. Meanwhile, with the advantages of low cost and short construction time, suspended monorail transit systems show vast potential for future development. However, the suspended monorail has not been systematically studied in China, and there is a lack of relevant knowledge and analytical methods. To ensure the health and reliability of a suspended monorail transit system, the driving safety of vehicles and structure dynamic behaviors when vehicles are running on the bridge should be analyzed and evaluated. Based on the method of vehicle-bridge coupling vibration theory, the finite element method (FEM software ANSYS and multi-body dynamics software SIMPACK are adopted respectively to establish the finite element model for bridge and the multi-body vehicle. A co-simulation method is employed to investigate the vehicle-bridge coupling vibration for the transit system. The traffic operation factors, including train formation, track irregularity and tire stiffness, are incorporated into the models separately to analyze the bridge and vehicle responses. The results show that the coupling of dynamic effects of the suspended monorail system between vehicle and bridge are significant in the case studied, and it is strongly suggested to take necessary measures for vibration suppression. The simulation of track irregularity is a critical factor for its vibration safety, and the track irregularity of A-level road roughness negatively influences the system vibration safety.

  11. A Case Study of Dynamic Response Analysis and Safety Assessment for a Suspended Monorail System.

    Science.gov (United States)

    Bao, Yulong; Li, Yongle; Ding, Jiajie

    2016-11-10

    A suspended monorail transit system is a category of urban rail transit, which is effective in alleviating traffic pressure and injury prevention. Meanwhile, with the advantages of low cost and short construction time, suspended monorail transit systems show vast potential for future development. However, the suspended monorail has not been systematically studied in China, and there is a lack of relevant knowledge and analytical methods. To ensure the health and reliability of a suspended monorail transit system, the driving safety of vehicles and structure dynamic behaviors when vehicles are running on the bridge should be analyzed and evaluated. Based on the method of vehicle-bridge coupling vibration theory, the finite element method (FEM) software ANSYS and multi-body dynamics software SIMPACK are adopted respectively to establish the finite element model for bridge and the multi-body vehicle. A co-simulation method is employed to investigate the vehicle-bridge coupling vibration for the transit system. The traffic operation factors, including train formation, track irregularity and tire stiffness, are incorporated into the models separately to analyze the bridge and vehicle responses. The results show that the coupling of dynamic effects of the suspended monorail system between vehicle and bridge are significant in the case studied, and it is strongly suggested to take necessary measures for vibration suppression. The simulation of track irregularity is a critical factor for its vibration safety, and the track irregularity of A-level road roughness negatively influences the system vibration safety.

  12. Impact of robotics and a suspended lead suit on physician radiation exposure during percutaneous coronary intervention.

    Science.gov (United States)

    Madder, Ryan D; VanOosterhout, Stacie; Mulder, Abbey; Elmore, Matthew; Campbell, Jessica; Borgman, Andrew; Parker, Jessica; Wohns, David

    Reports of left-sided brain malignancies among interventional cardiologists have heightened concerns regarding physician radiation exposure. This study evaluated the impact of a suspended lead suit and robotic system on physician radiation exposure during percutaneous coronary intervention (PCI). Real-time radiation exposure data were prospectively collected from dosimeters worn by operating physicians at the head- and chest-level during consecutive PCI cases. Exposures were compared in three study groups: 1) manual PCI performed with traditional lead apparel; 2) manual PCI performed using suspended lead; and 3) robotic PCI performed in combination with suspended lead. Among 336 cases (86.6% manual, 13.4% robotic) performed over 30weeks, use of suspended lead during manual PCI was associated with significantly less radiation exposure to the chest and head of operating physicians than traditional lead apparel (chest: 0.0 [0.1] μSv vs 0.4 [4.0] μSv, probotic PCI performed in combination with suspended lead was 0.0 [0.0] μSv, which was significantly less chest exposure than manual PCI performed with traditional lead (probotic PCI the median head-level exposure was 0.1 [0.2] μSv, which was 99.3% less than manual PCI performed with traditional lead (probotics were observed to result in significantly less radiation exposure to the chest and head of operating physicians during PCI. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Muscular contribution to low-back loading and stiffness during standard and suspended push-ups.

    Science.gov (United States)

    Beach, Tyson A C; Howarth, Samuel J; Callaghan, Jack P

    2008-06-01

    Push-up exercises are normally performed to challenge muscles that span upper extremity joints. However, it is also recognized that push-ups provide an effective abdominal muscle challenge, especially when the hands are in contact with a labile support surface. The purpose of this study was to compare trunk muscle activation levels and resultant intervertebral joint (IVJ) loading when standard and suspended push-ups were performed, and to quantify and compare the contribution of trunk muscles to IVJ rotational stiffness in both exercises. Eleven recreationally trained male volunteers performed sets of standard and suspended push-ups. Upper body kinematic, kinetic, and EMG data were collected and input into a 3D biomechanical model of the lumbar torso to quantify lumbar IVJ loading and the contributions of trunk muscles to IVJ rotational stiffness. When performing suspended push-ups, muscles of the abdominal wall and the latissimus dorsi were activated to levels that were significantly greater than those elicited when performing standard push-ups (pups. Also directly resulting from the increased activation levels of the abdominal muscles and the latissimus dorsi during suspended push-ups was increased muscular contribution to lumbar IVJ rotational stiffness (pups appear to provide a superior abdominal muscle challenge. However, for individuals unable to tolerate high lumbar IVJ compressive loads, potential benefits gained by incorporating suspended push-ups into their resistance training regimen may be outweighed by the risk of overloading low-back tissues.

  14. Recent changes of suspended sediment yields in the Upper Yangtze River and its headwater tributaries

    Science.gov (United States)

    Zhang, X.; Tang, Q.; Long, Y.; He, X.; Wen, A.

    2015-03-01

    Suspended sediment yields in the Upper Yangtze River and its four headwater tributaries (i.e. Jinsha, Min, Jialing and Wu) have declined significantly during recent decades. Compared with 1956-1970, mean annual suspended sediment yield during 2001-2011 was reduced by 84% in the Upper Yangtze River at Yichang, by 34% in the Jinsha at Pingshan, by 84% in the Jialing at Beibei, by 75% in the Wu at Wulong, and by 48% in the Min at Gaochang. Linking these observed decadal changes of runoff discharge and suspended sediment load to dam construction and multiple environmental rehabilitation projects (e.g. soil-water conservation, reforestation) during the past decades, it can be concluded that the construction of large dams on the main stem and major tributaries of the Upper Yangtze River has played a principal role in the reduction of fluvial suspended sediment yields, while the environment rehabilitation projects may make limited contributions to the changes in suspended sediment yields, except for the Jialing River.

  15. Recent changes of suspended sediment yields in the Upper Yangtze River and its headwater tributaries

    Directory of Open Access Journals (Sweden)

    X. Zhang

    2015-03-01

    Full Text Available Suspended sediment yields in the Upper Yangtze River and its four headwater tributaries (i.e. Jinsha, Min, Jialing and Wu have declined significantly during recent decades. Compared with 1956–1970, mean annual suspended sediment yield during 2001–2011 was reduced by 84% in the Upper Yangtze River at Yichang, by 34% in the Jinsha at Pingshan, by 84% in the Jialing at Beibei, by 75% in the Wu at Wulong, and by 48% in the Min at Gaochang. Linking these observed decadal changes of runoff discharge and suspended sediment load to dam construction and multiple environmental rehabilitation projects (e.g. soil-water conservation, reforestation during the past decades, it can be concluded that the construction of large dams on the main stem and major tributaries of the Upper Yangtze River has played a principal role in the reduction of fluvial suspended sediment yields, while the environment rehabilitation projects may make limited contributions to the changes in suspended sediment yields, except for the Jialing River.

  16. Surface clogging process modeling of suspended solids during urban stormwater aquifer recharge.

    Science.gov (United States)

    Wang, Zijia; Du, Xinqiang; Yang, Yuesuo; Ye, Xueyan

    2012-01-01

    Aquifer recharge, which uses urban stormwater, is an effective technique to control the negative effects of groundwater over-exploitation, while clogging problems in infiltration systems remain the key restricting factor in broadening its practice. Quantitative understanding of the clogging process is still very poor. A laboratory study was conducted to understand surface physical clogging processes, with the primary aim of developing a model for predicting suspended solid clogging processes before aquifer recharge projects start. The experiments investigated the clogging characteristics of different suspended solid sizes in recharge water by using a series of one-dimensional fine quartz sand columns. The results showed that the smaller the suspended particles in recharge water, the farther the distance of movement and the larger the scope of clogging in porous media. Clogging extents in fine sand were 1 cm, for suspended particle size ranging from 0.075 to 0.0385 mm, and 2 cm, for particles less than 0.0385 mm. In addition, clogging development occurred more rapidly for smaller suspended solid particles. It took 48, 42, and 36 hr respectively, for large-, medium-, and small-sized particles to reach pre-determined clogging standards. An empirical formula and iteration model for the surface clogging evolution process were derived. The verification results obtained from stormwater recharge into fine sand demonstrated that the model could reflect the real laws of the surface clogging process.

  17. Geospatial approach towards enumerative analysis of suspended sediment concentration for Ganges-Brahmaputra Bay

    Science.gov (United States)

    Pandey, Palak; Kunte, Pravin D.

    2016-10-01

    This study presents an easy, modular, user-friendly, and flexible software package for processing of Landsat 7 ETM and Landsat 8 OLI-TIRS data for estimating suspended particulate matter concentrations in the coastal waters. This package includes 1) algorithm developed using freely downloadable SCILAB package, 2) ERDAS Models for iterative processing of Landsat images and 3) ArcMAP tool for plotting and map making. Utilizing SCILAB package, a module is written for geometric corrections, radiometric corrections and obtaining normalized water-leaving reflectance by incorporating Landsat 8 OLI-TIRS and Landsat 7 ETM+ data. Using ERDAS models, a sequence of modules are developed for iterative processing of Landsat images and estimating suspended particulate matter concentrations. Processed images are used for preparing suspended sediment concentration maps. The applicability of this software package is demonstrated by estimating and plotting seasonal suspended sediment concentration maps off the Bengal delta. The software is flexible enough to accommodate other remotely sensed data like Ocean Color monitor (OCM) data, Indian Remote Sensing data (IRS), MODIS data etc. by replacing a few parameters in the algorithm, for estimating suspended sediment concentration in coastal waters.

  18. Fatigue Performance Assessment of Composite Arch Bridge Suspenders Based on Actual Vehicle Loads

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2015-01-01

    Full Text Available In the through arch bridges, the suspenders are the key components connecting the arch rib and the bridge deck in the middle, and their safety is an increasing focus in the field of bridge engineering. In this study, various vehicle traffic flow parameters are investigated based on the actual vehicle data acquired from the long-term structural health monitoring system of a composite arch bridge. The representative vehicle types and the probability density functions of several parameters are determined, including the gross vehicle weight, axle weight, time headway, and speed. A finite element model of the bridge structure is constructed to determine the influence line of the cable force for various suspenders. A simulated vehicle flow, generated using the Monte Carlo method, is applied on the influence lines of the target suspender to determine the stress process, and then the stress amplitude spectrum is obtained based on the statistical analysis of the stress process using the rainflow counting method. The fatigue performance levels of various suspenders are analyzed according to the Palmgren-Miner linear cumulative damage theory, which helps to manage the safety of the suspenders.

  19. FLYWHEEL AND A DC MACHINE

    Directory of Open Access Journals (Sweden)

    IVAN ALCALÁ

    2014-01-01

    Full Text Available Este artículo describe el análisis, modelado y simulación de un vehículo eléctrico (EV enfocado al desarrollo de un banco de pruebas para reproducir la dinámica del EV. El banco está formado por un drive de motor de inducción (IM acoplado directamente a una máquina de DC y a un volante de inercia a través de una transmisión. El volante de inercia y la máquina de DC reproducen la dinámica y las fuerzas que actúan en el vehículo. Se propone una metodología para diseñar un banco de pruebas de EV para estudiar el comportamiento de vehículos eléctricos cercano a las condiciones de operación reales. El análisis de las fuerzas en el EV en conjunto con la máquina DC define las condiciones de operación del EV. El modelado y la simulación son desarrollados en MATLAB/Simulink, el banco de pruebas implementado es controlado por un DSP. Finalmente, los resultados de simulación y experimentales obtenidos validan el funcionamiento del banco de prueba.

  20. [Protective effects of Chinese herb-compound on cellular immunological function (correction of funcion) in tail-suspended rats].

    Science.gov (United States)

    Song, J P; Zhong, P; Wang, T; Wen, X L; Zhang, H; Shen, X Y

    2001-06-01

    Objective. To observe the protective effects of two kinds of Chinese herb-compounds (Dan-huang-ci compound and Shen-chuan-shu compound) on cellular immunology in tail-suspended rats. Method. The rats were divided into: 1) normal control group; 2) tail-suspended group; 3) tail-suspended + Dan-huang-ci compound; and 4) tail-suspended + Shen-chuan-shu compound. Ability of lymphocyte proliferation and production of IL-2 in rats in the four groups were compared after 21 d. Result. The immunological function of tail-suspended control group decreased significantly as compared with normal control group. Shen-chuan-shu compound could improve immunological function of tail-suspended rats obviously. Conclusion. Shen-chuan-shu compound could enhance cellular immunological function in rats under simulated weightlessness.

  1. NAS battery demonstration at American Electric Power:a study for the DOE energy storage program.

    Energy Technology Data Exchange (ETDEWEB)

    Newmiller, Jeff (Endecon Engineering, San Ramon, CA); Norris, Benjamin L. (Norris Energy Consulting Company, Martinez, CA); Peek, Georgianne Huff

    2006-03-01

    The first U.S. demonstration of the NGK sodium/sulfur battery technology was launched in August 2002 when a prototype system was installed at a commercial office building in Gahanna, Ohio. American Electric Power served as the host utility that provided the office space and technical support throughout the project. The system was used to both reduce demand peaks (peak-shaving operation) and to mitigate grid power disturbances (power quality operation) at the demonstration site. This report documents the results of the demonstration, provides an economic analysis of a commercial sodium/sulfur battery energy storage system at a typical site, and describes a side-by-side demonstration of the capabilities of the sodium/sulfur battery system, a lead-acid battery system, and a flywheel-based energy storage system in a power quality application.

  2. Understanding the ice nucleation characteristics of feldspars suspended in solution

    Science.gov (United States)

    Kumar, Anand; Marcolli, Claudia; Kaufmann, Lukas; Krieger, Ulrich; Peter, Thomas

    2017-04-01

    Freezing of liquid droplets and subsequent ice crystal growth affects optical properties of clouds and precipitation. Field measurements show that ice formation in cumulus and stratiform clouds begins at temperatures much warmer than those associated with homogeneous ice nucleation in pure water, which is ascribed to heterogeneous ice nucleation occurring on the foreign surfaces of ice nuclei (IN). Various insoluble particles such as mineral dust, soot, metallic particles, volcanic ash, or primary biological particles have been suggested as IN. Among these the suitability of mineral dusts is best established. The ice nucleation ability of mineral dust particles may be modified when secondary organic or inorganic substances are accumulating on the dust during atmospheric transport. If the coating is completely wetting the mineral dust particles, heterogeneous ice nucleation occurs in immersion mode also below 100 % RH. A previous study by Zobrist et al. (2008) Arizona test dust, silver iodide, nonadecanol and silicon dioxide suspensions in various solutes showed reduced ice nucleation efficiency (in immersion mode) of the particles. Though it is still quite unclear how surface modifications and coatings influence the ice nucleation activity of the components present in natural dust particles at a microphysical scale. To improve our understanding how solute and mineral dust particle surface interaction, we run freezing experiments using a differential scanning calorimeter (DSC) with microcline, sanidine, plagioclase, kaolinite and quartz particles suspended in pure water and solutions containing ammonia, ammonium bisulfate, ammonium sulfate, ammonium chloride, ammonium nitrate, potassium chloride, potassium sulfate, sodium sulfate and sulfuric acid. Methodology Suspensions of mineral dust samples (2 - 5 wt%) are prepared in water with varying solute concentrations (0 - 15 wt%). 20 vol% of this suspension plus 80 vol% of a mixture of 95 wt% mineral oil (Aldrich

  3. Flow modelling to estimate suspended sediment travel times for two Canadian Deltas

    Directory of Open Access Journals (Sweden)

    S. R. Fassnacht

    2000-01-01

    Full Text Available The approximate travel times for suspended sediment transport through two multi-channel networks are estimated using flow modelling. The focus is on the movement of high sediment concentrations that travel rapidly downstream. Since suspended sediment transport through river confluences and bifurcation movement is poorly understood, it is assumed that the sediment moves at approximately the average channel velocity during periods of high sediment load movement. Calibration of the flow model is discussed, with an emphasis on the incorporation of cross-section data, that are not referenced to a datum, using a continuous water surface profile. Various flow regimes are examined for the Mackenzie and the Slave River Deltas in the Northwest Territories, Canada, and a significant variation in travel times is illustrated. One set of continuous daily sediment measurements throughout the Mackenzie Delta is used to demonstrate that the travel time estimates are reasonable. Keywords: suspended sediment; multi-channel river systems; flow modelling; sediment transport

  4. Field calibration of optical sensors for measuring suspended sediment concentration in the western Mediterranean

    Directory of Open Access Journals (Sweden)

    J. Guillén

    2000-12-01

    Full Text Available The water turbidity measured with optical methods (transmittance and backscattering is usually expressed as beam attenuation coefficient (BAC or formazin turbidity units (FTU. The transformation of these units to volumetric suspended sediment concentration (SSC units is not straightforward, and accurate calibrations are required in order to obtain valuable information on suspended sediment distributions and fluxes. In this paper, data from field calibrations between BAC, FTU and SSC are presented and best-fit calibration curves are shown. These calibrations represent an average from different marine environments of the western Mediterranean (from estuary to continental slope. However, the general curves can only be applied for descriptive or semi-quantitative purposes. Comparison of turbidity measurements using the same sensor with different calibration ranges shows the advantage of simultaneously combining two instruments calibrated in different ranges when significant changes in suspended sediment concentrations are expected.

  5. A Suspended Stripline Frequency Tripler Using a Left-Handed Nonlinear Transmission Line

    Directory of Open Access Journals (Sweden)

    In Bok Kim

    2015-01-01

    Full Text Available A suspended stripline frequency tripler using a left-handed nonlinear transmission line (LH NLTL is presented. The proposed tripler using the LH NLTL is composed of a series of varactor diodes, shunt inductances, and a high-pass filter implemented with suspended stripline (SSL. An ultrawideband microstrip-to-suspended stripline transition is also utilized. The fabricated LH NLTL provides the minimum insertion loss of 1.7 dB and the maximum insertion loss of 4.7 dB for a wide frequency band from 2.6 to 18 GHz. As a tripler, the measured minimum third harmonic conversion loss is 15.3 dB at an input frequency of 2.4 GHz and typically 17 dB from 2 to 3.1 GHz.

  6. Suspended graphene with periodic dimer nanostructure on Si cavities for surface-enhanced Raman scattering applications

    Science.gov (United States)

    Ho, Hsin-Chia; Nien, Li-Wei; Li, Jia-Han; Hsueh, Chun-Hway

    2017-04-01

    Periodic gold dimer nanoantennas on a one-atomic-layer graphene sheet elevated above Si cavities were fabricated to systematically study the effects of the cavity depth on surface-enhanced Raman scattering (SERS). The periodic trend of Raman intensity as a function of the cavity depth resulting from the interference effect between the plasmonic resonance of the gold dimer and the cavity resonance of the underlying Si cavity was observed, and the electric field was greatly enhanced compared with the non-suspended system. The finite-difference time-domain method was used to simulate the interaction between the electromagnetic wave and the suspended system and to verify the observed SERS response in experiments. Our work has the advantages of combining the superior properties of graphene with suspended metallic nanostructures to result in the enhanced electric field for SERS applications.

  7. Finite Element Modeling of Suspended Particle Migration in Non-Newtonian Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Altobelli, S.; Baer, T.; Mondy, L.; Rao, R.; Stephens, T.

    1999-03-04

    Shear-induced migration of particles is studied during the slow flow of suspensions of spheres (particle volume fraction {phi} = 0.50) in an inelastic but shear-thinning, suspending fluid in flow between counterrotating concentric cylinders, The conditions are such that nonhydrodynamic effects are negligible. The movement of particles away from the high shear rate region is more pronounced than in a Newtonian suspending liquid. We test a continuum constitutive model for the evolution of particle concentration in a flowing suspension proposed by Phillips et al. (1992) by using shear-thinning, suspending fluids. The fluid constitutive equation is Carreau-like in its shear-thinning behavior but also varies with the local particle concentration. The model is compared with the experimental data gathered with nuclear magnetic resonance (NMR) imaging.

  8. Mutual relationships of suspended sediment, turbidity and visual clarity in New Zealand rivers

    Directory of Open Access Journals (Sweden)

    D. J. Ballantine

    2015-03-01

    Full Text Available Many river water quality monitoring programmes do not measure suspended particulate matter (SPM mass concentrations despite significant interest in its multiple effects on aquatic ecosystems. Regular monthly sampling usually intercepts rivers in baseflow when suspended sediment mass concentrations and fluxes are relatively low and not of particular interest. New Zealand’s National Rivers Water Quality Network (NRWQN is probably typical in not measuring SPM mass, although visual clarity and nephelometric turbidity are routinely measured. In order to better characterize SPM in NZ rivers, total suspended sediment (TSS was temporarily added to the NRWQN. Turbidity, visual clarity and TSS are mutually inter-related over all 77 sites, although with considerable data scatter. However, within individual rivers turbidity and visual clarity are typically fairly closely related to TSS and provide fair to excellent surrogates. Therefore, TSS need not be measured routinely because it can be estimated with sufficient precision for many purposes from visibility or turbidity.

  9. [Modulatory Effect of Mouse Compact Bone-derived Suspending MSC on T Cells and It's Related Mechanisms].

    Science.gov (United States)

    Li, Xin; Wu, Wen-Qing; Ding, Li; Liu, Yuan-Lin; Mao, Ning; Zhang, Yi; Zhu, Heng; Ning, Shou-Bin

    2016-04-01

    To investigate the modulatory effect of the MSC derived from low attaching culture systems (suspending MSC) on T lymphocytes and the related mechanisms. The suspending MSC were generated from mouse compact bones by using low attaching plates and adherent cell culture flasks, respectively. The morphology of suspending MSC was observed under the inverted microscope and the cells were induced to differentiate into osteoblasts and adipocytes. Further, the surface antigen profile of MSC was analyzed with flow cytometry. In addition, the culture medium (CM) of suspending MSC and adherent MSC was collected and added into the activated T cell cultures before detection of the proliferation by CFSE assay. Moreover, the modulaory effects of the CM on the T cell-derived cytokines were detected by quantitative PCR. Also, the mRNA expression of cytokines of MSC was detected. The suspending MSC grew in floating cell spheres and differentiated into osteoblasts and adipocytes in the induction medium. Furthermore, the suspending MSC shared the typical immuno-phenotype with their adherent counterparts. In addition, the results of CFSE assay demonstrated that suspending MSC derived CM suppressed ConA induced T cell proliferation. The results of quantitative PCR revealed that suspending MSC expressed transforming factor β1 and interleukin-6 at a higher level and suppressed the T cell expressing interferon γ and interleukine-17A. The suspending MSC exerted an unique modulatoy effect on T cells, which is quite different to adherent MSC.

  10. Real-Time Energy Management Control for Hybrid Electric Powertrains

    Directory of Open Access Journals (Sweden)

    Mohamed Zaher

    2013-01-01

    Full Text Available This paper focuses on embedded control of a hybrid powertrain concepts for mobile vehicle applications. Optimal robust control approach is used to develop a real-time energy management strategy. The main idea is to store the normally wasted mechanical regenerative energy in energy storage devices for later usage. The regenerative energy recovery opportunity exists in any condition where the speed of motion is in the opposite direction to the applied force or torque. This is the case when the vehicle is braking, decelerating, the motion is driven by gravitational force, or load driven. There are three main concepts for energy storing devices in hybrid vehicles: electric, hydraulic, and mechanical (flywheel. The real-time control challenge is to balance the system power demands from the engine and the hybrid storage device, without depleting the energy storage device or stalling the engine in any work cycle. In the worst-case scenario, only the engine is used and the hybrid system is completely disabled. A rule-based control algorithm is developed and is tuned for different work cycles and could be linked to a gain scheduling algorithm. A gain scheduling algorithm identifies the cycle being performed by the work machine and its position via GPS and maps both of them to the gains.

  11. Storage and residence time of suspended sediment in gravel bars of Difficult Run, VA

    Science.gov (United States)

    George, J.; Benthem, A.; Pizzuto, J. E.; Skalak, K.

    2016-12-01

    Reducing the export of suspended sediment is an important consideration for restoring water quality to the Chesapeake Bay, but sediment budgets for in-channel landforms are poorly constrained. We quantified fine (mapped in a 150m headwater reach at Miller Heights (bankfull width 11m; total bar volume 114 m3) and 6 gravel bars were mapped in a 160m reach downstream near Leesburg Pike (bankfull width 19m; total bar volume 210 m3). Grain size analyses of surface and subsurface samples from 2 bars at each reach indicate an average suspended sediment content of 55%, suggesting a total volume of suspended sediment stored in the mapped bars to be 178 m3, or 283000 kg, comprising 5% of the average annual suspended sediment load of the two study reaches. Estimates of the annual bedload flux at Miller Heights based on stream gaging records and the Wilcock-Crowe bedload transport equation imply that the bars are entirely reworked at least annually. Scour chains installed in 2 bars at each site (a total of 50 chains) recorded scour and fill events during the winter and spring of 2016. These data indicate that 38% of the total volume of the bars is exchanged per year, for a residence time of 2.6 ± 1.2 years, a value we interpret as the residence time of suspended sediment stored in the bars. These results are supported by mapping of topographic changes derived from structure-from-motion analyses of digital aerial imagery. Storage in alluvial bars therefore represents a significant component of the suspended sediment budget of mid-Atlantic streams.

  12. [Impacts of Sediment Disturbance on the Distribution of Suspended Particle Size and Phosphorus].

    Science.gov (United States)

    Guo, Jun-rui; Li, Da-peng; Liu, Yan-jian

    2016-04-15

    To clarify the influence of the sediments disturbance on the particle size distribution of suspended solids, and the influence of particle distribution on the forms of dissolved phosphorous in the overlaying water, the sediments and overlying water from Meiliang Bay, Taihu Lake, were used to conduct the indoor simulation experiments to investigate the particle size of suspended solids according to the Ubbelobde particle size criteria and the distribution of phosphorus compounds in the overlying water under the disturbance circumstances. The results indicated that the average proportions of small (0-10 microm), middle (10-20 microm) and large (> or = 20 microm) diameter particles presented different trends of increasing, decreasing and staying stable, respectively. It indicated the possible transformation of particle size of suspended solids from small-middle diameter to large diameter. In addition, the data of DTP/TP and DIP/TP showed a periodical variation with the corresponding periodical variety of particle diameter in suspended solids, while ns obvious variety of DTP and DIP was observed. It suggested that disturbance enhanced the ability of phosphorus immobilization by suspended solids. On the other band, the percentages of DTP in TP and DIP in TP were 19% and 13% under the disturbance, respectively, and they were obviously lower than those (DTP/TP, 80% and DIP/TP, 69% ) in the control. It indicated that tbs transformation of particle size of suspended solids from small-middle diameter to large diameter due to disturbance was in favor of tbe adsorption and sedimentation of dissolved phosphorus. Accordingly, the formation of particle phosphorus was enhanced. Therefore, it delayed the development of eutrophication in the water body.

  13. High Average Power Mid-infrared Supercontinuum Generation in a Suspended Core Chalcogenide Fiber

    DEFF Research Database (Denmark)

    Møller, Uffe Visbech; Yu, Yi; Petersen, Christian Rosenberg

    2014-01-01

    Mid-infrared supercontinuum spanning from 2.0 to 6.1 μm is generated in a 9 cm suspended core chalcogenide fiber by pumping close to the fiber zero-dispersion wavelength at 3.5 μm with an OPA system......Mid-infrared supercontinuum spanning from 2.0 to 6.1 μm is generated in a 9 cm suspended core chalcogenide fiber by pumping close to the fiber zero-dispersion wavelength at 3.5 μm with an OPA system...

  14. Fabrication and Measurement of a Suspended Nanochannel Microbridge Resonator Monolithically Integrated with CMOS Readout Circuitry

    Directory of Open Access Journals (Sweden)

    Gabriel Vidal-Álvarez

    2016-03-01

    Full Text Available We present the fabrication and characterization of a suspended microbridge resonator with an embedded nanochannel. The suspended microbridge resonator is electrostatically actuated, capacitively sensed, and monolithically integrated with complementary metal-oxide-semiconductor (CMOS readout circuitry. The device is fabricated using the back end of line (BEOL layers of the AMS 0.35 μm commercial CMOS technology, interconnecting two metal layers with a contact layer. The fabricated device has a 6 fL capacity and has one of the smallest embedded channels so far. It is able to attain a mass sensitivity of 25 ag/Hz using a fully integrable electrical transduction.

  15. The mineralogy and trace element constituents of suspended stream sediments of the Linggi River Basin, Malaysia

    Science.gov (United States)

    Nather Khan, I. S. A.

    The mineralogy and trace element concentrations of suspended stream sediments were determined at selected stations in the Linggi River Basin, Malaysia, while conducting an intensive study on water quality and a biological assessment of water pollution in the basin. The minerals that were identified from the X-ray patterns of the suspended stream sediments are kaolinite, mica, feldspar and quartz. Kaolinite was the most abundant mineral, followed by mica. By considering mean concentrations of various trace elements, aluminum and manganese were the most abundant elements. Higher concentrations of copper and zinc at some stations were due to pollutants from the nearby Senawang Industrial Estate.

  16. Static and dynamic stability of the guidance force in a side-suspended HTS maglev system

    Science.gov (United States)

    Zhou, Dajin; Cui, Chenyu; Zhao, Lifeng; Zhang, Yong; Wang, Xiqing; Zhao, Yong

    2017-02-01

    The static and dynamic stability of the guidance force in a side-suspended HTS-PMG (permanent magnetic guideway) system were studied theoretically and experimentally. It is found that there are two types of guidance force that exist in the HTS-PMG system, which are sensitive to the levitation gap and the arrangement of YBCO bulks around the central axis of the PMG. An optimized YBCO array was used to stabilize the system, which enabled a side-suspended HTS-PMG maglev vehicle to run stably at 102 km h-1 on a circular test track with 6.5 m in diameter.

  17. Quantifying suspended sediment loads delivered to Cheney Reservoir, Kansas: Temporal patterns and management implications

    Science.gov (United States)

    Stone, Mandy L.; Juracek, Kyle E.; Graham, Jennifer; Foster, Guy

    2015-01-01

    Cheney Reservoir, constructed during 1962 to 1965, is the primary water supply for the city of Wichita, the largest city in Kansas. Sediment is an important concern for the reservoir as it degrades water quality and progressively decreases water storage capacity. Long-term data collection provided a unique opportunity to estimate the annual suspended sediment loads for the entire history of the reservoir. To quantify and characterize sediment loading to Cheney Reservoir, discrete suspended sediment samples and continuously measured streamflow data were collected from the North Fork Ninnescah River, the primary inflow to Cheney Reservoir, over a 48-year period. Continuous turbidity data also were collected over a 15-year period. These data were used together to develop simple linear regression models to compute continuous suspended sediment concentrations and loads from 1966 to 2013. The inclusion of turbidity as an additional explanatory variable with streamflow improved regression model diagnostics and increased the amount of variability in suspended sediment concentration explained by 14%. Using suspended sediment concentration from the streamflow-only model, the average annual suspended sediment load was 102,517 t (113,006 tn) and ranged from 4,826 t (5,320 tn) in 1966 to 967,569 t (1,066,562 tn) in 1979. The sediment load in 1979 accounted for about 20% of the total load over the 48-year history of the reservoir and 92% of the 1979 sediment load occurred in one 24-hour period during a 1% annual exceedance probability flow event (104-year flood). Nearly 60% of the reservoir sediment load during the 48-year study period occurred in 5 years with extreme flow events (9% to 1% annual exceedance probability, or 11- to 104-year flood events). A substantial portion (41%) of sediment was transported to the reservoir during five storm events spanning only eight 24-hour periods during 1966 to 2013. Annual suspended sediment load estimates based on streamflow were, on

  18. Growth and energetics in Spisula subtruncata (Da Costa) and the effect of suspended bottom material

    DEFF Research Database (Denmark)

    Møhlenberg, F.; Kiørboe, Thomas

    1981-01-01

    The influence of suspended bottom material (0-25 mg/l) and algal cells (Phaeodactylum tricornutum) (0-500 .mu.g dry org wt[organic weight]/l) on clearance, growth and energetics in S. subtruncata (da Costa) was studied. Clearance and respiration rate were independent of concentrations of algae...... bottom material on growth is due to a higher efficiency of assimilation of the ingested algae and/or the utilization of organic matter in the suspended bottom material. The efficiency of algal assimilation decreased from 76% at a low (150 .mu.g dry org wt/l) to 33% at a high (500 .mu.g) algal...

  19. Serum-Free Cryopreservation of Five Mammalian Cell Lines in Either a Pelleted or Suspended State

    Directory of Open Access Journals (Sweden)

    Corsini Joe

    2004-01-01

    Full Text Available Herein we have explored two practical aspects of cryopreserving cultured mammalian cells during routine laboratory maintenance. First, we have examined the possibility of using a serum-free, hence more affordable, cryopreservative. Using five mammalian lines (Crandell Feline Kidney, MCF7, A72, WI 38 and NB324K, we found that the serum-free alternative preserves nearly as efficiently as the serum-containing preservatives. Second, we compared cryostorage of those cells in suspended versus a pellet form using both aforementioned cryopreservatives. Under our conditions, cells were in general recovered equally well in a suspended versus a pellet form.

  20. Laser-induced incandescence of suspended particles as a source of excitation of dye luminescence

    CERN Document Server

    Zelensky, S

    2003-01-01

    The interaction of pulsed YAG-Nd sup 3 sup + laser radiation with submicron light-absorbing particles suspended in an aqueous solution of Rhodamine 6G is investigated experimentally. The experiments demonstrate that the laser-induced incandescence of suspended particles excites the luminescence of the dissolved dye molecules. The mechanism of the luminescence excitation consists in the reabsorption of the thermal radiation within the volume of the sample cell. On the ground of this mechanism of excitation, a method of measurement of the luminescence quantum yield is proposed and realized. The method requires the knowledge of the geometrical parameters of the cell and does not require the use of reference samples.