WorldWideScience

Sample records for survey usgs scientists

  1. Seeing the forest and the trees: USGS scientist links local changes to global scale

    Science.gov (United States)

    Wilson, Jim; Allen, Craig D.

    2011-01-01

    The recent recipient of two major awards, Craig D. Allen, a research ecologist with the U.S. Geological Survey Fort Collins Science Center, has loved trees since childhood. He is now considered an expert of world renown on the twin phenomena of forest changes and tree mortality resulting from climate warming and drought, and in 2010 was twice recognized for his scientific contributions.In December 2010, Dr. Allen was named a 2010 Fellow of the American Association for the Advancement of Science “for outstanding leadership in the synthesis of global forest responses to climate change, built from worldwide collaboration and a deep understanding of the environmental history of the southwestern United States.”In March 2010, he was honored with the Meritorious Service Award from the U.S. Department of the Interior (DOI) in recognition of his outstanding vision, initiative, and scientific contributions to the USGS, DOI, and U.S. Department of Agriculture in establishing a model science program to support adaptive land management at the new Valles Caldera National Preserve in north-central New Mexico.Dr. Allen has authored more than 85 publications on landscape ecology and landscape change, from fire history and ecology to ecosystem responses to climate change. He has appeared on NOVA discussing fire ecology and on The Discovery Channel and Discovery Canada explaining the links between drought-induced tree mortality and climate warming, in addition to being interviewed and quoted in innumerable newspaper articles on both topics.But how did this unassuming scientist grow from nurturing maple saplings on 40 acres in Wisconsin to understanding forest system stress worldwide?

  2. EPA and USGS scientists conduct study to determine prevalence of newly-emerging contaminants in treated and untreated drinking water

    Science.gov (United States)

    Scientists from the EPA and USGS are collaborating on a research study to determine the presence of contaminants of emerging concern in treated and untreated drinking water collected from drinking water treatment plants.

  3. U.S. Geological Survey (USGS) Earthquake Web Applications

    Science.gov (United States)

    Fee, J.; Martinez, E.

    2015-12-01

    USGS Earthquake web applications provide access to earthquake information from USGS and other Advanced National Seismic System (ANSS) contributors. One of the primary goals of these applications is to provide a consistent experience for accessing both near-real time information as soon as it is available and historic information after it is thoroughly reviewed. Millions of people use these applications every month including people who feel an earthquake, emergency responders looking for the latest information about a recent event, and scientists researching historic earthquakes and their effects. Information from multiple catalogs and contributors is combined by the ANSS Comprehensive Catalog into one composite catalog, identifying the most preferred information from any source for each event. A web service and near-real time feeds provide access to all contributed data, and are used by a number of users and software packages. The Latest Earthquakes application displays summaries of many events, either near-real time feeds or custom searches, and the Event Page application shows detailed information for each event. Because all data is accessed through the web service, it can also be downloaded by users. The applications are maintained as open source projects on github, and use mobile-first and responsive-web-design approaches to work well on both mobile devices and desktop computers. http://earthquake.usgs.gov/earthquakes/map/

  4. Public Land Survey System of Louisiana, Geographic NAD83, USGS (2003) [plss_la_usgs_2003

    Data.gov (United States)

    Louisiana Geographic Information Center — This data set portrays the Public Land Surveys of the United States, including areas of private survey, Donation Land Claims, and Land Grants and Civil Colonies....

  5. USGS Tracks Acid Rain

    Science.gov (United States)

    Gordon, John D.; Nilles, Mark A.; Schroder, LeRoy J.

    1995-01-01

    The U.S. Geological Survey (USGS) has been actively studying acid rain for the past 15 years. When scientists learned that acid rain could harm fish, fear of damage to our natural environment from acid rain concerned the American public. Research by USGS scientists and other groups began to show that the processes resulting in acid rain are very complex. Scientists were puzzled by the fact that in some cases it was difficult to demonstrate that the pollution from automobiles and factories was causing streams or lakes to become more acidic. Further experiments showed how the natural ability of many soils to neutralize acids would reduce the effects of acid rain in some locations--at least as long as the neutralizing ability lasted (Young, 1991). The USGS has played a key role in establishing and maintaining the only nationwide network of acid rain monitoring stations. This program is called the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Each week, at approximately 220 NADP/NTN sites across the country, rain and snow samples are collected for analysis. NADP/NTN site in Montana. The USGS supports about 72 of these sites. The information gained from monitoring the chemistry of our nation's rain and snow is important for testing the results of pollution control laws on acid rain.

  6. Exploring Scientists' Working Timetable: A Global Survey

    OpenAIRE

    Wang, Xianwen; Peng, Lian; Zhang, Chunbo; Xu, Shenmeng; Wang, Zhi; Wang, Chuanli; Wang, Xianbing

    2013-01-01

    In our previous study (Wang et al., 2012), we analyzed scientists' working timetable of 3 countries, using realtime downloading data of scientific literatures. In this paper, we make a through analysis about global scientists' working habits. Top 30 countries/territories from Europe, Asia, Australia, North America, Latin America and Africa are selected as representatives and analyzed in detail. Regional differences for scientists' working habits exists in different countries. Besides differen...

  7. U.S. Geological Survey (USGS) Western Region: Coastal and Ocean Science

    Science.gov (United States)

    Kinsinger, Anne E.

    2009-01-01

    USGS Western Region Coastal and Ocean Science is interdisciplinary, collaborative, and integrates expertise from all USGS Disciplines, and ten of its major Science Centers, in Alaska, Hawai'i, California, Washington, and Oregon. The scientific talent, laboratories, and research vessels in the Western Region and across the Nation, strategically position the USGS to address broad geographic and oceanographic research topics. USGS information products inform resource managers and policy makers who must balance conservation mandates with increasing demands for resources that sustain the Nation's economy. This fact sheet describes but a few examples of the breadth of USGS science conducted in coastal, nearshore, and ocean environments along our Nation's West Coast and Pacific Islands.

  8. Scientists Admitting to Plagiarism: A Meta-analysis of Surveys.

    Science.gov (United States)

    Pupovac, Vanja; Fanelli, Daniele

    2015-10-01

    We conducted a systematic review and meta-analysis of anonymous surveys asking scientists whether they ever committed various forms of plagiarism. From May to December 2011 we searched 35 bibliographic databases, five grey literature databases and hand searched nine journals for potentially relevant studies. We included surveys that asked scientists if, in a given recall period, they had committed or knew of a colleague who committed plagiarism, and from each survey extracted the proportion of those who reported at least one case. Studies that focused on academic (i.e. student) plagiarism were excluded. Literature searches returned 12,460 titles from which 17 relevant survey studies were identified. Meta-analysis of studies reporting committed (N = 7) and witnessed (N = 11) plagiarism yielded a pooled estimate of, respectively, 1.7% (95% CI 1.2-2.4) and 30% (95% CI 17-46). Basic methodological factors, including sample size, year of survey, delivery method and whether survey questions were explicit rather than indirect made a significant difference on survey results. Even after controlling for these methodological factors, between-study differences in admission rates were significantly above those expected by sampling error alone and remained largely unexplained. Despite several limitations of the data and of this meta-analysis, we draw three robust conclusions: (1) The rate at which scientists report knowing a colleague who committed plagiarism is higher than for data fabrication and falsification; (2) The rate at which scientists report knowing a colleague who committed plagiarism is correlated to that of fabrication and falsification; (3) The rate at which scientists admit having committed either form of misconduct (i.e. fabrication, falsification and plagiarism) in surveys has declined over time.

  9. 2009 U.S. Geological Survey (USGS) Topographic LiDAR: Androscoggin County, Maine

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — USGS Contract Number: G10PC00026 USGS Task Order: G10PD01737 LiDAR was collected at a 1.0 points per square meter (1.0m GSD) for the county of Androscoggin, Maine...

  10. U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center-fiscal year 2010 annual report

    Science.gov (United States)

    Nelson, Janice S.

    2011-01-01

    The Earth Resources Observation and Science (EROS) Center is a U.S. Geological Survey (USGS) facility focused on providing science and imagery to better understand our Earth. The work of the Center is shaped by the earth sciences, the missions of our stakeholders, and implemented through strong program and project management, and application of state-of-the-art information technologies. Fundamentally, EROS contributes to the understanding of a changing Earth through 'research to operations' activities that include developing, implementing, and operating remote-sensing-based terrestrial monitoring capabilities needed to address interdisciplinary science and applications objectives at all levels-both nationally and internationally. The Center's programs and projects continually strive to meet, and where possible exceed, the changing needs of the USGS, the Department of the Interior, our Nation, and international constituents. The Center's multidisciplinary staff uses their unique expertise in remote sensing science and technologies to conduct basic and applied research, data acquisition, systems engineering, information access and management, and archive preservation to address the Nation's most critical needs. Of particular note is the role of EROS as the primary provider of Landsat data, the longest comprehensive global land Earth observation record ever collected. This report is intended to provide an overview of the scientific and engineering achievements and illustrate the range and scope of the activities and accomplishments at EROS throughout fiscal year (FY) 2010. Additional information concerning the scientific, engineering, and operational achievements can be obtained from the scientific papers and other documents published by EROS staff or by visiting our web site at http://eros.usgs.gov. We welcome comments and follow-up questions on any aspect of this Annual Report and invite any of our customers or partners to contact us at their convenience. To

  11. USGS Historical Topographic Map Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — USGS Historical Quadrangle in GeoPDF. The USGS Historical Quadrangle Scanning Project (HQSP) is scanning all scales and all editions of topographic maps published by...

  12. 2010 U.S. Geological Survey (USGS) Topographic LiDAR: Mobile Bay, AL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — USGS Contract: G10PC00026 Task Order Number: G10PD00578 LiDAR was collected at a nominal pulse spacing of 2.0 meters for a 700 square mile area to the east of Mobile...

  13. U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center-Fiscal Year 2009 Annual Report

    Science.gov (United States)

    Nelson, Janice S.

    2010-01-01

    The Earth Resources Observation and Science (EROS) Center is a U.S. Geological Survey (USGS) facility focused on providing science and imagery to better understand our Earth. As part of the USGS Geography Discipline, EROS contributes to the Land Remote Sensing (LRS) Program, the Geographic Analysis and Monitoring (GAM) Program, and the National Geospatial Program (NGP), as well as our Federal partners and cooperators. The work of the Center is shaped by the Earth sciences, the missions of our stakeholders, and implemented through strong program and project management and application of state-of-the-art information technologies. Fundamentally, EROS contributes to the understanding of a changing Earth through 'research to operations' activities that include developing, implementing, and operating remote sensing based terrestrial monitoring capabilities needed to address interdisciplinary science and applications objectives at all levels-both nationally and internationally. The Center's programs and projects continually strive to meet and/or exceed the changing needs of the USGS, the Department of the Interior, our Nation, and international constituents. The Center's multidisciplinary staff uses their unique expertise in remote sensing science and technologies to conduct basic and applied research, data acquisition, systems engineering, information access and management, and archive preservation to address the Nation's most critical needs. Of particular note is the role of EROS as the primary provider of Landsat data, the longest comprehensive global land Earth observation record ever collected. This report is intended to provide an overview of the scientific and engineering achievements and illustrate the range and scope of the activities and accomplishments at EROS throughout fiscal year (FY) 2009. Additional information concerning the scientific, engineering, and operational achievements can be obtained from the scientific papers and other documents published by

  14. Scientists and science communication: a Danish survey (Danish original version

    Directory of Open Access Journals (Sweden)

    Kristian Hvidtfelt Nielsen

    2007-03-01

    Full Text Available This paper summarizes key findings from a web-based questionnaire survey among Danish scientists in the natural sciences and engineering science. In line with the Act on Universities of 2003 enforcing science communication as a university obligation next to research and teaching, the respondents take a keen interest in communicating science, especially through the news media. However, they also do have mixed feeling about the quality of science communication in the news. Moreover, a majority of the respondents would like to give higher priority to science communication. More than half reply that they are willing to allocate up to 2% of total research funding in Denmark to science communication. Further, the respondents indicate that they would welcome a wider variety of science communication initiatives aimed at many types of target groups. They do not see the news media as the one and only channel for current science communication.

  15. Increasing both the public health potential of basic research and the scientist satisfaction. An international survey of bio-scientists.

    Science.gov (United States)

    Sorrentino, Carmen; Boggio, Andrea; Confalonieri, Stefano; Hemenway, David; Scita, Giorgio; Ballabeni, Andrea

    2016-01-01

    Basic scientific research generates knowledge that has intrinsic value which is independent of future applications. Basic research may also lead to practical benefits, such as a new drug or diagnostic method. Building on our previous study of basic biomedical and biological researchers at Harvard, we present findings from a new survey of similar scientists from three countries. The goal of this study was to design policies to enhance both the public health potential and the work satisfaction and test scientists' attitudes towards these factors. The present survey asked about the scientists' motivations, goals and perspectives along with their attitudes concerning  policies designed to increase both the practical (i.e. public health) benefits of basic research as well as their own personal satisfaction. Close to 900 basic investigators responded to the survey; results corroborate the main findings from the previous survey of Harvard scientists. In addition, we find that most bioscientists disfavor present policies that require a discussion of the public health potential of their proposals in grants but generally favor softer policies aimed at increasing the quality of work and the potential practical benefits of basic research. In particular, bioscientists are generally supportive of those policies entailing the organization of more meetings between scientists and the general public, the organization of more academic discussion about the role of scientists in the society, and the implementation of a "basic bibliography" for each new approved drug.

  16. USGS Tampa Bay Pilot Study

    Science.gov (United States)

    Yates, K.K.; Cronin, T. M.; Crane, M.; Hansen, M.; Nayeghandi, A.; Swarzenski, P.; Edgar, T.; Brooks, G.R.; Suthard, B.; Hine, A.; Locker, S.; Willard, D.A.; Hastings, D.; Flower, B.; Hollander, D.; Larson, R.A.; Smith, K.

    2007-01-01

    Many of the nation's estuaries have been environmentally stressed since the turn of the 20th century and will continue to be impacted in the future. Tampa Bay, one the Gulf of Mexico's largest estuaries, exemplifies the threats that our estuaries face (EPA Report 2001, Tampa Bay Estuary Program-Comprehensive Conservation and Management Plan (TBEP-CCMP)). More than 2 million people live in the Tampa Bay watershed, and the population constitutes to grow. Demand for freshwater resources, conversion of undeveloped areas to resident and industrial uses, increases in storm-water runoff, and increased air pollution from urban and industrial sources are some of the known human activities that impact Tampa Bay. Beginning on 2001, additional anthropogenic modifications began in Tampa Bat including construction of an underwater gas pipeline and a desalinization plant, expansion of existing ports, and increased freshwater withdrawal from three major tributaries to the bay. In January of 2001, the Tampa Bay Estuary Program (TBEP) and its partners identifies a critical need for participation from the U.S. Geological Survey (USGS) in providing multidisciplinary expertise and a regional-scale, integrated science approach to address complex scientific research issue and critical scientific information gaps that are necessary for continued restoration and preservation of Tampa Bay. Tampa Bay stakeholders identified several critical science gaps for which USGS expertise was needed (Yates et al. 2001). These critical science gaps fall under four topical categories (or system components): 1) water and sediment quality, 2) hydrodynamics, 3) geology and geomorphology, and 4) ecosystem structure and function. Scientists and resource managers participating in Tampa Bay studies recognize that it is no longer sufficient to simply examine each of these estuarine system components individually, Rather, the interrelation among system components must be understood to develop conceptual and

  17. USGS integrated drought science

    Science.gov (United States)

    Ostroff, Andrea C.; Muhlfeld, Clint C.; Lambert, Patrick M.; Booth, Nathaniel L.; Carter, Shawn L.; Stoker, Jason M.; Focazio, Michael J.

    2017-06-05

    Project Need and OverviewDrought poses a serious threat to the resilience of human communities and ecosystems in the United States (Easterling and others, 2000). Over the past several years, many regions have experienced extreme drought conditions, fueled by prolonged periods of reduced precipitation and exceptionally warm temperatures. Extreme drought has far-reaching impacts on water supplies, ecosystems, agricultural production, critical infrastructure, energy costs, human health, and local economies (Milly and others, 2005; Wihlite, 2005; Vörösmarty and others, 2010; Choat and others, 2012; Ledger and others, 2013). As global temperatures continue to increase, the frequency, severity, extent, and duration of droughts are expected to increase across North America, affecting both humans and natural ecosystems (Parry and others, 2007).The U.S. Geological Survey (USGS) has a long, proven history of delivering science and tools to help decision-makers manage and mitigate effects of drought. That said, there is substantial capacity for improved integration and coordination in the ways that the USGS provides drought science. A USGS Drought Team was formed in August 2016 to work across USGS Mission Areas to identify current USGS drought-related research and core capabilities. This information has been used to initiate the development of an integrated science effort that will bring the full USGS capacity to bear on this national crisis.

  18. USGS research on energy resources, 1986; program and abstracts

    Science.gov (United States)

    Carter, Lorna M.H.

    1986-01-01

    The extended abstracts in this volume are summaries of the papers presented orally and as posters in the second V. E. McKelvey Forum on Mineral and Energy Resources, entitled "USGS Research on Energy Resources-1986." The Forum has been established to improve communication between the USGS and the earth science community by presenting the results of current USGS research on nonrenewable resources in a timely fashion and by providing an opportunity for individuals from other organizations to meet informally with USGS scientists and managers. It is our hope that the McKelvey Forum will help to make USGS programs more responsive to the needs of the earth science community, particularly the mining and petroleum industries, and Win foster closer cooperation between organizations and individuals. The Forum was named after former Director Vincent E. McKelvey in recognition of his lifelong contributions to research, development, and administration in mineral and energy resources, as a scientist, as Chief Geologist, and as Director of the U.S. Geological Survey. The Forum will be an annual event, and its subject matter will alternate between mineral and energy resources. We expect that the format will change somewhat from year to year as various approaches are tried, but its primary purpose will remain the same: to encourage direct communication between USGS scientists and the representatives of other earth-science related organizations. Energy programs of the USGS include oil and gas, coal, geothermal, uranium-thorium, and oil shale; work in these programs spans the national domain, including surveys of the offshore Exclusive Economic Zone. The topics selected for presentation at this McKelvey Forum represent an overview of the scientific breadth of USGS research on energy resources. They include aspects of petroleum occurrence in Eastern United States rift basins, the origin of magnetic anomalies over oil fields, accreted terranes and energy-resource implications, coal

  19. USGS: Science at the intersection of land and ocean

    Science.gov (United States)

    Myers, M.D.

    2009-01-01

    The US Geological Survey (USGS) conducts an ongoing national assessment of coastal change hazards in order to help protect lives and support management of coastal infrastructure and resources. The research group rapidly gathers to investigate coastal changes along the Gulf Coast's sandy beaches after each hurricane to examine the magnitude and variability of impacts. This investigation helps to protect the environment and the American people by preparing maps that show the extreme coastal change. It also posts online video and still photography and LIDAR (light detection and ranging) survey data after each storm, to provide a clear picture of the devastated area. The USGS provides data to understand changing coastal vulnerabilities so that informed decisions can be made to protect disaster affected areas and its resources. Earth scientists in the USGS are learning more about coastal dynamics, determining changes, and improving the ability to forecast how coastal environments will respond to the next storm.

  20. USGS National Structures Dataset - USGS National Map Downloadable Data Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — USGS Structures from The National Map (TNM) consists of data to include the name, function, location, and other core information and characteristics of selected...

  1. Scientists Still Behaving Badly? A Survey Within Industry and Universities.

    Science.gov (United States)

    Godecharle, Simon; Fieuws, Steffen; Nemery, Ben; Dierickx, Kris

    2017-10-02

    Little is known about research misconduct within industry and how it compares to universities, even though a lot of biomedical research is performed by-or in collaboration with-commercial entities. Therefore, we sent an e-mail invitation to participate in an anonymous computer-based survey to all university researchers having received a biomedical research grant or scholarship from one of the two national academic research funders of Belgium between 2010 and 2014, and to researchers working in large biomedical companies or spin-offs in Belgium. The validated survey included questions about various types of research misconduct committed by respondents themselves and observed among their colleagues in the last three years. Prevalences of misconduct were compared between university and industry respondents using binary logistic regression models, with adjustments for relevant personal characteristics, and with significance being accepted for p industry. Response rates were 43 (767/1766) and 48% (123/255), and usable information was available for 617 and 100 respondents, respectively. In general, research misconduct was less likely to be reported by industry respondents compared to university respondents. Significant differences were apparent for one admitted action (gift authorship) and three observed actions (plagiarism, gift authorship, and circumventing animal-subjects research requirements), always with lower prevalences for industry compared to universities, except for plagiarism. This survey, based on anonymous self-report, shows that research misconduct occurs to a substantial degree among biomedical researchers from both industry and universities.

  2. USGS science in Menlo Park -- a science strategy for the U.S. Geological Survey Menlo Park Science Center, 2005-2015

    Science.gov (United States)

    Brocher, Thomas M.; Carr, Michael D.; Halsing, David L.; John, David A.; Langenheim, V.E.; Mangan, Margaret T.; Marvin-DiPasquale, Mark C.; Takekawa, John Y.; Tiedeman, Claire

    2006-01-01

    In the spring of 2004, the U.S. Geological Survey (USGS) Menlo Park Center Council commissioned an interdisciplinary working group to develop a forward-looking science strategy for the USGS Menlo Park Science Center in California (hereafter also referred to as "the Center"). The Center has been the flagship research center for the USGS in the western United States for more than 50 years, and the Council recognizes that science priorities must be the primary consideration guiding critical decisions made about the future evolution of the Center. In developing this strategy, the working group consulted widely within the USGS and with external clients and collaborators, so that most stakeholders had an opportunity to influence the science goals and operational objectives.The Science Goals are to: Natural Hazards: Conduct natural-hazard research and assessments critical to effective mitigation planning, short-term forecasting, and event response. Ecosystem Change: Develop a predictive understanding of ecosystem change that advances ecosystem restoration and adaptive management. Natural Resources: Advance the understanding of natural resources in a geologic, hydrologic, economic, environmental, and global context. Modeling Earth System Processes: Increase and improve capabilities for quantitative simulation, prediction, and assessment of Earth system processes.The strategy presents seven key Operational Objectives with specific actions to achieve the scientific goals. These Operational Objectives are to:Provide a hub for technology, laboratories, and library services to support science in the Western Region. Increase advanced computing capabilities and promote sharing of these resources. Enhance the intellectual diversity, vibrancy, and capacity of the work force through improved recruitment and retention. Strengthen client and collaborative relationships in the community at an institutional level.Expand monitoring capability by increasing density, sensitivity, and

  3. 2011 U.S. Geological Survey (USGS) Alabama Topographic LiDAR: Baldwin County East and West

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — USGS Contract: G10PC00026 Task Order Number: G10PD02126 LiDAR was collected at a 2.0 meter nominal post spacing (2.0m GSD) for approximately 329 square miles of...

  4. Grand challenges for integrated USGS science—A workshop report

    Science.gov (United States)

    Jenni, Karen E.; Goldhaber, Martin B.; Betancourt, Julio L.; Baron, Jill S.; Bristol, R. Sky; Cantrill, Mary; Exter, Paul E.; Focazio, Michael J.; Haines, John W.; Hay, Lauren E.; Hsu, Leslie; Labson, Victor F.; Lafferty, Kevin D.; Ludwig, Kristin A.; Milly, Paul C. D.; Morelli, Toni L.; Morman, Suzette A.; Nassar, Nedal T.; Newman, Timothy R.; Ostroff, Andrea C.; Read, Jordan S.; Reed, Sasha C.; Shapiro, Carl D.; Smith, Richard A.; Sanford, Ward E.; Sohl, Terry L.; Stets, Edward G.; Terando, Adam J.; Tillitt, Donald E.; Tischler, Michael A.; Toccalino, Patricia L.; Wald, David J.; Waldrop, Mark P.; Wein, Anne; Weltzin, Jake F.; Zimmerman, Christian E.

    2017-06-30

    Executive SummaryThe U.S. Geological Survey (USGS) has a long history of advancing the traditional Earth science disciplines and identifying opportunities to integrate USGS science across disciplines to address complex societal problems. The USGS science strategy for 2007–2017 laid out key challenges in disciplinary and interdisciplinary arenas, culminating in a call for increased focus on a number of crosscutting science directions. Ten years on, to further the goal of integrated science and at the request of the Executive Leadership Team (ELT), a workshop with three dozen invited scientists spanning different disciplines and career stages in the Bureau convened on February 7–10, 2017, at the USGS John Wesley Powell Center for Analysis and Synthesis in Fort Collins, Colorado.The workshop focused on identifying “grand challenges” for integrated USGS science. Individual participants identified nearly 70 potential grand challenges before the workshop and through workshop discussions. After discussion, four overarching grand challenges emerged:Natural resource security,Societal risk from existing and emerging threats,Smart infrastructure development, andAnticipatory science for changing landscapes.Participants also identified a “comprehensive science challenge” that highlights the development of integrative science, data, models, and tools—all interacting in a modular framework—that can be used to address these and other future grand challenges:Earth Monitoring, Analyses, and Projections (EarthMAP)EarthMAP is our long-term vision for an integrated scientific framework that spans traditional scientific boundaries and disciplines, and integrates the full portfolio of USGS science: research, monitoring, assessment, analysis, and information delivery.The Department of Interior, and the Nation in general, have a vast array of information needs. The USGS meets these needs by having a broadly trained and agile scientific workforce. Encouraging and supporting

  5. Geographic Information System (GIS) representation of historical seagrass coverage in Perdido Bay from United States Geological Survey/National Wetlands Research Center (USGS/NWRC), 1979 (NODC Accession 0000605)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Historical seagrass coverage in Perdido Bay 1979 from United States Geological Survey/National Wetlands Research Center (USGS/NWRC).

  6. Geographic Information System (GIS) characterization of historical seagrass coverage in Perdido Bay from United States Geological Survey/National Wetlands Research Center (USGS/NWRC), 1987 (NODC Accession 0000606)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Graphical representation of historical seagrass coverage in Perdido Bay in 1987 from United States Geological Survey/National Wetlands Research Center (USGS/NWRC).

  7. Survey Exploring Views of Scientists on Current Trends in Chemistry Education

    Science.gov (United States)

    Vamvakeros, Xenofon; Pavlatou, Evangelia A.; Spyrellis, Nicolas

    2010-01-01

    A survey exploring the views of scientists, chemists and chemical engineers, on current trends in Chemistry Education was conducted in Greece. Their opinions were investigated using a questionnaire focusing on curricula (the content and process of chemistry teaching and learning), as well as on the respondents' general educational beliefs and…

  8. Aligning USGS senior leadership structure with the USGS science strategy

    Science.gov (United States)

    ,

    2010-01-01

    The U.S. Geological Survey (USGS) is realigning its management and budget structure to further enhance the work of its science programs and their interdisciplinary focus areas related to the USGS Science Strategy as outlined in 'Facing Tomorrow's Challenges-U.S. Geological Survey Science in the Decade 2007-2017' (U.S. Geological Survey, 2007). In 2007, the USGS developed this science strategy outlining major natural-science issues facing the Nation and focusing on areas where natural science can make a substantial contribution to the well being of the Nation and the world. These areas include global climate change, water resources, natural hazards, energy and minerals, ecosystems, and data integration.

  9. Is cell culture a risky business? Risk analysis based on scientist survey data.

    Science.gov (United States)

    Shannon, Mark; Capes-Davis, Amanda; Eggington, Elaine; Georghiou, Ronnie; Huschtscha, Lily I; Moy, Elsa; Power, Melinda; Reddel, Roger R; Arthur, Jonathan W

    2016-02-01

    Cell culture is a technique that requires vigilance from the researcher. Common cell culture problems, including contamination with microorganisms or cells from other cultures, can place the reliability and reproducibility of cell culture work at risk. Here we use survey data, contributed by research scientists based in Australia and New Zealand, to assess common cell culture risks and how these risks are managed in practice. Respondents show that sharing of cell lines between laboratories continues to be widespread. Arrangements for mycoplasma and authentication testing are increasingly in place, although scientists are often uncertain how to perform authentication testing. Additional risks are identified for preparation of frozen stocks, storage and shipping. © 2015 UICC.

  10. Making USGS Science Data more Open, Accessible, and Usable: Leveraging ScienceBase for Success

    Science.gov (United States)

    Chang, M.; Ignizio, D.; Langseth, M. L.; Norkin, T.

    2016-12-01

    In 2013, the White House released initiatives requiring federally funded research to be made publicly available and machine readable. In response, the U.S. Geological Survey (USGS) has been developing a unified approach to make USGS data available and open. This effort has involved the establishment of internal policies and the release of a Public Access Plan, which outlines a strategy for the USGS to move forward into the modern era in scientific data management. Originally designed as a catalog and collaborative data management platform, ScienceBase (www.sciencebase.gov) is being leveraged to serve as a robust data hosting solution for USGS researchers to make scientific data accessible. With the goal of maintaining persistent access to formal data products and developing a management approach to facilitate stable data citation, the ScienceBase Data Release Team was established to ensure the quality, consistency, and meaningful organization of USGS data through standardized workflows and best practices. These practices include the creation and maintenance of persistent identifiers for data, improving the use of open data formats, establishing permissions for read/write access, validating the quality of standards compliant metadata, verifying that data have been reviewed and approved prior to release, and connecting to external search catalogs such as the USGS Science Data Catalog (data.usgs.gov) and data.gov. The ScienceBase team is actively building features to support this effort by automating steps to streamline the process, building metrics to track site visits and downloads, and connecting published digital resources in line with USGS and Federal policy. By utilizing ScienceBase to achieve stewardship quality and employing a dedicated team to help USGS scientists improve the quality of their data, the USGS is helping to meet today's data quality management challenges and ensure that reliable USGS data are available to and reusable for the public.

  11. Scanning and georeferencing historical USGS quadrangles

    Science.gov (United States)

    Fishburn, Kristin A.; Davis, Larry R.; Allord, Gregory J.

    2017-06-23

    The U.S. Geological Survey (USGS) National Geospatial Program is scanning published USGS 1:250,000-scale and larger topographic maps printed between 1884, the inception of the topographic mapping program, and 2006. The goal of this project, which began publishing the Historical Topographic Map Collection in 2011, is to provide access to a digital repository of USGS topographic maps that is available to the public at no cost. For more than 125 years, USGS topographic maps have accurately portrayed the complex geography of the Nation. The USGS is the Nation’s largest producer of traditional topographic maps, and, prior to 2006, USGS topographic maps were created using traditional cartographic methods and printed using a lithographic process. The next generation of topographic maps, US Topo, is being released by the USGS in digital form, and newer technologies make it possible to also deliver historical maps in the same electronic format that is more publicly accessible.

  12. U.S. Geological Survey scientific activities in the exploration of Antarctica: 1946-2006 record of personnel in Antarctica and their postal cachets: U.S. Navy (1946-48, 1954-60), International Geophysical Year (1957-58), and USGS (1960-2006)

    Science.gov (United States)

    Meunier, Tony K.; Williams, Richard S.; Ferrigno, Jane G.

    2007-01-01

    Antarctica, a vast region encompassing 13.2 million km2 (5.1 million mi2), is considered to be one of the most important scientific laboratories on Earth. During the past 60 years, the USGS, in collaboration and with logistical support from the National Science Foundation's Office of Polar Programs, has sent 325 USGS scientists to Antarctica to work on a wide range of projects: 169 personnel from the NMD (mostly aerial photography, surveying, and geodesy, primarily used for the modern mapping of Antarctica), 138 personnel from the GD (mostly geophysical and geological studies onshore and offshore), 15 personnel from the WRD (mostly hydrological/glaciological studies in the McMurdo Dry Valleys), 2 personnel from the BRD (microbiological studies in the McMurdo Dry Valleys), and 1 person from the Director's Office (P. Patrick Leahy, Acting Director, 2005–06 austral field season). Three GD scientists and three NMD scientists have carried out field work in Antarctica 9 or more times: John C. Behrendt (15), who started in 1956–57 and published two memoirs (Behrendt, 1998, 2005), Arthur B. Ford (10), who started in 1960–61, and Gary D. Clow (9), who started in 1985–86; Larry D. Hothem (12), who began as a winter-over geodesist at Mawson Station in 1968–69, and Jerry L. Mullins (12), who started in 1982–83 and followed in the legendary footsteps of his NMD predecessor, William R. MacDonald (9), who started in 1960–61 and supervised the acquisition of more than 1,000,000 square miles of aerial photography of Antarctica. This report provides a record as complete as possible, of USGS and non-USGS collaborating personnel in Antarctica from 1946–2006, the geographic locations of their work, and their scientific/engineering disciplines represented. Postal cachets for each year follow the table of personnel and scientific activities in the exploration of Antarctica during those 60 years. To commemorate special events and projects in Antarctica, it became an

  13. Preparing tomorrow's behavioral medicine scientists and practitioners: a survey of future directions for education and training.

    Science.gov (United States)

    Goldstein, Carly M; Minges, Karl E; Schoffman, Danielle E; Cases, Mallory G

    2017-02-01

    Behavioral medicine training is due for an overhaul given the rapid evolution of the field, including a tight funding climate, changing job prospects, and new research and industry collaborations. The purpose of the present study was to collect responses from trainee and practicing members of a multidisciplinary professional society about their perceptions of behavioral medicine training and their suggestions for changes to training for future behavioral medicine scientists and practitioners. A total of 162 faculty and 110 students (total n = 272) completed a web-based survey on strengths of their current training programs and ideas for changes. Using a mixed-methods approach, the survey findings are used to highlight seven key areas for improved preparation of the next generation of behavioral medicine scientists and practitioners, which are grant writing, interdisciplinary teamwork, advanced statistics and methods, evolving research program, publishable products from coursework, evolution and use of theory, and non-traditional career paths.

  14. Index Grids - QUADRANGLES_24K_USGS_IN: Boundaries of 7.5-Minute Quadrangles in Indiana, (United States Geological Survey, 1:24,000 Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — QUADRANGLES_24K_USGS_IN is a polygon shapefile defining the boundaries of the USGS 7.5-minute (1:24,000-scale) quadrangles which cover the state of Indiana. Dates of...

  15. Scientists' attitudes on science and values: Case studies and survey methods in philosophy of science.

    Science.gov (United States)

    Steel, Daniel; Gonnerman, Chad; O'Rourke, Michael

    2017-06-01

    This article examines the relevance of survey data of scientists' attitudes about science and values to case studies in philosophy of science. We describe two methodological challenges confronting such case studies: 1) small samples, and 2) potential for bias in selection, emphasis, and interpretation. Examples are given to illustrate that these challenges can arise for case studies in the science and values literature. We propose that these challenges can be mitigated through an approach in which case studies and survey methods are viewed as complementary, and use data from the Toolbox Dialogue Initiative to illustrate this claim. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Volunteer map data collection at the USGS

    Science.gov (United States)

    Eric, B. Wolf; Poore, Barbara S.; Caro, Holly K.; Matthews, Greg D.

    2011-01-01

    Since 1994, citizen volunteers have helped the U.S. Geological Survey (USGS) improve its topographic maps. Through the Earth Science Corps program, citizens were able to "adopt a quad" and collect new information and update existing map features. Until its conclusion in 2001, as many as 300 volunteers annotated paper maps which were incorporated into the USGS topographic-map revision process.

  17. Developing, testing, and implementing a survey of scientist mentoring teachers as part of an RET: The GABI RET mentor survey.

    Science.gov (United States)

    Davey, B.

    2017-12-01

    The impacts of mentoring in education have been well established. Mentors have a large impact on their mentees and have been show to affect mentee attitudes towards learning, interest in subjects, future success, and more. While mentoring has a well-documented impact on the mentees, mentoring also has an impact on the mentors themselves. However, little has been studied empirically about these impacts. When we looked for a validated instrument that measured the impact of mentoring on the scientists working with the teachers, we found many anecdotal reports but no instruments that meet our specific needs. To this end, we developed, tested, and implemented our own instrument for measuring the impacts of mentoring on our scientist mentors. Our instrument contained both quantitative and qualitative items designed to reveal the effects of mentoring in two areas: 1) cognitive domain (mentoring, teaching, understanding K-12) and 2) affective domain (professional, personal, participation). We first shared our survey with experts in survey development and mentoring, gathered their feedback, and incorporated their suggestions into our instrument. We then had a subsection of our mentors complete the survey and then complete it again three to four days later (test-retest). Our survey has a high correlation for the test-retest quantitative items (0.93) and a high correlation (0.90) between the three reviewers of the qualitative items. From our findings, we feel we have a validated instrument (face, content, and contruct validity) that answers our research questions reliably. Our contribution to the study of mentoring of science teachers reveals a broad range of impacts on the mentors themselves including an improved understanding of the challenges of classroom teaching, a recognition of the importance of scientists working with science teachers, an enhanced ability to communicate their research and findings, and an increased interest and excitement for their own work.

  18. Feasibility of a dual neurosurgeon-scientist career in Canada: a survey study.

    Science.gov (United States)

    Girgis, Fady

    2013-07-01

    Performing 'good work' in either neurosurgery or neuroscience alone is a challenge. Despite this, a large number of neurosurgeons divide their careers between the two fields, and attempt to excel in both arenas simultaneously. The purpose of this study is to explore perceptions on whether it is possible to do good work in both neurosurgery and research simultaneously, or whether one field suffers at the expense of the other. This question was put to practicing neurosurgeons via an electronic survey that was distributed to resident and staff neurosurgeons in Canada. 54 surgeons completed the survey, 32 of whom were current or intended neurosurgeon-scientists. Themes explored through the survey included motives behind the pursuit or absence of research in one's neurosurgical career, the quality and feasibility of a dual career, and alternatives to one individual assuming a dual role. The opinions obtained revealed that it is possible to do good work in both neurosurgery and neuroscience simultaneously, but in reality it is very difficult to do. Alternatives to this dual career, such as collaboration between clinical neurosurgeons and pure scientists for example, may help bridge the gap between clinical and research arenas.

  19. A survey of Asian life scientists :the state of biosciences, laboratory biosecurity, and biosafety in Asia.

    Energy Technology Data Exchange (ETDEWEB)

    Gaudioso, Jennifer Marie

    2006-02-01

    Over 300 Asian life scientists were surveyed to provide insight into work with infectious agents. This report provides the reader with a more complete understanding of the current practices employed to study infectious agents by laboratories located in Asian countries--segmented by level of biotechnology sophistication. The respondents have a variety of research objectives and study over 60 different pathogens and toxins. Many of the respondents indicated that their work was hampered by lack of adequate resources and the difficulty of accessing critical resources. The survey results also demonstrate that there appears to be better awareness of laboratory biosafety issues compared to laboratory biosecurity. Perhaps not surprisingly, many of these researchers work with pathogens and toxins under less stringent laboratory biosafety and biosecurity conditions than would be typical for laboratories in the West.

  20. 1990 National Compensation Survey of Research and Development Scientists and Engineers

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-01

    This report presents the results of the fourth in a new series of surveys of compensation and benefits for research and development (R D) scientists and engineers (S Es). The 1990 Survey represents the largest nationwide database of its kind, covering 104 establishments which provided data on almost 41,000 degreed researchers in the hard'' sciences. The fundamental nature of the survey has not changed: the focus is still on medium- and large-sized establishments which employ at least 100 degreed S Es in R D. The 1990 Survey contains data which cover about 18% of all establishments eligible to participate, encompassing approximately 18% of all eligible employees. As in the last three years, the survey sample constitutes a fairly good representation of the entire population of eligible establishments on the basis of business sector, geographic location, and size. Maturity-based analyses of salaries for some 34,000 nonsupervisory researchers are provided, as are job content-based analyses of more than 27,000 individual contributors and almost 5000 first level supervisors and division directors. Compensation policies and practices data are provided for 102 establishments, and benefits plans for 62 establishments are analyzed.

  1. 2012 USGS Lidar: Brooks Camp (AK)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Geological Survey (USGS) had a requirement for high resolution Lidar needed for mapping the Brooks Camp region of Katmai National Park in Alaska....

  2. UZIG USGS research: Advances through interdisciplinary interaction

    Science.gov (United States)

    Nimmo, J.R.; Andraski, Brian J.; Rafael, M.-C.

    2009-01-01

    BBecause vadose zone research relates to diverse disciplines, applications, and modes of research, collaboration across traditional operational and topical divisions is especially likely to yield major advances in understanding. The Unsaturated Zone Interest Group (UZIG) is an informal organization sponsored by the USGS to encourage and support interdisciplinary collaboration in vadose or unsaturated zone hydrologic research across organizational boundaries. It includes both USGS and non-USGS scientists. Formed in 1987, the UZIG operates to promote communication, especially through periodic meetings with presentations, discussions, and field trips. The 10th meeting of the UZIG at Los Alamos, NM, in August 2007 was jointly sponsored by the USGS and Los Alamos National Laboratory. Presentations at this meeting served as the initial basis for selecting papers for this special section of Vadose Zone Journal, the purpose of which is to present noteworthy cutting-edge unsaturated zone research promoted by, facilitated by, or presented in connection with the UZIG.

  3. USGS Information Technology Strategic Plan: Fiscal Years 2007-2011

    Science.gov (United States)

    ,

    2006-01-01

    Introduction: The acquisition, management, communication, and long-term stewardship of natural science data, information, and knowledge are fundamental mission responsibilities of the U.S. Geological Survey (USGS). USGS scientists collect, maintain, and exchange raw scientific data and interpret and analyze it to produce a wide variety of science-based products. Managers throughout the Bureau access, summarize, and analyze administrative or business-related information to budget, plan, evaluate, and report on programs and projects. Information professionals manage the extensive and growing stores of irreplaceable scientific information and knowledge in numerous databases, archives, libraries, and other digital and nondigital holdings. Information is the primary currency of the USGS, and it flows to scientists, managers, partners, and a wide base of customers, including local, State, and Federal agencies, private sector organizations, and individual citizens. Supporting these information flows is an infrastructure of computer systems, telecommunications equipment, software applications, digital and nondigital data stores and archives, technical expertise, and information policies and procedures. This infrastructure has evolved over many years and consists of tools and technologies acquired or built to address the specific requirements of particular projects or programs. Developed independently, the elements of this infrastructure were typically not designed to facilitate the exchange of data and information across programs or disciplines, to allow for sharing of information resources or expertise, or to be combined into a Bureauwide and broader information infrastructure. The challenge to the Bureau is to wisely and effectively use its information resources to create a more Integrated Information Environment that can reduce costs, enhance the discovery and delivery of scientific products, and improve support for science. This Information Technology Strategic Plan

  4. Watershed Boundaries - WATERSHEDS_HUC06_USGS_IN: 6-Digit Accounting Units, Hydrologic Units, in Indiana, (Derived from US Geological Survey, 1:24,000 Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — WATERSHEDS_HUC06_USGS_IN is a polygon shapefile showing the boundaries of accounting units (HUA) in Indiana. Accounting units are noted by a 6-digit hydrologic unit....

  5. Hydrography - HYDROGRAPHY_HIGHRES_WATERBODYDISCRETE_NHD_USGS: Lakes, Ponds, Reservoirs, Swamps, and Marshes in Watersheds of Indiana (U. S. Geological Survey, 1:24,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — HYDROGRAPHY_HIGHRES_WATERBODYDISCRETE_NHD_USGS.SHP is a polygon shapefile that contains features of lakes, ponds, reservoirs, swamps and marshes in watersheds in and...

  6. Professional Development for Graduate Students through Internships at Federal Labs: an NSF/USGS Collaboration

    Science.gov (United States)

    Snow, E.; Jones, E.; Patino, L. C.; Wasserman, E.; Isern, A. R.; Davies, T.

    2016-12-01

    In 2013 the White House initiated an effort to coordinate STEM education initiatives across federal agencies. This idea spawned several important collaborations, one of which is a set of National Science Foundation programs designed to place graduate students in federal labs for 2-12 months of their Ph.D. training. The Graduate Research Internship Program (GRIP) and the Graduate Student Preparedness program (GSP) each have the goal of exposing PhD students to the federal work environment while expanding their research tools and mentoring networks. Students apply for supplementary support to their Graduate Research Fellowship (GRIP) or their advisor's NSF award (GSP). These programs are available at several federal agencies; the USGS is one partner. At the U.S. Geological Survey, scientists propose projects, which students can find online by searching USGS GRIP, or students and USGS scientists can work together to develop a research project. At NSF, projects are evaluated on both the scientific merit and the professional development opportunities they afford the student. The career development extends beyond the science (new techniques, data, mentors) into the professional activity of writing the proposal, managing the budget, and working in a new and different environment. The USGS currently has 18 GRIP scholars, including Madeline Foster-Martinez, a UC Berkeley student who spent her summer as a GRIP fellow at the USGS Pacific Coastal and Marine Science Center working with USGS scientist Jessica Lacy. Madeline's Ph.D. work is on salt marshes and she has studied geomorphology, accretion, and gas transport using a variety of research methods. Her GRIP fellowship allowed her to apply new data-gathering tools to the question of sediment delivery to the marsh, and build and test a model for sediment delivery along marsh edges. In addition, she gained professional skills by collaborating with a new team of scientists, running a large-scale field deployment, and

  7. USEPA/USGS Study of CECs in Source Water and Treated Drinking Water: Assessment of Estrogenic Activity Using an In Vitro Bioassay, T47D-KBluc.

    Science.gov (United States)

    Scientists from the U.S. Environmental Protection Agency (EPA) and U.S. Geological Survey (USGS) are collaborating on a research study to determine the presence of contaminants of emerging concern in treated and untreated drinking water collected from up to 50 drinking water trea...

  8. Scientists' motivation to communicate science and technology to the public: surveying participants at the Madrid Science Fair

    OpenAIRE

    Martín-Sempere , María José; Garzón-García , Belén; Rey-Rocha , Jesús

    2008-01-01

    Abstract This paper investigates what motivates scientists to communicate science and technology in a science event involving a direct relationship and interaction with the public. A structured questionnaire survey was administered through face-to-face interviews to 167 research practitioners (researchers, technicians, support staff and fellows) at the Spanish Council for Scientific Research (CSIC) who part...

  9. Perspectives of Academic Social Scientists on Knowledge Transfer and Research Collaborations: A Cross-Sectional Survey of Australian Academics

    Science.gov (United States)

    Cherney, Adrian; Head, Brian; Boreham, Paul; Povey, Jenny; Ferguson, Michele

    2012-01-01

    This paper reports results from a survey of academic social scientists in Australian universities on their research engagement experience with industry and government partners and end-users of research. The results highlight that while academics report a range of benefits arising from research collaborations, there are also significant impediments…

  10. How scientists perceive the evolutionary origin of human traits: Results of a survey study.

    Science.gov (United States)

    Tuomisto, Hanna; Tuomisto, Matleena; Tuomisto, Jouni T

    2018-03-01

    Various hypotheses have been proposed for why the traits distinguishing humans from other primates originally evolved, and any given trait may have been explained both as an adaptation to different environments and as a result of demands from social organization or sexual selection. To find out how popular the different explanations are among scientists, we carried out an online survey among authors of recent scientific papers in journals covering relevant fields of science (paleoanthropology, paleontology, ecology, evolution, human biology). Some of the hypotheses were clearly more popular among the 1,266 respondents than others, but none was universally accepted or rejected. Even the most popular of the hypotheses were assessed "very likely" by 70% of the respondents. An ordination of the hypotheses identified two strong gradients. Along one gradient, the hypotheses were sorted by their popularity, measured by the average credibility score given by the respondents. The second gradient separated all hypotheses postulating adaptation to swimming or diving into their own group. The average credibility scores given for different subgroups of the hypotheses were not related to respondent's age or number of publications authored. However, (paleo)anthropologists were more critical of all hypotheses, and much more critical of the water-related ones, than were respondents representing other fields of expertise. Although most respondents did not find the water-related hypotheses likely, only a small minority found them unscientific. The most popular hypotheses were based on inherent drivers; that is, they assumed the evolution of a trait to have been triggered by the prior emergence of another human-specific behavioral or morphological trait, but opinions differed as to which of the traits came first.

  11. How many scientists fabricate and falsify research? A systematic review and meta-analysis of survey data.

    Directory of Open Access Journals (Sweden)

    Daniele Fanelli

    Full Text Available The frequency with which scientists fabricate and falsify data, or commit other forms of scientific misconduct is a matter of controversy. Many surveys have asked scientists directly whether they have committed or know of a colleague who committed research misconduct, but their results appeared difficult to compare and synthesize. This is the first meta-analysis of these surveys. To standardize outcomes, the number of respondents who recalled at least one incident of misconduct was calculated for each question, and the analysis was limited to behaviours that distort scientific knowledge: fabrication, falsification, "cooking" of data, etc... Survey questions on plagiarism and other forms of professional misconduct were excluded. The final sample consisted of 21 surveys that were included in the systematic review, and 18 in the meta-analysis. A pooled weighted average of 1.97% (N = 7, 95%CI: 0.86-4.45 of scientists admitted to have fabricated, falsified or modified data or results at least once--a serious form of misconduct by any standard--and up to 33.7% admitted other questionable research practices. In surveys asking about the behaviour of colleagues, admission rates were 14.12% (N = 12, 95% CI: 9.91-19.72 for falsification, and up to 72% for other questionable research practices. Meta-regression showed that self reports surveys, surveys using the words "falsification" or "fabrication", and mailed surveys yielded lower percentages of misconduct. When these factors were controlled for, misconduct was reported more frequently by medical/pharmacological researchers than others. Considering that these surveys ask sensitive questions and have other limitations, it appears likely that this is a conservative estimate of the true prevalence of scientific misconduct.

  12. How many scientists fabricate and falsify research? A systematic review and meta-analysis of survey data.

    Science.gov (United States)

    Fanelli, Daniele

    2009-05-29

    The frequency with which scientists fabricate and falsify data, or commit other forms of scientific misconduct is a matter of controversy. Many surveys have asked scientists directly whether they have committed or know of a colleague who committed research misconduct, but their results appeared difficult to compare and synthesize. This is the first meta-analysis of these surveys. To standardize outcomes, the number of respondents who recalled at least one incident of misconduct was calculated for each question, and the analysis was limited to behaviours that distort scientific knowledge: fabrication, falsification, "cooking" of data, etc... Survey questions on plagiarism and other forms of professional misconduct were excluded. The final sample consisted of 21 surveys that were included in the systematic review, and 18 in the meta-analysis. A pooled weighted average of 1.97% (N = 7, 95%CI: 0.86-4.45) of scientists admitted to have fabricated, falsified or modified data or results at least once--a serious form of misconduct by any standard--and up to 33.7% admitted other questionable research practices. In surveys asking about the behaviour of colleagues, admission rates were 14.12% (N = 12, 95% CI: 9.91-19.72) for falsification, and up to 72% for other questionable research practices. Meta-regression showed that self reports surveys, surveys using the words "falsification" or "fabrication", and mailed surveys yielded lower percentages of misconduct. When these factors were controlled for, misconduct was reported more frequently by medical/pharmacological researchers than others. Considering that these surveys ask sensitive questions and have other limitations, it appears likely that this is a conservative estimate of the true prevalence of scientific misconduct.

  13. The USGS Salton Sea Science Office

    Science.gov (United States)

    Case, Harvey Lee; Barnum, Douglas A.

    2007-01-01

    The U.S. Geological Survey's (USGS) Salton Sea Science Office (SSSO) provides scientific information and evaluations to decisionmakers who are engaged in restoration planning and actions associated with the Salton Sea. The primary focus is the natural resources of the Salton Sea, including the sea?s ability to sustain biological resources and associated social and economic values.

  14. Engaging scientists: An online survey exploring the experience of innovative biotechnological approaches to controlling vector-borne diseases.

    Science.gov (United States)

    Boëte, Christophe; Beisel, Uli; Reis Castro, Luísa; Césard, Nicolas; Reeves, R Guy

    2015-08-10

    Pioneering technologies (e.g., nanotechnology, synthetic biology or climate engineering) are often associated with potential new risks and uncertainties that can become sources of controversy. The communication of information during their development and open exchanges between stakeholders is generally considered a key issue in their acceptance. While the attitudes of the public to novel technologies have been widely considered there has been relatively little investigation of the perceptions and awareness of scientists working on human or animal diseases transmitted by arthropods. Consequently, we conducted a global survey on 1889 scientists working on aspects of vector-borne diseases, exploring, under the light of a variety of demographic and professional factors, their knowledge and awareness of an emerging biotechnology that has the potential to revolutionize the control of pest insect populations. Despite extensive media coverage of key developments (including releases of manipulated mosquitoes into human communities) this has in only one instance resulted in scientist awareness exceeding 50% on a national or regional scale. We document that awareness of pioneering releases significantly relied on private communication sources that were not equally accessible to scientists from countries with endemic vector-borne diseases (dengue and malaria). In addition, we provide quantitative analysis of the perceptions and knowledge of specific biotechnological approaches to controlling vector-borne disease, which are likely to impact the way in which scientists around the world engage in the debate about their value. Our results indicate that there is scope to strengthen already effective methods of communication, in addition to a strong demand by scientists (expressed by 79.9% of respondents) to develop new, creative modes of public engagement.

  15. 2011 USGS Topographic LiDAR: Suwannee River Expansion

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — USGS Task Order No. G10PD00236 USGS Contract No. G10PC00093 The Light Detection and Ranging (LiDAR) dataset is a survey of the Suwannee River Expansion in...

  16. NASA and USGS invest in invasive species modeling to evaluate habitat for Africanized Honey Bees

    Science.gov (United States)

    2009-01-01

    Invasive non-native species, such as plants, animals, and pathogens, have long been an interest to the U.S. Geological Survey (USGS) and NASA. Invasive species cause harm to our economy (around $120 B/year), the environment (e.g., replacing native biodiversity, forest pathogens negatively affecting carbon storage), and human health (e.g., plague, West Nile virus). Five years ago, the USGS and NASA formed a partnership to improve ecological forecasting capabilities for the early detection and containment of the highest priority invasive species. Scientists from NASA Goddard Space Flight Center (GSFC) and the Fort Collins Science Center developed a longterm strategy to integrate remote sensing capabilities, high-performance computing capabilities and new spatial modeling techniques to advance the science of ecological invasions [Schnase et al., 2002].

  17. Report on survey of contribution to foreign journals among the Japanese nuclear scientists and engineers

    International Nuclear Information System (INIS)

    Habu, Takeshi; Hiramatsu, Nobuaki; Ebinuma, Yukio

    1981-01-01

    Questionnaires were collected from 350 persons among the Japanese Nuclear Scientists and Engineers who had written their papers in English for contribution to foreign journals. These were analyzed on reasons for contribution to foreign journals, citation, publication charge, number of reprints and their distribution, career languages in usual writing, coauthorship and number and title names of journals to contribute. The contributions are mainly made for international dissemination and authority of the specific journals, and its tendency seems to be unchangeable. (author)

  18. Science and the storms: The USGS response to the hurricanes of 2005

    Science.gov (United States)

    Farris, G. S.; Smith, G.J.; Crane, M.P.; Demas, C.R.; Robbins, L.L.; Lavoie, D.L.

    2007-01-01

    This report is designed to give a view of the immediate response of the U.S. Geological Survey (USGS) to four major hurricanes of 2005: Dennis, Katrina, Rita, and Wilma. Some of this response took place days after the hurricanes; other responses included fieldwork and analysis through the spring. While hurricane science continues within the USGS, this overview of work following these hurricanes reveals how a Department of the Interior bureau quickly brought together a diverse array of its scientists and technologies to assess and analyze many hurricane effects. Topics vary from flooding and water quality to landscape and ecosystem impacts, from geotechnical reconnaissance to analyzing the collapse of bridges and estimating the volume of debris. Thus, the purpose of this report is to inform the American people of the USGS science that is available and ongoing in regard to hurricanes. It is the hope that such science will help inform the decisions of those citizens and officials tasked with coastal restoration and planning for future hurricanes. Chapter 1 is an essay establishing the need for science in building a resilient coast. The second chapter includes some hurricane facts that provide hurricane terminology, history, and maps of the four hurricanes’ paths. Chapters that follow give the scientific response of USGS to the storms. Both English and metric measurements are used in the articles in anticipation of both general and scientific audiences in the United States and elsewhere. Chapter 8 is a compilation of relevant ongoing and future hurricane work. The epilogue marks the 2-year anniversary of Hurricane Katrina. An index of authors follows the report to aid in finding articles that are cross-referenced within the report. In addition to performing the science needed to understand the effects of hurricanes, USGS employees helped in the rescue of citizens by boat and through technology by “geoaddressing” 911 calls after Katrina and Rita so that other

  19. Partnering for science: proceedings of the USGS Workshop on Citizen Science

    Science.gov (United States)

    Hines, Megan; Benson, Abigail; Govoni, David; Masaki, Derek; Poore, Barbara; Simpson, Annie; Tessler, Steven

    2013-01-01

    What U.S. Geological Survey (USGS) programs use citizen science? How can projects be best designed while meeting policy requirements? What are the most effective volunteer recruitment methods? What data should be collected to ensure validation and how should data be stored? What standard protocols are most easily used by volunteers? Can data from multiple projects be integrated to support new research or existing science questions? To help answer these and other questions, the USGS Community of Data Integration (CDI) supported the development of the Citizen Science Working Group (CSWG) in August 2011 and funded the working group’s proposal to hold a USGS Citizen Science Workshop in fiscal year 2012. The stated goals for our workshop were: raise awareness of programs and projects in the USGS that incorporate citizen science, create a community of practice for the sharing of knowledge and experiences, provide a forum to discuss the challenges of—and opportunities for—incorporating citizen science into USGS projects, and educate and support scientists and managers whose projects may benefit from public participation in science.To meet these goals, the workshop brought together 50 attendees (see appendix A for participant details) representing the USGS, partners, and external citizen science practitioners from diverse backgrounds (including scientists, managers, project coordinators, and technical developers, for example) to discuss these topics at the Denver Federal Center in Colorado on September 11–12, 2012. Over two and a half days, attendees participated in four major plenary sessions (Citizen Science Policy and Challenges, Engaging the Public in Scientific Research, Data Collection and Management, and Technology and Tools) comprised of 25 invited presentations and followed by structured discussions for each session designed to address both prepared and ad hoc "big questions." A number of important community support and infrastructure needs were identified

  20. Unpublished letter from US Geological Survey Scientists to the editor of the New York Times Magazine regarding William J. Broads' November 18, 1990 article on Yucca Mountain

    International Nuclear Information System (INIS)

    Dudley, W.W. Jr.; Buono, A.; Carr, M.D.; Downey, J.S.; Ervin, E.M.; Fox, K.F. Jr.; Gutentag, E.D.; Hayes, L.R.; Jones, B.F.; Luckey, R.R.; Muhs, D.R.; Peterman, Z.E.; Reheis, M.; Spengler, R.W.; Stuckless, J.S.; Taylor, E.M.; Whitney, J.W.; Wilson, W.E.; Winogard, I.J.

    1990-01-01

    This letter documents objections of a group of US Geological Survey Scientists to an article appearing November 18, 1990 in New York Times Magazine. The article was written by William J. Broad and dealt with a hypothesis of Jerry S. Szymanski. The letter addressed areas of concern; including hydrology, geology, tectonics, and the integrity of the scientists and their conclusions. (SM)

  1. Earth Science and Public Health: Proceedings of the Second National Conference on USGS Health-Related Research

    Science.gov (United States)

    Buxton, Herbert T.; Griffin, Dale W.; Pierce, Brenda S.

    2007-01-01

    The mission of the U.S. Geological Survey (USGS) is to serve the Nation by providing reliable scientific information to describe and understand the earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life. As the Nation?s largest water, earth, and biological science and civilian mapping agency, the USGS can play a significant role in providing scientific knowledge and information that will improve our understanding of the relations of environment and wildlife to human health and disease. USGS human health-related research is unique in the Federal government because it brings together a broad spectrum of natural science expertise and information, including extensive data collection and monitoring on varied landscapes and ecosystems across the Nation. USGS can provide a great service to the public health community by synthesizing the scientific information and knowledge on our natural and living resources that influence human health, and by bringing this science to the public health community in a manner that is most useful. Partnerships with health scientists and managers are essential to the success of these efforts. USGS scientists already are working closely with the public health community to pursue rigorous inquiries into the connections between natural science and public health. Partnering agencies include the Armed Forces Institute of Pathology, Agency for Toxic Substances Disease Registry, Centers for Disease Control and Prevention, U.S. Environmental Protection Agency, Food and Drug Administration, Mine Safety and Health Administration, National Cancer Institute, National Institute of Allergy and Infectious Disease, National Institute of Environmental Health Sciences, National Institute for Occupational Safety and Health, U.S. Public Health Service, and the U.S. Army Medical Research Institute of Infectious Diseases. Collaborations between public

  2. Highlights from the SOAP project survey. What Scientists Think about Open Access Publishing

    CERN Document Server

    Dallmeier-Tiessen, Suenje; Goerner, Bettina; Hyppoelae, Jenni; Igo-Kemenes, Peter; Kahn, Deborah; Lambert, Simon; Lengenfelder, Anja; Leonard, Chris; Mele, Salvatore; Nowicka, Malgorzata; Polydoratou, Panayiota; Ross, David; Ruiz-Perez, Sergio; Schimmer, Ralf; Swaisland, Mark; van der Stelt, Wim

    2011-01-01

    The SOAP (Study of Open Access Publishing) project has run a large-scale survey of the attitudes of researchers on, and the experiences with, open access publishing. Around forty thousands answers were collected across disciplines and around the world, showing an overwhelming support for the idea of open access, while highlighting funding and (perceived) quality as the main barriers to publishing in open access journals. This article serves as an introduction to the survey and presents this and other highlights from a preliminary analysis of the survey responses. To allow a maximal re-use of the information collected by this survey, the data are hereby released under a CC0 waiver, so to allow libraries, publishers, funding agencies and academics to further analyse risks and opportunities, drivers and barriers, in the transition to open access publishing.

  3. 1979 national survey of compensation. Paid scientists and engineers engaged in research and development activities

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-12-01

    This survey of compensation uses the maturity of age-wage approach, in which salary data are related to years since receipt of degree or chronological age. This report gives the results of the twelfth annual survey, conducted in 1979. Introductory material is given on the sampling plan (survey universe listing, sampling frame, sampling procedures, structure of sample), basic data for survey analysis (establishment data, employee data), entrance rates, trend analysis, geographic analysis, analysis of data (editing of raw data, use of varying axes, arithmetic formulas, median curves), important qualifications concerning survey results, and computation of approximate confidence limits. The bulk of the report contains salary tables of the following types: total survey tables; Bachelor's degree; Master's degree; Doctorate degree; professional degrees; median, curves-supervisory level by degree level, YSBD; nondegreed employees, age; working-as occupation, YSBD; sex, nonsupervisory employees, Bachelor's degree, working-as occupation; trend analysis-five-year identical-company comparisons, median curves; and standard metropolitan statistical area size by establishment size, median curves and census district curves. Employer questionnaire forms are appended. (RWR)

  4. USGS Elevation Contours Overlay Map Service from The National Map

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Elevation Contours service from The National Map (TNM) consists of contours generated for the conterminous United States from 1- and 1/3 arc-second...

  5. USGS NAIP Imagery Overlay Map Service from The National Map

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS NAIP Imagery service from The National Map (TNM) consists of high resolution images that combine the visual attributes of an aerial photograph with the...

  6. USGS National Transportation Dataset (NTD) Downloadable Data Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Transportation downloadable data from The National Map (TNM) is based on TIGER/Line data provided through U.S. Census Bureau and supplemented with HERE road...

  7. USGS Imagery Only Base Map Service from The National Map

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — USGS Imagery Only is a tile cache base map of orthoimagery in The National Map visible to the 1:18,000 scale. Orthoimagery data are typically high resolution images...

  8. National Hydrography Dataset (NHD) - USGS National Map Downloadable Data Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS National Hydrography Dataset (NHD) Downloadable Data Collection from The National Map (TNM) is a comprehensive set of digital spatial data that encodes...

  9. USGS Imagery Topo Base Map Service from The National Map

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — USGS Imagery Topo is a topographic tile cache base map with orthoimagery as a backdrop, and combines the most current data (Boundaries, Names, Transportation,...

  10. USGS Hill Shade Base Map Service from The National Map

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — USGS Hill Shade (or Shaded Relief) is a tile cache base map created from the National Elevation Dataset (NED), a seamless dataset of best available raster elevation...

  11. USGS National Hydrography Dataset from The National Map

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — USGS The National Map - National Hydrography Dataset (NHD) is a comprehensive set of digital spatial data that encodes information about naturally occurring and...

  12. USGS National Boundary Dataset (NBD) Downloadable Data Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Governmental Unit Boundaries dataset from The National Map (TNM) represents major civil areas for the Nation, including States or Territories, counties (or...

  13. USGS Topo Base Map Service from The National Map

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — USGS Topo is a topographic tile cache base map that combines the most current data (Boundaries, Names, Transportation, Elevation, Hydrography, Land Cover, and other...

  14. USGS Topo Base Map from The National Map

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Topographic Base Map from The National Map. This tile cached web map service combines the most current data services (Boundaries, Names, Transportation,...

  15. USGS NAIPPlus Overlay Map Service from The National Map

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS NAIP Plus service from The National Map consists of National Agriculture Imagery Program (NAIP) and high resolution orthoimagery (HRO) that combine the...

  16. Social media use among young rheumatologists and basic scientists: results of an international survey by the Emerging EULAR Network (EMEUNET).

    Science.gov (United States)

    Nikiphorou, Elena; Studenic, Paul; Ammitzbøll, Christian Gytz; Canavan, Mary; Jani, Meghna; Ospelt, Caroline; Berenbaum, Francis

    2017-04-01

    To explore perceptions, barriers and patterns of social media (SM) use among rheumatology fellows and basic scientists. An online survey was disseminated via Twitter, Facebook and by email to members of the Emerging European League Against Rheumatism Network. Questions focused on general demographics, frequency and types of SM use, reasons and barriers to SM use. Of 233 respondents (47 countries), 72% were aged 30-39 years, 66% female. 83% were active users of at least one SM platform and 71% were using SM professionally. The majority used SM for communicating with friends/colleagues (79%), news updates (76%), entertainment (69%), clinical (50%) and research (48%) updates. Facebook was the dominant platform used (91%). SM was reported to be used for information (81%); for expanding professional networks (76%); new resources (59%); learning new skills (47%) and establishing a professional online presence (46%). 30% of non-SM users justified not using SM due to lack of knowledge. There was a substantial use of SM by rheumatologists and basic scientists for social and professional reasons. The survey highlights a need for providing learning resources and increasing awareness of the use of SM. This could enhance communication, participation and collaborative work, enabling its more widespread use in a professional manner. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. USGS Structures Overlay Map Service from The National Map - National Geospatial Data Asset (NGDA) USGS National Structures Dataset

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — USGS Structures from The National Map (TNM) consists of data to include the name, function, location, and other core information and characteristics of selected...

  18. Language and values in the human cloning debate: a web-based survey of scientists and Christian fundamentalist pastors.

    Science.gov (United States)

    Weasel, Lisa H; Jensen, Eric

    2005-04-01

    Over the last seven years, a major debate has arisen over whether human cloning should remain legal in the United States. Given that this may be the 'first real global and simultaneous news story on biotechnology' (Einsiedel et al., 2002, p.313), nations around the world have struggled with the implications of this newly viable scientific technology, which is often also referred to as somatic cell nuclear transfer. Since the successful cloning of Dolly the sheep in 1997, and with increasing media attention paid to the likelihood of a successful human reproductive clone coupled with research suggesting the medical potential of therapeutic cloning in humans, members of the scientific community and Christian fundamentalist leaders have become increasingly vocal in the debate over U.S. policy decisions regarding human cloning (Wilmut, 2000). Yet despite a surfeit of public opinion polls and widespread opining in the news media on the topic of human cloning, there have been no empirical studies comparing the views of scientists and Christian fundamentalists in this debate (see Evans, 2002a for a recent study of opinion polls assessing religion and attitudes toward cloning). In order to further investigate the values that underlie scientists' and Christian fundamentalist leader's understanding of human cloning, as well as their differential use of language in communicating about this issue, we conducted an open-ended, exploratory survey of practicing scientists in the field of molecular biology and Christian fundamentalist pastors. We then analyzed the responses from this survey using qualitative discourse analysis. While this was not necessarily a representative sample (in quantitative terms, see Gaskell & Bauer, 2000) of each of the groups and the response rate was limited, this approach was informative in identifying both commonalities between the two groups, such as a focus on ethical concerns about reproductive cloning and the use of scientific terminology, as well

  19. Southern California Seismic Network: Caltech/USGS Element of TriNet 1997-2001

    OpenAIRE

    Hauksson, Egill; Small, Patrick; Hafner, Katrin; Busby, Robert; Clayton, Robert; Goltz, James; Heaton, Tom; Hutton, Kate; Kanamori, Hiroo; Polet, Jascha

    2001-01-01

    The California Institute of Technology (Caltech), the United States Geological Survey (USGS), and the California Department of Conservation, Division of Mines and Geology (CDMG) are completing the implementation of TriNet, a modern seismic information system for southern California. TriNet consists of two elements, the Caltech-USGS element and the CDMG element (Mori et al., 1998). The Caltech-USGS element (Caltech-USGS TriNet) concentrates on rapid notification and archiving...

  20. USGS Methodology for Assessing Continuous Petroleum Resources

    Science.gov (United States)

    Charpentier, Ronald R.; Cook, Troy A.

    2011-01-01

    The U.S. Geological Survey (USGS) has developed a new quantitative methodology for assessing resources in continuous (unconventional) petroleum deposits. Continuous petroleum resources include shale gas, coalbed gas, and other oil and gas deposits in low-permeability ("tight") reservoirs. The methodology is based on an approach combining geologic understanding with well productivities. The methodology is probabilistic, with both input and output variables as probability distributions, and uses Monte Carlo simulation to calculate the estimates. The new methodology is an improvement of previous USGS methodologies in that it better accommodates the uncertainties in undrilled or minimally drilled deposits that must be assessed using analogs. The publication is a collection of PowerPoint slides with accompanying comments.

  1. The relationship between environmental advocacy, values, and science: a survey of ecological scientists' attitudes.

    Science.gov (United States)

    Reiners, Derek S; Reiners, William A; Lockwood, Jeffrey A

    2013-07-01

    This article reports the results ofa survey of 1215 nonstudent Ecological Society of America (ESA) members. The results pertain to three series of questions designed to assess ecologists' engagement in various advocacy activities, as well as attitudes on the relationship between environmental advocacy, values, and science. We also analyzed the effects of age, gender, and employment categories on responses. While many findings are reported, we highlight six here. First, ecologists in our sample do not report particularly high levels of engagement in advocacy activities. Second, ecologists are not an ideologically unified group. Indeed, there are cases of significant disagreement among ecologists regarding advocacy, values, and science. Third, despite some disagreement, ecologists generally believe that values consistent with environmental advocacy are more consonant with ecological pursuits than values based on environmental skepticism. Fourth, compared to males, female ecologists tend to be more supportive of advocacy and less convinced that environmentally oriented values perturb the pursuit of science. Fifth, somewhat paradoxically, ecologists in higher age brackets indicate higher engagement in advocacy activities as well as a higher desire for scientific objectivity. Sixth, compared to ecologists in other employment categories, those in government prefer a greater separation between science and the influences of environmental advocacy and values.

  2. Remotely Sensed Land Imagery and Access Systems: USGS Updates

    Science.gov (United States)

    Lamb, R.; Pieschke, R.; Lemig, K.

    2017-12-01

    The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center has implemented a number of updates to its suite of remotely sensed products and distribution systems. These changes will greatly expand the availability, accessibility, and usability of the image products from USGS. As of late 2017, several new datasets are available for public download at no charge from USGS/EROS Center. These products include Multispectral Instrument (MSI) Level-1C data from the Sentinel-2B satellite, which was launched in March 2017. Along with Sentinel-2A, the Sentinel-2B images are now being distributed through USGS systems as part of a collaborative effort with the European Space Agency (ESA). The Sentinel-2 imagery is highly complementary to multispectral data collected by the USGS Landsat 7 and 8 satellites. With these two missions operating together, the potential local revisit rate can be reduced to 2-4 days. Another product addition is Resourcesat-2 data acquired over the United States by the Indian Space Research Organisation (ISRO). The Resourcesat-2 products from USGS consist of Advanced Wide Field Sensor (AWiFS) and Linear Imaging Self-Scanning Sensor Three (LISS-3) images acquired August 2016 to present. In an effort to maximize future Landsat data interoperability, including time series analysis of the 45+ year archive, the reprocessing of Collection 1 for all historical Landsat Level 1 products is nearly complete. The USGS is now working on operational release of higher-level science products to support analysis of the Landsat archive at the pixel level. Major upgrades were also completed in 2017 for several USGS data discovery and access systems, including the LandsatLook Viewer (https://landsatlook.usgs.gov/) and GloVis Tool (https://glovis.usgs.gov/). Other options are now being developed to further enhance data access and overall user experience. These future options will be discussed and community feedback will be encouraged.

  3. USGS environmental characterization of flood sediments left in the New Orleans area after Hurricanes Katrina and Rita, 2005--Progress Report

    Science.gov (United States)

    Plumlee, Geoffrey S.; Meeker, Gregory P.; Lovelace, John K.; Rosenbauer, Robert J.; Lamothe, Paul J.; Furlong, Edward T.; Demas, Charles R.

    2006-01-01

    Introduction: The flooding in the greater New Orleans area that resulted from Hurricanes Katrina and Rita in September, 2005, left behind accumulations of sediments up to many centimeters thick on streets, lawns, parking lots, and other flat surfaces. These flood sediment deposits have been the focus of extensive study by the US Environmental Protection Agency (EPA) and Louisiana Department of Environmental Quality (LDEQ) due to concerns that the sediments may contain elevated levels of heavy metals, organic contaminants, and microbes. The U.S. Geological Survey (USGS) is characterizing a limited number of flood sediment samples that were collected on September 15-16 and October 6-7, 2005, from the greater New Orleans area by personnel from the USGS Louisiana Water Science Center in Baton Rouge. Small samples (< 3 pints each) of wet to dry flood sediment were collected from 11 localities around downtown New Orleans on September 15, 2005, and two large samples (40 pints each) of wet flood sediment were collected from the Chalmette area on September 16. Twelve additional samples (8-10 pints each) were collected from New Orleans, Slidell, Rigolets, and Violet on October 6 and 7. The USGS characterization studies of these flood sediments are designed to produce data and interpretations regarding how the sediments and any contained contaminants may respond to environmental processes. This information will be of use to cleanup managers and DoI/USGS scientists assessing environmental impacts of the hurricanes and subsequent cleanup activities.

  4. Completion summary for boreholes USGS 140 and USGS 141 near the Advanced Test Reactor Complex, Idaho National Laboratory, Idaho

    Science.gov (United States)

    Twining, Brian V.; Bartholomay, Roy C.; Hodges, Mary K.V.

    2014-01-01

    In 2013, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, drilled and constructed boreholes USGS 140 and USGS 141 for stratigraphic framework analyses and long-term groundwater monitoring of the eastern Snake River Plain aquifer at the Idaho National Laboratory in southeast Idaho. Borehole USGS 140 initially was cored to collect continuous geologic data, and then re-drilled to complete construction as a monitor well. Borehole USGS 141 was drilled and constructed as a monitor well without coring. Boreholes USGS 140 and USGS 141 are separated by about 375 feet (ft) and have similar geologic layers and hydrologic characteristics based on geophysical and aquifer test data collected. The final construction for boreholes USGS 140 and USGS 141 required 6-inch (in.) diameter carbon-steel well casing and 5-in. diameter stainless-steel well screen; the screened monitoring interval was completed about 50 ft into the eastern Snake River Plain aquifer, between 496 and 546 ft below land surface (BLS) at both sites. Following construction and data collection, dedicated pumps and water-level access lines were placed to allow for aquifer testing, for collecting periodic water samples, and for measuring water levels. Borehole USGS 140 was cored continuously, starting from land surface to a depth of 543 ft BLS. Excluding surface sediment, recovery of basalt and sediment core at borehole USGS 140 was about 98 and 65 percent, respectively. Based on visual inspection of core and geophysical data, about 32 basalt flows and 4 sediment layers were collected from borehole USGS 140 between 34 and 543 ft BLS. Basalt texture for borehole USGS 140 generally was described as aphanitic, phaneritic, and porphyritic; rubble zones and flow mold structure also were described in recovered core material. Sediment layers, starting near 163 ft BLS, generally were composed of fine-grained sand and silt with a lesser amount of clay; however, between 223 and 228 ft BLS, silt

  5. USGS microbiome research

    Science.gov (United States)

    Kellogg, Christina A.; Hopkins, M. Camille

    2017-09-26

    Microbiomes are the communities of microorganisms (for example, bacteria, viruses, and fungi) that live on, in, and around people, plants, animals, soil, water, and the atmosphere. Microbiomes are active in the functioning of diverse ecosystems, for instance, by influencing water quality, nutrient acquisition 
and stress tolerance in plants, and stability of soil and aquatic environments. Microbiome research conducted by the U.S. Geological Survey spans many of our mission areas. Key research areas include water quality, understanding climate effects on soil and permafrost, ecosystem and wildlife health, invasive species, contaminated environments to improve bioremediation, and enhancing energy production. Microbiome research will fundamentally strengthen the ability to address the global challenges of maintaining clean water, ensuring adequate food supply, meeting energy needs, and preserving human and ecosystem health.

  6. USGS Field Activities 11CEV01 and 11CEV02 on the West Florida Shelf, Gulf of Mexico, in January and February 2011

    Science.gov (United States)

    Robbins, Lisa L.; Knorr, Paul O.; Daly, Kendra L.; Taylor, Carl A.

    2014-01-01

    During January and February 2011 the U.S. Geological Survey (USGS), in cooperation with the University of South Florida (USF), conducted geochemical surveys on the west Florida Shelf. Data collected will allow USGS and USF scientists to investigate the effects of climate change on ocean acidification within the northern Gulf of Mexico, specifically, the effect of ocean acidification on marine organisms and habitats. This work is part of a larger USGS study on Climate and Environmental Variability (CEV). The first cruise was conducted from January 3 – 7 (11CEV01) and the second from February 17 - 27 (11CEV02). To view each cruise's survey lines, please see the Trackline page. Both cruises took place aboard the R/V Weatherbird II, a ship of opportunity led by Dr. Kendra Daly (USF), which departed and returned from Saint Petersburg, Florida. Data collection included sampling of the surface and water column (referred to as station samples) with lab analysis of pH, dissolved inorganic carbon (DIC), and total alkalinity. Augmenting the lab analysis was a continuous flow-through system with a Conductivity-Temperature-Depth (CTD) sensor, which also recorded salinity, and pH. Corroborating the USGS data are the vertical CTD profiles collected by USF. The CTD casts measured continuous vertical profiles of oxygen, chlorophyll fluorescence, optical backscatter, and transmissometer. Discrete samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were also collected during the CTD casts.

  7. USGS Gulf Coast Science Conference and Florida Integrated Science Center Meeting: Proceedings with abstracts, October 20-23, 2008, Orlando, Florida

    Science.gov (United States)

    Lavoie, Dawn L.; Rosen, Barry H.; Sumner, Dave; Haag, Kim H.; Tihansky, Ann B.; Boynton, Betsy; Koenig, Renee; Lavoie, Dawn L.; Rosen, Barry H.; Sumner, Dave; Haag, Kim H.; Tihansky, Ann B.; Boynton, Betsy; Koenig, Renee

    2008-01-01

    Welcome! The USGS is the Nation's premier source of information in support of science-based decision making for resource management. We are excited to have the opportunity to bring together a diverse array of USGS scientists, managers, specialists, and others from science centers around the Gulf working on biologic, geologic, and hydrologic issues related to the Gulf of Mexico and the State of Florida. We've organized the meeting around the major themes outlined in the USGS Circular 1309, Facing Tomorrow's Challenges - U.S. Geological Survey Science in the Decade 2007-2017. USGS senior leadership will provide a panel discussion about the Gulf of Mexico and Integrated Science. Capstone talks will summarize major topics and key issues. Interactive poster sessions each evening will provide the opportunity for you to present your results and talk with your peers. We hope that discussions and interactions at this meeting will help USGS scientists working in Florida and the Gulf Coast region find common interests, forge scientific collaborations and chart a direction for the future. We hope that the meeting environment will encourage interaction, innovation and stimulate ideas among the many scientists working throughout the region. We'd like to create a community of practice across disciplines and specialties that will help us address complex scientific and societal issues. Please take advantage of this opportunity to visit with colleagues, get to know new ones, share ideas and brainstorm about future possibilities. It is our pleasure to provide this opportunity. We are glad you're here.

  8. USGS considers moving Menlo Park programs

    Science.gov (United States)

    Showstack, Randy

    U.S. Interior Secretary Bruce Babbitt has instructed the U.S. Geological Survey to examine options to relocate staff and programs at the agency's 16-acre Menlo Park Facilities within 5 years. The agency was directed on August 21 to submit a preliminary action plan by September 25.A memo from USGS Director Gordon Eaton states that Babbitt is concerned about high real estate costs in the Menlo Park area and the need for the agency to locate near other Interior and federal offices.

  9. Assessing the search for information on three Rs methods, and their subsequent implementation: a national survey among scientists in the Netherlands

    NARCIS (Netherlands)

    Luijk, J. van; Cuijpers, Y.M.; Vaart, L. van der; Leenaars, M; Ritskes-Hoitinga, M.

    2011-01-01

    A local survey conducted among scientists into the current practice of searching for information on Three Rs (i.e. Replacement, Reduction and Refinement) methods has highlighted the gap between the statutory requirement to apply Three Rs methods and the lack of criteria to search for them. To verify

  10. Assessing the Search for Information on Three Rs Methods, and their Subsequent Implementation: A National Survey among Scientists in The Netherlands.

    NARCIS (Netherlands)

    Luijk, J. van; Cuijpers, Y.M.; Vaart, L. van der; Leenaars, M.; Ritskes-Hoitinga, M.

    2011-01-01

    A local survey conducted among scientists into the current practice of searching for information on Three Rs (i.e. Replacement, Reduction and Refinement) methods has highlighted the gap between the statutory requirement to apply Three Rs methods and the lack of criteria to search for them. To verify

  11. Archive of side scan sonar and swath bathymetry data collected during USGS cruise 10CCT03 offshore of the Gulf Islands National Seashore, Mississippi, from East Ship Island, Mississippi, to Dauphin Island, Alabama, April 2010

    Science.gov (United States)

    DeWitt, Nancy T.; Flocks, James G.; Pfeiffer, William R.; Gibson, James N.; Wiese, Dana S.

    2012-01-01

    In April of 2010, the U.S. Geological Survey (USGS) conducted a geophysical survey from the east end of East Ship Island, Miss., extending to the middle of Dauphin Island, Ala. (fig. 1). This survey had a dual purpose: (1) to interlink previously conducted nearshore geophysical surveys (shoreline to ~2 km) with those of offshore surveys (~2 to ~9 km) in the area, and (2) to extend the geophysical survey to include a portion of the Dauphin Island nearshore zone. The efforts were part of the USGS Gulf of Mexico Science Coordination partnership with the U.S. Army Corps of Engineers (USACE) to assist the Mississippi Coastal Improvements Program (MsCIP) and the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazards Susceptibility Project by mapping the shallow geological stratigraphic framework of the Mississippi Barrier Island Complex. These geophysical surveys will provide the data necessary for scientists to define, interpret, and provide baseline bathymetry and seafloor habitat for this area and to aid scientists in predicting future geomorpholocial changes of the islands with respect to climate change, storm impact, and sea-level rise. Furthermore, these data will provide information for barrier island restoration feasibility, particularly in Camille Cut, and efforts for the preservation of historical Fort Massachusetts. For more information refer to http://ngom.usgs.gov/gomsc/mscip/.

  12. USGS VDP Infrasound Sensor Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Slad, George William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Merchant, Bion J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    Sandia National Laboratories has tested and evaluated two infrasound sensors, the model VDP100 and VDP250, built in-house at the USGS Cascades Volcano Observatory. The purpose of the infrasound sensor evaluation was to determine a measured sensitivity, self-noise, dynamic range and nominal transfer function. Notable features of the VDP sensors include novel and durable construction and compact size.

  13. Drilling, construction, geophysical log data, and lithologic log for boreholes USGS 142 and USGS 142A, Idaho National Laboratory, Idaho

    Science.gov (United States)

    Twining, Brian V.; Hodges, Mary K.V.; Schusler, Kyle; Mudge, Christopher

    2017-07-27

    Starting in 2014, the U.S. Geological Survey in cooperation with the U.S. Department of Energy, drilled and constructed boreholes USGS 142 and USGS 142A for stratigraphic framework analyses and long-term groundwater monitoring of the eastern Snake River Plain aquifer at the Idaho National Laboratory in southeast Idaho. Borehole USGS 142 initially was cored to collect rock and sediment core, then re-drilled to complete construction as a screened water-level monitoring well. Borehole USGS 142A was drilled and constructed as a monitoring well after construction problems with borehole USGS 142 prevented access to upper 100 feet (ft) of the aquifer. Boreholes USGS 142 and USGS 142A are separated by about 30 ft and have similar geology and hydrologic characteristics. Groundwater was first measured near 530 feet below land surface (ft BLS) at both borehole locations. Water levels measured through piezometers, separated by almost 1,200 ft, in borehole USGS 142 indicate upward hydraulic gradients at this location. Following construction and data collection, screened water-level access lines were placed in boreholes USGS 142 and USGS 142A to allow for recurring water level measurements.Borehole USGS 142 was cored continuously, starting at the first basalt contact (about 4.9 ft BLS) to a depth of 1,880 ft BLS. Excluding surface sediment, recovery of basalt, rhyolite, and sediment core at borehole USGS 142 was approximately 89 percent or 1,666 ft of total core recovered. Based on visual inspection of core and geophysical data, material examined from 4.9 to 1,880 ft BLS in borehole USGS 142 consists of approximately 45 basalt flows, 16 significant sediment and (or) sedimentary rock layers, and rhyolite welded tuff. Rhyolite was encountered at approximately 1,396 ft BLS. Sediment layers comprise a large percentage of the borehole between 739 and 1,396 ft BLS with grain sizes ranging from clay and silt to cobble size. Sedimentary rock layers had calcite cement. Basalt flows

  14. Bridging the gap between science and policy: an international survey of scientists and policy makers in China and Canada.

    Science.gov (United States)

    Choi, Bernard C K; Li, Liping; Lu, Yaogui; Zhang, Li R; Zhu, Yao; Pak, Anita W P; Chen, Yue; Little, Julian

    2016-02-06

    Bridging the gap between science and policy is an important task in evidence-informed policy making. The objective of this study is to prioritize ways to bridge the gap. The study was based on an online survey of high-ranking scientists and policy makers who have a senior position in universities and governments in the health sector in China and Canada. The sampling frame comprised of universities with schools of public health and medicine and various levels of government in health and public health. Participants included university presidents and professors, and government deputy ministers, directors general and directors working in the health field. Fourteen strategies were presented to the participants for ranking as current ways and ideal ways in the future to bridge the gap between science and policy. Over a 3-month survey period, there were 121 participants in China and 86 in Canada with response rates of 30.0 and 15.9 %, respectively. The top strategies selected by respondents included focus on policy (conducting research that focuses on policy questions), science-policy forums, and policy briefs, both as current ways and ideal ways to bridge the gap between science and policy. Conferences were considered a priority strategy as a current way, but not an ideal way in the future. Canadian participants were more in favor of using information technology (web-based portals and email updates) than their Chinese counterparts. Among Canadian participants, two strategies that were ranked low as current ways (collaboration in study design and collaboration in analysis) became a priority as ideal ways. This could signal a change in thinking in shifting the focus from the "back end" or "downstream" (knowledge dissemination) of the knowledge transfer process to the "front end" or "upstream" (knowledge generation). Our international study has confirmed a number of previously reported priority strategies to bridge the gap between science and policy. More importantly, our

  15. Physical ECOHAB-1 data from moorings and other instruments in the Gulf of Maine by the the U.S. Geological Survey (USGS), Woods Hole, from 1993-03-19 to 1995-06-17 (NODC Accession 0042026)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains part of the USGS inventory of moored time series data, including the complete datasets and supporting metadata / associated files for field...

  16. 2009 USGS Potato Creek Lidar Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR collected for the upper portion of the Flint River in central georgia. 237.6 sqmiles collected between May 1st and May 4th, 2009. The data contains 1 meter...

  17. Continuous Groundwater Monitoring Collocated at USGS Streamgages

    Science.gov (United States)

    Constantz, J. E.; Eddy-Miller, C.; Caldwell, R.; Wheeer, J.; Barlow, J.

    2012-12-01

    USGS Office of Groundwater funded a 2-year pilot study collocating groundwater wells for monitoring water level and temperature at several existing continuous streamgages in Montana and Wyoming, while U.S. Army Corps of Engineers funded enhancement to streamgages in Mississippi. To increase spatial relevance with in a given watershed, study sites were selected where near-stream groundwater was in connection with an appreciable aquifer, and where logistics and cost of well installations were considered representative. After each well installation and surveying, groundwater level and temperature were easily either radio-transmitted or hardwired to existing data acquisition system located in streamgaging shelter. Since USGS field personnel regularly visit streamgages during routine streamflow measurements and streamgage maintenance, the close proximity of observation wells resulted in minimum extra time to verify electronically transmitted measurements. After field protocol was tuned, stream and nearby groundwater information were concurrently acquired at streamgages and transmitted to satellite from seven pilot-study sites extending over nearly 2,000 miles (3,200 km) of the central US from October 2009 until October 2011, for evaluating the scientific and engineering add-on value of the enhanced streamgage design. Examination of the four-parameter transmission from the seven pilot study groundwater gaging stations reveals an internally consistent, dynamic data suite of continuous groundwater elevation and temperature in tandem with ongoing stream stage and temperature data. Qualitatively, the graphical information provides appreciation of seasonal trends in stream exchanges with shallow groundwater, as well as thermal issues of concern for topics ranging from ice hazards to suitability of fish refusia, while quantitatively this information provides a means for estimating flux exchanges through the streambed via heat-based inverse-type groundwater modeling. In June

  18. Career Issues and Laboratory Climates: Different Challenges and Opportunities for Women Engineers and Scientists (survey of Fiscal Year 1997 Powre Awardees)

    Science.gov (United States)

    Rosser, Sue V.; Zieseniss, Mireille

    A survey of fiscal year 1997 POWRE (Professional Opportunities for Women in Research and Education) awardees from the National Science Foundation revealed that women engineers and scientists face similar issues, challenges, and opportunities and think that the laboratory climate has similar impacts on their careers. Separating responses of women scientists from those of women engineers revealed that 70% of both groups listed balancing work with family responsibilities as the most difficult issue. Discrepancies in percentages of women, coupled with differences among disciplinary and subdisciplinary cultures within science, engineering, mathematics, and technology fields, complicate work climates and their impact on women's careers. More frequently than women scientists, women engineers listed issues such as (a) low numbers of women leading to isolation, (b) lack of camaraderie and mentoring, (c) gaining credibility/respect from peers and administrators, (d) time management, (e) prioritizing responsibilities due to disproportionate demands, and (f) learning the rules of the game to survive in a male-dominated environment. Women engineers also listed two positive issues more frequently than women scientists: active recruitment/more opportunities for women and impact of successful women in the profession. The small number of women engineers may explain these results and suggests that it may be inappropriate to group them with other women scientists for analysis, programs, and policies.

  19. Connecting the dots: a collaborative USGS-NPS effort to expand the utility of monitoring data

    Science.gov (United States)

    Grace, James B.; Schoolmaster, Donald R.; Schweiger, E. William; Mitchell, Brian R.; Miller, Kathryn; Guntenspergen, Glenn R.

    2014-01-01

    The Natural Resource Challenge (National Park Service 1999) was a call to action. It constituted a mandate for monitoring based on the twin premises that (1) natural resources in national parks require active management and stewardship if we are to protect them from gradual degradation, and (2) we cannot protect what we do not understand. The intent of the challenge was embodied in its original description: We must expand existing inventory programs and develop efficient ways to monitor the vital signs of natural systems. We must enlist others in the scientific community to help, and also facilitate their inquiry. Managers must have and apply this information to preserve our natural resources. In this article, we report on ongoing collaborative work between the National Park Service (NPS) and the US Geological Survey (USGS) that seeks to add to our scientific understanding of the ecological processes operating behind vital signs monitoring data. The ultimate goal of this work is to provide insights that can facilitate an understanding of the systems and identify potential opportunities for active stewardship by NPS managers (Bennetts et al. 2007; Mitchell et al. 2014). The bulk of the work thus far has involved Acadia and Rocky Mountain national parks, but there are plans for extending the work to additional parks. Our story stats with work designed to consider ways of assessing the status and condition of natural resources and the potential for historical or ongoing influences of human activities. In the 1990s, the concept of "biotic integrity" began to take hold as an aspiration for developing quantitative indices describing how closely the conditions at a site resemble those found at pristine, unimpacted sites. Quantitative methods for developing indices of biotic integrity (IBIs) and elaborations of that idea (e.g., ecological integrity) have received considerable attention and application of these methods to natural resources has become widespread (Karr 1991

  20. USGS Map Indices Overlay Map Service from The National Map

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Map Indices service from The National Map (TNM) consists of 1x1 Degree, 30x60 Minute (100K), 15 Minute (63K), 7.5 Minute (24K), and 3.75 Minute grid...

  1. USGS Transportation Overlay Map Service from The National Map

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Transportation service from The National Map (TNM) is based on TIGER/Line data provided through U.S. Census Bureau and road data from U.S. Forest Service....

  2. Policies to increase the social value of science and the scientist satisfaction. An exploratory survey among Harvard bioscientists.

    Science.gov (United States)

    Ballabeni, Andrea; Boggio, Andrea; Hemenway, David

    2014-01-01

    Basic research in the biomedical field generates both knowledge that has a value per se regardless of its possible practical outcome and knowledge that has the potential to produce more practical benefits. Policies can increase the benefit potential to society of basic biomedical research by offering various kinds of incentives to basic researchers. In this paper we argue that soft incentives or "nudges" are particularly promising. However, to be well designed, these incentives must take into account the motivations, goals and views of the basic scientists. In the paper we present the results of an investigation that involved more than 300 scientists at Harvard Medical School and affiliated institutes. The results of this study suggest that some soft incentives could be valuable tools to increase the transformative value of fundamental investigations without affecting the spirit of the basic research and scientists' work satisfaction. After discussing the findings, we discuss a few examples of nudges for basic researchers in the biomedical fields.

  3. Assessing the search for information on Three Rs methods, and their subsequent implementation: a national survey among scientists in the Netherlands.

    Science.gov (United States)

    van Luijk, Judith; Cuijpers, Yvonne; van der Vaart, Lilian; Leenaars, Marlies; Ritskes-Hoitinga, Merel

    2011-10-01

    A local survey conducted among scientists into the current practice of searching for information on Three Rs (i.e. Replacement, Reduction and Refinement) methods has highlighted the gap between the statutory requirement to apply Three Rs methods and the lack of criteria to search for them. To verify these findings on a national level, we conducted a survey among scientists throughout The Netherlands. Due to the low response rate, the results give an impression of opinions, rather than being representative of The Netherlands as a whole. The findings of both surveys complement each other, and indicate that there is room for improvement. Scientists perceive searching the literature for information on Three Rs methods to be a difficult task, and specific Three Rs search skills and knowledge of Three Rs databases are limited. Rather than using a literature search, many researchers obtain information on these methods through personal communication, which means that published information on possible Three Rs methods often remains unfound and unused. A solution might be to move beyond the direct search for information on Three Rs methods and choose another approach. One approach that seems rather appropriate is that of systematic review. This provides insight into the necessity for any new animal studies, as well as optimal implementation of available data and the prevention of unnecessary animal use in the future. 2011 FRAME.

  4. Implementation of unmanned aircraft systems by the U.S. Geological Survey

    Science.gov (United States)

    Cress, J.J.; Sloan, J.L.; Hutt, M.E.

    2011-01-01

    The U.S. Geological Survey (USGS) Unmanned Aircraft Systems (UAS) Project Office is leading the implementation of UAS technology in anticipation of transforming the research methods and management techniques employed across the Department of the Interior. UAS technology is being made available to monitor environmental conditions, analyse the impacts of climate change, respond to natural hazards, understand landscape change rates and consequences, conduct wildlife inventories and support related land management missions. USGS is teaming with the Department of the Interior Aviation Management Directorate (AMD) to lead the safe and cost-effective adoption of UAS technology by the Department of the Interior Agencies and USGS scientists.

  5. United States-Mexican Borderlands: Facing tomorrow's challenges through USGS science

    Science.gov (United States)

    Updike, Randall G.; Ellis, Eugene G.; Page, William R.; Parker, Melanie J.; Hestbeck, Jay B.; Horak, William F.

    2013-01-01

    Along the nearly 3,200 kilometers (almost 2,000 miles) of the United States–Mexican border, in an area known as the Borderlands, we are witnessing the expression of the challenges of the 21st century. This circular identifies several challenge themes and issues associated with life and the environment in the Borderlands, listed below. The challenges are not one-sided; they do not originate in one country only to become problems for the other. The issues and concerns of each challenge theme flow in both directions across the border, and both nations feel their effects throughout the Borderlands and beyond. The clear message is that our two nations, the United States and Mexico, face the issues in these challenge themes together, and the U.S. Geological Survey (USGS) understands it must work with its counterparts, partners, and customers in both countries.Though the mission of the USGS is not to serve as land manager, law enforcer, or code regulator, its innovation and creativity and the scientific and technical depth of its capabilities can be directly applied to monitoring the conditions of the landscape. The ability of USGS scientists to critically analyze the monitored data in search of signals and trends, whether they lead to negative or positive results, allows us to reach significant conclusions—from providing factual conclusions to decisionmakers, to estimating how much of a natural resource exists in a particular locale, to predicting how a natural hazard phenomenon will unfold, to forecasting on a scale from hours to millennia how ecosystems will behave.None of these challenge themes can be addressed strictly by one or two science disciplines; all require well-integrated, cross-discipline thinking, data collection, and analyses. The multidisciplinary science themes that have become the focus of the USGS mission parallel the major challenges in the border region between Mexico and the United States. Because of this multidisciplinary approach, the USGS

  6. SICS: the Southern Inland and Coastal System interdisciplinary project of the USGS South Florida Ecosystem Program

    Science.gov (United States)

    ,

    2011-01-01

    State and Federal agencies are working jointly on structural modifications and improved water-delivery strategies to reestablish more natural surface-water flows through the Everglades wetlands and into Florida Bay. Changes in the magnitude, duration, timing, and distribution of inflows from the headwaters of the Taylor Slough and canal C-111 drainage basins have shifted the seasonal distribution and extent of wetland inundation, and also contributed to the development of hypersaline conditions in nearshore embayments of Florida Bay. Such changes are altering biological and vegetative communities in the wetlands and creating stresses on aquatic habitat. Affected biotic resources include federally listed species such as the Cape Sable seaside sparrow, American crocodile, wood stork, and roseate spoonbill. The U.S. Geological Survey (USGS) is synthesizing scientific findings from hydrologic process studies, collecting data to characterize the ecosystem properties and functions, and integrating the results of these efforts into a research tool and management model for this Southern Inland and Coastal System(SICS). Scientists from all four disciplinary divisions of the USGS, Biological Resources, Geology, National Mapping, and Water Resources are contributing to this interdisciplinary project.

  7. USGS budget request up for 1994

    Science.gov (United States)

    White, M. Catherine

    The president's U.S. Geological Survey budget request for fiscal year 1994 totals $598 million—up $20 million from the current budget. This would restore about half of the $42.46 million cut from its budget in fiscal 1993.In releasing the budget, Bruce Babbitt, Secretary of the Department of the Interior, said, “The USGS reflects the new administration's understanding that investing in America requires investing in a strong Earth science capability,” and that “we need high-quality scientific information on natural hazards and on our water, mineral, energy, and land resources to serve as the building blocks for making intelligent decisions and planning future growth.”

  8. Operating a global seismic network - perspectives from the USGS GSN

    Science.gov (United States)

    Gee, L. S.; Derr, J. S.; Hutt, C. R.; Bolton, H.; Ford, D.; Gyure, G. S.; Storm, T.; Leith, W.

    2007-05-01

    The Global Seismographic Network (GSN) is a permanent digital network of state-of-the-art seismological and geophysical sensors connected by a global telecommunications network, serving as a multi-use scientific facility used for seismic monitoring for response applications, basic and applied research in solid earthquake geophysics, and earth science education. A joint program of the U.S. Geological Survey (USGS), the National Science Foundation, and Incorporated Research Institutions in Seismology (IRIS), the GSN provides near- uniform, worldwide monitoring of the Earth through 144 modern, globally distributed seismic stations. The USGS currently operates 90 GSN or GSN-affiliate stations. As a US government program, the USGS GSN is evaluated on several performance measures including data availability, data latency, and cost effectiveness. The USGS-component of the GSN, like the GSN as a whole, is in transition from a period of rapid growth to steady- state operations. The program faces challenges of aging equipment and increased operating costs at the same time that national and international earthquake and tsunami monitoring agencies place an increased reliance on GSN data. Data acquisition of the USGS GSN is based on the Quanterra Q680 datalogger, a workhorse system that is approaching twenty years in the field, often in harsh environments. An IRIS instrumentation committee recently selected the Quanterra Q330 HR as the "next generation" GSN data acquisition system, and the USGS will begin deploying the new equipment in the middle of 2007. These new systems will address many of the issues associated with the ageing Q680 while providing a platform for interoperability across the GSN.. In order to address the challenge of increasing operational costs, the USGS employs several tools. First, the USGS benefits from the contributions of local host institutions. The station operators are the first line of defense when a station experiences problems, changing boards

  9. Policies to increase the social value of science and the scientist satisfaction. An exploratory survey among Harvard bioscientists.

    Science.gov (United States)

    Ballabeni, Andrea; Boggio, Andrea; Hemenway, David

    2014-01-01

    Basic research in the biomedical field generates both knowledge that has a value per se regardless of its possible practical outcome and knowledge that has the potential to produce more practical benefits. Policies can increase the benefit potential to society of basic biomedical research by offering various kinds of incentives to basic researchers. In this paper we argue that soft incentives or “nudges” are particularly promising. However, to be well designed, these incentives must take into account the motivations, goals and views of the basic scientists. In the paper we present the results of an investigation that involved more than 300 scientists at Harvard Medical School and affiliated institutes. The results of this study suggest that some soft incentives could be valuable tools to increase the transformative value of fundamental investigations without affecting the spirit of the basic research and scientists’ work satisfaction. After discussing the findings, we discuss a few examples of nudges for basic researchers in the biomedical fields. PMID:24795807

  10. Toxic ignorance and right-to-know in biomonitoring results communication: a survey of scientists and study participants

    Directory of Open Access Journals (Sweden)

    Altman Rebecca

    2009-02-01

    Full Text Available Abstract Background Exposure assessment has shifted from pollutant monitoring in air, soil, and water toward personal exposure measurements and biomonitoring. This trend along with the paucity of health effect data for many of the pollutants studied raise ethical and scientific challenges for reporting results to study participants. Methods We interviewed 26 individuals involved in biomonitoring studies, including academic scientists, scientists from environmental advocacy organizations, IRB officials, and study participants; observed meetings where stakeholders discussed these issues; and reviewed the relevant literature to assess emerging ethical, scientific, and policy debates about personal exposure assessment and biomonitoring, including public demand for information on the human health effects of chemical body burdens. Results We identify three frameworks for report-back in personal exposure studies: clinical ethics; community-based participatory research; and citizen science 'data judo.' The first approach emphasizes reporting results only when the health significance of exposures is known, while the latter two represent new communication strategies where study participants play a role in interpreting, disseminating, and leveraging results to promote community health. We identify five critical areas to consider in planning future biomonitoring studies. Conclusion Public deliberation about communication in personal exposure assessment research suggests that new forms of community-based research ethics and participatory scientific practice are emerging.

  11. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 13: Source selection and information use by US aerospace engineers and scientists: Results of a telephone survey

    Science.gov (United States)

    Pinelli, Thomas E.; Glassman, Nanci A.

    1992-01-01

    A telephone survey of U.S. aerospace engineers and scientists belonging to the Society of Automotive Engineers (SAE) was conducted between December 4, 1991 and January 5, 1992. The survey was undertaken to (1) validate the telephone survey as an appropriate technique for collecting data from U.S. aerospace engineers and scientists; (2) collect information about how the results of NASA/DoD aerospace research are used in the R&D process; (3) identify those selection criteria which affect the use of federally-funded aerospace R&D; and (4) obtain information that could be used to develop a self-administered mail questionnaire for use with the same population. The average rating of importance of U.S. government technical reports was 2.5 (on a 4-point scale); The mean/median number of times U.S. government technical reports were used per 6 months was 8/2. Factors scoring highest for U.S. government technical reports were technical accuracy (2.9), reliable data and technical information (2.8), and contains comprehensive data and information (2.7) on a 4-point system. The factors scoring highest for influencing the use of U.S. government technical reports were relevance (3.1), technical accuracy (3.06), and reliable data/information (3.02). Ease of use, familiarity, technical accuracy, and relevance correlated with use of U.S. government technical reports. Survey demographics, survey questionnaire, and the NASA/DoD Aerospace Knowledge Diffusion Research Project publications list are included.

  12. Robust Scientists

    DEFF Research Database (Denmark)

    Gorm Hansen, Birgitte

    their core i nterests, 2) developing a selfsupply of industry interests by becoming entrepreneurs and thus creating their own compliant industry partner and 3) balancing resources within a larger collective of researchers, thus countering changes in the influx of funding caused by shifts in political...... knowledge", Danish research policy seems to have helped develop politically and economically "robust scientists". Scientific robustness is acquired by way of three strategies: 1) tasting and discriminating between resources so as to avoid funding that erodes academic profiles and push scientists away from...

  13. An Introspective Critique of Past, Present, and Future USGS Decision Support

    Science.gov (United States)

    Neff, B. P.; Pavlick, M.

    2017-12-01

    In response to increasing scrutiny of publicly funded science, the Water Mission Area of USGS is shifting its approach for informing decisions that affect the country. Historically, USGS has focused on providing sound science on cutting edge, societally relevant issues with the expectation that decision makers will take action on this information. In practice, scientists often do not understand or focus on the needs of decision makers and decision makers often cannot or do not utilize information produced by scientists. The Water Mission Area of USGS has recognized that it can better serve the taxpayer by delivering information more relevant to decision making in a form more conducive to its use. To this end, the Water Mission Area of USGS is seeking greater integration with the decision making process to better inform what information it produces. In addition, recognizing that the transfer of scientific knowledge to decision making is fundamentally a social process, USGS is embracing the use of social science to better inform how it delivers scientific information and facilitates its use. This study utilizes qualitative methods to document the evolution of decision support at USGS and provide a rationale for a shift in direction. Challenges to implementation are identified and collaborative opportunities to improve decision making are discussed.

  14. Clifton, AZ 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  15. Tularosa, NM 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  16. Gallup, NM 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  17. Clifton, AZ 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  18. Brownfield, TX 1:250,000 Quad USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  19. Dalhart, TX 1:250,000 Quad USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  20. Hobbs, NM 1:250,000 Quad USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  1. Albuquerque, NM 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  2. Douglas, AZ 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  3. Gallup, NM 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  4. Roswell, NM 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  5. USGS Imagery Topo Large-scale Base Map Service from The National Map

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Imagery Topo Large service from The National Map (TNM) is a dynamic topographic base map service that combines the best available data (Boundaries,...

  6. USGS High Resolution Orthoimagery Collection - Historical - National Geospatial Data Asset (NGDA) High Resolution Orthoimagery

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — USGS high resolution orthorectified images from The National Map combine the image characteristics of an aerial photograph with the geometric qualities of a map. An...

  7. USGS Governmental Unit Boundaries Overlay Map Service from The National Map

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Governmental Unit Boundaries service from The National Map (TNM) represents major civil areas for the Nation, including States or Territories, counties (or...

  8. Lidar Point Cloud - USGS National Map 3DEP Downloadable Data Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data collection consists of Lidar Point Cloud (LPC) projects as provided to the USGS. These point cloud files contain all the original lidar points collected,...

  9. Socorro, NM 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  10. Clovis, NM 1:250,000 Quad USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  11. Douglas, AZ 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  12. Roswell, NM 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  13. Shiprock, NM 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  14. Aztec, NM 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  15. Aztec, NM 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  16. Socorro, NM 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  17. Carlsbad, NM 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  18. Raton, NM 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  19. Shiprock, NM 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  20. Tucumcari, NM 1:250,000 Quad USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  1. Albuquerque, NM 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  2. Raton, NM 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  3. Carlsbad, NM 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  4. Tularosa, NM 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  5. USGS US Topo Availability Overlay Map Service from The National Map

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS US Topo Availability service from The National Map consists of footprints where US Topo products are currently available. Various green tints are used to...

  6. 2007 USGS/NPS/NASA Experimental Advanced Airborne Research Lidar (EAARL): Naval Live Oaks Area, FL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — ASCII xyz point cloud data were produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS),...

  7. Producing physician-scientists: a survey of graduates from the Harvard--MIT Program in Health Sciences and Technology.

    Science.gov (United States)

    Wilkerson, L; Abelmann, W H

    1993-03-01

    The Harvard-MIT Program in Health Sciences and Technology (HST) is a flexible, preclinical curriculum, taught by members of the faculties of both Harvard University and the Massachusetts Institute of Technology, that stresses a rigorous, scientific, quantitative approach, small classes (usually fewer than 50 students), and student-faculty interaction. The program is aimed at students with strong backgrounds in quantitative and biological sciences who are interested in careers as physician-scientists. The first 234 students of the program, who graduated between 1975 and 1985, were asked to participate in a 1990 follow-up study by completing a four-page questionnaire and submitting curricula vitae and lists of publications, if available. Data were analyzed quantitatively and qualitatively. Of the 234 graduates, 211 (90%) responded. Sixty-three (30%) had received both MD and PhD degrees. The graduates were twice as likely to describe their primary professional roles as academic than as clinical practice; 94 held full-time faculty positions at 50 medical schools. The 154 (73%) in research spent an average of 51% of their time on this activity. According to the 179 graduates (85%) who stated that they would choose HST again, the most frequently mentioned reasons were the quantitative approach that emphasized integration of basic science and clinical practice (49%) and the small class size (37%). The HST MD curriculum, with its emphasis on basic science and research experience, has been successful in preparing carefully selected students for careers as physician-scientists, without necessarily requiring the completion of a PhD degree.

  8. USGS Spectral Library Version 7

    Science.gov (United States)

    Kokaly, Raymond F.; Clark, Roger N.; Swayze, Gregg A.; Livo, K. Eric; Hoefen, Todd M.; Pearson, Neil C.; Wise, Richard A.; Benzel, William M.; Lowers, Heather A.; Driscoll, Rhonda L.; Klein, Anna J.

    2017-04-10

    bandpasses, and resampled to selected broadband multispectral sensors. The native file format of the library is the SPECtrum Processing Routines (SPECPR) data format. This report describes how to access freely available software to read the SPECPR format. To facilitate broader access to the library, we produced generic formats of the spectra and metadata in text files. The library is provided on digital media and online at https://speclab.cr.usgs.gov/spectral-lib.html. A long-term archive of these data are stored on the USGS ScienceBase data server (https://dx.doi.org/10.5066/F7RR1WDJ).

  9. 2014 USGS/NRCS Lidar: Central MS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: USGS-NRCS Laurel MS 0.7m NPS LIDAR Lidar Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G13PD01086 Woolpert...

  10. U.S. Geological Survey Activities Related to American Indians and Alaska Natives: Fiscal Year 2005

    Science.gov (United States)

    Marcus, Susan M.

    2007-01-01

    Introduction This report describes the activities that the U.S. Geological Survey (USGS) conducted with American Indian and Alaska Native governments, educational institutions, and individuals during Federal fiscal year (FY) 2005. Most of these USGS activities were collaborations with Tribes, Tribal organizations, or professional societies. Others were conducted cooperatively with the Bureau of Indian Affairs (BIA) or other Federal entities. The USGS is the earth and natural science bureau within the U.S. Department of the Interior (DOI). The USGS does not have regulatory or land management responsibilities. As described in this report, there are many USGS activities that are directly relevant to American Indians, Alaska Natives, and to Native lands. A USGS website, dedicated to making USGS more accessible to American Indians, Alaska Natives, their governments, and institutions, is available at www.usgs.gov/indian. This website includes information on how to contact USGS American Indian/Alaska Native Liaisons, training opportunities, and links to other information resources. This report and previous editions are also available through the website. The USGS realizes that Native knowledge and cultural traditions of living in harmony with nature result in unique Native perspectives that enrich USGS studies. USGS seeks to increase the sensitivity and openness of its scientists to the breadth of Native knowledge, expanding the information on which their research is based. USGS scientific studies include data collection, mapping, natural resource modeling, and research projects. These projects typically last 2 or 3 years, although some are parts of longer-term activities. Some projects are funded cooperatively, with USGS funds matched or supplemented by individual Tribal governments, or by the BIA. These projects may also receive funding from the U.S. Environmental Protection Agency (USEPA), the Indian Health Service (part of the Department of Health and Human Services

  11. USGS QA Plan: Certification of digital airborne mapping products

    Science.gov (United States)

    Christopherson, J.

    2007-01-01

    To facilitate acceptance of new digital technologies in aerial imaging and mapping, the US Geological Survey (USGS) and its partners have launched a Quality Assurance (QA) Plan for Digital Aerial Imagery. This should provide a foundation for the quality of digital aerial imagery and products. It introduces broader considerations regarding processes employed by aerial flyers in collecting, processing and delivering data, and provides training and information for US producers and users alike.

  12. Documentation of methods and inventory of irrigation data collected for the 2000 and 2005 U.S. Geological Survey Estimated use of water in the United States, comparison of USGS-compiled irrigation data to other sources, and recommendations for future compilations

    Science.gov (United States)

    Dickens, Jade M.; Forbes, Brandon T.; Cobean, Dylan S.; Tadayon, Saeid

    2011-01-01

    Every five years since 1950, the U.S. Geological Survey (USGS) National Water Use Information Program (NWUIP) has compiled water-use information in the United States and published a circular report titled "Estimated use of water in the United States," which includes estimates of water withdrawals by State, sources of water withdrawals (groundwater or surface water), and water-use category (irrigation, public supply, industrial, thermoelectric, and so forth). This report discusses the impact of important considerations when estimating irrigated acreage and irrigation withdrawals, including estimates of conveyance loss, irrigation-system efficiencies, pasture, horticulture, golf courses, and double cropping.

  13. USGS-WHOI-DPRI Coulomb Stress-Transfer Model for the January 12, 2010, MW=7.0 Haiti Earthquake

    Science.gov (United States)

    Lin, Jian; Stein, Ross S.; Sevilgen, Volkan; Toda, Shinji

    2010-01-01

    Using calculated stress changes to faults surrounding the January 12, 2010, rupture on the Enriquillo Fault, and the current (January 12 to 26, 2010) aftershock productivity, scientists from the U.S. Geological Survey (USGS), Woods Hole Oceanographic Institution (WHOI), and Disaster Prevention Research Institute, Kyoto University (DPRI) have made rough estimates of the chance of a magnitude (Mw)=7 earthquake occurring during January 27 to February 22, 2010, in Haiti. The probability of such a quake on the Port-au-Prince section of the Enriquillo Fault is about 2 percent, and the probability for the section to the west of the January 12, 2010, rupture is about 1 percent. The stress changes on the Septentrional Fault in northern Haiti are much smaller, although positive.

  14. Clinician-scientist MB/PhD training in the UK: a nationwide survey of medical school policy.

    Science.gov (United States)

    Barnett-Vanes, Ashton; Ho, Guiyi; Cox, Timothy M

    2015-12-30

    This study surveyed all UK medical schools regarding their Bachelor of Medicine (MB), Doctor of Philosophy (PhD) (MB/PhD) training policy in order to map the current training landscape and to provide evidence for further research and policy development. Deans of all UK medical schools registered with the Medical Schools Council were invited to participate in this survey electronically. The number of medical schools that operate institutional MB/PhD programmes or permit self-directed student PhD intercalation. Medical school recruitment procedures and attitudes to policy guidance. 27 of 33 (81%) registered UK medical schools responded. Four (14%) offer an institutional MB/PhD programme. However, of those without institutional programmes, 17 (73%) permit study interruption and PhD intercalation: two do not (one of whom had discontinued their programme in 2013), three were unsure and one failed to answer the question. Regarding student eligibility, respondents cited high academic achievement in medical studies and a bachelor's or master's degree. Of the Medical schools without institutional MB/PhD programmes, 5 (21%) have intentions to establish a programme, 8 (34%) do not and 3 were unsure, seven did not answer. 19 medical schools (70%) considered national guidelines are needed for future MB/PhD programme development. We report the first national survey of MB/PhD training in the UK. Four medical schools have operational institutional MB/PhD programmes, with a further five intending to establish one. Most medical schools permit study interruption and PhD intercalation. The total number MB/PhD students yet to graduate from medical school could exceed 150, with 30 graduating per year. A majority of medical school respondents to this survey believe national guidelines are required for MB/PhD programme development and implementation. Further research should focus on the MB/PhD student experience. Discussion regarding local and national MB/PhD policies between medical

  15. Preliminary Physical Stratigraphy and Geophysical Data From the USGS Dixon Core, Onslow County, North Carolina

    Science.gov (United States)

    Seefelt, Ellen L.; Gonzalez, Wilma Aleman B.; Self-Trail, Jean M.; Weems, Robert E.; Edwards, Lucy E.; Pierce, Herbert A.; Durand, Colleen T.

    2009-01-01

    In October through November 2006, scientists from the U. S. Geological Survey (USGS) Eastern Region Earth Surface Processes Team (EESPT) and the Raleigh (N.C.) Water Science Center (WSC), in cooperation with the North Carolina Geological Survey (NCGS) and the Onslow County Water and Sewer Authority (ONWASA), drilled a stratigraphic test hole and well in Onslow County, N.C. The Dixon corehole was cored on ONWASA water utility property north of the town of Dixon, N.C., in the Sneads Ferry 7.5-minute quadrangle at latitude 34deg33'35' N, longitude 77deg26'54' W (decimal degrees 34.559722 and -77.448333). The site elevation is 66.0 feet (ft) above mean sea level as determined using a Paulin precision altimeter. The corehole attained a total depth of 1,010 ft and was continuously cored by the USGS EESPT drilling crew. A groundwater monitoring well was installed in the screened interval between 234 and 254 ft below land surface. The section cored at this site includes Upper Cretaceous, Paleogene, and Neogene sediments. The Dixon core is stored at the NCGS Coastal Plain core storage facility in Raleigh. The Dixon corehole is the fourth and last in a series of planned North Carolina benchmark coreholes drilled by the USGS Coastal Carolina Project. These coreholes explore the physical stratigraphy, facies, and thickness of Cretaceous, Paleogene, and Neogene Coastal Plain sediments in North Carolina. Correlations of lithologies, facies, and sequence stratigraphy can be made with the Hope Plantation corehole, N.C., near Windsor in Bertie County (Weems and others, 2007); the Elizabethtown corehole, near Elizabethtown, N.C., in Bladen County (Self-Trail and others, 2004b); the Smith Elementary School corehole, near Cove City, N.C., in Craven County (Harris and Self-Trail, 2006; Crocetti, 2007); the Kure Beach corehole, near Wilmington, N.C., in New Hanover County (Self-Trail and others, 2004a); the Esso#1, Esso #2, Mobil #1, and Mobil #2 cores in Albermarle and Pamlico Sounds

  16. USGS US Topo Map Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Layered GeoPDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, and other...

  17. Characterizing contaminant concentrations with depth by using the USGS well profiler in Oklahoma, 2003-9

    Science.gov (United States)

    Smith, S. Jerrod; Becker, Carol J.

    2011-01-01

    Since 2003, the U.S. Geological Survey (USGS) Oklahoma Water Science Center has been using the USGS well profiler to characterize changes in water contribution and contaminant concentrations with depth in pumping public-supply wells in selected aquifers. The tools and methods associated with the well profiler, which were first developed by the USGS California Water Science Center, have been used to investigate common problems such as saline water intrusion in high-yield irrigation wells and metals contamination in high-yield public-supply wells.

  18. USGS Digital Orthophoto Quad (DOQ) Metadata

    Data.gov (United States)

    Minnesota Department of Natural Resources — Metadata for the USGS DOQ Orthophoto Layer. Each orthophoto is represented by a Quarter 24k Quad tile polygon. The polygon attributes contain the quarter-quad tile...

  19. USGS Digital Orthophoto Quad (DOQ) - 3 meter

    Data.gov (United States)

    Minnesota Department of Natural Resources — These data files are a collection of the USGS standard DOQs that have been resampled to a 3-meter cell resolution and mosaiced into quad format vs quarter quad...

  20. VT 100K DRG USGS Topographic Maps

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The Vermont Topographic Maps dataset (TOPOVT100K) is a raster image of a scanned USGS 1:100,000 scale topographic map excluding the collar...

  1. 2008 USGS New Jersey Lidar: Somerset County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data support the general geospatial needs of the USGS and other federal agencies. LiDAR data is remotely sensed high-resolution elevation data collected by an...

  2. 2010 USGS Lidar: Salton Sea (CA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The USGS Salton Sea project encompasses a 5-kilometer buffer around the Salton Sea, California. Dewberry classified LiDAR for a project boundary that touches 623...

  3. Improving open access to the results of USGS research (Invited)

    Science.gov (United States)

    Bristol, S.

    2013-12-01

    Since its establishment under the Organic Act of March 3, 1879, the U.S. Geological Survey (USGS) has been committed to classifying and characterizing 'the geological structure, mineral resources, and products of the national domain.' Over time, the pursuit of this mission and understanding the products of the national domain has involved a broad scientific pursuit to understand complex Earth system processes and includes topographic, geologic, biogeographic, and other types of mapping; chemical, physical, hydrological, and biological research; and the application of computer and data science. As science and technology have evolved, classification and characterization of the Nation's natural resources has come to be embodied in digital data of various structure and form. Fundamentally, scientific publications and data produced through research and monitoring form the core of the USGS mission. They are an organizational and national treasure held and provided in trust for the American people and for the global scientific community. The recent memo from the Office of Science and Technology Policy (OSTP) on 'Increasing Access to the Results of Federally Funded Scientific Research' is part of an overall initiative toward open digital government that dovetails well with the USGS mission. The objectives outlined in the memo correspond directly to goals and objectives of the 2007 USGS Science Strategy ('Facing Tomorrow's Challenges--U.S. Geological Survey Science in the Decade 2007-2017') and the recently released Science Strategy Plans across all USGS Mission Areas. The USGS response to the OSTP memo involves reinforcing aspects of the USGS commitment to open and free access to scholarly publications and data along with improvements to some of the underlying technological systems that facilitate search and discovery. These actions also align with the USGS response to the Executive Order on May 9, 2013, entitled 'Making Open and Machine Readable the New Default for

  4. The SCEC/USGS dynamic earthquake rupture code verification exercise

    Science.gov (United States)

    Harris, R.A.; Barall, M.; Archuleta, R.; Dunham, E.; Aagaard, Brad T.; Ampuero, J.-P.; Bhat, H.; Cruz-Atienza, Victor M.; Dalguer, L.; Dawson, P.; Day, S.; Duan, B.; Ely, G.; Kaneko, Y.; Kase, Y.; Lapusta, N.; Liu, Yajing; Ma, S.; Oglesby, D.; Olsen, K.; Pitarka, A.; Song, S.; Templeton, E.

    2009-01-01

    Numerical simulations of earthquake rupture dynamics are now common, yet it has been difficult to test the validity of these simulations because there have been few field observations and no analytic solutions with which to compare the results. This paper describes the Southern California Earthquake Center/U.S. Geological Survey (SCEC/USGS) Dynamic Earthquake Rupture Code Verification Exercise, where codes that simulate spontaneous rupture dynamics in three dimensions are evaluated and the results produced by these codes are compared using Web-based tools. This is the first time that a broad and rigorous examination of numerous spontaneous rupture codes has been performed—a significant advance in this science. The automated process developed to attain this achievement provides for a future where testing of codes is easily accomplished.Scientists who use computer simulations to understand earthquakes utilize a range of techniques. Most of these assume that earthquakes are caused by slip at depth on faults in the Earth, but hereafter the strategies vary. Among the methods used in earthquake mechanics studies are kinematic approaches and dynamic approaches.The kinematic approach uses a computer code that prescribes the spatial and temporal evolution of slip on the causative fault (or faults). These types of simulations are very helpful, especially since they can be used in seismic data inversions to relate the ground motions recorded in the field to slip on the fault(s) at depth. However, these kinematic solutions generally provide no insight into the physics driving the fault slip or information about why the involved fault(s) slipped that much (or that little). In other words, these kinematic solutions may lack information about the physical dynamics of earthquake rupture that will be most helpful in forecasting future events.To help address this issue, some researchers use computer codes to numerically simulate earthquakes and construct dynamic, spontaneous

  5. The USGS role in mapping the nation's submerged lands

    Science.gov (United States)

    Schwab, Bill; Haines, John

    2004-01-01

    The seabed provides habitat for a diverse marine life having commercial, recreational, and intrinsic value. The habitat value of the seabed is largely a function of the geological structure and related geological, biological, oceanologic, and geochemical processes. Of equal importance, the nation's submerged lands contain energy and mineral resources and are utilized for the siting of offshore infrastructure and waste disposal. Seabed character and processes influence the safety and viability of offshore operations. Seabed and subseabed characterization is a prerequisite for the assessment, protection, and utilization of both living and non-living marine resources. A comprehensive program to characterize and understand the nation's submerged lands requires scientific expertise in the fields of geology, biology, hydrography, and oceanography. The U.S. Geological Survey (USGS) has long experience as the Federal agency charged with conducting geologic research and mapping in both coastal and offshore regions. The USGS Coastal and Marine Geology Program (CMGP) leads the nation in expertise related to characterization of seabed and subseabed geology, geological processes, seabed dynamics, and (in collaboration with the National Oceanic and Atmospheric Administration (NOAA) and international partners) habitat geoscience. Numerous USGS studies show that sea-floor geology and processes determine the character and distribution of biological habitats, control coastal evolution, influence the coastal response to storm events and human alterations, and determine the occurrence and concentration of natural resources.

  6. A Coordinated USGS Science Response to Hurricane Sandy

    Science.gov (United States)

    Jones, S.; Buxton, H. T.; Andersen, M.; Dean, T.; Focazio, M. J.; Haines, J.; Hainly, R. A.

    2013-12-01

    In late October 2012, Hurricane Sandy came ashore during a spring high tide on the New Jersey coastline, delivering hurricane-force winds, storm tides exceeding 19 feet, driving rain, and plummeting temperatures. Hurricane Sandy resulted in 72 direct fatalities in the mid-Atlantic and northeastern United States, and widespread and substantial physical, environmental, ecological, social, and economic impacts estimated at near $50 billion. Before the landfall of Hurricane Sandy, the USGS provided forecasts of potential coastal change; collected oblique aerial photography of pre-storm coastal morphology; deployed storm-surge sensors, rapid-deployment streamgages, wave sensors, and barometric pressure sensors; conducted Light Detection and Ranging (lidar) aerial topographic surveys of coastal areas; and issued a landslide alert for landslide prone areas. During the storm, Tidal Telemetry Networks provided real-time water-level information along the coast. Long-term networks and rapid-deployment real-time streamgages and water-quality monitors tracked river levels and changes in water quality. Immediately after the storm, the USGS serviced real-time instrumentation, retrieved data from over 140 storm-surge sensors, and collected other essential environmental data, including more than 830 high-water marks mapping the extent and elevation of the storm surge. Post-storm lidar surveys documented storm impacts to coastal barriers informing response and recovery and providing a new baseline to assess vulnerability of the reconfigured coast. The USGS Hazard Data Distribution System served storm-related information from many agencies on the Internet on a daily basis. Immediately following Hurricane Sandy the USGS developed a science plan, 'Meeting the Science Needs of the Nation in the Wake of Hurricane Sandy-A U.S. Geological Survey Science Plan for Support of Restoration and Recovery'. The plan will ensure continuing coordination of internal USGS activities as well as

  7. Archive of side scan sonar and swath bathymetry data collected during USGS cruise 10CCT01 offshore of Cat Island, Gulf Islands National Seashore, Mississippi, March 2010

    Science.gov (United States)

    DeWitt, Nancy T.; Flocks, James G.; Pfeiffer, William R.; Wiese, Dana S.

    2010-01-01

    In March of 2010, the U.S. Geological Survey (USGS) conducted geophysical surveys east of Cat Island, Mississippi (fig. 1). The efforts were part of the USGS Gulf of Mexico Science Coordination partnership with the U.S. Army Corps of Engineers (USACE) to assist the Mississippi Coastal Improvements Program (MsCIP) and the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazards Susceptibility Project by mapping the shallow geological stratigraphic framework of the Mississippi Barrier Island Complex. These geophysical surveys will provide the data necessary for scientists to define, interpret, and provide baseline bathymetry and seafloor habitat for this area and to aid scientists in predicting future geomorpholocial changes of the islands with respect to climate change, storm impact, and sea-level rise. Furthermore, these data will provide information for barrier island restoration, particularly in Camille Cut, and provide protection for the historical Fort Massachusetts. For more information refer to http://ngom.usgs.gov/gomsc/mscip/index.html. This report serves as an archive of the processed swath bathymetry and side scan sonar data (SSS). Data products herein include gridded and interpolated surfaces, surface images, and x,y,z data products for both swath bathymetry and side scan sonar imagery. Additional files include trackline maps, navigation files, GIS files, Field Activity Collection System (FACS) logs, and formal FGDC metadata. Scanned images of the handwritten FACS logs and digital FACS logs are also provided as PDF files. Refer to the Acronyms page for expansion of acronyms and abbreviations used in this report or hold the cursor over an acronym for a pop-up explanation. The USGS St. Petersburg Coastal and Marine Science Center assigns a unique identifier to each cruise or field activity. For example, 10CCT01 tells us the data were collected in 2010 for the Coastal Change and Transport (CCT) study and the data were collected during the first field

  8. Las Cruces, NM 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  9. 2004 USGS/NASA Experimental Advanced Airborne Research Lidar (EAARL): Northern Gulf of Mexico, Post-Hurricane Ivan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — ASCII xyz point cloud data were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with the U.S. Geological Survey (USGS)...

  10. Santa Fe, NM 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  11. Silver City, NM 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  12. El Paso, TX 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  13. USGS Hydrography (NHD) Overlay Map Service from The National Map - National Geospatial Data Asset (NGDA) National Hydrography Dataset (NHD)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS National Hydrography Dataset (NHD) service from The National Map (TNM) is a comprehensive set of digital spatial data that encodes information about...

  14. 2007 USGS/NASA Experimental Advanced Airborne Research Lidar (EAARL): Fire Island National Seashore, NY and Sandy Hook, NJ

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — ASCII xyz point cloud data were produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS)...

  15. Silver City, NM 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  16. Saint Johns, AZ 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  17. Fort Sumner, NM 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  18. Las Cruces, NM 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  19. El Paso, TX 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  20. Santa Fe, NM 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  1. Saint Johns, AZ 1:250,000 Quad West Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  2. Fort Sumner, NM 1:250,000 Quad East Half USGS Land Use/Land Cover, 2000

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This land cover data set was produced as part of a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA)...

  3. Original Product Resolution (OPR) Source Digital Elevation Models (DEMs) - USGS National Map 3DEP Downloadable Data Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data collection is the Original Product Resolution (OPR) Digital Elevation Model (DEM) as provided to the USGS. This DEM is delivered in the original...

  4. The USGS "Did You Feel It?" Macroseismic Intensity Maps: Lessons Learned from a Decade of Citizen-Empowered Seismology

    Science.gov (United States)

    Wald, D. J.; Worden, C. B.; Quitoriano, V. R.; Dewey, J. W.

    2012-12-01

    The U.S. Geological Survey (USGS) "Did You Feel It?" (DYFI) system is an automated approach for rapidly collecting macroseismic intensity (MI) data from Internet users' shaking and damage reports and generating intensity maps immediately following earthquakes; it has been operating for over a decade (1999-2012). The internet-based interface allows for a two-way path of communication between seismic data providers (scientists) and earthquake information recipients (citizens) by swapping roles: users looking for information from the USGS become data providers to the USGS. This role-reversal presents opportunities for data collection, generation of good will, and further communication and education. In addition, online MI collecting systems like DYFI have greatly expanded the range of quantitative analyses possible with MI data and taken the field of MI in important new directions. The maps are made more quickly, usually provide more complete coverage at higher resolution, and allow data collection at rates and quantities never before considered. Scrutiny of the USGS DYFI data indicates that one-decimal precision is warranted, and web-based geocoding services now permit precise locations. The high-quality, high-resolution, densely sampled MI assignments allow for peak ground motion (PGM) versus MI analyses well beyond earlier studies. For instance, Worden et al. (2011) used large volumes of data to confirm low standard deviations for multiple, proximal DYFI reports near a site, and they used the DYFI observations with PGM data to develop bidirectional, ground motion-intensity conversion equations. Likewise, Atkinson and Wald (2007) and Allen et al. (2012) utilized DYFI data to derive intensity prediction equations directly without intermediate conversion of ground-motion prediction equation metrics to intensity. Both types of relations are important for robust historic and real-time ShakeMaps, among other uses. In turn, ShakeMap and DYFI afford ample opportunities to

  5. 2013 NRCS-USGS Lidar: Lauderdale (MS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME:NRCS LAUDERDALE MS 0.7M NPS LIDAR. LiDAR Data Acquisition and Processing Production Task. USGS Contract No. G10PC00057. Task Order No. G12PD000125 Woolpert...

  6. Ciencia, Sociedad, Soluciones: Una Introduccion al USGS

    Science.gov (United States)

    ,

    2001-01-01

    El USGS sirve a la nacion de los Estados Unidos proveyendo informacion fidedigna para ? Describir y comprender la Tierra; ? Minimizar la perdida de vidas y propiedades por desastres naturales; ? Manejar los recursos hidrologicos, biologicos, energeticos y minerales; y ? Mejorar y proteger nuestra calidad de vida.

  7. USGS Digital Orthophoto Quad (DOQ) - 1 meter

    Data.gov (United States)

    Minnesota Department of Natural Resources — These data files are a collection of the USGS standard DOQs. Those images which fall in UTM zone 14 and 16 have been re-projected to UTM Zone 15, NAD83 using EPPL7.

  8. 2012 USGS Lidar: Elwha River (WA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: Elwha River, WA LiDAR LiDAR Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G11PD01088 Woolpert Order No....

  9. VT 24K USGS Topographic Maps

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) TOPO24K includes a set of GeoTIFFs created from USGS's US Topo GeoPDF product. US Topo maps are a graphic synthesis of The National Map data files...

  10. Archive of Geosample Data and Information from the U.S. Geological Survey (USGS) Coastal and Marine Geology Program (CMGP) Woods Hole Coastal and Marine Science Center (WHCMSC) Samples Repository

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Geological Survey Coastal and Marine Geology Program (CMGP) Woods Hole Coastal and Marine Science Center (WHCMSC) Samples Repository is a partner in the...

  11. Archive of Geosample Data and Information from the U.S. Geological Survey (USGS) Coastal and Marine Geology Program (CMGP) St. Petersburg Coastal and Marine Science Center (SPCMSC) Samples Repository

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Geological Survey Coastal and Marine Geology Program (CMGP) St. Petersburg Coastal and Marine Science Center (SPCMSC) Samples Repository is a partner in the...

  12. Archive of Geosample Data and Information from the U.S. Geological Survey (USGS) Coastal and Marine Geology Program (CMGP) Pacific Coastal and Marine Science Center (PCMSC) Samples Repository

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Geological Survey Coastal and Marine Geology Program (CMGP) Pacific Coastal and Marine Science Center (PCMSC) Samples Repository is a partner in the Index...

  13. Geological studies in Alaska by the U.S. Geological Survey, 1999

    Science.gov (United States)

    Gough, Larry P.; Wilson, Frederic H.

    2001-01-01

    The collection of nine papers that follow continue the series of U.S. Geological Survey (USGS) investigative reports in Alaska under the broad umbrella of the geologic sciences. The series presents new and sometimes preliminary findings that are of interest to earth scientists in academia, government, and industry; to land and resource managers; and to the general public. Reports presented in Geologic Studies in Alaska cover a broad spectrum of topics from various parts of the State (fig. 1), serving to emphasize the diversity of USGS efforts to meet the Nation's needs for earth-science information in Alaska.

  14. Chronic wasting disease—Status, science, and management support by the U.S. Geological Survey

    Science.gov (United States)

    Carlson, Christina M.; Hopkins, M. Camille; Nguyen, Natalie T.; Richards, Bryan J.; Walsh, Daniel P.; Walter, W. David

    2018-03-01

    The U.S. Geological Survey (USGS) investigates chronic wasting disease (CWD) at multiple science centers and cooperative research units across the Nation and supports the management of CWD through science-based strategies. CWD research conducted by USGS scientists has three strategies: (1) to understand the biology, ecology, and causes and distribution of CWD; (2) to assess and predict the spread and persistence of CWD in wildlife and the environment; and (3) to develop tools for early detection, diagnosis, surveillance, and control of CWD.

  15. Streamflow, groundwater, and water-quality monitoring by USGS Nevada Water Science Center

    Science.gov (United States)

    Gipson, Marsha L.; Schmidt, Kurtiss

    2013-01-01

    The U.S. Geological Survey (USGS) has monitored and assessed the quantity and quality of our Nation's streams and aquifers since its inception in 1879. Today, the USGS provides hydrologic information to aid in the evaluation of the availability and suitability of water for public and domestic supply, agriculture, aquatic ecosystems, mining, and energy development. Although the USGS has no responsibility for the regulation of water resources, the USGS hydrologic data complement much of the data collected by state, county, and municipal agencies, tribal nations, U.S. District Court Water Masters, and other federal agencies such as the Environmental Protection Agency, which focuses on monitoring for regulatory compliance. The USGS continues its mission to provide timely and relevant water-resources data and information that are available to water-resource managers, non-profit organizations, industry, academia, and the public. Data collected by the USGS provide the science needed for informed decision-making related to resource management and restoration, assessment of flood and drought hazards, ecosystem health, and effects on water resources from land-use changes.

  16. Archive of Side Scan Sonar and Swath Bathymetry Data collected during USGS Cruise 10CCT02 Offshore of Petit Bois Island Including Petit Bois Pass, Gulf Islands National Seashore, Mississippi, March 2010

    Science.gov (United States)

    Pfeiffer, William R.; Flocks, James G.; DeWitt, Nancy T.; Forde, Arnell S.; Kelso, Kyle; Thompson, Phillip R.; Wiese, Dana S.

    2011-01-01

    In March of 2010, the U.S. Geological Survey (USGS) conducted geophysical surveys offshore of Petit Bois Island, Mississippi, and Dauphin Island, Alabama (fig. 1). These efforts were part of the USGS Gulf of Mexico Science Coordination partnership with the U.S. Army Corps of Engineers (USACE) to assist the Mississippi Coastal Improvements Program (MsCIP) and the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazards Susceptibility Project by mapping the shallow geologic stratigraphic framework of the Mississippi Barrier Island Complex. These geophysical surveys will provide the data necessary for scientists to define, interpret, and provide baseline bathymetry and seafloor habitat for this area and to aid scientists in predicting future geomorphological changes of the islands with respect to climate change, storm impact, and sea-level rise. Furthermore, these data will provide information for barrier island restoration, particularly in Camille Cut, and protection for the historical Fort Massachusetts on Ship Island, Mississippi. For more information please refer to http://ngom.usgs.gov/gomsc/mscip/index.html. This report serves as an archive of the processed swath bathymetry and side scan sonar data (SSS). Data products herein include gridded and interpolated surfaces, seabed backscatter images, and ASCII x,y,z data products for both swath bathymetry and side scan sonar imagery. Additional files include trackline maps, navigation files, GIS files, Field Activity Collection System (FACS) logs, and formal FGDC metadata. Scanned images of the handwritten and digital FACS logs are also provided as PDF files. Refer to the Acronyms page for expansion of acronyms and abbreviations used in this report.

  17. 2013-2014 USGS Lidar: Olympic Peninsula (WA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: USGS Olympic Peninsula Washington LIDAR LiDAR Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G13PD00849...

  18. USGS Earthquake Program GPS Use Case : Earthquake Early Warning

    Science.gov (United States)

    2015-03-12

    USGS GPS receiver use case. Item 1 - High Precision User (federal agency with Stafford Act hazard alert responsibilities for earthquakes, volcanoes and landslides nationwide). Item 2 - Description of Associated GPS Application(s): The USGS Eart...

  19. Resources for Teaching About Evolution from the U.S. Geological Survey

    Science.gov (United States)

    Gordon, L. C.

    2001-12-01

    As a scientific research agency, the U.S. Geological Survey (USGS) is in an ideal position to provide scientific information and resources to educators. The USGS is not a curriculum developer, nor an expert in pedagogy, yet the USGS does have a wealth of scientific information on subjects such as fossils, geologic time, biological resources and plate tectonics that naturally come in to play in the teaching of evolution. Among USGS resources are the general interest pamphlets Geologic Time, Dinosaurs: Facts And Fiction, Our Changing Continent, and Fossils Rocks, and Time, and its accompanying poster, Fossils Through Time. In addition to printed versions, the pamphlets are available at no cost on the Internet at http://pubs.usgs.gov/gip/. The popular booklet, This Dynamic Earth: The Story of Plate Tectonics, available at http://pubs.usgs.gov/publications/text/dynamic.html, touches on evolution-related subjects such as Alfred Wegener's use of fossils to develop his theory of continental drift, "polar" dinosaur fossils found in Australia, marine fossils in the rocks of the Himalayas, and the use of fossil ages to determine rates of plate motions. Paleontological research at the USGS is highlighted on the Internet at http://geology.er.usgs.gov/paleo/. The web site includes links to technical publications, profiles of scientists, a geologic time scale, a glossary, information on important fossil groups, and a list of non-USGS references on fossils: all very useful to educators. A wealth of biological information and data can be found in the National Biological Information Infrastructure (NBII), a multi-agency collaborative program led by the USGS. In addition to data on the Nation's biological resources, the NBII web site http://www.nbii.gov/ includes a section on systematics and scientific names (helpful for illustrating the evolutionary relationships among living organisms), and links to non-USGS curriculum materials. A fact sheet, Unveiling the NBII as a Teaching

  20. Land-cover change research at the U.S. Geological Survey-assessing our nation's dynamic land surface

    Science.gov (United States)

    Wilson, Tamara S.

    2011-01-01

    The U.S. Geological Survey (USGS) recently completed an unprecedented, 27-year assessment of land-use and land-cover change for the conterminous United States. For the period 1973 to 2000, scientists generated estimates of change in major types of land use and land cover, such as development, mining, agriculture, forest, grasslands, and wetlands. To help provide the insight that our Nation will need to make land-use decisions in coming decades, the historical trends data is now being used by the USGS to help model potential future land use/land cover under different scenarios, including climate, environmental, economic, population, public policy, and technological change.

  1. U.S. Geological Survey science for the Wyoming Landscape Conservation Initiative—2016 annual report

    Science.gov (United States)

    Bowen, Zachary H.; Aikens, Ellen; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Chalfoun, Anna D.; Chong, Geneva W.; Eddy-Miller, Cheryl; Garman, Steven L.; Germaine, Stephen S.; Homer, Collin G.; Johnston, Aaron; Kauffman, Matthew J.; Manier, Daniel J.; Melcher, Cynthia P.; Miller, Kirk A.; Walters, Annika W.; Wheeler, Jerrod D.; Wieferich, Daniel; Wilson, Anna B.; Wyckoff, Teal B.; Zeigenfuss, Linda C.

    2018-05-10

    This is the ninth annual report highlighting U.S. Geological Survey (USGS) science and decision-support activities conducted for the Wyoming Landscape Conservation Initiative (WLCI). The activities address specific management needs identified by WLCI partner agencies. In fiscal year (FY) 2016, there were 26 active USGS WLCI science-based projects. Of these 26 projects, one project was new for FY2016, and three were completed by the end of the fiscal year (though final products were still in preparation or review). USGS WLCI projects were grouped under five categories: (1) Baseline Synthesis, (2) Long-Term Monitoring, (3) Effectiveness Monitoring, (4) Mechanistic Studies of Wildlife, and (5) Data and Information Management. Each of these topic areas is designed to address WLCI management needs: identifying key drivers of change, identifying the condition and distribution of key wildlife species and habitats and of species’ habitat requirements, development of an integrated inventory and monitoring strategy, use of emerging technologies and development and testing of innovative methods for maximizing the efficiency and efficacy of monitoring efforts, evaluating the effectiveness of habitat treatment projects, evaluating the responses of wildlife to development, and developing a data clearinghouse and information management framework to support and provide access to results of most USGS WLCI projects.In FY2016, we assisted with updating the WLCI Conservation Action Plan and associated databases as part of the Comprehensive Assessment, and we also assisted with the Bureau of Land Management 2015 WLCI annual report. By the end of FY2016, we completed or had nearly completed assessments of WLCI energy and mineral resources and had submitted a manuscript on modeled effects of oil and gas development on wildlife to a peer-reviewed journal. We also initiated a study on the effects of wind energy on wildlife in the WLCI region. A USGS circular on WLCI long-term monitoring

  2. USGS Hydro-Climatic Data Network 2009 (HCDN-2009)

    Science.gov (United States)

    Lins, Harry F.

    2012-01-01

    The U.S. Geological Survey's (USGS) Hydro-Climatic Data Network (HCDN) is a subset of all USGS streamgages for which the streamflow primarily reflects prevailing meteorological conditions for specified years. These stations were screened to exclude sites where human activities, such as artificial diversions, storage, and other activities in the drainage basin or the stream channel, affect the natural flow of the watercourse. In addition, sites were included in the network because their record length was sufficiently long for analysis of patterns in streamflow over time. The purpose of the network is to provide a streamflow dataset suitable for analyzing hydrologic variations and trends in a climatic context. When originally published, the network was composed of 1,659 stations (Slack and Landwehr, 1992) for which the years of primarily "natural" flow were identified. Since then data from the HCDN have been widely used and cited in climate-related hydrologic investigations of the United States. The network has also served as a model for establishing climate-sensitive streamgage networks in other countries around the world.

  3. How Investment in #GovTech Tools Helped with USGS Disaster Response During Hurricane Harvey

    Science.gov (United States)

    Shah, S.; Pearson, D. K.

    2017-12-01

    Hurricane Harvey was an unprecedented storm event that not only included a challenge to decision-makers, but also the scientific community to provide clear and rapid dissemination of changing streamflow conditions and potential flooding concerns. Of primary importance to the U.S. Geological Survey (USGS) Texas Water Science Center was to focus on the availability of accessible data and scientific communication of rapidly changing water conditions across Texas with regards to heavy rainfall rates, rising rivers, streams, and lake elevations where USGS has monitoring stations. Infrastructure modernization leading to advanced GovTech practices and data visualization was key to the USGS role in providing data during Hurricane Harvey. In the last two years, USGS has released two web applications, "Texas Water Dashboard" and "Water-On-The-Go", which were heavily utilized by partners, local media, and municipal government officials. These tools provided the backbone for data distribution through both desktop and mobile applications as decision support during flood events. The combination of Texas Water Science Center web tools and the USGS National Water Information System handled more than 5-million data requests over the course of the storm. On the ground local information near Buffalo Bayou and Addicks/Barker Dams, as well as statewide support of USGS real-time scientific data, were delivered to the National Weather Service, U.S. Army Corps of Engineers, FEMA, Harris County Flood Control District, the general public, and others. This presentation will provide an overview of GovTech solutions used during Hurricane Harvey, including the history of USGS tool development, discussion on the public response, and future applications for helping provide scientific communications to the public.

  4. Scientists: Engage the Public!

    OpenAIRE

    Shugart, Erika C.; Racaniello, Vincent R.

    2015-01-01

    ABSTRACT Scientists must communicate about science with public audiences to promote an understanding of complex issues that we face in our technologically advanced society. Some scientists may be concerned about a social stigma or ?Sagan effect? associated with participating in public communication. Recent research in the social sciences indicates that public communication by scientists is not a niche activity but is widely done and can be beneficial to a scientist?s career. There are a varie...

  5. USGS Science Data Catalog - Open Data Advances or Declines

    Science.gov (United States)

    Frame, M. T.; Hutchison, V.; Zolly, L.; Wheeler, B.; Latysh, N.; Devarakonda, R.; Palanisamy, G.; Shrestha, B.

    2014-12-01

    The recent Office of Science and Technology Policy (OSTP) White House Open Data Policies (2013) have required Federal agencies to establish formal catalogues of their science data holdings and make these data easily available on Web sites, portals, and applications. As an organization, the USGS has historically excelled at making its data holdings freely available on its various Web sites (i.e., National, Scientific Programs, or local Science Center). In response to these requirements, the USGS Core Science Analytics, Synthesis, and Libraries program, in collaboration with DOE's Oak Ridge National Laboratory (ORNL) Mercury Consortium (funded by NASA, USGS, and DOE), and a number of other USGS organizations, established the Science Data Catalog (http://data.usgs.gov) cyberinfrastructure, content management processes/tools, and supporting policies. The USGS Science Data Catalog led the charge at USGS to improve the robustness of existing/future metadata collections; streamline and develop sustainable publishing to external aggregators (i.e., data.gov); and provide leadership to the U.S. Department of Interior in emerging Open Data policies, techniques, and systems. The session will discuss the current successes, challenges, and movement toward meeting these Open Data policies for USGS scientific data holdings. A retrospective look at the last year of implementation of these efforts within USGS will occur to determine whether these Open Data Policies are improving data access or limiting data availability. To learn more about the USGS Science Data Catalog, visit us at http://data.usgs.gov/info/about.html

  6. Technological Innovation and Technical Communications: Their Place in Aerospace Engineering Curricula. A Survey of European, Japanese and US Aerospace Engineers and Scientists.

    Science.gov (United States)

    Pinelli, Thomas E.; And Others

    1991-01-01

    Reports on results from 260 aerospace engineers and scientists in United States, Europe, and Japan regarding their opinions about professional importance of technical communications; generation and utilization of technical communications; and relevant content of an undergraduate course in technical communications. The fields of cryogenics,…

  7. USGS US topo maps for Alaska

    Science.gov (United States)

    Anderson, Becci; Fuller, Tracy

    2014-01-01

    In July 2013, the USGS National Geospatial Program began producing new topographic maps for Alaska, providing a new map series for the state known as US Topo. Prior to the start of US Topo map production in Alaska, the most detailed statewide USGS topographic maps were 15-minute 1:63,360-scale maps, with their original production often dating back nearly fifty years. The new 7.5-minute digital maps are created at 1:25,000 map scale, and show greatly increased topographic detail when compared to the older maps. The map scale and data specifications were selected based on significant outreach to various map user groups in Alaska. This multi-year mapping initiative will vastly enhance the base topographic maps for Alaska and is possible because of improvements to key digital map datasets in the state. The new maps and data are beneficial in high priority applications such as safety, planning, research and resource management. New mapping will support science applications throughout the state and provide updated maps for parks, recreation lands and villages.

  8. Users, uses, and value of Landsat satellite imagery: results from the 2012 survey of users

    Science.gov (United States)

    Miller, Holly M.; Richardson, Leslie A.; Koontz, Stephen R.; Loomis, John; Koontz, Lynne

    2013-01-01

    Landsat satellites have been operating since 1972, providing a continuous global record of the Earth’s land surface. The imagery is currently available at no cost through the U.S. Geological Survey (USGS). Social scientists at the USGS Fort Collins Science Center conducted an extensive survey in early 2012 to explore who uses Landsat imagery, how they use the imagery, and what the value of the imagery is to them. The survey was sent to all users registered with USGS who had accessed Landsat imagery in the year prior to the survey and over 11,000 current Landsat imagery users responded. The results of the survey revealed that respondents from many sectors use Landsat imagery in myriad project locations and scales, as well as application areas. The value of Landsat imagery to these users was demonstrated by the high importance of and dependence on the imagery, the numerous environmental and societal benefits observed from projects using Landsat imagery, the potential negative impacts on users’ work if Landsat imagery was no longer available, and the substantial aggregated annual economic benefit from the imagery. These results represent only the value of Landsat to users registered with USGS; further research would help to determine what the value of the imagery is to a greater segment of the population, such as downstream users of the imagery and imagery-derived products.

  9. Building a Data Science capability for USGS water research and communication

    Science.gov (United States)

    Appling, A.; Read, E. K.

    2015-12-01

    Interpreting and communicating water issues in an era of exponentially increasing information requires a blend of domain expertise, computational proficiency, and communication skills. The USGS Office of Water Information has established a Data Science team to meet these needs, providing challenging careers for diverse domain scientists and innovators in the fields of information technology and data visualization. Here, we detail the experience of building a Data Science capability as a bridging element between traditional water resources analyses and modern computing tools and data management techniques. This approach includes four major components: 1) building reusable research tools, 2) documenting data-intensive research approaches in peer reviewed journals, 3) communicating complex water resources issues with interactive web visualizations, and 4) offering training programs for our peers in scientific computing. These components collectively improve the efficiency, transparency, and reproducibility of USGS data analyses and scientific workflows.

  10. Visualization of recognition on the biological effects of low-dose radiation through a survey of the scientists. Taking an accident at Fukushima Daiichi Nuclear Power Plant as an example

    International Nuclear Information System (INIS)

    Takayasu, Kenta; Onoue, Yousuke; Koyamada, Kouji; Konami, Hideo; Manabe, Yuichirou; Bando, Masako

    2017-01-01

    Since Fukushima Daiichi Nuclear Accident caused by the Great East Japan Earthquake, radiation exposure problem has been discussed among government agencies, medical personnels, scientists, and so on. At that time, people were confused by pendulumlike instructions of the Japanese government and scientists. It is said that there are multiple academic fields which related to radiation exposure problem and they need to be interdisciplinary. We think that the confusion is due to lack of mutual understanding among various academic fields and insufficiency of interdisciplinary communication. In this work, we investigated the current situation of interdisciplinary communication among these fields through the radiation exposure problem by our questionnaire survey and researched what problem is attributed to. From the result, character of each academic field and their communality are clarified. We believe this result leads us to propose the true way of interdisciplinary research and communication of different academic fields. (author)

  11. Drawings of Scientists

    Science.gov (United States)

    experiment can be reduplicated. He/she must check and double-check all of his/her work. A scientist is very , environment, nutrition, and other aspects of our daily and future life." . . . Marisa The scientists

  12. Scientists must speak

    National Research Council Canada - National Science Library

    Walters, D. Eric; Walters, Gale Climenson

    2011-01-01

    .... Scientists Must Speak: Bringing Presentations to Life helps readers do just that. At some point in their careers, the majority of scientists have to stand up in front of an inquisitive audience or board and present information...

  13. App-lifying USGS Earth Science Data: Engaging the public through Challenge.gov

    Science.gov (United States)

    Frame, M. T.

    2013-12-01

    With the goal of promoting innovative use and applications of USGS data, USGS Core Science Analytics and Synthesis (CSAS) launched the first USGS Challenge: App-lifying USGS Earth Science Data. While initiated before the recent Office of Science and Technology Policy's memorandum 'Increasing Access to the Results of Federally Funded Scientific Research', our challenge focused on one of the core tenets of the memorandum- expanding discoverability, accessibility and usability of CSAS data. From January 9 to April 1, 2013, we invited developers, information scientists, biologists/ecologists, and scientific data visualization specialists to create applications for selected USGS datasets. Identifying new, innovative ways to represent, apply, and make these data available is a high priority for our leadership. To help boost innovation, our only constraint on the challengers stated they must incorporate at least one of the identified datasets in their application. Winners were selected based on the relevance to the USGS and CSAS missions, innovation in design, and overall ease of use of the application. The winner for Best Overall App was TaxaViewer by the rOpenSci group. TaxaViewer is a Web interface to a mashup of data from the USGS-sponsored interagency Integrated Taxonomic Information System (ITIS) and other data from the Phylotastic taxonomic Name service, the Global Invasive Species Database, Phylomatic, and the Global Biodiversity Information Facility. The Popular Choice App award, selected through a public vote on the submissions, went to the Species Comparison Tool by Kimberly Sparks of Raleigh, N.C., which allows users to explore the USGS Gap Analysis Program habitat distribution and/or range of two species concurrently. The application also incorporates ITIS data and provides external links to NatureServe species information. Our results indicated that running a challenge was an effective method for promoting our data products and therefore improving

  14. USGS42 and USGS43: Human-hair stable hydrogen and oxygen isotopic reference materials and analytical methods for forensic science and implications for published measurement results

    Science.gov (United States)

    Coplen, T.B.; Qi, H.

    2012-01-01

    Because there are no internationally distributed stable hydrogen and oxygen isotopic reference materials of human hair, the U.S. Geological Survey (USGS) has prepared two such materials, USGS42 and USGS43. These reference materials span values commonly encountered in human hair stable isotope analysis and are isotopically homogeneous at sample sizes larger than 0.2 mg. USGS42 and USGS43 human-hair isotopic reference materials are intended for calibration of δ(2)H and δ(18)O measurements of unknown human hair by quantifying (1) drift with time, (2) mass-dependent isotopic fractionation, and (3) isotope-ratio-scale contraction. While they are intended for measurements of the stable isotopes of hydrogen and oxygen, they also are suitable for measurements of the stable isotopes of carbon, nitrogen, and sulfur in human and mammalian hair. Preliminary isotopic compositions of the non-exchangeable fractions of these materials are USGS42(Tibetan hair)δ(2)H(VSMOW-SLAP) = -78.5 ± 2.3‰ (n = 62) and δ(18)O(VSMOW-SLAP) = +8.56 ± 0.10‰ (n = 18) USGS42(Indian hair)δ(2)H(VSMOW-SLAP) = -50.3 ± 2.8‰ (n = 64) and δ(18)O(VSMOW-SLAP) = +14.11 ± 0.10‰ (n = 18). Using recommended analytical protocols presented herein for δ(2)H(VSMOW-SLAP) and δ(18)O(VSMOW-SLAP) measurements, the least squares fit regression of 11 human hair reference materials is δ(2)H(VSMOW-SLAP) = 6.085δ(2)O(VSMOW-SLAP) - 136.0‰ with an R-square value of 0.95. The δ(2)H difference between the calibrated results of human hair in this investigation and a commonly accepted human-hair relationship is a remarkable 34‰. It is critical that readers pay attention to the δ(2)H(VSMOW-SLAP) and δ(18)O(VSMOW-SLAP) of isotopic reference materials in publications, and they need to adjust the δ(2)H(VSMOW-SLAP) and δ(18)O(VSMOW-SLAP) measurement results of human hair in previous publications, as needed, to ensure all results on are on the same scales.

  15. U.S. Geological Survey community for data integration: data upload, registry, and access tool

    Science.gov (United States)

    ,

    2012-01-01

    As a leading science and information agency and in fulfillment of its mission to provide reliable scientific information to describe and understand the Earth, the U.S. Geological Survey (USGS) ensures that all scientific data are effectively hosted, adequately described, and appropriately accessible to scientists, collaborators, and the general public. To succeed in this task, the USGS established the Community for Data Integration (CDI) to address data and information management issues affecting the proficiency of earth science research. Through the CDI, the USGS is providing data and metadata management tools, cyber infrastructure, collaboration tools, and training in support of scientists and technology specialists throughout the project life cycle. One of the significant tools recently created to contribute to this mission is the Uploader tool. This tool allows scientists with limited data management resources to address many of the key aspects of the data life cycle: the ability to protect, preserve, publish and share data. By implementing this application inside ScienceBase, scientists also can take advantage of other collaboration capabilities provided by the ScienceBase platform.

  16. USGS science for the Nation's changing coasts; shoreline change assessment

    Science.gov (United States)

    Thieler, E. Robert; Hapke, Cheryl J.

    2011-01-01

    The coastline of the United States features some of the most popular tourist and recreational destinations in the world and is the site of intense residential, commercial, and industrial development. The coastal zone also has extensive and pristine natural areas, with diverse ecosystems providing essential habitat and resources that support wildlife, fish, and human use. Coastal erosion is a widespread process along most open-ocean shores of the United States that affects both developed and natural coastlines. As the coast changes, there are a wide range of ways that change can affect coastal communities, habitats, and the physical characteristics of the coast?including beach erosion, shoreline retreat, land loss, and damage to infrastructure. Global climate change will likely increase the rate of coastal change. A recent study of the U.S. Mid-Atlantic coast, for example, found that it is virtually certain that sandy beaches will erode faster in the future as sea level rises because of climate change. The U.S. Geological Survey (USGS) is responsible for conducting research on coastal change hazards, understanding the processes that cause coastal change, and developing models to predict future change. To understand and adapt to shoreline change, accurate information regarding the past and present configurations of the shoreline is essential. A comprehensive, nationally consistent analysis of shoreline movement is needed. To meet this national need, the USGS is conducting an analysis of historical shoreline changes along open-ocean coasts of the conterminous United States and parts of Alaska and Hawaii, as well as the coasts of the Great Lakes.

  17. 2012 NRCS-USGS Tupelo, MS Lidar Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR data is a remotely sensed high resolution elevation data collected by an airborne platform. The LiDAR sensor uses a combination of laser range finding, GPS...

  18. Entrepreneurship for Creative Scientists

    Science.gov (United States)

    Parker, Dawood; Raghu, Surya; Brooks, Richard

    2018-05-01

    Through patenting and commercialization, scientists today can develop their work beyond a publication in a learned journal. Indeed, universities and governments are encouraging today's scientists and engineers to break their research out of the laboratory and into the commercial world. However, doing so is complicated and can be daunting for those more used to a research seminar than a board room. This book, written by experienced scientists and entrepreneurs, deals with businesses started by scientists based on innovation and sets out to clarify for scientists and engineers the steps necessary to take an idea along the path to commercialization and maximise the potential for success, regardless of the path taken.

  19. The U.S. Geological Survey Geologic Collections Management System (GCMS)—A master catalog and collections management plan for U.S. Geological Survey geologic samples and sample collections

    Science.gov (United States)

    ,

    2015-01-01

    The U.S. Geological Survey (USGS) is widely recognized in the earth science community as possessing extensive collections of earth materials collected by research personnel over the course of its history. In 2006, a Geologic Collections Inventory was conducted within the USGS Geology Discipline to determine the extent and nature of its sample collections, and in 2008, a working group was convened by the USGS National Geologic and Geophysical Data Preservation Program to examine ways in which these collections could be coordinated, cataloged, and made available to researchers both inside and outside the USGS. The charge to this working group was to evaluate the proposition of creating a Geologic Collections Management System (GCMS), a centralized database that would (1) identify all existing USGS geologic collections, regardless of size, (2) create a virtual link among the collections, and (3) provide a way for scientists and other researchers to obtain access to the samples and data in which they are interested. Additionally, the group was instructed to develop criteria for evaluating current collections and to establish an operating plan and set of standard practices for handling, identifying, and managing future sample collections. Policies and procedures promoted by the GCMS would be based on extant best practices established by the National Science Foundation and the Smithsonian Institution. The resulting report—USGS Circular 1410, “The U.S. Geological Survey Geologic Collections Management System (GCMS): A Master Catalog and Collections Management Plan for U.S. Geological Survey Geologic Samples and Sample Collections”—has been developed for sample repositories to be a guide to establishing common practices in the collection, retention, and disposal of geologic research materials throughout the USGS.

  20. Archive of single beam and swath bathymetry data collected nearshore of the Gulf Islands National Seashore, Mississippi, from West Ship Island, Mississippi, to Dauphin Island, Alabama: Methods and data report for USGS Cruises 08CCT01 and 08CCT02, July 2008, and 09CCT03 and 09CCT04, June 2009

    Science.gov (United States)

    DeWitt, Nancy T.; Flocks, James G.; Pendleton, Elizabeth A.; Hansen, Mark E.; Reynolds, B.J.; Kelso, Kyle W.; Wiese, Dana S.; Worley, Charles R.

    2012-01-01

    During the summers of 2008 and 2009 the USGS conducted bathymetric surveys from West Ship Island, Miss., to Dauphin Island, Ala., as part of the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility project. The survey area extended from the shoreline out to approximately 2 kilometers and included the adjacent passes (fig. 1). The bathymetry was primarily used to create a topo-bathymetric map and provide a base-level assessment of the seafloor following the 2005 hurricane season. Additionally, these data will be used in conjunction with other geophysical data (chirp and side scan sonar) to construct a comprehensive geological framework of the Mississippi Barrier Island Complex. The culmination of the geophysical surveys will provide baseline bathymetry necessary for scientists to define and interpret seafloor habitat for this area and for scientists to predict future geomorpholocial changes of the islands with respect to climate change, storm impact, and sea-level rise. Furthermore, these data provide information for feasibility of barrier island restoration, particularly in Camille Cut, and for the preservation of historical Fort Massachusetts. For more information refer to http://ngom.usgs.gov/gomsc/mscip/index.html.

  1. USGS Elevation Availability (NED) Overlay Map Service from The National Map - National Geospatial Data Asset (NGDA) National Elevation Data Set (NED)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Elevation Availability service from The National Map (TNM) shows the best available resolution of downloadable elevation data, and is updated approximately...

  2. USGS Geographic Names (GNIS) Overlay Map Service from The National Map - National Geospatial Data Asset (NGDA) Geographic Names Information System (GNIS)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — USGS developed The National Map (TNM) Gazetteer as the Federal and national standard (ANSI INCITS 446-2008) for geographic nomenclature based on the Geographic Names...

  3. USGS Atchafalaya 2 LiDAR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) dataset is a survey of the Atchafalaya Basin project area. The entire survey area for Atchafalaya encompasses approximately...

  4. Studies by the U.S. Geological Survey in Alaska, 2008-2009

    Science.gov (United States)

    Dumoulin, Julie A.; Galloway, John

    2010-01-01

    The collection of papers that follow continues the series of U.S. Geological Survey (USGS) investigative reports in Alaska under the broad umbrella of the geologic sciences. This series represents new and sometimes-preliminary findings that are of interest to Earth scientists in academia, government, and industry; to land and resource managers; and to the general public. The reports presented in Studies by the U.S. Geological Survey in Alaska cover a broad spectrum of topics from various parts of the State, serving to emphasize the diversity of USGS efforts to meet the Nation's needs for Earth-science information in Alaska. This professional paper is one of a series of 'online only' versions of Studies by the U.S. Geological Survey in Alaska, reflecting the current trend toward disseminating research results on the World Wide Web with rapid posting of completed reports.

  5. Studies by the U.S. Geological Survey in Alaska, 2011

    Science.gov (United States)

    Dumoulin, Julie A.; Dusel-Bacon, Cynthia

    2012-01-01

    The collection of papers that follow continues the series of U.S. Geological Survey (USGS) investigative reports in Alaska under the broad umbrella of the geologic sciences. This series represents new and sometimes-preliminary findings that are of interest to Earth scientists in academia, government, and industry; to land and resource managers; and to the general public. The reports presented in Studies by the U.S. Geological Survey in Alaska cover a broad spectrum of topics from various parts of the State, serving to emphasize the diversity of USGS efforts to meet the Nation's needs for Earth-science information in Alaska. This professional paper is one of a series of "online only" versions of Studies by the U.S. Geological Survey in Alaska, reflecting the current trend toward disseminating research results on the World Wide Web with rapid posting of completed reports.

  6. Studies by the U.S. Geological Survey in Alaska, 2007

    Science.gov (United States)

    Haeussler, Peter J.; Galloway, John P.

    2009-01-01

    The collection of papers that follow continues the series of U.S. Geological Survey (USGS) investigative reports in Alaska under the broad umbrella of the geologic sciences. This series represents new and sometimes-preliminary findings that are of interest to Earth scientists in academia, government, and industry; to land and resource managers; and to the general public. The reports presented in Studies by the U.S. Geological Survey in Alaska cover a broad spectrum of topics from various parts of the State, serving to emphasize the diversity of USGS efforts to meet the Nation's needs for Earth-science information in Alaska. This professional paper is one of a series of 'online only' versions of Studies by the U.S. Geological Survey in Alaska, reflecting the current trend toward disseminating research results on the World Wide Web with rapid posting of completed reports.

  7. Examples of Video to Communicate Scientific Findings to Non-Scientists-Bayesian Ecological Modeling

    Science.gov (United States)

    Moorman, M.; Harned, D. A.; Cuffney, T.; Qian, S.

    2011-12-01

    The U.S Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) provides information about (1) water-quality conditions and how those conditions vary locally, regionally, and nationally, (2) water-quality trends, and (3) factors that affect those conditions. As part of the NAWQA Program, the Effects of Urbanization on Stream Ecosystems (EUSE) study examined the vulnerability and resilience of streams to urbanization. Completion of the EUSE study has resulted in over 20 scientific publications. Video podcasts are being used in addition to these publications to communicate the relevance of these scientific findings to more general audiences such as resource managers, educational groups, public officials, and the general public. An example of one of the podcasts is a film about the results of modeling the effects urbanization on stream ecology. The film describes some of the results of the EUSE ecological modeling effort and the advantages of the Bayesian and multi-level statistical modeling approaches, while relating the science to fly fishing. The complex scientific discussion combined with the lighter, more popular activity of fly fishing leads to an entertaining forum while educating viewers about a complex topic. This approach is intended to represent the scientists as interesting people with diverse interests. Video can be an effective scientific communication tool for presenting scientific findings to a broad audience. The film is available for access from the EUSE website (http://water.usgs.gov/nawqa/urban/html/podcasts.html). Additional films are planned to be released in 2012 on other USGS project results and programs.

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 31: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 SME mail survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical communications practices of U.S. aerospace engineers and scientists affiliated with, not necessarily belonging to, the Society of Manufacturing Engineers (SME).

  9. 2012 USGS Lidar: Central Virginia Seismic (Louisa County)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — USGS Contract: G10PC00013 Task Order Number: G12PD00264 Prepared for USGS, Prepared by: Dewberry, 1000 Ashley Blvd., Suite 801, Tampa, Florida 33602-3718 The LiDAR...

  10. USGS Geospatial Fabric and Geo Data Portal for Continental Scale Hydrology Simulations

    Science.gov (United States)

    Sampson, K. M.; Newman, A. J.; Blodgett, D. L.; Viger, R.; Hay, L.; Clark, M. P.

    2013-12-01

    This presentation describes use of United States Geological Survey (USGS) data products and server-based resources for continental-scale hydrologic simulations. The USGS Modeling of Watershed Systems (MoWS) group provides a consistent national geospatial fabric built on NHDPlus. They have defined more than 100,000 hydrologic response units (HRUs) over the continental United States based on points of interest (POIs) and split into left and right bank based on the corresponding stream segment. Geophysical attributes are calculated for each HRU that can be used to define parameters in hydrologic and land-surface models. The Geo Data Portal (GDP) project at the USGS Center for Integrated Data Analytics (CIDA) provides access to downscaled climate datasets and processing services via web-interface and python modules for creating forcing datasets for any polygon (such as an HRU). These resources greatly reduce the labor required for creating model-ready data in-house, contributing to efficient and effective modeling applications. We will present an application of this USGS cyber-infrastructure for assessments of impacts of climate change on hydrology over the continental United States.

  11. Scientists Shaping the Discussion

    Science.gov (United States)

    Abraham, J. A.; Weymann, R.; Mandia, S. A.; Ashley, M.

    2011-12-01

    Scientific studies which directly impact the larger society require an engagement between the scientists and the larger public. With respect to research on climate change, many third-party groups report on scientific findings and thereby serve as an intermediary between the scientist and the public. In many cases, the third-party reporting misinterprets the findings and conveys inaccurate information to the media and the public. To remedy this, many scientists are now taking a more active role in conveying their work directly to interested parties. In addition, some scientists are taking the further step of engaging with the general public to answer basic questions related to climate change - even on sub-topics which are unrelated to scientists' own research. Nevertheless, many scientists are reluctant to engage the general public or the media. The reasons for scientific reticence are varied but most commonly are related to fear of public engagement, concern about the time required to properly engage the public, or concerns about the impact to their professional reputations. However, for those scientists who are successful, these engagement activities provide many benefits. Scientists can increase the impact of their work, and they can help society make informed choices on significant issues, such as mitigating global warming. Here we provide some concrete steps that scientists can take to ensure that their public engagement is successful. These steps include: (1) cultivating relationships with reporters, (2) crafting clear, easy to understand messages that summarize their work, (3) relating science to everyday experiences, and (4) constructing arguments which appeal to a wide-ranging audience. With these steps, we show that scientists can efficiently deal with concerns that would otherwise inhibit their public engagement. Various resources will be provided that allow scientists to continue work on these key steps.

  12. The environment and human health; USGS science for solutions

    Science.gov (United States)

    ,

    2001-01-01

    Emerging infectious diseases, ground-water contamination, trace-metal poisoning...environmental threats to public health the world over require new solutions. Because of an increased awareness of the issues, greater cooperation among scientific and policy agencies, and powerful new tools and techniques to conduct research, there is new hope that complex ecological health problems can be solved. U.S. Geological Survey scientists are forming partnerships with experts in the public health and biomedical research communities to conduct rigorous scientific inquiries into the health effects of ecological processes.

  13. Archive of digital Chirp subbottom profile data collected during USGS cruise 08CCT01, Mississippi Gulf Islands, July 2008

    Science.gov (United States)

    Forde, Arnell S.; Dadisman, Shawn V.; Flocks, James G.; Worley, Charles R.

    2011-01-01

    In July of 2008, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on island framework from Ship Island to Horn Island, Mississippi, for the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility project. Funding was provided through the Geologic Framework and Holocene Coastal Evolution of the Mississippi-Alabama Region Subtask (http://ngom.er.usgs.gov/task2_2/index.php); this project is also part of a broader USGS study on Coastal Change and Transport (CCT). This report serves as an archive of unprocessed digital Chirp seismic reflection data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, observer's logbook, and formal Federal Geographic Data Committee (FGDC) metadata. Gained (a relative increase in signal amplitude) digital images of the seismic profiles are also provided. Refer to the Acronyms page for expansion of acronyms and abbreviations used in this report.

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 24: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 SAE mail survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists affiliated with the Society of Automotive Engineers (SAE).

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 33: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 AIAA mail survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists who are members of the American Institute of Aeronautics and Astronautics (AIAA).

  16. Young Scientist Wetenschapskalender 2018

    NARCIS (Netherlands)

    van Dalen-Oskam, K.H.; van Zundert, Joris J.; Koolen, Corina

    2017-01-01

    Bijdragen scheurkalender Young Scientist Wetenschapskalender 2018. Karina van Dalen-Oskam, Belangrijk woord: Wat is het belangrijkste woord in de Nederlandse taal? In: Young Scientist Wetenschapskalender 2018, 1 september Corina Koolen, Op naar het boekenbal: Hoe wordt je beroemd als schrijver? In:

  17. Making Lists, Enlisting Scientists

    DEFF Research Database (Denmark)

    Jensen, Casper Bruun

    2011-01-01

    was the indicator conceptualised? How were notions of scientific knowledge and collaboration inscribed and challenged in the process? The analysis shows a two-sided process in which scientists become engaged in making lists but which is simultaneously a way for research policy to enlist scientists. In conclusion...

  18. The USGS national geothermal resource assessment: An update

    Science.gov (United States)

    Williams, C.F.; Reed, M.J.; Galanis, S.P.; DeAngelo, J.

    2007-01-01

    The U. S. Geological Survey (USGS) is working with the Department of Energy's (DOE) Geothermal Technologies Program and other geothermal organizations on a three-year effort to produce an updated assessment of available geothermal resources. The new assessment will introduce significant changes in the models for geothermal energy recovery factors, estimates of reservoir volumes, and limits to temperatures and depths for electric power production. It will also include the potential impact of evolving Enhanced Geothermal Systems (EGS) technology. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. New models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of both natural geothermal reservoirs and reservoirs that may be created through the application of EGS technology. Project investigators have also made substantial progress studying geothermal systems and the factors responsible for their formation through studies in the Great Basin-Modoc Plateau region, Coso, Long Valley, the Imperial Valley and central Alaska, Project personnel are also entering the supporting data and resulting analyses into geospatial databases that will be produced as part of the resource assessment.

  19. VT USGS NED DEM (30 meter) - statewide

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The U.S. Geological Survey has developed a National Elevation Database (NED). VCGI has extracted a portion of the NED for Vermont and re-projected...

  20. USGS National Geologic Map Database Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The National Geologic Map Database (NGMDB) is a Congressionally mandated national archive of geoscience maps, reports, and stratigraphic information. According to...

  1. Birth of prominent scientists

    Science.gov (United States)

    Reyes Gonzalez, Leonardo; Veloso, Francisco

    2018-01-01

    This paper analyzes the influence key scientists have in the development of a science and technology system. In particular, this work appraises the influence that star scientists have on the productivity and impact of young faculty, as well as on the likelihood that these young researchers become a leading personality in science. Our analysis confirms previous results that eminent scientist have a prime role in the development of a scientific system, especially within the context of an emerging economy like Mexico. In particular, in terms of productivity and visibility, this work shows that between 1984 and 2001 the elite group of physicists in Mexico (approximate 10% of all scientists working in physics and its related fields) published 42% of all publications, received 50% of all citations and bred 18% to 26% of new entrants. In addition our work shows that scientists that enter the system by the hand of a highly productive researcher increased their productivity on average by 28% and the ones that did it by the hand of a highly visible scientist received on average 141% more citations, vis-à-vis scholars that did not published their first manuscripts with an eminent scientist. Furthermore, scholars that enter the system by the hand of a highly productive researcher were on average 2.5 more likely to also become a star. PMID:29543855

  2. Birth of prominent scientists.

    Science.gov (United States)

    Reyes Gonzalez, Leonardo; González Brambila, Claudia N; Veloso, Francisco

    2018-01-01

    This paper analyzes the influence key scientists have in the development of a science and technology system. In particular, this work appraises the influence that star scientists have on the productivity and impact of young faculty, as well as on the likelihood that these young researchers become a leading personality in science. Our analysis confirms previous results that eminent scientist have a prime role in the development of a scientific system, especially within the context of an emerging economy like Mexico. In particular, in terms of productivity and visibility, this work shows that between 1984 and 2001 the elite group of physicists in Mexico (approximate 10% of all scientists working in physics and its related fields) published 42% of all publications, received 50% of all citations and bred 18% to 26% of new entrants. In addition our work shows that scientists that enter the system by the hand of a highly productive researcher increased their productivity on average by 28% and the ones that did it by the hand of a highly visible scientist received on average 141% more citations, vis-à-vis scholars that did not published their first manuscripts with an eminent scientist. Furthermore, scholars that enter the system by the hand of a highly productive researcher were on average 2.5 more likely to also become a star.

  3. USGS analysis of the Australian UNCLOS submission

    Science.gov (United States)

    Hutchinson, Deborah R.; Rowland, Robert W.

    2006-01-01

    In November 2004, the Government of Australia made a submission to the Commission on the Limits of the Continental Shelf (CLCS) for 10 extended continental shelf (ECS) regions, utilizing Article-76 of the United Nations Convention on the Law of the Sea (UNCLOS). With information provided in the Australian Executive Summary, the USGS examined the 10 regions of the submission from geological, morphological, and resource perspectives. By their own request, the Australians asked that CLCS take no action on the Australian-Antarctic Territory. The major limitation in this analysis is that no bathymetric soundings or detailed hydrographic profiles were provided in the Australian Executive Summary that might show why the Foot of the Slope (FOS) was chosen or where the 2,500-m contour is located. This represents a major limitation because more than half of the 4,205 boundary points utilize the bathymetric formula line and more than one-third of them utilize the bathymetric constraint line. CLCS decisions on the components of this submission may set a precedent for how ECSs are treated in future submissions. Some of the key decisions will cover (a) how a 'natural prolongation' of a continental margin is determined, particularly if a bathymetric saddle that appears to determine the prolongation is in deep water and is well outside of the 200-nm limit (Exmouth Plateau), (b) defining to what extent that plateaus, rises, caps, banks and spurs that are formed of oceanic crust and from oceanic processes can be considered to be 'natural prolongations' (Kerguelen Plateau), (c) to what degree UNCLOS recognizes reefs and uninhabited micro-islands (specifically, rocks and/or sand shoals) as islands that can have an EEZ (Middleton and Elizabeth Reefs north of Lord Howe Island), and (d) how the Foot of the Slope (FOS) is chosen (Great Australian Bight). The submission contains situations that are relevant to potential future U.S. submissions and are potentially analogous to certain

  4. ASTER and USGS EROS emergency imaging for hurricane disasters: Chapter 4D in Science and the storms-the USGS response to the hurricanes of 2005

    Science.gov (United States)

    Duda, Kenneth A.; Abrams, Michael

    2007-01-01

    Satellite images have been extremely useful in a variety of emergency response activities, including hurricane disasters. This article discusses the collaborative efforts of the U.S. Geological Survey (USGS), the Joint United States-Japan Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team, and the National Aeronautics and Space Administration (NASA) in responding to crisis situations by tasking the ASTER instrument and rapidly providing information to initial responders. Insight is provided on the characteristics of the ASTER systems, and specific details are presented regarding Hurricane Katrina support.

  5. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 21: Technological innovation and technical communications: Their place in aerospace engineering curricula. A survey of European, Japanese, and US Aerospace Engineers and Scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Holland, Maurita Peterson; Keene, Michael L.; Kennedy, John M.

    1991-01-01

    Aerospace engineers and scientists from Western Europe, Japan, and the United States were surveyed as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. Questionnaires were used to solicit their opinions regarding the following: (1) the importance of technical communications to their profession; (2) the use and production of technical communications; and (3) their views about the appropriate content of an undergraduate course in technical communications. The ability to communicate technical information effectively was very important to the aerospace engineers and scientists who participated in the study. A considerable portion of their working week is devoted to using and producing technical information. The types of technical communications used and produced varied within and among the three groups. The type of technical communication product used and produced appears to be related to respondents' professional duties. Respondents from the three groups made similar recommendations regarding the principles, mechanics, and on-the-job communications to be included in an undergraduate technical communications course for aerospace majors.

  6. A compilation of U.S. Geological Survey pesticide concentration data for water and sediment in the Sacramento–San Joaquin Delta region: 1990–2010

    Science.gov (United States)

    Orlando, James L.

    2013-01-01

    Beginning around 2000, abundance indices of four pelagic fishes (delta smelt, striped bass, longfin smelt, and threadfin shad) within the San Francisco Bay and Sacramento–San Joaquin Delta began to decline sharply (Sommer and others, 2007). These declines collectively became known as the pelagic organism decline (POD). No single cause has been linked to this decline, and current theories suggest that combinations of multiple stressors are likely to blame. Contaminants (including current-use pesticides) are one potential stressor being investigated for its role in the POD (Anderson, 2007). Pesticide concentration data collected by the U.S. Geological Survey (USGS) at multiple sites in the delta region over the past two decades are critical to understanding the potential effects of current-use pesticides on species of concern as well as the overall health of the delta ecosystem. In April 2010, a compilation of contaminant data for the delta region was published by the State Water Resources Control Board (Johnson and others, 2010). Pesticide occurrence was the major focus of this report, which concluded that “there was insufficient high quality data available to make conclusions about the potential role of specific contaminants in the POD.” The report cited multiple sources; however, data collected by the USGS were not included in the publication even though these data met all criteria listed for inclusion in the report. What follows is a summary of publicly available USGS data for pesticide concentrations in surface water and sediments within the Sacramento–San Joaquin Delta region from the years 1990 through 2010. Data were retrieved though the USGS National Water Information System (NWIS) database, a publicly available online-data repository (U.S. Geological Survey, 1998), and from published USGS reports (also available online at http://pubs.er.usgs.gov/). The majority of the data were collected in support of two long term USGS monitoring programs

  7. USGS global change science strategy: A framework for understanding and responding to climate and land-use change

    Science.gov (United States)

    Burkett, Virginia R.; Taylor, Ione L.; Belnap, Jayne; Cronin, Thomas M.; Dettinger, Michael D.; Frazier, Eldrich L.; Haines, John W.; Kirtland, David A.; Loveland, Thomas R.; Milly, Paul C.D.; O'Malley, Robin; Thompson, Robert S.

    2011-01-01

    This U.S. Geological Survey (USGS) Global Change Science Strategy expands on the Climate Variability and Change science component of the USGS 2007 Science Strategy, “Facing Tomorrow’s Challenges: USGS Science in the Coming Decade” (U.S. Geological Survey, 2007). Here we embrace the broad definition of global change provided in the U.S. Global Change Research Act of 1990 (Public Law 101–606,104 Stat. 3096–3104)—“Changes in the global environment (including alterations in climate, land productivity, oceans or other water resources, atmospheric chemistry, and ecological systems) that may alter the capacity of the Earth to sustain life”—with a focus on climate and land-use change.There are three major characteristics of this science strategy. First, it addresses the science required to broadly inform global change policy, while emphasizing the needs of natural-resource managers and reflecting the role of the USGS as the science provider for the Department of the Interior and other resource-management agencies. Second, the strategy identifies core competencies, noting 10 critical capabilities and strengths the USGS uses to overcome key problem areas. We highlight those areas in which the USGS is a science leader, recognizing the strong partnerships and effective collaboration that are essential to address complex global environmental challenges. Third, it uses a query-based approach listing key research questions that need to be addressed to create an agenda for hypothesis-driven global change science organized under six strategic goals. Overall, the strategy starts from where we are, provides a vision for where we want to go, and then describes high-priority strategic actions, including outcomes, products, and partnerships that can get us there. Global change science is a well-defined research field with strong linkages to the ecosystems, water, energy and minerals, natural hazards, and environmental health components of the USGS Science Strategy

  8. Science strategy for Core Science Systems in the U.S. Geological Survey, 2013-2023

    Science.gov (United States)

    Bristol, R. Sky; Euliss, Ned H.; Booth, Nathaniel L.; Burkardt, Nina; Diffendorfer, Jay E.; Gesch, Dean B.; McCallum, Brian E.; Miller, David M.; Morman, Suzette A.; Poore, Barbara S.; Signell, Richard P.; Viger, Roland J.

    2012-01-01

    Core Science Systems is a new mission of the U.S. Geological Survey (USGS) that grew out of the 2007 Science Strategy, “Facing Tomorrow’s Challenges: U.S. Geological Survey Science in the Decade 2007–2017.” This report describes the vision for this USGS mission and outlines a strategy for Core Science Systems to facilitate integrated characterization and understanding of the complex earth system. The vision and suggested actions are bold and far-reaching, describing a conceptual model and framework to enhance the ability of USGS to bring its core strengths to bear on pressing societal problems through data integration and scientific synthesis across the breadth of science.The context of this report is inspired by a direction set forth in the 2007 Science Strategy. Specifically, ecosystem-based approaches provide the underpinnings for essentially all science themes that define the USGS. Every point on earth falls within a specific ecosystem where data, other information assets, and the expertise of USGS and its many partners can be employed to quantitatively understand how that ecosystem functions and how it responds to natural and anthropogenic disturbances. Every benefit society obtains from the planet—food, water, raw materials to build infrastructure, homes and automobiles, fuel to heat homes and cities, and many others, are derived from or effect ecosystems.The vision for Core Science Systems builds on core strengths of the USGS in characterizing and understanding complex earth and biological systems through research, modeling, mapping, and the production of high quality data on the nation’s natural resource infrastructure. Together, these research activities provide a foundation for ecosystem-based approaches through geologic mapping, topographic mapping, and biodiversity mapping. The vision describes a framework founded on these core mapping strengths that makes it easier for USGS scientists to discover critical information, share and publish

  9. U.S. Geological Survey Community for Data Integration-NWIS Web Services Snapshot Tool for ArcGIS

    Science.gov (United States)

    Holl, Sally

    2011-01-01

    U.S. Geological Survey (USGS) data resources are so vast that many scientists are unaware of data holdings that may be directly relevant to their research. Data are also difficult to access and large corporate databases, such as the National Water Information System (NWIS) that houses hydrologic data for the Nation, are challenging to use without considerable expertise and investment of time. The USGS Community for Data Integration (CDI) was established in 2009 to address data and information management issues affecting the proficiency of earth science research. A CDI workshop convened in 2009 identified common data integration needs of USGS scientists and targeted high value opportunities that might address these needs by leveraging existing projects in USGS science centers, in-kind contributions, and supplemental funding. To implement this strategy, CDI sponsored a software development project in 2010 to facilitate access and use of NWIS data with ArcGIS, a widely used Geographic Information System. The resulting software product, the NWIS Web Services Snapshot Tool for ArcGIS, is presented here.

  10. 2009 PSLC-USGS Topographic LiDAR: Wenatchee

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WS) collected Light Detection and Ranging (LiDAR) data of the Wenatchee USGS area of interest (AOI) east of Wenatchee, WA on May 1nd - May...

  11. 2014 USGS CMGP Lidar: Post Sandy (Long Island, NY)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: Long Island New York Sandy LIDAR lidar Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G14PD00296 Woolpert...

  12. 2010 USGS Lidar: Southeastern Michigan (Hillsdale, Jackson, Lenawee Counties)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: Lake Erie LiDAR Priority Area 1 LiDAR Data Acquisition and Processing Production Task- Jackson, Hillsdale, and Lenawee Counties USGS Contract No....

  13. USGS 24k Digital Raster Graphic (DRG) Metadata

    Data.gov (United States)

    Minnesota Department of Natural Resources — Metadata for the scanned USGS 24k Topograpic Map Series (also known as 24k Digital Raster Graphic). Each scanned map is represented by a polygon in the layer and the...

  14. Topographic Digital Raster Graphics - USGS DIGITAL RASTER GRAPHICS

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — USGS Topographic Digital Raster Graphics downloaded from LABINS (http://data.labins.org/2003/MappingData/drg/drg_stpl83.cfm). A digital raster graphic (DRG) is a...

  15. Short-eared Owl (Asio flammeus surveys in the North American Intermountain West: utilizing citizen scientists to conduct monitoring across a broad geographic scale

    Directory of Open Access Journals (Sweden)

    Robert A. Miller

    2016-06-01

    Full Text Available The Short-eared Owl (Asio flammeus is an open-country species breeding in the northern United States and Canada, and has likely experienced a long-term, range-wide, and substantial decline. However, the cause and magnitude of the decline is not well understood. We set forth to address the first two of six previously proposed conservation priorities to be addressed for this species: (1 better define habitat use and (2 improve population monitoring. We recruited 131 volunteers to survey over 6.2 million ha within the state of Idaho for Short-eared Owls during the 2015 breeding season. We surveyed 75 transects, 71 of which were surveyed twice, and detected Short-eared Owls on 27 transects. We performed multiscale occupancy modeling to identify habitat associations, and performed multiscale abundance modeling to generate a state-wide population estimate. Our results suggest that within the state of Idaho, Short-eared Owls are more often found in areas with marshland or riparian habitat or areas with greater amounts of sagebrush habitat at the 1750 ha transect scale. At the 50 ha point scale, Short-eared Owls tend to associate positively with fallow and bare dirt agricultural land and negatively with grassland. Cropland was not chosen at the broader transect scale suggesting that Short-eared Owls may prefer more heterogeneous landscapes. On the surface our results may seem contradictory to the presumed land use by a "grassland" species; however, the grasslands of the Intermountain West, consisting largely of invasive cheatgrass (Bromus tectorum, lack the complex structure shown to be preferred by these owls. We suggest the local adaptation to agriculture represents the next best habitat to their historical native habitat preferences. Regardless, we have confirmed regional differences that should be considered in conservation planning for this species. Last, our results demonstrate the feasibility, efficiency, and effectiveness of utilizing public

  16. Scientists planning new internet

    CERN Multimedia

    Cookson, C

    2000-01-01

    British scientists are preparing to build the next generation internet - 'The Grid'. The government is expected to announce about 100 million pounds of funding for the project, to be done in collaboration with CERN (1/2 p).

  17. Scientists must speak

    National Research Council Canada - National Science Library

    Walters, D. Eric; Walters, Gale Climenson

    2011-01-01

    .... This can be a stressful experience for many. For scientists, the experience may be further complicated by the specialist nature of the data and the fact that most self-help books are aimed at business or social situations...

  18. Scientists vs. the administration

    CERN Multimedia

    2004-01-01

    Article denouncing the supposed impartiality of signatories of a report released by the Union of Concerned Scientists (UCS), which accused the Bush administration of systemically suborning objective science to a political agenda (1 page).

  19. Defining a data management strategy for USGS Chesapeake Bay studies

    Science.gov (United States)

    Ladino, Cassandra

    2013-01-01

    The mission of U.S. Geological Survey’s (USGS) Chesapeake Bay studies is to provide integrated science for improved understanding and management of the Chesapeake Bay ecosystem. Collective USGS efforts in the Chesapeake Bay watershed began in the 1980s, and by the mid-1990s the USGS adopted the watershed as one of its national place-based study areas. Great focus and effort by the USGS have been directed toward Chesapeake Bay studies for almost three decades. The USGS plays a key role in using “ecosystem-based adaptive management, which will provide science to improve the efficiency and accountability of Chesapeake Bay Program activities” (Phillips, 2011). Each year USGS Chesapeake Bay studies produce published research, monitoring data, and models addressing aspects of bay restoration such as, but not limited to, fish health, water quality, land-cover change, and habitat loss. The USGS is responsible for collaborating and sharing this information with other Federal agencies and partners as described under the President’s Executive Order 13508—Strategy for Protecting and Restoring the Chesapeake Bay Watershed signed by President Obama in 2009. Historically, the USGS Chesapeake Bay studies have relied on national USGS databases to store only major nationally available sources of data such as streamflow and water-quality data collected through local monitoring programs and projects, leaving a multitude of other important project data out of the data management process. This practice has led to inefficient methods of finding Chesapeake Bay studies data and underutilization of data resources. Data management by definition is “the business functions that develop and execute plans, policies, practices and projects that acquire, control, protect, deliver and enhance the value of data and information.” (Mosley, 2008a). In other words, data management is a way to preserve, integrate, and share data to address the needs of the Chesapeake Bay studies to better

  20. Scientists as writers

    Science.gov (United States)

    Yore, Larry D.; Hand, Brian M.; Prain, Vaughan

    2002-09-01

    This study attempted to establish an image of a science writer based on a synthesis of writing theory, models, and research literature on academic writing in science and other disciplines and to contrast this image with an actual prototypical image of scientists as writers of science. The synthesis was used to develop a questionnaire to assess scientists' writing habits, beliefs, strategies, and perceptions about print-based language. The questionnaire was administered to 17 scientists from science and applied science departments of a large Midwestern land grant university. Each respondent was interviewed following the completion of the questionnaire with a custom-designed semistructured protocol to elaborate, probe, and extend their written responses. These data were analyzed in a stepwise fashion using the questionnaire responses to establish tentative assertions about the three major foci (type of writing done, criteria of good science writing, writing strategies used) and the interview responses to verify these assertions. Two illustrative cases (a very experienced, male physical scientist and a less experienced, female applied biological scientist) were used to highlight diversity in the sample. Generally, these 17 scientists are driven by the academy's priority of publishing their research results in refereed, peer-reviewed journals. They write their research reports in isolation or as a member of a large research team, target their writing to a few journals that they also read regularly, use writing in their teaching and scholarship to inform and persuade science students and other scientists, but do little border crossing into other discourse communities. The prototypical science writer found in this study did not match the image based on a synthesis of the writing literature in that these scientists perceived writing as knowledge telling not knowledge building, their metacognition of written discourse was tacit, and they used a narrow array of genre

  1. The Celebrity Scientists

    OpenAIRE

    Fahy, Declan

    2010-01-01

    This collective case study examines how four contemporary British scientists and popular science writers, Stephen Hawking, Richard Dawkins, Susan Greenfield and James Lovelock, are portrayed in mass media as celebrities. It finds that the scientists’ private and public lives merge in their representations, their images commodified and marketed by the cultural industries, their mediated personae embodying abstract ideas of truth and reason. The celebrity scientists base their authority on thei...

  2. USGS Map Indices Downloadable Data Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data consists of data grids for the entire United States area, including 1 X 2 Degree, 1 X 1 Degree, 30 X 60 Minute, 15 X 15 Minute, 7.5 X 7.5 Minute, and 3.75...

  3. Remotely Sensed Imagery from USGS: Update on Products and Portals

    Science.gov (United States)

    Lamb, R.; Lemig, K.

    2016-12-01

    The USGS Earth Resources Observation and Science (EROS) Center has recently implemented a number of additions and changes to its existing suite of products and user access systems. Together, these changes will enhance the accessibility, breadth, and usability of the remotely sensed image products and delivery mechanisms available from USGS. As of late 2016, several new image products are now available for public download at no charge from USGS/EROS Center. These new products include: (1) global Level 1T (precision terrain-corrected) products from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), provided via NASA's Land Processes Distributed Active Archive Center (LP DAAC); and (2) Sentinel-2 Multispectral Instrument (MSI) products, available through a collaborative effort with the European Space Agency (ESA). Other new products are also planned to become available soon. In an effort to enable future scientific analysis of the full 40+ year Landsat archive, the USGS also introduced a new "Collection Management" strategy for all Landsat Level 1 products. This new archive and access schema involves quality-based tier designations that will support future time series analysis of the historic Landsat archive at the pixel level. Along with the quality tier designations, the USGS has also implemented a number of other Level 1 product improvements to support Landsat science applications, including: enhanced metadata, improved geometric processing, refined quality assessment information, and angle coefficient files. The full USGS Landsat archive is now being reprocessed in accordance with the new `Collection 1' specifications. Several USGS data access and visualization systems have also seen major upgrades. These user interfaces include a new version of the USGS LandsatLook Viewer which was released in Fall 2017 to provide enhanced functionality and Sentinel-2 visualization and access support. A beta release of the USGS Global Visualization Tool ("Glo

  4. Status report on the USGS component of the Global Seismographic Network

    Science.gov (United States)

    Gee, L. S.; Bolton, H. F.; Derr, J.; Ford, D.; Gyure, G.; Hutt, C. R.; Ringler, A.; Storm, T.; Wilson, D.

    2010-12-01

    As recently as four years ago, the average age of a datalogger in the portion of the Global Seismographic Network (GSN) operated by the United States Geological Survey (USGS) was 16 years - an eternity in the lifetime of computers. The selection of the Q330HR in 2006 as the “next generation” datalogger by an Incorporated Research Institutions for Seismology (IRIS) selection committee opened the door for upgrading the GSN. As part of the “next generation” upgrades, the USGS is replacing a single Q680 system with two Q330HRs and a field processor to provide the same capability. The functionality includes digitizing, timing, event detection, conversion into miniSEED records, archival of miniSEED data on the ASP and telemetry of the miniSEED data using International Deployment of Accelerometers (IDA) Authenticated Disk Protocol (IACP). At many sites, Quanterra Balers are also being deployed. The Q330HRs feature very low power consumption (which will increase reliability) and higher resolution than the Q680 systems. Furthermore, this network-wide upgrade provides the opportunity to correct known station problems, standardize the installation of secondary sensors and accelerometers, replace the feedback electronics of STS-1 sensors, and perform checks of absolute system sensitivity and sensor orientation. The USGS upgrades began with ANMO in May, 2008. Although we deployed Q330s at KNTN and WAKE in the fall of 2007 (and in the installation of the Caribbean network), these deployments did not include the final software configuration for the GSN upgrades. Following this start, the USGS installed six additional sites in FY08. With funding from the American Recovery and Reinvestment Act and the USGS GSN program, 14 stations were upgraded in FY09. Twenty-one stations are expected to be upgraded in FY10. These systematic network-wide upgrades will improve the reliability and data quality of the GSN, with the end goal of providing the Earth science community high

  5. Marketing for scientists

    CERN Document Server

    Kuchner, Marc J

    2012-01-01

    It's a tough time to be a scientist: universities are shutting science departments, funding organisations are facing flat budgets, and many newspapers have dropped their science sections altogether. But according to Marc Kuchner, this anti-science climate doesn't have to equal a career death knell - it just means scientists have to be savvier about promoting their work and themselves. In "Marketing for Scientists", he provides clear, detailed advice about how to land a good job, win funding, and shape the public debate. As an astrophysicist at NASA, Kuchner knows that "marketing" can seem like a superficial distraction, whether your daily work is searching for new planets or seeking a cure for cancer. In fact, he argues, it's a critical component of the modern scientific endeavour, not only advancing personal careers but also society's knowledge. Kuchner approaches marketing as a science in itself. He translates theories about human interaction and sense of self into methods for building relationships - one o...

  6. USGS Environmental health science strategy: providing environmental health science for a changing world: public review release

    Science.gov (United States)

    Bright, Patricia R.; Buxton, Herbert T.; Balistrieri, Laurie S.; Barber, Larry B.; Chapelle, Francis H.; Cross, Paul C.; Krabbenhoft, David P.; Plumlee, Geoffrey S.; Sleeman, Jonathan M.; Tillitt, Donald E.; Toccalino, Patricia L.; Winton, James R.

    2012-01-01

    America has an abundance of natural resources. We have bountiful clean water, fertile soil, and unrivaled national parks, wildlife refuges, and public lands. These resources enrich our lives and preserve our health and wellbeing. These resources have been maintained because of our history of respect for their value and an enduring commitment to their vigilant protection. Awareness of the social, economic, and personal value of the health of our environment is increasing. The emergence of environmentally driven diseases caused by environmental exposure to contaminants and pathogens is a growing concern worldwide. New health threats and patterns of established threats are affected by both natural and anthropogenic changes to the environment. Human activities are key drivers of emerging (new and re-emerging) health threats. Societal demands for land and natural resources, a better quality of life, improved economic prosperity, and the environmental impacts associated with these demands will continue to increase. Natural earth processes, climate trends, and related climatic events will add to the environmental impact of human activities. These environmental drivers will influence exposure to disease agents, including viral, bacterial, prion, and fungal pathogens, parasites, natural earth materials, toxins and other biogenic compounds, and synthetic chemicals and substances. The U.S. Geological Survey (USGS) defines environmental health science broadly as the interdisciplinary study of relations among the quality of the physical environment, the health of the living environment, and human health. The interactions among these three spheres are driven by human activities, ecological processes, and natural earth processes; the interactions affect exposure to contaminants and pathogens and the severity of environmentally driven diseases in animals and people. This definition provides USGS with a framework for synthesizing natural science information from across the Bureau

  7. Responsability of scientists

    CERN Document Server

    Harigel, G G

    1997-01-01

    This seminar is intended to give some practical help for CERN guides,who are confronted with questions from visitors concerning the purpose of research in general and - in paticular - of the work in our laboratory, its possible application and benefits.The dual use of scientific results will be emphasised by examples across natural sciences. Many investigations were neutral,others aimed at peaceful and beneficial use for humanity, a few were made for destructive purposes. Researchers have no or very little influence on the application of their results. The interplay between natural scientists ,social scientists,politicians,and their dependence on economic factors will be discussed.

  8. Smartphone interface to USGS 'Did You Feel It?' - Getting More Citizens Involved in Science

    Science.gov (United States)

    Savran, W. H.; Petersen, R. I.; Wukusick, M.

    2013-12-01

    Over the last hundred years, we have put forth a concerted effort to install a dense array of seismometers - used to monitor and measure seismic waves propagating through the earth. In addition to expensive instrumentation, citizens provide useful data to the earthquake science community as demonstrated by the USGS 'Did you feel it?' project. Currently, the 'Did You Feel It?' data is acquired, through an internet browser, from a long questionnaire. With the increasing number of smartphone owners, an application interfacing the population with the 'Did you feel it?' project introduces the next logical step in progressing this technology. We are developing an application, which utilizes many features of modern smartphones to provide a better interface from citizen to scientist. Our application will notify users of any earthquake within a predefined distance above a predefined size. At this point, the user has the option to answer the questionnaire and send their experience of the earthquake to the USGS 'Did you feel it?' database or simply decline. Instead of a cumbersome web-form, the user will be prompted for questions in line with the paradigm of current smartphone application development. An easy, interactive interface allows the user to answer the questions rapidly in a fun manner, resulting in more participation. In addition to putting earthquake science into the hands of many more citizens, the application will also allow the user to place an emergency call in case of casualty during the next big one. Future versions of the application will allow users to take, view, and submit photographs of damage caused by the earthquake. Also, users will be able to view intensity maps generated for the event they evaluated. The USGS has already done an incredible job setting up the 'Did you feel it?' framework; having a more accessible user interface to acquire data will greatly expand the possibilities of the 'Did you feel it?' project.

  9. USGS Online Short-term Hazard Maps: Experiences in the First Year of Implementation

    Science.gov (United States)

    Gerstenberger, M. C.; Jones, L. M.

    2005-12-01

    In May of 2005, following review by the California Earthquake Prediction Evaluation Council, the USGS launched a website that displays the probability of experiencing Modified Mercalli Intensity VI in the next 24 hours. With a forecast based on a relatively simple application of the Gutenberg-Richter relationship and the modified Omori law, the maps are primarily aimed at providing information related to aftershock hazard. Initial response to the system has been mostly positive but has required an effort toward public education. Particularly, it has been difficult to communicate the important difference between a probabilistic forecast and a binary earthquake "prediction". Even with the familiar use of probabilities in weather maps and recent use of terms such as Modified Mercalli Intensity, these, and other terms, are often misunderstood by the media and public. Additionally, the fact that our methodology is not targeted at large independent events has sometimes been difficult to convey to scientists as well as the public. Initial interest in the webpages has been high with greater than 700,000 individual visits between going live in late May, 2005 and the end of June, 2005. This accounts for more than 1/3 of the visits to the USGS-Pasadena webpages in that period. Visits have declined through July and August, but individual daily visits average around 3,000/day.

  10. U.S. Geological Survey activities related to American Indians and Alaska Natives: Fiscal years 2007 and 2008

    Science.gov (United States)

    Marcus, Susan M.

    2010-01-01

    In the late 1800s, John Wesley Powell, the second director of the U.S. Geological Survey (USGS), followed his interest in the tribes of the Great Basin and Colorado Plateau and studied their cultures, languages, and surroundings. From that early time, the USGS has recognized the importance of Native knowledge and living in harmony with nature as complements to the USGS mission to better understand the Earth. Combining traditional ecological knowledge with empirical studies allows the USGS and Native American governments, organizations, and people to increase their mutual understanding and respect for this land. The USGS is the earth and natural science bureau within the U.S. Department of the Interior (DOI) and is not responsible for regulations or land management. Climate change is a major current issue affecting Native lives and traditions throughout the United States. Climate projections for the coming century indicate an increasing probability for more frequent and more severe droughts in the Southwest, including the Navajo Nation. Erosion has claimed Native homes in Alaska. Fish have become inedible due to diseases that turn their flesh mushy. Native people who rely on or who are culturally sustained by hunting, fishing, and using local plants are living with climate change now. The traditional knowledge of Native peoples enriches and confirms the work of USGS scientists. The results are truly synergistic-greater than the sum of their parts. Traditional ecological knowledge is respected and increasingly used in USGS studies-when the holders of that knowledge choose to share it. The USGS respects the rights of Native people to maintain their patrimony of traditional ecological knowledge. The USGS studies can help Tribes, Native organizations, and natural resource professionals manage Native lands and resources with the best available unbiased data and information that can be added to their traditional knowledge. Wise Native leaders have noted that traditional

  11. Talk Like a Scientist

    Science.gov (United States)

    Marcum-Dietrich, Nanette

    2010-01-01

    In the scientific community, the symposium is one formal structure of conversation. Scientists routinely hold symposiums to gather and talk about a common topic. To model this method of communication in the classroom, the author designed an activity in which students conduct their own science symposiums. This article presents the science symposium…

  12. Ethics for life scientists

    NARCIS (Netherlands)

    Korthals, M.J.J.A.A.; Bogers, R.J.

    2004-01-01

    In this book we begin with two contributions on the ethical issues of working in organizations. A fruitful side effect of this start is that it gives a good insight into business ethics, a branch of applied ethics that until now is far ahead of ethics for life scientists. In the second part, ethics

  13. Developing Scientists' "Soft" Skills

    Science.gov (United States)

    Gordon, Wendy

    2014-02-01

    A great deal of professional advice directed at undergraduates, graduate students, postdoctoral fellows, and even early-career scientists focuses on technical skills necessary to succeed in a complex work environment in which problems transcend disciplinary boundaries. Collaborative research approaches are emphasized, as are cross-training and gaining nonacademic experiences [Moslemi et al., 2009].

  14. Scientists want more children.

    Directory of Open Access Journals (Sweden)

    Elaine Howard Ecklund

    Full Text Available Scholars partly attribute the low number of women in academic science to the impact of the science career on family life. Yet, the picture of how men and women in science--at different points in the career trajectory--compare in their perceptions of this impact is incomplete. In particular, we know little about the perceptions and experiences of junior and senior scientists at top universities, institutions that have a disproportionate influence on science, science policy, and the next generation of scientists. Here we show that having fewer children than wished as a result of the science career affects the life satisfaction of science faculty and indirectly affects career satisfaction, and that young scientists (graduate students and postdoctoral fellows who have had fewer children than wished are more likely to plan to exit science entirely. We also show that the impact of science on family life is not just a woman's problem; the effect on life satisfaction of having fewer children than desired is more pronounced for male than female faculty, with life satisfaction strongly related to career satisfaction. And, in contrast to other research, gender differences among graduate students and postdoctoral fellows disappear. Family factors impede talented young scientists of both sexes from persisting to research positions in academic science. In an era when the global competitiveness of US science is at risk, it is concerning that a significant proportion of men and women trained in the select few spots available at top US research universities are considering leaving science and that such desires to leave are related to the impact of the science career on family life. Results from our study may inform university family leave policies for science departments as well as mentoring programs in the sciences.

  15. Scientists want more children.

    Science.gov (United States)

    Ecklund, Elaine Howard; Lincoln, Anne E

    2011-01-01

    Scholars partly attribute the low number of women in academic science to the impact of the science career on family life. Yet, the picture of how men and women in science--at different points in the career trajectory--compare in their perceptions of this impact is incomplete. In particular, we know little about the perceptions and experiences of junior and senior scientists at top universities, institutions that have a disproportionate influence on science, science policy, and the next generation of scientists. Here we show that having fewer children than wished as a result of the science career affects the life satisfaction of science faculty and indirectly affects career satisfaction, and that young scientists (graduate students and postdoctoral fellows) who have had fewer children than wished are more likely to plan to exit science entirely. We also show that the impact of science on family life is not just a woman's problem; the effect on life satisfaction of having fewer children than desired is more pronounced for male than female faculty, with life satisfaction strongly related to career satisfaction. And, in contrast to other research, gender differences among graduate students and postdoctoral fellows disappear. Family factors impede talented young scientists of both sexes from persisting to research positions in academic science. In an era when the global competitiveness of US science is at risk, it is concerning that a significant proportion of men and women trained in the select few spots available at top US research universities are considering leaving science and that such desires to leave are related to the impact of the science career on family life. Results from our study may inform university family leave policies for science departments as well as mentoring programs in the sciences.

  16. On Responsibility of Scientists

    Science.gov (United States)

    Burdyuzha, Vladimir

    The situation of modern world is analised. It is impossible for our Civilization when at least half of the World Scientists are engaged in research intended to solve military problems. Civilization cannot be called reasonable so long as it spends a huge portion of national incomes on armaments. For resolution of our global problems International Scientific Center - Brain Trust of planet must be created, the status of which should be defined and sealed by the UN organization.

  17. USGS Digital Spectral Library splib06a

    Science.gov (United States)

    Clark, Roger N.; Swayze, Gregg A.; Wise, Richard A.; Livo, K. Eric; Hoefen, Todd M.; Kokaly, Raymond F.; Sutley, Stephen J.

    2007-01-01

    Introduction We have assembled a digital reflectance spectral library that covers the wavelength range from the ultraviolet to far infrared along with sample documentation. The library includes samples of minerals, rocks, soils, physically constructed as well as mathematically computed mixtures, plants, vegetation communities, microorganisms, and man-made materials. The samples and spectra collected were assembled for the purpose of using spectral features for the remote detection of these and similar materials. Analysis of spectroscopic data from laboratory, aircraft, and spacecraft instrumentation requires a knowledge base. The spectral library discussed here forms a knowledge base for the spectroscopy of minerals and related materials of importance to a variety of research programs being conducted at the U.S. Geological Survey. Much of this library grew out of the need for spectra to support imaging spectroscopy studies of the Earth and planets. Imaging spectrometers, such as the National Aeronautics and Space Administration (NASA) Airborne Visible/Infra Red Imaging Spectrometer (AVIRIS) or the NASA Cassini Visual and Infrared Mapping Spectrometer (VIMS) which is currently orbiting Saturn, have narrow bandwidths in many contiguous spectral channels that permit accurate definition of absorption features in spectra from a variety of materials. Identification of materials from such data requires a comprehensive spectral library of minerals, vegetation, man-made materials, and other subjects in the scene. Our research involves the use of the spectral library to identify the components in a spectrum of an unknown. Therefore, the quality of the library must be very good. However, the quality required in a spectral library to successfully perform an investigation depends on the scientific questions to be answered and the type of algorithms to be used. For example, to map a mineral using imaging spectroscopy and the mapping algorithm of Clark and others (1990a, 2003b

  18. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS

    Science.gov (United States)

    Weis, Dominique; Kieffer, Bruno; Maerschalk, Claude; Barling, Jane; de Jong, Jeroen; Williams, Gwen A.; Hanano, Diane; Pretorius, Wilma; Mattielli, Nadine; Scoates, James S.; Goolaerts, Arnaud; Friedman, Richard M.; Mahoney, J. Brian

    2006-08-01

    The Pacific Centre for Isotopic and Geochemical Research (PCIGR) at the University of British Columbia has undertaken a systematic analysis of the isotopic (Sr, Nd, and Pb) compositions and concentrations of a broad compositional range of U.S. Geological Survey (USGS) reference materials, including basalt (BCR-1, 2; BHVO-1, 2), andesite (AGV-1, 2), rhyolite (RGM-1, 2), syenite (STM-1, 2), granodiorite (GSP-2), and granite (G-2, 3). USGS rock reference materials are geochemically well characterized, but there is neither a systematic methodology nor a database for radiogenic isotopic compositions, even for the widely used BCR-1. This investigation represents the first comprehensive, systematic analysis of the isotopic composition and concentration of USGS reference materials and provides an important database for the isotopic community. In addition, the range of equipment at the PCIGR, including a Nu Instruments Plasma MC-ICP-MS, a Thermo Finnigan Triton TIMS, and a Thermo Finnigan Element2 HR-ICP-MS, permits an assessment and comparison of the precision and accuracy of isotopic analyses determined by both the TIMS and MC-ICP-MS methods (e.g., Nd isotopic compositions). For each of the reference materials, 5 to 10 complete replicate analyses provide coherent isotopic results, all with external precision below 30 ppm (2 SD) for Sr and Nd isotopic compositions (27 and 24 ppm for TIMS and MC-ICP-MS, respectively). Our results also show that the first- and second-generation USGS reference materials have homogeneous Sr and Nd isotopic compositions. Nd isotopic compositions by MC-ICP-MS and TIMS agree to within 15 ppm for all reference materials. Interlaboratory MC-ICP-MS comparisons show excellent agreement for Pb isotopic compositions; however, the reproducibility is not as good as for Sr and Nd. A careful, sequential leaching experiment of three first- and second-generation reference materials (BCR, BHVO, AGV) indicates that the heterogeneity in Pb isotopic compositions

  19. The Online GVP/USGS Weekly Volcanic Activity Report: Providing Timely Information About Worldwide Volcanism

    Science.gov (United States)

    Mayberry, G. C.; Guffanti, M. C.; Luhr, J. F.; Venzke, E. A.; Wunderman, R. L.

    2001-12-01

    The awesome power and intricate inner workings of volcanoes have made them a popular subject with scientists and the general public alike. About 1500 known volcanoes have been active on Earth during the Holocene, approximately 50 of which erupt per year. With so much activity occurring around the world, often in remote locations, it can be difficult to find up-to-date information about current volcanism from a reliable source. To satisfy the desire for timely volcano-related information the Smithsonian Institution and US Geological Survey combined their strengths to create the Weekly Volcanic Activity Report. The Smithsonian's Global Volcanism Program (GVP) has developed a network of correspondents while reporting worldwide volcanism for over 30 years in their monthly Bulletin of the Global Volcanism Network. The US Geological Survey's Volcano Hazards Program studies and monitors volcanoes in the United States and responds (upon invitation) to selected volcanic crises in other countries. The Weekly Volcanic Activity Report is one of the most popular sites on both organization's websites. The core of the Weekly Volcanic Activity Report is the brief summaries of current volcanic activity around the world. In addition to discussing various types of volcanism, the summaries also describe precursory activity (e.g. volcanic seismicity, deformation, and gas emissions), secondary activity (e.g. debris flows, mass wasting, and rockfalls), volcanic ash hazards to aviation, and preventative measures. The summaries are supplemented by links to definitions of technical terms found in the USGS photoglossary of volcano terms, links to information sources, and background information about reported volcanoes. The site also includes maps that highlight the location of reported volcanoes, an archive of weekly reports sorted by volcano and date, and links to commonly used acronyms. Since the Weekly Volcanic Activity Report's inception in November 2000, activity has been reported at

  20. 2015 USGS-MDEQ Lidar: Coastal Mississippi QL2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This task is issued under USGS Contract No. G10PC00057, Task Order No. G15PD00091. This task order requires lidar data to be acquired over approximately 5981 square...

  1. 2013 USGS-NRCS Lidar: Maine (Cumberland, Kennebec and York)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: NRCS Maine 0.7M NPS LIDAR LiDAR Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G13PD00954 Woolpert Order No....

  2. ECNS '99 - Young scientists forum

    DEFF Research Database (Denmark)

    Ceretti, M.; Janssen, S.; McMorrow, D.F.

    2000-01-01

    The Young Scientists Forum is a new venture for ECNS and follows the established tradition of an active participation by young scientists in these conferences. At ECNS '99 the Young Scientists Forum brought together 30 young scientists from 13 European countries. In four working groups, they disc......The Young Scientists Forum is a new venture for ECNS and follows the established tradition of an active participation by young scientists in these conferences. At ECNS '99 the Young Scientists Forum brought together 30 young scientists from 13 European countries. In four working groups......, they discussed emerging scientific trends in their areas of expertise and the instrumentation required to meet the scientific challenges. The outcome was presented in the Young Scientists Panel on the final day of ECNS '99. This paper is a summary of the four working group reports prepared by the Group Conveners...

  3. USGS Zebra Mussel Monitoring Program for north Texas

    Science.gov (United States)

    Churchill, Christopher J.; Baldys, Stanley

    2012-01-01

    The U.S. Geological Survey (USGS) Zebra Mussel Monitoring Program for north Texas provides early detection and monitoring of zebra mussels (Dreissena polymorpha) by using a holistic suite of detection methods. The program is designed to assess zebra mussel occurrence, distribution, and densities in north Texas waters by using four approaches: (1) SCUBA diving, (2) water-sample collection with plankton tow nets (followed by laboratory analyses), (3) artificial substrates, and (4) water-quality sampling. Data collected during this type of monitoring can assist rapid response efforts and can be used to quantify the economic and ecological effects of zebra mussels in the north Texas area. Monitoring under this program began in April 2010. The presence of large zebra mussel populations often causes undesirable economic and ecological effects, including damage to water-processing infrastructure and hydroelectric powerplants (with an estimated 10-year cost of $3.1 billion), displacement of native mussels, increases in concentrations of certain species of cyanobacteria, and increases in concentrations of geosmin (an organic compound that results in taste and odor issues in water). Since no large-scale, environmentally safe eradication method has been developed for zebra mussels, it is difficult to remove established populations. Broad physicochemical adaptability, prolific reproductive capacity, and rapid dispersal methods have enabled zebra mussels, within a period of about 20 years, to establish populations under differing environmental conditions across much of the eastern part of the United States. In Texas, the presence of zebra mussels was first confirmed in April 2009 in Lake Texoma in the Red River Basin along the Texas-Oklahoma border. They were most likely introduced into Lake Texoma through overland transport from an infested water body. Since then, the presence of zebra mussels has been reported in both the Red River and Washita River arms of Lake Texoma, in

  4. Ernest Rutherford: scientist supreme

    International Nuclear Information System (INIS)

    Campbell, J.

    1998-01-01

    One hundred years ago this month, Ernest Rutherford a talented young New Zealander who had just spent three years as a postgraduate student in Britain left for Canada, where he was to do the work that won him a Nobel prize. All three countries can justifiably claim this great scientist as their own. Ernest Rutherford is one of the most illustrious scientists that the world has ever seen. He achieved enduring international fame because of an incredibly productive life, during which he altered our view of nature on three separate occasions. Combining brilliantly conceived experiments with much hard work and special insight, he explained the perplexing problem of naturally occurring radioactivity, determined the structure of the atom, and was the world's first successful alchemist, changing nitrogen into oxygen. Rutherford received a Nobel prize for the first discovery, but the other two would have been equally worthy candidates, had they been discovered by someone else. Indeed, any one of his other secondary achievements many of which are now almost forgotten would have been enough to bring fame to a lesser scientist. For example, he invented an electrical method for detecting individual ionizing radiations, he dated the age of the Earth, and briefly held the world record for the distance over which wireless waves could be detected. He predicted the existence of neutrons, he oversaw the development of large-scale particle accelerators, and, during the First World War, he led the allied research into the detection of submarines. In this article the author describes the life and times of Ernest Rutherford. (UK)

  5. Chemistry for environmental scientists

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Detlev [Brandenburgische Technische Univ., Berlin (Germany). Lehrstuhl fuer Luftchemie und Luftreinhaltung

    2015-07-01

    Non-chemists in environmental sciences and engineering (e.g. physicists, biologists, ecologists, geographers, soil scientists, hydrologists, meteorologists, economists, engineers) need chemical basic knowledge for understanding chemical processes in the environment. This book focuses on general and fundamental chemistry (including required physics) such as properties and bonding of matter, chemical kinetics and mechanisms, phase and chemical equilibrium, the basic features of air (gases), water (liquids) and soil (solids) and the most important substances and their reactions in the environment. Selected key environmental chemical processes are shortly characterised in the light of multi-component and multiphase chemistry. This book is also useful for chemists who are beginning work on environmental issues.

  6. Soviet scientists speak out

    International Nuclear Information System (INIS)

    Holloway, D.

    1993-01-01

    In this article, Russian bomb designers answer the KGB's claim that espionage, not science, produced the Soviet bomb. Yuli Khariton and Yuri Smirnov wholly reject the argument that Soviet scientists can claim little credit for the first Soviet bomb. In a lecture delivered at the Kurchatov Institute, established in 1943 when Igor Kurchatov became the director of the Soviet nuclear weapons project, Khariton and Smironov point to the work done by Soviet nuclear physicists before 1941 and refute assertions that have been made in Western literature regarding the hydrogen bomb

  7. Chemistry for environmental scientists

    International Nuclear Information System (INIS)

    Moeller, Detlev

    2015-01-01

    Non-chemists in environmental sciences and engineering (e.g. physicists, biologists, ecologists, geographers, soil scientists, hydrologists, meteorologists, economists, engineers) need chemical basic knowledge for understanding chemical processes in the environment. This book focuses on general and fundamental chemistry (including required physics) such as properties and bonding of matter, chemical kinetics and mechanisms, phase and chemical equilibrium, the basic features of air (gases), water (liquids) and soil (solids) and the most important substances and their reactions in the environment. Selected key environmental chemical processes are shortly characterised in the light of multi-component and multiphase chemistry. This book is also useful for chemists who are beginning work on environmental issues.

  8. Medical laboratory scientist

    DEFF Research Database (Denmark)

    Smith, Julie; Qvist, Camilla Christine; Jacobsen, Katja Kemp

    2017-01-01

    Previously, biomarker research and development was performed by laboratory technicians working as craftsmen in laboratories under the guidance of medical doctors. This hierarchical structure based on professional boundaries appears to be outdated if we want to keep up with the high performance...... of our healthcare system, and take advantage of the vast potential of future biomarkers and personalized medicine. We ask the question; does our healthcare system benefit from giving the modern medical laboratory scientist (MLS) a stronger academic training in biomarker research, development...

  9. Joint US Geological Survey, US Nuclear Regulatory Commission workshop on research related to low-level radioactive waste disposal, May 4-6, 1993, National Center, Reston, Virginia; Proceedings

    Science.gov (United States)

    Stevens, Peter R.; Nicholson, Thomas J.

    1996-01-01

    This report contains papers presented at the "Joint U.S. Geological Survey (USGS) and U.S. Nuclear Regulatory Commission (NRC) Technical Workshop on Research Related to Low-Level Radioactive Waste (LLW) Disposal" that was held at the USGS National Center Auditorium, Reston, Virginia, May 4-6, 1993. The objective of the workshop was to provide a forum for exchange of information, ideas, and technology in the geosciences dealing with LLW disposal. This workshop was the first joint activity under the Memorandum of Understanding between the USGS and NRC's Office of Nuclear Regulatory Research signed in April 1992.Participants included invited speakers from the USGS, NRC technical contractors (U.S. Department of Energy (DOE) National Laboratories and universities) and NRC staff for presentation of research study results related to LLW disposal. Also in attendance were scientists from the DOE, DOE National Laboratories, the U.S. Environmental Protection Agency, State developmental and regulatory agencies involved in LLW disposal facility siting and licensing, Atomic Energy Canada Limited (AECL), private industry, Agricultural Research Service, universities, USGS and NRC.

  10. Scientists in the public sphere: Interactions of scientists and journalists in Brazil.

    Science.gov (United States)

    Massarani, Luisa; Peters, Hans P

    2016-06-07

    In order to map scientists' views on media channels and explore their experiences interacting with journalists, the authors conducted a survey of about 1,000 Brazilian scientists. Results indicate that scientists have clear and high expectations about how journalists should act in reporting scientific information in the media, but such expectations, in their opinion, do not always seem to be met. Nonetheless, the results show that surveyed scientists rate their relation with the media positively: 67% say that having their research covered by media has a positive impact on their colleagues. One quarter of the respondents expressed that talking to the media can facilitate acquisition of more funds for research. Moreover, 38% of the total respondents believe that writing about an interesting topic for release on media channels can also facilitate research publication in a scientific journal. However, 15% of the respondents outright agree that research reported in the media beforehand can threaten acceptance for publication by a scientific journal. We hope that these results can foster some initiatives for improving awareness of the two cultures, scientists and journalists; increasing the access of journalists to Brazilian scientific endeavors; stimulating scientists to communicate with the public via social networks.

  11. The Use of Internet by Academic Scientists in Modibbo Adama ...

    African Journals Online (AJOL)

    The internet is an important tool for communication and retrieval of information. This study examined the use of internet in communication and retrieval of information by scientists in Modibbo Adama University of Technology, Yola.The survey method was used for the study. A total of 95 scientists in the school of pure and ...

  12. The immoral landscape? Scientists are associated with violations of morality

    NARCIS (Netherlands)

    Rutjens, B.T.; Heine, S.J.

    2016-01-01

    Do people think that scientists are bad people? Although surveys find that science is a highly respected profession, a growing discourse has emerged regarding how science is often judged negatively. We report ten studies (N = 2328) that investigated morality judgments of scientists and compared

  13. The Normative Orientations of Climate Scientists.

    Science.gov (United States)

    Bray, Dennis; von Storch, Hans

    2017-10-01

    In 1942 Robert K. Merton tried to demonstrate the structure of the normative system of science by specifying the norms that characterized it. The norms were assigned the abbreviation CUDOs: Communism, Universalism, Disinterestedness, and Organized skepticism. Using the results of an on-line survey of climate scientists concerning the norms of science, this paper explores the climate scientists' subscription to these norms. The data suggests that while Merton's CUDOs remain the overall guiding moral principles, they are not fully endorsed or present in the conduct of climate scientists: there is a tendency to withhold results until publication, there is the intention of maintaining property rights, there is external influence defining research and the tendency to assign the significance of authored work according to the status of the author rather than content of the paper. These are contrary to the norms of science as proposed by Robert K. Merton.

  14. WFIRST CGI Adjutant Scientist

    Science.gov (United States)

    Kasdin, N.

    One of the most exciting developments in exoplanet science is the inclusion of a coronagraph instrument on WFIRST. After more than 20 years of research and development on coronagraphy and wavefront control, the technology is ready for a demonstration in space and to be used for revolutionary science. Good progress has already been made at JPL and partner institutions on the coronagraph technology and instrument design and test. The next five years as we enter Phase A will be critical for raising the TRL of the coronagraph to the needed level for flight and for converging on a design that is robust, low risk, and meets the science requirements. In addition, there is growing excitement over the possibility of rendezvousing an occulter with WFIRST/AFTA as a separate mission; this would both demonstrate that important technology and potentially dramatically enhance the science reach, introducing the possibility of imaging Earth-like planets in the habitable zone of nearby stars. In this proposal I will be applying for the Coronagraph Adjutant Scientist (CAS) position. I bring to the position the background and skills needed to be an effective liaison between the project office, the instrument team, and the Science Investigation Team (SIT). My background in systems engineering before coming to Princeton (I was Chief Systems Engineer for the Gravity Probe-B mission) and my 15 years of working closely with NASA on both coronagraph and occulter technology make me well-suited to the role. I have been a lead coronagraph scientist for the WFIRST mission from the beginning, including as a member of the SDT. Together with JPL and NASA HQ, I helped organize the process for selecting the coronagraphs for the CGI, one of which, the shaped pupil, has been developed in my lab. All of the key algorithms for wavefront control (including EFC and Stroke Minimization) were originally developed by students or post-docs in my lab at Princeton. I am thus in a unique position to work with

  15. New biotite and muscovite isotopic reference materials, USGS57 and USGS58, for δ2H measurements–A replacement for NBS 30

    Science.gov (United States)

    Qi, Haiping; Coplen, Tyler B.; Gehre, Matthias; Vennemann, Torsten W.; Brand, Willi A.; Geilmann, Heike; Olack, Gerard; Bindeman, Ilya N.; Palandri, Jim; Huang, Li; Longstaffe, Fred J.

    2017-01-01

    The advent of continuous-flow isotope-ratio mass spectrometry (CF-IRMS) coupled with a high temperature conversion (HTC) system enabled faster, more cost effective, and more precise δ2H analysis of hydrogen-bearing solids. Accurate hydrogen isotopic analysis by on-line or off-line techniques requires appropriate isotopic reference materials (RMs). A strategy of two-point calibrations spanning δ2H range of the unknowns using two RMs is recommended. Unfortunately, the supply of the previously widely used isotopic RM, NBS 30 biotite, is exhausted. In addition, recent measurements have shown that the determination of δ2H values of NBS 30 biotite on the VSMOW-SLAP isotope-delta scale by on-line HTC systems with CF-IRMS may be unreliable because hydrogen in this biotite may not be converted quantitatively to molecular hydrogen. The δ2HVSMOW-SLAP values of NBS 30 biotite analyzed by on-line HTC systems can be as much as 21 mUr (or ‰) too positive compared to the accepted value of − 65.7 mUr, determined by only a few conventional off-line measurements. To ensure accurate and traceable on-line hydrogen isotope-ratio determinations in mineral samples, we here propose two isotopically homogeneous, hydrous mineral RMs with well-characterized isotope-ratio values, which are urgently needed. The U.S. Geological Survey (USGS) has prepared two such RMs, USGS57 biotite and USGS58 muscovite. The δ2H values were determined by both glassy carbon-based on-line conversion and chromium-based on-line conversion, and results were confirmed by off-line conversion. The quantitative conversion of hydrogen from the two RMs using the on-line HTC method was carefully evaluated in this study. The isotopic compositions of these new RMs with 1-σ uncertainties and mass fractions of hydrogen are:USGS57 (biotite)δ2HVSMOW-SLAP = − 91.5 ± 2.4 mUr (n = 24)Mass fraction hydrogen = 0.416 ± 0.002% (n = 4)Mass fraction water = 3.74 ± 0.02% (n = 4)USGS58 (muscovite

  16. How Scientists Can Become Entrepreneurs.

    Science.gov (United States)

    Thon, Jonathan N; Karlsson, Sven

    2017-05-01

    Translating basic research discoveries through entrepreneurship must be scientist driven and institutionally supported to be successful (not the other way around). Here, we describe why scientists should engage in entrepreneurship, where institutional support for scientist-founders falls short, and how these challenges can be overcome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. USGS library for S-PLUS for Windows -- Release 4.0

    Science.gov (United States)

    Lorenz, David L.; Ahearn, Elizabeth A.; Carter, Janet M.; Cohn, Timothy A.; Danchuk, Wendy J.; Frey, Jeffrey W.; Helsel, Dennis R.; Lee, Kathy E.; Leeth, David C.; Martin, Jeffrey D.; McGuire, Virginia L.; Neitzert, Kathleen M.; Robertson, Dale M.; Slack, James R.; Starn, J. Jeffrey; Vecchia, Aldo V.; Wilkison, Donald H.; Williamson, Joyce E.

    2011-01-01

    Release 4.0 of the U.S. Geological Survey S-PLUS library supercedes release 2.1. It comprises functions, dialogs, and datasets used in the U.S. Geological Survey for the analysis of water-resources data. This version does not contain ESTREND, which was in version 2.1. See Release 2.1 for information and access to that version. This library requires Release 8.1 or later of S-PLUS for Windows. S-PLUS is a commercial statistical and graphical analysis software package produced by TIBCO corporation(http://www.tibco.com/). The USGS library is not supported by TIBCO or its technical support staff.

  18. Salish Kootenai College and U.S. Geological Survey partnership—Enhancing student opportunities and professional development

    Science.gov (United States)

    Sando, Roy; Fordham, Monique

    2017-08-29

    Salish Kootenai College (SKC), in the Flathead Reservation in the northwestern corner of Montana, is the largest of the seven Tribal colleges in the State. In 2011, U.S. Geological Survey (USGS) National Tribal Liaison Monique Fordham from the Office of Tribal Relations/Office of Science Quality and Integrity began discussions with SKC faculty to examine ways the USGS could assist with classes taught as part of the new hydrology program at the college. With funding provided by the USGS Office of Tribal Relations, Roy Sando from the Wyoming-Montana Water Science Center began collaborating with SKC. From 2012 to 2017, Sando and others have developed and taught eight educational workshops at SKC. Topics of the workshops have included classifying land cover using remote sensing, characterizing stream channel migration, estimating actual evapotranspiration, modeling groundwater contamination plumes, and building custom geographic information system tools. By contributing to the educational training of SKC students and establishing this high level of collaboration with a Tribal college, the USGS is demonstrating its commitment to helping build the next generation of Tribal scientists.

  19. USGS Integration of New Science and Technology, Appendix A

    Science.gov (United States)

    Brey, Marybeth; Knights, Brent C.; Cupp, Aaron R.; Amberg, Jon J.; Chapman, Duane C.; Calfee, Robin D.; Duncker, James J.

    2017-01-01

    This product summarizes the USGS plans for integration of new science and technology into Asian Carp control efforts for 2017. This includes the 1) implementation and evaluation of new tactics and behavioral information for monitoring, surveillance, control and containment; 2) understanding behavior and reproduction of Asian carp in established and emerging populations to inform deterrent deployment, rapid response, and removal efforts; and 3) development and evaluation of databases, decision support tools and performance measures.

  20. A PRACTICAL METHOD FOR QUANTIFICATION OF PLEURAL EFFUSION BY USG

    OpenAIRE

    Swish Kumar; Dinesh Kumar; Suganita; Singh; Vijay Shankar; Rajeev; Ajay; Anjali

    2016-01-01

    OBJECTIVE The aim of this study is to find a correlation between pleural separation and amount of aspirated effusion. METHODS Total 20 adult patients with 25 effusions were taken into the study with chest x-ray showing homogeneous opacity in either one or both of the lung field, which was confirmed on USG. Only uncomplicated pleural effusion were taken into study. Effusion with septations or encysted effusion or pyothorax were excluded from the study. RESULTS...

  1. Python for scientists

    CERN Document Server

    Stewart, John M

    2017-01-01

    Scientific Python is a significant public domain alternative to expensive proprietary software packages. This book teaches from scratch everything the working scientist needs to know using copious, downloadable, useful and adaptable code snippets. Readers will discover how easy it is to implement and test non-trivial mathematical algorithms and will be guided through the many freely available add-on modules. A range of examples, relevant to many different fields, illustrate the language's capabilities. The author also shows how to use pre-existing legacy code (usually in Fortran77) within the Python environment, thus avoiding the need to master the original code. In this new edition, several chapters have been re-written to reflect the IPython notebook style. With an extended index, an entirely new chapter discussing SymPy and a substantial increase in the number of code snippets, researchers and research students will be able to quickly acquire all the skills needed for using Python effectively.

  2. Voices of Romanian scientists

    CERN Multimedia

    Stefania Pandolfi

    2016-01-01

    As Romania has now become a Member State of CERN, Romanian scientists share their thoughts about this new era of partnership for their community.   Members of ATLAS from Romanian institutes at CERN (from left to right): Dan Ciubotaru, Michele Renda, Bogdan Blidaru, Alexandra Tudorache, Marina Rotaru, Ana Dumitriu, Valentina Tudorache, Adam Jinaru, Calin Alexa. On 17 July 2016, Romania became the twenty-second Member State of CERN, 25 years after the first cooperation agreement with the country was signed. “CERN and Romania already have a long history of strong collaboration”, says Emmanuel Tsesmelis, head of Relations with Associate Members and Non-Member States. “We very much look forward to strengthening this collaboration as Romania becomes CERN’s twenty-second Member State, which promises the development of mutual interests in scientific research, related technologies and education,” he affirms. Romania&...

  3. Forgotten women the scientists

    CERN Document Server

    Tsjeng, Zing

    2018-01-01

    The women who shaped and were erased from our history. The Forgotten Women series will uncover the lost histories of the influential women who have refused over hundreds of years to accept the hand they've been dealt and, as a result, have formed, shaped and changed the course of our futures. The Scientists celebrates 48* unsung scientific heroines whose hugely important, yet broadly unacknowledged or incorrectly attributed, discoveries have transformed our understanding of the scientific world. Mary Anning, the amateur paleontologist whose fossil findings changed scientific thinking about prehistoric life Emmy Noether, dubbed "The Mighty Mathematician You've Never Heard Of" Ynés Mexía, the Mexican-American botanist who discovered over 500 new plant species Wangari Maathai, who started an environmental and ecological revolution in Kenya Margaret Sanger, the maverick nurse who paved the way for the legalization of contraception Chapters including Earth & Universe; Biology & N...

  4. A Serendipitous Scientist.

    Science.gov (United States)

    Lefkowitz, Robert J

    2018-01-06

    Growing up in a middle-class Jewish home in the Bronx, I had only one professional goal: to become a physician. However, as with most of my Vietnam-era MD colleagues, I found my residency training interrupted by the Doctor Draft in 1968. Some of us who were academically inclined fulfilled this obligation by serving in the US Public Health Service as commissioned officers stationed at the National Institutes of Health. This experience would eventually change the entire trajectory of my career. Here I describe how, over a period of years, I transitioned from the life of a physician to that of a physician-scientist; my 50 years of work on cellular receptors; and some miscellaneous thoughts on subjects as varied as Nobel prizes, scientific lineages, mentoring, publishing, and funding.

  5. Radiation Technician Scientist service

    International Nuclear Information System (INIS)

    Prieto Miranda, Enrique; Barrera Gonzalez, Gisela; Guerra Torres, Mercedes; Mora Lopez, Leonor; Altanes Valentin, Sonia; Rapado Paneque, Manuel; Plasencia Gutierrez, Manuel

    2003-01-01

    The irradiation service is part of the specialized technician scientist services of the Center of Technological Applications and Nuclear Development it belonging to the Radiobiological Department it provides a self shielded laboratory irradiator, PX y 30 type with Cobalt 60 sources, it destined for searches studies, so much basic as applying, in several branches of the science, like the radiobiology, the radiation chemistry, the solid state physics, the medicine, the agriculture and the Pharmaceutical- Medical Industry and besides offering the irradiation service properly with the which have been gotten significant economical outputs. The radiation processing is controlled by means of the dosimetric systems of Freckle, ceric cerous sulfate, Perspex (red, clear and Amber) and dose indicators

  6. Three whole-wood isotopic reference materials, USGS54, USGS55, and USGS56, for δ2H, δ13C, δ15N, and δ18O measurements

    Science.gov (United States)

    Qi, Haiping; Coplen, Tyler B.; Jordan, James A.

    2016-01-01

    Comparative measurements of stable hydrogen and oxygen isotopes in wood are hampered by the lack of proper reference materials (RMs). The U.S. Geological Survey (USGS) has prepared three powdered, whole-wood RMs, USGS54 (Pinus contorta, Canadian lodgepole pine), USGS55 (Cordia cf. dodecandra, Mexican ziricote), and USGS56 (Berchemia cf. zeyheri, South African red ivorywood). The stable isotopes of hydrogen, oxygen, carbon, and nitrogen in these RMs span ranges as δ2HVSMOW from –150.4 to –28.2 mUr or ‰, as δ18OVSMOW from + 17.79 to + 27.23 mUr, as δ13CVPDB from –27.13 to –24.34 mUr, and as δ15N AIR-N2 from –2.42 to + 1.8 mUr. These RMs will enable users to normalize measurements of wood samples to isotope–delta scales, and they are intended primarily for the normalization of δ2H and δ18O measurements of unknown wood samples. However, they also are suitable for normalization of stable isotope measurements of carbon and nitrogen in wood samples. In addition, these RMs are suitable for inter-laboratory calibration for the dual-water suilibration procedure for the measurements of δ2HVSMOW values of non-exchangeable hydrogen. The isotopic compositions with 1-σ uncertainties, mass fractions of each element, and fractions of exchangeable hydrogen of these materials are:USGS54 (Pinus contorta, Canadian Lodgepole pine)δ2HVSMOW = –150.4 ± 1.1 mUr (n = 29), hydrogen mass fraction = 6.00 ± 0.04 % (n = 10)Fraction of exchangeable hydrogen = 5.4 ± 0.6 % (n = 29)δ18OVSMOW = + 17.79 ± 0.15 mUr (n = 18), oxygen mass fraction = 40.4 ± 0.2 % (n = 6)δ13CVPDB = –24.43 ± 0.02 mUr (n = 18), carbon mass fraction = 48.3 ± 0.4 % (n = 12)δ15NAIR-N2 = –2.42 ± 0.32 mUr (n = 17), nitrogen mass fraction = 0.05 % (n = 4)USGS55 (Cordia cf. dodecandra, Mexican ziricote)δ2HVSMOW = –28.2 ± 1.7 mUr (n = 30), hydrogen mass fraction = 5.65 ± 0.06 % (n = 10)Fraction of exchangeable

  7. USGS Tweet Earthquake Dispatch (@USGSted): Using Twitter for Earthquake Detection and Characterization

    Science.gov (United States)

    Liu, S. B.; Bouchard, B.; Bowden, D. C.; Guy, M.; Earle, P.

    2012-12-01

    The U.S. Geological Survey (USGS) is investigating how online social networking services like Twitter—a microblogging service for sending and reading public text-based messages of up to 140 characters—can augment USGS earthquake response products and the delivery of hazard information. The USGS Tweet Earthquake Dispatch (TED) system is using Twitter not only to broadcast seismically-verified earthquake alerts via the @USGSted and @USGSbigquakes Twitter accounts, but also to rapidly detect widely felt seismic events through a real-time detection system. The detector algorithm scans for significant increases in tweets containing the word "earthquake" or its equivalent in other languages and sends internal alerts with the detection time, tweet text, and the location of the city where most of the tweets originated. It has been running in real-time for 7 months and finds, on average, two or three felt events per day with a false detection rate of less than 10%. The detections have reasonable coverage of populated areas globally. The number of detections is small compared to the number of earthquakes detected seismically, and only a rough location and qualitative assessment of shaking can be determined based on Tweet data alone. However, the Twitter detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The main benefit of the tweet-based detections is speed, with most detections occurring between 19 seconds and 2 minutes from the origin time. This is considerably faster than seismic detections in poorly instrumented regions of the world. Going beyond the initial detection, the USGS is developing data mining techniques to continuously archive and analyze relevant tweets for additional details about the detected events. The information generated about an event is displayed on a web-based map designed using HTML5 for the mobile environment, which can be valuable when the user is not able to access a

  8. U.S. Geological Survey core science systems strategy: characterizing, synthesizing, and understanding the critical zone through a modular science framework

    Science.gov (United States)

    Bristol, R. Sky; Euliss, Ned H.; Booth, Nathaniel L.; Burkardt, Nina; Diffendorfer, Jay E.; Gesch, Dean B.; McCallum, Brian E.; Miller, David M.; Morman, Suzette A.; Poore, Barbara S.; Signell, Richard P.; Viger, Roland J.

    2013-01-01

    Core Science Systems is a new mission of the U.S. Geological Survey (USGS) that resulted from the 2007 Science Strategy, "Facing Tomorrow's Challenges: U.S. Geological Survey Science in the Decade 2007-2017." This report describes the Core Science Systems vision and outlines a strategy to facilitate integrated characterization and understanding of the complex Earth system. The vision and suggested actions are bold and far-reaching, describing a conceptual model and framework to enhance the ability of the USGS to bring its core strengths to bear on pressing societal problems through data integration and scientific synthesis across the breadth of science. The context of this report is inspired by a direction set forth in the 2007 Science Strategy. Specifically, ecosystem-based approaches provide the underpinnings for essentially all science themes that define the USGS. Every point on Earth falls within a specific ecosystem where data, other information assets, and the expertise of USGS and its many partners can be employed to quantitatively understand how that ecosystem functions and how it responds to natural and anthropogenic disturbances. Every benefit society obtains from the planet-food, water, raw materials to build infrastructure, homes and automobiles, fuel to heat homes and cities, and many others, are derived from or affect ecosystems. The vision for Core Science Systems builds on core strengths of the USGS in characterizing and understanding complex Earth and biological systems through research, modeling, mapping, and the production of high quality data on the Nation's natural resource infrastructure. Together, these research activities provide a foundation for ecosystem-based approaches through geologic mapping, topographic mapping, and biodiversity mapping. The vision describes a framework founded on these core mapping strengths that makes it easier for USGS scientists to discover critical information, share and publish results, and identify potential

  9. ASTER and USGS EROS disaster response: emergency imaging after Hurricane Katrina

    Science.gov (United States)

    Duda, Kenneth A.; Abrams, Michael

    2005-01-01

    The value of remotely sensed imagery during times of crisis is well established, and the increasing spatial and spectral resolution in newer systems provides ever greater utility and ability to discriminate features of interest (International Charter, Space and Major Disasters, 2005). The existing suite of sensors provides an abundance of data, and enables warning alerts to be broadcast for many situations in advance. In addition, imagery acquired soon after an event occurs can be used to assist response and remediation teams in identifying the extent of the affected area and the degree of damage. The data characteristics of the Advanced Spaceborne Thermal Emission and Refl ection Radiometer (ASTER) are well-suited for monitoring natural hazards and providing local and regional views after disaster strikes. For this reason, and because of the system fl exibility in scheduling high-priority observations, ASTER is often tasked to support emergency situations. The Emergency Response coordinators at the United States Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) work closely with staff at the National Aeronautics and Space Administration (NASA) Land Processes Distributed Active Archive Center (LP DAAC) at EROS and the ASTER Science Team as they fulfi ll their mission to acquire and distribute data during critical situations. This article summarizes the role of the USGS/EROS Emergency Response coordinators, and provides further discussion of ASTER data and the images portrayed on the cover of this issue

  10. Patterns of Seismicity Associated with USGS Identified Areas of Potentially Induced Seismicity.

    Science.gov (United States)

    Barnes, Caitlin; Halihan, Todd

    2018-03-13

    A systematic review across U.S. Geological Survey (USGS) identified potentially induced seismic locations was conducted to discover seismic distance patterns and trends over time away from injection disposal wells. Previous research indicates a 10 km (6 miles) average where the majority of induced seismicity is expected to occur within individual locations, with some areas reporting a larger radius of 35 km (22 miles) to over 70 km (43 miles). This research analyzed earthquake occurrences within nine USGS locations where specified wells were identified as contributors to induced seismicity to determine distance patterns from disposal wells or outward seismic migration over time using established principles of hydrogeology. Results indicate a radius of 31.6 km (20 miles) where 90% of felt earthquakes occur among locations, with the closest proximal felt seismic events, on average, occurring 3 km (1.9 miles) away from injection disposal wells. The results of this research found distance trends across multiple locations of potentially induced seismicity. © 2018, National Ground Water Association.

  11. USGS "Did You Feel It?" internet-based macroseismic intensity maps

    Science.gov (United States)

    Wald, D.J.; Quitoriano, V.; Worden, B.; Hopper, M.; Dewey, J.W.

    2011-01-01

    The U.S. Geological Survey (USGS) "Did You Feel It?" (DYFI) system is an automated approach for rapidly collecting macroseismic intensity data from Internet users' shaking and damage reports and generating intensity maps immediately following earthquakes; it has been operating for over a decade (1999-2011). DYFI-based intensity maps made rapidly available through the DYFI system fundamentally depart from more traditional maps made available in the past. The maps are made more quickly, provide more complete coverage and higher resolution, provide for citizen input and interaction, and allow data collection at rates and quantities never before considered. These aspects of Internet data collection, in turn, allow for data analyses, graphics, and ways to communicate with the public, opportunities not possible with traditional data-collection approaches. Yet web-based contributions also pose considerable challenges, as discussed herein. After a decade of operational experience with the DYFI system and users, we document refinements to the processing and algorithmic procedures since DYFI was first conceived. We also describe a number of automatic post-processing tools, operations, applications, and research directions, all of which utilize the extensive DYFI intensity datasets now gathered in near-real time. DYFI can be found online at the website http://earthquake.usgs.gov/dyfi/. ?? 2011 by the Istituto Nazionale di Geofisica e Vulcanologia.

  12. U.S. Geological Survey: A synopsis of Three-dimensional Modeling

    Science.gov (United States)

    Jacobsen, Linda J.; Glynn, Pierre D.; Phelps, Geoff A.; Orndorff, Randall C.; Bawden, Gerald W.; Grauch, V.J.S.

    2011-01-01

    The U.S. Geological Survey (USGS) is a multidisciplinary agency that provides assessments of natural resources (geological, hydrological, biological), the disturbances that affect those resources, and the disturbances that affect the built environment, natural landscapes, and human society. Until now, USGS map products have been generated and distributed primarily as 2-D maps, occasionally providing cross sections or overlays, but rarely allowing the ability to characterize and understand 3-D systems, how they change over time (4-D), and how they interact. And yet, technological advances in monitoring natural resources and the environment, the ever-increasing diversity of information needed for holistic assessments, and the intrinsic 3-D/4-D nature of the information obtained increases our need to generate, verify, analyze, interpret, confirm, store, and distribute its scientific information and products using 3-D/4-D visualization, analysis, modeling tools, and information frameworks. Today, USGS scientists use 3-D/4-D tools to (1) visualize and interpret geological information, (2) verify the data, and (3) verify their interpretations and models. 3-D/4-D visualization can be a powerful quality control tool in the analysis of large, multidimensional data sets. USGS scientists use 3-D/4-D technology for 3-D surface (i.e., 2.5-D) visualization as well as for 3-D volumetric analyses. Examples of geological mapping in 3-D include characterization of the subsurface for resource assessments, such as aquifer characterization in the central United States, and for input into process models, such as seismic hazards in the western United States.

  13. Quality assurance and quality control of geochemical data—A primer for the research scientist

    Science.gov (United States)

    Geboy, Nicholas J.; Engle, Mark A.

    2011-01-01

    Geochemistry is a constantly expanding science. More and more, scientists are employing geochemical tools to help answer questions about the Earth and earth system processes. Scientists may assume that the responsibility of examining and assessing the quality of the geochemical data they generate is not theirs but rather that of the analytical laboratories to which their samples have been submitted. This assumption may be partially based on knowledge about internal and external quality assurance and quality control (QA/QC) programs in which analytical laboratories typically participate. Or there may be a perceived lack of time or resources to adequately examine data quality. Regardless of the reason, the lack of QA/QC protocols can lead to the generation and publication of erroneous data. Because the interpretations drawn from the data are primary products to U.S. Geological Survey (USGS) stakeholders, the consequences of publishing erroneous results can be significant. The principal investigator of a scientific study ultimately is responsible for the quality and interpretation of the project's findings, and thus must also play a role in the understanding, implementation, and presentation of QA/QC information about the data. Although occasionally ignored, QA/QC protocols apply not only to procedures in the laboratory but also in the initial planning of a research study and throughout the life of the project. Many of the tenets of developing a sound QA/QC program or protocols also parallel the core concepts of developing a good study: What is the main objective of the study? Will the methods selected provide data of enough resolution to answer the hypothesis? How should samples be collected? Are there known or unknown artifacts or contamination sources in the sampling and analysis methods? Assessing data quality requires communication between the scientists responsible for designing the study and those collecting samples, analyzing samples, treating data, and

  14. USGS compilation of geographic information system (GIS) data of coal mines and coal-bearing areas in Mongolia

    Science.gov (United States)

    Trippi, Michael H.; Belkin, Harvey E.

    2015-09-10

    Geographic information system (GIS) information may facilitate energy studies, which in turn provide input for energy policy decisions. The U.S. Geological Survey (USGS) has compiled GIS data representing coal mines, deposits (including those with and without coal mines), occurrences, areas, basins, and provinces of Mongolia as of 2009. These data are now available for download, and may be used in a GIS for a variety of energy resource and environmental studies of Mongolia. Chemical data for 37 coal samples from a previous USGS study of Mongolia (Tewalt and others, 2010) are included in a downloadable GIS point shapefile and shown on the map of Mongolia. A brief report summarizes the methodology used for creation of the shapefiles and the chemical analyses run on the samples.

  15. U.S. Geological Survey continuous monitoring workshop—Workshop summary report

    Science.gov (United States)

    Sullivan, Daniel J.; Joiner, John K.; Caslow, Kerry A.; Landers, Mark N.; Pellerin, Brian A.; Rasmussen, Patrick P.; Sheets, Rodney A.

    2018-04-20

    Executive SummaryThe collection of high-frequency (in other words, “continuous”) water data has been made easier over the years because of advances in technologies to measure, transmit, store, and query large, temporally dense datasets. Commercially available, in-situ sensors and data-collection platforms—together with new techniques for data analysis—provide an opportunity to monitor water quantity and quality at time scales during which meaningful changes occur. The U.S. Geological Survey (USGS) Continuous Monitoring Workshop was held to build stronger collaboration within the Water Mission Area on the collection, interpretation, and application of continuous monitoring data; share technical approaches for the collection and management of continuous data that improves consistency and efficiency across the USGS; and explore techniques and tools for the interpretation of continuous monitoring data, which increases the value to cooperators and the public. The workshop was organized into three major themes: Collecting Continuous Data, Understanding and Using Continuous Data, and Observing and Delivering Continuous Data in the Future. Presentations each day covered a variety of related topics, with a special session at the end of each day designed to bring discussion and problem solving to the forefront.The workshop brought together more than 70 USGS scientists and managers from across the Water Mission Area and Water Science Centers. Tools to manage, assure, control quality, and explore large streams of continuous water data are being developed by the USGS and other organizations and will be critical to making full use of these high-frequency data for research and monitoring. Disseminating continuous monitoring data and findings relevant to critical cooperator and societal issues is central to advancing the USGS networks and mission. Several important outcomes emerged from the presentations and breakout sessions.

  16. Proceedings of a USGS Workshop on Facing Tomorrow's Challenges Along the U.S.-Mexico Border - Monitoring, Modeling, and Forecasting Change Within the Arizona-Sonora Transboundary Watersheds

    Science.gov (United States)

    Norman, Laura M.; Hirsch, Derrick D.; Ward, A. Wesley

    2008-01-01

    INTRODUCTION TO THE WORKSHOP PROCEEDINGS Competition for water resources, habitats, and urban areas in the Borderlands has become an international concern. In the United States, Department of Interior Bureaus, Native American Tribes, and other State and Federal partners rely on the U.S. Geological Survey (USGS) to provide unbiased science and leadership in the Borderlands region. Consequently, the USGS hosted a workshop, ?Facing Tomorrow?s Challenges along the U.S.-Mexico Border,? on March 20?22, 2007, in Tucson, Ariz., focused specifically on monitoring, modeling, and forecasting change within the Arizona-Sonora Transboundary Watersheds

  17. U.S. Geological Survey natural hazards science strategy: promoting the safety, security, and economic well-being of the Nation

    Science.gov (United States)

    Holmes, Robert R.; Jones, Lucile M.; Eidenshink, Jeffery C.; Godt, Jonathan W.; Kirby, Stephen H.; Love, Jeffrey J.; Neal, Christina A.; Plant, Nathaniel G.; Plunkett, Michael L.; Weaver, Craig S.; Wein, Anne; Perry, Suzanne C.

    2013-01-01

    The mission of the U.S. Geological Survey (USGS) in natural hazards is to develop and apply hazard science to help protect the safety, security, and economic well-being of the Nation. The costs and consequences of natural hazards can be enormous, and each year more people and infrastructure are at risk. USGS scientific research—founded on detailed observations and improved understanding of the responsible physical processes—can help to understand and reduce natural hazard risks and to make and effectively communicate reliable statements about hazard characteristics, such as frequency, magnitude, extent, onset, consequences, and where possible, the time of future events. To accomplish its broad hazard mission, the USGS maintains an expert workforce of scientists and technicians in the earth sciences, hydrology, biology, geography, social and behavioral sciences, and other fields, and engages cooperatively with numerous agencies, research institutions, and organizations in the public and private sectors, across the Nation and around the world. The scientific expertise required to accomplish the USGS mission in natural hazards includes a wide range of disciplines that this report refers to, in aggregate, as hazard science. In October 2010, the Natural Hazards Science Strategy Planning Team (H–SSPT) was charged with developing a long-term (10–year) Science Strategy for the USGS mission in natural hazards. This report fulfills that charge, with a document hereinafter referred to as the Strategy, to provide scientific observations, analyses, and research that are critical for the Nation to become more resilient to natural hazards. Science provides the information that decisionmakers need to determine whether risk management activities are worthwhile. Moreover, as the agency with the perspective of geologic time, the USGS is uniquely positioned to extend the collective experience of society to prepare for events outside current memory. The USGS has critical

  18. SAFRR Tsunami Scenarios and USGS-NTHMP Collaboration

    Science.gov (United States)

    Ross, S.; Wood, N. J.; Cox, D. A.; Jones, L.; Cheung, K. F.; Chock, G.; Gately, K.; Jones, J. L.; Lynett, P. J.; Miller, K.; Nicolsky, D.; Richards, K.; Wein, A. M.; Wilson, R. I.

    2015-12-01

    Hazard scenarios provide emergency managers and others with information to help them prepare for future disasters. The SAFRR Tsunami Scenario, published in 2013, modeled a hypothetical but plausible tsunami, created by an Mw9.1 earthquake occurring offshore from the Alaskan peninsula, and its impacts on the California coast. It presented the modeled inundation areas, current velocities in key ports and harbors, physical damage and repair costs, economic consequences, environmental impacts, social vulnerability, emergency management, and policy implications for California associated with the scenario tsunami. The intended users were those responsible for making mitigation decisions before and those who need to make rapid decisions during future tsunamis. It provided the basis for many exercises involving, among others, NOAA, the State of Washington, several counties in California, and the National Institutes of Health. The scenario led to improvements in the warning protocol for southern California and highlighted issues that led to ongoing work on harbor and marina safety. Building on the lessons learned in the SAFRR Tsunami Scenario, another tsunami scenario is being developed with impacts to Hawaii and to the source region in Alaska, focusing on the evacuation issues of remote communities with primarily shore parallel roads, and also on the effects of port closures. Community exposure studies in Hawaii (Ratliff et al., USGS-SIR, 2015) provided background for selecting these foci. One complicated and important aspect of any hazard scenario is defining the source event. The USGS is building collaborations with the National Tsunami Hazard Mitigation Program (NTHMP) to consider issues involved in developing a standardized set of tsunami sources to support hazard mitigation work. Other key USGS-NTHMP collaborations involve population vulnerability and evacuation modeling.

  19. Challenge theme 6: Natural hazard risks in the Borderlands: Chapter 8 in United States-Mexican Borderlands: Facing tomorrow's challenges through USGS science

    Science.gov (United States)

    Page, William R.; Parcher, Jean W.; Stefanov, Jim

    2013-01-01

    Natural hazards such as earthquakes, landslides and debris flows, wildfires, hurricanes, and intense storm-induced flash floods threaten communities to varying degrees all along the United States–Mexican border. The U.S. Geological Survey (USGS) collaborates with Federal, State, and local agencies to minimize the effects of natural hazards by providing timely, unbiased science information to emergency response officials, resource managers, and the public to help reduce property damage, injury, and loss of life. The USGS often mobilizes response efforts during and after a natural hazard event to provide technical and scientific counsel on recovery and response, and it has a long history of deploying emergency response teams to major disasters in both domestic and international locations. This chapter describes the challenges of natural hazards in the United States–Mexican border region and the capabilities of the USGS in the fields of hazard research, monitoring, and assessment, as well as preventative mitigation and post-disaster response.

  20. The USGS plan for short-term prediction of the anticipated Parkfield earthquake

    Science.gov (United States)

    Bakun, W.H.

    1988-01-01

    Aside from the goal of better understanding the Parkfield earthquake cycle, it is the intention of the U.S Geological Survey to attempt to issue a warning shortly before the anticipated earthquake. Although short-term earthquake warnings are not yet generally feasible, the wealth of information available for the previous significant Parkfield earthquakes suggests that if the next earthquake follows the pattern of "characteristic" Parkfield shocks, such a warning might be possible. Focusing on earthquake precursors reported for the previous  "characteristic" shocks, particulary the 1934 and 1966 events, the USGS developed a plan* in late 1985 on which to base earthquake warnings for Parkfield and has assisted State, county, and local officials in the Parkfield area to prepare a coordinated, reasonable response to a warning, should one be issued. 

  1. USGS science in the gulf oil spill: Novel science applications in a crisis

    Science.gov (United States)

    McNutt, M.

    2011-01-01

    Marcia McNutt reflects on the role of the US Geological Survey (USGS) team following the Deepwater Horizon oil spill. Secretary Salazar asked Marcia McNutt to lead the Flow Rate Technical Group, a team charged by National Incident Commander Adm. Thad Allen with improving estimates of the oil discharge rate from the Macondo well as quickly as possible. Given the unprecedented nature of this spill, the team moved rapidly to deploy every reasonable approach. The team estimated the plume velocity from deep-sea video and from Woods Hole Oceanographic Institution's acoustic Doppler current profiler. The team calculated the total volume of the spill using aircraft remote sensing. After the unsuccessful top kill attempt in late May, during which large volumes of mud were pumped down the flowing well, an important part of understanding the failure of the procedure was answering the question.

  2. Reducing risk where tectonic plates collide—U.S. Geological Survey subduction zone science plan

    Science.gov (United States)

    Gomberg, Joan S.; Ludwig, Kristin A.; Bekins, Barbara; Brocher, Thomas M.; Brock, John C.; Brothers, Daniel; Chaytor, Jason D.; Frankel, Arthur; Geist, Eric L.; Haney, Matt; Hickman, Stephen H.; Leith, William S.; Roeloffs, Evelyn A.; Schulz, William H.; Sisson, Thomas W.; Wallace, Kristi; Watt, Janet; Wein, Anne M.

    2017-06-19

    The U.S. Geological Survey (USGS) serves the Nation by providing reliable scientific information and tools to build resilience in communities exposed to subduction zone earthquakes, tsunamis, landslides, and volcanic eruptions. Improving the application of USGS science to successfully reduce risk from these events relies on whole community efforts, with continuing partnerships among scientists and stakeholders, including researchers from universities, other government labs and private industry, land-use planners, engineers, policy-makers, emergency managers and responders, business owners, insurance providers, the media, and the general public.Motivated by recent technological advances and increased awareness of our growing vulnerability to subduction-zone hazards, the USGS is uniquely positioned to take a major step forward in the science it conducts and products it provides, building on its tradition of using long-term monitoring and research to develop effective products for hazard mitigation. This science plan provides a blueprint both for prioritizing USGS science activities and for delineating USGS interests and potential participation in subduction zone science supported by its partners.The activities in this plan address many USGS stakeholder needs:High-fidelity tools and user-tailored information that facilitate increasingly more targeted, neighborhood-scale decisions to mitigate risks more cost-effectively and ensure post-event operability. Such tools may include maps, tables, and simulated earthquake ground-motion records conveying shaking intensity and frequency. These facilitate the prioritization of retrofitting of vulnerable infrastructure;Information to guide local land-use and response planning to minimize development in likely hazardous zones (for example, databases, maps, and scenario documents to guide evacuation route planning in communities near volcanoes, along coastlines vulnerable to tsunamis, and built on landslide-prone terrain);New tools

  3. Seven scientists advise

    International Nuclear Information System (INIS)

    1959-01-01

    The Scientific Advisory Committee of the International Atomic Energy Agency held its second series of meetings in Vienna on 4-5 June 1959. The members of the Committee are seven distinguished scientists from different countries: Dr. H.J. Bhabha (India), Sir John Cockcroft (UK), Professor V.S. Emelyanov (USSR), Dr. B. Goldschmidt (France), Dr. B. Gross (Brazil), Dr. W.B. Lewis (Canada) and Professor I.I. Rabi (USA). The function of the Committee is to provide the Director General and through him the Board of Governors with scientific and technical advice on questions relating to the Agency's activities. Subjects for consideration by the Committee can be submitted by the Director General either on his own behalf or on behalf of the Board. At its recent session, the Committee considered several aspects of the Agency's scientific programme, including the proposed conferences, symposia and seminars for 1960, scientific and technical publications, and the research contracts which had been or were to be awarded by the Agency. The programme of conferences for the current year had been approved earlier by the Board of Governors on the recommendation of the Committee. A provisional list of 17 conferences, symposia and seminars for 1960 was examined by the Committee and recommendations were made to the Director General. The Committee also examined the Agency's policy on the award of contracts for research work and studies. An important subject before the Committee was the principles and regulations for the application of Agency safeguards. Another subject considered by the Committee was the possibility of a project for an exchange of knowledge on controlled thermonuclear fusion. The Committee also examined a proposal for the determination of the world-wide distribution of hydrogen and oxygen isotopes in water. Exact information on the distribution of hydrogen and oxygen isotopes in rain, in rivers, in ground water and in oceans would be important for areas with limited water

  4. Seven scientists advise

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-07-15

    The Scientific Advisory Committee of the International Atomic Energy Agency held its second series of meetings in Vienna on 4-5 June 1959. The members of the Committee are seven distinguished scientists from different countries: Dr. H.J. Bhabha (India), Sir John Cockcroft (UK), Professor V.S. Emelyanov (USSR), Dr. B. Goldschmidt (France), Dr. B. Gross (Brazil), Dr. W.B. Lewis (Canada) and Professor I.I. Rabi (USA). The function of the Committee is to provide the Director General and through him the Board of Governors with scientific and technical advice on questions relating to the Agency's activities. Subjects for consideration by the Committee can be submitted by the Director General either on his own behalf or on behalf of the Board. At its recent session, the Committee considered several aspects of the Agency's scientific programme, including the proposed conferences, symposia and seminars for 1960, scientific and technical publications, and the research contracts which had been or were to be awarded by the Agency. The programme of conferences for the current year had been approved earlier by the Board of Governors on the recommendation of the Committee. A provisional list of 17 conferences, symposia and seminars for 1960 was examined by the Committee and recommendations were made to the Director General. The Committee also examined the Agency's policy on the award of contracts for research work and studies. An important subject before the Committee was the principles and regulations for the application of Agency safeguards. Another subject considered by the Committee was the possibility of a project for an exchange of knowledge on controlled thermonuclear fusion. The Committee also examined a proposal for the determination of the world-wide distribution of hydrogen and oxygen isotopes in water. Exact information on the distribution of hydrogen and oxygen isotopes in rain, in rivers, in ground water and in oceans would be important for areas with limited water

  5. Scientists' Views about Attribution of Global Warming

    Science.gov (United States)

    Verheggen, Bart; Strengers, Bart; Cook, John; van Dorland, Rob; Vringer, Kees; Peters, Jeroen; Visser, Hans; Meyer, Leo

    2015-04-01

    What do scientists think? That is an important question when engaging in science communication, in which an attempt is made to communicate the scientific understanding to a lay audience. To address this question we undertook a large and detailed survey among scientists studying various aspects of climate change , dubbed "perhaps the most thorough survey of climate scientists ever" by well-known climate scientist and science communicator Gavin Schmidt. Among more than 1800 respondents we found widespread agreement that global warming is predominantly caused by human greenhouse gases. This consensus strengthens with increased expertise, as defined by the number of self-reported articles in the peer-reviewed literature. 90% of respondents with more than 10 climate-related peer-reviewed publications (about half of all respondents), agreed that anthropogenic greenhouse gases are the dominant cause of recent global warming, i.e. having contributed more than half of the observed warming. With this survey we specified what the consensus position entails with much greater specificity than previous studies. The relevance of this consensus for science communication will be discussed. Another important result from our survey is that the main attribution statement in IPCC's fourth assessment report (AR4) may lead to an underestimate of the greenhouse gas contribution to warming, because it implicitly includes the lesser known masking effect of cooling aerosols. This shows the importance of the exact wording in high-profile reports such as those from IPCC in how the statement is perceived, even by fellow scientists. The phrasing was improved in the most recent assessment report (AR5). Respondents who characterized the human influence on climate as insignificant, reported having the most frequent media coverage regarding their views on climate change. This shows that contrarian opinions are amplified in the media in relation to their prevalence in the scientific community. This

  6. DIAGNOSTIC UTILITY OF USG-GUIDED FNAC IN HEPATIC LESIONS

    Directory of Open Access Journals (Sweden)

    Sudha P. Meena

    2016-06-01

    Full Text Available INTRODUCTION Guided fine-needle aspiration cytology (FNAC is an easy, rapid, minimally invasive and a cost effective diagnostic method for detecting benign and malignant lesions of liver. AIM The main aim of the present study was to establish the incidence of various hepatic lesions and to find out adequacy and utility of the procedure. MATERIAL AND METHOD A total of 174 cases were included in the study from Government Medical College, Kota and associated hospitals. All cases diagnosed to have single or multiple hepatic mass lesions on USG were included in the study. RESULTS Most common age group affected by hepatic lesion was 51-60 years (34.0%. 91.4% cases were having adequate aspirates. 95.6% of the total diagnosed cases were malignant and among malignant cases majority were metastatic. CONCLUSION USG-guided FNAC is a very useful procedure in the diagnosis of hepatic lesions as the procedure is simple and safe. Thus, FNAC is a simple and effective diagnostic tool in our hand.

  7. Assessing the Utility of and Improving USGS Earthquake Hazards Program Products

    Science.gov (United States)

    Gomberg, J. S.; Scott, M.; Weaver, C. S.; Sherrod, B. L.; Bailey, D.; Gibbons, D.

    2010-12-01

    A major focus of the USGS Earthquake Hazards Program (EHP) has been the development and implementation of products and information meant to improve earthquake hazard assessment, mitigation and response for a myriad of users. Many of these products rely on the data and efforts of the EHP and its partner scientists who are building the Advanced National Seismic System (ANSS). We report on a project meant to assess the utility of many of these products and information, conducted collaboratively by EHP scientists and Pierce County Department of Emergency Management staff. We have conducted focus group listening sessions with members of the engineering, business, medical, media, risk management, and emergency response communities as well as participated in the planning and implementation of earthquake exercises in the Pacific Northwest. Thus far we have learned that EHP and ANSS products satisfy many of the needs of engineers and some planners, and information is widely used by media and the general public. However, some important communities do not use these products despite their intended application for their purposes, particularly county and local emergency management and business communities. We have learned that products need to convey more clearly the impact of earthquakes, in everyday terms. Users also want products (e.g. maps, forecasts, etc.) that can be incorporated into tools and systems they use regularly. Rather than simply building products and posting them on websites, products need to be actively marketed and training provided. We suggest that engaging users prior to and during product development will enhance their usage and effectiveness.

  8. Frontier Scientists use Modern Media

    Science.gov (United States)

    O'connell, E. A.

    2013-12-01

    Engaging Americans and the international community in the excitement and value of Alaskan Arctic discovery is the goal of Frontier Scientists. With a changing climate, resources of polar regions are being eyed by many nations. Frontier Scientists brings the stories of field scientists in the Far North to the public. With a website, an app, short videos, and social media channels; FS is a model for making connections between the public and field scientists. FS will demonstrate how academia, web content, online communities, evaluation and marketing are brought together in a 21st century multi-media platform, how scientists can maintain their integrity while engaging in outreach, and how new forms of media such as short videos can entertain as well as inspire.

  9. America's Changing Energy Landscape - USGS National Coal Resources Data System Changes to National Energy Resources Data System.

    Science.gov (United States)

    East, J. A., II

    2016-12-01

    The U.S. Geological Survey's (USGS) Eastern Energy Resources Science Center (EERSC) has an ongoing project which has mapped coal chemistry and stratigraphy since 1977. Over the years, the USGS has collected various forms of coal data and archived that data into the National Coal Resources Data System (NCRDS) database. NCRDS is a repository that houses data from the major coal basins in the United States and includes information on location, seam thickness, coal rank, geologic age, geographic region, geologic province, coalfield, and characteristics of the coal or lithology for that data point. These data points can be linked to the US Coal Quality Database (COALQUAL) to include ultimate, proximate, major, minor and trace-element data. Although coal is an inexpensive energy provider, the United States has shifted away from coal usage recently and branched out into other forms of non-renewable and renewable energy because of environmental concerns. NCRDS's primary method of data capture has been USGS field work coupled with cooperative agreements with state geological agencies and universities doing coal-related research. These agreements are on competitive five-year cycles that have evolved into larger scope research efforts including solid fuel resources such as coal-bed methane, shale gas and oil. Recently these efforts have expanded to include environmental impacts of the use of fossil fuels, which has allowed the USGS to enter into agreements with states for the Geologic CO2 Storage Resources Assessment as required by the Energy Independence and Security Act. In 2016 they expanded into research areas to include geothermal, conventional and unconventional oil and gas. The NCRDS and COALQUAL databases are now online for the public to use, and are in the process of being updated to include new data for other energy resources. Along with this expansion of scope, the database name will change to the National Energy Resources Data System (NERDS) in FY 2017.

  10. U.S. Geological Survey science strategy for highly pathogenic avian influenza in wildlife and the environment (2016–2020)

    Science.gov (United States)

    Harris, M. Camille; Pearce, John M.; Prosser, Diann J.; White, C. LeAnn; Miles, A. Keith; Sleeman, Jonathan M.; Brand, Christopher J.; Cronin, James P.; De La Cruz, Susan; Densmore, Christine L.; Doyle, Thomas W.; Dusek, Robert J.; Fleskes, Joseph P.; Flint, Paul L.; Guala, Gerald F.; Hall, Jeffrey S.; Hubbard, Laura E.; Hunt, Randall J.; Ip, Hon S.; Katz, Rachel A.; Laurent, Kevin W.; Miller, Mark P.; Munn, Mark D.; Ramey, Andy M.; Richards, Kevin D.; Russell, Robin E.; Stokdyk, Joel P.; Takekawa, John Y.; Walsh, Daniel P.

    2016-08-18

    IntroductionThrough the Science Strategy for Highly Pathogenic Avian Influenza (HPAI) in Wildlife and the Environment, the USGS will assess avian influenza (AI) dynamics in an ecological context to inform decisions made by resource managers and policymakers from the local to national level. Through collection of unbiased scientific information on the ecology of AI viruses and wildlife hosts in a changing world, the U.S. Geological Survey (USGS) will enhance the development of AI forecasting tools and ensure this information is integrated with a quality decision process for managing HPAI.The overall goal of this USGS Science Strategy for HPAI in Wildlife and the Environment goes beyond document­ing the occurrence and distribution of AI viruses in wild birds. The USGS aims to understand the epidemiological processes and environmental factors that influence HPAI distribution and describe the mechanisms of transmission between wild birds and poultry. USGS scientists developed a conceptual model describing the process linking HPAI dispersal in wild waterfowl to the outbreaks in poul­try. This strategy focuses on five long-term science goals, which include:Science Goal 1—Augment the National HPAI Surveillance Plan;Science Goal 2—Determine mechanisms of HPAI disease spread in wildlife and the environment;Science Goal 3—Characterize HPAI viruses circulating in wildlife;Science Goal 4—Understand implications of avian ecol­ogy on HPAI spread; andScience Goal 5—Develop HPAI forecasting and decision-making tools.These goals will help define and describe the processes outlined in the conceptual model with the ultimate goal of facilitating biosecurity and minimizing transfer of diseases across the wildlife-poultry interface. The first four science goals are focused on scientific discovery and the fifth goal is application-based. Decision analyses in the fifth goal will guide prioritization of proposed actions in the first four goals.

  11. To Be or Not to Be... a Scientist?

    OpenAIRE

    Chevalier, Arnaud

    2012-01-01

    Policy makers generally advocate that to remain competitive countries need to train more scientists. Employers regularly complain of qualified scientist shortages blaming the higher wages in other occupations for luring graduates out of scientific occupations. Using a survey of recent British graduates from Higher Education we report that fewer than 50% of science graduates work in a scientific occupation three years after graduation. The wage premium observed for science graduates stems from...

  12. To be or not to be... a scientist?

    OpenAIRE

    Chevalier, Arnaud

    2012-01-01

    Policy makers generally advocate that to remain competitive countries need to train more scientists. Employers regularly complain of qualified scientist shortages blaming the higher wages in other occupations for luring graduates out of scientific occupations. Using a survey of recent British graduates from Higher Education we report that fewer than 50% of science graduates work in a scientific occupation three years after graduation. The wage premium observed for science graduates stems from...

  13. Archive of digital chirp subbottom profile data collected during USGS Cruise 13CCT04 offshore of Petit Bois Island, Mississippi, August 2013

    Science.gov (United States)

    Forde, Arnell S.; Flocks, James G.; Kindinger, Jack G.; Bernier, Julie C.; Kelso, Kyle W.; Wiese, Dana S.

    2015-01-01

    From August 13-23, 2013, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers (USACE) conducted geophysical surveys to investigate the geologic controls on barrier island framework and long-term sediment transport offshore of Petit Bois Island, Mississippi. This investigation is part of a broader USGS study on Coastal Change and Transport (CCT). These surveys were funded through the Mississippi Coastal Improvements Program (MsCIP) with partial funding provided by the Northern Gulf of Mexico Ecosystem Change and Hazard Susceptibility Project. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FGDC) metadata. Gained-showing a relative increase in signal amplitude-digital images of the seismic profiles are provided.

  14. Refugee scientists under the spotlight

    Science.gov (United States)

    Extance, Andy

    2017-07-01

    Thousands of people are forced to flee war-torn regions every year, but the struggles of scientists who have to leave their homeland often goes under the radar. Andy Extance reports on initiatives to help

  15. A new organic reference material, l-glutamic acid, USGS41a, for δ(13) C and δ(15) N measurements - a replacement for USGS41.

    Science.gov (United States)

    Qi, Haiping; Coplen, Tyler B; Mroczkowski, Stanley J; Brand, Willi A; Brandes, Lauren; Geilmann, Heike; Schimmelmann, Arndt

    2016-04-15

    The widely used l-glutamic acid isotopic reference material USGS41, enriched in both (13) C and (15) N, is nearly exhausted. A new material, USGS41a, has been prepared as a replacement for USGS41. USGS41a was prepared by dissolving analytical grade l-glutamic acid enriched in (13) C and (15) N together with l-glutamic acid of normal isotopic composition. The δ(13) C and δ(15) N values of USGS41a were directly or indirectly normalized with the international reference materials NBS 19 calcium carbonate (δ(13) CVPDB = +1.95 mUr, where milliurey = 0.001 = 1 ‰), LSVEC lithium carbonate (δ(13) CVPDB = -46.6 mUr), and IAEA-N-1 ammonium sulfate (δ(15) NAir = +0.43 mUr) and USGS32 potassium nitrate (δ(15) N = +180 mUr exactly) by on-line combustion, continuous-flow isotope-ratio mass spectrometry, and off-line dual-inlet isotope-ratio mass spectrometry. USGS41a is isotopically homogeneous; the reproducibility of δ(13) C and δ(15) N is better than 0.07 mUr and 0.09 mUr, respectively, in 200-μg amounts. It has a δ(13) C value of +36.55 mUr relative to VPDB and a δ(15) N value of +47.55 mUr relative to N2 in air. USGS41 was found to be hydroscopic, probably due to the presence of pyroglutamic acid. Experimental results indicate that the chemical purity of USGS41a is substantially better than that of USGS41. The new isotopic reference material USGS41a can be used with USGS40 (having a δ(13) CVPDB value of -26.39 mUr and a δ(15) NAir value of -4.52 mUr) for (i) analyzing local laboratory isotopic reference materials, and (ii) quantifying drift with time, mass-dependent isotopic fractionation, and isotope-ratio-scale contraction for isotopic analysis of biological and organic materials. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA.

  16. A new organic reference material, L-glutamic acid, USGS41a, for δ13C and δ15N measurements − a replacement for USGS41

    Science.gov (United States)

    Qi, Haiping; Coplen, Tyler B.; Mroczkowski, Stanley J.; Brand, Willi A.; Brandes, Lauren; Geilmann, Heike; Schimmelmann, Arndt

    2016-01-01

    RationaleThe widely used l-glutamic acid isotopic reference material USGS41, enriched in both 13C and 15N, is nearly exhausted. A new material, USGS41a, has been prepared as a replacement for USGS41.MethodsUSGS41a was prepared by dissolving analytical grade l-glutamic acid enriched in 13C and 15N together with l-glutamic acid of normal isotopic composition. The δ13C and δ15N values of USGS41a were directly or indirectly normalized with the international reference materials NBS 19 calcium carbonate (δ13CVPDB = +1.95 mUr, where milliurey = 0.001 = 1 ‰), LSVEC lithium carbonate (δ13CVPDB = −46.6 mUr), and IAEA-N-1 ammonium sulfate (δ15NAir = +0.43 mUr) and USGS32 potassium nitrate (δ15N = +180 mUr exactly) by on-line combustion, continuous-flow isotope-ratio mass spectrometry, and off-line dual-inlet isotope-ratio mass spectrometry.ResultsUSGS41a is isotopically homogeneous; the reproducibility of δ13C and δ15N is better than 0.07 mUr and 0.09 mUr, respectively, in 200-μg amounts. It has a δ13C value of +36.55 mUr relative to VPDB and a δ15N value of +47.55 mUr relative to N2 in air. USGS41 was found to be hydroscopic, probably due to the presence of pyroglutamic acid. Experimental results indicate that the chemical purity of USGS41a is substantially better than that of USGS41.ConclusionsThe new isotopic reference material USGS41a can be used with USGS40 (having a δ13CVPDB value of −26.39 mUr and a δ15NAir value of −4.52 mUr) for (i) analyzing local laboratory isotopic reference materials, and (ii) quantifying drift with time, mass-dependent isotopic fractionation, and isotope-ratio-scale contraction for isotopic analysis of biological and organic materials. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA.

  17. Biotechnology awareness study, Part 1: Where scientists get their information.

    Science.gov (United States)

    Grefsheim, S; Franklin, J; Cunningham, D

    1991-01-01

    A model study, funded by the National Library of Medicine (NLM) and conducted by the Southeastern/Atlantic Regional Medical Library (RML) and the University of Maryland Health Sciences Library, attempted to assess the information needs of researchers in the developing field of biotechnology and to determine the resources available to meet those needs in major academic health sciences centers. Nine medical schools in RML Region 2 were selected to participate in a biotechnology awareness study. A survey was conducted of the nine medical school libraries to assess their support of biotechnology research. To identify the information needs of scientists engaged in biotechnology-related research at the schools, a written survey was sent to the deans of the nine institutions and selected scientists they had identified. This was followed by individual, in-depth interviews with both the deans and scientists surveyed. In general, scientists obtained information from three major sources: their own experiments, personal communication with other scientists, and textual material (print or electronic). For textual information, most study participants relied on personal journal subscriptions. Tangential journals were scanned in the department's library. Only a few of these scientists came to the health sciences library on a regular basis. Further, the study found that personal computers have had a major impact on how biotechnologists get and use information. Implications of these findings for libraries and librarians are discussed. PMID:1998818

  18. Has ADVANCE Affected Senior Compared to Junior Women Scientists Differently?

    Science.gov (United States)

    Rosser, Sue

    2015-01-01

    Substantial evidence exists to demonstrate that the NSF ADVANCE Inititiative has made a positive impact upon institutions. Since it began in 2001, ADVANCE has changed the conversation, policies, and practices in ways to remove obstacles and systemic barriers preventing success for academic women scientists and engineers. Results from ADVANCE projects on campuses have facilitated consensus nationally about policies and practices that institutions may implement to help to alleviate issues, particularly for junior women scientists.Although getting women into senior and leadership positions in STEM constituted an initial impetus for ADVANCE, less emphasis was placed upon the needs of senior women scientists. Surveys of academic women scientists indicate that the issues faced by junior and senior women scientists differ significantly. The focus of ADVANCE on junior women in many ways seemed appropriate--the senior cohort of women scinetists is fed by the junior cohort of scientists; senior women serve as mentors, role models, and leaders for the junior colleagues, while continuing to struggle to achieve full status in the profession. This presentation will center on the differences in issues faced by senior compared to junior women scientists to explore whether a next step for ADVANCE should be to address needs of senior academic women scientists.

  19. Standardisation of the USGS Volcano Alert Level System (VALS): analysis and ramifications

    Science.gov (United States)

    Fearnley, C. J.; McGuire, W. J.; Davies, G.; Twigg, J.

    2012-11-01

    The standardisation of volcano early warning systems (VEWS) and volcano alert level systems (VALS) is becoming increasingly common at both the national and international level, most notably following UN endorsement of the development of globally comprehensive early warning systems. Yet, the impact on its effectiveness, of standardising an early warning system (EWS), in particular for volcanic hazards, remains largely unknown and little studied. This paper examines this and related issues through evaluation of the emergence and implementation, in 2006, of a standardised United States Geological Survey (USGS) VALS. Under this upper-management directive, all locally developed alert level systems or practices at individual volcano observatories were replaced with a common standard. Research conducted at five USGS-managed volcano observatories in Alaska, Cascades, Hawaii, Long Valley and Yellowstone explores the benefits and limitations this standardisation has brought to each observatory. The study concludes (1) that the process of standardisation was predominantly triggered and shaped by social, political, and economic factors, rather than in response to scientific needs specific to each volcanic region; and (2) that standardisation is difficult to implement for three main reasons: first, the diversity and uncertain nature of volcanic hazards at different temporal and spatial scales require specific VEWS to be developed to address this and to accommodate associated stakeholder needs. Second, the plural social contexts within which each VALS is embedded present challenges in relation to its applicability and responsiveness to local knowledge and context. Third, the contingencies of local institutional dynamics may hamper the ability of a standardised VALS to effectively communicate a warning. Notwithstanding these caveats, the concept of VALS standardisation clearly has continuing support. As a consequence, rather than advocating further commonality of a standardised

  20. USGS Southwest Repeat Photography Collection: Kanab Creek, southern Utah and northern Arizona, 1872-2010

    Data.gov (United States)

    Department of the Interior — The USGS Southwest Repeat Photography Collection (‘Collection’), formerly named the Desert Laboratory Repeat Photography Collection, is now housed by the Southwest...

  1. An Earth System Scientist Network for Student and Scientist Partnerships

    Science.gov (United States)

    Ledley, T. S.

    2001-05-01

    Successful student and scientist partnerships require that there is a mutual benefit from the partnership. This means that the scientist needs to be able to see the advantage of having students work on his/her project, and the students and teachers need to see that the students contribute to the project and develop the skills in inquiry and the content knowledge in the geosciences that are desired. Through the Earth System Scientist Network (ESSN) for Student and Scientist Partnerships project we are working toward developing scientific research projects for the participation of high school students. When these research projects are developed they will be posted on the ESSN web site that will appear in the Digital Library for Earth System Education (DLESE). In DLESE teachers and students who are interested in participating in a research program will be able to examine the criteria for each project and select the one that matches their needs and situation. In this paper we will report on how the various ESSN research projects are currently being developed to assure that both the scientist and the students benefit from the partnership. The ESSN scientists are working with a team of scientists and educators to 1) completely define the research question that the students will be addressing, 2) determine what role the students will have in the project, 3) identify the data that the students and teachers will work with, 4) map out the scientific protocols that the students will follow, and 5) determine the background and support materials needed to facilitate students successfully participating in the project. Other issues that the team is addressing include 1) identifying the selection criteria for the schools, 2) identifying rewards and recognition for the students and teacher by the scientist, and 3) identifying issues in Earth system science, relevant to the scientists data, that the students and teachers could use as a guide help develop students investigative

  2. Geography for a Changing World - A science strategy for the geographic research of the U.S. Geological Survey, 2005-2015

    Science.gov (United States)

    McMahon, Gerard; Benjamin, Susan P.; Clarke, Keith; Findley, John E.; Fisher, Robert N.; Graf, William L.; Gundersen, Linda C.; Jones, John W.; Loveland, Thomas R.; Roth, Keven S.; Usery, E. Lynn; Wood, Nathan J.

    2005-01-01

    This report presents a science strategy for the geographic research of the U.S. Geological Survey (USGS) for the years 2005-2015. The common thread running through the vision, mission, and science goals presented in the plan is that USGS geographers will provide national leadership to understand coupled human-environmental systems in the face of land change and will deliver pertinent information to decisionmakers on the vulnerability and resilience of these systems. We define land change science as the study of the human and environment dynamics that give rise to changed land use, cover, and surface form.A number of realities shape the strategic context of this plan:The Department of Interior Strategic Plan focuses on meeting society’s resource needs and sustaining the Nation’s life support systems, underscoring the importance of characterizing and understanding coupled human-environmental systems.In redefining its mission in the mid-1990s, the USGS envisions itself as an integrated natural science and information agency. The USGS will assume a national leadership role in the use of science to develop knowledge about the web of relations that couple biophysical and human systems and translate this knowledge into unbiased, reliable information that meets important societal information needs.The following trends will influence USGS geography-oriented science activities over the next decade. Most of the emerging earth science issues that the USGS will address are geographic phenomena. A growing international concern for aligning society’s development activities with environmental limits has led to an articulation of a science agenda associated with global environmental change, vulnerability, and resilience. Earth science investigations have evolved toward the study of very large areas, and the resulting huge volumes of data are challenging to manage and understand. Finally, scientists and the public face the challenge of gaining intelligent insights about

  3. 1:24,000 Papermap Quadrangle Index of Louisiana, Geographic NAD83, USGS (1999) [quad24K_papermaps_USGS_1999

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a polygon dataset delineating the geographic footprint of the 24k (7.5') series map sheets published by the USGS. Because most of these map sheets have also...

  4. 1:100,000 Papermap Quadrangle Index of Louisiana, Geographic NAD83, USGS (1999) [quad100K_papermaps_USGS_1999

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a double precision polygon dataset delineating the geographic footprint of the 100k series map sheets published by the USGS. Because most of these map sheets...

  5. Archive of digital chirp subbottom profile data collected during USGS cruise 10BIM04 offshore Cat Island, Mississippi, September 2010

    Science.gov (United States)

    Forde, Arnell S.; Dadisman, Shawn V.; Kindinger, Jack G.; Miselis, Jennifer L.; Wiese, Dana S.; Buster, Noreen A.

    2012-01-01

    In September of 2010, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers (USACE), conducted a geophysical survey to investigate the geologic controls on barrier island framework of Cat Island, Miss., as part of a broader USGS study on Barrier Island Mapping (BIM). These surveys were funded through the Mississippi Coastal Improvements Program (MsCIP) and the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility Project as part of the Holocene Coastal Evolution of the Mississippi-Alabama Region Subtask. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, GIS files, Field Activity Collection System (FACS) logs, and formal FGDC metadata. Gained (showing a relative increase in signal amplitude) digital images of the seismic profiles are also provided. Refer to the Acronyms page for expansions of acronyms and abbreviations used in this report. The USGS Saint Petersburg Coastal and Marine Science Center (SPCMSC) assigns a unique identifier to each cruise or field activity. For example, 10BIM04 tells us the data were collected in 2010 during the fourth field activity for that project in that calendar year. Refer to http://walrus.wr.usgs.gov/infobank/programs/html/definition/activity.html for a detailed description of the method used to assign the field activity identification (ID). All chirp systems use a signal of continuously varying frequency; the EdgeTech SB-512i system used during this survey produces high-resolution, shallow-penetration (typically less than 50 milliseconds (ms)) profile images of sub-seafloor stratigraphy. The towfish contains a transducer that transmits and receives acoustic energy; it was housed within a float system (built at the SPCMSC), which allows the towfish to be towed at a constant depth of 1.07 meters (m) below the sea surface. As transmitted acoustic energy intersects density boundaries, such as the seafloor or sub

  6. Professional Ethics for Climate Scientists

    Science.gov (United States)

    Peacock, K.; Mann, M. E.

    2014-12-01

    Several authors have warned that climate scientists sometimes exhibit a tendency to "err on the side of least drama" in reporting the risks associated with fossil fuel emissions. Scientists are often reluctant to comment on the implications of their work for public policy, despite the fact that because of their expertise they may be among those best placed to make recommendations about such matters as mitigation and preparedness. Scientists often have little or no training in ethics or philosophy, and consequently they may feel that they lack clear guidelines for balancing the imperative to avoid error against the need to speak out when it may be ethically required to do so. This dilemma becomes acute in cases such as abrupt ice sheet collapse where it is easier to identify a risk than to assess its probability. We will argue that long-established codes of ethics in the learned professions such as medicine and engineering offer a model that can guide research scientists in cases like this, and we suggest that ethical training could be regularly incorporated into graduate curricula in fields such as climate science and geology. We recognize that there are disanalogies between professional and scientific ethics, the most important of which is that codes of ethics are typically written into the laws that govern licensed professions such as engineering. Presently, no one can legally compel a research scientist to be ethical, although legal precedent may evolve such that scientists are increasingly expected to communicate their knowledge of risks. We will show that the principles of professional ethics can be readily adapted to define an ethical code that could be voluntarily adopted by scientists who seek clearer guidelines in an era of rapid climate change.

  7. Section Level Public Land Survey - polygons

    Data.gov (United States)

    Minnesota Department of Natural Resources — Public Land Survey line delineations to the section level. Data are derived primarily from Section corner locations captured from paper USGS seven and one-half...

  8. Section Level Public Land Survey - lines

    Data.gov (United States)

    Minnesota Department of Natural Resources — Public Land Survey line delineations to the section level. Developed from manually digitized section corners captured from paper USGS seven and one-half map sources.

  9. U.S. Geological Survey World Wide Web Information

    Science.gov (United States)

    ,

    2003-01-01

    The U.S. Geological Survey (USGS) invites you to explore an earth science virtual library of digital information, publications, and data. The USGS World Wide Web sites offer an array of information that reflects scientific research and monitoring programs conducted in the areas of natural hazards, environmental resources, and cartography. This list provides gateways to access a cross section of the digital information on the USGS World Wide Web sites.

  10. The U.S. Geological Survey Astrogeology Science Center

    Science.gov (United States)

    Kestay, Laszlo P.; Vaughan, R. Greg; Gaddis, Lisa R.; Herkenhoff, Kenneth E.; Hagerty, Justin J.

    2017-07-17

    In 1960, Eugene Shoemaker and a small team of other scientists founded the field of astrogeology to develop tools and methods for astronauts studying the geology of the Moon and other planetary bodies. Subsequently, in 1962, the U.S. Geological Survey Branch of Astrogeology was established in Menlo Park, California. In 1963, the Branch moved to Flagstaff, Arizona, to be closer to the young lava flows of the San Francisco Volcanic Field and Meteor Crater, the best preserved impact crater in the world. These geologic features of northern Arizona were considered good analogs for the Moon and other planetary bodies and valuable for geologic studies and astronaut field training. From its Flagstaff campus, the USGS has supported the National Aeronautics and Space Administration (NASA) space program with scientific and cartographic expertise for more than 50 years.

  11. New Organic Stable Isotope Reference Materials for Distribution through the USGS and the IAEA

    Science.gov (United States)

    Schimmelmann, Arndt; Qi, Haiping

    2014-05-01

    The widespread adoption of relative stable isotope-ratio measurements in organic matter by diverse scientific disciplines is at odds with the dearth of international organic stable isotopic reference materials (RMs). Only two of the few carbon (C) and nitrogen (N) organic RMs, namely L-glutamic acids USGS40 and USGS41 [1], both available from the U.S. Geological Survey (USGS) and the International Atomic Energy Agency (IAEA), provide an isotopically contrasting pair of organic RMs to enable essential 2-point calibrations for δ-scale normalization [2, 3]. The supply of hydrogen (H) organic RMs is even more limited. Numerous stable isotope laboratories have resorted to questionable practices, for example by using 'CO2, N2, and H2 reference gas pulses' for isotopic calibrations, which violates the principle of identical treatment of sample and standard (i.e., organic unknowns should be calibrated directly against chemically similar organic RMs) [4], or by using only 1 anchor instead of 2 for scale calibration. The absence of international organic RMs frequently serves as an excuse for indefensible calibrations. In 2011, the U.S. National Science Foundation (NSF) funded an initiative of 10 laboratories from 7 countries to jointly develop much needed new organic RMs for future distribution by the USGS and the IAEA. The selection of targeted RMs attempts to cover various common compound classes of broad technical and scientific interest. We had to accept compromises to approach the ideal of high chemical stability, lack of toxicity, and low price of raw materials. Hazardous gases and flammable liquids were avoided in order to facilitate international shipping of future RMs. With the exception of polyethylene and vacuum pump oil, all organic RMs are individual, chemically-pure substances, which can be used for compound-specific isotopic measurements in conjunction with liquid and gas chromatographic interfaces. The compounds listed below are under isotopic calibration by

  12. Policies to increase the social value of science and the scientist satisfaction. An exploratory survey among Harvard bioscientists. [v1; ref status: indexed, http://f1000r.es/2iq

    Directory of Open Access Journals (Sweden)

    Andrea Ballabeni

    2014-01-01

    Full Text Available Basic research in the biomedical field generates both knowledge that has a value per se regardless of its possible practical outcome and that has the potential to produce more practical benefits. Policies can increase the benefit potential to society of basic biomedical research by offering various kinds of incentives to basic researchers. In this paper we argue that soft incentives or “nudges” are particularly promising. However, to be well designed, these incentives must take into account the motivations, goals and views of the basic scientists. In the paper we present the results of an investigation that involved more than 300 scientists at Harvard Medical School and affiliated institutes. The study shows that basic researchers’ support for soft incentives is such that the transformative value of fundamental investigations can be increased without affecting the spirit of the basic research and scientists’ work satisfaction. After discussing the findings, we suggest a few examples of nudges and discuss one in more detail.

  13. Policies to increase the social value of science and the scientist satisfaction. An exploratory survey among Harvard bioscientists. [v2; ref status: indexed, http://f1000r.es/3jw

    Directory of Open Access Journals (Sweden)

    Andrea Ballabeni

    2014-06-01

    Full Text Available Basic research in the biomedical field generates both knowledge that has a value per se regardless of its possible practical outcome and knowledge that has the potential to produce more practical benefits. Policies can increase the benefit potential to society of basic biomedical research by offering various kinds of incentives to basic researchers. In this paper we argue that soft incentives or “nudges” are particularly promising. However, to be well designed, these incentives must take into account the motivations, goals and views of the basic scientists. In the paper we present the results of an investigation that involved more than 300 scientists at Harvard Medical School and affiliated institutes. The results of this study suggest that some soft incentives could be valuable tools to increase the transformative value of fundamental investigations without affecting the spirit of the basic research and scientists’ work satisfaction. After discussing the findings, we discuss a few examples of nudges for basic researchers in the biomedical fields.

  14. Do scientists trace hot topics?

    Science.gov (United States)

    Wei, Tian; Li, Menghui; Wu, Chensheng; Yan, Xiao-Yong; Fan, Ying; Di, Zengru; Wu, Jinshan

    2013-01-01

    Do scientists follow hot topics in their scientific investigations? In this paper, by performing analysis to papers published in the American Physical Society (APS) Physical Review journals, it is found that papers are more likely to be attracted by hot fields, where the hotness of a field is measured by the number of papers belonging to the field. This indicates that scientists generally do follow hot topics. However, there are qualitative differences among scientists from various countries, among research works regarding different number of authors, different number of affiliations and different number of references. These observations could be valuable for policy makers when deciding research funding and also for individual researchers when searching for scientific projects.

  15. Program and plans of the U.S. Geological Survey for producing information needed in National Seismic hazards and risk assessment, fiscal years 1980-84

    Science.gov (United States)

    Hays, Walter W.

    1979-01-01

    In accordance with the provisions of the Earthquake Hazards Reduction Act of 1977 (Public Law 95-124), the U.S. Geological Survey has developed comprehensive plans for producing information needed to assess seismic hazards and risk on a national scale in fiscal years 1980-84. These plans are based on a review of the needs of Federal Government agencies, State and local government agencies, engineers and scientists engaged in consulting and research, professional organizations and societies, model code groups, and others. The Earthquake Hazards Reduction Act provided an unprecedented opportunity for participation in a national program by representatives of State and local governments, business and industry, the design professions, and the research community. The USGS and the NSF (National Science Foundation) have major roles in the national program. The ultimate goal of the program is to reduce losses from earthquakes. Implementation of USGS research in the Earthquake Hazards Reduction Program requires the close coordination of responsibility between Federal, State and local governments. The projected research plan in national seismic hazards and risk for fiscal years 1980-84 will be accomplished by USGS and non-USGS scientists and engineers. The latter group will participate through grants and contracts. The research plan calls for (1) national maps based on existing methods, (2) improved definition of earthquake source zones nationwide, (3) development of improved methodology, (4) regional maps based on the improved methodology, and (5) post-earthquake investigations. Maps and reports designed to meet the needs, priorities, concerns, and recommendations of various user groups will be the products of this research and provide the technical basis for improved implementation.

  16. The Local-Cosmopolitan Scientist

    Directory of Open Access Journals (Sweden)

    Barney G. Glaser, Ph.D., Hon. Ph.D.

    2011-12-01

    Full Text Available In contrast to previous discussions in the literature treating cosmopolitan and local as two distinct groups of scientists, this paperi demonstrates the notion of cosmopolitan and local as a dual orientation of highly motivated scientists. This dual orientation is derived from institutional motivation, which is a determinant of both high quality basic research and accomplishment of non-research organizational activities. The dual orientation arises in a context of similarity of the institutional goal of science with the goal of the organization; the distinction between groups of locals and cosmopolitans derives from a conflict between two goals.

  17. Scientists, government, and nuclear power

    International Nuclear Information System (INIS)

    Katz, J.E.

    1982-01-01

    Scientists in less-developed countries (LDCs) that undertake nuclear programs become involved in political decisions on manpower and resource allocations that will preclude other options. Controversy over the adoption of sophisticated technology has put those who see science as the servant of society in conflict with those who see the pursuit of science as a social service. The role model which LDC scientists present in this issue has given them increasing power, which can be either in accord with or in conflict with the perceived national interest. 29 references

  18. Modernization of the USGS Hawaiian Volcano Observatory Seismic Processing Infrastructure

    Science.gov (United States)

    Antolik, L.; Shiro, B.; Friberg, P. A.

    2016-12-01

    The USGS Hawaiian Volcano Observatory (HVO) operates a Tier 1 Advanced National Seismic System (ANSS) seismic network to monitor, characterize, and report on volcanic and earthquake activity in the State of Hawaii. Upgrades at the observatory since 2009 have improved the digital telemetry network, computing resources, and seismic data processing with the adoption of the ANSS Quake Management System (AQMS) system. HVO aims to build on these efforts by further modernizing its seismic processing infrastructure and strengthen its ability to meet ANSS performance standards. Most notably, this will also allow HVO to support redundant systems, both onsite and offsite, in order to provide better continuity of operation during intermittent power and network outages. We are in the process of implementing a number of upgrades and improvements on HVO's seismic processing infrastructure, including: 1) Virtualization of AQMS physical servers; 2) Migration of server operating systems from Solaris to Linux; 3) Consolidation of AQMS real-time and post-processing services to a single server; 4) Upgrading database from Oracle 10 to Oracle 12; and 5) Upgrading to the latest Earthworm and AQMS software. These improvements will make server administration more efficient, minimize hardware resources required by AQMS, simplify the Oracle replication setup, and provide better integration with HVO's existing state of health monitoring tools and backup system. Ultimately, it will provide HVO with the latest and most secure software available while making the software easier to deploy and support.

  19. Petroleum Systems and Assessment of Undiscovered Oil and Gas in the Raton Basin - Sierra Grande Uplift Province, Colorado and New Mexico - USGS Province 41

    Science.gov (United States)

    Higley, Debra K.

    2007-01-01

    Introduction The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The USGS recently completed an assessment of undiscovered oil and gas resources of the Raton Basin-Sierra Grande Uplift Province of southeastern Colorado and northeastern New Mexico (USGS Province 41). The Cretaceous Vermejo Formation and Cretaceous-Tertiary Raton Formation have production and undiscovered resources of coalbed methane. Other formations in the province exhibit potential for gas resources and limited production. This assessment is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). The USGS used this geologic framework to define two total petroleum systems and five assessment units. All five assessment units were quantitatively assessed for undiscovered gas resources. Oil resources were not assessed because of the limited potential due to levels of thermal maturity of petroleum source rocks.

  20. USGS Workshop on Scientific Aspects of a Long-Term Experimental Plan for Glen Canyon Dam, April 10-11, 2007, Flagstaff, Arizona

    Science.gov (United States)

    ,

    2008-01-01

    Executive Summary Glen Canyon Dam is located in the lower reaches of Glen Canyon National Recreation Area on the Colorado River, approximately 15 miles upriver from Grand Canyon National Park (fig. 1). In 1992, Congress passed and the President signed into law the Grand Canyon Protection Act (GCPA; title XVIII, sec. 1801?1809, of Public Law 102-575), which seeks ?to protect, mitigate adverse impacts to, and improve the values for which Grand Canyon National Park and Glen Canyon National Recreation Area were established.? The Glen Canyon Dam Adaptive Management Program (GCDAMP) was implemented as a result of the 1996 Record of Decision on the Operation of Glen Canyon Dam Final Environmental Impact Statement to ensure that the primary mandate of the GCPA is met through advances in information and resources management (U.S. Department of the Interior, 1995). On November 3, 2006, the Bureau of Reclamation (Reclamation) announced it would develop a long-term experimental plan environmental impact statement (LTEP EIS) for operational activities at Glen Canyon Dam and other management actions on the Colorado River. The purpose of the long-term experimental plan is twofold: (1) to increase the scientific understanding of the ecosystem and (2) to improve and protect important downstream resources. The proposed plan would implement a structured, longterm program of experimentation to include dam operations, potential modifications to Glen Canyon Dam intake structures, and other management actions such as removal of nonnative fish species. The development of the long-term experimental plan continues efforts begun by the GCDAMP to protect resources downstream of Glen Canyon Dam, including Grand Canyon, through adaptive management and scientific experimentation. The LTEP EIS will rely on the extensive scientific studies that have been undertaken as part of the adaptive management program by the U.S. Geological Survey?s (USGS) Grand Canyon Monitoring and Research Center (GCMRC

  1. Supporting Students as Scientists: One Mission's Efforts

    Science.gov (United States)

    Taylor, J.; Chambers, L. H.; Trepte, C. R.

    2012-12-01

    activities. The program provides teachers with a one-week summer professional development workshop, long-term teacher support through classroom visits, teacher access to GLOBE instrumentation, and research opportunities for students. Professional development is centered on student engagement through inquiry, opportunities for collaborative student research, and the GLOBE Program's atmosphere protocols and learning activities. Beyond the training week, teachers receive follow-up specifically addressing current opportunities for student engagement in current research and opportunities for students to present research findings. The first cohort of teachers completed the professional development workshop in July 2012. This session will summarize the planning and implementation details of the summer workshop, including schedule and materials. In addition to these details, we will share our evaluation of follow-up activities and survey results highlighting teachers' perceived barriers to implementing atmosphere investigations. These results will add to the discussion on effective programs aimed at inspiring young scientists.

  2. Introductory mathematics for earth scientists

    CERN Document Server

    Yang, Xin-She

    2009-01-01

    Any quantitative work in earth sciences requires mathematical analysis and mathematical methods are essential to the modelling and analysis of the geological, geophysical and environmental processes involved. This book provides an introduction to the fundamental mathematics that all earth scientists need.

  3. Archive of digital Chirp subbottom profile data collected during USGS cruises 09CCT03 and 09CCT04, Mississippi and Alabama Gulf Islands, June and July 2009

    Science.gov (United States)

    Forde, Arnell S.; Dadisman, Shawn V.; Flocks, James G.; Wiese, Dana S.

    2011-01-01

    In June and July of 2009, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on island framework from Cat Island, Mississippi, to Dauphin Island, Alabama, as part of a broader USGS study on Coastal Change and Transport (CCT). The surveys were funded through the Northern Gulf of Mexico Ecosystem Change and Hazard Susceptibility Project as part of the Holocene Evolution of the Mississippi-Alabama Region Subtask (http://ngom.er.usgs.gov/task2_2/index.php). This report serves as an archive of unprocessed digital Chirp seismic profile data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FGDC) metadata. Single-beam and Swath bathymetry data were also collected during these cruises and will be published as a separate archive. Gained (a relative increase in signal amplitude) digital images of the seismic profiles are also provided. Refer to the Acronyms page for expansion of acronyms and abbreviations used in this report.

  4. Proceedings of the third USGS modeling conference, June 7-11, 2010, Broomfield, Colorado-Understanding and predicting for a changing world

    Science.gov (United States)

    Brady, Shailaja R.

    2011-01-01

    The Third USGS Modeling Conference was held June 7th-11, 2010, in Broomfield, Colorado. The conference focused on the development and application of analytical and theoretical models and data availability that support managing the Nation's resources and help protect lives and property. Participants at the conference included scientists and managers from Department of the Interior (DOI) Bureaus; national and international Federal, State, and local agencies; academic institutions; and nongovernmental organizations. The conference was organized according to DOI priorities and the strategic directions of the USGS Science Strategy; the following themes were emphasized: (1) Understanding Ecosystems and Restoring America's Treasured Landscapes; (2) Climate Change and Impact; (3) New Energy Frontier and Minerals for America; (4) A National Hazards, Risk, and Resilience Assessment Program; (5) Role of Environment and Wildlife in Human Health; (6) A Water Census of the United States; and (7) New Methods of Investigation and Discovery. The conference theme-"Understanding and Predicting for a Changing World"-focused on the following goals: advance development and application of models; provide tools that address management issues; present state-of-the-art models ranging from individual phenomena to integrated systems; and foster a working community among scientists and managers.

  5. Modernization of the Caltech/USGS Southern California Seismic Network

    Science.gov (United States)

    Bhadha, R.; Devora, A.; Hauksson, E.; Johnson, D.; Thomas, V.; Watkins, M.; Yip, R.; Yu, E.; Given, D.; Cone, G.; Koesterer, C.

    2009-12-01

    The USGS/ANSS/ARRA program is providing Government Furnished Equipment (GFE), and two year funding for upgrading the Caltech/USGS Southern California Seismic Network (SCSN). The SCSN is the modern digital ground motion seismic network in southern California that monitors seismicity and provides real-time earthquake information products such as rapid notifications, moment tensors, and ShakeMap. The SCSN has evolved through the years and now consists of several well-integrated components such as Short-Period analog, TERRAscope, digital stations, and real-time strong motion stations, or about 300 stations. In addition, the SCSN records data from about 100 stations provided by partner networks. To strengthen the ability of SCSN to meet the ANSS performance standards, we will install GFE and carry out the following upgrades and improvements of the various components of the SCSN: 1) Upgrade of dataloggers at seven TERRAscope stations; 2) Upgrade of dataloggers at 131 digital stations and upgrade broadband sensors at 25 stations; 3) Upgrade of SCSN metadata capabilities; 4) Upgrade of telemetry capabilities for both seismic and GPS data; and 5) Upgrade balers at stations with existing Q330 dataloggers. These upgrades will enable the SCSN to meet the ANSS Performance Standards more consistently than before. The new equipment will improve station uptimes and reduce maintenance costs. The new equipment will also provide improved waveform data quality and consequently superior data products. The data gaps due to various outages will be minimized, and ‘late’ data will be readily available through retrieval from on-site storage. Compared to the outdated equipment, the new equipment will speed up data delivery by about 10 sec, which is fast enough for earthquake early warning applications. The new equipment also has about a factor of ten lower consumption of power. We will also upgrade the SCSN data acquisition and data center facilities, which will improve the SCSN

  6. The First USGS Global Geologic Map of Europa

    Science.gov (United States)

    Leonard, E. J.; Patthoff, D. A.; Senske, D.; Collins, G. C.

    2017-12-01

    present the map submitted to the USGS for review.

  7. Proceedings of the Second All-USGS Modeling Conference, February 11-14, 2008: Painting the Big Picture

    Science.gov (United States)

    Brady, Shailaja R.

    2009-01-01

    The Second USGS Modeling Conference was held February 11-14, 2008, in Orange Beach, Ala. Participants at the conference came from all U.S. Geological Survey (USGS) regions and represented all four science discipline - Biology, Geography, Geology, and Water. Representatives from other Department of the Interior (DOI) agencies and partners from the academic community also participated. The conference, which was focused on 'painting the big picture', emphasized the following themes: Integrated Landscape Monitoring, Global Climate Change, Ecosystem Modeling, and Hazards and Risks. The conference centered on providing a forum for modelers to meet, exchange information on current approaches, identify specific opportunities to share existing models and develop more linked and integrated models to address complex science questions, and increase collaboration across disciplines and with other organizations. Abstracts for the 31 oral presentations and more than 60 posters presented at the conference are included here. The conference also featured a field trip to review scientific modeling issues along the Gulf of Mexico. The field trip included visits to Mississippi Sandhill Crane National Wildlife Refuge, Grand Bay National Estuarine Research Reserve, the 5 Rivers Delta Resource Center, and Bon Secour National Wildlife Refuge. On behalf of all the participants of the Second All-USGS Modeling Conference, the conference organizing committee expresses our sincere appreciation for the support of field trip oganizers and leaders, including the managers from the various Reserves and Refuges. The organizing committee for the conference included Jenifer Bracewell, Sally Brady, Jacoby Carter, Thomas Casadevall, Linda Gundersen, Tom Gunther, Heather Henkel, Lauren Hay, Pat Jellison, K. Bruce Jones, Kenneth Odom, and Mark Wildhaber.

  8. Extending the Mertonian Norms: Scientists' Subscription to Norms of Research

    Science.gov (United States)

    Anderson, Melissa S.; Ronning, Emily A.; De Vries, Raymond; Martinson, Brian C.

    2010-01-01

    This analysis, based on focus groups and a national survey, assesses scientists' subscription to the Mertonian norms of science and associated counternorms. It also supports extension of these norms to governance (as opposed to administration), as a norm of decision-making, and quality (as opposed to quantity), as an evaluative norm. (Contains 1…

  9. Data sharing by scientists: Practices and perceptions

    Science.gov (United States)

    Tenopir, C.; Allard, S.; Douglass, K.; Aydinoglu, A.U.; Wu, L.; Read, E.; Manoff, M.; Frame, M.

    2011-01-01

    Background: Scientific research in the 21st century is more data intensive and collaborative than in the past. It is important to study the data practices of researchers - data accessibility, discovery, re-use, preservation and, particularly, data sharing. Data sharing is a valuable part of the scientific method allowing for verification of results and extending research from prior results. Methodology/Principal Findings: A total of 1329 scientists participated in this survey exploring current data sharing practices and perceptions of the barriers and enablers of data sharing. Scientists do not make their data electronically available to others for various reasons, including insufficient time and lack of funding. Most respondents are satisfied with their current processes for the initial and short-term parts of the data or research lifecycle (collecting their research data; searching for, describing or cataloging, analyzing, and short-term storage of their data) but are not satisfied with long-term data preservation. Many organizations do not provide support to their researchers for data management both in the short- and long-term. If certain conditions are met (such as formal citation and sharing reprints) respondents agree they are willing to share their data. There are also significant differences and approaches in data management practices based on primary funding agency, subject discipline, age, work focus, and world region. Conclusions/Significance: Barriers to effective data sharing and preservation are deeply rooted in the practices and culture of the research process as well as the researchers themselves. New mandates for data management plans from NSF and other federal agencies and world-wide attention to the need to share and preserve data could lead to changes. Large scale programs, such as the NSF-sponsored DataNET (including projects like DataONE) will both bring attention and resources to the issue and make it easier for scientists to apply sound

  10. USGS assessment of undiscovered oil and gas resources in Paleogene strata of the U.S. Gulf of Mexico coastal plain and state waters

    Science.gov (United States)

    Warwick, Peter D.; Coleman, James; Hackley, Paul C.; Hayba, Daniel O.; Karlsen, Alexander W.; Rowan, Elisabeth L.; Swanson, Sharon M.; Kennan, Lorcan; Pindell, James; Rosen, Norman C.

    2007-01-01

    This report presents a review of the U.S. Geological Survey (USGS) 2007 assessment of the undiscovered oil and gas resources in Paleogene strata underlying the U.S. Gulf of Mexico Coastal Plain and state waters. Geochemical, geologic, geophysical, thermal maturation, burial history, and paleontologic studies have been combined with regional cross sections and data from previous USGS petroleum assessments have helped to define the major petroleum systems and assessment units. Accumulations of both conventional oil and gas and continuous coal-bed gas within these petroleum systems have been digitally mapped and evaluated, and undiscovered resources have been assessed following USGS methodology.The primary source intervals for oil and gas in Paleogene (and Cenozoic) reservoirs are coal and shale rich in organic matter within the Wilcox Group (Paleocene-Eocene) and Sparta Formation of the Claiborne Group (Eocene); in addition, Cretaceous and Jurassic source rocks probably have contributed substantial petroleum to Paleogene (and Cenozoic) reservoirs.For the purposes of the assessment, Paleogene strata have divided into the following four stratigraphic study intervals: (1) Wilcox Group (including the Midway Group and the basal Carrizo Sand of the Claiborne Group; Paleocene-Eocene); (2) Claiborne Group (Eocene); (3) Jackson and Vicksburg Groups (Eocene-Oligocene); and (4) the Frio-Anahuac Formations (Oligocene). Recent discoveries of coal-bed gas in Paleocene strata confirm a new petroleum system that was not recognized in previous USGS assessments. In total, 26 conventional Paleogene assessment units are defined. In addition, four Cretaceous-Paleogene continuous (coal-bed gas) assessment units are included in this report. Initial results of the assessment will be released as USGS Fact Sheets (not available at the time of this writing).Comprehensive reports for each assessment unit are planned to be released via the internet and distributed on CD-ROMs within the next year.

  11. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 25: The technical communications practices of British aerospace engineers and scientists: Results of the phase 4 RAeS mail survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of British aerospace engineers and scientists.

  12. NASA/DoD Aerospace Knowledge Diffusion Research Project: Report 43: The Technical Communication Practices of U.S. Aerospace Engineers and Scientists: Results of the Phase 1 Mail Survey -- Manufacturing and Production Perspective

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communication practices of U.S. aerospace engineers and scientists who were members of the Society of Manufacturing Engineers.

  13. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 45; The Technical Communications Practices of US Aerospace Engineers and Scientists: Results of the Phase 3 US Aerospace Engineering Educators Survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. Little is also known about the intermediary-based system that is used to transfer the results of federally funded R&D to the U.S. aerospace industry. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports, present a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communication practices of U.S. aerospace engineers and scientists who were members of the American Institute of Aeronautics and Astronautics (AIAA) and identified themselves as educators.

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report No. 36: The Technical Communications Practices of US Aerospace Engineers and Scientists: Results of the Phase 1 NASA Langley Research Center Mail Survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists who were assigned to the Research and Technology Group (RTG) at the NASA Langley Research Center in September 1995.

  15. Geological, geochemical, and geophysical studies by the U.S. Geological Survey in Big Bend National Park, Texas

    Science.gov (United States)

    Page, W.R.; Turner, K.J.; Bohannon, R.G.; Berry, M.E.; Williams, V.S.; Miggins, D.P.; Ren, M.; Anthony, E.Y.; Morgan, L.A.; Shanks, P.W.C.; Gray, J. E.; Theodorakos, P.M.; Krabbenhoft, D. P.; Manning, A.H.; Gemery-Hill, P. A.; Hellgren, E.C.; Stricker, C.A.; Onorato, D.P.; Finn, C.A.; Anderson, E.; Gray, J. E.; Page, W.R.

    2008-01-01

    Big Bend National Park (BBNP), Tex., covers 801,163 acres (3,242 km2) and was established in 1944 through a transfer of land from the State of Texas to the United States. The park is located along a 118-mile (190-km) stretch of the Rio Grande at the United States-Mexico border. The park is in the Chihuahuan Desert, an ecosystem with high mountain ranges and basin environments containing a wide variety of native plants and animals, including more than 1,200 species of plants, more than 450 species of birds, 56 species of reptiles, and 75 species of mammals. In addition, the geology of BBNP, which varies widely from high mountains to broad open lowland basins, also enhances the beauty of the park. For example, the park contains the Chisos Mountains, which are dominantly composed of thick outcrops of Tertiary extrusive and intrusive igneous rocks that reach an altitude of 7,832 ft (2,387 m) and are considered the southernmost mountain range in the United States. Geologic features in BBNP provide opportunities to study the formation of mineral deposits and their environmental effects; the origin and formation of sedimentary and igneous rocks; Paleozoic, Mesozoic, and Cenozoic fossils; and surface and ground water resources. Mineral deposits in and around BBNP contain commodities such as mercury (Hg), uranium (U), and fluorine (F), but of these, the only significant mining has been for Hg. Because of the biological and geological diversity of BBNP, more than 350,000 tourists visit the park each year. The U.S. Geological Survey (USGS) has been investigating a number of broad and diverse geologic, geochemical, and geophysical topics in BBNP to provide fundamental information needed by the National Park Service (NPS) to address resource management goals in this park. Scientists from the USGS Mineral Resources and National Cooperative Geologic Mapping Programs have been working cooperatively with the NPS and several universities on several research studies within BBNP

  16. The USGS Earthquake Notification Service (ENS): Customizable notifications of earthquakes around the globe

    Science.gov (United States)

    Wald, Lisa A.; Wald, David J.; Schwarz, Stan; Presgrave, Bruce; Earle, Paul S.; Martinez, Eric; Oppenheimer, David

    2008-01-01

    At the beginning of 2006, the U.S. Geological Survey (USGS) Earthquake Hazards Program (EHP) introduced a new automated Earthquake Notification Service (ENS) to take the place of the National Earthquake Information Center (NEIC) "Bigquake" system and the various other individual EHP e-mail list-servers for separate regions in the United States. These included northern California, southern California, and the central and eastern United States. ENS is a "one-stop shopping" system that allows Internet users to subscribe to flexible and customizable notifications for earthquakes anywhere in the world. The customization capability allows users to define the what (magnitude threshold), the when (day and night thresholds), and the where (specific regions) for their notifications. Customization is achieved by employing a per-user based request profile, allowing the notifications to be tailored for each individual's requirements. Such earthquake-parameter-specific custom delivery was not possible with simple e-mail list-servers. Now that event and user profiles are in a structured query language (SQL) database, additional flexibility is possible. At the time of this writing, ENS had more than 114,000 subscribers, with more than 200,000 separate user profiles. On a typical day, more than 188,000 messages get sent to a variety of widely distributed users for a wide range of earthquake locations and magnitudes. The purpose of this article is to describe how ENS works, highlight the features it offers, and summarize plans for future developments.

  17. Earthquake casualty models within the USGS Prompt Assessment of Global Earthquakes for Response (PAGER) system

    Science.gov (United States)

    Jaiswal, Kishor; Wald, David J.; Earle, Paul S.; Porter, Keith A.; Hearne, Mike

    2011-01-01

    Since the launch of the USGS’s Prompt Assessment of Global Earthquakes for Response (PAGER) system in fall of 2007, the time needed for the U.S. Geological Survey (USGS) to determine and comprehend the scope of any major earthquake disaster anywhere in the world has been dramatically reduced to less than 30 min. PAGER alerts consist of estimated shaking hazard from the ShakeMap system, estimates of population exposure at various shaking intensities, and a list of the most severely shaken cities in the epicentral area. These estimates help government, scientific, and relief agencies to guide their responses in the immediate aftermath of a significant earthquake. To account for wide variability and uncertainty associated with inventory, structural vulnerability and casualty data, PAGER employs three different global earthquake fatality/loss computation models. This article describes the development of the models and demonstrates the loss estimation capability for earthquakes that have occurred since 2007. The empirical model relies on country-specific earthquake loss data from past earthquakes and makes use of calibrated casualty rates for future prediction. The semi-empirical and analytical models are engineering-based and rely on complex datasets including building inventories, time-dependent population distributions within different occupancies, the vulnerability of regional building stocks, and casualty rates given structural collapse.

  18. Poll of radiation health scientists

    International Nuclear Information System (INIS)

    Cohen, B.L.

    1986-01-01

    A sampling of 210 university-employed radiation health scientists randomly selected from the membership lists of the Health Physics Society and the Radiation Research Society was polled in a secret ballot. The results support the positions that the public's fear of radiation is substantially greater than realistic, that TV, newspapers and magazines substantially exaggerate the dangers of radiation, that the amount of money now being spent on radiation protection is sufficient, and that the openness and honesty of U.S. government agencies about dangers of radiation were below average before 1972 but have been above average since then. Respondents give very high credibility ratings to BEIR, UNSCEAR, ICRP, and NCRP and to the individual scientists associated with their reports, and very low credibility ratings to those who have disputed them

  19. Attitudes and norms affecting scientists' data reuse.

    Directory of Open Access Journals (Sweden)

    Renata Gonçalves Curty

    Full Text Available The value of sharing scientific research data is widely appreciated, but factors that hinder or prompt the reuse of data remain poorly understood. Using the Theory of Reasoned Action, we test the relationship between the beliefs and attitudes of scientists towards data reuse, and their self-reported data reuse behaviour. To do so, we used existing responses to selected questions from a worldwide survey of scientists developed and administered by the DataONE Usability and Assessment Working Group (thus practicing data reuse ourselves. Results show that the perceived efficacy and efficiency of data reuse are strong predictors of reuse behaviour, and that the perceived importance of data reuse corresponds to greater reuse. Expressed lack of trust in existing data and perceived norms against data reuse were not found to be major impediments for reuse contrary to our expectations. We found that reported use of models and remotely-sensed data was associated with greater reuse. The results suggest that data reuse would be encouraged and normalized by demonstration of its value. We offer some theoretical and practical suggestions that could help to legitimize investment and policies in favor of data sharing.

  20. Mathematics for the Student Scientist

    Science.gov (United States)

    Lauten, A. Darien; Lauten, Gary N.

    1998-03-01

    The Earth Day:Forest Watch Program, introduces elementary, middle, and secondary students to field laboratory, and satellite-data analysis methods for assessing the health of Eastern White Pine ( Pinus strobus). In this Student-Scientist Partnership program, mathematics, as envisioned in the NCTM Standards, arises naturally and provides opportunities for science-mathematics interdisciplinary student learning. School mathematics becomes the vehicle for students to quantify, represent, analyze, and interpret meaningful, real data.

  1. Thermodynamics for scientists and engineers

    International Nuclear Information System (INIS)

    Lim, Gyeong Hui

    2011-02-01

    This book deals with thermodynamics for scientists and engineers. It consists of 11 chapters, which are concept and background of thermodynamics, the first law of thermodynamics, the second law of thermodynamics and entropy, mathematics related thermodynamics, properties of thermodynamics on pure material, equilibrium, stability of thermodynamics, the basic of compound, phase equilibrium of compound, excess gibbs energy model of compound and activity coefficient model and chemical equilibrium. It has four appendixes on properties of pure materials and thermal mass.

  2. The Scientist as Sentinel (Invited)

    Science.gov (United States)

    Oreskes, N.

    2013-12-01

    Scientists have been warning the world for some time about the risks of anthropogenic interference in the climate system. But we struggle with how, exactly, to express that warning. The norms of scientific behavior enjoin us from the communication strategies normally associated with warnings. If a scientist sounds excited or emotional, for example, it is often assumed that he has lost his capac¬ity to assess data calmly and therefore his conclusions are suspect. If the scientist is a woman, the problem is that much worse. In a recently published article my colleagues and I have shown that scientists have systematically underestimated the threat of climate change (Brysse et al., 2012). We suggested that this occurs for norma¬tive reasons: The scientific values of rationality, dispassion, and self-restraint lead us to demand greater levels of evidence in support of surprising, dramatic, or alarming conclusions than in support of less alarming conclusions. We call this tendency 'err¬ing on the side of least drama.' However, the problem is not only that we err on the side of least drama in our assessment of evidence, it's also that we speak without drama, even when our conclusions are dramatic. We speak without the emotional cadence that people expect to hear when the speaker is worried. Even when we are worried, we don't sound as if we are. In short, we are trying to act as sentinels, but we lack the register with which to do so. Until we find those registers, or partner with colleagues who are able to speak in the cadences that communicating dangers requires, our warnings about climate change will likely continue to go substantially unheeded.

  3. Watershed Boundary Dataset (WBD) - USGS National Map Downloadable Data Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Watershed Boundary Dataset (WBD) from The National Map (TNM) defines the perimeter of drainage areas formed by the terrain and other landscape characteristics....

  4. USGS Hydro Cached Base Map Service from The National Map

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The National Hydrography Dataset (NHD) is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of...

  5. USGS National Land Cover Dataset (NLCD) Downloadable Data Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — NLCD 1992, NLCD 2001, NLCD 2006, and NLCD 2011 are National Land Cover Database classification schemes based primarily on Landsat data along with ancillary data...

  6. Gap between science and media revisited: scientists as public communicators.

    Science.gov (United States)

    Peters, Hans Peter

    2013-08-20

    The present article presents an up-to-date account of the current media relations of scientists, based on a comprehensive analysis of relevant surveys. The evidence suggests that most scientists consider visibility in the media important and responding to journalists a professional duty--an attitude that is reinforced by universities and other science organizations. Scientific communities continue to regulate media contacts with their members by certain norms that compete with the motivating and regulating influences of public information departments. Most scientists assume a two-arena model with a gap between the arenas of internal scientific and public communication. They want to meet the public in the public arena, not in the arena of internal scientific communication. Despite obvious changes in science and in the media system, the orientations of scientists toward the media, as well as the patterns of interaction with journalists, have their roots in the early 1980s. Although there is more influence on public communication from the science organizations and more emphasis on strategic considerations today, the available data do not indicate abrupt changes in communication practices or in the relevant beliefs and attitudes of scientists in the past 30 y. Changes in the science-media interface may be expected from the ongoing structural transformation of the public communication system. However, as yet, there is little evidence of an erosion of the dominant orientation toward the public and public communication within the younger generation of scientists.

  7. Gap between science and media revisited: Scientists as public communicators

    Science.gov (United States)

    Peters, Hans Peter

    2013-01-01

    The present article presents an up-to-date account of the current media relations of scientists, based on a comprehensive analysis of relevant surveys. The evidence suggests that most scientists consider visibility in the media important and responding to journalists a professional duty—an attitude that is reinforced by universities and other science organizations. Scientific communities continue to regulate media contacts with their members by certain norms that compete with the motivating and regulating influences of public information departments. Most scientists assume a two-arena model with a gap between the arenas of internal scientific and public communication. They want to meet the public in the public arena, not in the arena of internal scientific communication. Despite obvious changes in science and in the media system, the orientations of scientists toward the media, as well as the patterns of interaction with journalists, have their roots in the early 1980s. Although there is more influence on public communication from the science organizations and more emphasis on strategic considerations today, the available data do not indicate abrupt changes in communication practices or in the relevant beliefs and attitudes of scientists in the past 30 y. Changes in the science–media interface may be expected from the ongoing structural transformation of the public communication system. However, as yet, there is little evidence of an erosion of the dominant orientation toward the public and public communication within the younger generation of scientists. PMID:23940312

  8. The Immoral Landscape? Scientists Are Associated with Violations of Morality.

    Science.gov (United States)

    Rutjens, Bastiaan T; Heine, Steven J

    2016-01-01

    Do people think that scientists are bad people? Although surveys find that science is a highly respected profession, a growing discourse has emerged regarding how science is often judged negatively. We report ten studies (N = 2328) that investigated morality judgments of scientists and compared those with judgments of various control groups, including atheists. A persistent intuitive association between scientists and disturbing immoral conduct emerged for violations of the binding moral foundations, particularly when this pertained to violations of purity. However, there was no association in the context of the individualizing moral foundations related to fairness and care. Other evidence found that scientists were perceived as similar to others in their concerns with the individualizing moral foundations of fairness and care, yet as departing for all of the binding foundations of loyalty, authority, and purity. Furthermore, participants stereotyped scientists particularly as robot-like and lacking emotions, as well as valuing knowledge over morality and being potentially dangerous. The observed intuitive immorality associations are partially due to these explicit stereotypes but do not correlate with any perceived atheism. We conclude that scientists are perceived not as inherently immoral, but as capable of immoral conduct.

  9. The Immoral Landscape? Scientists Are Associated with Violations of Morality.

    Directory of Open Access Journals (Sweden)

    Bastiaan T Rutjens

    Full Text Available Do people think that scientists are bad people? Although surveys find that science is a highly respected profession, a growing discourse has emerged regarding how science is often judged negatively. We report ten studies (N = 2328 that investigated morality judgments of scientists and compared those with judgments of various control groups, including atheists. A persistent intuitive association between scientists and disturbing immoral conduct emerged for violations of the binding moral foundations, particularly when this pertained to violations of purity. However, there was no association in the context of the individualizing moral foundations related to fairness and care. Other evidence found that scientists were perceived as similar to others in their concerns with the individualizing moral foundations of fairness and care, yet as departing for all of the binding foundations of loyalty, authority, and purity. Furthermore, participants stereotyped scientists particularly as robot-like and lacking emotions, as well as valuing knowledge over morality and being potentially dangerous. The observed intuitive immorality associations are partially due to these explicit stereotypes but do not correlate with any perceived atheism. We conclude that scientists are perceived not as inherently immoral, but as capable of immoral conduct.

  10. USGS GNSS Applications to Earthquake Disaster Response and Hazard Mitigation

    Science.gov (United States)

    Hudnut, K. W.; Murray, J. R.; Minson, S. E.

    2015-12-01

    standardization and adaptation to the existing framework of the ShakeAlert earthquake early warning system have been met, such that real-time GNSS processing and input to ShakeAlert is now routine and in use. Ongoing adaptation and testing of algorithms remain the last step towards fully operational incorporation of GNSS into ShakeAlert by USGS and its partners.

  11. USGS Imagery Applications During Disaster Response After Recent Earthquakes

    Science.gov (United States)

    Hudnut, K. W.; Brooks, B. A.; Glennie, C. L.; Finnegan, D. C.

    2015-12-01

    It is not only important to rapidly characterize surface fault rupture and related ground deformation after an earthquake, but also to repeatedly make observations following an event to forecast fault afterslip. These data may also be used by other agencies to monitor progress on damage repairs and restoration efforts by emergency responders and the public. Related requirements include repeatedly obtaining reference or baseline imagery before a major disaster occurs, as well as maintaining careful geodetic control on all imagery in a time series so that absolute georeferencing may be applied to the image stack through time. In addition, repeated post-event imagery acquisition is required, generally at a higher repetition rate soon after the event, then scaled back to less frequent acquisitions with time, to capture phenomena (such as fault afterslip) that are known to have rates that decrease rapidly with time. For example, lidar observations acquired before and after the South Napa earthquake of 2014, used in our extensive post-processing work that was funded primarily by FEMA, aided in the accurate forecasting of fault afterslip. Lidar was used to independently validate and verify the official USGS afterslip forecast. In order to keep pace with rapidly evolving technology, a development pipeline must be established and maintained to continually test and incorporate new sensors, while adapting these new components to the existing platform and linking them to the existing base software system, and then sequentially testing the system as it evolves. Improvements in system performance by incremental upgrades of system components and software are essential. Improving calibration parameters and thereby progressively eliminating artifacts requires ongoing testing, research and development. To improve the system, we have formed an interdisciplinary team with common interests and diverse sources of support. We share expertise and leverage funding while effectively and

  12. 50 CFR Table 1 to Subpart H of... - Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC)

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Pacific Salmon EFH Identified by USGS... 660—Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC) USGS HUC State(s) Hydrologic Unit... 18010206 CA/OR Upper Klamath River Chinook and coho salmon Iron Gate Dam 18010207 CA Shasta River Chinook...

  13. USGS approach to real-time estimation of earthquake-triggered ground failure - Results of 2015 workshop

    Science.gov (United States)

    Allstadt, Kate E.; Thompson, Eric M.; Wald, David J.; Hamburger, Michael W.; Godt, Jonathan W.; Knudsen, Keith L.; Jibson, Randall W.; Jessee, M. Anna; Zhu, Jing; Hearne, Michael; Baise, Laurie G.; Tanyas, Hakan; Marano, Kristin D.

    2016-03-30

    The U.S. Geological Survey (USGS) Earthquake Hazards and Landslide Hazards Programs are developing plans to add quantitative hazard assessments of earthquake-triggered landsliding and liquefaction to existing real-time earthquake products (ShakeMap, ShakeCast, PAGER) using open and readily available methodologies and products. To date, prototype global statistical models have been developed and are being refined, improved, and tested. These models are a good foundation, but much work remains to achieve robust and defensible models that meet the needs of end users. In order to establish an implementation plan and identify research priorities, the USGS convened a workshop in Golden, Colorado, in October 2015. This document summarizes current (as of early 2016) capabilities, research and operational priorities, and plans for further studies that were established at this workshop. Specific priorities established during the meeting include (1) developing a suite of alternative models; (2) making use of higher resolution and higher quality data where possible; (3) incorporating newer global and regional datasets and inventories; (4) reducing barriers to accessing inventory datasets; (5) developing methods for using inconsistent or incomplete datasets in aggregate; (6) developing standardized model testing and evaluation methods; (7) improving ShakeMap shaking estimates, particularly as relevant to ground failure, such as including topographic amplification and accounting for spatial variability; and (8) developing vulnerability functions for loss estimates.

  14. Geographic Names Information System (GNIS) for Lousiana, Geographic NAD83, USGS (2007) [GNIS_LA_USGS_2007

    Data.gov (United States)

    Louisiana Geographic Information Center — The Geographic Names Information System (GNIS) is the Federal standard for geographic nomenclature. The U.S. Geological Survey developed the GNIS for the U.S. Board...

  15. Science and scientists in the drawings of European children

    Directory of Open Access Journals (Sweden)

    Paola Rodari

    2007-09-01

    Full Text Available The first step of the SEDEC project has been a survey on teachers and pupils perception of science, scientists, and the European dimension of science. Different research actions have been organized for the different targets, and have been held in the six countries involved in the project: Czech Republic, France, Italy, Portugal, Poland and Romania. This article will present the analysis of more then 1000 drawings realized by 9 and 14 years old pupils and representing "a scientist". Form the drawings emerge stereotypes, fears, desires, expectations and more, a whole imaginery that has to be taken in account for an effective educative adn communicative action.

  16. USGS HYDRoacoustic dataset in support of the Surface Water Oceanographic Topography satellite mission (HYDRoSWOT)

    Data.gov (United States)

    Department of the Interior — HYDRoSWOT – HYDRoacoustic dataset in support of Surface Water Oceanographic Topography – is a data set that aggregates channel and flow data collected from the USGS...

  17. USGS Southwest Repeat Photography Collection: Kanab Creek, southern Utah and northern Arizona, 1872-2010

    Data.gov (United States)

    Department of the Interior — The USGS Southwest Repeat Photography Collection (‘Collection’), formerly named the Desert Laboratory Repeat Photography Collection, is now housed by the...

  18. USGS 1:12000 (Quarter 7 1/2 Minute) Quadrangle Index

    Data.gov (United States)

    Minnesota Department of Natural Resources — This is a mathematically generated grid in which each polygon represents one quarter of a standard USGS 7 1/2 minute quadrangle. The result is a 3 3/4 minute...

  19. Digital Raster Graphics (DRG) 24k Polygons, US EPA Region 9, 2006, USGS

    Data.gov (United States)

    U.S. Environmental Protection Agency — This document describes the contents of the file 'drg.list'. The drg.list contains metadata information relative to the DRG data set held at the USGS EROS Data...

  20. USGS 1:24000 (7 1/2 Minute) Quadrangle Index

    Data.gov (United States)

    Minnesota Department of Natural Resources — Mathematically generated grid representing USGS 7 1/2 Minute Quadrangle Map outlines. Quadrangle names and standard identifiers are included with the data set.

  1. COAWST Forecast System : USGS : US East Coast and Gulf of Mexico (Experimental)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Experimental forecast model product from the USGS Coupled Ocean Atmosphere Wave Sediment-Transport (COAWST) modeling system. Data required to drive the modeling...

  2. U.S. Geological Survey Karst Interest Group Proceedings, San Antonio, Texas, May 16–18, 2017

    Science.gov (United States)

    Kuniansky, Eve L.; Spangler, Lawrence E.

    2017-05-15

    karst hydrogeologic systems. As a result, numerous federal, state, and local agencies have a strong interest in the study of karst terrains.Many of the major springs and aquifers in the United States have developed in carbonate rocks, such as the Floridan aquifer system in Florida and parts of Alabama, Georgia, and South Carolina; the Ozark Plateaus aquifer system in parts of Arkansas, Kansas, Missouri, and Oklahoma; and the Edwards-Trinity aquifer system in west-central Texas. These aquifers, and the springs that discharge from them, serve as major water-supply sources and form unique ecological habitats. Competition for the water resources of karst aquifers is common, and urban development and the lack of attenuation of contaminants in karst areas due to dissolution features that form direct pathways into karst aquifers can impact the ecosystem and water quality associated with these aquifers.The concept for developing a platform for interaction among scientists within the U.S. Geological Survey (USGS) working on karst-related studies evolved from the November 1999 National Groundwater Meeting of the USGS. As a result, the Karst Interest Group (KIG) was formed in 2000. The KIG is a loose-knit, grass-roots organization of USGS and non-USGS scientists and researchers devoted to fostering better communication among scientists working on, or interested in, karst science. The primary mission of the KIG is to encourage and support interdisciplinary collaboration and technology transfer among scientists working in karst areas. Additionally, the KIG encourages collaborative studies between the different mission areas of the USGS as well as with other federal and state agencies, and with researchers from academia and institutes.To accomplish its mission, the KIG has organized a series of workshops that have been held near nationally important karst areas. To date (2017) seven KIG workshops, including the workshop documented in this report, have been held. The workshops

  3. Studi Penentuan Kecepatan Aliran Darah dan Frekuensi Terimaan Pasien Atherosclerosis Menggunakan USG Color Doppler

    OpenAIRE

    Mulyani, Emba

    2014-01-01

    Jurnal Fisika Medik Studi Penentuan Kecepatan Aliran Darah dan Frekuensi Terimaan Pasien Atherosclerosis Menggunakan USG Color Doppler Mulyani H211 08 507 Pembimbing Utama Sri Dewi Astuty Ilyas,Ssi, Msi Nip.19750513 199903 2 001 Pembimbing Pertama Dahlang Tahir, Msi, Ph.D Nip.19750907 200003 1 001 ABSTRACT Research about Study of determination blood speed of current and freq uency give patient atherosclero sis uses plane USG Color Doppler had be...

  4. A scientist at the seashore

    CERN Document Server

    Trefil, James S

    2005-01-01

    ""A marvelous excursion from the beach to the ends of the solar system . . . captivating.""-The New York Times""So easy to understand yet so dense with knowledge that you'll never look at waves on a beach the same way again.""-San Francisco Chronicle""One of the best popular science books.""-The Kansas City Star""Perfect for the weekend scientist.""-The Richmond News-LeaderA noted physicist and popular science writer heads for the beach to answer common and uncommon questions about the ocean. James S. Trefil, author of Dover Publications' The Moment of Creation: Big Bang Physics from Before th

  5. Give Young Scientists a Break

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, H. S.

    2009-11-01

    There has been much concern about the impact of tight funding on the careers of young scientists. When only a small percentage of grants are approved, even the smallest problem or error with an application can push it out of the funding range. Unfortunately, the relative lack of grant writing skills by new investigators often has this effect. To avoid a situation where only experienced investigators with polished writing skills are funded, the National Institutes of Health has instituted a more generous ranking scale for new investigators. Not surprisingly, some senior investigators have protested, calling it reverse discrimination. I say that their anger is misplaced. New investigators do deserve a break.

  6. Caltech/USGS Southern California Seismic Network: Recent Developments

    Science.gov (United States)

    Bhadha, R.; Chen, S.; Crummey, J.; Hauksson, E.; Solanki, K.; Thomas, V. I.; Watkins, M.; Yip, R.; Yu, E.; Given, D.; Peats, R.; Schwarz, S.

    2010-12-01

    The SCSN is the modern digital ground motion seismic network in Southern California and performs the following tasks: 1) Operates remote seismic stations and the central data processing systems in Pasadena; 2) Generates and reports real-time products including location, magnitude, ShakeMap, and others; 3) Responds to FEMA, CalEMA, media, and public inquiries about earthquakes; 4) Manages the production, archival, and distribution of waveforms, phase picks, and other data at the SCEDC; 5) Contributes to development and maintenance of the ANSS Quake Monitoring System (AQMS) software to add new features and improve robustness; 6) Supports the deployment of AQMS to other ANSS member regional seismic networks. The public regularly accesses the CISN, SCSN, and SCEDC web pages for up-to-date quake info and more than 230,000 users subscribe to the Electronic Notification System (ENS) which sends rapid notifications via email and cell phones. We distribute our products via Internet (EIDS), email, and paging, to USGS in Reston and Golden, FEMA, CalEMA, local governments, partner members, and other subscribers. We have developed CISN Display and provide ShakeCast for customers who require real-time earthquake information. The SCSN also exchanges waveform, phase pick, and amplitude data in real-time with several other partner networks, including Menlo Park, UCB, UNR, Anza network, the Tsunami Warning Centers, IRIS, and the NEIC. We operate a number of 24/7 on-call rotations to provide quick response to verify seismic events as well as addressing systems and telemetry issues. As part of our goals to improve quality, robustness, and coverage, some of our recent efforts include: 1) Converting the digital stations in the network to Q330 dataloggers; 2) Developing command and control capabilities such as automated mass re-centering; 3) Migration from serial to Ethernet communications; 4) Clustering of data acquisition servers for fail-over to improve data availability; 5) Use of

  7. USGS leads United States effort in Mallik Well

    Science.gov (United States)

    2002-01-01

    This winter, in the extremely cold, far reaches of the upper Northwest Territory of Canada, there is an international consortium of researchers participating in a program to study methane hydrates. The researchers are currently drilling a 1200 m-deep production research well through the permafrost. It is one of three wells located in the Mackenzie Delta, on the shore of the Beaufort Sea. Two observation wells were drilled adjacent to the main production test well earlier this year.Research objectives for the program focus on two themes: (1) the assessment of the production and properties of gas hydrates, and (2) an assessment of the stability of continental gas hydrates given warming trends predicted by climate change models. Of particular interest is the physical response of the gas hydrate to depressurization and thermal production stimulation. Cores are being taken from the well, and scientists hope to retrieve at least 200 m of core, including all the gas hydrate-rich intervals. Once cored, the samples are transported 200 kilometers over ice roads to Inuvik. Nearly 60 researchers are examining the cores for everything from geophysical parameters to microbiological analyses.

  8. United States Geological Survey (USGS) FM cassette seismic-refraction recording system

    International Nuclear Information System (INIS)

    Murphy, J.M.

    1988-01-01

    In this two chapter report, instrumentation used to collect seismic data is described. This data acquisition system has two parts: (1) portable anolog seismic recorders and related ''hand-held-testers'' (HHT) and (2) portable digitizing units. During the anolog recording process, ground motion is sensed by a 2-Hz vertical-component seismometer. The voltage output from the seismometer is split without amplification and sent to three parallel amplifier circuit boards. Each circuit board amplifiers the seismic signal in three stages and then frequency modulates the signal. Amplification at the last two stages can be set by the user. An internal precision clock signal is also frequency modulated. The three data carrier frequencies, the clock carrier frequency, and a tape-speed compensation carrier frequency are summed and recorded on a recorded on a cassette tape. During the digitizing process, the cassette tapes are played back and the signals are demultiplexed and demodulated. An anolog-to-digital converter converts the signals to digital data which are stored on 8-inch floppy disks. 7 refs., 19 figs., 6 tabs

  9. 2010 U.S. Geological Survey (USGS) Topographic LiDAR: San Francisco Bay, California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The primary purpose of this project was to develop a consistent and accurate surface elevation dataset derived from high-accuracy Light Detection and Ranging (LiDAR)...

  10. 2010 U.S. Geological Survey (USGS) Topographic Lidar: Channel Islands, California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Terrapoint collected LiDAR for 197 square miles covering five islands off the coast of Los Angeles, California. These islands are part of the Channel Islands...

  11. 2011 U.S. Geological Survey (USGS) Topographic LiDAR: Louisiana Region 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: Louisiana Region 1 LiDAR ARRA Task Order LiDAR Data Acquisition and Processing Production Task- Vermillion, Iberia, St. Mary, Terrebonne, and Lafourche...

  12. 2011 U.S. Geological Survey (USGS) Topographic LiDAR: Louisiana Region 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: Louisiana Region 2 LiDAR ARRA Task Order LiDAR Data Acquisition and Processing Production Task- Orleans, Plaquemines, St. Bernard, St. Tammany Parishes,...

  13. The Water-Quality Partnership for National Parks—U.S. Geological Survey and National Park Service, 1998–2016

    Science.gov (United States)

    Nilles, Mark A.; Penoyer, Pete E; Ludtke, Amy S.; Ellsworth, Alan C.

    2016-07-13

    The U.S. Geological Survey (USGS) and the National Park Service (NPS) work together through the USGS–NPS Water-Quality Partnership to support a broad range of policy and management needs related to high-priority water-quality issues in national parks. The program was initiated in 1998 as part of the Clean Water Action Plan, a Presidential initiative to commemorate the 25th anniversary of the Clean Water Act. Partnership projects are developed jointly by the USGS and the NPS. Studies are conducted by the USGS and findings are used by the NPS to guide policy and management actions aimed at protecting and improving water quality.The National Park Service manages many of our Nation’s most highly valued aquatic systems across the country, including portions of the Great Lakes, ocean and coastal zones, historic canals, reservoirs, large rivers, high-elevation lakes and streams, geysers, springs, and wetlands. So far, the Water-Quality Partnership has undertaken 217 projects in 119 national parks. In each project, USGS studies and assessments (http://water.usgs.gov/nps_partnership/pubs.php) have supported science-based management by the NPS to protect and improve water quality in parks. Some of the current projects are highlighted in the NPS Call to Action Centennial initiative, Crystal Clear, which celebrates national park water-resource efforts to ensure clean water for the next century of park management (http://www.nature.nps.gov/water/crystalclear/).New projects are proposed each year by USGS scientists working in collaboration with NPS staff in specific parks. Project selection is highly competitive, with an average of only eight new projects funded each year out of approximately 75 proposals that are submitted. Since the beginning of the Partnership in 1998, 189 publications detailing project findings have been completed. The 217 studies have been conducted in 119 NPS-administered lands, extending from Denali National Park and Preserve in Alaska to Everglades

  14. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Information Optical Illusions Printables Ask a Scientist Video Series Why can’t you see colors well in ... and more with our Ask a Scientist video series. Dr. Sheldon Miller answers questions about color blindness, ...

  15. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Ask a Scientist Video Series Listen All About Vision About the Eye Ask a Scientist Video Series ... Eye Health and Safety First Aid Tips Healthy Vision Tips Protective Eyewear Sports and Your Eyes Fun ...

  16. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Stuff Cool Eye Tricks Links to More Information Optical Illusions Printables Ask a Scientist Video Series Why can’ ... a scientist? Click to Watch What is an optical illusion? Click to Watch What is color blindness? Click ...

  17. The Use of Internet Services and Resources by Scientists at Olabisi Onabanjo University, Ago Iwoye, Nigeria

    Science.gov (United States)

    Bankole, Olubanke M.

    2013-01-01

    Purpose: This study aims to investigate the extent and level of internet access and use among scientists at Olabisi Onabanjo University (OOU), Ago Iwoye, Nigeria, its impact on their academic activities and the constraints faced in internet use. Design/methodology/approach: A questionnaire survey with all the 125 scientists in the Faculty of…

  18. Brazilian Primary and Secondary School Pupils' Perception of Science and Scientists

    Science.gov (United States)

    Bartoszeck, Amauri Betini; Bartoszeck, Flavio Kulevicz

    2017-01-01

    The purpose of this study is to understand in an exploratory way pupils' perception of science and the image of scientists at primary and secondary school levels. Data was collected by means of a survey questionnaire and a drawing representing pupils' depiction what scientists do during their working hours. A questionnaire anchored on a Likert…

  19. Cybercafés Use By The Research Scientists In Agricultural ...

    African Journals Online (AJOL)

    This study examined the use of internet by the research scientists in Agricultural research institutes in Ibadan. A descriptive survey design was adapted for the study. A purposeful sampling technique was also used to select the sample and the method produced 180 Research Scientists. A total of 162 cases were finally ...

  20. Scientists' Ethical Obligations and Social Responsibility for Nanotechnology Research.

    Science.gov (United States)

    Corley, Elizabeth A; Kim, Youngjae; Scheufele, Dietram A

    2016-02-01

    Scientists' sense of social responsibility is particularly relevant for emerging technologies. Since a regulatory vacuum can sometimes occur in the early stages of these technologies, individual scientists' social responsibility might be one of the most significant checks on the risks and negative consequences of this scientific research. In this article, we analyze data from a 2011 mail survey of leading U.S. nanoscientists to explore their perceptions the regarding social and ethical responsibilities for their nanotechnology research. Our analyses show that leading U.S. nanoscientists express a moderate level of social responsibility about their research. Yet, they have a strong sense of ethical obligation to protect laboratory workers (in both universities and industry) from unhealthy exposure to nanomaterials. We also find that there are significant differences in scientists' sense of social and ethical responsibility depending on their demographic characteristics, job affiliation, attention to media content, risk perceptions and benefit perceptions. We conclude with some implications for future research.

  1. Social scientists in public health: a fuzzy approach

    Directory of Open Access Journals (Sweden)

    Juliana Luporini do Nascimento

    2015-05-01

    Full Text Available This study aims to describe and analyze the presence of social scientists, anthropologists, sociologists and political scientists in the field of public health. A survey by the Lattes Curriculum and sites of Medical Colleges, Institutes of Health Research Collective, seeking professionals who work in healthcare and have done some stage of their training in the areas of social sciences. In confluence with Norbert Elias' concepts of social networks and configuration of interdependence it was used fuzzy logic, and the tool free statistical software R version 2.12.0 which enabled a graphic representation of social scientists interdependence in the field of social sciences-health-social sciences. A total of 238 professionals were ready in 6 distinct clusters according to the distance or closer of each professional in relation to public health and social sciences. The work was shown with great analytical and graphical representation possibilities for social sciences of health, in using this innovative quantitative methodology.

  2. Young scientists in the making

    CERN Multimedia

    Corinne Pralavorio

    2011-01-01

    Some 700 local primary-school children will be trying out the scientific method for themselves from February to June. After "Draw me a physicist", the latest project "Dans la peau d’un chercheur" ("Be a scientist for a day") is designed to give children a taste of what it's like to be a scientist. Both schemes are the fruit of a partnership between CERN, "PhysiScope" (University of Geneva) and the local education authorities in the Pays de Gex and the Canton of Geneva.   Juliette Davenne (left) and Marie Bugnon (centre) from CERN's Communication Group prepare the mystery boxes for primary schools with Olivier Gaumer (right) of PhysiScope. Imagine a white box that rattles and gives off a strange smell when you shake it… How would you go about finding out what's inside it without opening it? Thirty primary-school teachers from the Pays de Gex and the Canton of Geneva tried out this exercise on Wednesday 26 ...

  3. Scientists Discover Sugar in Space

    Science.gov (United States)

    2000-06-01

    The prospects for life in the Universe just got sweeter, with the first discovery of a simple sugar molecule in space. The discovery of the sugar molecule glycolaldehyde in a giant cloud of gas and dust near the center of our own Milky Way Galaxy was made by scientists using the National Science Foundation's 12 Meter Telescope, a radio telescope on Kitt Peak, Arizona. "The discovery of this sugar molecule in a cloud from which new stars are forming means it is increasingly likely that the chemical precursors to life are formed in such clouds long before planets develop around the stars," said Jan M. Hollis of the NASA Goddard Space Flight Center in Greenbelt, MD. Hollis worked with Frank J. Lovas of the University of Illinois and Philip R. Jewell of the National Radio Astronomy Observatory (NRAO) in Green Bank, WV, on the observations, made in May. The scientists have submitted their results to the Astrophysical Journal Letters. "This discovery may be an important key to understanding the formation of life on the early Earth," said Jewell. Conditions in interstellar clouds may, in some cases, mimic the conditions on the early Earth, so studying the chemistry of interstellar clouds may help scientists understand how bio-molecules formed early in our planet's history. In addition, some scientists have suggested that Earth could have been "seeded" with complex molecules by passing comets, made of material from the interstellar cloud that condensed to form the Solar System. Glycolaldehyde, an 8-atom molecule composed of carbon, oxygen and hydrogen, can combine with other molecules to form the more-complex sugars Ribose and Glucose. Ribose is a building block of nucleic acids such as RNA and DNA, which carry the genetic code of living organisms. Glucose is the sugar found in fruits. Glycolaldehyde contains exactly the same atoms, though in a different molecular structure, as methyl formate and acetic acid, both of which were detected previously in interstellar clouds

  4. U.S. Geological Survey Karst Interest Group Proceedings, Carlsbad, New Mexico, April 29-May 2, 2014

    Science.gov (United States)

    Kuniansky, Eve L.; Spangler, Lawrence E.; Kuniansky, Eve L.; Spangler, Lawrence E.

    2014-01-01

    strong interest in the study of karst terrains.Many of the major springs and aquifers in the United States have developed in carbonate rocks, such as the Floridan aquifer system in Florida and parts of Alabama, Georgia, and South Carolina; the Ozark Plateaus aquifer system in parts of Arkansas, Kansas, Missouri, and Oklahoma; and the Edwards-Trinity aquifer system in west-central Texas. These aquifers, and the springs that discharge from them, serve as major water-supply sources and as unique ecological habitats. Competition for the water resources of karst aquifers is common, and urban development and the lack of attenuation of contaminants in karst areas can impact the ecosystem and water quality of these aquifers.The concept for developing a platform for interaction among scientists within the U.S. Geological Survey (USGS) working on karst-related studies evolved from the November 1999 National Ground-Water Meeting of the USGS. As a result, the Karst Interest Group (KIG) was formed in 2000. The KIG is a loose-knit, grass-roots organization of USGS and non-USGS scientists and researchers devoted to fostering better communication among scientists working on, or interested in, karst science. The primary mission of the KIG is to encourage and support interdisciplinary collaboration and technology transfer among scientists working in karst areas. Additionally, the KIG encourages collaborative studies between the different mission areas of the USGS as well as other federal and state agencies, and with researchers from academia and institutes. The KIG also encourages younger scientists by participation of students in the poster and oral sessions.To accomplish its mission, the KIG has organized a series of workshops that are held near nationally important karst areas. To date (2014) six KIG workshops, including the workshop documented in this report, have been held. The workshops typically include oral and poster sessions on selected karst-related topics and research, as well

  5. U.S. Geological Survey Rewarding Environment Culture Study, 2002

    Science.gov (United States)

    Nash, Janis C.; Paradise-Tornow, Carol A.; Gray, Vicki K.; Griffin-Bemis, Sarah P.; Agnew, Pamela R.; Bouchet, Nicole M.

    2010-01-01

    In its 2001 review of the U.S. Geological Survey (USGS), the National Research Council (NRC, p. 126) cautioned that ?high-quality personnel are essential for developing high-quality science information? and urged the USGS to ?devote substantial efforts to recruiting and retaining excellent staff.? Recognizing the importance of the NRC recommendation, the USGS has committed time and resources to create a rewarding work environment with the goal of achieving the following valued outcomes: ? USGS science vitality ? Customer satisfaction with USGS products and services ? Employee perceptions of the USGS as a rewarding place to work ? Heightened employee morale and commitment ? The ability to recruit and retain employees with critical skills To determine whether this investment of time and resources was proving to be successful, the USGS Human Resources Office conducted a Rewarding Environment Culture Study to answer the following four questions. ? Question 1: Does a rewarding work environment lead to the valued outcomes (identified above) that the USGS is seeking? ? Question 2: Which management, supervisory, and leadership behaviors contribute most to creating a rewarding work environment and to achieving the valued outcomes that the USGS is seeking? ? Question 3: Do USGS employees perceive that the USGS is a rewarding place to work? ? Question 4: What actions can and should be taken to enhance the USGS work environment? To begin the study, a conceptual model of a rewarding USGS environment was developed to test assumptions about a rewarding work environment. The Rewarding Environment model identifies the key components that are thought to contribute to a rewarding work environment and the valued outcomes that are thought to result from having a rewarding work environment. The 2002 Organizational Assessment Survey (OAS) was used as the primary data source for the study because it provided the most readily available data. Additional survey data were included as they

  6. The use of TOUGH2 for the LBL/USGS 3-dimensional site-scale model of Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Bodvarsson, G.; Chen, G.; Haukwa, C. [Lawrence Berkeley Laboratory, CA (United States)] [and others

    1995-03-01

    The three-dimensional site-scale numerical model of the unsaturated zone at Yucca Mountain is under continuous development and calibration through a collaborative effort between Lawrence Berkeley Laboratory (LBL) and the United States Geological Survey (USGS). The site-scale model covers an area of about 30 km{sup 2} and is bounded by major fault zones to the west (Solitario Canyon Fault), east (Bow Ridge Fault) and perhaps to the north by an unconfirmed fault (Yucca Wash Fault). The model consists of about 5,000 grid blocks (elements) with nearly 20,000 connections between them the grid was designed to represent the most prevalent geological and hydro-geological features of the site including major faults, and layering and bedding of the hydro-geological units. Further information about the three-dimensional site-scale model is given by Wittwer et al. and Bodvarsson et al.

  7. Scientists' views about attribution of global warming.

    Science.gov (United States)

    Verheggen, Bart; Strengers, Bart; Cook, John; van Dorland, Rob; Vringer, Kees; Peters, Jeroen; Visser, Hans; Meyer, Leo

    2014-08-19

    Results are presented from a survey held among 1868 scientists studying various aspects of climate change, including physical climate, climate impacts, and mitigation. The survey was unique in its size, broadness and level of detail. Consistent with other research, we found that, as the level of expertise in climate science grew, so too did the level of agreement on anthropogenic causation. 90% of respondents with more than 10 climate-related peer-reviewed publications (about half of all respondents), explicitly agreed with anthropogenic greenhouse gases (GHGs) being the dominant driver of recent global warming. The respondents' quantitative estimate of the GHG contribution appeared to strongly depend on their judgment or knowledge of the cooling effect of aerosols. The phrasing of the IPCC attribution statement in its fourth assessment report (AR4)-providing a lower limit for the isolated GHG contribution-may have led to an underestimation of the GHG influence on recent warming. The phrasing was improved in AR5. We also report on the respondents' views on other factors contributing to global warming; of these Land Use and Land Cover Change (LULCC) was considered the most important. Respondents who characterized human influence on climate as insignificant, reported having had the most frequent media coverage regarding their views on climate change.

  8. Helping Young People Engage with Scientists

    Science.gov (United States)

    Leggett, Maggie; Sykes, Kathy

    2014-01-01

    There can be multiple benefits of scientists engaging with young people, including motivation and inspiration for all involved. But there are risks, particularly if scientists do not consider the interests and needs of young people or listen to what they have to say. We argue that "dialogue" between scientists, young people and teachers…

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report number 20: The use of selected information products and services by US aerospace engineers and scientists: Results of two surveys

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally, funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from two surveys of our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report and close with a brief overview of on-going research into aerospace knowledge diffusion focusing on the role of the industry-affiliated information intermediary.

  10. One More Legacy of Paul F. Brandwein: Creating Scientists

    Science.gov (United States)

    Fort, Deborah C.

    2011-06-01

    This paper studies the influence of Paul F. Brandwein, author, scientist, teacher and mentor, publisher, humanist, and environmentalist, on gifted youngsters who later became scientists, based primarily on information gathered from surveys completed by 25 of his students and one colleague. It also traces his profound interactions with science educators. It illuminates the theories of Brandwein and his protégés and colleagues about the interaction of environment, schooling, and education and Brandwein's belief in having students do original research (that is, research whose results are unknown) on their way to discovering their future scientific paths. It tests Brandwein's 1955 hypothesis on the characteristics typical of the young who eventually become scientists, namely: Three factors are considered as being significant in the development of future scientists: a Genetic Factor with a primary base in heredity (general intelligence, numerical ability, and verbal ability); a Predisposing Factor, with a primary base in functions which are psychological in nature; an Activating Factor, with a primary base in the opportunities offered in school and in the special skills of the teacher. High intelligence alone does not make a youngster a scientist (p xix).

  11. National Geochemical Survey Locations and Results for Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The United States Geological Survey (USGS), in collaboration with other state and federal agencies, industry, and academia, is conducting a National Geochemical...

  12. The mentoring of male and female scientists during their doctoral studies

    Science.gov (United States)

    Filippelli, Laura Ann

    The mentoring relationships of male and female scientists during their doctoral studies were examined. Male and female biologists, chemists, engineers and physicists were compared regarding the importance of doctoral students receiving career enhancing and psychosocial mentoring from their doctoral chairperson and student colleagues. Scientists' satisfaction with their chairperson and colleagues as providers of these mentoring functions was also investigated. In addition, scientists identified individuals other than their chairperson and colleagues who were positive influencers on their professional development as scientists and those who hindered their development. A reliable instrument, "The Survey of Accomplished Scientists' Doctoral Experiences," was developed to assess career enhancing and psychosocial mentoring of doctoral chairpersons and student colleagues based on the review of literature, interviews with scientists and two pilot studies. Surveys were mailed to a total of 400 men and women scientists with earned doctorates, of which 209 were completed and returned. The findings reveal that female scientists considered the doctoral chairperson furnishing career enhancing mentoring more important than did the men, while both were in accordance with the importance of them providing psychosocial mentoring. In addition, female scientists were not as satisfied as men with their chairperson providing most of the career enhancing and psychosocial mentoring functions. For doctoral student colleagues, female scientists, when compared to men, indicated that they considered student colleagues more important in providing career enhancing and psychosocial mentoring. However, male and female scientists were equally satisfied with their colleagues as providers of these mentoring functions. Lastly, the majority of male scientists indicated that professors served as a positive influencer, while women revealed that spouses and friends positively influenced their professional

  13. Is evaluation of scientist's objective

    CERN Document Server

    Wold, A

    2000-01-01

    There is ample data demonstrating that female scientists advance at a far slower rate than their male colleagues. The low numbers of female professors in European and North American universities is, thus, not solely an effect of few women in the recruitment pool but also to obstacles specific to the female gender. Together with her colleague Christine Wennerås, Agnes Wold conducted a study of the evaluation process at the Swedish Medical Research Council. Evaluators judged the "scientific competence", "research proposal" and "methodology" of applicants for post-doctoral positions in 1995. By relating the scores for "scientific competence" to the applicants' scientific productivity and other factors using multiple regression, Wennerås and Wold demonstrated that the applicant's sex exerted a strong influence on the "competence" score so that male applicants were perceived as being more competent than female applicants of equal productivity. The study was published in Nature (vol 387, p 341-3, 1997) and inspir...

  14. Refugee scientists and nuclear energy

    International Nuclear Information System (INIS)

    Segre, E.

    1985-01-01

    The coming together of many of the world's experts in nuclear physics in the 1930's was largely the result of the persecution of Jews in Germany and later in Italy. Initially this meant there were no jobs for young physicists to go into as the senior scientists had been sacked. Later, it resulted in the assembly of many of the world's foremost physicists in the United States, specifically at the Los Alamos Laboratory to work on the Manhattan Project. The rise of antisemitism in Italy (to where many physicists had fled at first) provoked the emigration of Fermi, the leading expert on neutrons at that time. The politics, physics and personalities in the 1930's, relevant to the development of nuclear energy, are discussed. (UK)

  15. LHCb Early Career Scientist Awards

    CERN Multimedia

    Patrick Koppenburg for the LHCb Collaboration

    2016-01-01

    On 15 September 2016, the LHCb collaboration awarded the first set of prizes for outstanding contributions of early career scientists.   From left to right: Guy Wilkinson (LHCb spokesperson), Sascha Stahl, Kevin Dungs, Tim Head, Roel Aaij, Conor Fitzpatrick, Claire Prouvé, Patrick Koppenburg (chair of committee) and Sean Benson. Twenty-five nominations were submitted and considered by the committee, and 5 prizes were awarded to teams or individuals for works that had a significant impact within the last year. The awardees are: Roel Aaij, Sean Benson, Conor Fitzpatrick, Rosen Matev and Sascha Stahl for having implemented and commissioned the revolutionary changes to the LHC Run-2 high-level-trigger, including the first widespread deployment of real-time analysis techniques in High Energy Physics;   Kevin Dungs and Tim Head for having launched the Starterkit initiative, a new style of software tutorials based on modern programming methods. “Starterkit is a group of ph...

  16. Identification of spectrally similar materials using the USGS Tetracorder algorithm: The calcite-epidote-chlorite problem

    Science.gov (United States)

    Dalton, J.B.; Bove, D.J.; Mladinich, C.S.; Rockwell, B.W.

    2004-01-01

    A scheme to discriminate and identify materials having overlapping spectral absorption features has been developed and tested based on the U.S. Geological Survey (USGS) Tetracorder system. The scheme has been applied to remotely sensed imaging spectroscopy data acquired by the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) instrument. This approach was used to identify the minerals calcite, epidote, and chlorite in the upper Animas River watershed, Colorado. The study was motivated by the need to characterize the distribution of calcite in the watershed and assess its acid-neutralizing potential with regard to acidic mine drainage. Identification of these three minerals is difficult because their diagnostic spectral features are all centered at 2.3 ??m, and have similar shapes and widths. Previous studies overestimated calcite abundance as a result of these spectral overlaps. The use of a reference library containing synthetic mixtures of the three minerals in varying proportions was found to simplify the task of identifying these minerals when used in conjunction with a rule-based expert system. Some inaccuracies in the mineral distribution maps remain, however, due to the influence of a fourth spectral component, sericite, which exhibits spectral absorption features at 2.2 and 2.4 ??m that overlap the 2.3-??m absorption features of the other three minerals. Whereas the endmember minerals calcite, epidote, chlorite, and sericite can be identified by the method presented here, discrepancies occur in areas where all four occur together as intimate mixtures. It is expected that future work will be able to reduce these discrepancies by including reference mixtures containing sericite. ?? 2004 Elsevier Inc. All rights reserved.

  17. Estimating pole/zero errors in GSN-IRIS/USGS network calibration metadata

    Science.gov (United States)

    Ringler, A.T.; Hutt, C.R.; Aster, R.; Bolton, H.; Gee, L.S.; Storm, T.

    2012-01-01

    Mapping the digital record of a seismograph into true ground motion requires the correction of the data by some description of the instrument's response. For the Global Seismographic Network (Butler et al., 2004), as well as many other networks, this instrument response is represented as a Laplace domain pole–zero model and published in the Standard for the Exchange of Earthquake Data (SEED) format. This Laplace representation assumes that the seismometer behaves as a linear system, with any abrupt changes described adequately via multiple time-invariant epochs. The SEED format allows for published instrument response errors as well, but these typically have not been estimated or provided to users. We present an iterative three-step method to estimate the instrument response parameters (poles and zeros) and their associated errors using random calibration signals. First, we solve a coarse nonlinear inverse problem using a least-squares grid search to yield a first approximation to the solution. This approach reduces the likelihood of poorly estimated parameters (a local-minimum solution) caused by noise in the calibration records and enhances algorithm convergence. Second, we iteratively solve a nonlinear parameter estimation problem to obtain the least-squares best-fit Laplace pole–zero–gain model. Third, by applying the central limit theorem, we estimate the errors in this pole–zero model by solving the inverse problem at each frequency in a two-thirds octave band centered at each best-fit pole–zero frequency. This procedure yields error estimates of the 99% confidence interval. We demonstrate the method by applying it to a number of recent Incorporated Research Institutions in Seismology/United States Geological Survey (IRIS/USGS) network calibrations (network code IU).

  18. Universities Earth System Scientists Program

    Science.gov (United States)

    Estes, John E.

    1995-01-01

    This document constitutes the final technical report for the National Aeronautics and Space Administration (NASA) Grant NAGW-3172. This grant was instituted to provide for the conduct of research under the Universities Space Research Association's (USRA's) Universities Earth System Scientist Program (UESSP) for the Office of Mission to Planet Earth (OMTPE) at NASA Headquarters. USRA was tasked with the following requirements in support of the Universities Earth System Scientists Programs: (1) Bring to OMTPE fundamental scientific and technical expertise not currently resident at NASA Headquarters covering the broad spectrum of Earth science disciplines; (2) Conduct basic research in order to help establish the state of the science and technological readiness, related to NASA issues and requirements, for the following, near-term, scientific uncertainties, and data/information needs in the areas of global climate change, clouds and radiative balance, sources and sinks of greenhouse gases and the processes that control them, solid earth, oceans, polar ice sheets, land-surface hydrology, ecological dynamics, biological diversity, and sustainable development; (3) Evaluate the scientific state-of-the-field in key selected areas and to assist in the definition of new research thrusts for missions, including those that would incorporate the long-term strategy of the U.S. Global Change Research Program (USGCRP). This will, in part, be accomplished by study and evaluation of the basic science needs of the community as they are used to drive the development and maintenance of a global-scale observing system, the focused research studies, and the implementation of an integrated program of modeling, prediction, and assessment; and (4) Produce specific recommendations and alternative strategies for OMTPE that can serve as a basis for interagency and national and international policy on issues related to Earth sciences.

  19. Archiving strategy for USGS EROS center and our future direction

    Science.gov (United States)

    Faundeen, John L.

    2010-01-01

    The U. S. Geological Survey's Earth Resources Observation and Science Center has the responsibility to acquire, manage, and preserve our Nation's land observations. These records are obtained primarily from airplanes and satellites dating back to the 1930s. The ability to compare landscapes from the past with current information enables change analysis at local and global scales. With new observations added daily, the records management challenges are daunting, involving petabytes of electronic data and tens of thousands of rolls of analog film. This paper focuses upon the appraisal and preservation functions employed to ensure that these records are available for current and future generations.

  20. U.S. Senate confirms new USGS director

    Science.gov (United States)

    Showstack, Randy

    Shortly before adjourning in October, the U.S. Senate confirmed Charles Groat as the new director of the U.S. Geological Survey. Interior Secretary Bruce Babbitt is expected to swear him in shortly as the agency's 13th director. Groat takes over from Thomas Casadevall, who has served as acting director since Gordon Eaton resigned in September 1997.Groat, an AGU member, has more than 25 years of experience in the Earth science fields, including energy and minerals resource assessment, groundwater occurrence and protection, geomorphic processes and landform evolution in desert areas, and coastal studies.

  1. Improved USGS methodology for assessing continuous petroleum resources

    Science.gov (United States)

    Charpentier, Ronald R.; Cook, Troy A.

    2010-01-01

    This report presents an improved methodology for estimating volumes of continuous (unconventional) oil and gas resources within the United States and around the world. The methodology is based on previously developed U.S. Geological Survey methodologies that rely on well-scale production data. Improvements were made primarily to how the uncertainty about estimated ultimate recoveries is incorporated in the estimates. This is particularly important when assessing areas with sparse or no production data, because the new methodology allows better use of analog data from areas with significant discovery histories.

  2. Introductory comments on the USGS geographic applications program

    Science.gov (United States)

    Gerlach, A. C.

    1970-01-01

    The third phase of remote sensing technologies and potentials applied to the operations of the U.S. Geological Survey is introduced. Remote sensing data with multidisciplinary spatial data from traditional sources is combined with geographic theory and techniques of environmental modeling. These combined imputs are subject to four sequential activities that involve: (1) thermatic mapping of land use and environmental factors; (2) the dynamics of change detection; (3) environmental surveillance to identify sudden changes and general trends; and (4) preparation of statistical model and analytical reports. Geography program functions, products, clients, and goals are presented in graphical form, along with aircraft photo missions, geography test sites, and FY-70.

  3. PREFACE: FAIRNESS 2014: FAIR Next Generation ScientistS 2014

    Science.gov (United States)

    2015-04-01

    FAIRNESS 2014 was the third edition in a series of workshops designed to bring together excellent international young scientists with research interests focused on physics at FAIR (Facility for Antiproton and Ion Research) and was held on September 22-27 2014 in Vietri sul Mare, Italy. The topics of the workshops cover a wide range of aspects in both theoretical developments and current experimental status, concentrated around the four scientific pillars of FAIR. FAIR is a new accelerator complex with brand new experimental facilities, that is currently being built next to the existing GSI Helmholtzzentrum for Schwerionenforschung close to Darmstadt, Germany. The spirit of the conference is to bring together young scientists, e.g. advanced PhD students and postdocs and young researchers without permanent position to present their work, to foster active informal discussions and build up of networks. Every participant in the meeting with the exception of the organizers gives an oral presentation, and all sessions are followed by an hour long discussion period. During the talks, questions are anonymously collected in a box to stimulate discussions. The broad physics program at FAIR is reflected in the wide range of topics covered by the workshop: • Physics of hot and dense nuclear matter, QCD phase transitions and critical point • Nuclear structure, astrophysics and reactions • Hadron Spectroscopy, Hadrons in matter and Hypernuclei • New developments in atomic and plasma physics • Special emphasis is put on the experiments CBM, HADES, PANDA, NUSTAR, APPA and related experiments For each of these different areas one invited speaker was selected to give a longer introductory presentation. The write-ups of the talks presented at FAIRNESS 2014 are the content of this issue of Journal of Physics: Conference Series and have been refereed according to the IOP standard for peer review. This issue constitutes therefore a collection of the forefront of research that

  4. A revision in hydrogen isotopic composition of USGS42 and USGS43 human-hair stable isotopic reference materials for forensic science

    Science.gov (United States)

    Coplen, Tyler B.; Qi, Haiping

    2016-01-01

    The hydrogen isotopic composition (δ2HVSMOW-SLAP) of USGS42 and USGS43 human hair stable isotopic reference materials, normalized to the VSMOW (Vienna-Standard Mean Ocean Water)–SLAP (Standard Light Antarctic Precipitation) scale, was originally determined with a high temperature conversion technique using an elemental analyzer (TC/EA) with a glassy carbon tube and glassy carbon filling and analysis by isotope-ratio mass spectrometer (IRMS). However, the TC/EA IRMS method can produce inaccurate δ2HVSMOW-SLAPresults when analyzing nitrogen-bearing organic substances owing to the formation of hydrogen cyanide (HCN), leading to non-quantitative conversion of a sample into molecular hydrogen (H2) for IRMS analysis. A single-oven, chromium-filled, elemental analyzer (Cr-EA) coupled to an IRMS substantially improves the measurement quality and reliability of hydrogen isotopic analysis of hydrogen- and nitrogen-bearing organic material because hot chromium scavenges all reactive elements except hydrogen. USGS42 and USGS43 human hair isotopic reference materials have been analyzed with the Cr-EA IRMS method, and the δ2HVSMOW-SLAP values of their non-exchangeable hydrogen fractions have been revised:where mUr = 0.001 = ‰. On average, these revised δ2HVSMOW-SLAP values are 5.7 mUr more positive than those previously measured. It is critical that readers pay attention to the δ2HVSMOW-SLAP of isotopic reference materials in publications as they may need to adjust the δ2HVSMOW–SLAP measurement results of human hair in previous publications to ensure all results are on the same isotope-delta scale.

  5. Water-the Nation's Fundamental Climate Issue A White Paper on the U.S. Geological Survey Role and Capabilities

    Science.gov (United States)

    Lins, Harry F.; Hirsch, Robert M.; Kiang, Julie

    2010-01-01

    Of all the potential threats posed by climatic variability and change, those associated with water resources are arguably the most consequential for both society and the environment (Waggoner, 1990). Climatic effects on agriculture, aquatic ecosystems, energy, and industry are strongly influenced by climatic effects on water. Thus, understanding changes in the distribution, quantity and quality of, and demand for water in response to climate variability and change is essential to planning for and adapting to future climatic conditions. A central role of the U.S. Geological Survey (USGS) with respect to climate is to document environmental changes currently underway and to develop improved capabilities to predict future changes. Indeed, a centerpiece of the USGS role is a new Climate Effects Network of monitoring sites. Measuring the climatic effects on water is an essential component of such a network (along with corresponding effects on terrestrial ecosystems). The USGS needs to be unambiguous in communicating with its customers and stakeholders, and with officials at the Department of the Interior, that although modeling future impacts of climate change is important, there is no more critical role for the USGS in climate change science than that of measuring and describing the changes that are currently underway. One of the best statements of that mission comes from a short paper by Ralph Keeling (2008) that describes the inspiration and the challenges faced by David Keeling in operating the all-important Mauna Loa Observatory over a period of more than four decades. Ralph Keeling stated: 'The only way to figure out what is happening to our planet is to measure it, and this means tracking changes decade after decade and poring over the records.' There are three key ideas that are important to the USGS in the above-mentioned sentence. First, to understand what is happening requires measurement. While models are a tool for learning and testing our understanding

  6. U.S. Geological Survey Ecosystems science strategy: advancing discovery and application through collaboration

    Science.gov (United States)

    Williams, Byron K.; Wingard, G. Lynn; Brewer, Gary; Cloern, James E.; Gelfenbaum, Guy; Jacobson, Robert B.; Kershner, Jeffrey L.; McGuire, Anthony David; Nichols, James D.; Shapiro, Carl D.; van Riper, Charles; White, Robin P.

    2013-01-01

    Ecosystem science is critical to making informed decisions about natural resources that can sustain our Nation’s economic and environmental well-being. Resource managers and policymakers are faced with countless decisions each year at local, regional, and national levels on issues as diverse as renewable and nonrenewable energy development, agriculture, forestry, water supply, and resource allocations at the urbanrural interface. The urgency for sound decisionmaking is increasing dramatically as the world is being transformed at an unprecedented pace and in uncertain directions. Environmental changes are associated with natural hazards, greenhouse gas emissions, and increasing demands for water, land, food, energy, mineral, and living resources. At risk is the Nation’s environmental capital, the goods and services provided by resilient ecosystems that are vital to the health and wellbeing of human societies. Ecosystem science—the study of systems of organisms interacting with their environment and the consequences of natural and human-induced change on these systems—is necessary to inform decisionmakers as they develop policies to adapt to these changes. This Ecosystems Science Strategy is built on a framework that includes basic and applied science. It highlights the critical roles that U.S. Geological Survey (USGS) scientists and partners can play in building scientific understanding and providing timely information to decisionmakers. The strategy underscores the connection between scientific discoveries and the application of new knowledge, and it integrates ecosystem science and decisionmaking, producing new scientific outcomes to assist resource managers and providing public benefits. We envision the USGS as a leader in integrating scientific information into decisionmaking processes that affect the Nation’s natural resources and human well-being. The USGS is uniquely positioned to play a pivotal role in ecosystem science. With its wide range of

  7. EGU's Early Career Scientists Network

    Science.gov (United States)

    Roberts Artal, L.; Rietbroek, R.

    2017-12-01

    The EGU encourages early career scientists (ECS) to become involved in interdisciplinary research in the Earth, planetary and space sciences, through sessions, social events and short courses at the annual General Assembly in April and throughout the year. Through division-level representatives, all ECS members can have direct input into matters of the division. A Union-wide representative, who sits on the EGU Council, ensures that ECS are heard at a higher level in the Union too. After a brief introduction as to how the network is organised and structured, this presentation will discuss how EGU ECS activities have been tailored to the needs of ECS members and how those needs have been identified. Reaching and communicating opportunities to ECS remains an ongoing challenge; they will be discussed in this presentation too, as well as some thoughts on how to make them more effective. Finally, the service offered to EGU ECS members would certainly benefit from building links and collaboration with other early career networks in the geosciences. This presentation will outline some of our efforts in that direction and the challenges that remain.

  8. Gifted and Talented Students’ Images of Scientists

    Directory of Open Access Journals (Sweden)

    Sezen Camcı-Erdoğan

    2013-06-01

    Full Text Available The purpose of this study was to investigate gifted students’ images of scientists. The study involved 25 students in grades 7 and 8. The Draw-a-Scientist Test (DAST (Chamber, 183 was used to collect data. Drawings were eval-uated using certain criterion such as a scien-tist’s appearance and investigation, knowledge and technology symbols and gender and working style, place work, expressions, titles-captions-symbols and alternative images and age. The results showed that gifted students’ perceptions about scientists were stereotypical, generally with glasses and laboratory coats and working with experiment tubes, beakers indoors and using books, technological tools and dominantly lonely males. Most gifted stu-dents drew male scientists. Although females drew male scientists, none of the boys drew female scientist.

  9. Remotely sensed data available from the US Geological Survey EROS Data Center

    Science.gov (United States)

    Dwyer, John L.; Qu, J.J.; Gao, W.; Kafatos, M.; Murphy , R.E.; Salomonson, V.V.

    2006-01-01

    The Center for Earth Resources Observation Systems (EROS) is a field center of the geography discipline within the US geological survey (USGS) of the Department of the Interior. The EROS Data Center (EDC) was established in the early 1970s as the nation’s principal archive of remotely sensed data. Initially the EDC was responsible for the archive, reproduction, and distribution of black-and-white and color-infrared aerial photography acquired under numerous mapping programs conducted by various Federal agencies including the USGS, Department of Agriculture, Environmental Protection Agency, and NASA. The EDC was also designated the central archive for data acquired by the first satellite sensor designed for broad-scale earth observations in support of civilian agency needs for earth resource information. A four-band multispectral scanner (MSS) and a return-beam vidicon (RBV) camera were initially flown on the Earth Resources Technology Satellite-1, subsequently designated Landsat-1. The synoptic coverage, moderate spatial resolution, and multi-spectral view provided by these data stimulated scientists with an unprecedented perspective from which to study the Earth’s surface and to understand the relationships between human activity and natural systems.

  10. The use of TOUGH2 for the LBL/USGS 3-dimensional site-scale model of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Bodvarsson, G.; Chen, G.; Haukwa, C.; Kwicklis, E.

    1995-01-01

    The three-dimensional site-scale numerical model o the unsaturated zone at Yucca Mountain is under continuous development and calibration through a collaborative effort between Lawrence Berkeley Laboratory (LBL) and the United States Geological Survey (USGS). The site-scale model covers an area of about 30 km 2 and is bounded by major fault zones to the west (Solitario Canyon Fault), east (Bow Ridge Fault) and perhaps to the north by an unconfirmed fault (Yucca Wash Fault). The model consists of about 5,000 grid blocks (elements) with nearly 20,000 connections between them; the grid was designed to represent the most prevalent geological and hydro-geological features of the site including major faults, and layering and bedding of the hydro-geological units. Submodels are used to investigate specific hypotheses and their importance before incorporation into the three-dimensional site-scale model. The primary objectives of the three-dimensional site-scale model are to: (1) quantify moisture, gas and heat flows in the ambient conditions at Yucca Mountain, (2) help in guiding the site-characterization effort (primarily by USGS) in terms of additional data needs and to identify regions of the mountain where sufficient data have been collected, and (3) provide a reliable model of Yucca Mountain that is validated by repeated predictions of conditions in new boreboles and the ESF and has therefore the confidence of the public and scientific community. The computer code TOUGH2 developed by K. Pruess at LBL was used along with the three-dimensional site-scale model to generate these results. In this paper, we also describe the three-dimensional site-scale model emphasizing the numerical grid development, and then show some results in terms of moisture, gas and heat flow

  11. Citizen scientist lepidopterists exposed to potential carcinogens.

    Science.gov (United States)

    Vainio, Petri J; Vahlberg, Tero; Liesivuori, Jyrki

    2016-05-01

    Lepidopterists use substantial volumes of solvents, such as chloroform, 1,1,2,2-tetrachloroethane and xylene, in their traps when collecting faunistic and phenological data. A majority of them are citizen scientists and thus in part not identified by occupational healthcare as being at risk due to solvent handling. We surveyed the extent of solvent use, the frequency and extent of potential exposure and the safety precautions taken in trapping and catch handling by Finnish lepidopterists. Chloroform and 1,1,2,2-tetrachloroethane were the most frequently used anaesthetics. Potential for exposure prevailed during trap maintenance and exploration and catch sorting. Adequate protection against vapours or spills was worn by 17% during trap exploration. Subjects completed a median of 100 trap explorations per season. Dermal or mucosal spills were recorded at a median rate of one spill per ten (chloroform) to 20 (1,1,2,2-tetrachloroethane and xylene) trap explorations. Median annual cumulative durations of 8 and 20 h of exposure to chloroform and 1,1,2,2-tetrachloroethane at levels above odour detection threshold were reported. Subjective adverse findings possibly related solvents had been noticed by 24 (9.8%) lepidopterists. All the events had been mild to moderate. No factor predicting unsafe procedures or adverse reactions was recorded despite thorough statistical testing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Frederic Joliot-Curie, a tormented scientist

    International Nuclear Information System (INIS)

    Pinault, M.

    2000-01-01

    This article is a short biography of the French scientist Frederic Joliot-Curie. His fight for a peaceful use of atomic energy, his responsibilities as nuclear physicist and as the first director of the French atomic commission (CEA) have led him to face contradictions very difficult to manage. All along his career as a scientist and as a high ranked civil servant, F.Joliot-Curie tried to find an ethical way for scientists in modern societies. (A.C.)

  13. EuroGeoSurveys

    Science.gov (United States)

    Demicheli, L.; Ludden, J. N.; Robida, F.

    2012-04-01

    information and advice, EGS runs a number of Expert Groups in areas such as Carbon Capture and Storage, Earth Observation, Geochemistry, Spatial Information, Marine Geology, Mineral Resources, Water Resources, GeoEnergy, Natural Hazards, Soils Resources, as well as International Cooperation and Development or Communication to improve on external relations, dissemination and outreach. The Expert Groups consist of a panel of leading scientists from the member organisations of EGS who meet on a regular basis and provide technical support to the Secretariat. Having built its reputation as the leading source of European geological expertise to the European Institutions, EGS is now looking to develop their reputation in the private sector as well as their public profile through the Communication Strategy 2010-2016. EGS international profile, already consolidated through association with international geological organisations such as the International Union of Geological Sciences (IUGS) or as a participating organisation in the Global Earth Observation System of Systems (GEOSS), has recently gaining momentum through participation in outstanding projects (such as OneGeology). Most notably in 2010 agreements were signed for increased collaboration with the European Environment Agency (EEA) and the U.S. Geological Survey (USGS). Already consolidated EU priorities and emerging ones, such as those induced by globalization and the financial crisis, have opened a series of challenges for geosciences, forcing geological surveys to re-organise themselves. EGS is preparing to evolve again to even more successfully deal with those challenges. In this framework the cooperation with EPOS is being followed with much interest, as it is clear for EGS that only an open access data policy and the exploitation of synergies with other geoscientific bodies can reinforce our joint capacity to improve the security, health and wealth of European citizens.

  14. Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruise 14BIM05 Offshore of Breton Island, Louisiana, August 2014

    Science.gov (United States)

    Forde, Arnell S.; Flocks, James G.; Wiese, Dana S.; Fredericks, Jake J.

    2016-03-29

    From August 11 to 31, 2014, the U.S. Geological Survey (USGS), in cooperation with the U.S. Fish and Wildlife Service (USFWS), conducted a geophysical survey to investigate the geologic controls on barrier island framework and long-term sediment transport offshore of Breton Island, Louisiana as part of a broader USGS study on Barrier Island Mapping (BIM). Additional details related to this activity can be found by searching the USGS's Coastal and Marine Geoscience Data System (CMGDS), for field activity 2014-317-FA (also known as 14BIM05). These surveys were funded through the USGS Coastal and Marine Geology Program (CMGP) and the Louisiana Outer Coast Early Restoration Project. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FGDC) metadata. Gained digital images of the seismic profiles are also provided. Refer to the Abbreviations page for explanations of acronyms and abbreviations used in this report.

  15. Updating the USGS seismic hazard maps for Alaska

    Science.gov (United States)

    Mueller, Charles; Briggs, Richard; Wesson, Robert L.; Petersen, Mark D.

    2015-01-01

    The U.S. Geological Survey makes probabilistic seismic hazard maps and engineering design maps for building codes, emergency planning, risk management, and many other applications. The methodology considers all known earthquake sources with their associated magnitude and rate distributions. Specific faults can be modeled if slip-rate or recurrence information is available. Otherwise, areal sources are developed from earthquake catalogs or GPS data. Sources are combined with ground-motion estimates to compute the hazard. The current maps for Alaska were developed in 2007, and included modeled sources for the Alaska-Aleutian megathrust, a few crustal faults, and areal seismicity sources. The megathrust was modeled as a segmented dipping plane with segmentation largely derived from the slip patches of past earthquakes. Some megathrust deformation is aseismic, so recurrence was estimated from seismic history rather than plate rates. Crustal faults included the Fairweather-Queen Charlotte system, the Denali–Totschunda system, the Castle Mountain fault, two faults on Kodiak Island, and the Transition fault, with recurrence estimated from geologic data. Areal seismicity sources were developed for Benioff-zone earthquakes and for crustal earthquakes not associated with modeled faults. We review the current state of knowledge in Alaska from a seismic-hazard perspective, in anticipation of future updates of the maps. Updated source models will consider revised seismicity catalogs, new information on crustal faults, new GPS data, and new thinking on megathrust recurrence, segmentation, and geometry. Revised ground-motion models will provide up-to-date shaking estimates for crustal earthquakes and subduction earthquakes in Alaska.

  16. Frontier Scientists' project probes audience science interests with website, social media, TV broadcast, game, and pop-up book

    Science.gov (United States)

    O'Connell, E. A.

    2017-12-01

    The Frontier Scientists National Science Foundation project titled Science in Alaska: Using Multimedia to Support Science Education produced research products in several formats: videos short and long, blogs, social media, a computer game, and a pop-up book. These formats reached distinctly different audiences. Internet users, public TV viewers, gamers, schools, and parents & young children were drawn to Frontier Scientists' research in direct and indirect ways. The analytics (our big data) derived from this media broadcast has given us insight into what works, what doesn't, next steps. We have evidence for what is needed to present science as an interesting, vital, and a necessary component for the general public's daily information diet and as an important tool for scientists to publicize research and to thrive in their careers. Collaborations with scientists at several Universities, USGS, Native organizations, tourism organizations, and Alaska Museums promoted accuracy of videos and increased viewing. For example, Erin Marbarger, at Anchorage Museum, edited, and provided Spark!Lab to test parents & child's interest in the pop-up book titled: The Adventures of Apun the Arctic Fox. Without a marketing budget Frontier Scientist's minimum publicity, during the three year project, still drew an audience. Frontier Scientists was awarded Best Website 2016 by the Alaska Press Club, and won a number of awards for short videos and TV programs.

  17. How Are Scientists Using Social Media in the Workplace?

    Science.gov (United States)

    Collins, Kimberley; Shiffman, David; Rock, Jenny

    2016-01-01

    Social media has created networked communication channels that facilitate interactions and allow information to proliferate within professional academic communities as well as in informal social circumstances. A significant contemporary discussion in the field of science communication is how scientists are using (or might use) social media to communicate their research. This includes the role of social media in facilitating the exchange of knowledge internally within and among scientific communities, as well as externally for outreach to engage the public. This study investigates how a surveyed sample of 587 scientists from a variety of academic disciplines, but predominantly the academic life sciences, use social media to communicate internally and externally. Our results demonstrate that while social media usage has yet to be widely adopted, scientists in a variety of disciplines use these platforms to exchange scientific knowledge, generally via either Twitter, Facebook, LinkedIn, or blogs. Despite the low frequency of use, our work evidences that scientists perceive numerous potential advantages to using social media in the workplace. Our data provides a baseline from which to assess future trends in social media use within the science academy.

  18. How Are Scientists Using Social Media in the Workplace?

    Directory of Open Access Journals (Sweden)

    Kimberley Collins

    Full Text Available Social media has created networked communication channels that facilitate interactions and allow information to proliferate within professional academic communities as well as in informal social circumstances. A significant contemporary discussion in the field of science communication is how scientists are using (or might use social media to communicate their research. This includes the role of social media in facilitating the exchange of knowledge internally within and among scientific communities, as well as externally for outreach to engage the public. This study investigates how a surveyed sample of 587 scientists from a variety of academic disciplines, but predominantly the academic life sciences, use social media to communicate internally and externally. Our results demonstrate that while social media usage has yet to be widely adopted, scientists in a variety of disciplines use these platforms to exchange scientific knowledge, generally via either Twitter, Facebook, LinkedIn, or blogs. Despite the low frequency of use, our work evidences that scientists perceive numerous potential advantages to using social media in the workplace. Our data provides a baseline from which to assess future trends in social media use within the science academy.

  19. Chinese Scientists | Women in Science | Initiatives | Indian Academy ...

    Indian Academy of Sciences (India)

    Home; Initiatives; Women in Science; Chinese Scientists. Chinese Scientists. One third Chinese scientists are women [What about India?] ... scientists, at a young age of 52, after a valiant battle with cancer, today on 29th March 2016 in Delhi.

  20. How the USGS collects national water-use data, and why it needs to be improved to aid hydrologic research (Invited)

    Science.gov (United States)

    Worland, S. C.

    2017-12-01

    The volume of water used by humans is an often-overlooked component of water budgets and represents the greatest amount of uncertainty in many hydrologic models. The United States Geological Survey (USGS) has compiled national water-use data at the state level since 1950 and at the county level since 1985. The data are published every five years and are available for several categorical end-uses; the major ones being thermoelectric power, irrigation, public supply, and self-supplied industrial. Although the USGS is mandated by Congress to generate these water-use reports, the effort is largely underfunded. For most years between 1979 to 2010, the annual funding allotted to the USGS National Water-Use Information Program was less than 400,000 which has not been sufficient to support the direct collection of water-use data by the USGS. The result has been historical water-use data that are temporally sparse, spatially granular, and lack the high standards of quality control typical of USGS data products. For example, in 2010 there were over 55,000 public-water suppliers in the United States that represented water withdrawals from 130,000 groundwater wells and 8,000 surface-water intakes. The 2010 water-use compilation provided only a single-year snapshot of public-supply withdrawals and reduces the 55,000 data points to 3,000 by aggregating the data into the hydrologically irrelevant spatial unit of county boundaries. Furthermore, important information such as interbasin-water transfers, aquifer source, and water price are entirely absent from the dataset. Since 2011, however, the allocation has increased to 1.6 million/year and in 2015 there was an additional $1.5 million/year allocated to the Water-Use Data and Research Program which grants federal money to state agencies for water-use data collection efforts. This increase in funding has primarily been used to improve the water-use estimates of the thermoelectric power, public supply, and irrigation sectors

  1. K-12 Students' Perceptions of Scientists: Finding a valid measurement and exploring whether exposure to scientists makes an impact

    Science.gov (United States)

    Hillman, Susan J.; Bloodsworth, Kylie H.; Tilburg, Charles E.; Zeeman, Stephan I.; List, Henrietta E.

    2014-10-01

    This study was launched from a National Science Foundation GK-12 grant in which graduate fellows in Science, Technology, Engineering, and Mathematics (STEM) are placed in classrooms to engage K-12 students in STEM activities. The investigation explored whether the STEM Fellows' presence impacted the K-12 students' stereotypical image of a scientist. Since finding a valid instrument is critical, the study involved (1) determining the validity of the commonly administered Draw-A-Scientist Test (DAST) against a newly designed six-question survey and (2) using a combination of both instruments to determine what stereotypes are currently held by children. A pretest-posttest design was used on 485 students, grades 3-11, attending 6 different schools in suburban and rural Maine communities. A significant but low positive correlation was found between the DAST and the survey; therefore, it is imperative that the DAST not be used alone, but corroboration with interviews or survey questions should occur. Pretest results revealed that the children held common stereotypes of scientists, but these stereotypes were neither as extensive nor did they increase with the grade level as past research has indicated, suggesting that a shift has occurred with children having a broader concept of who a scientist can be. Finally, the presence of an STEM Fellow corresponded with decreased stereotypes in middle school and high school, but no change in elementary age children. More research is needed to determine whether this reflects resiliency in elementary children's perceptions or limitations in either drawing or in writing out their responses.

  2. 2015 USGS Lidar DEM: 3DEP Co-Op South Central MS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Mississippi Coastal QL2 Lidar with 3DEP Extension Lidar 0.7m NPS Lidar Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No....

  3. USGS earthquake hazards program (EHP) GPS use case : earthquake early warning (EEW) and shake alert

    Science.gov (United States)

    2017-03-30

    GPS Adjacent Band Workshop VI RTCA Inc., Washington D.C., 30 March 2017. USGS GPS receiver use case - Real-Time GPS for EEW -Continued: CRITICAL EFFECT - The GNSS component of the Shake Alert system augments the inertial sensors and is especial...

  4. Segmentasi Citra USG (Ultrasonography Kanker Payudara Menggunakan Fuzzy C-Means Clustering

    Directory of Open Access Journals (Sweden)

    Ri Munarto

    2018-01-01

    Full Text Available Health is a valuable treasure in survival and can be used as a parameter of quality assurance of human life. Some people even tend to ignore of health, so don’t care about the disease that will them attack and finally to death. Noted the main disease that causes death in the world is cancer. Cancer has many types, but the greatest death in each year is caused by breast cancer. Indonesia found more than 80% of cases in advanced stage, it is estimated that the incidence get 12 people from 10000 women. These numbers will to grow when there is no such treatment as prevention or early diagnosis. Growing of breast cancer patients inversely proportional to the percentage of complaints patients to doctors diagnosis in USG (Ultrasonography breast cancer 20%. The problem is ultrasound imaging which is distorted by speckle noise. The solution is to help easier for doctors to diagnose the presence and form of breast cancer using USG. Speckle noise on USG is able to good reduce using SRAD (Speckle Reducing Anisotropic Diffusion. The filtering results are then well segmented using Fuzzy C-Means Clustering with an accuracy 91.43% of 35 samples USG image breast cancer.

  5. 2015 USGS Lidar: 3DEP Co-Op South Central MS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Mississippi Coastal QL2 Lidar with 3DEP Extension Lidar 0.7m NPS Lidar Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No....

  6. CORRELATION OF ULTRASOUND (USG FINDINGS WITH SEROLOGICAL TESTS IN DENGUE FEVER

    Directory of Open Access Journals (Sweden)

    Dayanand

    2016-02-01

    Full Text Available INTRODUCTION Dengue is an endemic and epidemic disease of the tropical and subtropical regions. Between September & October 2012, there was an established outbreak of dengue in Hoskote, near Bangalore. Dengue results in serositis, which can be imaged by ultrasonography. OBJECTIVE To correlate the USG findings with the serological tests in paediatric and adult patients. MATERIALS AND METHODS 110 patients with clinical suspicion of dengue fever during the above period underwent serological tests-NS1, IgM and IgG and were evaluated with USG of the abdomen and thorax. The USG findings were correlated with serological tests. RESULTS 67 Patients were seropositive, 43 were seronegative. The USG findings in seropositive paediatric patients (n=32 and adult patients (n=35 respectively were gall bladder (GB wall edema-27 & 31, hepatomegaly-12 &14, ascites-16 & 12, splenomegaly- 15 & 9, right pleural effusion-14 & 13, left and bilateral pleural effusion-7 & 5. CONCLUSION In our study GB wall edema significantly correlated with seropositivity (p value=0.032. Thus ultrasound is an efficient screening tool in a case of dengue outbreak.

  7. Historical Trends of Participation of Women Scientists in Robotic Spacecraft Mission Science Teams: Effect of Participating Scientist Programs

    Science.gov (United States)

    Rathbun, Julie A.; Castillo-Rogez, Julie; Diniega, Serina; Hurley, Dana; New, Michael; Pappalardo, Robert T.; Prockter, Louise; Sayanagi, Kunio M.; Schug, Joanna; Turtle, Elizabeth P.; Vasavada, Ashwin R.

    2016-10-01

    Many planetary scientists consider involvement in a robotic spacecraft mission the highlight of their career. We have searched for names of science team members and determined the percentage of women on each team. We have limited the lists to members working at US institutions at the time of selection. We also determined the year each team was selected. The gender of each team member was limited to male and female and based on gender expression. In some cases one of the authors knew the team member and what pronouns they use. In other cases, we based our determinations on the team member's name or photo (obtained via a google search, including institution). Our initial analysis considered 22 NASA planetary science missions over a period of 41 years and only considered NASA-selected PI and Co-Is and not participating scientists, postdocs, or graduate students. We found that there has been a dramatic increase in participation of women on spacecraft science teams since 1974, from 0-2% in the 1970s - 1980s to an average of 14% 2000-present. This, however, is still lower than the recent percentage of women in planetary science, which 3 different surveys found to be ~25%. Here we will present our latest results, which include consideration of participating scientists. As in the case of PIs and Co-Is, we consider only participating scientists working at US institutions at the time of their selection.

  8. Chinese, US scientists find new particle

    CERN Multimedia

    2003-01-01

    "Chinese and US scientists have discovered a new particle at the Beijing Electron Position Collider, which is hard to be explained with any known particles, according to scientists from the Institute of High Energy Physics under the Chinese Academy of Sciences Wednesday" (1/2 page).

  9. Student Pugwash Conference Probes Scientists' Individual Responsibility.

    Science.gov (United States)

    Seltzer, Richard J.

    1985-01-01

    Students from 25 nations and senior scientists examined ethical and social dimensions of decision making about science and technology during the 1985 Student Pugwash Conference on scientists' individual responsibilities. Working groups focused on toxic wastes, military uses of space, energy and poverty, genetic engineering, and individual rights.…

  10. Scientists Like Me: Faces of Discovery

    Science.gov (United States)

    Enevoldsen, A. A. G.; Culp, S.; Trinh, A.

    2010-08-01

    During the International Year of Astronomy, Pacific Science Center is hosting a photography exhibit: Scientists Like Me: Faces of Discovery. The exhibit contains photographs of real, current astronomers and scientists working in astronomy and aerospace-related fields from many races, genders, cultural affiliations and walks of life. The photographs were taken and posters designed by Alyssa Trinh and Sarah Culp, high school interns in Discovery Corps, Pacific Science Center's youth development program. The direct contact between the scientists and the interns helps the intended audience of teachers and families personally connect with scientists. The finished posters from this exhibit are available online (http://pacificsciencecenter.org/scientists) for teachers to use in their classrooms, in addition to being displayed at Pacific Science Center and becoming part of Pacific Science Center's permanent art rotation. The objective of this project was to fill a need for representative photographs of scientists in the world community. It also met two of the goals of International Year of Astronomy: to provide a modern image of science and scientists, and to improve the gender-balanced representation of scientists at all levels and promote greater involvement by all people in scientific and engineering careers. We would like to build on the success of this project and create an annual summer internship, with different interns, focusing on creating posters for different fields of science.

  11. Preparing Planetary Scientists to Engage Audiences

    Science.gov (United States)

    Shupla, C. B.; Shaner, A. J.; Hackler, A. S.

    2017-12-01

    While some planetary scientists have extensive experience sharing their science with audiences, many can benefit from guidance on giving presentations or conducting activities for students. The Lunar and Planetary Institute (LPI) provides resources and trainings to support planetary scientists in their communication efforts. Trainings have included sessions for students and early career scientists at conferences (providing opportunities for them to practice their delivery and receive feedback for their poster and oral presentations), as well as separate communication workshops on how to engage various audiences. LPI has similarly begun coaching planetary scientists to help them prepare their public presentations. LPI is also helping to connect different audiences and their requests for speakers to planetary scientists. Scientists have been key contributors in developing and conducting activities in LPI education and public events. LPI is currently working with scientists to identify and redesign short planetary science activities for scientists to use with different audiences. The activities will be tied to fundamental planetary science concepts, with basic materials and simple modifications to engage different ages and audience size and background. Input from the planetary science community on these efforts is welcome. Current results and resources, as well as future opportunities will be shared.

  12. Tens of Romanian scientists work at CERN

    CERN Multimedia

    Silian, Sidonia

    2007-01-01

    "The figures regarding the actual number of Romanian scientists working at the European Center for Nuclear Research, or CERN, differ. The CERN data base lists some 30 Romanians on its payroll, while the scientists with the Nuclear Center at Magurele, Romania, say they should be around 50." (1 page)

  13. How Middle Schoolers Draw Engineers and Scientists

    Science.gov (United States)

    Fralick, Bethany; Kearn, Jennifer; Thompson, Stephen; Lyons, Jed

    2009-01-01

    The perceptions young students have of engineers and scientists are often populated with misconceptions and stereotypes. Although the perceptions that young people have of engineers and of scientists have been investigated separately, they have not been systematically compared. The research reported in this paper explores the question "How are…

  14. Communicating Like a Scientist with Multimodal Writing

    Science.gov (United States)

    McDermott, Mark; Kuhn, Mason

    2012-01-01

    If students are to accurately model how scientists use written communication, they must be given opportunities to use creative means to describe science in the classroom. Scientists often integrate pictures, diagrams, charts, and other modes within text and students should also be encouraged to use multiple modes of communication. This article…

  15. Code of conduct for scientists (abstract)

    International Nuclear Information System (INIS)

    Khurshid, S.J.

    2011-01-01

    The emergence of advanced technologies in the last three decades and extraordinary progress in our knowledge on the basic Physical, Chemical and Biological properties of living matter has offered tremendous benefits to human beings but simultaneously highlighted the need of higher awareness and responsibility by the scientists of 21 century. Scientist is not born with ethics, nor science is ethically neutral, but there are ethical dimensions to scientific work. There is need to evolve an appropriate Code of Conduct for scientist particularly working in every field of Science. However, while considering the contents, promulgation and adaptation of Codes of Conduct for Scientists, a balance is needed to be maintained between freedom of scientists and at the same time some binding on them in the form of Code of Conducts. The use of good and safe laboratory procedures, whether, codified by law or by common practice must also be considered as part of the moral duties of scientists. It is internationally agreed that a general Code of Conduct can't be formulated for all the scientists universally, but there should be a set of 'building blocks' aimed at establishing the Code of Conduct for Scientists either as individual researcher or responsible for direction, evaluation, monitoring of scientific activities at the institutional or organizational level. (author)

  16. How Scientists Develop Competence in Visual Communication

    Science.gov (United States)

    Ostergren, Marilyn

    2013-01-01

    Visuals (maps, charts, diagrams and illustrations) are an important tool for communication in most scientific disciplines, which means that scientists benefit from having strong visual communication skills. This dissertation examines the nature of competence in visual communication and the means by which scientists acquire this competence. This…

  17. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Ask a Scientist Video Series Glossary The Visual System Your Eyes’ Natural Defenses Eye Health and Safety First Aid Tips Healthy Vision Tips Protective Eyewear Sports and Your Eyes Fun Stuff Cool Eye Tricks Links to More Information Optical Illusions Printables Ask a Scientist Video Series ...

  18. Validation of the USGS Landsat Burned Area Essential Climate Variable (BAECV) across the conterminous United States

    Science.gov (United States)

    Vanderhoof, Melanie; Fairaux, Nicole; Beal, Yen-Ju G.; Hawbaker, Todd J.

    2017-01-01

    The Landsat Burned Area Essential Climate Variable (BAECV), developed by the U.S. Geological Survey (USGS), capitalizes on the long temporal availability of Landsat imagery to identify burned areas across the conterminous United States (CONUS) (1984–2015). Adequate validation of such products is critical for their proper usage and interpretation. Validation of coarse-resolution products often relies on independent data derived from moderate-resolution sensors (e.g., Landsat). Validation of Landsat products, in turn, is challenging because there is no corresponding source of high-resolution, multispectral imagery that has been systematically collected in space and time over the entire temporal extent of the Landsat archive. Because of this, comparison between high-resolution images and Landsat science products can help increase user's confidence in the Landsat science products, but may not, alone, be adequate. In this paper, we demonstrate an approach to systematically validate the Landsat-derived BAECV product. Burned area extent was mapped for Landsat image pairs using a manually trained semi-automated algorithm that was manually edited across 28 path/rows and five different years (1988, 1993, 1998, 2003, 2008). Three datasets were independently developed by three analysts and the datasets were integrated on a pixel by pixel basis in which at least one to all three analysts were required to agree a pixel was burned. We found that errors within our Landsat reference dataset could be minimized by using the rendition of the dataset in which pixels were mapped as burned if at least two of the three analysts agreed. BAECV errors of omission and commission for the detection of burned pixels averaged 42% and 33%, respectively for CONUS across all five validation years. Errors of omission and commission were lowest across the western CONUS, for example in the shrub and scrublands of the Arid West (31% and 24%, respectively), and highest in the grasslands and

  19. The Training and Work of Ph.D. Physical Scientists

    Science.gov (United States)

    Smith, S. J.; Schweitzer, A. E.

    2003-05-01

    Doctoral education has often been viewed as the pinnacle of the formal education system. How useful is doctoral training in one's later career? In an NSF-funded project, we set out to perform a study of the training, careers, and work activities of Ph.D. physical scientists. The study included both in-depth interviews and a survey sent out to a sample of Ph.D. holders 4-8 years after graduation. Come and find out the results of this study: What skills are most Ph.D. physical scientists using? What should graduate programs be teaching? Are Ph.D.'s who are working in their specific field of training happier than their counterparts working different jobs? What skills and preparation lead to future job satisfaction, perhaps the most important indicator of the "success" of graduate education? A preprint and further details can be found at the project web site at: spot.colorado.edu/ phdcarer.

  20. USGS River Ecosystem Modeling: Where Are We, How Did We Get Here, and Where Are We Going?

    Science.gov (United States)

    Hanson, Leanne; Schrock, Robin; Waddle, Terry; Duda, Jeffrey J.; Lellis, Bill

    2009-01-01

    This report developed as an outcome of the USGS River Ecosystem Modeling Work Group, convened on February 11, 2008 as a preconference session to the second USGS Modeling Conference in Orange Beach, Ala. Work Group participants gained an understanding of the types of models currently being applied to river ecosystem studies within the USGS, learned how model outputs are being used by a Federal land management agency, and developed recommendations for advancing the state of the art in river ecosystem modeling within the USGS. During a break-out session, participants restated many of the recommendations developed at the first USGS Modeling Conference in 2006 and in previous USGS needs assessments. All Work Group recommendations require organization and coordination across USGS disciplines and regions, and include (1) enhancing communications, (2) increasing efficiency through better use of current human and technologic resources, and (3) providing a national infrastructure for river ecosystem modeling resources, making it easier to integrate modeling efforts. By implementing these recommendations, the USGS will benefit from enhanced multi-disciplinary, integrated models for river ecosystems that provide valuable risk assessment and decision support tools for adaptive management of natural and managed riverine ecosystems. These tools generate key information that resource managers need and can use in making decisions about river ecosystem resources.

  1. 77 FR 27763 - Quantum Choctaw Power, LLC, USG Nevada LLC, et al.; Notice of Effectiveness of Exempt Wholesale...

    Science.gov (United States)

    2012-05-11

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. EG12-31-000; EG12-32-000; et al.] Quantum Choctaw Power, LLC, USG Nevada LLC, et al.; Notice of Effectiveness of Exempt Wholesale Generator Status Docket Nos. Quantum Choctaw Power, LLC EG12-31-000 USG Nevada LLC EG12-32-000...

  2. USGS field activities 11BHM03 and 11BHM04 on the west Florida shelf, Gulf of Mexico, September and November 2011

    Science.gov (United States)

    Robbins, Lisa L.; Knorr, Paul O.; Daly, Kendra L.; Barrera, Kira E.

    2014-01-01

    During September and November 2011 the (USGS), in cooperation with (USF), conducted geochemical surveys on the west Florida Shelf to investigate the effects of climate change on ocean acidification within the northern Gulf of Mexico, specifically, the effect of ocean acidification on marine organisms and habitats. The first cruise was conducted from September 20 to 28 (11BHM03) and the second was from November 2 to 4 (11BHM04). To view each cruise's survey lines, please see the Trackline page. Each cruise took place aboard the Research Vessel (R/V) Weatherbird II, a ship of opportunity led by Dr. Kendra Daly (USF), which departed from and returned to Saint Petersburg, Florida. Data collection included sampling of the surface and water column with lab analysis of pH, dissolved inorganic carbon (DIC) or total carbon dioxide (TCO2), and total alkalinity (TA). lLb analysis was augmented with a continuous flow-through system (referred to as sonde data) with a conductivity-temperature-depth (CTD) sensor, which also recorded salinity and pH. Corroborating the USGS data are the vertical CTD profiles (referred to as station samples) collected by USF. The CTD casts measured continuous vertical profiles of oxygen, chlorophyll fluorescence and optical backscatter. Discrete samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were also collected during the CTD casts. Two autonomous flow-through (AFT) instruments recorded pH and CO2 every 3-5 minutes on each cruise (referred to as AFT data).

  3. USGS field activities 11BHM01 and 11BHM02 on the west Florida shelf, Gulf of Mexico, May and June 2011

    Science.gov (United States)

    Robbins, Lisa L.; Knorr, Paul O.; Daly, Kendra L.; Taylor, Carl A.; Barrera, Kira E.

    2014-01-01

    During May and June 2011 the (USGS), in cooperation with (USF), conducted geochemical surveys on the west Florida Shelf to investigate the effects of climate change on ocean acidification within the northern Gulf of Mexico, specifically, the effect of ocean acidification on marine organisms and habitats. The first cruise was conducted from May 3 to 9 (11BHM01) and the second was from June 25 to 30 (11BHM02). To view each cruise's survey lines, please see the Trackline page. Each cruise took place aboard the Research Vessel (R/V) Weatherbird II, a ship of opportunity led by Dr. Kendra Daly (USF), which departed from and returned to Saint Petersburg, Florida. Data collection included sampling of the surface and water column with lab analysis of pH, dissolved inorganic carbon (DIC) or total carbon dioxide (TCO2), and total alkalinity (TA). lLb analysis was augmented with a continuous flow-through system (referred to as sonde data) with a conductivity-temperature-depth (CTD) sensor, which also recorded salinity and pH. Corroborating the USGS data are the vertical CTD profiles (referred to as station samples) collected by USF. The CTD casts measured continuous vertical profiles of oxygen, chlorophyll fluorescence and optical backscatter. Discrete samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were also collected during the CTD casts. Two autonomous flow-through (AFT) instruments recorded pH and CO2 every 3-5 minutes on each cruise (referred to as AFT data).

  4. Impact of information on research and development activities of nuclear scientists in Ghana

    International Nuclear Information System (INIS)

    Agyeman, E.A.; Timpo, S.E.; Kisiedu, C.; Boye, M.

    2004-01-01

    This paper considers the relationship between nuclear information use and the professional development of nuclear scientists in Ghana with reference to some identified productivity and achievement indicators. The assumption is that, frequent use of library and information services results in higher productivity and achievement. A national survey of nuclear scientists was conducted resulting in a response rate of 92 percent. The analytical framework proposed by the International Development Research Centre (IDRC) for impact studies served as an appropriate guide for the study. The results indicate that information use leads to increase in the volume and quality of work output of nuclear scientists. Evidence is also found to support the claim that information use enhances contributions of scientists to their organisations. The study concludes with recommendations aimed at improving information delivery to nuclear scientists. (author)

  5. Topographic and hydrographic GIS dataset for the Afghanistan Geological Survey and U.S. Geological Survey 2010 Minerals Project

    Science.gov (United States)

    Chirico, P.G.; Moran, T.W.

    2011-01-01

    This dataset contains a collection of 24 folders, each representing a specific U.S. Geological Survey area of interest (AOI; fig. 1), as well as datasets for AOI subsets. Each folder includes the extent, contours, Digital Elevation Model (DEM), and hydrography of the corresponding AOI, which are organized into feature vector and raster datasets. The dataset comprises a geographic information system (GIS), which is available upon request from the USGS Afghanistan programs Web site (http://afghanistan.cr.usgs.gov/minerals.php), and the maps of the 24 areas of interest of the USGS AOIs.

  6. Uncovering Scientist Stereotypes and Their Relationships with Student Race and Student Success in a Diverse, Community College Setting

    OpenAIRE

    Schinske, Jeffrey; Cardenas, Monica; Kaliangara, Jahana

    2015-01-01

    A number of studies have identified correlations between children?s stereotypes of scientists, their science identities, and interest or persistence in science, technology, engineering, and mathematics. Yet relatively few studies have examined scientist stereotypes among college students, and the literature regarding these issues in predominantly nonwhite and 2-yr college settings is especially sparse. We piloted an easy-to-analyze qualitative survey of scientist stereotypes in a biology clas...

  7. U.S. Geological Survey Fundamental Science Practices

    Science.gov (United States)

    ,

    2011-01-01

    The USGS has a long and proud tradition of objective, unbiased science in service to the Nation. A reputation for impartiality and excellence is one of our most important assets. To help preserve this vital asset, in 2004 the Executive Leadership Team (ELT) of the USGS was charged by the Director to develop a set of fundamental science practices, philosophical premises, and operational principles as the foundation for all USGS research and monitoring activities. In a concept document, 'Fundamental Science Practices of the U.S. Geological Survey', the ELT proposed 'a set of fundamental principles to underlie USGS science practices.' The document noted that protecting the reputation of USGS science for quality and objectivity requires the following key elements: - Clearly articulated, Bureau-wide fundamental science practices. - A shared understanding at all levels of the organization that the health and future of the USGS depend on following these practices. - The investment of budget, time, and people to ensure that the USGS reputation and high-quality standards are maintained. The USGS Fundamental Science Practices (FSP) encompass all elements of research investigations, including data collection, experimentation, analysis, writing results, peer review, management review, and Bureau approval and publication of information products. The focus of FSP is on how science is carried out and how products are produced and disseminated. FSP is not designed to address the question of what work the USGS should do; that is addressed in USGS science planning handbooks and other documents. Building from longstanding existing USGS policies and the ELT concept document, in May 2006, FSP policies were developed with input from all parts of the organization and were subsequently incorporated into the Bureau's Survey Manual. In developing an implementation plan for FSP policy, the intent was to recognize and incorporate the best of USGS current practices to obtain the optimum

  8. The U.S. Geological Survey Peak-Flow File Data Verification Project, 2008–16

    Science.gov (United States)

    Ryberg, Karen R.; Goree, Burl B.; Williams-Sether, Tara; Mason, Robert R.

    2017-11-21

    Annual peak streamflow (peak flow) at a streamgage is defined as the maximum instantaneous flow in a water year. A water year begins on October 1 and continues through September 30 of the following year; for example, water year 2015 extends from October 1, 2014, through September 30, 2015. The accuracy, characterization, and completeness of the peak streamflow data are critical in determining flood-frequency estimates that are used daily to design water and transportation infrastructure, delineate flood-plain boundaries, and regulate development and utilization of lands throughout the United States and are essential to understanding the implications of climate and land-use change on flooding and high-flow conditions.As of November 14, 2016, peak-flow data existed for 27,240 unique streamgages in the United States and its territories. The data, collectively referred to as the “peak-flow file,” are available as part of the U.S. Geological Survey (USGS) public web interface, the National Water Information System, at https://nwis.waterdata.usgs.gov/usa/nwis/peak. Although the data have been routinely subjected to periodic review by the USGS Office of Surface Water and screening at the USGS Water Science Center level, these data were not reviewed in a national, systematic manner until 2008 when automated scripts were developed and applied to detect potential errors in peak-flow values and their associated dates, gage heights, and peak-flow qualification codes, as well as qualification codes associated with the gage heights. USGS scientists and hydrographers studied the resulting output, accessed basic records and field notes, and corrected observed errors or, more commonly, confirmed existing data as correct.This report summarizes the changes in peak-flow file data at a national level, illustrates their nature and causation, and identifies the streamgages affected by these changes. Specifically, the peak-flow data were compared for streamgages with peak flow

  9. Archive of digital chirp seismic reflection data collected during USGS cruise 05SCC01 offshore of Port Fourchon and Timbalier Bay, Louisiana, August 2005

    Science.gov (United States)

    Harrison, Arnell S.; Dadisman, Shawn V.; Flocks, James G.; Wiese, Dana S.; Calderon, Karynna

    2007-01-01

    In August of 2005, the U.S. Geological Survey conducted geophysical surveys offshore of Port Fourchon and Timbalier Bay, Louisiana, and in nearby waterbodies. This report serves as an archive of unprocessed digital chirp seismic reflection data, trackline maps, navigation files, GIS information, Field Activity Collection System (FACS) logs, observer's logbook, and formal FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided.

  10. Archive of digital chirp subbottom profile data collected during USGS cruise 11BIM01 Offshore of the Chandeleur Islands, Louisiana, June 2011

    Science.gov (United States)

    Forde, Arnell S.; Dadisman, Shawn V.; Miselis, Jennifer L.; Flocks, James G.; Wiese, Dana S.

    2013-01-01

    From June 3 to 13, 2011, the U.S. Geological Survey conducted a geophysical survey to investigate the geologic controls on barrier island framework and long-term sediment transport along the oil spill mitigation sand berm constructed at the north end and just offshore of the Chandeleur Islands, LA. This effort is part of a broader USGS study, which seeks to better understand barrier island evolution over medium time scales (months to years). This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FGDC) metadata. Gained (showing a relative increase in signal amplitude) digital images of the seismic profiles are also provided.

  11. Scientists Reflect on Why They Chose to Study Science

    Science.gov (United States)

    Venville, Grady; Rennie, Léonie; Hanbury, Colin; Longnecker, Nancy

    2013-12-01

    A concern commonly raised in literature and in media relates to the declining proportions of students who enter and remain in the `science pipeline', and whether many countries, including Australia and New Zealand, have enough budding scientists to fill research and industry positions in the coming years. In addition, there is concern that insufficient numbers of students continue in science to ensure an informed, scientifically literate citizenry. The aim of the research presented in this paper was to survey current Australian and New Zealand scientists to explore their reasons for choosing to study science. An online survey was conducted via a link to SurveyGizmo. The data presented are from 726 respondents who answered 22 forced-choice items and an open-ended question about the reasons they chose to study science. The quantitative data were analysed using t tests and analyses of variance followed by Duncan's multiple range tests, and the qualitative data were analysed thematically. The quantitative data showed that the main reasons scientists reported choosing to study science were because they were interested in science and because they were good at science. Secondary school science classes and one particular science teacher also were found to be important factors. Of much less importance were the prestige of science and financial considerations. The qualitative data expanded on these findings and showed that passion for science and/or curiosity about the world were important factors and also highlighted the importance of recreational pursuits, such as camping when a child. In the words of one respondent, `People don't go into science for the money and glory. It's passion for knowledge and science that always attracted me to the field'.

  12. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Scientist Video Series Why can’t you see colors well in the dark? Do fish have eyelids? ... video series. Dr. Sheldon Miller answers questions about color blindness, whether it can be treated, and how ...

  13. Meet EPA Physical Scientist Lukas Oudejans

    Science.gov (United States)

    Lukas Oudejans, Ph.D. is a physical scientist working in EPA’s National Homeland Security Research Center. His research focuses on preparing cleanup options for the agency following a disaster incident.

  14. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Disease Education Program Glaucoma Education Program Low Vision Education Program ... Eye Ask a Scientist Video Series Glossary The Visual System Your Eyes’ Natural Defenses Eye Health and Safety ...

  15. Education and Outreach: Advice to Young Scientists

    Science.gov (United States)

    Lopes, R. M. C.

    2005-08-01

    Carl Sagan set an example to all scientists when he encouraged us to reach out to the public and share the excitement of discovery and exploration. The prejudice that ensued did not deter Sagan and, with the passing of years, more and more scientists have followed his example. Although at present scientists at all ranks are encouraged by their institutions to do outreach, the balancing of a successful scientific career with teaching and outreach is often not an easy one. Young scientists, in particular, may worry about how their outreach efforts are viewed in the community and how they will find the time and energy for these efforts. This talk will offer suggestions on how to balance an active science research program with outreach activities, the many different ways to engage in education and public outreach, and how the rewards are truly priceless.

  16. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... video below to get answers to questions like these and more with our Ask a Scientist video ... Is perfect vision real? Click to Watch Are these common eye-related myths true or false? Click ...

  17. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... search for current job openings visit HHS USAJobs Home >> NEI for Kids >> Ask a Scientist Video Series ... can see clearly from 25 feet away. NEI Home Contact Us A-Z Site Map NEI on ...

  18. Elements of ethics for physical scientists

    CERN Document Server

    Greer, Sandra C

    2017-01-01

    This book offers the first comprehensive guide to ethics for physical scientists and engineers who conduct research. Written by a distinguished professor of chemistry and chemical engineering, the book focuses on the everyday decisions about right and wrong faced by scientists as they do research, interact with other people, and work within society. The goal is to nurture readers’ ethical intelligence so that they know an ethical issue when they see one, and to give them a way to think about ethical problems. After introductions to the philosophy of ethics and the philosophy of science, the book discusses research integrity, with a unique emphasis on how scientists make mistakes and how they can avoid them. It goes on to cover personal interactions among scientists, including authorship, collaborators, predecessors, reviewers, grantees, mentors, and whistle-blowers. It considers underrepresented groups in science as an ethical issue that matters not only to those groups but also to the development of scien...

  19. Women scientists reflections, challenges, and breaking boundaries

    CERN Document Server

    Hargittai, Magdolna

    2015-01-01

    Magdolna Hargittai uses over fifteen years of in-depth conversation with female physicists, chemists, biomedical researchers, and other scientists to form cohesive ideas on the state of the modern female scientist. The compilation, based on sixty conversations, examines unique challenges that women with serious scientific aspirations face. In addition to addressing challenges and the unjustifiable underrepresentation of women at the higher levels of academia, Hargittai takes a balanced approach by discussing how some of the most successful of these women have managed to obtain professional success and personal happiness. Women Scientists portrays scientists from different backgrounds, different geographical regions-eighteen countries from four continents-and leaders from a variety of professional backgrounds, including eight Nobel laureate women. The book is divided into three sections: "Husband and Wife Teams," "Women at the Top," and "In High Positions." Hargittai uses her own experience to introduce her fi...

  20. The persistent stereotype: children's images of scientists

    Science.gov (United States)

    Emens McAdam, Janice

    1990-03-01

    Through their reading children learn to regard scientists as eccentrics. It is shown that this stereotype has persisted for over thirty years and affects many adult attitudes. Some methods of breaking the author-reader cycle are suggested.