WorldWideScience

Sample records for survey pathfinder mission

  1. The LISA Pathfinder Mission

    International Nuclear Information System (INIS)

    Armano, M; Audley, H; Born, M; Danzmann, K; Diepholz, I; Auger, G; Binetruy, P; Baird, J; Bortoluzzi, D; Brandt, N; Fitzsimons, E; Bursi, A; Caleno, M; Cavalleri, A; Cesarini, A; Dolesi, R; Ferroni, V; Cruise, M; Dunbar, N; Ferraioli, L

    2015-01-01

    LISA Pathfinder (LPF), the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology validation mission for future spaceborne gravitational wave detectors, such as the proposed eLISA mission. LISA Pathfinder, and its scientific payload - the LISA Technology Package - will test, in flight, the critical technologies required for low frequency gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control and an ultra-precise micro-Newton propulsion system. LISA Pathfinder is due to be launched in mid-2015, with first results on the performance of the system being available 6 months thereafter.The paper introduces the LISA Pathfinder mission, followed by an explanation of the physical principles of measurement concept and associated hardware. We then provide a detailed discussion of the LISA Technology Package, including both the inertial sensor and interferometric readout. As we approach the launch of the LISA Pathfinder, the focus of the development is shifting towards the science operations and data analysis - this is described in the final section of the paper (paper)

  2. LISA Pathfinder: A Mission Status

    Science.gov (United States)

    Hewitson, Martin; LISA Pathfinder Team Team

    2016-03-01

    On December 3rd at 04:04 UTC, The European Space Agency launched the LISA Pathfinder satellite on board a VEGA rocket from Kourou in French Guiana. After a series of orbit raising manoeuvres and a 2 month long transfer orbit, LISA Pathfinder arrived at L1. Following a period of commissioning, the science operations commenced at the start of March, beginning the demonstration of technologies and methodologies which pave the way for a future large-scale gravitational wave observatory in space. This talk will present the scientific goals of the mission, discuss the technologies being tested, elucidate the link to a future space-based observatory, such as LISA, and present preliminary results from the in-orbit operations and experiments.

  3. Mechanical design of the Mars Pathfinder mission

    Science.gov (United States)

    Eisen, Howard Jay; Buck, Carl W.; Gillis-Smith, Greg R.; Umland, Jeffrey W.

    1997-01-01

    The Mars Pathfinder mission and the Sojourner rover is reported on, with emphasis on the various mission steps and the performance of the technologies involved. The mechanical design of mission hardware was critical to the success of the entry sequence and the landing operations. The various mechanisms employed are considered.

  4. Data Analysis for the LISA Pathfinder Mission

    Science.gov (United States)

    Thorpe, James Ira

    2009-01-01

    The LTP (LISA Technology Package) is the core part of the Laser Interferometer Space Antenna (LISA) Pathfinder mission. The main goal of the mission is to study the sources of any disturbances that perturb the motion of the freely-falling test masses from their geodesic trajectories as well as 10 test various technologies needed for LISA. The LTP experiment is designed as a sequence of experimental runs in which the performance of the instrument is studied and characterized under different operating conditions. In order to best optimize subsequent experimental runs, each run must be promptly analysed to ensure that the following ones make best use of the available knowledge of the instrument ' In order to do this, all analyses must be designed and tested in advance of the mission and have sufficient built-in flexibility to account for unexpected results or behaviour. To support this activity, a robust and flexible data analysis software package is also required. This poster presents two of the main components that make up the data analysis effort: the data analysis software and the mock-data challenges used to validate analysis procedures and experiment designs.

  5. Martian Mixed Layer during Pathfinder Mission

    Science.gov (United States)

    Martinez, G. M.; Valero, F.; Vazquez, L.

    2008-09-01

    In situ measurements of the Martian Planetary Boundary Layer (MPBL) encompass only the sur- face layer. Therefore, in order to fully address the MPBL, it becomes necessary to simulate somehow the behaviour of the martian mixed layer. The small-scale processes that happen in the MPBL cause GCM's ([1], [2]) to describe only partially the turbulent statistics, height, convective scales, etc, of the surface layer and the mixed layer. For this reason, 2D and 3D martian mesoscale models ([4], [5]), and large eddy simulations ([4], [6], [7], [8]) have been designed in the last years. Although they are expected to simulate more accurately the MPBL, they take an extremely expensive compu- tational time. Alternatively, we have derived the main turbu- lent characteristics of the martian mixed layer by using surface layer and mixed layer similarity ([9], [10]). From in situ temperature and wind speed measurements, together with quality-tested simu- lated ground temperature [11], we have character- ized the martian mixed layer during the convective hours of Pathfinder mission Sol 25. Mean mixed layer turbulent statistics like tem- perature variance , horizontal wind speed variance , vertical wind speed variance , viscous dissipation rate , and turbu- lent kinetic energy have been calculated, as well as the mixed layer height zi, and the convective scales of wind w? and temperature θ?. Our values, obtained with negligible time cost, match quite well with some previously obtained results via LES's ([4] and [8]). A comparisson between the above obtained mar- tian values and the typical Earth values are shown in Table 1. Convective velocity scale w doubles its counterpart terrestrial typical value, as it does the mean wind speed variances and . On the other hand, the temperature scale θ? and the mean temperature variance are virtually around one order higher on Mars. The limitations of these results concern the va- lidity of the convective mixed layer similarity. This theory

  6. Mars Pathfinder Microrover- Implementing a Low Cost Planetary Mission Experiment

    Science.gov (United States)

    Matijevic, J.

    1996-01-01

    The Mars Pathfinder Microrover Flight Experiment (MFEX) is a NASA Office of Space Access and Technology (OSAT) flight experiment which has been delivered and integrated with the Mars Pathfinder (MPF) lander and spacecraft system. The total cost of the MFEX mission, including all subsystem design and development, test, integration with the MPF lander and operations on Mars has been capped at $25 M??is paper discusses the process and the implementation scheme which has resulted in the development of this first Mars rover.

  7. LISA Pathfinder: hardware tests and their input to the mission

    Science.gov (United States)

    Audley, Heather

    The Laser Interferometer Space Antenna (LISA) is a joint ESA-NASA mission for the first space-borne gravitational wave detector. LISA aims to detect sources in the 0.1mHz to 1Hz range, which include supermassive black holes and galactic binary stars. Core technologies required for the LISA mission, including drag-free test mass control, picometre interferometry and micro-Newton thrusters, cannot be tested on-ground. Therefore, a precursor satellite, LISA Pathfinder, has been developed as a technology demonstration mission. The preparations for the LISA Pathfinder mission have reached an exciting stage. Tests of the engineering model of the optical metrology system have recently been completed at the Albert Einstein Institute, Hannover, and flight model tests are now underway. Significantly, they represent the first complete integration and testing of the space-qualified hardware and are the first tests on system level. The results and test procedures of these campaigns will be utilised directly in the ground-based flight hardware tests, and subsequently within in-flight operations. In addition, they allow valuable testing of the data analysis methods using the MatLab based LTP data analysis toolbox. This contribution presents an overview of the test campaigns calibration, control and perfor-mance results, focusing on the implications for the Experimental Master Plan which provides the basis for the in-flight operations and procedures.

  8. The Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission

    Science.gov (United States)

    Crisp, David

    2003-01-01

    A viewgraph presentation describing the Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission is shown. The contents include: 1) Why CO2?; 2) What Processes Control CO2 Sinks?; 3) OCO Science Team; 4) Space-Based Measurements of CO2; 5) Driving Requirement: Precise, Bias-Free Global Measurements; 6) Making Precise CO2 Measurements from Space; 7) OCO Spatial Sampling Strategy; 8) OCO Observing Modes; 9) Implementation Approach; 10) The OCO Instrument; 11) The OCO Spacecraft; 12) OCO Will Fly in the A-Train; 13) Validation Program Ensures Accuracy and Minimizes Spatially Coherent Biases; 14) Can OCO Provide the Required Precision?; 15) O2 Column Retrievals with Ground-based FTS; 16) X(sub CO2) Retrieval Simulations; 17) Impact of Albedo and Aerosol Uncertainty on X(sub CO2) Retrievals; 18) Carbon Cycle Modeling Studies: Seasonal Cycle; 19) Carbon Cycle Modeling Studies: The North-South Gradient in CO2; 20) Carbon Cycle Modeling Studies: Effect of Diurnal Biases; 21) Project Status and Schedule; and 22) Summary.

  9. Euso-Balloon: A pathfinder mission for the JEM-EUSO experiment

    Energy Technology Data Exchange (ETDEWEB)

    Osteria, Giuseppe, E-mail: osteria@na.infn.it [Istituto Nazionale di Fisica Nucleare Sezione di Napoli, Naples (Italy); Scotti, Valentina [Istituto Nazionale di Fisica Nucleare Sezione di Napoli, Naples (Italy); Università di Napoli Federico II, Dipartimento di Fisica, Naples (Italy)

    2013-12-21

    EUSO-Balloon is a pathfinder mission for JEM-EUSO, the near-UV telescope proposed to be installed on board the ISS in 2017. The main objective of this pathfinder mission is to perform a full scale end-to-end test of all the key technologies and instrumentation of JEM-EUSO detectors and to prove the entire detection chain. EUSO-Balloon will measure the atmospheric and terrestrial UV background components, in different observational modes, fundamental for the development of the simulations. Through a series of flights performed by the French Space Agency CNES, EUSO-Balloon also has the potential to detect Extensive Air Showers (EAS) from above. EUSO-Balloon will be mounted in an unpressurized gondola of a stratospheric balloon. We will describe the instrument and the electronic system which performs instrument control and data management in such a critical environment.

  10. The UFFO (Ultra Fast Flash Observatory) Pathfinder: Science and Mission

    DEFF Research Database (Denmark)

    Chen, P.; Ahmad, S.; Ahn, K.

    in a more rigorous test of current internal shock models, probe the extremes of bulk Lorentz factors, provide the first early and detailed measurements of fast-rise GRB optical light curves, and help verify the prospect of GRB as a new standard candle. We will describe the science and the mission...

  11. The Earth System Science Pathfinder VOLCAM Volcanic Hazard Mission

    Science.gov (United States)

    Krueger, Arlin J.

    1999-01-01

    The VOLCAM mission is planned for research on volcanic eruptions and as a demonstration of a satellite system for measuring the location and density of volcanic eruption clouds for use in mitigating hazards to aircraft by the operational air traffic control systems. A requirement for 15 minute time resolution is met by flight as payloads of opportunity on geostationary satellites. Volcanic sulfur dioxide and ash are detected using techniques that have been developed from polar orbiting TOMS (UV) and AVHRR (IR) data. Seven band UV and three band IR filter wheel cameras are designed for continuous observation of the full disk of the earth with moderate (10 - 20 km) ground resolution. This resolution can be achieved with small, low cost instruments but is adequate for discrimination of ash and sulfur dioxide in the volcanic clouds from meteorological clouds and ozone. The false alarm rate is small through use of sulfur dioxide as a unique tracer of volcanic clouds. The UV band wavelengths are optimized to detect very small sulfur dioxide amounts that are present in pre-eruptive outgassing of volcanoes. The system is also capable of tracking dust and smoke clouds, and will be used to infer winds at tropopause level from the correlation of total ozone with potential vorticity.

  12. The RAVAN CubeSat Mission: A Pathfinder for a New Measurement of Earth's Radiation Budget

    Science.gov (United States)

    Swartz, W.; Lorentz, S. R.; Huang, P. M.; Smith, A. W.; Deglau, D.; Reynolds, E.; Carvo, J.; Papadakis, S.; Wu, D. L.; Wiscombe, W. J.; Dyrud, L. P.

    2016-12-01

    The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat is a pathfinder for a constellation to measure the Earth's radiation imbalance (ERI), which is the single most important quantity for predicting the course of climate change over the next century. RAVAN demonstrates a small, accurate radiometer that measures top-of-the-atmosphere Earth-leaving fluxes of total and solar-reflected radiation. Coupled with knowledge of the incoming radiation from the Sun, a constellation of such measurements would aim to determine ERI directly. Our objective with RAVAN is to establish that a compact radiometer that is absolutely calibrated to climate accuracy can be built and operated in space for low cost. The radiometer, hosted on a 3U CubeSat, relies on two key technologies. The first is the use of vertically aligned carbon nanotubes (VACNTs) as the radiometer absorber. VACNT forests are some of the blackest materials known and have an extremely flat spectral response over a wide wavelength range. The second key technology is a gallium fixed-point blackbody calibration source, embedded in RAVAN's sensor head contamination cover, that serves as a stable and repeatable reference to track the long-term degradation of the sensor. Absolute calibration is also maintained by regular solar and deep space views. We present the scientific motivation for the NASA-funded mission, design and characterization of the spacecraft, and mission operations concept. Pending a successful launch in fall 2016, we will also present the first results on-orbit. RAVAN will help enable the development of an Earth radiation budget constellation mission that can provide the measurements needed for superior predictions of future climate change.

  13. Rationale for a Mars Pathfinder mission to Chryse Planitia and the Viking 1 lander

    Science.gov (United States)

    Craddock, Robert A.

    1994-01-01

    Presently the landing site for Mars Pathfinder will be constrained to latitudes between 0 deg and 30 deg N to facilitate communication with earth and to allow the lander and rover solar arrays to generate the maximum possible power. The reference elevation of the site must also be below 0 km so that the descent parachute, a Viking derivative, has sufficient time to open and slow the lander to the correct terminal velocity. Although Mars has as much land surface area as the continental crust of the earth, such engineering constraints immediately limit the number of possible landing sites to only three broad areas: Amazonis, Chryse, and Isidis Planitia. Of these, both Chryse and Isidis Planitia stand out as the sites offering the most information to address several broad scientific topics.

  14. Mars 2024/2026 Pathfinder Mission: Mars Architectures, Systems, and Technologies for Exploration and Resources Project

    Science.gov (United States)

    Zeitlin, Nancy; Mueller, Robert; Muscatello, Anthony

    2015-01-01

    Integrate In Situ Resource Utilization (ISRU) sub-systems and examine advanced capabilities and technologies to verify Mars 2024 Forward architecture precursor pathfinder options: Integrated spacecraft/surface infrastructure fluid architecture: propulsion, power, life support center dot Power system feed and propellant scavenging from propulsion system center dot High quality oxygen for life support and EVA Fluid/cryogenic zero-loss transfer and long-term storage center dot Rapid depot-to-rover/spacecraft center dot Slow ISRU plant-to-ascent vehicle Integration of ISRU consumable production center dot Oxygen only from Mars atmosphere carbon dioxide center dot Oxygen, fuel, water, from extraterrestrial soil/regolith Test bed to evaluate long duration life, operations, maintenance on hardware, sensors, and autonomy

  15. The MAXIM Pathfinder Mission: X-Ray Imaging at 100 Micro-Arcseconds

    Science.gov (United States)

    Cash, Webster; White, Nick; Joy, Marshall

    2000-01-01

    We present the results of a study to show how it is possible to build a super high resolution x-ray imaging mission based on the principles of x-ray interferometry. The mission concept uses today's technology to specify a 1.4 meter baseline interferometer that will resolve features as fine as 100 micro-arcsecond imaging at 1keV. This resolution is sufficient to produce high quality images of the coronae of other stars.

  16. A pilot survey for transients and variables with the Australian Square Kilometre Array Pathfinder

    Science.gov (United States)

    Bhandari, S.; Bannister, K. W.; Murphy, T.; Bell, M.; Raja, W.; Marvil, J.; Hancock, P. J.; Whiting, M.; Flynn, C. M.; Collier, J. D.; Kaplan, D. L.; Allison, J. R.; Anderson, C.; Heywood, I.; Hotan, A.; Hunstead, R.; Lee-Waddell, K.; Madrid, J. P.; McConnell, D.; Popping, A.; Rhee, J.; Sadler, E.; Voronkov, M. A.

    2018-05-01

    We present a pilot search for variable and transient sources at 1.4 GHz with the Australian Square Kilometre Array Pathfinder (ASKAP). The search was performed in a 30 deg2 area centred on the NGC 7232 galaxy group over 8 epochs and observed with a near-daily cadence. The search yielded nine potential variable sources, rejecting the null hypothesis that the flux densities of these sources do not change with 99.9% confidence. These nine sources displayed flux density variations with modulation indices m ≥ 0.1 above our flux density limit of ˜1.5 mJy. They are identified to be compact AGN/quasars or galaxies hosting an AGN, whose variability is consistent with refractive interstellar scintillation. We also detect a highly variable source with modulation index m > 0.5 over a time interval of a decade between the Sydney University Molonglo Sky Survey (SUMSS) and our latest ASKAP observations. We find the source to be consistent with the properties of long-term variability of a quasar. No transients were detected on timescales of days and we place an upper limit ρt pilot survey, but better sensitivity, and will detect and monitor rarer brighter events.

  17. Fundamental performance determining factors of the ultrahigh-precision space-borne optical metrology system for the LISA Pathfinder mission

    Science.gov (United States)

    Hechenblaikner, Gerald; Flatscher, Reinhold

    2013-05-01

    The LISA Pathfinder mission to space employs an optical metrology system (OMS) at its core to measure the distance and attitude between two freely floating test-masses to picometer and nanorad accuracy, respectively, within the measurement band of [1 mHz, 30 mHz]. The OMS is based upon an ultra-stable optical bench with 4 heterodyne interferometers from which interference signals are read-out and processed by a digital phase-meter. Laser frequency noise, power fluctuations and optical path-length variations are suppressed to uncritical levels by dedicated control loops so that the measurement performance approaches the sensor limit imposed by the phasemeter. The system design is such that low frequency common mode noise which affects the read-out phase of all four interferometers is generally well suppressed by subtraction of a reference phase from the other interferometer signals. However, high frequency noise directly affects measurement performance and its common mode rejection depends strongly on the relative signal phases. We discuss how the data from recent test campaigns point towards high frequency phase noise as a likely performance limiting factor which explains some important performance features.

  18. Flight demonstration of formation flying capabilities for future missions (NEAT Pathfinder)

    DEFF Research Database (Denmark)

    Delpech, M.; Malbet, F.; Karlsson, T.

    2015-01-01

    given the numerous constraints from propellant usage to star tracker blinding. The paper presents the experiment objectives in relation with the NEAT/microNEAT mission concept, describes its main design features along with the guidance and control algorithms evolutions and discusses the results in terms...

  19. Oral health related behaviors among adult Tanzanians: a national pathfinder survey

    Directory of Open Access Journals (Sweden)

    Senkoro Ahadieli R

    2009-09-01

    Full Text Available Abstract Background The oral health education programs which have been organised and delivered in Tanzania were not based on a thorough understanding of behaviours which influence oral health. Therefore, evaluation of these programs became difficult. This study aimed at investigating the oral health related behaviours and their determinants among Tanzanian adults. Methods A national pathfinder cross sectional survey was conducted in 2006 involving 1759 respondents from the six geographic zones of mainland Tanzania. Frequency distributions, Chi square and multiple logistic regression analyses were performed using SPSS version 13.0. Results The rates of abstinence from alcohol for the past 30 days and life time smoking were 61.6% and 16.7% respectively, with males being more likely to smoke (OR 9.2, CI 6.3 -12.9, p Conclusion The findings of this study demonstrated social demographic disparities in relation to oral health related behaviors, while dental pain was associated with low consumption of sugar and high likelihood to take alcohol.

  20. Caries prevalence of 5, 12 and 15-year-old Greek children: a national pathfinder survey.

    Science.gov (United States)

    Oulis, C J; Tsinidou, K; Vadiakas, G; Mamai-Homata, E; Polychronopoulou, A; Athanasouli, T

    2012-03-01

    To study the caries prevalence and caries experience of 5, 12 and 15-year-old children in Greece and evaluate how the disease pattern is related to their sociodemographic parameters. A stratified cluster sample of 1209, 1224 and 1257 of five, twelve and fifteen-year-old Greek children were randomly selected according to WHO guidelines for national pathfinder surveys and examined for dental caries, according to the BASCD criteria and standards. d3mft, D3MFT and their components, as well as d3mfs, D3MFS, Care Index (CI) and SiC were recorded and related to the demographic data collected concerning age, gender, counties, urban/rural areas and parents' educational status. Dental caries varied considerably between the different districts, with a mean dmft/DMFT value for each age group being 1.77, 2.05 and 3.19 respectively, while 64%, 37% and 29% of them, were with no obvious dentinal caries. Children living in rural areas demonstrated significantly higher dmft/DMFT values and less dental restorative care (CI), whereas children with fathers of a higher educational level showed significantly lower dmft/DMFT values. The significant caries (SIC) index value for the three age groups was 5.01, 4.83 and 7.07 respectively. Posterior occlusal surfaces of the permanent teeth presented most of the caries in the 12 (68%) and 15-year-old group (78%). Despite the decrease in the prevalence of caries in Greek children disparities remain. Children in rural areas and children with less educated parents had more caries and more untreated caries. All the above call for immediate intervention with comprehensive preventive programs and better geographic targeting of the dental services at a national level including targeted prevention of pit and fissure sealants on posterior permanent molars.

  1. The Pathfinder Microrover

    Science.gov (United States)

    Matijevic, J. R.; Bickler, D. B.; Braun, D. F.; Eisen, H. J.; Matthies, L. H.; Mishkin, A. H.; Stone, H. W.; van Nieuwstadt, L. M.; Wen, L. C.; Wilcox, B. H.; hide

    1996-01-01

    An exciting scientific component of the Pathfinder mission is the rover, which will act as a mini-field geologist by providing us with access to samples for chemical analyses and close-up images of the Martian surface, performing active experiments to modify the surface and study the results, and exploring the landing site area.

  2. The Hydrosphere State (Hydros) Satellite Mission: An Earth System Pathfinder for Global Mapping of Soil Moisture and Land Freeze/Thaw

    Science.gov (United States)

    Entekhabi, D.; Njoku, E. G.; Spencer, M.; Kim, Y.; Smith, J.; McDonald, K. C.; vanZyl, J.; Houser, P.; Dorion, T.; Koster, R.; hide

    2004-01-01

    The Hydrosphere State Mission (Hydros) is a pathfinder mission in the National Aeronautics and Space Administration (NASA) Earth System Science Pathfinder Program (ESSP). The objective of the mission is to provide exploratory global measurements of the earth's soil moisture at 10-km resolution with two- to three-days revisit and land-surface freeze/thaw conditions at 3-km resolution with one- to two-days revisit. The mission builds on the heritage of ground-based and airborne passive and active low-frequency microwave measurements that have demonstrated and validated the effectiveness of the measurements and associated algorithms for estimating the amount and phase (frozen or thawed) of surface soil moisture. The mission data will enable advances in weather and climate prediction and in mapping processes that link the water, energy, and carbon cycles. The Hydros instrument is a combined radar and radiometer system operating at 1.26 GHz (with VV, HH, and HV polarizations) and 1.41 GHz (with H, V, and U polarizations), respectively. The radar and the radiometer share the aperture of a 6-m antenna with a look-angle of 39 with respect to nadir. The lightweight deployable mesh antenna is rotated at 14.6 rpm to provide a constant look-angle scan across a swath width of 1000 km. The wide swath provides global coverage that meet the revisit requirements. The radiometer measurements allow retrieval of soil moisture in diverse (nonforested) landscapes with a resolution of 40 km. The radar measurements allow the retrieval of soil moisture at relatively high resolution (3 km). The mission includes combined radar/radiometer data products that will use the synergy of the two sensors to deliver enhanced-quality 10-km resolution soil moisture estimates. In this paper, the science requirements and their traceability to the instrument design are outlined. A review of the underlying measurement physics and key instrument performance parameters are also presented.

  3. CRED Towed-Diver Benthic Characterization Surveys at Pathfinder Bank, Marianas Archipelago in 2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support NOAA Coral Reef Conservation Program (CRCP) long-term goals for sustainable management and conservation of coral reef ecosystems, towed-diver surveys...

  4. A noise simulator for eLISA: Migrating LISA Pathfinder knowledge to the eLISA mission

    OpenAIRE

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, Michael; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, Karsten; Diepholz, I.

    2015-01-01

    We present a new technical simulator for the eLISA mission, based on state space modeling techniques and developed in MATLAB. This simulator computes the coordinate and velocity over time of each body involved in the constellation, i.e. the spacecraft and its test masses, taking into account the different disturbances and actuations. This allows studying the contribution of instrumental noises and system imperfections on the residual acceleration applied on the TMs, the latter reflecting the ...

  5. Distributed Mission Operations Within-Simulator Training Effectiveness Baseline Study. Volume 5. Using the Pathfinder Methodology to Assess Pilot Knowledge Structure Changes

    National Research Council Canada - National Science Library

    Schreiber, Brian T; DiSalvo, Pam; Stock, William A; Bennett, Jr., Winston

    2006-01-01

    ... collection methodology both before and after five days of DMO training. The Pathfinder methodology is a qualitative/quantitative method that can be used to assess if the pilots' underlying knowledge structures (i.e...

  6. Distributed Mission Operations Within-Simulator Training Effectiveness Baseline Study. Volume 5. Using the Pathfinder Methodology to Assess Pilot Knowledge Structure Changes

    National Research Council Canada - National Science Library

    Schreiber, Brian T; DiSalvo, Pam; Stock, William A; Bennett, Jr., Winston

    2006-01-01

    ...) Within Simulator Training Effectiveness Baseline Study as described in Volume I, Summary Report, of AFRL-HE-AZ-TR-2006-0015, the current work examined pilots who participated in a Pathfinder data...

  7. The UV Survey Mission Concept, CETUS

    Science.gov (United States)

    Heap, Sara; and the CETUS Team

    2018-01-01

    In March 2017, NASA selected CETUS for study of a Probe-class mission concept. W. Danchi is the CETUS PI, and S. Heap is the Science PI. CETUS is primarily a UV survey telescope to complement survey telescopes of the 2020’s including E-ROSITA, Subaru Hyper Suprime Cam and Prime-Focus Spectrograph, WFIRST, and the Square Kilometer Array. CETUS comprises a 1.5-m wide-field telescope and three science instruments: a wide-field (1045” on a side) far-UV and near-UV camera; a similarly wide-field near-UV multi-object spectrograph utilizing a next-generation micro-shutter array; and a single-object spectrograph with options of spectral region (far-UV or near-UV) and spectral resolving power (2,000 or 40,000). The survey instruments will operate simultaneously thereby producing wide-field images in the near-UV and far-UV and a spectrogram containing near-UV spectra of up to 100 sources free of spectral overlap and astronomical background. ln concert with other survey telescopes, CETUS will focus on understanding galaxy evolution at cosmic noon (z~1-2).

  8. The Search for Transients and Variables in the LSST Pathfinder Survey

    Science.gov (United States)

    Gorsuch, Mary Katherine; Kotulla, Ralf

    2018-01-01

    This research was completed during participation in the NSF-REU program at University of Wisconsin-Madison. Two fields of a few square degrees, close to the galactic plane, were imaged on the WIYN 3.5 meter telescope during the commissioning of the One Degree Imager (ODI) focal plane. These images were taken with repeated, shorter exposures in order to model an LSST-like cadence. This data was taken in order to identify transient and variable light sources. This was done by using Source Extractor to generate a catalog of all sources in each exposure, and inserting this data into a larger photometry database composed of all exposures for each field. A Python code was developed to analyze the data and isolate sources of interest from a large data set. We found that there were some discrepancies in the data, which lead to some interesting results that we are looking into further. Variable and transient sources, while relatively well understood, are not numerous in current cataloging systems. This will be a major undertaking of the Large Synoptic Survey Telescope (LSST), which this project is a precursor to. Locating these sources may give us a better understanding of where these sources are located and how they impact their surroundings.

  9. Mars Pathfinder

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    First of NASA's Discovery missions. Launched in December 1996 and arrived at Mars on 4 July 1997. Mainly intended as a technology demonstration mission. Used airbags to cushion the landing on Mars. The Carl Sagan Memorial station returned images of an ancient flood plain in Ares Vallis. The 10 kg Sojourner rover used an x-ray spectrometer to study the composition of rocks and travelled about 100 ...

  10. MOC's Highest Resolution View of Mars Pathfinder Landing Site

    Science.gov (United States)

    2000-01-01

    [figure removed for brevity, see original site] (A) Mars Pathfinder site, left: April 1998; right: January 2000. [figure removed for brevity, see original site] (B) top: April 1998; bottom: January 2000.Can Mars Global Surveyor's 1.5 meter (5 ft) per pixel camera be used to find any evidence as to the fate of the Mars Polar Lander that was lost on December 3, 1999? One way to find out is to look for one of the other Mars landers and determine what, if anything, can be seen. There have been three successful Mars lander missions: Viking 1 (July 1976), Viking 2 (September 1976), and Mars Pathfinder (July 1997). Of these, the location of Mars Pathfinder is known the best because there are several distinct landmarks visible in the lander's images that help in locating the spacecraft. The MGS MOC Operations Team at Malin Space Science Systems has been tasked since mid-December 1999 with looking for the lost Polar Lander. Part of this effort has been to test the capabilities of MOC by taking a picture of the landing site of Mars Pathfinder.An attempt to photograph the Pathfinder site was made once before, in April 1998, by turning the entire MGS spacecraft so that the camera could point at the known location of the Mars Pathfinder lander. Turning the MGS spacecraft like this is not a normal operation--it takes considerable planning, and disrupts the on-going, normal acquisition of science data. It took 3 attempts to succeed, but on April 22, 1998, MOC acquired the picture seen on the left side of Figure A, above. The three near-by major landmarks that were visible to the Pathfinder's cameras are labeled here (North Peak, Big Crater, Twin Peaks). It was known at the time that this image was not adequate to see the Pathfinder lander because the camera was not in focus and had a resolution of only 3.3 meters (11 ft) per pixel. In this and all other images shown here, north is up. All views of the 1998 MOC image are illuminated from the lower right, all views of the 2000 MOC

  11. School libraries Pathfinders

    Directory of Open Access Journals (Sweden)

    Shideh Taleban

    2009-01-01

    Full Text Available School library represents one of the important locations suited for offering reference services. The skill set necessary in order to use information resources, is called information literacy. When discussing information literacy and means of enhancing it, the first thing that comes to mind is the classroom for it is in schools that the foundation for learning skills is laid. Pathfinders have been used by libraries and librarians for guiding patrons to the required sources and answering their research questions since 1970’s. It is far different from a bibliography in as much as it does not necessarily include a complete list of available resources on a given topic. Nevertheless it provides sufficient basic resources for research for the patrons. Nowadays pathfinders are prepared by teacher-librarian or with the help of teachers at school so as to assist students in searching their prescribed assignments. The present paper offers definition of pathfinder, creation of pathfinders in schools, type of pathfinders, pathfinders characteristics, pathfinder elements as well as how to design pathfinders for children and teenagers.

  12. Lithium-Thionyl Chloride Batteries for the Mars Pathfinder Microrover

    Energy Technology Data Exchange (ETDEWEB)

    Deligiannis, F.; Frank, H.; Staniewicz, R.J.; Willson, J. [SAFT America, Inc., Cockeysville, MD (United States)

    1996-02-01

    A discussion of the power requirements for the Mars Pathfinder Mission is given. Topics include: battery requirements; cell design; battery design; test descriptions and results. A summary of the results is also included.

  13. Lithium-Thionyl Chloride Batteries for the Mars Pathfinder Microrover

    Science.gov (United States)

    Deligiannis, Frank; Frank, Harvey; Staniewicz, R. J.; Willson, John

    1996-01-01

    A discussion of the power requirements for the Mars Pathfinder Mission is given. Topics include: battery requirements; cell design; battery design; test descriptions and results. A summary of the results is also included.

  14. LISA Pathfinder: OPD loop characterisation

    Science.gov (United States)

    Born, Michael; LPF Collaboration

    2017-05-01

    The optical metrology system (OMS) of the LISA Pathfinder mission is measuring the distance between two free-floating test masses with unprecedented precision. One of the four OMS heterodyne interferometers reads out the phase difference between the reference and the measurement laser beam. This phase from the reference interferometer is common to all other longitudinal interferometer read outs and therefore subtracted. In addition, the phase is fed back via the digital optical pathlength difference (OPD) control loop to keep it close to zero. Here, we analyse the loop parameters and compare them to on-ground measurement results.

  15. Pathfinder Climate Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/NASA Pathfinder climate data CD-ROM contains seven data sets: Advanced Very High Resolution Radiometer (AVHRR)Land and Ocean, TIROS Operational Vertical...

  16. Pathfinder Innovation Projects

    Science.gov (United States)

    The Pathfinder program supports high-risk, high-reward research ideas with funding and staff time. The goal is to feed a culture of innovation in the Agency and integrate innovative ideas in EPA research programs.

  17. DYNAMIC: A Decadal Survey and NASA Roadmap Mission

    Science.gov (United States)

    Paxton, L. J.; Oberheide, J.

    2016-12-01

    In this talk we will review the DYNAMIC mission science and implementation plans. DYNAMIC is baselined as a two satellite mission to delineate the dynamical behavior and structure of the ionosphere, thermosphere and mesosphere system. DYNAMIC was considered the top priority in the Decadal Survey upper atmosphere missions by the AIMI panel. The NASA Heliophysics Roadmap recommended that consideration be given to flying DYNAMIC as the STP 5 (next STP mission) rather than IMAP given the time-lag between the Decadal Survey recommendations and the flight of the STP 5 mission. It certainly seems as though STP 5 will be the IMAP mission. In that case what is the status of DYNAMIC? DYNAMIC could be STP 6 or some portion of the DYNAMIC mission could be executed as the next MidEx mission. In this talk we discuss the DYNAMIC science questions and goals and how they might be addressed. We note that DYNAMIC is not a mission just for the space community. DYNAMIC will enable new groundbased investigations and provide a global context for the long and rich history of groundbased observations of the dynamical state of the ITM system. Issues include: How and to what extent do waves and tides in the lower atmosphere contribute to the variability and mean state of the IT system? [Mission driver: Must have two spacecraft separated in local solar time in near polar orbits] How does the AIM system respond to outside forcing? [Mission Driver: Must measure high latitude inputs] How do neutral-plasma interactions produce neutral and ionospheric density changes over regional and global scales? [Mission Driver: Must measure all major species (O, N2, O2, H, He) and their ions] What part of the IT response occurs in the form of aurorally generated waves? [Mission Driver: Must measure small and mesoscale phenomena at high latitudes] What is the relative importance of thermal expansion, upwelling and advection in defining total mass density changes? [Mission Driver: Must determine the mid

  18. Free-flight experiments in LISA Pathfinder

    International Nuclear Information System (INIS)

    Armano, M; Audley, H; Born, M; Danzmann, K; Diepholz, I; Auger, G; Binetruy, P; Baird, J; Bortoluzzi, D; Brandt, N; Bursi, A; Caleno, M; Cavalleri, A; Cesarini, A; Dolesi, R; Ferroni, V; Cruise, M; Cutler, C; Dunbar, N; Ferraioli, L

    2015-01-01

    The LISA Pathfinder mission will demonstrate the technology of drag-free test masses for use as inertial references in future space-based gravitational wave detectors. To accomplish this, the Pathfinder spacecraft will perform drag-free flight about a test mass while measuring the acceleration of this primary test mass relative to a second reference test mass. Because the reference test mass is contained within the same spacecraft, it is necessary to apply forces on it to maintain its position and attitude relative to the spacecraft. These forces are a potential source of acceleration noise in the LISA Pathfinder system that are not present in the full LISA configuration. While LISA Pathfinder has been designed to meet it's primary mission requirements in the presence of this noise, recent estimates suggest that the on-orbit performance may be limited by this ‘suspension noise’. The drift-mode or free-flight experiments provide an opportunity to mitigate this noise source and further characterize the underlying disturbances that are of interest to the designers of LISA-like instruments. This article provides a high-level overview of these experiments and the methods under development to analyze the resulting data. (paper)

  19. Laser modulator for LISA pathfinder

    Science.gov (United States)

    Voland, C.; Lund, G.; Coppoolse, W.; Crosby, P.; Stadler, M.; Kudielka, K.; Özkan, C.

    2017-11-01

    LISA Pathfinder is an ESA experiment to demonstrate the key technologies needed for the LISA mission to detect gravitational waves in space. The LISA Pathfinder spacecraft represents one arm of the LISA interferometer, containing an optical metrology system and two proof masses as inertial references for the drag-free control system. The LISA Pathfinder payload consists of two drag-free floating test masses located in the inertial sensors with their control electronics and an optical metrology subsystem. The optical metrology subsystem monitors the movement of both test masses relative to each other and to the spacecraft with very high sensitivity and resolution. This is achieved with a heterodyne Mach- Zehnder interferometer. This interferometer requires as input two coherent laser beams with a heterodyne frequency difference of a few kHz. To generate the two laser beams with a heterodyne frequency difference a Nd:YAG laser is used together with the Laser Modulator. The Nd:YAG laser generates a single coherent laser signal at a wavelength of 1064nm which is fibre coupled to the Laser Modulator. The Laser Modulator then generates the two optical beams with the required heterodyne frequency offset. In addition, the Laser Modulator is required to perform laser amplitude stabilization and optical path difference control for the two optical signals. The Laser Modulator consists of an optical unit - the LMU - and RF synthesiser, power amplification and control electronics. These electronics are all housed in the Laser Modulator Electronics (LME). The LMU has four primary functions: • Splitting of the input laser beam into two paths for later superposition in the interferometer. • Applying different frequency shifts to each of the beams. • Providing amplitude modulation control to each of the beams. • Providing active control of the optical path length difference between the two optical paths. The present paper describes the design and performance of the LMU

  20. Pathfinder-Plus aircraft in flight

    Science.gov (United States)

    1998-01-01

    The Pathfinder-Plus solar-powered aircraft is shown taking off from a runway, then flying at low altitude over the ocean. The vehicle, which looks like a flying ruler, operates at low airspeed. Among the missions proposed for a solar-powered aircraft are communications relay, atmospheric studies, pipeline monitoring and gas leak detection, environmental monitoring using thermal and radar images, and disaster relief and monitoring.

  1. A Survey of Cost Estimating Methodologies for Distributed Spacecraft Missions

    Science.gov (United States)

    Foreman, Veronica L.; Le Moigne, Jacqueline; de Weck, Oliver

    2016-01-01

    Satellite constellations present unique capabilities and opportunities to Earth orbiting and near-Earth scientific and communications missions, but also present new challenges to cost estimators. An effective and adaptive cost model is essential to successful mission design and implementation, and as Distributed Spacecraft Missions (DSM) become more common, cost estimating tools must become more representative of these types of designs. Existing cost models often focus on a single spacecraft and require extensive design knowledge to produce high fidelity estimates. Previous research has examined the limitations of existing cost practices as they pertain to the early stages of mission formulation, for both individual satellites and small satellite constellations. Recommendations have been made for how to improve the cost models for individual satellites one-at-a-time, but much of the complexity in constellation and DSM cost modeling arises from constellation systems level considerations that have not yet been examined. This paper constitutes a survey of the current state-of-theart in cost estimating techniques with recommendations for improvements to increase the fidelity of future constellation cost estimates. To enable our investigation, we have developed a cost estimating tool for constellation missions. The development of this tool has revealed three high-priority shortcomings within existing parametric cost estimating capabilities as they pertain to DSM architectures: design iteration, integration and test, and mission operations. Within this paper we offer illustrative examples of these discrepancies and make preliminary recommendations for addressing them. DSM and satellite constellation missions are shifting the paradigm of space-based remote sensing, showing promise in the realms of Earth science, planetary observation, and various heliophysical applications. To fully reap the benefits of DSM technology, accurate and relevant cost estimating capabilities

  2. Report by USSR survey mission of Nuclear Safety Commission

    International Nuclear Information System (INIS)

    1990-01-01

    The USSR survey mission of Nuclear Safety Commission drew up and presents the report as follows. In relation to the accident in Chernobyl Nuclear Power Station in USSR, in order to investigate into the present status of the countermeasures for nuclear power safety in USSR and to exchange opinion, the USSR survey mission inspected nuclear power station facilities and visited the government organs, research institutes and others in USSR. The survey mission comprised 13 members, and went to Moscow, Kiev and two nuclear power station sites, from October 22 to November 1, 1989, for 11 days. At present in USSR, 49 nuclear power plants of about 35 GWe are in operation, and by 2000, the operation of more nuclear power plants of about 30 GWe is needed, but due to the change of social situation in USSR, its attainment seems to be difficult. The plan of nuclear power generation in USSR, the ensuring of safety in general, the recent countermeasures for improving safety, the effect of the accident in Chenobyl Nuclear Power Station on health and so on are reported. The detailed record of the visit to Zaporozhe and Chernobyl Nuclear Power Stations and 7 other research institutes and government organs is given. (K.I.)

  3. LISA Pathfinder instrument data analysis

    Science.gov (United States)

    Guzman, Felipe

    LISA Pathfinder (LPF) is an ESA-launched demonstration mission of key technologies required for the joint NASA-ESA gravitational wave observatory in space, LISA. As part of the LPF interferometry investigations, analytic models of noise sources and corresponding noise subtrac-tion techniques have been developed to correct for effects like the coupling of test mass jitter into displacement readout, and fluctuations of the laser frequency or optical pathlength difference. Ground testing of pre-flight hardware of the Optical Metrology Subsystem is currently ongoing at the Albert Einstein Institute Hannover. In collaboration with NASA Goddard Space Flight Center, the LPF mission data analysis tool LTPDA is being used to analyze the data product of these tests. Furthermore, the noise subtraction techniques and in-flight experiment runs for noise characterization are being defined as part of the mission experiment master plan. We will present the data analysis outcome of pre-flight hardware ground tests and possible noise subtraction strategies for in-flight instrument operations.

  4. US Decadal Survey Outer Solar System Missions: Trajectory Options

    Science.gov (United States)

    Spilker, T. R.; Atkinson, D. H.; Strange, N. J.; Landau, D.

    2012-04-01

    The report of the US Planetary Science Decadal Survey (PSDS), released in draft form March 7, 2011, identifies several mission concepts involving travel to high-priority outer solar system (OSS) destinations. These include missions to Europa and Jupiter, Saturn and two of its satellites, and Uranus. Because travel to the OSS involves much larger distances and larger excursions out of the sun's gravitational potential well than inner solar system (ISS) missions, transfer trajectories for OSS missions are stronger drivers of mission schedule and resource requirements than for ISS missions. Various characteristics of each planet system, such as obliquity, radiation belts, rings, deep gravity wells, etc., carry ramifications for approach trajectories or trajectories within the systems. The maturity of trajectory studies for each of these destinations varies significantly. Europa has been the focus of studies for well over a decade. Transfer trajectory options from Earth to Jupiter are well understood. Current studies focus on trajectories within the Jovian system that could reduce the total mission cost of a Europa orbiter mission. Three missions to the Saturn system received high priority ratings in the PSDS report: two flagship orbital missions, one to Titan and one to Enceladus, and a Saturn atmospheric entry probe mission for NASA's New Frontiers Program. The Titan Saturn System Mission (TSSM) studies of 2007-2009 advanced our understanding of trajectory options for transfers to Saturn, including solar electric propulsion (SEP) trajectories. But SEP trajectories depend more on details of spacecraft and propulsion system characteristics than chemical trajectories, and the maturity of SEP trajectory search tools has not yet caught up with chemical trajectory tools, so there is still more useful research to be done on Saturn transfers. The TSSM studies revealed much about Saturn-orbiting trajectories that yield efficient and timely delivery to Titan or Enceladus

  5. Exploring with PAM: Prospecting ANTS Missions for Solar System Surveys

    Science.gov (United States)

    Clark, P. E.; Rilee, M. L.; Curtis, S. A.

    2003-01-01

    ANTS (Autonomous Nano-Technology Swarm), a large (1000 member) swarm of nano to picoclass (10 to 1 kg) totally autonomous spacecraft, are being developed as a NASA advanced mission concept. ANTS, based on a hierarchical insect social order, use an evolvable, self-similar, hierarchical neural system in which individual spacecraft represent the highest level nodes. ANTS uses swarm intelligence attained through collective, cooperative interactions of the nodes at all levels of the system. At the highest levels this can take the form of cooperative, collective behavior among the individual spacecraft in a very large constellation. The ANTS neural architecture is designed for totally autonomous operation of complex systems including spacecraft constellations. The ANTS (Autonomous Nano Technology Swarm) concept has a number of possible applications. A version of ANTS designed for surveying and determining the resource potential of the asteroid belt, called PAM (Prospecting ANTS Mission), is examined here.

  6. The Mission Accessible Near-Earth Object Survey (MANOS)

    Science.gov (United States)

    Moskovitz, N.; Manos Team

    2014-07-01

    Near-Earth objects (NEOs) are essential to understanding the origin of the Solar System through their compositional links to meteorites. As tracers of various regions within the Solar System they can provide insight to more distant, less accessible populations. Their relatively small sizes and complex dynamical histories make them excellent laboratories for studying ongoing Solar System processes such as space weathering, planetary encounters, and non-gravitational dynamics. Knowledge of their physical properties is essential to impact hazard assessment. Finally, the proximity of NEOs to Earth make them favorable targets for robotic and human exploration. However, in spite of their scientific importance, only the largest (km-scale) NEOs have been well studied and a representative sample of physical characteristics for sub-km NEOs does not exist. To address these issues we are conducting the Mission Accessible Near-Earth Object Survey (MANOS), a fully allocated multi-year survey of sub-km NEOs that will provide a large, uniform catalog of physical properties including light curves, spectra, and astrometry. From this comprehensive catalog, we will derive global properties of the NEO population, as well as identify individual targets that are of potential interest for exploration. We will accomplish these goals for approximately 500 mission-accessible NEOs across the visible and near-infrared ranges using telescope assets in both the northern and southern hemispheres. MANOS has been awarded large survey status by NOAO to employ Gemini-N, Gemini-S, SOAR, the Kitt Peak 4 m, and the CTIO 1.3 m. Access to additional facilities at Lowell Observatory (DCT 4.3 m, Perkins 72'', Hall 42'', LONEOS), the University of Hawaii, and the Catalina Sky Survey provide essential complements to this suite of telescopes. Targets for MANOS are selected based on three primary criteria: mission accessibility (i.e. Δ v 20), and observability. Our telescope assets allow us to obtain

  7. Exploring cosmic origins with CORE: Survey requirements and mission design

    Science.gov (United States)

    Delabrouille, J.; de Bernardis, P.; Bouchet, F. R.; Achúcarro, A.; Ade, P. A. R.; Allison, R.; Arroja, F.; Artal, E.; Ashdown, M.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Banerji, R.; Barbosa, D.; Bartlett, J.; Bartolo, N.; Basak, S.; Baselmans, J. J. A.; Basu, K.; Battistelli, E. S.; Battye, R.; Baumann, D.; Benoít, A.; Bersanelli, M.; Bideaud, A.; Biesiada, M.; Bilicki, M.; Bonaldi, A.; Bonato, M.; Borrill, J.; Boulanger, F.; Brinckmann, T.; Brown, M. L.; Bucher, M.; Burigana, C.; Buzzelli, A.; Cabass, G.; Cai, Z.-Y.; Calvo, M.; Caputo, A.; Carvalho, C.-S.; Casas, F. J.; Castellano, G.; Catalano, A.; Challinor, A.; Charles, I.; Chluba, J.; Clements, D. L.; Clesse, S.; Colafrancesco, S.; Colantoni, I.; Contreras, D.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; D'Amico, G.; da Silva, A.; de Avillez, M.; de Gasperis, G.; De Petris, M.; de Zotti, G.; Danese, L.; Désert, F.-X.; Desjacques, V.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Doyle, S.; Durrer, R.; Dvorkin, C.; Eriksen, H. K.; Errard, J.; Feeney, S.; Fernández-Cobos, R.; Finelli, F.; Forastieri, F.; Franceschet, C.; Fuskeland, U.; Galli, S.; Génova-Santos, R. T.; Gerbino, M.; Giusarma, E.; Gomez, A.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Goupy, J.; Hagstotz, S.; Hanany, S.; Handley, W.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Hervias-Caimapo, C.; Hills, M.; Hindmarsh, M.; Hivon, E.; Hoang, D. T.; Hooper, D. C.; Hu, B.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamagna, L.; Lapi, A.; Lasenby, A.; Lattanzi, M.; Le Brun, A. M. C.; Lesgourgues, J.; Liguori, M.; Lindholm, V.; Lizarraga, J.; Luzzi, G.; Macìas-P{érez, J. F.; Maffei, B.; Mandolesi, N.; Martin, S.; Martinez-Gonzalez, E.; Martins, C. J. A. P.; Masi, S.; Massardi, M.; Matarrese, S.; Mazzotta, P.; McCarthy, D.; Melchiorri, A.; Melin, J.-B.; Mennella, A.; Mohr, J.; Molinari, D.; Monfardini, A.; Montier, L.; Natoli, P.; Negrello, M.; Notari, A.; Noviello, F.; Oppizzi, F.; O'Sullivan, C.; Pagano, L.; Paiella, A.; Pajer, E.; Paoletti, D.; Paradiso, S.; Partridge, R. B.; Patanchon, G.; Patil, S. P.; Perdereau, O.; Piacentini, F.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Ponthieu, N.; Poulin, V.; Prêle, D.; Quartin, M.; Ravenni, A.; Remazeilles, M.; Renzi, A.; Ringeval, C.; Roest, D.; Roman, M.; Roukema, B. F.; Rubiño-Martin, J.-A.; Salvati, L.; Scott, D.; Serjeant, S.; Signorelli, G.; Starobinsky, A. A.; Sunyaev, R.; Tan, C. Y.; Tartari, A.; Tasinato, G.; Toffolatti, L.; Tomasi, M.; Torrado, J.; Tramonte, D.; Trappe, N.; Triqueneaux, S.; Tristram, M.; Trombetti, T.; Tucci, M.; Tucker, C.; Urrestilla, J.; Väliviita, J.; Van de Weygaert, R.; Van Tent, B.; Vennin, V.; Verde, L.; Vermeulen, G.; Vielva, P.; Vittorio, N.; Voisin, F.; Wallis, C.; Wandelt, B.; Wehus, I. K.; Weller, J.; Young, K.; Zannoni, M.

    2018-04-01

    Future observations of cosmic microwave background (CMB) polarisation have the potential to answer some of the most fundamental questions of modern physics and cosmology, including: what physical process gave birth to the Universe we see today? What are the dark matter and dark energy that seem to constitute 95% of the energy density of the Universe? Do we need extensions to the standard model of particle physics and fundamental interactions? Is the ΛCDM cosmological scenario correct, or are we missing an essential piece of the puzzle? In this paper, we list the requirements for a future CMB polarisation survey addressing these scientific objectives, and discuss the design drivers of the COREmfive space mission proposed to ESA in answer to the "M5" call for a medium-sized mission. The rationale and options, and the methodologies used to assess the mission's performance, are of interest to other future CMB mission design studies. COREmfive has 19 frequency channels, distributed over a broad frequency range, spanning the 60–600 GHz interval, to control astrophysical foreground emission. The angular resolution ranges from 2' to 18', and the aggregate CMB sensitivity is about 2 μKṡarcmin. The observations are made with a single integrated focal-plane instrument, consisting of an array of 2100 cryogenically-cooled, linearly-polarised detectors at the focus of a 1.2-m aperture cross-Dragone telescope. The mission is designed to minimise all sources of systematic effects, which must be controlled so that no more than 10‑4 of the intensity leaks into polarisation maps, and no more than about 1% of E-type polarisation leaks into B-type modes. COREmfive observes the sky from a large Lissajous orbit around the Sun-Earth L2 point on an orbit that offers stable observing conditions and avoids contamination from sidelobe pick-up of stray radiation originating from the Sun, Earth, and Moon. The entire sky is observed repeatedly during four years of continuous scanning

  8. GRS vs. OMS Calibration in LISA Pathfinder Data Analysis

    International Nuclear Information System (INIS)

    Meshksar, Neda; Ferraioli, Luigi; Mance, Davor; Zweifel, Peter; Giardini, Domenico; Ten Pierick, Jan

    2017-01-01

    On board LISA Pathfinder spacecraft the test mass displacement along the main measurement axis is sensed in two different ways: optically and electrostatically. We have monitored the relative calibration between the two measurements during the mission science phase. The trend sensitivity of the relative calibration has been computed for different physical parameters, such as temperature, magnetic field, test mass bias voltage and current. (paper)

  9. GRS vs. OMS Calibration in LISA Pathfinder Data Analysis

    Science.gov (United States)

    Meshksar, Neda; Ferraioli, Luigi; Mance, Davor; ten Pierick, Jan; Zweifel, Peter; Giardini, Domenico; ">LISA Pathfinder colaboration, Pathfinder spacecraft the test mass displacement along the main measurement axis is sensed in two different ways: optically and electrostatically. We have monitored the relative calibration between the two measurements during the mission science phase. The trend sensitivity of the relative calibration has been computed for different physical parameters, such as temperature, magnetic field, test mass bias voltage and current.

  10. The LISA Pathfinder DMU and Radiation Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Canizares, P; Conchillo, A; Gesa, L; Lloro, I; Lobo, A; Mateos, I; Sopuerta, Carlos F [Institut de Ciencies de l' Espai, CSIC, Facultat de Ciencies, Torre C5 parell, 08193 Bellaterra (Spain); Chmeissani, M [Institut de Fisica d' Altes Energies (IFAE), Edifici CN, UAB Campus, 08193 Bellaterra (Spain); Diaz-Aguilo, M; GarcIa-Berro, E; Gibert, F [Institut d' Estudis Espacials de Catalunya (IEEC), Edifici Nexus, Gran Capita 2-4, 08034 Barcelona (Spain); Grimani, C [Universita degli Studi di Urbino, MFI Department, Via Santa Chiara 27, 61029 Urbino, and INFN Florence (Italy); Nofrarias, M [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Callinstrasse 38, D-30167 Hannover (Germany); Ramos-Castro, J [Departament d' Enginyeria Electronica, UPC, Campus Nord, Edifici C4, Jordi Girona 1-3, 08034 Barcelona (Spain); Sanjuan, J [Department of Physics, University of Florida, NPB-22258 PO Box 118 440, Gainesville, FL 32611-8440 (United States); Araujo, H M; Wass, P, E-mail: lobo@ieec.fcr.es [High Energy Physics Blackett Laboratory, Prince Consort Road, Imperial College London, London SW7 2BW (United Kingdom)

    2011-05-07

    The LISA Pathfinder DMU (Data Management Unit) flight model was formally accepted by ESA and ASD on 11 February 2010, after all hardware and software tests had been successfully completed. The diagnostics items are scheduled to be delivered by the end of 2010. In this paper, we review the requirements and performance of this instrumentation, specially focusing on the Radiation Monitor and the DMU, as well as the status of their programmed use during mission operations, on which work is ongoing at the time of writing.

  11. The Status of the Ultra Fast Flash Observatory – Pathfinder

    International Nuclear Information System (INIS)

    Nam, J.W.; Ahmad, S.; Ahn, K.B.; Barrillon, P.; Brandt, S.; Budtz-Jrgensen, C.; Castro-Tirado, A.J.; Chang, C.-H.; Chang, C.-Y.; Chang, Y.Y.; Chen, C.R.; Chen, P.; Cho, M.; Choi, H.S.; Choi, Y.J.; Connel, P.; Dagoret-Campagne, S.; Eyles, C.; Grossan, B.; Huang, J.J.

    2014-01-01

    The Ultra Fast Flash Observatory (UFFO) is a project to study early optical emissions from Gamma Ray Bursts (GRBs). The primary scientific goal of UFFO is to see if GRBs can be calibrated with their rising times, so that they could be used as new standard candles. In order to minimize delay in optical follow-up measurements, which is now about 100 sec after trigger from the Swift experiment, we rotate a mirror to redirect light path so that optical measurement can be performed within a second after the trigger. We have developed a pathfinder mission, UFFO-pathfinder to launch on board the Lomonosov satellite in 2012. In this talk, I will present scientific motivations and descriptions of the design and development of UFFO-pathfinder

  12. Pathfinder Innovation Projects: Awardees 2015

    Science.gov (United States)

    The Pathfinder program supports high-risk, high-reward research ideas with funding and staff time. The goal is to feed a culture of innovation in the Agency and integrate innovative ideas in EPA research programs.

  13. Pathfinder Innovation Projects: Awardees 2016

    Science.gov (United States)

    The Pathfinder program supports high-risk, high-reward research ideas with funding and staff time. The goal is to feed a culture of innovation in the Agency and integrate innovative ideas in EPA research programs.

  14. Detection of Micrometeoroids with LISA Pathfinder

    Science.gov (United States)

    Thorpe, Ira; Littenberg, Tyson; Janchez, Diego; Baker, John; The LISA Pathfinder Team Team

    2017-01-01

    The LISA Pathfinder mission (LPF), a joint ESA/NASA technology demonstration mission currently operating at the Sun-Earth L1 point, contains the most precise accelerometry system ever flown. Analysis suggests that LPF should have sufficient sensitivity to detect impacts of small micrometeoroids and dust through their transfer of momentum to the spacecraft. Moreover, LPF's ability to fully resolve both the linear and angular momentum transfer in three dimensions allows a magnitude, direction, and location to be estimated for each impact. We present preliminary results from a systematic search of the LISA Pathfinder data for such impacts and discuss the prospects for using these and future results to inform models of the formation and evolution of dust populations in the inner solar system. These models have wide applicability to both pure and applied space science, ranging from the physics of planet formation and dynamics of minor Solar System bodies to estimates of the micrometeorite hazard for future spacecraft. 2017 NASA Science Innovation Fund.

  15. LISA Pathfinder: Optical Metrology System monitoring during operations

    Science.gov (United States)

    Audley, Heather E.; LISA Pathfinder Collaboration

    2017-05-01

    The LISA Pathfinder (LPF) mission has demonstrated excellent performance. In addition to having surpassed the main mission goals, data has been collected from the various subsystems throughout the duration of the mission. This data is a valuable resource, both for a more complete understanding of the LPF satellite and the differential acceleration measurements, as well as for the design of the future Laser Interferometer Space Antenna (LISA) mission. Initial analysis of the Optical Metrology System (OMS) data was performed as part of daily system monitoring, and more in-depth analyses are ongoing. This contribution presents an overview of these activities along with an introduction to the OMS.

  16. Micrometeorite Science with LISA Pathfinder

    Science.gov (United States)

    Pagane, Nicole; Thorpe, James Ira; Littenberg, Tyson; Littenberg, Tyson; Baker, John; Slutsky, Jacob; Hourihane, Sophie; LISA Pathfinder Team

    2018-01-01

    The primary objective of LISA Pathfinder (LPF) was to demonstrate drag-free control of test masses—along with the technology necessary to maintain the inertial motion—that LISA (Laser Interferometer Space Antenna) would later utilize as a space-based gravitational wave observatory. Due to the precise interferometry used during the mission, LPF could be employed as an accelerometer and used to detect micrometeorite impacts while in orbit about the Sun-Earth Lagrange Point L1. To infer micrometeorite impacts, the flight data was processed for event reconstruction to determine external acceleration of LPF; impact parameters were then estimated through a Markov-Chain Monte-Carlo (MCMC) tool via Bayesian analysis by fitting delta functions in the acceleration domain. As impact candidates were collected, a catalog of event data was curated with the reconstructed estimated parameters, among which were impact sky localizations that were later rotated into more intuitive reference frames. To infer the results of this dust modeling technique, current micrometeorite models were compared to the impact data. In the final reference frame common to the available micrometeorite models, the reconstructed impacts appear to cluster at (±90°, 0°)—where impacts prograde in this longitude-latitude frame were at (-90°, 0°), retrograde were (90°, 0°), and the sun was centered at the origin. The two available models used for comparison were of the Jupiter-family comets (JFC) and Halley-type comets (HTC), which clustered primarily around (±90°, 0°) and (0°, ±20°) respectively. This suggests that the JFC population seems to account for the majority of the impacts detected by LPF. The models’ expected rates given localization and velocity are currently being compared to the reconstructed data to further characterize the micrometeorite populations at L1. We will present our current analysis of this data set and discuss possibilities of extending such an analysis for LISA.

  17. LISA Pathfinder: An important first step towards a space-based gravitational wave observatory

    Science.gov (United States)

    Thorpe, James

    2017-08-01

    ESA's LISA Pathfinder mission was launched on Dec 3rd, 2015 and completed earlier this Summer. During this relatively short mission, Pathfinder at its two science payloads, Europe's LISA Technology Package and NASA's Disturbance Reduction System, demonstrated several techniques and technologies that enable development of a future space-based gravitational wave observatory. Most notably, Pathfinder demonstrated that the technique of drag-free flight could be utilized to place a test mass in near-perfect free-fall, with residual accelerations at the femto-g level in the milliHertz band. Additionally, technologies such as precision bonded optical structures for metrology, micropropulsion systems, and non-contact charge control, were successfully tested, retiring risk for LISA. In this talk, I will present an overview of Pathfinder's results to date and some perspective on how this success will be leveraged into realizing LISA.

  18. Campaign 9 of the K2 Mission: Observational Parameters, Scientific Drivers, and Community Involvement for a Simultaneous Space- and Ground-based Microlensing Survey

    Science.gov (United States)

    Henderson, Calen B.; Poleski, Radoslaw; Penny, Matthew; Street, Rachel A.; Bennett, David P.; Hogg, David W.; Gaudi, B. Scott; Zhu, W.; Barclay, T.; Barentsen, G.; hide

    2016-01-01

    K2's Campaign 9 (K2C9) will conduct a approximately 3.7 sq. deg survey toward the Galactic bulge from 2016 April 22 through July 2 that will leverage the spatial separation between K2 and the Earth to facilitate measurement of the microlens parallax Pi(sub E) for approximately greater than 170 microlensing events. These will include several that are planetary in nature as well as many short-timescale microlensing events, which are potentially indicative of free-floating planets (FFPs). These satellite parallax measurements will in turn allow for the direct measurement of the masses of and distances to the lensing systems. In this article we provide an overview of the K2C9 space- and ground-based microlensing survey. Specifically, we detail the demographic questions that can be addressed by this program, including the frequency of FFPs and the Galactic distribution of exoplanets, the observational parameters of K2C9, and the array of resources dedicated to concurrent observations. Finally, we outline the avenues through which the larger community can become involved, and generally encourage participation in K2C9, which constitutes an important pathfinding mission and community exercise in anticipation of WFIRST.

  19. Computational needs survey of NASA automation and robotics missions. Volume 1: Survey and results

    Science.gov (United States)

    Davis, Gloria J.

    1991-01-01

    NASA's operational use of advanced processor technology in space systems lags behind its commercial development by more than eight years. One of the factors contributing to this is that mission computing requirements are frequently unknown, unstated, misrepresented, or simply not available in a timely manner. NASA must provide clear common requirements to make better use of available technology, to cut development lead time on deployable architectures, and to increase the utilization of new technology. A preliminary set of advanced mission computational processing requirements of automation and robotics (A&R) systems are provided for use by NASA, industry, and academic communities. These results were obtained in an assessment of the computational needs of current projects throughout NASA. The high percent of responses indicated a general need for enhanced computational capabilities beyond the currently available 80386 and 68020 processor technology. Because of the need for faster processors and more memory, 90 percent of the polled automation projects have reduced or will reduce the scope of their implementation capabilities. The requirements are presented with respect to their targeted environment, identifying the applications required, system performance levels necessary to support them, and the degree to which they are met with typical programmatic constraints. Volume one includes the survey and results. Volume two contains the appendixes.

  20. Long Memory of Pathfinding Aesthetics

    Directory of Open Access Journals (Sweden)

    Ron Coleman

    2009-01-01

    Full Text Available This paper investigates a new dynamic (i.e., space-time model to measure aesthetic values in pathfinding for videogames. The results we report are important firstly because the artificial intelligence literature has given relatively little attention to aesthetic considerations in pathfinding. Secondly, those investigators who have studied aesthetics in pathfinding have relied largely on anecdotal arguments rather than metrics. Finally, in those cases where metrics have been used in the past, they show only that aesthetic paths are different. They provide no quantitative means to classify aesthetic outcomes. The model we develop here overcomes these deficiencies using rescaled range (R/S analysis to estimate the Hurst exponent, . It measures long-range dependence (i.e., long memory in stochastic processes and provides a novel well-defined mathematical classification for pathfinding. Indeed, the data indicates that aesthetic and control paths have statistically significantly distinct signatures. Aesthetic paths furthermore have more long memory than controls with an effect size that is large, more than three times that of an alternative approach. These conclusions will be of interest to researchers investigating games as well as other forms of entertainment, simulation, and in general nonshortest path motion planning.

  1. Desert Pathfinder at Work

    Science.gov (United States)

    2005-09-01

    The Atacama Pathfinder Experiment (APEX) project celebrates the inauguration of its outstanding 12-m telescope, located on the 5100m high Chajnantor plateau in the Atacama Desert (Chile). The APEX telescope, designed to work at sub-millimetre wavelengths, in the 0.2 to 1.5 mm range, passed successfully its Science Verification phase in July, and since then is performing regular science observations. This new front-line facility provides access to the "Cold Universe" with unprecedented sensitivity and image quality. After months of careful efforts to set up the telescope to work at the best possible technical level, those involved in the project are looking with satisfaction at the fruit of their labour: APEX is not only fully operational, it has already provided important scientific results. "The superb sensitivity of our detectors together with the excellence of the site allow fantastic observations that would not be possible with any other telescope in the world," said Karl Menten, Director of the group for Millimeter and Sub-Millimeter Astronomy at the Max-Planck-Institute for Radio Astronomy (MPIfR) and Principal Investigator of the APEX project. ESO PR Photo 30/05 ESO PR Photo 30/05 Sub-Millimetre Image of a Stellar Cradle [Preview - JPEG: 400 x 627 pix - 200k] [Normal - JPEG: 800 x 1254 pix - 503k] [Full Res - JPEG: 1539 x 2413 pix - 1.3M] Caption: ESO PR Photo 30/05 is an image of the giant molecular cloud G327 taken with APEX. More than 5000 spectra were taken in the J=3-2 line of the carbon monoxide molecule (CO), one of the best tracers of molecular clouds, in which star formation takes place. The bright peak in the north of the cloud is an evolved star forming region, where the gas is heated by a cluster of new stars. The most interesting region in the image is totally inconspicuous in CO: the G327 hot core, as seen in methanol contours. It is a truly exceptional source, and is one of the richest sources of emission from complex organic molecules in the

  2. Wide-field surveys from the SNAP mission

    International Nuclear Information System (INIS)

    2002-01-01

    The Supernova/Acceleration Probe (SNAP) is a proposed space-borne observatory that will survey the sky with a wide-field optical/NIR imager. The images produced by SNAP will have an unprecedented combination of depth, solid-angle, angular resolution, and temporal sampling. Two 7.5 square-degree fields will be observed every four days over 16 months to a magnitude depth of AB = 27.7 in each of nine filters. Co-adding images over all epochs will give an AB = 30.3 per filter. A 300 square-degree field will be surveyed with no repeat visits to AB = 28 per filter. The nine filters span 3500-17000 (angstrom). Although the survey strategy is tailored for supernova and weak gravitational lensing observations, the resulting data supports a broad range of auxiliary science programs

  3. Strategic Team AI Path Plans: Probabilistic Pathfinding

    Directory of Open Access Journals (Sweden)

    Tng C. H. John

    2008-01-01

    Full Text Available This paper proposes a novel method to generate strategic team AI pathfinding plans for computer games and simulations using probabilistic pathfinding. This method is inspired by genetic algorithms (Russell and Norvig, 2002, in that, a fitness function is used to test the quality of the path plans. The method generates high-quality path plans by eliminating the low-quality ones. The path plans are generated by probabilistic pathfinding, and the elimination is done by a fitness test of the path plans. This path plan generation method has the ability to generate variation or different high-quality paths, which is desired for games to increase replay values. This work is an extension of our earlier work on team AI: probabilistic pathfinding (John et al., 2006. We explore ways to combine probabilistic pathfinding and genetic algorithm to create a new method to generate strategic team AI pathfinding plans.

  4. Mars Pathfinder and Mars Global Surveyor Outreach Compilation

    Science.gov (United States)

    1999-09-01

    This videotape is a compilation of the best NASA JPL (Jet Propulsion Laboratory) videos of the Mars Pathfinder and Mars Global Surveyor missions. The mission is described using animation and narration as well as some actual footage of the entire sequence of mission events. Included within these animations are the spacecraft orbit insertion; descent to the Mars surface; deployment of the airbags and instruments; and exploration by Sojourner, the Mars rover. JPL activities at spacecraft control during significant mission events are also included at the end. The spacecraft cameras pan the surrounding Mars terrain and film Sojourner traversing the surface and inspecting rocks. A single, brief, processed image of the Cydonia region (Mars face) at an oblique angle from the Mars Global Surveyor is presented. A description of the Mars Pathfinder mission, instruments, landing and deployment process, Mars approach, spacecraft orbit insertion, rover operation are all described using computer animation. Actual color footage of Sojourner as well as a 360 deg pan of the Mars terrain surrounding the spacecraft is provided. Lower quality black and white photography depicting Sojourner traversing the Mars surface and inspecting Martian rocks also is included.

  5. A Survey of Missions for Unmanned Undersea Vehicles

    Science.gov (United States)

    2009-01-01

    commands (much like wire-guided tor- pedoes ) have become possible. We regard this vehicle variety as a type of ROV. This study treats both AUVs and...energy offered by new technologies, power and energy are still an issue for tor- pedo -like AUVs. A survey of AUV developers conducted in the spring of...neutral buoyancy is also needed for vehicle recovery. For AUVs launched from tor- pedo tubes in particular, vehicle recovery can occur only when the

  6. Monte Carlo Analysis as a Trajectory Design Driver for the Transiting Exoplanet Survey Satellite (TESS) Mission

    Science.gov (United States)

    Nickel, Craig; Parker, Joel; Dichmann, Don; Lebois, Ryan; Lutz, Stephen

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will be injected into a highly eccentric Earth orbit and fly 3.5 phasing loops followed by a lunar flyby to enter a mission orbit with lunar 2:1 resonance. Through the phasing loops and mission orbit, the trajectory is significantly affected by lunar and solar gravity. We have developed a trajectory design to achieve the mission orbit and meet mission constraints, including eclipse avoidance and a 30-year geostationary orbit avoidance requirement. A parallelized Monte Carlo simulation was performed to validate the trajectory after injecting common perturbations, including launch dispersions, orbit determination errors, and maneuver execution errors. The Monte Carlo analysis helped identify mission risks and is used in the trajectory selection process.

  7. Pathfinder-Plus on flight in Hawaii

    Science.gov (United States)

    1998-01-01

    Pathfinder-Plus on a flight over Hawaii in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days

  8. Pathfinder-Plus on flight over Hawaii

    Science.gov (United States)

    1998-01-01

    Pathfinder-Plus on flight over Hawaii. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50

  9. LISA Pathfinder and eLISA news

    Science.gov (United States)

    Thorpe, James Ira; Mueller, Guido

    2014-01-01

    Two important gatherings of the space-based gravitational-wave detector community were held in Zurich, Switzerland this past March. The first was a meeting of the Science Working Team for LISA Pathfinder (LPF), a dedicated technology demonstrator mission for a future LISA-like gravitational wave observatory. LPF is entering an extremely exciting phase with launch less than 15 months away. All flight components for both the European science payload, known as the LISA Technology Package (LTP), and the NASA science payload, known as the Space Technology 7 Disturbance Reduction System (ST7-DRS), have been delivered and are undergoing integration. The final flight component for the spacecraft bus, a cold-gas thruster based on the successful GAIA design, will be delivered later this year. Current focus is on completing integration of the science payload (see Figures 1 and 2) and preparation for operations and data analysis. After a launch in Summer 2015, LPF will take approximately 90 days to reach its operational orbit around the Earth-Sun Lagrange point (L1), where it will begin science operations. After 90 days of LTP operations followed by 90 days of DRS operations, LPF will have completed its prime mission of paving the way for a space-based observatory of gravitational waves in the milliHertz band. Immediately following the meeting of the LPF team, the eLISA consortium held its third progress meeting. The consortium (www.elisascience.org) is the organizing body of the European space-based gravitational-wave community, and it was responsible for the "The Gravitational Universe" whitepaper that resulted in the November 2013 election of a gravitational-wave science theme for ESA's Cosmic Visions L3 opportunity. In preparation for an L3 mission concept call, which is expected later this decade, and for launch in the mid 2030s, the eLISA consortium members are coordinating technology development and mission study activities which will build on the LPF results. The final

  10. Integrating Subject Pathfinders into Online Catalogs.

    Science.gov (United States)

    Jarvis, William E.

    1985-01-01

    Discusses the integration of subject pathfinders into online public access catalogs (OPAC) through following features: within the OPAC, offline user guide manuals, remotely printed upon user request, or online as saved searches displayed in help screen format. Excerpts of a pathfinder display for biotechnology are presented. Four sources are…

  11. Slewing Mirror Telescope and the Data-Acquisition System for the UFFO-Pathfinder

    DEFF Research Database (Denmark)

    Lim, H.; Ahmad, S.; Barrillon, P.

    2013-01-01

    The Ultra-Fast Flash Observatory (UFFO) aims to detect the earliest moment of Gamma-Ray Bursts (GRBs) which is not well known, resulting into the enhancement of GRB mechanism understanding. The pathfinder mission was proposed to be a scaled-down version of UFFO, and only contains the UFFO Burst A...

  12. Observation of early photons from gamma-ray bursts with the Lomonosov / UFFO-pathfinder

    DEFF Research Database (Denmark)

    Jeong, S.; Brandt, Søren; Budtz-Jørgensen, Carl

    2014-01-01

    UFFO-pathfinder is a pioneering space mission to observe the early evolution of Gamma-ray Bursts using a fast slewing strategy. It consists of the Slewing Mirror Telescope, for rapid pointing at UV/optical wavelengths and the UFFO Burst Alert and Trigger Telescope. It has a total weight of ~ 20 k...

  13. Trajectory Design to Mitigate Risk on the Transiting Exoplanet Survey Satellite (TESS) Mission

    Science.gov (United States)

    Dichmann, Donald

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will employ a highly eccentric Earth orbit, in 2:1 lunar resonance, reached with a lunar flyby preceded by 3.5 phasing loops. The TESS mission has limited propellant and several orbit constraints. Based on analysis and simulation, we have designed the phasing loops to reduce delta-V and to mitigate risk due to maneuver execution errors. We have automated the trajectory design process and use distributed processing to generate and to optimize nominal trajectories, check constraint satisfaction, and finally model the effects of maneuver errors to identify trajectories that best meet the mission requirements.

  14. The Australian SKA Pathfinder: First Science Results

    Science.gov (United States)

    Harvey-Smith, Lisa

    2015-08-01

    The Australian SKA Pathfinder (ASKAP) is a precursor and technology demonstrator for the Square Kilometre Array.A specialist wide-field survey instrument, ASKAP compises 36 x 12m dish antennas with a maximum separation of 6km. The array operates in the frequency range 700 - 1800 MHz and has an instantaneous bandwidth of 300 MHz. Each dish is mounted with a 'phased array feed', a radio receiver that dramatically enhances the telescope's field-of-view from 1 to 30 square degrees. ASKAP is located at the Murchison Radio-astronomy Observatory, Australia's core site for the SKA.Ten Science Survey Projects have been established by teams of more than 600 astronomers from around the world. Astronomical research topics tackled by these teams include galaxy evolution, cosmic magnetism, the history of gas in galaxies and cosmology. A program of ASKAP Early Science will commence in late 2015. The 6-antenna Boolardy Engineering Test Array (BETA) is currently being used by the commissioning team and at the time of writing has produced its first scientific discovery paper.In this talk, hear the ASKAP Project Scientist report some of the exciting new capabilities demonstrated by ASKAP and learn about the first scientific discoveries made by the commissioning and early science team.

  15. Wide Field Infra-Red Survey Telescope (WFIRST) 2.4-Meter Mission Study

    Science.gov (United States)

    Content, D.; Aaron, K.; Alplanalp, L.; Anderson, K.; Capps, R.; Chang, Z.; Dooley, J.; Egerman, R.; Goullioud, R.; Klein, D.; hide

    2013-01-01

    The most recent study of the Wide Field Infrared Survey Telescope (WFIRST) mission is based on reuse of an existing 2.4m telescope. This study was commissioned by NASA to examine the potential science return and cost effectiveness of WFIRST by using this significantly larger aperture telescope. We review the science program envisioned by the WFIRST 2012-2013 Science Definition Team (SDT), an overview of the mission concept, and the telescope design and status. Comparisons against the previous 1.3m and reduced cost 1.1m WFIRST design concepts are discussed. A significant departure from past point designs is the option for serviceability and the geostationary orbit location which enables servicing and replacement instrument insertion later during mission life. Other papers at this conference provide more in depth discussion of the wide field instrument and the optional exoplanet imaging coronagraph instrument.

  16. THE MISSION ACCESSIBLE NEAR-EARTH OBJECTS SURVEY (MANOS): FIRST PHOTOMETRIC RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Thirouin, A.; Moskovitz, N.; Burt, B. [Lowell Observatory, 1400 W Mars Hill Rd, Flagstaff, AZ 86001 (United States); Binzel, R. P.; DeMeo, F. E.; Person, M. J. [Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Christensen, E. [University of Arizona, Tucson, AZ (United States); Polishook, D. [Department of Earth and Planetary Science, Weizmann Institute, Herzl St 234, Rehovot, 7610001 (Israel); Thomas, C. A. [Planetary Science Institute (PSI), 1700 E Fort Lowell Road 106, Tucson, AZ 85719 (United States); Trilling, D.; Hinkle, M.; Avner, D. [Department of Physics and Astronomy, P.O. Box 6010, Northern Arizona University, Flagstaff AZ 86001 (United States); Willman, M. [University of Hawaii, Pukalani, HI 96788 (United States); Aceituno, F. J., E-mail: thirouin@lowell.edu [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía, S/N, Granada, E-18008 (Spain)

    2016-12-01

    The Mission Accessible Near-Earth Objects Survey aims to physically characterize sub-km near-Earth objects (NEOs). We report the first photometric results from the survey that began in 2013 August. Photometric observations were performed using 1–4 m class telescopes around the world. We present rotational periods and light curve amplitudes for 86 sub-km NEOs, though in some cases only lower limits are provided. Our main goal is to obtain light curves for small NEOs (typically, sub-km objects) and estimate their rotational periods, light curve amplitudes, and shapes. These properties are used for a statistical study to constrain overall properties of the NEO population. A weak correlation seems to indicate that smaller objects are more spherical than larger ones. We also report seven NEOs that are fully characterized (light curve and visible spectra) as the most suitable candidates for a future human or robotic mission. Viable mission targets are objects fully characterized, with Δ v {sup NHATS} ≤ 12 km s{sup −1}, and a rotational period P  > 1 hr. Assuming a similar rate of object characterization as reported in this paper, approximately 1230 NEOs need to be characterized in order to find 100 viable mission targets.

  17. THE MISSION ACCESSIBLE NEAR-EARTH OBJECTS SURVEY (MANOS): FIRST PHOTOMETRIC RESULTS

    International Nuclear Information System (INIS)

    Thirouin, A.; Moskovitz, N.; Burt, B.; Binzel, R. P.; DeMeo, F. E.; Person, M. J.; Christensen, E.; Polishook, D.; Thomas, C. A.; Trilling, D.; Hinkle, M.; Avner, D.; Willman, M.; Aceituno, F. J.

    2016-01-01

    The Mission Accessible Near-Earth Objects Survey aims to physically characterize sub-km near-Earth objects (NEOs). We report the first photometric results from the survey that began in 2013 August. Photometric observations were performed using 1–4 m class telescopes around the world. We present rotational periods and light curve amplitudes for 86 sub-km NEOs, though in some cases only lower limits are provided. Our main goal is to obtain light curves for small NEOs (typically, sub-km objects) and estimate their rotational periods, light curve amplitudes, and shapes. These properties are used for a statistical study to constrain overall properties of the NEO population. A weak correlation seems to indicate that smaller objects are more spherical than larger ones. We also report seven NEOs that are fully characterized (light curve and visible spectra) as the most suitable candidates for a future human or robotic mission. Viable mission targets are objects fully characterized, with Δ v NHATS  ≤ 12 km s −1 , and a rotational period P  > 1 hr. Assuming a similar rate of object characterization as reported in this paper, approximately 1230 NEOs need to be characterized in order to find 100 viable mission targets.

  18. Designing future dark energy space missions. II. Photometric redshift of space weak lensing optimized surveys

    Science.gov (United States)

    Jouvel, S.; Kneib, J.-P.; Bernstein, G.; Ilbert, O.; Jelinsky, P.; Milliard, B.; Ealet, A.; Schimd, C.; Dahlen, T.; Arnouts, S.

    2011-08-01

    Context. With the discovery of the accelerated expansion of the universe, different observational probes have been proposed to investigate the presence of dark energy, including possible modifications to the gravitation laws by accurately measuring the expansion of the Universe and the growth of structures. We need to optimize the return from future dark energy surveys to obtain the best results from these probes. Aims: A high precision weak-lensing analysis requires not an only accurate measurement of galaxy shapes but also a precise and unbiased measurement of galaxy redshifts. The survey strategy has to be defined following both the photometric redshift and shape measurement accuracy. Methods: We define the key properties of the weak-lensing instrument and compute the effective PSF and the overall throughput and sensitivities. We then investigate the impact of the pixel scale on the sampling of the effective PSF, and place upper limits on the pixel scale. We then define the survey strategy computing the survey area including in particular both the Galactic absorption and Zodiacal light variation accross the sky. Using the Le Phare photometric redshift code and realistic galaxy mock catalog, we investigate the properties of different filter-sets and the importance of the u-band photometry quality to optimize the photometric redshift and the dark energy figure of merit (FoM). Results: Using the predicted photometric redshift quality, simple shape measurement requirements, and a proper sky model, we explore what could be an optimal weak-lensing dark energy mission based on FoM calculation. We find that we can derive the most accurate the photometric redshifts for the bulk of the faint galaxy population when filters have a resolution ℛ ~ 3.2. We show that an optimal mission would survey the sky through eight filters using two cameras (visible and near infrared). Assuming a five-year mission duration, a mirror size of 1.5 m and a 0.5 deg2 FOV with a visible pixel

  19. Multiagent path-finding in strategic games

    OpenAIRE

    Mihevc, Simon

    2014-01-01

    In this thesis I worked on creating, comparing and improving algorithms for multi-agent path planning on a domain typical for real-time strategy games. I implemented and compared Multiagent pathfinding using clearance and Multiagent pathfinding using independence detection and operator decomposition. I discovered that they had problems maintaining group compactness and took too long to calculate the path. I considerably improved the efficiency of both algorithms.

  20. The Mission Accessible Near-Earth Object Survey (MANOS): Project Overview

    Science.gov (United States)

    Moskovitz, Nicholas; Polishook, David; Thomas, Cristina; Willman, Mark; DeMeo, Francesca; Mommert, Michael; Endicott, Thomas; Trilling, David; Binzel, Richard; Hinkle, Mary; Siu, Hosea; Neugent, Kathryn; Christensen, Eric; Person, Michael; Burt, Brian; Grundy, Will; Roe, Henry; Abell, Paul; Busch, Michael

    2014-11-01

    The Mission Accessible Near-Earth Object Survey (MANOS) began in August 2013 as a multi-year physical characterization survey that was awarded survey status by NOAO. MANOS will target several hundred mission-accessible NEOs across visible and near-infrared wavelengths, ultimately providing a comprehensive catalog of physical properties (astrometry, light curves, spectra). Particular focus is paid to sub-km NEOs, for which little data currently exists. These small bodies are essential to understanding the link between meteorites and asteroids, pose the most immediate impact hazard to the Earth, and are highly relevant to a variety of planetary mission scenarios. Accessing these targets is enabled through a combination of classical, queue, and target-of-opportunity observations carried out at 1- to 8-meter class facilities in both the northern and southern hemispheres. The MANOS observing strategy is specifically designed to rapidly characterize newly discovered NEOs before they fade beyond observational limits. MANOS will provide major advances in our understanding of the NEO population as a whole and for specific objects of interest. Here we present an overview of the survey, progress to date, and early science highlights including: (1) an estimate of the taxonomic distribution of spectral types for NEOs smaller than ~100 meters, (2) the distribution of rotational properties for approximately 100 previously unstudied objects, (3) models for the dynamical evolution of the overall NEO population over the past 0.5 Myr, and (4) progress in developing a new set of online tools at asteroid.lowell.edu that will enable near realtime public dissemination of our data while providing a portal to facilitate coordination efforts within the small body observer community.MANOS is supported through telescope allocations from NOAO and Lowell Observatory. We acknowledge funding support from an NSF Astronomy and Astrophysics Postdoctoral Fellowship to N. Moskovitz and NASA NEOO grant

  1. Modeling to Mars: a NASA Model Based Systems Engineering Pathfinder Effort

    Science.gov (United States)

    Phojanamongkolkij, Nipa; Lee, Kristopher A.; Miller, Scott T.; Vorndran, Kenneth A.; Vaden, Karl R.; Ross, Eric P.; Powell, Bobby C.; Moses, Robert W.

    2017-01-01

    The NASA Engineering Safety Center (NESC) Systems Engineering (SE) Technical Discipline Team (TDT) initiated the Model Based Systems Engineering (MBSE) Pathfinder effort in FY16. The goals and objectives of the MBSE Pathfinder include developing and advancing MBSE capability across NASA, applying MBSE to real NASA issues, and capturing issues and opportunities surrounding MBSE. The Pathfinder effort consisted of four teams, with each team addressing a particular focus area. This paper focuses on Pathfinder team 1 with the focus area of architectures and mission campaigns. These efforts covered the timeframe of February 2016 through September 2016. The team was comprised of eight team members from seven NASA Centers (Glenn Research Center, Langley Research Center, Ames Research Center, Goddard Space Flight Center IV&V Facility, Johnson Space Center, Marshall Space Flight Center, and Stennis Space Center). Collectively, the team had varying levels of knowledge, skills and expertise in systems engineering and MBSE. The team applied their existing and newly acquired system modeling knowledge and expertise to develop modeling products for a campaign (Program) of crew and cargo missions (Projects) to establish a human presence on Mars utilizing In-Situ Resource Utilization (ISRU). Pathfinder team 1 developed a subset of modeling products that are required for a Program System Requirement Review (SRR)/System Design Review (SDR) and Project Mission Concept Review (MCR)/SRR as defined in NASA Procedural Requirements. Additionally, Team 1 was able to perform and demonstrate some trades and constraint analyses. At the end of these efforts, over twenty lessons learned and recommended next steps have been identified.

  2. Disentangling the magnetic force noise contribution in LISA Pathfinder

    International Nuclear Information System (INIS)

    Armano, M; Audley, H; Born, M; Danzmann, K; Diepholz, I; Auger, G; Binetruy, P; Baird, J; Bortoluzzi, D; Brandt, N; Fitzsimons, E; Bursi, A; Caleno, M; Cavalleri, A; Cesarini, A; Dolesi, R; Ferroni, V; Cruise, M; Dunbar, N; Ferraioli, L

    2015-01-01

    Magnetically-induced forces on the inertial masses on-board LISA Pathfinder are expected to be one of the dominant contributions to the mission noise budget, accounting for up to 40%. The origin of this disturbance is the coupling of the residual magnetization and susceptibility of the test masses with the environmental magnetic field. In order to fully understand this important part of the noise model, a set of coils and magnetometers are integrated as a part of the diagnostics subsystem. During operations a sequence of magnetic excitations will be applied to precisely determine the coupling of the magnetic environment to the test mass displacement using the on-board magnetometers. Since no direct measurement of the magnetic field in the test mass position will be available, an extrapolation of the magnetic measurements to the test mass position will be carried out as a part of the data analysis activities. In this paper we show the first results on the magnetic experiments during an end- to-end LISA Pathfinder simulation, and we describe the methods under development to map the magnetic field on-board. (paper)

  3. Fractal Analysis of Stealthy Pathfinding Aesthetics

    Directory of Open Access Journals (Sweden)

    Ron Coleman

    2009-01-01

    Full Text Available This paper uses a fractal model to analyze aesthetic values of a new class of obstacle-prone or “stealthy” pathfinding which seeks to avoid detection, exposure, openness, and so forth in videogames. This study is important since in general the artificial intelligence literature has given relatively little attention to aesthetic outcomes in pathfinding. The data we report, according to the fractal model, suggests that stealthy paths are statistically significantly unique in relative aesthetic value when compared to control paths. We show furthermore that paths generated with different stealth regimes are also statistically significantly unique. These conclusions are supported by statistical analysis of model results on experimental trials involving pathfinding in randomly generated, multiroom virtual worlds.

  4. Symbolic PathFinder v7

    DEFF Research Database (Denmark)

    Luckow, Kasper Søe; Păsăreanu, Corina

    2014-01-01

    We describe Symbolic PathFinder v7 in terms of its updated design addressing the changes of Java PathFinder v7 and of its new optimization when computing path conditions. Furthermore, we describe the Symbolic Execution Tree Extension; a newly added feature that allows for outputting the symbolic...... execution tree that characterizes the execution paths covered during symbolic execution. The new extension can be tailored to the needs of subsequent analyses/processing facilities, and we demonstrate this by presenting SPF-Visualizer, which is a tool for customizable visualization of the symbolic execution...

  5. Mineralogic and compositional properties of Martian soil and dust: results from Mars Pathfinder

    Science.gov (United States)

    Bell, J.F.; McSween, H.Y.; Crisp, J.A.; Morris, R.V.; Murchie, S.L.; Bridges, N.T.; Johnson, J. R.; Britt, D.T.; Golombek, M.P.; Moore, H.J.; Ghosh, A.; Bishop, J.L.; Anderson, R.C.; Brückner, J.; Economou, T.; Greenwood, J.P.; Gunnlaugsson, H.P.; Hargraves, R.M.; Hviid, S.; Knudsen, J.M.; Madsen, M.B.; Reid, R.; Rieder, R.; Soderblom, L.

    2000-01-01

    Mars Pathfinder obtained multispectral, elemental, magnetic, and physical measurements of soil and dust at the Sagan Memorial Station during the course of its 83 sol mission. We describe initial results from these measurements, concentrating on multispectral and elemental data, and use these data, along with previous Viking, SNC meteorite, and telescopic results, to help constrain the origin and evolution of Martian soil and dust. We find that soils and dust can be divided into at least eight distinct spectral units, based on parameterization of Imager for Mars Pathfinder (IMP) 400 to 1000 nm multispectral images. The most distinctive spectral parameters for soils and dust are the reflectivity in the red, the red/blue reflectivity ratio, the near-IR spectral slope, and the strength of the 800 to 1000 nm absorption feature. Most of the Pathfinder spectra are consistent with the presence of poorly crystalline or nanophase ferric oxide(s), sometimes mixed with small but varying degrees of well-crystalline ferric and ferrous phases. Darker soil units appear to be coarser-grained, compacted, and/or mixed with a larger amount of dark ferrous materials relative to bright soils. Nanophase goethite, akaganeite, schwertmannite, and maghemite are leading candidates for the origin of the absorption centered near 900 nm in IMP spectra. The ferrous component in the soil cannot be well-constrained based on IMP data. Alpha proton X-ray spectrometer (APXS) measurements of six soil units show little variability within the landing site and show remarkable overall similarity to the average Viking-derived soil elemental composition. Differences exist between Viking and Pathfinder soils, however, including significantly higher S and Cl abundances and lower Si abundances in Viking soils and the lack of a correlation between Ti and Fe in Pathfinder soils. No significant linear correlations were observed between IMP spectral properties and APXS elemental chemistry. Attempts at constraining

  6. Periodontal status among adolescents in Georgia. A pathfinder study

    Directory of Open Access Journals (Sweden)

    Liran Levin

    2013-09-01

    Full Text Available Objectives. The aim of the present pathfinder study was to screen and map the periodontal status of Georgian population in accordance with the guidelines of the World Health Organization for population based surveys. Methods. During 2012, a pathfinder study was conducted to collect this data. For the periodontal portion of the study, 15-year-old school children were examined in the capital city of Tbilisi as well as in two other large cities and 4 smaller villages. All participants were examined by a trained dental team in a classroom using a dental mirror and a periodontal probe. Periodontal examination included plaque scores, calculus scores, probing depth measurements and bleeding on probing. These measurements were recorded for the Ramfjord index teeth. Results. A total of 397 15-year-old participants were examined in this pathfinder study. There were 240 females (60.45% and 157 males (39.55%. Of the total participants 196 (49.37% were urban adolescents while 201 (50.63% were from rural communities. Mean probing depth was 3.34 ± 0.57 mm with a range of 1 to 10 mm; a relatively high proportion (34.26% of these subjects presented with at least one site with pockets of 5 mm or deeper. Males presented with greater plaque, calculus and probing depths than females. When urban and rural populations were compared, urban participants presented with more plaque, probing depths and bleeding on probing. Greater pocket depths were found to be related to the presence of plaque calculus and bleeding on probing. Conclusions. Overall, rather high incidences of periodontal pockets ≥ 5 mm were detected in this population. This data should serve to prepare further more detailed epidemiological studies that will serve to plan and implement prevent and treat strategies for periodontal diseases in Georgia and also help make manpower decisions.

  7. Periodontal status among adolescents in Georgia. A pathfinder study.

    Science.gov (United States)

    Levin, Liran; Margvelashvili, Vladimer; Bilder, Leon; Kalandadze, Manana; Tsintsadze, Nino; Machtei, Eli E

    2013-01-01

    Objectives. The aim of the present pathfinder study was to screen and map the periodontal status of Georgian population in accordance with the guidelines of the World Health Organization for population based surveys. Methods. During 2012, a pathfinder study was conducted to collect this data. For the periodontal portion of the study, 15-year-old school children were examined in the capital city of Tbilisi as well as in two other large cities and 4 smaller villages. All participants were examined by a trained dental team in a classroom using a dental mirror and a periodontal probe. Periodontal examination included plaque scores, calculus scores, probing depth measurements and bleeding on probing. These measurements were recorded for the Ramfjord index teeth. Results. A total of 397 15-year-old participants were examined in this pathfinder study. There were 240 females (60.45%) and 157 males (39.55%). Of the total participants 196 (49.37%) were urban adolescents while 201 (50.63%) were from rural communities. Mean probing depth was 3.34 ± 0.57 mm with a range of 1 to 10 mm; a relatively high proportion (34.26%) of these subjects presented with at least one site with pockets of 5 mm or deeper. Males presented with greater plaque, calculus and probing depths than females. When urban and rural populations were compared, urban participants presented with more plaque, probing depths and bleeding on probing. Greater pocket depths were found to be related to the presence of plaque calculus and bleeding on probing. Conclusions. Overall, rather high incidences of periodontal pockets ≥ 5 mm were detected in this population. This data should serve to prepare further more detailed epidemiological studies that will serve to plan and implement prevent and treat strategies for periodontal diseases in Georgia and also help make manpower decisions.

  8. Bayesian statistics for the calibration of the LISA Pathfinder experiment

    International Nuclear Information System (INIS)

    Armano, M; Freschi, M; Audley, H; Born, M; Danzmann, K; Diepholz, I; Auger, G; Binetruy, P; Bortoluzzi, D; Brandt, N; Fitzsimons, E; Bursi, A; Caleno, M; Cavalleri, A; Cesarini, A; Dolesi, R; Ferroni, V; Cruise, M; Dunbar, N; Ferraioli, L

    2015-01-01

    The main goal of LISA Pathfinder (LPF) mission is to estimate the acceleration noise models of the overall LISA Technology Package (LTP) experiment on-board. This will be of crucial importance for the future space-based Gravitational-Wave (GW) detectors, like eLISA. Here, we present the Bayesian analysis framework to process the planned system identification experiments designed for that purpose. In particular, we focus on the analysis strategies to predict the accuracy of the parameters that describe the system in all degrees of freedom. The data sets were generated during the latest operational simulations organised by the data analysis team and this work is part of the LTPDA Matlab toolbox. (paper)

  9. The first mock data challenge for LISA Pathfinder

    Energy Technology Data Exchange (ETDEWEB)

    Monsky, A; Hewitson, M; Wanner, G; Nofrarias, M; Diepholz, I; Danzmann, K [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik und Universitaet Hannover, 30167 Hannover (Germany); Ferraioli, L; Hueller, M; Cavalleri, A; Ciani, G; Dolesi, R [Dipartimento di Fisica, Universita di Trento and INFN, Gruppo Collegato di Trento, 38050 Povo, Trento (Italy); Grynagier, A [Institut fuer Flugmechanik und Flugregelung, 70569 Stuttgart (Germany); Armano, M [European Space Agency, ESAC, Villanueva de la Canada, 28692 Madrid (Spain); Benedetti, M [Dipartimento di Ingegneria dei Materiali e Tecnologie Industriali, Universita di Trento and INFN, Gruppo Collegato di Trento, Mesiano, Trento (Italy); Bogenstahl, J [Department of Physics and Astronomy, University of Glasgow, Glasgow (United Kingdom); Bortoluzzi, D; Bosetti, P; Cristofolini, I [Dipartimento di Ingegneria Meccanica e Strutturale, Universita di Trento and INFN, Gruppo Collegato di Trento, Mesiano, Trento (Italy); Brandt, N [Astrium GmbH, 88039 Friedrichshafen (Germany); Cruise, M, E-mail: anneke.monsky@aei.mpg.d [Department of Physics and Astronomy, University of Birmingham, Birmingham (United Kingdom)

    2009-05-07

    The data analysis of the LISA Technology Package (LTP) will comprise a series of discrete experiments, each focusing on a particular noise measurement or characterization of the instrument in various operating modes. Each of these experiments must be analysed and planned in advance of the mission because the results of a given experiment will have an impact on those that follow. As such, a series of mock data challenges (MDCs) will be developed and carried out with the aim of preparing the analysis tools and optimizing the various planned analyses. The first of these MDCs (MDC1) is a simplified treatment of the dynamics along the axis joining the two test masses onboard LISA Pathfinder. The validation of the dynamical model by predicting the spectra of the interferometer output data is shown, a prediction for the data analysis is calculated and, finally, several simulated interferometer data sets are analysed and calibrated to equivalent out-of-loop test mass acceleration.

  10. LISA Pathfinder drag-free control and system implications

    International Nuclear Information System (INIS)

    Fichter, Walter; Gath, Peter; Vitale, Stefano; Bortoluzzi, Daniele

    2005-01-01

    The top-level requirement of the LISA Pathfinder mission is the verification of pure relative free fall between two test masses with an accuracy of about 3 x 10 -14 m s -2 Hz -1/2 in a measurement bandwidth between 1 mHz and 30 mHz. The drag-free control system is one of the key technology elements that shall be verified. Its design is strongly connected to the overall system and experimental design, in particular, via the following issues: the differential test mass motion and thus the science measurements depend on the control system; design constraints, such as negative stiffness of test masses and electrostatic actuation cross-talk, have an impact on science and control system performance; derived requirements for control system components, in particular, the micro-propulsion system, must be within reasonable and feasible limits. In this paper, the control design approach is outlined and the system-related issues are addressed

  11. The LISA Pathfinder interferometry-hardware and system testing

    Energy Technology Data Exchange (ETDEWEB)

    Audley, H; Danzmann, K; MarIn, A Garcia; Heinzel, G; Monsky, A; Nofrarias, M; Steier, F; Bogenstahl, J [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik und Universitaet Hannover, 30167 Hannover (Germany); Gerardi, D; Gerndt, R; Hechenblaikner, G; Johann, U; Luetzow-Wentzky, P; Wand, V [EADS Astrium GmbH, Friedrichshafen (Germany); Antonucci, F [Dipartimento di Fisica, Universita di Trento and INFN, Gruppo Collegato di Trento, 38050 Povo, Trento (Italy); Armano, M [European Space Astronomy Centre, European Space Agency, Villanueva de la Canada, 28692 Madrid (Spain); Auger, G; Binetruy, P [APC UMR7164, Universite Paris Diderot, Paris (France); Benedetti, M [Dipartimento di Ingegneria dei Materiali e Tecnologie Industriali, Universita di Trento and INFN, Gruppo Collegato di Trento, Mesiano, Trento (Italy); Boatella, C, E-mail: antonio.garcia@aei.mpg.de [CNES, DCT/AQ/EC, 18 Avenue Edouard Belin, 31401 Toulouse, Cedex 9 (France)

    2011-05-07

    Preparations for the LISA Pathfinder mission have reached an exciting stage. Tests of the engineering model (EM) of the optical metrology system have recently been completed at the Albert Einstein Institute, Hannover, and flight model tests are now underway. Significantly, they represent the first complete integration and testing of the space-qualified hardware and are the first tests on an optical system level. The results and test procedures of these campaigns will be utilized directly in the ground-based flight hardware tests, and subsequently during in-flight operations. In addition, they allow valuable testing of the data analysis methods using the MATLAB-based LTP data analysis toolbox. This paper presents an overview of the results from the EM test campaign that was successfully completed in December 2009.

  12. Future launcher demonstrator. Challenge and pathfinder

    Science.gov (United States)

    Kleinau, W.; Guerra, L.; Parkinson, R. C.; Lieberherr, J. F.

    1996-02-01

    For future and advanced launch vehicles emphasis is focused on single-stage-to-orbit (SSTO) concepts and on completely reusable versions with the goal to reduce the recurrent launch cost, to improve the mission success probability and also safety for the space transportation of economically attractive payloads into Low Earth Orbit. Both issues, the SSTO launcher and the low cost reusability are extremely challenging and cannot be proven by studies and on-ground tests alone. In-flight demonstration tests are required to verify the assumptions and the new technologies, and to justify the new launcher-and operations-concepts. Because a number of SSTO launch vehicles are currently under discussion in terms of configurations and concepts such as winged vehicles for vertical or horizontal launch and landing (from ground or a flying platform), or wingless vehicles for vertical take-off and landing, and also in terms of propulsion (pure rockets or a combination of air breathing and rocket engines), an experimental demonstrator vehicle appears necessary in order to serve as a pathfinder in this area of multiple challenges. A suborbital Reusable Rocket Launcher Demonstrator (RRLD) has been studied recently by a European industrial team for ESA. This is a multipurpose, evolutionary demonstrator, conceived around a modular approach of incremental improvements of subsystems and materials, to achieve a better propellant mass fraction i.e. a better performance, and specifically for the accomplishment of an incremental flight test programme. While the RRLD basic test programme will acquire knowledge about hypersonic flight, re-entry and landing of a cryogenic rocket propelled launcher — and the low cost reusability (short turnaround on ground) in the utilization programme beyond basic testing, the RRLD will serve as a test bed for generic testing of technologies required for the realization of an SSTO launcher. This paper will present the results of the European RRLD study which

  13. Pathfinders on Black Dance in America.

    Science.gov (United States)

    Roy, Loriene, Ed.

    This is a compilation of 18 pathfinders (i.e., a bibliographic instruction aid) on black dance in America, prepared by graduate students in the "Information Resources in the Humanities" and the "Information Resources in the Social Sciences" classes in the Graduate School of Library and Information Science at the University of…

  14. China's Mission in Surveying, Mapping and Geographic Information during Global Governance

    Science.gov (United States)

    Jia, D.; Xue, C.; Chen, X.

    2018-04-01

    In the new era, it is proposed that China should be transformed from a participant and a cooperator into a designer, an impeller and a leader, continue taking an effect of responsible great power, increase public product supply, perfect a global governance system and contribute to China's wisdom and China's schemes during global governance, thus surveying and mapping geographic information takes on great mission. On the one hand, we have to timely grasp global geographic information data resources to provide an important scientific data support for China's wisdom and China's schemes. On the other hand, we have to provide surveying and mapping geographic information infrastructure construction and public products for developing countries, support location services within a global territorial scope, and realize the smoothness of talent flow, material flow and information flow between China and countries in the world. Meanwhile, external assistance and international communication and cooperation of surveying and mapping geographic information are also enhanced, and popularization and application of a geographic information technology in underdeveloped countries and regions are promoted.

  15. Post-Mission Quality Assurance Procedure for Survey-Grade Mobile Mapping Systems

    Science.gov (United States)

    Kerstinga, A. P.; Friess, P.

    2016-06-01

    Mobile Mapping Systems (MMS) consist of terrestrial-based moving platforms that integrate a set of imaging sensors (typically digital cameras and laser scanners) and a Position and Orientation System (POS), designed to collect data of the surrounding environment. MMS can be classified as "mapping-grade" or "survey-grade" depending on the system's attainable accuracy. Mapping-grade MMS produce geospatial data suitable for GIS applications (e.g., asset management) while survey-grade systems should satisfy high-accuracy applications such as engineering/design projects. The delivered accuracy of an MMS is dependent on several factors such as the accuracy of the system measurements and calibration parameters. It is critical, especially for survey-grade systems, to implement a robust Quality Assurance (QA) procedure to ensure the achievement of the expected accuracy. In this paper, a new post-mission QA procedure is presented. The presented method consists of a fully-automated self-calibration process that allows for the estimation of corrections to the system calibration parameters (e.g., boresight angles and lever-arm offsets relating the lidar sensor(s) to the IMU body frame) as well as corrections to the system measurements (e.g., post-processed trajectory position and orientation, scan angles and ranges). As for the system measurements, the major challenge for MMS is related to the trajectory determination in the presence of multipath signals and GNSS outages caused by buildings, underpasses and high vegetation. In the proposed self-calibration method, trajectory position errors are properly modelled while utilizing an efficient/meaningful trajectory segmentation technique. The validity of the proposed method is demonstrated using a dataset collected under unfavorable GNSS conditions.

  16. POST-MISSION QUALITY ASSURANCE PROCEDURE FOR SURVEY-GRADE MOBILE MAPPING SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. P. Kerstinga

    2016-06-01

    Full Text Available Mobile Mapping Systems (MMS consist of terrestrial-based moving platforms that integrate a set of imaging sensors (typically digital cameras and laser scanners and a Position and Orientation System (POS, designed to collect data of the surrounding environment. MMS can be classified as “mapping-grade” or “survey-grade” depending on the system’s attainable accuracy. Mapping-grade MMS produce geospatial data suitable for GIS applications (e.g., asset management while survey-grade systems should satisfy high-accuracy applications such as engineering/design projects. The delivered accuracy of an MMS is dependent on several factors such as the accuracy of the system measurements and calibration parameters. It is critical, especially for survey-grade systems, to implement a robust Quality Assurance (QA procedure to ensure the achievement of the expected accuracy. In this paper, a new post-mission QA procedure is presented. The presented method consists of a fully-automated self-calibration process that allows for the estimation of corrections to the system calibration parameters (e.g., boresight angles and lever-arm offsets relating the lidar sensor(s to the IMU body frame as well as corrections to the system measurements (e.g., post-processed trajectory position and orientation, scan angles and ranges. As for the system measurements, the major challenge for MMS is related to the trajectory determination in the presence of multipath signals and GNSS outages caused by buildings, underpasses and high vegetation. In the proposed self-calibration method, trajectory position errors are properly modelled while utilizing an efficient/meaningful trajectory segmentation technique. The validity of the proposed method is demonstrated using a dataset collected under unfavorable GNSS conditions.

  17. Phase 2 pilot study of Pathfinders: a psychosocial intervention for cancer patients.

    Science.gov (United States)

    Abernethy, Amy P; Herndon, James E; Coan, April; Staley, Tina; Wheeler, Jane L; Rowe, Krista; Smith, Sophia K; Shaw, H; Lyerly, H Kim

    2010-07-01

    Pathfinders is a multi-faceted psychosocial care program for cancer patients; it was developed in community oncology and adapted to the academic oncology setting. This prospective, single-arm, phase 2 pilot study examined the acceptability and feasibility of Pathfinders for women with metastatic breast cancer. Over 3 months, participants completed patient-reported surveys including the Patient Care Monitor (PCM, review of systems), Functional Assessment of Chronic Illness Therapy-Breast Cancer (FACT-B), Self Efficacy, and a single-item survey asking patients whether the program was helpful to them. A technology-based data collection system was used to capture electronic patient-reported outcomes at point of care, report symptoms in real time to clinicians, and collect warehouse data to provide a detailed longitudinal picture of the patient experience when receiving Pathfinders. Participants (n = 50) were: mean age 51 (SD 11); 76% white, 20% black; 74% married; 50% college degree. Forty-two (n = 42) patients completed baseline and 3-month assessments. Statistically significant improvements (all P < 0.05) occurred in PCM subscales for Distress (mean [SE] = -3.42 [1.21]), Despair (-4.53 [1.56]), and Quality of Life (2.88 [0.97]), and the FACT-B Emotional Wellbeing subscale (2.07 [0.46]). Of the 29 participants asked if Pathfinders was helpful, 27 (93%) responded positively and two did not respond. Other instruments measuring symptoms, quality of life, and self-efficacy showed improvement. In a phase 2 pilot study, Pathfinders was helpful to patients and is feasible in an academic medical center. Follow-up data collected at the 3-month assessment suggest that the program impacts various psychological outcomes, notably distress and despair.

  18. Can the Future EnMAP Mission Contribute to Urban Applications? A Literature Survey

    Directory of Open Access Journals (Sweden)

    Andreas Müller

    2011-08-01

    Full Text Available With urban populations and their footprints growing globally, the need to assess the dynamics of the urban environment increases. Remote sensing is one approach that can analyze these developments quantitatively with respect to spatially and temporally large scale changes. With the 2015 launch of the spaceborne EnMAP mission, a new hyperspectral sensor with high signal-to-noise ratio at medium spatial resolution, and a 21 day global revisit capability will become available. This paper presents the results of a literature survey on existing applications and image analysis techniques in the context of urban remote sensing in order to identify and outline potential contributions of the future EnMAP mission. Regarding urban applications, four frequently addressed topics have been identified: urban development and planning, urban growth assessment, risk and vulnerability assessment and urban climate. The requirements of four application fields and associated image processing techniques used to retrieve desired parameters and create geo-information products have been reviewed. As a result, we identified promising research directions enabling the use of EnMAP for urban studies. First and foremost, research is required to analyze the spectral information content of an EnMAP pixel used to support material-based land cover mapping approaches. This information can subsequently be used to improve urban indicators, such as imperviousness. Second, we identified the global monitoring of urban areas as a promising field of investigation taking advantage of EnMAP’s spatial coverage and revisit capability. However, owing to the limitations of EnMAPs spatial resolution for urban applications, research should also focus on hyperspectral resolution enhancement to enable retrieving material information on sub-pixel level.

  19. The Mission Accessible Near-Earth Object Survey (MANOS) -- Science Highlights

    Science.gov (United States)

    Moskovitz, Nicholas; Thirouin, Audrey; Binzel, Richard; Burt, Brian; Christensen, Eric; DeMeo, Francesca; Endicott, Thomas; Hinkle, Mary; Mommert, Michael; Person, Michael; Polishook, David; Siu, Hosea; Thomas, Cristina; Trilling, David; Willman, Mark

    2015-08-01

    Near-Earth objects (NEOs) are essential to understanding the origin of the Solar System through their compositional links to meteorites. As tracers of other parts of the Solar System they provide insight to more distant populations. Their small sizes and complex dynamical histories make them ideal laboratories for studying ongoing processes of planetary evolution. Knowledge of their physical properties is essential to impact hazard assessment. And the proximity of NEOs to Earth make them favorable targets for a variety of planetary mission scenarios. However, in spite of their importance, only the largest NEOs are well studied and a representative sample of physical properties for sub-km NEOs does not exist.MANOS is a multi-year physical characterization survey, originally awarded survey status by NOAO. MANOS is targeting several hundred mission-accessible, sub-km NEOs across visible and near-infrared wavelengths to provide a comprehensive catalog of physical properties (astrometry, light curves, spectra). Accessing these targets is enabled through classical, queue, and target-of-opportunity observations carried out at 1- to 8-meter class facilities in the northern and southern hemispheres. Our observing strategy is designed to rapidly characterize newly discovered NEOs before they fade beyond observational limits.Early progress from MANOS includes: (1) the de-biased taxonomic distribution of spectral types for NEOs smaller than ~100 meters, (2) the distribution of rotational properties for approximately 100 previously unstudied NEOs, (3) detection of the fastest known rotation period of any minor planet in the Solar System, (4) an investigation of the influence of planetary encounters on the rotational properties of NEOs, (5) dynamical models for the evolution of the overall NEO population over the past 0.5 Myr, and (6) development of a new set of online tools at asteroid.lowell.edu that will enable near realtime public dissemination of our data products while

  20. Pathfinder-Plus on a flight in Hawaii

    Science.gov (United States)

    1998-01-01

    Pathfinder-Plus on a flight in 1998 over Hawaiian waters. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least

  1. Pathfinder-Plus on flight over Hawaiian Islands

    Science.gov (United States)

    1998-01-01

    Pathfinder-Plus on flight over Hawaiian Islands in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4

  2. Pathfinder-Plus takes off on flight in Hawaii

    Science.gov (United States)

    1998-01-01

    Pathfinder-Plus on a flight over Hawaii in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days

  3. Radiation shielding aspects for long manned mission to space - Criteria, survey study and preliminary model

    International Nuclear Information System (INIS)

    Sztejnberg, M.; Xiao, S.; Satvat, N.; Limon, F.; Hopkins, J.; Jevremovic, T.; T. Jevremovic)

    2006-01-01

    The prospect of manned space missions out side Earth's or bit is limited by the travel time and shielding against cosmic radiation. The chemical rockets currently used in the space program have no hope of propelling a manned vehicle to a far away location such as Mars due to the enormous mass of fuel that would be required. The specific energy available from nuclear fuel is a factor of 106 higher than chemical fuel; it is there fore obvious that nuclear power production in space is a must. On the other hand, recent considerations to send a man to the Moon for a long stay would require a stable, secured, and safe source of energy (there is hardly anything beyond nuclear power that would provide a useful and reliably safe sustainable supply of energy). National Aeronautics and Space Administration (NASA) anticipates that the mass of a shielding material required for long travel to Mars is the next major design driver. In 2006 NASA identified a need to assess and evaluate potential gaps in existing knowledge and understanding of the level and types of radiation critical to astronauts' health during the long travel to Mars and to start a comprehensive study related to the shielding design of a spacecraft finding the conditions for the mitigation of radiation components contributing to the doses beyond accepted limits. In order to reduce the overall space craft mass, NASA is looking for the novel, multi-purpose and multi-functional materials that will provide effective shielding of the crew and electronics on board. The Laboratory for Neutronics and Geometry Computation in the School of Nuclear Engineering at Purdue University led by Prof. Tatjana Jevremovic began in 2004 the analytical evaluations of different lightweight materials. The preliminary results of the design survey study are presented in this paper. (author)

  4. Radiation shielding aspects for long manned mission to space: Criteria, survey study, and preliminary model

    Directory of Open Access Journals (Sweden)

    Sztejnberg Manuel

    2006-01-01

    Full Text Available The prospect of manned space missions outside Earth's orbit is limited by the travel time and shielding against cosmic radiation. The chemical rockets currently used in the space program have no hope of propelling a manned vehicle to a far away location such as Mars due to the enormous mass of fuel that would be required. The specific energy available from nuclear fuel is a factor of 106 higher than chemical fuel; it is therefore obvious that nuclear power production in space is a must. On the other hand, recent considerations to send a man to the Moon for a long stay would require a stable, secured and safe source of energy (there is hardly anything beyond nuclear power that would provide a useful and reliably safe sustainable supply of energy. National Aeronautics and Space Administration (NASA anticipates that the mass of a shielding material required for long travel to Mars is the next major design driver. In 2006 NASA identified a need to assess and evaluate potential gaps in existing knowledge and understanding of the level and types of radiation critical to astronauts' health during the long travel to Mars and to start a comprehensive study related to the shielding design of a spacecraft finding the conditions for the mitigation of radiation components contributing to the doses beyond accepted limits. In order to reduce the overall space craft mass, NASA is looking for the novel, multi-purpose and multi-functional materials that will provide effective shielding of the crew and electronics on board. The Laboratory for Neutronics and Geometry Computation in the School of Nuclear Engineering at Purdue University led by Prof. Tatjana Jevremović began in 2004 the analytical evaluations of different lightweight materials. The preliminary results of the design survey study are presented in this paper.

  5. The X-Ray Surveyor Mission Concept Study: Forging the Path to NASA Astrophysics 2020 Decadal Survey Prioritization

    Science.gov (United States)

    Gaskin, Jessica; Ozel, Feryal; Vikhlinin, Alexey

    2016-01-01

    The X-Ray Surveyor mission concept is unique among those being studied for prioritization in the NASA Astrophysics 2020 Decadal Survey. The X-Ray Surveyor mission will explore the high-energy Universe; providing essential and complimentary observations to the Astronomy Community. The NASA Astrophysics Roadmap (Enduring Quests, Daring Visions) describes the need for an X-Ray Observatory that is capable of addressing topics such as the origin and growth of the first supermassive black holes, galaxy evolution and growth of the cosmic structure, and the origin and evolution of the stars that make up our Universe. To address these scientifically compelling topics and more, an Observatory that exhibits leaps in capability over that of previous X-Ray Observatories in needed. This paper describes the current status of the X-Ray Surveyor Mission Concept Study and the path forward, which includes scientific investigations, technology development, and community participation.

  6. The X-Ray Surveyor mission concept study: forging the path to NASA astrophysics 2020 decadal survey prioritization

    Science.gov (United States)

    Gaskin, Jessica; Özel, Feryal; Vikhlinin, Alexey

    2016-07-01

    The X-Ray Surveyor mission concept is unique among those being studied for prioritization in the NASA Astrophysics 2020 Decadal Survey. The X-Ray Surveyor mission will explore the high-energy Universe; providing essential and complimentary observations to the Astronomy Community. The NASA Astrophysics Roadmap (Enduring Quests, Daring Visions) describes the need for an X-Ray Observatory that is capable of addressing topics such as the origin and growth of the first supermassive black holes, galaxy evolution and growth of the cosmic structure, and the origin and evolution of the stars that make up our Universe. To address these scientifically compelling topics and more, an Observatory that exhibits leaps in capability over that of previous X-Ray Observatories in needed. This paper describes the current status of the X-Ray Surveyor Mission Concept Study and the path forward, which includes scientific investigations, technology development, and community participation.

  7. Hillary Clinton visits Pathfinder projects in Brazil.

    Science.gov (United States)

    1996-01-01

    In October 1995, US First Lady Hillary Clinton visited a maternity hospital in Salvador, Brazil, in which a family planning (FP)/reproductive health program has been administered by Pathfinder International since 1981 with funding from USAID. During her tour of the facility, Clinton learned about the high degree of unmet need for FP in the region which results from a lack of sufficient resources to meet demand. Clinton, in turn, praised the state of Bahia for its emphasis on FP in low-income areas.

  8. Campaign 9 of the K2 mission

    DEFF Research Database (Denmark)

    Henderson, Calen B.; Poleski, Radosław; Penny, Matthew

    2016-01-01

    K2's Campaign 9 (K2C9) will conduct a ˜3.7 deg2 survey toward the Galactic bulge from 2016 April 22 through July 2 that will leverage the spatial separation between K2 and the Earth to facilitate measurement of the microlens parallax {π }{{E}} for ≳ 170 microlensing events. These will include....... In this article we provide an overview of the K2C9 space- and ground-based microlensing survey. Specifically, we detail the demographic questions that can be addressed by this program, including the frequency of FFPs and the Galactic distribution of exoplanets, the observational parameters of K2C9, and the array...... of resources dedicated to concurrent observations. Finally, we outline the avenues through which the larger community can become involved, and generally encourage participation in K2C9, which constitutes an important pathfinding mission and community exercise in anticipation of WFIRST....

  9. Portable Diagnostics Technology Assessment for Space Missions. Part 2; Market Survey

    Science.gov (United States)

    Nelson, Emily S.; Chait, Arnon

    2010-01-01

    A mission to Mars of several years duration requires more demanding standards for all onboard instruments than a 6-month mission to the Moon or the International Space Station. In Part 1, we evaluated generic technologies and suitability to NASA needs. This prior work considered crew safety, device maturity and flightworthiness, resource consumption, and medical value. In Part 2, we continue the study by assessing the current marketplace for reliable Point-of-Care diagnostics. The ultimate goal of this project is to provide a set of objective analytical tools to suggest efficient strategies for reaching specific medical targets for any given space mission as program needs, technological development, and scientific understanding evolve.

  10. Model Checking JAVA Programs Using Java Pathfinder

    Science.gov (United States)

    Havelund, Klaus; Pressburger, Thomas

    2000-01-01

    This paper describes a translator called JAVA PATHFINDER from JAVA to PROMELA, the "programming language" of the SPIN model checker. The purpose is to establish a framework for verification and debugging of JAVA programs based on model checking. This work should be seen in a broader attempt to make formal methods applicable "in the loop" of programming within NASA's areas such as space, aviation, and robotics. Our main goal is to create automated formal methods such that programmers themselves can apply these in their daily work (in the loop) without the need for specialists to manually reformulate a program into a different notation in order to analyze the program. This work is a continuation of an effort to formally verify, using SPIN, a multi-threaded operating system programmed in Lisp for the Deep-Space 1 spacecraft, and of previous work in applying existing model checkers and theorem provers to real applications.

  11. The end-to-end testbed of the optical metrology system on-board LISA Pathfinder

    Energy Technology Data Exchange (ETDEWEB)

    Steier, F; Cervantes, F Guzman; Marin, A F GarcIa; Heinzel, G; Danzmann, K [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut) and Universitaet Hannover (Germany); Gerardi, D, E-mail: frank.steier@aei.mpg.d [EADS Astrium Satellites GmbH, Friedrichshafen (Germany)

    2009-05-07

    LISA Pathfinder is a technology demonstration mission for the Laser Interferometer Space Antenna (LISA). The main experiment on-board LISA Pathfinder is the so-called LISA Technology Package (LTP) which has the aim to measure the differential acceleration between two free-falling test masses with an accuracy of 3 x 10{sup -14} ms{sup -2} Hz{sup -1/2} between 1 mHz and 30 mHz. This measurement is performed interferometrically by the optical metrology system (OMS) on-board LISA Pathfinder. In this paper, we present the development of an experimental end-to-end testbed of the entire OMS. It includes the interferometer and its sub-units, the interferometer backend which is a phasemeter and the processing of the phasemeter output data. Furthermore, three-axes piezo-actuated mirrors are used instead of the free-falling test masses for the characterization of the dynamic behaviour of the system and some parts of the drag-free and attitude control system (DFACS) which controls the test masses and the satellite. The end-to-end testbed includes all parts of the LTP that can reasonably be tested on earth without free-falling test masses. At its present status it consists mainly of breadboard components. Some of those have already been replaced by engineering models of the LTP experiment. In the next steps, further engineering and flight models will also be inserted in this testbed and tested against well-characterized breadboard components. The presented testbed is an important reference for the unit tests and can also be used for validation of the on-board experiment during the mission.

  12. Handing Over Of Schools To The Missions: A Survey Of Views From ...

    African Journals Online (AJOL)

    Majority of the respondents (80%) were of the view that secularization of education in Ghana was not the best option and that missions / churches should be given a hand in school management. There were instances of personality clashes, role conflicts and lack of proper personal relationships between officers of the two ...

  13. Quantitative analysis of LISA pathfinder test-mass noise

    International Nuclear Information System (INIS)

    Ferraioli, Luigi; Congedo, Giuseppe; Hueller, Mauro; Vitale, Stefano; Hewitson, Martin; Nofrarias, Miquel; Armano, Michele

    2011-01-01

    LISA Pathfinder (LPF) is a mission aiming to test the critical technology for the forthcoming space-based gravitational-wave detectors. The main scientific objective of the LPF mission is to demonstrate test masses free falling with residual accelerations below 3x10 -14 m s -2 /√(Hz) at 1 mHz. Reaching such an ambitious target will require a significant amount of system optimization and characterization, which will in turn require accurate and quantitative noise analysis procedures. In this paper, we discuss two main problems associated with the analysis of the data from LPF: i) excess noise detection and ii) noise parameter identification. The mission is focused on the low-frequency region ([0.1, 10] mHz) of the available signal spectrum. In such a region, the signal is dominated by the force noise acting on test masses. At the same time, the mission duration is limited to 90 days and typical data segments will be 24 hours in length. Considering those constraints, noise analysis is expected to deal with a limited amount of non-Gaussian data, since the spectrum statistics will be far from Gaussian and the lowest available frequency is limited by the data length. In this paper, we analyze the details of the expected statistics for spectral data and develop two suitable excess noise estimators. One is based on the statistical properties of the integrated spectrum, the other is based on the Kolmogorov-Smirnov test. The sensitivity of the estimators is discussed theoretically for independent data, then the algorithms are tested on LPF synthetic data. The test on realistic LPF data allows the effect of spectral data correlations on the efficiency of the different noise excess estimators to be highlighted. It also reveals the versatility of the Kolmogorov-Smirnov approach, which can be adapted to provide reasonable results on correlated data from a modified version of the standard equations for the inversion of the test statistic. Closely related to excess noise

  14. Why do patients receive care from a short-term medical mission? Survey study from rural Guatemala.

    Science.gov (United States)

    Esquivel, Micaela M; Chen, Joy C; Woo, Russell K; Siegler, Nora; Maldonado-Sifuentes, Francisco A; Carlos-Ochoa, Jehidy S; Cardona-Diaz, Andy R; Uribe-Leitz, Tarsicio; Siegler, Dennis; Weiser, Thomas G; Yang, George P

    2017-07-01

    Hospital de la Familia was established to serve the indigent population in the western highlands of Guatemala and has a full-time staff of Guatemalan primary care providers supplemented by short-term missions of surgical specialists. The reasons for patients seeking surgical care in this setting, as opposed to more consistent care from local institutions, are unclear. We sought to better understand motivations of patients seeking mission-based surgical care. Patients presenting to the obstetric and gynecologic, plastic, ophthalmologic, general, and pediatric surgical clinics at the Hospital de la Familia from July 27 to August 6, 2015 were surveyed. The surveys assessed patient demographics, surgical diagnosis, location of home, mode of travel, and reasons for seeking care at this facility. Of 252 patients surveyed, 144 (59.3%) were female. Most patients reported no other medical condition (67.9%, n = 169) and no consistent income (83.9%, n = 209). Almost half (44.9%, n = 109) traveled >50 km to receive care. The most common reasons for choosing care at this facility were reputation of high quality (51.8%, n = 130) and affordability (42.6%, n = 102); the least common reason was a lack of other options (6.4%, n = 16). Despite long travel distances and the availability of other options, reputation and affordability were primarily cited as the most common reasons for choosing to receive care at this short-term surgical mission site. Our results highlight that although other surgical options may be closer and more readily available, reputation and cost play a large role in choice of patients seeking care. Published by Elsevier Inc.

  15. Operations and Autonomy of the Mars Pathfinder Microrover

    Science.gov (United States)

    Mishkin, A. H.; Morrison, J. C.; Nguyen, T. T.; Stone, H. W.; Cooper, B. K.

    1998-01-01

    The Microrover Flight Experiment (MFEX) is a NSAS OACT (Office of Advanced Concepts and Technology) flight experiment which, integrated with the Mars Pathfinder (MPF) lander and spacecraft system, landed on Mars on July 4, 1997.

  16. CRED REA Algal Assessment, Pathfinder Bank 2003 (NODC Accession 0010352)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Random collections of algae were made at 2 sites at Pathfinder Bank in the Commonwealth of the Northern Mariana Islands in August and September, 2003 from the NOAA...

  17. An Informational Analysis and Communications Squadron Survey of Cyberspace Mission Assurance

    Science.gov (United States)

    2010-06-01

    such things as fraud, 11 business ethics, financial reporting, internal controls, and enterprise risk management . COSO is an organization...recognized world-wide and is highly respected. In 1992, COSO published a framework for risk management . It reopened the framework for modification to...The enterprise risk management facet of the COSO framework is pertinent to the cyber mission assurance discussion. COSO recognized the importance

  18. A review of parameters and heuristics for guiding metabolic pathfinding.

    Science.gov (United States)

    Kim, Sarah M; Peña, Matthew I; Moll, Mark; Bennett, George N; Kavraki, Lydia E

    2017-09-15

    Recent developments in metabolic engineering have led to the successful biosynthesis of valuable products, such as the precursor of the antimalarial compound, artemisinin, and opioid precursor, thebaine. Synthesizing these traditionally plant-derived compounds in genetically modified yeast cells introduces the possibility of significantly reducing the total time and resources required for their production, and in turn, allows these valuable compounds to become cheaper and more readily available. Most biosynthesis pathways used in metabolic engineering applications have been discovered manually, requiring a tedious search of existing literature and metabolic databases. However, the recent rapid development of available metabolic information has enabled the development of automated approaches for identifying novel pathways. Computer-assisted pathfinding has the potential to save biochemists time in the initial discovery steps of metabolic engineering. In this paper, we review the parameters and heuristics used to guide the search in recent pathfinding algorithms. These parameters and heuristics capture information on the metabolic network structure, compound structures, reaction features, and organism-specificity of pathways. No one metabolic pathfinding algorithm or search parameter stands out as the best to use broadly for solving the pathfinding problem, as each method and parameter has its own strengths and shortcomings. As assisted pathfinding approaches continue to become more sophisticated, the development of better methods for visualizing pathway results and integrating these results into existing metabolic engineering practices is also important for encouraging wider use of these pathfinding methods.

  19. Radiation shielding aspects for long manned mission to space: Criteria, survey study, and preliminary model

    OpenAIRE

    Sztejnberg Manuel; Xiao Shanjie; Satvat Nader; Limón Felisa; Hopkins John; Jevremović Tatjana

    2006-01-01

    The prospect of manned space missions outside Earth's orbit is limited by the travel time and shielding against cosmic radiation. The chemical rockets currently used in the space program have no hope of propelling a manned vehicle to a far away location such as Mars due to the enormous mass of fuel that would be required. The specific energy available from nuclear fuel is a factor of 106 higher than chemical fuel; it is therefore obvious that nuclear power production in space is a must. On th...

  20. Computational needs survey of NASA automation and robotics missions. Volume 2: Appendixes

    Science.gov (United States)

    Davis, Gloria J.

    1991-01-01

    NASA's operational use of advanced processor technology in space systems lags behind its commercial development by more than eight years. One of the factors contributing to this is the fact that mission computing requirements are frequency unknown, unstated, misrepresented, or simply not available in a timely manner. NASA must provide clear common requirements to make better use of available technology, to cut development lead time on deployable architectures, and to increase the utilization of new technology. Here, NASA, industry and academic communities are provided with a preliminary set of advanced mission computational processing requirements of automation and robotics (A and R) systems. The results were obtained in an assessment of the computational needs of current projects throughout NASA. The high percent of responses indicated a general need for enhanced computational capabilities beyond the currently available 80386 and 68020 processor technology. Because of the need for faster processors and more memory, 90 percent of the polled automation projects have reduced or will reduce the scope of their implemented capabilities. The requirements are presented with respect to their targeted environment, identifying the applications required, system performance levels necessary to support them, and the degree to which they are met with typical programmatic constraints. Here, appendixes are provided.

  1. PEDESTRIAN PATHFINDING IN URBAN ENVIRONMENTS: PRELIMINARY RESULTS

    Directory of Open Access Journals (Sweden)

    G. López-Pazos

    2017-12-01

    Full Text Available With the rise of urban population, many initiatives are focused upon the smart city concept, in which mobility of citizens arises as one of the main components. Updated and detailed spatial information of outdoor environments is needed to accurate path planning for pedestrians, especially for people with reduced mobility, in which physical barriers should be considered. This work presents a methodology to use point clouds to direct path planning. The starting point is a classified point cloud in which ground elements have been previously classified as roads, sidewalks, crosswalks, curbs and stairs. The remaining points compose the obstacle class. The methodology starts by individualizing ground elements and simplifying them into representative points, which are used as nodes in the graph creation. The region of influence of obstacles is used to refine the graph. Edges of the graph are weighted according to distance between nodes and according to their accessibility for wheelchairs. As a result, we obtain a very accurate graph representing the as-built environment. The methodology has been tested in a couple of real case studies and Dijkstra algorithm was used to pathfinding. The resulting paths represent the optimal according to motor skills and safety.

  2. Pedestrian Pathfinding in Urban Environments: Preliminary Results

    Science.gov (United States)

    López-Pazos, G.; Balado, J.; Díaz-Vilariño, L.; Arias, P.; Scaioni, M.

    2017-12-01

    With the rise of urban population, many initiatives are focused upon the smart city concept, in which mobility of citizens arises as one of the main components. Updated and detailed spatial information of outdoor environments is needed to accurate path planning for pedestrians, especially for people with reduced mobility, in which physical barriers should be considered. This work presents a methodology to use point clouds to direct path planning. The starting point is a classified point cloud in which ground elements have been previously classified as roads, sidewalks, crosswalks, curbs and stairs. The remaining points compose the obstacle class. The methodology starts by individualizing ground elements and simplifying them into representative points, which are used as nodes in the graph creation. The region of influence of obstacles is used to refine the graph. Edges of the graph are weighted according to distance between nodes and according to their accessibility for wheelchairs. As a result, we obtain a very accurate graph representing the as-built environment. The methodology has been tested in a couple of real case studies and Dijkstra algorithm was used to pathfinding. The resulting paths represent the optimal according to motor skills and safety.

  3. Technology Readiness Level (TRL) Advancement of the MSPI On-Board Processing Platform for the ACE Decadal Survey Mission

    Science.gov (United States)

    Pingree, Paula J.; Werne, Thomas A.; Bekker, Dmitriy L.; Wilson, Thor O.

    2011-01-01

    The Xilinx Virtex-5QV is a new Single-event Immune Reconfigurable FPGA (SIRF) device that is targeted as the spaceborne processor for the NASA Decadal Survey Aerosol-Cloud-Ecosystem (ACE) mission's Multiangle SpectroPolarimetric Imager (MSPI) instrument, currently under development at JPL. A key technology needed for MSPI is on-board processing (OBP) to calculate polarimetry data as imaged by each of the 9 cameras forming the instrument. With funding from NASA's ESTO1 AIST2 Program, JPL is demonstrating how signal data at 95 Mbytes/sec over 16 channels for each of the 9 multi-angle cameras can be reduced to 0.45 Mbytes/sec, thereby substantially reducing the image data volume for spacecraft downlink without loss of science information. This is done via a least-squares fitting algorithm implemented on the Virtex-5 FPGA operating in real-time on the raw video data stream.

  4. Design of a Mars Airplane Propulsion System for the Aerial Regional-Scale Environmental Survey (ARES) Mission Concept

    Science.gov (United States)

    Kuhl, Christopher A.

    2008-01-01

    The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept that utilizes a rocket propelled airplane to take scientific measurements of atmospheric, surface, and subsurface phenomena. The liquid rocket propulsion system design has matured through several design cycles and trade studies since the inception of the ARES concept in 2002. This paper describes the process of selecting a bipropellant system over other propulsion system options, and provides details on the rocket system design, thrusters, propellant tank and PMD design, propellant isolation, and flow control hardware. The paper also summarizes computer model results of thruster plume interactions and simulated flight performance. The airplane has a 6.25 m wingspan with a total wet mass of 185 kg and has to ability to fly over 600 km through the atmosphere of Mars with 45 kg of MMH / MON3 propellant.

  5. Design of a Mars Airplane Propulsion System for the Aerial Regional-Scale Environmental Survey (ARES) Mission Concept

    Science.gov (United States)

    Kuhl. Christopher A.

    2009-01-01

    The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept with the goal of taking scientific measurements of the atmosphere, surface, and subsurface of Mars by using an airplane as the payload platform. ARES team first conducted a Phase-A study for a 2007 launch opportunity, which was completed in May 2003. Following this study, significant efforts were undertaken to reduce the risk of the atmospheric flight system, under the NASA Langley Planetary Airplane Risk Reduction Project. The concept was then proposed to the Mars Scout program in 2006 for a 2011 launch opportunity. This paper summarizes the design and development of the ARES airplane propulsion subsystem beginning with the inception of the ARES project in 2002 through the submittal of the Mars Scout proposal in July 2006.

  6. SST, Pathfinder Ver 5.0, Day and Night, 4.4 km, Global, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — AVHRR Pathfinder Oceans Project seeks to create a long-term, continuous sea surface temperature data series for use in climate research. The Pathfinder SST data...

  7. SST, Pathfinder Ver 5.0, Day, 4.4 km, Global, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — AVHRR Pathfinder Oceans Project seeks to create a long-term, continuous sea surface temperature data series for use in climate research. The Pathfinder SST data...

  8. SST, Pathfinder Ver 5.0, Night, 4.4 km, Global, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — AVHRR Pathfinder Oceans Project seeks to create a long-term, continuous sea surface temperature data series for use in climate research. The Pathfinder SST data...

  9. Observations at the Mars Pathfinder site: Do they provide "unequivocal" evidence of catastrophic flooding?

    Science.gov (United States)

    Chapman, M.G.; Kargel, J.S.

    1999-01-01

    After Mars Pathfinder landed at the mouth of Ares Vallis, a large channel that drains into the Chryse Planitia basin, the mission reports unanimously supported the interpretation that the lander site is the locus of catastrophic flooding by noting that all aspects of the scene are consistent with this interpretation. However, alternatives cannot be ruled out by any site observations, as all aspects of the scene are equally consistent with other interpretations of origin, namely, ice and mass-flow processes subsequently modified by wind erosion. The authors discuss alternative explanations for the geologic history of the channel based on a regional view of the circum-Chryse channels from Viking images (our best broad-scale information to date) and the local view from the recent Pathfinder landing site. Mega-indicators of channel origin, the regional geomorphology, geology, and planetary climatic conditions, taken together suggest some combination of flood, mass flow, glacial, and eolian processes. The macro-indicators of channel origin (sedimentologic) are also not indicative of one process of emplacement, either as single criteria or taken cumulatively. Finally, the micro-indicators of channel origin (geochemical and mineralogic composition) do not provide very tight constraints on the deposits' possible origins other than that water was in some way involved.

  10. LISA and LISA PathFinder, the endeavour to detect low frequency GWs

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, H [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Boatella, C [Institut d' Estudis Espacials de Catalunya (IEEC), Edifici Nexus, Gran Capita 2-4, 08034 Barcelona (Spain); Chmeissani, M [Institut de Fisica d' Altes Energies (IFAE), Edifici C, Universitat Autonoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Conchillo, A [Institut d' Estudis Espacials de Catalunya (IEEC), Edifici Nexus, Gran Capita 2-4, 08034 Barcelona (Spain); Garcia-Berro, E [Institut d' Estudis Espacials de Catalunya (IEEC), Edifici Nexus, Gran Capita 2-4, 08034 Barcelona (Spain); Grimani, C [Universita degli Studi di Urbino, and INFN Florence, Istituto di Fisica, Via Santa Chiara 27, 61029 Urbino (Italy); Hajdas, W [Department of Particles and Matter, Paul Scherrer Institut, ODRA 120, 5232 Villigen (Switzerland); Lobo, A [Institut d' Estudis Espacials de Catalunya (IEEC), Edifici Nexus, Gran Capita 2-4, 08034 Barcelona (Spain); Martinez, L [AtIpic, Parc Tecnologic del Valles, 08290 Cerdanyola del Valles, Barcelona (Spain); Nofrarias, M [Institut d' Estudis Espacials de Catalunya (IEEC), Edifici Nexus, Gran Capita 2-4, 08034 Barcelona (Spain); Ortega, J A [Institut d' Estudis Espacials de Catalunya (IEEC), Edifici Nexus, Gran Capita 2-4, 08034 Barcelona (Spain); Puigdengoles, C [Institut de Fisica d' Altes Energies (IFAE), Edifici C, Universitat Autonoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Ramos-Castro, J [Departament d' Enginyeria Electronica, UPC, Campus Nord, Edif. C4, Jordi Girona 1-3, 08034 Barcelona (Spain); Sanjuan, J [Institut d' Estudis Espacials de Catalunya (IEEC), Edifici Nexus, Gran Capita 2-4, 08034 Barcelona (Spain); Wass, P [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Xirgu, X [Institut d' Estudis Espacials de Catalunya (IEEC), Edifici Nexus, Gran Capita 2-4, 08034 Barcelona (Spain)

    2007-05-15

    This is a review about LISA and its technology demonstrator, LISAPathFinder. We first describe the conceptual problems which need to be overcome in order to set up a working interferometric detector of low frequency Gravitational Waves (GW), then summarise the solutions to them as currently conceived by the LISA mission team. This will show that some of these solutions require new technological abilities which are still under development, and which need proper test before being fully implemented. LISAPathFinder (LPF) is the the testbed for such technologies. The final part of the paper will address the ideas and concepts behind the PathFinder as well as their impact on LISA.

  11. LISA Pathfinder E2E performance simulation: optical and self-gravity stability analysis

    Science.gov (United States)

    Brandt, N.; Fichter, W.; Kersten, M.; Lucarelli, S.; Montemurro, F.

    2005-05-01

    End-to-end (E2E) modelling and simulation, i.e. verifying the science performance of LISA Pathfinder (spacecraft and payload), is mandatory in order to minimize mission risks. In this paper, focus is on two particular applications of the E2E performance simulator currently being developed at EADS Astrium GmbH: the opto-dynamical stability and the self-gravity disturbance stability analysis. The E2E models applied here comprise the opto-dynamical modelling of the optical metrology systems (OMS) laser interferometry, the thermo-elastic distortion modelling of the OMS optical elements and the self-gravity disturbance model accounting for structural distortions. Preliminary analysis results are presented in detail, identifying shortcomings of the current LISA technology package (LTP) mounting baseline. As a consequence, the design is now being revised.

  12. LISA Pathfinder E2E performance simulation: optical and self-gravity stability analysis

    International Nuclear Information System (INIS)

    Brandt, N; Fichter, W; Kersten, M; Lucarelli, S; Montemurro, F

    2005-01-01

    End-to-end (E2E) modelling and simulation, i.e. verifying the science performance of LISA Pathfinder (spacecraft and payload), is mandatory in order to minimize mission risks. In this paper, focus is on two particular applications of the E2E performance simulator currently being developed at EADS Astrium GmbH: the opto-dynamical stability and the self-gravity disturbance stability analysis. The E2E models applied here comprise the opto-dynamical modelling of the optical metrology systems (OMS) laser interferometry, the thermo-elastic distortion modelling of the OMS optical elements and the self-gravity disturbance model accounting for structural distortions. Preliminary analysis results are presented in detail, identifying shortcomings of the current LISA technology package (LTP) mounting baseline. As a consequence, the design is now being revised

  13. EUSO-BALLOON a pathfinder for detecting UHECR's from the edge of space

    Directory of Open Access Journals (Sweden)

    Scotti V.

    2013-06-01

    Full Text Available EUSO-Balloon has been conceived as a pathfinder mission for JEM-EUSO, to perform an end-to-end test of the subsystems and components, and to prove the global detection chain while improving our knowledge of the atmospheric and terrestrial UV background. Through a series of stratospheric balloon flights performed by the French Space Agency CNES, EUSO-BALLOON will serve as an evolutive test-bench for all the key technologies of JEM-EUSO. EUSO-Balloon also has the potential to detect Extensive Air Showers from above, marking a key milestone in the development of UHECR science, and paving the way for any future large scale, space-based UHECR observatory.

  14. LISA and LISA PathFinder, the endeavour to detect low frequency GWs

    International Nuclear Information System (INIS)

    Araujo, H; Boatella, C; Chmeissani, M; Conchillo, A; Garcia-Berro, E; Grimani, C; Hajdas, W; Lobo, A; Martinez, L; Nofrarias, M; Ortega, J A; Puigdengoles, C; Ramos-Castro, J; Sanjuan, J; Wass, P; Xirgu, X

    2007-01-01

    This is a review about LISA and its technology demonstrator, LISAPathFinder. We first describe the conceptual problems which need to be overcome in order to set up a working interferometric detector of low frequency Gravitational Waves (GW), then summarise the solutions to them as currently conceived by the LISA mission team. This will show that some of these solutions require new technological abilities which are still under development, and which need proper test before being fully implemented. LISAPathFinder (LPF) is the the testbed for such technologies. The final part of the paper will address the ideas and concepts behind the PathFinder as well as their impact on LISA

  15. Pathfinding the Flight Advanced Stirling Convertor Design with the ASC-E3

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Kyle; Smith, Eddie; Collins, Josh

    2012-01-01

    The Advanced Stirling Convertor (ASC) was initially developed by Sunpower, Inc. under contract to NASA Glenn Research Center (GRC) as a technology development project. The ASC technology fulfills NASA's need for high efficiency power convertors for future Radioisotope Power Systems (RPS). Early successful technology demonstrations between 2003 to 2005 eventually led to the expansion of the project including the decision in 2006 to use the ASC technology on the Advanced Stirling Radioisotope Generator (ASRG). Sunpower has delivered 22 ASC convertors of progressively mature designs to date to GRC. Currently, Sunpower with support from GRC, Lockheed Martin Space System Company (LMSSC), and the Department of Energy (DOE) is developing the flight ASC-F in parallel with the ASC-E3 pathfinders. Sunpower will deliver four pairs of ASC-E3 convertors to GRC which will be used for extended operation reliability assessment, independent validation and verification testing, system interaction tests, and to support LMSSC controller verification. The ASC-E3 and -F convertors are being built to the same design and processing documentation and the same product specification. The initial two pairs of ASC-E3 are built before the flight units and will validate design and processing changes prior to implementation on the ASC-F flight convertors. This paper provides a summary on development of the ASC technology and the status of the ASC-E3 build and how they serve the vital pathfinder role ahead of the flight build for ASRG. The ASRG is part of two of the three candidate missions being considered for selection for the Discovery 12 mission.

  16. A Pathfinder for Animal Research and Animal Rights.

    Science.gov (United States)

    Anderson, David C.

    1992-01-01

    This pathfinder was originally prepared for "Biomedical Research and Animal Rights," a session sponsored by the Veterinary Medical Libraries and Research Libraries Sections of the Medical Library Association. Current resources are described, from bibliographies to electronic bulletin boards, which relate to the issue of laboratory animal…

  17. Sedimentary geomorphology of the Mars Pathfinder Landing Site

    Science.gov (United States)

    Rice, James W., Jr.; Parker, Timothy Jay

    1997-01-01

    The first landing on Mars in over 20 years will take place July 4, 1997, near te mouth of the Ares Vallis outflow channel located in southeastern Chryse Planitia. Mars Pathfinder, unlike Viking 1, is expected to land on a surface that has a distinct and unambiguous fluvial signature.

  18. Relating MBSE to Spacecraft Development: A NASA Pathfinder

    Science.gov (United States)

    Othon, Bill

    2016-01-01

    The NASA Engineering and Safety Center (NESC) has sponsored a Pathfinder Study to investigate how Model Based Systems Engineering (MBSE) and Model Based Engineering (MBE) techniques can be applied by NASA spacecraft development projects. The objectives of this Pathfinder Study included analyzing both the products of the modeling activity, as well as the process and tool chain through which the spacecraft design activities are executed. Several aspects of MBSE methodology and process were explored. Adoption and consistent use of the MBSE methodology within an existing development environment can be difficult. The Pathfinder Team evaluated the possibility that an "MBSE Template" could be developed as both a teaching tool as well as a baseline from which future NASA projects could leverage. Elements of this template include spacecraft system component libraries, data dictionaries and ontology specifications, as well as software services that do work on the models themselves. The Pathfinder Study also evaluated the tool chain aspects of development. Two chains were considered: 1. The Development tool chain, through which SysML model development was performed and controlled, and 2. The Analysis tool chain, through which both static and dynamic system analysis is performed. Of particular interest was the ability to exchange data between SysML and other engineering tools such as CAD and Dynamic Simulation tools. For this study, the team selected a Mars Lander vehicle as the element to be designed. The paper will discuss what system models were developed, how data was captured and exchanged, and what analyses were conducted.

  19. Grating scattering BRDF and imaging performances: A test survey performed in the frame of the flex mission

    Science.gov (United States)

    Harnisch, Bernd; Deep, Atul; Vink, Ramon; Coatantiec, Claude

    2017-11-01

    Key components in optical spectrometers are the gratings. Their influence on the overall infield straylight of the spectrometer depends not only on the technology used for grating fabrication but also on the potential existence of ghost images caused by irregularities of the grating constant. For the straylight analysis of spectrometer no general Bidirectional Reflectance Distribution Function (BRDF) model of gratings exist, as it does for optically smooth surfaces. These models are needed for the determination of spectrometer straylight background and for the calculation of spectrometer out of band rejection performances. Within the frame of the Fluorescence Earth Explorer mission (FLEX), gratings manufactured using different technologies have been investigated in terms of straylight background and imaging performance in the used diffraction order. The gratings which have been investigated cover a lithographically written grating, a volume Bragg grating, two holographic gratings and an off-the-shelf ruled grating. In this paper we present a survey of the measured bidirectional reflectance/transmittance distribution function and the determination of an equivalent surface micro-roughness of the gratings, describing the scattering of the grating around the diffraction order. This is specifically needed for the straylight modeling of the spectrometer.

  20. In-orbit performance of the LISA Pathfinder drag-free and attitude control system

    Science.gov (United States)

    Schleicher, A.; Ziegler, T.; Schubert, R.; Brandt, N.; Bergner, P.; Johann, U.; Fichter, W.; Grzymisch, J.

    2018-04-01

    LISA Pathfinder is a technology demonstrator mission that was funded by the European Space Agency and that was launched on December 3, 2015. LISA Pathfinder has been conducting experiments to demonstrate key technologies for the gravitational wave observatory LISA in its operational orbit at the L1 Lagrange point of the Earth-Sun system until final switch off on July 18, 2017. These key technologies include the inertial sensors, the optical metrology system, a set of µ-propulsion cold gas thrusters and in particular the high performance drag-free and attitude control system (DFACS) that controls the spacecraft in 15 degrees of freedom during its science phase. The main goal of the DFACS is to shield the two test masses inside the inertial sensors from all external disturbances to achieve a residual differential acceleration between the two test masses of less than 3 × 10-14 m/s2/√Hz over the frequency bandwidth of 1-30 mHz. This paper focuses on two important aspects of the DFACS that has been in use on LISA Pathfinder: the DFACS Accelerometer mode and the main DFACS Science mode. The Accelerometer mode is used to capture the test masses after release into free flight from the mechanical grabbing mechanism. The main DFACS Science Mode is used for the actual drag-free science operation. The DFACS control system has very strong interfaces with the LISA Technology Package payload which is a key aspect to master the design, development, and analysis of the DFACS. Linear as well as non-linear control methods are applied. The paper provides pre-flight predictions for the performance of both control modes and compares these predictions to the performance that is currently achieved in-orbit. Some results are also discussed for the mode transitions up to science mode, but the focus of the paper is on the Accelerometer mode performance and on the performance of the Science mode in steady state. Based on the achieved results, some lessons learnt are formulated to extend

  1. Is it feasible to pool funds for local children's services in England? Evidence from the national evaluation of children's trust pathfinders.

    Science.gov (United States)

    Lorgelly, Paula; Bachmann, Max; Shreeve, Ann; Reading, Richard; Thorburn, June; Mugford, Miranda; O'Brien, Margaret; Husbands, Chris

    2009-01-01

    To describe how funds were pooled or otherwise jointly managed by National Health Service (NHS) primary care trusts and local authorities in England. To compare expenditure on local children's services by health, education and social services. We conducted a questionnaire survey of all 35 children's trust pathfinders, six months after they were launched, with a follow-up at 2.5 years. We also undertook an in-depth analysis of local authorities and primary care trusts, within eight pathfinder areas and three non-pathfinder areas, whereby we compared expenditure on children's services, interviewed managers and professionals and examined financial documents. Local authorities and NHS trusts coordinated expenditure in various ways, most commonly through informal agreements and aligning budgets but also by formally pooling budgets. The latter were usually for selected services such as child and adolescent mental health services, though four children's trusts pathfinders pooled (or aligned) their budgets for all children's services. Total expenditure per child was greatest for education, lowest for social services and intermediate for health. However, it was difficult to quantify education expenditure on children with health and social care needs, and health care expenditure on children. Sharing money for local children's services requires shared objectives, trust, and legal and accounting expertise. Several different mechanisms are permitted and many are feasible but programme budgeting for children's services could make them more effective.

  2. Non-linear quantization error reduction for the temperature measurement subsystem on-board LISA Pathfinder

    Science.gov (United States)

    Sanjuan, J.; Nofrarias, M.

    2018-04-01

    Laser Interferometer Space Antenna (LISA) Pathfinder is a mission to test the technology enabling gravitational wave detection in space and to demonstrate that sub-femto-g free fall levels are possible. To do so, the distance between two free falling test masses is measured to unprecedented sensitivity by means of laser interferometry. Temperature fluctuations are one of the noise sources limiting the free fall accuracy and the interferometer performance and need to be known at the ˜10 μK Hz-1/2 level in the sub-millihertz frequency range in order to validate the noise models for the future space-based gravitational wave detector LISA. The temperature measurement subsystem on LISA Pathfinder is in charge of monitoring the thermal environment at key locations with noise levels of 7.5 μK Hz-1/2 at the sub-millihertz. However, its performance worsens by one to two orders of magnitude when slowly changing temperatures are measured due to errors introduced by analog-to-digital converter non-linearities. In this paper, we present a method to reduce this effect by data post-processing. The method is applied to experimental data available from on-ground validation tests to demonstrate its performance and the potential benefit for in-flight data. The analog-to-digital converter effects are reduced by a factor between three and six in the frequencies where the errors play an important role. An average 2.7 fold noise reduction is demonstrated in the 0.3 mHz-2 mHz band.

  3. Pathfinder-Plus on a flight over Hawaiian island N'ihau

    Science.gov (United States)

    1998-01-01

    Pathfinder-Plus on a flight over the Hawaiian island of N'ihau in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non

  4. Pathfinder-Plus on flight over Hawaiian island N'ihau

    Science.gov (United States)

    1998-01-01

    Pathfinder-Plus on a flight over the Hawaiian island of N'ihau in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non

  5. Pathfinder-Plus on flight near Hawaiian island N'ihau

    Science.gov (United States)

    1998-01-01

    Pathfinder-Plus on a flight with the Hawaiian island of N'ihau in the background. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and

  6. Burn Delay Analysis of the Lunar Orbit Insertion for Korea Pathfinder Lunar Orbiter

    Science.gov (United States)

    Bae, Jonghee; Song, Young-Joo; Kim, Young-Rok; Kim, Bangyeop

    2017-12-01

    The first Korea lunar orbiter, Korea Pathfinder Lunar Orbiter (KPLO), has been in development since 2016. After launch, the KPLO will execute several maneuvers to enter into the lunar mission orbit, and will then perform lunar science missions for one year. Among these maneuvers, the lunar orbit insertion (LOI) is the most critical maneuver because the KPLO will experience an extreme velocity change in the presence of the Moon’s gravitational pull. However, the lunar orbiter may have a delayed LOI burn during operation due to hardware limitations and telemetry delays. This delayed burn could occur in different captured lunar orbits; in the worst case, the KPLO could fly away from the Moon. Therefore, in this study, the burn delay for the first LOI maneuver is analyzed to successfully enter the desired lunar orbit. Numerical simulations are performed to evaluate the difference between the desired and delayed lunar orbits due to a burn delay in the LOI maneuver. Based on this analysis, critical factors in the LOI maneuver, the periselene altitude and orbit period, are significantly changed and an additional delta-V in the second LOI maneuver is required as the delay burn interval increases to 10 min from the planned maneuver epoch.

  7. Charge Management in LISA Pathfinder: The Continuous Discharging Experiment

    Science.gov (United States)

    Ewing, Becca Elizabeth

    2018-01-01

    Test mass charging is a significant source of excess force and force noise in LISA Pathfinder (LPF). The planned design scheme for mitigation of charge induced force noise in LISA is a continuous discharge by UV light illumination. We report on analysis of a charge management experiment on-board LPF conducted during December 2016. We discuss the measurement of test mass charging noise with and without continuous UV illumination, in addition to the dynamic response in the continuous discharge scheme. Results of the continuous discharge system will be discussed for their application to operating LISA with lower test mass charge.

  8. Symbolic PathFinder: Symbolic Execution of Java Bytecode

    Science.gov (United States)

    Pasareanu, Corina S.; Rungta, Neha

    2010-01-01

    Symbolic Pathfinder (SPF) combines symbolic execution with model checking and constraint solving for automated test case generation and error detection in Java programs with unspecified inputs. In this tool, programs are executed on symbolic inputs representing multiple concrete inputs. Values of variables are represented as constraints generated from the analysis of Java bytecode. The constraints are solved using off-the shelf solvers to generate test inputs guaranteed to achieve complex coverage criteria. SPF has been used successfully at NASA, in academia, and in industry.

  9. GCR flux 9-day variations with LISA Pathfinder

    International Nuclear Information System (INIS)

    Grimani, C; Benella, S; Fabi, M; Finetti, N; Telloni, D

    2017-01-01

    Galactic cosmic-ray (GCR) energy spectra in the heliosphere vary on the basis of the level of solar activity, the status of solar polarity and interplanetary transient magnetic structures of solar origin. A high counting rate particle detector (PD) aboard LISA Pathfinder (LPF) allows for the measurement of galactic cosmic-ray and solar energetic particle (SEP) integral fluxes at energies > 70 MeV n −1 up to 6500 counts s −1 . Data are gathered with a sampling time of 15 s. A study of GCR flux depressions associated with the third harmonic of the Sun rotation period (∼ 9 days) is presented here. (paper)

  10. The Engineering of LISA Pathfinder – the quietest Laboratory ever flown in Space

    International Nuclear Information System (INIS)

    Trenkel, Christian; Wealthy, Dave; Dunbar, Neil; Warren, Carl; Schleicher, Alexander; Ziegler, Tobias; Brandt, Nico; Gerndt, Rüdiger

    2017-01-01

    We review the engineering approach adopted to ensure the required gravitational, magnetic, thermal and residual acceleration stability on-board LISA Pathfinder, and present the in-flight results that have been achieved. Arguably, this stability makes LISA Pathfinder the quietest laboratory ever flown in space. The implications for LISA are also discussed. (paper)

  11. On the warm nearshore bias in Pathfinder monthly SST products over Eastern Boundary upwelling systems

    CSIR Research Space (South Africa)

    Dufois, F

    2012-01-01

    Full Text Available Using in situ sea surface temperature (SST) data and MODIS/TERRA SST, the monthly AVHRR Pathfinder (version 5.0 and 5.2) SST product was evaluated within the four main Eastern Boundary Upwelling Systems. A warm bias in the monthly Pathfinder data...

  12. Topographic profile of a target with use of laser pulses. A survey directed to the Brazilian deep space mission ASTER

    International Nuclear Information System (INIS)

    De Brum, A G V; Rodrigues, A P

    2013-01-01

    This work is directly related to the development of the laser altimeter for the ASTER mission, named ALR. The Brazilian deep space mission ASTER plans to send a small spacecraft to encounter and investigate the triple asteroid 2001-SN263. The launch is scheduled to occur in 2017 and the ALR is now under development in partnership with UNICAMP, UFABC and aerospace companies. In this work, the environment and the operation of the instrument were modeled and simulations were carried out in order to better understand and define the instrument parameters. The creation of the simulation software to control the operation of the instrument was the main purpose of this work, and the software so far created is the main result of it. The software was successfully tested with respect to some common expected situations

  13. Revised electrostatic model of the LISA Pathfinder inertial sensor

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Nico [Astrium GmbH, 88039 Friedrichshafen (Germany); Fichter, Walter, E-mail: nico.brandt@astrium.eads.ne [iFR, Universitaet Stuttgart, Pfaffenwaldring 7a, 70569 Stuttgart (Germany)

    2009-03-01

    A comprehensive electrostatic finite-element (FE) analysis of the LISA Pathfinder Inertial Sensor (IS) has been carried out at Astrium GmbH. Starting with a detailed geometrical model of the IS housing and test mass (TM) flight units, FE results were derived from multiple analyses runs applying the Maxwell 3D field simulation software. The electrostatic forces and torques on the TM in 6DoF, as well as all non-negligible capacitances between the TM, the 18 electrodes, and the housing, have been extracted for different TM translations and rotations. The results of the FE analyses were expected to confirm the existing IS electrostatic model predictions used for performance analysis, simulations, and on-board algorithms. Major discrepancies were found, however, between the results and the model used so far. In general, FE results give considerably larger capacitance values than the equivalent infinite non-parallel plate estimates. In contrast, the FE derived forces and torques are in general significantly lower compared to the analytic IS electrostatic model predictions. In this paper, these results are discussed in detail and the reasons for the deviations are elaborated. Based on these results, an adapted analytic IS electrostatic model is proposed that reflects the electrostatic forces, torques, and stiffness values in the LISA Pathfinder IS significantly more accurate.

  14. Revised electrostatic model of the LISA Pathfinder inertial sensor

    International Nuclear Information System (INIS)

    Brandt, Nico; Fichter, Walter

    2009-01-01

    A comprehensive electrostatic finite-element (FE) analysis of the LISA Pathfinder Inertial Sensor (IS) has been carried out at Astrium GmbH. Starting with a detailed geometrical model of the IS housing and test mass (TM) flight units, FE results were derived from multiple analyses runs applying the Maxwell 3D field simulation software. The electrostatic forces and torques on the TM in 6DoF, as well as all non-negligible capacitances between the TM, the 18 electrodes, and the housing, have been extracted for different TM translations and rotations. The results of the FE analyses were expected to confirm the existing IS electrostatic model predictions used for performance analysis, simulations, and on-board algorithms. Major discrepancies were found, however, between the results and the model used so far. In general, FE results give considerably larger capacitance values than the equivalent infinite non-parallel plate estimates. In contrast, the FE derived forces and torques are in general significantly lower compared to the analytic IS electrostatic model predictions. In this paper, these results are discussed in detail and the reasons for the deviations are elaborated. Based on these results, an adapted analytic IS electrostatic model is proposed that reflects the electrostatic forces, torques, and stiffness values in the LISA Pathfinder IS significantly more accurate.

  15. An Alpha Proton X-Ray Spectrometer for Mars-96 and Mars Pathfinder

    Science.gov (United States)

    Rieder, R.; Wanke, H.; Economou, T.

    1996-09-01

    Mars Pathfinder and the Russian Mars-96 will carry an Alpha Proton X-Ray Spectrometer (APXS) for the determination of the chemical composition of Martian rocks and soil. The instrument will measure the concentration of all major and many minor elements, including C,N and O, at levels above typically 1%. The method employed consist of bombarding a sample of 50 mm diameter with alpha particles from a radioactive source (50 mCi of Cm-244) and measuring: (i) backscattered alpha particles (alpha mode) (ii) protons from (a,p) reactions with some light elements (proton mode) (iii) characteristic X-rays emitted from the sample (X-ray mode). The APXS has a long standing space heritage, going back to Surveyor V,VI and VII (1967/68) and the Soviet Phobos (1988) missions. The present design is the result of an endeavour to reduce mass and power consumption to 600g/ 300mW. It consist of a sensor head containing the alpha sources, a telescope of a silicon detectors for the detection of the alpha particles and protons and a separate X-ray detector with its preamplifier, and an electronics box (80x70x60 mm) containing a microcontroller based multichannel spectrometer. The paper will describe the APXS flight hardware and present results obtained with the flight instrument that will show the instrument capabili- ties and the expected results to be obtained during surface operations on Mars.

  16. Principles, operations, and expected performance of the LISA Pathfinder charge management system

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, T [Astrium GmbH, 88039 Friedrichshafen (Germany); Fichter, W [iFR, Universitaet Stuttgart, Pfaffenwaldring 7a, 70569 Stuttgart (Germany); Schulte, M [Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ (United Kingdom); Vitale, S, E-mail: tobias.ziegler@astrium.eads.ne [Department of Physics, University of Trento, 38050 Povo, Trento (Italy)

    2009-03-01

    The test masses of LISA Pathfinder are free flying and therefore not grounded to the spacecraft by a wire. Because of galactic cosmic rays, solar energetic particles, and unknown microscopic surface effects during initial test mass release, an unacceptable level of absolute charge might be present on the test masses. A charged test mass can endanger transition to high accuracy control modes which are required for science experiments. Furthermore, charged test masses introduce unwanted disturbance accelerations for example due to Coulomb interactions with surrounding conducting surfaces. The charge management system is designed to discharge the test masses up to a tolerable level of absolute charge such that the mission goal can be achieved. It is therefore an essential part of the experiments to be performed with the LISA Technology Package. The paper describes charge management tasks to be performed on board the spacecraft and summarizes the principles of charge measurement and discharge control. An overview of the experiment operations is given where the interconnection of operational charge management system modes and operational modes of the drag-free, suspension and attitude control system is considered. Simulated performance results are presented.

  17. Structural design and analysis of test mass module for DECIGO Pathfinder

    International Nuclear Information System (INIS)

    Wakabayashi, Y; Ejiri, Y; Suzuki, R; Sugamoto, A; Obuchi, Y; Okada, N; Torii, Y; Ueda, A; Kawamura, S; Araya, A; Ando, M; Sato, S

    2010-01-01

    Deci-hertz Interferometer Gravitational-Wave Observatory: DECIGO is a project aimed at future detection of deci-hertz gravitational waves in space. DECIGO Pathfinder: DPF is a precursor mission to test the key technologies with one spacecraft. Our work in this article was to examine the strength of the DPF test mass module to ensure that it is sufficiently robust for launch with a launch vehicle. We designed the test mass module, and examined the structural strength of this model by structural analysis, Quasi-static acceleration analysis and Modal analysis using FEA (Finite Element Analysis). We found that the results of each analysis fulfilled all requirements. We are confident that the DPF test mass module will withstand Quasi-static acceleration or coupling with vibration of launch vehicle during launch, if the design matches the current design. For more detail, further analysis including Response analysis and Thermal analysis are recommended. In addition, it will be necessary to lighten the model in the next step.

  18. LIFTING THE VEIL ON OBSCURED ACCRETION: ACTIVE GALACTIC NUCLEI NUMBER COUNTS AND SURVEY STRATEGIES FOR IMAGING HARD X-RAY MISSIONS

    International Nuclear Information System (INIS)

    Ballantyne, D. R.; Draper, A. R.; Madsen, K. K.; Rigby, J. R.; Treister, E.

    2011-01-01

    Finding and characterizing the population of active galactic nuclei (AGNs) that produces the X-ray background (XRB) is necessary to connect the history of accretion to observations of galaxy evolution at longer wavelengths. The year 2012 will see the deployment of the first hard X-ray imaging telescope which, through deep extragalactic surveys, will be able to measure the AGN population at the energies where the XRB peaks (∼20-30 keV). Here, we present predictions of AGN number counts in three hard X-ray bandpasses: 6-10 keV, 10-30 keV, and 30-60 keV. Separate predictions are presented for the number counts of Compton thick AGNs, the most heavily obscured active galaxies. The number counts are calculated for five different models of the XRB that differ in the assumed hard X-ray luminosity function, the evolution of the Compton thick AGNs, and the underlying AGN spectral model. The majority of the hard X-ray number counts will be Compton thin AGNs, but there is a greater than tenfold increase in the Compton thick number counts from the 6-10 keV to the 10-30 keV band. The Compton thick population shows enough variation that a hard X-ray number counts measurement will constrain the models. The computed number counts are used to consider various survey strategies for the NuSTAR mission, assuming a total exposure time of 6.2 Ms. We find that multiple surveys will allow a measurement of Compton thick evolution. The predictions presented here should be useful for all future imaging hard X-ray missions.

  19. Technology for Future NASA Missions: Civil Space Technology Initiative (CSTI) and Pathfinder

    Science.gov (United States)

    1988-01-01

    SEPTEMBER 1988 PACE Space Research and Technology Overview 1 Frederick P. Povinelli Civil Space Technology Initiative 15 Judith H. Ambrus...Peterson Peterson Pierson Pietsch Pilcher Pistole Piszczor Pittian Plotkin Portnoy Poucher Povinelli Povell Pozarovski Priebe Prior Pyle

  20. Mars 2024/2026 Pathfinder Mission: Mars Architectures, Systems, & Technologies for Exploration and Resources

    Data.gov (United States)

    National Aeronautics and Space Administration — Integrate In Situ Resource Utilization (ISRU) sub-systems and examine advanced capabilities and technologies to verify Mars 2024 Forward architecture precursor...

  1. The Australian SKA Pathfinder: operations management and user engagement

    Science.gov (United States)

    Harvey-Smith, Lisa

    2016-07-01

    This paper describes the science operations model for the Australian Square Kilometre Array Pathfinder (ASKAP) telescope. ASKAP is a radio interferometer currently being commissioned in Western Australia. It will be operated by a dedicated team of observatory staff with the support of telescope monitoring, control and scheduling software. These tools, as well as the proposal tools and data archive will enable the telescope to operate with little direct input from the astronomy user. The paper also discusses how close engagement with the telescope user community has been maintained throughout the ASKAP construction and commissioning phase, leading to positive outcomes including early input into the design of telescope systems and a vibrant early science program.

  2. Prediction and Validation of Mars Pathfinder Hypersonic Aerodynamic Data Base

    Science.gov (United States)

    Gnoffo, Peter A.; Braun, Robert D.; Weilmuenster, K. James; Mitcheltree, Robert A.; Engelund, Walter C.; Powell, Richard W.

    1998-01-01

    Postflight analysis of the Mars Pathfinder hypersonic, continuum aerodynamic data base is presented. Measured data include accelerations along the body axis and axis normal directions. Comparisons of preflight simulation and measurements show good agreement. The prediction of two static instabilities associated with movement of the sonic line from the shoulder to the nose and back was confirmed by measured normal accelerations. Reconstruction of atmospheric density during entry has an uncertainty directly proportional to the uncertainty in the predicted axial coefficient. The sensitivity of the moment coefficient to freestream density, kinetic models and center-of-gravity location are examined to provide additional consistency checks of the simulation with flight data. The atmospheric density as derived from axial coefficient and measured axial accelerations falls within the range required for sonic line shift and static stability transition as independently determined from normal accelerations.

  3. NOAA Climate Data Record (CDR) of AVHRR Polar Pathfinder Extended (APP-X) Cryosphere

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Climate Data Record (CDR) of the extended AVHRR Polar Pathfinder (APP-x) cryosphere contains 19 geophysical variables over the Arctic and Antarctic for the...

  4. Gambling on the Protestants: the Pathfinder Fund and birth control in Peru, 1958-1965.

    Science.gov (United States)

    López, L Necochea

    2014-01-01

    Among the agencies involved in population control activities in the mid-twentieth century, none scored as many early victories in Latin America as did the Pathfinder Fund, founded by Procter & Gamble scion Clarence Gamble. This article analyzes a style in the delivery of family planning assistance in the developing world through the work of the Pathfinder Fund in Peru, the organization's hub in South America, and shows how Pathfinder personnel collaborated with local Protestant institutions. Its Protestant allies helped Pathfinder set up and manage rapid interventions such as the production of pamphlets, the smuggling of contraceptives, and the enrollment of physicians as advocates of the use of intrauterine devices. Although these rapid interventions helped quickly disseminate information and certain technologies among a fortunate few, they also weakened legitimate state agencies, neglected the monitoring of the safety of the drugs supplied, and alienated allies with their high-handed boldness.

  5. A Web-Portal Based Approach for Knowledge Networks in Support of the Pathfinder Programme

    National Research Council Canada - National Science Library

    Tolk, Andreas; Turnitsa, Charles D; Oehlund, Gunnar; Sursal, Gokay

    2006-01-01

    Technical activity program MSG-027 "Pathfinder Integration Environment" has the task of bringing the integration knowledge required to build a federation to whatever organization is charged with a federating task...

  6. NOAA Climate Data Record (CDR) of AVHRR Polar Pathfinder (APP) Cryosphere

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This NOAA Climate Data Record (CDR) contains the AVHRR Polar Pathfinder (APP) product. APP is a fundamental CDR comprised of calibrated and navigated AVHRR channel...

  7. CRED REA Algal Assessments at Pathfinder Reef, Marianas Archipelago in 2005

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — As part of Rapid Ecological Assessments (REA), Twelve quadrats were sampled along 2 consecutively-placed, 25m transect lines, conducted at 2 sites at Pathfinder Reef...

  8. Primary Productivity, SeaWiFS and Pathfinder, 0.1 degrees, Global, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Primary Productivity is calculated from SeaWiFS Chl a, Pathfinder SST, and SeaWiFS PAR data. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for scientific...

  9. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    International Nuclear Information System (INIS)

    Menelaou, Evdokia; Paul, Latoya T.; Perera, Surangi N.; Svoboda, Kurt R.

    2015-01-01

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner.

  10. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    Energy Technology Data Exchange (ETDEWEB)

    Menelaou, Evdokia; Paul, Latoya T. [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Perera, Surangi N. [Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States); Svoboda, Kurt R., E-mail: svobodak@uwm.edu [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States)

    2015-04-01

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner.

  11. Maps of the Martian Landing Sites and Rover Traverses: Viking 1 and 2, Mars Pathfinder, and Phoenix Landers, and the Mars Exploration Rovers.

    Science.gov (United States)

    Parker, T. J.; Calef, F. J., III; Deen, R. G.; Gengl, H.

    2016-12-01

    The traverse maps produced tactically for the MER and MSL rover missions are the first step in placing the observations made by each vehicle into a local and regional geologic context. For the MER, Phoenix and MSL missions, 25cm/pixel HiRISE data is available for accurately localizing the vehicles. Viking and Mars Pathfinder, however, relied on Viking Orbiter images of several tens of m/pixel to triangulate to horizon features visible both from the ground and from orbit. After Pathfinder, MGS MOC images became available for these landing sites, enabling much better correlations to horizon features and localization predictions to be made, that were then corroborated with HiRISE images beginning 9 years ago. By combining topography data from MGS, Mars Express, and stereo processing of MRO CTX and HiRISE images into orthomosaics (ORRs) and digital elevation models (DEMs), it is possible to localize all the landers and rover positions to an accuracy of a few tens of meters with respect to the Mars global control net, and to better than half a meter with respect to other features within a HiRISE orthomosaic. JPL's MIPL produces point clouds of the MER Navcam stereo images that can be processed into 1cm/pixel ORR/DEMs that are then georeferenced to a HiRISE/CTX base map and DEM. This allows compilation of seamless mosaics of the lander and rover camera-based ORR/DEMs with the HiRISE ORR/DEM that can be viewed in 3 dimensions with GIS programs with that capability. We are re-processing the Viking Lander, Mars Pathfinder, and Phoenix lander data to allow similar ORR/DEM products to be made for those missions. For the fixed landers and Spirit, we will compile merged surface/CTX/HiRISE ORR/DEMs, that will enable accurate local and regional mapping of these landing sites, and allow comparisons of the results from these missions to be made with current and future surface missions.

  12. Gas mission; Mission gaz

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This preliminary report analyses the desirable evolutions of gas transport tariffing and examines some questions relative to the opening of competition on the French gas market. The report is made of two documents: a synthesis of the previous report with some recommendations about the tariffing of gas transport, about the modalities of network access to third parties, and about the dissociation between transport and trade book-keeping activities. The second document is the progress report about the opening of the French gas market. The first part presents the European problem of competition in the gas supply and its consequences on the opening and operation of the French gas market. The second part presents some partial syntheses about each topic of the mission letter of the Ministry of Economics, Finances and Industry: future evolution of network access tariffs, critical analysis of contractual documents for gas transport and delivery, examination of auxiliary services linked with the access to the network (modulation, balancing, conversion), consideration about the processing of network congestions and denied accesses, analysis of the metering dissociation between the integrated activities of gas operators. Some documents are attached in appendixes: the mission letter from July 9, 2001, the detailed analysis of the new temporary tariffs of GdF and CFM, the offer of methane terminals access to third parties, the compatibility of a nodal tariffing with the presence of three transport operators (GdF, CFM and GSO), the contract-type for GdF supply, and the contract-type for GdF connection. (J.S.)

  13. Theory and modelling of the magnetic field measurement in LISA PathFinder

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Aguilo, M; Garcia-Berro, E [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, c/Esteve Terrades, 5, 08860 Castelldefels (Spain); Lobo, A, E-mail: marc.diaz.aguilo@fa.upc.ed [Institut d' Estudis Espacials de Catalunya, c/Gran Capita 2-4, Edif. Nexus 104, 08034 Barcelona (Spain)

    2010-02-07

    The magnetic diagnostics subsystem of the LISA Technology Package (LTP) on board the LISA PathFinder (LPF) spacecraft includes a set of four tri-axial fluxgate magnetometers, intended to measure with high precision the magnetic field at their respective positions. However, their readouts do not provide a direct measurement of the magnetic field at the positions of the test masses, and hence an interpolation method must be designed and implemented to obtain the values of the magnetic field at these positions. However, such an interpolation process faces serious difficulties. Indeed, the size of the interpolation region is excessive for a linear interpolation to be reliable while, on the other hand, the number of magnetometer channels do not provide sufficient data to go beyond the linear approximation. We describe an alternative method to address this issue, by means of neural network algorithms. The key point in this approach is the ability of neural networks to learn from suitable training data representing the behaviour of the magnetic field. Despite the relatively large distance between the test masses and the magnetometers, and the insufficient number of data channels, we find that our artificial neural network algorithm is able to reduce the estimation errors of the field and gradient down to levels below 10%, a quite satisfactory result. Learning efficiency can be best improved by making use of data obtained in on-ground measurements prior to mission launch in all relevant satellite locations and in real operation conditions. Reliable information on that appears to be essential for a meaningful assessment of magnetic noise in the LTP.

  14. Theory and modelling of the magnetic field measurement in LISA PathFinder

    International Nuclear Information System (INIS)

    Diaz-Aguilo, M; Garcia-Berro, E; Lobo, A

    2010-01-01

    The magnetic diagnostics subsystem of the LISA Technology Package (LTP) on board the LISA PathFinder (LPF) spacecraft includes a set of four tri-axial fluxgate magnetometers, intended to measure with high precision the magnetic field at their respective positions. However, their readouts do not provide a direct measurement of the magnetic field at the positions of the test masses, and hence an interpolation method must be designed and implemented to obtain the values of the magnetic field at these positions. However, such an interpolation process faces serious difficulties. Indeed, the size of the interpolation region is excessive for a linear interpolation to be reliable while, on the other hand, the number of magnetometer channels do not provide sufficient data to go beyond the linear approximation. We describe an alternative method to address this issue, by means of neural network algorithms. The key point in this approach is the ability of neural networks to learn from suitable training data representing the behaviour of the magnetic field. Despite the relatively large distance between the test masses and the magnetometers, and the insufficient number of data channels, we find that our artificial neural network algorithm is able to reduce the estimation errors of the field and gradient down to levels below 10%, a quite satisfactory result. Learning efficiency can be best improved by making use of data obtained in on-ground measurements prior to mission launch in all relevant satellite locations and in real operation conditions. Reliable information on that appears to be essential for a meaningful assessment of magnetic noise in the LTP.

  15. Mars Navigator: An Interactive Multimedia Program about Mars, Aerospace Engineering, Astronomy, and the JPL Mars Missions. [CD-ROM

    Science.gov (United States)

    Gramoll, Kurt

    This CD-ROM introduces basic astronomy and aerospace engineering by examining the Jet Propulsion Laboratory's (JPL) Mars Pathfinder and Mars Global Surveyor missions to Mars. It contains numerous animations and narrations in addition to detailed graphics and text. Six interactive laboratories are included to help understand topics such as the…

  16. Pathfinder-Plus on flight over Hawaiian Islands, with N'ihau and Lehua in the background

    Science.gov (United States)

    1998-01-01

    Pathfinder-Plus on flight over Hawaiian Islands, with N'ihau and Lehua in the background. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet

  17. Radiation pressure calibration and test mass reflectivities for LISA Pathfinder

    International Nuclear Information System (INIS)

    Korsakova, Natalia; Kaune, Brigitte

    2017-01-01

    This paper describes a series of experiments which were carried out during the main operations of LISA Pathfinder. These experiments were performed by modulating the power of the measurement and reference beams. In one series of experiments the beams were sequentially switched on and off. In the other series of experiments the powers of the beams were modulated within 0.1% and 1% of the constant power. These experiments use recordings of the total power measured on the photodiodes to infer the properties of the Optical Metrology System (OMS), such as reflectivities of the test masses and change of the photodiode efficiencies with time. In the first case the powers are back propagated from the different photodiodes to the same place on the optical bench to express the unknown quantities in the measurement with the complimentary photodiode measurements. They are combined in the way that the only unknown left is the test mass reflectivities. The second experiment compared two estimates of the force applied to the test masses due to the radiation pressure that appears because of the beam modulations. One estimate of the force is inferred from the measurements of the powers on the photodiodes and propagation of this measurement to the test masses. The other estimation of the force is done by calculating it from the change in the main scientific output of the instrument – differential displacement of the two test masses. (paper)

  18. Model Checking Real Time Java Using Java PathFinder

    Science.gov (United States)

    Lindstrom, Gary; Mehlitz, Peter C.; Visser, Willem

    2005-01-01

    The Real Time Specification for Java (RTSJ) is an augmentation of Java for real time applications of various degrees of hardness. The central features of RTSJ are real time threads; user defined schedulers; asynchronous events, handlers, and control transfers; a priority inheritance based default scheduler; non-heap memory areas such as immortal and scoped, and non-heap real time threads whose execution is not impeded by garbage collection. The Robust Software Systems group at NASA Ames Research Center has JAVA PATHFINDER (JPF) under development, a Java model checker. JPF at its core is a state exploring JVM which can examine alternative paths in a Java program (e.g., via backtracking) by trying all nondeterministic choices, including thread scheduling order. This paper describes our implementation of an RTSJ profile (subset) in JPF, including requirements, design decisions, and current implementation status. Two examples are analyzed: jobs on a multiprogramming operating system, and a complex resource contention example involving autonomous vehicles crossing an intersection. The utility of JPF in finding logic and timing errors is illustrated, and the remaining challenges in supporting all of RTSJ are assessed.

  19. Radiation pressure calibration and test mass reflectivities for LISA Pathfinder

    Science.gov (United States)

    Korsakova, Natalia; Kaune, Brigitte; LPF Collaboration

    2017-05-01

    This paper describes a series of experiments which were carried out during the main operations of LISA Pathfinder. These experiments were performed by modulating the power of the measurement and reference beams. In one series of experiments the beams were sequentially switched on and off. In the other series of experiments the powers of the beams were modulated within 0.1% and 1% of the constant power. These experiments use recordings of the total power measured on the photodiodes to infer the properties of the Optical Metrology System (OMS), such as reflectivities of the test masses and change of the photodiode efficiencies with time. In the first case the powers are back propagated from the different photodiodes to the same place on the optical bench to express the unknown quantities in the measurement with the complimentary photodiode measurements. They are combined in the way that the only unknown left is the test mass reflectivities. The second experiment compared two estimates of the force applied to the test masses due to the radiation pressure that appears because of the beam modulations. One estimate of the force is inferred from the measurements of the powers on the photodiodes and propagation of this measurement to the test masses. The other estimation of the force is done by calculating it from the change in the main scientific output of the instrument - differential displacement of the two test masses.

  20. [The mission].

    Science.gov (United States)

    Ruiz Moreno, J; Blanch Mon, A

    2000-01-01

    After having made a historical review of the concept of mission statement, of evaluating its importance (See Part I), of describing the bases to create a mission statement from a strategic perspective and of analyzing the advantages of this concept, probably more important as a business policy (See Parts I and II), the authors proceed to analyze the mission statement in health organizations. Due to the fact that a mission statement is lacking in the majority of health organizations, the strategy of health organizations are not exactly favored; as a consequence, neither are its competitive advantage nor the development of its essential competencies. After presenting a series of mission statements corresponding to Anglo-Saxon health organizations, the authors highlight two mission statements corresponding to our social context. The article finishes by suggesting an adequate sequence for developing a mission statement in those health organizations having a strategic sense.

  1. Experimental and numerical study of the mars pathfinder vehicle; Etude experimentale et numerique sur le mars pathfinder

    Energy Technology Data Exchange (ETDEWEB)

    Bur, R.; Benay, R.; Chanetz, B.; Galli, A.; Pot, T. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), Dept. Fundamental and Experimental Aerodynamics, 92 - Chatillon (France); Hollis, B.; Moss, J. [Aerothermodynamics Branch, NASA Langley Research Center Hampton, Virginia (United States)

    2002-07-01

    An experimental and numerical study on the Mars Pathfinder aero-shell vehicle has been carried out in the framework of an agreement between ONERA and NASA. The experimental work was performed in the ONERA R5Ch hypersonic wind tunnel. Flow-field visualizations and heat-flux measurements along the model have been obtained. Numerical simulations have been performed at ONERA with the RANS solver NASCA and at NASA with a DSMC code. The flow-field structure is correctly reproduced by both computations. The location of the bow shock is well predicted, as well as the expansion waves emanating from the end of the fore-body cone. Both computations also predict the same extension of the separation bubble in the base flow region of the model. Measured and calculated heat-flux distributions along the model have been compared. Both computations give similar results, excepted on the prediction of the heat-flux level on the after-body cone. But computations over-predict the measured heat-flux values on the fore-body and the sting of the model: the value of the stagnation point is overestimated of 28% and the averaged sting level of 35%. (authors)

  2. [Myanmar mission].

    Science.gov (United States)

    Alfandari, B; Persichetti, P; Pelissier, P; Martin, D; Baudet, J

    2004-06-01

    The authors report the accomplishment of humanitarian missions in plastic surgery performed by a small team in town practice in Yangon, about their 3 years experience in Myanmar with 300 consultations and 120 surgery cases. They underline the interest of this type of mission and provide us their reflexion about team training, the type of relation with the country where the mission is conducted and the type of right team.

  3. On-ground testing of the role of adhesion in the LISA-Pathfinder test mass injection phase

    Science.gov (United States)

    Bortoluzzi, D.; Zanoni, C.; Conklin, J. W.

    2017-05-01

    Many space missions share the need to fly a free-falling body inside the spacecraft, as a reference for navigation and/or as a probe for the local gravitational field. When a mechanism is required to cage such an object during the launch phase, the need arises to release it to free-fall once the operational phase must be initiated in orbit. The criticality of this phase increases when the mechanical interfaces between the body and the mechanism are affected by adhesion and the actuation authority of the control system on the free-falling body is limited. Both conditions are realized in the LISA Pathfinder mission, which aims at injecting a gold-coated 2 kg cubic test mass into a nearly perfect geodesic trajectory to demonstrate the readiness of the developed technology for in-space gravity wave detection. The criticality of adhesion is widely recognized in space technology, because it can affect and jeopardize the functionality of mechanisms, when arising between moving parts. In the LISA Pathfinder case, metallic adhesion potentially plays a relevant role, mainly for two reasons. First, thanks to its properties (ductility, high surface energy) the gold coating on the proof mass easily produces cold weldings, especially in vacuum conditions. Second, the detachment of the proof mass from the releasing device occurs abruptly and a relevant influence of the separation velocity is expected on the strength of the welding. This can produce an excessive velocity of the proof mass at the retraction of the releasing device for the following capture and centring phase on behalf of the control system. A testing activity is performed to characterize the dynamic behaviour of the adhesive bonds between the proof mass and the releasing device, which can be used to predict their contribution on the residual velocity of the proof mass after in-flight release. The study of such a dynamic phenomenon sets some challenging requirements on the measurement technique, both on the

  4. The health policy pathfinder: an innovative strategy to explore interest group politics.

    Science.gov (United States)

    Nannini, Angela

    2009-10-01

    Moving a specific nursing health policy agenda forward depends on skill in building coalitions with other interest or stakeholder groups, including consumers. Often, nursing students study health policy in a discipline-specific environment without experiential opportunities to argue their views with other stakeholders in policy arenas. The health policy pathfinder, an innovative learning strategy for understanding interest group politics, will assist nursing students in meeting the following objectives: 1) analyze and articulate diverse policy arguments from various stakeholder groups; 2) identify opportunities for collaborations between stakeholder groups; 3) identify the influence of interest groups on the policy making process; and 4) critically evaluate evidence from a variety of sources ranging from peer-reviewed publications to grey literature to Internet blogs. This article describes the health policy pathfinder, including design, execution, and evaluation steps, and provides a brief excerpt from a student pathfinder. Copyright 2009, SLACK Incorporated.

  5. Aquarius and the Aquarius/SAC-D Mission

    Science.gov (United States)

    LeVine, D. M.; Lagerloef, G. S. E.; Torrusio, S.

    2010-01-01

    Aquarius is a combination L-band radiometer and scatterometer designed to map the salinity field at the ocean surface from space. It will be flown on the Aquarius/SAC-D mission, a partnership between the USA space agency (NASA) and Argentine space agency (CONAE). The mission is composed of two parts: (a) The Aquarius instrument being developed as part of NASA.s Earth System Science Pathfinder (ESSP) program; and (b) SAC-D the fourth spacecraft service platform in the CONAE Satellite de Aplicaciones Cientificas (SAC) program. The primary focus of the mission is to monitor the seasonal and interannual variations of the salinity field in the open ocean. The mission also meets the needs of the Argentine space program for monitoring the environment and for hazard detection and includes several instruments related to these goals.

  6. Mercury Lander Mission Concept Study Summary

    Science.gov (United States)

    Eng, D. A.

    2018-05-01

    Provides a summary of the Mercury Lander Mission Concept Study performed as part of the last Planetary Decadal Survey. The presentation will focus on engineering trades and the challenges of developing a Mercury lander mission.

  7. Planning, Implementation, and Scientific Goals of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) Field Missions

    Science.gov (United States)

    Toon, Owen B.; Maring, Hal; Dibb, Jack; Ferrare, Richard A.; Jacob, Daniel J.; Jensen, Eric J.; Luo, Z. Johnny; Mace, Gerald G.; Pan, Laura L.; Pfister, Leonhard; hide

    2016-01-01

    The Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission based at Ellington Field, Texas, during August and September 2013 employed the most comprehensive airborne payload to date to investigate atmospheric composition over North America. The NASA ER-2, DC-8, and SPEC Inc. Learjet flew 57 science flights from the surface to 20 km. The ER-2 employed seven remote sensing instruments as a satellite surrogate and eight in situ instruments. The DC-8 employed 23 in situ and five remote sensing instruments for radiation, chemistry, and microphysics. The Learjet used 11 instruments to explore cloud microphysics. SEAC4RS launched numerous balloons, augmented Aerosol RObotic NETwork, and collaborated with many existing ground measurement sites. Flights investigating convection included close coordination of all three aircraft. Coordinated DC-8 and ER-2 flights investigated the optical properties of aerosols, the influence of aerosols on clouds, and the performance of new instruments for satellite measurements of clouds and aerosols. ER-2 sorties sampled stratospheric injections of water vapor and other chemicals by local and distant convection. DC-8 flights studied seasonally evolving chemistry in the Southeastern U.S., atmospheric chemistry with lower emissions of NOx and SO2 than in previous decades, isoprene chemistry under high and low NOx conditions at different locations, organic aerosols, air pollution near Houston and in petroleum fields, smoke from wildfires in western forests and from agricultural fires in the Mississippi Valley, and the ways in which the chemistry in the boundary layer and the upper troposphere were influenced by vertical transport in convective clouds.

  8. Beyond the Required LISA Free-Fall Performance: New LISA Pathfinder Results down to 20 μ Hz

    Science.gov (United States)

    Armano, M.; Audley, H.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Castelli, E.; Cavalleri, A.; Cesarini, A.; Cruise, A. M.; Danzmann, K.; de Deus Silva, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E. D.; Freschi, M.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Grzymisch, J.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hoyland, D.; Hueller, M.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C. J.; Lobo, J. A.; Lloro, I.; Liu, L.; López-Zaragoza, J. P.; Maarschalkerweerd, R.; Mance, D.; Meshksar, N.; Martín, V.; Martin-Polo, L.; Martino, J.; Martin-Porqueras, F.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mendes, L.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Ramos-Castro, J.; Reiche, J.; Robertson, D. I.; Rivas, F.; Russano, G.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J. I.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Wass, P. J.; Weber, W. J.; Wissel, L.; Wittchen, A.; Zweifel, P.

    2018-02-01

    In the months since the publication of the first results, the noise performance of LISA Pathfinder has improved because of reduced Brownian noise due to the continued decrease in pressure around the test masses, from a better correction of noninertial effects, and from a better calibration of the electrostatic force actuation. In addition, the availability of numerous long noise measurement runs, during which no perturbation is purposely applied to the test masses, has allowed the measurement of noise with good statistics down to 20 μ Hz . The Letter presents the measured differential acceleration noise figure, which is at (1.74 ±0.01 ) fm s-2/√{Hz } above 2 mHz and (6 ±1 ) ×10 fm s-2/√{Hz } at 20 μ Hz , and discusses the physical sources for the measured noise. This performance provides an experimental benchmark demonstrating the ability to realize the low-frequency science potential of the LISA mission, recently selected by the European Space Agency.

  9. Coupling of relative intensity noise and pathlength noise to the length measurement in the optical metrology system of LISA Pathfinder

    Science.gov (United States)

    Wittchen, Andreas; the LPF Collaboration

    2017-05-01

    LISA Pathfinder is a technology demonstration mission for the space-based gravitational wave observatory, LISA. It demonstrated that the performance requirements for the interferometric measurement of two test masses in free fall can be met. An important part of the data analysis is to identify the limiting noise sources. [1] This measurement is performed with heterodyne interferometry. The performance of this optical metrology system (OMS) at high frequencies is limited by sensing noise. One such noise source is Relative Intensity Noise (RIN). RIN is a property of the laser, and the photodiode current generated by the interferometer signal contains frequency dependant RIN. From this electric signal the phasemeter calculates the phase change and laser power, and the coupling of RIN into the measurement signal depends on the noise frequency. RIN at DC, at the heterodyne frequency and at two times the heterodyne frequency couples into the phase. Another important noise at high frequencies is path length noise. To reduce the impact this noise is suppressed with a control loop. Path length noise not suppressed will couple directly into the length measurement. The subtraction techniques of both noise sources depend on the phase difference between the reference signal and the measurement signal, and thus on the test mass position. During normal operations we position the test mass at the interferometric zero, which is optimal for noise subtraction purposes. This paper will show results from an in-flight experiment where the test mass position was changed to make the position dependant noise visible.

  10. First in...Last Out: History of the U.S. Army Pathfinder (1942-2011)

    Science.gov (United States)

    2014-05-21

    Brittany, it would seize the Port of Brest , and cover the south flank, while the First Army began an attack to the northeast toward Paris .63 87 On the......it will provide insights into Pathfinder doctrine, “tactics, techniques and procedures,” strategy, technology and lessons learned from their origin

  11. Development of Slewing Mirror Telescope Optical System for the UFFO-pathfinder

    DEFF Research Database (Denmark)

    Jeong, S.; Nam, J.W.; Ahn, K.-B.

    2013-01-01

    The Slewing Mirror Telescope (SMT) is the UV/optical telescope of UFFO-pathfinder. The SMT optical system is a Ritchey-Chrétien (RC) telescope of 100 mm diameter pointed by means of a gimbal-mounted flat mirror in front of the telescope. The RC telescope has a 17 × 17arcmin2 in Field of View and ...

  12. The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment

    DEFF Research Database (Denmark)

    Schofield, J.T.; Barnes, J.R.; Crisp, D.

    1997-01-01

    The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment measured the vertical density, pressure, and temperature structure of the martian atmosphere from the surface to 160 km, and monitored surface meteorology and climate for 83 sols (1 sol = 1 martian day = 24...

  13. Uncoupling nicotine mediated motoneuron axonal pathfinding errors and muscle degeneration in zebrafish

    International Nuclear Information System (INIS)

    Welsh, Lillian; Tanguay, Robert L.; Svoboda, Kurt R.

    2009-01-01

    Zebrafish embryos offer a unique opportunity to investigate the mechanisms by which nicotine exposure impacts early vertebrate development. Embryos exposed to nicotine become functionally paralyzed by 42 hpf suggesting that the neuromuscular system is compromised in exposed embryos. We previously demonstrated that secondary spinal motoneurons in nicotine-exposed embryos were delayed in development and that their axons made pathfinding errors (Svoboda, K.R., Vijayaraghaven, S., Tanguay, R.L., 2002. Nicotinic receptors mediate changes in spinal motoneuron development and axonal pathfinding in embryonic zebrafish exposed to nicotine. J. Neurosci. 22, 10731-10741). In that study, we did not consider the potential role that altered skeletal muscle development caused by nicotine exposure could play in contributing to the errors in spinal motoneuron axon pathfinding. In this study, we show that an alteration in skeletal muscle development occurs in tandem with alterations in spinal motoneuron development upon exposure to nicotine. The alteration in the muscle involves the binding of nicotine to the muscle-specific AChRs. The nicotine-induced alteration in muscle development does not occur in the zebrafish mutant (sofa potato, [sop]), which lacks muscle-specific AChRs. Even though muscle development is unaffected by nicotine exposure in sop mutants, motoneuron axonal pathfinding errors still occur in these mutants, indicating a direct effect of nicotine exposure on nervous system development.

  14. Optimal path-finding through mental exploration based on neural energy field gradients.

    Science.gov (United States)

    Wang, Yihong; Wang, Rubin; Zhu, Yating

    2017-02-01

    Rodent animal can accomplish self-locating and path-finding task by forming a cognitive map in the hippocampus representing the environment. In the classical model of the cognitive map, the system (artificial animal) needs large amounts of physical exploration to study spatial environment to solve path-finding problems, which costs too much time and energy. Although Hopfield's mental exploration model makes up for the deficiency mentioned above, the path is still not efficient enough. Moreover, his model mainly focused on the artificial neural network, and clear physiological meanings has not been addressed. In this work, based on the concept of mental exploration, neural energy coding theory has been applied to the novel calculation model to solve the path-finding problem. Energy field is constructed on the basis of the firing power of place cell clusters, and the energy field gradient can be used in mental exploration to solve path-finding problems. The study shows that the new mental exploration model can efficiently find the optimal path, and present the learning process with biophysical meaning as well. We also analyzed the parameters of the model which affect the path efficiency. This new idea verifies the importance of place cell and synapse in spatial memory and proves that energy coding is effective to study cognitive activities. This may provide the theoretical basis for the neural dynamics mechanism of spatial memory.

  15. Effective pathfinding for four-wheeled robot based on combining Theta* and hybrid A* algorithms

    Directory of Open Access Journals (Sweden)

    Віталій Геннадійович Михалько

    2016-07-01

    Full Text Available Effective pathfinding algorithm based on Theta* and Hybrid A* algorithms was developed for four-wheeled robot. Pseudocode for algorithm was showed and explained. Algorithm and simulator for four-wheeled robot were implemented using Java programming language. Algorithm was tested on U-obstacles, complex maps and for parking problem

  16. Slewing mirror telescope of the UFFO-pathfinder: first report on performance in space

    DEFF Research Database (Denmark)

    Gaikov, G.; Jeong, S.; Agaradahalli, V. G.

    2017-01-01

    of the UFFO-pathfinder payload, which was launched on April 28, 2016, onboard the Lomonosov satellite. For the first time, the slewing mirror system has been proven for the precision tracking of astrophysical objects during space operation. We confirmed that the SMT has 1.4 seconds of response time to the X...

  17. The Stellar Imager (SI) Mission Concept

    Science.gov (United States)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Lyon, Richard G.; Mundy, Lee G.; Allen, Ronald J.; Armstrong, Thomas; Danchi, William C.; Karovska, Margarita; Marzouk, Joe; Mazzuca, Lisa M.; hide

    2002-01-01

    The Stellar Imager (SI) is envisioned as a space-based, UV-optical interferometer composed of 10 or more one-meter class elements distributed with a maximum baseline of 0.5 km. It is designed to image stars and binaries with sufficient resolution to enable long-term studies of stellar magnetic activity patterns, for comparison with those on the sun. It will also support asteroseismology (acoustic imaging) to probe stellar internal structure, differential rotation, and large-scale circulations. SI will enable us to understand the various effects of the magnetic fields of stars, the dynamos that generate these fields, and the internal structure and dynamics of the stars. The ultimate goal of the mission is to achieve the best-possible forecasting of solar activity as a driver of climate and space weather on time scales ranging from months up to decades, and an understanding of the impact of stellar magnetic activity on life in the Universe. In this paper we describe the scientific goals of the mission, the performance requirements needed to address these goals, the "enabling technology" development efforts being pursued, and the design concepts now under study for the full mission and a possible pathfinder mission.

  18. NOAA Climate Data Record (CDR) of Sea Surface Temperature (SST) from AVHRR Pathfinder, Version 5.2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The AVHRR Pathfinder Version 5.2 Sea Surface Temperature data set (PFV52) is a collection of global, twice-daily 4km sea surface temperature data produced in a...

  19. NOAA Climate Data Record (CDR) of Cloud Properties from AVHRR Pathfinder Atmospheres - Extended (PATMOS-x), Version 5.3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This NOAA Climate Data Record (CDR) of cloud products was produced by the University of Wisconsin using the AVHRR Pathfinder Atmospheres - Extended (PATMOS-X)...

  20. THE TIME DOMAIN SPECTROSCOPIC SURVEY: VARIABLE SELECTION AND ANTICIPATED RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Morganson, Eric; Green, Paul J. [Harvard Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States); Anderson, Scott F.; Ruan, John J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Eracleous, Michael; Brandt, William Nielsen [Department of Astronomy and Astrophysics, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802 (United States); Kelly, Brandon [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106-9530 (United States); Badenes, Carlos [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 O’Hara St, Pittsburgh, PA 15260 (United States); Bañados, Eduardo [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Blanton, Michael R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Bershady, Matthew A. [Department of Astronomy, University of Wisconsin, 475 N. Charter St., Madison, WI 53706 (United States); Borissova, Jura [Instituto de Física y Astronomía, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Casilla 5030, and Millennium Institute of Astrophysics (MAS), Santiago (Chile); Burgett, William S. [GMTO Corp, Suite 300, 251 S. Lake Ave, Pasadena, CA 91101 (United States); Chambers, Kenneth, E-mail: emorganson@cfa.harvard.edu [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); and others

    2015-06-20

    We present the selection algorithm and anticipated results for the Time Domain Spectroscopic Survey (TDSS). TDSS is an Sloan Digital Sky Survey (SDSS)-IV Extended Baryon Oscillation Spectroscopic Survey (eBOSS) subproject that will provide initial identification spectra of approximately 220,000 luminosity-variable objects (variable stars and active galactic nuclei across 7500 deg{sup 2} selected from a combination of SDSS and multi-epoch Pan-STARRS1 photometry. TDSS will be the largest spectroscopic survey to explicitly target variable objects, avoiding pre-selection on the basis of colors or detailed modeling of specific variability characteristics. Kernel Density Estimate analysis of our target population performed on SDSS Stripe 82 data suggests our target sample will be 95% pure (meaning 95% of objects we select have genuine luminosity variability of a few magnitudes or more). Our final spectroscopic sample will contain roughly 135,000 quasars and 85,000 stellar variables, approximately 4000 of which will be RR Lyrae stars which may be used as outer Milky Way probes. The variability-selected quasar population has a smoother redshift distribution than a color-selected sample, and variability measurements similar to those we develop here may be used to make more uniform quasar samples in large surveys. The stellar variable targets are distributed fairly uniformly across color space, indicating that TDSS will obtain spectra for a wide variety of stellar variables including pulsating variables, stars with significant chromospheric activity, cataclysmic variables, and eclipsing binaries. TDSS will serve as a pathfinder mission to identify and characterize the multitude of variable objects that will be detected photometrically in even larger variability surveys such as Large Synoptic Survey Telescope.

  1. Planetary protection implementation on future Mars lander missions

    Science.gov (United States)

    Howell, Robert; Devincenzi, Donald L.

    1993-01-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bioassays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing

  2. Planetary protection implementation on future Mars lander missions

    Science.gov (United States)

    Howell, Robert; Devincenzi, Donald L.

    1993-06-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bio-assays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing

  3. The readout system and the trigger algorithm implementation for the UFFO Pathfinder

    DEFF Research Database (Denmark)

    Na, G.W.; Ahmad, S.; Barrillon, P.

    2012-01-01

    ) Pathfinder, to take the sub-minute data for the early photons from GRB. The UFFO Pathfinder has a coded-mask X-ray camera to search the GRB location by the UBAT trigger algorithm. To determine the direction of GRB as soon as possible it requires the fast processing. We have ultimately implemented all...... have been measured within a minute after the gamma ray signal. This lack of sub-minute data limits the study for the characteristics of the UV-optical light curve of the short-hard type GRB and the fast-rising GRB. Therefore, we have developed the telescope named the Ultra-Fast Flash Observatory (UFFO...

  4. Towards a laboratory breadboard for PEGASE, the DARWIN pathfinder

    Science.gov (United States)

    Cassaing, F.; Le Duigou, J.-M.; Sorrente, B.; Fleury, B.; Gorius, N.; Brachet, F.; Buisset, C.; Ollivier, M.; Hénault, F.; Mourard, D.; Rabbia, Y.; Delpech, M.; Guidotti, P.-Y.; Léger, A.; Barillot, M.; Rouan, D.; Rousset, G.

    2017-11-01

    PEGASE, a spaceborne mission proposed to the CNES, is a 2-aperture interferometer for nulling and interferometric imaging. PEGASE is composed of 3 free-flying satellites (2 siderostats and 1 beam combiner) with baselines from 50 to 500 m. The goals of PEGASE are the spectroscopy of hot Jupiter (Pegasides) and brown dwarves, the exploration of the inner part of protoplanetary disks and the validation in real space conditions of nulling and visibility interferometry with formation flying. During a phase-0 study performed in 2005 at CNES, ONERA and in the laboratories, the critical subsystems of the optical payload have been investigated and a preliminary system integration has been performed. These subsystems are mostly the broadband (2.5-5 μm) nuller and the cophasing system (visible) dedicated to the real-time control of the OPD/tip/tilt inside the payload. A laboratory breadboard of the payload is under definition and should be built in 2007.

  5. Pathfinder irradiation of advanced fuel (Th/U mixed oxide) in a power reactor

    International Nuclear Information System (INIS)

    Brant Pinheiro, R.

    1993-01-01

    Within the joint Brazilian-German cooperative R and D Program on Thorium Utilization in Pressurized Water Reactors carried out from 1979 to 1988 by Nuclebras/CDTN, KFA-Juelich, Siemens/KWU and NUKEM, a pathfinder irradiation of Th/U mixed oxide fuel in the Angra 1 nuclear power reactor was planned. The objectives of this irradiation testing, the irradiation strategy, the work performed and the status achieved at the end of the joint Program are presented. (author)

  6. Pathfinder: multiresolution region-based searching of pathology images using IRM.

    OpenAIRE

    Wang, J. Z.

    2000-01-01

    The fast growth of digitized pathology slides has created great challenges in research on image database retrieval. The prevalent retrieval technique involves human-supplied text annotations to describe slide contents. These pathology images typically have very high resolution, making it difficult to search based on image content. In this paper, we present Pathfinder, an efficient multiresolution region-based searching system for high-resolution pathology image libraries. The system uses wave...

  7. Atmosphere Processing Module Automation and Catalyst Durability Analysis for Mars ISRU Pathfinder

    Science.gov (United States)

    Petersen, Elspeth M.

    2016-01-01

    The Mars In-Situ Resource Utilization Pathfinder was designed to create fuel using components found in the planet’s atmosphere and regolith for an ascension vehicle to return a potential sample return or crew return vehicle from Mars. The Atmosphere Processing Module (APM), a subunit of the pathfinder, uses cryocoolers to isolate and collect carbon dioxide from Mars simulant gas. The carbon dioxide is fed with hydrogen into a Sabatier reactor where methane is produced. The APM is currently undergoing the final stages of testing at Kennedy Space Center prior to process integration testing with the other subunits of the pathfinder. The automation software for the APM cryocoolers was tested and found to perform nominally. The catalyst used for the Sabatier reactor was investigated to determine the factors contributing to catalyst failure. The results from the catalyst testing require further analysis, but it appears that the rapid change in temperature during reactor start up or the elevated operating temperature is responsible for the changes observed in the catalyst.

  8. An Application of the "Virtual Spacecraft" Concept in Evaluation of the Mars Pathfinder Lander Low Gain Antenna

    Science.gov (United States)

    Pogorzelski, R. J.; Beckon, R. J.

    1997-01-01

    The virtual spacecraft concept is embodied in a set of subsystems, either in the form of hardware or computational models, which together represent all, or a portion of, a spacecraft. For example, the telecommunications transponder may be a hardware prototype while the propulsion system may exist only as a simulation. As the various subsystems are realized in hardware, the spacecraft becomes progressively less virtual. This concept is enabled by JPL's Mission System Testbed which is a set of networked workstations running a message passing operating system called "TRAMEL" which stands for Task Remote Asynchronous Message Exchange Layer. Each simulation on the workstations, which may in fact be hardware controlled by the workstation, "publishes" its operating parameters on TRAMEL and other simulations requiring those parameters as input may "subscribe" to them. In this manner, the whole simulation operates as a single virtual system. This paper describes a simulation designed to evaluate a communications link between the earth and the Mars Pathfinder Lander module as it descends under a parachute through the Martian atmosphere toward the planet's surface. This link includes a transmitter and a low gain antenna on the spacecraft and a receiving antenna and receiver on the earth as well as a simulation of the dynamics of the spacecraft. The transmitter, the ground station antenna, the receiver and the dynamics are all simulated computationally while the spacecraft antenna is implemented in hardware on a very simple spacecraft mockup. The dynamics simulation is a record of one output of the ensemble of outputs of a Monte Carlo simulation of the descent. Additionally, the antenna/spacecraft mock-up system was simulated using APATCH, a shooting and bouncing ray code developed by Demaco, Inc. The antenna simulation, the antenna hardware, and the link simulation are all physically located in different facilities at JPL separated by several hundred meters and are linked via

  9. Technology Development Roadmap: A Technology Development Roadmap for a Future Gravitational Wave Mission

    Science.gov (United States)

    Camp, Jordan; Conklin, John; Livas, Jeffrey; Klipstein, William; McKenzie, Kirk; Mueller, Guido; Mueller, Juergen; Thorpe, James Ira; Arsenovic, Peter; Baker, John; hide

    2013-01-01

    Humankind will detect the first gravitational wave (GW) signals from the Universe in the current decade using ground-based detectors. But the richest trove of astrophysical information lies at lower frequencies in the spectrum only accessible from space. Signals are expected from merging massive black holes throughout cosmic history, from compact stellar remnants orbiting central galactic engines from thousands of close contact binary systems in the Milky Way, and possibly from exotic sources, some not yet imagined. These signals carry essential information not available from electromagnetic observations, and which can be extracted with extraordinary accuracy. For 20 years, NASA, the European Space Agency (ESA), and an international research community have put considerable effort into developing concepts and technologies for a GW mission. Both the 2000 and 2010 decadal surveys endorsed the science and mission concept of the Laser Interferometer Space Antenna (LISA). A partnership of the two agencies defined and analyzed the concept for a decade. The agencies partnered on LISA Pathfinder (LPF), and ESA-led technology demonstration mission, now preparing for a 2015 launch. Extensive technology development has been carried out on the ground. Currently, the evolved Laser Interferometer Space Antenna (eLISA) concept, a LISA-like concept with only two measurement arms, is competing for ESA's L2 opportunity. NASA's Astrophysics Division seeks to be a junior partner if eLISA is selected. If eLISA is not selected, then a LISA-like mission will be a strong contender in the 2020 decadal survey. This Technology Development Roadmap (TDR) builds on the LISA concept development, the LPF technology development, and the U.S. and European ground-based technology development. The eLISA architecture and the architecture of the Mid-sized Space-based Gravitational-wave Observatory (SGO Mid)-a competitive design with three measurement arms from the recent design study for a NASA

  10. The Ulysses mission: An introduction

    International Nuclear Information System (INIS)

    Marsden, R.G.

    1996-01-01

    On 30 September 1995, Ulysses completed its initial, highly successful, survey of the polar regions of the heliosphere in both southern and northern hemispheres, thereby fulfilling its prime mission. The results obtained to date are leading to a revision of many earlier ideas concerning the solar wind and the heliosphere. Now embarking on the second phase of the mission, Ulysses will continue along its out-of-ecliptic flight path for another complete orbit of the Sun. In contrast to the high-latitude phase of the prime mission, which occurred near solar minimum, the next polar passes (in 2000 and 2001) will take place when the Sun is at its most active

  11. The Euclid mission design

    Science.gov (United States)

    Racca, Giuseppe D.; Laureijs, René; Stagnaro, Luca; Salvignol, Jean-Christophe; Lorenzo Alvarez, José; Saavedra Criado, Gonzalo; Gaspar Venancio, Luis; Short, Alex; Strada, Paolo; Bönke, Tobias; Colombo, Cyril; Calvi, Adriano; Maiorano, Elena; Piersanti, Osvaldo; Prezelus, Sylvain; Rosato, Pierluigi; Pinel, Jacques; Rozemeijer, Hans; Lesna, Valentina; Musi, Paolo; Sias, Marco; Anselmi, Alberto; Cazaubiel, Vincent; Vaillon, Ludovic; Mellier, Yannick; Amiaux, Jérôme; Berthé, Michel; Sauvage, Marc; Azzollini, Ruyman; Cropper, Mark; Pottinger, Sabrina; Jahnke, Knud; Ealet, Anne; Maciaszek, Thierry; Pasian, Fabio; Zacchei, Andrea; Scaramella, Roberto; Hoar, John; Kohley, Ralf; Vavrek, Roland; Rudolph, Andreas; Schmidt, Micha

    2016-07-01

    Euclid is a space-based optical/near-infrared survey mission of the European Space Agency (ESA) to investigate the nature of dark energy, dark matter and gravity by observing the geometry of the Universe and on the formation of structures over cosmological timescales. Euclid will use two probes of the signature of dark matter and energy: Weak gravitational Lensing, which requires the measurement of the shape and photometric redshifts of distant galaxies, and Galaxy Clustering, based on the measurement of the 3-dimensional distribution of galaxies through their spectroscopic redshifts. The mission is scheduled for launch in 2020 and is designed for 6 years of nominal survey operations. The Euclid Spacecraft is composed of a Service Module and a Payload Module. The Service Module comprises all the conventional spacecraft subsystems, the instruments warm electronics units, the sun shield and the solar arrays. In particular the Service Module provides the extremely challenging pointing accuracy required by the scientific objectives. The Payload Module consists of a 1.2 m three-mirror Korsch type telescope and of two instruments, the visible imager and the near-infrared spectro-photometer, both covering a large common field-of-view enabling to survey more than 35% of the entire sky. All sensor data are downlinked using K-band transmission and processed by a dedicated ground segment for science data processing. The Euclid data and catalogues will be made available to the public at the ESA Science Data Centre.

  12. CubeSat quantum communications mission

    Energy Technology Data Exchange (ETDEWEB)

    Oi, Daniel K.L. [University of Strathclyde, SUPA Department of Physics, Glasgow (United Kingdom); University of Strathclyde, Strathclyde Space Institute, Glasgow (United Kingdom); Ling, Alex [National University of Singapore, Centre for Quantum Technologies, Singapore (Singapore); National University of Singapore, Dept. of Physics, Singapore (Singapore); Vallone, Giuseppe; Villoresi, Paolo [Universita degli Studi di Padova, Dipartimento di Ingegneria dell' Informazione, Padova (Italy); Greenland, Steve; Kerr, Emma [University of Strathclyde, Advanced Space Concepts Laboratory, Mechanical and Aerospace Engineering, Glasgow (United Kingdom); Macdonald, Malcolm [Technology and Innovation Centre, Scottish Centre of Excellence in Satellite Applications, Glasgow (United Kingdom); Weinfurter, Harald [Ludwig-Maximilians-Universitaet, Department fuer Physik, Munich (Germany); Kuiper, Hans [Delft University of Technology, Space Systems Engineering, Aerospace Engineering, Delft (Netherlands); Charbon, Edoardo [AQUA, EPFL, Lausanne (Switzerland); Delft University of Technology, Delft (Netherlands); Ursin, Rupert [Vienna Austrian Academy of Sciences, Institute for Quantum Optics and Quantum Information, Vienna (Austria)

    2017-12-15

    Quantum communication is a prime space technology application and offers near-term possibilities for long-distance quantum key distribution (QKD) and experimental tests of quantum entanglement. However, there exists considerable developmental risks and subsequent costs and time required to raise the technological readiness level of terrestrial quantum technologies and to adapt them for space operations. The small-space revolution is a promising route by which synergistic advances in miniaturization of both satellite systems and quantum technologies can be combined to leap-frog conventional space systems development. Here, we outline a recent proposal to perform orbit-to-ground transmission of entanglement and QKD using a CubeSat platform deployed from the International Space Station (ISS). This ambitious mission exploits advances in nanosatellite attitude determination and control systems (ADCS), miniaturised target acquisition and tracking sensors, compact and robust sources of single and entangled photons, and high-speed classical communications systems, all to be incorporated within a 10 kg 6 litre mass-volume envelope. The CubeSat Quantum Communications Mission (CQuCoM) would be a pathfinder for advanced nanosatellite payloads and operations, and would establish the basis for a constellation of low-Earth orbit trusted-nodes for QKD service provision. (orig.)

  13. CubeSat quantum communications mission

    International Nuclear Information System (INIS)

    Oi, Daniel K.L.; Ling, Alex; Vallone, Giuseppe; Villoresi, Paolo; Greenland, Steve; Kerr, Emma; Macdonald, Malcolm; Weinfurter, Harald; Kuiper, Hans; Charbon, Edoardo; Ursin, Rupert

    2017-01-01

    Quantum communication is a prime space technology application and offers near-term possibilities for long-distance quantum key distribution (QKD) and experimental tests of quantum entanglement. However, there exists considerable developmental risks and subsequent costs and time required to raise the technological readiness level of terrestrial quantum technologies and to adapt them for space operations. The small-space revolution is a promising route by which synergistic advances in miniaturization of both satellite systems and quantum technologies can be combined to leap-frog conventional space systems development. Here, we outline a recent proposal to perform orbit-to-ground transmission of entanglement and QKD using a CubeSat platform deployed from the International Space Station (ISS). This ambitious mission exploits advances in nanosatellite attitude determination and control systems (ADCS), miniaturised target acquisition and tracking sensors, compact and robust sources of single and entangled photons, and high-speed classical communications systems, all to be incorporated within a 10 kg 6 litre mass-volume envelope. The CubeSat Quantum Communications Mission (CQuCoM) would be a pathfinder for advanced nanosatellite payloads and operations, and would establish the basis for a constellation of low-Earth orbit trusted-nodes for QKD service provision. (orig.)

  14. Free-Suspension Residual Flexibility Testing of Space Station Pathfinder: Comparison to Fixed-Base Results

    Science.gov (United States)

    Tinker, Michael L.

    1998-01-01

    Application of the free-suspension residual flexibility modal test method to the International Space Station Pathfinder structure is described. The Pathfinder, a large structure of the general size and weight of Space Station module elements, was also tested in a large fixed-base fixture to simulate Shuttle Orbiter payload constraints. After correlation of the Pathfinder finite element model to residual flexibility test data, the model was coupled to a fixture model, and constrained modes and frequencies were compared to fixed-base test. modes. The residual flexibility model compared very favorably to results of the fixed-base test. This is the first known direct comparison of free-suspension residual flexibility and fixed-base test results for a large structure. The model correlation approach used by the author for residual flexibility data is presented. Frequency response functions (FRF) for the regions of the structure that interface with the environment (a test fixture or another structure) are shown to be the primary tools for model correlation that distinguish or characterize the residual flexibility approach. A number of critical issues related to use of the structure interface FRF for correlating the model are then identified and discussed, including (1) the requirement of prominent stiffness lines, (2) overcoming problems with measurement noise which makes the antiresonances or minima in the functions difficult to identify, and (3) the use of interface stiffness and lumped mass perturbations to bring the analytical responses into agreement with test data. It is shown that good comparison of analytical-to-experimental FRF is the key to obtaining good agreement of the residual flexibility values.

  15. Open access and knowledge sharing: reflections on the Pathfinder projects and Open Access Good Practice initiative

    Directory of Open Access Journals (Sweden)

    Hannah DeGroff

    2016-07-01

    Full Text Available The following article provides a selection of reflections from a number of higher education institutions and their staff about participation in the UK-wide Pathfinder project scheme. These nine projects (comprising 30 institutions form the core of the Jisc-funded Open Access Good Practice initiative. They have produced a wide range of outputs which endorse and encourage best practice when implementing open access across institutions. Each project has a blog where progress and outputs can be tracked. Details are listed at the end of this article.

  16. Towards a Framework for Generating Tests to Satisfy Complex Code Coverage in Java Pathfinder

    Science.gov (United States)

    Staats, Matt

    2009-01-01

    We present work on a prototype tool based on the JavaPathfinder (JPF) model checker for automatically generating tests satisfying the MC/DC code coverage criterion. Using the Eclipse IDE, developers and testers can quickly instrument Java source code with JPF annotations covering all MC/DC coverage obligations, and JPF can then be used to automatically generate tests that satisfy these obligations. The prototype extension to JPF enables various tasks useful in automatic test generation to be performed, such as test suite reduction and execution of generated tests.

  17. The slewing mirror telescope of the Ultra Fast Flash Observatory Pathfinder

    DEFF Research Database (Denmark)

    Jeong, S.; Ahmad, S.; Barrillon, P.

    2012-01-01

    The Slewing Mirror Telescope (SMT) is a key telescope of Ultra-Fast Flash Observatory (UFFO) space project to explore the first sub-minute or sub-seconds early photons from the Gamma Ray Bursts (GRBs) afterglows. As the realization of UFFO, 20kg of UFFO-Pathfinder (UFFO-P) is going to be on board...... the Russian Lomonosov satellite in November 2012 by Soyuz-2 rocket. Once the UFFO Burst Alert & Trigger Telescope (UBAT) detects the GRBs, Slewing mirror (SM) will slew to bring new GRB into the SMT’s field of view rather than slewing the entire spacecraft. SMT can give a UV/Optical counterpart position...

  18. Ground-based self-gravity tests for LISA Pathfinder and LISA

    International Nuclear Information System (INIS)

    Trenkel, C; Warren, C; Wealthy, D

    2009-01-01

    Gravitational coupling between the free-falling test masses and the surrounding spacecraft is one of the dominant noise sources for both LISA Pathfinder and LISA. At present, there are no plans to verify any of the self-gravity requirements by test, on the ground. Here, we explore the possibilities of conducting such tests, using a customised torsion balance. We discuss the main sources of systematic and statistical uncertainty present in such a set-up. Our preliminary assessment indicates that the sensitivity is sufficient to carry out meaningful self-gravity tests.

  19. AGU Pathfinder: Career and Professional Development Resources for Earth and Space Scientists

    Science.gov (United States)

    Harwell, D. E.; Asher, P. M.; Hankin, E. R.; Janick, N. G.; Marasco, L.

    2017-12-01

    The American Geophysical Union (AGU) is committed to inspiring and educating present and future generations of diverse, innovative, and creative Earth and space scientists. To meet our commitment, AGU provides career and educational resources, webinars, mentoring, and support for students and professionals at each level of development to reduce barriers to achievement and to promote professional advancement. AGU is also working with other organizations and educational institutions to collaborate on projects benefiting the greater geoscience community. The presentation will include an overview of current Pathfinder efforts, collaborative efforts, and an appeal for additional partnerships.

  20. Public Progress, Data Management and the Land Grant Mission: A Survey of Agriculture Researchers' Practices and Attitudes at Two Land-Grant Institutions

    Science.gov (United States)

    Fernandez, Peter; Eaker, Christopher; Swauger, Shea; Davis, Miriam L. E. Steiner

    2016-01-01

    This article reports results from a survey about data management practices and attitudes sent to agriculture researchers and extension personnel at the University of Tennessee Institute of Agriculture (UTIA) and the College of Agricultural Sciences and Warner College of Natural Resources at Colorado State University. Results confirm agriculture…

  1. SoTL Research Fellows: Collaborative Pathfinding through Uncertain Terrain

    Directory of Open Access Journals (Sweden)

    Elizabeth Marquis

    2017-12-01

    Full Text Available From 2014-2016, Scholarship of Teaching and Learning (SoTL Research Fellows at a mid-sized Canadian research-intensive, medical-doctoral university undertook to study their own formation as scholars of teaching and learning, as well as benefits and challenges of their cross-appointment to our central teaching and learning institute from their home academic departments. Findings from surveys and focus groups identified themes such as identity, community, access, transfer, and structural elements (each with benefits and challenges to practice. Our autoethnographic work confirms assertions in the literature about the uneasy relation between SoTL and traditional scholarship, while also bearing out the need for departmental support, and for key interventions along the path from novice to practitioner identity. Some discussion of the ambassador or translator role that can flow from such arrangements is included. De 2014 à 2016, les chercheurs en Avancement des connaissances en enseignement et en apprentissage (ACEA d’une université canadienne médicale-doctorale de taille moyenne ayant un coefficient de recherche élevé ont entrepris une étude portant sur leur propre formation en tant que chercheurs érudits en matière d’enseignement et d’apprentissage, ainsi que sur les avantages et les défis de leur nomination conjointe à notre institut central d’enseignement et d’apprentissage tout en enseignant dans leur propre département universitaire. Les résultats des sondages et des groupes de discussion ont permis d’identifier certains thèmes tels que l’identité, la communauté, l’accès, le transfert, ainsi que des éléments structuraux (chacun présentant des avantages et des défis concernant la pratique. Notre travail autoethnographique confirme les assertions présentes dans la documentation existante concernant la relation difficile qui existe entre l’ACEA et la recherche traditionnelle, tout en tenant compte de la n

  2. Landsat Data Continuity Mission

    Science.gov (United States)

    ,

    2012-01-01

    The Landsat Data Continuity Mission (LDCM) is a partnership formed between the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) to place the next Landsat satellite in orbit in January 2013. The Landsat era that began in 1972 will become a nearly 41-year global land record with the successful launch and operation of the LDCM. The LDCM will continue the acquisition, archiving, and distribution of multispectral imagery affording global, synoptic, and repetitive coverage of the Earth's land surfaces at a scale where natural and human-induced changes can be detected, differentiated, characterized, and monitored over time. The mission objectives of the LDCM are to (1) collect and archive medium resolution (30-meter spatial resolution) multispectral image data affording seasonal coverage of the global landmasses for a period of no less than 5 years; (2) ensure that LDCM data are sufficiently consistent with data from the earlier Landsat missions in terms of acquisition geometry, calibration, coverage characteristics, spectral characteristics, output product quality, and data availability to permit studies of landcover and land-use change over time; and (3) distribute LDCM data products to the general public on a nondiscriminatory basis at no cost to the user.

  3. A Wind Tunnel Study on the Mars Pathfinder (MPF) Lander Descent Pressure Sensor

    Science.gov (United States)

    Soriano, J. Francisco; Coquilla, Rachael V.; Wilson, Gregory R.; Seiff, Alvin; Rivell, Tomas

    2001-01-01

    The primary focus of this study was to determine the accuracy of the Mars Pathfinder lander local pressure readings in accordance with the actual ambient atmospheric pressures of Mars during parachute descent. In order to obtain good measurements, the plane of the lander pressure sensor opening should ideally be situated so that it is parallel to the freestream. However, due to two unfavorable conditions, the sensor was positioned in locations where correction factors are required. One of these disadvantages is due to the fact that the parachute attachment point rotated the lander's center of gravity forcing the location of the pressure sensor opening to be off tangent to the freestream. The second and most troublesome factor was that the lander descends with slight oscillations that could vary the amplitude of the sensor readings. In order to accurately map the correction factors required at each sensor position, an experiment simulating the lander descent was conducted in the Martian Surface Wind Tunnel at NASA Ames Research Center. Using a 115 scale model at Earth ambient pressures, the test settings provided the necessary Reynolds number conditions in which the actual lander was possibly subjected to during the descent. In the analysis and results of this experiment, the readings from the lander sensor were converted to the form of pressure coefficients. With a contour map of pressure coefficients at each lander oscillatory position, this report will provide a guideline to determine the correction factors required for the Mars Pathfinder lander descent pressure sensor readings.

  4. The Role of APEX as a Pathfinder for AtLAST

    Science.gov (United States)

    Wyrowski, Friedrich

    2018-01-01

    Now more than 12 years in operation, the Atacama Pathfinder Experiment (APEX) 12 m submillimeter telescope has significantly contributed to a wide variety of submillimeter astronomy science areas, ranging from the discoveries of new molecules to large and deep imaging of the submillimeter sky. While ALMA operation is in full swing, APEX is strengthening its role not only as pathfinder for studying large source samples and spatial scales to prepare detailed high angular resolution ALMA follow ups, but also as fast response instruments to complement new results from ALMA. Furthermore, APEX ensures southern hemisphere access for submillimeter projects complementing archival Herschel research as well as new SOFIA science. With new broadband and multipixel receivers as well as large cameras for wide-field continuum imaging, APEX will pave the way towards the science envisioned with ATLAST. In this contribution, the current status and ongoing upgrades of APEX will be discussed, with an emphasis on the importance of continuous cutting edge science and state-of-the-art instrumentation that will bridge the gap towards ATLAST.

  5. Classification and Distribution of Mars Pathfinder Rocks Using Quantitative Morphologic Indices

    Science.gov (United States)

    Yingst, R. A.; Biederman, K. L.; Monhead, A. M.; Haldemann, A. F. C.; Kowalczyk, M. R.

    2004-01-01

    The Mars Pathfinder (MPF) landing site was predicted to contain a broad sampling of rock types varying in mineralogical, physical, mechanical and geochemical characteristics. Although rocks have been divided into several spectral categories based on Imager for Mars Pathfinder visible/near-infrared spectra, it has not been fully determined which of these stem from intrinsic mineralogical differences between rocks or rock surfaces, and which result from factors such as physical or chemical weathering. This has made isolation of unique mineralogy's difficult. Efforts in isolating and classifying spectral units among MPF rocks and soils have met with varying degrees of success, and the current understanding is such that many factors influencing spectral signatures cannot be quantified to a sufficient level so they may be removed. The result is that fundamental questions regarding information needed to reveal the present and past interactions between the rocks and rock surfaces and the Martian environment remain unanswered. But it is possible to approach the issue of identifying distinct rock and rock surface types from a different angle.

  6. Ascending Midbrain Dopaminergic Axons Require Descending GAD65 Axon Fascicles for Normal Pathfinding

    Directory of Open Access Journals (Sweden)

    Claudia Marcela Garcia-Peña

    2014-06-01

    Full Text Available The Nigrostriatal pathway (NSP is formed by dopaminergic axons that project from the ventral midbrain to the dorsolateral striatum as part of the medial forebrain bundle. Previous studies have implicated chemotropic proteins in the formation of the NSP during development but little is known of the role of substrate-anchored signals in this process. We observed in mouse and rat embryos that midbrain dopaminergic axons ascend in close apposition to descending GAD65-positive axon bundles throughout their trajectory to the striatum. To test whether such interaction is important for dopaminergic axon pathfinding, we analyzed transgenic mouse embryos in which the GAD65 axon bundle was reduced by the conditional expression of the diphtheria toxin. In these embryos we observed dopaminergic misprojection into the hypothalamic region and abnormal projection in the striatum. In addition, analysis of Robo1/2 and Slit1/2 knockout embryos revealed that the previously described dopaminergic misprojection in these embryos is accompanied by severe alterations in the GAD65 axon scaffold. Additional studies with cultured dopaminergic neurons and whole embryos suggest that NCAM and Robo proteins are involved in the interaction of GAD65 and dopaminergic axons. These results indicate that the fasciculation between descending GAD65 axon bundles and ascending dopaminergic axons is required for the stereotypical NSP formation during brain development and that known guidance cues may determine this projection indirectly by instructing the pathfinding of the axons that are part of the GAD65 axon scaffold.

  7. ERASMUS-F: pathfinder for an E-ELT 3D instrumentation

    Science.gov (United States)

    Kelz, Andreas; Roth, Martin M.; Bacon, Roland; Bland-Hawthorn, Joss; Nicklas, Harald E.; Bryant, Julia J.; Colless, Matthew; Croom, Scott; Ellis, Simon; Fleischmann, Andreas; Gillingham, Peter; Haynes, Roger; Hopkins, Andrew; Kosmalski, Johan; O'Byrne, John W.; Olaya, Jean-Christophe; Rambold, William N.; Robertson, Gordon

    2010-07-01

    ERASMUS-F is a pathfinder study for a possible E-ELT 3D-instrumentation, funded by the German Ministry for Education and Research (BMBF). The study investigates the feasibility to combine a broadband optical spectrograph with a new generation of multi-object deployable fibre bundles. The baseline approach is to modify the spectrograph of the Multi-Unit Spectroscopic Explorer (MUSE), which is a VLT integral-field instrument using slicers, with a fibre-fed input. Taking advantage of recent developments in astrophotonics, it is planed to equip such an instrument with fused fibre bundles (hexabundles) that offer larger filling factors than dense-packed classical fibres. The overall project involves an optical and mechanical design study, the specifications of a software package for 3Dspectrophotometry, based upon the experiences with the P3d Data Reduction Software and an investigation of the science case for such an instrument. As a proof-of-concept, the study also involves a pathfinder instrument for the VLT, called the FIREBALL project.

  8. AVHRR Pathfinder version 5.3 level 3 collated (L3C) global 4km sea surface temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The AVHRR Pathfinder Version 5.3 (PFV53) L3C Sea Surface Temperature data set is a collection of global, twice-daily (Day and Night) 4km sea surface temperature...

  9. Analysis of entry accelerometer data: A case study of Mars Pathfinder

    Science.gov (United States)

    Withers, Paul; Towner, M. C.; Hathi, B.; Zarnecki, J. C.

    2003-08-01

    Accelerometers are regularly flown on atmosphere-entering spacecraft. Using their measurements, the spacecraft trajectory and the vertical structure of density, pressure, and temperature in the atmosphere through which it descends can be calculated. We review the general procedures for trajectory and atmospheric structure reconstruction and outline them here in detail. We discuss which physical properties are important in atmospheric entry, instead of working exclusively with the dimensionless numbers of fluid dynamics. Integration of the equations of motion governing the spacecraft trajectory is carried out in a novel and general formulation. This does not require an axisymmetric gravitational field or many of the other assumptions that are present in the literature. We discuss four techniques - head-on, drag-only, acceleration ratios, and gyroscopes - for constraining spacecraft attitude, which is the critical issue in the trajectory reconstruction. The head-on technique uses an approximate magnitude and direction for the aerodynamic acceleration, whereas the drag-only technique uses the correct magnitude and an approximate direction. The acceleration ratios technique uses the correct magnitude and an indirect way of finding the correct direction and the gyroscopes technique uses the correct magnitude and a direct way of finding the correct direction. The head-on and drag-only techniques are easy to implement and require little additional information. The acceleration ratios technique requires extensive and expensive aerodynamic modelling. The gyroscopes technique requires additional onboard instrumentation. The effects of errors are briefly addressed. Our implementations of these trajectory reconstruction procedures have been verified on the Mars Pathfinder dataset. We find inconsistencies within the published work of the Pathfinder science team, and in the PDS archive itself, relating to the entry state of the spacecraft. Our atmospheric structure

  10. Size Scales for Thermal Inhomogeneities in Mars' Atmosphere Surface Layer: Mars Pathfinder

    Science.gov (United States)

    Mihalov, John D.; Haberle, Robert M.; Seiff, Alvin; Murphy, James R.; Schofield, John T.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Atmospheric temperature measurement at three heights with thin wire thermocouples on the 1.1 m Mars Pathfinder meteorology must allow estimates of the integral scale of the atmospheric thermal turbulence during an 83 sol period that begins in the summer. The integral scale is a measure for regions of perturbations. In turbulent media that roughly characterizes locations where the perturbations are correlated. Excluding some to intervals with violent excursions of the mean temperatures, integral scale values are found that increase relatively rapidly from a few tenths meters or less near down to several meters by mid-morning. During mid-morning, the diurnal and shorter time scale wind direction variations often place the meteorology mast in the thermal wake of the Lander.

  11. In-flight thermal experiments for LISA Pathfinder: Simulating temperature noise at the Inertial Sensors

    International Nuclear Information System (INIS)

    Armano, M; Audley, H; Born, M; Danzmann, K; Diepholz, I; Auger, G; Binetruy, P; Baird, J; Bortoluzzi, D; Brandt, N; Fitzsimons, E; Bursi, A; Caleno, M; Cavalleri, A; Cesarini, A; Dolesi, R; Ferroni, V; Cruise, M; Dunbar, N; Ferraioli, L

    2015-01-01

    Thermal Diagnostics experiments to be carried out on board LISA Pathfinder (LPF) will yield a detailed characterisation of how temperature fluctuations affect the LTP (LISA Technology Package) instrument performance, a crucial information for future space based gravitational wave detectors as the proposed eLISA. Amongst them, the study of temperature gradient fluctuations around the test masses of the Inertial Sensors will provide as well information regarding the contribution of the Brownian noise, which is expected to limit the LTP sensitivity at frequencies close to 1 mHz during some LTP experiments. In this paper we report on how these kind of Thermal Diagnostics experiments were simulated in the last LPF Simulation Campaign (November, 2013) involving all the LPF Data Analysis team and using an end-to-end simulator of the whole spacecraft. Such simulation campaign was conducted under the framework of the preparation for LPF operations. (paper)

  12. Actuation stability test of the LISA pathfinder inertial sensor front-end electronics

    Science.gov (United States)

    Mance, Davor; Gan, Li; Weber, Bill; Weber, Franz; Zweifel, Peter

    In order to limit the residual stray forces on the inertial sensor test mass in LISA pathfinder, √ it is required that the fluctuation of the test mass actuation voltage is within 2ppm/ Hz. The actuation voltage stability test on the flight hardware of the inertial sensor front-end electronics (IS FEE) is presented in this paper. This test is completed during the inertial sensor integration at EADS Astrium Friedrichshafen, Germany. The standard measurement method using voltmeter is not sufficient for verification, since the instrument low frequency √ fluctuation is higher than the 2ppm/ Hz requirement. In this test, by using the differential measurement method and the lock-in amplifier, the actuation stability performance is verified and the quality of the IS FEE hardware is confirmed by the test results.

  13. Multi-Agent Pathfinding with n Agents on Graphs with n Vertices

    DEFF Research Database (Denmark)

    Förster, Klaus-Tycho; Groner, Linus; Hoefler, Torsten

    2017-01-01

    We investigate the multi-agent pathfinding (MAPF) problem with $n$ agents on graphs with $n$ vertices: Each agent has a unique start and goal vertex, with the objective of moving all agents in parallel movements to their goal s.t.~each vertex and each edge may only be used by one agent at a time....... We give a combinatorial classification of all graphs where this problem is solvable in general, including cases where the solvability depends on the initial agent placement. Furthermore, we present an algorithm solving the MAPF problem in our setting, requiring O(n²) rounds, or O(n³) moves...... of individual agents. Complementing these results, we show that there are graphs where Omega(n²) rounds and Omega(n³) moves are required for any algorithm....

  14. Glide path preparation in S-shaped canals with rotary pathfinding nickel-titanium instruments.

    Science.gov (United States)

    Ajuz, Natasha C C; Armada, Luciana; Gonçalves, Lucio S; Debelian, Gilberto; Siqueira, José F

    2013-04-01

    This study compared the incidence of deviation along S-shaped (double-curved) canals after glide path preparation with 2 nickel-titanium (NiTi) rotary pathfinding instruments and hand K-files. S-shaped canals from 60 training blocks were filled with ink, and preinstrumentation images were obtained by using a stereomicroscope. Glide path preparation was performed by an endodontist who used hand stainless steel K-files (up to size 20), rotary NiTi PathFile instruments (up to size 19), or rotary NiTi Scout RaCe instruments (up to size 20). Postinstrumentation images were taken by using exactly the same conditions as for the preinstrumentation images, and both pictures were superimposed. Differences along the S-shaped canal for the mesial and distal aspects were measured to evaluate the occurrence of deviation. Intragroup analysis showed that all instruments promoted some deviation in virtually all levels. Overall, regardless of the group, deviations were observed in the mesial wall at the canal terminus and at levels 4, 5, 6 and 7 mm and in the distal wall at levels 1, 2, and 3 mm. These levels corresponded to the inner walls of each curvature. Both rotary NiTi instruments performed significantly better than hand K-files at all levels (P instruments showed significantly better results than PathFiles at levels 0, 2, 3, 5, and 6 mm (P rotary NiTi instruments are suitable for adequate glide path preparation because they promoted less deviation from the original canal anatomy when compared with hand-operated instruments. Of the 2 rotary pathfinding instruments, Scout RaCe showed an overall significantly better performance. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Using Pathfinder networks to discover alignment between expert and consumer conceptual knowledge from online vaccine content.

    Science.gov (United States)

    Amith, Muhammad; Cunningham, Rachel; Savas, Lara S; Boom, Julie; Schvaneveldt, Roger; Tao, Cui; Cohen, Trevor

    2017-10-01

    This study demonstrates the use of distributed vector representations and Pathfinder Network Scaling (PFNETS) to represent online vaccine content created by health experts and by laypeople. By analyzing a target audience's conceptualization of a topic, domain experts can develop targeted interventions to improve the basic health knowledge of consumers. The underlying assumption is that the content created by different groups reflects the mental organization of their knowledge. Applying automated text analysis to this content may elucidate differences between the knowledge structures of laypeople (heath consumers) and professionals (health experts). This paper utilizes vaccine information generated by laypeople and health experts to investigate the utility of this approach. We used an established technique from cognitive psychology, Pathfinder Network Scaling to infer the structure of the associational networks between concepts learned from online content using methods of distributional semantics. In doing so, we extend the original application of PFNETS to infer knowledge structures from individual participants, to infer the prevailing knowledge structures within communities of content authors. The resulting graphs reveal opportunities for public health and vaccination education experts to improve communication and intervention efforts directed towards health consumers. Our efforts demonstrate the feasibility of using an automated procedure to examine the manifestation of conceptual models within large bodies of free text, revealing evidence of conflicting understanding of vaccine concepts among health consumers as compared with health experts. Additionally, this study provides insight into the differences between consumer and expert abstraction of domain knowledge, revealing vaccine-related knowledge gaps that suggest opportunities to improve provider-patient communication. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The EXIST Mission Concept Study

    Science.gov (United States)

    Fishman, Gerald J.; Grindlay, J.; Hong, J.

    2008-01-01

    EXIST is a mission designed to find and study black holes (BHs) over a wide range of environments and masses, including: 1) BHs accreting from binary companions or dense molecular clouds throughout our Galaxy and the Local Group, 2) supermassive black holes (SMBHs) lying dormant in galaxies that reveal their existence by disrupting passing stars, and 3) SMBHs that are hidden from our view at lower energies due to obscuration by the gas that they accrete. 4) the birth of stellar mass BHs which is accompanied by long cosmic gamma-ray bursts (GRBs) which are seen several times a day and may be associated with the earliest stars to form in the Universe. EXIST will provide an order of magnitude increase in sensitivity and angular resolution as well as greater spectral resolution and bandwidth compared with earlier hard X-ray survey telescopes. With an onboard optical-infra red (IR) telescope, EXIST will measure the spectra and redshifts of GRBs and their utility as cosmological probes of the highest z universe and epoch of reionization. The mission would retain its primary goal of being the Black Hole Finder Probe in the Beyond Einstein Program. However, the new design for EXIST proposed to be studied here represents a significant advance from its previous incarnation as presented to BEPAC. The mission is now less than half the total mass, would be launched on the smallest EELV available (Atlas V-401) for a Medium Class mission, and most importantly includes a two-telescope complement that is ideally suited for the study of both obscured and very distant BHs. EXIST retains its very wide field hard X-ray imaging High Energy Telescope (HET) as the primary instrument, now with improved angular and spectral resolution, and in a more compact payload that allows occasional rapid slews for immediate optical/IR imaging and spectra of GRBs and AGN as well as enhanced hard X-ray spectra and timing with pointed observations. The mission would conduct a 2 year full sky survey in

  17. Quality Assurance statistics for AVHRR Pathfinder Version 5.2 L3-Collated (L3C) sea surface temperature in global and selected regions (NODC Accession 0111871)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These quality monitoring data for Pathfinder Version 5.2 (PFV5.2) Sea Surface Temperature (SST) are based on the concept of a Rich Inventory developed by the...

  18. 4 km NODC/RSMAS AVHRR Pathfinder Version 5.0 and 5.1 Monthly Harmonic Climatologies (1982-2008) (NODC Accession 0075098)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains a global, 4km monthly sea surface temperature climatology derived from harmonic analysis of the AVHRR Pathfinder Version 5.0 and 5.1 sea...

  19. NOAA Climate Data Record (CDR) of Reflectance and Brightness Temperatures from AVHRR Pathfinder Atmospheres - Extended (PATMOS-x), Version 5.3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This NOAA Climate Data Record (CDR) of AVHRR reflectance and brightness temperatures was produced by the University of Wisconsin using the AVHRR Pathfinder...

  20. AVHRR Pathfinder Version 5.2 Level 3 Collated (L3C) Global 4km Sea Surface Temperature for 1981-2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The AVHRR Pathfinder Version 5.2 Sea Surface Temperature data set (PFV52) is a collection of global, twice-daily 4km sea surface temperature data produced in a...

  1. 4 km NODC/RSMAS AVHRR Pathfinder Version 5.0 and 5.1 5-day Harmonic Climatologies (1982-2008) (NODC Accession 0071182)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains a global, 4km 5-day sea surface temperature climatology derived from harmonic analysis of the AVHRR Pathfinder Version 5.0 and 5.1 sea...

  2. 4 km NODC/RSMAS AVHRR Pathfinder Version 5.0 and 5.1 Daily Harmonic Climatologies (1982-2008) (NODC Accession 0071181)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains a global, 4km daily sea surface temperature climatology derived from harmonic analysis of the AVHRR Pathfinder Version 5.0 and 5.1 sea...

  3. 4 km NODC/RSMAS AVHRR Pathfinder Cloud Screened Version 5.0 Monthly Climatologies (1985-2006) (NODC Accession 0110657)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains a global, 4km monthly sea surface temperature climatology derived from harmonic analysis of the AVHRR Pathfinder Version 5.0 sea surface...

  4. It Takes a Village. Collaborative Outer Planet Missions

    Science.gov (United States)

    Rymer, A. M.; Turtle, E. P.; Hofstadter, M. D.; Simon, A. A.; Hospodarsky, G. B.

    2017-01-01

    A mission to one or both of our local Ice Giants (Uranus and Neptune) emerged as a high priority in the most recent Planetary Science Decadal Survey and was also specifically mentioned supportively in the Heliophysics Decadal Survey. In 2016, NASA convened a science definition team to study ice giant mission concepts in more detail. Uranus and Neptune represent the last remaining planetary type in our Solar System to have a dedicated orbiting mission. The case for a Uranus mission has been made eloquently in the Decadal Surveys. Here we summarize some of the major drivers that lead to enthusiastic support for an Ice Giant mission in general, and use the example of a Uranus Mission concept to illustrate opportunities such a mission might provide for cross-division collaboration and cost-sharing.

  5. Ground Contact Model for Mars Science Laboratory Mission Simulations

    Science.gov (United States)

    Raiszadeh, Behzad; Way, David

    2012-01-01

    The Program to Optimize Simulated Trajectories II (POST 2) has been successful in simulating the flight of launch vehicles and entry bodies on earth and other planets. POST 2 has been the primary simulation tool for the Entry Descent, and Landing (EDL) phase of numerous Mars lander missions such as Mars Pathfinder in 1997, the twin Mars Exploration Rovers (MER-A and MER-B) in 2004, Mars Phoenix lander in 2007, and it is now the main trajectory simulation tool for Mars Science Laboratory (MSL) in 2012. In all previous missions, the POST 2 simulation ended before ground impact, and a tool other than POST 2 simulated landing dynamics. It would be ideal for one tool to simulate the entire EDL sequence, thus avoiding errors that could be introduced by handing off position, velocity, or other fight parameters from one simulation to the other. The desire to have one continuous end-to-end simulation was the motivation for developing the ground interaction model in POST 2. Rover landing, including the detection of the postlanding state, is a very critical part of the MSL mission, as the EDL landing sequence continues for a few seconds after landing. The method explained in this paper illustrates how a simple ground force interaction model has been added to POST 2, which allows simulation of the entire EDL from atmospheric entry through touchdown.

  6. Lessons Learned from Engineering a Multi-Mission Satellite Operations Center

    Science.gov (United States)

    Madden, Maureen; Cary, Everett, Jr.; Esposito, Timothy; Parker, Jeffrey; Bradley, David

    2006-01-01

    NASA's Small Explorers (SMEX) satellites have surpassed their designed science-lifetimes and their flight operations teams are now facing the challenge of continuing operations with reduced funding. At present, these missions are being re-engineered into a fleet-oriented ground system at Goddard Space Flight Center (GSFC). When completed, this ground system will provide command and control of four SMEX missions and will demonstrate fleet automation and control concepts. As a path-finder for future mission consolidation efforts, this ground system will also demonstrate new ground-based technologies that show promise of supporting longer mission lifecycles and simplifying component integration. One of the core technologies being demonstrated in the SMEX Mission Operations Center is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture uses commercial Message Oriented Middleware with a common messaging standard to realize a higher level of component interoperability, allowing for interchangeable components in ground systems. Moreover, automation technologies utilizing the GMSEC architecture are being evaluated and implemented to provide extended lights-out operations. This mode of operation will provide routine monitoring and control of the heterogeneous spacecraft fleet. The operational concepts being developed will reduce the need for staffed contacts and is seen as a necessity for fleet management. This paper will describe the experiences of the integration team throughout the re-enginering effort of the SMEX ground system. Additionally, lessons learned will be presented based on the team's experiences with integrating multiple missions into a fleet-automated ground system.

  7. Intelligent Mission Controller Node

    National Research Council Canada - National Science Library

    Perme, David

    2002-01-01

    The goal of the Intelligent Mission Controller Node (IMCN) project was to improve the process of translating mission taskings between real-world Command, Control, Communications, Computers, and Intelligence (C41...

  8. Critical Robotic Lunar Missions

    Science.gov (United States)

    Plescia, J. B.

    2018-04-01

    Perhaps the most critical missions to understanding lunar history are in situ dating and network missions. These would constrain the volcanic and thermal history and interior structure. These data would better constrain lunar evolution models.

  9. Dukovany ASSET mission preparation

    Energy Technology Data Exchange (ETDEWEB)

    Kouklik, I [NPP Dukovany (Czech Republic)

    1997-12-31

    We are in the final stages of the Dukovany ASSET mission 1996 preparation. I would like to present some of our recent experiences. Maybe they would be helpful to other plants, that host ASSET missions in future.

  10. Dukovany ASSET mission preparation

    International Nuclear Information System (INIS)

    Kouklik, I.

    1996-01-01

    We are in the final stages of the Dukovany ASSET mission 1996 preparation. I would like to present some of our recent experiences. Maybe they would be helpful to other plants, that host ASSET missions in future

  11. Mission operations management

    Science.gov (United States)

    Rocco, David A.

    1994-01-01

    Redefining the approach and philosophy that operations management uses to define, develop, and implement space missions will be a central element in achieving high efficiency mission operations for the future. The goal of a cost effective space operations program cannot be realized if the attitudes and methodologies we currently employ to plan, develop, and manage space missions do not change. A management philosophy that is in synch with the environment in terms of budget, technology, and science objectives must be developed. Changing our basic perception of mission operations will require a shift in the way we view the mission. This requires a transition from current practices of viewing the mission as a unique end product, to a 'mission development concept' built on the visualization of the end-to-end mission. To achieve this change we must define realistic mission success criteria and develop pragmatic approaches to achieve our goals. Custom mission development for all but the largest and most unique programs is not practical in the current budget environment, and we simply do not have the resources to implement all of our planned science programs. We need to shift our management focus to allow us the opportunity make use of methodologies and approaches which are based on common building blocks that can be utilized in the space, ground, and mission unique segments of all missions.

  12. Innovative Approaches to Remote Sensing in NASA's Earth System Science Pathfinder (ESSP) Program

    Science.gov (United States)

    Peri, Frank; Volz, Stephen

    2013-01-01

    NASA's Earth Venture class (EV) of mission are competitively selected, Principal Investigator (PI) led, relatively low cost and narrowly focused in scientific scope. Investigations address a full spectrum of earth science objectives, including studies of the atmosphere, oceans, land surface, polar ice regions, and solid Earth. EV has three program elements: EV-Suborbital (EVS) are suborbital/airborne investigations; EV-Mission (EVM) element comprises small complete spaceborne missions; and EV-Instrument (EVI) element develops spaceborne instruments for flight as missions-of-opportunity (MoO). To ensure the success of EV, the management approach of each element is tailored according to the specific needs of the element.

  13. Computer graphics aid mission operations. [NASA missions

    Science.gov (United States)

    Jeletic, James F.

    1990-01-01

    The application of computer graphics techniques in NASA space missions is reviewed. Telemetric monitoring of the Space Shuttle and its components is discussed, noting the use of computer graphics for real-time visualization problems in the retrieval and repair of the Solar Maximum Mission. The use of the world map display for determining a spacecraft's location above the earth and the problem of verifying the relative position and orientation of spacecraft to celestial bodies are examined. The Flight Dynamics/STS Three-dimensional Monitoring System and the Trajectroy Computations and Orbital Products System world map display are described, emphasizing Space Shuttle applications. Also, consideration is given to the development of monitoring systems such as the Shuttle Payloads Mission Monitoring System and the Attitude Heads-Up Display and the use of the NASA-Goddard Two-dimensional Graphics Monitoring System during Shuttle missions and to support the Hubble Space Telescope.

  14. Constraints on LISA Pathfinder's Self-Gravity: Design Requirements, Estimates and Testing Procedures

    Science.gov (United States)

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, M.; Brandt, Nico; Bursi, Alessandro; Slutsky. J.; hide

    2016-01-01

    LISA Pathfinder satellite was launched on 3 December 2015 toward the Sun Earth first Lagrangian point (L1) where the LISA Technology Package (LTP), which is the main science payload, will be tested. LTP achieves measurements of differential acceleration of free-falling test masses (TMs) with sensitivity below 3 x 10(exp -14) m s(exp -2) Hz(exp - 1/2) within the 130 mHz frequency band in one dimension. The spacecraft itself is responsible for the dominant differential gravitational field acting on the two TMs. Such a force interaction could contribute a significant amount of noise and thus threaten the achievement of the targeted free-fall level. We prevented this by balancing the gravitational forces to the sub nm s(exp -2) level, guided by a protocol based on measurements of the position and the mass of all parts that constitute the satellite, via finite element calculation tool estimates. In this paper, we will introduce the gravitational balance requirements and design, and then discuss our predictions for the balance that will be achieved in flight.

  15. LISA Pathfinder test-mass charging during galactic cosmic-ray flux short-term variations

    Science.gov (United States)

    Grimani, C.; Fabi, M.; Lobo, A.; Mateos, I.; Telloni, D.

    2015-02-01

    Metal free-floating test masses aboard the future interferometers devoted to gravitational wave detection in space are charged by galactic and solar cosmic rays with energies \\gt 100 MeV/n. This process represents one of the main sources of noise in the lowest frequency band (\\lt 10-3 Hz) of these experiments. We study here the charging of the LISA Pathfinder (LISA-PF) gold-platinum test masses due to galactic cosmic-ray (GCR) protons and helium nuclei with the Fluka Monte Carlo toolkit. Projections of the energy spectra of GCRs during the LISA-PF operations in 2015 are considered. This work was carried out on the basis of the solar activity level and solar polarity epoch expected for LISA-PF. The effects of GCR short-term variations are evaluated here for the first time. Classical Forbush decreases, GCR variations induced by the Sun rotation, and fluctuations in the LISA-PF frequency bandwidth are discussed.

  16. The C. elegans histone deacetylase HDA-1 is required for cell migration and axon pathfinding.

    Science.gov (United States)

    Zinovyeva, Anna Y; Graham, Serena M; Cloud, Veronica J; Forrester, Wayne C

    2006-01-01

    Histone proteins play integral roles in chromatin structure and function. Histones are subject to several types of posttranslational modifications, including acetylation, which can produce transcriptional activation. The converse, histone deacetylation, is mediated by histone deacetylases (HDACs) and often is associated with transcriptional silencing. We identified a new mutation, cw2, in the Caenorhabditis elegans hda-1 gene, which encodes a histone deacetylase. Previous studies showed that a mutation in hda-1, e1795, or reduction of hda-1 RNA by RNAi causes defective vulval and gonadal development leading to sterility. The hda-1(cw2) mutation causes defective vulval development and reduced fertility, like hda-1(e1795), albeit with reduced severity. Unlike the previously reported hda-1 mutation, hda-1(cw2) mutants are viable as homozygotes, although many die as embryos or larvae, and are severely uncoordinated. Strikingly, in hda-1(cw2) mutants, axon pathfinding is defective; specific axons often appear to wander randomly or migrate in the wrong direction. In addition, the long range migrations of three neuron types and fasciculation of the ventral nerve cord are defective. Together, our studies define a new role for HDA-1 in nervous system development, and provide the first evidence for HDAC function in regulating neuronal axon guidance.

  17. The Drosophila HEM-2/NAP1 homolog KETTE controls axonal pathfinding and cytoskeletal organization.

    Science.gov (United States)

    Hummel, T; Leifker, K; Klämbt, C

    2000-04-01

    In Drosophila, the correct formation of the segmental commissures depends on neuron-glial interactions at the midline. The VUM midline neurons extend axons along which glial cells migrate in between anterior and posterior commissures. Here, we show that the gene kette is required for the normal projection of the VUM axons and subsequently disrupts glial migration. Axonal projection defects are also found for many other moto- and interneurons. In addition, kette affects the cell morphology of mesodermal and epidermal derivatives, which show an abnormal actin cytoskeleton. The KETTE protein is homologous to the transmembrane protein HEM-2/NAP1 evolutionary conserved from worms to vertebrates. In vitro analysis has shown a specific interaction of the vertebrate HEM-2/NAP1 with the SH2-SH3 adapter protein NCK and the small GTPase RAC1, which both have been implicated in regulating cytoskeleton organization and axonal growth. Hypomorphic kette mutations lead to axonal defects similar to mutations in the Drosophila NCK homolog dreadlocks. Furthermore, we show that kette and dock mutants genetically interact. NCK is thought to interact with the small G proteins RAC1 and CDC42, which play a role in axonal growth. In line with these observations, a kette phenocopy can be obtained following directed expression of mutant DCDC42 or DRAC1 in the CNS midline. In addition, the kette mutant phenotype can be partially rescued by expression of an activated DRAC1 transgene. Our data suggest an important role of the HEM-2 protein in cytoskeletal organization during axonal pathfinding.

  18. 3D Embedded Reconfigurable SoC for Expediting Magnetometric Space Missions

    Science.gov (United States)

    Dekoulis, George

    2016-07-01

    This paper describes the development of a state-of-the-art three-dimensional embedded reconfigurable System-on-Chip (SoC) for accelerating the design of future magnetometric space missions. This involves measurements of planetary magnetic fields or measurements of heliospheric physics events' signatures superimposed on the aggregate measurements of the stronger planetary fields. The functionality of the embedded core is fully customizable, therefore, its operation is independent of the magnetic sensor being used. Standard calibration procedures still apply for setting the magnetometer measurements to the desired initial state and removing any seriatim interference inferred by the adjacent environment. The system acts as a pathfinder for future high-resolution heliospheric space missions.

  19. Xenia Mission: Spacecraft Design Concept

    Science.gov (United States)

    Hopkins, R. C.; Johnson, C. L.; Kouveliotou, C.; Jones, D.; Baysinger, M.; Bedsole, T.; Maples, C. C.; Benfield, P. J.; Turner, M.; Capizzo, P.; hide

    2009-01-01

    The proposed Xenia mission will, for the first time, chart the chemical and dynamical state of the majority of baryonic matter in the universe. using high-resolution spectroscopy, Xenia will collect essential information from major traces of the formation and evolution of structures from the early universe to the present time. The mission is based on innovative instrumental and observational approaches: observing with fast reaction gamma-ray bursts (GRBs) with a high spectral resolution. This enables the study of their (star-forming) environment from the dark to the local universe and the use of GRBs as backlight of large-scale cosmological structures, observing and surveying extended sources with high sensitivity using two wide field-of-view x-ray telescopes - one with a high angular resolution and the other with a high spectral resolution.

  20. Opportunities for Small Satellites in NASA's Earth System Science Pathfinder (ESSP) Program

    Science.gov (United States)

    Peri, Frank; Law, Richard C.; Wells, James E.

    2014-01-01

    NASA's Earth Venture class (EV) of missions are competitively selected, Principal Investigator (PI) led, relatively low cost and narrowly focused in scientific scope. Investigations address a full spectrum of earth science objectives, including studies of the atmosphere, oceans, land surface, polar ice regions, and solid Earth. EV has three program elements: EV-Suborbital (EVS) are suborbital/airborne investigations; EV-Mission (EVM) element comprises small complete spaceborne missions; and EV-Instrument (EVI) element develops spaceborne instruments for flight as Missions-of-Opportunity (MoO). To ensure the success of EV, frequent opportunities for selecting missions has been established in NASA's Earth Science budget. This paper will describe those opportunities and how the management approach of each element is tailored according to the specific needs of the element.

  1. Swarm: ESA's Magnetic Field Mission

    Science.gov (United States)

    Plank, G.; Floberghagen, R.; Menard, Y.; Haagmans, R.

    2013-12-01

    Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in fall 2013. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of three identical satellites. The mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. In case the Swarm satellites are already in orbit, a summary of the on-going mission operations activities will be given. More information on Swarm can be found at www.esa.int/esaLP/LPswarm.html.

  2. The STEREO Mission

    CERN Document Server

    2008-01-01

    The STEREO mission uses twin heliospheric orbiters to track solar disturbances from their initiation to 1 AU. This book documents the mission, its objectives, the spacecraft that execute it and the instruments that provide the measurements, both remote sensing and in situ. This mission promises to unlock many of the mysteries of how the Sun produces what has become to be known as space weather.

  3. VEGA Space Mission

    Science.gov (United States)

    Moroz, V.; Murdin, P.

    2000-11-01

    VEGA (mission) is a combined spacecraft mission to VENUS and COMET HALLEY. It was launched in the USSR at the end of 1984. The mission consisted of two identical spacecraft VEGA 1 and VEGA 2. VEGA is an acronym built from the words `Venus' and `Halley' (`Galley' in Russian spelling). The basic design of the spacecraft was the same as has been used many times to deliver Soviet landers and orbiter...

  4. Airborne Instrument Simulator for the Lidar Surface Topography (LIST) Mission

    Science.gov (United States)

    Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis

    2010-01-01

    In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global coverage with a few years. NASA Goddard conducted an initial mission concept study for the LIST mission 2007, and developed the initial measurement requirements for the mission.

  5. Airborne Lidar Simulator for the Lidar Surface Topography (LIST) Mission

    Science.gov (United States)

    Yu, Anthony W.; Krainak, Michael A.; Abshire, James B.; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis

    2010-01-01

    In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global surface height mapping within a few years. NASA Goddard conducted an initial mission concept study for the LIST mission in 2007, and developed the initial measurement requirements for the mission.

  6. Robotic path-finding in inverse treatment planning for stereotactic radiosurgery with continuous dose delivery

    Energy Technology Data Exchange (ETDEWEB)

    Vandewouw, Marlee M., E-mail: marleev@mie.utoronto.ca; Aleman, Dionne M. [Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8 (Canada); Jaffray, David A. [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9 (Canada)

    2016-08-15

    Purpose: Continuous dose delivery in radiation therapy treatments has been shown to decrease total treatment time while improving the dose conformity and distribution homogeneity over the conventional step-and-shoot approach. The authors develop an inverse treatment planning method for Gamma Knife® Perfexion™ that continuously delivers dose along a path in the target. Methods: The authors’ method is comprised of two steps: find a path within the target, then solve a mixed integer optimization model to find the optimal collimator configurations and durations along the selected path. Robotic path-finding techniques, specifically, simultaneous localization and mapping (SLAM) using an extended Kalman filter, are used to obtain a path that travels sufficiently close to selected isocentre locations. SLAM is novelly extended to explore a 3D, discrete environment, which is the target discretized into voxels. Further novel extensions are incorporated into the steering mechanism to account for target geometry. Results: The SLAM method was tested on seven clinical cases and compared to clinical, Hamiltonian path continuous delivery, and inverse step-and-shoot treatment plans. The SLAM approach improved dose metrics compared to the clinical plans and Hamiltonian path continuous delivery plans. Beam-on times improved over clinical plans, and had mixed performance compared to Hamiltonian path continuous plans. The SLAM method is also shown to be robust to path selection inaccuracies, isocentre selection, and dose distribution. Conclusions: The SLAM method for continuous delivery provides decreased total treatment time and increased treatment quality compared to both clinical and inverse step-and-shoot plans, and outperforms existing path methods in treatment quality. It also accounts for uncertainty in treatment planning by accommodating inaccuracies.

  7. Robotic path-finding in inverse treatment planning for stereotactic radiosurgery with continuous dose delivery

    International Nuclear Information System (INIS)

    Vandewouw, Marlee M.; Aleman, Dionne M.; Jaffray, David A.

    2016-01-01

    Purpose: Continuous dose delivery in radiation therapy treatments has been shown to decrease total treatment time while improving the dose conformity and distribution homogeneity over the conventional step-and-shoot approach. The authors develop an inverse treatment planning method for Gamma Knife® Perfexion™ that continuously delivers dose along a path in the target. Methods: The authors’ method is comprised of two steps: find a path within the target, then solve a mixed integer optimization model to find the optimal collimator configurations and durations along the selected path. Robotic path-finding techniques, specifically, simultaneous localization and mapping (SLAM) using an extended Kalman filter, are used to obtain a path that travels sufficiently close to selected isocentre locations. SLAM is novelly extended to explore a 3D, discrete environment, which is the target discretized into voxels. Further novel extensions are incorporated into the steering mechanism to account for target geometry. Results: The SLAM method was tested on seven clinical cases and compared to clinical, Hamiltonian path continuous delivery, and inverse step-and-shoot treatment plans. The SLAM approach improved dose metrics compared to the clinical plans and Hamiltonian path continuous delivery plans. Beam-on times improved over clinical plans, and had mixed performance compared to Hamiltonian path continuous plans. The SLAM method is also shown to be robust to path selection inaccuracies, isocentre selection, and dose distribution. Conclusions: The SLAM method for continuous delivery provides decreased total treatment time and increased treatment quality compared to both clinical and inverse step-and-shoot plans, and outperforms existing path methods in treatment quality. It also accounts for uncertainty in treatment planning by accommodating inaccuracies.

  8. Spectral heterogeneity on Phobos and Deimos: HiRISE observations and comparisons to Mars Pathfinder results

    Science.gov (United States)

    Thomas, N.; Stelter, R.; Ivanov, A.; Bridges, N.T.; Herkenhoff, K. E.; McEwen, A.S.

    2011-01-01

    The High-Resolution Imaging Science Experiment (HiRISE) onboard Mars Reconnaissance Orbiter (MRO) has been used to observe Phobos and Deimos at spatial scales of around 6 and 20 m/px, respectively. HiRISE (McEwen et al.; JGR, 112, CiteID E05S02, DOI: 10.1029/2005JE002605, 2007) has provided, for the first time, high-resolution colour images of the surfaces of the Martian moons. When processed, by the production of colour ratio images for example, the data show considerable small-scale heterogeneity, which might be attributable to fresh impacts exposing different materials otherwise largely hidden by a homogenous regolith. The bluer material that is draped over the south-eastern rim of the largest crater on Phobos, Stickney, has been perforated by an impact to reveal redder material and must therefore be relatively thin. A fresh impact with dark crater rays has been identified. Previously identified mass-wasting features in Stickney and Limtoc craters stand out strongly in colour. The interior deposits in Stickney appear more inhomogeneous than previously suspected. Several other local colour variations are also evident. Deimos is more uniform in colour but does show some small-scale inhomogeneity. The bright streamers (Thomas et al.; Icarus, 123, 536556,1996) are relatively blue. One crater to the south-west of Voltaire and its surroundings appear quite strongly reddened with respect to the rest of the surface. The reddening of the surroundings may be the result of ejecta from this impact. The spectral gradients at optical wavelengths observed for both Phobos and Deimos are quantitatively in good agreement with those found by unresolved photometric observations made by the Imager for Mars Pathfinder (IMP; Thomas et al.; JGR, 104, 90559068, 1999). The spectral gradients of the blue and red units on Phobos bracket the results from IMP. ?? 2010 Elsevier Ltd. All rights reserved.

  9. FINESSE & CASE: Two Proposed Transiting Exoplanet Missions

    Science.gov (United States)

    Zellem, Robert Thomas; FINESSE and CASE Science Team

    2018-01-01

    The FINESSE mission concept and the proposed CASE Mission of Opportunity, both recently selected by NASA’s Explorer program to proceed to Step 2, would conduct the first characterizations of exoplanet atmospheres for a statistically significant population. FINESSE would determine whether our Solar System is typical or exceptional, the key characteristics of the planet formation mechanism, and what establishes global planetary climate by spectroscopically surveying 500 exoplanets, ranging from terrestrials with extended atmospheres to sub-Neptunes to gas giants. FINESSE’s broad, instantaneous spectral coverage from 0.5-5 microns and capability to survey hundreds of exoplanets would enable follow-up exploration of TESS discoveries and provide a broader context for interpreting detailed JWST observations. Similarly, CASE, a NASA Mission of Opportunity contribution to ESA’s dedicated transiting exoplanet spectroscopy mission ARIEL, would observe 1000 warm transiting gas giants, Neptunes, and super-Earths, using visible to near-IR photometry and spectroscopy. CASE would quantify the occurrence rate of atmospheric aerosols (clouds and hazes) and measure the geometric albedos of the targets in the ARIEL survey. Thus, with the selection of either of these two missions, NASA would ensure access to critical data for the U.S. exoplanet science community.

  10. Parametric cost estimation for space science missions

    Science.gov (United States)

    Lillie, Charles F.; Thompson, Bruce E.

    2008-07-01

    Cost estimation for space science missions is critically important in budgeting for successful missions. The process requires consideration of a number of parameters, where many of the values are only known to a limited accuracy. The results of cost estimation are not perfect, but must be calculated and compared with the estimates that the government uses for budgeting purposes. Uncertainties in the input parameters result from evolving requirements for missions that are typically the "first of a kind" with "state-of-the-art" instruments and new spacecraft and payload technologies that make it difficult to base estimates on the cost histories of previous missions. Even the cost of heritage avionics is uncertain due to parts obsolescence and the resulting redesign work. Through experience and use of industry best practices developed in participation with the Aerospace Industries Association (AIA), Northrop Grumman has developed a parametric modeling approach that can provide a reasonably accurate cost range and most probable cost for future space missions. During the initial mission phases, the approach uses mass- and powerbased cost estimating relationships (CER)'s developed with historical data from previous missions. In later mission phases, when the mission requirements are better defined, these estimates are updated with vendor's bids and "bottoms- up", "grass-roots" material and labor cost estimates based on detailed schedules and assigned tasks. In this paper we describe how we develop our CER's for parametric cost estimation and how they can be applied to estimate the costs for future space science missions like those presented to the Astronomy & Astrophysics Decadal Survey Study Committees.

  11. NMFS Reef Survey Forms

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Reef Environmental Survey Project (REEF) mission to educate and enlist divers in the conservation of marine habitats is accomplished primarily through its Fish...

  12. 2015 Science Mission Directorate Technology Highlights

    Science.gov (United States)

    Seablom, Michael S.

    2016-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community including the recommendations set forth in the National Research Council (NRC) decadal surveys and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions -- Heliophysics, Earth Science, Planetary Science, and Astrophysics -- develops fundamental science questions upon which to base future research and mission programs. Often the breakthrough science required to answer these questions requires significant technological innovation, e.g., instruments or platforms with capabilities beyond the current state of the art. SMD's targeted technology investments fill technology gaps, enabling NASA to build the challenging and complex missions that accomplish groundbreaking science.

  13. Mission statements: selling corporate values to employees.

    Science.gov (United States)

    Klemm, M; Sanderson, S; Luffman, G

    1991-06-01

    This article investigates the reasons for the increasing use of the Company Mission Statement. Using information from a survey of U.K. companies in 1989 it looks at the types of statements issued by companies, their content, usage, and value to managers. Of particular interest is whether the mission is primarily used for the motivation of staff, or for external image building. Related issues are the value of the mission drafting process in bringing managers together to agree common objectives and the use of a hierarchy of statements to reconcile internal and external stakeholders' interests. The conclusion is that the Mission, which includes a statement of company values, is an important tool for managers to assert their leadership within the organization.

  14. Mission of Mercy.

    Science.gov (United States)

    Humenik, Mark

    2014-01-01

    Some dentists prefer solo charity work, but there is much to be said for collaboration within the profession in reaching out to those who are dentally underserved. Mission of Mercy (MOM) programs are regularly organized across the country for this purpose. This article describes the structure, reach, and personal satisfaction to be gained from such missions.

  15. Mission Exploitation Platform PROBA-V

    Science.gov (United States)

    Goor, Erwin

    2016-04-01

    VITO and partners developed an end-to-end solution to drastically improve the exploitation of the PROBA-V EO-data archive (http://proba-v.vgt.vito.be/), the past mission SPOT-VEGETATION and derived vegetation parameters by researchers, service providers and end-users. The analysis of time series of data (+1PB) is addressed, as well as the large scale on-demand processing of near real-time data. From November 2015 an operational Mission Exploitation Platform (MEP) PROBA-V, as an ESA pathfinder project, will be gradually deployed at the VITO data center with direct access to the complete data archive. Several applications will be released to the users, e.g. - A time series viewer, showing the evolution of PROBA-V bands and derived vegetation parameters for any area of interest. - Full-resolution viewing services for the complete data archive. - On-demand processing chains e.g. for the calculation of N-daily composites. - A Virtual Machine will be provided with access to the data archive and tools to work with this data, e.g. various toolboxes and support for R and Python. After an initial release in January 2016, a research platform will gradually be deployed allowing users to design, debug and test applications on the platform. From the MEP PROBA-V, access to Sentinel-2 and landsat data will be addressed as well, e.g. to support the Cal/Val activities of the users. Users can make use of powerful Web based tools and can self-manage virtual machines to perform their work on the infrastructure at VITO with access to the complete data archive. To realise this, private cloud technology (openStack) is used and a distributed processing environment is built based on Hadoop. The Hadoop ecosystem offers a lot of technologies (Spark, Yarn, Accumulo, etc.) which we integrate with several open-source components. The impact of this MEP on the user community will be high and will completely change the way of working with the data and hence open the large time series to a larger

  16. EUCLID mission design

    Science.gov (United States)

    Wallner, Oswald; Ergenzinger, Klaus; Tuttle, Sean; Vaillon, L.; Johann, Ulrich

    2017-11-01

    EUCLID, a medium-class mission candidate of ESA's Cosmic Vision 2015-2025 Program, currently in Definition Phase (Phase A/B1), shall map the geometry of the Dark Universe by investigating dark matter distributions, the distance-redshift relationship, and the evolution of cosmic structures. EUCLID consists of a 1.2 m telescope and two scientific instruments for ellipticity and redshift measurements in the visible and nearinfrared wavelength regime. We present a design concept of the EUCLID mission which is fully compliant with the mission requirements. Preliminary concepts of the spacecraft and of the payload including the scientific instruments are discussed.

  17. Neural cell adhesion molecule, NCAM, regulates thalamocortical axon pathfinding and the organization of the cortical somatosensory representation in mouse

    Science.gov (United States)

    Enriquez-Barreto, Lilian; Palazzetti, Cecilia; Brennaman, Leann H.; Maness, Patricia F.; Fairén, Alfonso

    2012-01-01

    To study the potential role of neural cell adhesion molecule (NCAM) in the development of thalamocortical (TC) axon topography, wild type, and NCAM null mutant mice were analyzed for NCAM expression, projection, and targeting of TC afferents within the somatosensory area of the neocortex. Here we report that NCAM and its α-2,8-linked polysialic acid (PSA) are expressed in developing TC axons during projection to the neocortex. Pathfinding of TC axons in wild type and null mutant mice was mapped using anterograde DiI labeling. At embryonic day E16.5, null mutant mice displayed misguided TC axons in the dorsal telencephalon, but not in the ventral telencephalon, an intermediate target that initially sorts TC axons toward correct neocortical areas. During the early postnatal period, rostrolateral TC axons within the internal capsule along the ventral telencephalon adopted distorted trajectories in the ventral telencephalon and failed to reach the neocortex in NCAM null mutant animals. NCAM null mutants showed abnormal segregation of layer IV barrels in a restricted portion of the somatosensory cortex. As shown by Nissl and cytochrome oxidase staining, barrels of the anterolateral barrel subfield (ALBSF) and the most distal barrels of the posteromedial barrel subfield (PMBSF) did not segregate properly in null mutant mice. These results indicate a novel role for NCAM in axonal pathfinding and topographic sorting of TC axons, which may be important for the function of specific territories of sensory representation in the somatosensory cortex. PMID:22723769

  18. PLA Missions Beyond Taiwan

    National Research Council Canada - National Science Library

    Miller, Marc

    2008-01-01

    KEY INSIGHTS: *The PLA is being assigned and training for an increasing variety of missions, including nontraditional battlefields such as outer space and cyber space, as well as nontraditional functions...

  19. Human exploration mission studies

    Science.gov (United States)

    Cataldo, Robert L.

    1989-01-01

    The Office of Exploration has established a process whereby all NASA field centers and other NASA Headquarters offices participate in the formulation and analysis of a wide range of mission strategies. These strategies were manifested into specific scenarios or candidate case studies. The case studies provided a systematic approach into analyzing each mission element. First, each case study must address several major themes and rationale including: national pride and international prestige, advancement of scientific knowledge, a catalyst for technology, economic benefits, space enterprise, international cooperation, and education and excellence. Second, the set of candidate case studies are formulated to encompass the technology requirement limits in the life sciences, launch capabilities, space transfer, automation, and robotics in space operations, power, and propulsion. The first set of reference case studies identify three major strategies: human expeditions, science outposts, and evolutionary expansion. During the past year, four case studies were examined to explore these strategies. The expeditionary missions include the Human Expedition to Phobos and Human Expedition to Mars case studies. The Lunar Observatory and Lunar Outpost to Early Mars Evolution case studies examined the later two strategies. This set of case studies established the framework to perform detailed mission analysis and system engineering to define a host of concepts and requirements for various space systems and advanced technologies. The details of each mission are described and, specifically, the results affecting the advanced technologies required to accomplish each mission scenario are presented.

  20. Missions to Venus

    Science.gov (United States)

    Titov, D. V.; Baines, K. H.; Basilevsky, A. T.; Chassefiere, E.; Chin, G.; Crisp, D.; Esposito, L. W.; Lebreton, J.-P.; Lellouch, E.; Moroz, V. I.; Nagy, A. F.; Owen, T. C.; Oyama, K.-I.; Russell, C. T.; Taylor, F. W.; Young, R. E.

    2002-10-01

    Venus has always been a fascinating objective for planetary studies. At the beginning of the space era Venus became one of the first targets for spacecraft missions. Our neighbour in the solar system and, in size, the twin sister of Earth, Venus was expected to be very similar to our planet. However, the first phase of Venus spacecraft exploration in 1962-1992 by the family of Soviet Venera and Vega spacecraft and US Mariner, Pioneer Venus, and Magellan missions discovered an entirely different, exotic world hidden behind a curtain of dense clouds. These studies gave us a basic knowledge of the conditions on the planet, but generated many more questions concerning the atmospheric composition, chemistry, structure, dynamics, surface-atmosphere interactions, atmospheric and geological evolution, and the plasma environment. Despite all of this exploration by more than 20 spacecraft, the "morning star" still remains a mysterious world. But for more than a decade Venus has been a "forgotten" planet with no new missions featuring in the plans of the world space agencies. Now we are witnessing the revival of interest in this planet: the Venus Orbiter mission is approved in Japan, Venus Express - a European orbiter mission - has successfully passed the selection procedure in ESA, and several Venus Discovery proposals are knocking at the doors of NASA. The paper presents an exciting story of Venus spacecraft exploration, summarizes open scientific problems, and builds a bridge to the future missions.

  1. Synergies Between the Kepler, K2 and TESS Missions with the PLATO Mission (Revised)

    Science.gov (United States)

    Jenkins, Jon M.

    2017-01-01

    Two transit survey missions will have been flown by NASA prior to the launch of ESA's PLATO Mission in 2026, laying the groundwork for exoplanet discovery via the transit method. The Kepler Mission, which launched in 2009, collected data on its 100+ square degree field of view for four years before failure of a reaction wheel ended its primary mission. The results from Kepler include 2300+ confirmed or validated exoplanets, 2200+ planetary candidates, 2100+ eclipsing binaries. Kepler also revolutionized the field of asteroseismology by measuring the pressure mode oscillations of over 15000 solar-like stars spanning the lifecycle of such stars from hydrogen-burning dwarfs to helium-burning red giants. The re-purposed Kepler Mission, dubbed K2, continues to observe fields of view in and near the ecliptic plane for 80 days each, significantly broadening the scope of the astrophysical investigations as well as discovering an additional 156 exoplanets to date. The TESS mission will launch in 2017 to conduct an all-sky survey for small exoplanets orbiting stars 10X closer and 100X brighter than Kepler exoplanet host stars, allowing for far greater follow-up and characterization of their masses as well as their sizes for at least 50 small planets. Future assets such as James Webb Space Telescope, and ground-based assets such as ESOs Very Large Telescope (VLT) array, the Exremely Large Telescope (ELT), and the Thirty Meter Telescope (TMT) will be able to characterize the atmospheric composition and properties of these small planets. TESS will observe each 24 X 96 field of view for 30 days and thereby cover first the southern and then the northern hemisphere over 13 pointings during each year of the primary mission. The pole-most camera will observe the James Webb continuous viewing zone for one year in each hemisphere, permitting much longer period planets to be detected in this region. The PLATO mission will seek to detect habitable Earth-like planets with an instrument

  2. The LUVOIR Decadal Mission Concept

    Science.gov (United States)

    Arney, G. N.; Crooke, J.; Domagal-Goldman, S. D.; Fischer, D.; Peterson, B.; Schmidt, B. E.; Stdt, T. L. T.

    2017-12-01

    The Large UV-Optical-Infrared (LUVOIR) Surveyor is one of four mission concepts being studied by NASA in preparation for the 2020 Astrophysics Decadal Survey. LUVOIR is a general-purpose space-based observatory with a large aperture in the 8-16 m range and a total bandpass spanning from the far-UV to the near-infrared. This observatory will enable revolutionary new studies in many areas of astronomy, including planetary science within and beyond our Solar System. Because LUVOIR is being considered for the next decadal survey, it must be capable of advancing our understanding of astronomical targets, including exoplanets, far beyond what will be achieved by the next two decades of observations from other space- or ground-based facilities. This means that the mission must move past planet detection, which is happening now with Kepler and ground-based measurements and will continue with TESS (Transiting Exoplanet Survey Satellite) and WFIRST (Wide Field Infrared Survey Telescope). It must also move beyond the chemical characterization of gas giants, which has begun with observations from Spitzer, Hubble, and ground-based telescopes and will greatly advances with the upcoming JWST (James Webb Space Telescope) and WFIRST coronagraph. Therefore, one of LUVOIR's main science objectives will be to directly image rocky Earth-sized planets in the habitable zones of other stars, measure their spectra, analyze the chemistry of their atmospheres, and obtain information about their surfaces. Such observations will allow us to evaluate these worlds' habitability and potential for life. We will review the specific observational strategies needed for astrobiological assessments of exoplanetary environments, including the wavelength range and spectral resolution required for these habitability analyses and biosignature searches. Further, we will discuss how the observational requirements to make measurements of "Earthlike" worlds will allow high-quality observations of a wide

  3. Discovery of H I gas in a young radio galaxy at z = 0.44 using the Australian Square Kilometre Array Pathfinder

    NARCIS (Netherlands)

    Allison, J. R.; Sadler, E. M.; Moss, V. A.; Whiting, M. T.; Hunstead, R. W.; Pracy, M. B.; Curran, S. J.; Croom, S. M.; Glowacki, M.; Morganti, R.; Shabala, S. S.; Zwaan, M. A.; Allen, G.; Amy, S. W.; Axtens, P.; Ball, L.; Bannister, K. W.; Barker, S.; Bell, M. E.; Bock, D. C.-J.; Bolton, R.; Bowen, M.; Boyle, B.; Braun, R.; Broadhurst, S.; Brodrick, D.; Brothers, M.; Brown, A.; Bunton, J. D.; Cantrall, C.; Chapman, J.; Cheng, W.; Chippendale, A. P.; Chung, Y.; Cooray, F.; Cornwell, T.; DeBoer, D.; Diamond, P.; Edwards, P. G.; Ekers, R.; Feain, I.; Ferris, R. H.; Forsyth, R.; Gough, R.; Grancea, A.; Gupta, N.; Guzman, J. C.; Hampson, G.; Harvey-Smith, L.; Haskins, C.; Hay, S.; Hayman, D. B.; Heywood, I.; Hotan, A. W.; Hoyle, S.; Humphreys, B.; Indermuehle, B. T.; Jacka, C.; Jackson, C.; Jackson, S.; Jeganathan, K.; Johnston, S.; Joseph, J.; Kendall, R.; Kesteven, M.; Kiraly, D.; Koribalski, B. S.; Leach, M.; Lenc, E.; Lensson, E.; Mackay, S.; Macleod, A.; Marquarding, M.; Marvil, J.; McClure-Griffiths, N.; McConnell, D.; Mirtschin, P.; Norris, R. P.; Neuhold, S.; Ng, A.; O'Sullivan, J.; Pathikulangara, J.; Pearce, S.; Phillips, C.; Popping, A.; Qiao, R. Y.; Reynolds, J. E.; Roberts, P.; Sault, R. J.; Schinckel, A.; Serra, P.; Shaw, R.; Shields, M.; Shimwell, T.; Storey, M.; Sweetnam, T.; Troup, E.; Turner, B.; Tuthill, J.; Tzioumis, A.; Voronkov, M. A.; Westmeier, T.; Wilson, C. D.

    2015-01-01

    We report the discovery of a new 21-cm H I absorption system using commissioning data from the Boolardy Engineering Test Array of the Australian Square Kilometre Array Pathfinder (ASKAP). Using the 711.5-1015.5 MHz band of ASKAP we were able to conduct a blind search for the 21-cm line in a

  4. Review of A* (A Star Navigation Mesh Pathfinding as the Alternative of Artificial Intelligent for Ghosts Agent on the Pacman Game

    Directory of Open Access Journals (Sweden)

    Moh. Zikky

    2016-08-01

    Full Text Available Shortest pathfinding problem has become a populer issue in Game’s Artificial Intelligent (AI. This paper discussed the effective way to optimize the shortest pathfinding problem, namely Navigation Mesh (NavMesh. This method is very interesting because it has a large area of implementation, especially in games world. In this paper, NavMesh was implemented by using A* (A star algorithm and examined in Unity 3D game engine. A* was an effective algorithm in shortest pathfinding problem because its optimization was made with effective tracing using segmentation line. Pac-Man game was chosen as the example of the shortest pathfinding by using NavMesh in Unity 3D. A* algorithm was implemented on the enemies of Pac-Man (three ghosts,  which path was designed by using NavMesh concept. Thus, the movement of ghosts in catching Pac-Man was the result of this review of the effectiveness of this concept. In further research, this method could be implemented on several optimization programmes, such as Geographic Information System (GIS, robotics, and statistics.

  5. The NASA X-Ray Mission Concepts Study

    Science.gov (United States)

    Petre, Robert; Ptak, A.; Bookbinder, J.; Garcia, M.; Smith, R.; Bautz, M.; Bregman, J.; Burrows, D.; Cash, W.; Jones-Forman, C.; hide

    2012-01-01

    The 2010 Astrophysics Decadal Survey recommended a significant technology development program towards realizing the scientific goals of the International X-ray Observatory (IXO). NASA has undertaken an X-ray mission concepts study to determine alternative approaches to accomplishing IXO's high ranking scientific objectives over the next decade given the budget realities, which make a flagship mission challenging to implement. The goal of the study is to determine the degree to which missions in various cost ranges from $300M to $2B could fulfill these objectives. The study process involved several steps. NASA released a Request for Information in October 2011, seeking mission concepts and enabling technology ideas from the community. The responses included a total of 14 mission concepts and 13 enabling technologies. NASA also solicited membership for and selected a Community Science Team (CST) to guide the process. A workshop was held in December 2011 in which the mission concepts and technology were presented and discussed. Based on the RFI responses and the workshop, the CST then chose a small group of notional mission concepts, representing a range of cost points, for further study. These notional missions concepts were developed through mission design laboratory activities in early 2012. The results of all these activities were captured in the final X-ray mission concepts study report, submitted to NASA in July 2012. In this presentation, we summarize the outcome of the study. We discuss background, methodology, the notional missions, and the conclusions of the study report.

  6. The Aquarius Ocean Salinity Mission High Stability L-band Radiometer

    Science.gov (United States)

    Pellerano, Fernando A.; Piepmeier, Jeffrey; Triesky, Michael; Horgan, Kevin; Forgione, Joshua; Caldwell, James; Wilson, William J.; Yueh, Simon; Spencer, Michael; McWatters, Dalia; hide

    2006-01-01

    The NASA Earth Science System Pathfinder (ESSP) mission Aquarius, will measure global ocean surface salinity with approx.120 km spatial resolution every 7-days with an average monthly salinity accuracy of 0.2 psu (parts per thousand). This requires an L-band low-noise radiometer with the long-term calibration stability of less than or equal to 0.15 K over 7 days. The instrument utilizes a push-broom configuration which makes it impractical to use a traditional warm load and cold plate in front of the feedhorns. Therefore, to achieve the necessary performance Aquarius utilizes a Dicke radiometer with noise injection to perform a warm - hot calibration. The radiometer sequence between antenna, Dicke load, and noise diode has been optimized to maximize antenna observations and therefore minimize NEDT. This is possible due the ability to thermally control the radiometer electronics and front-end components to 0.1 Crms over 7 days.

  7. Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site

    Science.gov (United States)

    McSween, H.Y.; Murchie, S.L.; Crisp, J.A.; Bridges, N.T.; Anderson, R.C.; Bell, J.F.; Britt, D.T.; Brückner, J.; Dreibus, G.; Economou, T.; Ghosh, A.; Golombek, M.P.; Greenwood, J.P.; Johnson, J. R.; Moore, H.J.; Morris, R.V.; Parker, T.J.; Rieder, R.; Singer, R.; Wänke, H.

    1999-01-01

    Rocks at the Mars Pathfinder site are probably locally derived. Textures on rock surfaces may indicate volcanic, sedimentary, or impact-generated rocks, but aeolian abration and dust coatings prevent unambiguous interpretation. Multispectral imaging has resolved four spectral classes of rocks: gray and red, which occur on different surfaces of the same rocks; pink, which is probably soil crusts; and maroon, which occurs as large boulders, mostly in the far field. Rocks are assigned to two spectral trends based on the position of peak reflectance: the primary spectral trend contains gray, red, and pink rocks; maroon rocks constitute the secondary spectral trend. The spatial pattern of spectral variations observed is oriented along the prevailing wind direction. The primary spectral trend arises from thin ferric coatings of aeolian dust on darker rocks. The secondary spectral trend is apparently due to coating by a different mineral, probably maghemite or ferrihydrite. A chronology based on rock spectra suggests that rounded maroon boulders constitute the oldest petrologic unit (a flood deposit), succeeded by smaller cobbles possibly deposited by impact, and followed by aeolian erosion and deposition. Nearly linear chemical trends in alpha proton X-ray spectrometer rock compositions are interpreted as mixing lines between rock and adhering dust, a conclusion supported by a correlation between sulfur abundance and red/blue spectral ratio. Extrapolations of regression lines to zero sulfur give the composition of a presumed igneous rock. The chemistry and normative mineralogy of the sulfur-free rock resemble common terrestrial volcanic rocks, and its classification corresponds to andesite. Igneous rocks of this composition may occur with clastic sedimentary rocks or impact melts and breccias. However, the spectral mottling expected on conglomerates or breccias is not observed in any APXS-analyzed rocks. Interpretation of the rocks as andesites is complicated by absence

  8. Mission operations technology

    Science.gov (United States)

    Varsi, Giulio

    In the last decade, the operation of a spacecraft after launch has emerged as a major component of the total cost of the mission. This trend is sustained by the increasing complexity, flexibility, and data gathering capability of the space assets and by their greater reliability and consequent longevity. The trend can, however, be moderated by the progressive transfer of selected functions from the ground to the spacecraft and by application, on the ground, of new technology. Advances in ground operations derive from the introduction in the mission operations environment of advanced microprocessor-based workstations in the class of a few million instructions per second and from the selective application of artificial intelligence technology. In the last few years a number of these applications have been developed, tested in operational settings and successfully demonstrated to users. Some are now being integrated in mission operations facilities. An analysis of mission operations indicates that the key areas are: concurrent control of multiple missions; automated/interactive production of command sequences of high integrity at low cost; automated monitoring of spacecraft health and automated aides for fault diagnosis; automated allocation of resources; automated processing of science data; and high-fidelity, high-speed spacecraft simulation. Examples of major advances in selected areas are described.

  9. NASA's Planetary Science Missions and Participations

    Science.gov (United States)

    Daou, Doris; Green, James L.

    2017-04-01

    instrument. This was a tremendously successful activity leading to another similar call for instrument proposals for the Europa mission. Europa mission instruments will be used to conduct high priority scientific investigations addressing the science goals for the moon's exploration outlined in the National Resource Council's Planetary Decadal Survey, Vision and Voyages (2011). International partnerships are an excellent, proven way of amplifying the scope and sharing the science results of a mission otherwise implemented by an individual space agency. The exploration of the Solar System is uniquely poised to bring planetary scientists, worldwide, together under the common theme of understanding the origin, evolution, and bodies of our solar neighborhood. In the past decade we have witnessed great examples of international partnerships that made various missions the success they are known for today. The Planetary Science Division at NASA continues to seek cooperation with our strong international partners in support of planetary missions.

  10. Mission to the Solar System: Exploration and Discovery. A Mission and Technology Roadmap

    Science.gov (United States)

    Gulkis, S. (Editor); Stetson, D. S. (Editor); Stofan, E. R. (Editor)

    1998-01-01

    Solar System exploration addresses some of humanity's most fundamental questions: How and when did life form on Earth? Does life exist elsewhere in the Solar System or in the Universe? - How did the Solar System form and evolve in time? - What can the other planets teach us about the Earth? This document describes a Mission and Technology Roadmap for addressing these and other fundamental Solar System Questions. A Roadmap Development Team of scientists, engineers, educators, and technologists worked to define the next evolutionary steps in in situ exploration, sample return, and completion of the overall Solar System survey. Guidelines were to "develop aa visionary, but affordable, mission and technology development Roadmap for the exploration of the Solar System in the 2000 to 2012 timeframe." The Roadmap provides a catalog of potential flight missions. (Supporting research and technology, ground-based observations, and laboratory research, which are no less important than flight missions, are not included in this Roadmap.)

  11. Mission to the comets

    International Nuclear Information System (INIS)

    Hughes, D.

    1980-01-01

    The plans of space agencies in the United States and Europe for an exploratory comet mission including a one year rendezvous with comet Temple-2 and a fast fly-by of comet Halley are discussed. The mission provides an opportunity to make comparative measurements on the two different types of comets and also satisfies the three major scientific objectives of cometary missions namely: (1) To determine the chemical nature and the physical structure of cometary nuclei, and the changes that occur with time and orbital position. (2) To study the chemical and physical nature of the atmospheres and ionospheres of comets, the processes that occur in them, and their development with time and orbital position. (3) To determine the nature of the tails of comets and the processes by which they are formed, and to characterise the interaction of comets with solar wind. (UK)

  12. Country programming mission. Namibia

    International Nuclear Information System (INIS)

    1991-01-01

    In response to a request from the Government of Namibia conveyed in a letter dated 29 November 1990 IAEA provided a multi-disciplinary Programming Mission which visited Namibia from 15 - 19 July 1991. The terms of reference of the Mission were: 1. To assess the possibilities and benefits of nuclear energy applications in Namibia's development; 2. To advise on the infrastructure required for nuclear energy projects; 3. To assist in the formulation of project proposals which could be submitted for Agency assistance. This report is based on the findings of the Mission and falls into 3 sections with 8 appendices. The first section is a country profile providing background information, the second section deals with sectorial needs and institutional review of the sectors of agriculture including animal production, life sciences (nuclear medicine and radiotherapy) and radiation protection. The third section includes possible future technical co-operation activities

  13. Mars Sample Return: Mars Ascent Vehicle Mission and Technology Requirements

    Science.gov (United States)

    Bowles, Jeffrey V.; Huynh, Loc C.; Hawke, Veronica M.; Jiang, Xun J.

    2013-01-01

    A Mars Sample Return mission is the highest priority science mission for the next decade recommended by the recent Decadal Survey of Planetary Science, the key community input process that guides NASAs science missions. A feasibility study was conducted of a potentially simple and low cost approach to Mars Sample Return mission enabled by the use of developing commercial capabilities. Previous studies of MSR have shown that landing an all up sample return mission with a high mass capacity lander is a cost effective approach. The approach proposed is the use of an emerging commercially available capsule to land the launch vehicle system that would return samples to Earth. This paper describes the mission and technology requirements impact on the launch vehicle system design, referred to as the Mars Ascent Vehicle (MAV).

  14. MIV Project: Mission scenario

    DEFF Research Database (Denmark)

    Ravazzotti, Mariolina T.; Jørgensen, John Leif; Thuesen, Gøsta

    1997-01-01

    Under the ESA contract #11453/95/NL/JG(SC), aiming at assessing the feasibility of Rendez-vous and docking of unmanned spacecrafts, a msiision scenario was defined. This report describes the secquence of manouvres and task allocations for such missions.......Under the ESA contract #11453/95/NL/JG(SC), aiming at assessing the feasibility of Rendez-vous and docking of unmanned spacecrafts, a msiision scenario was defined. This report describes the secquence of manouvres and task allocations for such missions....

  15. Mars Stratigraphy Mission

    Science.gov (United States)

    Budney, C. J.; Miller, S. L.; Cutts, J. A.

    2000-01-01

    The Mars Stratigraphy Mission lands a rover on the surface of Mars which descends down a cliff in Valles Marineris to study the stratigraphy. The rover carries a unique complement of instruments to analyze and age-date materials encountered during descent past 2 km of strata. The science objective for the Mars Stratigraphy Mission is to identify the geologic history of the layered deposits in the Valles Marineris region of Mars. This includes constraining the time interval for formation of these deposits by measuring the ages of various layers and determining the origin of the deposits (volcanic or sedimentary) by measuring their composition and imaging their morphology.

  16. The OICETS mission

    Science.gov (United States)

    Jono, Takashi; Arai, Katsuyoshi

    2017-11-01

    The Optical Inter-orbit Communications Engineering Test Satellite (OICETS) was successfully launched on 23th August 2005 and thrown into a circular orbit at the altitude of 610 km. The main mission is to demonstrate the free-space inter satellite laser communications with the cooperation of the Advanced Relay and Technology Mission (ARTEMIS) geostationary satellite developed by the European Space Agency. This paper presents the overview of the OICETS and laser terminal, a history of international cooperation between Japan Aerospace Exploration Agency (JAXA) and ESA and typical results of the inter-orbit laser communication experiment carried out with ARTEMIS.

  17. Gemini Follow-up of Two Massive H I Clouds Discovered with the Australian Square Kilometer Array Pathfinder

    Science.gov (United States)

    Madrid, Juan P.; Lee-Waddell, Karen; Serra, Paolo; Koribalski, Bärbel S.; Schirmer, Mischa; Spekkens, Kristine; Wang, Jing

    2018-02-01

    Using the Gemini Multi Object Spectrograph (GMOS) we search for optical counterparts of two massive (∼109 M ⊙) neutral hydrogen clouds near the spiral galaxy IC 5270, located in the outskirts of the IC 1459 group. These two H I clouds were recently discovered using the Australian Square Kilometer Array Pathfinder (ASKAP). Two low surface brightness optical counterparts to one of these H I clouds are identified in the new Gemini data that reaches down to magnitudes of ∼27.5 mag in the g-band. The observed H I mass-to-light ratio derived with these new data, {M}{{H}{{I}}}/{L}g=242, is among the highest reported to date. We are also able to rule out that the two H I clouds are dwarf companions of IC 5270. Tidal interactions and ram pressure stripping are plausible explanations for the physical origin of these two clouds.

  18. TRISTAN - mission complete

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The high energy physics mission of the TRISTAN electron-positron collider at the Japanese KEK Laboratory ended in May. TRISTAN was the first accelerator in Japan at the high energy frontier, and its success owes a great deal to help and encouragement from the world high energy physics community. Its success also marks the first step toward the KEKB project now underway and the subsequent Linear Collider scheme. TRISTAN began operation in November 1986 with a collision energy of 50 GeV, the world's highest electron-positron collision energy at that time. With the addition of superconducting radiofrequency cavities, the energy was continuously increased, reaching a maximum of 64 GeV in 1989. In this exploratory era, the three large detectors - AMY,TOPAZ and VENUS - together with the smaller SHIP group made a rapid survey of particle phenomena in this new energy range. The sixth ('top') quark was first on the list of wanted particles, but the three large groups concluded that there were no new quarks below 32 GeV. The CDF and DO Collaborations at Fermilab's Tevatron recently reported the top quark as being six times as heavy as TRISTAN'S physics reach. Although initial experimental results suggested that the event-shape distributions of multi-hadron events were broadly consistent with the production of the five known quarks, the production rate of hadrons, compared to muons, was seen to rise with energy. The increased energy reach of TRISTAN increased the visibility of the subtle virtual effects of the Z (the electrically neutral carrier of the weak force) produced through the interference of weak and electromagnetic interactions. The rise was found to be slightly larger than expected from five quarks and a Z mass of 92 or 93 GeV, the accepted value at that time. This hinted that the Z mass had to be smaller, as later verified when the SLC and LEP electron-positron colliders at SLAC (Stanford) and CERN respectively came into operation in 1989

  19. Robust UAV Mission Planning

    NARCIS (Netherlands)

    Evers, L.; Dollevoet, T.; Barros, A.I.; Monsuur, H.

    2014-01-01

    Unmanned Aerial Vehicles (UAVs) can provide significant contributions to information gathering in military missions. UAVs can be used to capture both full motion video and still imagery of specific target locations within the area of interest. In order to improve the effectiveness of a

  20. Robust UAV mission planning

    NARCIS (Netherlands)

    Evers, L.; Dollevoet, T.; Barros, A.I.; Monsuur, H.

    2011-01-01

    Unmanned Areal Vehicles (UAVs) can provide significant contributions to information gathering in military missions. UAVs can be used to capture both full motion video and still imagery of specific target locations within the area of interest. In order to improve the effectiveness of a reconnaissance

  1. Robust UAV Mission Planning

    NARCIS (Netherlands)

    Evers, L.; Dollevoet, T; Barros, A.I.; Monsuur, H.

    2011-01-01

    Unmanned Aerial Vehicles (UAVs) can provide significant contributions to information gathering in military missions. UAVs can be used to capture both full motion video and still imagery of specific target locations within the area of interest. In order to improve the effectiveness of a

  2. Robust UAV Mission Planning

    NARCIS (Netherlands)

    L. Evers (Lanah); T.A.B. Dollevoet (Twan); A.I. Barros (Ana); H. Monsuur (Herman)

    2011-01-01

    textabstractUnmanned Areal Vehicles (UAVs) can provide significant contributions to information gathering in military missions. UAVs can be used to capture both full motion video and still imagery of specific target locations within the area of interest. In order to improve the effectiveness of a

  3. The Lobster Mission

    Science.gov (United States)

    Barthelmy, Scott

    2011-01-01

    I will give an overview of the Goddard Lobster mission: the science goals, the two instruments, the overall instruments designs, with particular attention to the wide-field x-ray instrument (WFI) using the lobster-eye-like micro-channel optics.

  4. Towards A Shared Mission

    DEFF Research Database (Denmark)

    Staunstrup, Jørgen; Orth Gaarn-Larsen, Carsten

    A mission shared by stakeholders, management and employees is a prerequisite for an engaging dialog about the many and substantial changes and challenges currently facing universities. Too often this essen-tial dialog reveals mistrust and misunderstandings about the role and outcome of the univer......A mission shared by stakeholders, management and employees is a prerequisite for an engaging dialog about the many and substantial changes and challenges currently facing universities. Too often this essen-tial dialog reveals mistrust and misunderstandings about the role and outcome...... on a shared mission aiming at value creation (in the broadest interpretation). One important aspect of choosing value as the cornerstone of the mission of universities is to stress that the outcome is measured by external stakeholders and by their standards. Most of the paper is devoted to discussing value...... it possible to lead through processes that engage and excite while creating transparency and accountability. The paper will be illustrated with examples from Denmark and the Helios initiative taken by the Danish Academy of Technical Sciences (ATV) under the headline “The value creating university – courage...

  5. Titan Orbiter Aerorover Mission

    Science.gov (United States)

    Sittler Jr., E. C.; Acuna, M.; Burchell, M. J.; Coates, A.; Farrell, W.; Flasar, M.; Goldstein, B. E.; Gorevan, S.; Hartle, R. E.; Johnson, W. T. K.

    2001-01-01

    We propose a combined Titan orbiter and Titan Aerorover mission with an emphasis on both in situ and remote sensing measurements of Titan's surface, atmosphere, ionosphere, and magnetospheric interaction. The biological aspect of the Titan environment will be emphasized by the mission (i.e., search for organic materials which may include simple organics to 'amono' analogues of amino acids and possibly more complex, lightening detection and infrared, ultraviolet, and charged particle interactions with Titan's surface and atmosphere). An international mission is assumed to control costs. NASA will provide the orbiter, launch vehicle, DSN coverage and operations, while international partners will provide the Aerorover and up to 30% of the cost for the scientific instruments through collaborative efforts. To further reduce costs we propose a single PI for orbiter science instruments and a single PI for Aerorover science instruments. This approach will provide single command/data and power interface between spacecraft and orbiter instruments that will have redundant central DPU and power converter for their instruments. A similar approach could be used for the Aerorover. The mission profile will be constructed to minimize conflicts between Aerorover science, orbiter radar science, orbiter radio science, orbiter imaging science, and orbiter fields and particles (FP) science. Additional information is contained in the original extended abstract.

  6. The Gaia mission

    NARCIS (Netherlands)

    Collaboration, Gaia; Prusti, T.; de Bruijne, J. H. J.; Brown, A. G. A.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C. A. L.; Bastian, U.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Milligan, D. J.; Panem, C.; Poinsignon, V.; Pourbaix, D.; Randich, S.; Sarri, G.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Valette, V.; van Leeuwen, F.; Walton, N. A.; Aerts, C.; Arenou, F.; Cropper, M.; Drimmel, R.; Høg, E.; Katz, D.; Lattanzi, M. G.; O'Mullane, W.; Grebel, E. K.; Holland, A. D.; Huc, C.; Passot, X.; Bramante, L.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Hernández, J.; Jean-Antoine-Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Ordóñez-Blanco, D.; Panuzzo, P.; Portell, J.; Richards, P. J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Torra, J.; Els, S. G.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Lock, T.; Mercier, E.; Altmann, M.; Andrae, R.; Astraatmadja, T. L.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Cowell, S.; Creevey, O.; Cuypers, J.; Davidson, M.; De Ridder, J.; de Torres, A.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Frémat, Y.; García-Torres, M.; Gosset, E.; Halbwachs, J. -L; Hambly, N. C.; Harrison, D. L.; Hauser, M.; Hestroffer, D.; Hodgkin, S. T.; Huckle, H. E.; Hutton, A.; Jasniewicz, G.; Jordan, S.; Kontizas, M.; Korn, A. J.; Lanzafame, A. C.; Manteiga, M.; Moitinho, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M; Recio-Blanco, A.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Smith, K. W.; Sozzetti, A.; Thuillot, W.; van Reeven, W.; Viala, Y.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aguado, J. J.; Allan, P. M.; Allasia, W.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Antón, S.; Arcay, B.; Atzei, A.; Ayache, L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Barache, C.; Barata, C.; Barbier, A.; Barblan, F.; Baroni, M.; Barrado y Navascués, D.; Barros, M.; Barstow, M. A.; Becciani, U.; Bellazzini, M.; Bellei, G.; Bello García, A.; Belokurov, V.; Bendjoya, P.; Berihuete, A.; Bianchi, L.; Bienaymé, O.; Billebaud, F.; Blagorodnova, N.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bouy, H.; Bragaglia, A.; Breddels, M. A.; Brouillet, N.; Brüsemeister, T.; Bucciarelli, B.; Budnik, F.; Burgess, P.; Burgon, R.; Burlacu, A.; Busonero, D.; Buzzi, R.; Caffau, E.; Cambras, J.; Campbell, H.; Cancelliere, R.; Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.; Castellani, M.; Charlot, P.; Charnas, J.; Charvet, P.; Chassat, F.; Chiavassa, A.; Clotet, M.; Cocozza, G.; Collins, R. S.; Collins, P.; Costigan, G.; Crifo, F.; Cross, N. J. G.; Crosta, M.; Crowley, C.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; De Cat, P.; de Felice, F.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; di Marco, F.; Di Matteo, P.; Diakite, S.; Distefano, E.; Dolding, C.; Dos Anjos, S.; Drazinos, P.; Durán, J.; Dzigan, Y.; Ecale, E.; Edvardsson, B.; Enke, H.; Erdmann, M.; Escolar, D.; Espina, M.; Evans, N. W.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Faye, F.; Federici, L.; Fedorets, G.; Fernández-Hernández, J.; Fernique, P.; Fienga, A.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fouesneau, M.; Fraile, E.; Fraser, M.; Fuchs, J.; Furnell, R.; Gai, M.; Galleti, S.; Galluccio, L.; Garabato, D.; García-Sedano, F.; Garé, P.; Garofalo, A.; Garralda, N.; Gavras, P.; Gerssen, J.; Geyer, R.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomes, M.; González-Marcos, A.; González-Núñez, J.; González-Vidal, J. J.; Granvik, M.; Guerrier, A.; Guillout, P.; Guiraud, J.; Gúrpide, A.; Gutiérrez-Sánchez, R.; Guy, L. P.; Haigron, R.; Hatzidimitriou, D.; Haywood, M.; Heiter, U.; Helmi, A.; Hobbs, D.; Hofmann, W.; Holl, B.; Holland, G.; Hunt, J. A. S.; Hypki, A.; Icardi, V.; Irwin, M.; Jevardat de Fombelle, G.; Jofré, P.; Jonker, P. G.; Jorissen, A.; Julbe, F.; Karampelas, A.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Koubsky, P.; Kowalczyk, A.; Krone-Martins, A.; Kudryashova, M.; Kull, I.; Bachchan, R. K.; Lacoste-Seris, F.; Lanza, A. F.; Lavigne, J. -B; Le Poncin-Lafitte, C.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lemaitre, V.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Löffler, W.; López, M.; Lopez-Lozano, A.; Lorenz, D.; Loureiro, T.; MacDonald, I.; Magalhães Fernandes, T.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marie, J.; Marinoni, S.; Marrese, P. M.; Marschalkó, G.; Marshall, D. J.; Martín-Fleitas, J. M.; Martino, M.; Mary, N.; Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Mestre, A.; Michalik, D.; Millar, N. R.; Miranda, B. M. H.; Molina, D.; Molinaro, R.; Molinaro, M.; Molnár, L.; Moniez, M.; Montegriffo, P.; Monteiro, D.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morgenthaler, S.; Morley, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Narbonne, J.; Nelemans, G.; Nicastro, L.; Noval, L.; Ordénovic, C.; Ordieres-Meré, J.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Parsons, P.; Paulsen, T.; Pecoraro, M.; Pedrosa, R.; Pentikäinen, H.; Pereira, J.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X; Plachy, E.; Plum, G.; Poujoulet, E.; Prša, A.; Pulone, L.; Ragaini, S.; Rago, S.; Rambaux, N.; Ramos-Lerate, M.; Ranalli, P.; Rauw, G.; Read, A.; Regibo, S.; Renk, F.; Reylé, C.; Ribeiro, R. A.; Rimoldini, L.; Ripepi, V.; Riva, A.; Rixon, G.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Rudolph, A.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sarasso, M.; Savietto, H.; Schnorhk, A.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Serpell, E.; Shih, I. -C; Smareglia, R.; Smart, R. L.; Smith, C.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Tingley, B.; Trager, S. C.; Turon, C.; Ulla, A.; Utrilla, E.; Valentini, G.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Varadi, M.; Vecchiato, A.; Veljanoski, J.; Via, T.; Vicente, D.; Vogt, S.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Weingrill, K.; Werner, D.; Wevers, T.; Whitehead, G.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Zucker, S.; Zurbach, C.; Zwitter, T.; Alecu, A.; Allen, M.; Allende Prieto, C.; Amorim, A.; Anglada-Escudé, G.; Arsenijevic, V.; Azaz, S.; Balm, P.; Beck, M.; Bernstein, H. -H; Bigot, L.; Bijaoui, A.; Blasco, C.; Bonfigli, M.; Bono, G.; Boudreault, S.; Bressan, A.; Brown, S.; Brunet, P. -M; Bunclark, P.; Buonanno, R.; Butkevich, A. G.; Carret, C.; Carrion, C.; Chemin, L.; Chéreau, F.; Corcione, L.; Darmigny, E.; de Boer, K. S.; de Teodoro, P.; de Zeeuw, P. T.; Delle Luche, C.; Domingues, C. D.; Dubath, P.; Fodor, F.; Frézouls, B.; Fries, A.; Fustes, D.; Fyfe, D.; Gallardo, E.; Gallegos, J.; Gardiol, D.; Gebran, M.; Gomboc, A.; Gómez, A.; Grux, E.; Gueguen, A.; Heyrovsky, A.; Hoar, J.; Iannicola, G.; Isasi Parache, Y.; Janotto, A. -M; Joliet, E.; Jonckheere, A.; Keil, R.; Kim, D. -W; Klagyivik, P.; Klar, J.; Knude, J.; Kochukhov, O.; Kolka, I.; Kos, J.; Kutka, A.; Lainey, V.; LeBouquin, D.; Liu, C.; Loreggia, D.; Makarov, V. V.; Marseille, M. G.; Martayan, C.; Martinez-Rubi, O.; Massart, B.; Meynadier, F.; Mignot, S.; Munari, U.; Nguyen, A. -T; Nordlander, T.; Ocvirk, P.; O'Flaherty, K. S.; Olias Sanz, A.; Ortiz, P.; Osorio, J.; Oszkiewicz, D.; Ouzounis, A.; Palmer, M.; Park, P.; Pasquato, E.; Peltzer, C.; Peralta, J.; Péturaud, F.; Pieniluoma, T.; Pigozzi, E.; Poels, J.; Prat, G.; Prod'homme, T.; Raison, F.; Rebordao, J. M.; Risquez, D.; Rocca-Volmerange, B.; Rosen, S.; Ruiz-Fuertes, M. I.; Russo, F.; Sembay, S.; Serraller Vizcaino, I.; Short, A.; Siebert, A.; Silva, H.; Sinachopoulos, D.; Slezak, E.; Soffel, M.; Sosnowska, D.; Straižys, V.; ter Linden, M.; Terrell, D.; Theil, S.; Tiede, C.; Troisi, L.; Tsalmantza, P.; Tur, D.; Vaccari, M.; Vachier, F.; Valles, P.; Van Hamme, W.; Veltz, L.; Virtanen, J.; Wallut, J. -M; Wichmann, R.; Wilkinson, M. I.; Ziaeepour, H.; Zschocke, S.

    2016-01-01

    Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by

  7. The Mothership Mission Architecture

    Science.gov (United States)

    Ernst, S. M.; DiCorcia, J. D.; Bonin, G.; Gump, D.; Lewis, J. S.; Foulds, C.; Faber, D.

    2015-12-01

    The Mothership is considered to be a dedicated deep space carrier spacecraft. It is currently being developed by Deep Space Industries (DSI) as a mission concept that enables a broad participation in the scientific exploration of small bodies - the Mothership mission architecture. A Mothership shall deliver third-party nano-sats, experiments and instruments to Near Earth Asteroids (NEOs), comets or moons. The Mothership service includes delivery of nano-sats, communication to Earth and visuals of the asteroid surface and surrounding area. The Mothership is designed to carry about 10 nano-sats, based upon a variation of the Cubesat standard, with some flexibility on the specific geometry. The Deep Space Nano-Sat reference design is a 14.5 cm cube, which accommodates the same volume as a traditional 3U CubeSat. To reduce cost, Mothership is designed as a secondary payload aboard launches to GTO. DSI is offering slots for nano-sats to individual customers. This enables organizations with relatively low operating budgets to closely examine an asteroid with highly specialized sensors of their own choosing and carry out experiments in the proximity of or on the surface of an asteroid, while the nano-sats can be built or commissioned by a variety of smaller institutions, companies, or agencies. While the overall Mothership mission will have a financial volume somewhere between a European Space Agencies' (ESA) S- and M-class mission for instance, it can be funded through a number of small and individual funding sources and programs, hence avoiding the processes associated with traditional space exploration missions. DSI has been able to identify a significant interest in the planetary science and nano-satellite communities.

  8. The Double Star mission

    Directory of Open Access Journals (Sweden)

    Liu

    2005-11-01

    Full Text Available The Double Star Programme (DSP was first proposed by China in March, 1997 at the Fragrant Hill Workshop on Space Science, Beijing, organized by the Chinese Academy of Science. It is the first mission in collaboration between China and ESA. The mission is made of two spacecraft to investigate the magnetospheric global processes and their response to the interplanetary disturbances in conjunction with the Cluster mission. The first spacecraft, TC-1 (Tan Ce means "Explorer", was launched on 29 December 2003, and the second one, TC-2, on 25 July 2004 on board two Chinese Long March 2C rockets. TC-1 was injected in an equatorial orbit of 570x79000 km altitude with a 28° inclination and TC-2 in a polar orbit of 560x38000 km altitude. The orbits have been designed to complement the Cluster mission by maximizing the time when both Cluster and Double Star are in the same scientific regions. The two missions allow simultaneous observations of the Earth magnetosphere from six points in space. To facilitate the comparison of data, half of the Double Star payload is made of spare or duplicates of the Cluster instruments; the other half is made of Chinese instruments. The science operations are coordinated by the Chinese DSP Scientific Operations Centre (DSOC in Beijing and the European Payload Operations Service (EPOS at RAL, UK. The spacecraft and ground segment operations are performed by the DSP Operations and Management Centre (DOMC and DSOC in China, using three ground station, in Beijing, Shanghai and Villafranca.

  9. Performance Simulations for a Spaceborne Methane Lidar Mission

    Science.gov (United States)

    Kiemle, C.; Kawa, Stephan Randolph; Quatrevalet, Mathieu; Browell, Edward V.

    2014-01-01

    Future spaceborne lidar measurements of key anthropogenic greenhouse gases are expected to close current observational gaps particularly over remote, polar, and aerosol-contaminated regions, where actual in situ and passive remote sensing observation techniques have difficulties. For methane, a "Methane Remote Lidar Mission" was proposed by Deutsches Zentrum fuer Luft- und Raumfahrt and Centre National d'Etudes Spatiales in the frame of a German-French climate monitoring initiative. Simulations assess the performance of this mission with the help of Moderate Resolution Imaging Spectroradiometer and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations of the earth's surface albedo and atmospheric optical depth. These are key environmental parameters for integrated path differential absorption lidar which uses the surface backscatter to measure the total atmospheric methane column. Results showthat a lidar with an average optical power of 0.45W at 1.6 µm wavelength and a telescope diameter of 0.55 m, installed on a low Earth orbit platform(506 km), will measure methane columns at precisions of 1.2%, 1.7%, and 2.1% over land, water, and snow or ice surfaces, respectively, for monthly aggregated measurement samples within areas of 50 × 50 km2. Globally, the mean precision for the simulated year 2007 is 1.6%, with a standard deviation of 0.7%. At high latitudes, a lower reflectance due to snow and ice is compensated by denser measurements, owing to the orbital pattern. Over key methane source regions such as densely populated areas, boreal and tropical wetlands, or permafrost, our simulations show that the measurement precision will be between 1 and 2%.

  10. MAIUS-1- Vehicle, Subsystems Design and Mission Operations

    Science.gov (United States)

    Stamminger, A.; Ettl, J.; Grosse, J.; Horschgen-Eggers, M.; Jung, W.; Kallenbach, A.; Raith, G.; Saedtler, W.; Seidel, S. T.; Turner, J.; Wittkamp, M.

    2015-09-01

    In November 2015, the DLR Mobile Rocket Base will launch the MAIUS-1 rocket vehicle at Esrange, Northern Sweden. The MAIUS-A experiment is a pathfinder atom optics experiment. The scientific objective of the mission is the first creation of a BoseEinstein Condensate in space and performing atom interferometry on a sounding rocket [3]. MAIUS-1 comprises a two-stage unguided solid propellant VSB-30 rocket motor system. The vehicle consists of a Brazilian 53 1 motor as 1 st stage, a 530 motor as 2nd stage, a conical motor adapter, a despin module, a payload adapter, the MAIUS-A experiment consisting of five experiment modules, an attitude control system module, a newly developed conical service system, and a two-staged recovery system including a nosecone. In contrast to usual payloads on VSB-30 rockets, the payload has a diameter of 500 mm due to constraints of the scientific experiment. Because of this change in design, a blunted nosecone is necessary to guarantee the required static stability during the ascent phase of the flight. This paper will give an overview on the subsystems which have been built at DLR MORABA, especially the newly developed service system. Further, it will contain a description of the MAIUS-1 vehicle, the mission and the unique requirements on operations and attitude control, which is additionally required to achieve a required attitude with respect to the nadir vector. Additionally to a usual microgravity environment, the MAIUS-l payload requires attitude control to achieve a required attitude with respect to the nadir vector.

  11. Euclid Mission: Mapping the Geometry of the Dark Universe. Mission and Consortium Status

    Science.gov (United States)

    Rhodes, Jason

    2011-01-01

    Euclid concept: (1) High-precision survey mission to map the geometry of the Dark Universe (2) Optimized for two complementary cosmological probes: (2a) Weak Gravitational Lensing (2b) Baryonic Acoustic Oscillations (2c) Additional probes: clusters, redshift space distortions, ISW (3) Full extragalactic sky survey with 1.2m telescope at L2: (3a) Imaging: (3a-1) High precision imaging at visible wavelengths (3a-2) Photometry/Imaging in the near-infrared (3b) Near Infrared Spectroscopy (4) Synergy with ground based surveys (5) Legacy science for a wide range of in astronomy

  12. 4 km NODC/RSMAS AVHRR Pathfinder v5.0 and Interim v5.0 Sea Surface Temperature (SST) Data and v5.1 SST Data for 1981-2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 4 km Pathfinder effort at the National Oceanic and Atmospheric Administration (NOAA) National Oceanographic Data Center (NODC) and the University of Miami's...

  13. 4 km NODC/RSMAS AVHRR Pathfinder v5 Seasonal and Annual Day-Night Sea Surface Temperature Climatologies for 1982-2009 for the Gulf of Mexico (NODC Accession 0072888)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains a set of sea surface temperature climatologies for the Gulf of Mexico (GOM), derived from the AVHRR Pathfinder Version 5 sea surface...

  14. B plant mission analysis report

    International Nuclear Information System (INIS)

    Lund, D.P.

    1995-01-01

    This report further develops the mission for B Plant originally defined in WHC-EP-0722, ''System Engineering Functions and Requirements for the Hanford Cleanup Mission: First Issue.'' The B Plant mission analysis will be the basis for a functional analysis that breaks down the B Plant mission statement into the necessary activities to accomplish the mission. These activities are the product of the functional analysis and will then be used in subsequent steps of the systems engineering process, such as identifying requirements and allocating those requirements to B Plant functions. The information in this mission analysis and the functional and requirements analysis are a part of the B Plant technical baseline

  15. Spacelab 3 mission

    Science.gov (United States)

    Dalton, Bonnie P.

    1990-01-01

    Spacelab-3 (SL-3) was the first microgravity mission of extended duration involving crew interaction with animal experiments. This interaction involved sharing the Spacelab environmental system, changing animal food, and changing animal waste trays by the crew. Extensive microbial testing was conducted on the animal specimens and crew and on their ground and flight facilities during all phases of the mission to determine the potential for cross contamination. Macroparticulate sampling was attempted but was unsuccessful due to the unforseen particulate contamination occurring during the flight. Particulate debris of varying size (250 micron to several inches) and composition was recovered post flight from the Spacelab floor, end cones, overhead areas, avionics fan filter, cabin fan filters, tunnel adaptor, and from the crew module. These data are discussed along with solutions, which were implemented, for particulate and microbial containment for future flight facilities.

  16. The THEMIS Mission

    CERN Document Server

    Burch, J. L

    2009-01-01

    The THEMIS mission aims to determine the trigger and large-scale evolution of substorms by employing five identical micro-satellites which line up along the Earth's magnetotail to track the motion of particles, plasma, and waves from one point to another and for the first time, resolve space-time ambiguities in key regions of the magnetosphere on a global scale. The primary goal of THEMIS is to elucidate which magnetotail process is responsible for substorm onset at the region where substorm auroras map: (i) local disruption of the plasma sheet current (current disruption) or (ii) the interaction of the current sheet with the rapid influx of plasma emanating from reconnection. The probes also traverse the radiation belts and the dayside magnetosphere, allowing THEMIS to address additional baseline objectives. This volume describes the mission, the instrumentation, and the data derived from them.

  17. Cyber Network Mission Dependencies

    Science.gov (United States)

    2015-09-18

    leak paths”) and determine if firewalls and router access control lists are violating network policy. Visualization tools are provided to help analysts...with which a supply agent may not be familiar. In this environment, errors in requisition are easy to make, and they are costly : an incomplete cyber...establishing an email network and recommend a firewall and additional laptops. YMAL would also match mission details like the deployment location with

  18. A Somalia mission experience.

    Science.gov (United States)

    Mahomed, Zeyn; Moolla, Muhammad; Motara, Feroza; Laher, Abdullah

    2012-06-28

    Reports about The Horn of Africa Famine Crisis in 2011 flooded our news bulletins and newspapers. Yet the nations of the world failed to respond and alleviate the unfolding disaster. In August 2011, the Gift of the Givers Foundation mobilised what was to become the largest humanitarian mission ever conducted by an African organisation. Almost a year later, the effort continues, changing the face of disaster medicine as we know it.

  19. The money mission matrix

    OpenAIRE

    Cuperus, Mirthe

    2017-01-01

    Social entrepreneurship is popular in current academics and other media. This thesis adds to this literature by discovering what the drivers are for sustainable social entrepreneurship. Several stakeholders were identified, creating profiles of the key players in social entrepreneurship. These stakeholders uncovered key factors that represent the drivers for sustainable social entrepreneurship. Key factors were then aligned along the two dimensions: Money and Mission. This crea...

  20. Asteroid Kinetic Impactor Missions

    Science.gov (United States)

    Chesley, Steven

    2015-08-01

    Asteroid impact missions can be carried out as a relatively low-cost add-ons to most asteroid rendezvous missions and such impact experiments have tremendous potential, both scientifically and in the arena of planetary defense.The science returns from an impactor demonstration begin with the documentation of the global effects of the impact, such as changes in orbit and rotation state, the creation and dissipation of an ejecta plume and debris disk, and morphological changes across the body due to the transmission of seismic waves, which might induce landslides and toppling of boulders, etc. At a local level, an inspection of the impact crater and ejecta blanket reveals critical material strength information, as well as spectral differences between the surface and subsurface material.From the planetary defense perspective, an impact demonstration will prove humankind’s capacity to alter the orbit of a potentially threatening asteroid. This technological leap comes in two parts. First, terminal guidance systems that can deliver an impactor with small errors relative to the ~100-200 meter size of a likely impactor have yet to be demonstrated in a deep space environment. Second, the response of an asteroid to such an impact is only understood theoretically due to the potentially significant dependence on the momentum carried by escaping ejecta, which would tend to enhance the deflection by tens of percent and perhaps as much as a factor of a few. A lack of validated understanding of momentum enhancement is a significant obstacle in properly sizing a real-world impactor deflection mission.This presentation will describe the drivers for asteroid impact demonstrations and cover the range of such concepts, starting with ESA’s pioneering Don Quijote mission concept and leading to a brief description of concepts under study at the present time, including the OSIRIS-REx/ISIS, BASiX/KIX and AIM/DART (AIDA) concepts.

  1. The Gaia mission

    OpenAIRE

    Prusti, T.; de Bruijne, J. H. J.; Brown, A. G. A.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C. A. L.; Bastian, U.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.

    2016-01-01

    Gaia is a cornerstone mission in the science programme of the European Space Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia wa...

  2. Nanosatellite missions - the future

    Science.gov (United States)

    Koudelka, O.; Kuschnig, R.; Wenger, M.; Romano, P.

    2017-09-01

    In the beginning, nanosatellite projects were focused on educational aspects. In the meantime, the technology matured and now allows to test, demonstrate and validate new systems, operational procedures and services in space at low cost and within much shorter timescales than traditional space endeavors. The number of spacecraft developed and launched has been increasing exponentially in the last years. The constellation of BRITE nanosatellites is demonstrating impressively that demanding scientific requirements can be met with small, low-cost satellites. Industry and space agencies are now embracing small satellite technology. Particularly in the USA, companies have been established to provide commercial services based on CubeSats. The approach is in general different from traditional space projects with their strict product/quality assurance and documentation requirements. The paper gives an overview of nanosatellite missions in different areas of application. Based on lessons learnt from the BRITE mission and recent developments at TU Graz (in particular the implementation of the OPS-SAT nanosatellite for ESA), enhanced technical possibilities for a future astronomy mission after BRITE will be discussed. Powerful on-board computers will allow on-board data pre-processing. A state-of-the-art telemetry system with high data rates would facilitate interference-free operations and increase science data return.

  3. Dawn Mission Update

    Science.gov (United States)

    Sykes, M. V.; Russell, C. T.; Coradini, A.; Christensen, U.; de Sanctis, M. C.; Feldman, W. C.; Jaumann, R.; Keller, U.; Konopliv, A. S.; McCord, T. B.; McFadden, L. A.; McSween, H. Y.; Mottola, S.; Neukum, G.; Pieters, C. M.; Prettyman, T. H.; Raymond, C. A.; Smith, D. E.; Williams, B. G.; Wise, J.; Zuber, M. T.

    2004-11-01

    Dawn, the ninth Discovery mission, will be the first spacecraft to rendezvous with two solar system bodies, the main belt asteroids Vesta and Ceres. This is made possible by utilizing ion propulsion to reach its targets and to maneuver into (and depart) orbits about these bodies. Vesta and Ceres are two terrestrial protoplanets that have survived since the earliest epoch of the solar system and will provide important insights into planet building processes and their evolution under very different circumstances, with and without water. Dawn carries a double framing camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron detector. At Vesta our studies will include the volcanic emplacement of basalts, its differentiation, the possible exposure of its interior near the south pole. At Ceres our studies will include the role of water in its evolution, hydration processes on its surface, and the possible existence of a subsurface ocean. The mission has passed its critical design review and is scheduled to be launched in June 2006 with arrival at Vesta in 2011 and Ceres in 2015. Operation strategies will be presented. Groundbased observations of Vesta, Ceres, and Vesta family members over broad wavelengths, periods and phases will play an important role in detailed mission planning.

  4. The Spartan 1 mission

    Science.gov (United States)

    Cruddace, Raymond G.; Fritz, G. G.; Shrewsberry, D. J.; Brandenstein, D. J.; Creighton, D. C.; Gutschewski, G.; Lucid, S. W.; Nagel, J. M.; Fabian, J. M.; Zimmerman, D.

    1989-01-01

    The first Spartan mission is documented. The Spartan program, an outgrowth of a joint Naval Research Laboratory (NRL)/National Aeronautics and Space Administration (NASA)-Goddard Space Flight Center (GSFC) development effort, was instituted by NASA for launching autonomous, recoverable payloads from the space shuttle. These payloads have a precise pointing system and are intended to support a wide range of space-science observations and experiments. The first Spartan, carrying an NRL X-ray astronomy instrument, was launched by the orbiter Discovery (STS51G) on June 20, 1985 and recovered successfully 45 h later, on June 22. During this period, Spartan 1 conducted a preprogrammed series of observations of two X-ray sources: the Perseus cluster of galaxies and the center of our galaxy. The mission was successful from both on engineering and a scientific viewpoint. Only one problem was encountered, the attitude control system (ACS) shut down earlier than planned because of high attitude control system gas consumption. A preplanned emergency mode then placed Spartan 1 into a stable, safe condition and allowed a safe recovery. The events are described of the mission and presents X-ray maps of the two observed sources, which were produced from the flight data.

  5. SPICE for ESA Planetary Missions

    Science.gov (United States)

    Costa, M.

    2018-04-01

    The ESA SPICE Service leads the SPICE operations for ESA missions and is responsible for the generation of the SPICE Kernel Dataset for ESA missions. This contribution will describe the status of these datasets and outline the future developments.

  6. Mission Critical Occupation (MCO) Charts

    Data.gov (United States)

    Office of Personnel Management — Agencies report resource data and targets for government-wide mission critical occupations and agency specific mission critical and/or high risk occupations. These...

  7. Feasibility study of modern airships, phase 1. Volume 1: Summary and mission analysis (tasks 2 and 4)

    Science.gov (United States)

    Bloetscher, F.

    1975-01-01

    The histroy, potential mission application, and designs of lighter-than-air (LTA) vehicles are researched and evaluated. Missions are identified to which airship vehicles are potentially suited. Results of the mission analysis are combined with the findings of a parametric analysis to formulate the mission/vehicle combinations recommended for further study. Current transportation systems are surveyed and potential areas of competition are identified as well as potential missions resulting from limitations of these systems. Potential areas of military usage are included.

  8. Pathfinder, v6 n2, Mar/Apr 2008. Strengthening NGA Partnerships Around the World

    Science.gov (United States)

    2008-04-01

    Office of International Affairs and Policy. What’s Next In fiscal year 2008, NGA plans to con- duct a gravity survey in an extremely remote and void...observer on Escudo de Veraguas Island. Perdue soon moved to Colombia as part of a team running a geodetic level line between Cali and Cartagena, walking

  9. The SMART Theory and Modeling Team: An Integrated Element of Mission Development and Science Analysis

    Science.gov (United States)

    Hesse, Michael; Birn, J.; Denton, Richard E.; Drake, J.; Gombosi, T.; Hoshino, M.; Matthaeus, B.; Sibeck, D.

    2005-01-01

    When targeting physical understanding of space plasmas, our focus is gradually shifting away from discovery-type investigations to missions and studies that address our basic understanding of processes we know to be important. For these studies, theory and models provide physical predictions that need to be verified or falsified by empirical evidence. Within this paradigm, a tight integration between theory, modeling, and space flight mission design and execution is essential. NASA's Magnetospheric MultiScale (MMS) mission is a pathfinder in this new era of space research. The prime objective of MMS is to understand magnetic reconnection, arguably the most fundamental of plasma processes. In particular, MMS targets the microphysical processes, which permit magnetic reconnection to operate in the collisionless plasmas that permeate space and astrophysical systems. More specifically, MMS will provide closure to such elemental questions as how particles become demagnetized in the reconnection diffusion region, which effects determine the reconnection rate, and how reconnection is coupled to environmental conditions such as magnetic shear angles. Solutions to these problems have remained elusive in past and present spacecraft missions primarily due to instrumental limitations - yet they are fundamental to the large-scale dynamics of collisionless plasmas. Owing to the lack of measurements, most of our present knowledge of these processes is based on results from modern theory and modeling studies of the reconnection process. Proper design and execution of a mission targeting magnetic reconnection should include this knowledge and have to ensure that all relevant scales and effects can be resolved by mission measurements. The SMART mission has responded to this need through a tight integration between instrument and theory and modeling teams. Input from theory and modeling is fed into all aspects of science mission design, and theory and modeling activities are tailored

  10. Actuation crosstalk in free-falling systems: Torsion pendulum results for the engineering model of the LISA pathfinder gravitational reference sensor

    Science.gov (United States)

    Bassan, M.; Cavalleri, A.; De Laurentis, M.; De Marchi, F.; De Rosa, R.; Di Fiore, L.; Dolesi, R.; Finetti, N.; Garufi, F.; Grado, A.; Hueller, M.; Marconi, L.; Milano, L.; Minenkov, Y.; Pucacco, G.; Stanga, R.; Vetrugno, D.; Visco, M.; Vitale, S.; Weber, W. J.

    2018-01-01

    In this paper we report on measurements on actuation crosstalk, relevant to the gravitational reference sensors for LISA Pathfinder and LISA. In these sensors, a Test Mass (TM) falls freely within a system of electrodes used for readout and control. These measurements were carried out on ground with a double torsion pendulum that allowed us to estimate both the torque injected into the sensor when a control force is applied and, conversely, the force leaking into the translational degree of freedom due to the applied torque.The values measured on our apparatus (the engineering model of the LISA Pathfinder sensor) agree to within 0.2% (over a maximum measured crosstalk of 1%) with predictions of a mathematical model when measuring force to torque crosstalk, while it is somewhat larger than expected (up to 3.5%) when measuring torque to force crosstalk. However, the values in the relevant range, i.e. when the TM is well centered ( ± 10 μm) in the sensor, remain smaller than 0.2%, satisfying the LISA Pathfinder requirements.

  11. Mission-driven marketing: a rural example.

    Science.gov (United States)

    Rohrer, J E; Vaughn, T; Westermann, J

    1999-01-01

    Marketing receives little attention in the academic healthcare management literature, possibly because it is associated with pursuit of profit rather than community benefit. However, a marketing perspective can be applied to the pursuit of the traditional missions of healthcare delivery organizations. Mission-oriented market selection criteria could include characteristics such as relevance to mission, underserved or vulnerable population status, resistance to care, limited resources, and low accessibility. A survey conducted in a rural county is used to demonstrate ways that underserved market segments can be identified and targeted. In the market surveyed, men used less medical care than women; depressed people and those with low levels of education used less medical care than people without these characteristics. Consumers were more likely to defer care because of cost if they lacked health insurance coverage, were female, were under age 55, had fair health status, were depressed, and were chronically ill. Marketing strategies worthy of consideration relate to price (e.g., free care, coupons and sales for eligible individuals), distribution (e.g., visiting nurses, malls and fairs, occupational medicine programs), product (e.g., satisfaction, waiting time, attractiveness, assertive follow-up), and promotion (education about insurance benefits, facilitating development of regular sources of care, health education).

  12. Scientific Value of a Saturn Atmospheric Probe Mission

    Science.gov (United States)

    Simon-Miller, A. A.; Lunine, J. I.; Atreya, S. K.; Spilker, T. R.; Coustenis, A.; Atkinson, D. H.

    2012-01-01

    Atmospheric entry probe mISSions to the giant planets can uniquely discriminate between competing theories of solar system formation and the origin and evolution of the giant planets and their atmospheres. This provides for important comparative studies of the gas and ice giants, and to provide a laboratory for studying the atmospheric chemistries, dynamics, and interiors of all the planets including Earth. The giant planets also represent a valuable link to extrasolar planetary systems. As outlined in the recent Planetary Decadal Survey, a Saturn Probe mission - with a shallow probe - ranks as a high priority for a New Frontiers class mission [1].

  13. Mission to Planet Earth

    Science.gov (United States)

    Tilford, Shelby G.; Asrar, Ghassem; Backlund, Peter W.

    1994-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  14. The ARTEMIS mission

    CERN Document Server

    Angelopoulos, Vassilis

    2014-01-01

    The ARTEMIS mission was initiated by skillfully moving the two outermost Earth-orbiting THEMIS spacecraft into lunar orbit to conduct unprecedented dual spacecraft observations of the lunar environment. ARTEMIS stands for Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun. Indeed, this volume discusses initial findings related to the Moon’s magnetic and plasma environments and the electrical conductivity of the lunar interior. This work is aimed at researchers and graduate students in both heliophysics and planetary physics. Originally published in Space Science Reviews, Vol. 165/1-4, 2011.

  15. The solar probe mission

    International Nuclear Information System (INIS)

    Feldman, W.C.; Anderson, J.; Bohlin, J.D.; Burlaga, L.F.; Farquhar, R.; Gloeckler, G.; Goldstein, B.E.; Harvey, J.W.; Holzer, T.E.; Jones, W.V.; Kellogg, P.J.; Krimigis, S.M.; Kundu, M.R.; Lazarus, A.J.; Mellott, M.M.; Parker, E.N.; Rosner, R.; Rottman, G.J.; Slavin, J.A.; Suess, S.T.; Tsurutani, B.T.; Woo, R.T.; Zwickl, R.D.

    1990-01-01

    The Solar Probe will deliver a 133.5 kg science payload into a 4 R s perihelion solar polar orbit (with the first perihelion passage in 2004) to explore in situ one of the last frontiers in the solar system---the solar corona. This mission is both affordable and technologically feasible. Using a payload of 12 (predominantly particles and fields) scientific experiments, it will be possible to answer many long-standing, fundamental problems concerning the structure and dynamics of the outer solar atmosphere, including the acceleration, storage, and transport of energetic particles near the Sun and in the inner ( s ) heliosphere

  16. Mission to Planet Earth

    International Nuclear Information System (INIS)

    Wilson, G.S.; Backlund, P.W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the earth and how it works as a system. Increased understanding of the earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment. 8 refs

  17. STS-61 mission director's post-mission report

    Science.gov (United States)

    Newman, Ronald L.

    1995-01-01

    To ensure the success of the complex Hubble Space Telescope servicing mission, STS-61, NASA established a number of independent review groups to assess management, design, planning, and preparation for the mission. One of the resulting recommendations for mission success was that an overall Mission Director be appointed to coordinate management activities of the Space Shuttle and Hubble programs and to consolidate results of the team reviews and expedite responses to recommendations. This report presents pre-mission events important to the experience base of mission management, with related Mission Director's recommendations following the event(s) to which they apply. All Mission Director's recommendations are presented collectively in an appendix. Other appendixes contain recommendations from the various review groups, including Payload Officers, the JSC Extravehicular Activity (EVA) Section, JSC EVA Management Office, JSC Crew and Thermal Systems Division, and the STS-61 crew itself. This report also lists mission events in chronological order and includes as an appendix a post-mission summary by the lead Payload Deployment and Retrieval System Officer. Recommendations range from those pertaining to specific component use or operating techniques to those for improved management, review, planning, and safety procedures.

  18. Solar maximum mission

    International Nuclear Information System (INIS)

    Ryan, J.

    1981-01-01

    By understanding the sun, astrophysicists hope to expand this knowledge to understanding other stars. To study the sun, NASA launched a satellite on February 14, 1980. The project is named the Solar Maximum Mission (SMM). The satellite conducted detailed observations of the sun in collaboration with other satellites and ground-based optical and radio observations until its failure 10 months into the mission. The main objective of the SMM was to investigate one aspect of solar activity: solar flares. A brief description of the flare mechanism is given. The SMM satellite was valuable in providing information on where and how a solar flare occurs. A sequence of photographs of a solar flare taken from SMM satellite shows how a solar flare develops in a particular layer of the solar atmosphere. Two flares especially suitable for detailed observations by a joint effort occurred on April 30 and May 21 of 1980. These flares and observations of the flares are discussed. Also discussed are significant discoveries made by individual experiments

  19. EU Universities’ Mission Statements

    Directory of Open Access Journals (Sweden)

    Liudmila Arcimaviciene

    2015-04-01

    Full Text Available In the last 10 years, a highly productive space of metaphor analysis has been established in the discourse studies of media, politics, business, and education. In the theoretical framework of Conceptual Metaphor Theory and Critical Discourse Analysis, the restored metaphorical patterns are especially valued for their implied ideological value as realized both conceptually and linguistically. By using the analytical framework of Critical Metaphor Analysis and procedurally employing Pragglejaz Group’s Metaphor Identification Procedure, this study aims at analyzing the implied value of the evoked metaphors in the mission statements of the first 20 European Universities, according to the Webometrics ranking. In this article, it is proposed that Universities’ mission statements are based on the positive evaluation of the COMMERCE metaphor, which does not fully correlate with the ideological framework of sustainability education but is rather oriented toward consumerism in both education and society. Despite this overall trend, there are some traceable features of the conceptualization reflecting the sustainability approach to higher education, as related to freedom of speech, tolerance, and environmental concerns. Nonetheless, these are suppressed by the metaphoric usages evoking traditional dogmas of the conservative ideology grounded in the concepts of the transactional approach to relationship, competitiveness for superiority, the importance of self-interest and strength, and quantifiable quality.

  20. OMV mission simulator

    Science.gov (United States)

    Cok, Keith E.

    1989-01-01

    The Orbital Maneuvering Vehicle (OMV) will be remotely piloted during rendezvous, docking, or proximity operations with target spacecraft from a ground control console (GCC). The real-time mission simulator and graphics being used to design a console pilot-machine interface are discussed. A real-time orbital dynamics simulator drives the visual displays. The dynamics simulator includes a J2 oblate earth gravity model and a generalized 1962 rotating atmospheric and drag model. The simulator also provides a variable-length communication delay to represent use of the Tracking and Data Relay Satellite System (TDRSS) and NASA Communications (NASCOM). Input parameter files determine the graphics display. This feature allows rapid prototyping since displays can be easily modified from pilot recommendations. A series of pilot reviews are being held to determine an effective pilot-machine interface. Pilots fly missions with nominal to 3-sigma dispersions in translational or rotational axes. Console dimensions, switch type and layout, hand controllers, and graphic interfaces are evaluated by the pilots and the GCC simulator is modified for subsequent runs. Initial results indicate a pilot preference for analog versus digital displays and for two 3-degree-of-freedom hand controllers.

  1. STS-78 Mission Insignia

    Science.gov (United States)

    1996-01-01

    The STS-78 patch links past with present to tell the story of its mission and science through a design imbued with the strength and vitality of the 2-dimensional art of North America's northwest coast Indians. Central to the design is the space Shuttle whose bold lines and curves evoke the Indian image for the eagle, a native American symbol of power and prestige as well as the national symbol of the United States. The wings of the Shuttle suggest the wings of the eagle whose feathers, indicative of peace and friendship in Indian tradition, are captured by the U forms, a characteristic feature of Northwest coast Indian art. The nose of the Shuttle is the strong downward curve of the eagle's beak, and the Shuttle's forward windows, the eagle's eyes, represented through the tapered S forms again typical of this Indian art form. The basic black and red atoms orbiting the mission number recall the original NASA emblem while beneath, utilizing Indian ovoid forms, the major mission scientific experiment package LMS (Life and Materials Sciences) housed in the Shuttle's cargo bay is depicted in a manner reminiscent of totem-pole art. This image of a bird poised for flight, so common to Indian art, is counterpointed by an equally familiar Tsimshian Indian symbol, a pulsating sun with long hyperbolic rays, the symbol of life. Within each of these rays are now encased crystals, the products of this mission's 3 major, high-temperature materials processing furnaces. And as the sky in Indian lore is a lovely open country, home of the Sun Chief and accessible to travelers through a hole in the western horizon, so too, space is a vast and beckoning landscape for explorers launched beyond the horizon. Beneath the Tsimshian sun, the colors of the earth limb are appropriately enclosed by a red border representing life to the Northwest coast Indians. The Indian colors of red, navy blue, white, and black pervade the STS-78 path. To the right of the Shuttle-eagle, the constellation

  2. The Swift GRB MIDEX Mission

    International Nuclear Information System (INIS)

    Gehrels, N.

    2003-01-01

    Swift is a first-of-its-kind multiwavelength transient observatory for gamma-ray burst astronomy. It has the optimum capabilities for the next breakthroughs in determining the origin of gamma-ray bursts and their afterglows, as well as using bursts to probe the early Universe. Swift will also perform the first sensitive hard X-ray survey of the sky. The mission is being developed by an international collaboration and consists of three instruments, the Burst Alert Telescope (BAT), the X-ray Telescope (XRT), and the Ultraviolet and Optical Telescope (UVOT). The BAT, a wide-field gamma-ray detector, will detect 3-7 gamma-ray bursts per week with a sensitivity 5 times that of BATSE. The sensitive narrow-field XRT and UVOT will be autonomously slewed to the burst location in 20 to 70 seconds to determine 0.3-5.0 arcsec positions and perform optical, UV, and X-ray spectrophotometry. Strong education/public outreach and follow-up programs will help to engage the public and astronomical community. The Swift launch is planned for September 2003

  3. The LUVOIR Large Mission Concept

    Science.gov (United States)

    O'Meara, John; LUVOIR Science and Technology Definition Team

    2018-01-01

    LUVOIR is one of four large mission concepts for which the NASA Astrophysics Division has commissioned studies by Science and Technology Definition Teams (STDTs) drawn from the astronomical community. We are currently developing two architectures: Architecture A with a 15.1 meter segmented primary mirror, and Architecture B with a 9.2 meter segmented primary mirror. Our focus in this presentation is the Architecture A LUVOIR. LUVOIR will operate at the Sun-Earth L2 point. It will be designed to support a broad range of astrophysics and exoplanet studies. The initial instruments developed for LUVOIR Architecture A include 1) a high-performance optical/NIR coronagraph with imaging and spectroscopic capability, 2) a UV imager and spectrograph with high spectral resolution and multi-object capability, 3) a high-definition wide-field optical/NIR camera, and 4) a high resolution UV/optical spectropolarimeter. LUVOIR will be designed for extreme stability to support unprecedented spatial resolution and coronagraphy. It is intended to be a long-lifetime facility that is both serviceable, upgradable, and primarily driven by guest observer science programs. In this presentation, we will describe the observatory, its instruments, and survey the transformative science LUVOIR can accomplish.

  4. Subjective Sleep Experience During Shuttle Missions

    Science.gov (United States)

    Whitmire, Alexandra; Slack, Kelley; Locke, James; Patterson, Holly; Faulk, Jeremy; Keeton, Kathryn; Leveton, Lauren

    2012-01-01

    It is now known that for many astronauts, sleep is reduced in spaceflight. Given that sleep is intimately tied to performance, safety, health, and well being, it is important to characterize factors that hinder sleep in space, so countermeasures can be implemented. Lessons learned from current spaceflight can be used to inform the development of space habitats and mitigation strategies for future exploration missions. The purpose of this study was to implement a survey and one-on-one interviews to capture Shuttle flyers' subjective assessment of the factors that interfered with a "good nights sleep" during their missions. Strategies that crewmembers reported using to improve their sleep quality during spaceflight were also discussed. Highlights from the interview data are presented here.

  5. The Polarized Radiation Imaging and Spectroscopy Mission

    CERN Document Server

    André, Philippe; Banday, Anthony; Barbosa, Domingos; Barreiro, Belen; Bartlett, James; Bartolo, Nicola; Battistelli, Elia; Battye, Richard; Bendo, George; Benoȋt, Alain; Bernard, Jean-Philippe; Bersanelli, Marco; Béthermin, Matthieu; Bielewicz, Pawel; Bonaldi, Anna; Bouchet, François; Boulanger, François; Brand, Jan; Bucher, Martin; Burigana, Carlo; Cai, Zhen-Yi; Camus, Philippe; Casas, Francisco; Casasola, Viviana; Castex, Guillaume; Challinor, Anthony; Chluba, Jens; Chon, Gayoung; Colafrancesco, Sergio; Comis, Barbara; Cuttaia, Francesco; D'Alessandro, Giuseppe; Da Silva, Antonio; Davis, Richard; de Avillez, Miguel; de Bernardis, Paolo; de Petris, Marco; de Rosa, Adriano; de Zotti, Gianfranco; Delabrouille, Jacques; Désert, François-Xavier; Dickinson, Clive; Diego, Jose Maria; Dunkley, Joanna; Enßlin, Torsten; Errard, Josquin; Falgarone, Edith; Ferreira, Pedro; Ferrière, Katia; Finelli, Fabio; Fletcher, Andrew; Fosalba, Pablo; Fuller, Gary; Galli, Silvia; Ganga, Ken; García-Bellido, Juan; Ghribi, Adnan; Giard, Martin; Giraud-Héraud, Yannick; Gonzalez-Nuevo, Joaquin; Grainge, Keith; Gruppuso, Alessandro; Hall, Alex; Hamilton, Jean-Christophe; Haverkorn, Marijke; Hernandez-Monteagudo, Carlos; Herranz, Diego; Jackson, Mark; Jaffe, Andrew; Khatri, Rishi; Kunz, Martin; Lamagna, Luca; Lattanzi, Massimiliano; Leahy, Paddy; Lesgourgues, Julien; Liguori, Michele; Liuzzo, Elisabetta; Lopez-Caniego, Marcos; Macias-Perez, Juan; Maffei, Bruno; Maino, Davide; Mangilli, Anna; Martinez-Gonzalez, Enrique; Martins, Carlos J.A.P.; Masi, Silvia; Massardi, Marcella; Matarrese, Sabino; Melchiorri, Alessandro; Melin, Jean-Baptiste; Mennella, Aniello; Mignano, Arturo; Miville-Deschênes, Marc-Antoine; Monfardini, Alessandro; Murphy, Anthony; Naselsky, Pavel; Nati, Federico; Natoli, Paolo; Negrello, Mattia; Noviello, Fabio; O'Sullivan, Créidhe; Paci, Francesco; Pagano, Luca; Paladino, Rosita; Palanque-Delabrouille, Nathalie; Paoletti, Daniela; Peiris, Hiranya; Perrotta, Francesca; Piacentini, Francesco; Piat, Michel; Piccirillo, Lucio; Pisano, Giampaolo; Polenta, Gianluca; Pollo, Agnieszka; Ponthieu, Nicolas; Remazeilles, Mathieu; Ricciardi, Sara; Roman, Matthieu; Rosset, Cyrille; Rubino-Martin, Jose-Alberto; Salatino, Maria; Schillaci, Alessandro; Shellard, Paul; Silk, Joseph; Starobinsky, Alexei; Stompor, Radek; Sunyaev, Rashid; Tartari, Andrea; Terenzi, Luca; Toffolatti, Luigi; Tomasi, Maurizio; Trappe, Neil; Tristram, Matthieu; Trombetti, Tiziana; Tucci, Marco; Van de Weijgaert, Rien; Van Tent, Bartjan; Verde, Licia; Vielva, Patricio; Wandelt, Ben; Watson, Robert; Withington, Stafford; Cabrera, Nicolas

    2014-01-01

    PRISM (Polarized Radiation Imaging and Spectroscopy Mission) was proposed to ESA in May 2013 as a large-class mission for investigating within the framework of the ESA Cosmic Vision program a set of important scientific questions that require high resolution, high sensitivity, full-sky observations of the sky emission at wavelengths ranging from millimeter-wave to the far-infrared. PRISM's main objective is to explore the distant universe, probing cosmic history from very early times until now as well as the structures, distribution of matter, and velocity flows throughout our Hubble volume. PRISM will survey the full sky in a large number of frequency bands in both intensity and polarization and will measure the absolute spectrum of sky emission more than three orders of magnitude better than COBE FIRAS. The aim of this Extended White Paper is to provide a more detailed overview of the highlights of the new science that will be made possible by PRISM

  6. The Infrared Astronomical Satellite (IRAS) mission

    Science.gov (United States)

    Neugebauer, G.; Habing, H. J.; Van Duinen, R.; Aumann, H. H.; Beichman, C. A.; Baud, B.; Beintema, D. A.; Boggess, N.; Clegg, P. E.; De Jong, T.

    1984-01-01

    The Infrared Astronomical Satellite (IRAS) consists of a spacecraft and a liquid helium cryostat that contains a cooled IR telescope. The telescope's focal plane assembly is cooled to less than 3 K, and contains 62 IR detectors in the survey array which are arranged so that every source crossing the field of view can be seen by at least two detectors in each of four wavelength bands. The satellite was launched into a 900 km-altitude near-polar orbit, and its cryogenic helium supply was exhausted on November 22, 1983. By mission's end, 72 percent of the sky had been observed with three or more hours-confirming scans, and 95 percent with two or more hours-confirming scans. About 2000 stars detected at 12 and 25 microns early in the mission, and identified in the SAO (1966) catalog, have a positional uncertainty ellipse whose axes are 45 x 9 arcsec for an hours-confirmed source.

  7. [Mission woman: a survey on the perception of the "Service of Welcome and Listening" offered in the Emergency Department at the San Camillo Hospital in Rome by women victims of violence].

    Science.gov (United States)

    Vender, Cristian; Zicca, Anna; Parasole, Tiziana; Delle Fratte, Roberta; Battilana, Daniela; Mitello, Lucia

    2014-01-01

    The project Mission Woman was set up to describe how the service offered by the Emergency Department of the Hospital San Camillo-Forlanini in Rome was perceived by women victims ( or supposed to be) of violence. The objective of this investigation is to frame clients' perception about the service offered by staff in terms of sensitivity, recognition and management of the issue. The access to the Emergency Room is the first contact of the client with a helping relationship which goes beyond the simple provision of medical care. A questionnaire devised for the purpose was filled in by women who have asked for help to the Service "Door Woman" . The Service "Door Woman", set up in 2009, aimed to welcome and listen women victims of violence with the collaboration of different operators in the emergency department: nurses, doctors, psychologists and social workers. The project developed within the Hospital S. Camillo-Forlanini is managed by both professionals of the Emergency Department together with the Charity "Be Free". The service is open 24/7, all year, the clients could be women or children and could receive assistance or medical, nursing, psychosocial and legal counselling. The triage nurses are those who through their expertise could first identify the victims of violence and to introduce them in the path. Despite the level of injuries, who access to the Emergency Room for single or repeated events of violence, may have decided to claim in court and not hide seeking.. The research aims to understand what are the theoretical and practical deficiencies of staff in the management of a issue which is not only medical but also social and legal, as well as structural and organizational weaknesses of the service.

  8. IMP - INTEGRATED MISSION PROGRAM

    Science.gov (United States)

    Dauro, V. A.

    1994-01-01

    IMP is a simulation language that is used to model missions around the Earth, Moon, Mars, or other planets. It has been used to model missions for the Saturn Program, Apollo Program, Space Transportation System, Space Exploration Initiative, and Space Station Freedom. IMP allows a user to control the mission being simulated through a large event/maneuver menu. Up to three spacecraft may be used: a main, a target and an observer. The simulation may begin at liftoff, suborbital, or orbital. IMP incorporates a Fehlberg seventh order, thirteen evaluation Runge-Kutta integrator with error and step-size control to numerically integrate the equations of motion. The user may choose oblate or spherical gravity for the central body (Earth, Mars, Moon or other) while a spherical model is used for the gravity of an additional perturbing body. Sun gravity and pressure and Moon gravity effects are user-selectable. Earth/Mars atmospheric effects can be included. The optimum thrust guidance parameters are calculated automatically. Events/maneuvers may involve many velocity changes, and these velocity changes may be impulsive or of finite duration. Aerobraking to orbit is also an option. Other simulation options include line-of-sight communication guidelines, a choice of propulsion systems, a soft landing on the Earth or Mars, and rendezvous with a target vehicle. The input/output is in metric units, with the exception of thrust and weight which are in English units. Input is read from the user's input file to minimize real-time keyboard input. Output includes vehicle state, orbital and guide parameters, event and total velocity changes, and propellant usage. The main output is to the user defined print file, but during execution, part of the input/output is also displayed on the screen. An included FORTRAN program, TEKPLOT, will display plots on the VDT as well as generating a graphic file suitable for output on most laser printers. The code is double precision. IMP is written in

  9. Water Cycle Missions for the Next Decade

    Science.gov (United States)

    Houser, P. R.

    2013-12-01

    The global water cycle describes the circulation of water as a vital and dynamic substance in its liquid, solid, and vapor phases as it moves through the atmosphere, oceans and land. Life in its many forms exists because of water, and modern civilization depends on learning how to live within the constraints imposed by the availability of water. The scientific challenge posed by the need to observe the global water cycle is to integrate in situ and space-borne observations to quantify the key water-cycle state variables and fluxes. The vision to address that challenge is a series of Earth observation missions that will measure the states, stocks, flows, and residence times of water on regional to global scales followed by a series of coordinated missions that will address the processes, on a global scale, that underlie variability and changes in water in all its three phases. The accompanying societal challenge is to foster the improved use of water data and information as a basis for enlightened management of water resources, to protect life and property from effects of extremes in the water cycle. A major change in thinking about water science that goes beyond its physics to include its role in ecosystems and society is also required. Better water-cycle observations, especially on the continental and global scales, will be essential. Water-cycle predictions need to be readily available globally to reduce loss of life and property caused by water-related natural hazards. Building on the 2007 Earth Science Decadal Survey, NASA's Plan for a Climate-Centric Architecture for Earth Observations and Applications from Space , and the 2012 Chapman Conference on Remote Sensing of the Terrestrial Water Cycle, a workshop was held in April 2013 to gather wisdom and determine how to prepare for the next generation of water cycle missions in support of the second Earth Science Decadal Survey. This talk will present the outcomes of the workshop including the intersection between

  10. SPHEREx: Playing Nicely with Other Missions

    Science.gov (United States)

    Werner, Michael; SPHEREx Science Team

    2018-01-01

    SPHEREx, a mission in NASA's Medium Explorer (MIDEX) program that was selected for a competitive Phase A study in August 2017, is an all-sky survey satellite designed to address all three science goals of NASA's Astrophysics Division. SPHEREx is a wide-field spectral imager, and it would produce the first all-sky near-infrared spectral survey, using a passively cooled telescope with a wide field-of-view for large mapping speed. The SPHEREx spectra would have resolving power R=41 at wavelengths from 0.75 to 4.2um, and R=135 from 4.2 to 5um. The spectra resolution is provided by Linear Variable Filters placed directly over the four SPHEREx H2RG detector arrays. SPHEREx would be sensitive enough to obtain spectra of essentially all near-infrared sources from the WISE survey. During its two-year mission, SPHEREx, to be launched in 2022, would produce four complete all-sky spectral maps that would serve as a rich archive for the astronomy community.SPHEREx would be tremendously synergistic with numerous other missions and facilities [NASA and non-NASA] which will be operating in the coming decade. SPHEREx observations could pick out the most promising and exciting targets for investigation from JWST. From the opposite perspective, SPHEREx statistical samples could be used to refine the conclusions derived from JWST’s indepth studies of a few members of an interesting class of objects. SPHEREx and GAIA spectrophotometry, incorporating photometry from WISE and GALEX as well as GAIA astrometry, could lead to the determination of the radii of main sequence stars, and their transiting exoplanets discovered by TESS, with 1% accuracy. SPHEREx low redshift spectra of millions of galaxies could be used to validate and calibrate the photometric nredshift scale being adopted by WFIRST and Euclid, improving the precision of the dark energy measures being returned by those missions. The poster will briefly address SPHEREx synergisms with these and other missions ranging from LSST

  11. The Waste Negotiator's mission

    International Nuclear Information System (INIS)

    Bataille, Christian

    1993-01-01

    The mission of the Waste Negotiator is to seek out sites for deep underground laboratories to study their potential for disposal of high level radioactive waste. Although appointed by the government, he acts independently. In 1990, faced by severe public criticism at the way that the waste disposal was being handled, and under increasing pressure to find an acceptable solution, the government stopped the work being carried out by ANDRA (Agence nationale pour la gestion des dechets radioactifs) and initiated a full review of the issues involved. At the same time, parliament also started its own extensive investigation to find a way forward. These efforts finally led to the provision of a detailed framework for the management of long lived radioactive waste, including the construction of two laboratories to investigate possible repository sites. The Waste Negotiator was appointed to carry out a full consultative process in the communities which are considering accepting an underground laboratory. (Author)

  12. UK Mission to CERN

    CERN Multimedia

    2004-01-01

    At the end of June, nine experts from UK industry visited CERN to study techniques for developing distributed computing systems and to look at some specific applications. In a packed three-day programme, almost 40 CERN experts presented a comprehensive survey of achievements.

  13. STS-40 Mission Insignia

    Science.gov (United States)

    1990-01-01

    The STS-40 patch makes a contemporary statement focusing on human beings living and working in space. Against a background of the universe, seven silver stars, interspersed about the orbital path of Columbia, represent the seven crew members. The orbiter's flight path forms a double-helix, designed to represent the DNA molecule common to all living creatures. In the words of a crew spokesman, ...(the helix) affirms the ceaseless expansion of human life and American involvement in space while simultaneously emphasizing the medical and biological studies to which this flight is dedicated. Above Columbia, the phrase Spacelab Life Sciences 1 defines both the Shuttle mission and its payload. Leonardo Da Vinci's Vitruvian man, silhouetted against the blue darkness of the heavens, is in the upper center portion of the patch. With one foot on Earth and arms extended to touch Shuttle's orbit, the crew feels, he serves as a powerful embodiment of the extension of human inquiry from the boundaries of Earth to the limitless laboratory of space. Sturdily poised amid the stars, he serves to link scentists on Earth to the scientists in space asserting the harmony of efforts which produce meaningful scientific spaceflight missions. A brilliant red and yellow Earth limb (center) links Earth to space as it radiates from a native American symbol for the sun. At the frontier of space, the traditional symbol for the sun vividly links America's past to America's future, the crew states. Beneath the orbiting Shuttle, darkness of night rests peacefully over the United States. Drawn by artist Sean Collins, the STS 40 Space Shuttle patch was designed by the crewmembers for the flight.

  14. NASA CYGNSS Mission Overview

    Science.gov (United States)

    Ruf, C. S.; Balasubramaniam, R.; Gleason, S.; McKague, D. S.; O'Brien, A.

    2017-12-01

    The CYGNSS constellation of eight satellites was successfully launched on 15 December 2016 into a low inclination (tropical) Earth orbit. Each satellite carries a four-channel bi-static radar receiver that measures GPS signals scattered by the ocean, from which ocean surface roughness, near surface wind speed, and air-sea latent heat flux are estimated. The measurements are unique in several respects, most notably in their ability to penetrate through all levels of precipitation, made possible by the low frequency at which GPS operates, and in the frequent sampling of tropical cyclone intensification and of the diurnal cycle of winds, made possible by the large number of satellites. Engineering commissioning of the constellation was successfully completed in March 2017 and the mission is currently in the early phase of science operations. Level 2 science data products have been developed for near surface (10 m referenced) ocean wind speed, ocean surface roughness (mean square slope) and latent heat flux. Level 3 gridded versions of the L2 products have also been developed. A set of Level 4 products have also been developed specifically for direct tropical cyclone overpasses. These include the storm intensity (peak sustained winds) and size (radius of maximum winds), its extent (34, 50 and 64 knot wind radii), and its integrated kinetic energy. Assimilation of CYGNSS L2 wind speed data into the HWRF hurricane weather prediction model has also been developed. An overview and the current status of the mission will be presented, together with highlights of early on-orbit performance and scientific results.

  15. The Messenger Mission to Mercury

    CERN Document Server

    Domingue, D. L

    2007-01-01

    NASA’s MESSENGER mission, launched on 3 August, 2004 is the seventh mission in the Discovery series. MESSENGER encounters the planet Mercury four times, culminating with an insertion into orbit on 18 March 2011. It carries a comprehensive package of geophysical, geological, geochemical, and space environment experiments to complete the complex investigations of this solar-system end member, which begun with Mariner 10. The articles in this book, written by the experts in each area of the MESSENGER mission, describe the mission, spacecraft, scientific objectives, and payload. The book is of interest to all potential users of the data returned by the MESSENGER mission, to those studying the nature of the planet Mercury, and by all those interested in the design and implementation of planetary exploration missions.

  16. Mars Relays Satellite Orbit Design Considerations for Global Support of Robotic Surface Missions

    Science.gov (United States)

    Hastrup, Rolf; Cesarone, Robert; Cook, Richard; Knocke, Phillip; McOmber, Robert

    1993-01-01

    This paper discusses orbit design considerations for Mars relay satellite (MRS)support of globally distributed robotic surface missions. The orbit results reported in this paper are derived from studies of MRS support for two types of Mars robotic surface missions: 1) the mars Environmental Survey (MESUR) mission, which in its current definition would deploy a global network of up to 16 small landers, and 2)a Small Mars Sample Return (SMSR) mission, which included four globally distributed landers, each with a return stage and one or two rovers, and up to four additional sets of lander/rover elements in an extended mission phase.

  17. Autonomous scheduling technology for Earth orbital missions

    Science.gov (United States)

    Srivastava, S.

    1982-01-01

    The development of a dynamic autonomous system (DYASS) of resources for the mission support of near-Earth NASA spacecraft is discussed and the current NASA space data system is described from a functional perspective. The future (late 80's and early 90's) NASA space data system is discussed. The DYASS concept, the autonomous process control, and the NASA space data system are introduced. Scheduling and related disciplines are surveyed. DYASS as a scheduling problem is also discussed. Artificial intelligence and knowledge representation is considered as well as the NUDGE system and the I-Space system.

  18. Lunar Exploration Missions Since 2006

    Science.gov (United States)

    Lawrence, S. J. (Editor); Gaddis, L. R.; Joy, K. H.; Petro, N. E.

    2017-01-01

    The announcement of the Vision for Space Exploration in 2004 sparked a resurgence in lunar missions worldwide. Since the publication of the first "New Views of the Moon" volume, as of 2017 there have been 11 science-focused missions to the Moon. Each of these missions explored different aspects of the Moon's geology, environment, and resource potential. The results from this flotilla of missions have revolutionized lunar science, and resulted in a profoundly new emerging understanding of the Moon. The New Views of the Moon II initiative itself, which is designed to engage the large and vibrant lunar science community to integrate the results of these missions into new consensus viewpoints, is a direct outcome of this impressive array of missions. The "Lunar Exploration Missions Since 2006" chapter will "set the stage" for the rest of the volume, introducing the planetary community at large to the diverse array of missions that have explored the Moon in the last decade. Content: This chapter will encompass the following missions: Kaguya; ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon’s Interaction with the Sun); Chang’e-1; Chandrayaan-1; Moon Impact Probe; Lunar Reconnaissance Orbiter (LRO); Lunar Crater Observation Sensing Satellite (LCROSS); Chang’e-2; Gravity Recovery and Interior Laboratory (GRAIL); Lunar Atmosphere and Dust Environment Explorer (LADEE); Chang’e-3.

  19. IRIS Mission Operations Director's Colloquium

    Science.gov (United States)

    Carvalho, Robert; Mazmanian, Edward A.

    2014-01-01

    Pursuing the Mysteries of the Sun: The Interface Region Imaging Spectrograph (IRIS) Mission. Flight controllers from the IRIS mission will present their individual experiences on IRIS from development through the first year of flight. This will begin with a discussion of the unique nature of IRISs mission and science, and how it fits into NASA's fleet of solar observatories. Next will be a discussion of the critical roles Ames contributed in the mission including spacecraft and flight software development, ground system development, and training for launch. This will be followed by experiences from launch, early operations, ongoing operations, and unusual operations experiences. The presentation will close with IRIS science imagery and questions.

  20. Bomber Deterrence Missions: Criteria To Evaluate Mission Effectiveness

    Science.gov (United States)

    2016-02-16

    international security, the practice of general deterrence usually occurs when nations feel insecure , suspicious or even hostility towards them but...both a deterrence and assurance mission even though it was not planned or advertised as such. Since the intent of this mission was partly perceived

  1. Simulation of Mission Phases

    Science.gov (United States)

    Carlstrom, Nicholas Mercury

    2016-01-01

    This position with the Simulation and Graphics Branch (ER7) at Johnson Space Center (JSC) provided an introduction to vehicle hardware, mission planning, and simulation design. ER7 supports engineering analysis and flight crew training by providing high-fidelity, real-time graphical simulations in the Systems Engineering Simulator (SES) lab. The primary project assigned by NASA mentor and SES lab manager, Meghan Daley, was to develop a graphical simulation of the rendezvous, proximity operations, and docking (RPOD) phases of flight. The simulation is to include a generic crew/cargo transportation vehicle and a target object in low-Earth orbit (LEO). Various capsule, winged, and lifting body vehicles as well as historical RPOD methods were evaluated during the project analysis phase. JSC core mission to support the International Space Station (ISS), Commercial Crew Program (CCP), and Human Space Flight (HSF) influenced the project specifications. The simulation is characterized as a 30 meter +V Bar and/or -R Bar approach to the target object's docking station. The ISS was selected as the target object and the international Low Impact Docking System (iLIDS) was selected as the docking mechanism. The location of the target object's docking station corresponds with the RPOD methods identified. The simulation design focuses on Guidance, Navigation, and Control (GNC) system architecture models with station keeping and telemetry data processing capabilities. The optical and inertial sensors, reaction control system thrusters, and the docking mechanism selected were based on CCP vehicle manufacturer's current and proposed technologies. A significant amount of independent study and tutorial completion was required for this project. Multiple primary source materials were accessed using the NASA Technical Report Server (NTRS) and reference textbooks were borrowed from the JSC Main Library and International Space Station Library. The Trick Simulation Environment and User

  2. Business analysis: The commercial mission of the International Asteroid Mission

    Science.gov (United States)

    The mission of the International Asteroid Mission (IAM) is providing asteroidal resources to support activities in space. The short term goal is to initiate IAM by mining a near-Earth, hydrous carbonaceous chondrite asteroid to service the nearer-term market of providing cryogenic rocket fuel in low lunar orbit (LLO). The IAM will develop and contract for the building of the transportation vehicles and equipment necessary for this undertaking. The long-term goal is to expand operations by exploiting asteroids in other manners, as these options become commercially viable. The primary business issues are what revenue can be generated from the baseline mission, how much will the mission cost, and how funding for this mission can be raised. These issues are addressed.

  3. The Impact of Mission Duration on a Mars Orbital Mission

    Science.gov (United States)

    Arney, Dale; Earle, Kevin; Cirillo, Bill; Jones, Christopher; Klovstad, Jordan; Grande, Melanie; Stromgren, Chel

    2017-01-01

    Performance alone is insufficient to assess the total impact of changing mission parameters on a space mission concept, architecture, or campaign; the benefit, cost, and risk must also be understood. This paper examines the impact to benefit, cost, and risk of changing the total mission duration of a human Mars orbital mission. The changes in the sizing of the crew habitat, including consumables and spares, was assessed as a function of duration, including trades of different life support strategies; this was used to assess the impact on transportation system requirements. The impact to benefit is minimal, while the impact on cost is dominated by the increases in transportation costs to achieve shorter total durations. The risk is expected to be reduced by decreasing total mission duration; however, large uncertainty exists around the magnitude of that reduction.

  4. Hipparcos: mission accomplished

    Science.gov (United States)

    1993-08-01

    During the last few months of its life, as the high radiation environment to which the satellite was exposed took its toll on the on-board system, Hipparcos was operated with only two of the three gyroscopes normally required for such a satellite, following an ambitious redesign of the on-board and on-ground systems. Plans were in hand to operate the satellite without gyroscopes at all, and the first such "gyro- less" data had been acquired, when communication failure with the on-board computers on 24 June 1993 put an end to the relentless flow of 24000 bits of data that have been sent down from the satellite each second, since launch. Further attempts to continue operations proved unsuccessful, and after a short series of sub-systems tests, operations were terminated four years and a week after launch. An enormous wealth of scientific data was gathered by Hipparcos. Even though data analysis by the scientific teams involved in the programme is not yet completed, it is clear that the mission has been an overwhelming success. "The ESA advisory bodies took a calculated risk in selecting this complex but fundamental programme" said Dr. Roger Bonnet, ESA's Director of Science, "and we are delighted to have been able to bring it to a highly successful conclusion, and to have contributed unique information that will take a prominent place in the history and development of astrophysics". Extremely accurate positions of more than one hundred thousand stars, precise distance measurements (in most cases for the first time), and accurate determinations of the stars' velocity through space have been derived. The resulting HIPPARCOS Star Catalogue, expected to be completed in 1996, will be of unprecedented accuracy, achieving results some 10-100 times more accurate than those routinely determined from ground-based astronomical observatories. A further star catalogue, the Thyco Star Catalogue of more than a million stars, is being compiled from additional data accumulated by the

  5. Slit and Netrin-1 guide cranial motor axon pathfinding via Rho-kinase, myosin light chain kinase and myosin II

    Directory of Open Access Journals (Sweden)

    Drescher Uwe

    2010-06-01

    Full Text Available Abstract Background In the developing hindbrain, cranial motor axon guidance depends on diffusible repellent factors produced by the floor plate. Our previous studies have suggested that candidate molecules for mediating this effect are Slits, Netrin-1 and Semaphorin3A (Sema3A. It is unknown to what extent these factors contribute to floor plate-derived chemorepulsion of motor axons, and the downstream signalling pathways are largely unclear. Results In this study, we have used a combination of in vitro and in vivo approaches to identify the components of floor plate chemorepulsion and their downstream signalling pathways. Using in vitro motor axon deflection assays, we demonstrate that Slits and Netrin-1, but not Sema3A, contribute to floor plate repulsion. We also find that the axon pathways of dorsally projecting branchiomotor neurons are disrupted in Netrin-1 mutant mice and in chick embryos expressing dominant-negative Unc5a receptors, indicating an in vivo role for Netrin-1. We further demonstrate that Slit and Netrin-1 signalling are mediated by Rho-kinase (ROCK and myosin light chain kinase (MLCK, which regulate myosin II activity, controlling actin retrograde flow in the growth cone. We show that MLCK, ROCK and myosin II are required for Slit and Netrin-1-mediated growth cone collapse of cranial motor axons. Inhibition of these molecules in explant cultures, or genetic manipulation of RhoA or myosin II function in vivo causes characteristic cranial motor axon pathfinding errors, including the inability to exit the midline, and loss of turning towards exit points. Conclusions Our findings suggest that both Slits and Netrin-1 contribute to floor plate-derived chemorepulsion of cranial motor axons. They further indicate that RhoA/ROCK, MLCK and myosin II are components of Slit and Netrin-1 signalling pathways, and suggest that these pathways are of key importance in cranial motor axon navigation.

  6. Instrument demonstration effort for the CLARREO mission

    Science.gov (United States)

    Grandmont, Frédéric; Moreau, Louis; Bourque, Hugo; Taylor, Joe; Girard, Frédéric; Larouche, Martin; Veilleux, James

    2017-11-01

    NASA and other national agencies ask the National Research Council (NRC) once every decade to look out ten or more years into the future and prioritize research areas, observations, and notional missions to make those observations. The latest such scientific community consultation referred to as the Decadal Survey (DS), was completed in 2007 [1]. DS thematic panels developed 35 missions from more than 100 missions proposed, from which the DS Executive Committee synthesized 17 missions, with suggested order presented in three time-phased blocks. The first block with aim for near term launch (2010-2013) included four missions. The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is one of them. The CLARREO mission was classified as a Small Mission to be contained in a 300 M US$ budgetary envelope. CLARREO will provide a benchmark climate record that is global, accurate in perpetuity, tested against independent strategies that reveal systematic errors, and pinned to international standards. The long term objective thus suggests that NOAA or NASA will fly the CLARREO instrument suite on an operational basis following the first scientific experiment The CLARREO missions will conduct the following observations: 1. Absolute spectrally-resolved measurements of terrestrial thermal emission with an absolute accuracy of 0.1 K in brightness temperature (3σ or 99% confidence limits.) The measurements should cover most of the thermal spectrum. 2. Absolute spectrally-resolved measurements of the solar radiation reflected from Earth. The measurements should cover the part of the solar spectrum most important to climate, including the near-ultraviolet, visible, and near-infrared. 3. Independent measurements of atmospheric temperature, pressure, and humidity using Global Positioning System (GPS) occultation measurements of atmospheric refraction. 4. Serve as a high accuracy calibration standard for use by the broadband CERES instruments on-orbit. Following

  7. Emblem for the second manned Skylab mission, Skylab 3

    Science.gov (United States)

    1973-01-01

    This is the emblem for the second manned Skylab mission. It will be a mission of up to 56 days. The patch symbolizes the main objectives of the flight. The central figure, adapted from one by Leonardo da Vinci, illustrates the proportions of the human form and suggests the many studies of man himself to be conducted in the zero-gravity environment of space. This drawing is superimposed on two hemispheres representing the two additional main areas of research - studies of the Sun and the development of techniques for survey of the Earth's resources. The left hemisphere show the Sun as it will be seen in the red light radiated by hydrogen atoms in the solar atmosphere. The right hemisphere is intended to suggest the studies of Earth resources to be conducted on Skylab. Although the patch denotes this mission as Skylab II, it is actually consided to be the Skylab III mission.

  8. The AGILE Mission

    CERN Document Server

    Tavani, M.; Argan, A.; Boffelli, F.; Bulgarelli, A.; Caraveo, P.; Cattaneo, P.W.; Chen, A.W.; Cocco, V.; Costa, E.; D'Ammando, F.; Del Monte, E.; De Paris, G.; Di Cocco, G.; Di Persio, G.; Donnarumma, I.; Evangelista, Y.; Feroci, M.; Ferrari, A.; Fiorini, M.; Fornari, F.; Fuschino, F.; Froysland, T.; Frutti, M.; Galli, M.; Gianotti, F.; Giuliani, A.; Labanti, C.; Lapshov, I.; Lazzarotto, F.; Liello, F.; Lipari, P.; Longo, F.; Mattaini, E.; Marisaldi, M.; Mastropietro, M.; Mauri, A.; Mauri, F.; Mereghetti, S.; Morelli, E.; Morselli, A.; Pacciani, L.; Pellizzoni, A.; Perotti, F.; Piano, G.; Picozza, P.; Pontoni, C.; Porrovecchio, G.; Prest, M.; Pucella, G.; Rapisarda, M.; Rappoldi, A.; Rossi, E.; Rubini, A.; Soffitta, P.; Traci, A.; Trifoglio, M.; Trois, A.; Vallazza, E.; Vercellone, S.; Vittorini, V.; Zambra, A.; Zanello, D.; Pittori, C.; Preger, B.; Santolamazza, P.; Verrecchia, F.; Giommi, P.; Colafrancesco, S.; Antonelli, A.; Cutini, S.; Gasparrini, D.; Stellato, S.; Fanari, G.; Primavera, R.; Tamburelli, F.; Viola, F.; Guarrera, G.; Salotti, L.; D'Amico, F.; Marchetti, E.; Crisconio, M.; Sabatini, P.; Annoni, G.; Alia, S.; Longoni, A.; Sanquerin, R.; Battilana, M.; Concari, P.; Dessimone, E.; Grossi, R.; Parise, A.; Monzani, F.; Artina, E.; Pavesi, R.; Marseguerra, G.; Nicolini, L.; Scandelli, L.; Soli, L.; Vettorello, V.; Zardetto, E.; Bonati, A.; Maltecca, L.; D'Alba, E.; Patane, M.; Babini, G.; Onorati, F.; Acquaroli, L.; Angelucci, M.; Morelli, B.; Agostara, C.; Cerone, M.; Michetti, A.; Tempesta, P.; D'Eramo, S.; Rocca, F.; Giannini, F.; Borghi, G.; Garavelli, B.; Conte, M.; Balasini, M.; Ferrario, I.; Vanotti, M.; Collavo, E.; Giacomazzo, M.

    2008-01-01

    AGILE is an Italian Space Agency mission dedicated to the observation of the gamma-ray Universe. The AGILE very innovative instrumentation combines for the first time a gamma-ray imager (sensitive in the energy range 30 MeV - 50 GeV), a hard X-ray imager (sensitive in the range 18-60 keV) together with a Calorimeter (sensitive in the range 300 keV - 100 MeV) and an anticoincidence system. AGILE was successfully launched on April 23, 2007 from the Indian base of Sriharikota and was inserted in an equatorial orbit with a very low particle background. AGILE provides crucial data for the study of Active Galactic Nuclei, Gamma-Ray Bursts, pulsars, unidentified gamma-ray sources, Galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing. An optimal angular resolution (reaching 0.1-0.2 degrees in gamma-rays, 1-2 arcminutes in hard X-rays) and very large fields of view (2.5 sr and 1 sr, respectively) are obtained by the use of Silicon detectors integrated in a very compa...

  9. STS-68 Mission Insignia

    Science.gov (United States)

    1994-01-01

    This STS-68 patch was designed by artist Sean Collins. Exploration of Earth from space is the focus of the design of the insignia, the second flight of the Space Radar Laboratory (SRL-2). SRL-2 was part of NASA's Mission to Planet Earth (MTPE) project. The world's land masses and oceans dominate the center field, with the Space Shuttle Endeavour circling the globe. The SRL-2 letters span the width and breadth of planet Earth, symbolizing worldwide coverage of the two prime experiments of STS-68: The Shuttle Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) instruments; and the Measurement of Air Pollution from Satellites (MAPS) sensor. The red, blue, and black colors of the insignia represent the three operating wavelengths of SIR-C/X-SAR, and the gold band surrounding the globe symbolizes the atmospheric envelope examined by MAPS. The flags of international partners Germany and Italy are shown opposite Endeavour. The relationship of the Orbiter to Earth highlights the usefulness of human space flights in understanding Earth's environment, and the monitoring of its changing surface and atmosphere. In the words of the crew members, the soaring Orbiter also typifies the excellence of the NASA team in exploring our own world, using the tools which the Space Program developed to explore the other planets in the solar system.

  10. Draft Mission Plan Amendment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-09-01

    The Department of Energy`s Office Civilian Radioactive Waste Management has prepared this document to report plans for the Civilian Radioactive Waste Management Program, whose mission is to manage and dispose of the nation`s spent fuel and high-level radioactive waste in a manner that protects the health and safety of the public and of workers and the quality of the environment. The Congress established this program through the Nuclear Waste Policy Act of 1982. Specifically, the Congress directed us to isolate these wastes in geologic repositories constructed in suitable rock formations deep beneath the surface of the earth. In the Nuclear Waste Policy Amendments Act of 1987, the Congress mandated that only one repository was to be developed at present and that only the Yucca Mountain candidate site in Nevada was to be characterized at this time. The Amendments Act also authorized the construction of a facility for monitored retrievable storage (MRS) and established the Office of the Nuclear Waste Negotiator and the Nuclear Waste Technical Review Board. After a reassessment in 1989, the Secretary of Energy restructured the program, focusing the repository effort scientific evaluations of the Yucca Mountain candidate site, deciding to proceed with the development of an MRS facility, and strengthening the management of the program. 48 refs., 32 figs.

  11. NASA's interstellar probe mission

    International Nuclear Information System (INIS)

    Liewer, P.C.; Ayon, J.A.; Wallace, R.A.; Mewaldt, R.A.

    2000-01-01

    NASA's Interstellar Probe will be the first spacecraft designed to explore the nearby interstellar medium and its interaction with our solar system. As envisioned by NASA's Interstellar Probe Science and Technology Definition Team, the spacecraft will be propelled by a solar sail to reach >200 AU in 15 years. Interstellar Probe will investigate how the Sun interacts with its environment and will directly measure the properties and composition of the dust, neutrals and plasma of the local interstellar material which surrounds the solar system. In the mission concept developed in the spring of 1999, a 400-m diameter solar sail accelerates the spacecraft to ∼15 AU/year, roughly 5 times the speed of Voyager 1 and 2. The sail is used to first bring the spacecraft to ∼0.25 AU to increase the radiation pressure before heading out in the interstellar upwind direction. After jettisoning the sail at ∼5 AU, the spacecraft coasts to 200-400 AU, exploring the Kuiper Belt, the boundaries of the heliosphere, and the nearby interstellar medium

  12. Draft Mission Plan Amendment

    International Nuclear Information System (INIS)

    1991-09-01

    The Department of Energy's Office Civilian Radioactive Waste Management has prepared this document to report plans for the Civilian Radioactive Waste Management Program, whose mission is to manage and dispose of the nation's spent fuel and high-level radioactive waste in a manner that protects the health and safety of the public and of workers and the quality of the environment. The Congress established this program through the Nuclear Waste Policy Act of 1982. Specifically, the Congress directed us to isolate these wastes in geologic repositories constructed in suitable rock formations deep beneath the surface of the earth. In the Nuclear Waste Policy Amendments Act of 1987, the Congress mandated that only one repository was to be developed at present and that only the Yucca Mountain candidate site in Nevada was to be characterized at this time. The Amendments Act also authorized the construction of a facility for monitored retrievable storage (MRS) and established the Office of the Nuclear Waste Negotiator and the Nuclear Waste Technical Review Board. After a reassessment in 1989, the Secretary of Energy restructured the program, focusing the repository effort scientific evaluations of the Yucca Mountain candidate site, deciding to proceed with the development of an MRS facility, and strengthening the management of the program. 48 refs., 32 figs

  13. EarthFinder: A Precise Radial Velocity Survey Probe Mission of our Nearest Stellar Neighbors for Earth-Mass Habitable Zone Analogs Using High-Resolution UV-Vis-NIR Echelle Spectroscopy on a Space Platform

    Science.gov (United States)

    Plavchan, Peter; EarthFinder Team

    2018-01-01

    We are investigating the science case for a 1.0-1.4 meter space telescope to survey the closest, brightest FGKM main sequence stars to search for Habitable Zone (HZ) Earth analogs using the precise radial velocity (PRV) technique at a precision of 1-10 cm/s. Our baseline instrument concept uses two diffraction-limited spectrographs operating in the 0.4-1.0 microns and 1.0-2.4 microns spectral regions each with a spectral resolution of R=150,000~200,000, with the possibility of a third UV arm. Because the instrument utilizes a diffraction-limited input beam, the spectrograph would be extremely compact, less than 50 cm on a side, and illumination can be stabilized with the coupling of starlight into single mode fibers. With two octaves of wavelength coverage and a cadence unimpeded by any diurnal, seasonal, and atmospheric effects, EarthFinder will offer a unique platform for recovering stellar activity signals from starspots, plages, granulation, etc. to detect exoplanets at velocity semi-amplitudes currently not obtainable from the ground. Variable telluric absorption and emission lines may potentially preclude achieving PRV measurements at or below 10 cm/s in the visible and advantage compared to an annual ~3-6 month observing season from the ground for mitigating stellar activity and detecting the orbital periods of HZ Earth-mass analogs (e.g. ~6-months to ~2 years). Finally, we are compiling a list of ancillary science cases for the observatory, ranging from asteroseismology to the direct measurement of the expansion of the Universe.

  14. Liquid Effluents Program mission analysis

    International Nuclear Information System (INIS)

    Lowe, S.S.

    1994-01-01

    Systems engineering is being used to identify work to cleanup the Hanford Site. The systems engineering process transforms an identified mission need into a set of performance parameters and a preferred system configuration. Mission analysis is the first step in the process. Mission analysis supports early decision-making by clearly defining the program objectives, and evaluating the feasibility and risks associated with achieving those objectives. The results of the mission analysis provide a consistent basis for subsequent systems engineering work. A mission analysis was performed earlier for the overall Hanford Site. This work was continued by a ''capstone'' team which developed a top-level functional analysis. Continuing in a top-down manner, systems engineering is now being applied at the program and project levels. A mission analysis was conducted for the Liquid Effluents Program. The results are described herein. This report identifies the initial conditions and acceptable final conditions, defines the programmatic and physical interfaces and sources of constraints, estimates the resources to carry out the mission, and establishes measures of success. The mission analysis reflects current program planning for the Liquid Effluents Program as described in Liquid Effluents FY 1995 Multi-Year Program Plan

  15. STS-51J Mission Insignia

    Science.gov (United States)

    1985-01-01

    The 51-J mission insignia, designed by Atlantis's first crew, pays tribute to the Statue of Liberty and the ideas it symbolizes. The historical gateway figure bears additional significance for Astronauts Karol J. Bobko, mission commander; and Ronald J. Grabe, pilot, both New Your Natives.

  16. Mission Techniques for Exploring Saturn's icy moons Titan and Enceladus

    Science.gov (United States)

    Reh, Kim; Coustenis, Athena; Lunine, Jonathan; Matson, Dennis; Lebreton, Jean-Pierre; Vargas, Andre; Beauchamp, Pat; Spilker, Tom; Strange, Nathan; Elliott, John

    2010-05-01

    The future exploration of Titan is of high priority for the solar system exploration community as recommended by the 2003 National Research Council (NRC) Decadal Survey [1] and ESA's Cosmic Vision Program themes. Cassini-Huygens discoveries continue to emphasize that Titan is a complex world with very many Earth-like features. Titan has a dense, nitrogen atmosphere, an active climate and meteorological cycles where conditions are such that the working fluid, methane, plays the role that water does on Earth. Titan's surface, with lakes and seas, broad river valleys, sand dunes and mountains was formed by processes like those that have shaped the Earth. Supporting this panoply of Earth-like processes is an ice crust that floats atop what might be a liquid water ocean. Furthermore, Titan is rich in very many different organic compounds—more so than any place in the solar system, except Earth. The Titan Saturn System Mission (TSSM) concept that followed the 2007 TandEM ESA CV proposal [2] and the 2007 Titan Explorer NASA Flagship study [3], was examined [4,5] and prioritized by NASA and ESA in February 2009 as a mission to follow the Europa Jupiter System Mission. The TSSM study, like others before it, again concluded that an orbiter, a montgolfiѐre hot-air balloon and a surface package (e.g. lake lander, Geosaucer (instrumented heat shield), …) are very high priority elements for any future mission to Titan. Such missions could be conceived as Flagship/Cosmic Vision L-Class or as individual smaller missions that could possibly fit within NASA's New Frontiers or ESA's Cosmic Vision M-Class budgets. As a result of a multitude of Titan mission studies, several mission concepts have been developed that potentially fit within various cost classes. Also, a clear blueprint has been laid out for early efforts critical toward reducing the risks inherent in such missions. The purpose of this paper is to provide a brief overview of potential Titan (and Enceladus) mission

  17. Surveying Future Surveys

    Science.gov (United States)

    Carlstrom, John E.

    2016-06-01

    The now standard model of cosmology has been tested and refined by the analysis of increasingly sensitive, large astronomical surveys, especially with statistically significant millimeter-wave surveys of the cosmic microwave background and optical surveys of the distribution of galaxies. This talk will offer a glimpse of the future, which promises an acceleration of this trend with cosmological information coming from new surveys across the electromagnetic spectrum as well as particles and even gravitational waves.

  18. PathfinderTURB: an automatic boundary layer algorithm. Development, validation and application to study the impact on in situ measurements at the Jungfraujoch

    Directory of Open Access Journals (Sweden)

    Y. Poltera

    2017-08-01

    Full Text Available We present the development of the PathfinderTURB algorithm for the analysis of ceilometer backscatter data and the real-time detection of the vertical structure of the planetary boundary layer. Two aerosol layer heights are retrieved by PathfinderTURB: the convective boundary layer (CBL and the continuous aerosol layer (CAL. PathfinderTURB combines the strengths of gradient- and variance-based methods and addresses the layer attribution problem by adopting a geodesic approach. The algorithm has been applied to 1 year of data measured by two ceilometers of type CHM15k, one operated at the Aerological Observatory of Payerne (491 m a.s.l. on the Swiss plateau and one at the Kleine Scheidegg (2061 m a.s.l. in the Swiss Alps. The retrieval of the CBL has been validated at Payerne using two reference methods: (1 manual detections of the CBL height performed by human experts using the ceilometer backscatter data; (2 values of CBL heights calculated using the Richardson's method from co-located radio sounding data. We found average biases as small as 27 m (53 m with respect to reference method 1 (method 2. Based on the excellent agreement between the two reference methods, PathfinderTURB has been applied to the ceilometer data at the mountainous site of the Kleine Scheidegg for the period September 2014 to November 2015. At this site, the CHM15k is operated in a tilted configuration at 71° zenith angle to probe the atmosphere next to the Sphinx Observatory (3580 m a.s.l. on the Jungfraujoch (JFJ. The analysis of the retrieved layers led to the following results: the CAL reaches the JFJ 41 % of the time in summer and 21 % of the time in winter for a total of 97 days during the two seasons. The season-averaged daily cycles show that the CBL height reaches the JFJ only during short periods (4 % of the time, but on 20 individual days in summer and never during winter. During summer in particular, the CBL and the CAL modify the

  19. PathfinderTURB: an automatic boundary layer algorithm. Development, validation and application to study the impact on in situ measurements at the Jungfraujoch

    Science.gov (United States)

    Poltera, Yann; Martucci, Giovanni; Collaud Coen, Martine; Hervo, Maxime; Emmenegger, Lukas; Henne, Stephan; Brunner, Dominik; Haefele, Alexander

    2017-08-01

    We present the development of the PathfinderTURB algorithm for the analysis of ceilometer backscatter data and the real-time detection of the vertical structure of the planetary boundary layer. Two aerosol layer heights are retrieved by PathfinderTURB: the convective boundary layer (CBL) and the continuous aerosol layer (CAL). PathfinderTURB combines the strengths of gradient- and variance-based methods and addresses the layer attribution problem by adopting a geodesic approach. The algorithm has been applied to 1 year of data measured by two ceilometers of type CHM15k, one operated at the Aerological Observatory of Payerne (491 m a.s.l.) on the Swiss plateau and one at the Kleine Scheidegg (2061 m a.s.l.) in the Swiss Alps. The retrieval of the CBL has been validated at Payerne using two reference methods: (1) manual detections of the CBL height performed by human experts using the ceilometer backscatter data; (2) values of CBL heights calculated using the Richardson's method from co-located radio sounding data. We found average biases as small as 27 m (53 m) with respect to reference method 1 (method 2). Based on the excellent agreement between the two reference methods, PathfinderTURB has been applied to the ceilometer data at the mountainous site of the Kleine Scheidegg for the period September 2014 to November 2015. At this site, the CHM15k is operated in a tilted configuration at 71° zenith angle to probe the atmosphere next to the Sphinx Observatory (3580 m a.s.l.) on the Jungfraujoch (JFJ). The analysis of the retrieved layers led to the following results: the CAL reaches the JFJ 41 % of the time in summer and 21 % of the time in winter for a total of 97 days during the two seasons. The season-averaged daily cycles show that the CBL height reaches the JFJ only during short periods (4 % of the time), but on 20 individual days in summer and never during winter. During summer in particular, the CBL and the CAL modify the air sampled in situ at JFJ, resulting

  20. GRACE Status at Mission End

    Science.gov (United States)

    Tapley, B. D.; Flechtner, F. M.; Watkins, M. M.; Bettadpur, S. V.

    2017-12-01

    The twin satellites of the Gravity Recovery and Climate Experiment (GRACE) were launched on March 17, 2002 and have operated for nearly 16 years. The mission objectives are to observe the spatial and temporal variations of the Earth's mass through its effects on the gravity field at the GRACE satellite altitude. The mass changes observed are related to both the changes within the solid earth and the change within and between the Erath system components. A significant cause of the time varying mass is water motion and the GRACE mission has provided a continuous decade long measurement sequence which characterizes the seasonal cycle of mass transport between the oceans, land, cryosphere and atmosphere; its inter-annual variability; and the climate driven secular, or long period, mass transport signals. The fifth reanalysis on the mission data set, the RL05 data, were released in mid-2013. With the planned launch of GRACE Follow-On in early 2018, plans are underway for a reanalysis that will be consistent with the GRACE FO processing standards. The mission is entering the final phases of its operation life with mission end expected to occur in early 2018. The current mission operations strategy emphasizes extending the mission lifetime to obtain an overlap with the GRACE FO. This presentation will review the mission status and the projections for mission lifetime, describe the current operations philosophy and its impact on the science data, discuss the issues related to achieving the GRACE and GRACE FO connection and discuss issues related to science data products during this phase of the mission period.

  1. Mars Science Laboratory Mission and Science Investigation

    Science.gov (United States)

    Grotzinger, John P.; Crisp, Joy; Vasavada, Ashwin R.; Anderson, Robert C.; Baker, Charles J.; Barry, Robert; Blake, David F.; Conrad, Pamela; Edgett, Kenneth S.; Ferdowski, Bobak; Gellert, Ralf; Gilbert, John B.; Golombek, Matt; Gómez-Elvira, Javier; Hassler, Donald M.; Jandura, Louise; Litvak, Maxim; Mahaffy, Paul; Maki, Justin; Meyer, Michael; Malin, Michael C.; Mitrofanov, Igor; Simmonds, John J.; Vaniman, David; Welch, Richard V.; Wiens, Roger C.

    2012-09-01

    -bearing strata, separated by an unconformity from overlying likely anhydrous strata; the landing ellipse is characterized by a mixture of alluvial fan and high thermal inertia/high albedo stratified deposits; and a number of stratigraphically/geomorphically distinct fluvial features. Samples of the crater wall and rim rock, and more recent to currently active surface materials also may be studied. Gale has a well-defined regional context and strong evidence for a progression through multiple potentially habitable environments. These environments are represented by a stratigraphic record of extraordinary extent, and insure preservation of a rich record of the environmental history of early Mars. The interior mountain of Gale Crater has been informally designated at Mount Sharp, in honor of the pioneering planetary scientist Robert Sharp. The major subsystems of the MSL Project consist of a single rover (with science payload), a Multi-Mission Radioisotope Thermoelectric Generator, an Earth-Mars cruise stage, an entry, descent, and landing system, a launch vehicle, and the mission operations and ground data systems. The primary communication path for downlink is relay through the Mars Reconnaissance Orbiter. The primary path for uplink to the rover is Direct-from-Earth. The secondary paths for downlink are Direct-to-Earth and relay through the Mars Odyssey orbiter. Curiosity is a scaled version of the 6-wheel drive, 4-wheel steering, rocker bogie system from the Mars Exploration Rovers (MER) Spirit and Opportunity and the Mars Pathfinder Sojourner. Like Spirit and Opportunity, Curiosity offers three primary modes of navigation: blind-drive, visual odometry, and visual odometry with hazard avoidance. Creation of terrain maps based on HiRISE (High Resolution Imaging Science Experiment) and other remote sensing data were used to conduct simulated driving with Curiosity in these various modes, and allowed selection of the Gale crater landing site which requires climbing the base of a

  2. The Magnetospheric Multiscale Mission

    Science.gov (United States)

    Burch, James

    Magnetospheric Multiscale (MMS), a NASA four-spacecraft mission scheduled for launch in November 2014, will investigate magnetic reconnection in the boundary regions of the Earth’s magnetosphere, particularly along its dayside boundary with the solar wind and the neutral sheet in the magnetic tail. Among the important questions about reconnection that will be addressed are the following: Under what conditions can magnetic-field energy be converted to plasma energy by the annihilation of magnetic field through reconnection? How does reconnection vary with time, and what factors influence its temporal behavior? What microscale processes are responsible for reconnection? What determines the rate of reconnection? In order to accomplish its goals the MMS spacecraft must probe both those regions in which the magnetic fields are very nearly antiparallel and regions where a significant guide field exists. From previous missions we know the approximate speeds with which reconnection layers move through space to be from tens to hundreds of km/s. For electron skin depths of 5 to 10 km, the full 3D electron population (10 eV to above 20 keV) has to be sampled at rates greater than 10/s. The MMS Fast-Plasma Instrument (FPI) will sample electrons at greater than 30/s. Because the ion skin depth is larger, FPI will make full ion measurements at rates of greater than 6/s. 3D E-field measurements will be made by MMS once every ms. MMS will use an Active Spacecraft Potential Control device (ASPOC), which emits indium ions to neutralize the photoelectron current and keep the spacecraft from charging to more than +4 V. Because ion dynamics in Hall reconnection depend sensitively on ion mass, MMS includes a new-generation Hot Plasma Composition Analyzer (HPCA) that corrects problems with high proton fluxes that have prevented accurate ion-composition measurements near the dayside magnetospheric boundary. Finally, Energetic Particle Detector (EPD) measurements of electrons and

  3. The SCOPE Mission

    International Nuclear Information System (INIS)

    Fujimoto, M.; Tsuda, Y.; Saito, Y.; Shinohara, I.; Takashima, T.; Matsuoka, A.; Kojima, H.; Kasaba, Y.

    2009-01-01

    In order to reach the new horizon of the space physics research, the Plasma Universe, via in-situ measurements in the Earth's magnetosphere, SCOPE will perform formation flying observations combined with high-time resolution electron measurements. The simultaneous multi-scale observations by SCOPE of various plasma dynamical phenomena will enable data-based study of the key space plasma processes from the cross-scale coupling point of view. Key physical processes to be studied are magnetic reconnection under various boundary conditions, shocks in space plasma, collisionless plasma mixing at the boundaries, and physics of current sheets embedded in complex magnetic geometries. The SCOPE formation is made up of 5 spacecraft and is put into the equatorial orbit with the apogee at 30 Re (Re: earth radius). One of the spacecraft is a large mother ship which is equipped with a full suite of particle detectors including ultra-high time resolution electron detector. Among other 4 small spacecraft, one remains near (∼10 km) the mother ship and the spacecraft-pair will focus on the electron-scale physics. Others at the distance of 100∼3000 km(electron∼ion spatial scales) from the mother ship will monitor plasma dynamics surrounding the mother-daughter pair. There is lively on-going discussion on Japan-Europe international collaboration (ESA's Cross-Scale), which would certainly make better the coverage over the scales of interest and thus make the success of the mission, i.e., clarifying the multi-scale nature of the Plasma Universe, to be attained at an even higher level.

  4. Executive Summary - Our mission

    International Nuclear Information System (INIS)

    2005-01-01

    On September 1 st 2003, the Henryk Niewodniczanski Institute of Nuclear Physics in Cracow joined the Polish Academy of Sciences. The Polish Academy of Sciences (PAN), founded in 1952, is a state-sponsored scientific institution acting through an elected corporation of leading scholars, their research organizations and through numerous scientific establishments. PAN is a major national scientific advisory body acting via its scientific committees which represent all disciplines of science. There are currently 79 PAN research establishments (institutes and research centers, research stations, botanical gardens and other research units) and a number of auxiliary scientific units (such as archives, libraries, museums, and PAN stations abroad). Our Institute is currently one of the largest research institutions of the Polish Academy of Sciences. The research activity of the Academy is financed mainly from the State budget via the Ministry of Scientific Research and Information Technology. The mission of the Institute of Nuclear Physics, IFJ is stated in its Charter. According to Paragraphs 5, 6, and 7 of the 2004 Charter, the Institute's duty is to carry out research activities in the following areas:1. High energy and elementary particle physics (including astrophysics), 2. Nuclear physics and physics of mechanisms of nuclear interaction, 3. Condensed matter physics, 4. Interdisciplinary research, and in particular: in radiation and environmental biology, environmental physics, medical physics, dosimetry, nuclear geophysics, radiochemistry and material engineering. The main tasks of the Institute are: 1. To perform research in the above disciplines, 2. To promote the development of scientists and of specialists qualified to carry out research in these disciplines, 3. To organize a Post-Doctoral Study Course, 4. To permit, through agreements with national and foreign research institutions, external scholars to train and gain academic qualifications in the Institute

  5. Strategic Approaches to Trading Science Objectives Against Measurements and Mission Design: Mission Architecture and Concept Maturation at the Jet Propulsion Laboratory

    Science.gov (United States)

    Case, K. E.; Nash, A. E., III

    2017-12-01

    Earth Science missions are increasingly challenged to improve our state of the art through more sophisticated hypotheses and inclusion of advanced technologies. However, science return needs to be constrained to the cost environment. Selectable mission concepts are the result of an overlapping Venn diagram of compelling science, feasible engineering solutions, and programmatic acceptable costs, regardless of whether the science investigation is Earth Venture or Decadal class. Since the last Earth Science and Applications Decadal Survey released in 2007, many new advanced technologies have emerged, in instrument, SmallSat flight systems, and launch service capabilities, enabling new mission architectures. These mission architectures may result in new thinking about how we achieve and collect science measurements, e.g., how to improve time-series measurements. We will describe how the JPL Formulation Office is structured to integrate methods, tools, and subject matter experts to span the mission concept development lifecycle, and assist Principal Investigators in maturing their mission ideas into realizable concepts.

  6. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Uganda

    International Nuclear Information System (INIS)

    1985-01-01

    A full report has been compiled describing the findings of the International Uranium Resources Evaluation Project (IUREP) Orientation Phase Mission to Uganda. The Mission suggest that the speculative uranium resources of the country could be within the very wide range of 0 to 105 000 tonnes of uranium metal. The Mission finds that most of these speculative resources are related to Proterozoic unconformities and to Cenozoic sandstones of the Western Rift Valley. Some potential is also associated with Post-tectonic granites. The Mission recommends to rehabilitate the Geological Survey of Uganda in order to enable it to conduct and support a uranium exploration programme for unconformity related and for standstone hosted uranium deposits. Recommended exploration methods encompass geological mapping and compilation, an airborne gamma-ray spectrometer survey north of 1 deg. North latitude, stream sediment sampling, and ground scintillometric surveys in favourable areas. Follow up work should include VLF-EM surveys, emanometry and drilling. (author)

  7. Compact Magnet-less Circulators for ACE and Other NASA Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Aerosol/Cloud/Ecosystems (ACE) Mission, recommended by the National Research Council’s Earth Science Decadal Survey, will support the development of...

  8. Measuring fN force variations in the presence of constant nN forces: a torsion pendulum ground test of the LISA Pathfinder free-fall mode

    Science.gov (United States)

    Russano, G.; Cavalleri, A.; Cesarini, A.; Dolesi, R.; Ferroni, V.; Gibert, F.; Giusteri, R.; Hueller, M.; Liu, L.; Pivato, P.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Weber, W. J.

    2018-02-01

    LISA Pathfinder is a differential accelerometer with the main goal being to demonstrate the near perfect free-fall of reference test masses, as is needed for an orbiting gravitational wave observatory, with a target sensitivity of 30 fm s‑2 Hz-1/2 at 1 mHz. Any lasting background differential acceleration between the two test masses must be actively compensated, and noise associated with the applied actuation force can be a dominant source of noise. To remove this actuation, and the associated force noise, a ‘free-fall’ actuation control scheme has been designed; actuation is limited to brief impulses, with both test masses in free-fall in the time between the impulses, allowing measurement of the remaining acceleration noise sources. In this work, we present an on-ground torsion pendulum testing campaign of this technique and associated data analysis algorithms at a level nearing the sub-femto-g/\\sqrtHz performance required for LISA Pathfinder.

  9. Science Programs for a 2-m Class Telescope at Dome C, Antarctica: PILOT, the Pathfinder for an International Large Optical Telescope

    Science.gov (United States)

    Burton, M. G.; Lawrence, J. S.; Ashley, M. C. B.; Bailey, J. A.; Blake, C.; Bedding, T. R.; Bland-Hawthorn, J.; Bond, I. A.; Glazebrook, K.; Hidas, M. G.; Lewis, G.; Longmore, S. N.; Maddison, S. T.; Mattila, S.; Minier, V.; Ryder, S. D.; Sharp, R.; Smith, C. H.; Storey, J. W. V.; Tinney, C. G.; Tuthill, P.; Walsh, A. J.; Walsh, W.; Whiting, M.; Wong, T.; Woods, D.; Yock, P. C. M.

    2005-08-01

    The cold, dry, and stable air above the summits of the Antarctic plateau provides the best ground-based observing conditions from optical to sub-millimetre wavelengths to be found on the Earth. Pathfinder for an International Large Optical Telescope (PILOT) is a proposed 2m telescope, to be built at Dome C in Antarctica, able to exploit these conditions for conducting astronomy at optical and infrared wavelengths. While PILOT is intended as a pathfinder towards the construction of future grand-design facilities, it will also be able to undertake a range of fundamental science investigations in its own right. This paper provides the performance specifications for PILOT, including its instrumentation. It then describes the kinds of projects that it could best conduct. These range from planetary science to the search for other solar systems, from star formation within the Galaxy to the star formation history of the Universe, and from gravitational lensing caused by exo-planets to that produced by the cosmic web of dark matter. PILOT would be particularly powerful for wide-field imaging at infrared wavelengths, achieving near diffraction-limited performance with simple tip-tilt wavefront correction. PILOT would also be capable of near diffraction-limited performance in the optical wavebands, as well be able to open new wavebands for regular ground-based observation, in the mid-IR from 17 to 40μm and in the sub-millimetre at 200μm.

  10. International partnership in lunar missions

    Indian Academy of Sciences (India)

    related to space science and Moon missions are being addressed in this conference. .... flight. The studies in India suggest that an 'aerobic' space transportation vehicle can indeed have a ... space from Earth at very, very low cost first before.

  11. Telepresence for Deep Space Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — Incorporating telepresence technologies into deep space mission operations can give the crew and ground personnel the impression that they are in a location at time...

  12. Mission Level Autonomy for USSV

    Science.gov (United States)

    Huntsberger, Terry; Stirb, Robert C.; Brizzolara, Robert

    2011-01-01

    On-water demonstration of a wide range of mission-proven, advanced technologies at TRL 5+ that provide a total integrated, modular approach to effectively address the majority of the key needs for full mission-level autonomous, cross-platform control of USV s. Wide baseline stereo system mounted on the ONR USSV was shown to be an effective sensing modality for tracking of dynamic contacts as a first step to automated retrieval operations. CASPER onboard planner/replanner successfully demonstrated realtime, on-water resource-based analysis for mission-level goal achievement and on-the-fly opportunistic replanning. Full mixed mode autonomy was demonstrated on-water with a seamless transition between operator over-ride and return to current mission plan. Autonomous cooperative operations for fixed asset protection and High Value Unit escort using 2 USVs (AMN1 & 14m RHIB) were demonstrated during Trident Warrior 2010 in JUN 2010

  13. Green Propellant Infusion Mission Program

    Data.gov (United States)

    National Aeronautics and Space Administration — The mission is architected as a collaboration of NASA, Industry, and Air Force partners with the objective to advance the technology for propulsion components using...

  14. The Scintillation Prediction Observations Research Task (SPORT): A Multinational Science Mission using a CubeSat

    Science.gov (United States)

    Spann, J. F.; Habash Krause, L.; Swenson, C.; Heelis, R. A.; Bishop, R. L.; Le, G.; Abdu, M. A.; Durão, O.; Loures, L.; De Nardin, C. M.; Shibuya, L.; Casas, J.; Nash-STevenson, S.; Muralikrishana, P.; Costa, J. E. R.; Wrasse, C. M.; Fry, C. D.

    2017-12-01

    The Scintillation Prediction Observations Research Task (SPORT) is a 6U CubeSat pathfinder mission to address the very compelling but difficult problem of understanding the preconditions leading to equatorial plasma bubbles. The scientific literature describes the preconditions in both the plasma drifts and the density profiles related to bubble formations that occur several hours later in the evening. Most of the scientific discovery has resulted from observations at the Jicamarca Radio Observatory from Peru, a single site, within a single longitude sector. SPORT will provide a systematic study of the state of the pre-bubble conditions at all longitudes sectors to allow us to understand the differences between geography and magnetic geometry. This talk will present an overview of the mission and the anticipated data products. Products include global maps of scintillation occurrence as a function of local time, and magnetic conjugacy occurrence observations. SPORT is a multinational partnership between NASA, the Brazilian National Institute for Space Research (INPE), and the Technical Aeronautics Institute under the Brazilian Air Force Command Department (DCTA/ITA). It has been encouraged by U.S. Southern Command (SOUTHCOM) to foster increased cooperation and ties between academics, civilian space programs and the militaries. NASA Marshall Space Flight Center is coordinating this investigation by overseeing the launch to orbit and the flight instruments, which are being built by the Aerospace Corporation, University of Texas Dallas, Utah State University, and NASA Goddard Space Flight Center. The Brazilian partners are contributing the spacecraft, observatory integration and test, ground observation networks, and mission operations and data management. The science data will be distributed from and archived at the INPE/EMBRACE regional space-weather forecasting center in Brazil, and mirrored at the NASA GSFC Space Physics Data Facility (SPDF).

  15. Evaluation of the NASA Arc Jet Capabilities to Support Mission Requirements

    Science.gov (United States)

    Calomino, Anthony; Bruce, Walt; Gage, Peter; Horn, Dennis; Mastaler, Mike; Rigali, Don; Robey, Judee; Voss, Linda; Wahlberg, Jerry; Williams, Calvin

    2010-01-01

    NASA accomplishes its strategic goals through human and robotic exploration missions. Many of these missions require launching and landing or returning spacecraft with human or return samples through Earth's and other planetary atmospheres. Spacecraft entering an atmosphere are subjected to extreme aerothermal loads. Protecting against these extreme loads is a critical element of spacecraft design. The safety and success of the planned mission is a prime concern for the Agency, and risk mitigation requires the knowledgeable use of thermal protection systems to successfully withstand the high-energy states imposed on the vehicle. Arc jets provide ground-based testing for development and flight validation of re-entry vehicle thermal protection materials and are a critical capability and core competency of NASA. The Agency's primary hypersonic thermal testing capability resides at the Ames Research Center and the Johnson Space Center and was developed and built in the 1960s and 1970s. This capability was critical to the success of Apollo, Shuttle, Pioneer, Galileo, Mars Pathfinder, and Orion. But the capability and the infrastructure are beyond their design lives. The complexes urgently need strategic attention and investment to meet the future needs of the Agency. The Office of Chief Engineer (OCE) chartered the Arc Jet Evaluation Working Group (AJEWG), a team of experienced individuals from across the Nation, to capture perspectives and requirements from the arc jet user community and from the community that operates and maintains this capability and capacity. This report offers the AJEWG's findings and conclusions that are intended to inform the discussion surrounding potential strategic technical and investment strategies. The AJEWG was directed to employ a 30-year Agency-level view so that near-term issues did not cloud the findings and conclusions and did not dominate or limit any of the strategic options.

  16. Urinary albumin in space missions

    DEFF Research Database (Denmark)

    Cirillo, Massimo; De Santo, Natale G; Heer, Martina

    2002-01-01

    Proteinuria was hypothesized for space mission but research data are missing. Urinary albumin, as index of proteinuria, was analyzed in frozen urine samples collected by astronauts during space missions onboard MIR station and on ground (control). Urinary albumin was measured by a double antibody...... radioimmunoassay. On average, 24h urinary albumin was 27.4% lower in space than on ground; the difference was statistically significant. Low urinary albumin excretion could be another effect of exposure to weightlessness (microgravity)....

  17. KEPLER Mission: development and overview

    International Nuclear Information System (INIS)

    Borucki, William J

    2016-01-01

    The Kepler Mission is a space observatory launched in 2009 by NASA to monitor 170 000 stars over a period of four years to determine the frequency of Earth-size and larger planets in and near the habitable zone of Sun-like stars, the size and orbital distributions of these planets, and the types of stars they orbit. Kepler is the tenth in the series of NASA Discovery Program missions that are competitively-selected, PI-directed, medium-cost missions. The Mission concept and various instrument prototypes were developed at the Ames Research Center over a period of 18 years starting in 1983. The development of techniques to do the 10 ppm photometry required for Mission success took years of experimentation, several workshops, and the exploration of many ‘blind alleys’ before the construction of the flight instrument. Beginning in 1992 at the start of the NASA Discovery Program, the Kepler Mission concept was proposed five times before its acceptance for mission development in 2001. During that period, the concept evolved from a photometer in an L2 orbit that monitored 6000 stars in a 50 sq deg field-of-view (FOV) to one that was in a heliocentric orbit that simultaneously monitored 170 000 stars with a 105 sq deg FOV. Analysis of the data to date has detected over 4600 planetary candidates which include several hundred Earth-size planetary candidates, over a thousand confirmed planets, and Earth-size planets in the habitable zone (HZ). These discoveries provide the information required for estimates of the frequency of planets in our galaxy. The Mission results show that most stars have planets, many of these planets are similar in size to the Earth, and that systems with several planets are common. Although planets in the HZ are common, many are substantially larger than Earth. (review article)

  18. Executive Summary - Our mission

    International Nuclear Information System (INIS)

    2007-01-01

    Full text: The Henryk Niewodniczanski Institute of Nuclear Physics (Instytut Fizyki Jadrowej im. Henryka Niewodniczanskiego, IFJ PAN) is currently the largest research institution of the Polish Academy of Sciences (Polska Akademia Nauk). The research activity of the Academy is financed mainly from the State budget via the Ministry of Science and Higher Education. The mission of IFJ PAN is stated in its Charter. According to Paragraphs 5, 6, and 7 of the 2004 Charter, the Institute's duty is to carry out research activities in the following areas: 1. High energy and elementary particle physics (including astrophysics), 2. Nuclear physics and strong interaction, 3. Condensed matter physics, 4. Interdisciplinary research, in particular: in radiation and environmental biology, environmental physics, medical physics, dosimetry, nuclear geophysics, radiochemistry and material engineering. The main tasks of the Institute are: 1. To perform research in the above disciplines, 2. To promote the development of scientists and of specialists qualified to carry out research in these disciplines, 3. To organize a Post-Graduate Study Course, 4. To permit, through agreements with national and foreign research institutions, external scholars to train and gain academic qualifications in the Institute's laboratories, 5. To collaborate with national and local authorities in providing them with expertise in the Institute's research topics, especially concerning radiation protection. These tasks are fulfilled by: 1. Performing individual and coordinated research through individual and collective research grant projects, 2. Initiating and maintaining cooperation with laboratories, organizations and institutions performing similar activities, in Poland and abroad, 3. Conferring scientific degrees and titles, 4. Distributing research results obtained, through peer-reviewed publications and other public media, 5. Organizing scientific meetings, conferences, symposia, training workshops, etc

  19. The XXL Survey. I. Scientific motivations - XMM-Newton observing plan - Follow-up observations and simulation programme

    Science.gov (United States)

    Pierre, M.; Pacaud, F.; Adami, C.; Alis, S.; Altieri, B.; Baran, N.; Benoist, C.; Birkinshaw, M.; Bongiorno, A.; Bremer, M. N.; Brusa, M.; Butler, A.; Ciliegi, P.; Chiappetti, L.; Clerc, N.; Corasaniti, P. S.; Coupon, J.; De Breuck, C.; Democles, J.; Desai, S.; Delhaize, J.; Devriendt, J.; Dubois, Y.; Eckert, D.; Elyiv, A.; Ettori, S.; Evrard, A.; Faccioli, L.; Farahi, A.; Ferrari, C.; Finet, F.; Fotopoulou, S.; Fourmanoit, N.; Gandhi, P.; Gastaldello, F.; Gastaud, R.; Georgantopoulos, I.; Giles, P.; Guennou, L.; Guglielmo, V.; Horellou, C.; Husband, K.; Huynh, M.; Iovino, A.; Kilbinger, M.; Koulouridis, E.; Lavoie, S.; Le Brun, A. M. C.; Le Fevre, J. P.; Lidman, C.; Lieu, M.; Lin, C. A.; Mantz, A.; Maughan, B. J.; Maurogordato, S.; McCarthy, I. G.; McGee, S.; Melin, J. B.; Melnyk, O.; Menanteau, F.; Novak, M.; Paltani, S.; Plionis, M.; Poggianti, B. M.; Pomarede, D.; Pompei, E.; Ponman, T. J.; Ramos-Ceja, M. E.; Ranalli, P.; Rapetti, D.; Raychaudury, S.; Reiprich, T. H.; Rottgering, H.; Rozo, E.; Rykoff, E.; Sadibekova, T.; Santos, J.; Sauvageot, J. L.; Schimd, C.; Sereno, M.; Smith, G. P.; Smolčić, V.; Snowden, S.; Spergel, D.; Stanford, S.; Surdej, J.; Valageas, P.; Valotti, A.; Valtchanov, I.; Vignali, C.; Willis, J.; Ziparo, F.

    2016-06-01

    Context. The quest for the cosmological parameters that describe our universe continues to motivate the scientific community to undertake very large survey initiatives across the electromagnetic spectrum. Over the past two decades, the Chandra and XMM-Newton observatories have supported numerous studies of X-ray-selected clusters of galaxies, active galactic nuclei (AGNs), and the X-ray background. The present paper is the first in a series reporting results of the XXL-XMM survey; it comes at a time when the Planck mission results are being finalised. Aims: We present the XXL Survey, the largest XMM programme totaling some 6.9 Ms to date and involving an international consortium of roughly 100 members. The XXL Survey covers two extragalactic areas of 25 deg2 each at a point-source sensitivity of ~5 × 10-15 erg s-1 cm-2 in the [0.5-2] keV band (completeness limit). The survey's main goals are to provide constraints on the dark energy equation of state from the space-time distribution of clusters of galaxies and to serve as a pathfinder for future, wide-area X-ray missions. We review science objectives, including cluster studies, AGN evolution, and large-scale structure, that are being conducted with the support of approximately 30 follow-up programmes. Methods: We describe the 542 XMM observations along with the associated multi-λ and numerical simulation programmes. We give a detailed account of the X-ray processing steps and describe innovative tools being developed for the cosmological analysis. Results: The paper provides a thorough evaluation of the X-ray data, including quality controls, photon statistics, exposure and background maps, and sky coverage. Source catalogue construction and multi-λ associations are briefly described. This material will be the basis for the calculation of the cluster and AGN selection functions, critical elements of the cosmological and science analyses. Conclusions: The XXL multi-λ data set will have a unique lasting legacy

  20. Psychosocial interactions during ISS missions

    Science.gov (United States)

    Kanas, N. A.; Salnitskiy, V. P.; Ritsher, J. B.; Gushin, V. I.; Weiss, D. S.; Saylor, S. A.; Kozerenko, O. P.; Marmar, C. R.

    2007-02-01

    Based on anecdotal reports from astronauts and cosmonauts, studies of space analog environments on Earth, and our previous research on the Mir Space Station, a number of psychosocial issues have been identified that can lead to problems during long-duration space expeditions. Several of these issues were studied during a series of missions to the International Space Station. Using a mood and group climate questionnaire that was completed weekly by crewmembers in space and personnel in mission control, we found no evidence to support the presence of predicted decrements in well-being during the second half or in any specific quarter of the missions. The results did support the predicted displacement of negative feelings to outside supervisors among both crew and ground subjects. There were several significant differences in mood and group perceptions between Americans and Russians and between crewmembers and mission control personnel. Crewmembers related cohesion to the support role of their leader, and mission control personnel related cohesion to both the task and support roles of their leader. These findings are discussed with reference to future space missions.

  1. Social Tagging of Mission Data

    Science.gov (United States)

    Norris, Jeffrey S.; Wallick, Michael N.; Joswig, Joseph C.; Powell, Mark W.; Torres, Recaredo J.; Mittman, David S.; Abramyan, Lucy; Crockett, Thomas M.; Shams, Khawaja S.; Fox, Jason M.; hide

    2010-01-01

    Mars missions will generate a large amount of data in various forms, such as daily plans, images, and scientific information. Often, there is a semantic linkage between images that cannot be captured automatically. Software is needed that will provide a method for creating arbitrary tags for this mission data so that items with a similar tag can be related to each other. The tags should be visible and searchable for all users. A new routine was written to offer a new and more flexible search option over previous applications. This software allows users of the MSLICE program to apply any number of arbitrary tags to a piece of mission data through a MSLICE search interface. The application of tags creates relationships between data that did not previously exist. These tags can be easily removed and changed, and contain enough flexibility to be specifically configured for any mission. This gives users the ability to quickly recall or draw attention to particular pieces of mission data, for example: Give a semantic and meaningful description to mission data; for example, tag all images with a rock in them with the tag "rock." Rapidly recall specific and useful pieces of data; for example, tag a plan as"driving template." Call specific data to a user s attention; for example, tag a plan as "for:User." This software is part of the MSLICE release, which was written in Java. It will run on any current Windows, Macintosh, or Linux system.

  2. The Evolution of Spacelab Ultraviolet Astronomy Missions from OSS-3 through -7 to Astro-1

    Science.gov (United States)

    Gull, Theodore

    2018-01-01

    In the 1960s and 1970s, NASA was building towards a robust program in space astronomy. An evolutionary step from ground-based astronomy to space astronomy was human operation of space telescopes as astronomy in general evolved from astronomers directly at the telescope to application of computers and long distance communications to control to operate remote telescopes. Today ground-based telescopes and space observatories from cubesats to the Hubble Space Telescope and soon the James Webb Space Telescope are routinely operated remotely.In response to the Spacelab Announcement of Opportunity in the early 1980s, three ultraviolet experiments – the Hopkins Ultraviolet Telescope, the Ultraviolet Imaging Telescope and the Wisconsin Ultraviolet PhotoPolarimetry Experiment -- all instruments derived from multiple sounding rocket flights--were selected to fly as an integrated payload attached to a space shuttle. The justification for professional astronomers, both as Mission Specialists from the astronaut cadre and Payload Specialists from the instrument teams, was built to ensure key technical skills both of the science and the instruments. Bundled together as OSS-3 through -7 flights focused on Comet Halley, the experiments went through many changes and delays as a pathfinder for an anticipated series of attached astronomy payloads.By 1986, the five-flight mission had evolved into two missions, Astro-1 dedicated primarily to observe Halley’s Comet in early March 1986 and Astro-2 to fly about one year later. Due to the Challenger disaster 35 days before scheduled launch of Astro-1, the mission went through an initial cancellation and then re-scheduling once the instrument complement of Astro-1 was expanded to include Broad Band X-ray Telescope with emphasis on studying SN1987A. Ultimately Astro-1 flew in December 1990 partnered with an X-ray experiment focused on SN1987A.The nine-day mission was mostly successful despite multiple technical issues overcome by the NASA

  3. The Cosmic Evolution Through UV Spectroscopy (CETUS) Probe Mission Concept

    Science.gov (United States)

    Danchi, William; Heap, Sara; Woodruff, Robert; Hull, Anthony; Kendrick, Stephen E.; Purves, Lloyd; McCandliss, Stephan; Kelly Dodson, Greg Mehle, James Burge, Martin Valente, Michael Rhee, Walter Smith, Michael Choi, Eric Stoneking

    2018-01-01

    CETUS is a mission concept for an all-UV telescope with 3 scientific instruments: a wide-field camera, a wide-field multi-object spectrograph, and a point-source high-resolution and medium resolution spectrograph. It is primarily intended to work with other survey telescopes in the 2020’s (e.g. E-ROSITA (X-ray), LSST, Subaru, WFIRST (optical-near-IR), SKA (radio) to solve major, outstanding problems in astrophysics. In this poster presentation, we give an overview of CETUS key science goals and a progress report on the CETUS mission and instrument design.

  4. Low Thrust Trajectory Design for GSFC Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — The Evolutionary Mission Trajectory Generator (EMTG) is a global trajectory optimization tool. EMTG is intended for use in designing interplanetary missions which...

  5. A review of Spacelab mission management approach

    Science.gov (United States)

    Craft, H. G., Jr.

    1979-01-01

    The Spacelab development program is a joint undertaking of the NASA and ESA. The paper addresses the initial concept of Spacelab payload mission management, the lessons learned, and modifications made as a result of the actual implementation of Spacelab Mission 1. The discussion covers mission management responsibilities, program control, science management, payload definition and interfaces, integrated payload mission planning, integration requirements, payload specialist training, payload and launch site integration, payload flight/mission operations, and postmission activities. After 3.5 years the outlined overall mission manager approach has proven to be most successful. The approach does allow the mission manager to maintain the lowest overall mission cost.

  6. The Asteroid Redirect Mission (ARM)

    Science.gov (United States)

    Abell, Paul; Gates, Michele; Johnson, Lindley; Chodas, Paul; Mazanek, Dan; Reeves, David; Ticker, Ronald

    2016-07-01

    To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human spaceflight missions. Today, human flight experience extends only to Low-Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human spaceflight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth-Moon system, which will require weeks, months, or even years of transit time. In addition, NASA has been given a Grand Challenge to find all asteroid threats to human populations and know what to do about them. Obtaining knowledge of asteroid physical properties combined with performing technology demonstrations for planetary defense provide much needed information to address the issue of future asteroid impacts on Earth. Hence the combined objectives of human exploration and planetary defense give a rationale for the Asteroid Re-direct Mission (ARM). Mission Description: NASA's ARM consists of two mission segments: 1) the Asteroid Redirect Robotic Mission (ARRM), the first robotic mission to visit a large (greater than ~100 m diameter) near-Earth asteroid (NEA), collect a multi-ton boulder from its surface along with regolith samples, demonstrate a planetary defense technique, and return the asteroidal material to a stable orbit around the Moon; and 2) the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will take the Orion capsule to rendezvous and dock with the robotic vehicle, conduct multiple extravehicular activities to explore the boulder, and return to Earth with samples. NASA's proposed

  7. Ramakrishna Mission initiative impact study: final report

    Energy Technology Data Exchange (ETDEWEB)

    Chaurey, A.

    2000-07-06

    This report has been prepared by the Tata Energy Research Institute (TERI) for the National Renewable Energy Laboratory. It presents the results of the evaluation and impact assessment of solar photovoltaic lighting systems in the region of Sunderbans, West Bengal, that were deployed by a reputable non-governmental organization (Ramakrishna Mission) under the auspices of the INDO-US collaborative project. The objectives of the study were to evaluate the solar photovoltaic systems for their impact on the individual households as well as on the community, to assess the effectiveness of the implementation and financial mechanisms, and to draw a long-term strategy for NREL's activities in Sunderbans based on case studies of similar interventions. Under the project, provision was made to supply 300 domestic lighting systems (DLS) based on 53-Wp module capacity to individual households and a few other systems such as for lighting, medical refrigeration, and pumping water to community centers. For this study, 152 households were surveyed, of which 29 had also been a part of earlier pre- and post-installation surveys, 47 had been a part of the earlier post-installation survey, and 76 were households that were surveyed for the first time. A set of 46, out of the total 152 households, was selected for evaluating the systems for their technical performance with respect to module output, condition of the battery, and daily energy consumption. Of the total 300 modules, 2 had been stolen, 9 out of the total 300 batteries needed to be replaced, and 10 out of the 300 charge controllers were non-functional. The statistics for the surveyed households indicate 32 luminaire-related faults (blackening or flickering of compact fluorescent lights) and 11 other faults related to fuses, switches, etc.

  8. Trajectory-Based Visual Localization in Underwater Surveying Missions

    Directory of Open Access Journals (Sweden)

    Antoni Burguera

    2015-01-01

    Full Text Available We present a new vision-based localization system applied to an autonomous underwater vehicle (AUV with limited sensing and computation capabilities. The traditional EKF-SLAM approaches are usually expensive in terms of execution time; the approach presented in this paper strengthens this method by adopting a trajectory-based schema that reduces the computational requirements. The pose of the vehicle is estimated using an extended Kalman filter (EKF, which predicts the vehicle motion by means of a visual odometer and corrects these predictions using the data associations (loop closures between the current frame and the previous ones. One of the most important steps in this procedure is the image registration method, as it reinforces the data association and, thus, makes it possible to close loops reliably. Since the use of standard EKFs entail linearization errors that can distort the vehicle pose estimations, the approach has also been tested using an iterated Kalman filter (IEKF. Experiments have been conducted using a real underwater vehicle in controlled scenarios and in shallow sea waters, showing an excellent performance with very small errors, both in the vehicle pose and in the overall trajectory estimates.

  9. Trajectory-Based Visual Localization in Underwater Surveying Missions

    Science.gov (United States)

    Burguera, Antoni; Bonin-Font, Francisco; Oliver, Gabriel

    2015-01-01

    We present a new vision-based localization system applied to an autonomous underwater vehicle (AUV) with limited sensing and computation capabilities. The traditional EKF-SLAM approaches are usually expensive in terms of execution time; the approach presented in this paper strengthens this method by adopting a trajectory-based schema that reduces the computational requirements. The pose of the vehicle is estimated using an extended Kalman filter (EKF), which predicts the vehicle motion by means of a visual odometer and corrects these predictions using the data associations (loop closures) between the current frame and the previous ones. One of the most important steps in this procedure is the image registration method, as it reinforces the data association and, thus, makes it possible to close loops reliably. Since the use of standard EKFs entail linearization errors that can distort the vehicle pose estimations, the approach has also been tested using an iterated Kalman filter (IEKF). Experiments have been conducted using a real underwater vehicle in controlled scenarios and in shallow sea waters, showing an excellent performance with very small errors, both in the vehicle pose and in the overall trajectory estimates. PMID:25594602

  10. JAVA PathFinder

    Science.gov (United States)

    Mehhtz, Peter

    2005-01-01

    JPF is an explicit state software model checker for Java bytecode. Today, JPF is a swiss army knife for all sort of runtime based verification purposes. This basically means JPF is a Java virtual machine that executes your program not just once (like a normal VM), but theoretically in all possible ways, checking for property violations like deadlocks or unhandled exceptions along all potential execution paths. If it finds an error, JPF reports the whole execution that leads to it. Unlike a normal debugger, JPF keeps track of every step how it got to the defect.

  11. LISA Pathfinder author list

    International Nuclear Information System (INIS)

    2017-01-01

    M Armano, 1 H Audley, 2 G Auger, 3 J Baird, 4 M Bassan, 5 P Binetruy, 3 M Born, 2 D Bortoluzzi, 6 N Brandt, 7 M Caleno, 8 A Cavalleri, 9 A Cesarini, 9 M Cruise, 10 K Danzmann, 2 M de Deus Silva, 1 R De Rosa, 11 L Di Fiore, 12 I Diepholz, 2 R Dolesi, 9 N Dunbar, 13 L Ferraioli, 14 V Ferroni, 9 E Fitzsimons, 15 R Flatscher, 7 M Freschi, 1 C García Marrirodriga, 8 R Gerndt, 7 L Gesa, 16 F Gibert, 9 D Giardini, 14 R Giusteri, 9 A Grado, 11 C Grimani, 17 J Grzymisch, 8 I Harrison, 18 G Heinzel, 2 M Hewitson, 2 D Hollington, 4 D Hoyland, 10 M Hueller, 9 H Inchauspé, 3 O Jennrich, 8 P Jetzer, 19 B Johlander, 8 N Karnesis, 2 B Kaune, 2 N Korsakova, 2 C Killow, 20 A Lobo, 16 , I Lloro, 16 L Liu, 9 J.P. López-Zaragoza, 16 R Maarschalkerweerd, 18 D Mance, 14 V Martín, 16 L Martin-Polo, 1 J Martino, 3 F Martin-Porqueras, 1 S Madden, 8 I Mateos, 16 P W McNamara, 8 J Mendes, 18 L Mendes, 1 M Nofrarias, 16 S Paczkowski, 2 M Perreur-Lloyd, 20 A Petiteau, 3 P Pivato, 9 E Plagnol, 3 P Prat, 3 U Ragnit, 8 J Ramos-Castro, 21 J Reiche, 2 D I Robertson, 20 H Rozemeijer, 8 F Rivas, 16 G Russano, 9 P Sarra, 22 A Schleicher, 7 D Shaul, 4 J Slutsky, 23 C F Sopuerta, 16 R Stanga, 24 T Sumner, 4 D Texier, 1 J I Thorpe, 23 C Trenkel, 13 M Troebs, 2 D Vetrugno, 9 S Vitale, 9 G Wanner, 2 H Ward, 20 P Wass, 4 D Wealthy, 13 W J Weber, 9 L Wissel, 2 A Wittchen, 2 A Zambotti, 6 C Zanoni, 6 T Ziegler, 7 and P Zweifel 14 1 European Space Astronomy Centre, European Space Agency, Villanueva de la Cañada, 28692 Madrid, Spain 2 Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik und Universität Hannover, Callinstrasse 38, 30167 Hannover, Germany 3 APC, Univ Paris Diderot, CNRS/IN2P3, CEA/lrfu, Obs de Paris, Sorbonne Paris Cité, France 4 High Energy Physics Group, Physics Department, Imperial College London, Blackett Laboratory, Prince Consort Road, London, SW7 2BW, UK 5 Dipartimento di Fisica, Università di Roma “Tor Vergata”, and INFN, sezione Roma Tor Vergata, I-00133 Roma, Italy 6 Department of Industrial Engineering, University of Trento, via Sommarive 9, 38123 Trento, and Trento Institute for Fundamental Physics and Application / INFN 7 Airbus Defence and Space, Claude-Dornier-Strasse, 88090 Immenstaad, Germany 8 European Space Technology Centre, European Space Agency, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands 9 Dipartimento di Fisica, Università di Trento and Trento Institute for Fundamental Physics and Application / INFN, 38123 Povo, Trento, Italy 10 Department of Physics and Astronomy, University of Birmingham, Birmingham, UK 11 INAF Osservatorio Astronomico di Capodimonte, I-80131 Napoli, Italy and INFN sezione di Napoli, I-80126 Napoli, Italy 12 INFN - Sezione di Napoli, I-80126, Napoli, Italy 13 Airbus Defence and Space, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2AS, UK 14 Institut für Geophysik, ETH Zürich, Sonneggstrasse 5, CH-8092, Zürich, Switzerland 15 The UK Astronomy Technology Centre, Royal Observatory, Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ, UK 16 Institut de Ciències de l’Espai (CSIC-IEEC), Campus UAB, Carrer de Can Magrans s/n, 08193 Cerdanyola del Vallès, Spain 17 DISPEA, Università di Urbino “Carlo Bo”, Via S. Chiara, 27 61029 Urbino/INFN, Italy 18 European Space Operations Centre, European Space Agency, 64293 Darmstadt, Germany 19 Physik Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland 20 SUPA, Institute for Gravitational Research, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK 21 Department d’Enginyeria Electrònica, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain 22 CGS S.p.A, Compagnia Generale per lo Spazio, Via Gallarate, 150 - 20151 Milano, Italy 23 Gravitational Astrophysics Lab, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 USA 24 Dipartimento di Fisica ed Astronomia, Università degli Studi di Firenze and INFN - Sezione di Firenze, I-50019 Firenze, Italy (paper)

  12. SAGE IV Pathfinder

    Data.gov (United States)

    National Aeronautics and Space Administration — Utilizing a unique, new occultation technique involving imaging, the SAGE IV concept will meet or exceed the quality of previous SAGE measurements at a small...

  13. Global Precipitation Measurement Mission: Architecture and Mission Concept

    Science.gov (United States)

    Bundas, David

    2005-01-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses some of the key trades that have been completed, including the selection of the Core Observatory s orbit, orbit maintenance trades, and design issues related to meeting orbital debris requirements.

  14. Habitable Exoplanet Imaging Mission (HabEx): Architecture of the 4m Mission Concept

    Science.gov (United States)

    Kuan, Gary M.; Warfield, Keith R.; Mennesson, Bertrand; Kiessling, Alina; Stahl, H. Philip; Martin, Stefan; Shaklan, Stuart B.; amini, rashied

    2018-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) study is tasked by NASA to develop a scientifically compelling and technologically feasible exoplanet direct imaging mission concept, with extensive general astrophysics capabilities, for the 2020 Decadal Survey in Astrophysics. The baseline architecture of this space-based observatory concept encompasses an unobscured 4m diameter aperture telescope flying in formation with a 72-meter diameter starshade occulter. This large aperture, ultra-stable observatory concept extends and enhances upon the legacy of the Hubble Space Telescope by allowing us to probe even fainter objects and peer deeper into the Universe in the same ultraviolet, visible, and near infrared wavelengths, and gives us the capability, for the first time, to image and characterize potentially habitable, Earth-sized exoplanets orbiting nearby stars. Revolutionary direct imaging of exoplanets will be undertaken using a high-contrast coronagraph and a starshade imager. General astrophysics science will be undertaken with two world-class instruments – a wide-field workhorse camera for imaging and multi-object grism spectroscopy, and a multi-object, multi-resolution ultraviolet spectrograph. This poster outlines the baseline architecture of the HabEx flagship mission concept.

  15. Study on Earth Radiation Budget mission scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Dlhopolsky, R; Hollmann, R; Mueller, J; Stuhlmann, R [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    1998-12-31

    The goal of this study is to study optimized satellite configurations for observation of the radiation balance of the earth. We present a literature survey of earth radiation budget missions and instruments. We develop a parametric tool to simulate realistic multiple satellite mission scenarios. This tool is a modular computer program which models satellite orbits and scanning operation. We use Meteosat data sampled at three hour intervals as a database to simulate atmospheric scenes. Input variables are satellite equatorial crossing time and instrument characteristics. Regional, zonal and global monthly averages of shortwave and longwave fluxes for an ideal observing system and several realistic satellite scenarios are produced. Comparisons show that the three satellite combinations which have equatorial crossing times at midmorning, noon and midafternoon provide the best shortwave monitoring. Crossing times near sunrise and sunset should be avoided for the shortwave. Longwave diurnal models are necessary over and surfaces and cloudy regions, if there are only two measurements made during daylight hours. We have found in the shortwave inversion comparison that at least 15% of the monthly regional errors can be attributed to the shortwave anisotropic models used. (orig.) 68 refs.

  16. Study on Earth Radiation Budget mission scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Dlhopolsky, R.; Hollmann, R.; Mueller, J.; Stuhlmann, R. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    1997-12-31

    The goal of this study is to study optimized satellite configurations for observation of the radiation balance of the earth. We present a literature survey of earth radiation budget missions and instruments. We develop a parametric tool to simulate realistic multiple satellite mission scenarios. This tool is a modular computer program which models satellite orbits and scanning operation. We use Meteosat data sampled at three hour intervals as a database to simulate atmospheric scenes. Input variables are satellite equatorial crossing time and instrument characteristics. Regional, zonal and global monthly averages of shortwave and longwave fluxes for an ideal observing system and several realistic satellite scenarios are produced. Comparisons show that the three satellite combinations which have equatorial crossing times at midmorning, noon and midafternoon provide the best shortwave monitoring. Crossing times near sunrise and sunset should be avoided for the shortwave. Longwave diurnal models are necessary over and surfaces and cloudy regions, if there are only two measurements made during daylight hours. We have found in the shortwave inversion comparison that at least 15% of the monthly regional errors can be attributed to the shortwave anisotropic models used. (orig.) 68 refs.

  17. ESA Swarm Mission - Level 1b Products

    Science.gov (United States)

    Tøffner-Clausen, Lars; Floberghagen, Rune; Mecozzi, Riccardo; Menard, Yvon

    2014-05-01

    Swarm, a three-satellite constellation to study the dynamics of the Earth's magnetic field and its interactions with the Earth system, has been launched in November 2013. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution, which will bring new insights into the Earth system by improving our understanding of the Earth's interior and environment. The Level 1b Products of the Swarm mission contain time-series of the quality screened, calibrated, corrected, and fully geo-localized measurements of the magnetic field intensity, the magnetic field vector (provided in both instrument and Earth-fixed frames), the plasma density, temperature, and velocity. Additionally, quality screened and pre-calibrated measurements of the nongravitational accelerations are provided. Geo-localization is performed by 24- channel GPS receivers and by means of unique, three head Advanced Stellar Compasses for high-precision satellite attitude information. The Swarm Level 1b data will be provided in daily products separately for each of the three Swarm spacecrafts. This poster will present detailed lists of the contents of the Swarm Level 1b Products and brief descriptions of the processing algorithms used in the generation of these data.

  18. Observatory data and the Swarm mission

    DEFF Research Database (Denmark)

    Macmillan, S.; Olsen, Nils

    2013-01-01

    products. We describe here the preparation of the data set of ground observatory hourly mean values, including procedures to check and select observatory data spanning the modern magnetic survey satellite era. We discuss other possible combined uses of satellite and observatory data, in particular those......The ESA Swarm mission to identify and measure very accurately the different magnetic signals that arise in the Earth’s core, mantle, crust, oceans, ionosphere and magnetosphere, which together form the magnetic field around the Earth, has increased interest in magnetic data collected on the surface...... of the Earth at observatories. The scientific use of Swarm data and Swarm-derived products is greatly enhanced by combination with observatory data and indices. As part of the Swarm Level-2 data activities plans are in place to distribute such ground-based data along with the Swarm data as auxiliary data...

  19. Earth scientists list top priorities for space missions

    Science.gov (United States)

    Voosen, Paul

    2018-01-01

    Earth scientists hope a new priority setting effort will help them make the most of NASA's limited budget for satellite missions that watch over the planet. The so-called decadal survey, issued in January by the National Academies of Sciences, Engineering, and Medicine, laid out the community's consensus wish list, ranging from cloud monitoring to multiwavelength imaging—and recommends a strong dose of competition to keep costs down. The report prioritizes five observations for launch, including hyperspectral imaging, clouds, atmospheric particles, and missions to chart gravity variations and tiny crustal movements. It also advocates creating a new line of $350 million missions targeting seven observations, with competitions to choose three for flight in the next 10 years.

  20. Regolith X-Ray Imaging Spectrometer (REXIS) Aboard the OSIRIS-REx Asteroid Sample Return Mission

    Science.gov (United States)

    Masterson, R. A.; Chodas, M.; Bayley, L.; Allen, B.; Hong, J.; Biswas, P.; McMenamin, C.; Stout, K.; Bokhour, E.; Bralower, H.; Carte, D.; Chen, S.; Jones, M.; Kissel, S.; Schmidt, F.; Smith, M.; Sondecker, G.; Lim, L. F.; Lauretta, D. S.; Grindlay, J. E.; Binzel, R. P.

    2018-02-01

    The Regolith X-ray Imaging Spectrometer (REXIS) is the student collaboration experiment proposed and built by an MIT-Harvard team, launched aboard NASA's OSIRIS-REx asteroid sample return mission. REXIS complements the scientific investigations of other OSIRIS-REx instruments by determining the relative abundances of key elements present on the asteroid's surface by measuring the X-ray fluorescence spectrum (stimulated by the natural solar X-ray flux) over the range of energies 0.5 to 7 keV. REXIS consists of two components: a main imaging spectrometer with a coded aperture mask and a separate solar X-ray monitor to account for the Sun's variability. In addition to element abundance ratios (relative to Si) pinpointing the asteroid's most likely meteorite association, REXIS also maps elemental abundance variability across the asteroid's surface using the asteroid's rotation as well as the spacecraft's orbital motion. Image reconstruction at the highest resolution is facilitated by the coded aperture mask. Through this operation, REXIS will be the first application of X-ray coded aperture imaging to planetary surface mapping, making this student-built instrument a pathfinder toward future planetary exploration. To date, 60 students at the undergraduate and graduate levels have been involved with the REXIS project, with the hands-on experience translating to a dozen Master's and Ph.D. theses and other student publications.

  1. Resumes of the Bird mission

    Science.gov (United States)

    Lorenz, E.; Borwald, W.; Briess, K.; Kayal, H.; Schneller, M.; Wuensten, Herbert

    2004-11-01

    The DLR micro satellite BIRD (Bi-spectral Infra Red Detection) was piggy- back launched with the Indian Polar Satellite Launch Vehicle PSLV-C3 into a 570 km circular sun-synchronous orbit on 22 October 2001. The BIRD mission, fully funded by the DLR, answers topical technological and scientific questions related to the operation of a compact infra- red push-broom sensor system on board of a micro satellite and demonstrates new spacecraft bus technologies. BIRD mission control is conducted by DLR / GSOC in Oberpfaffenhofen. Commanding, data reception and data processing is performed via ground stations in Weilheim and Neustrelitz (Germany). The BIRD mission is a demonstrator for small satellite projects dedicated to the hazard detection and monitoring. In the year 2003 BIRD has been used in the ESA project FUEGOSAT to demonstrate the utilisation of innovative space technologies for fire risk management.

  2. 308 Building deactivation mission analysis report

    International Nuclear Information System (INIS)

    Lund, D.P.

    1995-01-01

    This report presents the results of the 308 Building (Fuels Development Laboratory) Deactivation Project mission analysis. Hanford systems engineering (SE) procedures call for a mission analysis. The mission analysis is an important first step in the SE process. The functions and requirements to successfully accomplish this mission, the selected alternatives and products will later be defined using the SE process

  3. 309 Building deactivation mission analysis report

    International Nuclear Information System (INIS)

    Lund, D.P.

    1995-01-01

    This report presents the results of the 309 Building (Plutonium Fuels Utilization Program) Deactivation Project mission analysis. Hanford systems engineering (SE) procedures call for a mission analysis. The mission analysis is an important first step in the SE process. The functions and requirements to successfully accomplish this mission, the selected alternatives and products will later be defined using the SE process

  4. MIOSAT Mission Scenario and Design

    Science.gov (United States)

    Agostara, C.; Dionisio, C.; Sgroi, G.; di Salvo, A.

    2008-08-01

    MIOSAT ("Mssione Ottica su microSATellite") is a low-cost technological / scientific microsatellite mission for Earth Observation, funded by Italian Space Agency (ASI) and managed by a Group Agreement between Rheinmetall Italia - B.U. Spazio - Contraves as leader and Carlo Gavazzi Space as satellite manufacturer. Several others Italians Companies, SME and Universities are involved in the development team with crucial roles. MIOSAT is a microsatellite weighting around 120 kg and placed in a 525 km altitude sun-synchronuos circular LEO orbit. The microsatellite embarks three innovative optical payloads: Sagnac multi spectral radiometer (IFAC-CNR), Mach Zehender spectrometer (IMM-CNR), high resolution pancromatic camera (Selex Galileo). In addition three technological experiments will be tested in-flight. The first one is an heat pipe based on Marangoni effect with high efficiency. The second is a high accuracy Sun Sensor using COTS components and the last is a GNSS SW receiver that utilizes a Leon2 processor. Finally a new generation of 28% efficiency solar cells will be adopted for the power generation. The platform is highly agile and can tilt along and cross flight direction. The pointing accuracy is in the order of 0,1° for each axe. The pointing determination during images acquisition is <0,02° for the axis normal to the boresight and 0,04° for the boresight. This paper deals with MIOSAT mission scenario and definition, highlighting trade-offs for mission implementation. MIOSAT mission design has been constrained from challenging requirements in terms of satellite mass, mission lifetime, instrument performance, that have implied the utilization of satellite agility capability to improve instruments performance in terms of S/N and resolution. The instruments provide complementary measurements that can be combined in effective ways to exploit new applications in the fields of atmosphere composition analysis, Earth emissions, antropic phenomena, etc. The Mission

  5. The inner magnetosphere imager mission

    International Nuclear Information System (INIS)

    Johnson, L.; Herrmann, M.

    1993-01-01

    After 30 years of in situ measurements of the Earth's magnetosphere, scientists have assembled an incomplete picture of its global composition and dynamics. Imaging the magnetosphere from space will enable scientists to better understand the global shape of the inner magnetosphere, its components and processes. The proposed inner magnetosphere imager (IMI) mission will obtain the first simultaneous images of the component regions of the inner magnetosphere and will enable scientists to relate these global images to internal and external influences as well as local observations. To obtain simultaneous images of component regions of the inner magnetosphere, measurements will comprise: the ring current and inner plasma sheet using energetic neutral atoms; the plasmasphere using extreme ultraviolet; the electron and proton auroras using far ultraviolet (FUV) and x rays; and the geocorona using FUV. The George C. Marshall Space Flight Center (MSFC) is performing a concept definition study of the proposed mission. NASA's Office of Space Science and Applications has placed the IMI third in its queue of intermediate-class missions for launch in the 1990's. An instrument complement of approximately seven imagers will fly in an elliptical Earth orbit with a seven Earth Radii (R E ) altitude apogee and approximately 4,800-kin altitude perigee. Several spacecraft concepts were examined for the mission. The first concept utilizes a spinning spacecraft with a despun platform. The second concept splits the instruments onto a spin-stabilized spacecraft and a complementary three-axis stabilized spacecraft. Launch options being assessed for the spacecraft range from a Delta 11 for the single and dual spacecraft concepts to dual Taurus launches for the two smaller spacecraft. This paper will address the mission objectives, the spacecraft design considerations, the results of the MSFC concept definition study, and future mission plans

  6. Application of Solar-Electric Propulsion to Robotic Missions in Near-Earth Space

    Science.gov (United States)

    Woodcock, Gordon R.; Dankanich, John

    2007-01-01

    Interest in applications of solar electric propulsion (SEP) is increasing. Application of SEP technology is favored when: (1) the mission is compatible with low-thrust propulsion, (2) the mission needs high total delta V such that chemical propulsion is disadvantaged; and (3) performance enhancement is needed. If all such opportunities for future missions are considered, many uses of SEP are likely. Representative missions are surveyed and several SEP applications selected for analysis, including orbit raising, lunar science and robotic exploration, and planetary science. These missions span SEP power range from 10 kWe to about 100 kWe. A SEP design compatible with small inexpensive launch vehicles, and capable of lunar science missions, is presented. Modes of use and benefits are described, and potential SEP evolution is discussed.

  7. Cyberinfrastructure for Aircraft Mission Support

    Science.gov (United States)

    Freudinger, Lawrence C.

    2010-01-01

    Forth last several years NASA's Airborne Science Program has been developing and using infrastructure and applications that enable researchers to interact with each other and with airborne instruments via network communications. Use of these tools has increased near realtime situational awareness during field operations, resulting it productivity improvements, improved decision making, and the collection of better data. Advances in pre-mission planning and post-mission access have also emerged. Integrating these capabilities with other tools to evolve coherent service-oriented enterprise architecture for aircraft flight and test operations is the subject of ongoing efforts.

  8. Landsat Data Continuity Mission (LDCM) space to ground mission data architecture

    Science.gov (United States)

    Nelson, Jack L.; Ames, J.A.; Williams, J.; Patschke, R.; Mott, C.; Joseph, J.; Garon, H.; Mah, G.

    2012-01-01

    The Landsat Data Continuity Mission (LDCM) is a scientific endeavor to extend the longest continuous multi-spectral imaging record of Earth's land surface. The observatory consists of a spacecraft bus integrated with two imaging instruments; the Operational Land Imager (OLI), built by Ball Aerospace & Technologies Corporation in Boulder, Colorado, and the Thermal Infrared Sensor (TIRS), an in-house instrument built at the Goddard Space Flight Center (GSFC). Both instruments are integrated aboard a fine-pointing, fully redundant, spacecraft bus built by Orbital Sciences Corporation, Gilbert, Arizona. The mission is scheduled for launch in January 2013. This paper will describe the innovative end-to-end approach for efficiently managing high volumes of simultaneous realtime and playback of image and ancillary data from the instruments to the reception at the United States Geological Survey's (USGS) Landsat Ground Network (LGN) and International Cooperator (IC) ground stations. The core enabling capability lies within the spacecraft Command and Data Handling (C&DH) system and Radio Frequency (RF) communications system implementation. Each of these systems uniquely contribute to the efficient processing of high speed image data (up to 265Mbps) from each instrument, and provide virtually error free data delivery to the ground. Onboard methods include a combination of lossless data compression, Consultative Committee for Space Data Systems (CCSDS) data formatting, a file-based/managed Solid State Recorder (SSR), and Low Density Parity Check (LDPC) forward error correction. The 440 Mbps wideband X-Band downlink uses Class 1 CCSDS File Delivery Protocol (CFDP), and an earth coverage antenna to deliver an average of 400 scenes per day to a combination of LGN and IC ground stations. This paper will also describe the integrated capabilities and processes at the LGN ground stations for data reception using adaptive filtering, and the mission operations approach fro- the LDCM

  9. Constraining early and interacting dark energy with gravitational wave standard sirens: the potential of the eLISA mission

    International Nuclear Information System (INIS)

    Caprini, Chiara; Tamanini, Nicola

    2016-01-01

    We perform a forecast analysis of the capability of the eLISA space-based interferometer to constrain models of early and interacting dark energy using gravitational wave standard sirens. We employ simulated catalogues of standard sirens given by merging massive black hole binaries visible by eLISA, with an electromagnetic counterpart detectable by future telescopes. We consider three-arms mission designs with arm length of 1, 2 and 5 million km, 5 years of mission duration and the best-level low frequency noise as recently tested by the LISA Pathfinder. Standard sirens with eLISA give access to an intermediate range of redshift 1 ∼< z ∼< 8, and can therefore provide competitive constraints on models where the onset of the deviation from ΛCDM (i.e. the epoch when early dark energy starts to be non-negligible, or when the interaction with dark matter begins) occurs relatively late, at z ∼< 6. If instead early or interacting dark energy is relevant already in the pre-recombination era, current cosmological probes (especially the cosmic microwave background) are more efficient than eLISA in constraining these models, except possibly in the interacting dark energy model if the energy exchange is proportional to the energy density of dark energy.

  10. Prevalence of sealants in relation to dental caries on the permanent molars of 12 and 15-year-old Greek adolescents. A national pathfinder survey

    Directory of Open Access Journals (Sweden)

    Mamai-Homata Eleni

    2011-02-01

    Full Text Available Abstract Background The use of sealants as an effective measure for the prevention of pit and fissure caries in children has been well documented by several studies; either they are used on an individual or on a public health basis. In order to plan and establish a national preventive program with sealants in a community, it is mandatory to know the epidemiological pattern of caries along with other variables influencing their use and effectiveness. Aims: To assess the utilization and distribution pattern of pit and fissure sealants on the first and second permanent molars of Greek adolescents and to evaluate whether the existing usage of sealants and some socio-demographic factors are correlated to caries prevalence on the population examined Methods A stratified cluster sample of 2481 Greek adolescents was selected according to WHO guidelines (1224 twelve and 1,257 fifteen-year-old, living in urban and rural areas in 11 districts within the country. Five calibrated examiners carried out clinical examinations, recording caries experience at the dentine threshold (BASCD criteria and presence or absence of sealants along with Socio-demographic indicators associated with oral health. Mann Whitney and Pearson's chi-square non parametric tests were utilized for assessing the data. The level of significance was p Results Sealants utilization varied considerably within the different districts, with 8,3% of the 12 and 8,0% of the 15-year-old adolescents having at least one sealed molar. Sealants reduced DMFS scores by 11% in the 12-year-olds and by 24% in the 15-year-olds, while 15-year-old adolescents from rural areas had a statistically significant (p = 0.002 less chance of having sealants (71% compared to children from urban areas. Girls had higher chance to receive sealants in both age groups (26% for the 12 and 19% for the 15-year-old as well as patients that visited the dentist for prevention compared to those visiting the dentist because they thought they needed a restoration or because they were in pain. Conclusions The finding that sealants reduced DMFS scores despite their very low utilization, along with the high prevalence of dental caries found on the occlusal surfaces of the posterior teeth of Greek adolescents, is calling for a national preventive program with sealants which could eliminate caries to a larger extent.

  11. Planet Detection: The Kepler Mission

    Science.gov (United States)

    Jenkins, Jon M.; Smith, Jeffrey C.; Tenenbaum, Peter; Twicken, Joseph D.; Van Cleve, Jeffrey

    2012-03-01

    The search for exoplanets is one of the hottest topics in astronomy and astrophysics in the twenty-first century, capturing the public's attention as well as that of the astronomical community. This nascent field was conceived in 1989 with the discovery of a candidate planetary companion to HD114762 [35] and was born in 1995 with the discovery of the first extrasolar planet 51 Peg-b [37] orbiting a main sequence star. As of March, 2011, over 500 exoplanets have been discovered* and 106 are known to transit or cross their host star, as viewed from Earth. Of these transiting planets, 15 have been announced by the Kepler Mission, which was launched into an Earth-trailing, heliocentric orbit in March, 2009 [1,4,6,15,18,20,22,31,32,34,36,43]. In addition, over 1200 candidate transiting planets have already been detected by Kepler [5], and vigorous follow-up observations are being conducted to vet these candidates. As the false-positive rate for Kepler is expected to be quite low [39], Kepler has effectively tripled the number of known exoplanets. Moreover, Kepler will provide an unprecedented data set in terms of photometric precision, duration, contiguity, and number of stars. Kepler's primary science objective is to determine the frequency of Earth-size planets transiting their Sun-like host stars in the habitable zone, that range of orbital distances for which liquid water would pool on the surface of a terrestrial planet such as Earth, Mars, or Venus. This daunting task demands an instrument capable of measuring the light output from each of over 100,000 stars simultaneously with an unprecedented photometric precision of 20 parts per million (ppm) at 6.5-h intervals. The large number of stars is required because the probability of the geometrical alignment of planetary orbits that permit observation of transits is the ratio of the size of the star to the size of the planetary orbit. For Earth-like planets in 1-astronomical unit (AU) orbits† about sun-like stars

  12. Geochemical drainage surveys for uranium: sampling and analytical methods based on trial surveys in Pennsylvania

    International Nuclear Information System (INIS)

    Rose, A.W.; Keith, M.L.; Suhr, N.H.

    1976-01-01

    Geochemical surveys near sandstone-type uranium prospects in northeastern and north-central Pennsylvania show that the deposits can be detected by carefully planned stream sediment surveys, but not by stream water surveys. Stream waters at single sites changed in U content by x10 to 50 during the 18 months of our studies, and even near known prospects, contain less than 0.2 ppB U most of the time. Uranium extractable from stream sediment by acetic acid--H 2 O 2 provides useful contrast between mineralized and nonmineralized drainages of a square mile or less; total U in sediment does not. High organic material results in increased U content of sediments and must be corrected. Changes in U content of sediment with time reach a maximum of x3 and appear to be of short duration. A sediment of about 200 mi 2 near Jim Thorpe detects anomalies extending over several square miles near known occurrences and a second anomaly about two miles northeast of Penn Haven Jct. A similar survey in Lycoming-Sullivan Counties shows anomalous zones near known prospects of the Beaver Lake area and northwest of Muncy Creek. As, Mn, Pb, and V are enriched in the mineralized zones, and perhaps in surrounding halo zones, but do not appear to be pathfinder elements useful for reconnaissance exploration

  13. Mission Command in the Joint Task Force -- Port Opening

    Science.gov (United States)

    2015-06-12

    29 Snowball Sampling ...MA: Pathfinder International, 2006). 31 Snowball Sampling In order to identify potential interviewees, this study utilized the snowball sampling ...method. Snowball sampling is a nonprobability sampling of interviewees selected in a non-random, purposive manner using a small population of initial

  14. Mars Exploration 2003 to 2013 - An Integrated Perspective: Time Sequencing the Missions

    Science.gov (United States)

    Briggs, G.; McKay, C.

    2000-01-01

    The science goals for the Mars exploration program, together with the HEDS precursor environmental and technology needs, serve as a solid starting point for re-planning the program in an orderly way. Most recently, the community has recognized the significance of subsurface sampling as a key component in "following the water". Accessing samples from hundreds and even thousands of meters beneath the surface is a challenge that will call for technology development and for one or more demonstration missions. Recent mission failures and concerns about the complexity of the previously planned MSR missions indicate that, before we are ready to undertake sample return and deep sampling, the Mars exploration program needs to include: 1) technology development missions; and 2) basic landing site assessment missions. These precursor missions should demonstrate the capability for reliable & accurate soft landing and in situ propellant production. The precursor missions will need to carry out close-up site observations, ground-penetrating radar mapping from orbit and conduct seismic surveys. Clearly the programs should be planned as a single, continuous exploration effort. A prudent minimum list of missions, including surface rovers with ranges of more than 10 km, can be derived from the numerous goals and requirements; they can be sequenced in an orderly way to ensure that time is available to feed forward the results of the precursor missions. One such sequence of missions is proposed for the decade beginning in 2003.

  15. Comparison of the cyclic fatigue resistance of 5 different rotary pathfinding instruments made of conventional nickel-titanium wire, M-wire, and controlled memory wire.

    Science.gov (United States)

    Capar, Ismail Davut; Kaval, Mehmet Emin; Ertas, Hüseyin; Sen, Bilge Hakan

    2015-04-01

    This study compared the cyclic fatigue resistance of current nickel-titanium rotary path-finding instruments. Five types of nickel-titanium rotary pathfinding instruments were used in steel canals with a 90° curvature and a curvature radius of 3 mm (n = 10) and 5 mm (n = 10). The cyclic fatigue of the following instruments was tested at 4 mm from the tip: PathFile (#16 and a .02 taper; Dentsply Maillefer, Ballaigues, Switzerland), G-File (#12 and a .03 taper; Micro-Mega, Besançon Cedex, France), Scout Race (#15 and a .02 taper; FKG Dentaire, La Chaux-de-Fonds, Switzerland), HyFlex GPF (#15 and a .02 taper; Coltene-Whaledent, Allstetten, Switzerland), and ProGlider (#16 with a mean taper of .04125 and a .02 at the first 4 mm from the tip, Dentsply Maillefer). The length of the fractured parts was measured, and the number of cycles to fracture (NCF) was calculated. The data were statistically analyzed using Kruskal-Wallis and Mann-Whitney tests (α = .05). After Bonferroni correction, the new P value was set as .005. The difference in the cyclic fatigue of all the files at both curvatures was statistically significant (P values from .0035 to less than .0001). The ranking of the instruments from the highest to the lowest NCF was as follows: HyFlex GPF, G files, ProGlider, PathFile, and Scout Race. The length of the fractured part of the instruments was similar in all the groups (P > .05). All the tested instruments had a lower NCF at a curvature radius of 3 mm when compared with a curvature radius of 5 mm (P instrument was the highest, and the curvature radius had a significant effect on the fatigue resistance. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. The Habitable Exoplanet Imaging Mission (HabEx)

    Science.gov (United States)

    Mennesson, B.

    2017-12-01

    The Habitable-Exoplanet Imaging Mission (HabEx) is a candidate flagship mission being studied by NASA and the astrophysics community in preparation for the 2020 Decadal Survey. The HabEx mission concept is a large ( 4 to 6.5m) diffraction-limited optical space telescope, providing unprecedented resolution and contrast in the optical, with likely extensions into the near UV and near infrared domains. One of the primary goals of HabEx is to answer fundamental questions in exoplanet science, searching for and characterizing potentially habitable worlds, providing the first complete "family portraits" of planets around our nearest Sun-like neighbors and placing the solar system in the context of a diverse set of exoplanets. We report here on our team's early efforts in defining a scientifically compelling HabEx mission that is technologically executable, and timely for the next decade. In particular, we present preliminary architectures trade study results, quantifying technical requirements and predicting scientific outcome for a small number of design reference missions. We describe here our currently favorite "hybrid" architecture and its expected capabilities in terms of low resolution (R= 70 to 140) reflected light spectroscopic measurements and orbit determination. Results are shown for different types of exoplanets, including potentially habitable exoplanets located within the snow line of nearby main sequence stars. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  17. NASA Facts, The Viking Mission.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    Presented is one of a series of publications of National Aeronautics and Space Administration (NASA) facts about the exploration of Mars. The Viking mission to Mars, consisting of two unmanned NASA spacecraft launched in August and September, 1975, is described. A description of the spacecraft and their paths is given. A diagram identifying the…

  18. 75 FR 6178 - Mission Statement

    Science.gov (United States)

    2010-02-08

    ... geothermal, biomass, hydropower, wind, solar, and energy efficiency sectors. The mission will focus on... offers potential growth, barriers still exist that prevent U.S. companies from accessing the market and... additional opportunities in solar, biomass, ``clean coal'' technology such as gasification or wet coal...

  19. The Europa Ocean Discovery mission

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, B.C. [Los Alamos National Lab., NM (United States); Chyba, C.F. [Univ. of Arizona, Tucson, AZ (United States); Abshire, J.B. [National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center] [and others

    1997-06-01

    Since it was first proposed that tidal heating of Europa by Jupiter might lead to liquid water oceans below Europa`s ice cover, there has been speculation over the possible exobiological implications of such an ocean. Liquid water is the essential ingredient for life as it is known, and the existence of a second water ocean in the Solar System would be of paramount importance for seeking the origin and existence of life beyond Earth. The authors present here a Discovery-class mission concept (Europa Ocean Discovery) to determine the existence of a liquid water ocean on Europa and to characterize Europa`s surface structure. The technical goal of the Europa Ocean Discovery mission is to study Europa with an orbiting spacecraft. This goal is challenging but entirely feasible within the Discovery envelope. There are four key challenges: entering Europan orbit, generating power, surviving long enough in the radiation environment to return valuable science, and complete the mission within the Discovery program`s launch vehicle and budget constraints. The authors will present here a viable mission that meets these challenges.

  20. Deep Space Gateway "Recycler" Mission

    Science.gov (United States)

    Graham, L.; Fries, M.; Hamilton, J.; Landis, R.; John, K.; O'Hara, W.

    2018-02-01

    Use of the Deep Space Gateway provides a hub for a reusable planetary sample return vehicle for missions to gather star dust as well as samples from various parts of the solar system including main belt asteroids, near-Earth asteroids, and Mars moon.

  1. Canada and Missions for Peace

    International Development Research Centre (IDRC) Digital Library (Canada)

    The study focuses primarily on Canada's role in these missions in light of ..... simply because peacekeeping has been the chief form of UN intervention and one in which ... Other factors, such as financial constraints and increasing social problems ..... Luck, superior armaments, the shortage of professional officers among the ...

  2. The DEMETER Science Mission Centre

    Czech Academy of Sciences Publication Activity Database

    Lagoutte, D.; Brochot, J.; Y.; de Carvalho, D.; Elie, F.; Harivelo, F.; Hobara, Y.; Madrias, L.; Parrot, M.; Pincon, J. L.; Berthelier, J. J.; Peschard, D.; Seran, E.; Gangloff, M.; Sauvaud, J. A.; Lebreton, J. P.; Štverák, Štěpán; Trávníček, Pavel M.; Grygorczuk, J.; Slominski, J.; Wronowski, R.; Barbier, S.; Bernard, P.; Gaboriaud, A.; Wallut, J. M.

    2006-01-01

    Roč. 54, č. 5 (2006), s. 428-440 ISSN 0032-0633 Institutional research plan: CEZ:AV0Z30420517 Keywords : Mission Centre * Data processing Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.509, year: 2006

  3. Space nuclear tug mission applications

    International Nuclear Information System (INIS)

    Hodge, J.R.; Rauen, L.A.

    1996-01-01

    An initial assessment indicates that the NEBA-1 and NEBA-3 bimodal reactor designs can be integrated into a reusable tug which is capable of supporting many missions including GSO delivery, GSO retrieval, lunar trajectory deliveries, interplanetary deliveries, and a variety of satellite servicing. The tug close-quote s nuclear thermal propulsion provides timely transport and payload delivery, with GSO deliveries on the order of 3 endash 7 days. In general, the tug may provide a number of potential benefits to users. The tug may, for example, extend the life of an existing on-orbit spacecraft, boost spacecraft which were not delivered to their operational orbit, offer increased payload capability, or possibly allow payloads to launch on smaller less expensive launch vehicles. Reusing the tug for 5 or 10 missions requires total reactor burn times of 50 and 100 hours, respectively. Shielding, boom structure, and radiator requirements were identified as key factors in the configuration layout. Economic feasibility is still under evaluation, but preliminary estimates indicate that average flight costs may range from $32 M to $34 M for a 10-mission vehicle and from $39 M to $42 M for a 5-mission vehicle. copyright 1996 American Institute of Physics

  4. Catholic Higher Education as Mission

    Science.gov (United States)

    Lowery, Daniel

    2012-01-01

    This article uses the work of Anthony J. Gittins to reframe our understanding of Catholic higher education as mission. The broad adoption of this framework would require a common intellectual foundation, the possibility of which is dismissed by many. An accessible ontology is implied, however, in the existential analysis and theology of Karl…

  5. The Europa Clipper Mission Concept

    Science.gov (United States)

    Pappalardo, Robert; Goldstein, Barry; Magner, Thomas; Prockter, Louise; Senske, David; Paczkowski, Brian; Cooke, Brian; Vance, Steve; Wes Patterson, G.; Craft, Kate

    2014-05-01

    A NASA-appointed Science Definition Team (SDT), working closely with a technical team from the Jet Propulsion Laboratory (JPL) and the Applied Physics Laboratory (APL), recently considered options for a future strategic mission to Europa, with the stated science goal: Explore Europa to investigate its habitability. The group considered several mission options, which were fully technically developed, then costed and reviewed by technical review boards and planetary science community groups. There was strong convergence on a favored architecture consisting of a spacecraft in Jupiter orbit making many close flybys of Europa, concentrating on remote sensing to explore the moon. Innovative mission design would use gravitational perturbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of the moon's surface, with nominally 45 close flybys at altitudes from 25 to 100 km. We will present the science and reconnaissance goals and objectives, a mission design overview, and the notional spacecraft for this concept, which has become known as the Europa Clipper. The Europa Clipper concept provides a cost-efficient means to explore Europa and investigate its habitability, through understanding the satellite's ice and ocean, composition, and geology. The set of investigations derived from the Europa Clipper science objectives traces to a notional payload for science, consisting of: Ice Penetrating Radar (for sounding of ice-water interfaces within and beneath the ice shell), Topographical Imager (for stereo imaging of the surface), ShortWave Infrared Spectrometer (for surface composition), Neutral Mass Spectrometer (for atmospheric composition), Magnetometer and Langmuir Probes (for inferring the satellite's induction field to characterize an ocean), and Gravity Science (to confirm an ocean).The mission would also include the capability to perform reconnaissance for a future lander

  6. The Exo-S probe class starshade mission

    Science.gov (United States)

    Seager, Sara; Turnbull, Margaret; Sparks, William; Thomson, Mark; Shaklan, Stuart B.; Roberge, Aki; Kuchner, Marc; Kasdin, N. Jeremy; Domagal-Goldman, Shawn; Cash, Webster; Warfield, Keith; Lisman, Doug; Scharf, Dan; Webb, David; Trabert, Rachel; Martin, Stefan; Cady, Eric; Heneghan, Cate

    2015-09-01

    Exo-S is a direct imaging space-based mission to discover and characterize exoplanets. With its modest size, Exo-S bridges the gap between census missions like Kepler and a future space-based flagship direct imaging exoplanet mission. With the ability to reach down to Earth-size planets in the habitable zones of nearly two dozen nearby stars, Exo-S is a powerful first step in the search for and identification of Earth-like planets. Compelling science can be returned at the same time as the technological and scientific framework is developed for a larger flagship mission. The Exo-S Science and Technology Definition Team studied two viable starshade-telescope missions for exoplanet direct imaging, targeted to the $1B cost guideline. The first Exo-S mission concept is a starshade and telescope system dedicated to each other for the sole purpose of direct imaging for exoplanets (The "Starshade Dedicated Mission"). The starshade and commercial, 1.1-m diameter telescope co-launch, sharing the same low-cost launch vehicle, conserving cost. The Dedicated mission orbits in a heliocentric, Earth leading, Earth-drift away orbit. The telescope has a conventional instrument package that includes the planet camera, a basic spectrometer, and a guide camera. The second Exo-S mission concept is a starshade that launches separately to rendezvous with an existing on-orbit space telescope (the "Starshade Rendezvous Mission"). The existing telescope adopted for the study is the WFIRST-AFTA (Wide-Field Infrared Survey Telescope Astrophysics Focused Telescope Asset). The WFIRST-AFTA 2.4-m telescope is assumed to have previously launched to a Halo orbit about the Earth-Sun L2 point, away from the gravity gradient of Earth orbit which is unsuitable for formation flying of the starshade and telescope. The impact on WFIRST-AFTA for starshade readiness is minimized; the existing coronagraph instrument performs as the starshade science instrument, while formation guidance is handled by the

  7. IntroductionThe Cluster mission

    Directory of Open Access Journals (Sweden)

    M. Fehringer

    Full Text Available The Cluster mission, ESA’s first cornerstone project, together with the SOHO mission, dating back to the first proposals in 1982, was finally launched in the summer of 2000. On 16 July and 9 August, respectively, two Russian Soyuz rockets blasted off from the Russian cosmodrome in Baikonour to deliver two Cluster spacecraft, each into their proper orbit. By the end of August 2000, the four Cluster satellites had reached their final tetrahedral constellation. The commissioning of 44 instruments, both individually and as an ensemble of complementary tools, was completed five months later to ensure the optimal use of their combined observational potential. On 1 February 2001, the mission was declared operational. The main goal of the Cluster mission is to study the small-scale plasma structures in three dimensions in key plasma regions, such as the solar wind, bow shock, magnetopause, polar cusps, magnetotail and the auroral zones. With its unique capabilities of three-dimensional spatial resolution, Cluster plays a major role in the International Solar Terrestrial Program (ISTP, where Cluster and the Solar and Heliospheric Observatory (SOHO are the European contributions. Cluster’s payload consists of state-of-the-art plasma instrumentation to measure electric and magnetic fields from the quasi-static up to high frequencies, and electron and ion distribution functions from energies of nearly 0 eV to a few MeV. The science operations are coordinated by the Joint Science Operations Centre (JSOC, at the Rutherford Appleton Laboratory (UK, and implemented by the European Space Operations Centre (ESOC, in Darmstadt, Germany. A network of eight national data centres has been set up for raw data processing, for the production of physical parameters, and their distribution to end users all over the world. The latest information on the Cluster mission can be found at http://sci.esa.int/cluster/.

  8. IntroductionThe Cluster mission

    Directory of Open Access Journals (Sweden)

    C. P. Escoubet

    2001-09-01

    Full Text Available The Cluster mission, ESA’s first cornerstone project, together with the SOHO mission, dating back to the first proposals in 1982, was finally launched in the summer of 2000. On 16 July and 9 August, respectively, two Russian Soyuz rockets blasted off from the Russian cosmodrome in Baikonour to deliver two Cluster spacecraft, each into their proper orbit. By the end of August 2000, the four Cluster satellites had reached their final tetrahedral constellation. The commissioning of 44 instruments, both individually and as an ensemble of complementary tools, was completed five months later to ensure the optimal use of their combined observational potential. On 1 February 2001, the mission was declared operational. The main goal of the Cluster mission is to study the small-scale plasma structures in three dimensions in key plasma regions, such as the solar wind, bow shock, magnetopause, polar cusps, magnetotail and the auroral zones. With its unique capabilities of three-dimensional spatial resolution, Cluster plays a major role in the International Solar Terrestrial Program (ISTP, where Cluster and the Solar and Heliospheric Observatory (SOHO are the European contributions. Cluster’s payload consists of state-of-the-art plasma instrumentation to measure electric and magnetic fields from the quasi-static up to high frequencies, and electron and ion distribution functions from energies of nearly 0 eV to a few MeV. The science operations are coordinated by the Joint Science Operations Centre (JSOC, at the Rutherford Appleton Laboratory (UK, and implemented by the European Space Operations Centre (ESOC, in Darmstadt, Germany. A network of eight national data centres has been set up for raw data processing, for the production of physical parameters, and their distribution to end users all over the world. The latest information on the Cluster mission can be found at http://sci.esa.int/cluster/.

  9. The SLICE, CHESS, and SISTINE Ultraviolet Spectrographs: Rocket-Borne Instrumentation Supporting Future Astrophysics Missions

    Science.gov (United States)

    France, Kevin; Hoadley, Keri; Fleming, Brian T.; Kane, Robert; Nell, Nicholas; Beasley, Matthew; Green, James C.

    2016-03-01

    NASA’s suborbital program provides an opportunity to conduct unique science experiments above Earth’s atmosphere and is a pipeline for the technology and personnel essential to future space astrophysics, heliophysics, and atmospheric science missions. In this paper, we describe three astronomy payloads developed (or in development) by the Ultraviolet Rocket Group at the University of Colorado. These far-ultraviolet (UV) (100-160nm) spectrographic instruments are used to study a range of scientific topics, from gas in the interstellar medium (accessing diagnostics of material spanning five orders of magnitude in temperature in a single observation) to the energetic radiation environment of nearby exoplanetary systems. The three instruments, Suborbital Local Interstellar Cloud Experiment (SLICE), Colorado High-resolution Echelle Stellar Spectrograph (CHESS), and Suborbital Imaging Spectrograph for Transition region Irradiance from Nearby Exoplanet host stars (SISTINE) form a progression of instrument designs and component-level technology maturation. SLICE is a pathfinder instrument for the development of new data handling, storage, and telemetry techniques. CHESS and SISTINE are testbeds for technology and instrument design enabling high-resolution (R>105) point source spectroscopy and high throughput imaging spectroscopy, respectively, in support of future Explorer, Probe, and Flagship-class missions. The CHESS and SISTINE payloads support the development and flight testing of large-format photon-counting detectors and advanced optical coatings: NASA’s top two technology priorities for enabling a future flagship observatory (e.g. the LUVOIR Surveyor concept) that offers factors of ˜50-100 gain in UV spectroscopy capability over the Hubble Space Telescope. We present the design, component level laboratory characterization, and flight results for these instruments.

  10. Virtual Mission Operations Center -Explicit Access to Small Satellites by a Net Enabled User Base

    Science.gov (United States)

    Miller, E.; Medina, O.; Paulsen, P.; Hopkins, J.; Long, C.; Holloman, K.

    2008-08-01

    The Office of Naval Research (ON R), The Office of the Secr etary of Defense (OSD) , Th e Operationally Responsive Space Off ice (ORS) , and th e National Aeronautics and Space Administration (NASA) are funding the development and integration of key technologies and new processes that w ill allow users across th e bread th of operations the ab ility to access, task , retr ieve, and collaborate w ith data from various sensors including small satellites v ia the Intern et and the SIPRnet. The V irtual Mission Oper ations Center (VMO C) facilitates the dynamic apportionmen t of space assets, allows scalable mission man agement of mu ltiple types of sensors, and provid es access for non-space savvy users through an intu itive collaborative w eb site. These key technologies are b eing used as experimentation pathfinders fo r th e Do D's Operationally Responsiv e Sp ace (O RS) initiative and NASA's Sensor W eb. The O RS initiative seeks to provide space assets that can b e rapid ly tailored to meet a commander's in telligen ce or commun ication needs. For the DoD and NASA the V MO C provid es ready and scalab le access to space b ased assets. To the commercial space sector the V MO C may provide an analog to the innovativ e fractional ownersh ip approach represen ted by FlexJet. This pap er delves in to the technology, in tegration, and applicability of th e V MO C to th e DoD , NASA , and co mmer cial sectors.

  11. Mission analysis for the Martian Moons Explorer (MMX) mission

    Science.gov (United States)

    Campagnola, Stefano; Yam, Chit Hong; Tsuda, Yuichi; Ogawa, Naoko; Kawakatsu, Yasuhiro

    2018-05-01

    Mars Moon eXplorer (MMX) is JAXA's next candidate flagship mission to be launched in the early 2020s. MMX will explore the Martian moons and return a sample from Phobos. This paper presents the mission analysis work, focusing on the transfer legs and comparing several architectures, such as hybrid options with chemical and electric propulsion modules. The selected baseline is a chemical-propulsion Phobos sample return, which is discussed in detail with the launch- and return-window analysis. The trajectories are optimized with the jTOP software, using planetary ephemerides for Mars and the Earth; Earth re-entry constraints are modeled with simple analytical equations. Finally, we introduce an analytical approximation of the three-burn capture strategy used in the Mars system. The approximation can be used together with a Lambert solver to quickly determine the transfer Δ v costs.

  12. Spacelab life sciences 2 post mission report

    Science.gov (United States)

    Buckey, Jay C.

    1994-01-01

    Jay C. Buckey, M.D., Assistant Professor of Medicine at The University of Texas Southwestern Medical Center at Dallas served as an alternate payload specialist astronaut for the Spacelab Life Sciences 2 Space Shuttle Mission from January 1992 through December 1993. This report summarizes his opinions on the mission and offers suggestions in the areas of selection, training, simulations, baseline data collection and mission operations. The report recognizes the contributions of the commander, payload commander and mission management team to the success of the mission. Dr. Buckey's main accomplishments during the mission are listed.

  13. A decision model for planetary missions

    Science.gov (United States)

    Hazelrigg, G. A., Jr.; Brigadier, W. L.

    1976-01-01

    Many techniques developed for the solution of problems in economics and operations research are directly applicable to problems involving engineering trade-offs. This paper investigates the use of utility theory for decision making in planetary exploration space missions. A decision model is derived that accounts for the objectives of the mission - science - the cost of flying the mission and the risk of mission failure. A simulation methodology for obtaining the probability distribution of science value and costs as a function spacecraft and mission design is presented and an example application of the decision methodology is given for various potential alternatives in a comet Encke mission.

  14. NOAA Daily 25km Global Optimally Interpolated Sea Surface Temperature (OISST) in situ and AVHRR analysis supplemented with AVHRR Pathfinder Version 5.0 climatological SST for inland and coastal pixels, 1981-09-01 through 2010-12-31 (NODC Accession 0071180)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains the daily 25km global Optimally Interpolated Sea Surface Temperature (OISST) in situ and AVHRR analysis, supplemented with AVHRR Pathfinder...

  15. Mission Applications Support at NASA: Coastal Applications of SWOT Mission Data

    Science.gov (United States)

    Srinivasan, M. M.; Peterson, C. A.; Chao, Y.

    2014-12-01

    The Surface Water and Ocean Topography (SWOT) mission is an international collaboration of two scientific communities focused on a better understanding of the world's oceans and its terrestrial surface waters. SWOT will produce the first global survey of Earth's surface water by measuring sea surface height and the heights, slopes, and inundated areas of rivers, lakes, and wetlands. These coastal, lake and river measurements will be useful for monitoring the hydrologic cycle, flooding, and climate impacts of a changing environment. NASA and their French, Canadian and the United Kingdom space agency partners are developing new wide swath altimetry technology that will cover most of the world's ocean and surface freshwater bodies, and will have the capability to make observations with unprecedented resolution compared to existing technologies and will have the capability of measuring how water bodies change over time. Along with existing altimetry datasets, simulated SWOT data sets are being planned to assess the quality and potential value of anticipated SWOT measurements to both oceanography and hydrology applications. With the surface water measurements anticipated from SWOT, a broad range of applications may inform coastal managers and marine operators of offshore conditions and currents relevant to their regions. One study proposed to the NASA ASP would highlight coastal and estuary applications potential of the future SWOT mission. This study would promote the use of remote sensing measurements to improve the understanding, monitoring and management of estuaries and deltas for a broad range of users. In addition, the AirSWOT airborne mission to demonstrate the wide swath technology of SWOT is providing preliminary data products in inland and coastal regions that may be useful for early assessment by users of the future value of SWOT. NASA's Applied Sciences Program (ASP), along with the international SWOT project teams, is supporting a program that promotes

  16. The Van Allen Probes mission

    CERN Document Server

    Burch, James

    2014-01-01

    This collection of articles provides broad and detailed information about NASA’s Van Allen Probes (formerly known as the Radiation Belt Storm Probes) twin-spacecraft Earth-orbiting mission. The mission has the objective of achieving predictive understanding of the dynamic, intense, energetic, dangerous, and presently unpredictable belts of energetic particles that are magnetically trapped in Earth’s space environment above the atmosphere. It documents the science of the radiation belts and the societal benefits of achieving predictive understanding. Detailed information is provided about the Van Allen Probes mission design, the spacecraft, the science investigations, and the onboard instrumentation that must all work together to make unprecedented measurements within a most unforgiving environment, the core of Earth’s most intense radiation regions.
 This volume is aimed at graduate students and researchers active in space science, solar-terrestrial interactions and studies of the up...

  17. Gaia Space Mission and Quasars

    Energy Technology Data Exchange (ETDEWEB)

    Zwitter, Tomaž, E-mail: tomaz.zwitter@fmf.uni-lj.si [Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana (Slovenia)

    2017-11-15

    Quasars are often considered to be point-like objects. This is largely true and allows for an excellent alignment of the optical positional reference frame of the ongoing ESA mission Gaia with the International Celestial Reference Frame. But presence of optical jets in quasars can cause shifts of the optical photo-centers at levels detectable by Gaia. Similarly, motion of emitting blobs in the jet can be detected as proper motion shifts. Gaia's measurements of spectral energy distribution for around a million distant quasars is useful to determine their redshifts and to assess their variability on timescales from hours to years. Spatial resolution of Gaia allows to build a complete magnitude limited sample of strongly lensed quasars. The mission had its first public data release in September 2016 and is scheduled to have the next and much more comprehensive one in April 2018. Here we briefly review the capabilities and current results of the mission. Gaia's unique contributions to the studies of quasars are already being published, a highlight being a discovery of a number of quasars with optical jets.

  18. The SOLAR-C Mission

    Science.gov (United States)

    Suematsu, Y.

    2015-12-01

    The Solar-C is a Japan-led international solar mission planned to be launched in mid2020. It is designed to investigate the magnetic activities of the Sun, focusing on the study in heating and dynamical phenomena of the chromosphere and corona, and also to develop an algorithm for predicting short and long term solar evolution. Since it has been revealed that the different parts of the magnetized solar atmosphere are essentially coupled, the SOLAR-C should tackle the spatial scales and temperature regimes that need to be observed in order to achieve a comprehensive physical understanding of this coupling. The science of Solar-C will greatly advance our understanding of the Sun, of basic physical processes operating throughout the universe. To dramatically improve the situation, SOLAR-C will carry three dedicated instruments; the Solar UV-Vis-IR Telescope (SUVIT), the EUV Spectroscopic Telescope (EUVST) and the High Resolution Coronal Imager (HCI), to jointly observe the entire visible solar atmosphere with essentially the same high spatial resolution (0.1-0.3 arcsec), performing high resolution spectroscopic measurements over all atmospheric regions and spectro-polarimetric measurements from the photosphere through the upper chromosphere. In addition, Solar-C will contribute to our understanding on the influence of the Sun-Earth environments with synergetic wide-field observations from ground-based and other space missions. Some leading science objectives and the mission concept, including designs of the three instruments aboard SOLAR-C will be presented.

  19. Automated detection of extended sources in radio maps: progress from the SCORPIO survey

    Science.gov (United States)

    Riggi, S.; Ingallinera, A.; Leto, P.; Cavallaro, F.; Bufano, F.; Schillirò, F.; Trigilio, C.; Umana, G.; Buemi, C. S.; Norris, R. P.

    2016-08-01

    Automated source extraction and parametrization represents a crucial challenge for the next-generation radio interferometer surveys, such as those performed with the Square Kilometre Array (SKA) and its precursors. In this paper, we present a new algorithm, called CAESAR (Compact And Extended Source Automated Recognition), to detect and parametrize extended sources in radio interferometric maps. It is based on a pre-filtering stage, allowing image denoising, compact source suppression and enhancement of diffuse emission, followed by an adaptive superpixel clustering stage for final source segmentation. A parametrization stage provides source flux information and a wide range of morphology estimators for post-processing analysis. We developed CAESAR in a modular software library, also including different methods for local background estimation and image filtering, along with alternative algorithms for both compact and diffuse source extraction. The method was applied to real radio continuum data collected at the Australian Telescope Compact Array (ATCA) within the SCORPIO project, a pathfinder of the Evolutionary Map of the Universe (EMU) survey at the Australian Square Kilometre Array Pathfinder (ASKAP). The source reconstruction capabilities were studied over different test fields in the presence of compact sources, imaging artefacts and diffuse emission from the Galactic plane and compared with existing algorithms. When compared to a human-driven analysis, the designed algorithm was found capable of detecting known target sources and regions of diffuse emission, outperforming alternative approaches over the considered fields.

  20. ALLSMOG, the APEX Low-redshift Legacy Survey for MOlecular Gas

    Science.gov (United States)

    Bothwell, M.; Cicone, C.; Wagg, J.; De Breuck, C..

    2017-09-01

    We report the completion of the APEX Low-redshift Legacy Survey for MOlecular Gas (ALLSMOG), an ESO Large Programme, carried out with the Atacama Pathfinder EXperiment (APEX) between 2013 and 2016. With a total of 327 hours of APEX observing time, we observed the 12CO(2-1) line in 88 nearby low-mass star-forming galaxies. We briefly outline the ALLSMOG goals and design, and describe a few science highlights that have emerged from the survey so far. We outline future work that will ensure that the ALLSMOG dataset continues to provide scientific value in the coming years. ALLSMOG was designed to be a reference legacy survey and as such all reduced data products are publicly available through the ESO Science Archive Phase 3 interface.

  1. Multi-Mission SDR, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Wireless transceivers used for NASA space missions have traditionally been highly custom and mission specific. Programs such as the GRC Space Transceiver Radio...

  2. UAV Mission Planning: From Robust to Agile

    NARCIS (Netherlands)

    Evers, L.; Barros, A.I.; Monsuur, H.; Wagelmans, A.

    2015-01-01

    Unmanned Aerial Vehicles (UAVs) are important assets for information gathering in Intelligence Surveillance and Reconnaissance (ISR) missions. Depending on the uncertainty in the planning parameters, the complexity of the mission and its constraints and requirements, different planning methods might

  3. New Global Missions for Strategic Command

    National Research Council Canada - National Science Library

    Graham, David

    2002-01-01

    .... The focus of this White Paper is on the external decisions that will be needed to provide the Command with a clear mission, and the authority, resources and organizational support necessary to perform the mission...

  4. IceBridge Mission Flight Reports

    Data.gov (United States)

    National Aeronautics and Space Administration — The IceBridge Mission Flight Reports data set contains flight reports from NASA Operation IceBridge Greenland, Arctic, Antarctic, and Alaska missions. Flight reports...

  5. Woven TPS Enabling Missions Beyond Heritage Carbon Phenolic

    Science.gov (United States)

    Stackpoole, Margaret M.; Venkatapathy, Ethiraj; Feldman, Jay D.

    2013-01-01

    NASAs Office of the Chief Technologist (OCT) Game Changing Division recently funded an effort to advance a Woven TPS (WTPS) concept. WTPS is a new approach to producing TPS architectures that uses precisely engineered 3D weaving techniques to customize material characteristics needed to meet specific missions requirements for protecting space vehicles from the intense heating generated during atmospheric entry. Using WTPS, sustainable, scalable, mission-optimized TPS solutions can be achieved with relatively low life cycle costs compared with the high costs and long development schedules currently associated with material development and certification. WTPS leverages the mature state-of-the-art weaving technology that has evolved from the textile industry to design TPS materials with tailorable performance. Currently, missions anticipated encountering heat fluxes in the range of 1500 4000 Wcm2 and pressures greater than 1.5 atm are limited to using fully dense Carbon Phenolic. However, fully dense carbon phenolic is only mass efficient at higher heat fluxes g(reater than 4000 Wcm2), and current mission designs suffer this mass inefficiency for lack of an alternative mid-density TPS. WTPS not only bridges this mid-density TPS gap but also offers a replacement for carbon phenolic, which itself requires a significant and costly redevelopment effort to re-establish its capability for use in the high heat flux missions recently prioritized in the NRC Decadal survey, including probe missions to Venus, Saturn and Neptune. This presentation will overview the WTPS concept and present some results from initial testing completed comparing WTPS architectures to heritage carbon phenolic.

  6. Artificial intelligence for the EChO mission planning tool

    Science.gov (United States)

    Garcia-Piquer, Alvaro; Ribas, Ignasi; Colomé, Josep

    2015-12-01

    The Exoplanet Characterisation Observatory (EChO) has as its main goal the measurement of atmospheres of transiting planets. This requires the observation of two types of events: primary and secondary eclipses. In order to yield measurements of sufficient Signal-to-Noise Ratio to fulfil the mission objectives, the events of each exoplanet have to be observed several times. In addition, several criteria have to be considered to carry out each observation, such as the exoplanet visibility, its event duration, and no overlapping with other tasks. It is expected that a suitable mission plan increases the efficiency of telescope operation, which will represent an important benefit in terms of scientific return and operational costs. Nevertheless, to obtain a long term mission plan becomes unaffordable for human planners due to the complexity of computing the huge number of possible combinations for finding an optimum solution. In this contribution we present a long term mission planning tool based on Genetic Algorithms, which are focused on solving optimization problems such as the planning of several tasks. Specifically, the proposed tool finds a solution that highly optimizes the defined objectives, which are based on the maximization of the time spent on scientific observations and the scientific return (e.g., the coverage of the mission survey). The results obtained on the large experimental set up support that the proposed scheduler technology is robust and can function in a variety of scenarios, offering a competitive performance which does not depend on the collection of exoplanets to be observed. Specifically, the results show that, with the proposed tool, EChO uses 94% of the available time of the mission, so the amount of downtime is small, and it completes 98% of the targets.

  7. The Kepler Mission: A Search for Terrestrial Planets - Development Status

    Science.gov (United States)

    Koch, David; Borucki, W.; Mayer, D.; Caldwell, D.; Jenkens, J.; Dunham, E.; Geary, J.; Bachtell, E.; Deininger, W.; Philbrick, R.

    2003-01-01

    We have embarked on a mission to detect terrestrial planets. The space mission has been optimized to search for earth-size planets (0.5 to 10 earth masses) in the habitable zone (HZ) of solar-like stars. Given this design, the mission will necessarily be capable of not only detecting Earth analogs, but a wide range of planetary types and characteristics ranging from Mercury-size objects with orbital periods of days to gas-giants in decade long orbits that have undeniable signatures even with only one transit detected. The mission is designed to survey the full range of spectral-type dwarf stars. The approach is to detect the periodic signal of transiting planets. Three or more transits of a star exceeding a combined threshold of eight sigma with a statistically consistent period, brightness change and duration provide a rigorous method of detection. From the relative brightness change the planet size can be calculated. From the period the orbital size can be calculated and its location relative to the HZ determined. Presented here are: the mission goals, the top level system design requirements derived from these goals that drive the flight system design, a number of the trades that have lead to the mission concept, expected photometric performance dependence on stellar brightness and spectral type based on the system 'noise tree' analysis. Updated estimates are presented of the numbers of detectable planets versus size, orbit, stellar spectral type and distances based on a planet frequency hypothesis. The current project schedule and organization are given.

  8. Science Mission Definition Studies for TROPIX

    Science.gov (United States)

    Fennell, J. F.

    1997-01-01

    This document summarizes the results of mission definition studies for solar electric propulsion missions that have been carried out over the last approximately three years. The major output from the studies has been two proposals which were submitted to NASA in response to Announcements of Opportunity for missions and an ongoing Global Magnetospheric Dynamics mission study. The bulk of this report consists of copies of the proposals and preliminary materials from the GMD study that will be completed in the coming months.

  9. CHEOPS: A transit photometry mission for ESA's small mission programme

    Directory of Open Access Journals (Sweden)

    Queloz D.

    2013-04-01

    Full Text Available Ground based radial velocity (RV searches continue to discover exoplanets below Neptune mass down to Earth mass. Furthermore, ground based transit searches now reach milli-mag photometric precision and can discover Neptune size planets around bright stars. These searches will find exoplanets around bright stars anywhere on the sky, their discoveries representing prime science targets for further study due to the proximity and brightness of their host stars. A mission for transit follow-up measurements of these prime targets is currently lacking. The first ESA S-class mission CHEOPS (CHaracterizing ExoPlanet Satellite will fill this gap. It will perform ultra-high precision photometric monitoring of selected bright target stars almost anywhere on the sky with sufficient precision to detect Earth sized transits. It will be able to detect transits of RV-planets by photometric monitoring if the geometric configuration results in a transit. For Hot Neptunes discovered from the ground, CHEOPS will be able to improve the transit light curve so that the radius can be determined precisely. Because of the host stars' brightness, high precision RV measurements will be possible for all targets. All planets observed in transit by CHEOPS will be validated and their masses will be known. This will provide valuable data for constraining the mass-radius relation of exoplanets, especially in the Neptune-mass regime. During the planned 3.5 year mission, about 500 targets will be observed. There will be 20% of open time available for the community to develop new science programmes.

  10. H I observations of two new dwarf galaxies: Pisces A and B with the SKA Pathfinder KAT-7

    NARCIS (Netherlands)

    Carignan, C.; Libert, Y.; Lucero, D. M.; Randriamampandry, T. H.; Jarrett, T. H.; Oosterloo, T. A.; Tollerud, E. J.

    2016-01-01

    Context. Pisces A and Pisces B are the only two galaxies found via optical imaging and spectroscopy out of 22 Hi clouds identified in the GALFAHI survey as dwarf galaxy candidates. Aims: We derive the Hi content and kinematics of Pisces A and B. Methods: Our aperture synthesis Hi observations used

  11. NEOWISE Reactivation Mission Year Three: Asteroid Diameters and Albedos

    Energy Technology Data Exchange (ETDEWEB)

    Masiero, Joseph R.; Mainzer, A. K.; Kramer, E. [Jet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Drive, MS 183-301, Pasadena, CA 91109 (United States); Nugent, C.; Cutri, R. M. [California Institute of Technology, Infrared Processing and Analysis Center, 1200 California Boulevard, Pasadena, CA 91125 (United States); Wright, E. L. [University of California, Los Angeles, CA 90095 (United States); Bauer, J. M. [University of Maryland, College Park, MD 20742 (United States); Grav, T.; Sonnett, S., E-mail: Joseph.Masiero@jpl.nasa.gov [Planetary Science Institute, 1700 E Fort Lowell Road #106, Tucson, AZ 85719 (United States)

    2017-10-01

    The Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) reactivation mission has completed its third year of surveying the sky in the thermal infrared for near-Earth asteroids and comets. NEOWISE collects simultaneous observations at 3.4 and 4.6  μ m of solar system objects passing through its field of regard. These data allow for the determination of total thermal emission from bodies in the inner solar system, and thus the sizes of these objects. In this paper, we present thermal model fits of asteroid diameters for 170 NEOs and 6110 Main Belt asteroids (MBAs) detected during the third year of the survey, as well as the associated optical geometric albedos. We compare our results with previous thermal model results from NEOWISE for overlapping sample sets, as well as diameters determined through other independent methods, and find that our diameter measurements for NEOs agree to within 26% (1 σ ) of previously measured values. Diameters for the MBAs are within 17% (1 σ ). This brings the total number of unique near-Earth objects characterized by the NEOWISE survey to 541, surpassing the number observed during the fully cryogenic mission in 2010.

  12. NEOWISE Reactivation Mission Year Three: Asteroid Diameters and Albedos

    International Nuclear Information System (INIS)

    Masiero, Joseph R.; Mainzer, A. K.; Kramer, E.; Nugent, C.; Cutri, R. M.; Wright, E. L.; Bauer, J. M.; Grav, T.; Sonnett, S.

    2017-01-01

    The Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) reactivation mission has completed its third year of surveying the sky in the thermal infrared for near-Earth asteroids and comets. NEOWISE collects simultaneous observations at 3.4 and 4.6  μ m of solar system objects passing through its field of regard. These data allow for the determination of total thermal emission from bodies in the inner solar system, and thus the sizes of these objects. In this paper, we present thermal model fits of asteroid diameters for 170 NEOs and 6110 Main Belt asteroids (MBAs) detected during the third year of the survey, as well as the associated optical geometric albedos. We compare our results with previous thermal model results from NEOWISE for overlapping sample sets, as well as diameters determined through other independent methods, and find that our diameter measurements for NEOs agree to within 26% (1 σ ) of previously measured values. Diameters for the MBAs are within 17% (1 σ ). This brings the total number of unique near-Earth objects characterized by the NEOWISE survey to 541, surpassing the number observed during the fully cryogenic mission in 2010.

  13. Telecentre Network Startup : Bangladesh - Mission 2011 | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The second generation of telecentres has seen the emergence of national-level networks in various parts of the word including the Ugandan Telecentre Network, Mission 2007 in India and Mission Swaabhimaan in Nepal. Telecentre stakeholders in Bangladesh would like to replicate the methodology used in Mission 2007, ...

  14. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Colombia

    International Nuclear Information System (INIS)

    1984-01-01

    A full report has been released describing the findings of the International Uranium Resources Evaluation Project (IUREP) Orientation Phase Mission to Colombia. The Mission suggests that the speculative uranium resources of the country could be within the very wide range of 20 000 tonnes of 220 000 tonnes of uranium metal. The Mission finds that the area with the highest potential is the Llanos Orientales (Interior Zone), which has the potential of hosting quartz-pebble conglomerate deposits, Proterozoic unconformity-related deposits and sandstone deposits. The Mission recommends that approximately US$80 million should be expended in a phased ten-year exploration programme. It is likely that the majority of the funds will be needed for drilling, followed by ground surveys and airborne radiometry. It is the opinion of the Mission that the considerable funds required for the proposed programme could most suitably be raised by inviting national or foreign commercial organizations to participate under a shared production agreement. (author)

  15. Application of Solar-Electric Propulsion to Robotic and Human Missions in Near-Earth Space

    Science.gov (United States)

    Woodcock, Gordon R.; Dankanich, John

    2011-01-01

    Interest in applications of solar electric propulsion (SEP) is increasing. Application of SEP technology is favored when: (1) the mission is compatible with low-thrust propulsion, (2) the mission needs high total delta V such that chemical propulsion is disadvantaged; and (3) performance enhancement is needed. If all such opportunities for future missions are considered, many uses of SEP are likely. Representative missions are surveyed and several SEP applications selected for analysis, including orbit raising, lunar science, lunar exploration, lunar exploitation, planetary science, and planetary exploration. These missions span SEP power range from 10s of kWe to several MWe. Modes of use and benefits are described, and potential SEP evolution is discussed.

  16. Monte Carlo Analysis as a Trajectory Design Driver for the TESS Mission

    Science.gov (United States)

    Nickel, Craig; Lebois, Ryan; Lutz, Stephen; Dichmann, Donald; Parker, Joel

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will be injected into a highly eccentric Earth orbit and fly 3.5 phasing loops followed by a lunar flyby to enter a mission orbit with lunar 2:1 resonance. Through the phasing loops and mission orbit, the trajectory is significantly affected by lunar and solar gravity. We have developed a trajectory design to achieve the mission orbit and meet mission constraints, including eclipse avoidance and a 30-year geostationary orbit avoidance requirement. A parallelized Monte Carlo simulation was performed to validate the trajectory after injecting common perturbations, including launch dispersions, orbit determination errors, and maneuver execution errors. The Monte Carlo analysis helped identify mission risks and is used in the trajectory selection process.

  17. Advances in Architectural Elements For Future Missions to Titan

    Science.gov (United States)

    Reh, Kim; Coustenis, Athena; Lunine, Jonathan; Matson, Dennis; Lebreton, Jean-Pierre; Vargas, Andre; Beauchamp, Pat; Spilker, Tom; Strange, Nathan; Elliott, John

    2010-05-01

    The future exploration of Titan is of high priority for the solar system exploration community as recommended by the 2003 National Research Council (NRC) Decadal Survey [1] and ESA's Cosmic Vision Program themes. Recent Cassini-Huygens discoveries continue to emphasize that Titan is a complex world with very many Earth-like features. Titan has a dense, nitrogen atmosphere, an active climate and meteorological cycles where conditions are such that the working fluid, methane, plays the role that water does on Earth. Titan's surface, with lakes and seas, broad river valleys, sand dunes and mountains was formed by processes like those that have shaped the Earth. Supporting this panoply of Earth-like processes is an ice crust that floats atop what might be a liquid water ocean. Furthermore, Titan is rich in very many different organic compounds—more so than any place in the solar system, except Earth. The Titan Saturn System Mission (TSSM) concept that followed the 2007 TandEM ESA CV proposal [2] and the 2007 Titan Explorer NASA Flagship study [3], was examined [4,5] and prioritized by NASA and ESA in February 2009 as a mission to follow the Europa Jupiter System Mission. The TSSM study, like others before it, again concluded that an orbiter, a montgolfiere hot-air balloon and a surface package (e.g. lake lander, Geosaucer (instrumented heat shield), …) are very high priority elements for any future mission to Titan. Such missions could be conceived as Flagship/Cosmic Vision L-Class or as individual smaller missions that could possibly fit into NASA New Frontiers or ESA Cosmic Vision M-Class budgets. As a result of a multitude of Titan mission studies, a clear blueprint has been laid out for the work needed to reduce the risks inherent in such missions and the areas where advances would be beneficial for elements critical to future Titan missions have been identified. The purpose of this paper is to provide a brief overview of the flagship mission architecture and

  18. The Ionospheric Connection Explorer Mission: Mission Goals and Design

    Science.gov (United States)

    Immel, T. J.; England, S. L.; Mende, S. B.; Heelis, R. A.; Englert, C. R.; Edelstein, J.; Frey, H. U.; Korpela, E. J.; Taylor, E. R.; Craig, W. W.; Harris, S. E.; Bester, M.; Bust, G. S.; Crowley, G.; Forbes, J. M.; Gérard, J.-C.; Harlander, J. M.; Huba, J. D.; Hubert, B.; Kamalabadi, F.; Makela, J. J.; Maute, A. I.; Meier, R. R.; Raftery, C.; Rochus, P.; Siegmund, O. H. W.; Stephan, A. W.; Swenson, G. R.; Frey, S.; Hysell, D. L.; Saito, A.; Rider, K. A.; Sirk, M. M.

    2018-02-01

    The Ionospheric Connection Explorer, or ICON, is a new NASA Explorer mission that will explore the boundary between Earth and space to understand the physical connection between our world and our space environment. This connection is made in the ionosphere, which has long been known to exhibit variability associated with the sun and solar wind. However, it has been recognized in the 21st century that equally significant changes in ionospheric conditions are apparently associated with energy and momentum propagating upward from our own atmosphere. ICON's goal is to weigh the competing impacts of these two drivers as they influence our space environment. Here we describe the specific science objectives that address this goal, as well as the means by which they will be achieved. The instruments selected, the overall performance requirements of the science payload and the operational requirements are also described. ICON's development began in 2013 and the mission is on track for launch in 2018. ICON is developed and managed by the Space Sciences Laboratory at the University of California, Berkeley, with key contributions from several partner institutions.

  19. Trajectory Design for the Europa Clipper Mission Concept

    Science.gov (United States)

    Buffington, Brent

    2014-01-01

    Europa is one of the most scientifically intriguing targets in planetary science due to its potential suitability for extant life. As such, NASA has funded the California Institute of Technology Jet Propulsion Laboratory and the Johns Hopkins University Applied Physics Laboratory to jointly determine and develop the best mission concept to explore Europa in the near future. The result of nearly 4 years of work--the Europa Clipper mission concept--is a multiple Europa flyby mission that could efficiently execute a number of high caliber science investigations to meet Europa science priorities specified in the 2011 NRC Decadal Survey, and is capable of providing reconnaissance data to maximize the probability of both a safe landing and access to surface material of high scientific value for a future Europa lander. This paper will focus on the major enabling component for this mission concept--the trajectory. A representative trajectory, referred to as 13F7-A21, would obtain global-regional coverage of Europa via a complex network of 45 flybys over the course of 3.5 years while also mitigating the effects of the harsh Jovian radiation environment. In addition, 5 Ganymede and 9 Callisto flybys would be used to manipulate the trajectory relative to Europa. The tour would reach a maximum Jovicentric inclination of 20.1 deg. have a deterministic (Delta)V of 164 m/s (post periapsis raise maneuver), and a total ionizing dose of 2.8 Mrad (Si).

  20. Retrieving Baseflow from SWOT Mission

    Science.gov (United States)

    Baratelli, F.; Flipo, N.; Biancamaria, S.; Rivière, A.

    2017-12-01

    The quantification of aquifer contribution to river discharge is of primary importance to evaluate the impact of climatic and anthropogenic stresses on the availability of water resources. Several baseflow estimation methods require river discharge measurements, which can be difficult to obtain at high spatio-temporal resolution for large scale basins. The SWOT satellite mission will provide discharge estimations for large rivers (50 - 100 m wide) even in remote basins. The frequency of these estimations depends on the position and ranges from zero to four values in the 21-days satellite cycle. This work aims at answering the following question: can baseflow be estimated from SWOT observations during the mission lifetime? An algorithm based on hydrograph separation by Chapman's filter was developed to automatically estimate the baseflow in a river network at regional or larger scale (> 10000 km2). The algorithm was first applied using the discharge time series simulated at daily time step by a coupled hydrological-hydrogeological model to obtain the reference baseflow estimations. The same algorithm is then forced with discharge time series sampled at SWOT observation frequency. The methodology was applied to the Seine River basin (65000 km2, France). The results show that the average baseflow is estimated with good accuracy for all the reaches which are observed at least once per cycle (relative bias less than 4%). The time evolution of baseflow is also rather well retrieved, with a Nash coefficient which is more than 0.7 for 94% of the network length. This work provides new potential for the SWOT mission in terms of global hydrological analysis.

  1. NASA's Human Mission to a Near-Earth Asteroid: Landing on a Moving Target

    Science.gov (United States)

    Smith, Jeffrey H.; Lincoln, William P.; Weisbin, Charles R.

    2011-01-01

    This paper describes a Bayesian approach for comparing the productivity and cost-risk tradeoffs of sending versus not sending one or more robotic surveyor missions prior to a human mission to land on an asteroid. The expected value of sample information based on productivity combined with parametric variations in the prior probability an asteroid might be found suitable for landing were used to assess the optimal number of spacecraft and asteroids to survey. The analysis supports the value of surveyor missions to asteroids and indicates one launch with two spacecraft going simultaneously to two independent asteroids appears optimal.

  2. GPS test range mission planning

    Science.gov (United States)

    Roberts, Iris P.; Hancock, Thomas P.

    The principal features of the Test Range User Mission Planner (TRUMP), a PC-resident tool designed to aid in deploying and utilizing GPS-based test range assets, are reviewed. TRUMP features time history plots of time-space-position information (TSPI); performance based on a dynamic GPS/inertial system simulation; time history plots of TSPI data link connectivity; digital terrain elevation data maps with user-defined cultural features; and two-dimensional coverage plots of ground-based test range assets. Some functions to be added during the next development phase are discussed.

  3. Draft 1988 mission plan amendment

    International Nuclear Information System (INIS)

    1988-06-01

    This draft 1988 amendment to the Mission Plan for the Civilian Radioactive Waste Management Program has been prepared by the US Department of Energy (DOE). The purpose is to inform the Congress of the DOE's plans for implementing the provisions of the Nuclear Waste Policy Amendments Act of 1987 (P.L. 100-203) for the Civilian Radioactive Waste Management Program. This document is being submitted in draft form to Federal agencies, states, previously affected Indian Tribes, affected units of local government, and the public. After the consideration of comments, this amendment will be revised as appropriate and submitted to the Congress. 39 refs., 7 figs., 4 tabs

  4. Kepler planet-detection mission

    DEFF Research Database (Denmark)

    Borucki...[], William J.; Koch, David; Buchhave, Lars C. Astrup

    2010-01-01

    The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet’s surface. During the first 6 weeks of observations, Kepler...... is one of the lowest-density planets (~0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets....

  5. NASA CYGNSS Tropical Cyclone Mission

    Science.gov (United States)

    Ruf, Chris; Atlas, Robert; Majumdar, Sharan; Ettammal, Suhas; Waliser, Duane

    2017-04-01

    The NASA Cyclone Global Navigation Satellite System (CYGNSS) mission consists of a constellation of eight microsatellites that were launched into low-Earth orbit on 15 December 2016. Each observatory carries a four-channel bistatic scatterometer receiver to measure near surface wind speed over the ocean. The transmitter half of the scatterometer is the constellation of GPS satellites. CYGNSS is designed to address the inadequacy in observations of the inner core of tropical cyclones (TCs) that result from two causes: 1) much of the TC inner core is obscured from conventional remote sensing instruments by intense precipitation in the eye wall and inner rain bands; and 2) the rapidly evolving (genesis and intensification) stages of the TC life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. The retrieval of wind speed by CYGNSS in the presence of heavy precipitation is possible due to the long operating wavelength used by GPS (19 cm), at which scattering and attenuation by rain are negligible. Improved temporal sampling by CYGNSS is possible due to the use of eight spacecraft with 4 scatterometer channels on each one. Median and mean revisit times everywhere in the tropics are 3 and 7 hours, respectively. Wind speed referenced to 10m height above the ocean surface is retrieved from CYGNSS measurements of bistatic radar cross section in a manner roughly analogous to that of conventional ocean wind scatterometers. The technique has been demonstrated previously from space by the UK-DMC and UK-TDS missions. Wind speed is retrieved with 25 km spatial resolution and an uncertainty of 2 m/s at low wind speeds and 10% at wind speeds above 20 m/s. Extensive simulation studies conducted prior to launch indicate that there will be a significant positive impact on TC forecast skill for both track and intensity with CYGNSS measurements assimilated into HWRF numerical forecasts. Simulations of CYGNSS spatial and temporal sampling

  6. Magnetic Satellite Missions and Data

    DEFF Research Database (Denmark)

    Olsen, Nils; Kotsiaros, Stavros

    2011-01-01

    Although the first satellite observations of the Earth’s magnetic field were already taken more than 50 years ago, continuous geomagnetic measurements from space are only available since 1999. The unprecedented time-space coverage of this recent data set opened revolutionary new possibilities...... for exploring the Earth’s magnetic field from space. In this chapter we discuss characteristics of satellites measuring the geomagnetic field and report on past, present and upcoming magnetic satellite missions. We conclude with some basics about space magnetic gradiometry as a possible path for future...... exploration of Earth’s magnetic field with satellites....

  7. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Somalia

    International Nuclear Information System (INIS)

    Levich, Robert A.; Muller-Kahle, Eberhard

    1983-04-01

    The IUREP Orientation Phase Mission to Somalia suggests that in addition to the reasonably assured resources (RAR) of 5 000 t uranium and estimated additional resources (EAR) of 11 000 t uranium in calcrete deposits, the speculative resources (SR) could be within the wide range of 0 - 150 000 t uranium. The majority of these speculative resources are related to sandstone and calcrete deposits. The potential for magmatic hydrothermal deposits is relatively small. The Mission recommends an exploration programme of about US $ 22 000 000 to test the uranium potential of the country which is thought to be excellent. The Mission also suggests a reorganization of the Somalia Geological Survey in order to improve its efficiency. Recommended methods include geological mapping, Landsat Imagery Interpretation, airborne and ground scintillometer surveys, and geochemistry. Follow-up radiometric surveys, exploration geophysics, mineralogical studies, trenching and drilling are proposed in favourable areas

  8. Crew Transportation System Design Reference Missions

    Science.gov (United States)

    Mango, Edward J.

    2015-01-01

    Contains summaries of potential design reference mission goals for systems to transport humans to andfrom low Earth orbit (LEO) for the Commercial Crew Program. The purpose of this document is to describe Design Reference Missions (DRMs) representative of the end-to-end Crew Transportation System (CTS) framework envisioned to successfully execute commercial crew transportation to orbital destinations. The initial CTS architecture will likely be optimized to support NASA crew and NASA-sponsored crew rotation missions to the ISS, but consideration may be given in this design phase to allow for modifications in order to accomplish other commercial missions in the future. With the exception of NASA’s mission to the ISS, the remaining commercial DRMs are notional. Any decision to design or scar the CTS for these additional non-NASA missions is completely up to the Commercial Provider. As NASA’s mission needs evolve over time, this document will be periodically updated to reflect those needs.

  9. Life support approaches for Mars missions

    Science.gov (United States)

    Drysdale, A. E.; Ewert, M. K.; Hanford, A. J.

    Life support approaches for Mars missions are evaluated using an equivalent system mass (ESM) approach, in which all significant costs are converted into mass units. The best approach, as defined by the lowest mission ESM, depends on several mission parameters, notably duration, environment and consequent infrastructure costs, and crew size, as well as the characteristics of the technologies which are available. Generally, for the missions under consideration, physicochemical regeneration is most cost effective. However, bioregeneration is likely to be of use for producing salad crops for any mission, for producing staple crops for medium duration missions, and for most food, air and water regeneration for long missions (durations of a decade). Potential applications of in situ resource utilization need to be considered further.

  10. Flight mission control for multiple spacecraft

    Science.gov (United States)

    Ryan, Robert E.

    1990-10-01

    A plan developed by the Jet Propulsion Laboratory for mission control of unmanned spacecraft is outlined. A technical matrix organization from which, in the past, project teams were formed to uniquely support a mission is replaced in this new plan. A cost effective approach was needed to make best use of limited resources. Mission control is a focal point operations and a good place to start a multimission concept. Co-location and sharing common functions are the keys to obtaining efficiencies at minimum additional risk. For the projects, the major changes are sharing a common operations area and having indirect control of personnel. The plan identifies the still direct link for the mission control functions. Training is a major element in this plan. Personnel are qualified for a position and certified for a mission. This concept is more easily accepted by new missions than the ongoing missions.

  11. Mission requirements for a manned earth observatory. Task 2: Reference mission definition and analyiss, volume 2

    Science.gov (United States)

    1973-01-01

    The mission requirements and conceptual design of manned earth observatory payloads for the 1980 time period are discussed. Projections of 1980 sensor technology and user data requirements were used to formulate typical basic criteria pertaining to experiments, sensor complements, and reference missions. The subjects discussed are: (1) mission selection and prioritization, (2) baseline mission analysis, (3) earth observation data handling and contingency plans, and (4) analysis of low cost mission definition and rationale.

  12. IAEA Expert Remediation Mission to Japan Issues Preliminary Report

    International Nuclear Information System (INIS)

    2013-01-01

    consisted of international experts and IAEA staff working in a range of disciplines, including radiation protection, remediation technologies, waste management and stakeholder involvement. The Mission's Preliminary Summary Report can be viewed here. The final report will be presented to the Japanese government in December. Background The Mission, which is the follow-up to the IAEA International Mission on Remediation of Large Contaminated Areas Off-site the Fukushima Daiichi NPS in October 2011, had the following three objectives: To provide assistance to Japan in assessing the progress made with the remediation of the Special Decontamination Area (not included in the previous mission of 2011) and the Intensive Contamination Survey Areas; To review remediation strategies, plans and works, in view of the advice provided by the previous mission on remediation of large contaminated off-site areas; and To share its findings with the international community as lessons learned. The Mission Team assessed comprehensive information provided by the Japanese authorities and held discussions with the relevant institutions, including national, prefectural and local institutions. It also visited the affected areas, including several sites where remediation activities were conducted and some temporary storage sites for radioactive waste and soil, as well as a survey area for an interim storage facility, and a demonstration facility for incineration of sewage sludge. The Mission was in line with the IAEA Action Plan on Nuclear Safety, which was unanimously endorsed by the IAEA's Member States in September 2011 and defines a programme of work to strengthen the global nuclear safety framework. (IAEA)

  13. The Cassini-Huygens mission

    CERN Document Server

    The joint NASA-ESA Cassini-Huygens mission promises to return four (and possibly more) years of unparalleled scientific data from the solar system’s most exotic planet, the ringed, gas giant, Saturn. Larger than Galileo with a much greater communication bandwidth, Cassini can accomplish in a single flyby what Galileo returned in a series of passes. Cassini explores the Saturn environment in three dimensions, using gravity assists to climb out of the equatorial plane to look down on the rings from above, to image the aurora and to study polar magnetospheric processes such as field-aligned currents. Since the radiation belt particle fluxes are much more benign than those at Jupiter, Cassini can more safely explore the inner regions of the magnetosphere. The spacecraft approaches the planet closer than Galileo could, and explores the inner moons and the rings much more thoroughly than was possible at Jupiter. This book is the second volume, in a three volume set, that describes the Cassini/Huygens mission. Thi...

  14. PHOTOGRAMMETRIC MISSION PLANNER FOR RPAS

    Directory of Open Access Journals (Sweden)

    F. Gandor

    2015-08-01

    Full Text Available This paper presents a development of an open-source flight planning tool for Remotely Piloted Aircraft Systems (RPAS that is dedicated to high-precision photogrammetric mapping. This tool contains planning functions that are usually available in professional mapping systems for manned aircrafts as well as new features related to GPS signal masking in complex (e.g. mountainous terrain. The application is based on the open-source Java SDK (Software Development Kit World Wind from NASA that contains the main geospatial components facilitating the development itself. Besides standard planning functions known from other mission planners, we mainly focus on additional features dealing with safety and accuracy, such as GPS quality assessment. The need for the development came as a response for unifying mission planning across different platforms (e.g. rotary or fixed wing operating over terrain of different complexity. A special attention is given to the user interface, that is intuitive to use and cost-effective with respect to computer resources.

  15. The Simbol-X Mission

    International Nuclear Information System (INIS)

    Ferrando, P.; Goldwurm, A.; Laurent, P.; Lebrun, F.; Arnaud, M.; Briel, U.; Cavazzuti, E.; Giommi, P.; Piermaria, M.; Cledassou, R.; Counil, J. L.; Lamarle, O.; Fiore, F.; Malaguti, G.; Mereghetti, S.; Micela, G.; Pareschi, G.; Tagliaferri, G.; Roques, J. P.; Santangelo, A.

    2009-01-01

    The elucidation of key questions in astrophysics, in particular those related to black hole physics and census, and to particle acceleration mechanisms, necessitates to develop new observational capabilities in the hard X-ray domain with performances several orders of magnitude better than presently available. Relying on two spacecrafts in a formation flying configuration, Simbol-X will provide the world-wide astrophysics community with a single optics long focal length telescope. This observatory will have unrivaled performances in the hard X-ray domain, up to ∼80 keV, as well as very good characteristics in the soft X-ray domain, down to ∼0.5 keV. The Simbol-X mission has successfully passed a phase A study, jointly conducted by CNES and ASI, with the participation of German laboratories. It is now entering phase B studies with the participation of new international partners, for a launch in 2015. We give in this paper a general overview of the mission, as consolidated at the start of phase B.

  16. The Simbol-X Mission

    Science.gov (United States)

    Ferrando, P.; Arnaud, M.; Briel, U.; Cavazzuti, E.; Clédassou, R.; Counil, J. L.; Fiore, F.; Giommi, P.; Goldwurm, A.; Lamarle, O.; Laurent, P.; Lebrun, F.; Malaguti, G.; Mereghetti, S.; Micela, G.; Pareschi, G.; Piermaria, M.; Roques, J. P.; Santangelo, A.; Tagliaferri, G.

    2009-05-01

    The elucidation of key questions in astrophysics, in particular those related to black hole physics and census, and to particle acceleration mechanisms, necessitates to develop new observational capabilities in the hard X-ray domain with performances several orders of magnitude better than presently available. Relying on two spacecrafts in a formation flying configuration, Simbol-X will provide the world-wide astrophysics community with a single optics long focal length telescope. This observatory will have unrivaled performances in the hard X-ray domain, up to ~80 keV, as well as very good characteristics in the soft X-ray domain, down to ~0.5 keV. The Simbol-X mission has successfully passed a phase A study, jointly conducted by CNES and ASI, with the participation of German laboratories. It is now entering phase B studies with the participation of new international partners, for a launch in 2015. We give in this paper a general overview of the mission, as consolidated at the start of phase B.

  17. [Hospital: values expressed as a mission].

    Science.gov (United States)

    Anunciação, Alan Lira da; Zoboli, Elma

    2008-01-01

    The hospital, as a unique type of social organization requires elevated values for management. This paper shows the result of a documented, qualitative, exploratory and descriptive survey about hospitals and their value statements. Identify values expected for hospitals by a search of literature; identify values expressed by hospitals on their web pages and compare results of both. Critical reading of theses, books and articles. A bibliographic search was carried out on BVS (Health Virtual Library) using keywords such as ethics and healthcare management. The values stated by hospitals on web pages were found in sections such as social responsibility, mission, view, principles, and our values. The categories care, healthcare management and accountability were defined after content analysis of empirical data. Values stated by hospitals on web pages express social expectations for an organization that deals with issues as elevated as health and life. Although hospitals have a bureaucratic and organizational structure that resembles those of business enterprises, they are different due to their 'duties to patients' rights and life. Healthcare managers, as well as health professionals, must imprint an ethical attitude on their job and daily work. Only such an attitude will permit patients to trust the hospital and its services.

  18. NEOWISE REACTIVATION MISSION YEAR TWO: ASTEROID DIAMETERS AND ALBEDOS

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, C. R.; Cutri, R. M. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Mainzer, A.; Bauer, J.; Kramer, E. A.; Masiero, J.; Sonnett, S. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Grav, T. [Planetary Science Institute, Tucson, AZ (United States); Wright, E. L., E-mail: cnugent@ipac.caltech.edu [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)

    2016-09-01

    The Near-Earth Object Wide-Field Infrared Survey Explorer (NEOWISE) mission continues to detect, track, and characterize minor planets. We present diameters and albedos calculated from observations taken during the second year since the spacecraft was reactivated in late 2013. These include 207 near-Earth asteroids (NEAs) and 8885 other asteroids. Of the NEAs, 84% NEAs did not have previously measured diameters and albedos by the NEOWISE mission. Comparison of sizes and albedos calculated from NEOWISE measurements with those measured by occultations, spacecraft, and radar-derived shapes shows accuracy consistent with previous NEOWISE publications. Diameters and albedos fall within ±∼20% and ±∼40%, 1-sigma, respectively, of those measured by these alternate techniques. NEOWISE continues to preferentially discover near-Earth objects which are large (>100 m), and have low albedos.

  19. High level and long life radioactive wastes. Todays situation and future evolutions. Framework and process of the Granite collegial mission of dialogue. FAQ about the Granite collegial mission of dialogue

    International Nuclear Information System (INIS)

    2000-03-01

    On December 9, 1998, the French government decided the construction of two underground laboratories for the study of the disposal of radioactive wastes in the deep underground. One site will be located in a granitic massif which remains to be determined. This document presents the framework and the different steps of the 'Granite' mission: the situation of radioactive wastes in France, some data about the conditioning, storage and reprocessing of high activity and long life radioactive wastes, the legal framework of the management of radioactive wastes and the related warranties, the disposal in deep underground and the realization of underground research laboratories, the government decision of December 9, 1998, the 'Granite' collegial mission of dialogue and the different steps of the geological surveys about granites. A second part answers some frequently asked questions about the 'Granite' collegial mission of dialogue: decision procedure, planning of the mission, consultation of the geologic survey, role of the mission, public information etc.. (J.S.)

  20. The Use of the Molecular Adsorber Coating Technology to Mitigate Vacuum Chamber Contamination During Pathfinder Testing for the James Webb Space Telescope

    Science.gov (United States)

    Abraham, Nithin S.; Hasegawa, Mark M.; Wooldridge, Eve M.; Henderson-Nelson, Kelly A.

    2016-01-01

    As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground based space applications, in particular, for vacuum chamber environments. This paper describes the recent use of the MAC technology during Pathfinder testing of the Optical Ground Support Equipment (OGSE) for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap persistent outgassed contaminants, specifically silicone based diffusion pump oil, from within JSC's cryogenic optical vacuum chamber test facility called Chamber A. This paper summarizes the sample fabrication, installation, laboratory testing, post-test chemical analysis results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination.