WorldWideScience

Sample records for survey geologic investigations

  1. Investigations and research in Nevada by the Water Resources Division, U.S. Geological Survey, 1982

    Science.gov (United States)

    Katzer, Terry; Moosburner, Otto; Nichols, W.D.

    1984-01-01

    The Water Resources Division, U.S. Geological Survey, is charged with (1) maintaining a hydrologic network in Nevada that provides information on the status of the State 's water resources and (2) engaging in technical water-resources investigations that have a high degree of transferability. To meet these broad objectives, 26 projects were active during fiscal year 1982, in cooperation with 36 Federal, State, and local agencies. Total funds were $3,319,455, of which State and local cooperative funding amounted to $741,500 and Federal funding (comprised of Geological Survey Federal and cooperative program plus funds from six other Federal agencies) amounted to $2,577,955 for the fiscal year. Projects other than continuing programs for collection of hydrologic data included the following topics of study: geothermal resources, areal ground-water resources and ground-water modeling, waste disposal , paleohydrology, acid mine drainage, the unsaturated zone, stream and reservoir sedimentation, river-quality modeling, flood hazards, and remote sensing in hydrology. In total, 26 reports and symposium abstracts were published or in press during fiscal year 1982. (USGS)

  2. U.S. Geological Survey programs and investigations related to soil and water conservation

    Science.gov (United States)

    Osterkamp, W.R.; Gray, J.R.

    2001-01-01

    The U.S. Geological Survey has a rich tradition of collecting hydrologic data, especially for fluxes of water and suspended sediment, that provide a foundation for studies of soil and water conservation. Applied and basic research has included investigations of the effects of land use on rangelands, croplands, and forests; hazards mapping; derivation of flood and drought frequency, and other statistics related to streamflow and reservoir storage; development and application of models of rainfall-runoff relations, chemical quality, and sediment movement; and studies of the interactive processes of overland and channel flow with vegetation. Networks of streamgaging stations and (or) sampling sites within numerous drainage basins are yielding information that extends databases and enhances the ability to use those data for interpretive studies.

  3. Verification study on technology for site investigation for geological disposal. Confirmation of the applicability of survey methods through establishing site descriptive models in accordance with stepwise investigation approach

    International Nuclear Information System (INIS)

    Kondo, Hirofumi; Suzuki, Koichi; Hasegawa, Takuma; Hamada, Takaomi; Yoshimura, Kimitaka

    2014-01-01

    The Yokosuka Demonstration and Validation Project, which uses the Yokosuka Central Research Institute of Electric Power Industry (CRIEPI) site, a Neogene sedimentary and coastal environment, has been conducted since the 2006 fiscal year as a cooperative research project between NUMO (Nuclear Waste Management Organization of Japan) and CRIEPI. The objectives of this project were to examine and refine the basic methodology of the investigation and assessment in accordance with the conditions of geological environment at each stage of investigations from the surface (Preliminary Investigation and the first half of Detailed Investigation conducted by NUMO) for high level radioactive waste geological disposal. Within investigation technologies at these early stages, a borehole survey is an important means of directly obtaining various properties of the deep geological environment. On the other hand, surface geophysical prospecting data provide information about the geological and resistivity structures at depth for planning borehole surveys. During the 2006-2009 fiscal years, a series of on-site surveys and tests, including borehole surveys of YDP-1 (depth: 350 m) and YDP-2 (depth: 500 m), were conducted in this test site. Furthermore, seismic surveys (including seismic reflection method) and electromagnetic surveys (including magnetotelluric method) were conducted within the expanded CRIEPI site in the 2010 fiscal year to obtain information about the geological structure, and the resistivity structure reflecting the distribution of the salt water/fresh water boundary, respectively, to a depth of over several hundred meters. The validity of existing survey and testing methods for stepwise investigations (from surface to borehole surveys) for obtaining properties of the geological environment (in various conditions relating to differences in the properties of the Miura and the Hayama Groups at this site) was confirmed through establishing site descriptive models based on

  4. The geologic investigation of the bedrock and the tectonic and geophysical surveys at Kynnefjaell

    International Nuclear Information System (INIS)

    Ahlbom, K.; Ahlin, S.; Eriksson, L.; Samuelsson, L.

    1980-05-01

    The geologic survey took place at a selected area of Kynnefjaell. The result is given on geologic and tectonic maps. Two kinds of rock dominate, namely (a) sedimentary veined gneiss and (b) gneissic granite. The strike is in the N-S direction. A symmetric folds dip to the last. The fissure zones are oriented in the N-S and NE-SW directions. The latter zones are considered to be Precambrian shear zones with a dip to the NW. The dip of the fissure zones with the direction N-S is difficult to ascertain. The frequency of fissures is the same for granite and gneiss. The length of fissures is longer in the gneissic granite than in the sedimentary veined gneiss. The measurement of stress shows its main direction to be WNW-NW to ESE-SE. The fissure zones are at right or blunt-ended angles to the main stress direction. (G.B.)

  5. 77 FR 19032 - Geological Survey

    Science.gov (United States)

    2012-03-29

    ... DEPARTMENT OF THE INTERIOR Geological Survey Announcement of National Geospatial Advisory Committee Meeting AGENCY: U.S. Geological Survey, Interior. ACTION: Notice of meeting. SUMMARY: The National.... Geological Survey (703-648-6283, [email protected] ). Registrations are due by April 13, 2012. While the...

  6. Geochemical investigations by the U.S. Geological Survey on uranium mining, milling, and environmental restoration

    Science.gov (United States)

    Landa, Edward R.; Cravotta, Charles A.; Naftz, David L.; Verplanck, Philip L.; Nordstrom, D. Kirk; Zielinski, Robert A.

    2000-01-01

    Recent research by the U.S. Geological Survey has characterized contaminant sources and identified important geochemical processes that influence transport of radionuclides from uranium mining and milling wastes. 1) Selective extraction studies indicated that alkaline earth sulfates and hydrous ferric oxides are important hosts of 226Ra in uranium mill tailings. The action of sulfate-reducing and ironreducing bacteria on these phases was shown to enhance release of radium, and this adverse result may temper decisions to dispose of uranium mill tailings in anaerobic environments. 2) Field studies have shown that although surface-applied sewage sludge/wood chip amendments aid in revegetating pyritic spoil, the nitrogen in sludge leachate can enhance pyrite oxidation, acidification of groundwater, and the consequent mobilization of metals and radionuclides. 3) In a U.S. Environmental Protection Agencyfunded study, three permeable reactive barriers consisting of phosphate-rich material, zero-valent iron, or amorphous ferric oxyhydroxide have been installed at an abandoned uranium upgrader facility near Fry Canyon, UT. Preliminary results indicate that each of the permeable reactive barriers is removing the majority of the uranium from the groundwater. 4) Studies on the geochemistry of rare earth elements as analogues for actinides such as uranium and thorium in acid mine drainage environments indicate high mobility under acid-weathering conditions but measurable attenuation associated with iron and aluminum colloid formation. Mass balances from field and laboratory studies are being used to quantify the amount of attenuation. 5) A field study in Colorado demonstrated the use of 234U/238U isotopic ratio measurements to evaluate contamination of shallow groundwater with uranium mill effluent.

  7. Water-resources investigations of the U.S. Geological Survey in New Mexico; fiscal year 1981

    Science.gov (United States)

    White, Robert R.; Wells, J.G.

    1983-01-01

    The Water Resources Division of the U.S. Geological Survey investigates the occurrence, quantity, quality, distribution, and movement of the Nation 's surface and underground waters, and coordinates Federal water data acquisition activities. During fiscal year 1981, the New Mexico District had 40 active projects, released 19 reports, and answered hundreds of requests of water-related information. Investigations included the following: (1) chemical quality of surface water in New Mexico; (2) chemical quality of groundwater in New Mexico; (3) sediment transport in New Mexico streams; (4) surface water supply; (5) surface water diversions for irrigation; (6) streamflow characteristics; (7) effect of urban development on storm runoff; (8) inundation from floods; (9) effects of groundwater pumping; (10) long-term monitoring of groundwater levels; (11) groundwater and surface water relationships; (12) consumptive use by phreatophytes; (13) hydrologic impacts of energy development; and (14) groundwater supplies. (Lantz-PTT)

  8. Application, advantages and limitations of high-density gravimetric surveys compared with three-dimensional geological modelling in dolomite stability investigations

    OpenAIRE

    Breytenbach, I J; Bosch, P J A

    2011-01-01

    The article discusses the nature of the gravimetric survey as applied and used in dolomite stability investigations on areas underlain by the Chuniespoort Group in South Africa. A short discussion is given on the gravimetric survey procedure along with its uses and alternative methods. Finally, two case studies illustrate the application of the method on a high-density survey grid spacing in comparison with three-dimensional geological modelling based on the lithology and karst weathering hor...

  9. California Geological Survey Geologic Map Index

    Data.gov (United States)

    California Natural Resource Agency — All the individual maps from the Geologic Atlas of California and the Regional Geologic map series have been georeferenced for display in a GIS (and viewable online...

  10. Geological survey by high resolution electrical survey on granite areas

    International Nuclear Information System (INIS)

    Sugimoto, Yoshihiro; Yamada, Naoyuki

    2002-03-01

    As an Integral part of the geological survey in 'The study of the regions ground water flow system' that we are carrying out with Tono Geoscience Center, we proved the relation between the uncontinuation structure such as lineament in the base rock and resistivity structure (resistivity distribution), for the purpose of that confirms the efficacy of the high resolution electrical survey as geological survey, we carried out high resolution electrical survey on granite area. We obtained the following result, by the comparison of resistivity distribution with established geological survey, lineament analysis and investigative drilling. 1. The resistivity structure of this survey area is almost able to classify it into the following four range. 1) the low resistivity range of 50-800 Ωm, 2) The resistivity range like the middle of 200-2000 Ωm, 3) The high resistivity range of 2000 Ωm over, 4) The low resistivity range of depth of the survey line 400-550 section. 2. The low resistivity range of 4) that correspond with the established geological data is not admitted. 3. It was confirmed that resistivity structure almost correspond to geological structure by the comparison with the established data. 4. The small-scale low resistivity area is admitted in the point equivalent to the lineament position of established. 5. We carried out it with the simulation method about the low resistivity range of 4). As a result, it understood that it has the possibility that the narrow ratio low resistivity area is shown as the wide ratio resistivity range in the analysis section. In the survey in this time, it is conceivable that the resistivity distribution with the possibility of the unhomogeneous and uncontinuation structure of the base rock is being shown conspicuously, the efficacy of the high resolution resistivity survey as geological survey on granite was shown. (author)

  11. The basic concept for the geological surveys

    International Nuclear Information System (INIS)

    Deguchi, Akira; Takahashi, Yoshiaki

    1998-01-01

    Before the construction of high level radioactive waste repository, the implementing entity will go through three siting stages for the repository. In each of those three stages, the implementing entity will carry out geological surveys. In this report, the concept for the geological surveys is described, on the basic of 'The policies for the high level radioactive waste disposal (a tentative draft)' issued by the Atomic Energy Commission in July, 1997. (author)

  12. Site investigation SFR. Bedrock geology

    International Nuclear Information System (INIS)

    Curtis, Philip; Markstroem, Ingemar; Petersson, Jesper; Triumf, Carl-Axel; Isaksson, Hans; Mattsson, Haakan

    2011-12-01

    geological tunnel mapping and eleven drill cores remapped according to the Boremap system, input to model version 1.0 has included the results from eight new cored boreholes as well as a fuller integration of Forsmark site investigation data, a further more extensive review of the drill core from an additional 32 boreholes associated with the construction of the existing SFR facility and an updated mapping of the lower construction tunnel. The current modelling work has also reviewed the older SFR data and models. While details concerning the earlier zones lying in immediate contact with the existing SFR facility have been changed, the earlier overall position, orientation and number of these deformation zones is maintained. A significant difference concerns their thickness due to the contrasting methodologies used during the different campaigns. In SFR model version 0.1, a single deformation zone model was produced, with a volume corresponding to the regional model volume. The model contained all the deformation zones modelled irrespective of size. Separate local and regional deformation zone models have been produced in SFR model version 1.0, following resolution criteria for the different model volumes. The local model contains zones with a minimum size of 300 m, while the regional model has structures that have a minimum size constraint of 1,000 m trace length at the ground surface. The selection of these size limits is related to the model volume maximum depth (local model -300 masl and regional model -1,000 masl) and the applied methodology that requires the same model resolution throughout the defined model volume (see Section 5.3.1). To assist hydrogeological modelling work, an updated combined model, including all structures from both the regional and local models, has also been delivered. The existing SFR facility and the rock volume directly to the south-east, which is proposed for the new facility extension, lies within a tectonic block that is bounded to the

  13. Site investigation SFR. Bedrock geology

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Philip; Markstroem, Ingemar (Golder Associates AB (Sweden)); Petersson, Jesper (Vattenfall Power Consultant AB (Sweden)); Triumf, Carl-Axel; Isaksson, Hans; Mattsson, Haakan (GeoVista AB (Sweden))

    2011-12-15

    the geological tunnel mapping and eleven drill cores remapped according to the Boremap system, input to model version 1.0 has included the results from eight new cored boreholes as well as a fuller integration of Forsmark site investigation data, a further more extensive review of the drill core from an additional 32 boreholes associated with the construction of the existing SFR facility and an updated mapping of the lower construction tunnel. The current modelling work has also reviewed the older SFR data and models. While details concerning the earlier zones lying in immediate contact with the existing SFR facility have been changed, the earlier overall position, orientation and number of these deformation zones is maintained. A significant difference concerns their thickness due to the contrasting methodologies used during the different campaigns. In SFR model version 0.1, a single deformation zone model was produced, with a volume corresponding to the regional model volume. The model contained all the deformation zones modelled irrespective of size. Separate local and regional deformation zone models have been produced in SFR model version 1.0, following resolution criteria for the different model volumes. The local model contains zones with a minimum size of 300 m, while the regional model has structures that have a minimum size constraint of 1,000 m trace length at the ground surface. The selection of these size limits is related to the model volume maximum depth (local model -300 masl and regional model -1,000 masl) and the applied methodology that requires the same model resolution throughout the defined model volume (see Section 5.3.1). To assist hydrogeological modelling work, an updated combined model, including all structures from both the regional and local models, has also been delivered. The existing SFR facility and the rock volume directly to the south-east, which is proposed for the new facility extension, lies within a tectonic block that is bounded

  14. Engineering Geology | Alaska Division of Geological & Geophysical Surveys

    Science.gov (United States)

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska content Engineering Geology Additional information Engineering Geology Posters and Presentations Alaska Alaska MAPTEACH Tsunami Inundation Mapping Engineering Geology Staff Projects The Engineering Geology

  15. U.S. Geological Survey investigations in connection with the dining car event, U12e.18 tunnel, rainier mesa, Nevada test site

    International Nuclear Information System (INIS)

    1978-06-01

    The Dining Car event was a Defense Nuclear Agency nuclear weapons test located in the U12e.18 drift of the E-tunnel complex, central Rainier Mesa, Area 12, Nevada Test Site. The main drift and bypass drift were mined in zeolitized tuff to a total length of 544 m (1,785 ft). The overburden thickness above the experiment is approximately 396 m (1,300 ft) in the U12e.18 area. The pre-Tertiary surface, which is most probably quartzite in this area, is located approximately 243.8 to 274.3 m (800 to 900 ft) below tunnel level. Site geology and geophysical investigations were made in one vertical and two horizontal drill holes prior to mining of the U12e.18 drift. Electric logs in the two horizontal holes indicate no extensive zones of argillization which might create problems in tunnelling. Geophysical logs in the vertical exploratory hole suggest that the tuff is saturated at a depth of about 244 m (800 ft). Electric logs in all three holes show a pronounced signature in tunnel bed 4J. Seismic velocities obtained in the tunnel after mining compare favorably with sonic velocities obtained in one hole by means of a sonic probe, indicating that the bulk geologic structure is not significant in affecting seismic-wave propagation. This condition is not always observed in such comparisons. A repeat seismic survey in the tunnel showed no change in seismic velocity 4 months after mining. In situ stresses determined by the overcore technique are within experience for the Rainier Mesa tunnel complex

  16. A state geological survey commitment to environmental geology - the Texas Bureau of Economic Geology

    International Nuclear Information System (INIS)

    Wermund, E.G.

    1990-01-01

    In several Texas environmental laws, the Bureau of Economic Geology is designated as a planning participant and review agency in the process of fulfilling environmental laws. Two examples are legislation on reclamation of surface mines and regulation of processing low level radioactive wastes. Also, the Bureau is the principal geological reviewer of all Environmental Assessments and Environmental Impact Statements which the Office of the Governor circulates for state review on all major developmental activities in Texas. The BEG continues its strong interest in environmental geology. In February 1988, it recommitted its Land Resources Laboratory, initiated in 1974, toward fulfilling needs of state, county, and city governments for consultation and research on environmental geologic problems. An editorial from another state geological survey would resemble the about description of texas work in environmental geology. State geological surveys have led federal agencies into many developments of environmental geology, complemented federal efforts in their evolution, and continued a strong commitment to the maintenance of a quality environment through innovative geologic studies

  17. Quality assurance for geologic investigations

    International Nuclear Information System (INIS)

    Delvin, W.L.; Gustafson, L.D.

    1983-01-01

    A quality assurance handbook was written to provide guidance in the application of quality assurance to geologic work activities associated with the National Waste Terminal Storage (NWTS) Program. It is intended to help geoscientists and NWTS program managers in applying quality assurance to their work activities and projects by showing how technical and quality assurance practices are integrated to provide control within those activities and projects. The use of the guidance found in this handbook should help provide consistency in the interpretation of quality assurance requirements across the various geologic activities wihtin the NWTS Program. This handbook also can assist quality assurance personnel in understanding the relationships between technical and quality assurance practices. This paper describes the handbook

  18. Quality assurance for geologic investigations

    International Nuclear Information System (INIS)

    Delvin, W.L.; Gustafson, L.D.

    1983-01-01

    A quality assurance handbook was written to provide guidance in the application of quality assurance to geologic work activities associated with the National Waste Terminal Storage (NWTS) Program. It is intended to help geoscientists and NWTS program managers in applying quality assurance to their work activitie and projects by showing how technical and quality assurance practices are integrated to provide control within those activities and projects. The use of the guidance found in this handbook should help provide consistency in the interpretation of quality assurance requirements across the various geologic activities within the NWTS Program. This handbook also can assist quality assurance personnel in understanding the relationships between technical and quality assurance practices. This paper describes the handbook

  19. Geological studies in Alaska by the U.S. Geological Survey, 1999

    Science.gov (United States)

    Gough, Larry P.; Wilson, Frederic H.

    2001-01-01

    The collection of nine papers that follow continue the series of U.S. Geological Survey (USGS) investigative reports in Alaska under the broad umbrella of the geologic sciences. The series presents new and sometimes preliminary findings that are of interest to earth scientists in academia, government, and industry; to land and resource managers; and to the general public. Reports presented in Geologic Studies in Alaska cover a broad spectrum of topics from various parts of the State (fig. 1), serving to emphasize the diversity of USGS efforts to meet the Nation's needs for earth-science information in Alaska.

  20. NAGRA - Sites for geological repositories - Geological surveys for stage 3

    International Nuclear Information System (INIS)

    2014-01-01

    This brochure published by the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA) examines the aims involved in the selection of sites for deep geological repositories for nuclear wastes in Switzerland. Various methods involved in their implementation are described. These include 3D-seismology, deep probe drillings, shallow drillings as well as field studies, gravimetric measurements and the study of the electrical properties of the ground and rock involved. These factors are discussed in detail. Maps are presented of the locations that are to be surveyed and details of the selected perimeters are shown. Also, the layout of a sample drilling site is presented. A timescale for the various surveys and work to be done is presented

  1. Survey contents and their significance to the preliminary investigation areas for the HLW geological disposal. In the case of identification and assessment of active faults in the survey area

    International Nuclear Information System (INIS)

    Yamazaki, Haruo

    2004-01-01

    Geological environment has cumulatively received diverse crustal movements having various time and spatial scales in the long earth history. For the HLW disposal, the geological stability around the investigation site should be examined and assessed in each individual time and spatial scale. Along the northern margin of Izu Peninsula where the highest rate of crustal movement is observed in Japan, the change of extensive stress field affected to local tectonics had taken for several hundred thousand years at the collision of Izu block in early Pleistocene. Therefore, there is little potential of sudden occurrence of new disturbance in the evaluation period of a hundred thousand years. The active fault survey in the preliminary investigation areas should indispensably reexamine the existence of the faults because of the low reliability of previously published active fault maps. Engineering answer should be requested for the accommodation to small fault and fractures in the host rocks. Although there is little potential for the occurrence of a new active fault in the non-faulted region, it is necessary to check the potential of new fracture occurrence in the stress concentrated region using the distribution of coulomb failure stress change. (author)

  2. Geological investigations for geological model of deep underground geoenvironment at the Mizunami Underground Research Laboratory (MIU)

    International Nuclear Information System (INIS)

    Tsuruta, Tadahiko; Tagami, Masahiko; Amano, Kenji; Matsuoka, Toshiyuki; Kurihara, Arata; Yamada, Yasuhiro; Koike, Katsuaki

    2013-01-01

    Japan Atomic Energy Agency (JAEA) is performing a geoscientific research project, the Mizunami Underground Research Laboratory (MIU) project, in order to establish scientific and technological basis for geological disposal of high-level radioactive wastes. The MIU is located in crystalline rock environment, in Mizunami City, central Japan. Field investigations include geological mapping, reflection seismic surveys, several borehole investigations and geological investigations in the research galleries to identify the distribution and heterogeneity of fractures and faults that are potential major flowpaths for groundwater. The results of these field investigations are synthesized and compiled for the purpose of geological modeling. The field investigations indicate that the Main Shaft at the MIU intersected low permeability NNW oriented faults. A high permeability fracture zone in the granite, a significant water inflow point, was observed in the Ventilation Shaft. Development of the geological model focusing 3D spatial relationships at different scales and evolution of the geoenvironment are underway. This paper describes geological investigations applied in the MIU project, focusing on the evaluation of their effectiveness to understand for deep underground geoenvironment. (author)

  3. Investigation on geological environments (IGE)

    Energy Technology Data Exchange (ETDEWEB)

    Lerouge, C.; Widory, D.; Guerrot, C.; Gaucher, E.C. [Bureau de Recherches Geologiques et Minieres (BRGM), 45 - Orleans (France); Buschaert, S. [ANDRA - Agence Nationale pour la Gestion des Dechets Radioactifs, Dir. Scientifique, 92 - Chatenay Malabry (France); Kurikami, H.; Takeuchi, R. [JAEA - Japan Atomic Energy Agency, Hokkaido (Japan); Yabuuchi, S. [METI - Ministry of Economy, Trade and Industry, Tokyo (Japan); Kunimaru, T. [Japan Atomic Energy Agency (JAEA), Horonobe Underground Research Unit, Geological Isolation Research and Development Directorate, Hokkaido (Japan); Yamamoto, H. [Technology Center, Taisei Corporation, Yokohama (Japan); Matray, J.M.; Savoye, S.; Cabrera, J.; Lecathelinais, P. [Institut de Radioprotection et de Surete Nucleaire (IRSN), 92 - Fontenay-aux-Roses (France); Goncalves, J.; Girardin, I. [Universite Pierre et Marie Curie, UMR 7619-Sisyphe, 75 - Paris (France); Craen, M. de; Honty, M.; Wemaere, I.; Van Geet, M. [SCK-CEN - Belgian Nuclear Research Centre - Environment, Healt and Safety Institute, Mol (Belgium); Van Geet, M. [ONDRAF/NIRAS - Belgian Agency for Radioactive Waste and Enriched Fissile Materials, Brussel (Belgium); Le Gal La Salle, C.; Lancelot, J. [Nimes Univ., GIS, UMR 6635 CNRS, 30 (France); Benedetti, L.; Bourles, D.; Hamelin, B. [Aix-Marseille-3 Univ., CEREGE, UMR 6635 CNRS, 13 (France); Fatmi, H.; Ababou, R. [Institut de Mecanique des Fluides de Toulouse, 31 -Toulouse (France); Wemaere, I.; Marivoet, J.; Labat, S. [SCK-CEN - Belgian Nuclear Research Centre, Mol (Belgium); Fedor, F. [MECSEKERC Ltd, Dir. of Environmental Protection (Hungary); Mathe, Z. [MECSEKERC Ltd, Lab. of Env. Geology and Soil Mechanics (Hungary); Hamos, G. [MECSEKERC Ltd, Dept. of Geosciences (Hungary); Somodi, G. [MECSEKERC Ltd, Dept. of Geotechnics (Hungary)

    2007-07-01

    This session gathers 9 articles (posters) dealing with: (S, O, Sr) isotopic constraints on the diagenetic evolution of the Callovo-Oxfordian formation at the Meuse/Haute-Marne URL; the scale effect and heterogeneity of hydraulic conductivity of sedimentary rocks at Horonobe URL site; the investigation and modeling of 3D distribution of water chemistries in Horonobe, Hokkaido, Japan; PH4: a 250 m deep borehole in Tournemire for assessing the contribution of transport phenomena to assumed overpressures in the Toarcian/Domerian semipermeable; the lateral variability of mineralogy and pore water chemistry of the Boom Clay; {sup 36}Cl in groundwaters of Oxfordian and Dogger limestones of the Eastern Paris basin: implications for old groundwater dating; the statistical preprocessing and analyses of hydro-geo-meteorologic time series in the PP experiment of Mont Terri (method. and first results); the hydraulic conductivity of the Boom Clay in north-east Belgium based on four core-drilled boreholes; and a new approach of laboratory permeability measurement of very tight rocks: experimental data of BCF, Mecsek Mts, SW Hungary.

  4. Activities of the United States Geological Survey in Pennsylvania

    Science.gov (United States)

    Wood, Charles R.

    1997-01-01

    Since the late 1800's, when the U.S. Geological Survey first established a presence in Pennsylvania, the focus of our work has changed from general hydrologic and geologic appraisals to issue-oriented investigations; from predominantly data collection to a balanced program of data collection, interpretation, and research; and from traditional, hand-drawn mapping to digitally produced coverages with specialized themes. Yet our basic mission has not changed. It is as relevant to the resource issues of today as it was when our geologists first arrived in western Pennsylvania in 1884. Continuing in this proud heritage and tradition, the U.S. Geological Survey is moving confidently toward the next century, evolving organizationally and technologically to better meet the needs of our many constituencies. One major organizational change is the recent accession of employees from the former National Biological Service, who now form the Survey's fourth program division, the Biological Resources Division. These employees join forces with colleagues in our other three divisions: Water Resources, Geologic, and National Mapping. More than any other change in decades, the addition of this biological expertise creates new and exciting opportunities for scientific research and public service. This report provides an overview of recent activities in Pennsylvania conducted by the four program divisions and is intended to inform those interested in U.S. Geological Survey products and services. Additional information is available on our home page (at http://wwwpah2o.er.usgs.gov/). Together with numerous Federal, State, and local agencies and organizations who are our customers and partners, we at the U.S. Geological Survey look forward to providing continued scientific contributions and public service to Pennsylvania and the Nation.

  5. A Scintillometer Assembly for Geological Survey

    International Nuclear Information System (INIS)

    Dissing, E.; Landstroem, O.

    1965-12-01

    An instrument for gamma radiation measurements in connection with geological survey is described. It consists of a scintillation detector with a 5x6 inch sodium iodide crystal and a pulse height analyzer with four independent channels. In field survey work these channels are usually set in fixed positions to record different components of the gamma radiation simultaneously in order to facilitate an identification of the radioactive mineral from which the radiation originates. However, the instrument can also be used for more detailed study of gamma spectra either in the field or in the laboratory. The methods for interpretation of gamma spectra from radioactive ores are briefly reviewed, and a few typical results are given from car-borne and air-borne surveys

  6. A Scintillometer Assembly for Geological Survey

    Energy Technology Data Exchange (ETDEWEB)

    Dissing, E; Landstroem, O

    1965-12-15

    An instrument for gamma radiation measurements in connection with geological survey is described. It consists of a scintillation detector with a 5x6 inch sodium iodide crystal and a pulse height analyzer with four independent channels. In field survey work these channels are usually set in fixed positions to record different components of the gamma radiation simultaneously in order to facilitate an identification of the radioactive mineral from which the radiation originates. However, the instrument can also be used for more detailed study of gamma spectra either in the field or in the laboratory. The methods for interpretation of gamma spectra from radioactive ores are briefly reviewed, and a few typical results are given from car-borne and air-borne surveys.

  7. Results from Marine geological investigations outside Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, Johan; Elhammer, Anders; Sohlenius, Gustav; Kjellin, Bernt; Nordgren, Paer (Geological Survey of Sweden (Sweden))

    2011-08-15

    A detailed marine geological survey was conducted in a 10 km2 large area outside Forsmark comprising hydro acoustic, 100 m spacing between survey lines, and groundtruthing. These data, together with reanalyzed survey data retrieved in 2002 from the same area, were used to produce maps of seabed and underlying bedrock surface morphology as well as horizontal and vertical extension of sediments. An esker is discovered running approximately in a north northwesterly-south southeasterly direction in the area, which may be causing submarine groundwater discharge. Pockmarks, which are caused by sediment gas of thermogenic and/or microbial origin, are detected in the area. In addition to the original commissioned survey, bedrock surface and seabed morphology as well as horizontal and vertical extension of sediments in a larger adjacent area were reanalyzed and produced from survey lines retrieved during a commission by SKB in 2002 and during SGUs regular mapping program in 2002, 2008 and 2009

  8. Results from Marine geological investigations outside Forsmark

    International Nuclear Information System (INIS)

    Nyberg, Johan; Elhammer, Anders; Sohlenius, Gustav; Kjellin, Bernt; Nordgren, Paer

    2011-08-01

    A detailed marine geological survey was conducted in a 10 km 2 large area outside Forsmark comprising hydro acoustic, 100 m spacing between survey lines, and groundtruthing. These data, together with reanalyzed survey data retrieved in 2002 from the same area, were used to produce maps of seabed and underlying bedrock surface morphology as well as horizontal and vertical extension of sediments. An esker is discovered running approximately in a north northwesterly-south southeasterly direction in the area, which may be causing submarine groundwater discharge. Pockmarks, which are caused by sediment gas of thermogenic and/or microbial origin, are detected in the area. In addition to the original commissioned survey, bedrock surface and seabed morphology as well as horizontal and vertical extension of sediments in a larger adjacent area were reanalyzed and produced from survey lines retrieved during a commission by SKB in 2002 and during SGUs regular mapping program in 2002, 2008 and 2009

  9. Mineral resources, geologic structure, and landform surveys

    Science.gov (United States)

    Lattman, L. H.

    1973-01-01

    The use of ERTS-1 imagery for mineral resources, geologic structure, and landform surveys is discussed. Four categories of ERTS imagery application are defined and explained. The types of information obtained by the various multispectral band scanners are analyzed. Samples of land use maps and tectoning and metallogenic models are developed. It is stated that the most striking features visible on ERTS imagery are regional lineaments, or linear patterns in the topography, which reflect major fracture zones extending upward from the basement of the earth.

  10. A Geospatial Information Grid Framework for Geological Survey

    OpenAIRE

    Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong

    2015-01-01

    The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of ...

  11. United States Geological Survey, programs in Nevada

    Science.gov (United States)

    ,

    1995-01-01

    The U.S. Geological Survey (USGS) has been collecting and interpreting natural-resources data in Nevada for more than 100 years. This long-term commitment enables planners to manage better the resources of a State noted for paradoxes. Although Nevada is one of the most sparsely populated States in the Nation, it has the fastest growing population (fig. 1). Although 90 percent of the land is rural, it is the fourth most urban State. Nevada is the most arid State and relies heavily on water resources. Historically, mining and agriculture have formed the basis of the economy; now tourism and urban development also have become important. The USGS works with more than 40 local, State, and other Federal agencies in Nevada to provide natural-resources information for immediate and long-term decisions.Subjects included in this fact sheet:Low-Level Radioactive-Waste DisposalMining and Water in the Humboldt BasinAquifer Systems in the Great BasinWater Allocation in Truckee and Carson BasinsNational Water-Quality Assessment ProgramMinerals Assessment for Land ManagementIrrigation DrainageGround-Water Movement at Nevada Test SiteOil and Gas ResourcesNational Mapping ProgramDigital Mapping and Aerial PhotographyCollection of Hydrologlc DataGeologic MappingEarthquake HazardsAssessing Mineral Resources of the SubsurfaceEarth Observation DataCooperative Programs

  12. Programs and analytical methods for the U.S. Geological Survey acid-rain quality-assurance project. Water Resources Investigation

    International Nuclear Information System (INIS)

    See, R.B.; Willoughby, T.C.; Brooks, M.H.; Gordon, J.D.

    1990-01-01

    The U.S. Geological Survey operates four programs to provide external quality-assurance of wet deposition monitoring by the National Atmospheric Deposition Program and the National Trends Network. An intersite-comparison program assesses the precision and bias of onsite determinations of pH and specific conductance made by site operators. A blind-audit program is used to assess the effect of routine sample-handling procedures and transportation on the precision and bias of wet-deposition data. An interlaboratory-comparison program is used to assess analytical results from three or more laboratories, which routinely analyze wet-deposition samples from the major North American networks, to determine if comparability exists between laboratory analytical results and to provide estimates of the analytical precision of each laboratory. A collocated-sampler program is used to estimate the precision of wet/dry precipitation sampling throughout the National Atmospheric Deposition Program and the National Trends Network, to assess the variability of diverse spatial arrays, and to evaluate the impact of violations of specific site criteria. The report documents the procedures and analytical methods used in these four quality-assurance programs

  13. Study on the Geological Structure around KURT Using a Deep Borehole Investigation

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Su; Koh, Yong Kwon; Choi, Jong Won

    2010-01-01

    To characterize geological features in study area for high-level radioactive waste disposal research, KAERI (Korea Atomic Energy Research Institute) has been performing the several geological investigations such as geophysical surveys and borehole drilling since 1997. Especially, the KURT (KAERI Underground Research Tunnel) constructed to understand the deep geological environments in 2006. Recently, the deep borehole of 500 m depths was drilled to confirm and validate the geological model at the left research module of the KURT. The objective of this research was to identify the geological structures around KURT using the data obtained from the deep borehole investigation. To achieve the purpose, several geological investigations such as geophysical and borehole fracture surveys were carried out simultaneously. As a result, 7 fracture zones were identified in deep borehole located in the KURT. As one of important parts of site characterization on KURT area, the results will be used to revise the geological model of the study area

  14. Presumption of the distribution of the geological structure based on the geological survey and the topographic data in and around the Horonobe area

    International Nuclear Information System (INIS)

    Sakai, Toshihiro; Matsuoka, Toshiyuki

    2015-06-01

    The Horonobe Underground Research Laboratory (URL) Project, a comprehensive research project investigating the deep underground environment in sedimentary rock, is being pursued by the Japan Atomic Energy Agency (JAEA) at Horonobe-cho in Northern Hokkaido, Japan. One of the main goals of the URL project is to establish techniques for investigation, analysis and assessment of the deep geological environment. JAEA constructed the geologic map and the database of geological mapping in Horonobe-cho in 2005 based on the existing literatures and 1/200,000 geologic maps published by Geological Survey of Japan, and then updated the geologic map in 2007 based on the results of various investigations which were conducted around the URL as the surface based investigation phase of the URL project. On the other hand, there are many geological survey data which are derived from natural resources (petroleum, natural gas and coal, etc.) exploration in and around Horonobe-cho. In this report, we update the geologic map and the database of the geological mapping based on these geological survey and topographical analysis data in and around the Horonobe area, and construct a digital geologic map and a digital database of geological mapping as GIS. These data can be expected to improve the precision of modeling and analyzing of geological environment including its long-term evaluation. The digital data is attached on CD-ROM. (J.P.N.)

  15. The geological and material investigation programme

    International Nuclear Information System (INIS)

    Joshi, A.V.

    1982-01-01

    The radioactive waste disposal problem is an interdisciplinary problem. The geological formation cannot be considered on its own, but must also be considered in connection with the engineering design of the disposal facility. Engineering design including the encapsulation of the glass in a 15 cm thick steel cylinder and a minimum 40 year cooling time ensures low temperatures in the salt-steel interface. Even if large quantities of carnallite were found 3.5 m away from the sides of the borehole, the temperature at 2500 m depth after taking into account temperature increase from radioactive waste will not release crystal water from the carnallite. Anhydrite layers, which may be found in the neighbourhood of Erslev 2 and at the depths contemplated for radioactive waste disposal, will not be continous, but only in the form of blocks of limited lengths. They cannot therefore form a passage to a water bearing aquifer. The volume of salt necessary for waste disposal - including a 200 m safety barrier - is less than 2 km 3 . The Mors dome with a salt volume of about 264 km 3 provides a very substantial safety margin. The geological investigations have fulfilled the purpose of the present phase of investigations and show the Mors salt dome to be a suitable dome for disposal of high-level radioactive waste. (EG)

  16. Overview of Nagra's geological investigation programme in Northern Switzerland

    International Nuclear Information System (INIS)

    Thury, M.; Diebold, P.

    1987-01-01

    For the assessment of the feasibility and safety of a repository for high level radioactive waste, Nagra (National Cooperative for the Storage of Radioactive Waste) has started in 1980 in central Northern Switzerland an extensive geological investigation program. This overall program contains four field investigation programs and several programs for synthesis work. By the end of 1985, six deep drillings have been completed. The deepest borehole reached 2482 m. All in all, more than 8000 m of cores have been taken and analyzed in detail. In the boreholes, extensive hydrogeological tests have been carried out. Within the regional geophysical investigation program gravimetric, aeromagnetic and magnetotelluric, refraction seismic and reflection seismic surveys have been carried out. Vibroseis lines of 400 km length have been measured. Within the regional hydrogeological program, water samples of more than 100 springs and wells with hydrochemically or thermally abnormal waters have been analyzed in detail for their chemical and isotopic composition. Within the neotectonic program, geomorphologic, tectonic, geodetic and seismic studies and measurements have been carried out. In 1983, a microearthquake survey network was installed. All these data were analyzed in several synthetic programs: Structural geology, hydrochemistry, hydrodynamic modelling and long term stability scenarios. The Nagra program continues. As next, a deep borehole in the Canton of Schaffhausen is planned. Meanwhile all data are analyzed in detail and the understanding of the regional and local geology, geochemistry and hydrogeology of northern Switzerland is improved and refined. (author) 32 refs., 8 figs

  17. Geological-geotechnical investigation for large horizontal directional drilling

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Pedro R.R.; Rocha, Ronaldo; Avesani Neto, Jose Orlando; Placido, Rafael R.; Ignatius, Scandar G.; Galli, Vicente Luiz [Instituto de Pesquisas Tecnologicas do Estado de Sao Paulo (IPT), Sao Paulo, SP (Brazil); Amaral, Claudio S. [Centro de Pesquisa Leopoldo A. Miguez de Melo (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Use of Horizontal Directional Drilling - HDD for large diameter (OD>20 inches) pipeline installation started in the second half of the seventies. Since then the method became the preferred alternative for situations in which it is necessary an underground pipeline but there are concerns about digging trenches. Crossings of roadways, water bodies and environmental sensitive areas are typical examples of its application. Technical and economic feasibility of HDD depends significantly on the properties of the materials that will be drilled. Lack of information about these materials can lead to several problems as: schedule delays, cost elevation, pipeline damage, unforeseen environmental impacts and even the failure of the entire operation. Ground investigation campaigns for HDD should define a consistent geological-geotechnical model, which must include determination of behaviour parameters for soil and rock masses that will be drilled. Thus it is proposed an investigation in tree stages: review of available geological-geotechnical information, site reconnaissance, and field survey. (author)

  18. A Geospatial Information Grid Framework for Geological Survey.

    Science.gov (United States)

    Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong

    2015-01-01

    The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper.

  19. Standardization of mapping practices in the British Geological Survey

    Science.gov (United States)

    Allen, Peter M.

    1997-07-01

    Because the British Geological Survey (BGS) has had, since its foundation in 1835, a mandate to produce geological maps for the whole of Great Britain, there is a long history of introducing standard practices in the way rocks and rock units have been named, classified and illustrated on maps. The reasons for the failure of some of these practices are examined and assessed in relation to the needs of computerized systems for holding and disseminating geological information.

  20. The STRATAFORM Project: U.S. Geological Survey geotechnical studies

    Science.gov (United States)

    Minasian, Diane L.; Lee, Homa J.; Locat, Jaques; Orzech, Kevin M.; Martz, Gregory R.; Israel, Kenneth

    2001-01-01

    This report presents physical property logs of core samples from an offshore area near Eureka, CA. The cores were obtained as part of the STRATAFORM Program (Nittrouer and Kravitz, 1995, 1996), a study investigating how present sedimentation and sediment transport processes influence long-term stratigraphic sequences preserved in the geologic record. The core samples were collected during four separate research cruises to the northern California study area, and data shown in the logs of the cores were collected using a multi-sensor whole core logger. The physical properties collected are useful in identifying stratigraphic units, ground-truthing acoustic imagery and sub-bottom profiles, and in understanding mass movement processes. STRATA FORmation on Margins was initiated in 1994 by the Office of Naval Research, Marine Geology and Geophysics Department as a coordinated multi-investigator study of continental-margin sediment transport processes and stratigraphy (Nittrouer and Kravitz, 1996). The program is investigating the stratigraphic signature of the shelf and slope parts of the continental margins, and is designed to provide a better understanding of the sedimentary record and a better prediction of strata. Specifically, the goals of the STRATAFORM Program are to (Nittrouer and Kravitz, 1995): - determine the geological relevance of short-term physical processes that erode, transport, and deposit particles and those processes that subsequently rework the seabed over time scales - improve capabilities for identifying the processes that form the strata observed within the upper ~100 m of the seabed commonly representing 104-106 years of sedimentation. - synthesize this knowledge and bridge the gap between time scales of sedimentary processes and those of sequence stratigraphy. The STRATAFORM Program is divided into studies of the continental shelf and the continental slope; the geotechnical group within the U.S. Geological Survey provides support to both parts

  1. Digital Field Mapping with the British Geological Survey

    Science.gov (United States)

    Leslie, Graham; Smith, Nichola; Jordan, Colm

    2014-05-01

    data into corporate standard geological models and derivative map outputs. BGS•SIGMA2012 is the default toolkit within BGS for bedrock and superficial geological mapping and other data acquisition projects across the UK, both onshore and offshore. It is used in mapping projects in Africa, the Middle East and the USA, and has been taken to Japan as part of the Tohoku tsunami damage assessment project. It is also successfully being used worldwide by other geological surveys e.g. Norway and Tanzania; by universities including Leicester, Keele and Kyoto, and by organisations such as Vale Mining in Brazil and the Montana Bureau of Mines and Geology. It is used globally, with over 2000 licenses downloaded worldwide to date and in use on all seven continents. Development of the system is still ongoing as a result of both user feedback and the changing face of technology. Investigations into the development of a BGS•SIGMA smartphone app are currently taking place alongside system developments such as a new and more streamlined data entry system.

  2. Survey of Jaemtland county (basement rock part). Geologic conditions

    International Nuclear Information System (INIS)

    Antal, I.; Bergman, S.; Freden, C.; Gierup, J.; Stoelen, L.K.; Thunholm, B.; Stephens, M.

    1999-06-01

    A broad survey of the geologic conditions in Jaemtland county is presented, with the aim to give background for the location of a repository for spent fuels. The study is restricted to the basement rock part of the county

  3. Survey of Dalarna county (basement rock part). Geologic conditions

    International Nuclear Information System (INIS)

    Gierup, J.; Kuebler, L.; Linden, A.; Ripa, M.; Stoelen, L.K.; Thunholm, B.; Stephens, M.

    1999-06-01

    A broad survey of the geologic conditions in Dalarna county is presented, with the aim to give background for the location of a repository for spent fuels. The study is restricted to the basement rock part of the county

  4. Survey of Scania county (basement rock part). Geologic conditions

    International Nuclear Information System (INIS)

    Gierup, J.; Kuebler, L.; Pamnert, M.; Persson, Magnus; Thunholm, B.; Wahlgren, C.H.; Wikman, H.; Stephens, M.

    1999-06-01

    A broad survey of the geologic conditions in Scania county is presented, with the aim to give background for the location of a repository for spent fuels. The study is restricted to the basement rock part of the county

  5. Geological hazards investigation - relative slope stability map

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dae Suk; Kim, Won Young; Yu, Il Hyon; Kim, Kyeong Su; Lee, Sa Ro; Choi, Young Sup [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    The Republic of Korea is a mountainous country; the mountains occupy about three quarters of her land area, an increasing urban development being taken place along the mountainside. For the reason, planners as well as developers and others must realize that some of the urban areas may be threaten by geologic hazards such as landslides and accelerated soil and rock creeps. For the purpose of environmental land-use planning, a mapping project on relative slope-stability was established in 1996. The selected area encompasses about 5,900 km{sup 2} including the topographic maps of Ulsan, Yongchon, Kyongju, Pulguksa, and Kampo, all at a scale of 1:50,000. Many disturbed and undisturbed soil samples, which were collected from the ares of the landslides and unstable slopes, were tested for their physical properties and shear strength. They were classified as GC, SP, SC, SM, SP-SM, SC-SM, CL, ML, and MH according to the Unified Soil Classification System, their liquid limit and plasticity index ranging from 25.3% to as high as 81.3% and from 4.1% to 41.5%, respectively. X-ray analysis revealed that many of the soils contained a certain amount of montmorillonite. Based on the available information as well as both field and laboratory investigation, it was found out that the most common types of slope failures in the study area were both debris and mud flows induced by the heavy rainfalls during the period of rainy season; the flows mostly occurred in the colluvial deposits at the middle and foot of mountains. Thus the deposits generally appear to be the most unstable slope forming materials in the study area. Produced for the study area were six different maps consisting of slope classification map, soil classification map, lineament density map, landslide distribution map, zonal map of rainfall, and geology map, most of them being stored as data base. Using the first four maps and GIS, two sheets of relative slope-stability maps were constructed, each at a scale of 1

  6. Geologic Mapping Investigations of Alba Mons, Mars

    Science.gov (United States)

    Crown, D. A.; Berman, D. C.; Scheidt, S. P.; Hauber, E.

    2018-06-01

    Geologic mapping of the summit region and western flank of Alba Mons at 1:1M-scale is revealing sequences of volcanic, tectonic, impact, and degradation processes that have formed and modified the northernmost of the Tharsis volcanoes.

  7. The U.S.Geological Survey Energy Resources Program

    Science.gov (United States)

    ,

    2010-01-01

    Energy resources are an essential component of modern society. Adequate, reliable, and affordable energy supplies obtained using environmentally sustainable practices underpin economic prosperity, environmental quality and human health, and political stability. National and global demands for all forms of energy are forecast to increase significantly over the next several decades. Throughout its history, our Nation has faced important, often controversial, decisions regarding the competing uses of public lands, the supply of energy to sustain development and enable growth, and environmental stewardship. The U.S. Geological Survey (USGS) Energy Resources Program (ERP) provides information to address these challenges by supporting scientific investigations of energy resources, such as research on the geology, geochemistry, and geophysics of oil, gas, coal, heavy oil and natural bitumen, oil shale, uranium, and geothermal resources, emerging resources such as gas hydrates, and research on the effects associated with energy resource occurrence, production, and (or) utilization. The results from these investigations provide impartial, robust scientific information about energy resources and support the U.S. Department of the Interior's (DOI's) mission of protecting and responsibly managing the Nation's natural resources. Primary consumers of ERP information and products include the DOI land- and resource-management Bureaus; other Federal, State, and local agencies; the U.S. Congress and the Administration; nongovernmental organizations; the energy industry; academia; international organizations; and the general public.

  8. Microbial investigations of deep geological compartments

    International Nuclear Information System (INIS)

    Barsotti, V.; Sergeant, C.; Vesvres, M.H.; Joulian, C.; Coulon, S.; Le Marrec, C.; Garrido, F.

    2010-01-01

    Document available in extended abstract form only. Deep sedimentary rocks are now considered to contain a significant part of the total bacterial population, but are microbiologically unexplored. The drilling down to the base of the Triassic (1980 meters deep) in the geological formations of the eastern Paris Basin performed by ANDRA (EST433) in 2008 provides us a good opportunity to explore the deep biosphere. We conditioned and sub-sampled on the coring site, in as aseptic conditions as possible, the nine cores: two in the Callovo-Oxfordian clay, two in the Dogger, five in the Triassic compartments. In addition to storage at atmospheric pressure, a portion of the five Triassic samples was placed in a 190 bars pressurized bars chamber to investigate the influence of the conservation pressure factor on the found microflora. In parallel, in order to evaluate a potential bacterial contamination of the core by the drilling fluids, samples of mud just before each sample drilling were taken and analysed. The microbial exploration we started can be divided in two parts: - A cultural approach in different culture media for six metabolic groups to try to find microbial cells still viable. This type of experiment is difficult because of the small proportion of cultivable species, especially in these extreme environmental samples. - A molecular approach by direct extraction of genomic DNA from the geological samples to explore a larger biodiversity. Here, the limits are the difficulties to extract DNA from these low biomass containing rocks. The five Triassic samples were partly crushed in powder and inoculated in the six culture media with four NaCl concentrations, because this type of rock is known as saline or hyper-saline, and incubated at three temperatures: 30 deg. C, 55 deg. C under agitation and 70 deg. C. First results will be presented. The direct extraction of DNA needs a complete method optimisation to adapt existent procedures (using commercial kit and classical

  9. Studies by the U.S. Geological Survey in Alaska, 2008-2009

    Science.gov (United States)

    Dumoulin, Julie A.; Galloway, John

    2010-01-01

    The collection of papers that follow continues the series of U.S. Geological Survey (USGS) investigative reports in Alaska under the broad umbrella of the geologic sciences. This series represents new and sometimes-preliminary findings that are of interest to Earth scientists in academia, government, and industry; to land and resource managers; and to the general public. The reports presented in Studies by the U.S. Geological Survey in Alaska cover a broad spectrum of topics from various parts of the State, serving to emphasize the diversity of USGS efforts to meet the Nation's needs for Earth-science information in Alaska. This professional paper is one of a series of 'online only' versions of Studies by the U.S. Geological Survey in Alaska, reflecting the current trend toward disseminating research results on the World Wide Web with rapid posting of completed reports.

  10. Studies by the U.S. Geological Survey in Alaska, 2011

    Science.gov (United States)

    Dumoulin, Julie A.; Dusel-Bacon, Cynthia

    2012-01-01

    The collection of papers that follow continues the series of U.S. Geological Survey (USGS) investigative reports in Alaska under the broad umbrella of the geologic sciences. This series represents new and sometimes-preliminary findings that are of interest to Earth scientists in academia, government, and industry; to land and resource managers; and to the general public. The reports presented in Studies by the U.S. Geological Survey in Alaska cover a broad spectrum of topics from various parts of the State, serving to emphasize the diversity of USGS efforts to meet the Nation's needs for Earth-science information in Alaska. This professional paper is one of a series of "online only" versions of Studies by the U.S. Geological Survey in Alaska, reflecting the current trend toward disseminating research results on the World Wide Web with rapid posting of completed reports.

  11. Studies by the U.S. Geological Survey in Alaska, 2007

    Science.gov (United States)

    Haeussler, Peter J.; Galloway, John P.

    2009-01-01

    The collection of papers that follow continues the series of U.S. Geological Survey (USGS) investigative reports in Alaska under the broad umbrella of the geologic sciences. This series represents new and sometimes-preliminary findings that are of interest to Earth scientists in academia, government, and industry; to land and resource managers; and to the general public. The reports presented in Studies by the U.S. Geological Survey in Alaska cover a broad spectrum of topics from various parts of the State, serving to emphasize the diversity of USGS efforts to meet the Nation's needs for Earth-science information in Alaska. This professional paper is one of a series of 'online only' versions of Studies by the U.S. Geological Survey in Alaska, reflecting the current trend toward disseminating research results on the World Wide Web with rapid posting of completed reports.

  12. Geologic mapping of Kentucky; a history and evaluation of the Kentucky Geological Survey--U.S. Geological Survey Mapping Program, 1960-1978

    Science.gov (United States)

    Cressman, Earle Rupert; Noger, Martin C.

    1981-01-01

    In 1960, the U.S. Geological Survey and the Kentucky Geological Survey began a program to map the State geologically at a scale of 1:24,000 and to publish the maps as 707 U.S. Geological Survey Geologic Quadrangle Maps. Fieldwork was completed by the spring of 1977, and all maps were published by December 1978. Geologic mapping of the State was proposed by the Kentucky Society of Professional Engineers in 1959. Wallace W. Hagan, Director and State Geologist of the Kentucky Geological Survey, and Preston McGrain, Assistant State Geologist, promoted support for the proposal among organizations such as Chambers of Commerce, industrial associations, professional societies, and among members of the State government. It was also arranged for the U.S. Geological Survey to supply mapping personnel and to publish the maps; the cost would be shared equally by the two organizations. Members of the U.S. Geological Survey assigned to the program were organized as the Branch of Kentucky Geology. Branch headquarters, including an editorial staff, was at Lexington, Ky., but actual mapping was conducted from 18 field offices distributed throughout the State. The Publications Division of the U.S. Geological Survey established a cartographic office at Lexington to prepare the maps for publication. About 260 people, including more than 200 professionals, were assigned to the Branch of Kentucky Geology by the U.S. Geological Survey at one time or another. The most geologists assigned any one year was 61. To complete the mapping and ancillary studies, 661 professional man-years were required, compared with an original estimate of 600 man-years. A wide variety of field methods were used, but most geologists relied on the surveying altimeter to obtain elevations. Surface data were supplemented by drill-hole records, and several dozen shallow diamond-drill holes were drilled to aid the mapping. Geologists generally scribed their own maps, with a consequent saving of publication costs

  13. The U.S. Geological Survey Astrogeology Science Center

    Science.gov (United States)

    Kestay, Laszlo P.; Vaughan, R. Greg; Gaddis, Lisa R.; Herkenhoff, Kenneth E.; Hagerty, Justin J.

    2017-07-17

    In 1960, Eugene Shoemaker and a small team of other scientists founded the field of astrogeology to develop tools and methods for astronauts studying the geology of the Moon and other planetary bodies. Subsequently, in 1962, the U.S. Geological Survey Branch of Astrogeology was established in Menlo Park, California. In 1963, the Branch moved to Flagstaff, Arizona, to be closer to the young lava flows of the San Francisco Volcanic Field and Meteor Crater, the best preserved impact crater in the world. These geologic features of northern Arizona were considered good analogs for the Moon and other planetary bodies and valuable for geologic studies and astronaut field training. From its Flagstaff campus, the USGS has supported the National Aeronautics and Space Administration (NASA) space program with scientific and cartographic expertise for more than 50 years.

  14. Integration of 3D geological modeling and gravity surveys for geothermal prospection in an Alpine region

    Science.gov (United States)

    Guglielmetti, L.; Comina, C.; Abdelfettah, Y.; Schill, E.; Mandrone, G.

    2013-11-01

    Thermal sources are common manifestations of geothermal energy resources in Alpine regions. The up-flow of the fluid is well-known to be often linked to cross-cutting fault zones providing a significant volume of fractures. Since conventional exploration methods are challenging in such areas of high topography and complicated logistics, 3D geological modeling based on structural investigation becomes a useful tool for assessing the overall geology of the investigated sites. Geological modeling alone is, however, less effective if not integrated with deep subsurface investigations that could provide a first order information on geological boundaries and an imaging of geological structures. With this aim, in the present paper the combined use of 3D geological modeling and gravity surveys for geothermal prospection of a hydrothermal area in the western Alps was carried out on two sites located in the Argentera Massif (NW Italy). The geothermal activity of the area is revealed by thermal anomalies with surface evidences, such as hot springs, at temperatures up to 70 °C. Integration of gravity measurements and 3D modeling investigates the potential of this approach in the context of geothermal exploration in Alpine regions where a very complex geological and structural setting is expected. The approach used in the present work is based on the comparison between the observed gravity and the gravity effect of the 3D geological models, in order to enhance local effects related to the geothermal system. It is shown that a correct integration of 3D modeling and detailed geophysical survey could allow a better characterization of geological structures involved in geothermal fluids circulation. Particularly, gravity inversions have successfully delineated the continuity in depth of low density structures, such as faults and fractured bands observed at the surface, and have been of great help in improving the overall geological model.

  15. Construction of the Geological Model around KURT area based on the surface investigations

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Koh, Yong Kwon; Kim, Kyung Su; Choi, Jong Won

    2009-01-01

    To characterize the geological features in the study area for high-level radioactive waste disposal research, KAERI (Korea Atomic Energy Research Institute) has been performing several geological investigations such as geophysical surveys and borehole drillings since 1997. Especially, the KURT (KAERI Underground Research Tunnel) constructed to understand the deep geological environments in 2006. Recently, the deep boreholes, which have 500 m depth inside the left research module of the KURT and 1,000 m depth outside the KURT, were drilled to confirm and validate the results from a geological model. The objective of this research was to investigate hydrogeological conditions using a 3-D geological model around the KURT. The geological analysis from the surface and borehole investigations determined four important geological elements including subsurface weathered zone, low-angled fractures zone, fracture zones and bedrock for the geological model. In addition, the geometries of these elements were also calculated for the three-dimensional model. The results from 3-D geological model in this study will be beneficial to understand hydrogeological environment in the study area as an important part of high-level radioactive waste disposal technology.

  16. BGS·SIGMA - Digital mapping at the British Geological Survey

    Science.gov (United States)

    Smith, Nichola; Lawrie, Ken

    2017-04-01

    Geological mapping methods have evolved significantly over recent decades and this has included the transition to digital field data capture. BGS has been developing methodologies and technologies for this since 2001, and has now reached a stage where our custom built data capture and map compilation system (BGS·SIGMAv2015) is the default toolkit, within BGS, for bedrock and superficial mapping across the UK and overseas. In addition, BGS scientists also use the system for other data acquisition projects, such as landslide assessment, geodiversity audits and building stone studies. BGS·SIGMAv2015 is an integrated toolkit which enables assembly, interrogation and visualisation of existing geological information; capture of, and integration with, new data and geological interpretations; and delivery of digital products and services. From its early days as a system which used PocketGIS run on Husky Fex21 hardware, to the present day system, developed using ESRI's ArcGIS built on top of a bespoke relational data model, running on ruggedized tablet PCs with integrated GPS units, the system has evolved into a comprehensive system for digital geological data capture, mapping and compilation. The benefits, for BGS, of digital data capture are huge. Not only are the data being gathered in a standardised format, with the use of dictionaries to ensure consistency, but project teams can start building their digital geological map in the field by merging data collected by colleagues, building line-work and polygons, and subsequently identifying areas for further investigation. This digital data can then be easily incorporated into corporate databases and used in 3D modelling and visualisation software once back in the office. BGS is now at a stage where the free external release of our digital mapping system is in demand across the world, with 3000 licences being issued to date, and is successfully being used by other geological surveys, universities and exploration companies

  17. Directions of the US Geological Survey Landslide Hazards Reduction Program

    Science.gov (United States)

    Wieczorek, G.F.

    1993-01-01

    The US Geological Survey (USGS) Landslide Hazards Reduction Program includes studies of landslide process and prediction, landslide susceptibility and risk mapping, landslide recurrence and slope evolution, and research application and technology transfer. Studies of landslide processes have been recently conducted in Virginia, Utah, California, Alaska, and Hawaii, Landslide susceptibility maps provide a very important tool for landslide hazard reduction. The effects of engineering-geologic characteristics of rocks, seismic activity, short and long-term climatic change on landslide recurrence are under study. Detailed measurement of movement and deformation has begun on some active landslides. -from Author

  18. Low-level radioactive waste program of the US Geological Survey - in transition

    International Nuclear Information System (INIS)

    Fischer, J.N.

    1983-01-01

    In 1983, the US Geological Survey will publish final reports of geohydrologic investigations at five commercial low-level, radioactive-waste burial sites in the United States. These reports mark the end of the first phase of the US Geological Survey program to improve the understanding of earth-science principles related to the effective disposal of low-level wastes. The second phase, which was initiated in 1981, is being developed to address geohydrologic issues identified as needing greater attention based upon results of the first-phase site studies. Specific program elements include unsaturated-zone hydrology, geochemistry, clay mineralogy, surface geophysical techniques, and model development and testing. The information and expertise developed from these and previous studies will allow the US Geological Survey to provide sound technical assistance to State low-level waste compacts, the Department of Energy, the Nuclear Regulatory Commission, and the Environmental Protection Agency. 11 references

  19. Recent progress of geological investigations in Indonesia

    Science.gov (United States)

    Prijosoesilo, Purnomo; Sunarya, Yaya; Wahab, A.

    Geologically, the Indonesian archipelago was formed as a result of the interaction and collision of the gigantic crustal blocks, i.e. the Eurasian, Indian, Australian and the Pacific plates. This process caused the formation of extensively distributed ultrabasic rocks in Eastern Indonesia, containing rich mineral resources. In Western Indonesia most ore bodies found are associated with the active volcano-plutonic arc or the stable mass of the Sunda Shelf. There are 60 known Tertiary sedimentary basins in Indonesia and only 36 of them have been "failry" explored, of which 14 basins have had hydrocarbon commercial production. Most of the hydrocarbon exploration and production during the last 100 years have been carried out in Western Indonesia. Many of the "unexplored" basins in Indonesia are located in the offshore areas with water depth over 200 m. Coal and geothermal resources are mostly found in Western Indonesia, particularly Sumatra, Java and Kalimantan. Coal production in 1990 has reached 11 million tons. The steady growth of production was primarily due to the establishment of the coal contract agreement with foreign contractors as well as the re-growth of the State coal mines in Bukit Asam and Sawahlunto, Sumatra. Aside from coal, geothermal is one of the alternative energy resources that have been developed in recent years. From some 16,000 MW resources potential estimated, presently only 140 MW geothermal generating power units have been commercially put on production in Kamojang, West Java. The most important minerals mined in Indonesia are tin (Sn), nickel (Ni), copper (Cu) and bauxite. Most of the gold (Au) and silver (Ag) production are mined in association with copper (Cu) such as those in Tembagapura, Irian Jaya, with the exception of a few epithermal gold mines in other areas in the country. Between 1984 and 1990, Indonesia produced around 1.3-1.5 MMBPD crude oil and condensate plus 1.6-2.2 TSCF natural gas. Most of the natural gas production was

  20. Geological Mapping of Sabah, Malaysia, Using Airborne Gravity Survey

    DEFF Research Database (Denmark)

    Fauzi Nordin, Ahmad; Jamil, Hassan; Noor Isa, Mohd

    2016-01-01

    Airborne gravimetry is an effective tool for mapping local gravity fields using a combination of airborne sensors, aircraft and positioning systems. It is suitable for gravity surveys over difficult terrains and areas mixed with land and ocean. This paper describes the geological mapping of Sabah...... using airborne gravity surveys. Airborne gravity data over land areas of Sabah has been combined with the marine airborne gravity data to provide a seamless land-to-sea gravity field coverage in order to produce the geological mapping. Free-air and Bouguer anomaly maps (density 2.67 g/cm3) have been...... derived from the airborne data both as simple ad-hoc plots (at aircraft altitude), and as final plots from the downward continued airborne data, processed as part of the geoids determination. Data are gridded at 0.025 degree spacing which is about 2.7 km and the data resolution of the filtered airborne...

  1. U.S. Geological Survey World Wide Web Information

    Science.gov (United States)

    ,

    2003-01-01

    The U.S. Geological Survey (USGS) invites you to explore an earth science virtual library of digital information, publications, and data. The USGS World Wide Web sites offer an array of information that reflects scientific research and monitoring programs conducted in the areas of natural hazards, environmental resources, and cartography. This list provides gateways to access a cross section of the digital information on the USGS World Wide Web sites.

  2. U.S. Geological Survey flies high for now

    Science.gov (United States)

    Clinton is asking Congress to keep the U.S. Geological Survey (USGS) alive and well in FY 1996. With a proposed 2.6% increase to $586 million, the Clinton request flies in the face of the Republican Contract with America that calls for abolishing the survey.Indeed, Clinton has made it clear that the onus will be on Congress if it wants to make major cuts at USGS. As Secretary of the Interior Bruce Babbitt puts it: “Good science is essential to good management.”

  3. Application of the geological surveying methods employed at Gorleben to cavern projects in the central European zechstein basin

    International Nuclear Information System (INIS)

    Wilke, F.; Bornemann, O.; Behlau, J.; Mingerzahn, G.

    2002-01-01

    The investigations at Gorleben date back more than 20 years. New methods were developed and applied, especially for detailed stratigraphic and geochemical characterization of the zechstein formation and also geophysical survey methods and geological mapping of complex folds in saline structures. The greatest feat was the 3D imaging of all geological information accompanied by visualization of complex stratigraphic entities [de

  4. The United States Geological Survey: 1879-1989

    Science.gov (United States)

    Rabbitt, Mary C.

    1989-01-01

    The United States Geological Survey was established on March 3, 1879, just a few hours before the mandatory close of the final session of the 45th Congress, when President Rutherford B. Hayes signed the bill appropriating money for sundry civil expenses of the Federal Government for the fiscal year beginning July 1, 1879. The sundry civil expenses bill included a brief section establishing a new agency, the United States Geological Survey, placing it in the Department of the Interior, and charging it with a unique combination of responsibilities: 'classification of the public lands, and examination of the geological structure, mineral resources, and products of the national domain.' The legislation stemmed from a report of the National Academy of Sciences, which in June 1878 had been asked by Congress to provide a plan for surveying the Territories of the United States that would secure the best possible results at the least possible cost. Its roots, however, went far back into the Nation's history. The first duty enjoined upon the Geological Survey by the Congress, the classification of the public lands, originated in the Land Ordinance of 1785. The original public lands were the lands west of the Allegheny Mountains claimed by some of the colonies, which became a source of contention in writing the Articles of Confederation until 1781 when the States agreed to cede their western lands to Congress. The extent of the public lands was enormously increased by the Louisiana Purchase in 1803 and later territorial acquisitions. At the beginning of Confederation, the decision was made not to hold the public lands as a capital asset, but to dispose of them for revenue and to encourage settlement. The Land Ordinance of 1785 provided the method of surveying and a plan for disposal of the lands, but also reserved 'one-third part of all gold, silver, lead, and copper mines to be sold or otherwise disposed of, as Congress shall thereafter direct,' thus implicitly requiring

  5. Uncertainty in mapped geological boundaries held by a national geological survey:eliciting the geologists' tacit error model

    Science.gov (United States)

    Lark, R. M.; Lawley, R. S.; Barron, A. J. M.; Aldiss, D. T.; Ambrose, K.; Cooper, A. H.; Lee, J. R.; Waters, C. N.

    2015-06-01

    It is generally accepted that geological line work, such as mapped boundaries, are uncertain for various reasons. It is difficult to quantify this uncertainty directly, because the investigation of error in a boundary at a single location may be costly and time consuming, and many such observations are needed to estimate an uncertainty model with confidence. However, it is recognized across many disciplines that experts generally have a tacit model of the uncertainty of information that they produce (interpretations, diagnoses, etc.) and formal methods exist to extract this model in usable form by elicitation. In this paper we report a trial in which uncertainty models for geological boundaries mapped by geologists of the British Geological Survey (BGS) in six geological scenarios were elicited from a group of five experienced BGS geologists. In five cases a consensus distribution was obtained, which reflected both the initial individually elicited distribution and a structured process of group discussion in which individuals revised their opinions. In a sixth case a consensus was not reached. This concerned a boundary between superficial deposits where the geometry of the contact is hard to visualize. The trial showed that the geologists' tacit model of uncertainty in mapped boundaries reflects factors in addition to the cartographic error usually treated by buffering line work or in written guidance on its application. It suggests that further application of elicitation, to scenarios at an appropriate level of generalization, could be useful to provide working error models for the application and interpretation of line work.

  6. Preliminary Geological Survey on the Proposed Sites for the New Research Reactor

    International Nuclear Information System (INIS)

    Lim, In Cheol; Ha, J. J.; Oh, K. B.

    2010-12-01

    · Performing the preliminary geological survey on the proposed sites for the new research reactor through the technical service · Ordering a technical service from The Geological Society of Korea · Contents of the geological survey - Confirmation of active fault - Confirmation of a large-scale fracture zone or weak zone - Confirmation of inappropriate items related to the underground water - Confirmation of historical seismicity and instrumental earthquakes data · Synthesized analysis and holding a report meeting · Results of the geological survey - Confirmation of the geological characteristics of the sites and drawing the requirements for the precise geological survey in the future

  7. The U.S. Geological Survey's water resources program in New York

    Science.gov (United States)

    Wiltshire, Denise A.

    1983-01-01

    The U.S. Geological Survey performs hydrologic investigations throughout the United States to appraise the Nation's water resources. The Geological Survey began its water-resources investigations in New York in 1895. To meet the objectives of assessing New York's water resources, the Geological Survey (1) monitors the quantity and quality of surface and ground water, (2) conducts investigations of the occurrence, availability, and chemical quality of water in specific areas of the State, (3) develops methods and techniques of data-collection and interpretation, (4) provides scientific guidance to the research community, to Federal, State, and local governments, and to the public, and (5) disseminates data and results of research through reports, maps, news releases, conferences, and workshops. Many of the joint hydrologic investigations are performed by the Geological Survey in cooperation with State, county, and nonprofit organizations. The data collection network in New York includes nearly 200 gaging stations and 250 observation wells; chemical quality of water is measured at 260 sites. Data collected at these sites are published annually and are filed in the WATSTORE computer system. Some of the interpretive studies performed by the Geological Survey in New York include (1) determining the suitability of ground-water reservoirs for public-water supply in urban areas, (2) assessing geohydrologic impacts of leachate from hazardous waste sites on stream and ground-water quality, (3) evaluating the effects of precipitation quality and basin characteristics on streams and lakes, and (4) developing digital models of the hydrology of aquifers to simulate ground-water flow and the interaction between ground water and streams.

  8. Neotectonics in northern Sweden - geological investigations

    International Nuclear Information System (INIS)

    Lagerbaeck, R.; Witschard, F.

    1983-05-01

    Fairly large areas around the formerly known quaternary faults have been air photo interpreted. The fault known as the Parvie fault has been found to extend somewhat further towards the south, thereby crossing the valley of the Stora Lule river. Furthermore, another fault has been discovered in the Lansjaerv region, and thus the faults in this area form a better fit to the regional pattern, with a SSW - NNE trend and a relative uplift of the eastern part. The fault scarps have been leveled photogrammatrically, and reproduced on maps on the scales of 1:50000 and 1:100000, and on overview maps on the scale of 1:250000. The highest leveld scarps somewhat exceed 30 m. The total length of the faults is roughly 300 km. During the air photo interpretation, several landslides have been detected, and it seems evident from their location that there is a causal connection between faults and landslides. It seems evident that the different faults are not simultaneously formed, but created at separate events. Representative samples have been collected, and thin sections of these investigated under the microscope. Often, the bedrock shows signs of older tectonic influence, and it seems that the faults largerly have been released along existing zones of weakness in the bedrock. However, striking exceptions, with fracturing through unaltered rock, have been found in several places. The faults illustrated in the maps below undoubtedly represent the most important signs of late quaternary fault activity in Norrbotten east of the Caledonian mountains. The geographic, and very probably also causal connection between faults and landslides seems obvious in both Finland and Sweden. We need a satisfactory tectonic explanation for the faults. Undoubtedly, the glacial - isostatic forces have a central role. The strike of the faults is approximately perpendicular to the direction of plate motion, and compressive forces have acted at the formation of the faults. (author)

  9. A brief history of the U.S. Geological Survey

    Science.gov (United States)

    ,; Rabbitt, Mary C.

    1975-01-01

    Established by an Act of Congress in 1879 and charged with responsibility for "classification of the public lands, and examination of the geological structure, mineral resources, and products of the national domain," the U. S. Department of the Interior's Geological Survey has been the Nation's principal source of information about its physical resources the configuration and character of the land surface, the composition and structure of the underlying rocks, and the quality, extent, and distribution of water and mineral resources. Although primarily a research and fact-finding agency, it has responsibility also for the classification of Federal mineral lands and waterpower sites, and since 1926 it has been responsible for the supervision of oil and mining operations authorized under leases on Federal land. From the outset, the Survey has been concerned with critical land and resource problems. Often referred to as the Mother of Bureaus, many of its activities led to the formation of new organizations where a management or developmental function evolved. These included the Reclamation Service (1902), the Bureau of Mines (1910), the Federal Power Commission (1920), and the Grazing Service (1934, since combined with other functions as the Bureau of Land Management). Mrs. Rabbitt's summary of the Survey's history in the following pages brings out well the development of these diverse activities and the Survey's past contributions to national needs related to land and resources.

  10. The U.S. Geological Survey's TRIGA® reactor

    Science.gov (United States)

    DeBey, Timothy M.; Roy, Brycen R.; Brady, Sally R.

    2012-01-01

    The U.S. Geological Survey (USGS) operates a low-enriched uranium-fueled, pool-type reactor located at the Federal Center in Denver, Colorado. The mission of the Geological Survey TRIGA® Reactor (GSTR) is to support USGS science by providing information on geologic, plant, and animal specimens to advance methods and techniques unique to nuclear reactors. The reactor facility is supported by programs across the USGS and is organizationally under the Associate Director for Energy and Minerals, and Environmental Health. The GSTR is the only facility in the United States capable of performing automated delayed neutron analyses for detecting fissile and fissionable isotopes. Samples from around the world are submitted to the USGS for analysis using the reactor facility. Qualitative and quantitative elemental analyses, spatial elemental analyses, and geochronology are performed. Few research reactor facilities in the United States are equipped to handle the large number of samples processed at the GSTR. Historically, more than 450,000 sample irradiations have been performed at the USGS facility. Providing impartial scientific information to resource managers, planners, and other interested parties throughout the world is an integral part of the research effort of the USGS.

  11. Seismic and geologic investigations of the Sandia Livermore Laboratory site

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    This report describes results of a seismic and geologic investigation in the vicinity of Sandia Laboratories property and Sandia's Tritium Building at Livermore, California. The investigation was done to define any seismically capable faults in the immediate area and to obtain necessary information to support estimates of future possible or probable ground motions. The work included a variety of geophysical measurements, trenching, seismologic studies, geologic examination, and evaluation of possible ground surface rupture at the site. Ground motions due to the maximum potential earthquake are estimated, and probability of exceedance for various levels of peak ground acceleration is calculated. Descriptions of the various calculations and investigative techniques used and the data obtained are presented. Information obtained from other sources relevant to subsurface geology and faulting is also given. Correlation and evaluation of the various lines of evidence and conclusions regarding the seismic hazard to the Tritium Building are included

  12. A geological survey of the Lac du Bonnet batholith, Manitoba

    International Nuclear Information System (INIS)

    McCrank, G.F.D.

    1985-02-01

    This report presents the results of a geological survey of the Lac du Bonnet batholith in Manitoba. The survey consisted of field mapping of the lithologies and the joint systems throughout the batholith, and the examination of lineaments identified on aerial photographs and Landsat imagery. Petrographic descriptions and a map of the lithologies, an analysis of the fracture systems and a lineament map are presented. The results of various regional geophysical surveys were used as an aid to the interpretation of the batholith's contacts and in the interpretation of lineaments as possible faults. A comparison of the Lac du Bonnet Batholith with the Eye-Dashwa Lakes Pluton near Atikokan, Ontario is also presented

  13. Geologic studies in Alaska by the U.S. Geological Survey, 1992

    Science.gov (United States)

    Dusel-Bacon, Cynthia; Till, Alison B.

    1993-01-01

    This collection of 19 papers continues the annual series of U.S. Geological Survey reports on the geology of Alaska. The contributions, which include full-length Articles and shorter Geologic Notes, cover a broad range of topics including dune formation, stratigraphy, paleontology, isotopic dating, mineral resources, and tectonics. Articles, grouped under four regional headings, span nearly the entire State from the North Slope to southwestern, south-central, and southeastern Alaska (fig. 1).In the section on northern Alaska, Galloway and Carter use new data on dune morphology and radiocarbon ages from the western Arctic Coastal Plain to develop a late Holocene chronology of multiple episodes of dune stabilization and reactivation for the region. Their study has important implications for climatic changes in northern Alaska during the past 4,000 years. In two papers, Dumoulin and her coauthors describe lithofacies and conodont faunas of Carboniferous strata in the western Brooks Range, discuss depositional environments, and propose possible correlations and source areas for some of the strata. Schenk and Bird propose a preliminary division of the Lower Cretaceous stratigraphic section in the central part of the North Slope into depositional sequences. Aleinikoff and others present new U-Pb data for zircons from metaigneous rocks from the central Brooks Range. Karl and Mull, reacting to a proposal regarding terrane nomenclature for northern Alaska that was published in last year's Alaskan Studies Bulletin, provide a historical perspective of the evolution of terminology for tectonic units in the Brooks Range and present their own recommendations.

  14. U.S. Geological Survey Fundamental Science Practices

    Science.gov (United States)

    ,

    2011-01-01

    The USGS has a long and proud tradition of objective, unbiased science in service to the Nation. A reputation for impartiality and excellence is one of our most important assets. To help preserve this vital asset, in 2004 the Executive Leadership Team (ELT) of the USGS was charged by the Director to develop a set of fundamental science practices, philosophical premises, and operational principles as the foundation for all USGS research and monitoring activities. In a concept document, 'Fundamental Science Practices of the U.S. Geological Survey', the ELT proposed 'a set of fundamental principles to underlie USGS science practices.' The document noted that protecting the reputation of USGS science for quality and objectivity requires the following key elements: - Clearly articulated, Bureau-wide fundamental science practices. - A shared understanding at all levels of the organization that the health and future of the USGS depend on following these practices. - The investment of budget, time, and people to ensure that the USGS reputation and high-quality standards are maintained. The USGS Fundamental Science Practices (FSP) encompass all elements of research investigations, including data collection, experimentation, analysis, writing results, peer review, management review, and Bureau approval and publication of information products. The focus of FSP is on how science is carried out and how products are produced and disseminated. FSP is not designed to address the question of what work the USGS should do; that is addressed in USGS science planning handbooks and other documents. Building from longstanding existing USGS policies and the ELT concept document, in May 2006, FSP policies were developed with input from all parts of the organization and were subsequently incorporated into the Bureau's Survey Manual. In developing an implementation plan for FSP policy, the intent was to recognize and incorporate the best of USGS current practices to obtain the optimum

  15. 50 CFR 37.45 - Exploration by the U.S. Geological Survey.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Exploration by the U.S. Geological Survey... INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE....S. Geological Survey. Notwithstanding the requirement found in § 37.21(b) on when exploration plans...

  16. Geological, geochemical, and geophysical studies by the U.S. Geological Survey in Big Bend National Park, Texas

    Science.gov (United States)

    Page, W.R.; Turner, K.J.; Bohannon, R.G.; Berry, M.E.; Williams, V.S.; Miggins, D.P.; Ren, M.; Anthony, E.Y.; Morgan, L.A.; Shanks, P.W.C.; Gray, J. E.; Theodorakos, P.M.; Krabbenhoft, D. P.; Manning, A.H.; Gemery-Hill, P. A.; Hellgren, E.C.; Stricker, C.A.; Onorato, D.P.; Finn, C.A.; Anderson, E.; Gray, J. E.; Page, W.R.

    2008-01-01

    Big Bend National Park (BBNP), Tex., covers 801,163 acres (3,242 km2) and was established in 1944 through a transfer of land from the State of Texas to the United States. The park is located along a 118-mile (190-km) stretch of the Rio Grande at the United States-Mexico border. The park is in the Chihuahuan Desert, an ecosystem with high mountain ranges and basin environments containing a wide variety of native plants and animals, including more than 1,200 species of plants, more than 450 species of birds, 56 species of reptiles, and 75 species of mammals. In addition, the geology of BBNP, which varies widely from high mountains to broad open lowland basins, also enhances the beauty of the park. For example, the park contains the Chisos Mountains, which are dominantly composed of thick outcrops of Tertiary extrusive and intrusive igneous rocks that reach an altitude of 7,832 ft (2,387 m) and are considered the southernmost mountain range in the United States. Geologic features in BBNP provide opportunities to study the formation of mineral deposits and their environmental effects; the origin and formation of sedimentary and igneous rocks; Paleozoic, Mesozoic, and Cenozoic fossils; and surface and ground water resources. Mineral deposits in and around BBNP contain commodities such as mercury (Hg), uranium (U), and fluorine (F), but of these, the only significant mining has been for Hg. Because of the biological and geological diversity of BBNP, more than 350,000 tourists visit the park each year. The U.S. Geological Survey (USGS) has been investigating a number of broad and diverse geologic, geochemical, and geophysical topics in BBNP to provide fundamental information needed by the National Park Service (NPS) to address resource management goals in this park. Scientists from the USGS Mineral Resources and National Cooperative Geologic Mapping Programs have been working cooperatively with the NPS and several universities on several research studies within BBNP

  17. Oskarshamn site investigation. Bedrock geology - overview and excursion guide

    Energy Technology Data Exchange (ETDEWEB)

    Wahlgren, Carl-Henric (Geological Survey of Sweden, Uppsala (Sweden))

    2010-09-15

    Bearing in mind the significance of the bedrock data from the ground surface for the geological 3D modelling work, SKB decided to present excursion guides that serve in the demonstration of the bedrock geology at the ground surface in both the Forsmark and Laxemar-Simpevarp (this guide) areas. An excursion guide is also available for the Olkiluoto area in south-western Finland, which has been selected for the construction of a repository for the disposal of highly radioactive, spent nuclear fuel. The current excursion guide presents the bedrock geology and describes in detail the character of the bedrock at eight representative outcrops or outcrop areas at the ground surface in the site investigation area at Laxemar-Simpevarp and at one locality north of this area, i.e. at a total of nine localities

  18. Forsmark site investigation. Bedrock geology - overview and excursion guide

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B. (Geological Survey of Sweden, Uppsala (Sweden))

    2010-09-15

    Bearing in mind the significance of the bedrock data from the ground surface for the geological 3D modelling work, SKB decided to present excursion guides that serve in the demonstration of the bedrock geology at the ground surface in both the Forsmark (this guide) and Laxemar-Simpevarp areas. An excursion guide is also available for the Olkiluoto area in south-western Finland, which has been selected for the construction of a repository for the disposal of highly radioactive, spent nuclear fuel in Finland. The current excursion guide presents the bedrock geology and describes in detail the character of the bedrock at ten representative outcrops or outcrop areas at the ground surface in the site investigation area at Forsmark. All localities are located within or immediately adjacent to the proposed repository volume selected by SKB

  19. Forsmark site investigation. Bedrock geology - overview and excursion guide

    International Nuclear Information System (INIS)

    Stephens, Michael B.

    2010-09-01

    Bearing in mind the significance of the bedrock data from the ground surface for the geological 3D modelling work, SKB decided to present excursion guides that serve in the demonstration of the bedrock geology at the ground surface in both the Forsmark (this guide) and Laxemar-Simpevarp areas. An excursion guide is also available for the Olkiluoto area in south-western Finland, which has been selected for the construction of a repository for the disposal of highly radioactive, spent nuclear fuel in Finland. The current excursion guide presents the bedrock geology and describes in detail the character of the bedrock at ten representative outcrops or outcrop areas at the ground surface in the site investigation area at Forsmark. All localities are located within or immediately adjacent to the proposed repository volume selected by SKB

  20. Oskarshamn site investigation. Bedrock geology - overview and excursion guide

    International Nuclear Information System (INIS)

    Wahlgren, Carl-Henric

    2010-09-01

    Bearing in mind the significance of the bedrock data from the ground surface for the geological 3D modelling work, SKB decided to present excursion guides that serve in the demonstration of the bedrock geology at the ground surface in both the Forsmark and Laxemar-Simpevarp (this guide) areas. An excursion guide is also available for the Olkiluoto area in south-western Finland, which has been selected for the construction of a repository for the disposal of highly radioactive, spent nuclear fuel. The current excursion guide presents the bedrock geology and describes in detail the character of the bedrock at eight representative outcrops or outcrop areas at the ground surface in the site investigation area at Laxemar-Simpevarp and at one locality north of this area, i.e. at a total of nine localities

  1. Geological investigations for the South African nuclear waste repository facility

    International Nuclear Information System (INIS)

    Hambleton-Jones, B.B.; Levin, M.; Andersen, N.J.B.; Brynard, H.J.; Toens, P.D.

    1984-02-01

    The selection of the Vaalputs site on the arid Bushmanland Plateau in the northwestern Cape of the Republic of South Africa for the disposal of low-level radioactive waste was based on a national screening phase program involving socio-economic and geological criteria. Regional geohydrological studies over an area of 27,000 km 2 and a detailed study over 1,300 km 2 indicated that in general the groundwater is saline and that Vaalputs and environs was the most favourable area. The groundwater table lies between 30 and 45 m below the surface, with 14 C ages between 2,500 and 9,000 years old in the immediate vicinity. The geology of Vaalputs consists of Proterozoic granites, gneisses, metasediments, and noritoids of the 1,050 Ma Namaqualand Metamorphic Complex. Upper cretaceous kimberlitic and basaltic intrusions occur locally. Overlying these basement rocks surficial upper Tertiary to Recent argillaceous sediments occur in the Vaalputs basin. The sediments consist of aeolian sand, calcrete, fluvial sandy to gritty clay, white kaolinised clay and very weathered basement rocks. It is in these rocks that the low-level waste trenches will be located. Extensive airborne geophysical surveys, such as aeromagnetics, INPUT, and infrared thermal line scanning, were undertaken to assist in the evaluation of the regional and local subsurface geology. Ground geophysical surveys included refraction seismics, electromagnetics, magnetics, borehole radiometrics and resistivity. Geohydrological modelling of the unsaturated and saturated zones is in progress

  2. The U.S. Geological Survey Geologic Collections Management System (GCMS)—A master catalog and collections management plan for U.S. Geological Survey geologic samples and sample collections

    Science.gov (United States)

    ,

    2015-01-01

    The U.S. Geological Survey (USGS) is widely recognized in the earth science community as possessing extensive collections of earth materials collected by research personnel over the course of its history. In 2006, a Geologic Collections Inventory was conducted within the USGS Geology Discipline to determine the extent and nature of its sample collections, and in 2008, a working group was convened by the USGS National Geologic and Geophysical Data Preservation Program to examine ways in which these collections could be coordinated, cataloged, and made available to researchers both inside and outside the USGS. The charge to this working group was to evaluate the proposition of creating a Geologic Collections Management System (GCMS), a centralized database that would (1) identify all existing USGS geologic collections, regardless of size, (2) create a virtual link among the collections, and (3) provide a way for scientists and other researchers to obtain access to the samples and data in which they are interested. Additionally, the group was instructed to develop criteria for evaluating current collections and to establish an operating plan and set of standard practices for handling, identifying, and managing future sample collections. Policies and procedures promoted by the GCMS would be based on extant best practices established by the National Science Foundation and the Smithsonian Institution. The resulting report—USGS Circular 1410, “The U.S. Geological Survey Geologic Collections Management System (GCMS): A Master Catalog and Collections Management Plan for U.S. Geological Survey Geologic Samples and Sample Collections”—has been developed for sample repositories to be a guide to establishing common practices in the collection, retention, and disposal of geologic research materials throughout the USGS.

  3. Agile Data Curation at a State Geological Survey

    Science.gov (United States)

    Hills, D. J.

    2015-12-01

    State agencies, including geological surveys, are often the gatekeepers for myriad data products essential for scientific research and economic development. For example, the Geological Survey of Alabama (GSA) is mandated to explore for, characterize, and report Alabama's mineral, energy, water, and biological resources in support of economic development, conservation, management, and public policy for the betterment of Alabama's citizens, communities, and businesses. As part of that mandate, the GSA has increasingly been called upon to make our data more accessible to stakeholders. Even as demand for greater data accessibility grows, budgets for such efforts are often small, meaning that agencies must do more for less. Agile software development has yielded efficient, effective products, most often at lower cost and in shorter time. Taking guidance from the agile software development model, the GSA is working towards more agile data management and curation. To date, the GSA's work has been focused primarily on data rescue. By using workflows that maximize clear communication while encouraging simplicity (e.g., maximizing the amount of work not done or that can be automated), the GSA is bringing decades of dark data into the light. Regular checks by the data rescuer with the data provider (or their proxy) provides quality control without adding an overt burden on either party. Moving forward, these workflows will also allow for more efficient and effective data management.

  4. The Geological Survey of Canada Radiocarbon Dating Laboratory

    International Nuclear Information System (INIS)

    Lowdon, J.A.

    1985-01-01

    The Radiocarbon Dating Laboratory of the Geological Survey of Canada began routine 14 C age determinations in 1961 using a 2 litre copper, proportional counter and CO 2 as the counting gas. This counter is operated routinely at a pressure of 2 atmospheres where the maximum dating limit is approximately 40 000 years using the 4σ criterion. In 1964 a 5 litre counter was put into operation. Routinely this counter is operated at a pressure of 1 atmosphere where its dating limit is approximately 40 000 years. When operated at 4 atmospheres its age limit increases to about 54 000 years. Organic samples are burned in a stream of oxygen and the CO 2 released is purified on passage through a series of chemicals and traps. Inorganic samples are dissolved in phosphoric acid. Up to the end of 1983 more than 3700 age determinations have been carried out on various types of sample material. Since 1963 twenty-three Geological Survey of Canada Date Lists have been published. The Laboratory also carries out a program of 14 C determinations of samples of known age for the purpose of assessing the accuracy of the method and learning more about the natural and man-made 14 C distribution and circulation in nature

  5. Topographic and hydrographic GIS dataset for the Afghanistan Geological Survey and U.S. Geological Survey 2010 Minerals Project

    Science.gov (United States)

    Chirico, P.G.; Moran, T.W.

    2011-01-01

    This dataset contains a collection of 24 folders, each representing a specific U.S. Geological Survey area of interest (AOI; fig. 1), as well as datasets for AOI subsets. Each folder includes the extent, contours, Digital Elevation Model (DEM), and hydrography of the corresponding AOI, which are organized into feature vector and raster datasets. The dataset comprises a geographic information system (GIS), which is available upon request from the USGS Afghanistan programs Web site (http://afghanistan.cr.usgs.gov/minerals.php), and the maps of the 24 areas of interest of the USGS AOIs.

  6. 2012 Alaska Division of Geological and Geophysical Surveys (DGGS) Lidar: Whittier, Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In support of geologic mapping and hazards evaluation in and near Whittier, Alaska, the Division of Geological and Geophysical Surveys (DGGS) acquired, and is making...

  7. Geologic investigation :an update of subsurface geology on Kirtland Air Force Base, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Van Hart, Dirk (GRAM, Inc.)

    2003-06-01

    The objective of this investigation was to generate a revised geologic model of Kirtland Air Force Base (KAFB) incorporating the geological and geophysical data produced since the Site-Wide Hydrogeologic Characterization Project (SWHC) of 1994 and 1995. Although this report has certain stand-alone characteristics, it is intended to complement the previous work and to serve as a status report as of late 2002. In the eastern portion of KAFB (Lurance Canyon and the Hubbell bench), of primary interest is the elevation to which bedrock is buried under a thin cap of alluvium. Elevation maps of the bedrock top reveal the paleodrainage that allows for the interpretation of the area's erosional history. The western portion of KAFB consists of the eastern part of the Albuquerque basin where bedrock is deeply buried under Santa Fe Group alluvium. In this area, the configuration of the down-to-the-west, basin-bounding Sandia and West Sandia faults is of primary interest. New geological and geophysical data and the reinterpretation of old data help to redefine the location and magnitude of these elements. Additional interests in this area are the internal stratigraphy and structure of the Santa Fe Group. Recent data collected from new monitoring wells in the area have led to a geologic characterization of the perched Tijeras Arroyo Groundwater system and have refined the known limits of the Ancestral Rio Grande fluvial sediments within the Santa Fe Group. Both the reinterpretation of the existing data and a review of the regional geology have shown that a segment of the boundary between the eastern and western portions of KAFB is a complicated early Tertiary (Laramide) wrench-fault system, the Tijeras/Explosive Ordnance Disposal Area/Hubbell Spring system. A portion of this fault zone is occupied by a coeval ''pull-apart'' basin filled with early Tertiary conglomerates, whose exposures form the ''Travertine Hills''.

  8. Geological and geotechnical investigations for nuclear power plants sites

    International Nuclear Information System (INIS)

    Alves, P.R.R.

    1984-09-01

    This dissertation presents a general methodology for the tasks of geological and geotechnical investigations, to be performed in the proposed sites for construction of nuclear Power Plants. In this work, items dealing with the standards applied to licensing of Nuclear Power Plants, with the selection process of sites and identification of geological and geotechnical parameters needed for the regional and local characterization of the area being studied, were incorporated. This dissertation also provides an aid to the writing of Technical Reports, which are part of the documentation an owner of a Nuclear Power Plant needs to submit to the Comissao Nacional de Energia Nuclear, to fulfill the nuclear installation licensing requirements. Moreover, this work can contribute to the planning of field and laboratory studies, needed to determine the parameters of the area under investigation, for the siting of Nuclear Power Plants. (Author) [pt

  9. A survey of archaeological and geological samples dated in 1990

    International Nuclear Information System (INIS)

    Mejdahl, V.

    1991-01-01

    A survey of dated archaeological and geological samples is given, using thermoluminescence dating. Some of the sediment samples were also dated by means of optically stimulated luminescence (OSL) using a newly developed infrared diode system. In most cases the luminescence dates are in accordance with archaeological and geological estimates. Some discrepancies were found because some feldspar samples exhibited severe anomalous fading. It may be possible to avoid this problem by basing the dating on OSL of quartz. For sediment samples of Eemian or Early Weichselian age severe underestimates were encountered with both methods. The reason might be related to the large difference between the natural dose rate and that used in laboratory irradiations. Traps corresponding to low-temperature peaks such as the 150 deg. C peak in feldspars will remain almost empty under natural conditions, but will fill up to saturation under laboratory irradiation and thereby more charges will be captured in high-temperature traps. As a result, natural growth curves and laboratory produced luminescence growth curves will have different slopes and this will lead to underestimation. This problem might avoided by holding samples at an elevated temperature during laboratory irradiation, thus keeping the low-temperature traps empty. Preliminary experiments where feldspar samples were held at 130 deg. C during irradiation have given promising results. (AB) (31 refs.)

  10. Geotherm: the U.S. geological survey geothermal information system

    Science.gov (United States)

    Bliss, J.D.; Rapport, A.

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey. Information in the system is available to the public on request. ?? 1983.

  11. Seismological and geological investigation for earthquake hazard in the Greater Accra Metropolitan Area

    International Nuclear Information System (INIS)

    Doku, M. S.

    2013-07-01

    A seismological and geological investigation for earthquake hazard in the Greater Accra Metropolitan Area was undertaken. The research was aimed at employing a methematical model to estimate the seismic stress for the study area by generating a complete, unified and harmonized earthquake catalogue spanning 1615 to 2012. Seismic events were souced from Leydecker, G. and P. Amponsah, (1986), Ambraseys and Adams, (1986), Amponsah (2008), Geological Survey Department, Accra, Ghana, Amponsah (2002), National Earthquake Information Service, United States Geological Survey, Denver, Colorado 80225, USA, the International Seismological Centre and the National Data Centre of the Ghana Atomic Energy Commission. Events occurring in the study area were used to create and Epicentral Intensity Map and a seismicity map of the study area after interpolation of missing seismic magnitudes. The least square method and the maximum likelihood estimation method were employed to evaluate b-values of 0.6 and 0.9 respectively for the study area. A thematic map of epicentral intensity superimposed on the geology of the study area was also developed to help understand the relationship between the virtually fractured, jointed and sheared geology and the seismic events. The results obtained are indicative of the fact that the stress level of GAMA has a telling effect on its seismicity and also the events are prevalents at fractured, jointed and sheared zones. (au)

  12. Spectrometric aerial survey as a new tool for geological survey and mining prospecting

    International Nuclear Information System (INIS)

    Cambon, R.

    1997-01-01

    Airborne survey for radioactive minerals started around 1945. The limited sensitivity of the tools used, the difficulties found for the topographic and training effect corrections, made difficult the evaluation of the results. The technical progresses realized in the recent past years in electronic and computer sciences allowed to overcome these difficulties and gave to the method all its potentialities. With the aerial spectrometric survey, a new step was made, because this method can be used for other topics than radioactive prospection such as geological survey and mining prospection for metallic and industrial minerals. The spectrometric method is based on the possibility to measure photopeak energies (gamma radiation) emitted by radioactive minerals and discriminate between them those emitted by U238, TI 208 and K40 respectively daughter products of uranium, thorium and potassium. For airborne survey, one consider that measuring instruments will allow to pick-up 80% of the radioactive emission concerning the first 15 to 30 centimetres of ground (1 metre maximum). The use of this method for geological and mineral exploration is based on the assumption that different rock types or ore bearing rock types are composed of certain amounts of rock forming minerals which comprise specific quantities of radioactive elements such as potassium, uranium and thorium (cf: Gabelman 77). To be able to evaluate the results of the spectrometric survey it will be necessary to know roughly the behaviour of the different radioactive elements through a complete geological cycle. (author)

  13. Groundwater technical procedures of the U.S. Geological Survey

    Science.gov (United States)

    Cunningham, William L.; Schalk, Charles W.

    2011-01-01

    A series of groundwater technical procedures documents (GWPDs) has been released by the U.S. Geological Survey, Water-Resources Discipline, for general use by the public. These technical procedures were written in response to the need for standardized technical procedures of many aspects of groundwater science, including site and measuring-point establishment, measurement of water levels, and measurement of well discharge. The techniques are described in the GWPDs in concise language and are accompanied by necessary figures and tables derived from cited manuals, reports, and other documents. Because a goal of this series of procedures is to remain current with the state of the science, and because procedures change over time, this report is released in an online format only. As new procedures are developed and released, they will be linked to this document.

  14. Site investigation - equipment for geological, geophysical, hydrogeological and hydrochemical characterization

    International Nuclear Information System (INIS)

    Almen, K.E.; Fridh, B.; Johansson, B.E.; Sehlstedt, M.

    1986-11-01

    The investigations are performed within a site investigation program. In total about 60,000 m of cored 56 mm boreholes have been drilled and investigated at eight study sites. A summarized description of the main investigation methods is included. Instruments for geophysical investigations contains equipment for ground measurements as well as for borehole logging. The Geophysical investigations including the borehole radar measurements, are indirect methods for the geological and hydrogeological characterization of the rock formation. Great effort has been laid on the development of hydrogeological instruments for hydraulic tests and groundwater head measurements. In order to obtain hydrochemical investigations with high quality, a complete system for sampling and analysis of ground water has been developed. (orig./PW)

  15. Suggestions to authors of the reports of the United States Geological Survey

    Science.gov (United States)

    ,

    1958-01-01

    Knowledge acquired by the Geological Survey through programs of research and investigations has no value to the public if it remains in office files or in the minds of the scientists and engineers who did the work. The full discharge of the Survey's responsibilities is attained only by making its acquired knowledge available promptly and effectively to all people who will find it of interest and use. And, to insure effectiveness, reports must be not only accurate but so clearly and simply written that they are easy to read and understand.

  16. Geological and geophysical investigations at Sierra del Medio massif - Argentine

    International Nuclear Information System (INIS)

    Perucca, J.C.; Llambias, E.; Puigdomenech, H.H.; Cebrelli, E.; Castro, C.E.; Grassi, I.; Salinas, L.I.

    1987-01-01

    Geological investigations were performed at Sierra del Medio (Chubut Province), a mountainous massif of about 25 km by 8 km of migmatic origin, which emerges from a depressed tectonic trench or graben called Pampa de Gastre. The most ancient rocks belong to biotitic and anphibolic schist that passed almost entirely to tonalitoid migmatites with a second process producing granitic rocks. Boreholes were drilled on the basis of conclusions from Landsat satellites imagery and aerial photographic sets, folowed by field work on geological, petrographic, geophysical and hydrogeological features at surface, structural interpretation supported by geostatistical computations. Two sets of boreholes were drilled to investigate subsurface rock behaviour al 300 m depth and 800 m depth respectively, beginning at peripheral places and ending at the central part or selected site. Basic purposes of boreholes were to define structural and petrographic features of the rock massif by a good comprehension of master joints and faulting distribution with its belts of alteration mylonitization or brecciation, mechanical properties of samples, chemical composition and varitions, petrographic facies and mineralogy. Boreholes provided data to investigate joints, faults and dikes as general discontinuities for hydraulic research like permeability or effective hydraulic conductivity, and their geostatistical modelling. Boreholes are also being prepared for geophysical logging from which logthermal ones have already been completed. (Author) [es

  17. Typical Applications of Airborne LIDAR Technolagy in Geological Investigation

    Science.gov (United States)

    Zheng, X.; Xiao, C.

    2018-05-01

    The technology of airborne light detection and ranging (LiDAR), also referred to as Airborne Laser Scanning, is widely used for high-resolution topographic data acquisition (even under forest cover) with sub-meter planimetric and vertical accuracy. This contribution constructs the real digital terrain model to provide the direct observation data for the landscape analysis in geological domains. Based on the advantage of LiDAR, the authors mainly deal with the applications of LiDAR data to such fields as surface land collapse, landslide and fault structure extraction. The review conclusion shows that airborne LiDAR technology is becoming an indispensable tool for above mentioned issues, especially in the local and large scale investigations of micro-topography. The technology not only can identify the surface collapse, landslide boundary and subtle faulted landform, but also be able to extract the filling parameters of collapsed surface, the geomorphic parameters of landslide stability evaluation and cracks. This technology has extensive prospect of applications in geological investigation.

  18. TYPICAL APPLICATIONS OF AIRBORNE LIDAR TECHNOLAGY IN GEOLOGICAL INVESTIGATION

    Directory of Open Access Journals (Sweden)

    X. Zheng

    2018-05-01

    Full Text Available The technology of airborne light detection and ranging (LiDAR, also referred to as Airborne Laser Scanning, is widely used for high-resolution topographic data acquisition (even under forest cover with sub-meter planimetric and vertical accuracy. This contribution constructs the real digital terrain model to provide the direct observation data for the landscape analysis in geological domains. Based on the advantage of LiDAR, the authors mainly deal with the applications of LiDAR data to such fields as surface land collapse, landslide and fault structure extraction. The review conclusion shows that airborne LiDAR technology is becoming an indispensable tool for above mentioned issues, especially in the local and large scale investigations of micro-topography. The technology not only can identify the surface collapse, landslide boundary and subtle faulted landform, but also be able to extract the filling parameters of collapsed surface, the geomorphic parameters of landslide stability evaluation and cracks. This technology has extensive prospect of applications in geological investigation.

  19. The value of DCIP geophysical surveys for contaminated site investigations

    DEFF Research Database (Denmark)

    Balbarini, Nicola; Rønde, Vinni Kampman; Maurya, Pradip Kumar

    an old factory site by combining traditional geological, hydrological, and contaminant concentration data with DCIP surveys. The plume consisted of xenobiotic organic compounds and inorganics. The study assesses benefits and limitations of DCIP geophysics for contaminated site investigations. A 3D......Geophysical methods are increasingly being used in contaminant hydrogeology to map lithology, hydraulic properties, and contaminant plumes with a high ionic strength. Advances in the Direct Current resistivity and Induced Polarization (DCIP) method allow the collection of high resolution three...... water and below the streambed. Surface DCIP surveys supported the characterization of the spatial variability in geology, hydraulic conductivity and contaminant concentration. Though DCIP data interpretation required additional borehole data, the DCIP survey reduced the number of boreholes required...

  20. U.S. Geological Survey Rewarding Environment Culture Study, 2002

    Science.gov (United States)

    Nash, Janis C.; Paradise-Tornow, Carol A.; Gray, Vicki K.; Griffin-Bemis, Sarah P.; Agnew, Pamela R.; Bouchet, Nicole M.

    2010-01-01

    In its 2001 review of the U.S. Geological Survey (USGS), the National Research Council (NRC, p. 126) cautioned that ?high-quality personnel are essential for developing high-quality science information? and urged the USGS to ?devote substantial efforts to recruiting and retaining excellent staff.? Recognizing the importance of the NRC recommendation, the USGS has committed time and resources to create a rewarding work environment with the goal of achieving the following valued outcomes: ? USGS science vitality ? Customer satisfaction with USGS products and services ? Employee perceptions of the USGS as a rewarding place to work ? Heightened employee morale and commitment ? The ability to recruit and retain employees with critical skills To determine whether this investment of time and resources was proving to be successful, the USGS Human Resources Office conducted a Rewarding Environment Culture Study to answer the following four questions. ? Question 1: Does a rewarding work environment lead to the valued outcomes (identified above) that the USGS is seeking? ? Question 2: Which management, supervisory, and leadership behaviors contribute most to creating a rewarding work environment and to achieving the valued outcomes that the USGS is seeking? ? Question 3: Do USGS employees perceive that the USGS is a rewarding place to work? ? Question 4: What actions can and should be taken to enhance the USGS work environment? To begin the study, a conceptual model of a rewarding USGS environment was developed to test assumptions about a rewarding work environment. The Rewarding Environment model identifies the key components that are thought to contribute to a rewarding work environment and the valued outcomes that are thought to result from having a rewarding work environment. The 2002 Organizational Assessment Survey (OAS) was used as the primary data source for the study because it provided the most readily available data. Additional survey data were included as they

  1. Chronic wasting disease—Status, science, and management support by the U.S. Geological Survey

    Science.gov (United States)

    Carlson, Christina M.; Hopkins, M. Camille; Nguyen, Natalie T.; Richards, Bryan J.; Walsh, Daniel P.; Walter, W. David

    2018-03-01

    The U.S. Geological Survey (USGS) investigates chronic wasting disease (CWD) at multiple science centers and cooperative research units across the Nation and supports the management of CWD through science-based strategies. CWD research conducted by USGS scientists has three strategies: (1) to understand the biology, ecology, and causes and distribution of CWD; (2) to assess and predict the spread and persistence of CWD in wildlife and the environment; and (3) to develop tools for early detection, diagnosis, surveillance, and control of CWD.

  2. Documentation of the U.S. Geological Survey Oceanographic Time-Series Measurement Database

    Science.gov (United States)

    Montgomery, Ellyn T.; Martini, Marinna A.; Lightsom, Frances L.; Butman, Bradford

    2008-01-02

    The U.S. Geological Survey (USGS) Oceanographic Time-Series Data Collection (previously named the USGS Oceanographic Time-Series Measurement Database) contains oceanographic observations made as part of studies designed to increase understanding of sediment transport processes and associated dynamics. Analysis of these data has contributed to more accurate prediction of the movement and fate of sediments and other suspended materials in the coastal ocean. The measurements were collected primarily by investigators at the USGS Woods Hole Coastal and Marine Science Center (WHCMSC) and colleagues, beginning in 1975. Most of the field experiments were carried out on the U.S. continental shelf and slope.

  3. A drill-hole geodatabase as a tool to investigate geological hazard in Napoli Urban Area

    Science.gov (United States)

    Albericoa, I.; Lirer, L.; Petrosino, P.

    2003-04-01

    Geological investigations in urban areas are complicated by the absence of good outcrops and field exposures, as a result of the density of civil buildings and railway and road network. On the other side, in urban areas geological investigation represents a basic tool to decisional support for the management of present private buildings and public works and for the planning of new ones. This is much more true in urban areas very exposed to geological hazard (volcanic, hydrogeological, seismic) where the high exposed value greatly rises the risk. The methodology to deal with the geological hazard in urban areas here presented is the reconstruction of buried geological formations deduced by drill-holes stratigraphy.The test area is represented by the whole municipality of Napoli city, that proves very apt to the investigation of the hazard in urban areas since it stands over an active volcanic area, comprised between the Campi Flegrei volcanic field and the Somma-Vesuvio district, that both gave explosive and effusive activity through the last centuries. Besides, the extension of the main part of the city constrained between the coastline and the belt of volcanic hills together with the presence of loose material due to pyroclastic activity makes the alluvional events an other hazardous phenomenon for the city. The performed up datable drill-holes geodata-base for the city of Napoli at present contains the record of about 800 holes stratigraphy, collected through the main public and private bodies, reflecting the drill-holes surveys made along the last 50 years before constructing the main railways, roads and aqueduct network. Drill-holes data have been interpreted and can now be read under various viewpoints (geological, lithological, volcanological); the present work presents the first results of the geological hazard investigation. The investigation of buried stratigraphy in the eastern area allows to identify the presence of pyroclastic flow deposits from Somma

  4. Investigation of remote sensing geology in the northern Anxi area of Gansu Province

    International Nuclear Information System (INIS)

    Dai Wenhan

    1993-07-01

    The study of 1 : 50,000 remote sensing geology survey and prognosis of gold (uranium) mineralization in the area of northern Anxi of Gansu province has been completed. The synthetical remote sensing and multi-source information compounding technologies, such as land-satellites TM and MSS images, airborne color infrared photography and infrared ray scanning digital images, are used in the study. On the basis of information enhancement and extraction of remote-sensing images, using the theory of remote sensing to explore mineral deposits and the field investigations, many achievements have been reached, such as applications of synthetical remote sensing technology, fundamental study of geology, prognosis of gold (uranium) minerals and 1 : 50,000 remote-geologic mapping. 21 mineral resource maps and geologic maps are obtained. Nearly one thousand of altered rock zones are interpreted and found. 71 new gold anomaly hydrothermal alteration zones and 23 gold mineralized places are discovered (maximum Au 71 x 10 -6 ). 17 minerogeneration prospective areas, 67 gold-ore searching targets and favorable areas of uranium mineralization are identified. It gives important materials for searching new mines

  5. Mining and geologic site investigation of Minas de Corrales region

    International Nuclear Information System (INIS)

    Arrighetti, R.; Pena, S.; Rossi, P.; Vaz Chavez, N.

    1981-01-01

    The present geologic article integrates the Mining inventory Program that was carried out in our country, with the participation of the 8.R.G.M. (France) and the Institute Geologic of the Uruguay. The main area which the work was developed it was object of gold exploration and exploitation from ends of the passed century. It was located in the region of Cunapiru-Vichadero (Rivera province), which it was still called from a geologic point of view, The Crystalline Island .

  6. Geophysical and geological investigations of the Boda area

    Energy Technology Data Exchange (ETDEWEB)

    Waenstedt, S. [Geosigma AB, Uppsala (Sweden)

    2000-04-15

    The studies conducted in the Boda area exhibit the presence of a severely fractured rock mass with occasional caves. The Boda area appears to be intersected by a few significant zones, obvious from a study of the topography but do appear in some of the geophysical investigations as well. The structures in the area have quite efficiently isolated the rock plint where the caves are located. It is not possible from these investigations, however, to draw far-reaching conclusions about the age and genesis of the zones or about their continuation towards depth. The geological investigation shows, apart from the caves, no unusual features. The rock types in the investigated area correspond with rock types found elsewhere in the region. The area is highly unsuitable for geophysical surface investigations. Part of the area consists of scattered and quite large blocks that constitute obstacles when making measurements in the area. Since there is little or no soil between the blocks some measurements (e.g. resistivity) are not possible to carry out. Furthermore, the scattered blocks cause unwanted reflections and other difficulties that deteriorate the quality of the geophysical data. The radar measurements with two different frequencies show an interesting result of importance not only to this investigation. The lower frequency appears to penetrate through the rocky overburden and is able to detect the soil-rock interface. The higher frequency is severely disturbed by the overburden but caves show much more clearly in this data. The fractured rock around Boda appears to be a shallow feature, since the radar measurements show a quite significant feature throughout most of the profiles, which appears to be the upper boundary of the bedrock. There are, however, some occasional strong reflectors below the interface between fractured and competent rock.

  7. Geophysical and geological investigations of the Boda area

    International Nuclear Information System (INIS)

    Waenstedt, S.

    2000-04-01

    The studies conducted in the Boda area exhibit the presence of a severely fractured rock mass with occasional caves. The Boda area appears to be intersected by a few significant zones, obvious from a study of the topography but do appear in some of the geophysical investigations as well. The structures in the area have quite efficiently isolated the rock plint where the caves are located. It is not possible from these investigations, however, to draw far-reaching conclusions about the age and genesis of the zones or about their continuation towards depth. The geological investigation shows, apart from the caves, no unusual features. The rock types in the investigated area correspond with rock types found elsewhere in the region. The area is highly unsuitable for geophysical surface investigations. Part of the area consists of scattered and quite large blocks that constitute obstacles when making measurements in the area. Since there is little or no soil between the blocks some measurements (e.g. resistivity) are not possible to carry out. Furthermore, the scattered blocks cause unwanted reflections and other difficulties that deteriorate the quality of the geophysical data. The radar measurements with two different frequencies show an interesting result of importance not only to this investigation. The lower frequency appears to penetrate through the rocky overburden and is able to detect the soil-rock interface. The higher frequency is severely disturbed by the overburden but caves show much more clearly in this data. The fractured rock around Boda appears to be a shallow feature, since the radar measurements show a quite significant feature throughout most of the profiles, which appears to be the upper boundary of the bedrock. There are, however, some occasional strong reflectors below the interface between fractured and competent rock

  8. Geology for a changing world 2010-2020-Implementing the U.S. Geological Survey science strategy

    Science.gov (United States)

    Gundersen, Linda C.S.; Belnap, Jayne; Goldhaber, Martin; Goldstein, Arthur; Haeussler, Peter J.; Ingebritsen, S.E.; Jones, John W.; Plumlee, Geoffrey S.; Thieler, E. Robert; Thompson, Robert S.; Back, Judith M.

    2011-01-01

    This report describes a science strategy for the geologic activities of the U.S. Geological Survey (USGS) for the years 2010-2020. It presents six goals with accompanying strategic actions and products that implement the science directions of USGS Circular 1309, 'Facing Tomorrow's Challenges-U.S. Geological Survey Science in the Decade 2007-2017.' These six goals focus on providing the geologic underpinning needed to wisely use our natural resources, understand and mitigate hazards and environmental change, and understand the relationship between humans and the environment. The goals emphasize the critical role of the USGS in providing long-term research, monitoring, and assessments for the Nation and the world. Further, they describe measures that must be undertaken to ensure geologic expertise and knowledge for the future. The natural science issues facing today's world are complex and cut across many scientific disciplines. The Earth is a system in which atmosphere, oceans, land, and life are all connected. Rocks and soils contain the answers to important questions about the origin of energy and mineral resources, the evolution of life, climate change, natural hazards, ecosystem structures and functions, and the movements of nutrients and toxicants. The science of geology has the power to help us understand the processes that link the physical and biological world so that we can model and forecast changes in the system. Ensuring the success of this strategy will require integration of geological knowledge with the other natural sciences and extensive collaboration across USGS science centers and with partners in Federal, State, and local agencies, academia, industry, nongovernmental organizations and, most importantly, the American public. The first four goals of this report describe the scientific issues facing society in the next 10 years and the actions and products needed to respond to these issues. The final two goals focus on the expertise and

  9. U.S. Geological Survey spatial data access

    Science.gov (United States)

    Faundeen, John L.; Kanengieter, Ronald L.; Buswell, Michael D.

    2002-01-01

    The U.S. Geological Survey (USGS) has done a progress review on improving access to its spatial data holdings over the Web. The USGS EROS Data Center has created three major Web-based interfaces to deliver spatial data to the general public; they are Earth Explorer, the Seamless Data Distribution System (SDDS), and the USGS Web Mapping Portal. Lessons were learned in developing these systems, and various resources were needed for their implementation. The USGS serves as a fact-finding agency in the U.S. Government that collects, monitors, analyzes, and provides scientific information about natural resource conditions and issues. To carry out its mission, the USGS has created and managed spatial data since its inception. Originally relying on paper maps, the USGS now uses advanced technology to produce digital representations of the Earth’s features. The spatial products of the USGS include both source and derivative data. Derivative datasets include Digital Orthophoto Quadrangles (DOQ), Digital Elevation Models, Digital Line Graphs, land-cover Digital Raster Graphics, and the seamless National Elevation Dataset. These products, created with automated processes, use aerial photographs, satellite images, or other cartographic information such as scanned paper maps as source data. With Earth Explorer, users can search multiple inventories through metadata queries and can browse satellite and DOQ imagery. They can place orders and make payment through secure credit card transactions. Some USGS spatial data can be accessed with SDDS. The SDDS uses an ArcIMS map service interface to identify the user’s areas of interest and determine the output format; it allows the user to either download the actual spatial data directly for small areas or place orders for larger areas to be delivered on media. The USGS Web Mapping Portal provides views of national and international datasets through an ArcIMS map service interface. In addition, the map portal posts news about new

  10. Beowulf Distributed Processing and the United States Geological Survey

    Science.gov (United States)

    Maddox, Brian G.

    2002-01-01

    Introduction In recent years, the United States Geological Survey's (USGS) National Mapping Discipline (NMD) has expanded its scientific and research activities. Work is being conducted in areas such as emergency response research, scientific visualization, urban prediction, and other simulation activities. Custom-produced digital data have become essential for these types of activities. High-resolution, remotely sensed datasets are also seeing increased use. Unfortunately, the NMD is also finding that it lacks the resources required to perform some of these activities. Many of these projects require large amounts of computer processing resources. Complex urban-prediction simulations, for example, involve large amounts of processor-intensive calculations on large amounts of input data. This project was undertaken to learn and understand the concepts of distributed processing. Experience was needed in developing these types of applications. The idea was that this type of technology could significantly aid the needs of the NMD scientific and research programs. Porting a numerically intensive application currently being used by an NMD science program to run in a distributed fashion would demonstrate the usefulness of this technology. There are several benefits that this type of technology can bring to the USGS's research programs. Projects can be performed that were previously impossible due to a lack of computing resources. Other projects can be performed on a larger scale than previously possible. For example, distributed processing can enable urban dynamics research to perform simulations on larger areas without making huge sacrifices in resolution. The processing can also be done in a more reasonable amount of time than with traditional single-threaded methods (a scaled version of Chester County, Pennsylvania, took about fifty days to finish its first calibration phase with a single-threaded program). This paper has several goals regarding distributed processing

  11. SEDIMENT ANALYSIS NETWORK FOR DECISION SUPPORT (SANDS) LANDSAT GEOLOGICAL SURVEY OF AL (GSA) ANALYSIS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Sediment Analysis Network for Decision Support (SANDS) Landsat Geological Survey of AL (GSA) Analysis dataset analyzed changes in the coastal shoreline and...

  12. United States Geological Survey discharge data from five example gages on intermittent streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data are mean daily discharge data at United States Geological Survey gages. Once column provides the date (mm/dd/yyyy) and the other column provides the mean...

  13. The use of U.S. Geological Survey CD-ROM-based petroleum assessments in undergraduate geology laboratories

    Science.gov (United States)

    Eves, R.L.; Davis, L.E.; Dyman, T.S.; Takahashi, K.I.

    2002-01-01

    Domestic oil production is declining and United States reliance on imported oil is increasing. America will be faced with difficult decisions that address the strategic, economic, and political consequences of its energy resources shortage. The geologically literate under-graduate student needs to be aware of current and future United States energy issues. The U.S. Geological Survey periodically provides energy assessment data via digitally-formatted CD-ROM publications. These publications are free to the public, and are well suited for use in undergraduate geology curricula. The U.S. Geological Survey (USGS) 1995 National Assessment of United States Oil and Gas Resources (Digital Data Series or DDS-30) (Gautier and others, 1996) is an excellent resource for introducing students to the strategies of hydrocarbon exploration and for developing skills in problem-solving and evaluating real data. This paper introduces the reader to DDS-30, summarizes the essential terminology and methodology of hydrocarbon assessment, and offers examples of exercises or questions that might be used in the introductory classroom. The USGS contact point for obtaining DDS-30 and other digital assessment volumes is also provided. Completing the sample exercises in this report requires a copy of DDS-30.

  14. Geology

    Data.gov (United States)

    Kansas Data Access and Support Center — This database is an Arc/Info implementation of the 1:500,000 scale Geology Map of Kansas, M­23, 1991. This work wasperformed by the Automated Cartography section of...

  15. Geologic investigations of drill hole sloughing problems, Nevada Test Site

    International Nuclear Information System (INIS)

    Drellack, S.L. Jr.; Davies, W.J.; Gonzales, J.L.; Hawkins, W.L.

    1983-01-01

    Severe sloughing zones encountered while drilling large diameter emplacement holes in Yucca Flat, Nevada Test Site, have been identified, correlated and predicted through detailed geologic investigations. In central and southeastern Area 7 and in northern Area 3, the unstable zones are a very fine-grained, well-sorted, unconsolidated sand deposit, probably eolian in origin, which will readily flow into large diameter drill holes. Other areas exhibit hole erosion related to poor induration or extensive zeolitization of the Tertiary tuff units which are very friable and porous. By examining drill hole samples, geophysical logs, caliper logs and drilling histories, these problem zones can be characterized, correlated and then projected into nearby sites. Maps have been generated to show the depth, thickness and areal extent of these strata. In some cases, they are local and have a lenticular geometry, while in others they are quite extensive. The ability to predict such features can enhance the quality of the hole construction and completion operations to avoid costly delays and the loss of valuable testing real estate. The control of hole enlargements will also eliminate related containment concerns, such as stemming uncertainties

  16. Use of radar survey data for engineering-geological studies

    Energy Technology Data Exchange (ETDEWEB)

    Valyakh, V M; Grafskii, B V

    1979-01-01

    A description is given of the basic methodical principles underlying the use of aerial survey radar data in regional studies. The basic characteristics of deciphering indicators on the surveys are identified.

  17. Modeling in low-level radioactive waste management from the US Geological Survey perspective

    International Nuclear Information System (INIS)

    Robertson, J.B.

    1980-01-01

    The United States Geological Survey (USGS) is a long-standing proponent of using models as tools in geohydrologic investigations. These models vary from maps and core samples to elaborate digital computer algorithms, depending on the needed application and resources available. Being a non-regulatory scientific agency, the USGS uses models primarily for: improving modeling technology, testing hypotheses, management of water resources, providing technical advice to other agencies, parameter sensitivity analysis, and determination of parameter values (inverse problems). At low-level radioactive waste disposal sites, we are most interested in developing better capabilities for understanding the groundwater flor regime within and away from burial trenches, geochemical factors affecting nuclide concentration and mobility in groundwater, and the effects that various changes in the geohydrologic conditions have on groundwater flow and nuclide migration. Although the Geological Survey has modeling capabilities in a variety of complex problems, significant deficiencies and limitations remain in certain areas, such as fracture flow conditions and solute transport in the unsaturated zone. However, even more serious are the deficiencies in measuring or estimating adequate input data for models and verification of model utility on real problems. Flow and transport models are being used by the USGS in several low-level disposal site studies, with varying degrees of sucess

  18. Comparative study of geological, hydrological, and geophysical borehole investigations

    International Nuclear Information System (INIS)

    Magnusson, K.A.; Duran, O.

    1984-09-01

    The understanding of the permeability of the bedrock can be improved by supplementing the results of the water injection tests with information from core mapping, TB-inspection and borehole geophysics. The comparison between different borehole investigations encompasses core mapping, TV-inspection and various geophysical bore hole measurements. The study includes data from two different study areas, namely Kraakemaala and Finnsjoen. In these two areas, extensive geological, hydrological and geophysical investigation have been carried out. The fractures and microfractures in crystalline rock constitute the main transport paths for both groundwater and electric currents. They will therefore govern both the permeability and the resistivity of the rock. In order to get a better understanding of the influence of fractures on permeability and resistivity, a detailed comparison has been made between the hydraulic conductivity, respectively, and the character of fractures in the core and the borehole wall. The fractures show very large variations in hydraulic conductivity. Microfractures and most of the thin fractures have no measurable hydraulic conductivity (in this case -9 m s -1 ), while test sections which contain a single isloated fracture can have no measurable, to rather high hydraulic conductivities (> 10 -7 m s -1 ). Wide fracture zones often have hydraulic conductivities which vary from very low (less than 2 x 10 -9 m s -1 ) to high values (10 -5 m s -1 ). This indicates that the hydraulic conductivity is governed by a few discrete fractures. The resistivity shows a continous variation in the range 1,000- 100,000 ohm-m and a relatively poor correlation with hydraulic conductivities. The observed difference is considered to the effect of restriction of water flow on a few channels, while electric surface condition, i.e. current transport through thin water films, makes current transport possible through fractures with very small aperatures. (Author)

  19. Geological investigation of uranium deposits at southwest of Chungju area

    International Nuclear Information System (INIS)

    Kim, J.H.; Park, J.W.; Kim, J.T.; Kim, D.E.; Im, H.C.

    1982-01-01

    A geologic investigation has been carried out at the southwest of Chungju area for the exploration of uranium ore deposit. A trace element geochemistry was supplemented to study the genesis of uranium ore deposit. The uraniferous black slate is interbedded with meta-argillaceous rock formation correlative to the Munjuri formation of Ogcheon group. The uranium rich carbonaceous slate is distributed discontinuously in three places. The discontinuity of the slate is probably due to the deformation of Daebo Orogeny. The grade of the ore bodies is 396-495 ppm U 3 O 8 , Vanadium 1.47-0.48%V 2 O 5 and fixed carbon 18.16-8.54%. The width of outcrop is 10.3m-2.5m. The semiquantitative spectrographic analysis of 4 samples in the above ore zone revealed that the average of minor elements contents are Ba 3025, Be 1.5, Cd 131, Cu53, Co 12, Cr 155, Ga<10, Mo 83, Pb 66, Ni 183, Sr 22, and Zr 196 in ppm. Analysed the 33 major and trace elements in 20 samples including above are samples from drill-cores and trenched rocks from Ogcheon black slate indicates that the uranium has positive correlation with Fe(0.47), Mo (0.45) and Ba(0.38). In the uranium deposits of Ogcheon black slate, we can accept the theory of syngenitic origin where uranium occurs with unusually high content of minor elements in black slate. The elements were introduced at the same time with the mud deposition without significant later addition. Mechanism of emplacement might be fixation of living organisms and absorption of decaying organic matter from sea water. An intensive study is necessary for futher understanding of redistribution and recrystallization of uranium by metamorphism. (Author)

  20. Results from the geological surveys carried out in the Bure laboratory's shafts

    International Nuclear Information System (INIS)

    Rebours, Herve; Righini, Celine

    2010-01-01

    Document available in extended abstract form only. After the government's authorization to build and operate an underground laboratory, Andra started the investigation works in November 99 on the Meuse/Haute-Marne URL site. The Meuse/Haute-Marne URL is located at the border of the Champagne-Ardenne and Lorraine regions, on the township of Bure in the Callovo-Oxfordian clay-rich rock. On the URL site, the layer is about 135 m-thick and lies at a depth of 417 m to 552 m. The laboratory consists of two levels of experimental drifts at depths of 445 m and 490 m, respectively, with two vertical shafts crossing the 505 m-thick sedimentary cover of Kimeridgian (about 100 meters of marls and limestones), Oxfordian (about 300 meters of limestones) and Callovo-Oxfordian formations. The construction of the underground installations started in August 2000 with the sinking of the main shaft and was completed on the 27 April 2006 when it linked up with the southern drift of the laboratory. The two access shafts are sunk with a drill and blast method with steps of 2.4 to 3.1 m. A temporary support with grouted bolts and wire mesh is set immediately after the blasting and removal of the muck. The definitive concrete lining is installed about 12 to 20 m behind the face. The excavated diameter of the main shaft where the geological surveys and experiments have been undertaken is of 6 m (5 m after lining). The second shaft (auxiliary shaft for the ventilation of the URL) is sunk in a smaller diameter (5 m). The aims of the geological surveys carried out during the shaft sinking are to describe the vertical and lateral (between the two shafts) variations of the lithology, to confirm the absence of fault and the geometry of the argillaceous rocks formation. These surveys allow to characterize the natural or inducted fracturing by a sedimentary and structural follow-up of the excavation face. This follow-up was carried out every 2.4 to 3.0 meters in the shafts. During the shaft

  1. Problems of geologic survey of high level radioactive waste repositories illustrated on the testing site in the Melechov Massif

    International Nuclear Information System (INIS)

    Mlcoch, B.

    1997-01-01

    Major attention is paid to problems associated with the geologic maps of the prospective repository site, which lies within the Bohemian Massif. Structural geology, survey through boreholes, and primary database are also discussed briefly. (P.A.)

  2. The role of house surveys in geological radon potential mapping

    International Nuclear Information System (INIS)

    Ball, K.

    1997-01-01

    Because radon levels vary widely between apparently identical buildings on the same geological unit, no map can predict the radon level in an individual building. Maps can, however, give the probability that a building in a particular locality is above a threshold of radon concentration such as a reference or action level. The probability may be calculated for a particular building type or for a mixture of building types. In the latter case the probability is in effect an estimate of the proportion of buildings above the threshold level. Alternatively maps can provide estimates of the mean radon levels in buildings by area. Maps showing the geographical variation in probability that new or existing building will exceed a radon reference level are used to prevent excessive exposures to radon. The information may be used in various ways, such as to target information campaigns encouraging measurement of radon levels in homes or to modify regulations for new buildings. The data which are used to provide the estimates of the proportion of buildings above a threshold may be radon measurements results from a sample of buildings, or may be indirect indicators such as ground radium concentrations, emanation coefficients and permeability measurements. Consistency in radon measurement protocols and detailed positional information are prerequisites for mapping radon prone areas based upon house data. Grouping building radon measurements by geological formation and superficial cover can produce radon potential maps which are more spatially accurate than grid square maps and more accurate in estimating numbers of homes affected than mapping based only on measuring geological and pedagogical properties

  3. Water-resources activities of the U.S. Geological Survey in Texas; fiscal year 1987

    Science.gov (United States)

    Mitchell, Alicia A.

    1988-01-01

    The U.S. Geological Survey (USGS) was established by an act of Congress on March 3, 1879, to provide a permanent Federal agency to conduct the systematic and scientific classification of the public lands and to examine the geological structure, mineral resources, and products of national domain. An integral part of that original mission includes publishing and disseminating the earth science information needed to understand, to plan the use of, and to manage the Nation's energy, land, mineral, and water resources.

  4. U.S. Geological Survey geohydrologic studies and monitoring at the Idaho National Laboratory, southeastern Idaho

    Science.gov (United States)

    Bartholomay, Roy C.

    2017-09-14

    BackgroundThe U.S. Geological Survey (USGS) geohydrologic studies and monitoring at the Idaho National Laboratory (INL) is an ongoing, long-term program. This program, which began in 1949, includes hydrologic monitoring networks and investigative studies that describe the effects of waste disposal on water contained in the eastern Snake River Plain (ESRP) aquifer and the availability of water for long-term consumptive and industrial use. Interpretive reports documenting study findings are available to the U.S. Department of Energy (DOE) and its contractors; other Federal, State, and local agencies; private firms; and the public at https://id.water.usgs.gov/INL/Pubs/index.html. Information contained within these reports is crucial to the management and use of the aquifer by the INL and the State of Idaho. USGS geohydrologic studies and monitoring are done in cooperation with the DOE Idaho Operations Office.

  5. Results from the geological surveys carried out in the Bure laboratory's drifts

    International Nuclear Information System (INIS)

    Rebours, Herve; Righini, Celine

    2010-01-01

    Document available in extended abstract form only. After the government's authorization to build and operate an underground laboratory, Andra started the investigation works in November 99 on the Meuse/Haute-Marne URL site. The Meuse/Haute-Marne URL is located at the border of the Champagne-Ardenne and Lorraine regions, on the township of Bure in the Callovo-Oxfordian clay-rich rock. At this place, the layer is about 135 m-thick and lies at a depth of 417 m to 552 m. The construction of the underground installations started in August 2000 with the sinking of the main shaft and the first phase of diggings was completed on the 27 April 2006 when it linked up with the south drift of the laboratory. The laboratory consists in two vertical shafts crossing the 505-m thick sedimentary cover and two levels of experimental drifts dug in Callovo-Oxfordian formation. The first experimental drift dug at -445 m with a drill-and-blast method with steps of 2.4 m. The technical and experimental drifts at the main level (-490 m of depth) were dug with a hydraulic stone crusher. The aims of the geological surveys carried out during the drifts digging are to observe the lateral variation of the lithology, if there is one, to confirm the absence of fault and the geometry of the argillites formation. These works should also allow to characterize the natural or inducted fracturing (EDZ - Excavation Damaged Zone) induced by the digging by a sedimentary and structural follow-up. The EDZ characterization has been established from the geological survey of the drift face and sidewalls carried out from 1 to 5 meters in the drifts, and completed by the structural analysis of the cores of the boreholes drilled for the experimentations' equipments. After the safe keeping of the front, the geological team goes down to carry out the survey which consists in a lithologic and sedimentary mapping, a structural survey for the understanding of joints distribution and EDZ characterization, and

  6. Investigation concerning geologic storage of radioactive waste in the Netherlands

    International Nuclear Information System (INIS)

    1986-01-01

    The first stage of the research program concerning geological storage of radioactive waste in the Netherlands encloses desk studies for the preparation of a selection out of a number of locations for closer field examination, and of a choice of the most proper storage technique (mines, deep boreholes, caverns). This report is the first of two intermediate reports concerning the state of affairs of this first stage. 10 refs.; 6 figs

  7. Analytical methods manual for the Mineral Resource Surveys Program, U.S. Geological Survey

    Science.gov (United States)

    Arbogast, Belinda F.

    1996-01-01

    The analytical methods validated by the Mineral Resource Surveys Program, Geologic Division, is the subject of this manual. This edition replaces the methods portion of Open-File Report 90-668 published in 1990. Newer methods may be used which have been approved by the quality assurance (QA) project and are on file with the QA coordinator.This manual is intended primarily for use by laboratory scientists; this manual can also assist laboratory users to evaluate the data they receive. The analytical methods are written in a step by step approach so that they may be used as a training tool and provide detailed documentation of the procedures for quality assurance. A "Catalog of Services" is available for customer (submitter) use with brief listings of:the element(s)/species determined,method of determination,reference to cite,contact person,summary of the technique,and analyte concentration range.For a copy please contact the Branch office at (303) 236-1800 or fax (303) 236-3200.

  8. Technetium in the geologic environment - a literature survey

    International Nuclear Information System (INIS)

    Torstenfelt, B.; Allard, B.; Andersson, K.; Olofsson, U.

    1981-07-01

    The authors present a literature survey of technetium, discussing, in particular, the oxidation states, the chemistry of technetium in connection with spent nuclear fuel storage, the sorption of technetium in rock, clay, soil and sea bottom sediments. (G.T.H.)

  9. Multiagency radiation survey and site investigation manual (MARSSIM): Survey design

    International Nuclear Information System (INIS)

    Abelquist, E.W.; Berger, J.D.

    1996-01-01

    This paper describes the MultiAgency Radiation Survey and Site Investigation Manual (MARSSIM) strategy for designing a final status survey. The purpose of the final status survey is to demonstrate that release criteria established by the regulatory agency have been met. Survey design begins with identification of the contaminants and determination of whether the radionuclides of concern exist in background. The decommissioned site is segregated into Class 1, Class 2, and Class 3 areas, based on contamination potential, and each area is further divided into survey units. Appropriate reference areas for indoor and outdoor background measurements are selected. Survey instrumentation and techniques are selected in order to assure that the instrumentation is capable of detecting the contamination at the derived concentration guideline level (DCGL). Survey reference systems are established and the number of survey data points is determined-with the required number of data points distributed on a triangular grid Pattern. Two suitistical tests are used to evaluate data from final status surveys. For contaminants that are b, present in background, the Wilcoxon Rank Sum test is used; for contaminants that are not present in background, the Wilcoxon Signed Rank (or Sign) test is used. The number of data points needed to satisfy these nonparametric tests is based on the contaminant DCGL value, the expected Standard deviation of the contaminant in background and in the survey unit, and the acceptable probability of making Type I and Type II decision errors. The MARSSIM also requires a reasonable level of assurance that any small areas of elevated residual radioactivity that could be significant relative to regulatory limits are not missed during the final status survey. Measurements and sampling on a specified grid size are used to obtain an adequate assurance level that small locations of elevated radioactivity will Still satisfy DCGLs-applicable to small areas

  10. Geology, Bedrock - BEDROCK_TOPOGRAPHY_MM36_IN: Bedrock Topography Contours, Indiana (Indiana Geological Survey, 1:500,000, Line Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — Bedrock topography was converted from the original published map, Indiana Geological Survey Miscellaneous Map 36. The contours define the elevation/topography of the...

  11. The regulatory role of the Hungarian Geological Survey in the closure of Mecsek uranium mine

    International Nuclear Information System (INIS)

    Hamor, T.; Gombor, L.

    2001-01-01

    Under Mining Act XLIII established in 1993, the Hungarian Geological Survey was given a wide range of authority related to the environment, mining, nuclear and general constructions. In implementing these task the Survey will be supported by the well established Geological Institute of Hungary and the Eoetvoes Lorand Geophysical Institute. The Survey's role in the nuclear field includes the licensing of plans and reports on geologically related research to any nuclear facilities. The Hungarian Geological Survey is also co-authority on matters related to the establishment, construction, modification and closure, environmental protection of nuclear facilities in general and all matter related to uranium mining. The Survey's regulatory activity in radioactive waste management follows the Decree of the Minister of Industry and Tourism 62/1997 which is based on the Atomic Energy Act CXVI of 1966. These regulations were prepared in harmony with the OECD Nuclear Energy Agency and the International Atomic Energy Agency conventions, standards and guides and those of other countries. Case histories on the applications of these regulations to the closure of Mecsek uranium mine and the operation of the research laboratory tunnel for long-lived, high level radioactive waste are presented here. (author)

  12. Brazil Geologic Basic Survey Program - Barbacena - Sheet SF.23-X-C-III -Minas Gerais State

    International Nuclear Information System (INIS)

    Brandalise, L.A.

    1991-01-01

    The present report refers to the Barbacena sheet (SF.23-X-C-III) systematic geological mapping, on the 1:10,000 scale, related to the Levantamentos Geologicos Basicos do Brasil Program - PLGB, carried out by CPRM for the DNPM. Integrated to geochemical and geophysical surveys, the geological mapping not only yielded geophysical and geochemical maps but a consistent to the 1:100.000 scale Metallogenetic/Provisional one as well. The geological mapping carried out during the Project has really evidenced that samples of distinct stratigraphic units had been employed to define the one and only isochrone. However geochronologic Rb/Sr dating performed during the geological mapping phase evidenced Archean ages for rocks of the Sao Bento dos Torres Metamorphic Suite (2684 ± 110 m.y.) and ages of about 2000 m.y. for the Ressaquinha Complex rocks. An analysis of crustal evolution patterns based on geological mapping, gravimetric survey data, aeromagnetometry and available geochronologic data is given in the Chapter 6, Part II, in the test. Major element oxides, trace-elements and rare-earths elements were analysed to establish parameters for the rocks environment elucidation. Geochemical survey was carried out with base on pan concentrated and stream sediments distributed throughout the sheet. (author)

  13. The British Geological Survey's Lexicon of Named Rock Units as Online and Linked Data

    Science.gov (United States)

    McCormick, T.

    2012-12-01

    The British Geological Survey's Lexicon of Named Rock Units provides freely accessible definitions and supplementary information about geological units of Great Britain, Northern Ireland, and their associated continental shelf. It is an online database that can be searched at www.bgs.ac.uk/Lexicon/. It has existed since 1990 (under different names) but the database and user interface have recently been completely redesigned to improve their semantic capabilities and suitability for describing different styles of geology. The data are also now freely available as linked data from data.bgs.ac.uk/. The Lexicon of Named Rock Units serves two purposes. First, it is a dictionary, defining and constraining the geological units that are referenced in the Survey's data sets, workflows, products and services. These can include printed and digital geological maps at a variety of scales, reports, books and memoirs, and 3- and 4-dimensional geological models. All geological units referenced in any of these must first be present and defined, at least to a basic level of completeness, in the Lexicon database. Only then do they become available for use. The second purpose of the Lexicon is as a repository of knowledge about the geology of the UK and its continental shelf, providing authoritative descriptions written and checked by BGS geoscientists. Geological units are assigned to one of four themes: bedrock, superficial, mass movement and artificial. They are further assigned to one of nine classes: lithostratigraphical, lithodemic intrusive, lithodemic tectono-metamorphic, lithodemic mixed, litho-morpho-genetic, man-made, age-based, composite, and miscellaneous. The combination of theme and class controls the fields that are available to describe each geological unit, so that appropriate fields are offered for each, whether it is a Precambrian tectono-metamorphic complex, a Devonian sandstone formation, or a Devensian river terrace deposit. Information that may be recorded

  14. DATA ACQUISITION AND APPLICATIONS OF SIDE-LOOKING AIRBORNE RADAR IN THE U. S. GEOLOGICAL SURVEY.

    Science.gov (United States)

    Jones, John Edwin; Kover, Allan N.

    1985-01-01

    The Side-Looking Airborne Radar (SLAR) program encompasses a multi-discipline effort involving geologists, hydrologists, engineers, geographers, and cartographers of the U. S. Geological Survey (USGS). Since the program began in 1980, more than 520,000 square miles of aerial coverage of SLAR data in the conterminous United States and Alaska have been acquired or contracted for acquisition. The Geological Survey has supported more than 60 research and applications projects addressing the use of this technology in the earth sciences since 1980. These projects have included preparation of lithographic reproductions of SLAR mosaics, research to improve the cartographic uses of SLAR, research for use of SLAR in assessing earth hazards, and studies using SLAR for energy and mineral exploration through improved geologic mapping.

  15. Geophysical investigations of geology and structure at the Martis Creek Dam, Truckee, California

    Science.gov (United States)

    Bedrosian, P.A.; Burton, B.L.; Powers, M.H.; Minsley, B.J.; Phillips, J.D.; Hunter, L.E.

    2012-01-01

    A recent evaluation of Martis Creek Dam highlighted the potential for dam failure due to either seepage or an earthquake on nearby faults. In 1972, the U.S. Army Corps of Engineers constructed this earthen dam, located within the Truckee Basin to the north of Lake Tahoe, CA for water storage and flood control. Past attempts to raise the level of the Martis Creek Reservoir to its design level have been aborted due to seepage at locations downstream, along the west dam abutment, and at the base of the spillway. In response to these concerns, the U.S. Geological Survey has undertaken a comprehensive suite of geophysical investigations aimed at understanding the interplay between geologic structure, seepage patterns, and reservoir and groundwater levels. This paper concerns the geologic structure surrounding Martis Creek Dam and emphasizes the importance of a regional-scale understanding to the interpretation of engineering-scale geophysical data. Our studies reveal a thick package of sedimentary deposits interbedded with Plio-Pleistocene volcanic flows; both the deposits and the flows are covered by glacial outwash. Magnetic field data, seismic tomography models, and seismic reflections are used to determine the distribution and chronology of the volcanic flows. Previous estimates of depth to basement (or the thickness of the interbedded deposits) was 100 m. Magnetotelluric soundings suggest that electrically resistive bedrock may be up to 2500 m deep. Both the Polaris Fault, identified outside of the study area using airborne LiDAR, and the previously unnamed Martis Creek Fault, have been mapped through the dam area using ground and airborne geophysics. Finally, as determined by direct-current resistivity imaging, time-domain electromagnetic sounding, and seismic refraction, the paleotopography of the interface between the sedimentary deposits and the overlying glacial outwash plays a principal role both in controlling groundwater flow and in the distribution of the

  16. 2014 U.S. Geological Survey CMGP LiDAR: Post Sandy (Pennsylvania)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fugro EarthData, Inc. (Fugro) was tasked by the U.S. Geological Survey (USGS) to plan, acquire, process, and produce derivative products of LiDAR data at a nominal...

  17. Transportation and Hydrology Studies of the U.S. Geological Survey in New England

    Science.gov (United States)

    Lombard, Pamela J.

    2016-03-23

    The U.S. Geological Survey (USGS) has a long history of working with the Federal Highway Administration (FHWA) and State transportation agencies to provide data and information to address various issues related to water resources and the Nation’s transportation infrastructure. These issues include the following:

  18. Surface water-quality activities of the U.S. Geological Survey in New England

    Science.gov (United States)

    Huntington, Thomas G.

    2016-03-23

    The U.S. Geological Survey (USGS) collaborates with a variety of Federal, State, local, and tribal partners on scientific projects to provide reliable and impartial water-quality data and interpretation to resource managers, planners, stakeholders, and the general public. The themes related to surface water quality include the following:

  19. Water resources activities of the U.S. Geological Survey in Afghanistan from 2004 through 2014

    Science.gov (United States)

    Mack, Thomas J.; Chornack, Michael P.; Vining, Kevin C.; Amer, Saud A.; Zaheer, Mohammad F.; Medlin, Jack H.

    2014-01-01

    Safe and reliable supply of water, for irrigation and domestic consumption, is one of Afghanistan’s critical needs for the country’s growing population. Water is also needed for mining and mineral processing and the associated business and community development, all of which contribute to the country’s economic growth and stability. Beginning in 2004, U.S. Geological Survey scientists have aided efforts to rebuild Afghanistan’s capacity to monitor water resources, working largely with scientists in the Afghanistan Geological Survey of the Ministry of Mines and Petroleum as well as with scientists in the Afghanistan Ministry of Energy and Water, the Afghanistan Ministry of Agriculture, Irrigation, and Livestock, and nongovernmental organizations in Afghanistan. Considerable efforts were undertaken by the U.S. Geological Survey to compile or recover hydrologic data on Afghanistan’s water resources. These collaborative efforts have assisted Afghan scientists in developing the data collection networks necessary for improved understanding, managing these resources, and monitoring critical changes that may affect future water supplies and conditions. The U.S. Geological Survey, together with Afghan scientists, developed a regional groundwater flow model to assist with water resource planning in the Kabul Basin. Afghan scientists are now independently developing the datasets and conducting studies needed to assess water resources in other population centers of Afghanistan.

  20. Topographic and Hydrographic GIS Datasets for the Afghanistan Geological Survey and U.S. Geological Survey 2014 Mineral Areas of Interest

    Science.gov (United States)

    DeWitt, Jessica D.; Chirico, Peter G.; Malpeli, Katherine C.

    2015-11-18

    Mineral extraction and associated industries play an important role in the Afghan economy, particularly in the “transitional era” of declining foreign aid and withdrawal of foreign troops post 2014. In addition to providing a substantial source of government revenue, other potential benefits of natural resource development include boosted exports, employment opportunities, and strengthened industrialization (Joya, 2012). Continued exploration and investment in these industries has resulted in large economic improvements since 2007, when this series of studies was initiated. At that time, the “Preliminary Non-Fuel Mineral Resource Assessment of Afghanistan” was completed by members of the U.S. Geological Survey and Afghanistan Geological Survey (Peters and others, 2007). The assessment published a series of country-wide datasets, including a digital elevation model (DEM), elevation contours, hydrography, transportation routes, geophysics, and cultural datasets (Peters and others, 2007). It also delineated 20 mineralized areas for further study using a geologic-based methodology. A second data product, “Summaries of Important Areas for Mineral Investment and Production Opportunities of Nonfuel Minerals in Afghanistan,” was released by Peters and others in 2011. This work highlighted geologic, geohydrologic, and hyperspectral studies that were carried out in specific Areas of Interest (AOIs) to assess the location and characteristics of mineral resources. Also included in the 2011 publication is a collection of appendixes and inventories of Geographic Information System (GIS) datasets for each of the 24 identified AOIs. A third data product was released in 2013 (Casey and Chirico, 2013), publishing datasets for five different AOIs, two subareas, and one AOI extension. Each dataset contains vector shapefiles of the AOI boundary, streams, roads, and contours at 25-, 50-, and 100-meter (m) intervals, as well as raster files of the AOI’s DEM and hillshade.

  1. Topographic and hydrographic GIS datasets for the Afghan Geological Survey and U.S. Geological Survey 2013 mineral areas of interest

    Science.gov (United States)

    Casey, Brittany N.; Chirico, Peter G.

    2013-01-01

    Afghanistan is endowed with a vast amount of mineral resources, and it is believed that the current economic state of the country could be greatly improved through investment in the extraction and production of these resources. In 2007, the “Preliminary Non-Fuel Resource Assessment of Afghanistan 2007” was completed by members of the U.S. Geological Survey and Afghan Geological Survey (Peters and others, 2007). The assessment delineated 20 mineralized areas for further study using a geologic-based methodology. In 2011, a follow-on data product, “Summaries and Data Packages of Important Areas for Mineral Investment and Production Opportunities of Nonfuel Minerals in Afghanistan,” was released (Peters and others, 2011). As part of this more recent work, geologic, geohydrologic, and hyperspectral studies were carried out in the areas of interest (AOIs) to assess the location and characteristics of the mineral resources. The 2011 publication included a dataset of 24 identified AOIs containing subareas, a corresponding digital elevation model (DEM), elevation contours, areal extent, and hydrography for each AOI. In 2012, project scientists identified five new AOIs and two subareas in Afghanistan. These new areas are Ahankashan, Kandahar, Parwan, North Bamyan, and South Bamyan. The two identified subareas include Obatu-Shela and Sekhab-ZamtoKalay, both located within the larger Kandahar AOI. In addition, an extended Kandahar AOI is included in the project for water resource modeling purposes. The dataset presented in this publication consists of the areal extent of the five new AOIs, two subareas, and the extended Kandahar AOI, elevation contours at 100-, 50-, and 25-meter intervals, an enhanced DEM, and a hydrographic dataset covering the extent of the new study area. The resulting raster and vector layers are intended for use by government agencies, developmental organizations, and private companies in Afghanistan to assist with mineral assessments, monitoring

  2. Proceedings of a U.S. Geological Survey pressure-sensor Workshop, Denver, Colorado, July 28-31, 1992

    Science.gov (United States)

    Wilbourn, Sammy L.

    1994-01-01

    The U.S. Geological Survey (USGS) conducted a Pressure Sensor Workshop, oriented toward the measurement of stage in surface waters, in Denver, Colorado, July 28-31, 1992. Twenty attendees from the U.S. Geological Survey and the National Oceanic and Atmospheric Administration gave presentations concerning their experiences with the use of pressure sensors in hydrologic investigations. This report is a compilation of the abstracts of the presentations made at the workshop. Workshop participants concluded that each of the sensors evaluated by the U.S. Geological Survey has strengths and weaknesses. Personnel contemplating the use of pressure sensors discussed at this workshop should contact workshop attendees and consult with them about their experiences with those sensors. The attendees preferred to use stilling wells with float-operated water-level sensors as the primary means for monitoring water levels. However, pressure sensor systems were favored as replacements for mercury manometers and as alternatives to stilling wells at sites where stilling wells are not practical or cost effective.

  3. Device for investigation of the porosity of geological formations

    International Nuclear Information System (INIS)

    Tittman, J.; Hickman, W.J.

    1978-01-01

    A device for neutron well logging is described in which errors due to caked drilling mud on the walls of the hole are compensated for. This is achieved by using two neutron sources and two detectors. One of the neutron sources emits neutrons with so high energy, about 3 or 4 MeV, that their slowing down length is much greater than the thickness of the drilling mud, while the other emits neutrons with an energy of about 240 KeV (lithium-plutonium) or 25 KeV (antimony - beryllium), ie they have a very high probability of interacting with the material in the drilling mud. The detectors are adjusted to react selectively to neutrons of epithermal energy, and the difference in the signals represents the porosity, or hydrocarbon content of the geological formation. (JIW)

  4. Drilling of deep boreholes and associated geological investigations. Final disposal of spent fuel

    International Nuclear Information System (INIS)

    Anttila, P.

    1983-12-01

    Teollisuuden Voima Oy (Industrial Power Company Ltd.) will take precautions for the final disposal of spent fuel in the Finnish bedrock. The first stage of the site selection studies includes drilling of a deep borehole down to approximately 1000 metres in the winter of 1984. The choice of drilling method and equipment depends on the geological circumstances and the target of the investigation. The most common drilling methods used with the investigations of nuclear waste disposal are diamond core drilling and percussion drilling. The Precambrian bedrock outcropping in Finland exists also in Sweden and Canada, where deep boreholes have been done down to more than 1000 metres using diamond core drilling. This method can be also used in Finland and equipment for the drilling are available. One of the main targets of the investigation is to clarify the true strike and dip of fractures and other discontinuities. The methods used abroad are taking of oriented cores, borehole television survey and geophysical measurements. TV-survey and geophysical methods seem to be most favourable in deep boreholes. Also the accurate position (inclination, bearing) of the borehole is essential to know and many techniques are used for measuring of it. Investigations performed on the core samples include core logging and laboratory tests. For the core logging there is no uniform practice concerning the nuclear waste investigations. Different counries use their own classifications. All of these, however, are based on the petrography and fracture properties of the rock samples. Laboratory tests (petrographical and rock mechanical tests) are generally performed according to the recommendations of international standards. The large volumes of data obtained during investigations require computer techniques which allow more comprehensive collection, storage and processing of data. This kind of systems are already used in Sweden and Canada, for instance, and they could be utilize in Finland

  5. Study on geological environment in the Tono area. An approach to surface-based investigation

    International Nuclear Information System (INIS)

    2002-12-01

    Mizunami Underground Research (MIU) Project has aimed at preparation of basis of investigation, analysis and evaluation of geology of deep underground and basis of engineering technologies of ultra deep underground. This report stated an approach and information of surface-based investigation for ground water flow system and MIU Project by the following contents, 1) objects and preconditions, 2) information of geological environment for analysis of material transition and design of borehole, 3) modeling, 4) tests and investigations and 5) concept of investigation. The reference data consists of results of studies such as the geological construction model, topography, geologic map, structural map, linear structure and estimated fault, permeability, underground stream characteristics, the quality of underground water and rock mechanics. (S.Y.)

  6. Geosciences research: development of techniques and instruments for investigation geological environments

    International Nuclear Information System (INIS)

    1993-01-01

    In order to understand the geological environment in Japan, new investigation techniques have been developed. These include: 1) Geological techniques for fracture characterization, 2) Nondestructive investigation techniques for detailed geological structure, 3) Instruments for hydraulic characterization, 4) Instruments for hydrochemical characterization. Results so far obtained are: 1) Fractures can be classified by their patterns, 2) The applicability and limitations of conventional geophysical methods were defined, 3) Instruments for measuring very low permeability were successfully developed, 4) Instruments for sampling formation water without changing in-situ conditions were developed. (author)

  7. Geology

    International Nuclear Information System (INIS)

    Eyde, T.H.

    1977-01-01

    Uranium, base metals, and precious metals exploration is surveyed, and Government role in activities is scrutinized. A review of recent mineral discoveries reveals that several new discoveries can be credited to independent geologists and exploration organizations. Most of these groups develop the exploration programs and then operate them on a fee plus incentive basis for major companies. The high cost of maintaining a large exploration staff often cannot be justified by many large natural resources companies. As a result the exploration companies fulfill the function of a company exploration department at a much reduced cost

  8. FY 2000 report on the survey of the overseas geological structure. Japan-China joint coal exploration - Yu Xian project; 2000 nendo kaigai chishitsu kozo nado chosa hokokusho. Nippon Chugoku sekitan kyodo tansa Yu Xian project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The geological survey was carried out which is needed for coal mine design in the Yu Xian coal mine area, Yu Xian coal field, Hebei province, China. The term of survey was 5 years from 1996 to 2000. Activities are mainly for seismic survey and boring survey. Japan was in charge of the seismic survey, and China in charge of the boring survey. Both attained the goal. The results of the activities were summed up in the following 7 items: 1) outline of the survey; 2) general investigation; 3) state of the exploration related materials/machinery; 4) field survey; 5) items of survey; 6) results of the survey; 7) conclusion. In 6), the geological analysis, coal quality survey and coal amount survey were conducted. In the geological analysis, analyzed were the succession of strata, geological structure, and the situation of existence of coal seams. In 7), the following were made clear: geological structure of the survey area, coal seam, coal quality, hydrological geology, other conditions of drilling technology, and coal amount. The coal amount was 328.34 million tons in a total of A/B/C class coals. The total coal amount of Nos. 1 and 5 coal seams was 259.79 million tons, which was 79.1% of the total coal amount in all area. The average thickness of Nos. 1 and 5 coal seams, which are the main minable coal seams, was 3.10m and 2.66m, respectively. (NEDO)

  9. Mercury in U.S. coal—Priorities for new U.S. Geological Survey studies

    Science.gov (United States)

    Kolker, Allan

    2016-05-09

    In 2011, the U.S. Environmental Protection Agency (EPA) introduced emissions standards, known as Mercury and Air Toxics Standards (MATS), for a range of toxic constituents from coal-fired utility power stations and other combustion sources. This report presents the findings of an expert panel convened in September 2014 to assess the role of the U.S. Geological Survey (USGS) in new coal investigations that would be useful to stakeholders under MATS. Panel input is provided as summaries of responses to a questionnaire distributed to participants. The panel suggests that the USGS continue its work on trace elements in coal and include more information about delivered coals and boiler feed coals, in comparison to previous USGS compilations that emphasized sampling representative of coals in the ground. To be useful under multipollutant regulatory standards, investigation of a range of constituents in addition to mercury would be necessary. These include other toxic metals proposed for regulation, such as arsenic, nickel, cadmium, and chromium, as well as the halogens chlorine and fluorine, which upon emission form harmful acid gases. Halogen determinations are also important because they influence mercury speciation in flue gas, which allows the effectiveness of mercury controls to be assessed and predicted. The panel suggests that the Illinois Basin and the Powder River Basin should have the highest priority for new coal quality investigations in the near term by the USGS, on the basis of current economic conditions and overall economic importance, respectively. As a starting point for new investigations, brief summaries of the distribution of mercury in each coal basin, and their potential for further investigation, are presented.

  10. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Carr, M.D.; Yount, J.C. (eds.)

    1988-12-31

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation`s first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey`s continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base.

  11. Collections management plan for the U.S. Geological Survey Woods Hole Coastal and Marine Science Center Data Library

    Science.gov (United States)

    List, Kelleen M.; Buczkowski, Brian J.; McCarthy, Linda P.; Orton, Alice M.

    2015-08-17

    The U.S. Geological Survey Woods Hole Coastal and Marine Science Center has created a Data Library to organize, preserve, and make available the field, laboratory, and modeling data collected and processed by Woods Hole Coastal and Marine Science Center staff. This Data Library supports current research efforts by providing unique, historic datasets with accompanying metadata. The Woods Hole Coastal and Marine Science Center’s Data Library has custody of historic data and records that are still useful for research, and assists with preservation and distribution of marine science records and data in the course of scientific investigation and experimentation by researchers and staff at the science center.

  12. Geologic survey of a geothermal heating plant at the Hovdejordet, Bodoe tenant association, Bodoe

    International Nuclear Information System (INIS)

    Elvebakk, Harald; Midttoemme, Kirsti; Skarphagen, Helge

    2002-01-01

    The Norwegian Geological Survey (NGU) has investigated the possibilities of finding a suitable heating source for heat pump based heating for the Bodoe tenant association's new housing at the Hovdejordet in central Bodoe. Energy extraction from solid rock was found to be possible. A 170 m deep well was drilled and studied by use of optic televiewer. In addition, the temperature, electrical conductivity and natural gamma radiation were logged. Heat conductivity in mineral test samples from the area was measured as well. The heat conductivity in the ground rock was good i.e. it would be possible to get relatively much heat from each drilled meter of well. The clay covering above the rock is less than 10 m which implies that large drill costs for drilling in large uncompacted material covers may be avoided. The drill hole logging with the televiewer showed a significant main fracture direction which coincided with the rock stri ata and fall in the area. There are many mineralised fractures but fractures with measurable openings were not observed. This may imply small ground water flows and a sizeable contribution from this source may therefore not be counted on. The temperature gradient is small. The drilling of deep wells would then not lead to significant energy gains. A temporary conclusion is that it would be profitable to combine energy extraction from outdoor air and energy wells. Preliminary suggestions are prepared for drill hole based energy storage

  13. Sudbury project (University of Muenster-Ontario Geological Survey): Summary of results - an updated impact model

    Science.gov (United States)

    Avermann, M.; Bischoff, L.; Brockmeyer, P.; Buhl, D.; Deutsch, A.; Dressler, B. O.; Lakomy, R.; Mueller-Mohr, V.; Stoeffler, D.

    1992-01-01

    In 1984 the Ontario Geological Survey initiated a research project on the Sudbury structure (SS) in cooperation with the University of Muenster. The project included field mapping (1984-1989) and petrographic, chemical, and isotope analyses of the major stratigraphic units of the SS. Four diploma theses and four doctoral theses were performed during the project (1984-1992). Specific results of the various investigations are reported. Selected areas of the SS were mapped and sampled: Footwall rocks; Footwall breccia and parts of the sublayer and lower section of the Sudbury Igneous Complex (SIC); Onaping Formation and the upper section of the SIC; and Sudbury breccia and adjacent Footwall rocks along extended profiles up to 55 km from the SIC. All these stratigraphic units of the SS were studied in substantial detail by previous workers. The most important characteristic of the previous research is that it was based either on a volcanic model or on a mixed volcanic-impact model for the origin of the SS. The present project was clearly directed toward a test of the impact origin of the SS without invoking an endogenic component. In general, our results confirm the most widely accepted stratigraphic division of the SS. However, our interpretation of some of the major stratigraphic units is different from most views expressed. The stratigraphy of the SS and its new interpretation is given as a basis for discussion.

  14. Water resources science of the U.S. Geological Survey in New York

    Science.gov (United States)

    Glover, Anna N.

    2018-04-10

    The U.S. Geological Survey studies the effects of weather, climate, and man-made influences on groundwater levels, streamflow, and reservoir and lake levels, as well as on the ecological health of rivers, lakes, reservoirs, watersheds, estuaries, aquifers, soils, beaches, and wildlife. From these studies, the USGS produces high-quality, timely, and unbiased scientific research and data that are widely accessible and relevant to all levels of government, Tribal Nations, academic institutions, nongovernmental organizations, the private sector, and the general public. In New York, the U.S. Geological Survey works with other Federal agencies, State and municipal government, Tribal Nations, and the private sector to develop products that inform decision makers, legislators, and the general public.

  15. McNutt to Be Nominated to Lead U.S. Geological Survey

    Science.gov (United States)

    Showstack, Randy

    2009-07-01

    U.S. President Barack Obama announced on 9 July his intention to nominate Marcia McNutt as director of the U.S. Geological Survey (USGS) and science advisor to the Secretary of the Interior. McNutt, who served as AGU president from 2000 to 2002, currently is president and chief executive officer of the Monterey Bay Aquarium Research Institute, in Moss Landing, Calif. “Scientific information from the U.S. Geological Survey is crucial to solving the most important problems facing society—finding sufficient supplies of fresh water and clean energy and providing accurate information that allows citizens to prepare intelligently for climate change. I look forward to leading such a respected institution at this critical time,” McNutt said.

  16. Geological Hypothesis Testing and Investigations of Coupling with Transient Electromagnetics (TEM)

    Science.gov (United States)

    Adams, A. C.; Moeller, M. M.; Snyder, E.; Workman, E. J.; Urquhart, S.; Bedrosian, P.; Pellerin, L.

    2014-12-01

    Transient electromagnetic (TEM) data were acquired in Borrego Canyon within the Santo Domingo Basin of the Rio Grande Rift, central New Mexico, during the 2014 Summer of Applied Geophysical Experience (SAGE) field program. TEM surveys were carried out in several regions both to investigate geologic structure and to illustrate the effects of coupling to anthropogenic structures. To determine an optimal survey configuration, 50, 100 and 200 m square transmitter loops were deployed; estimates of depth-of-investigation and logistical considerations determined that 50 m loops were sufficient for production-style measurements. A resistive (100s of ohm-m) layer was identified at a depth of 25-75 m at several locations, and interpreted as dismembered parts of one or more concealed volcanic flows, an interpretation consistent with Tertiary volcanic flows that cap the Santa Anna Mesa immediately to the south. TEM soundings were also made across an inferred fault to investigate whether fault offset is accompanied by lateral changes in electrical resistivity. Soundings within several hundred meters of the inferred fault strand were identical, indicating no resistivity contrast across the fault, and possibly an absence of recent activity. An old windmill and water tank, long-abandoned, offered an excellent laboratory to study the effect of coupling to metallic anthropogenic structures. The character of the measured data strongly suggests the water tank is in electrical contact with the earth (galvanic coupling), and an induced response was persistent to more than 1 second after current turn-off. Coupling effects could be identified at least 150 meters from the tank. Understanding the mechanism behind such coupling and the ability to identify coupled data are critical skills, as one-dimensional modeling of data is affected by such coupling producing artificial conductive layers at depth.

  17. Geophysical and geological investigations of subsurface reservoirs : case studies of Spitsbergen, Norway

    Energy Technology Data Exchange (ETDEWEB)

    Baelum, Karoline

    2011-07-01

    and carbonate reservoirs of the basin. Of special interest as a reservoir play analogue are the paleokarst features on Wordiekammen, a mountain close to the BFZ within the Billefjorden Trough. Similar plays have been and are explored on the Loppa High in the Barents Shelf The target of the investigation was series of infilled karst pipes located on top of (under a layer of sediment) and along the edges of the plateau that caps half of the mountain. The methods employed were Ground Penetration Radar (GPR) and geoelectric measurements. The porosity and chaotic geophysical reflection pattern of the collapse breccia infill in the pipes in contrast to the surrounding allowed for an well-constrained identification of the geometry and location of the pipes via closely sampled 2D and 3D GPR surveys. More than 20 breccia pipes were identified in the data with diameters of 10-80 m, showing geometries very similar to the pipes outcropping along the mountain edge. The geoelectric investigations revealed a strong link between resistivity anomalies and the position of the Karst pipes, although this is likely linked to the presence and composition of pore water. However, the exact relationship is yet to be determined. The high porosity and possible subsurface physical linkage of the collapse breccias confirm their value as interesting reservoirs analogues. The second topic concerns the subsurface geology around Longyearbyen in connection with the identification and quantification of a possible reservoir for future CO{sub 2}-storage. Results from this work are obtained via a combination of seismic data, drill cores and electrical logs from four drill holes with a maximum depth of 980 m, and in addition Lidar scans in connection with investigations of outcrops. The targeted Kapp Toscana Group reservoir, found below a cap rock section of Jurassic shales and mudstone, offers the c. 270 m thick De Geerdalen Formation topped by the 22 m thick Wilhelmoeya Subgroup. The reservoir section

  18. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Carr, M.D.; Yount, J.C.

    1988-01-01

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation's first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey's continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base

  19. U.S. Geological Survey Virginia and West Virginia Water Science Center

    Science.gov (United States)

    Jastram, John D.

    2017-08-22

    The U.S. Geological Survey (USGS) serves the Nation by providing reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life. In support of this mission, the USGS Virginia and West Virginia Water Science Center works in cooperation with many entities to provide reliable, impartial scientific information to resource managers, planners, and the public.

  20. US Geological Survey National Computer Technology Meeting; Proceedings, Phoenix, Arizona, November 14-18, 1988

    Science.gov (United States)

    Balthrop, Barbara H.; Terry, J.E.

    1991-01-01

    The U.S. Geological Survey National Computer Technology Meetings (NCTM) are sponsored by the Water Resources Division and provide a forum for the presentation of technical papers and the sharing of ideas or experiences related to computer technology. This report serves as a proceedings of the meeting held in November, 1988 at the Crescent Hotel in Phoenix, Arizona. The meeting was attended by more than 200 technical and managerial people representing all Divisions of the U.S. Geological Survey.Scientists in every Division of the U.S. Geological Survey rely heavily upon state-of-the-art computer technology (both hardware and sofnuare). Today the goals of each Division are pursued in an environment where high speed computers, distributed communications, distributed data bases, high technology input/output devices, and very sophisticated simulation tools are used regularly. Therefore, information transfer and the sharing of advances in technology are very important issues that must be addressed regularly.This report contains complete papers and abstracts of papers that were presented at the 1988 NCTM. The report is divided into topical sections that reflect common areas of interest and application. In each section, papers are presented first followed by abstracts. For these proceedings, the publication of a complete paper or only an abstract was at the discretion of the author, although complete papers were encouraged.Some papers presented at the 1988 NCTM are not published in these proceedings.

  1. U.S. Geological Survey activities related to American Indians and Alaska Natives: Fiscal years 2009 and 2010

    Science.gov (United States)

    Fordham, Monique; Montour, Maria R.

    2015-01-01

    The U.S. Geological Survey is the earth and natural science bureau within the U.S. Department of the Interior. The U.S. Geological Survey provides impartial information on the health of our ecosystems and environment, the natural hazards that threaten us, the natural resources we rely on, the negative effects of climate and land-use change, and the core science systems that help us provide timely, relevant, and usable information. The U.S. Geological Survey is not responsible for regulations or land management.

  2. Developing a geoscience knowledge framework for a national geological survey organisation

    Science.gov (United States)

    Howard, Andrew S.; Hatton, Bill; Reitsma, Femke; Lawrie, Ken I. G.

    2009-04-01

    Geological survey organisations (GSOs) are established by most nations to provide a geoscience knowledge base for effective decision-making on mitigating the impacts of natural hazards and global change, and on sustainable management of natural resources. The value of the knowledge base as a national asset is continually enhanced by the exchange of knowledge between GSOs as data and information providers and the stakeholder community as knowledge 'users and exploiters'. Geological maps and associated narrative texts typically form the core of national geoscience knowledge bases, but have some inherent limitations as methods of capturing and articulating knowledge. Much knowledge about the three-dimensional (3D) spatial interpretation and its derivation and uncertainty, and the wider contextual value of the knowledge, remains intangible in the minds of the mapping geologist in implicit and tacit form. To realise the value of these knowledge assets, the British Geological Survey (BGS) has established a workflow-based cyber-infrastructure to enhance its knowledge management and exchange capability. Future geoscience surveys in the BGS will contribute to a national, 3D digital knowledge base on UK geology, with the associated implicit and tacit information captured as metadata, qualitative assessments of uncertainty, and documented workflows and best practice. Knowledge-based decision-making at all levels of society requires both the accessibility and reliability of knowledge to be enhanced in the grid-based world. Establishment of collaborative cyber-infrastructures and ontologies for geoscience knowledge management and exchange will ensure that GSOs, as knowledge-based organisations, can make their contribution to this wider goal.

  3. Selected water-resources activities of the U.S. Geological Survey in New England in 2017

    Science.gov (United States)

    Weiskel, Peter K.

    2017-06-22

    The New England Water Science Center of the U.S. Geological Survey (USGS) is headquartered in Pembroke, New Hampshire, with offices in East Hartford, Connecticut; Augusta, Maine; Northborough, Massachusetts; and Montpelier, Vermont. The areas of expertise covered by the water science center’s staff of 130 include aquatic biology, chemistry, geographic information systems, geology, hydrologic sciences and engineering, and water use.

  4. U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1986-1990

    Science.gov (United States)

    Trask, N.J.; Stevens, P.R.

    1991-01-01

    The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research efforts are categorized according to whether they are related most directly to: (1) high-level wastes, (2) transuranic wastes, (3) low-level and mixed low-level and hazardous wastes, or (4) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, to development of techniques and methods for characterizing disposal sites, and to studies of geologic and hydrologic processes related to the transport and/or retention of waste radionuclides.

  5. Archive of Geosample Data and Information from the U.S. Geological Survey (USGS) Coastal and Marine Geology Program (CMGP) Woods Hole Coastal and Marine Science Center (WHCMSC) Samples Repository

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Geological Survey Coastal and Marine Geology Program (CMGP) Woods Hole Coastal and Marine Science Center (WHCMSC) Samples Repository is a partner in the...

  6. Archive of Geosample Data and Information from the U.S. Geological Survey (USGS) Coastal and Marine Geology Program (CMGP) St. Petersburg Coastal and Marine Science Center (SPCMSC) Samples Repository

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Geological Survey Coastal and Marine Geology Program (CMGP) St. Petersburg Coastal and Marine Science Center (SPCMSC) Samples Repository is a partner in the...

  7. Archive of Geosample Data and Information from the U.S. Geological Survey (USGS) Coastal and Marine Geology Program (CMGP) Pacific Coastal and Marine Science Center (PCMSC) Samples Repository

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Geological Survey Coastal and Marine Geology Program (CMGP) Pacific Coastal and Marine Science Center (PCMSC) Samples Repository is a partner in the Index...

  8. Geological investigation of hydrothermal alteration haloes in Toyoha geothermal field, Hakkaido

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, T; Furukawa, Y; Sugawara, K; Nishimura, S; Okabe, K

    1978-01-01

    In Toyoha geothermal field, the altered haloes are located along a tectonic line extending on a NW-SE direction along the Yunosawa River, east of the Toyoha Mine, a well known Neogene epithermal ore deposit. The investigation was carried out to clarify the stage of alteration, based on the altered haloes geologic structure, composition, and size. The Quaternary distribution at the eastern foot of Mt. Yotei was also studied. The field is covered by various kinds of Miocene sediments but the altered haloes are found only in an area covered by the Takinosawa formation and its older formations. Among the Yunosawa, Koyanagizawa and Takinosawa alteration haloes, the Yunosawa is the most important. It is composed of blocky silicified rock extending along a river and surrounding argillaceous rock. The silicified rock is composed primarily of quartz and subordinate alunite and opal, while the argillaceous rock consists chiefly of kaloin and is characterized by the occasional presence of sericite and montmorillinite. Fission-track and /sup 14/C methods were employed to determine the stage of alteration, but the results were unsatisfactory. The sublimation sulfur ore deposits in the Yunosawa and Koyanagizawa areas were comparatively small, but their original depositional features remain intact, indicating that geothermal activity continued until recently. Yunosawa is the most promising area as it is closely related to the tectonic line and also it has extraordinarily high ground temperature determined by a recent heat flow survey. Twenty-three references are provided.

  9. State Geological Survey Contributions to the National Geothermal Data System- Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Allison, M. Lee [Executive Office of the State of Arizona, Tuczon (AZGS), AZ (United States).; Richard, Stephen M. [Executive Office of the State of Arizona, Tuczon (AZGS), AZ (United States).

    2015-03-13

    The State Geological Survey Contributions to the National Geothermal Data System project is built on the work of the project managed by Boise State University to design and build the National Geothermal Data System, by deploying it nationwide and populating it with data principally from State Geological Surveys through collaboration with the Association of American State Geologists (AASG). This project subsequently incorporated the results of the design-build and other DOE-funded projects in support of the NGDS. The NGDS (www.geothermaldata.org) provides free open access to millions of data records, images, maps, and reports, sharing relevant geoscience, production, and land use data in 30+ categories to propel geothermal development and production in the U.S. NGDS currently serves information gathered from hundreds of the U.S. Department of Energy sponsored development and research projects and geologic data feeds from 60+ data providers throughout all 50 states. These data are relevant to geothermal energy exploration and development, but also have broad applicability in other areas including natural resources (e.g., energy, minerals, water), natural hazards, and land use and management.

  10. Archive of Geosample Information from the Geological Survey of Canada Atlantic (GSC A) Marine Geoscience Curation Facility

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geological Survey of Canada Atlantic (GSC A) Marine Geoscience Curation Facility contributed information on 40,428 cores, grabs, and dredges in their holdings to...

  11. The interoperability skill of the Geographic Portal of the ISPRA - Geological Survey of Italy

    Science.gov (United States)

    Pia Congi, Maria; Campo, Valentina; Cipolloni, Carlo; Delogu, Daniela; Ventura, Renato; Battaglini, Loredana

    2010-05-01

    The Geographic Portal of Geological Survey of Italy (ISPRA) available at http://serviziogeologico.apat.it/Portal was planning according to standard criteria of the INSPIRE directive. ArcIMS services and at the same time WMS and WFS services had been realized to satisfy the different clients. For each database and web-services the metadata had been wrote in agreement with the ISO 19115. The management architecture of the portal allow it to encode the clients input and output requests both in ArcXML and in GML language. The web-applications and web-services had been realized for each database owner of Land Protection and Georesources Department concerning the geological map at the scale 1:50.000 (CARG Project) and 1:100.000, the IFFI landslide inventory, the boreholes due Law 464/84, the large-scale geological map and all the raster format maps. The portal thus far published is at the experimental stage but through the development of a new graphical interface achieves the final version. The WMS and WFS services including metadata will be re-designed. The validity of the methodology and the applied standards allow to look ahead to the growing developments. In addition to this it must be borne in mind that the capacity of the new geological standard language (GeoSciML), which is already incorporated in the web-services deployed, will be allow a better display and query of the geological data according to the interoperability. The characteristics of the geological data demand for the cartographic mapping specific libraries of symbols not yet available in a WMS service. This is an other aspect regards the standards of the geological informations. Therefore at the moment were carried out: - a library of geological symbols to be used for printing, with a sketch of system colors and a library for displaying data on video, which almost completely solves the problems of the coverage point and area data (also directed) but that still introduces problems for the linear data

  12. Fiscal 2000 report on financially supported geological structure survey overseas. Basic survey for coal resource exploitation (Research on underground probing technology); 2000 nendo kaigai chishitsu kozo chosahi nado hojokin (sekitan shigen kaihatsu kiso chosa) konai tansa gijutsu chosa hokokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the work of searching for coal beds, comparison is made between the geological structure of the object area, which is predicted, before actual investigation, by a close scrutiny of the result of oceanic pilot boring conducted in the past, result of geophysical exploration, and the geological features of galleries already in presence in the vicinity, and the result obtained from galleries drilled actually for the investigation. The investigation was conducted at the Ikeshima coal mine, Nagasaki Prefecture. In this fiscal year, 5 investigation galleries were drilled, totalling 1640m in length, and, in the mine, geological surveys, survey and measurement, coal quality evaluation, water emergence investigation, boring for coal, etc., were carried out. Comparison was made, and, though in the 2nd Minami No. 06 air duct there was no important difference detected between the prediction and the actual result, some faults were found to exist which had not been predicted by seismic exploration on the ocean. In the 2nd Minami No. 5 air duct, the actual geology was not different from the predicted geology, this endorsing the usefulness of boring for coal. In the 2nd Minami No. 01 gallery, direction and inclination were not greatly different from what had been predicted, but some faults which had not been predicted were discovered. These faults had escaped the scrutiny of neighboring coal beds and pilot boring. (NEDO)

  13. US Geological Survey research on the environmental fate of uranium mining and milling wastes

    International Nuclear Information System (INIS)

    Landa, E.R.; Gray, J.R.

    1995-01-01

    Studies by the US Geological Survey (USGS) of uranium mill tailings (UMT) have focused on characterizing the forms in which radionuclides are retained and identifying factors influencing the release of radionuclides to air and water. Selective extraction studies and studies of radionuclide sorption by and reaching from components of UMT showed alkaline earth sulfate and hydrous ferric oxides to be important hosts of radium-226 ( 226 Ra) in UMT. Extrapolating from studies of barite dissolution in anerobic lake sediments, the leaching of 226 Ra from UMT by sulfate-reducing bacteria was investigated; a marked increase in 226 Ra release to aqueous solution as compared to sterile controls was demonstrated. A similar action of iron(III)-reducing bacteria was later shown. Ion exchangers such as clay minerals can also promote the dissolution of host-phase minerals and thereby influence the fate of radionuclides such as 226 Ra. Radon release studies examined particle size and ore composition as variables. Aggregation of UMT particles was shown to mask the higher emanating fraction of finer particles. Studies of various ores and ore components showed that UMT cannot be assumed to have the same radon-release characteristics as their precursor ores, nor can 226 Ra retained by various substrates be assumed to emanate the same fraction of radon. Over the last decade, USGS research directed at offsite mobility of radionuclides form uranium mining and milling processes has focused on six areas: the Midnite Mine in Washington; Ralston Creek and Reservoir, Colorado; sites near Canon City, Colorado; the Monument Valley District of Arizona and Utah; the Cameron District of Arizona; and the Puerco River basin of Arizona and New Mexico. 48 refs., 6 figs., 4 tabs

  14. Brazil Geological Basic Survey Program - Lima Duarte - Sheet SF.23-X-C-VI - Minas Gerais State

    International Nuclear Information System (INIS)

    Pinto, C.P.

    1991-01-01

    The present report refers to the Lima Duarte sheet (SF.23-X-C-VI) systematic geological mapping, on the 1:100.000 scale. The surveyed area, localized in the Zona da Mata, Juiz de Fora micro-region, in South Minas Gerais, is dominantly composed by metamorphic rocks of the granulite and amphibolite facies and presents important diphtheritic process. An analysis of the Crustal Evolution Patterns based mostly on geological mapping, and gravimetric, air magneto metric and geochronologic data is given in the Chapter 6, Part II, of the text. Geophysical information is in the Chapter 5, Part II. Seventy two samples were analysed for oxides, trace-elements and REE, to provide litho environment and metallogenesis definition subsidies. Were studied 174 petrographic thin section, and 48 samples of quartzite and schist residual materials were analysed for heavy metals. Seven hundred and fifty outcrops were described. A geochemical survey, based on 81 pan concentrated samples and 277 stream sediments was carried out throughout the Sheet. The anomalies found in the stream sediments reflect the geochemical signature of the analysed elements for the litho types of the investigated terrains. (author)

  15. Investigating the Use of a Digital Library in an Inquiry-Based Undergraduate Geology Course

    Science.gov (United States)

    Apedoe, Xornam S.

    2007-01-01

    This paper reports the findings of a qualitative research study designed to investigate the opportunities and obstacles presented by a digital library for supporting teaching and learning in an inquiry-based undergraduate geology course. Data for this study included classroom observations and field-notes of classroom practices, questionnaires, and…

  16. Sorption of radionuclides on geological samples from the Bradwell, Elstow, Fulbeck and Killingholme site investigations

    International Nuclear Information System (INIS)

    Berry, J.A.; Coates, H.A.; Green, A.; Littleboy, A.K.

    1988-06-01

    The sorption of chloride, caesium, calcium, nickel and americium on geological samples collected during the site investigations at Bradwell, Elstow, Fulbeck and Killingholme has been studied. Through-diffusion and batch sorption techniques were used and experiments were designed to give a direct comparison between the sorptive behaviour of material from each site. (author)

  17. Forensic geoscience: applications of geology, geomorphology and geophysics to criminal investigations

    Science.gov (United States)

    Ruffell, Alastair; McKinley, Jennifer

    2005-03-01

    One hundred years ago Georg Popp became the first scientist to present in court a case where the geological makeup of soils was used to secure a criminal conviction. Subsequently there have been significant advances in the theory and practice of forensic geoscience: many of them subsequent to the seminal publication of "Forensic Geology" by Murray and Tedrow [Murray, R., Tedrow, J.C.F. 1975 (republished 1986). Forensic Geology: Earth Sciences and Criminal Investigation. Rutgers University Press, New York, 240 pp.]. Our review places historical development in the modern context of how the allied disciplines of geology (mineralogy, sedimentology, microscopy), geophysics, soil science, microbiology, anthropology and geomorphology have been used as tool to aid forensic (domestic, serious, terrorist and international) crime investigations. The latter half of this paper uses the concept of scales of investigation, from large-scale landforms through to microscopic particles as a method of categorising the large number of geoscience applications to criminal investigation. Forensic geoscience has traditionally used established non-forensic techniques: 100 years after Popp's seminal work, research into forensic geoscience is beginning to lead, as opposed to follow other scientific disciplines.

  18. U.S. Geological Survey Global Seismographic Network - Five-Year Plan 2006-2010

    Science.gov (United States)

    Leith, William S.; Gee, Lind S.; Hutt, Charles R.

    2009-01-01

    The Global Seismographic Network provides data for earthquake alerting, tsunami warning, nuclear treaty verification, and Earth science research. The system consists of nearly 150 permanent digital stations, distributed across the globe, connected by a modern telecommunications network. It serves as a multi-use scientific facility and societal resource for monitoring, research, and education, by providing nearly uniform, worldwide monitoring of the Earth. The network was developed and is operated through a partnership among the National Science Foundation (http://www.nsf.gov), the Incorporated Research Institutions for Seismology (http://www.iris.edu/hq/programs/gsn), and the U.S. Geological Survey (http://earthquake.usgs.gov/gsn).

  19. Implementation of unmanned aircraft systems by the U.S. Geological Survey

    Science.gov (United States)

    Cress, J.J.; Sloan, J.L.; Hutt, M.E.

    2011-01-01

    The U.S. Geological Survey (USGS) Unmanned Aircraft Systems (UAS) Project Office is leading the implementation of UAS technology in anticipation of transforming the research methods and management techniques employed across the Department of the Interior. UAS technology is being made available to monitor environmental conditions, analyse the impacts of climate change, respond to natural hazards, understand landscape change rates and consequences, conduct wildlife inventories and support related land management missions. USGS is teaming with the Department of the Interior Aviation Management Directorate (AMD) to lead the safe and cost-effective adoption of UAS technology by the Department of the Interior Agencies and USGS scientists.

  20. White-nose syndrome in North American bats - U.S. Geological Survey updates

    Science.gov (United States)

    Lankau, Emily W.; Moede Rogall, Gail

    2016-12-27

    White-nose syndrome is a devastating wildlife disease that has killed millions of hibernating bats. This disease first appeared in New York during 2007 and has continued to spread at an alarming rate from the northeastern to the central United States and throughout eastern Canada. The disease is named for the fungus Pseudogymnoascus destructans, which often appears white when it infects the skin of the nose, ears, and wings of hibernating bats. This fact sheet provides updates on white-nose syndrome research and management efforts and highlights US Geological Survey scientists’ contributions to understanding and combating this disease.

  1. A bibliography of planetary geology principal investigators and their associates, 1982 - 1983

    Science.gov (United States)

    Plescia, J. B.

    1984-01-01

    This bibliography cites recent publications by principal investigators and their associates, supported through NASA's Office of Space Science and Applications, Earth and Planetary Exploration Division, Planetary Geology Program. It serves as a companion piece to NASA TM-85127, ""Reports of Planetary Programs, 1982". Entries are listed under the following subject areas: solar system, comets, asteroids, meteorites and small bodies; geologic mapping, geomorphology, and stratigraphy; structure, tectonics, and planetary and satellite evolutions; impact craters; volcanism; fluvial, mass wasting, glacial and preglacial studies; Eolian and Arid climate studies; regolith, volatiles, atmosphere, and climate, radar; remote sensing and photometric studies; and cartography, photogrammetry, geodesy, and altimetry. An author index is provided.

  2. Investigation of background radiation levels and geologic unit profiles in Durango, Colorado

    International Nuclear Information System (INIS)

    Triplett, G.H.; Foutz, W.L.; Lesperance, L.R.

    1989-11-01

    As part of the Uranium Mill Tailings Remedial Action (UMTRA) Project, Oak Ridge National Laboratory (ORNL) has performed radiological surveys on 435 vicinity properties (VPs) in the Durango area. This study was undertaken to establish the background radiation levels and geologic unit profiles in the Durango VP area. During the months of May through June, 1986, extensive radiometric measurements and surface soil samples were collected in the Durango VP area by personnel from ORNL's Grand Junction Office. A majority of the Durango VP surveys were conducted at sites underlain by Quaternary alluvium, older Quaternary gravels, and Cretaceous Lewis and Mancos shales. These four geologic units were selected to be evaluated. The data indicated no formation anomalies and established regional background radiation levels. Durango background radionuclide concentrations in surface soil were determined to be 20.3 ± 3.4 pCi/g for 40 K, 1.6 ± 0.5 pCi/g for 226 Ra, and 1.2 ± 0.3 pCi/g for 232 Th. The Durango background gamma exposure rate was found to be 16.5 ± 1.3 μR/h. Average gamma spectral count rate measurements for 40 K, 226 Ra and 232 Th were determined to be 553, 150, and 98 counts per minute (cpm), respectively. Geologic unit profiles and Durango background radiation measurements are presented and compared with other areas. 19 refs., 15 figs., 5 tabs

  3. Resources for Teaching About Evolution from the U.S. Geological Survey

    Science.gov (United States)

    Gordon, L. C.

    2001-12-01

    As a scientific research agency, the U.S. Geological Survey (USGS) is in an ideal position to provide scientific information and resources to educators. The USGS is not a curriculum developer, nor an expert in pedagogy, yet the USGS does have a wealth of scientific information on subjects such as fossils, geologic time, biological resources and plate tectonics that naturally come in to play in the teaching of evolution. Among USGS resources are the general interest pamphlets Geologic Time, Dinosaurs: Facts And Fiction, Our Changing Continent, and Fossils Rocks, and Time, and its accompanying poster, Fossils Through Time. In addition to printed versions, the pamphlets are available at no cost on the Internet at http://pubs.usgs.gov/gip/. The popular booklet, This Dynamic Earth: The Story of Plate Tectonics, available at http://pubs.usgs.gov/publications/text/dynamic.html, touches on evolution-related subjects such as Alfred Wegener's use of fossils to develop his theory of continental drift, "polar" dinosaur fossils found in Australia, marine fossils in the rocks of the Himalayas, and the use of fossil ages to determine rates of plate motions. Paleontological research at the USGS is highlighted on the Internet at http://geology.er.usgs.gov/paleo/. The web site includes links to technical publications, profiles of scientists, a geologic time scale, a glossary, information on important fossil groups, and a list of non-USGS references on fossils: all very useful to educators. A wealth of biological information and data can be found in the National Biological Information Infrastructure (NBII), a multi-agency collaborative program led by the USGS. In addition to data on the Nation's biological resources, the NBII web site http://www.nbii.gov/ includes a section on systematics and scientific names (helpful for illustrating the evolutionary relationships among living organisms), and links to non-USGS curriculum materials. A fact sheet, Unveiling the NBII as a Teaching

  4. Verification study on technology for preliminary investigation for HLW geological disposal. Part 2. Verification of surface geophysical prospecting through establishing site descriptive models

    International Nuclear Information System (INIS)

    Kondo, Hirofumi; Suzuki, Koichi; Hasegawa, Takuma; Goto, Keiichiro; Yoshimura, Kimitaka; Muramoto, Shigenori

    2012-01-01

    The Yokosuka demonstration and validation project using Yokosuka CRIEPI site has been conducted since FY 2006 as a cooperative research between NUMO (Nuclear Waste Management Organization of Japan) and CRIEPI. The objectives of this project are to examine and to refine the basic methodology of the investigation and assessment of properties of geological environment in the stage of Preliminary Investigation for HLW geological disposal. Within Preliminary Investigation technologies, surface geophysical prospecting is an important means of obtaining information from deep geological environment for planning borehole surveys. In FY 2010, both seismic prospecting (seismic reflection and vertical seismic profiling methods) for obtaining information about geological structure and electromagnetic prospecting (magneto-telluric and time domain electromagnetic methods) for obtaining information about resistivity structure reflecting the distribution of salt water/fresh water boundary to a depth of over several hundred meters were conducted in the Yokosuka CRIEPI site. Through these surveys, the contribution of geophysical prospecting methods in the surface survey stage to improving the reliability of site descriptive models was confirmed. (author)

  5. U.S. Geological Survey Science at the Intersection of Health and Environment

    Science.gov (United States)

    Kimball, S. M.; Plumlee, G. S.

    2016-12-01

    People worldwide worry about how their environment affects their health, and expect scientists to help address these concerns. The OneHealth concept recognizes the crucial linkages between environment, human health, and health of other organisms. Many US Geological Survey science activities directly examine or help inform how the Earth and the environment influence toxicological and infectious diseases. Key is our ability to bring to bear a collective expertise in environmental processes, geology, hydrology, hazards, microbiology, analytical chemistry, ecosystems, energy/mineral resources, geospatial technologies, and other disciplines. Our science examines sources, environmental transport and fate, biological effects, and human exposure pathways of many microbial (e.g. bacteria, protozoans, viruses, fungi), inorganic (e.g. asbestos, arsenic, lead, mercury) and organic (e.g. algal toxins, pesticides, pharmaceuticals) contaminants from geologic, anthropogenic, and disaster sources. We develop new laboratory, experimental, and field methods to analyze, model, and map contaminants, to determine their baseline and natural background levels, and to measure their biological effects. We examine the origins, environmental persistence, wildlife effects, and potential for transmission to humans of pathogens that cause zoonotic or vector-borne diseases (e.g., avian influenza or West Nile virus). Collaborations with human health scientists from many organizations are essential. For example, our work with epidemiologists and toxicologists helps understand the exposure pathways and roles of geologically sourced toxicants such as arsenic (via drinking water) and asbestos (via dusts) in cancer. Work with pulmonologists and pathologists helps clarify the sources and fate of inhaled mineral particles in lungs. Wildlife health scientists help human health scientists assess animals as sentinels of human disease. Such transdisciplinary science is essential at the intersection of health

  6. U.S. Geological Survey: A synopsis of Three-dimensional Modeling

    Science.gov (United States)

    Jacobsen, Linda J.; Glynn, Pierre D.; Phelps, Geoff A.; Orndorff, Randall C.; Bawden, Gerald W.; Grauch, V.J.S.

    2011-01-01

    The U.S. Geological Survey (USGS) is a multidisciplinary agency that provides assessments of natural resources (geological, hydrological, biological), the disturbances that affect those resources, and the disturbances that affect the built environment, natural landscapes, and human society. Until now, USGS map products have been generated and distributed primarily as 2-D maps, occasionally providing cross sections or overlays, but rarely allowing the ability to characterize and understand 3-D systems, how they change over time (4-D), and how they interact. And yet, technological advances in monitoring natural resources and the environment, the ever-increasing diversity of information needed for holistic assessments, and the intrinsic 3-D/4-D nature of the information obtained increases our need to generate, verify, analyze, interpret, confirm, store, and distribute its scientific information and products using 3-D/4-D visualization, analysis, modeling tools, and information frameworks. Today, USGS scientists use 3-D/4-D tools to (1) visualize and interpret geological information, (2) verify the data, and (3) verify their interpretations and models. 3-D/4-D visualization can be a powerful quality control tool in the analysis of large, multidimensional data sets. USGS scientists use 3-D/4-D technology for 3-D surface (i.e., 2.5-D) visualization as well as for 3-D volumetric analyses. Examples of geological mapping in 3-D include characterization of the subsurface for resource assessments, such as aquifer characterization in the central United States, and for input into process models, such as seismic hazards in the western United States.

  7. Seven years of operation of the U. S. geological survey TRIGA reactor

    International Nuclear Information System (INIS)

    Kraker, Pat

    1976-01-01

    February 1976 marks 7 years of operation of the U. S. Geological Survey TRIGA Reactor (GSTR) facility. In these 7 years we have generated more than 5800 MWH's of thermal energy and irradiated more than 47,000 samples for experimenters from the Survey, universities, and other Governmental agencies. Several mechanical and electrical components have required attention. Changes to the technical specifications have included one minor wording change involving the evacuation alarm, a reevaluation of the measurement of argon-41 concentrations, a revision concerning transient-rod maintenance, and a reduction in the frequency of fuel-element measurements. To improve physical security we have increased building security, installed an intrusion alarm, and, most recently, expanded the boundaries of the facility within the building to provide better control access. There also have been major changes to our operating procedures and the initiation of a reactor-operator requalification program. (author)

  8. Contribution of public Geological Survey to prevention and mitigation of geohazards

    Directory of Open Access Journals (Sweden)

    Marko Komac

    2009-06-01

    Full Text Available From the early history of civilisation societies have been exposed to external factors. Probably no other factorshave influenced the development of societies and cultures more than geologically driven hazards or geohazards.With the evolvement of societies also the approaches to solving problems, related to geohazard, have developed.The complexity of mitigation and response measurements that tackle the contemporary geohazard problems demandsa long-term strategic approach that has to incorporate all segments of the society, from stake-holders andend-user groups to the experts. The management of geohazards is a public good and as such needs to be governedby a non-profit public body. The common mission of almost all geological surveys is to gather, manage and interpretgeologically related data for a wider public welfare. Geological surveys as public institutions represent a key rolein almost all components of the geohazard management process, from education and research, to data acquisition,processing, interpretation and decision support issues. With its knowledge regarding natural processes gatheredthrough decades GSO offers reliable and independent support in assessing and describing the phenomena (seismicactivities, mass wasting, water and soil pollution, excess or lack of trace elements in the soil, ground subsidence orheave, gaseous emanations and more, understanding the processes of activation, dynamics, transport, interactionwith media and living organisms, and predicting the possible scenarios in the future with emphasis on human exposureto given phenomena. Despite the fact that the value of the knowledge of the dynamic environment we live in isbeing tested literally on daily basis in Slovenia, its inclusion in everyday practice is still relatively negligible.

  9. Geological, geochemical, and geophysical survey of the geothermal resources at Hot Springs Bay Valley, Akutan Island, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, R.J.; Wescott, E.M.; Turner, D.L.; Swanson, S.E.; Romick, J.D.; Moorman, M.A.; Poreda, R.J.; Witte, W.; Petzinger, B.; Allely, R.D.

    1985-01-01

    An extensive survey was conducted of the geothermal resource potential of Hot Springs Bay Valley on Akutan Island. A topographic base map was constructed, geologic mapping, geophysical and geochemical surveys were conducted, and the thermal waters and fumarolic gases were analyzed for major and minor element species and stable isotope composition. (ACR)

  10. Development of Microanaytical Reference Materials for In-situ Anaysis at the U.S. Geological Survey

    Science.gov (United States)

    Wilson, S.

    2006-05-01

    With the increased use of microanalysis in geochemical investigations comes the need for a reliable and diversified supply of reference materials homogenous at the micrometer scale to assist analysts in element quantification. To meet these requirements, the U.S. Geological Survey (USGS) has undertaken a program to develop a series of reference materials which cover a range of sample types currently being investigated in our microanalytical laboratories. Initial efforts have focused on the development of natural basalt glasses (BCR- 2G, BHVO-2G, BIR-1G, TB-1G, NKT-1G) from a variety of geologic settings. In addition to these natural basalt materials a series of synthetic basalt glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G have also been developed with 65 trace elements at 0, 3, 30, and 300, ppm respectively. The homogeneity of these materials and their use in international microanalytical proficiency studies will be presented. Application of this technology to the development of glass reference materials as part of a USGS/NASA collaborative studies on the development of Lunar Soil Simulant material will also be discussed.

  11. Application of VSP to geological investigation; P ha oyobi S ha VSP wo mochiita shinso chishitsu chosa

    Energy Technology Data Exchange (ETDEWEB)

    Kinugasa, Y [Geological Survey of Japan, Tsukuba (Japan); Feng, S; Sugiyama, T; Ishikawa, K [Chuoh Kaihatsu Corp., Tokyo (Japan)

    1997-05-27

    Discussed in this paper are the P-wave and S-wave zero-offset VSPs carried out utilizing boreholes located in Nada Ward, Kobe City, and Hokudan-cho, Hyogo Prefecture, as part of the deep layer boring survey following Hanshin Earthquake Disaster. This effort aims at the elucidation of P-wave and S-wave velocity structures, high-precision identification of data obtained by the surface reflection method, and collection of basic data for active faults investigation in the future. Among the velocity structures obtained for various layers, the S-wave velocity structures in particular agree with the stratigraphy excellently and may be utilized in seismic analyses to be conducted in the future. Reflection from geological boundaries is received with precision, providing accurate information about correlation between reflection and geological cross sections. The records will be useful in formulating plans for reflection surveys for instance of the boundary between the Osaka group and Kobe group. Generally speaking, reflection coefficients are large when the reflection is from a boundary where difference is great in elastic wave impedance (mainly difference in velocity). In the case of the boundary between the Kobe group and granite in Awaji Island, however, no strong reflection is found despite the great difference in velocity. This is attributed to the complicated, sharp inclination of the basement rock and to its weathering. 4 refs., 8 figs.

  12. U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1983, 1984, and 1985

    Science.gov (United States)

    Dinwiddie, G.A.; Trask, N.J.

    1986-01-01

    The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research is described according to whether it is related most directly to: (1) high-level and transuranic wastes, (2) low-level wastes, or (3) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, and to studies of regions or environments where waste-disposal sites might be located. A significant part of the activity is concerned with techniques and methods for characterizing disposal sites and studies of geologic and hydrologic processes related to the transport and (or) retention of waste radionuclides.

  13. Twenty-Sixth Annual Report of the Director of the United States Geological Survey, 1904-1905

    Science.gov (United States)

    Walcott, Charles D.

    1905-01-01

    gravity canals, or for various other purposes, and attention was also given to the character of the soils and of the water to be used upon them, the materials used in the construction of the works, and numerous other details incident to reclamation by irrigation.Coal-testing plantUnder two special appropriations of \\$30,000 each, carried by the urgent deficiency bill approved February 18, 1904, and the general deficiency bill approved April 27, 1904, the Director of the Geological Survey was authorized to construct and operate at the Louisiana Purchase Exposition a plant for testing the coals and lignites of the United States, in order to determine their fuel values and the most economic method of their utilization for different purposes, it being provided that all testing machinery and all coals and lignites to be tested 'should be contributed free of charge to the Government. For carrying out the provisions of these acts the Director appointed a committee, consisting of Edward W. Parker, Joseph A. Holmes, and Marius R. Campbell, to direct the construction and operation of the plant. This committee received the heartiest cooperation from the manufacturers of such equipment as was needed for the installation of the plant, from the railroad companies in freight concessions and transportation for the experts and their assistants, and from the coal operators in the furnishing of coal in carload lots for testing purposes. Although the utmost expedition was used in the construction of the plant, it was not until the first of September that the testing work actually began. Between the first of September and the close of the exposition 65 carload samples of coal for testing purposes were received, and the results of the investigation were published in a preliminary report issued as Geological Survey Bulletin No. 261. The coals tested were received from 17 States and Territories, and much valuable information regarding the best uses to which the different coals may be put was

  14. Water-resources activities of the U.S. Geological Survey in Texas; fiscal years 1982-84

    Science.gov (United States)

    Grozier, R.U.; Land, L.F.

    1985-01-01

    The U.S. Geological Survey (USGS) was established by an act of Congress on March 3, 1879, to provide a permanent Federal agency to conduct the systematic and scientific classification of the public lands, and examination of the geological structure, mineral resources, and products of national domain. An integral part of that original mission includes publishing and disseminating the earth-science information needed to understand, to plan the use of, and to manage the Nation's energy, land, mineral, and water resources.

  15. Summary of water-resources activities of the U.S. Geological Survey in Texas; fiscal years 1989-92

    Science.gov (United States)

    Uzcategui, Kristy E.

    1993-01-01

    The U.S. Geological Survey (USGS) was established by an act of Congress on March 3, 1879, to provide a permanent Federal agency to conduct the systematic and scientific classification of the public lands and to examine the geological structure, mineral resources, and products of national domain. An integral part of that original mission includes publishing and disseminating the earth science information needed to understand, to plan the use of, and to manage the Nation's energy, land, mineral, and water resources.

  16. U.S. Geological Survey Emerging Applications of Unmanned Aircraft Systems

    Science.gov (United States)

    Hutt, M. E.

    2012-12-01

    In anticipation of transforming the research methods and resource management techniques employed across the Department of the Interior, the U.S. Geological Survey (USGS) Unmanned Aircraft Systems (UAS) Project Office is conducting missions using small UAS- sUAS platforms (technology in support of scientific, resource and land management missions. UAS technology is currently being used by USGS and our partners to monitor environmental conditions, analyze the impacts of climate change, respond to natural hazards, understand landscape change rates and consequences, conduct wildlife inventories and support related land management and law enforcement missions. Our ultimate goal is to support informed decision making by creating the opportunity, via UAS technology, to gain access to an increased level of persistent monitoring of earth surface processes (forest health conditions, wildfires, earthquake zones, invasive species, etc.) in areas that have been logistically difficult, cost prohibitive or technically impossible to obtain consistent, reliable, timely information. USGS is teaming with the Department of the Interior Aviation Management Directorate to ensure the safe and cost effective adoption of UAS technology. While the USGS is concentrating on operating sUAS, the immense value of increased flight time and more robust sensor capabilities available on larger platforms cannot be ignored. We are partnering with several groups including the Department of Homeland Security, National Aeronautics and Space Administration, Department of Defense, and National Oceanic and Atmospheric Administration for access to data collected from their fleet of high altitude, long endurance (HALE) UAS. The HALE systems include state of the art sensors including Electro-Optical, Thermal Infrared and Synthetic Aperture Radar (SAR). The data being collected by High Altitude, Long Endurance (HALE) systems is can be routinely shared in near real time at several DOI- USGS locations. Analysis

  17. U.S. Geological Survey cooperative water-resources programs in Chester County, Pennsylvania

    Science.gov (United States)

    Wood, Charles R.

    1998-01-01

    Since 1969, the U.S. Geological Survey (USGS) has had a cooperative water-resources investigation program with Chester County to measure and describe the water resources of the County. Generally, the USGS provides one-half of the program funding, and local cooperators are required to provide matching funds. Cooperation has been primarily with the Chester County Water Resources Authority (CCWRA), with participation from the Chester County Health Department and funding from the Chester County Board of Commissioners. Municipalities and the Red Clay Valley Association also have provided part of the funding for several projects. This report describes how the long-term partnership between the USGS and Chester County, Pa., provides the County with the information that it needs for sound water-resources management.The CCWRA was created in 1961, primarily for land acquisition and planning for flood-control and water-supply projects. With the backing of the Brandywine Valley Association, the CCWRA started its first cooperative project with the USGS in 1969. It was a study of the water-quality condition of Chester County streams with an emphasis on benthic macroinvertebrates and stream chemistry.The kinds of projects and data collection conducted by the USGS have changed with the needs of Chester County and the mission of the CCWRA. Chester County is experiencing rapid population growth (it had the tenth-highest rate of growth in the nation from 1980 to 1990). This growth places considerable stress on water resources and has caused the CCWRA to broaden its focus from flood control to water-supply planning, water quality, and ground-water and surface-water management. The results of USGS studies are used by the CCWRA and other County agencies, including the Planning Commission, Health Department, and Parks and Recreation Department, for conducting day-to-day activities and planning for future growth. The results also are used by the CCWRA to provide guidance and technical

  18. Information and informatics in a geological survey - the good, the bad and the ugly

    Science.gov (United States)

    Jackson, I.

    2008-12-01

    It is apparent that the most successful geological surveys (as measured by the only true Key Performance Indicator - their effectiveness in serving their societies) have recognised that, while their core business is making maps and models and doing scientific research to underpin that, the commodity they actually deal in is data and information and knowledge. They know that in a digital world the better they organise the data and information and knowledge, the more successful they will be. In our future world, where e-science will surely dominate, some are already sub-titling themselves as information or knowledge exchange organisations. There seems an unarguable correlation between surveys which organise their information well and those that run their projects well, their agility in responding to government agendas or national emergencies, and flexibility in delivering products their diverse users want. Look deeper and you can see the pivotal role of best practice information management and the tangible benefits a responsible approach to acquiring, storing and delivering information brings. But even in these (most successful) surveys the people leading information management will tell you that it was a gargantuan battle to get the resources to achieve this success and that, even with the downstream fruits of the investment in professional information management and informatics now obvious, it is a continuing struggle to maintain a decent level of funding for these tasks. It is not hard to see why; the struggle is innately one-sided; geoscientists are born and/or trained to be curious, to be independent and to innovate. If the choice is between more research and survey, or a professional approach to information/informatics and the adjudicators are geoscientists, it is not difficult to pick the winner. So what does lie behind a successful approach to information in a geological survey organisation? First, recognise that poor information management cannot just be

  19. Geological and hydrological investigations at Sidi Kreir Site, west of Alexandria, Egypt

    International Nuclear Information System (INIS)

    El-Shazly, E.M.; Shehata, W.M.; Somaida, M.A.

    1978-01-01

    Sidi-Kreir site lies along the Mediterranean Sea coast at km 30 to km 33 westwards from the center of the city of Alexandria. The studied site covers approximately 10 km 2 from the Mediterranean Sea northward to Mallehet (Lake) Maryut southward. This study includes the results of geological investigation of the site both structurally and stratigraphically, and the groundwater conditions, in relation to the erection of a nuclear power station in the site. The surface geology has been mapped using aerial photographs on scale of 1:20,000. Twenty-five drillholes were core-drilled in order to outline the subsurface geology and to observe the groundwater fluctuations. Selected core samples and soil samples were tested geologically in thin sections, physically and mechanically. Water samples were also collected and tested for total dissolved solids and specific weight. Groundwater level fluctuations were observed for a period of one year in 75 wells and drillholes. Furthermore three pumping tests were conducted to estimate the hydraulic properties of the freshwater aquifer. These properties were also calculated using the core samples data

  20. The use of desk studies, remote sensing and surface geological and geophysical techniques in site investigations

    International Nuclear Information System (INIS)

    Mather, J.D.

    1984-02-01

    The geoscientific investigations required to characterise a site for the underground disposal of radioactive wastes involve a wide range of techniques and expertise. Individual national investigations need to be planned with the specific geological environment and waste form in mind. However, in any investigation there should be a planned sequence of operations leading through desk studies and surface investigations to the more expensive and sophisticated sub-surface investigations involving borehole drilling and the construction of in situ test facilities. Desk studies are an important and largely underestimated component of site investigations. Most developed countries have archives of topographical, geological and environmental data within government agencies, universities, research institutes and learned societies. Industry is another valuable source but here confidentiality can be a problem. However, in developing countries and in some regions of developed countries the amount of basic data, which needs to be collected over many decades, will not be as extensive. In such regions remote sensing offers a rapid method of examining large areas regardless of land access, vegetation or geological setting, rapidly and at relatively low cost. It can also be used to examine features, such as discontinuity patterns, over relatively small areas in support of intensive ground investigations. Examples will be given of how remote sensing has materially contributed to site characterisation in a number of countries, particularly those such as Sweden, Canada and the United Kingdom where the major effort has concentrated on crystalline rocks. The main role of desk studies and surface investigations is to provide basic data for the planning and execution of more detailed subsurface investigations. However, such studies act as a valuable screening mechanism and if they are carried out correctly can enable adverse characteristics of a site to be identified at an early stage before

  1. National 2010 survey on the awareness and opinion of the French about geological carbon storage

    International Nuclear Information System (INIS)

    Ha-Duong, Minh; Arnoux, Stephanie; Chaabane, Naceur; Mardon, Gilles; Nadai, Alain; Neri O'Neill, Rebeca

    2011-01-01

    This report presents the results of the 2010 CIRED / TNS Sofres public opinion survey about geological storage of CO 2 in France. The first survey, in April 2007, demonstrated a broad consensus for action against climate change. Three years later in March 2010, even a wide support for action remains, the public opinion was marked from the Copenhagen fiasco and the 'climate-gate'. More generally, in a context of global economic crisis, compared to 2007 the economy/environment balance moves back in 2010 towards the former term. Thus, 62% of the French answered that there is a need to act against climate change, that is 17 points less than three years ago. And 67% estimated that 'the priority must go to the protection of the environment' instead of the economy, that is 11 points less. The 2007 survey suggested that 6% of the respondents were able to define correctly geological storage of CO 2 . The approval rate was 59% at first, but fell to 38% after reading about the risks of the technology. Three years later, the context included emerging CCS projects in France, a (failed) carbon tax proposal and sustained debates on climate change. While CCS has never been a hot topic in the media, it moved from being inexistent to a few specific papers each semesters in important newspapers and some TV / radio air-time. Between 2007 and 2010 the notoriety of CCS increased in France, but the rates of approval mostly stagnated: 57% at first, falling to 37% after the reading on risks. The expression 'stockage geologique du CO 2 ' is now recognized by one third of the French, and about 17% can provide an exact definition. There remain an ambiguity with sequestration in forests, and the mental image of storing CO 2 in underground caves or vessels remains widespread. Our study shows a statistically significant positive correlation between more information and a favorable opinion towards geological sequestration. The opinion of respondents is more stable

  2. Microearthquake studies in Egypt carried out by the geological survey of Egypt

    Science.gov (United States)

    Boulos, Fouad K.; Morgan, Paul; Toppozada, Tousson R.

    1987-07-01

    Extensive microearthquake studies have been conducted in Egypt as a joint project between scientists from the Egyptian Geological Survey and Mining Authority (EGSMA) and U.S. scientists. At this stage, a great part of the data has been analyzed and two intensively active areas have been located: one in the Abu Dabbab area of the Eastern Desert, the second at the mouth of the Gulf of Suez near Gubal Island (Daggett et al., 1980). Both sites have been reported to be the epicenters of large earthquakes in 1955 and 1969, respectively. A few scattered earthquakes have also been located in the northern part of the Red Sea, some of which lie along its median axis (Daggett et al., 1986) adding to evidence for the medial opening of the northern Red Sea. After the occurrence of an earthquake (M = 5.5) in the Aswan region on 14 November 1981, continuous recording of the many aftershocks was carried out by EGSMA for about seven months from December 1981 to July 1982, when the temporary network was replaced by a network of telemetered seismographs installed and operated by Helwan Institute of Astronomy and Geophysics in cooperation with scientists from Lamont and Doherty Geological Observatory (LDGO). The majority of epicenters are concentrated in the vicinity of G. Marawa about 65 km upstream of Aswan Dam, along the E-W Kalabsha fault. The observed focal mechanism is consistent with a right-lateral strike-slip motion on the Kalabsha fault. Analysis of Aswan microearthquakes has been done by EGSMA in cooperation with scientists from California Division of Mines and Geology (CDMG).

  3. Integrating Geological and Geodetic Surveying Techniques for Landslide Deformation Monitoring: Istanbul Case

    Science.gov (United States)

    Menteşe, E. Y.; Kilic, O.; BAS, M.; Tarih, A.; Duran, K.; Gumus, S.; Yapar, E. R.; Karasu, M. E.; Mehmetoğlu, H.; Karaman, A.; Edi˙ger, V.; Kosma, R. C.; Ozalaybey, S.; Zor, E.; Arpat, E.; Polat, F.; Dogan, U.; Cakir, Z.; Erkan, B.

    2017-12-01

    There are several methods that can be utilized for describing the landslide mechanisms. While some of them are commonly used, there are relatively new methods that have been proven to be useful. Obviously, each method has its own limitations and thus integrated use of these methods contributes to obtaining a realistic landslide model. The slopes of Küçükçekmece and Büyükçekmece Lagoons located at the Marmara Sea coast of İstanbul, Turkey, are among most specific examples of complex type landslides. The landslides in the area started developing at low sea level, and appears to ceased or at least slowed down to be at minimum after the sea level rise, as oppose to the still-active landslides that continue to cause damage especially in the valley slopes above the recent sea level between the two lagoons. To clarify the characteristics of these slope movements and classify them in most accurate way, Directorate of Earthquake and Ground Research of Istanbul Metropolitan Municipality launched a project in cooperation with Marmara Research Center of The Scientific and Technological Research Council of Turkey (TÜBİTAK). The project benefits the utility of the techniques of different disciplines such as geology, geophysics, geomorphology, hydrogeology, geotechnics, geodesy, remote sensing and meteorology. Specifically, this study focuses on two main axes of these techniques, namely: geological and geodetic. The reason for selecting these disciplines is because of their efficiency and power to understand the landslide mechanism in the area. Main approaches used in these studies are comprised of geological drills, inclinometer measurements, GPS surveys and SAR (both satellite and ground based) techniques. Integration of the results gathered from these techniques led the project team to comprehend critical aspects of landslide phenomenon in the area and produce precise landslide hazard maps that are basic instruments for a resilient urban development.

  4. Geological Site Descriptive Model. A strategy for the model development during site investigations

    International Nuclear Information System (INIS)

    Munier, Raymond; Stenberg, Leif; Stanfors, Roy; Milnes, Allan Geoffrey; Hermanson, Jan; Triumf, Carl-Axel

    2003-04-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is at present conducting site investigations as a preliminary to building an underground nuclear waste disposal facility in Sweden. This report presents a methodology for constructing, visualising and presenting 3-dimensional geological models, based on data from the site investigations. The methodology integrates with the overall work-flow of the site investigations, from the collection of raw data to the complete site description, as proposed in several earlier technical reports. Further, it is specifically designed for interaction with SICADA - SKB's Site Characterisation Database - and RVS - SKB's Rock Visualisation System. This report is one in a series of strategy documents intended to demonstrate how modelling is to be performed within each discipline. However, it also has a wider purpose, since the geological site descriptive model provides the basic geometrical framework for all the other disciplines. Hence, the wider aim is to present a practical and clear methodology for the analysis and interpretation of input data for use in the construction of the geology-based 3D geometrical model. In addition to the various aspects of modelling described above, the methodology presented here should therefore also provide: guidelines and directives on how systematic interpretation and integration of geo-scientific data from the different investigation methods should be carried out; guidelines on how different geometries should be created in the geological models; guidelines on how the assignment of parameters to the different geological units in RVS should be accomplished; guidelines on the handling of uncertainty at different points in the interpretation process. In addition, it should clarify the relation between the geological model and other models used in the processes of site characterisation, repository layout and safety analysis. In particular, integration and transparency should be promoted. The

  5. Geological Site Descriptive Model. A strategy for the model development during site investigations

    Energy Technology Data Exchange (ETDEWEB)

    Munier, Raymond; Stenberg, Leif [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Stanfors, Roy [Roy Stanfors Consulting, Lund (Sweden); Milnes, Allan Geoffrey [GEA Consulting, Uppsala (Sweden); Hermanson, Jan [Golder Associates, Stockholm (Sweden); Triumf, Carl-Axel [Geovista, Luleaa (Sweden)

    2003-04-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is at present conducting site investigations as a preliminary to building an underground nuclear waste disposal facility in Sweden. This report presents a methodology for constructing, visualising and presenting 3-dimensional geological models, based on data from the site investigations. The methodology integrates with the overall work-flow of the site investigations, from the collection of raw data to the complete site description, as proposed in several earlier technical reports. Further, it is specifically designed for interaction with SICADA - SKB's Site Characterisation Database - and RVS - SKB's Rock Visualisation System. This report is one in a series of strategy documents intended to demonstrate how modelling is to be performed within each discipline. However, it also has a wider purpose, since the geological site descriptive model provides the basic geometrical framework for all the other disciplines. Hence, the wider aim is to present a practical and clear methodology for the analysis and interpretation of input data for use in the construction of the geology-based 3D geometrical model. In addition to the various aspects of modelling described above, the methodology presented here should therefore also provide: guidelines and directives on how systematic interpretation and integration of geo-scientific data from the different investigation methods should be carried out; guidelines on how different geometries should be created in the geological models; guidelines on how the assignment of parameters to the different geological units in RVS should be accomplished; guidelines on the handling of uncertainty at different points in the interpretation process. In addition, it should clarify the relation between the geological model and other models used in the processes of site characterisation, repository layout and safety analysis. In particular, integration and transparency should be

  6. U.S. Geological Survey Assessment of Undiscovered Petroleum Resources of the Hamra Basin, Libya, 2006

    Science.gov (United States)

    ,

    2007-01-01

    The Hamra Basin Province encompasses approximately 244,100 square kilometers (94,250 square miles) and is entirely within Libya. One composite total petroleum system (TPS) was defined for this assessment; it extends from Libya westward into adjacent parts of Algeria and southern Tunisia. The Hamra Basin part of the TPS was subdivided into four assessment units for the purpose of resource assessment. The assessment units cover only 172,390 square kilometers of the Hamra Basin Province; the remaining area has little potential for undiscovered petroleum resources because of the absence of petroleum source rocks. Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean volumes of 784 million barrels of crude oil, 4,748 billion cubic feet of natural gas, and 381 million barrels of natural gas liquids in the Hamra Basin of northwestern Libya. Most of the undiscovered crude oil and natural gas are interpreted to be in deeper parts of the Hamra Basin.

  7. Hydrogeologic data from the US Geological Survey test wells near Waycross, Ware County, Georgia

    Science.gov (United States)

    Matthews, S.E.; Krause, R.E.

    1983-01-01

    Two wells were constructed near Waycross, Ware County, Georgia, from July 1980 to May 1981 to collect stratigraphic, structural, geophysical, hydrologic, hydraulic, and geochemical information for the U.S. Geological Survey Tertiary Limestone Regional Aquifer-System Analysis. Data collection included geologic sampling and coring, borehole geophysical logging, packer testing, water-level measuring, water-quality sampling, and aquifer testing. In the study area, the Tertiary limestone aquifer system is about 1,300 feet thick and is confined and overlain by about 610 feet of clastic sediments. The aquifer system consists of limestone, dolomite, and minor evaporites and has high porosity and permeability. A 4-day continuous discharge aquifer test was conducted, from which a transmissivity of about 1 million feet squared per day and a storage coefficient of 0.0001 were calculated. Water from the upper part of the aquifer is of a calcium bicarbonate type. The deeper highly mineralized zone produces a sodium bicarbonate type water in which concentrations of magnesium, sulfate, chloride, sodium, and some trace metals increase with depth. (USGS)

  8. U.S. Geological Survey yearbook, fiscal year 1993: At work across the Nation

    Science.gov (United States)

    ,

    1994-01-01

    The need for earth science has never been more paramount. The devastating flooding of the Mississippi River this past year, strikingly portrayed on the cover and discussed in detail in this report (p. 37-42), was a sobering reminder of nature's elemental power. As a Nation, we face many environmental and economic challenges, such as natural hazards, that can be addressed effectively only through science. Water quality, resource assessments, climate change, and toxic wastes are all critical issues that can best be dealt with when approached from a sound scientific base. The goal of the U.S. Geological Survey is to provide hydrologic, geologic, and topographic information and understanding that contribute to the wise management of the Nation's natural resources and that promote the health, safety, and well-being of all Americans. FY1993 has proven to be a particularly challenging one for the USGS. We entered into a time of transition from the long-term leadership of Director Dallas Peck and Associate Director Doyle Frederick to the appointment of a new director. We thank Dallas and Doyle for their many years of service and for their support during the transition.

  9. U.S. Geological Survey Science for the Wyoming Landscape Conservation Initiative-2009 Annual Report

    Science.gov (United States)

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Biewick, Laura R. H.; Blecker, Steven W.; Bristol, R. Sky; Carr, Natasha B.; Chalfoun, Anna D.; Chong, Geneva W.; Diffendorfer, James E.; Fedy, Bradley C.; Garman, Steven L.; Germaine, Stephen; Grauch, Richard I.; Holloway, JoAnn M.; Homer, Collin G.; Kauffman, Matthew J.; Keinath, Douglas; Latysh, Natalie; Manier, Daniel J.; McDougal, Robert R.; Melcher, Cynthia P.; Miller, Kirk A.; Montag, Jessica; Nutt, Constance J.; Potter, Christopher J.; Sawyer, Hall; Schell, Spencer; Shafer, Sarah L.; Smith, David B.; Stillings, Lisa L.; Tuttle, Michele L.W.; Wilson, Anna B.

    2010-01-01

    This is the second report produced by the U.S. Geological Survey (USGS) for the Wyoming Landscape Conservation Initiative (WLCI) to detail annual work activities. The first report described work activities for 2007 and 2008; this report covers work activities conducted in 2009. Important differences between the two reports are that (1) this report does not lump all the Effectiveness Monitoring activities together as last year's report did, which will allow WLCI partners and other readers to fully appreciate the scope and accomplishments of those activities, and (2) this report does not include a comprehensive appendix of the background details for each work activity. In 2009, there were 29 ongoing or completed activities, and there were 5 new work activities conducted under the 5 original major multi-disciplinary science and technical assistance activities: (1) Baseline Synthesis; (2) Targeted Monitoring and Research; (3) Data and Information Management; (4) Integration and Coordination; and (5) Decisionmaking and Evaluation. New work included (1) developing a soil-quality index, (2) developing methods for assessing levels of and relationships between mercury and soil organic matter, and (3) ascertaining element source, mobility, and fate. Additionally, (4) remotely sensed imagery was used to assess vegetation as an indicator of soil condition and geology, and (5) an Integrated Assessment (IA) was initiated to synthesize what has been learned about WLCI systems to date, and to develop associated decision tools, maps, and a comprehensive report.

  10. Geological data acquisition for site characterisation at Olkiluoto: a framework for the phase of underground investigations

    International Nuclear Information System (INIS)

    Milnes, A.G.; Aaltonen, I.; Kemppainen, K.; Mattila, J.; Wikstroem, L.; Front, K.; Kaerki, A.; Gehoer, S.; Paulamaeki, S.; Paananen, M.; Ahokas, T.

    2007-05-01

    'Geological data acquisition' is a general term for the collection of observations and measurements by direct observation of exposed bedrock in the field (i.e. in natural outcrops and trenches, in drillholes, and in tunnels and other underground excavations). Only field-based data acquisition is included in this report: laboratory-based investigations will be continued, based on the field data and sampling, and all the data will be subject to discipline-specific processing, as the project proceeds. The ultimate aim of geological data acquisition is to provide the necessary data base for geological models of the bedrock of the Olkiluoto site, in connection with the construction of an underground rock characterisation facility, ONKALO, and a repository for spent nuclear fuel, at about 500m depth. Geological data acquisition plays a central role in site characterisation and modelling, and is intended to provide a solid platform on which the other disciplines (rock mechanics, hydrogeology, seismic risk assessment, etc.) can base their investigations. Based on consideration of a series of guidelines (e.g. modelling scale, source of data, level of investigation, national and international experience, special conditions at Olkiluoto, need for process understanding), a project-oriented 'framework' has been developed as a background to the different projects within the geological data acquisition programme. Each project will require its own system of data acquisition (methodology, spreadsheets, protocols, etc.), as described in the corresponding reports; the present report concentrates on the general principles which lie behind the different methodologies and data sheets. These principles are treated under three main headings: characterization of intact rock, characterization of deformation zone intersections, and characterization of individual fractures. Geological mapping of natural outcrops and trenches at Olkiluoto, and lithological logging of more than 40 rock cores

  11. U.S. Geological Survey experience with the residual absolutes method

    Directory of Open Access Journals (Sweden)

    E. W. Worthington

    2017-10-01

    Full Text Available The U.S. Geological Survey (USGS Geomagnetism Program has developed and tested the residual method of absolutes, with the assistance of the Danish Technical University's (DTU Geomagnetism Program. Three years of testing were performed at College Magnetic Observatory (CMO, Fairbanks, Alaska, to compare the residual method with the null method. Results show that the two methods compare very well with each other and both sets of baseline data were used to process the 2015 definitive data. The residual method will be implemented at the other USGS high-latitude geomagnetic observatories in the summer of 2017 and 2018.

  12. Specification for the U.S. Geological Survey Historical Topographic Map Collection

    Science.gov (United States)

    Allord, Gregory J.; Walter, Jennifer L.; Fishburn, Kristin A.; Shea, Gale A.

    2014-01-01

    This document provides the detailed requirements for producing, archiving, and disseminating a comprehensive digital collection of topographic maps for the U.S. Geological Survey (USGS) Historical Topographic Map Collection (HTMC). The HTMC is a digital archive of about 190,000 printed topographic maps published by the USGS from the inception of the topographic mapping program in 1884 until the last paper topographic map using lithographic printing technology was published in 2006. The HTMC provides a comprehensive digital repository of all scales and all editions of USGS printed topographic maps that is easily discovered, browsed, and downloaded by the public at no cost. The HTMC provides ready access to maps that are no longer available for distribution in print. A digital file representing the original paper historical topographic map is produced for each historical map in the HTMC in georeferenced PDF (GeoPDF) format (a portable document format [PDF] with a geospatial extension).

  13. Landsat Image Map Production Methods at the U. S. Geological Survey

    Science.gov (United States)

    Kidwell, R.D.; Binnie, D.R.; Martin, S.

    1987-01-01

    To maintain consistently high quality in satellite image map production, the U. S. Geological Survey (USGS) has developed standard procedures for the photographic and digital production of Landsat image mosaics, and for lithographic printing of multispectral imagery. This paper gives a brief review of the photographic, digital, and lithographic procedures currently in use for producing image maps from Landsat data. It is shown that consistency in the printing of image maps is achieved by standardizing the materials and procedures that affect the image detail and color balance of the final product. Densitometric standards are established by printing control targets using the pressplates, inks, pre-press proofs, and paper to be used for printing.

  14. U.S. Geological Survey ArcMap Sediment Classification tool

    Science.gov (United States)

    O'Malley, John

    2007-01-01

    The U.S. Geological Survey (USGS) ArcMap Sediment Classification tool is a custom toolbar that extends the Environmental Systems Research Institute, Inc. (ESRI) ArcGIS 9.2 Desktop application to aid in the analysis of seabed sediment classification. The tool uses as input either a point data layer with field attributes containing percentage of gravel, sand, silt, and clay or four raster data layers representing a percentage of sediment (0-100%) for the various sediment grain size analysis: sand, gravel, silt and clay. This tool is designed to analyze the percent of sediment at a given location and classify the sediments according to either the Folk (1954, 1974) or Shepard (1954) as modified by Schlee(1973) classification schemes. The sediment analysis tool is based upon the USGS SEDCLASS program (Poppe, et al. 2004).

  15. US Geological Survey uranium and thorium resource assessment and exploration research program, fiscal year 1981

    International Nuclear Information System (INIS)

    Offield, T.W.

    1980-01-01

    The US Geological Survey (USGS) uranium-thorium program is continuing to emphasize multidisciplinary studies to define the settings and habitats of uranium deposits and to elucidate the processes by which the ore deposits formed. As with the uranium scene generally, some uncertainty characterizes the program's transition from FY 1980 to FY 1981. As of the beginning of the new fiscal year, a cut of 15% in base funding of the USGS uranium program has been effected by Congress. Such a cut parallels the major curtailment of the NURE program. The USGS in FY 1980 completed almost all of its commitment to the NURE program quadrangle-evaluation work, and only a relatively modest continuing involvement in the NURE world-class and intermediate-grade studies remains for FY 1981. Objectives and program scope, noteworthy results of FY 1980 research, and program activities for FY 1981 are presented in this report

  16. Radiochemical analyses of surface water from U.S. Geological Survey hydrologic bench-mark stations

    Science.gov (United States)

    Janzer, V.J.; Saindon, L.G.

    1972-01-01

    The U.S. Geological Survey's program for collecting and analyzing surface-water samples for radiochemical constituents at hydrologic bench-mark stations is described. Analytical methods used during the study are described briefly and data obtained from 55 of the network stations in the United States during the period from 1967 to 1971 are given in tabular form.Concentration values are reported for dissolved uranium, radium, gross alpha and gross beta radioactivity. Values are also given for suspended gross alpha radioactivity in terms of natural uranium. Suspended gross beta radioactivity is expressed both as the equilibrium mixture of strontium-90/yttrium-90 and as cesium-137.Other physical parameters reported which describe the samples include the concentrations of dissolved and suspended solids, the water temperature and stream discharge at the time of the sample collection.

  17. Strategic plan for science-U.S. Geological Survey, Ohio Water Science Center, 2010-15

    Science.gov (United States)

    ,

    2010-01-01

    This Science Plan identifies specific scientific and technical programmatic issues of current importance to Ohio and the Nation. An examination of those issues yielded a set of five major focus areas with associated science goals and strategies that the Ohio Water Science Center will emphasize in its program during 2010-15. A primary goal of the Science Plan is to establish a relevant multidisciplinary scientific and technical program that generates high-quality products that meet or exceed the expectations of our partners while supporting the goals and initiatives of the U.S. Geological Survey. The Science Plan will be used to set the direction of new and existing programs and will influence future training and hiring decisions by the Ohio Water Science Center.

  18. U.S. Geological Survey Methodology Development for Ecological Carbon Assessment and Monitoring

    Science.gov (United States)

    Zhu, Zhi-Liang; Stackpoole, S.M.

    2009-01-01

    Ecological carbon sequestration refers to transfer and storage of atmospheric carbon in vegetation, soils, and aquatic environments to help offset the net increase from carbon emissions. Understanding capacities, associated opportunities, and risks of vegetated ecosystems to sequester carbon provides science information to support formulation of policies governing climate change mitigation, adaptation, and land-management strategies. Section 712 of the Energy Independence and Security Act (EISA) of 2007 mandates the Department of the Interior to develop a methodology and assess the capacity of our nation's ecosystems for ecological carbon sequestration and greenhouse gas (GHG) flux mitigation. The U.S. Geological Survey (USGS) LandCarbon Project is responding to the Department of Interior's request to develop a methodology that meets specific EISA requirements.

  19. A user interface for the Kansas Geological Survey slug test model.

    Science.gov (United States)

    Esling, Steven P; Keller, John E

    2009-01-01

    The Kansas Geological Survey (KGS) developed a semianalytical solution for slug tests that incorporates the effects of partial penetration, anisotropy, and the presence of variable conductivity well skins. The solution can simulate either confined or unconfined conditions. The original model, written in FORTRAN, has a text-based interface with rigid input requirements and limited output options. We re-created the main routine for the KGS model as a Visual Basic macro that runs in most versions of Microsoft Excel and built a simple-to-use Excel spreadsheet interface that automatically displays the graphical results of the test. A comparison of the output from the original FORTRAN code to that of the new Excel spreadsheet version for three cases produced identical results.

  20. Description of the U.S. Geological Survey Geo Data Portal data integration framework

    Science.gov (United States)

    Blodgett, David L.; Booth, Nathaniel L.; Kunicki, Thomas C.; Walker, Jordan I.; Lucido, Jessica M.

    2012-01-01

    The U.S. Geological Survey has developed an open-standard data integration framework for working efficiently and effectively with large collections of climate and other geoscience data. A web interface accesses catalog datasets to find data services. Data resources can then be rendered for mapping and dataset metadata are derived directly from these web services. Algorithm configuration and information needed to retrieve data for processing are passed to a server where all large-volume data access and manipulation takes place. The data integration strategy described here was implemented by leveraging existing free and open source software. Details of the software used are omitted; rather, emphasis is placed on how open-standard web services and data encodings can be used in an architecture that integrates common geographic and atmospheric data.

  1. Investigations into near-real-time surveying for geophysical data collection using an autonomous ground vehicle

    Science.gov (United States)

    Phelps, Geoffrey A.; Ippolito, C.; Lee, R.; Spritzer, R.; Yeh, Y.

    2014-01-01

    The U.S. Geological Survey and the National Aeronautics and Space Administration are cooperatively investigating the utility of unmanned vehicles for near-real-time autonomous surveys of geophysical data collection. Initially focused on unmanned ground vehicle collection of magnetic data, this cooperative effort has brought unmanned surveying, precision guidance, near-real-time communication, on-the-fly data processing, and near-real-time data interpretation into the realm of ground geophysical surveying, all of which offer advantages over current methods of manned collection of ground magnetic data. An unmanned ground vehicle mission has demonstrated that these vehicles can successfully complete missions to collect geophysical data, and add advantages in data collection, processing, and interpretation. We view the current experiment as an initial phase in further unmanned vehicle data-collection missions, including aerial surveying.

  2. Engineering Geological Investigation of Slow Moving Landslide in Jahiyang Village, Salawu, Tasikmalaya Regency

    Directory of Open Access Journals (Sweden)

    Dwi Sarah

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v7i1.133An understanding of landslide mechanism is imperative to determine the appropriate mitigation method. The slow moving landslide (creeping which occurred in Kampung Salawangi, Jahiyang Village, Salawu Subregency, Tasikmalaya had caused economical and environmental losses due to the frequent active movement particularly following rainfall events. Engineering geological investigation and slope stability analysis were carried out in the studied area in order to elucidate the mechanism of the landslide. The engineering geological investigation consists of local topographical mapping, geotechnical drillings, hand borings, cone penetration, and laboratory tests. The slope stability assessment of the recent landslide was conducted by a finite element method. The results of engineering geological data analysis show that the studied area is composed of residual soils of soft to firm sandy silt and loose to compact silty sand and base rock of fresh to weathered volcanic breccias with groundwater level varying between 3 - 16 m. The engineering properties of the residual soils indicate that the sandy silt is of high plasticity and the shear strength properties of the sandy silt and silty sand show low value with effective cohesion of 6.0 - 21.74 kPa and effective friction angle of 12.00 - 25.980. The assessment of slope stability shows that the stability of the studied area is largely influenced by the rise of groundwater level marked by the decrease of safety factor and increase of slope displacement.

  3. Methods of practice and guidelines for using survey-grade global navigation satellite systems (GNSS) to establish vertical datum in the United States Geological Survey

    Science.gov (United States)

    Rydlund, Jr., Paul H.; Densmore, Brenda K.

    2012-01-01

    Geodetic surveys have evolved through the years to the use of survey-grade (centimeter level) global positioning to perpetuate and post-process vertical datum. The U.S. Geological Survey (USGS) uses Global Navigation Satellite Systems (GNSS) technology to monitor natural hazards, ensure geospatial control for climate and land use change, and gather data necessary for investigative studies related to water, the environment, energy, and ecosystems. Vertical datum is fundamental to a variety of these integrated earth sciences. Essentially GNSS surveys provide a three-dimensional position x, y, and z as a function of the North American Datum of 1983 ellipsoid and the most current hybrid geoid model. A GNSS survey may be approached with post-processed positioning for static observations related to a single point or network, or involve real-time corrections to provide positioning "on-the-fly." Field equipment required to facilitate GNSS surveys range from a single receiver, with a power source for static positioning, to an additional receiver or network communicated by radio or cellular for real-time positioning. A real-time approach in its most common form may be described as a roving receiver augmented by a single-base station receiver, known as a single-base real-time (RT) survey. More efficient real-time methods involving a Real-Time Network (RTN) permit the use of only one roving receiver that is augmented to a network of fixed receivers commonly known as Continually Operating Reference Stations (CORS). A post-processed approach in its most common form involves static data collection at a single point. Data are most commonly post-processed through a universally accepted utility maintained by the National Geodetic Survey (NGS), known as the Online Position User Service (OPUS). More complex post-processed methods involve static observations among a network of additional receivers collecting static data at known benchmarks. Both classifications provide users

  4. 2D resistivity survey in complex geological structure area. Application to the volcanic area; Fukuzatsuna chishitsu kozo chiiki ni okeru hiteiko nijigen tansa. Kazangan chiiki deno tekiorei

    Energy Technology Data Exchange (ETDEWEB)

    Asakawa, S; Ikuma, T; Tanifuji, R [DIA Consultants Co. Ltd., Tokyo (Japan)

    1996-05-01

    Introduced herein is an application of 2D resistivity survey to a volcanic rock area where the survey result is difficult to interpret because of its complex geological structure. In a dam site survey, main problems involve the permeability of water through faults and weathered, altered zones. At this site, a 2D resistivity survey was conducted, a 2D geological structure was deduced from the resistivity section, and the result was examined. It was found that resistivity distribution was closely related to hydrographic factors, but no obvious correlation was detected between rock classes and R, Q, and D. In conducting investigations into a section planned for a highway tunnel, it was learned that the problem was a volcanic ash layer to collapse instantly upon absorbing water, and the distribution of the ash layer, not to be disclosed by boring, was subjected to a 2D resistivity survey. The survey was conducted into the structure above where the tunnel would run, and further into the face, and studies were made about what layer was reflected by the resistivity distribution obtained by analysis. The result of the analysis agreed with the details of the layer that was disclosed afterward. 4 figs., 1 tab.

  5. Geology, Geochemistry and Ground Magnetic Survey on Kalateh Naser Iron Ore Deposit, Khorasan Jonoubi Province

    Directory of Open Access Journals (Sweden)

    Saeed Saadat

    2017-02-01

    Full Text Available Introduction Ground magnetometer surveys is one of the oldest geophysical exploration methods used in identifying iron reserves. The correct interpretation of ground magnetic surveys, along with geological and geochemical data will not only reduce costs but also to indicate the location, depth and dimensions of the hidden reserves of iron (Robinson and Coruh, 2005; Calagari, 1992. Kalateh Naser prospecting area is located at 33° 19َ to 33° 19ََ 42" latitude and 60° 0' to 60° 9َ 35" longitude in the western side of the central Ahangaran mountain range, eastern Iran (Fig.1. Based on primary field evidences, limited outcrops of magnetite mineralization were observed and upon conducting ground magnetic survey, evidence for large Iron ore deposits were detected (Saadat, 2014. This paper presents the geological and geochemical studies and the results of magnetic measurements in the area of interest and its applicability in exploration of other potential Iron deposits in the neighboring areas. Materials and methods To better understand the geological units of the area, samples were taken and thin sections were studied. Geochemical studies were conducted through XRF and ICP-Ms and wet chemistry analysis. The ground magnetic survey was designed to take measurements from grids of 20 meter apart lines and 10 meter apart points along the north-south trend. 2000 points were measured during a 6-day field work by expert geophysicists. Records were made by Canadian manufactured product Magnetometer Proton GSM19T (Fig. 2. Properties of Proton Magnetometer using in magnetic survey in Kalateh Naser prospecting area is shown in Table 1. Total magnetic intensity map, reduced to pole magnetic map, analytic single map, first vertical derivative map and upward continuation map have been prepared for this area. Results The most significant rock units in the area are cretaceous carbonate rocks (Fig. 3. The unit turns to shale and thin bedded limestone in the

  6. A geological-radiometric uranium survey in the Tlaxiaco area of the State of Oaxaca

    International Nuclear Information System (INIS)

    Guillen R, O.E.

    1981-01-01

    Explorations were effected in the northwestern part of the State of Oaxaca neighbouring the city of Tlaxiaco and lying within the Oaxaca-Mixteca province. The survey comprised a regional area of 642.2.K, in which abnormalities auspicious to the presence of mineral uranium had previously been found. The area of interest, initially limited to a strip 10 kilometers long by 1/2 kilometers wide, showed evidence, however, of an even greater extension. Among the lithological units found of predominate interest were clastic, sedimentary rocks, mezozoic carbonate rocks, and extrusive and intrusive igneous rocks. From the high radiometric values obtained, the extrusive pyroclastic rocks showed more favourable signs of the presence of uranium ore and were considered of chief uranium significance in the area. Minerological, structural and lithological detectors (guides) have been set up in the area for an extensive location of abnormalities. The work based on regionally conducted geological and radiological surveys followed by detailed area of interest studies. (author)

  7. Science strategy for Core Science Systems in the U.S. Geological Survey, 2013-2023

    Science.gov (United States)

    Bristol, R. Sky; Euliss, Ned H.; Booth, Nathaniel L.; Burkardt, Nina; Diffendorfer, Jay E.; Gesch, Dean B.; McCallum, Brian E.; Miller, David M.; Morman, Suzette A.; Poore, Barbara S.; Signell, Richard P.; Viger, Roland J.

    2012-01-01

    Core Science Systems is a new mission of the U.S. Geological Survey (USGS) that grew out of the 2007 Science Strategy, “Facing Tomorrow’s Challenges: U.S. Geological Survey Science in the Decade 2007–2017.” This report describes the vision for this USGS mission and outlines a strategy for Core Science Systems to facilitate integrated characterization and understanding of the complex earth system. The vision and suggested actions are bold and far-reaching, describing a conceptual model and framework to enhance the ability of USGS to bring its core strengths to bear on pressing societal problems through data integration and scientific synthesis across the breadth of science.The context of this report is inspired by a direction set forth in the 2007 Science Strategy. Specifically, ecosystem-based approaches provide the underpinnings for essentially all science themes that define the USGS. Every point on earth falls within a specific ecosystem where data, other information assets, and the expertise of USGS and its many partners can be employed to quantitatively understand how that ecosystem functions and how it responds to natural and anthropogenic disturbances. Every benefit society obtains from the planet—food, water, raw materials to build infrastructure, homes and automobiles, fuel to heat homes and cities, and many others, are derived from or effect ecosystems.The vision for Core Science Systems builds on core strengths of the USGS in characterizing and understanding complex earth and biological systems through research, modeling, mapping, and the production of high quality data on the nation’s natural resource infrastructure. Together, these research activities provide a foundation for ecosystem-based approaches through geologic mapping, topographic mapping, and biodiversity mapping. The vision describes a framework founded on these core mapping strengths that makes it easier for USGS scientists to discover critical information, share and publish

  8. Chemical Composition of Ferromanganese Crusts in the World Ocean: A Review and Comprehensive Database. U.S. Geological Survey.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The USGS Ferromanganese Crust data set was compiled by F.T. Manheim and C.M. Lane-Bostwick of the U.S. Geological Survey, Woods Hole, MA. The data set consists of...

  9. U.S. Geological Survey Ecosystems science strategy: advancing discovery and application through collaboration

    Science.gov (United States)

    Williams, Byron K.; Wingard, G. Lynn; Brewer, Gary; Cloern, James E.; Gelfenbaum, Guy; Jacobson, Robert B.; Kershner, Jeffrey L.; McGuire, Anthony David; Nichols, James D.; Shapiro, Carl D.; van Riper, Charles; White, Robin P.

    2013-01-01

    Ecosystem science is critical to making informed decisions about natural resources that can sustain our Nation’s economic and environmental well-being. Resource managers and policymakers are faced with countless decisions each year at local, regional, and national levels on issues as diverse as renewable and nonrenewable energy development, agriculture, forestry, water supply, and resource allocations at the urbanrural interface. The urgency for sound decisionmaking is increasing dramatically as the world is being transformed at an unprecedented pace and in uncertain directions. Environmental changes are associated with natural hazards, greenhouse gas emissions, and increasing demands for water, land, food, energy, mineral, and living resources. At risk is the Nation’s environmental capital, the goods and services provided by resilient ecosystems that are vital to the health and wellbeing of human societies. Ecosystem science—the study of systems of organisms interacting with their environment and the consequences of natural and human-induced change on these systems—is necessary to inform decisionmakers as they develop policies to adapt to these changes. This Ecosystems Science Strategy is built on a framework that includes basic and applied science. It highlights the critical roles that U.S. Geological Survey (USGS) scientists and partners can play in building scientific understanding and providing timely information to decisionmakers. The strategy underscores the connection between scientific discoveries and the application of new knowledge, and it integrates ecosystem science and decisionmaking, producing new scientific outcomes to assist resource managers and providing public benefits. We envision the USGS as a leader in integrating scientific information into decisionmaking processes that affect the Nation’s natural resources and human well-being. The USGS is uniquely positioned to play a pivotal role in ecosystem science. With its wide range of

  10. Argon in hornblende, biotite and muscovite in geologic cooling - Ar-40/Ar-39-investigations

    International Nuclear Information System (INIS)

    Rittman, K.L.

    1984-01-01

    The results of the Ar-40/Ar-39 studies are discussed under the aspect of whether the age data of the minerals indicate a cooling process. The author hopes that isotope dating of minerals with different closing temperatures will describe the temperature/time history of an area in the temperature range of 600 to 200 0 C. The findings are analyzed under three aspects: How much do they contribute to the initial methodological question, what do they contribute to the regional geology of the areas investigated, and in what respects do they extent the present knowledge of the geochronological analysis, i.e. its techniques and interpretation. (orig.) [de

  11. Bibliography of publications related to the Yucca Mountain Site Characterization Project prepared by U.S. Geological Survey personnel through April 1991

    International Nuclear Information System (INIS)

    Glanzman, V.M.

    1991-01-01

    Personnel of the US Geological Survey have participated in nuclear-waste management studies in the State of Nevada since the mid-1970's. A bibliography of publications prepared principally for the US Department of Energy Yucca Mountain Site Characterization Project (formerly Nevada Nuclear Waste Storage Investigations) through April 1991 contains 475 entries in alphabetical order. The listing includes publications prepared prior to the inception of the Nevada Nuclear Waste Storage Investigations Project in April 1977 and selected publications of interest to the Yucca Mountain region. 480 refs

  12. Geologic and geotechnical investigation of the Windsor Park subdivision North Las Vegas, Nevada

    International Nuclear Information System (INIS)

    Linnert, L.M.; Werle, J.L.; Stilley, A.N.; Olsen, B.L.

    1994-01-01

    The Windsor Park subdivision in North Las Vegas, Nevada has received widespread attention for damage to the homes and infrastructure from fissures, land subsidence and adverse soil conditions. Between March and July, 1992, Converse Consultants Southwest, Inc. conducted a geologic and geotechnical investigation for the Windsor Park Revitalization Project. The purpose of the work was to investigate the probable factors contributing to the reported damage and distress in the area, evaluate the potential for future damage, and assess the feasibility of possible mitigation and repair. The site is constructed on the juncture of at least two subsidence-related fault scarps, and earth fissures have been extensively mapped in the Windsor Park and surrounding area. A total of twenty-one trenches and fifteen borings were located within the subdivision and around the perimeter to observe subsurface geologic features and to collect samples for laboratory testing. The primary causes of damage within the development were found to be (1) earth fissuring and (2) expansive clays. The risk of future damage to structures at the Windsor Park site was also evaluated. A high potential for fissuring was found at the site, and future structural distress in the area will likely be similar to past damage. Although engineering upgrades will reduce the risk posed by underlying expansive clays, they cannot totally eliminate the risk from fissuring. 10 refs., 8 figs., 1 tab

  13. U.S. Geological Survey distribution of European Space Agency's Sentinel-2 data

    Science.gov (United States)

    Pieschke, Renee L.

    2017-03-31

    A partnership established between the European Space Agency (ESA) and the U.S. Geological Survey (USGS) allows for USGS storage and redistribution of images acquired by the MultiSpectral Instrument (MSI) on the European Union's Sentinel-2 satellite mission. The MSI data are acquired from a pair of satellites, Sentinel-2A and Sentinel-2B, which are part of a larger set of ESA missions focusing on different aspects of Earth observation. The primary purpose of the Sentinel-2 series is to collect multispectral imagery over the Earth’s land surfaces, large islands, and inland and coastal waters. Sentinel-2A was launched in 2015 and Sentinel-2B launched in 2017.The collaborative effort between ESA and USGS provides for public access and redistribution of global acquisitions of Sentinel-2 data at no cost, which allows users to download the MSI imagery from USGS access systems such as Earth- Explorer, in addition to the ESA Sentinels Scientific Data Hub. The MSI sensor acquires 13 spectral bands that are highly complementary to data acquired by the USGS Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). The product options from USGS include a Full-Resolution Browse (FRB) image product generated by USGS, along with a 100-kilometer (km) by 100-km tile-based Level-1C top-of-atmosphere (TOA) reflectance product that is very similar (but not identical) to the currently (2017) distributed ESA Level 1C product.

  14. Improvement of analytical capabilities of neutron activation analysis laboratory at the Colombian Geological Survey

    Science.gov (United States)

    Parrado, G.; Cañón, Y.; Peña, M.; Sierra, O.; Porras, A.; Alonso, D.; Herrera, D. C.; Orozco, J.

    2016-07-01

    The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes with medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.

  15. Detailed geochemical survey for east-central Minnesota, geology and geochemistry of selected uranium targets

    International Nuclear Information System (INIS)

    Morey, G.B.; Lively, R.S.

    1980-01-01

    Results of a detailed geochemical survey of approximately 6820 km 2 in parts of Aitkin, Carlton, Kanabec, and Pine Counties, east-central Minnesota are reported. Geochemical data are presented for 883 groundwater samples and 200 bedrock samples. Although all of the groundwaters in the study area have similar major-element concentrations and therefore presumably a common ancestry, small differences in the minor-element concentrations serve to characterize various aquifers, both in the Quaternary deposits and in the bedrock. All of the aquifers locally yield waters having statistically anomalous concentrations of uranium or radon, but these anomalies are spatially coincident only in a few places and particularly in three geologic environments considered favorable for uranium mineralization. These include the following: (1) Thomson Formation near the unconformably overlying Fond du Lac Formation, (2) Hinckley Sandstone near a major fault system, and (3) Denham Formation near the unconformity with the McGrath Gneiss, particularly where these rocks are faulted and overlain by the Fond du Lac Formation. One additional uranium environment characterized by thin laminae of uraniferous apatite was located in the Thomson Formation during outcrop reconnaissance and sampling. The coincidence of this and other anomalously high uranium values in the bedrock with specific uranium and radon anomalies in the groundwater confirms the usefulness of the hydrogeochemical data to uranium exploration in this glaciated terrane

  16. The U.S. Geological Survey Monthly Water Balance Model Futures Portal

    Science.gov (United States)

    Bock, Andrew R.; Hay, Lauren E.; Markstrom, Steven L.; Emmerich, Christopher; Talbert, Marian

    2017-05-03

    The U.S. Geological Survey Monthly Water Balance Model Futures Portal (https://my.usgs.gov/mows/) is a user-friendly interface that summarizes monthly historical and simulated future conditions for seven hydrologic and meteorological variables (actual evapotranspiration, potential evapotranspiration, precipitation, runoff, snow water equivalent, atmospheric temperature, and streamflow) at locations across the conterminous United States (CONUS).The estimates of these hydrologic and meteorological variables were derived using a Monthly Water Balance Model (MWBM), a modular system that simulates monthly estimates of components of the hydrologic cycle using monthly precipitation and atmospheric temperature inputs. Precipitation and atmospheric temperature from 222 climate datasets spanning historical conditions (1952 through 2005) and simulated future conditions (2020 through 2099) were summarized for hydrographic features and used to drive the MWBM for the CONUS. The MWBM input and output variables were organized into an open-access database. An Open Geospatial Consortium, Inc., Web Feature Service allows the querying and identification of hydrographic features across the CONUS. To connect the Web Feature Service to the open-access database, a user interface—the Monthly Water Balance Model Futures Portal—was developed to allow the dynamic generation of summary files and plots  based on plot type, geographic location, specific climate datasets, period of record, MWBM variable, and other options. Both the plots and the data files are made available to the user for download 

  17. The U.S. Geological Survey cartographic and geographic information science research activities 2006-2010

    Science.gov (United States)

    Usery, E. Lynn

    2011-01-01

    The U.S. Geological Survey (USGS) produces geospatial databases and topographic maps for the United States of America. A part of that mission includes conducting research in geographic information science (GIScience) and cartography to support mapping and improve the design, quality, delivery, and use of geospatial data and topographic maps. The Center of Excellence for Geospatial Information Science (CEGIS) was established by the USGS in January 2006 as a part of the National Geospatial Program Office. CEGIS (http://cegis.usgs.gov) evolved from a team of cartographic researchers at the Mid-Continent Mapping Center. The team became known as the Cartographic Research group and was supported by the Cooperative Topographic Mapping, Geographic Analysis and Monitoring, and Land Remote Sensing programs of the Geography Discipline of the USGS from 1999-2005. In 2006, the Cartographic Research group and its projects (http://carto-research.er.usgs.gov/) became the core of CEGIS staff and research. In 2006, CEGIS research became focused on The National Map (http://nationalmap.gov).

  18. U.S. Geological Survey Energy and Minerals science strategy: a resource lifecycle approach

    Science.gov (United States)

    Ferrero, Richard C.; Kolak, Jonathan J.; Bills, Donald J.; Bowen, Zachary H.; Cordier, Daniel J.; Gallegos, Tanya J.; Hein, James R.; Kelley, Karen D.; Nelson, Philip H.; Nuccio, Vito F.; Schmidt, Jeanine M.; Seal, Robert R.

    2013-01-01

    The economy, national security, and standard of living of the United States depend heavily on adequate and reliable supplies of energy and mineral resources. Based on population and consumption trends, the Nation’s use of energy and minerals can be expected to grow, driving the demand for ever broader scientific understanding of resource formation, location, and availability. In addition, the increasing importance of environmental stewardship, human health, and sustainable growth places further emphasis on energy and mineral resources research and understanding. Collectively, these trends in resource demand and the interconnectedness among resources will lead to new challenges and, in turn, require cutting- edge science for the next generation of societal decisions. The long and continuing history of U.S. Geological Survey contributions to energy and mineral resources science provide a solid foundation of core capabilities upon which new research directions can grow. This science strategy provides a framework for the coming decade that capitalizes on the growth of core capabilities and leverages their application toward new or emerging challenges in energy and mineral resources research, as reflected in five interrelated goals.

  19. U.S. Geological Survey community for data integration: data upload, registry, and access tool

    Science.gov (United States)

    ,

    2012-01-01

    As a leading science and information agency and in fulfillment of its mission to provide reliable scientific information to describe and understand the Earth, the U.S. Geological Survey (USGS) ensures that all scientific data are effectively hosted, adequately described, and appropriately accessible to scientists, collaborators, and the general public. To succeed in this task, the USGS established the Community for Data Integration (CDI) to address data and information management issues affecting the proficiency of earth science research. Through the CDI, the USGS is providing data and metadata management tools, cyber infrastructure, collaboration tools, and training in support of scientists and technology specialists throughout the project life cycle. One of the significant tools recently created to contribute to this mission is the Uploader tool. This tool allows scientists with limited data management resources to address many of the key aspects of the data life cycle: the ability to protect, preserve, publish and share data. By implementing this application inside ScienceBase, scientists also can take advantage of other collaboration capabilities provided by the ScienceBase platform.

  20. Coast Salish and U.S. Geological Survey 2009 Tribal Journey water quality project

    Science.gov (United States)

    Akin, Sarah K.; Grossman, Eric E.

    2010-01-01

    The Salish Sea, contained within the United States and British Columbia, Canada, is the homeland of the Coast Salish Peoples and contains a diverse array of marine resources unique to this area that have sustained Coast Salish cultures and traditions for millennia. In July 2009, the Coast Salish People and U.S. Geological Survey conducted a second water quality study of the Salish Sea to examine spatial and temporal variability of environmental conditions of these surface waters as part of the annual Tribal Journey. Six canoes of approximately 100 towed multi parameter water-quality sondes as the Salish People traveled their ancestral waters during the middle of summer. Sea surface temperature, salinity, pH, dissolved oxygen, and turbidity were measured simultaneously at ten-second intervals, and more than 54,000 data points spanning 1,300 kilometers of the Salish Sea were collected. The project also synthesized Coast Salish ecological knowledge and culture with scientific monitoring to better understand and predict the response of coastal habitats and marine resources. Comparisons with data collected in 2008 reveal significantly higher mean surface-water temperatures in most subbasins in 2009 linked to record air temperatures that affected the Pacific Northwest in July 2009. Through large-scale spatial measurements collected each summer, the project helps to identify patterns in summer water quality, areas of water-quality impairment, and trends occurring through time.

  1. A method for mapping corn using the US Geological Survey 1992 National Land Cover Dataset

    Science.gov (United States)

    Maxwell, S.K.; Nuckols, J.R.; Ward, M.H.

    2006-01-01

    Long-term exposure to elevated nitrate levels in community drinking water supplies has been associated with an elevated risk of several cancers including non-Hodgkin's lymphoma, colon cancer, and bladder cancer. To estimate human exposure to nitrate, specific crop type information is needed as fertilizer application rates vary widely by crop type. Corn requires the highest application of nitrogen fertilizer of crops grown in the Midwest US. We developed a method to refine the US Geological Survey National Land Cover Dataset (NLCD) (including map and original Landsat images) to distinguish corn from other crops. Overall average agreement between the resulting corn and other row crops class and ground reference data was 0.79 kappa coefficient with individual Landsat images ranging from 0.46 to 0.93 kappa. The highest accuracies occurred in Regions where corn was the single dominant crop (greater than 80.0%) and the crop vegetation conditions at the time of image acquisition were optimum for separation of corn from all other crops. Factors that resulted in lower accuracies included the accuracy of the NLCD map, accuracy of corn areal estimates, crop mixture, crop condition at the time of Landsat overpass, and Landsat scene anomalies.

  2. Evaluation of stream chemistry trends in US Geological Survey reference watersheds, 1970-2010.

    Science.gov (United States)

    Mast, M Alisa

    2013-11-01

    The Hydrologic Benchmark Network (HBN) is a long-term monitoring program established by the US Geological Survey in the 1960s to track changes in the streamflow and stream chemistry in undeveloped watersheds across the USA. Trends in stream chemistry were tested at 15 HBN stations over two periods (1970-2010 and 1990-2010) using the parametric Load Estimator (LOADEST) model and the nonparametric seasonal Kendall test. Trends in annual streamflow and precipitation chemistry also were tested to help identify likely drivers of changes in stream chemistry. At stations in the northeastern USA, there were significant declines in stream sulfate, which were consistent with declines in sulfate deposition resulting from the reductions in SO₂ emissions mandated under the Clean Air Act Amendments. Sulfate declines in stream water were smaller than declines in deposition suggesting sulfate may be accumulating in watershed soils and thereby delaying the stream response to improvements in deposition. Trends in stream chemistry at stations in other part of the country generally were attributed to climate variability or land disturbance. Despite declines in sulfate deposition, increasing stream sulfate was observed at several stations and appeared to be linked to periods of drought or declining streamflow. Falling water tables might have enhanced oxidation of organic matter in wetlands or pyrite in mineralized bedrock thereby increasing sulfate export in surface water. Increasing sulfate and nitrate at a station in the western USA were attributed to release of soluble salts and nutrients from soils following a large wildfire in the watershed.

  3. Evaluation of stream chemistry trends in US Geological Survey reference watersheds, 1970-2010

    Science.gov (United States)

    Mast, M. Alisa

    2013-01-01

    The Hydrologic Benchmark Network (HBN) is a long-term monitoring program established by the US Geological Survey in the 1960s to track changes in the streamflow and stream chemistry in undeveloped watersheds across the USA. Trends in stream chemistry were tested at 15 HBN stations over two periods (1970–2010 and 1990–2010) using the parametric Load Estimator (LOADEST) model and the nonparametric seasonal Kendall test. Trends in annual streamflow and precipitation chemistry also were tested to help identify likely drivers of changes in stream chemistry. At stations in the northeastern USA, there were significant declines in stream sulfate, which were consistent with declines in sulfate deposition resulting from the reductions in SO2 emissions mandated under the Clean Air Act Amendments. Sulfate declines in stream water were smaller than declines in deposition suggesting sulfate may be accumulating in watershed soils and thereby delaying the stream response to improvements in deposition. Trends in stream chemistry at stations in other part of the country generally were attributed to climate variability or land disturbance. Despite declines in sulfate deposition, increasing stream sulfate was observed at several stations and appeared to be linked to periods of drought or declining streamflow. Falling water tables might have enhanced oxidation of organic matter in wetlands or pyrite in mineralized bedrock thereby increasing sulfate export in surface water. Increasing sulfate and nitrate at a station in the western USA were attributed to release of soluble salts and nutrients from soils following a large wildfire in the watershed.

  4. Simulation of trickle irrigation, an extension to the US Geological Survey's computer program VS2D

    Science.gov (United States)

    Healy, R.W.

    1987-01-01

    A method is presented for simulating water movement through unsaturated porous media in response to a constant rate of application from a surface source. Because the rate at which water can be absorbed by soil is limited, the water will pond; therefore the actual surface area over which the water is applied may change with time and in general will not be known beforehand. An iterative method is used to determine the size of this ponded area at any time. This method will be most useful for simulating trickling irrigation, but also may be of value for simulating movement of water is soils as the result of an accidental spill. The method is an extension to the finite difference computer program VS2D developed by the U.S. Geological Survey, which simulates water movement through variably saturated porous media. The simulated region can be a vertical, 2-dimensional cross section for treatment of a surface line source or an axially symmetric, 3-dimensional cylinder for a point source. Five test problems, obtained from the literature , are used to demonstrate the ability of the method to accurately match analytical and experimental results. (Author 's abstract)

  5. Underground nuclear explosions. Geological survey of the cavities; Explosions nucleaires souterraines etude geologique des cavites

    Energy Technology Data Exchange (ETDEWEB)

    Faure, J [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    A geological survey of underground nuclear explosions makes it possible to determine the main characteristics of the cavity formed. The lower portion is spherical; the same was very likely true of the roof, which collapses in the majority of media with the exception of rock-salt. Its radius, for a given bomb size, can vary by a factor of two according to the type of rock. The lay-out of its contents depends on the characteristics of the solid and liquid products at the moment of the roof collapse; according to the medium involved, mixing of the rubble and the mud-flow occurs (granite) or does not occur (tuff and alluvia). In all media, the average physical properties can be evaluated. (author) [French] L'etude geologique d'explosions nucleaires souterraines permet de determiner les principaux caracteres de la cavite creee. Sa partie inferieure est spherique; il en etait vraisemblablement de meme de sa voute, effondree dans la plupart des milieux a l'exception du sel gemme. Son rayon, a energie d'engin egale, varie selon les roches du simple au double. La disposition de son contenu depend des caracteristiques des produits solides et liquides au moment de la chute du toit; selon le cas, il n'y a pas (tuf et alluvions) ou il y a (granite) melange des eboulis et des laves. Dans tous les milieux, les proprietes physiques moyennes peuvent etre evaluees. (auteur)

  6. U.S. Geological Survey water-resources programs in New Mexico, FY 2015

    Science.gov (United States)

    Mau, David P.

    2015-01-01

    The U.S. Geological Survey (USGS) has collected hydrologic information in New Mexico since 1889, beginning with the first USGS streamflow-gaging station in the Nation, located on the Rio Grande near Embudo, New Mexico. Water-resources information provided by the USGS is used by many government agencies for issuing flood warnings to protect lives and reduce property damage,managing water rights and interstate water use, protecting water quality and regulating pollution discharges, designing highways and bridges, planning, designing, and operating reservoirs and watersupply facilities, monitoring the availability of groundwater resources and forecasting aquifer response to human and environmental stressors, and prioritizing areas where emergency erosion mitigation or other protective measures may be necessary after a wildfire. For more than 100 years, the Cooperative Water Program has been a highly successful cost-sharing partnership between the USGS and water-resources agencies at the State, local, and tribal levels. It would be difficult to effectively accomplish the mission of the USGS without the contributions of the Cooperative Water Program.

  7. U.S. Geological Survey shrub/grass products provide new approach to shrubland monitoring

    Science.gov (United States)

    Young, Steven M.

    2017-12-11

    In the Western United States, shrubland ecosystems provide vital ecological, hydrological, biological, agricultural, and recreational services. However, disturbances such as livestock grazing, exotic species invasion, conversion to agriculture, climate change, urban expansion, and energy development are altering these ecosystems.Improving our understanding of how shrublands are distributed, where they are changing, the extent of the historical change, and likely future change directions is critical for successful management of these ecosystems. Remote-sensing technologies provide the most likely data source for large-area monitoring of ecosystem disturbance—both near-real time and historically. A monitoring framework supported by remote-sensing data can offer efficient and accurate analysis of change across a range of spatial and temporal scales.The U.S. Geological Survey has been working to develop new remote-sensing data, tools, and products to characterize and monitor these changing shrubland landscapes. Nine individual map products (components) have been developed that quantify the percent of shrub, sagebrush, big sagebrush, herbaceous, annual herbaceous, litter, bare ground, shrub height, and sagebrush height at 1-percent intervals in each 30-meter grid cell. These component products are designed to be combined and customized to widely support different applications in rangeland monitoring, analysis of wildlife habitat, resource inventory, adaptive management, and environmental review.

  8. Improvement of analytical capabilities of neutron activation analysis laboratory at the Colombian Geological Survey

    Energy Technology Data Exchange (ETDEWEB)

    Parrado, G., E-mail: gparrado@sgc.gov.co; Cañón, Y.; Peña, M., E-mail: mlpena@sgc.gov.co; Sierra, O., E-mail: osierra@sgc.gov.co; Porras, A.; Alonso, D.; Herrera, D. C., E-mail: dherrera@sgc.gov.co; Orozco, J. [Colombian Geological Survey, Nuclear Affairs Technical Division, Neutron Activation Analysis Laboratory, Bogota D. C. (Colombia)

    2016-07-07

    The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes with medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.

  9. Remotely sensed data available from the US Geological Survey EROS Data Center

    Science.gov (United States)

    Dwyer, John L.; Qu, J.J.; Gao, W.; Kafatos, M.; Murphy , R.E.; Salomonson, V.V.

    2006-01-01

    The Center for Earth Resources Observation Systems (EROS) is a field center of the geography discipline within the US geological survey (USGS) of the Department of the Interior. The EROS Data Center (EDC) was established in the early 1970s as the nation’s principal archive of remotely sensed data. Initially the EDC was responsible for the archive, reproduction, and distribution of black-and-white and color-infrared aerial photography acquired under numerous mapping programs conducted by various Federal agencies including the USGS, Department of Agriculture, Environmental Protection Agency, and NASA. The EDC was also designated the central archive for data acquired by the first satellite sensor designed for broad-scale earth observations in support of civilian agency needs for earth resource information. A four-band multispectral scanner (MSS) and a return-beam vidicon (RBV) camera were initially flown on the Earth Resources Technology Satellite-1, subsequently designated Landsat-1. The synoptic coverage, moderate spatial resolution, and multi-spectral view provided by these data stimulated scientists with an unprecedented perspective from which to study the Earth’s surface and to understand the relationships between human activity and natural systems.

  10. U.S. Geological Survey science for the Wyoming Landscape Conservation Initiative—2014 annual report

    Science.gov (United States)

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Bartos, Timothy T.; Biewick, Laura R; Boughton, Gregory K.; Chalfoun, Anna D.; Chong, Geneva W.; Dematatis, Marie K.; Eddy-Miller, Cheryl A.; Garman, Steven L.; Germaine, Stephen S.; Homer, Collin G.; Huber, Christopher; Kauffman, Matthew J.; Latysh, Natalie; Manier, Daniel; Melcher, Cynthia P.; Miller, Alexander; Miller, Kirk A.; Olexa, Edward M.; Schell, Spencer; Walters, Annika W.; Wilson, Anna B.; Wyckoff, Teal B.

    2015-01-01

    This is the seventh report produced by the U.S. Geological Survey (USGS) for the Wyoming Landscape Conservation Initiative (WLCI) to detail annual activities conducted by the USGS for addressing specific management needs identified by WLCI partners. In FY2014, there were 26 projects, including a new one that was completed, two others that were also completed, and several that entered new phases or directions. The 26 projects fall into several categories: (1) synthesizing and analyzing existing data to identify current conditions on the landscape and using the data to develop models for projecting past and future landscape conditions; (2) monitoring indicators of ecosystem conditions and the effectiveness of on-the-ground habitat projects; (3) conducting research to elucidate the mechanisms underlying wildlife and habitat responses to changing land uses; (4) managing and making accessible the large number of databases, maps, and other products being developed; and (5) coordinating efforts among WLCI partners, helping them use USGS-developed decision-support tools, and integrating WLCI outcomes with future habitat enhancement and research projects.

  11. The use of U.S. Geological Survey digital geospatial data products for science research

    Science.gov (United States)

    Varanka, Dalia E.; Deering, Carol; Caro, Holly

    2012-01-01

    The development of geographic information system (GIS) transformed the practice of geographic science research. The availability of low-cost, reliable data by the U.S. Geological Survey (USGS) supported the advance of GIS in the early stages of the transition to digital technology. To estimate the extent of the scientific use of USGS digital geospatial data products, a search of science literature databases yielded numbers of articles citing USGS products. Though this method requires careful consideration to avoid false positives, these citation numbers of three types of products (vector, land-use/land-cover, and elevation data) were graphed, and the frequency trends were examined. Trends indicated that the use of several, but not all, products increased with time. The use of some products declined and reasons for these declines are offered. To better understand how these data affected the design and outcomes of research projects, the study begins to build a context for the data by discussing digital cartographic research preceding the production of mass-produced products. The data distribution methods used various media for different system types and were supported by instructional material. The findings are an initial assessment of the affect of USGS products on GIS-enabled science research. A brief examination of the specific papers indicates that USGS data were used for science and GIS conceptual research, advanced education, and problem analysis and solution applications.

  12. U.S. Geological Survey Mentoring Program - Paired for a Powerful Science Future

    Science.gov (United States)

    Miller, K.F.; Clarke, S.D.

    2007-01-01

    The U.S. Geological Survey (USGS) prides itself in its excellence in science. The resource bank of skills and knowledge that is contained within the current employees of the USGS is what makes our science excellent. With an aging workforce, we must ensure that the knowledge and skills represented by those years of experience are passed to new employees. To ensure that this bank of knowledge and experience is not lost and thereby sustain the excellence of our science, the Mentoring Program focuses on intentional mentoring, the deliberate transfer of skills and knowledge. Skills transfer from more experienced employees to those who are less experienced is critical. By placing an emphasis on intentional mentoring, we help to meet the scientific and technical needs of the employees by offering a cost-effective way to gain knowledge and skills necessary to maintain excellence in science. By encouraging and fostering a mentoring atmosphere within the USGS, we are investing in the future of our organization. With improved technical skills, increased job effectiveness, and resulting satisfaction, USGS employees will not only be more invested and engaged, they will also be able to work smarter, thus benefiting from the experience of their mentor.

  13. The evolution, approval and implementation of the U.S. Geological Survey Science Data Lifecycle Model

    Science.gov (United States)

    Faundeen, John L.; Hutchison, Vivian

    2017-01-01

    This paper details how the United States Geological Survey (USGS) Community for Data Integration (CDI) Data Management Working Group developed a Science Data Lifecycle Model, and the role the Model plays in shaping agency-wide policies. Starting with an extensive literature review of existing data Lifecycle models, representatives from various backgrounds in USGS attended a two-day meeting where the basic elements for the Science Data Lifecycle Model were determined. Refinements and reviews spanned two years, leading to finalization of the model and documentation in a formal agency publication . The Model serves as a critical framework for data management policy, instructional resources, and tools. The Model helps the USGS address both the Office of Science and Technology Policy (OSTP) for increased public access to federally funded research, and the Office of Management and Budget (OMB) 2013 Open Data directives, as the foundation for a series of agency policies related to data management planning, metadata development, data release procedures, and the long-term preservation of data. Additionally, the agency website devoted to data management instruction and best practices (www2.usgs.gov/datamanagement) is designed around the Model’s structure and concepts. This paper also illustrates how the Model is being used to develop tools for supporting USGS research and data management processes.

  14. Functional requirements of computer systems for the U.S. Geological Survey, Water Resources Division, 1988-97

    Science.gov (United States)

    Hathaway, R.M.; McNellis, J.M.

    1989-01-01

    Investigating the occurrence, quantity, quality, distribution, and movement of the Nation 's water resources is the principal mission of the U.S. Geological Survey 's Water Resources Division. Reports of these investigations are published and available to the public. To accomplish this mission, the Division requires substantial computer technology to process, store, and analyze data from more than 57,000 hydrologic sites. The Division 's computer resources are organized through the Distributed Information System Program Office that manages the nationwide network of computers. The contract that provides the major computer components for the Water Resources Division 's Distributed information System expires in 1991. Five work groups were organized to collect the information needed to procure a new generation of computer systems for the U. S. Geological Survey, Water Resources Division. Each group was assigned a major Division activity and asked to describe its functional requirements of computer systems for the next decade. The work groups and major activities are: (1) hydrologic information; (2) hydrologic applications; (3) geographic information systems; (4) reports and electronic publishing; and (5) administrative. The work groups identified 42 functions and described their functional requirements for 1988, 1992, and 1997. A few new functions such as Decision Support Systems and Executive Information Systems, were identified, but most are the same as performed today. Although the number of functions will remain about the same, steady growth in the size, complexity, and frequency of many functions is predicted for the next decade. No compensating increase in the Division 's staff is anticipated during this period. To handle the increased workload and perform these functions, new approaches will be developed that use advanced computer technology. The advanced technology is required in a unified, tightly coupled system that will support all functions simultaneously

  15. Survey of the geological characteristics on the Japanese Islands for disposal of RI and research institute waste

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Shigeru [Chuo Kaihatsu Co., Ltd., Tokyo (Japan); Sakamoto, Yoshiaki; Takebe, Shinichi; Ogawa, Hiromichi; Nakayama, Shinichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    In the disposal of radioactive wastes arising from radioisotope utilization facilities and nuclear research facilities, it is necessary to establish the disposal system in proportion to half-lives of radionuclides and radioactivity concentrations in the wastes. According to this disposal system, the radioactive waste should be buried in the underground near the surface, shallow position and deep position. Therefore, it is important to grasp the features of the earth scientific phenomena and geological structure for the disposal system of radioactive waste. Then, for the purpose of the survey of the geological characteristics around the Japanese Islands whole neighborhood, the earth scientific phenomena at present, the geological structure and geotectonic history were summarized on the basis of the existing literatures. (author)

  16. Geological setting of the Olkiluoto investigation site, Eurajoki, SW Finland. Excursion guidebook

    International Nuclear Information System (INIS)

    Paulamaeki, S.

    2009-08-01

    Olkiluoto is an island of ca. 10 km 2 in area on the coast of the Botnian Bay and separated from the mainland by a narrow strait. The Olkiluoto nuclear power plant, with two reactors in operation and a third one under construction, and the underground repository for low and intermediate waste are located in the western part of the island. The repository for spent fuel will be constructed in the central part of the island at a depth of between 400 and 600 m. The suitability of Olkiluoto as a location for a spent fuel repository has been investigated over a period of 20 years by means of extensive ground- and air-based methods and shallow and deep drillings. In a regional context, Olkiluoto is located within a bedrock area, covering approximately 800 million years of geological history of the Precambrian Fennoscandian Shield. The oldest part of the bedrock consists of supracrustal, metasedimentary and metavolcanic rocks deformed and metamorphosed during the Palaeoproterozoic Svecofennian orogeny ca. 1900-1800 million years ago. They are mostly migmatised, high-grade metamorphic mica gneisses, containing cordierite, sillimanite or garnet porphyroblasts. Plutonic rocks consisting of trondhjemites, tonalites, granodiorites, coarse-grained granites and pegmatites intrude the supracrustal rocks. The Mesoproterozoic anorogenic Laitila rapakivi batholith, dated at 1583 ±3 Ma, is located in the central part of the region. The Eurajoki rapakivi stock, located 5 km east of Olkiluoto, is a satellite massif to the Laitila batholiths. After the rapakivi magmatism the geological evolution of the area continued with the deposition of the Satakunta sandstone. The upper parts of the sandstone were deposited ca. 1400-1300 Ma ago, but the development of the sedimentation basin (graben) may have begun already during the rifting period, ca. 1650 Ma ago, associated with the intrusion of the rapakivi magma. The sandstone and older rocks are cut by olivine diabase dykes and sills 1270

  17. U.S. Geological Survey Science for the Wyoming Landscape Conservation Initiative - 2008 Annual Report

    Science.gov (United States)

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Baer, Lori Anne; Bristol, R. Sky; Carr, Natasha B.; Chong, Geneva W.; Diffendorfer, Jay E.; Fedy, Bradley C.; Garman, Steven L.; Germaine, Stephen S.; Grauch, Richard I.; Homer, Collin G.; Manier, Daniel J.; Kauffman, Matthew J.; Latysh, Natalie; Melcher, Cynthia P.; Miller, Kirk A.; Montag, Jessica; Nutt, Constance J.; Potter, Christopher; Sawyer, Hall; Smith, David B.; Sweat, Michael J.; Wilson, Anna B.

    2009-01-01

    The Wyoming Landscape Conservation Initiative (WLCI) was launched in 2007 in response to concerns about threats to the State's world class wildlife resources, especially the threat posed by rapidly increasing energy development in southwest Wyoming. The overriding purpose of the WLCI is to assess and enhance aquatic and terrestrial habitats at a landscape scale, while facilitating responsible energy and other types of development. The WLCI includes partners from Federal, State, and local agencies, with participation from public and private entities, industry, and landowners. As a principal WLCI partner, the U.S. Geological Survey (USGS) provides multidisciplinary scientific and technical support to inform decisionmaking in the WLCI. To address WLCI management needs, USGS has designed and implemented five integrated work activities: (1) Baseline Synthesis, (2) Targeted Monitoring and Research, (3) Integration and Coordination, (4) Data and Information Management, and (5) Decisionmaking and Evaluation. Ongoing information management of data and products acquired or generated through the integrated work activities will ensure that crucial scientific information is available to partners and stakeholders in a readily accessible and useable format for decisionmaking and evaluation. Significant progress towards WLCI goals has been achieved in many Science and Technical Assistance tasks of the work activities. Available data were identified, acquired, compiled, and integrated into a comprehensive database for use by WLCI partners and to support USGS science activities. A Web-based platform for sharing these data and products has been developed and is already in use. Numerous map products have been completed and made available to WLCI partners, and other products are in progress. Initial conceptual, habitat, and climate change models have been developed or refined. Monitoring designs for terrestrial and aquatic indicators have been completed, pilot data have been collected

  18. A preliminary global geologic map of Vesta based on Dawn Survey orbit data

    Science.gov (United States)

    Yingst, R.; Williams, D. A.; Garry, W. B.; Mest, S. C.; Petro, N. E.; Buczkowski, D.; Schenk, P.; Jaumann, R.; Pieters, C. M.; Roatsch, T.; Preusker, F.; Nathues, A.; LeCorre, L.; Reddy, V.; Russell, C. T.; Raymond, C. A.; DeSanctis, C.; Ammannito, E.; Filacchione, G.

    2011-12-01

    NASA's Dawn spacecraft arrived at the asteroid 4Vesta on July 15, 2011, and is now collecting imaging, spectroscopic, and elemental abundance data during its one-year orbital mission. As part of the geological analysis of the surface, we have utilized images and data from the Survey orbital sequence to produce a global map of Vesta's surface. Unit boundaries and feature characteristics were determined primarily from morphologic analysis of image data; projected Framing Camera (FC) images were used as the base map. Spectral information from FC and VIR are used to refine unit contacts and to separate compositional distinctions from differences arising from illumination or other factors. Those units that could be discerned both in morphology and in the color data were interpreted as geologically distinct units. Vesta's surface is highly-cratered; differences in color and albedo are possible indicators of varying thicknesses and areal extents of crater ejecta. The most prominent candidate impact feature dominates the south pole. This feature consists of a depression roughly circular in shape, with a central hill that is characterized by smoother texture and lower albedo distinctive from the lower-lying surrounding terrain. A complex network of deep troughs and ridges cuts through the floor of the feature. Many of these troughs trend north-south, while others appear circumferential to the hill and are truncated by or terminate at orthogonal ridges/grooves. Detailed mapping of these features will provide information on their orientations, possible origin(s), and their relationship, if any, to the central hill. The equator of Vesta is also girdled by a wide set of flat-floored troughs. Their orientation implies that their formation is related to the south polar structure. Several regions on Vesta have a concentration of craters displaying low-albedo interiors or exteriors. These craters may have an exogenic origin, or may be the result of excavation of a thin sub

  19. The Taavinunnanen gabbro massif. A compilation of results from geological, geophysical and hydrogeological investigations

    International Nuclear Information System (INIS)

    Gentzschein, B.; Tullborg, E.L.

    1985-01-01

    The gabbro massif at Taavinunnanen, northern Sweden, is one of the study sites which has been investigated by the Swedish Nuclear Fuel and Waste Management Co (SKB) in order to study different geological environments within the scope of the long-range program for final disposal of spent nuclear fuel. A 700 metres long borehole was drilled within the gabbro. Regional geophysics, geological mapping, petrographical studies, mineralogical studies of rock-forming materials and of fracture fillings as well as hydrogeological tests were carried out. The gabbro shows primary differentiation. Thus, the composition varies from gabbroic to ultrabasic. The gabbro body is intersected by severeal granite dikes. These dikes exhibit a higher hydraulic conductivity and a higher fracture frequency than the gabbro. Comparison of hydraulic conductivity and fracture frequency in the gabbro itself indicates a high degree of sealing of the fractures mainly caused by smectites. Calcite is almost lacking down to a depth of 75 metres, indicating a relatively rapid transport of surface waters down to this depth. With 27 refs. (author)

  20. An engineering geological investigation of ground subsidence above the Huntly East Mine

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, P.I.

    1987-10-01

    Ground subsidence above the Huntly East Mine at the N.Z.E.D. Hostel has affected an area of approximately seven hectares with measured settlements of over 800mm. Extensive damage was suffered by most buildings and services of the hostel complex To determine the cause(s) and mechanism(s) of the subsidence, site and laboratory investigations were undertaken. Site investigations included core and wash drilling, geophysical borehole logging, dutch cone penetrometer soundings plus piezometer installation and monitoring. Laboratory investigations included one dimensional consolidation and permeability testing, SEM fabric studies, XRD and chemical tests for clay mineralogy, and determinations of Atterberg Limits and grain size distributions. The mine overburden geology at the site consists of a 35 to 60m thick sequence of mudstones and coal seams of the Te Kuiti Group (Eocene to Oligocene), and overlain by a 50 to 70m thick succession of saturated sands, silts and gravels of the Tauranga Group (Pliocene to Holocene). Within the Tauranga Group three aquifers are present. The engineering geological model considered most likely to explain the subsidence is mine roof collapse causing void migration to near the top of the Te Kuiti Group sequence resulting in drainage and depressurising of aquifers at the base of the Tauranga Group. Aquifer depressurisation is considered likely to cause consolidation within both the aquifer and aquitards associated with it. Back-analyses of the dewatering consolidation model in terms of both magnitude and rates of settlement are consistent with observed values. A finite difference numerical analysis was developed for estimations of settlement rates. 98 refs., 67 figs., 12 tabs.

  1. US Geological Survey research in radioactive waste disposal: Fiscal Years, 1983, 1984, and 1985

    International Nuclear Information System (INIS)

    Dinwiddie, G.A.; Trask, N.J.

    1986-01-01

    The USGS has been assisting the DOE in evaluating the suitability of the Yucca Mountain area, located on and adjacent to the Nevada Test Site (NTS) and about 160 km northwest of Las Vegas, as a possible repository site for the disposal of commercially generated high-level radioactive wastes and wastes from DOE facilities. An essential part of this work is defining the geology and hydrology of the area in order to assess the potential for the transport of radionuclides from a repository to the human environment. In addition, the potential for disruption of a repository as a result of volcanic or tectonic activity or accelerated erosion is being evaluated. As part of the Nevada Nuclear Waste Storage Investigations (NNWSI) project, the USGS is performing multi-disciplinary studies involving detailed surface mapping, surface geophysics, exploratory drilling, borehole geophysics, and topical studies of hydrology, climate, and tectonics. Studies are being performed to assess the potential for faulting, damaging earthquakes, recurrence of volcanism, and local acceleration of erosion in parts of the southern Great Basin. Hydrologic investigations are directed to determination of present and past hydrologic regimes of the NTS and vicinity in order to predict the potential for ground-water transport of radioactive waste from a repository in Yucca Mountain to the accessible environment. Paleoclimatic studies are also being performed to aid in predicting future climate in the NTS vicinity

  2. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won [Korea Atomic Energy Institue, Daejeon (Korea, Republic of)

    2012-09-15

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  3. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won

    2012-01-01

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  4. U.S. Geological Survey Cooperative Fish and Wildlife Research Units Program—2016–2017 Research Abstracts

    Science.gov (United States)

    Dennerline, Donald E.; Childs, Dawn E.

    2017-04-20

    The U.S. Geological Survey (USGS) has several strategic goals that focus its efforts on serving the American people. The USGS Ecosystems Mission Area has responsibility for the following objectives under the strategic goal of “Science to Manage and Sustain Resources for Thriving Economies and Healthy Ecosystems”:Understand, model, and predict change in natural systemsConserve and protect wildlife and fish species and their habitatsReduce or eliminate the threat of invasive species and wildlife diseaseThis report provides abstracts of the majority of ongoing research investigations of the USGS Cooperative Fish and Wildlife Research Units program and is intended to complement the 2016 Cooperative Research Units Program Year in Review Circular 1424 (https://doi.org/10.3133/cir1424). The report is organized by the following major science themes that contribute to the objectives of the USGS:Advanced TechnologiesClimate ScienceDecision ScienceEcological FlowsEcosystem ServicesEndangered Species Conservation, Recovery, and Proactive StrategiesEnergyHuman DimensionsInvasive SpeciesLandscape EcologySpecies of Greatest Conservation NeedSpecies Population, Habitat, and Harvest ManagementWildlife Health and Disease

  5. U.S. Geological Survey; North Carolina's water resources; a partnership with State, Federal and local agencies

    Science.gov (United States)

    Winner, M.D.

    1993-01-01

    For more than 80 years, the Federal-State Cooperative Program in North Carolina has been an effective partnership that provides timely water information for all levels of government. The cooperative program has raised awareness of State and local water problems and issues and has enhanced transfer and exchange of scientific information. The U.S. Geological Survey (USGS) conducts statewide water-resources investigations in North Carolina that include hydrologic data collection, applied research studies, and other interpretive studies. These programs are funded through cooperative agreements with the North Carolina Departments of Environment, Health, and Natural Resources; Human Resources; and Transportation, as well as more than a dozen city and county governmental agencies. The USGS also conducts special studies and data-collection programs for Federal agencies, including the Department of Defense, the U.S. Soil Conservation Service, the Tennessee Valley Authority, and the U.S. Environmental Protection Agency that contribute to North Carolina's water information data base. Highlights of selected programs are presented to show the scope of USGS activities in North Carolina and their usefulness in addressing water-resource problems. The reviewed programs include the statewide data-collection program, estuarine studies, the National Water-Quality Assessment program, military installation restoration program, and groundwater flow model-development program in the Coastal Plain and Piedmont provinces.

  6. Development of In situ Geological Investigation and Test Equipment in KURT

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Yong Kweon; Kim, Kyung Su; Park, Kyung Woo; Koh, Yong Kweon; Choi, Jong Won [KAERI, Daejeon (Korea, Republic of)

    2010-12-15

    For establishment of the advanced infrastructures of KURT, geological investigation and in situ test equipment were installed. The optical sensor technique could be applicable to monitoring system for the safe operation of various kinds of facilities having static and/or dynamic characteristics, such as chemical plant, pipeline, rail, huge building, long and slim structures, bridge, subway and marine vessel. etc. The micro-seismic monitoring system is able to predict the location and timing of fracturing of rock mass and rock fall around an underground openings as well as analysis on safety of various kinds of engineering structures such as nuclear facilities and other structures. The straddle packer system for hydro-testing in a deep borehole will lead to not only improve current technical level in the field of hydraulic testing but also provide important information to radioactive waste disposal technology development and site characterization project

  7. Bathymetric terrain model of the Atlantic margin for marine geological investigations

    Science.gov (United States)

    Andrews, Brian D.; Chaytor, Jason D.; ten Brink, Uri S.; Brothers, Daniel S.; Gardner, James V.; Lobecker, Elizabeth A.; Calder, Brian R.

    2016-01-01

    A bathymetric terrain model of the Atlantic margin covering almost 725,000 square kilometers of seafloor from the New England Seamounts in the north to the Blake Basin in the south is compiled from existing multibeam bathymetric data for marine geological investigations. Although other terrain models of the same area are extant, they are produced from either satellite-derived bathymetry at coarse resolution (ETOPO1), or use older bathymetric data collected by using a combination of single beam and multibeam sonars (Coastal Relief Model). The new multibeam data used to produce this terrain model have been edited by using hydrographic data processing software to maximize the quality, usability, and cartographic presentation of the combined 100-meter resolution grid. The final grid provides the largest high-resolution, seamless terrain model of the Atlantic margin..

  8. Geological and geophysical investigations in the selection and characterization of the disposal site for high-level nuclear waste in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Paulamaki, S.; Paananen, M.; Kuivamaki, A. [Geological Survey of Finland, Espoo (Finland); Wikstrom, L. [Posiva Oy, Olkiluoto (Finland)], e-mail: seppo.paulamaki@gtk.fi

    2011-07-01

    Two power companies, Teollisuuden Voima Oy (TVO) and Fortum Power and Heat Oy, are preparing for the final disposal of spent nuclear fuel deep in the Finnish bedrock. In the initial phase of the site selection process in the late 1970s and early 1980s, the Geological Survey of Finland (GTK) examined the general bedrock factors that would have to be taken into account in connection with final disposal with reference to the international guidelines adapted to Finnish conditions. On the basis of extensive basic research data, it was concluded that it is possible to find a potential disposal site that fulfils the geological safety criteria. In the subsequent site selection survey covering the whole of Finland, carried out by GTK in 1983-1985, 101 potential investigation areas were discovered. Eventually, five areas were selected by TVO for preliminary site investigations: Romuvaara and Veitsivaara in the Archaean basement complex, Kivetty and Syyry in the Proterozoic granitoid area, and Olkiluoto (TVO's NPP site) in the Proterozoic migmatite area. The preliminary site investigations at the selected sites in 1987-1992 comprised deep drillings together with geological, geophysical, hydrogeological and hydrogeochemical investigations. A conceptual geological bedrock model was constructed for each site, including lithology, fracturing, fracture zones and hydrogeological conditions. On the basis of preliminary site investigations, TVO selected Romuvaara, Kivetty and Olkiluoto for detailed site investigations to be carried out during 1993-2000. After the feasibility studies, the island of Haestholmen, where Fortum's Loviisa nuclear power plant is located, was added to the list of potential disposal sites. In the detailed site investigations, additional data on bedrock were gathered, the previous conceptual geological, hydrogeological and hydrogeochemical models were complemented, the rock mechanical properties of the bedrock were examined, and the constructability

  9. Geological and geophysical investigations in the selection and characterization of the disposal site for high-level nuclear waste in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Paulamaki, S; Paananen, M; Kuivamaki, A [Geological Survey of Finland, Espoo (Finland); Wikstrom, L. [Posiva Oy, Olkiluoto (Finland)], e-mail: seppo.paulamaki@gtk.fi

    2011-07-01

    Two power companies, Teollisuuden Voima Oy (TVO) and Fortum Power and Heat Oy, are preparing for the final disposal of spent nuclear fuel deep in the Finnish bedrock. In the initial phase of the site selection process in the late 1970s and early 1980s, the Geological Survey of Finland (GTK) examined the general bedrock factors that would have to be taken into account in connection with final disposal with reference to the international guidelines adapted to Finnish conditions. On the basis of extensive basic research data, it was concluded that it is possible to find a potential disposal site that fulfils the geological safety criteria. In the subsequent site selection survey covering the whole of Finland, carried out by GTK in 1983-1985, 101 potential investigation areas were discovered. Eventually, five areas were selected by TVO for preliminary site investigations: Romuvaara and Veitsivaara in the Archaean basement complex, Kivetty and Syyry in the Proterozoic granitoid area, and Olkiluoto (TVO's NPP site) in the Proterozoic migmatite area. The preliminary site investigations at the selected sites in 1987-1992 comprised deep drillings together with geological, geophysical, hydrogeological and hydrogeochemical investigations. A conceptual geological bedrock model was constructed for each site, including lithology, fracturing, fracture zones and hydrogeological conditions. On the basis of preliminary site investigations, TVO selected Romuvaara, Kivetty and Olkiluoto for detailed site investigations to be carried out during 1993-2000. After the feasibility studies, the island of Haestholmen, where Fortum's Loviisa nuclear power plant is located, was added to the list of potential disposal sites. In the detailed site investigations, additional data on bedrock were gathered, the previous conceptual geological, hydrogeological and hydrogeochemical models were complemented, the rock mechanical properties of the bedrock were examined, and the constructability and the

  10. Methods for computing water-quality loads at sites in the U.S. Geological Survey National Water Quality Network

    Science.gov (United States)

    Lee, Casey J.; Murphy, Jennifer C.; Crawford, Charles G.; Deacon, Jeffrey R.

    2017-10-24

    The U.S. Geological Survey publishes information on concentrations and loads of water-quality constituents at 111 sites across the United States as part of the U.S. Geological Survey National Water Quality Network (NWQN). This report details historical and updated methods for computing water-quality loads at NWQN sites. The primary updates to historical load estimation methods include (1) an adaptation to methods for computing loads to the Gulf of Mexico; (2) the inclusion of loads computed using the Weighted Regressions on Time, Discharge, and Season (WRTDS) method; and (3) the inclusion of loads computed using continuous water-quality data. Loads computed using WRTDS and continuous water-quality data are provided along with those computed using historical methods. Various aspects of method updates are evaluated in this report to help users of water-quality loading data determine which estimation methods best suit their particular application.

  11. Horonobe Underground Research Laboratory project synthesis of phase I investigation 2001-2005. Volume 'Geological disposal research'

    International Nuclear Information System (INIS)

    Fujita, Tomoo; Taniguchi, Naoki; Tanai, Kenji; Nishimura, Mayuka; Kobayashi, Yasushi; Hiramoto, Masayuki; Maekawa, Keisuke; Sawada, Atsushi; Makino, Hitoshi; Sasamoto, Hiroshi; Yoshikawa, Hideki; Shibata, Masahiro; Wakasugi, Keiichiro; Nakano, Katsushi; Seo, Toshihiro; Miyahara, Kaname; Naito, Morimasa; Yui, Mikazu; Matsui, Hiroya; Kurikami, Hiroshi; Kunimaru, Takanori; Ishii, Eiichi; Ota, Kunio; Hama, Katsuhiro; Takeuchi, Ryuji

    2007-03-01

    This report summarizes the progress of research and development on geological disposal during the surface-based investigation phase (2001-2005) in the Horonobe Underground Research Laboratory project (HOR), of which aims are to apply the design methods of geological disposal and mass transport analysis to actual geological conditions obtained from the surface-based investigations in HOR as an example of actual geological environment. For the first aim, the design methods for the geological disposal facility proposed in 'H12 report (the second progress report)' was reviewed and then improved based on the recent knowledge. The applicability of design for engineered barrier system, backfill of disposal tunnel, underground facility was illustrated. For the second aim, the conceptual structure from site investigation and evaluation to mass transport analysis was developed as a work flow at first. Then following this work flow a series of procedures for mass transport analysis was applied to the actual geological conditions to illustrate the practical workability of the work flow and the applicability of this methodology. Consequently, based on the results, future subjects were derived. (author)

  12. U.S. Geological Survey continuous monitoring workshop—Workshop summary report

    Science.gov (United States)

    Sullivan, Daniel J.; Joiner, John K.; Caslow, Kerry A.; Landers, Mark N.; Pellerin, Brian A.; Rasmussen, Patrick P.; Sheets, Rodney A.

    2018-04-20

    Executive SummaryThe collection of high-frequency (in other words, “continuous”) water data has been made easier over the years because of advances in technologies to measure, transmit, store, and query large, temporally dense datasets. Commercially available, in-situ sensors and data-collection platforms—together with new techniques for data analysis—provide an opportunity to monitor water quantity and quality at time scales during which meaningful changes occur. The U.S. Geological Survey (USGS) Continuous Monitoring Workshop was held to build stronger collaboration within the Water Mission Area on the collection, interpretation, and application of continuous monitoring data; share technical approaches for the collection and management of continuous data that improves consistency and efficiency across the USGS; and explore techniques and tools for the interpretation of continuous monitoring data, which increases the value to cooperators and the public. The workshop was organized into three major themes: Collecting Continuous Data, Understanding and Using Continuous Data, and Observing and Delivering Continuous Data in the Future. Presentations each day covered a variety of related topics, with a special session at the end of each day designed to bring discussion and problem solving to the forefront.The workshop brought together more than 70 USGS scientists and managers from across the Water Mission Area and Water Science Centers. Tools to manage, assure, control quality, and explore large streams of continuous water data are being developed by the USGS and other organizations and will be critical to making full use of these high-frequency data for research and monitoring. Disseminating continuous monitoring data and findings relevant to critical cooperator and societal issues is central to advancing the USGS networks and mission. Several important outcomes emerged from the presentations and breakout sessions.

  13. The Carancas meteorite impact crater, Peru: Geologic surveying and modeling of crater formation and atmospheric passage

    Science.gov (United States)

    Kenkmann, T.; Artemieva, N. A.; Wünnemann, K.; Poelchau, M. H.; Elbeshausen, D.; Núñez Del Prado, H.

    2009-08-01

    The recent Carancas meteorite impact event caused a worldwide sensation. An H4-5 chondrite struck the Earth south of Lake Titicaca in Peru on September 15, 2007, and formed a crater 14.2 m across. It is the smallest, youngest, and one of two eye-witnessed impact crater events on Earth. The impact violated the hitherto existing view that stony meteorites below a size of 100 m undergo major disruption and deceleration during their passage through the atmosphere and are not capable of producing craters. Fragmentation occurs if the strength of the meteoroid is less than the aerodynamic stresses that occur in flight. The small fragments that result from a breakup rain down at terminal velocity and are not capable of producing impact craters. The Carancas cratering event, however, demonstrates that meter-sized stony meteoroids indeed can survive the atmospheric passage under specific circumstances. We present results of a detailed geologic survey of the crater and its ejecta. To constrain the possible range of impact parameters we carried out numerical models of crater formation with the iSALE hydrocode in two and three dimensions. Depending on the strength properties of the target, the impact energies range between approximately 100-1000 MJ (0.024- 0.24 t TNT). By modeling the atmospheric traverse we demonstrate that low cosmic velocities (12- 14 kms-1) and shallow entry angles (<20°) are prerequisites to keep aerodynamic stresses low (<10 MPa) and thus to prevent fragmentation of stony meteoroids with standard strength properties. This scenario results in a strong meteoroid deceleration, a deflection of the trajectory to a steeper impact angle (40-60°), and an impact velocity of 350-600 ms-1, which is insufficient to produce a shock wave and significant shock effects in target minerals. Aerodynamic and crater modeling are consistent with field data and our microscopic inspection. However, these data are in conflict with trajectories inferred from the analysis of

  14. Science Resulting from U.S. Geological Survey's "Did You Feel It?" Citizen Science Portal

    Science.gov (United States)

    Wald, D. J.; Dewey, J. W.; Atkinson, G. M.; Worden, C. B.; Quitoriano, V. P. R.

    2016-12-01

    The U.S. Geological Survey (USGS) "Did You Feel It?" (DYFI) system, in operation since 1999, is an automated approach for rapidly collecting macroseismic intensity data from internet users' shaking and damage reports and generating intensity maps immediately following earthquakes felt around the globe. As with any citizen science project, a significant component of the DYFI system is public awareness and participation in the immediate aftermath of any widely felt earthquake, allowing the public and the USGS to exchange valuable post-earthquake information. The data collected are remarkably robust and useful, as indicated by the range of peer-reviewed literature that rely on these citizen-science intensity reports. A Google Scholar search results in 14,700 articles citing DYFI, a number of which rely exclusively on these data. Though focused on topics of earthquake seismology (including shaking attenuation and relationships with damage), other studies cover social media use in disasters, human risk perception, earthquake-induced landslides, rapid impact assessment, emergency response, and science education. DYFI data have also been analyzed for non-earthquake events, including explosions, aircraft sonic booms, and even bolides and DYFI is now one of the best data sources from which to study induced earthquakes. Yet, DYFI was designed primarily as an operational system to rapidly assess the effects of earthquakes for situational awareness. Oftentimes, DYFI data are the only data available pertaining to shaking levels for much of the United States. As such, DYFI provides site-specific constraints of the shaking levels that feed directly into ShakeMap; thus, these data are readily available to emergency managers and responders, the media, and the general public. As an early adopter of web-based citizen science and having worked out many kinks in the process, DYFI developers have provided guidance on many other citizen-science endeavors across a wide range of

  15. U.S. Geological Survey sage-grouse and sagebrush ecosystem research annual report for 2017

    Science.gov (United States)

    Hanser, Steven E.

    2017-09-08

    The sagebrush (Artemisia spp.) ecosystem extends across a large portion of the Western United States, and the greater sage-grouse (Centrocercus urophasianus) is one of the iconic species of this ecosystem. Greater sage-grouse populations occur in 11 States and are dependent on relatively large expanses of sagebrush-dominated habitat. Sage-grouse populations have been experiencing long-term declines owing to multiple stressors, including interactions among fire, exotic plant invasions, and human land uses, which have resulted in significant loss, fragmentation, and degradation of landscapes once dominated by sagebrush. In addition to the sage-grouse, over 350 species of plants and animals are dependent on the sagebrush ecosystem.Increasing knowledge about how these species and the sagebrush ecosystem respond to these stressors and to management actions can inform and improve strategies to maintain existing areas of intact sagebrush and restore degraded landscapes. The U.S. Geological Survey (USGS) has a broad research program focused on providing the science needed to inform these strate-gies and to help land and resource managers at the Federal, State, Tribal, and local levels as they work towards sustainable sage-grouse populations and restored landscapes for the broad range of uses critical to stakeholders in the Western United States.USGS science has provided a foundation for major land and resource management decisions including those that precluded the need to list the greater sage-grouse under the Endangered Species Act. The USGS is continuing to build on that foundation to inform science-based decisions to help support local economies and the continued conservation, management, and restoration of the sagebrush ecosystem.This report contains descriptions of USGS sage-grouse and sagebrush ecosystem research projects that are ongoing or were active during 2017 and is organized into five thematic areas: Fire, Invasive Species, Restoration, Sagebrush and Sage

  16. U.S. Geological Survey Science Strategy for the Wyoming Landscape Conservation Initiative

    Science.gov (United States)

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Chong, Geneva W.; Drummond, Mark A.; Homer, Collin G.; Johnson, Ronald C.; Kauffman, Matthew J.; Knick, Steven T.; Kosovich, John J.; Miller, Kirk A.; Owens, Tom; Shafer, Sarah L.; Sweat, Michael J.

    2009-01-01

    Southwest Wyoming's wildlife and habitat resources are increasingly affected by energy and urban/exurban development, climate change, and other key drivers of ecosystem change. To ensure that southwest Wyoming's wildlife populations and habitats persist in the face of development and other changes, a consortium of public resource-management agencies proposed the Wyoming Landscape Conservation Initiative (WLCI), the overall goal of which is to implement conservation actions. As the principal agency charged with conducting WLCI science, the U.S. Geological Survey (USGS) has developed a Science Strategy for the WLCI. Workshops were held for all interested parties to identify and refine the most pressing management needs for achieving WLCI goals. Research approaches for addressing those needs include developing conceptual models for understanding ecosystem function, identifying key drivers of change affecting WLCI ecosystems, and conducting scientific monitoring and experimental studies to better understand ecosystems processes, cumulative effects of change, and effectiveness of habitat treatments. The management needs drive an iterative, three-phase framework developed for structuring and growing WLCI science efforts: Phase I entails synthesizing existing information to assess current conditions, determining what is already known about WLCI ecosystems, and providing a foundation for future work; Phase II entails conducting targeted research and monitoring to address gaps in data and knowledge during Phase I; and Phase III entails integrating new knowledge into WLCI activities and coordinating WLCI partners and collaborators. Throughout all three phases, information is managed and made accessible to interested parties and used to guide and improve management and conservation actions, future habitat treatments, best management practices, and other conservation activities.

  17. Testing and use of radar water level sensors by the U.S. Geological Survey

    Science.gov (United States)

    Fulford, Janice M.

    2016-01-01

    The United States Geological Survey uses water-level (or stage) measurements to compute streamflow at over 8000 stream gaging stations located throughout the United States (waterwatch.usgs.gov, 2016). Streamflow (or discharge) is computed at five minute to hourly intervals from a relationship between water level and discharge that is uniquely determined for each station. The discharges are posted hourly to WaterWatch (waterwatch. usgs.gov) and are used by water managers to issue flood warnings and manage water supply and by other users of water information to make decisions. The accuracy of the water-level measurement is vital to the accuracy of the computed discharge. Because of the importance of water-level measurements, USGS has an accuracy policy of 0.02 ft or 0.2 percent of reading (whichever is larger) (Sauer and Turnipseed, 2010). Older technologies, such as float and shaft-encoder systems, bubbler systems and submersible pressure sensors, provide the needed accuracy but often require extensive construction to install and are prone to malfunctioning and damage from floating debris and sediment. No stilling wells or orifice lines need to be constructed for radar installations. During the last decade testing by the USGS Hydrologic Instrumentation Facility(HIF) found that radar water-level sensors can provide the needed accuracy for water-level measurements and because the sensor can be easily attached to bridges, reduce the construction required for installation. Additionally, the non-contact sensing of water level minimizes or eliminates damage and fouling from floating debris and sediment. This article is a brief summary of the testing efforts by the USGS HIF and field experiences with models of radar water-level sensors in streamflow measurement applications. Any use of trade names in this article is for descriptive purposes only and does not imply endorsement by the U.S. Government.

  18. Geological interpretation of Eastern Cuba Laterites from an airborne magnetic and radioactive isotope survey

    Energy Technology Data Exchange (ETDEWEB)

    Batista, J.A; Blanco, J [Departamento de Geologia, Instituto Superior Minero Metalurgico de Moa, (Cuba); Perez-Flores, M.A [Centro de Investigacion Cientifica y Educacion Superior de Ensenada, Baja California (Mexico)

    2008-04-15

    In eastern Cuba area several geophysical techniques have been applied to distinguish the main geological characteristics of the laterites which are of economical importance for the extraction of iron, nickel and chrome. The geophysical measurements include an aeromagnetic survey and thorium (eTh), potassium (K) and uranium (eU) isotope measurements. The results of gamma spectrometer measurements make a distinction between laterite reservoirs. The application of the magnetic and isotope methods allowed the determination of the distribution and development of the laterite crust, as well as the determination of hydrothermal alterations affecting the laterites, which is very useful for mining exploration and exploitation. Such alterations indicate the presence of silicates, which have negative effects on the metallurgic process. It is known that laterite crust has a high content of eU and eTh. [Spanish] Se han utilizado varias tecnicas geofisicas en la region oriental de Cuba para distinguir las principales caracteristicas geologicas de las lateritas, que poseen importancia economica para la extraccion de hierro, niquel y cobalto. Las mediciones geofisicas incluyen un estudio aeromagnetico y mediciones de isotopos de torio (eTh), potasio (K) y uranio (eU). Los resultados de las mediciones espectrometricas establecen diferencias entre los yacimientos de lateritas. De la aplicacion del metodo magnetico e isotopico se determino la distribucion y desarrollo de las cortezas lateriticas, asi como la ubicacion de alteraciones hidrotermales que afectan a las lateritas, lo cual es muy util durante la exploracion y explotacion minera. Esas alteraciones indican la presencia de silicatos, que tienen un efecto negativo en el proceso metalurgico. Se conoce que las cortezas lateriticas tienen altos contenidos de eU y eTh. De los contenidos de eU y eTh se infiere que las lateritas de la region de Moa se formaron antes que las de Mayari. De estas mediciones fue posible inferir el

  19. U.S. Geological Survey Geospatial Data To Support STEM Education And Communication

    Science.gov (United States)

    Molnia, B. F.

    2017-12-01

    The U.S. Geological Survey (USGS) has a long history of contributing to STEM education, outreach, and communication. The USGS EarthExplorer website: https://earthexplorer.usgs.gov is the USGS gateway to more than 150 geospatial data sets that are freely available to STEM students, educators, and researchers. Two in particular, Global Fiducials data and Declassified Satellite Imagery provide the highest resolution visual record of the Earth's surface that is available for unlimited, unrestricted download. Global Fiducials Data - Since the mid-1990s, more than 500 locations, each termed a 'Fiducial Site', have been systematically and repeatedly imaged with U.S. National Imagery Systems space-based sensors. Each location was selected for long-term monitoring, based on its history and environmental values. Since 2008, imagery from about a quarter of the sites has been publicly released and is available on EarthExplorer. These 5,000 electro-optical (EO) images, with 1.0 - 1.3 m resolution, comprise more than 140 time-series. Individual time-series focus on wildland fire recovery, Arctic sea ice change, Antarctic habitats, temperate glacier behavior, eroding barrier islands, coastline evolution, resource and ecosystem management, natural disaster response, global change studies, and other topics. Declassified Satellite Imagery - Nearly 1 million declassified photographs, collected between 1960 and 1984, by U.S. intelligence satellites KH-1 through KH-9 have been released to the public. The USGS has copies of most of the released film and provides a digital finding aid that can be accessed from the USGS EarthExplorer website. Individual frames were collected at resolutions that range from 0.61 m - 7.6 m. Imagery exists for locations on all continents. Combined with Landsat imagery, also available from the USGS EarthExplorer website, the STEM Community has access to more than 7.5 million images providing nearly 50 years of visual observations of Earth's dynamic surface.

  20. Site investigations for repositories for solid radioactive wastes in deep continental geological formations

    International Nuclear Information System (INIS)

    1982-01-01

    This report reviews the earth-science investigations and associated scientific studies that may be needed to select a repository site and confirm that its characteristics are such that it will provide a safe confinement for solidified high-level and alpha-bearing and certain other solid radioactive wastes. Site investigations, as used in this report, cover earth sciences and associated safety analyses. Other site-investigation activities are identified but not otherwise considered here. The repositories under consideration are those consisting of mined cavities in deep continental rocks for accepting wastes in the solid and packaged form. The term deep as used in this report is used solely to emphasize the distinction between the repositories discussed in this report and those for shallow-ground disposal. In general, depths under consideration here are greater than 200 metres. The term continental refers to those geological formations that occur either beneath present-day land masses and adjoining islands or beneath the shallow seas. One of the objectives of site investigations is to collect the site-specific data necessary for the different evaluations, such as modelling required to assess the long-term safety of an underground repository

  1. Site investigations for repositories for solid radioactive wastes in deep continental geological formations

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This report reviews the earth-science investigations and associated scientific studies that may be needed to select a repository site and confirm that its characteristics are such that it will provide a safe confinement for solidified high-level and alpha-bearing and certain other solid radioactive wastes. Site investigations, as used in this report, cover earth sciences and associated safety analyses. Other site-investigation activities are identified but not otherwise considered here. The repositories under consideration are those consisting of mined cavities in deep continental rocks for accepting wastes in the solid and packaged form. The term deep as used in this report is used solely to emphasize the distinction between the repositories discussed in this report and those for shallow-ground disposal. In general, depths under consideration here are greater than 200 metres. The term continental refers to those geological formations that occur either beneath present-day land masses and adjoining islands or beneath the shallow seas. One of the objectives of site investigations is to collect the site-specific data necessary for the different evaluations, such as modelling required to assess the long-term safety of an underground repository.

  2. Three dimensional investigation of oceanic active faults. A demonstration survey

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Seizo; Kishimoto, Kiyoyuki; Kuramoto, Shinichi; Sato, Mikio [Geological Survey of Japan, Tsukuba, Ibaraki (Japan)

    1998-02-01

    In order to upgrade probability of activity and action potential evaluation of oceanic active faults which have some important effects on nuclear facilities, trench type oceanic active fault was investigated three dimensionally. Contents of the investigation were high precision sea bottom topographic survey and sea bottom back scattering wave image data observation by using a sea bottom topography acoustic imaginator. And, by high resolution earthquake wave survey, high precision survey of an active fault under sea bottom was conducted to detect oceanic active faults three-dimensionally. Furthermore, the generally issued data were summarized to promote to construct a data base for evaluating the active faults. (G.K.)

  3. Three dimensional investigation of oceanic active faults. A demonstration survey

    International Nuclear Information System (INIS)

    Nakao, Seizo; Kishimoto, Kiyoyuki; Kuramoto, Shinichi; Sato, Mikio

    1998-01-01

    In order to upgrade probability of activity and action potential evaluation of oceanic active faults which have some important effects on nuclear facilities, trench type oceanic active fault was investigated three dimensionally. Contents of the investigation were high precision sea bottom topographic survey and sea bottom back scattering wave image data observation by using a sea bottom topography acoustic imaginator. And, by high resolution earthquake wave survey, high precision survey of an active fault under sea bottom was conducted to detect oceanic active faults three-dimensionally. Furthermore, the generally issued data were summarized to promote to construct a data base for evaluating the active faults. (G.K.)

  4. Geological 3D model of the investigation niche in ONKALO, Olkiluoto, southwestern Finland

    International Nuclear Information System (INIS)

    Koittola, N.

    2014-07-01

    The main goal of this Master of Science Thesis was to create a geological 3D-model of the investigation niche 3 and its surroundings. The model were created for the needs of the rock mechanical back analysis. This study is a part of Posiva's regional studies for characterization of the bedrock. Totally 4 models were created: lithological model, foliation model, fracture model, and physical rock property model. Besides the modeling, there was also made a study of the migmatite structures in the niche. Used geological and geophysical methods were drill core loggings, tunnel mapping, ground penetration radar, mise-a-la-masse and drill hole geophysics. Four rock types exist at the niche area: veined gneiss, pegmatite granite, diatexitic gneiss and quartz gneiss. The lithological units were modeled primary with the drill core loggings, tunnel mapping and ground penetrating radar. The major lithological units followed the main foliation direction (south dipping). So the continuations were fairly easy to model in the walls and roof, where the data was lacking. Foliation and fractures were modeled as discs, with mid-points at the measurement points of the structure. There were two main foliation directions 164/46 and 62/39. Fractures were more scattered but three fracture sets can be separated: 156/34, 270/85 and 342/83. The first set is mainly from the drill core loggings, second and third from tunnel mapping. Used methods in foliation model were drill core loggings, tunnel mapping and drill hole geophysics. In fracture model used data was from drill core loggings, tunnel mapping, mise-a-la-masse measurements and drill core geophysic. Four anomalous zones were detected with the drill hole geophysics. Three of these zones were associated with intensely fractured zones and one was connected to exceptionally high mica content in the gneiss. Rocks of Olkiluoto are divided into gneisses and magmatic rocks in the geological mapping. Actually almost all Olkiluoto's rocks are

  5. Geological 3D model of the investigation niche in ONKALO, Olkiluoto, southwestern Finland

    Energy Technology Data Exchange (ETDEWEB)

    Koittola, N.

    2014-07-15

    The main goal of this Master of Science Thesis was to create a geological 3D-model of the investigation niche 3 and its surroundings. The model were created for the needs of the rock mechanical back analysis. This study is a part of Posiva's regional studies for characterization of the bedrock. Totally 4 models were created: lithological model, foliation model, fracture model, and physical rock property model. Besides the modeling, there was also made a study of the migmatite structures in the niche. Used geological and geophysical methods were drill core loggings, tunnel mapping, ground penetration radar, mise-a-la-masse and drill hole geophysics. Four rock types exist at the niche area: veined gneiss, pegmatite granite, diatexitic gneiss and quartz gneiss. The lithological units were modeled primary with the drill core loggings, tunnel mapping and ground penetrating radar. The major lithological units followed the main foliation direction (south dipping). So the continuations were fairly easy to model in the walls and roof, where the data was lacking. Foliation and fractures were modeled as discs, with mid-points at the measurement points of the structure. There were two main foliation directions 164/46 and 62/39. Fractures were more scattered but three fracture sets can be separated: 156/34, 270/85 and 342/83. The first set is mainly from the drill core loggings, second and third from tunnel mapping. Used methods in foliation model were drill core loggings, tunnel mapping and drill hole geophysics. In fracture model used data was from drill core loggings, tunnel mapping, mise-a-la-masse measurements and drill core geophysic. Four anomalous zones were detected with the drill hole geophysics. Three of these zones were associated with intensely fractured zones and one was connected to exceptionally high mica content in the gneiss. Rocks of Olkiluoto are divided into gneisses and magmatic rocks in the geological mapping. Actually almost all Olkiluoto

  6. Horonobe Underground Research Laboratory project. Synthesis of phase 1 investigation 2001-2005, Volume 'geological disposal research'

    International Nuclear Information System (INIS)

    Fujita, Tomoo; Taniguchi, Naoki; Maekawa, Keisuke; Sawada, Atsushi; Makino, Hitoshi; Sasamoto, Hiroshi; Yoshikawa, Hideki; Shibata, Masahiro; Ota, Kunio; Miyahara, Kaname; Naito, Morimasa; Yui, Mikazu; Matsui, Hiroya; Hama, Katsuhiro; Kunimaru, Takanori; Takeuchi, Ryuji; Tanai, Kenji; Kurikami, Hiroshi; Wakasugi, Keiichiro; Ishii, Eiichi

    2011-03-01

    This report summarizes the progress of research and development on geological disposal during the surface-based investigation phase (2001-2005) in the Horonobe Underground Research Laboratory project, of which aims are to apply the design methods of geological disposal and mass transport analysis to actual geological conditions obtained from the project as an example of actual geological environment. For the first aim, the design methods for the geological disposal facility proposed in 'H12 report (the second progress report)' was reviewed and then improved based on the recent knowledge. The applicability of design for engineered barrier system, backfill of disposal tunnel, underground facility was illustrated. For the second aim, the conceptual structure from site investigation and evaluation to mass transport analysis was developed as a work flow at first. Then following this work flow a series of procedures for mass transport analysis was applied to the actual geological conditions to illustrate the practical workability of the work flow and the applicability of this methodology. Consequently, based on the results, future subjects were derived. (author)

  7. A bibliography of planetary geology principal investigators and their associates, 1981 - 1982

    Science.gov (United States)

    Plescia, J. B. (Compiler)

    1982-01-01

    Over 800 publications submitted by researchers supported through NASA's Planetary Geology Program are cited and an author/editor index is provided. Entries are listed under the following subjects: (1) general interest topics; (2) solar system, comets, asteroids, and small bodies; (3) geologic mapping, geomorphology, and stratigraphy; (4) structure, tectonics, geologic and geophysical evolution; (5) impact craters: morphology, density, and geologic studies; (6) volcanism; (7) fluvial, mass wasting, and periglacial processes; (8) Eolian studies; (9) regolith, volatile, atmosphere, and climate; (10) remote sensing, radar, and photometry; and (11) cartography, photogrammetry, geodesy, and altimetry.

  8. Geologic investigation of the Virgin River Valley salt deposits, Clark County, southeastern Nevada, to investigate their suitability for possible storage of radioactive waste material as of September 1977

    International Nuclear Information System (INIS)

    1977-01-01

    The results from a geologic investigation of the Virgin River Valley salt deposits, Clark County, southeastern Nevada, to examine their suitability for further study and consideration in connection with the possible storage of radioactive waste material are given. The results indicate that (1) approximately one-half of the salt body underlies the Overton Arm of Lake Mead and that the dry land portion of the salt body that has a thickness of 1,000 feet or more covers an area of about four and one-half square miles; (2) current tectonic activity in the area of the salt deposits is believed to be confined to seismic events associated with crustal adjustments following the filling of Lake Mead; (3) detailed information on the hydrology of the salt deposit area is not available at present but it is reported that a groundwater study by the U.S. Geological Survey is now in progress; (4) there is no evidence of exploitable minerals in the salt deposit area other than evaporites such as salt, gypsum, and possibly sand and gravel; (5) the salt deposit area is located inside the Lake Mead Recreation Area, outlined on the accompanying Location Plat, and several Federal, State, and Local agencies share regulatory responsibilities for the activities in the area; (6) other salt deposit areas of Arizona and Nevada, such as the Detrital Valley, Red Lake Dome, Luke Dome, and Mormon Mesa area, and several playa lake areas of central Nevada may merit further study; and (7) additional information, as outlined, is needed to more thoroughly evaluate the salt deposits of the Virgin River Valley and other areas referred to above

  9. Geological, geophysical investigations and seismotectonic analysis with reference to selection of site for nuclear power plants: a review

    International Nuclear Information System (INIS)

    Chaki, Anjan

    2014-01-01

    Geological, geophysical investigations and seismotectonic analysis play a major role in qualifying a proposed site for establishment of nuclear power plants. In an area, it is important to understand the aspects such as regional and local geology, geomorphology, tectonic settings, presence of active faults/capable faults, earthquake history and earthquake proneness, neotectonic activity, slope instability, subsidence, liquefaction, seismically induced flooding, tsunami and geohydrological conditions. Geological investigations comprise use of remote sensing and ground validation followed by geological mapping, identification of faults, near surface geological studies for foundation conditions, stratigraphic drilling, palaeoseismology, studies on engineering properties of rock and soil. Geophysical investigations provide insight into subsurface geology including concealed faults, elastic constants and hydrological conditions. Radon emanometry is a valuable tool in the initial stage to decipher subsurface active weak zones/fault lines. Seismotectonic analysis identifies the provinces of tectonic significance and their earthquake potential, thereby designating lineaments of consequence leading to their evaluation. This, in turn, determines the design basis earthquake parameter for the estimation of vibratory ground motion. This article provides certain measures to evaluate the suitability of the sites for the establishment of nuclear power plants in terms of geological, geophysical investigations and seismotectonic status. Atomic Minerals Directorate for Exploration and Research (AMD) had carried out seismotectonic analysis of the area around Kaiga, Narora, Kalpakkam, Kakrapar, Tarapur, Kudankulam and Rawatbhata Nuclear Power Projects, which were either in operation or under expansion and construction. Such analysis was extended to a number of proposed sites for establishing nuclear power plants in West Bengal, Bihar, Orissa, Andhra Pradesh, Gujrat, Madhya Pradesh

  10. Geoscientific Vocabularies and Linked Data at The British Geological Survey - progress and pragmatism

    Science.gov (United States)

    McCormick, T.; Heaven, R.

    2013-12-01

    The British Geological Survey makes extensive use of controlled vocabularies to promote standardisation and interoperability between its databases and other digital information systems. Many of our vocabularies are published and searchable at http://www.bgs.ac.uk/data/vocabularies/home.html/. There is a movement to ';open up' government data in both the US and UK. In the UK this is promoted by data.gov.uk. Some view linked data as the best way to share and connect disparate data, information and knowledge, in order to develop a ';Web of Data'. Linked data facilitate connections between data sets, and lower the barriers to accessing data that must otherwise be discovered and exploited using other methods. Recently there has been a rapid increase in the rate of publication of linked data, this increase currently being estimated at 300% per year. In the past 2 years we have undertaken a pilot study to publish some of our authoritative vocabularies as linked data. This study has focussed primarily on publishing BGS' 1:625 000 scale geologic map data for the UK, supported by development of linked data sets for: Earth materials - based on the BGS Rock Classification Scheme; lithostratigraphy - based on the BGS Lexicon of Named Rock Units; and geochronology - based on the International Commission on Stratigraphy. The BGS linked data sets are published at data.bgs.ac.uk. We have learned a number of lessons about the potential and limitations of linked data and associated technologies. We do not envisage SPARQL endpoints being the primary route for public access to linked data because the user would require technical knowledge of the data structure, and because it can be a security threat. Rather, SPARQL may lie behind a user-friendly API. Federated SPARQL queries that can interrogate distributed data sources are in reality too slow, and in practise the data sets would likely be combined in a single store. The data sets in our pilot study are all reasonably static and we

  11. Geophysical and geological borehole investigations for the characterization of a site for radioactive waste disposal

    International Nuclear Information System (INIS)

    Olsson, O.; Ahlbom, K.

    1984-02-01

    In the Swedish program for site investigations detailed geological and geophysical investigations are performed at areas of 4-6 km 2 at the surface. Normally around 10 deep core bore holes are drilled. The length of the holes is normally from 600 to 1000 m. The holes are drilled to verify the location of fracture zones and to investigate the physical and hydraulic properties of the fracture zones at large depths. Investigations have been performed in a number of sites with mainly granitic and gneissic rocks. The core from these boreholes is logged with the aid of a microcomputer system. The cores are mapped with respect to rock type, structure, fractures and fracture minerals. Indications of water flow, shearing and core-discing are also studied. The boreholes are logged with a suite of geophysical logs. Several different electrical logs are used and have been found to be good indicators of fracture zones. Normally the electrical logs in combination with the fracture frequency are used to define the limits of fracture zones crossing the borehole. The temperature log and the salinity log have proved to be good indicators of permeable zones. The data from each hole is correlated with data obtained from the other holes and the surface investigations to build a fracture zone model which is used for the hydraulic modelling of the site. In order to verify the extension of the fracture zones at a distance from the borehole cross-hole techniques have been applied. At the Swedish test site Finnsjoe and in the Stripa mine the suitability of the mise a la masse technique for mapping of fracture zones was tested. At the Finnsjoe site it was possible to map a fairly complex fracture system over distances up to 150 m. In the Stripa mine the object was to follow the extent of a major fracture zone for distances up to 600 m. It was possible to obtain an indication of the orientation of the fracture zone

  12. Unpublished letter from US Geological Survey Scientists to the editor of the New York Times Magazine regarding William J. Broads' November 18, 1990 article on Yucca Mountain

    International Nuclear Information System (INIS)

    Dudley, W.W. Jr.; Buono, A.; Carr, M.D.; Downey, J.S.; Ervin, E.M.; Fox, K.F. Jr.; Gutentag, E.D.; Hayes, L.R.; Jones, B.F.; Luckey, R.R.; Muhs, D.R.; Peterman, Z.E.; Reheis, M.; Spengler, R.W.; Stuckless, J.S.; Taylor, E.M.; Whitney, J.W.; Wilson, W.E.; Winogard, I.J.

    1990-01-01

    This letter documents objections of a group of US Geological Survey Scientists to an article appearing November 18, 1990 in New York Times Magazine. The article was written by William J. Broad and dealt with a hypothesis of Jerry S. Szymanski. The letter addressed areas of concern; including hydrology, geology, tectonics, and the integrity of the scientists and their conclusions. (SM)

  13. Investigation of Six Geological Samples From Wady Sitra Eastern Desert - Egypt Using K0 Neutron Activation Method

    International Nuclear Information System (INIS)

    Soliman, N.F.; Ashmawy, L.S.; Walley El-Dine, N.; Sroor, A.; Mohamed, T.El.

    2010-01-01

    k 0 - Neutron Activation Analysis (k 0 -NAA) is applied to investigate six geological samples collected from Wady Sitra at Eastern desert of Egypt during the survey of gold presence in this area. The samples together with a group of standard (Mo, Fe, Sb and W) are irradiated for 3 hours in one of the inner irradiation site of the Second Egyptian Training and Research Reactor (ETRR-2) operating at power of 19 MW. Mo, Fe and Sb are used to measure the neutron spectrum parameters α(epithermal non-ideality factor) and f (the thermal to epithermal flux ratio) while W is used to test the obtained results. The α( and f parameters are measured using the so-called bare triple monitor method and the obtained results was found to be f = 17.5 ± 0.35 and α(= 0.03±0.002. A Fortran computer program is designed and used to calculate the values of Q 0 (α)for the analyzed elements . The concentration values of 25 elements in the present rock samples have been presented

  14. GEOLOGICAL INVESTIGATION OF PALAEOTSUNAMIS IN THE SAMOAN ISLANDS: INTERIM REPORT AND RESEARCH DIRECTIONS

    Directory of Open Access Journals (Sweden)

    Tim Davies

    2013-01-01

    Full Text Available The September 29, 2009 Samoa Tsunami provided the opportunity to sample the sediments deposited in the Samoan Islands landscape by the tsunami. Analysing the characteristics of the sediment deposits using an established suite of diagnostic criteria, and assessing how they differ from cyclone deposits enables the identification and dating of similar events in the geologic record. This helps to better understand the long-term frequency and likely magnitude of these events. Here we report on a pilot palaeotsunami field-sampling investigation carried out in 2010 at selected sites on Upolu and Savaii Islands in the Independent State of Samoa, and on Ta’u Island in American Samoa. We present empirical stratigraphic data for the investigated sites, and we demonstrate the existence of high energy marine inundation deposits at some of these sites which were laid down by past tsunamis and/or cyclones. We review and discuss the analytical outcomes, as well as summarise the overarching directions of this research. We propose that there is a need for this study to continue and for such studies to be carried out in other islands in the Pacific. By doing this, we can build on the sparse palaeotsunami database in the region, thereby helping to improve our understanding of the long-term frequency, impact distribution, and likely magnitude of these events. Further, we can start assessing their likely sources and the long-term risk these hazards pose to coastal cities and communities in the Pacific.

  15. Geologic and mineral and water resources investigations in western Colorado using ERTS-1 data

    Science.gov (United States)

    Knepper, D. H. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Most of the geologic information in ERTS-1 imagery can be extracted from bulk processed black and white transparencies by a skilled interpreter using standard photogeologic techniques. In central and western Colorado, the detectability of lithologic contacts on ERTS-1 imagery is closely related to the time of year the imagery was acquired. Geologic structures are the most readily extractable type of geologic information contained in ERTS images. Major tectonic features and associated minor structures can be rapidly mapped, allowing the geologic setting of a large region to be quickly accessed. Trends of geologic structures in younger sedimentary appear to strongly parallel linear trends in older metamorphic and igneous basement terrain. Linears and color anomalies mapped from ERTS imagery are closely related to loci of known mineralization in the Colorado mineral belt.

  16. Facing tomorrow's challenges: U.S. Geological Survey science in the decade 2007-2017

    Science.gov (United States)

    ,

    2007-01-01

    In order for the U.S. Geological Survey (USGS) to respond to evolving national and global priorities, it must periodically reflect on, and optimize, its strategic directions. This report is the first comprehensive science strategy since the early 1990s to examine critically major USGS science goals and priorities. The development of this science strategy comes at a time of global trends and rapidly evolving societal needs that pose important natural-science challenges. The emergence of a global economy affects the demand for all resources. The last decade has witnessed the emergence of a new model for managing Federal lands-ecosystem-based management. The U.S. Climate Change Science Program predicts that the next few decades will see rapid changes in the Nation's and the Earth's environment. Finally, the natural environment continues to pose risks to society in the form of volcanoes, earthquakes, wildland fires, floods, droughts, invasive species, variable and changing climate, and natural and anthropogenic toxins, as well as animal-borne diseases that affect humans. The use of, and competition for, natural resources on the global scale, and natural threats to those resources, has the potential to impact the Nation's ability to sustain its economy, national security, quality of life, and natural environment. Responding to these national priorities and global trends requires a science strategy that not only builds on existing USGS strengths and partnerships but also demands the innovation made possible by integrating the full breadth and depth of USGS capabilities. The USGS chooses to go forward in the science directions proposed here because the societal issues addressed by these science directions represent major challenges for the Nation's future and for the stewards of Federal lands, both onshore and offshore. The six science directions proposed in this science strategy are listed as follows. The ecosystems strategy is listed first because it has a dual nature

  17. Reducing risk where tectonic plates collide—U.S. Geological Survey subduction zone science plan

    Science.gov (United States)

    Gomberg, Joan S.; Ludwig, Kristin A.; Bekins, Barbara; Brocher, Thomas M.; Brock, John C.; Brothers, Daniel; Chaytor, Jason D.; Frankel, Arthur; Geist, Eric L.; Haney, Matt; Hickman, Stephen H.; Leith, William S.; Roeloffs, Evelyn A.; Schulz, William H.; Sisson, Thomas W.; Wallace, Kristi; Watt, Janet; Wein, Anne M.

    2017-06-19

    The U.S. Geological Survey (USGS) serves the Nation by providing reliable scientific information and tools to build resilience in communities exposed to subduction zone earthquakes, tsunamis, landslides, and volcanic eruptions. Improving the application of USGS science to successfully reduce risk from these events relies on whole community efforts, with continuing partnerships among scientists and stakeholders, including researchers from universities, other government labs and private industry, land-use planners, engineers, policy-makers, emergency managers and responders, business owners, insurance providers, the media, and the general public.Motivated by recent technological advances and increased awareness of our growing vulnerability to subduction-zone hazards, the USGS is uniquely positioned to take a major step forward in the science it conducts and products it provides, building on its tradition of using long-term monitoring and research to develop effective products for hazard mitigation. This science plan provides a blueprint both for prioritizing USGS science activities and for delineating USGS interests and potential participation in subduction zone science supported by its partners.The activities in this plan address many USGS stakeholder needs:High-fidelity tools and user-tailored information that facilitate increasingly more targeted, neighborhood-scale decisions to mitigate risks more cost-effectively and ensure post-event operability. Such tools may include maps, tables, and simulated earthquake ground-motion records conveying shaking intensity and frequency. These facilitate the prioritization of retrofitting of vulnerable infrastructure;Information to guide local land-use and response planning to minimize development in likely hazardous zones (for example, databases, maps, and scenario documents to guide evacuation route planning in communities near volcanoes, along coastlines vulnerable to tsunamis, and built on landslide-prone terrain);New tools

  18. Creation of next generation U.S. Geological Survey topographic maps

    Science.gov (United States)

    Craun, Kari J.

    2010-01-01

    The U.S. Geological Survey (USGS) is 2 years into a 3-year cycle to create new digital topographic map products for the conterminous United States from data acquired and maintained as part of The National Map databases. These products are in the traditional, USGS topographic quadrangle, 7.5-minute (latitude and longitude) cell format. The 3-year cycle was conceived to follow the acquisition of National Aerial Imagery Program (NAIP) orthorectified imagery, a key layer in the new product. In fiscal year (FY) 2009 (ending September 30, 2009), the first year of the 3-year cycle, the USGS produced 13,200 products. These initial products of the “Digital MapBeta” series had limited feature content, including only the NAIP image, some roads, geographic names, and grid and collar information. The products were created in layered georegistered Portable Document Format (PDF) files, allowing users with freely available Adobe® Reader® software to view, print, and perform simple Geographic Information System-like functions. In FY 2010 (ending September 30, 2010), the USGS produced 20,380 products. These products of the “US Topo” series added hydrography (surface water features), contours, and some boundaries. In FY 2011 (ending September 30, 2011), the USGS will complete the initial coverage with US Topo products and will add additional feature content to the maps. The design, development, and production associated with the US Topo products provide management and technical challenges for the USGS and its public and private sector partners. One challenge is the acquisition and maintenance of nationally consistent base map data from multiple sources. Another is the use of these data to create a consistent, current series of cartographic products that can be used by the broad spectrum of traditional topographic map users. Although the USGS and its partners have overcome many of these challenges, many, such as establishing and funding a sustainable base data

  19. Quality-assurance results for routine water analysis in US Geological Survey laboratories, water year 1991

    Science.gov (United States)

    Maloney, T.J.; Ludtke, A.S.; Krizman, T.L.

    1994-01-01

    The US. Geological Survey operates a quality- assurance program based on the analyses of reference samples for the National Water Quality Laboratory in Arvada, Colorado, and the Quality of Water Service Unit in Ocala, Florida. Reference samples containing selected inorganic, nutrient, and low ionic-strength constituents are prepared and disguised as routine samples. The program goal is to determine precision and bias for as many analytical methods offered by the participating laboratories as possible. The samples typically are submitted at a rate of approximately 5 percent of the annual environmental sample load for each constituent. The samples are distributed to the laboratories throughout the year. Analytical data for these reference samples reflect the quality of environmental sample data produced by the laboratories because the samples are processed in the same manner for all steps from sample login through data release. The results are stored permanently in the National Water Data Storage and Retrieval System. During water year 1991, 86 analytical procedures were evaluated at the National Water Quality Laboratory and 37 analytical procedures were evaluated at the Quality of Water Service Unit. An overall evaluation of the inorganic (major ion and trace metal) constituent data for water year 1991 indicated analytical imprecision in the National Water Quality Laboratory for 5 of 67 analytical procedures: aluminum (whole-water recoverable, atomic emission spectrometric, direct-current plasma); calcium (atomic emission spectrometric, direct); fluoride (ion-exchange chromatographic); iron (whole-water recoverable, atomic absorption spectrometric, direct); and sulfate (ion-exchange chromatographic). The results for 11 of 67 analytical procedures had positive or negative bias during water year 1991. Analytical imprecision was indicated in the determination of two of the five National Water Quality Laboratory nutrient constituents: orthophosphate as phosphorus and

  20. U.S. Geological Survey science for the Wyoming Landscape Conservation Initiative—2016 annual report

    Science.gov (United States)

    Bowen, Zachary H.; Aikens, Ellen; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Chalfoun, Anna D.; Chong, Geneva W.; Eddy-Miller, Cheryl; Garman, Steven L.; Germaine, Stephen S.; Homer, Collin G.; Johnston, Aaron; Kauffman, Matthew J.; Manier, Daniel J.; Melcher, Cynthia P.; Miller, Kirk A.; Walters, Annika W.; Wheeler, Jerrod D.; Wieferich, Daniel; Wilson, Anna B.; Wyckoff, Teal B.; Zeigenfuss, Linda C.

    2018-05-10

    This is the ninth annual report highlighting U.S. Geological Survey (USGS) science and decision-support activities conducted for the Wyoming Landscape Conservation Initiative (WLCI). The activities address specific management needs identified by WLCI partner agencies. In fiscal year (FY) 2016, there were 26 active USGS WLCI science-based projects. Of these 26 projects, one project was new for FY2016, and three were completed by the end of the fiscal year (though final products were still in preparation or review). USGS WLCI projects were grouped under five categories: (1) Baseline Synthesis, (2) Long-Term Monitoring, (3) Effectiveness Monitoring, (4) Mechanistic Studies of Wildlife, and (5) Data and Information Management. Each of these topic areas is designed to address WLCI management needs: identifying key drivers of change, identifying the condition and distribution of key wildlife species and habitats and of species’ habitat requirements, development of an integrated inventory and monitoring strategy, use of emerging technologies and development and testing of innovative methods for maximizing the efficiency and efficacy of monitoring efforts, evaluating the effectiveness of habitat treatment projects, evaluating the responses of wildlife to development, and developing a data clearinghouse and information management framework to support and provide access to results of most USGS WLCI projects.In FY2016, we assisted with updating the WLCI Conservation Action Plan and associated databases as part of the Comprehensive Assessment, and we also assisted with the Bureau of Land Management 2015 WLCI annual report. By the end of FY2016, we completed or had nearly completed assessments of WLCI energy and mineral resources and had submitted a manuscript on modeled effects of oil and gas development on wildlife to a peer-reviewed journal. We also initiated a study on the effects of wind energy on wildlife in the WLCI region. A USGS circular on WLCI long-term monitoring

  1. Proceedings of the first U.S. Geological Survey scientific information management workshop, March 21-23, 2006

    Science.gov (United States)

    Henkel, Heather S.

    2007-01-01

    In March 2006, the U.S. Geological Survey (USGS) held the first Scientific Information Management (SIM) Workshop in Reston, Virginia. The workshop brought together more than 150 SIM professionals from across the organization to discuss the range and importance of SIM problems, identify common challenges and solutions, and investigate the use and value of “communities of practice” (CoP) as mechanisms to address these issues. The 3-day workshop began with presentations of SIM challenges faced by the Long Term Ecological Research (LTER) network and two USGS programs from geology and hydrology. These presentations were followed by a keynote address and discussion of CoP by Dr. Etienne Wenger, a pioneer and leading expert in CoP, who defined them as "groups of people who share a passion for something that they know how to do and who interact regularly to learn how to do it better." Wenger addressed the roles and characteristics of CoP, how they complement formal organizational structures, and how they can be fostered. Following this motivating overview, five panelists (including Dr. Wenger) with CoP experience in different institutional settings provided their perspectives and lessons learned. The first day closed with an open discussion on the potential intersection of SIM at the USGS with SIM challenges and the potential for CoP. The second session began the process of developing a common vocabulary for both scientific data management and CoP, and a list of eight guiding principles for information management were proposed for discussion and constructive criticism. Following this discussion, 20 live demonstrations and posters of SIM tools developed by various USGS programs and projects were presented. Two community-building sessions were held to explore the next steps in 12 specific areas: Archiving of Scientific Data and Information; Database Networks; Digital Libraries; Emerging Workforce; Field Data for Small Research Projects; Knowledge Capture; Knowledge

  2. Quality-Assurance Plan for the Analysis of Fluvial Sediment by the U. S. Geological Survey Kentucky Water Science Center Sediment Laboratory

    National Research Council Canada - National Science Library

    Shreve, Elizabeth A; Downs, Aimee C

    2005-01-01

    This report describes laboratory procedures used by the U. S. Geological Survey Kentucky Water Science Center Sediment Laboratory for the processing and analysis of fluvial sediment samples for concentration of sand and finer material...

  3. Geologic and geophysical investigations of the Zuni-Bandera volcanic field, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ander, M.E.; Heiken, G.; Eichelberger, J.; Laughlin, A.W.; Huestis, S.

    1981-05-01

    A positive, northeast-trending gravity anomaly, 90 km long and 30 km wide, extends southwest from the Zuni uplift, New Mexico. The Zuni-Bandera volcanic field, an alignment of 74 basaltic vents, is parallel to the eastern edge of the anomaly. Lavas display a bimodal distribution of tholeiitic and alkalic compositions, and were erupted over a period from 4 Myr to present. A residual gravity profile taken perpendicular to the major axis of the anomaly was analyzed using linear programming and ideal body theory to obtain bounds on the density contrast, depth, and minimum thickness of the gravity body. Two-dimensionality was assumed. The limiting case where the anomalous body reaches the surface gives 0.1 g/cm/sup 3/ as the greatest lower bound on the maximum density contrast. If 0.4 g/cm/sup 3/ is taken as the geologically reasonable upper limit on the maximum density contrast, the least upper bound on the depth of burial is 3.5 km and minimum thickness is 2 km. A shallow mafic intrusion, emplaced sometime before Laramide deformation, is proposed to account for the positive gravity anomaly. Analysis of a magnetotelluric survey suggests that the intrusion is not due to recent basaltic magma associated with the Zuni-Bandera volcanic field. This large basement structure has controlled the development of the volcanic field; vent orientations have changed somewhat through time, but the trend of the volcanic chain followed the edge of the basement structure. It has also exhibited some control on deformation of the sedimentary section.

  4. Miscellaneous investigations series: Bedrock geologic map of the Lone Mountain pluton area, Esmeralda County, Nevada

    International Nuclear Information System (INIS)

    Maldonado, F.

    1984-01-01

    The joint attitudes were measured in the field and plotted on aerial photos at a scale of 1:24,000. The pluton is intensely jointed, primarily as a result of cooling and movement of the magma within a northwest-trending stress field. Foliation, in general, is poorly developed, and quality varies from area to area, but it is best developed close to the contacts with the metasedimentary rocks. A prominent northwest foliation direction was observed that parallels the northwest elongation of the exposed pluton. Faults in the pluton are difficult to identify because of the homogeneity of the rock. Several faults were mapped in the northern part of the area where they have a northeast trend and intersect the northwest-trending lamprophyre dikes with little apparent displacement. A major fault that bounds the northern part of the pluton is downthrown to the north and strikes northeast. This fault offsets the alluvium, the metasedimentary rocks, and the pluton and forms fault scraps as high as 10 m. Aeromagnetic data (US Geological Survey, 1979) suggest the following: (1) the local magnetic highs in the central part of the Lone Mountain pluton are probably related to topographic highs (peaks) where the flight lines are closer to the pluton; (2) a magnetic low in the northeastern part of Lone Mountain coincides with the pluton-country rock contact, which may be very steep; (3) the contours for the southwestern part of the mapped area indicate that the pluton-country rock contact is not as steep as that in the northeastern part and that the pluton probably coalesces at depth with the Weepah pluton, a pluton exposed south of the mapped area; and (4) the contours for the area of the Lone Mountain pluton express a northwest-trending gradient that parallels the northwest elongation of the Lone Mountain pluton and the northwest-trending stress field. 10 refs

  5. U.S. Geological Survey Science for the Wyoming Landscape Conservation Initiative - 2013 Annual Report

    Science.gov (United States)

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Bern, Carleton R.; Biewick, Laura R; Boughton, Gregory K.; Chalfoun, Anna D.; Chong, Geneva W.; Dematatis, Marie K.; Fedy, Bradley C.; Garman, Steven L.; Germaine, Stephen S.; Hethcoat, Matthew G.; Homer, Collin G.; Huber, Christopher; Kauffman, Matthew J.; Latysh, Natalie; Manier, Daniel; Melcher, Cynthia P.; Miller, Kirk A.; Potter, Christopher J.; Schell, Spencer; Sweat, Michael J.; Walters, Annika W.; Wilson, Anna B.

    2014-01-01

    This is the sixth report produced by the U.S. Geological Survey (USGS) for the Wyoming Landscape Conservation Initiative (WLCI) to detail annual activities conducted by USGS for addressing specific management needs identified by WLCI partners. In FY2013, there were 25 ongoing and new projects conducted by the USGS. These projects fall into 8 major categories: (1) synthesizing and analyzing existing data to describe (model and map) current conditions on the landscape; (2) developing models for projecting past and future landscape conditions; (3) monitoring indicators of ecosystem conditions and the effectiveness of on-the-ground habitat projects; (4) conducting research to elucidate the mechanisms underlying wildlife and habitat responses to changing land uses; (5) managing and making accessible the large number of databases, maps, and other products being developed; (6) helping to integrate WLCI outcomes with future habitat enhancement and research projects; (7) coordinating efforts among WLCI partners; and (8) providing support to WLCI decision-makers and assisting with overall evaluation of the WLCI program. The two new projects initiated in FY2013 address (1) important agricultural lands in southwestern Wyoming, and (2) the influence of energy development on native fish communities. The remaining activities entailed our ongoing efforts to compile data, model landscape conditions, monitor trends in habitat conditions, conduct studies of wildlife responses to energy development, and upgrade Web-based products in support of both individual and overall WLCI efforts. Milestone FY2013 accomplishments included completing the development of a WLCI inventory and monitoring framework and the associated monitoring strategies, protocols, and analytics; and initial development of an Interagency Inventory and Monitoring Database, which will be accessible through the Monitoring page of the WLCI Web site at http://www.wlci.gov/monitoring. We also completed the initial phase of

  6. The use of forensic botany and geology in war crimes investigations in NE Bosnia.

    Science.gov (United States)

    Brown, A G

    2006-11-22

    From 1997 to 2002 the United Nations International Criminal Tribune for the former Yugoslavia (ICTY) undertook the exhumation of mass graves in NE Bosnia as part of the war crimes investigations aimed at providing evidence for the prosecution of war criminals in The Hague. This involved the location and exhumation of seven former mass graves (primary sites) dug following the fall of Srebrenica in July 1995. These primary mass graves were secretly and hurriedly exhumed three months later and most of the bodies or body parts transported and reburied in a large number of secondary sites many of which were subsequently exhumed by ICTY. The aim of the pollen and soil/sediment studies was to provide an 'environmental profile' of the original site of the samples and use this to match the relocated bodies to the original mass graves. This was part of completing the chain of evidence, providing evidence of the scale and organization of the original atrocities and the subsequent attempts to conceal the evidence related to them. All the primary sites were located in areas of contrasting geology, soils and vegetation, and this allowed matching of the sediment transported in intimate contact with the bodies to the original burial sites, which in some cases were also the execution sites. In all, over 24 sites were investigated, over 240 samples collected and analyzed under low power microscopy and 65 pollen sub-samples fully analyzed. The pollen and sediment descriptions were used in conjunction with the mineralogy (using XRD) of primary and secondary sites in order to provide matches. These matches were then compared with matching evidence from ballistic studies and clothing. The evidence has been used in court and is now in the public domain. It is believed this is the first time 'environmental profiling' techniques have been used in a systematic manner in a war crimes investigation.

  7. [US Geological Survey research in radioactive waste disposal, fiscal year 1980:] Search for potential [disposal] sites

    International Nuclear Information System (INIS)

    Dixon, G.L.; Glanzman, V.M.

    1982-01-01

    The objective is to locate and characterize rock masses at the NTS and in southern Nevada suitable as host media for high-level radioactive wastes; to describe the areal and depth distribution and structural integrity of these rock masses; and to assess the potential for contaminant release by hydrologic transport, or as a result of tectonic, and (or) volcanic activity. From previous geologic work at NTS, the general geology is well known. Areas likely to have suitable host rocks and hydrologic conditions at depths appropriate for a repository are evaluated by detailed surface mapping, surface geophysical methods, exploratory drilling, and geophysical techniques. 10 refs., 1 figs

  8. North Carolina Geological Survey's role in siting a low-level radioactive (LLRW) waste disposal facility in North Carolina

    International Nuclear Information System (INIS)

    Reid, J.C.; Wooten, R.M.; Farrell, K.M.

    1993-01-01

    The Southeast Compact Commission in 1986 selected North Carolina to host the Southeast's LLRW disposal facility for the next twenty years. The North Carolina Geological Survey (NCGS) for six years has played a major role in the State's efforts by contributing to legislation and administrative code, policy, technical oversight and surveillance and regulation as a member of the State's regulatory team. Future activities include recommendation of the adequacy of characterization and site performance pursuant to federal code, state general statutes and administrative code, and review of a license application. Staff must be prepared to present testimony and professional conclusions in court. The NCGS provides technical advice to the Division of Radiation Protection (DRP), the regulatory agency which will grant or deny a LLRW license. The NCGS has not participated in screening the state for potential sites to minimize bias. The LLRW Management Authority, a separate state agency siting the LLRW facility, hired a contractor to characterize potential sites and to write a license application. Organizational relationships enable the NCGS to assist the DRP in its regulatory role without conflict of interest. Disposal facilities must be sited to ensure safe disposal of LLRW. By law, the siting of a LLRW disposal facility is primarily a geological, rather than an engineering, effort. Federal and State statutes indicate a site must be licensable on its own merits. Engineered barriers cannot make a site licensable. The project is 3 years behind schedule and millions of dollars over budget. This indicates the uncertainty and complexity inherent in siting such as facility, the outcome of which cannot be predicted until site characterization is complete, the license application reviewed and the performance assessment evaluated. State geological surveys are uniquely qualified to overview siting of LLRW facilities because of technical expertise and experience in the state's geology

  9. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Tonsina area, Valdez Quadrangle, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 128 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Tonsina area in the Chugach Mountains, Valdez quadrangle, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies

  10. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Zane Hills, Hughes and Shungnak quadrangles, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential.The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska.For this report, DGGS funded reanalysis of 105 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Zane Hills area in the Hughes and Shungnak quadrangles, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies.

  11. Investigating the impact of microbial interactions with geologic media on geophysical properties

    Science.gov (United States)

    Davis, Caroline Ann

    The goals of this study were to investigate the effect of: (1) microbial metabolic byproducts, microbial growth, and biofilm formation on the low frequency electrical properties of porous media, (2) biofilm formation on acoustic wave properties, and (3) the natural electrical (self-potential) signatures associated with an in-situ biological permeable reactive barrier (PRB). The results suggest: (1) increases in electrolytic conductivity are consistent with increased concentrations of organic acids and biosurfactants; (2) mineral weathering promoted by organic acids causes increases in electrolytic conductivity, concomitant with increases in major cation concentrations; (3) interfacial conductivity generally parallels microbial cell concentrations and biofilm formation; (4) variations in microbial growth and biofilms causes spatiotemporal heterogeneity in the elastic properties of porous media; (5) SP signatures associated with the injection of groundwater into an in-situ biological PRB are dominated by diffusion potentials induced by the injections. The results suggest that electrolytic conductivity may be useful as an indicator of metabolism, while interfacial conductivity may be used as proxy indicator for microbial growth and biofilm formation in porous media. In addition, acoustic measurements may provide diagnostic spatiotemporal data for the validation of bioclogging models/simulations. Collectively, this study provides further evidence that geophysical measurements are sensitive to microbial-induced changes to geologic media, and may be useful for the detection and monitoring of subsurface microbial growth, activity, and distribution such as in microbial enhanced oil recovery, assessing biofilm barriers used for contaminant remediation, or as sealants for reservoirs in CO2 sequestration studies.

  12. Evaluating integration of inland bathymetry in the U.S. Geological Survey 3D Elevation Program, 2014

    Science.gov (United States)

    Miller-Corbett, Cynthia

    2016-09-01

    Inland bathymetry survey collections, survey data types, features, sources, availability, and the effort required to integrate inland bathymetric data into the U.S. Geological Survey 3D Elevation Program are assessed to help determine the feasibility of integrating three-dimensional water feature elevation data into The National Map. Available data from wading, acoustic, light detection and ranging, and combined technique surveys are provided by the U.S. Geological Survey, National Oceanic and Atmospheric Administration, U.S. Army Corps of Engineers, and other sources. Inland bathymetric data accessed through Web-hosted resources or contacts provide useful baseline parameters for evaluating survey types and techniques used for collection and processing, and serve as a basis for comparing survey methods and the quality of results. Historically, boat-mounted acoustic surveys have provided most inland bathymetry data. Light detection and ranging techniques that are beneficial in areas hard to reach by boat, that can collect dense data in shallow water to provide comprehensive coverage, and that can be cost effective for surveying large areas with good water clarity are becoming more common; however, optimal conditions and techniques for collecting and processing light detection and ranging inland bathymetry surveys are not yet well defined.Assessment of site condition parameters important for understanding inland bathymetry survey issues and results, and an evaluation of existing inland bathymetry survey coverage are proposed as steps to develop criteria for implementing a useful and successful inland bathymetry survey plan in the 3D Elevation Program. These survey parameters would also serve as input for an inland bathymetry survey data baseline. Integration and interpolation techniques are important factors to consider in developing a robust plan; however, available survey data are usually in a triangulated irregular network format or other format compatible with

  13. Geological Prediction Ahead of Tunnel Face in the Limestone Formation Tunnel using Multi-Modal Geophysical Surveys

    Science.gov (United States)

    Zaki, N. F. M.; Ismail, M. A. M.; Hazreek Zainal Abidin, Mohd; Madun, Aziman

    2018-04-01

    Tunnel construction in typical karst topography face the risk which unknown geological condition such as abundant rainwater, ground water and cavities. Construction of tunnel in karst limestone frequently lead to potentially over-break of rock formation and cause failure to affected area. Physical character of limestone which consists large cavity prone to sudden failure and become worsen due to misinterpretation of rock quality by engineer and geologists during analysis stage and improper method adopted in construction stage. Consideration for execution of laboratory and field testing in rock limestone should be well planned and arranged in tunnel construction project. Several tests including Ground Penetration Radar (GPR) and geological face mapping were studied in this research to investigate the performances of limestone rock in tunnel construction, measured in term of rock mass quality that used for risk assessment. The objective of this study is to focus on the prediction of geological condition ahead of tunnel face using short range method (GPR) and verified by geological face mapping method to determine the consistency of actual geological condition on site. Q-Value as the main indicator for rock mass classification was obtained from geological face mapping method. The scope of this study is covering for tunnelling construction along 756 meters in karst limestone area which located at Timah Tasoh Tunnel, Bukit Tebing Tinggi, Perlis. For this case study, 15% of GPR results was identified as inaccurate for rock mass classification in which certain chainage along this tunnel with 34 out of 224 data from GPR was identified as incompatible with actual face mapping.

  14. U.S. Geological Survey 2011 assessment of undiscovered oil and gas resources of the Cook Inlet region, south-central Alaska

    Science.gov (United States)

    Stanley, Richard G.; Pierce, Brenda S.; Houseknecht, David W.

    2011-01-01

    The U.S. Geological Survey (USGS) has completed an assessment of the volumes of undiscovered, technically recoverable oil and gas resources in conventional and continuous accumulations in Cook Inlet. The assessment used a geology-based methodology and results from new scientific research by the USGS and the State of Alaska, Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas (DOG). In the Cook Inlet region, the USGS estimates mean undiscovered volumes of nearly 600 million barrels of oil, about 19 trillion cubic feet of gas, and about 46 million barrels of natural gas liquids.

  15. Surveying Geology Concepts in Education Standards for a Rapidly Changing Global Context

    Science.gov (United States)

    Guffey, Sarah K.; Slater, Stephanie J.; Schleigh, Sharon P.; Slater, Timothy F.; Heyer, Inge

    2016-01-01

    Internationally much attention is being paid to which of a seemingly endless list of scientific concepts should be taught to schoolchildren to enable them to best participate in the global economy of the 21st Century. In regards to science education, the concepts framing the subject of geology holds exalted status as core scientific principles in…

  16. Integrated geophysical survey for the geological structural and hydrogeothermal study of the North-western Gargano promontory (Southern Italy

    Directory of Open Access Journals (Sweden)

    D. Schiavone

    1996-06-01

    Full Text Available A multimethodological geophysical survey was performed in the north-western part of the Gargano promontory to study the geological structural setting and the underground fluid flow characteristics. The area has a complex tectonics with some magmatic outcrops and shallow low-enthalpy waters. Electrical, seismic reflection, gravimetric and magnetic surveys were carried out to reconstruct the geological structures; and in order to delineate the hydrogeothermal characteristics of the area, the self-potential survey was mainly used. Moreover magnetic and self-potential measurements were also performed in the Lesina lake. The joint three-dimensional interpretation of the geophysical data disclosed a large horst and graben structure covering a large part of the area. In the central part of the horst a large ramified volcanic body was modelled. The models show some intrusions rising from it to or near to the surface. The main structures are well deep-seated in the Crust and along them deep warm fluids rise as the SP data interpretation indicates.

  17. Numerical investigation of high level nuclear waste disposal in deep anisotropic geologic repositories

    KAUST Repository

    Salama, Amgad

    2015-11-01

    One of the techniques that have been proposed to dispose high level nuclear waste (HLW) has been to bury them in deep geologic formations, which offer relatively enough space to accommodate the large volume of HLW accumulated over the years since the dawn of nuclear era. Albeit the relatively large number of research works that have been conducted to investigate temperature distribution surrounding waste canisters, they all abide to consider the host formations as homogeneous and isotropic. While this could be the case in some subsurface settings, in most cases, this is not true. In other words, subsurface formations are, in most cases, inherently anisotropic and heterogeneous. In this research, we show that even a slight difference in anisotropy of thermal conductivity of host rock with direction could have interesting effects on temperature fields. We investigate the effect of anisotropy angle (the angle the principal direction of anisotropy is making with the coordinate system) on the temperature field as well as on the maximum temperature attained in different barrier systems. This includes 0°, 30°, 45°, 60°, and 90°in addition to the isotropic case as a reference. We also consider the effect of anisotropy ratio (the ratio between the principal direction anisotropies) on the temperature fields and maximum temperature history. This includes ratios ranging between 1.5 and 4. Interesting patterns of temperature fields and profiles are obtained. It is found that the temperature contours are aligned more towards the principal direction of anisotropy. Furthermore the peak temperature in the buffer zone is found to be larger the smaller the anisotropy angle and vice versa. © 2015 Elsevier Ltd. All rights reserved.

  18. Review of the ANSTO submission on the site geological investigations for the RRR at Lucas Heights

    International Nuclear Information System (INIS)

    2002-01-01

    Preliminary Safety Analysis Report (PSAR) and ANSTO's Consolidated Seismic Report were reviewed by ARPANSA's Regulatory Branch, and by an IAEA consultant to ARPANSA. It included a recommendation by the IAEA Peer Review Team (June 2001) that an additional study be undertaken for the Lucas Heights site in accordance with IAEA Safety Guide 50-SG-S1. In particular this related to regional and local investigations to determine whether there exists a potential for surface faulting at the site area, to formulate the investigations that should be used to determine whether or not any faults in the area should be considered capable. The CEO of ARPANSA requested ANSTO to undertake such a task. The reviews that have been undertaken by experts from Geoscience Australia and the IAEA expert contracted by ARPANSA give confidence that the seismic design of the reactor structures, systems, and components important for safety should not be affected by the fault through the excavations for the foundations of the reactor building. The basis is the conclusions reached by these experts that the fault discovered is very old and not capable under either the USNRC Criteria or the IAEA Criteria. It is not now active, has not been active in the geologically recent past and is unlikely to re-activate within the foreseeable lifespan of the proposed facility. Consequently, this pre-existing fault presents no greater risk than the surrounding unfaulted material. Thus, the replacement reactor need not be designed for such displacement. The existence of this 'incapable' fault does not impact on the probabilistic seismic hazard assessment from which the seismic design basis for the reactor was derived. Therefore, the existing design response spectrum accepted in the Regulatory Assessment Report as the basis for seismic design of structures, systems and components, and approved in the Construction Licence, has not changed and remains adequately conservative with regard to vibratory motion at the site

  19. Study on systemizing technology on investigation and analysis of deep underground geological environment. Japanese fiscal year, 2007 (Contract research)

    International Nuclear Information System (INIS)

    Kojima, Keiji; Ohnishi, Yuzo; Aoki, Kenji; Watanabe, Kunio; Nishigaki, Makoto; Tosaka, Hiroyuki; Shimada, Jun; Tochiyama, Osamu; Yoshida, Hidekazu; Ogata, Nobuhisa; Nishio, Kazuhisa

    2009-03-01

    In this year, the following studies were carried out with the aim of systemizing the technology on the investigation and analysis to understand the deep underground geological environment in relation to the radioactive waste disposal. (1) The study on the research and development (R and D) subjects which turned to the practical investigation and analysis of deep underground geological environment. (2) The study on the advanced technical basis for the investigation and analysis of deep underground geological environment. The results obtained from the studies are as follows: Regarding (1), the specific investigations, measurements and numerical and chemical analyses were performed particularly for research subjects: 1) engineering technology and 2) geological environment. Based on the results on (1), 3) tasks of collaboration research on intermediate area between the research fields, including the safety assessment field, were selected. Also redefinition of the NFC (Near Field Concept) were discussed. Regarding (2), based on the extracted tasks of JAEA (Japan Atomic Energy Agency) research project, the study was implemented considering previous R and D results and detailed research at the research field was carried out. This study contributed to the R and D development for its practical application. Concurrently, information exchange and discussion on the 2nd phase (the Construction Phase) of the MIU (Mizunami Underground Research Laboratory) research program were often held. (author)

  20. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain area, Nevada Nuclear Waste Site Investigation (NNWSI)

    International Nuclear Information System (INIS)

    1988-10-01

    This report provides a summary of progress for the project ''Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI)'' for the eighteen month period of January 1, 1987 to June 10, 1988. This final report was preceded by the final report for the initial six month period, July 1, 1986 to December 31, 1986 (submitted on January 25, 1987, and revised in June 1987.) Quaternary Tectonics, Geochemical, Mineral Deposits, Vulcanic Geology, Seismology, Tectonics, Neotectonics, Remote Sensing, Geotechnical Assessments, Geotechnical Rock Mass Assessments, Basinal Studies, and Strong Ground Motion

  1. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain Area Nevada Nuclear Waste Site Investigation (NNWSI)

    International Nuclear Information System (INIS)

    1995-01-01

    This report provides a summary of progress for the project open-quotes Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI).close quotes A similar report was previously provided for the period of 1 October 1993 to 30 September 1994. The report initially covers the activities of the General Task and is followed by sections that describe the progress of the other ongoing Tasks which are listed below. Task 1: Quaternary Tectonics Task 3: Mineral Deposits, Volcanic Geology Task 4: Seismology Task 5: Tectonics Task 8: Basinal Studies

  2. U.S. Geological Survey Science for the Wyoming Landscape Conservation Initiative-2010 Annual Report

    Science.gov (United States)

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Biewick, Laura; Blecker, Steven W.; Boughton, Gregory K.; Bristol, R. Sky; Carr, Natasha B.; Chalfoun, Anna D.; Chong, Geneva W.; Clark, Melanie L.; Diffendorfer, Jay E.; Fedy, Bradley C.; Foster, Katharine; Garman, Steven L.; Germaine, Stephen S.; Holloway, JoAnn; Homer, Collin G.; Kauffman, Matthew J.; Keinath, Douglas; Latysh, Natalie; Manier, Daniel J.; McDougal, Robert R.; Melcher, Cynthia P.; Miller, Kirk A.; Montag, Jessica; Potter, Christopher J.; Schell, Spencer; Shafer, Sarah L.; Smith, David B.; Stillings, Lisa L.; Tuttle, Michele L.W.; Wilson, Anna B.

    2011-01-01

    This is the third report produced by the U.S. Geological Survey (USGS) for the Wyoming Landscape Conservation Initiative (WLCI) to detail annual work activities. The first report described activities for 2007 and 2008, and the second report covered work activities for FY09. This third report covers work activities conducted in FY2010, and it continues the 2009 approach of reporting on all the individual activities to help give WLCI partners and other readers the full scope of what has been accomplished. New in this year's report is an additional section for each work activity that outlines the work planned for the following fiscal year. In FY2010, there were 35 ongoing/expanded, completed, or new projects conducted under the five major multi-disciplinary science and technical-assistance activities: (1) Baseline Synthesis; (2) Targeted Monitoring and Research; (3) Data and Information Management; (4) Integration and Coordination; and (5) Decisionmaking and Evaluation. The three new work activities were to (1) compile existing water data for the entire WLCI region and (2) develop regional curves (statistical models) for relating bankfull-channel geometry and discharge to drainages in the WLCI region, both of which will help guide long-term monitoring of water resources; and (3) initiate a groundwater-monitoring network to evaluate potential effects of energy-development activities on groundwater quality where groundwater is an important source of public/private water supplies. Results of the FY2009 work to develop methods for assessing soil organic matter and mercury indicated that selenium and arsenic levels may be elevated in the Muddy Creek Basin; thus, the focus of that activity was shifted in FY2010 to evaluate biogeochemical cycling of elements in the basin. In FY2010, two ongoing activities were expanded with the addition of more sampling plots: (a) the study of how greater sage-grouse (Centrocercus urophasianus) use vegetation-treatment areas (sites added to

  3. White-nose syndrome in bats: U.S. Geological Survey updates

    Science.gov (United States)

    Rogall, Gail Moede; Verant, Michelle

    2012-01-01

    White-nose syndrome (WNS) is a devastating disease that has killed millions of hibernating bats since it first appeared in New York in 2007 and has spread at an alarming rate from the northeastern to the central United States and Canada. The disease is named for the white fungus Geomyces destructans that infects the skin of the muzzle, ears, and wings of hibernating bats. The U.S. Geological Survey (USGS) National Wildlife Health Center (NWHC), the USGS Fort Collins Science Center, the U.S. Fish and Wildlife Service, and other partners continue to play a primary role in WNS research. Studies conducted at the NWHC led to the discovery (Blehert and others, 2009), characterization, and naming (Gargas and others, 2009) of the cold-loving fungus G. destructans and to the development of standardized criteria for diagnosing the disease (Meteyer and others, 2009). Additionally, scientists at the NWHC have pioneered laboratory techniques for studying the effects of the fungus on hibernating bats (Lorch and others, 2011). To determine if bats are affected by white-nose syndrome, scientists look for a characteristic microscopic pattern of skin erosion caused by G. destructans (Meteyer and others, 2009). Field signs of WNS can include visible white fungal growth on the bat's muzzle, wings, or both, but these signs alone are not a reliable disease indicator - laboratory examination and testing are required for disease confirmation. Infected bats also arouse from hibernation more frequently than uninfected bats (Warnecke and others, 2012) and often display abnormal behaviors in their hibernation sites, such as congregating at or near cave openings and daytime flights during winter. These abnormal behaviors may contribute to the bat's accelerated consumption of stored fat reserves, causing emaciation, a characteristic documented in some of the bats that die with WNS. During hibernation, bats likely have lowered immunity (Bouma and others, 2010), which may facilitate the ability

  4. U.S. Geological Survey's ShakeCast: A cloud-based future

    Science.gov (United States)

    Wald, David J.; Lin, Kuo-Wan; Turner, Loren; Bekiri, Nebi

    2014-01-01

    When an earthquake occurs, the U. S. Geological Survey (USGS) ShakeMap portrays the extent of potentially damaging shaking. In turn, the ShakeCast system, a freely-available, post-earthquake situational awareness application, automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users’ facilities, sends notifications of potential damage to responsible parties, and generates facility damage assessment maps and other web-based products for emergency managers and responders. ShakeCast is particularly suitable for earthquake planning and response purposes by Departments of Transportation (DOTs), critical facility and lifeline utilities, large businesses, engineering and financial services, and loss and risk modelers. Recent important developments to the ShakeCast system and its user base are described. The newly-released Version 3 of the ShakeCast system encompasses advancements in seismology, earthquake engineering, and information technology applicable to the legacy ShakeCast installation (Version 2). In particular, this upgrade includes a full statistical fragility analysis framework for general assessment of structures as part of the near real-time system, direct access to additional earthquake-specific USGS products besides ShakeMap (PAGER, DYFI?, tectonic summary, etc.), significant improvements in the graphical user interface, including a console view for operations centers, and custom, user-defined hazard and loss modules. The release also introduces a new adaption option to port ShakeCast to the "cloud". Employing Amazon Web Services (AWS), users now have a low-cost alternative to local hosting, by fully offloading hardware, software, and communication obligations to the cloud. Other advantages of the "ShakeCast Cloud" strategy include (1) Reliability and robustness of offsite operations, (2) Scalability naturally accommodated, (3), Serviceability, problems reduced due to software and hardware uniformity, (4

  5. U.S. Geological Survey Activities Related to American Indians and Alaska Natives: Fiscal Year 2005

    Science.gov (United States)

    Marcus, Susan M.

    2007-01-01

    Introduction This report describes the activities that the U.S. Geological Survey (USGS) conducted with American Indian and Alaska Native governments, educational institutions, and individuals during Federal fiscal year (FY) 2005. Most of these USGS activities were collaborations with Tribes, Tribal organizations, or professional societies. Others were conducted cooperatively with the Bureau of Indian Affairs (BIA) or other Federal entities. The USGS is the earth and natural science bureau within the U.S. Department of the Interior (DOI). The USGS does not have regulatory or land management responsibilities. As described in this report, there are many USGS activities that are directly relevant to American Indians, Alaska Natives, and to Native lands. A USGS website, dedicated to making USGS more accessible to American Indians, Alaska Natives, their governments, and institutions, is available at www.usgs.gov/indian. This website includes information on how to contact USGS American Indian/Alaska Native Liaisons, training opportunities, and links to other information resources. This report and previous editions are also available through the website. The USGS realizes that Native knowledge and cultural traditions of living in harmony with nature result in unique Native perspectives that enrich USGS studies. USGS seeks to increase the sensitivity and openness of its scientists to the breadth of Native knowledge, expanding the information on which their research is based. USGS scientific studies include data collection, mapping, natural resource modeling, and research projects. These projects typically last 2 or 3 years, although some are parts of longer-term activities. Some projects are funded cooperatively, with USGS funds matched or supplemented by individual Tribal governments, or by the BIA. These projects may also receive funding from the U.S. Environmental Protection Agency (USEPA), the Indian Health Service (part of the Department of Health and Human Services

  6. The U.S. Geological Survey Peak-Flow File Data Verification Project, 2008–16

    Science.gov (United States)

    Ryberg, Karen R.; Goree, Burl B.; Williams-Sether, Tara; Mason, Robert R.

    2017-11-21

    Annual peak streamflow (peak flow) at a streamgage is defined as the maximum instantaneous flow in a water year. A water year begins on October 1 and continues through September 30 of the following year; for example, water year 2015 extends from October 1, 2014, through September 30, 2015. The accuracy, characterization, and completeness of the peak streamflow data are critical in determining flood-frequency estimates that are used daily to design water and transportation infrastructure, delineate flood-plain boundaries, and regulate development and utilization of lands throughout the United States and are essential to understanding the implications of climate and land-use change on flooding and high-flow conditions.As of November 14, 2016, peak-flow data existed for 27,240 unique streamgages in the United States and its territories. The data, collectively referred to as the “peak-flow file,” are available as part of the U.S. Geological Survey (USGS) public web interface, the National Water Information System, at https://nwis.waterdata.usgs.gov/usa/nwis/peak. Although the data have been routinely subjected to periodic review by the USGS Office of Surface Water and screening at the USGS Water Science Center level, these data were not reviewed in a national, systematic manner until 2008 when automated scripts were developed and applied to detect potential errors in peak-flow values and their associated dates, gage heights, and peak-flow qualification codes, as well as qualification codes associated with the gage heights. USGS scientists and hydrographers studied the resulting output, accessed basic records and field notes, and corrected observed errors or, more commonly, confirmed existing data as correct.This report summarizes the changes in peak-flow file data at a national level, illustrates their nature and causation, and identifies the streamgages affected by these changes. Specifically, the peak-flow data were compared for streamgages with peak flow

  7. 2010 U.S. Geological Survey Topographic LiDAR: Atchafalaya Basin, Louisiana

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) dataset is a survey of the Atchafalaya Basin in south-central Louisiana. The entire survey area encompasses 981 square miles....

  8. Summary of U.S. Geological Survey studies conducted in cooperation with the Citizen Potawatomi Nation, central Oklahoma, 2011–14

    Science.gov (United States)

    Andrews, William J.; Becker, Carol J.; Ryter, Derek W.; Smith, S. Jerrod

    2016-01-19

    The U.S. Geological Survey conducted hydrologic studies and published three U.S. Geological Survey scientific investigations reports in cooperation with the Citizen Potawatomi Nation from 2011 to 2014 to characterize the quality and quantity of water resources. The study areas of those reports consisted of approximately 960 square miles in parts of three counties in central Oklahoma. This study area has multiple abundant sources of water, being underlain by three principal aquifers (alluvial/terrace, Central Oklahoma, and Vamoosa-Ada), being bordered by two major rivers (North Canadian and Canadian), and having several smaller drainages including the Little River in the central part of the study area and Salt Creek in the southeastern part of the study area. The Central Oklahoma aquifer (also referred to as the “Garber-Wellington aquifer”) underlies approximately 3,000 square miles in central Oklahoma in parts of Cleveland, Logan, Lincoln, Oklahoma, and Pottawatomie Counties and much of the study area. Water from these aquifers is used for municipal, industrial, commercial, agricultural, and domestic supplies.

  9. Characterization of HPGe gamma spectrometric detectors systems for Instrumental Neutron Activation Analysis (INAA) at the Colombian Geological Survey

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, O., E-mail: osierra@sgc.gov.co; Parrado, G., E-mail: gparrado@sgc.gov.co; Cañón, Y.; Porras, A.; Alonso, D.; Herrera, D. C.; Peña, M., E-mail: mlpena@sgc.gov.co; Orozco, J. [Colombian Geological Survey, Nuclear Affairs Technical Division, Neutron Activation Analysis Laboratory, Bogota D. C. (Colombia)

    2016-07-07

    This paper presents the progress made by the Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey (SGC in its Spanish acronym), towards the characterization of its gamma spectrometric systems for Instrumental Neutron Activation Analysis (INAA), with the aim of introducing corrections to the measurements by variations in sample geometry. Characterization includes the empirical determination of the interaction point of gamma radiation inside the Germanium crystal, through the application of a linear model and the use of a fast Monte Carlo N-Particle (MCNP) software to estimate correction factors for differences in counting efficiency that arise from variations in sample density between samples and standards.

  10. Land-cover change research at the U.S. Geological Survey-assessing our nation's dynamic land surface

    Science.gov (United States)

    Wilson, Tamara S.

    2011-01-01

    The U.S. Geological Survey (USGS) recently completed an unprecedented, 27-year assessment of land-use and land-cover change for the conterminous United States. For the period 1973 to 2000, scientists generated estimates of change in major types of land use and land cover, such as development, mining, agriculture, forest, grasslands, and wetlands. To help provide the insight that our Nation will need to make land-use decisions in coming decades, the historical trends data is now being used by the USGS to help model potential future land use/land cover under different scenarios, including climate, environmental, economic, population, public policy, and technological change.

  11. Quality-assurance plan for water-quality activities in the U.S. Geological Survey Washington Water Science Center

    Science.gov (United States)

    Conn, Kathleen E.; Huffman, Raegan L.; Barton, Cynthia

    2017-05-08

    In accordance with guidelines set forth by the Office of Water Quality in the Water Mission Area of the U.S. Geological Survey, a quality-assurance plan has been created for use by the Washington Water Science Center (WAWSC) in conducting water-quality activities. This qualityassurance plan documents the standards, policies, and procedures used by the WAWSC for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures documented in this quality-assurance plan for water-quality activities complement the quality-assurance plans for surface-water and groundwater activities at the WAWSC.

  12. Information to prevent human exposure to disease agents associated with wildlife—U.S. Geological Survey circulars on zoonotic disease

    Science.gov (United States)

    Meteyer, Carol U.; Moede Rogall, Gail

    2018-03-05

    The U.S. Geological Survey in collaboration with the U.S. Fish and Wildlife Service and others have published reports with information about geographic distribution, specific pathogens, disease ecology, and strategies to avoid exposure and infection for a selection of zoonotic diseases. Zoonotic diseases are diseases that can be passed from animals to humans, such as rabies and plague. This summary factsheet highlights the reports on plague, bat rabies, and raccoon roundworm with links to all seven zoonotic diseases covered in this series.

  13. MAJOR SOURCE OF SIDE-LOOKING AIRBORNE RADAR IMAGERY FOR RESEARCH AND EXPLORATION: THE U. S. GEOLOGICAL SURVEY.

    Science.gov (United States)

    Kover, Allan N.; Jones, John Edwin; ,

    1985-01-01

    The US Geological Survey (USGS) instituted a program in 1980 to acquire side-looking airbore radar (SLAR) data and make these data readily available to the public in a mosaic format comparable to the USGS 1:250,000-scale topographic map series. The SLAR data are also available as strip images at an acquisition scale of 1:250,000 or 1:400,000 (depending on the acquisition system), as a variety of print products and indexes, and in a limited amount in digital form on computer compatible tapes. Three different commercial X-band (3-cm) systems were used to acquire the imagery for producing the mosaics.

  14. The use of scientific and technical results from underground research laboratory investigations for the geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    2001-09-01

    The objective of the report is to provide information on the use of results obtained from underground research laboratory investigations for the development of a deep geological repository system for long lived and/or high level radioactive waste including spent fuel. Specifically, it should provide Member States that intend to start development of a geological disposal system with an overview of existing facilities and of the sorts and quality of results that have already been acquired. The report is structured into six main themes: rock characterization methodologies and testing; assessment of the geological barrier; assessment of the engineered barrier system; respository construction techniques; demonstration of repository operations; confidence building and international co-operation

  15. Bibliography of publications prepared by US Geological Survey personnel under cooperative programs with the US Department of Energy and predecessor agencies, 1957--1991, with emphasis on nuclear testing programs

    International Nuclear Information System (INIS)

    Glanzman, V.M.

    1992-01-01

    The US Geological Survey has participated in continuing studies related to nuclear energy in cooperation with the US Department of Energy and predecessor agencies since the 1940's. Geologic, geophysical and hydrologic studies have been conducted to aid in mineral exploration; in support of the nuclear weapons testing programs at the Nevada Test Site and several other locations; in support of the Plowshare Program for peaceful uses of nuclear explosions; and in the search for potential radioactive waste disposal sites. This bibliography contains alphabetical listings of 850 publications and 95 additional abstracts related to these investigations from 1957 through 1991, and contains an extensive index based on title-subject keywords

  16. Minerals, lands, and geology for the common defence and general welfare, Volume 4, 1939-1961: A history of geology in relation to the development of public-land, federal science, and mapping policies and the development of mineral resources in the United States from the 60th to the 82d year of the U.S. Geological Survey

    Science.gov (United States)

    Rabbitt, Mary C.; Nelson, Clifford M.

    2015-01-01

    The fourth volume of the comprehensive history of the U.S. Geological Survey (USGS) is titled “Minerals, Lands, and Geology for the Common Defence and General Welfare—Volume 4, 1939‒1961.” The title is based on a passage in the preamble of the U.S. Constitution.

  17. Geological mapping of investigation trench OL-TK19 at the Olkiluoto study site, Eurajoki, SW Finland

    Energy Technology Data Exchange (ETDEWEB)

    Eroma, E.; Nordbaeck, N.; Engstroem, J. [Geological Survey of Finland, Espoo (Finland)

    2014-12-15

    In October 2012, the geological mapping of investigation trench OL-TK19 was carried out by the Geological Survey of Finland at the Olkiluoto study site. The SE-NW trending, ca. 85 m long trench is located in the central part of the Olkiluoto Island next to investigation trenches OL-TK18 and OL-TK4. The lithology in investigation trench OL-TK19 is of heterogeneous character, with rock type varying from veined gneiss, diatexitic gneiss to pegmatitic granite, along with portions of mica gneiss and K-feldspar porphyritic gneiss. In addition, inclusions of mica gneiss, quartz gneiss and skarn are encountered. The rocks have been subjected to a multiphase ductile deformation and the trench is situated in an area where the latest ductile deformation phase, D4 prevails. The investigation trench can be divided into three domains according to its dominant deformation phase and foliation; the eastern part of the trench is dominated by the D3 deformation phase whereas the middle and western parts are dominated by the D4 deformation phase. The S3 foliation has a more ENE-WSW oriented direction whereas the S4 is trending NE-SW. In addition to this difference in orientation, the different structural signature of these two deformation types is observed, the S3 foliation is defined by smaller scaled granitic leucosome veining whereas the S4 foliation is intensely sheared and have a schistose character. During the fracture mapping, all fractures intersecting the central thread were investigated and a total of 132 fractures were recorded. The average fracture frequency 1.53 fractures/m. On the basis of fracture orientations, three fracture sets can be defined. The first set is vertical and NW-SE trending, second set strikes NE-SW with a moderate dip towards the SE and the third set is vertical and NE-SW trending. The median fracture length is 1.38 m and most fractures do not exceed 0.5 m in length, the longest measured fracture being 5.30 m in length. Fracture fillings are mostly

  18. Contaminant transport and accumulation in Massachusetts Bay and Boston Harbor; a summary of U.S. Geological Survey studies

    Science.gov (United States)

    Butman, Bradford; Bothner, Michael H.; Hathaway, J.C.; Jenter, H.L.; Knebel, H.J.; Manheim, F.T.; Signell, R.P.

    1992-01-01

    The U.S. Geological Survey (USGS) is conducting studies in Boston Harbor, Massachusetts Bay, and Cape Cod Bay designed to define the geologic framework of the region and to understand the transport and accumulation of contaminated sediments. The region is being studied because of environmental problems caused by the introduction of wastes for a long time, because a new ocean outfall (to begin operation in 1995) will change the location for disposal of treated Boston sewage from Boston Harbor into Massachusetts Bay, and because of the need to understand the transport of sediments and associated contaminants in order to address a wide range of management questions. The USGS effort complements and is closely coordinated with the research and monitoring studies supported by the Massachusetts Environmental Trust, the Massachusetts Bays Program, and by the Massachusetts Water Resources Authority. The USGS study includes (1) geologic mapping, (2) circulation studies, (3) long-term current and sediment transport observations, (4) measurements of contaminant inventories and rates of sediment mixing and accumulation, (5) circulation modeling, (6) development of a contaminated sediments data base, and (7) information exchange. A long-term objective of the program is to develop a predictive capability for sediment transport and accumulation.

  19. Geological mapping of investigation trench OL-TK14 at the Olkiluoto study site, Eurajoki, SW Finland

    International Nuclear Information System (INIS)

    Nordbaeck, N.

    2007-12-01

    Geological mapping of investigation trench OL-TK14 was carried out by the Geological Survey of Finland at the Olkiluoto study site, Eurajoki, as part of Posiva Oy's site investigation programme for the development of an underground repository for nuclear waste. The E-W striking, ca. 215 m long trench is located in the eastern part of the Olkiluoto Island adjacent to boreholes OL-KR40 and OL-KR45. The trench was cleaned with a pressure washer and pressurized air. The rock types were determined macroscopically. Five samples were also investigated microscopically. The main rock type in the trench is veined gneiss. A few less than 0.5 m wide coarsegrained pegmatitic granite dykes are also encountered. Furthermore a large number of mica gneiss, quartz gneiss and skarn inclusions are present in the veined gneiss, being often elongated and parallel to the foliation. The most dominant tectonic feature is the foliation S2 and associated intense granitic leucosome veining. The foliation strikes ENE-WSW and dips steeply towards SES. Intensely to moderately banded rocks dominate the trench. The sparse F3 folds observed in OL-TK14 are small-scale tight folds in leucosome veins. A large-scale (10 m) open bending of the foliation that could be a result of D4 folding was also observed. Shearbands and other signs of ductile shearing were observed on many locations in the trench and in the eastern part there is a high-grade ductile shear zone intersection. During the fracture mapping, all fractures intersecting the central thread were investigated and a total of 684 fractures were recorded. The average fracture density of the trench is 3.18 fractures/m. On the basis of fracture orientations three main sets can be distinguished: 1) a set striking N-S with vertical dip, 2) a ENE-WSW striking set with varying dips towards the SSE (parallel to the foliation) and 3) a NE-SW striking set with sub-vertical dip towards the SE or the NW. Most of the measured fractures are short due to the

  20. Brazil Geological Basic Survey Program - Espera River - Sheet SF.23-X-B-IV - Minas Gerais State

    International Nuclear Information System (INIS)

    Raposo, F.O.

    1991-01-01

    The present report refers to the Rio Espera sheet (SF.23.X-B-IV) systematic geological mapping, on the 1:100.000 scale. The sheet, which covers Zona da Mata region, includes the Southeastern bord of Minas Gerais Metallurgic Zone, SE of Quadrilatero Ferrifero, in the Sao Francisco craton bord, and Mantiqueira province. Since only one doubtful 2,5 thousand million year - Rb/Sr isochron was obtained in the sheet, Archacan and Proterozoic ages have been attributed to the metamorphic rocks by comparison to other ones elsewhere. An analysis of the crustal evolution pattern based on gravimetric survey data, aeromagnetometry and available geochronological data is given in the 6. Chapter, Part II of the text. Major elements oxides and rare-earths were analysed to establish parameters for the rocks environment elucidation. The geochemical survey was carried out with base on pan concentrated and stream sediments distributed throughout the sheet. (author)

  1. Progress on water data integration and distribution: a summary of select U.S. Geological Survey data systems

    Science.gov (United States)

    Blodgett, David L.; Lucido, Jessica M.; Kreft, James M.

    2016-01-01

    Critical water-resources issues ranging from flood response to water scarcity make access to integrated water information, services, tools, and models essential. Since 1995 when the first water data web pages went online, the U.S. Geological Survey has been at the forefront of water data distribution and integration. Today, real-time and historical streamflow observations are available via web pages and a variety of web service interfaces. The Survey has built partnerships with Federal and State agencies to integrate hydrologic data providing continuous observations of surface and groundwater, temporally discrete water quality data, groundwater well logs, aquatic biology data, water availability and use information, and tools to help characterize the landscape for modeling. In this paper, we summarize the status and design patterns implemented for selected data systems. We describe how these systems contribute to a U.S. Federal Open Water Data Initiative and present some gaps and lessons learned that apply to global hydroinformatics data infrastructure.

  2. Geological interpretation of an airborne gamma-ray spectrometer survey of the Hearne Lake area, Northwest Territories

    International Nuclear Information System (INIS)

    Newton, A.R.; Slaney, V.R.

    1978-01-01

    This study shows how large volumes of airborne data can be displayed in a simple format which provides both mapping and exploration geologists with information not easily obtained from the original data. Eleven lines or part-lines from a gamma-ray survey of the Hearne Lake area were chosen as test lines, and airphotos were used to identify outcrops of each rock type and the distribution of overburden, swamp and water along each line. Geological maps were used to locate the test lines and to provide a listing of the rock types in the area. With this information, it was possible to calculate the average radioelement characteristics of each rock type and to group the rock signatures into a number of rock classes. The techniques described are most usefully applied to those areas where the outcrop is extensive, where some form of geological map already exists, where there are airphotos at scales of 1:30,000 or larger, and where the gamma-ray survey lines are less than 2.5 km apart

  3. U.S. Geological Survey Water science strategy--observing, understanding, predicting, and delivering water science to the nation

    Science.gov (United States)

    Evenson, Eric J.; Orndorff, Randall C.; Blome, Charles D.; Böhlke, John Karl; Hershberger, Paul K.; Langenheim, V.E.; McCabe, Gregory J.; Morlock, Scott E.; Reeves, Howard W.; Verdin, James P.; Weyers, Holly S.; Wood, Tamara M.

    2013-01-01

    This report expands the Water Science Strategy that began with the USGS Science Strategy, “Facing Tomorrow’s Challenges—U.S. Geological Survey Science in the Decade 2007–2017” (U.S. Geological Survey, 2007). This report looks at the relevant issues facing society and develops a strategy built around observing, understanding, predicting, and delivering water science for the next 5 to 10 years by building new capabilities, tools, and delivery systems to meet the Nation’s water-resource needs. This report begins by presenting the vision of water science for the USGS and the societal issues that are influenced by, and in turn influence, the water resources of our Nation. The essence of the Water Science Strategy is built on the concept of “water availability,” defined as spatial and temporal distribution of water quantity and quality, as related to human and ecosystem needs, as affected by human and natural influences. The report also describes the core capabilities of the USGS in water science—the strengths, partnerships, and science integrity that the USGS has built over its 134-year history. Nine priority actions are presented in the report, which combine and elevate the numerous specific strategic actions listed throughout the report. Priority actions were developed as a means of providing the audience of this report with a list for focused attention, even if resources and time limit the ability of managers to address all of the strategic actions in the report.

  4. Seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel

    Science.gov (United States)

    Kaláb, Zdeněk; Šílený, Jan; Lednická, Markéta

    2017-07-01

    This paper deals with the seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel in the Czech Republic. The basic source of data for historical earthquakes up to 1990 was the seismic website [1-]. The most intense earthquake described occurred on September 15, 1590 in the Niederroesterreich region (Austria) in the historical period; its reported intensity is Io = 8-9. The source of the contemporary seismic data for the period since 1991 to the end of 2014 was the website [11]. It may be stated based on the databases and literature review that in the period from 1900, no earthquake exceeding magnitude 5.1 originated in the territory of the Czech Republic. In order to evaluate seismicity and to assess the impact of seismic effects at depths of hypothetical deep geological repository for the next time period, the neo-deterministic method was selected as an extension of the probabilistic method. Each one out of the seven survey areas were assessed by the neo-deterministic evaluation of the seismic wave-field excited by selected individual events and determining the maximum loading. Results of seismological databases studies and neo-deterministic analysis of Čihadlo locality are presented.

  5. A new concept for glacial geological investigations of surges, based on High-Arctic examples (Svalbard)

    Science.gov (United States)

    Lønne, Ida

    2016-01-01

    Svalbard is a key area for the investigation of glacial surges, and almost two centuries worth of field observations exists from this region. Studies have shown that the course of a surge and the associated formation of landforms are strongly influenced by basinal factors, and that the broad range of variables involved can hamper interpretations and comparisons. Based on a review of surges in Svalbard, a new concept for glacial geological investigations has been developed that combines ice-flows, ice-front movements, and morphostratigraphy. The concept is comprised of the following four elements: 1) classification based on the configuration and characteristics of the receiving basin, 2) division of the surge cycle into six stages, 3) guidelines for morphological mapping, and 4) use of an allostratigraphic approach for interpreting ice-front movements. In this context, delineation of the active phase is critical, which include the history of terminus movements, and four main categories of receiving basins are recognized. These are (A) terrestrial basins with deformable substrates, (B) terrestrial basins with poorly deformable substrates, (C) shallow water basins, and (D) deep water basins. The ice-front movement history is reconstructed by coupling information from the proglacial moraines (syn-surge), the supraglacial moraines (post-surge), and the associated traces of meltwater to the surge stages (I-VI). This approach has revealed a critical relationship between the termination of the active phase and three morphological elements, namely, the maximum ice-front position, the maximum moraine extent and the youngest proglacial moraine, which are unique for each of the basins A-D. The concept is thus a novel and more precise approach for mapping the active phase and the active phase duration, as shown by the ∼12-year long surge of Fridtjovbreen, where stage I was 30 months (inception), stage II was 54 months (ice-front advance), stage III was 12 months (stillstand

  6. Studies on the geological environment of the Nanjido waste disposal site: Gravity and magnetic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Byung Doo; Kim, Cha Seop; Chung, Ho Joon; Oh, Seok Hoon [Seoul National Univ., Seoul (Korea, Republic of)

    1995-10-01

    Gravity and magnetic surveys were carried out to investigate the three dimensional configuration and characteristics of the landfills at Nanjido waste disposal site. For terrain correction and three dimensional density inversion of gravity data an algorithm, which calculates the gravity effect of a three dimensional body by using the solid angle method, is developed. This algorithm has been proved to give more accurate terrain correction values for the small survey area having varied topography like Nanjido site as compared with widely used methods such as Hammer`s method and multiquadric equation method. Density inversion of gravity anomaly data gives very useful information about the lateral and vertical variation of the landfills, which can be used to discriminate the kinds of wastes. The average density of filled materials appears to be 1.7 g/cm{sup 3} which is much higher than the value (0.8 g/cm{sup 3}) estimated by Seoul City. The lateral variation of density shows high correlation with the pattern of ongoing depression of the landfills. The northern region of the landfill no. 1, which shows low density and high depression, is closely associated with the industrial waste and sludge filled area. The magnetic anomaly data provide information about relative concentration of magnetic materials, which is also very useful to investigate characteristics of the fills. Several high positive anomaly regions on the reduced-to-pole magnetic anomaly map are appeared to be associated with the industrial waste fills, but certain industrial waste fills show low negative anomalies. This kind of magnetic information can be used in selecting drilling locations over landfills away from buried metal products during the stabilization process. (author). 15 refs., 2 tabs., 15 figs.

  7. U.S. Geological Survey science for the Wyoming Landscape Conservation Initiative—2015 annual report

    Science.gov (United States)

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Bartos, Timothy T.; Chalfoun, Anna D.; Chong, Geneva W.; Dematatis, Marie K.; Eddy-Miller, Cheryl; Garman, Steven L.; Germaine, Stephen S.; Homer, Collin G.; Kauffman, Matthew J.; Huber, Christopher C.; Manier, Daniel J.; Melcher, Cynthia P.; Miller, Kirk A.; Norkin, Tamar; Sanders, Lindsey E.; Walters, Annika W.; Wilson, Anna B.; Wyckoff, Teal B.

    2016-09-28

    This is the eighth annual report highlighting U.S. Geological Survey (USGS) science and decision-support activities conducted for the Wyoming Landscape Conservation Initiative (WLCI). The activities address specific management needs identified by WLCI partner agencies. In 2015, USGS scientists continued 24 WLCI projects in 5 categories: (1) acquiring and analyzing resource-condition data to form a foundation for understanding and monitoring landscape conditions and projecting changes; (2) using new technologies to improve the scope and accuracy of landscape-scale monitoring and assessments, and applying them to monitor indicators of ecosystem conditions and the effectiveness of on-the-ground habitat projects; (3) conducting research to elucidate the mechanisms that drive wildlife and habitat responses to changing land uses; (4) managing and making accessible the large number of databases, maps, and other products being developed; and (5) coordinating efforts among WLCI partners, helping them to use USGS-developed decision-support tools, and integrating WLCI outcomes with future habitat enhancement and research projects. Of the 24 projects, 21 were ongoing, including those that entered new phases or more in-depth lines of inquiry, 2 were new, and 1 was completed.A highlight of 2015 was the WLCI science conference sponsored by the USGS, Bureau of Land Management, and National Park Service in coordination with the Wyoming chapter of The Wildlife Society. Of 260 participants, 41 were USGS professionals representing 13 USGS science centers, field offices, and Cooperative Wildlife Research Units. Major themes of USGS presentations included using new technologies for developing more efficient research protocols for modeling and monitoring natural resources, researching effects of energy development and other land uses on wildlife species and habitats of concern, and modeling species distributions, population trends, habitat use, and effects of land-use changes. There was

  8. Geological characterization and solute transport model investigations of contaminated sites in urban areas (Denmark)

    DEFF Research Database (Denmark)

    Andersen, Theis Raaschou; Poulsen, Søren Erbs; Thomsen, Peter

    the two field sites includes only lithological profiles from boreholes. In order to increase the density of the field data, the two areas were mapped with Electrical Resistivity Tomography (ERT). Based on the borehole information and the high-density geophysical data, detailed 3D geological models...

  9. Numerical investigation of high level nuclear waste disposal in deep anisotropic geologic repositories

    KAUST Repository

    Salama, Amgad; El Amin, Mohamed F.; Sun, Shuyu

    2015-01-01

    One of the techniques that have been proposed to dispose high level nuclear waste (HLW) has been to bury them in deep geologic formations, which offer relatively enough space to accommodate the large volume of HLW accumulated over the years since

  10. Investigating the Fundamental Scientific Issues Affecting the Long-term Geologic Storage of Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Spangler, Lee [Montana State Univ., Bozeman, MT (United States); Cunningham, Alfred [Montana State Univ., Bozeman, MT (United States); Barnhart, Elliot [Montana State Univ., Bozeman, MT (United States); Lageson, David [Montana State Univ., Bozeman, MT (United States); Nall, Anita [Montana State Univ., Bozeman, MT (United States); Dobeck, Laura [Montana State Univ., Bozeman, MT (United States); Repasky, Kevin [Montana State Univ., Bozeman, MT (United States); Shaw, Joseph [Montana State Univ., Bozeman, MT (United States); Nugent, Paul [Montana State Univ., Bozeman, MT (United States); Johnson, Jennifer [Montana State Univ., Bozeman, MT (United States); Hogan, Justin [Montana State Univ., Bozeman, MT (United States); Codd, Sarah [Montana State Univ., Bozeman, MT (United States); Bray, Joshua [Montana State Univ., Bozeman, MT (United States); Prather, Cody [Montana State Univ., Bozeman, MT (United States); McGrail, B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oldenburg, Curtis [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wagoner, Jeff [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pawar, Rajesh [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-12-19

    The Zero Emissions Research and Technology (ZERT) collaborative was formed to address basic science and engineering knowledge gaps relevant to geologic carbon sequestration. The original funding round of ZERT (ZERT I) identified and addressed many of these gaps. ZERT II has focused on specific science and technology areas identified in ZERT I that showed strong promise and needed greater effort to fully develop.

  11. Palaeozoic amalgamation of Central Europe: new results from recent geological and geophysical investigations

    Czech Academy of Sciences Publication Activity Database

    Winchester, J. A.; Floyd, P. A.; Crowley, Q. G.; Piasecki, M. A. J.; Lee, M. K.; Pharaoh, T. C.; Williamson, P.; Banka, D.; Verniers, J.; Samuelsson, J.; Bayer, U.; Marotta, A. M.; Lamarche, J.; Franke, W.; Dörr, W.; Valverde-Vaquero, P.; Giese, U.; Vecoli, M.; Thybo, H.; Laigle, M.; Scheck, M.; Maluski, H.; Marheine, D.; Noble, S. R.; Parrish, R. R.; Evans, J.; Timmerman, H.; Gerdes, A.; Guterch, A.; Grad, M.; Cwojdzinski, S.; Cymerman, Z.; Kozdroj, W.; Kryza, R.; Alexandrowski, P.; Mazur, S.; Štědrá, V.; Kotková, J.; Belka, Z.; Patočka, František; Kachlík, V.

    2002-01-01

    Roč. 360, 1-4 (2002), s. 5-21 ISSN 0040-1951 R&D Projects: GA AV ČR IAA3111102 Keywords : Palaeozoic Gondwana margin * Trans-European Suture Zone * Bohemian Massif Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.409, year: 2002

  12. Investigating the Geological History of Asteroid 101955 Bennu Through Remote Sensing and Returned Sample Analyses

    Science.gov (United States)

    Messenger, S.; Connolly, H. C., Jr.; Lauretta, D. S.; Bottke, W. F.

    2014-01-01

    The NASA New Frontiers Mission OSRIS-REx will return surface regolith samples from near-Earth asteroid 101955 Bennu in September 2023. This target is classified as a B-type asteroid and is spectrally similar to CI and CM chondrite meteorites [1]. The returned samples are thus expected to contain primitive ancient Solar System materials that formed in planetary, nebular, interstellar, and circumstellar environments. Laboratory studies of primitive astromaterials have yielded detailed constraints on the origins, properties, and evolutionary histories of a wide range of Solar System bodies. Yet, the parent bodies of meteorites and cosmic dust are generally unknown, genetic and evolutionary relationships among asteroids and comets are unsettled, and links between laboratory and remote observations remain tenuous. The OSIRIS-REx mission will offer the opportunity to coordinate detailed laboratory analyses of asteroidal materials with known and well characterized geological context from which the samples originated. A primary goal of the OSIRIS-REx mission will be to provide detailed constraints on the origin and geological and dynamical history of Bennu through coordinated analytical studies of the returned samples. These microanalytical studies will be placed in geological context through an extensive orbital remote sensing campaign that will characterize the global geological features and chemical diversity of Bennu. The first views of the asteroid surface and of the returned samples will undoubtedly bring remarkable surprises. However, a wealth of laboratory studies of meteorites and spacecraft encounters with primitive bodies provides a useful framework to formulate priority scientific questions and effective analytical approaches well before the samples are returned. Here we summarize our approach to unraveling the geological history of Bennu through returned sample analyses.

  13. The geological history of the Baltic Sea. A review of the literature and investigation tools

    International Nuclear Information System (INIS)

    Beckholmen, Monica; Tiren, Sven A.

    2009-09-01

    The bedrock in Sweden mainly comprises Proterozoic magmatic and metamorphic rocks older than a billion or one and a half billion years with few easily distinguished testimonies for the younger history. For the construction of a geological repository for deposition of nuclear waste this later, brittle, history is of great consequence. In the Gulf of Bothnia, the Baltic Sea and the countries on the eastern and southern sides of the Baltic Sea, the Proterozoic bedrock of the Svecofennian Province continues underneath a cover of sedimentary rocks of Mesoproterozoic, Palaeozoic and in the south up to Tertiary age. By studying these, lithologies, basin analyses, preserved structures, topography, etc., information may be gained on the later history, not only in the basins but also in the exposed shield area. The deformation is governed by the plate tectonic scenario and mantle configuration of a specific time and suitable structures are utilized and reactivated. The collision and amalgamation of the different tectonic terranes that comprise the basement left it strongly heterogeneous and the sutures between these rheologically different segments ample for future deformation and the adjustment between the segments to the changing and prevailing plate tectonic scenarios; the assembling and break-up of Rodinia, Laurasia and Pangea. Glaciations induce bending of the plate. Suitable datum surfaces for assessment of the deformation are the base of major sedimentary sequences, often linked to plate tectonic cycles, specifically the sub-Cambrian peneplain, the base of the Devonian, Mesozoic, Oligocene, Rupelian and Pleistocene, as well as major differences in metamorphic grade and style of deformation in adjacent rock blocks. The Baltic Sea with its Gulfs has almost since the beginning of history been the locus for rifting and extensional events, e.g. the rapakivi magmatism, 1.5-1.6Ga, formation of the Mesoproterozoic Jotnian sandstone basins and the opening of the Tornquist Sea

  14. The geological history of the Baltic Sea. A review of the literature and investigation tools

    Energy Technology Data Exchange (ETDEWEB)

    Beckholmen, Monica; Tiren, Sven A. (Geosigma AB, Uppsala (Sweden))

    2009-09-15

    The bedrock in Sweden mainly comprises Proterozoic magmatic and metamorphic rocks older than a billion or one and a half billion years with few easily distinguished testimonies for the younger history. For the construction of a geological repository for deposition of nuclear waste this later, brittle, history is of great consequence. In the Gulf of Bothnia, the Baltic Sea and the countries on the eastern and southern sides of the Baltic Sea, the Proterozoic bedrock of the Svecofennian Province continues underneath a cover of sedimentary rocks of Mesoproterozoic, Palaeozoic and in the south up to Tertiary age. By studying these, lithologies, basin analyses, preserved structures, topography, etc., information may be gained on the later history, not only in the basins but also in the exposed shield area. The deformation is governed by the plate tectonic scenario and mantle configuration of a specific time and suitable structures are utilized and reactivated. The collision and amalgamation of the different tectonic terranes that comprise the basement left it strongly heterogeneous and the sutures between these rheologically different segments ample for future deformation and the adjustment between the segments to the changing and prevailing plate tectonic scenarios; the assembling and break-up of Rodinia, Laurasia and Pangea. Glaciations induce bending of the plate. Suitable datum surfaces for assessment of the deformation are the base of major sedimentary sequences, often linked to plate tectonic cycles, specifically the sub-Cambrian peneplain, the base of the Devonian, Mesozoic, Oligocene, Rupelian and Pleistocene, as well as major differences in metamorphic grade and style of deformation in adjacent rock blocks. The Baltic Sea with its Gulfs has almost since the beginning of history been the locus for rifting and extensional events, e.g. the rapakivi magmatism, 1.5-1.6Ga, formation of the Mesoproterozoic Jotnian sandstone basins and the opening of the Tornquist Sea

  15. Geological mapping of investigation Trench OL-TK13 at the Olkiluoto study site, Eurajoki, SW Finland

    International Nuclear Information System (INIS)

    Talikka, M.

    2007-04-01

    Geological mapping of investigation trench OL-TK13 was carried out by the Geological Survey of Finland at the Olkiluoto study site, Eurajoki, as a part Posiva Oy's site investigation programme for the development of an underground repository for nuclear waste. The east-west striking, ca. 250 m long trench is located in the vicinity of boreholes OL-KR23 and OL-KR27, ca. 250 m east of the ONKALO research facility. The mapping was performed from washed bedrock surface and rock types were determined macroscopically. The main rock types in OL-TK13 are diatexitic gneiss, veined gneiss, pegmatitic granite and K-feldspar porphyry. Mica gneiss and granite/granitized mica gneiss exist to a lesser extent. The diatexitic gneiss is the dominant rock type in the western part and the veined gneiss in the eastern part of the trench. The veined gneiss consists of pelitic mica gneiss paleosome and pegmatitic granite leucosome veins that are parallel to the foliation. In the diatexitic gneiss, the proportion of the leucosome veins and patches is over 50 % and the rock has an ambiguous texture. The pegmatitic granite also occurs as wider sections in the western part of the trench. The K-feldspar porphyry is characterized by potassium feldspar phenocrysts (diameter 4 deformation phase. The migmatitic gneisses were folded during the D 3 deformation phase resulting in small scale, tight and asymmetrical F 3 folds plunging moderately to the NE. During the fracture mapping, all fractures longer than one metre and all fractures intersecting the central thread were investigated. Measurements including orientation, length, fillings, Jr-value, Ja-value and undulation were recorded for a total of 860 fractures. The mean fracture density is 3.5 fracture/m. From the orientation data, three fracture sets were identified: (1) fractures parallel to the foliation, (2) subvertical N-S trending factures and (3) fractures dipping steeply to the N. ∼45 % of all fractures are 0.5-1.5 m in length and

  16. Factors Influencing the Success of Women in the Geosciences: An Example from the U.S. Geological Survey

    Science.gov (United States)

    Gundersen, Linda C. S.

    2010-05-01

    A review of my education and 30 year career at the U.S. Geological Survey (USGS), starting as a field assistant in 1979 to becoming Chief Scientist for Geology in 2001, reveals some of the critical success factors for women in the geosciences as well as factors that inhibit success. Women comprised 5% of the geosciences workforce when I started as an undergraduate in 1975, so why did I pursue the geosciences? A high school course covering earth and biological field science was taught by an excellent teacher who encouraged me to pursue geology. In college, several factors influenced my continuation in geology: two supportive mentors, an earth science department providing a broad diversity of courses; opportunities to take graduate courses, interaction with graduate students, and doing an undergraduate thesis. Most important was the individual attention given to undergraduates by both faculty and graduates regardless of gender. The summer intern program sponsored by the National Association of Geology Teachers and the USGS was a deciding factor to my becoming a geoscientist in the public service. Family and job concerns made it difficult to complete a doctorate however, and there existed gender bias against women conducting field work. Critical factors for success at USGS included: dealing ethically, openly, and immediately with gender-biased behavior, taking on responsibilities and science projects out of my "comfort zone", having the support of mentors and colleagues, and always performing at the highest level. In the past 15 years, there have been many "first" women in various leadership roles within the USGS, and now, after 131 years, we have the first woman Director. It is important to note that as gender barriers are broken at the upper levels in an organization, it paves the way for others. Statistics regarding women are improving in terms of percentage of enrollment in degrees and jobs in the private, public, and academic sectors. Women, however, still bear

  17. Digital bedrock mapping at the Geological Survey of Norway: BGS SIGMA tool and in-house database structure

    Science.gov (United States)

    Gasser, Deta; Viola, Giulio; Bingen, Bernard

    2016-04-01

    Since 2010, the Geological Survey of Norway has been implementing and continuously developing a digital workflow for geological bedrock mapping in Norway, from fieldwork to final product. Our workflow is based on the ESRI ArcGIS platform, and we use rugged Windows computers in the field. Three different hardware solutions have been tested over the past 5 years (2010-2015). (1) Panasonic Toughbook CE-19 (2.3 kg), (2) Panasonic Toughbook CF H2 Field (1.6 kg) and (3) Motion MC F5t tablet (1.5 kg). For collection of point observations in the field we mainly use the SIGMA Mobile application in ESRI ArcGIS developed by the British Geological Survey, which allows the mappers to store georeferenced comments, structural measurements, sample information, photographs, sketches, log information etc. in a Microsoft Access database. The application is freely downloadable from the BGS websites. For line- and polygon work we use our in-house database, which is currently under revision. Our line database consists of three feature classes: (1) bedrock boundaries, (2) bedrock lineaments, and (3) bedrock lines, with each feature class having up to 24 different attribute fields. Our polygon database consists of one feature class with 38 attribute fields enabling to store various information concerning lithology, stratigraphic order, age, metamorphic grade and tectonic subdivision. The polygon and line databases are coupled via topology in ESRI ArcGIS, which allows us to edit them simultaneously. This approach has been applied in two large-scale 1:50 000 bedrock mapping projects, one in the Kongsberg domain of the Sveconorwegian orogen, and the other in the greater Trondheim area (Orkanger) in the Caledonian belt. The mapping projects combined collection of high-resolution geophysical data, digital acquisition of field data, and collection of geochronological, geochemical and petrological data. During the Kongsberg project, some 25000 field observation points were collected by eight

  18. Evaluation of geological documents available for provisional safety analyses of potential sites for nuclear waste repositories - Are additional geological investigations needed?

    International Nuclear Information System (INIS)

    2010-10-01

    The procedure for selecting repository sites for all categories of radioactive waste in Switzerland is defined in the conceptual part of the Sectoral Plan for Deep Geological Repositories, which foresees a selection of sites in three stages. In Stage I, Nagra proposed geological siting regions based on criteria relating to safety and engineering feasibility. The Swiss Government (the Federal Council) is expected to decide on the siting proposals in 2011. The objective of Stage 2 is to prepare proposals for the location of the surface facilities within the planning perimeters defined by the Federal Council in its decision on Stage 1 and to identify potential sites. Nagra also has to carry out a provisional safety analysis for each site and a safety-based comparison of the sites. Based on this, and taking into account the results of the socio-economic-ecological impact studies, Nagra then has to propose at least two sites for each repository type to be carried through to Stage 3. The proposed sites will then be investigated in more detail in Stage 3 to ensure that the selection of the sites for the General Licence Applications is well founded. In order to realise the objectives of the upcoming Stage 2, the state of knowledge of the geological conditions at the sites has to be sufficient to perform the provisional safety analyses. Therefore, in preparation for Stage 2, the conceptual part of the Sectoral Plan requires Nagra to clarify the need for additional investigations aimed at providing input for the provisional safety analyses. The purpose of the present report is to document Nagra's technical-scientific assessment of this need. The focus is on evaluating the geological information based on processes and parameters that are relevant for safety and engineering feasibility. In evaluating the state of knowledge the key question is whether additional information could lead to a different decision regarding the selection of the sites to be carried through to Stage 3

  19. An investigation of the repeatability of calibration factors in gamma-ray spectrometry of geological materials

    International Nuclear Information System (INIS)

    Mustapha, A.O.; Patel, J.P.; Rathore, I.V.S.; Hashim, N.O.; Otwoma, D.

    2004-01-01

    A NaI(Tl)-based gamma spectrometer for the analysis of geological materials was calibrated using the IAEA reference materials RGU-1, RGTH-1 and RGK-1. To simulate typical geological samples, two additional standards were prepared from aliquots of the three reference materials. The reproducibility of the instrument calibration factors (CFs) was tested by repeated measurements of the pure IAEA reference materials and the mixed samples in a reproducible counting geometry. The results were analysed using a two-way classification analysis of variance; it was found that the variance in the CFs is significantly higher between standards than it is between measurements. Allowance should be made for this when estimating uncertainties in measurements with the NaI(Tl) spectrometers

  20. Geological And Geotechnical Investigations Of Axum Dam Site Tigray Northern Ethiopia

    Directory of Open Access Journals (Sweden)

    Leulalem

    2015-08-01

    Full Text Available Geological and geotechnical study was conducted in concrete gravity dam which is planned to be constructed in the Maychew River 40 km south of Axum town for the purpose of water supply for the town. The objectives of this research were to map geology of the area to characterize geological defects within and around dam site to evaluate the water tightness of the dam site and to determine the bearing capacity of the dam foundation. The research involved review of different literatures lithological and structural mapping characterizing rock masses by using different rock mass classification methods interpretation of subsurface data geophysical core drilled data test pit data etc.. Results of the study indicate that the area is underlain by Quaternary sediments metasedimentary and metavolcanic rocks. The Quaternary sediments are characterized by low permeability low plasticity and are poorly graded nature. Metasedimentary rocks are found covering the right abutment of the dam whereas at reservoir area it is found intercalating with metavolcanic rocks. These rocks are moderately jointed and sheared with faulting and folding noticed due to these they have a relatively high permeability. Metavolcanic rocks which are found covering the left abutment are strong less permeable and fractured. Most of discontinuities such as fractures bedding and foliation in the study area are oriented E-W NNW-SSE and NNE-SSW. The VES tomography and drilled core result revealed that the potential problems seepageleakage could occur due to presence of faults joints karstified black limestone lithological variations groundwater depth and topography at right abutment. Differential settlements may also occur because empirically estimated moduli of deformation Ed of rock masses indicate that for right abutment much less than left abutment and different geological defects across the dam axis. To minimize these problems contact grouting and consolidation grouting are recommended

  1. Airborne remote sensors applied to engineering geology and civil works design investigations

    Science.gov (United States)

    Gelnett, R. H.

    1975-01-01

    The usefulness of various airborne remote sensing systems in the detection and identification of regional and specific geologic structural features that may affect the design and location of engineering structures on major civil works projects is evaluated. The Butler Valley Dam and Blue Lake Project in northern California was selected as a demonstration site. Findings derived from the interpretation of various kinds of imagery used are given.

  2. Geologic drivers of late ordovician faunal change in laurentia: investigating links between tectonics, speciation, and biotic invasions.

    Directory of Open Access Journals (Sweden)

    David F Wright

    Full Text Available Geologic process, including tectonics and global climate change, profoundly impact the evolution of life because they have the propensity to facilitate episodes of biogeographic differentiation and influence patterns of speciation. We investigate causal links between a dramatic faunal turnover and two dominant geologic processes operating within Laurentia during the Late Ordovician: the Taconian Orogeny and GICE related global cooling. We utilize a novel approach for elucidating the relationship between biotic and geologic changes using a time-stratigraphic, species-level evolutionary framework for articulated brachiopods from North America. Phylogenetic biogeographic analyses indicate a fundamental shift in speciation mode-from a vicariance to dispersal dominated macroevolutionary regime-across the boundary between the Sandbian to Katian Stages. This boundary also corresponds to the onset of renewed intensification of tectonic activity and mountain building, the development of an upwelling zone that introduced cool, nutrient-rich waters into the epieric seas of eastern Laurentia, and the GICE isotopic excursion. The synchronicity of these dramatic geologic, oceanographic, and macroevolutionary changes supports the influence of geologic events on biological evolution. Together, the renewed tectonic activity and oceanographic changes facilitated fundamental changes in habitat structure in eastern North America that reduced opportunities for isolation and vicariance. They also facilitated regional biotic dispersal of taxa that led to the subsequent establishment of extrabasinal (=invasive species and may have led to a suppression of speciation within Laurentian faunas. Phylogenetic biogeographic analysis further indicates that the Richmondian Invasion was a multidirectional regional invasion event that involved taxa immigrating into the Cincinnati region from basins located near the continental margins and within the continental interior.

  3. History of the Fort Collins Science Center, U.S. Geological Survey

    Science.gov (United States)

    O'Shea, Thomas J. (compiler)

    2006-01-01

    The U.S. Geological Survey’s Fort Collins Science Center ("the Center") has been a nucleus of research, technology development, and associated scientific activities within the Department of the Interior for more than 30 years. The Center’s historical activities are deeply rooted in federal biological resources research and its supporting disciplines, particularly as they relate to the needs of the U.S. Department of the Interior and its resource management agencies. The organizational framework and activities of the Center have changed and adapted over the years in response to shifts in the scientific issues and challenges facing the U.S. Department of the Interior and with the development of new strategies to meet these challenges. Thus, the history of the Center has been dynamic.

  4. Corrosion damage to the aluminum tank liner of the U.S. Geological Survey TRIGA Reactor

    International Nuclear Information System (INIS)

    Perryman, R.E.; Millard, H.T. Jr.; Rusling, D.H.; Heifer, P.G.; Smith, W.L.

    1988-01-01

    During a routine maintenance small holes at the side of the tank of the reactor, penetrating the tank liner were discovered. Apparently the corrosion was acting from the back side of the tank forming the holes. The NRC was promptly notified and routine operations were suspended. Further investigation lead to the discovery of 74 holes, most of which were less than 1/8 inch in diameter with a few as large as 1/4 inch diameter. The results of an examination of the plate cut from the side of the tank correlated the absence of tar coating with the presence of numerous corrosion pits and craters. Along the welds in the corroded areas, parallel corrosion troughs existed on either side of the weld. Most of the pits and craters were too small to be detected by ultrasonic survey. In order to remedy the physical problem and be able to resume the reactor operation, a short-term strategy was adopted which involved covering the 74 holes with aluminum patches coated with epoxy. Reactor operations were resumed and over the next month four new holes were found and four patches applied. An inspection conducted after four months of operation found 28 new holes and the rate of leakage of water from the tank had increased to about 0.7 l/h. Because the rate of formation of holes seemed to be accelerating and the time required for maintenance was becoming unacceptable, it was decided to cease operation of the reactor until long-term repairs could be made. A new aluminum tank liner will be installed within the existing tank. A 2-inch wide annular void will then exist between the new and old liners. A pump will be installed inside the new liner to prevent the ground water from contacting it. The top of the void will be shielded to reduce the exposure to neutrons and gamma rays scattered from areas near the reactor. The reactor will be reinstalled at the bottom of the new liner on a plate which can be levelled from a distance of 10 feet

  5. Crustal structural survey for the state of Minas Gerais, Brazil, utilizing geophysical and geological information

    International Nuclear Information System (INIS)

    Haralyi, N.L.E.; Hasui, Y.; Mioto, J.A.; Hamza, V.M.

    1985-01-01

    Gravity, Magnetic (airborne, Magnet and Magsat), heat flow and seismicity available data for the state of Minas Gerais and adjacent regions is here analyzed, discussed and integrated with geologic information. The Late Archean crustal structure is defined as blocks of granite-greenstone separated by belts of high-grade terrains. The belts in eastern and southern Minas Gerais represent the lower parts of the Vitoria, Sao Paulo and Parana Blocks, which were up thrusted over the Brasilia Block through low-angle ductile simple shear Zones. That regional structure is cut and somewhat displaced by NW, ENE, NE and Ns fault sets. These faults are mostly related to the Transamazonian Event, and their geological expression appears to be as high-angle ductile simple shear zones. The development of the Middle/upper proterozoic folded sequences, the incidence of the Brasiliano/Uruacuano thermo tectonic events and the geometry of the Sao Francisco Craton were highly influenced by the preexistent weakness zones. The high-grade terrains, the borders of the Brasilia Block and the Transamazonian lineaments have been preferentially affected. The tectono-magmatic manifestations of the Wealdenian Reactivation, related to the opening of the Atlantic Ocean, occurred mostly among the uplifted zones (Alto Paranaiba Uplift) that developed partially until the rift stage (Mantiqueira Uplift). These processes clearly reveal the influence of the old structures of the state of Minas Gerais. The Mantiqueira Uplift presents a more accentuated seismic activity and thermal flow regime than the neighboring regions, so corresponding to the present less stable area of Minas Gerais. (DJM) [pt

  6. Project TN-030: hydrogeology, ORNL radioactive waste burial grounds. US Geological Survey annual report, FY 82

    International Nuclear Information System (INIS)

    1982-01-01

    Near Burial Ground 3, five wells were cored through Unit F of the Chickamauga Limestone, previously considered to be a probable barrier to ground-water flow. Cores revealed that in this area Unit F actually consists of two continuous silty shale/shaley siltstone members with an interbedded limestone member. Weathering stains in the core and small-size solution openings revealed by televiewer logging indicate that this unit likely has greater permeability than previously described. A unique instrumentation system was designed and installed in six wells to provide information about hydraulic heads in the three geologic units immediately underlying the site. Sediment retrieved from two wells 450 feet and 1300 feet from the site was found to contain as much as 335 pCi/g and 0.83 pCi/g, respectively, of cesium-137. In Burial Ground 5 the construction of four clusters of piezometers of special design was compelted. The deepest wells were cored, geophysical logs were made of each piezometer, and hydraulic conductivities of the bedrock were measured in 50-foot depth increments. No contamination that could be measured by field instrumentation was found in the bedrock. Geophysical logs were made of several older wells in Burial Grounds 5 and 6 and the ILW area. Spectral logging identified the isotopes 60 Co and/or 137 Cs in several well bores. Tritium was found to still be present in water from wells used five years ago during tracer tests in two different areas, suggesting that an inefficient retardive mechanism for this nuclide exists in fine-grained geologic material

  7. Report on geological surveys in the 300-FF-1 operable unit

    International Nuclear Information System (INIS)

    Sandness, G.A.

    1991-03-01

    This report describes a set of geophysical surveys performed by the Pacific Northwest Laboratory at selected locations within the 300-FF-1 Operable Unit at Hanford. Field work and preliminary data processing activities were initiated in September 1989. These actions were terminated by the Westinghouse Hanford Company before completion in December 1989. Work was reinitiated in October 1990, to complete the processing of the data that had already been collected and to report the results. Because the field work was only partially completed, the task objectives, as presented in the Statement of Work, could not be fully met. This report is, therefore, a progress report covering the work performed through December 11, 1989. This task involved (1) ground-penetrating radar surveys of the 618-4 and 618-5 Burial Grounds, and (2) ground-penetrating radar and electromagnetic induction surveys along the assumed routes of the abandoned process sewers and radioactive liquid waste sewers in the 300-FF-1 Operable Unit. The surveys in the burial grounds were intended to identify burial trenches and pits, to determine the depth of fill, and to locate waste materials, including any that might be outside the perimeter fences. The surveys along the sewer routes were intended, first, to confirm the locations of the sewers as shown on existing maps or to otherwise accurately determine their locations, and second, to attempt to identify locations of possible leaks. 3 refs., 3 figs., 2 tabs

  8. Investigation of the thermal regime and geologic history of the Cascade volcanic arc: First phase of a program for scientific drilling in the Cascade Range

    Energy Technology Data Exchange (ETDEWEB)

    Priest, G.R.

    1987-01-01

    A phased, multihole drilling program with associated science is proposed as a means of furthering our understanding of the thermal regime and geologic history of the Cascade Range of Washington, Oregon, and northern California. The information obtained from drilling and ancillary geological and geophysical investigations will contribute to our knowledge in the following general areas: (1) the magnitude of the regional background heat flow of parts of the Quaternary volcanic belt dominated by the most abundant volcanic rock types, basalt and basaltic andesite; (2) the nature of the heat source responsible for the regional heat-flow anomaly; (3) the characteristics of the regional hydrothermal and cold-water circulation; the rates of volcanism for comparison with models for the rate and direction of plate convergence of the Cascades; (5) the history of deformation and volcanism in the volcanic arc that can be related to subduction; (6) the present-day stress regime of the volcanic arc and the relation of these stresses to plate interactions and possible large earthquakes; and the current geometry of the subducted oceanic plate below the Cascade Range and the relationship of the plate to the distribution of heat flow, Quaternary volcanism, and Quaternary deformation. Phase I research will be directed toward a detailed investigation of the Santiam Pass segment. In concert with the Santiam Pass research, a detailed study of the nearby Breitenbush Hot Springs area is also recommended as a component of Phase I. The object of the Breitenbush research is to study one of the hottest known Cascade hydrothermal systems, which coincidentally also has a good geological and geophysical data base. A coordinated program of drilling, sampling, subsurface measurements, and surface surveys will be associated with the drilling of several holes.

  9. Brazil Geological Basic Survey Program - Ponte Nova - Sheet SF.23-X-B-II - Minas Gerais State

    International Nuclear Information System (INIS)

    Brandalise, L.A.

    1991-01-01

    The present report refers to the Ponte Nova Sheet (SF.23-X-B-II) systematic geological mapping, on the 1:100.000 scale. The Sheet covers the Zona da Mata region, Minas Gerais State, in the Mantiqueira Geotectonic Province, to the eastern part of Sao Francisco Geotectonic Province, as defined in the project. The high grade metamorphic rocks to low amphibolite, occurring in the area were affected by a marked low angle shearing transposition, and show diphtheritic effects. Archaean to Proterozoic ages are attributed to the metamorphites mostly by comparison to similar types of the region. Three deformed events were registered in the region. Analysis of the crustal evolution pattern based on geological mapping, laboratorial analyses, gravimetric and air magnetometry data, and available geochronologic data is given in the 6. Chapter, Part II, in the text. Major element oxides, trace-elements, and rare-earths elements were analysed to establish parameters for the rocks environment elucidation. Geochemical survey was carried out with base on pan concentrated and stream sediments distributed throughout the Sheet. Gneisses quarries (industrial rocks) in full exploration activity have been registered, as well as sand and clay deposits employed in construction industry. Metallogenetic/Provisional analysis points out the area as a favorable one for gold prospection. (author)

  10. Geological disaster survey based on Curvelet transform with borehole Ground Penetrating Radar in Tonglushan old mine site.

    Science.gov (United States)

    Tang, Xinjian; Sun, Tao; Tang, Zhijie; Zhou, Zenghui; Wei, Baoming

    2011-06-01

    Tonglushan old mine site located in Huangshi City, China, is very famous in the world. However, some of the ruins had suffered from geological disasters such as local deformation, surface cracking, in recent years. Structural abnormalities of rock-mass in deep underground were surveyed with borehole ground penetrating radar (GPR) to find out whether there were any mined galleries or mined-out areas below the ruins. With both the multiresolution analysis and sub-band directional of Curvelet transform, the feature information of targets' GPR signals were studied on Curvelet transform domain. Heterogeneity of geotechnical media and clutter jamming of complicated background of GPR signals could be conquered well, and the singularity characteristic information of typical rock mass signals could be extracted. Random noise had be removed by thresholding combined with Curvelet and the statistical characteristics of wanted signals and the noise, then direct wave suppression and the spatial distribution feature extraction could obtain a better result by making use of Curvelet transform directional. GprMax numerical modeling and analyzing of the sample data have verified the feasibility and effectiveness of our method. It is important and applicable for the analyzing of the geological structure and the disaster development about the Tonglushan old mine site. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  11. Staff technical position on investigations to identify fault displacement hazards and seismic hazards at a geologic repository

    International Nuclear Information System (INIS)

    McConnell, K.I.; Blackford, M.E.; Ibrahim, A.K.

    1992-07-01

    The purpose of this Staff Technical Position (STP) is to provide guidance to the US Department of Energy (DOE) on acceptable geologic repository investigations that can be used to identify fault displacement hazards and seismic hazards. ne staff considers that the approach this STP takes to investigations of fault displacement and seismic phenomena is appropriate for the collection of sufficient data for input to analyses of fault displacement hazards and seismic hazards, both for the preclosure and postclosure performance periods. However, detailed analyses of fault displacement and seismic data, such as those required for comprehensive assessments of repository performance, may identify the need for additional investigations. Section 2.0 of this STP describes the 10 CFR Part 60 requirements that form the basis for investigations to describe fault displacement hazards and seismic hazards at a geologic repository. Technical position statements and corresponding discussions are presented in Sections 3.0 and 4.0, respectively. Technical position topics in this STP are categorized thusly: (1) investigation considerations, (2) investigations for fault-displacement hazards, and (3) investigations for seismic hazards

  12. Investigation of geology and hydrology of the upper and middle Verde River watershed of central Arizona: a project of the Arizona Rural Watershed Initiative

    Science.gov (United States)

    Woodhouse, Betsy; Flynn, Marilyn E.; Parker, John T.C.; Hoffmann, John P.

    2002-01-01

    The upper and middle Verde River watershed in west-central Arizona is an area rich in natural beauty and cultural history and is an increasingly popular destination for tourists, recreationists, and permanent residents seeking its temperate climate. The diverse terrain of the region includes broad desert valleys, upland plains, forested mountain ranges, narrow canyons, and riparian areas along perennial stream reaches. The area is predominantly in Yavapai County, which in 1999 was the fastest-growing rural county in the United States (Woods and Poole Economics, Inc., 1999); by 2050, the population is projected to more than double. Such growth will increase demands on water resources. The domestic, industrial, and recreational interests of the population will need to be balanced against protection of riparian, woodland, and other natural areas and their associated wildlife and aquatic habitats. Sound management decisions will be required that are based on an understanding of the interactions between local and regional aquifers, surface-water bodies, and recharge and discharge areas. This understanding must include the influence of climate, geology, topography, and cultural development on those components of the hydrologic system. In 1999, the U.S. Geological Survey (USGS), in cooperation with the Arizona Department of Water Resources (ADWR), initiated a regional investigation of the hydrogeology of the upper and middle Verde River watershed. The project is part of the Rural Watershed Initiative (RWI), a program established by the State of Arizona and managed by the ADWR that addresses water supply issues in rural areas while encouraging participation from stakeholder groups in affected communities. The USGS is performing similar RWI investigations on the Colorado Plateau to the north and in the Mogollon Highlands to the east of the Verde River study area (Parker and Flynn, 2000). The objectives of the RWI investigations are to develop: (1) a single database

  13. Regional-scale airborne electromagnetic surveying of the Yucatan karst aquifer (Mexico): geological and hydrogeological interpretation

    DEFF Research Database (Denmark)

    Gondwe, Bibi Ruth Neuman; Ottowitz, David; Supper, Robert

    2012-01-01

    -spectral remote sensing imagery, shuttle radar topography data and frequency-domain airborne electromagnetic (AEM) survey data were used to map karst-aquifer structure on the Yucatan Peninsula, Mexico. Anomalous AEM responses correlated with topographic features and anomalous spectral reflectance of the terrain...... as ejecta from the Chicxulub impact (Cretaceous/Paleogene boundary), based on similar resistivity signatures found in borehole logs. Due to limited sensitivity of the AEM survey, the subsurface configuration beneath the low-resistivity layer could not be unambiguously determined. AEM measurements combined...

  14. Investigating the use of a digital library in an inquiry-based undergraduate geology course

    Directory of Open Access Journals (Sweden)

    Xornam S. Apedoe

    2007-06-01

    Full Text Available This paper reports the findings of a qualitative research study designed to investigate the opportunities and obstacles presented by a digital library for supporting teaching and learning in an inquiry-based undergraduate geology course. Data for this study included classroom observations and field-notes of classroom practices, questionnaires, and audiotapes and transcripts of interviews conducted with student and instructor participants. The findings suggest that although both the instructor and students recognized a number of opportunities presented by the digital library to support teaching and learning (e.g., provides access to various types of data, they encountered a number of obstacles (e.g., difficulty with the search mechanism that discouraged them from taking advantage of the resources available. Recommendations are presented for (a developers of digital libraries, and (b instructors wishing to integrate use of a digital library for supporting their teaching and student learning in an inquiry-based course. Le présent article rend compte des conclusions d’une étude de recherche qualitative élaborée afin d’examiner les occasions et les obstacles que présente une bibliothèque numérique appuyant l’enseignement et l’apprentissage dans le cadre d’un cours de géologie de premier cycle axé sur la recherche. Les données pour cette étude comprenaient les observations effectuées en salle de classe et les notes d’excursion des pratiques en salle de classe, les questionnaires, les bandes audio ainsi que les transcriptions des entrevues menées auprès des étudiants et de l’instructeur participant. Les conclusions laissent entendre que bien que l’instructeur et les étudiants reconnaissent un certain nombre d’occasions que présente la bibliothèque numérique en appui à l’enseignement et à l’apprentissage (p. ex. accès à divers types de données, ils ont dû surmonter un certain nombre d’obstacles (p. ex

  15. Seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel

    Directory of Open Access Journals (Sweden)

    Kaláb Zdeněk

    2017-07-01

    Full Text Available This paper deals with the seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel in the Czech Republic. The basic source of data for historical earthquakes up to 1990 was the seismic website [10]. The most intense earthquake described occurred on September 15, 1590 in the Niederroesterreich region (Austria in the historical period; its reported intensity is Io = 8-9. The source of the contemporary seismic data for the period since 1991 to the end of 2014 was the website [11]. It may be stated based on the databases and literature review that in the period from 1900, no earthquake exceeding magnitude 5.1 originated in the territory of the Czech Republic.

  16. Report on geomorphologic and geologic field surveys in central Dronning Maud Land, 2015-2016 (JARE-57

    Directory of Open Access Journals (Sweden)

    Yusuke Suganuma

    2016-09-01

    Full Text Available Geomorphologic and geologic field surveys were conducted in central Dronning Maud Land during the summer of 2015-2016 as part of the 57th Japanese Antarctic Research Expedition (JARE-57. The members of the field expedition included three geomorphologists, a geologist, and a field assistant. This field expedition was fully supported by the Norwegian Polar Institute (NPI and the South African National Antarctic Program (SANAP, and it was the first JARE expedition to use the Troll and SANAE stations. The NPI provided airborne access from Germany (Norway, on the way back to the Troll station in central Dronning Maud Land via Cape Town, South Africa. The SANAP provided a helicopter to access nunataks and mountains in this area from the Troll and SANAE stations. This report summarizes the activities of this field expedition including fieldwork, logistics, and weather observations.

  17. Water quality measurements in San Francisco Bay by the U.S. Geological Survey, 1969-2015.

    Science.gov (United States)

    Schraga, Tara S; Cloern, James E

    2017-08-08

    The U.S. Geological Survey (USGS) maintains a place-based research program in San Francisco Bay (USA) that began in 1969 and continues, providing one of the longest records of water-quality measurements in a North American estuary. Constituents include salinity, temperature, light extinction coefficient, and concentrations of chlorophyll-a, dissolved oxygen, suspended particulate matter, nitrate, nitrite, ammonium, silicate, and phosphate. We describe the sampling program, analytical methods, structure of the data record, and how to access all measurements made from 1969 through 2015. We provide a summary of how these data have been used by USGS and other researchers to deepen understanding of how estuaries are structured and function differently from the river and ocean ecosystems they bridge.

  18. A Review of Methods Applied by the U.S. Geological Survey in the Assessment of Identified Geothermal Resources

    Science.gov (United States)

    Williams, Colin F.; Reed, Marshall J.; Mariner, Robert H.

    2008-01-01

    The U. S. Geological Survey (USGS) is conducting an updated assessment of geothermal resources in the United States. The primary method applied in assessments of identified geothermal systems by the USGS and other organizations is the volume method, in which the recoverable heat is estimated from the thermal energy available in a reservoir. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. The new assessment will incorporate some changes in the models for temperature and depth ranges for electric power production, preferred chemical geothermometers for estimates of reservoir temperatures, estimates of reservoir volumes, and geothermal energy recovery factors. Monte Carlo simulations are used to characterize uncertainties in the estimates of electric power generation. These new models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of natural geothermal reservoirs.

  19. Quality-assurance plan for water-resources activities of the U.S. Geological Survey in Idaho

    Science.gov (United States)

    Packard, F.A.

    1996-01-01

    To ensure continued confidence in its products, the Water Resources Division of the U.S. Geological Survey implemented a policy that all its scientific work be performed in accordance with a centrally managed quality-assurance program. This report establishes and documents a formal policy for current (1995) quality assurance within the Idaho District of the U.S. Geological Survey. Quality assurance is formalized by describing district organization and operational responsibilities, documenting the district quality-assurance policies, and describing district functions. The districts conducts its work through offices in Boise, Idaho Falls, Twin Falls, Sandpoint, and at the Idaho National Engineering Laboratory. Data-collection programs and interpretive studies are conducted by two operating units, and operational and technical assistance is provided by three support units: (1) Administrative Services advisors provide guidance on various personnel issues and budget functions, (2) computer and reports advisors provide guidance in their fields, and (3) discipline specialists provide technical advice and assistance to the district and to chiefs of various projects. The district's quality-assurance plan is based on an overall policy that provides a framework for defining the precision and accuracy of collected data. The plan is supported by a series of quality-assurance policy statements that describe responsibilities for specific operations in the district's program. The operations are program planning; project planning; project implementation; review and remediation; data collection; equipment calibration and maintenance; data processing and storage; data analysis, synthesis, and interpretation; report preparation and processing; and training. Activities of the district are systematically conducted under a hierarchy of supervision an management that is designed to ensure conformance with Water Resources Division goals quality assurance. The district quality

  20. Geology and resource assessment of Costa Rica at 1:500,000 scale; a digital representation of maps of the U.S. Geological Survey's 1987 folio I-1865

    Science.gov (United States)

    Schruben, Paul G.

    1997-01-01

    This CD-ROM contains digital versions of the geology and resource assessment maps of Costa Rica originally published in USGS Folio I-1865 (U.S. Geological Survey, the Direccion General de Geologia, Minas e Hidrocarburos, and the Universidad de Costa Rica, 1987) at a scale of 1:500,000. The following layers are available on the CD-ROM: geology and faults; favorable domains for selected deposit types; Bouguer gravity data; isostatic gravity contours; mineral deposits, prospects, and occurrences; and rock geochemistry sample points. For DOS users, the CD-ROM contains MAPPER, a user-friendly map display program. Some of the maps are also provided in the following additional formats on the CD-ROM: (1) ArcView 1 and 3, (2) ARC/INFO 6.1.2 Export, (3) Digital Line Graph (DLG) Optional, and (4) Drawing Exchange File (DXF.)

  1. Brazil Geologic Basic Survey Program - Limoeiro - Sheet SB.25-Y-C-V -Pernambuco State

    International Nuclear Information System (INIS)

    Barbosa, A.G.

    1991-01-01

    The Limoeiro map-sheet (SB.25-Y-C-V;1:100,000 scale), State of Pernambuco is delimited by the meridians 35 0 00'W to 35 0 30' W and parallels 7 0 30' S to 8 0 00' S. The sheet covers an area of about 3,000 km 2 . The basement rocks probable Archaean age consist of gneiss and migmatite. The basement rocks are overlain by Lower Proterozoic metasediments (schist and para gneiss), locally with flows (amphibolite), metamorphosed in the middle to high amphibolite facies. Geochemical surveys including stream sediment sampling and rock chip sampling were carried out. Ground geophysics included magnetometer, gravity and radiometric (scintillometer) surveys. A provisional metallogenetic map at 1:100,000 scale was prepared on which areas with potential for economic deposits of gold, apatite, barium copper, nickel, cobalt, zinc, niobium, iron, titanium and vanadium are shown. (author)

  2. Comparison of 3-D geological and geophysical investigation methods in boreholes KI-KR1 at Aeaenekoski Kivetty site and RO-KR3 at Kuhmo Romuvaara site

    International Nuclear Information System (INIS)

    Labbas, K.

    1997-01-01

    The study is a part of the radioactive waste disposal investigations in Finland with the aim to compare three-dimensional geological and geophysical methods providing information on geologic fractures. Compared and described are the methods: core analysis, borehole television, dipmeter, borehole televiewer and differential flow measurements. (35 refs.)

  3. U.S. Geological Survey Karst Interest Group Proceedings, Bowling Green, Kentucky, May 27-29, 2008

    Science.gov (United States)

    Kuniansky, Eve L.

    2008-01-01

    States are developed in carbonate rocks and karst areas. These aquifers and the springs that discharge from them, serve as major water-supply sources and as unique biological habitats. Commonly, there is competition for the water resources of karst aquifers, and urban development in karst areas can impact the ecosystem and water quality of these aquifers. The concept for developing a Karst Interest Group evolved from the November 1999 National Ground-Water Meeting of the U.S. Geological Survey (USGS), Water Resources Division. As a result, the Karst Interest Group was formed in 2000. The Karst Interest Group is a loose-knit grass-roots organization of USGS employees devoted to fostering better communication among scientists working on, or interested in, karst hydrology studies. The mission of the Karst Interest Group is to encourage and support interdisciplinary collaboration and technology transfer among USGS scientists working in karst areas. Additionally, the Karst Interest Group encourages cooperative studies between the different disciplines of the USGS and other Department of Interior agencies and university researchers or research institutes. The first Karst Interest Group workshop was held in St. Petersburg, Florida, February 13-16, 2001, in the vicinity of karst features of the Floridan aquifer system. The proceedings of that first meeting, Water-Resources Investigations Report 01-4011 are available online at: http://water.usgs.gov/ogw/karst/ The second Karst Interest Group workshop was held August 20-22, 2002, in Shepherdstown, West Virginia, in close proximity to the carbonate aquifers of the northern Shenandoah Valley. The proceedings of the second workshop were published in Water-Resources Investigations Report 02-4174, which is available online at the previously mentioned website. The third workshop of the Karst Interest Group was held September, 12-15, 2005, in Rapid City, South Dakota, which is in close proximity to karst features

  4. United States geological survey's reserve-growth models and their implementation

    Science.gov (United States)

    Klett, T.R.

    2005-01-01

    The USGS has developed several mathematical models to forecast reserve growth of fields both in the United States (U.S.) and the world. The models are based on historical reserve growth patterns of fields in the U.S. The patterns of past reserve growth are extrapolated to forecast future reserve growth. Changes of individual field sizes through time are extremely variable, therefore, the reserve growth models take on a statistical approach whereby volumetric changes for populations of fields are used in the models. Field age serves as a measure of the field-development effort that is applied to promote reserve growth. At the time of the USGS World Petroleum Assessment 2000, a reserve growth model for discovered fields of the world was not available. Reserve growth forecasts, therefore, were made based on a model of historical reserve growth of fields of the U.S. To test the feasibility of such an application, reserve growth forecasts were made of 186 giant oil fields of the world (excluding the U.S. and Canada). In addition, forecasts were made for these giant oil fields subdivided into those located in and outside of Organization of Petroleum Exporting Countries (OPEC). The model provided a reserve-growth forecast that closely matched the actual reserve growth that occurred from 1981 through 1996 for the 186 fields as a whole, as well as for both OPEC and non-OPEC subdivisions, despite the differences in reserves definition among the fields of the U.S. and the rest of the world. ?? 2005 International Association for Mathematical Geology.

  5. Quality-assurance plan for groundwater activities, U.S. Geological Survey, Washington Water Science Center

    Science.gov (United States)

    Kozar, Mark D.; Kahle, Sue C.

    2013-01-01

    This report documents the standard procedures, policies, and field methods used by the U.S. Geological Survey’s (USGS) Washington Water Science Center staff for activities related to the collection, processing, analysis, storage, and publication of groundwater data. This groundwater quality-assurance plan changes through time to accommodate new methods and requirements developed by the Washington Water Science Center and the USGS Office of Groundwater. The plan is based largely on requirements and guidelines provided by the USGS Office of Groundwater, or the USGS Water Mission Area. Regular updates to this plan represent an integral part of the quality-assurance process. Because numerous policy memoranda have been issued by the Office of Groundwater since the previous groundwater quality assurance plan was written, this report is a substantial revision of the previous report, supplants it, and contains significant additional policies not covered in the previous report. This updated plan includes information related to the organization and responsibilities of USGS Washington Water Science Center staff, training, safety, project proposal development, project review procedures, data collection activities, data processing activities, report review procedures, and archiving of field data and interpretative information pertaining to groundwater flow models, borehole aquifer tests, and aquifer tests. Important updates from the previous groundwater quality assurance plan include: (1) procedures for documenting and archiving of groundwater flow models; (2) revisions to procedures and policies for the creation of sites in the Groundwater Site Inventory database; (3) adoption of new water-level forms to be used within the USGS Washington Water Science Center; (4) procedures for future creation of borehole geophysics, surface geophysics, and aquifer-test archives; and (5) use of the USGS Multi Optional Network Key Entry System software for entry of routine water-level data

  6. Geophysical investigations of the geologic and hydrothermal framework of the Pilgrim Springs Geothermal Area, Alaska

    Science.gov (United States)

    Glen, Jonathan; McPhee, Darcy K.; Bedrosian, Paul A.

    2014-01-01

    Pilgrim Hot Springs, located on the Seward Peninsula in west-central Alaska, is characterized by hot springs, surrounding thawed regions, and elevated lake temperatures. The area is of interest because of its potential for providing renewable energy for Nome and nearby rural communities. We performed ground and airborne geophysical investigations of the Pilgrim Springs geothermal area to identify areas indicative of high heat flow and saline geothermal fluids, and to map key structures controlling hydrothermal fluid flow. Studies included ground gravity and magnetic measurements, as well as an airborne magnetic and frequency-domain electromagnetic (EM) survey. The structural and conceptual framework developed from this study provides critical information for future development of this resource and is relevant more generally to our understanding of geothermal systems in active extensional basins. Potential field data reveal the Pilgrim area displays a complex geophysical fabric reflecting a network of intersecting fault and fracture sets ranging from inherited basement structures to Tertiary faults. Resistivity models derived from the airborne EM data reveal resistivity anomalies in the upper 100 m of the subsurface that suggest elevated temperatures and the presence of saline fluids. A northwest trending fabric across the northeastern portion of the survey area parallels structures to the east that may be related to accommodation between the two major mountain ranges south (Kigluaik) and east (Bendeleben) of Pilgrim Springs. The area from the springs southward to the range front, however, is characterized by east-west trending, range-front-parallel anomalies likely caused by late Cenozoic structures associated with north-south extension that formed the basin. The area around the springs (~10 km2 ) is coincident with a circular magnetic high punctuated by several east-west trending magnetic lows, the most prominent occurring directly over the springs. These features

  7. Foliation: Geological background, rock mechanics significance, and preliminary investigations at Olkiluoto

    International Nuclear Information System (INIS)

    Milnes, A.G.; Hudson, J.; Wikstroem, L.; Aaltonen, I.

    2006-01-01

    A well developed, pervasive foliation is a characteristic feature of the migmatites and gneisses in the Olkiluoto bedrock, and is expected to have a significant influence on the underground construction, the design and layout and the groundwater flow regime of a deep spent nuclear fuel repository. This Working Report reviews the geological background and rock mechanics significance of foliation, and develops a methodology for the systematic acquisition of foliation data in cored boreholes and in tunnels at the Olkiluoto site, to provide the necessary basis for future geological, rock mechanics and hydrogeological modelling. The first part of the methodology concerns foliation characterisation, and develops a characterisation scheme based on two variables: the foliation type (G = gneissic, B = banded, S = schistose), which is a function of mineral composition and degree of smallscale heterogeneity, and the foliation intensity (1 = low, 2 = intermediate, 3 = high), which is a function of the type and intensity of the deformation by which it was produced (under high-grade metamorphic conditions in the core of the Svecofennian orogenic belt). At the suggested reference scales (1 m length of core, 10 m 2 area of tunnel wall), the most representative foliation type and intensity is assessed using a standard set of core photographs, which are included as an Appendix at the end of the report, providing a systematic description in terms of 9 descriptive types (G1, G2, G3, B1, B2, B3, S1, S2, S3). As a further step, the rock mechanics significance of these types is assessed and a rock mechanics foliation (RMF) number is assigned (RMF 0 = no significance, RMF 1, RMF 2 and RMF 3 = low, intermediate and high significance, respectively). The second part of the methodology concerns the orientations of the foliation within the same 1 m core lengths or 10 m2 wall areas, which have been characterised as above. This combined analysis of foliation character and foliation orientation

  8. A slingram survey on the Nevada Test Site: part of an integrated geologic geophysical study of site evaluation for nuclear waste disposal

    Science.gov (United States)

    Flanigan, Vincent J.

    1979-01-01

    A slingram geophysical survey was made in early 1978 as part of the integrated geologlcal-geophysical study aimed at evaluating the Eleana Formation as a possible repository for nuclear waste. The slingram data were taken over an alluvial fan and pediments along the eastern flank of Syncline Ridge about 45 km north of Mercury, Nevada, on the Nevada Test Site. The data show that the more conductive argillaceous Eleana Formation varies in depth from 40 to 85 m from west to east along traverse lines. Northeast-trending linear anomalies suggest rather abrupt changes in subsurface geology that may be associated with faults and fractures. The results of the slingram survey will, when interpreted in the light of other geologic and geophysical evidence, assist in understanding the shallow parts of the geologic setting of the Eleana Formation.

  9. Investigation of silicate surface chemistry and reaction mechanisms associated with mass transport in geologic media

    International Nuclear Information System (INIS)

    White, A.F.; Perry, D.L.

    1982-01-01

    The concentration and rate of transport of radionuclides through geologic media can be strongly influenced by the extent of sorption on aquifer surfaces. Over time intervals relevant to such transport processes, rock and mineral surfaces cannot be considered as inert, unreactive substrates but rather as groundwater/solidphase interfaces which are commonly in a state of natural or artificially induced disequilibrium. The goal of the present research is to define experimentally the type of water/rock interactions that will influence surface chemistry and hence sorption characteristics and capacities of natural aquifers. As wide a range of silicate minerals as possible was selected for study to represent rock-forming minerals in basalt, tuff, and granite. The minerals include K-feldspar, plagioclase feldspar, olivine, hornblende, biotite, and volcanic glass

  10. Geologic and mineral and water resources investigations in western Colorado, using Skylab EREP data

    Science.gov (United States)

    Lee, K. (Principal Investigator); Prost, G. L.; Knepper, D. H.; Sawatzky, D. L.; Huntley, D.; Weimer, R. J.

    1975-01-01

    The author has identified the following significant results. Skylab photographs are superior to ERTS images for photogeologic interpretation, primarily because of improved resolution. Lithologic contacts can be detected consistently better on Skylab S190A photos than on ERTS images. Color photos are best; red and green band photos are somewhat better than color-infrared photos; infrared band photos are worst. All major geologic structures can be recognized on Skylab imagery. Large folds, even those with very gentle flexures, can be mapped accurately and with confidence. Bedding attitudes of only a few degrees are recognized; vertical exaggeration factor is about 2.5X. Mineral deposits in central Colorado may be indicated on Skylab photos by lineaments and color anomalies, but positive identification of these features is not possible. S190A stereo color photography is adequate for defining drainage divides that in turn define the boundaries and distribution of ground water recharge and discharge areas within a basin.

  11. Comprenhensive Program of Engineering and Geologic Surveys for Designing and Constructing Radioactive Waste Storage Facilities in Hard Rock Massifs

    International Nuclear Information System (INIS)

    Gupalo, T.; Milovidov, V.; Prokopoca, O.; Jardine, L.

    2002-01-01

    Geological, geophysical, and engineering-geological research conducted at the 'Yeniseisky' site obtained data on climatic, geomorphologic, geological conditions, structure and properties of composing rock, and conditions of underground water recharge and discharge. These results provide suficient information to make an estimate of the suitability of locating a radioactive waste (RW) underground isolation facility at the Nizhnekansky granitoid massif.

  12. The U.S. Geological Survey Flagstaff Science Campus—Providing expertise on planetary science, ecology, water resources, geologic processes, and human interactions with the Earth

    Science.gov (United States)

    Hart, Robert J.; Vaughan, R. Greg; McDougall, Kristin; Wojtowicz, Todd; Thenkenbail, Prasad

    2017-06-29

    The U.S. Geological Survey’s Flagstaff Science Campus is focused on interdisciplinary study of the Earth and solar system, and has the scientific expertise to detect early environmental changes and provide strategies to minimize possible adverse effects on humanity. The Flagstaff Science Campus (FSC) is located in Flagstaff, Arizona, which is situated in the northern part of the State, home to a wide variety of landscapes and natural resources, including (1) young volcanoes in the San Francisco Volcanic Field, (2) the seven ecological life zones of the San Francisco Peaks, (3) the extensive geologic record of the Colorado Plateau and Grand Canyon, (4) the Colorado River and its perennial, ephemeral, and intermittent tributaries, and (5) a multitude of canyons, mountains, arroyos, and plains. More than 200 scientists, technicians, and support staff provide research, monitoring, and technical advancements in planetary geology and mapping, biology and ecology, Earth-based geology, hydrology, and changing climate and landscapes. Scientists at the FSC work in collaboration with multiple State, Federal, Tribal, municipal, and academic partners to address regional, national, and global environmental issues, and provide scientific outreach to the general public.

  13. U.S. Geological Survey research in Handcart Gulch, Colorado—An alpine watershed with natural acid-rock drainage

    Science.gov (United States)

    Manning, Andrew H.; Caine, Jonathan S.; Verplanck, Philip L.; Bove, Dana J.; Kahn, Katherine G.

    2009-01-01

    Handcart Gulch is an alpine watershed along the Continental Divide in the Colorado Rocky Mountain Front Range. It contains an unmined mineral deposit typical of many hydrothermal mineral deposits in the intermountain west, composed primarily of pyrite with trace metals including copper and molybdenum. Springs and the trunk stream have a natural pH value of 3 to 4. The U.S. Geological Survey began integrated research activities at the site in 2003 with the objective of better understanding geologic, geochemical, and hydrologic controls on naturally occurring acid-rock drainage in alpine watersheds. Characterizing the role of groundwater was of particular interest because mountain watersheds containing metallic mineral deposits are often underlain by complexly deformed crystalline rocks in which groundwater flow is poorly understood. Site infrastructure currently includes 4 deep monitoring wells high in the watershed (300– 1,200 ft deep), 4 bedrock (100–170 ft deep) and 5 shallow (10–30 ft deep) monitoring wells along the trunk stream, a stream gage, and a meteorological station. Work to date at the site includes: geologic mapping and structural analysis; surface sample and drill core mineralogic characterization; geophysical borehole logging; aquifer testing; monitoring of groundwater hydraulic heads and streamflows; a stream tracer dilution study; repeated sampling of surface and groundwater for geochemical analyses, including major and trace elements, several isotopes, and groundwater age dating; and construction of groundwater flow models. The unique dataset collected at Handcart Gulch has yielded several important findings about bedrock groundwater flow at the site. Most importantly, we find that bedrock bulk permeability is nontrivial and that bedrock groundwater apparently constitutes a substantial fraction of the hydrologic budget. This means that bedrock groundwater commonly may be an underappreciated component of the hydrologic system in studies of

  14. Minerals, lands, and geology for the common defence and general welfare, Volume 2, 1879-1904 : A history of geology in relation to the development of public-land, federal-science, and mapping policies and the development of mineral resources in the United States during the first 25 years of the U.S. Geological Survey

    Science.gov (United States)

    Rabbitt, Mary C.

    1980-01-01

    In the traditional view of the Survey's first 25 years, which are the subject of much of this volume, John Wesley Powell, with his broad view of science and advanced ideas of land and water in the West, is the heroic figure. Clarence King is dismissed as brilliant but with a limited view of science as mining geology, and Charles D. Walcott is regarded primarily as a brilliant paleontologist chosen by Powell to succeed him. The Survey's first quarter century, however, spanned a watershed in American history that separated a primarily rural and agrarian nation and a primarily urban and industrial nation, a nation intent on conquering the continent and isolated from the Old World and a nation involved in world politics, a nation that believed in the virtues of competition and limited government and a nation that saw the virtue of cooperation and insisted on reform and regulation to ensure equal opportunities to all. Science itself changed during this period. The age of instruments was just beginning when the Survey was established; by the turn of the century, instruments had almost revolutionized science and the era of the lone investigator had to give way to an era of organized effort in the solution of problems.

  15. Three dimensional investigation of oceanic active faults. A demonstration survey

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Seizo; Kishimoto, Kiyoyuki; Ikehara, Ken; Kuramoto, Shinichi; Sato, Mikio [Geological Survey of Japan, Kawasaki, Kanagawa (Japan)

    1999-02-01

    Oceanic active faults were classified into trench and in-land types, and a bottom survey was conducted on an aim of estimation on activity of a trench type oceanic active faults. For both sides of an oceanic active fault found at high precision sonic investigations in 1996 fiscal year, it was attempted from a record remained in sediments how a fault changed by a fault motion and how long time it acted. And, construction of a data base for evaluation of the active faults was promoted by generalizing the issued publications. As a result, it was found that a method to estimate a fault activity using turbidite in success at shallow sea could not easily be received at deep sea, and that as sedimentation method in deep sea changed largely by topography and so on, the turbidite did not play always a rule of key layer. (G.K.)

  16. United States Geological Survey: uranium and thorium resource assessment and exploration research program, fiscal year 1979

    International Nuclear Information System (INIS)

    Offield, T.W.

    1978-01-01

    Objectives and current plans are given for the following projects: uranium geochemistry and mineralogy; uranium in sedimentary environments; uranium in igneous and metamorphic environments; geophysical techniques in uranium and thorium exploration; and thorium investigations and resource assessment. Selected noteworthy results of FY 1978 research are given

  17. Do geological field survey and remote sensing record the same fractures? The case of the corallian Loyalty Islands (SW Pacific)

    Science.gov (United States)

    Thovert, J.; Huaman, D.; Genthon, P.; Adler, P. M.

    2010-12-01

    The Loyalty Islands are a series of corallian islands uplifted on the elastic bulge of the Australian lithosphere before its subduction at the Vanuatu (formerly New Hebrides) Trench. They are located on the non seismic Loyalty Ridge, which is starting colliding the Vanuatu Trench. The interiors of the islands are covered with dense forests and devoid of outcrops. Lineaments seen on remote sensing data (aerial photos, SPOT 3 and 4, Envisat) are compared with fractures and joints measured on a geological survey near the coasts, where corallian limestones outcrop. Lineaments observed by remote sensing in the inner Islands correspond to one main N110 direction with a large variance of nearly 15° in rms, two minor directions nearly 45° apart (N150 and N60) and no systematic evolution with distance to coasts. The three lineament families are seen near coasts as centimetric to decimetric aperture cracks without evidence of any displacement. However, an extensive geological survey of the fractures near the coast of the islands reveals a clear N135 direction and possibly an EW direction in the Lifou Island, while in the Maré island fractures present a large variance with a single N70 direction. The directions N 135, N110 and N60 are also observed regionally on the seafloor and are presumably present in the basement of the islands. It is shown that lineaments longer than 2000 m are close to the N110 direction and that the mean orientation shifts progressively to reach the N125 direction for L<400 m. Therefore, it is likely that the progressive shift in orientation continues up to the N135 direction observed in the field at the 10-50 m scale. The origin of this apparent difference between field data and remote sensing lineaments is discussed, considering (i) the intense karstification of these islands, where dissolution occurs during infiltration of rainwater, but also due to corrosion mixing at the top and the bottom of the freshwater lens and at its tips near coast. This

  18. 2010 Survey on long-term preservation of information and memory for geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    2011-01-01

    Preservation of information and memory across generations is a cross-cutting theme of increasing importance for radioactive waste management. Because of the experience accumulated by the advanced national programmes that the RWMC represents, and the breadth of its related high-level initiatives, the Committee is uniquely placed internationally to combine resources and help develop state-of-the-art guidance on the long-term preservation of information and memory. In the context of fostering knowledge consolidation and transfer (KCT), the RWMC has already identified - in its reference document on KCT - the area of inter-generational transfer of knowledge as one of two areas needing development. In 2009, the RWMC decided to implement its programme of work in the area of information preservation and long-term memory as a series of projects or lines of actions opened by the RWMC and supervised by its Bureau. In order to better define its first series of projects the RWMC preformed a survey of its organisations needs and available materials and experience. At its meeting in 2010 the RWMC determined that the survey materials provided by organisations from 12 NEA countries constitute a good contribution to the literature in this field, and certainly to the upcoming projects. They provide as well a good baseline of information against which to measure progress a few years hence. This document reports the answers provided by organisations from 12 countries (Belgium, Canada, Finland, France, Hungary, Japan, Korea, Spain, Sweden, Switzerland, United Kingdom, and the USA,) to five questions related to long-term preservation of information and memory in the field of geological disposal. The questions are as follows: o What specific priority areas for long-term memory development have been identified in your agencies/countries? Which are the time scales of largest interest? o Do these priority proceed from good practice or/and from specific laws, regulations, policies exist in

  19. Geological mapping of investigation trench OL-TK9 at the Olkiluoto study site, Eurajoki, SW Finland

    International Nuclear Information System (INIS)

    Nordbaeck, N.; Talikka, M.

    2006-07-01

    Geological mapping of trench OL-TK9 was carried out the by the Geological Survey of Finland at the Olkiluoto study site, Eurajoki, southwestern Finland, as a part of Posiva Oy's site investigation programme for the development of an underground repository for nuclear waste. The NW-SE striking trench, which is about 371 metres in length and 0.4-2.5 metres in width, is situated to the west from the OL-TK3 in the northwestern part of the study site. The rock types were determined macroscopically and the main rock types were further investigated microscopically. On the basis of the migmatite structure, the migmatitic gneisses at Olkiluoto can be divided into three groups: veined gneiss, stromatic gneiss and diatexitic gneiss. Most of the migmatitic gneisses in the trench are veined gneisses and only a few short sections of the diatexitic gneiss or K-feldspar porphyry exist. Stromatic gneisses were not encountered. The leucosome of the veined gneiss show vein like, more or less linear traces with some features similar to large-scale augen structures, whereas the migmatitic structure of the diatexitic gneiss is more asymmetric and irregular. The southernmost part of the trench is dominated by mica gneiss and pegmatitic granite. The mica gneiss is homogenous mica-rich rock that contains less than 10 % granite leucosome material. The pegmatitic granite shows variations in grain size, colour, and mode of occurrence. The veined gneiss dominates the central part of the trench. The northernmost part of the trench is mainly comprised of tonalitic-granodioritic-granitic gneiss, which has an igneous character. Most rocks in the trench are altered, the intensity of the alteration varies from weak to strong, and the most common alteration type is chloritisation. The intense alteration has resulted in pervasive softening and weathering of the bedrock in places and up to four meters thick layers of strongly weathered rocks were observed on the edges of the trench. The foliation S2B

  20. Report for fiscal 1998 on basic commercialization survey related to geological structure surveys in overseas countries (Manguerra, the Philippines); 1998 nendo kaigai chishitsu kozo nado chosa ni kakawaru kigyoka kiso chosa (Philippines Manguerra) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Commercialization survey was performed on the mines in the Manguerra district in the Philippines by means of geological structure surveys. The site surveys included geological and test drilling surveys, and those on conditions for developing underground mining mines, and infrastructures. The geological survey area spread out about 5 km{sup 2}, two test wells were drilled (to depths of 330 m and 290 m), trench survey was performed on 58 locations, and coal sample collection and analysis were carried out on eight locations. Furthermore, surveys were extended to the Manguerra mine operating status, on-the-ground facilities, roads for transportation, marketing, and related laws and regulations. As a result of the surveys, the Manguerra district was suggested of frequent sea water inundation into the coal field, leading to a view that the district is unstable from the viewpoint of development of coal beds. However, samples collected from the existing mining area indicated to have less water content and ash and high calorific power. The coal has high product value. The result of coal quantity calculation indicated 320122 tons as the total of defined and estimated quantity. The great depth mining plan was prepared from the viewpoints of actual yield, productivity, safety aspects, technological enhancement, and suppression of additional investments to minimum. (NEDO)

  1. Sudbury project (University of Muenster-Ontario Geological Survey): New investigations on Sudbury breccia

    Science.gov (United States)

    Mueller-Mohr, V.

    Sudbury breccias occur as discordant dike breccias within the footwall rocks of the Sudbury structure, which is regarded as the possible remnant of a multiring basin. Exposures of Sudbury breccias in the North Range are known up to a radial distance of 60-80 km from the Sudbury Igneous Complex (SIC). The breccias appear more frequent within a zone of 10 km adjacent to the SIC and a further zone located about 20-33 km north of the structure. From differences in the structure of the breccias, as for example the size of the breccia dikes, contact relationships between breccia and country rock as well as between different breccia dikes, fragment content, and fabric of the ground mass, as seen in this section, the Sudbury Breccias have been classified into four different types. (1) Early breccias with a clastic/crystalline matrix comprise small dikes ranging in size from approx. 1 cm to max. 20 cm. (2) Polymict breccias with a clastic matrix represent the most common type of Sudbury breccia. The thickness of the dikes varies from several tens of centimeters to a few meters but can also extend to more than 100 m in the case of the largest known breccia dike. Contacts with country rock are sharp or gradational. Heterogenous matrix consisting of a fine-grained rock flour displays nonoriented textures as well as extreme flow lines. Chemical analysis substantiates at least some mixing with allochthonous material. (3) Breccias with a crystalline matrix are a subordinate type of Sudbury breccia. According to petrographical and chemical differences, three subtypes have been separated. (4) Late breccias with a clastic matrix are believed to represent the latest phase of brecciation. Two subtypes have been distinguished due to differences in the fragment content.

  2. Using active learning strategies to investigate student learning and attitudes in a large enrollment, introductory geology course

    Science.gov (United States)

    Berry, Stacy Jane

    There has been an increased emphasis for college instruction to incorporate more active and collaborative involvement of students in the learning process. These views have been asserted by The Association of American Colleges (AAC), the National Science Foundation (NSF), and The National Research Counsel (NRC), which are advocating for the modification of traditional instructional techniques to allow students the opportunity to be more cooperative (Task Group on General Education, 1988). This has guided educators and facilitators into shifting teaching paradigms from a teacher centered to a more student-centered curriculum. The present study investigated achievement outcomes and attitudes of learners in a large enrollment (n ~ 200), introductory geology course using a student centered learning cycle format of instruction versus another similar section that used a traditional lecture format. Although the course is a recruiting class for majors, over 95% of the students that enroll are non-majors. Measurements of academic evaluation were through four unit exams, classroom communication systems, weekly web-based homework, in-class activities, and a thematic collaborative poster/paper project and presentation. The qualitative methods to investigate the effectiveness of the teaching design included: direct observation, self-reporting about learning, and open-ended interviews. By disaggregating emerging data, we tried to concentrate on patterns and causal relationships between achievement performance and attitudes regarding learning geology. Statistical analyses revealed positive relationships between student engagement in supplemental activities and achievement mean scores within and between the two sections. Completing weekly online homework had the most robust relationship with overall achievement performance. Contrary to expectations, a thematic group project only led to modest gains in achievement performance, although the social and professional gains could be

  3. Report on a commercialization fundamental investigation (in Batulicin Area, Indonesia) in relation to FY 1997 investigations on geological structures in overseas countries; 1997 nendo kaigai chishitsu kozo nado chosa ni kakawaru kigyoka kiso chosa (Indonesia Batulicin chiku) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    A fundamental coal mine development investigation was carried out in Batulicin Area, Kalimantan, the Republic of Indonesia. The investigation included ground surface surveys, preparation of topographical maps and geological maps, trial drilling investigation, physical logging, chemical analysis, and infrastructure investigation. The trial drilling investigation was intended to identify the existence conditions of coal beds and coal quality, and was performed by forming grids with about 500-meter interval, and using 21 trial drillings to depths of 104 to 240 meters for a total drilling length of 3463 meters. The physical logging included electric logging, radioactivity logging and pore size logging, and the trial drilling cores were subjected to chemical analysis. For infrastructures, investigations were carried out on necessity of modifying existing roads, privilege relationship, the current status of barge loading points, water depths, and land acquisition. The result of the investigation revealed that minable coal quantity in underground mining of the coal bed B would be 13.189 million tons, and that annual production of original coal at 733,000 tons would be possible by adopting a long-wall type mechanized coal mining system. 14 refs., 99 figs., 25 tabs.

  4. GIS of selected geophysical and core data in the northern Gulf of Mexico continental slope collected by the U.S. Geological Survey

    Science.gov (United States)

    Twichell, David C.; Cross, VeeAnn A.; Paskevich, Valerie F.; Hutchinson, Deborah R.; Winters, William J.; Hart, Patrick E.

    2006-01-01

    Since 1982 the U. S. Geological Survey (USGS) has collected a large amount of surficial and shallow subsurface geologic information in the deep-water parts of the US EEZ in the northern Gulf of Mexico. These data include digital sidescan sonar imagery, digital seismic-reflection data, and descriptions and analyses of piston and gravity cores. The data were collected during several different projects that addressed surficial and shallow subsurface geologic processes. Some of these datasets have already been published, but the growing interest in the occurrence and distribution of gas hydrates in the Gulf of Mexico warrants integrating these existing USGS datasets and associated interpretations into a Geographic Information System (GIS) to provide regional background information for ongoing and future gas hydrate research. This GIS is organized into five different components that contain (1) information needed to develop an assessment of gas hydrates, (2) background information for the Gulf of Mexico, (3) cores collected by the USGS, (4) seismic surveys conducted by the USGS, and (5) sidescan sonar surveys conducted by the USGS. A brief summary of the goals and findings of the USGS field programs in the Gulf of Mexico is given in the Geologic Findings section, and then the contents of each of the five data categories are described in greater detail in the GIS Data Catalog section.

  5. Combined geophysical, geochemical and geological investigations of geothermal reservoir characteristics in Lower Saxony, Germany

    Science.gov (United States)

    Hahne, B.; Thomas, R.

    2012-04-01

    The North German basin provides a significant geothermal potential, although temperature gradients are moderate. However, deep drilling up to several thousand meters is required to reach temperatures high enough for efficient generation of geothermal heat and electric power. In these depths we have not much information yet about relevant physical properties like porosity or permeability of the rock formations. Therefore the costs of developing a geothermal reservoir and the risk of missing the optimum drilling location are high. The collaborative research association "Geothermal Energy and High Performance Drilling" (gebo) unites several universities and research institutes in Lower Saxony, Germany. It aims at a significant increase of economic efficiency by introducing innovative technology and high tech materials resisting temperatures up to 200 °C in the drilling process. Furthermore, a better understanding of the geothermal reservoir is essential. gebo is structured into four main fields: Drilling Technology, Materials, Technical Systems and Geosystem. Here, we show the combined work of the Geosystem group, which focuses on the exploration of geological fault zones as a potential geothermal reservoir as well as on modeling the stress field, heat transport, coupled thermo-hydro-mechanical processes, geochemical interactions and prediction of the long-term behavior of the reservoir. First results include combined seismic and geoelectric images of the Leinetalgraben fault system, a comparison of seismic images from P- and S-wave measurements, mechanical properties of North German rocks from field and laboratory measurements as well as from drill cores, seismological characterization of stimulated reservoirs, a thermodynamic "gebo" database for modeling hydrogeochemical processes in North German formation waters with high salinity and at high temperatures, stress models for specific sites in northern Germany, and modeling results of permeability and heat transport

  6. Sponge fossils of Middle Dnieper River Upper Eocenian deposits (geological survey sheet area «Kobelyaki»

    Directory of Open Access Journals (Sweden)

    Stephanska T.A.

    2015-09-01

    Full Text Available For the first time sponge spicules of the Paleogene on the geological survey sheet area «Kobelyaki» were studied. Using artificial classification M.M. Ivanik (2003 45 taxa spicules were found in rocks. Morphological types spicules were defined. In the complexes following megascleres of «soft» Demospongiae are dominant: pro-, plagio-, ortho-, dicho-, anatriaenes, caltrops, smooth and echinated oxeas, subtylostyls, strongyls, ophioxeas. Diaenes, monenes, caltrops with reduced beam (olimtriaenes, are less common. Microscleres are numerous: sterrasters, sphaerasters, oxysphaerasters, oxyasters. Fragments of dyctional gratings without lychnisks and free spicules of hexactinellid sponges are frequent (pentactines, hexactines. Megascleres of lithistid sponges (phyllotriaenes, tetracrepid desmas, triders, megaclones, dicranoclones are relatively few. The palaeocenosis structure that existed in the Obukhov Sea on this area, it was found by morphological analysis of sponges spicules. In the Obukhov time following sponges dominated here: «soft» sponges with unrelated skeleton that belonged to the class Demospongiae (orders Poecilosclerida, Astrophorida and families Geodiidae, Pachastrellidae, Ancorinidae, Calthropellidae, Tethyidae, Crellidae and hexactinellids of class Hexactinellida (orders Hexactinosida and Lyssacinosida. А few sponges spicules (belonged to the subclass Lithistida, families Corallistidae, Theonellidae, Phymaraphiniidae, Chenendoporidae, Pleromidae and lack lithistid skeletal gratings fragments in the studied complexes may indicate a desmas transfer from neighboring, a shallow Obukhov stations, which were confined to the nearby slope of the Ukrainian Shield. On the base of sponge spicules studying the Late Eocene (Obukhov age of surrounding deposits is proved. spongе spicula, Upper Eocene, Obuchovian Suite, Middle Dnieper region.

  7. Re-evaluation and extension of the scope of elements in US Geological Survey Standard Reference Water Samples

    Science.gov (United States)

    Peart, D.B.; Antweiler, Ronald C.; Taylor, Howard E.; Roth, D.A.; Brinton, T.I.

    1998-01-01

    More than 100 US Geological Survey (USGS) Standard Reference Water Samples (SRWSs) were analyzed for numerous trace constituents, including Al, As, B, Ba, Be, Bi, Br, Cd, Cr, Co, Cu, I, Fe, Pb, Li, Mn, Mo, Ni, Rb, Sb, Se, Sr, Te, Tl, U, V, Zn and major elements (Ca, Mg, Na, SiO2, SO4, Cl) by inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry. In addition, 15 USGS SRWSs and National Institute of Standards and Technology (NIST) standard reference material (SRM) 1641b were analyzed for mercury using cold vapor atomic fluorescence spectrometry. Also USGS SRWS Hg-7 was analyzed using isotope dilution-inductively coupled plasma mass spectrometry. The results were compared with the reported certified values of the following standard reference materials: NIST SRM 1643a, 1643b, 1643c and 1643d and National Research Council of Canada Riverine Water Reference Materials for Trace Metals SLRS-1, SLRS-2 and SLRS-3. New concentration values for trace and major elements in the SRWSs, traceable to the certified standards, are reported. Additional concentration values are reported for elements that were neither previously published for the SRWSs nor traceable to the certified reference materials. Robust statistical procedures were used that were insensitive to outliers. These data can be used for quality assurance/quality control purposes in analytical laboratories.

  8. Description of the U.S. Geological Survey's slug-tests at the Hallam Nuclear Facility, July to November 1994

    International Nuclear Information System (INIS)

    1995-01-01

    An aquifer test agreement between the US Department of Energy (USDOE) and the US Geological Survey (USGS) was set up to log and measure the aquifer response in two observation wells, IB and 4C at the Hallam Nuclear Facility, Hallam, Nebraska. Observation wells 1B and 4C are owned by the USDOE and were installed by HWS Technologies Inc. of Lincoln, Nebraska, in June 1993. These observation wells were measured monthly from September 1993 to August 1994 by using a graduated steel tape. The accuracy of these water-level measurements is approximately ±0.02 foot. Also well 1B contained a submersible pressure transducer to record hourly water-level data during this same period. During access of the wells, personnel wear clean disposable latex gloves, a hard hat, and safety glasses. Directly following each measurement the steel-tape was rinsed with deionized water and the effluent was disposed of in a 55-gallon drum. For the aquifer tests, observation wells 1B and 4C had submersible pressure transducers installed to monitor water-level responses. These pressure transducers were connected to an electronic data logger (edl) to record the water levels, atmospheric pressure from a barometric pressure gauge, and rainfall data from a tipping-bucket rain gauge. The data recorded on each edl was downloaded onto a field computer during each site visit, processed in the field, and then stored on the USGS's Data General workstations upon return to the District Office

  9. U.S. Geological Survey Community for Data Integration-NWIS Web Services Snapshot Tool for ArcGIS

    Science.gov (United States)

    Holl, Sally

    2011-01-01

    U.S. Geological Survey (USGS) data resources are so vast that many scientists are unaware of data holdings that may be directly relevant to their research. Data are also difficult to access and large corporate databases, such as the National Water Information System (NWIS) that houses hydrologic data for the Nation, are challenging to use without considerable expertise and investment of time. The USGS Community for Data Integration (CDI) was established in 2009 to address data and information management issues affecting the proficiency of earth science research. A CDI workshop convened in 2009 identified common data integration needs of USGS scientists and targeted high value opportunities that might address these needs by leveraging existing projects in USGS science centers, in-kind contributions, and supplemental funding. To implement this strategy, CDI sponsored a software development project in 2010 to facilitate access and use of NWIS data with ArcGIS, a widely used Geographic Information System. The resulting software product, the NWIS Web Services Snapshot Tool for ArcGIS, is presented here.

  10. Global Positioning System data collection, processing, and analysis conducted by the U.S. Geological Survey Earthquake Hazards Program

    Science.gov (United States)

    Murray, Jessica R.; Svarc, Jerry L.

    2017-01-01

    The U.S. Geological Survey Earthquake Science Center collects and processes Global Positioning System (GPS) data throughout the western United States to measure crustal deformation related to earthquakes and tectonic processes as part of a long‐term program of research and monitoring. Here, we outline data collection procedures and present the GPS dataset built through repeated temporary deployments since 1992. This dataset consists of observations at ∼1950 locations. In addition, this article details our data processing and analysis procedures, which consist of the following. We process the raw data collected through temporary deployments, in addition to data from continuously operating western U.S. GPS stations operated by multiple agencies, using the GIPSY software package to obtain position time series. Subsequently, we align the positions to a common reference frame, determine the optimal parameters for a temporally correlated noise model, and apply this noise model when carrying out time‐series analysis to derive deformation measures, including constant interseismic velocities, coseismic offsets, and transient postseismic motion.

  11. Innovation in monitoring: The U.S. Geological Survey Sacramento–San Joaquin River Delta, California, flow-station network

    Science.gov (United States)

    Burau, Jon; Ruhl, Cathy; Work, Paul A.

    2016-01-29

    The U.S. Geological Survey (USGS) installed the first gage to measure the flow of water into California’s Sacramento–San Joaquin River Delta from the Sacramento River in the late 1800s. Today, a network of 35 hydro-acoustic meters measure flow throughout the delta. This region is a critical part of California’s freshwater supply and conveyance system. With the data provided by this flow-station network—sampled every 15 minutes and updated to the web every hour—state and federal water managers make daily decisions about how much freshwater can be pumped for human use, at which locations, and when. Fish and wildlife scientists, working with water managers, also use this information to protect fish species affected by pumping and loss of habitat. The data are also used to help determine the success or failure of efforts to restore ecosystem processes in what has been called the “most managed and highly altered” watershed in the country.

  12. Quality-assurance and data management plan for groundwater activities by the U.S. Geological Survey in Kansas, 2014

    Science.gov (United States)

    Putnam, James E.; Hansen, Cristi V.

    2014-01-01

    As the Nation’s principle earth-science information agency, the U.S. Geological Survey (USGS) is depended on to collect data of the highest quality. This document is a quality-assurance plan for groundwater activities (GWQAP) of the Kansas Water Science Center. The purpose of this GWQAP is to establish a minimum set of guidelines and practices to be used by the Kansas Water Science Center to ensure quality in groundwater activities. Included within these practices are the assignment of responsibilities for implementing quality-assurance activities in the Kansas Water Science Center and establishment of review procedures needed to ensure the technical quality and reliability of the groundwater products. In addition, this GWQAP is intended to complement quality-assurance plans for surface-water and water-quality activities and similar plans for the Kansas Water Science Center and general project activities throughout the USGS. This document provides the framework for collecting, analyzing, and reporting groundwater data that are quality assured and quality controlled. This GWQAP presents policies directing the collection, processing, analysis, storage, review, and publication of groundwater data. In addition, policies related to organizational responsibilities, training, project planning, and safety are presented. These policies and practices pertain to all groundwater activities conducted by the Kansas Water Science Center, including data-collection programs, interpretive and research projects. This report also includes the data management plan that describes the progression of data management from data collection to archiving and publication.

  13. Salish Kootenai College and U.S. Geological Survey partnership—Enhancing student opportunities and professional development

    Science.gov (United States)

    Sando, Roy; Fordham, Monique

    2017-08-29

    Salish Kootenai College (SKC), in the Flathead Reservation in the northwestern corner of Montana, is the largest of the seven Tribal colleges in the State. In 2011, U.S. Geological Survey (USGS) National Tribal Liaison Monique Fordham from the Office of Tribal Relations/Office of Science Quality and Integrity began discussions with SKC faculty to examine ways the USGS could assist with classes taught as part of the new hydrology program at the college. With funding provided by the USGS Office of Tribal Relations, Roy Sando from the Wyoming-Montana Water Science Center began collaborating with SKC. From 2012 to 2017, Sando and others have developed and taught eight educational workshops at SKC. Topics of the workshops have included classifying land cover using remote sensing, characterizing stream channel migration, estimating actual evapotranspiration, modeling groundwater contamination plumes, and building custom geographic information system tools. By contributing to the educational training of SKC students and establishing this high level of collaboration with a Tribal college, the USGS is demonstrating its commitment to helping build the next generation of Tribal scientists.

  14. Designing and Implementing a Retrospective Earthquake Detection Framework at the U.S. Geological Survey National Earthquake Information Center

    Science.gov (United States)

    Patton, J.; Yeck, W.; Benz, H.

    2017-12-01

    The U.S. Geological Survey National Earthquake Information Center (USGS NEIC) is implementing and integrating new signal detection methods such as subspace correlation, continuous beamforming, multi-band picking and automatic phase identification into near-real-time monitoring operations. Leveraging the additional information from these techniques help the NEIC utilize a large and varied network on local to global scales. The NEIC is developing an ordered, rapid, robust, and decentralized framework for distributing seismic detection data as well as a set of formalized formatting standards. These frameworks and standards enable the NEIC to implement a seismic event detection framework that supports basic tasks, including automatic arrival time picking, social media based event detections, and automatic association of different seismic detection data into seismic earthquake events. In addition, this framework enables retrospective detection processing such as automated S-wave arrival time picking given a detected event, discrimination and classification of detected events by type, back-azimuth and slowness calculations, and ensuring aftershock and induced sequence detection completeness. These processes and infrastructure improve the NEIC's capabilities, accuracy, and speed of response. In addition, this same infrastructure provides an improved and convenient structure to support access to automatic detection data for both research and algorithmic development.

  15. Comparison of SeaWiFS measurements of the Moon with the U.S. Geological Survey lunar model.

    Science.gov (United States)

    Barnes, Robert A; Eplee, Robert E; Patt, Frederick S; Kieffer, Hugh H; Stone, Thomas C; Meister, Gerhard; Butler, James J; McClain, Charles R

    2004-11-01

    The Sea-Viewing Wide-Field-of-View Sensor (SeaWiFS) has made monthly observations of the Moon since 1997. Using 66 monthly measurements, the SeaWiFS calibration team has developed a correction for the instrument's on-orbit response changes. Concurrently, a lunar irradiance model has been developed by the U.S. Geological Survey (USGS) from extensive Earth-based observations of the Moon. The lunar irradiances measured by SeaWiFS are compared with the USGS model. The comparison shows essentially identical response histories for SeaWiFS, with differences from the model of less than 0.05% per thousand days in the long-term trends. From the SeaWiFS experience we have learned that it is important to view the entire lunar image at a constant phase angle from measurement to measurement and to understand, as best as possible, the size of each lunar image. However, a constant phase angle is not required for using the USGS model. With a long-term satellite lunar data set it is possible to determine instrument changes at a quality level approximating that from the USGS lunar model. However, early in a mission, when the dependence on factors such as phase and libration cannot be adequately determined from satellite measurements alone, the USGS model is critical to an understanding of trends in instruments that use the Moon for calibration. This is the case for SeaWiFS.

  16. Integrated geophysical and geological methods to investigate the inner and outer structures of the Quaternary Mýtina maar (W-Bohemia, Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Flechsig, C.; Heinicke, J.; Mrlina, Jan; Kämpf, H.; Nickschick, T.; Schmidt, A.; Bayer, Tomáš; Günther, T.; Rücker, C.; Seidel, E.; Seidl, Michal

    2015-01-01

    Roč. 104, č. 8 (2015), s. 2087-2105 ISSN 1437-3254 R&D Projects: GA MŠk LM2010008 Institutional support: RVO:67985530 Keywords : Eger Rift * Quaternary maar volcanism * Mýtina maar * geophysical and geological survey Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.133, year: 2015

  17. Investigation of the potential for concealed base-metal mineralization at the Drenchwater Creek Zn-Pb-Ag occurrence, northern Alaska, using geology, reconnaissance geochemistry, and airborne electromagnetic geophysics

    Science.gov (United States)

    Graham, Garth E.; Deszcz-Pan, Maria; Abraham, Jared E.; Kelley, Karen D.

    2011-01-01

    In 2005, the U.S. Geological Survey, Bureau of Land Management, and State of Alaska cooperated on an investigation of the mineral potential of a southern part of the National Petroleum Reserve in Alaska, Howard Pass quadrangle, to provide background information for future land-use decisions. The investigation incorporated an airborne electromagnetic (EM) survey covering 1,500 mi2 (~3,900 km2), including flight lines directly over the Drenchwater Creek sediment-hosted Zn-Pb-Ag occurrence, the largest known base-metal occurrence in the survey area. Samples from the mineralized outcrop and rubblecrop contain metal concentrations that can exceed 11 percent Zn+Pb, with appreciable amounts of Ag. Soil samples with anomalous Pb concentrations are distributed near the sulfide-bearing outcrops and along a >2.5 km zone comprising mudstone, shale, and volcanic rocks of the Kuna Formation.

  18. Sorption of radionuclides on geologic media - A literature survey. I: Fission Products

    International Nuclear Information System (INIS)

    Andersson, K.; Allard, B.

    1983-01-01

    The fission products investigated were cobalt, nickel, strontium, cesium, technetium and iodine. Parameters of importance to sorption have been identified and a tabulation of distribution coefficients for groundwater conditions (pH 7-9, low to medium ionic strength) is included in the report. For cobalt and nickel the sorption is related to hydrolysis. High sorption is observed at a pH where hydrolysis become important and the sorption is high as long as cationic hydrolysis products are formed. When pH is increased or negatively charged hydrolysis products may be formed and the sorption decreases. For strontium hydrolysis is of no importance at the normal pH of groundwater, but in groundwater above pH 9 carbonate complexation may occur. For most minerals, the sorption is low, ususally with a pronounced pH dependence. Other important parameters are ionic strength and CEC. A nonselective sorption due to electrostatic interactions between negatively charged mineral surfaces and Sr 2+ seems to occur. For cesium no hydrolysis may be expected and pH has less importance than for Sr. For most minerals, however, the sorption of Cs is higher than for Sr. Important parameters are nuclide concentration and ionic strength. A selective for Cs-sorption is found for some minerals, mostly sheet-silicates. For technetium sorption is due to a reduction of TcO 4 - TcO 2 (s) and as anions are poorly sorbed, the sorption is dependent on the redox potential. Iodine is also anionic and poorly sorbed. Minerals containing ions capable of forming iodides with low solubility (Ag, Mg, Pb etc) are, however, sorbing I - . (Author)

  19. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain area, Nevada Nuclear Waste Site Investigation (NNWSI)

    International Nuclear Information System (INIS)

    1988-10-01

    This report provides a summary of progress for the project ''Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI)'' for the eighteen month period of January 1, 1987 to June 10, 1988. This final report was preceded by the final report for the initial six month period, July 1, 1986 to December 31, 1986 (submitted on January 25, 1987, and revised in June 1987). The general Task continued to coordinate project activities to meet general deadlines and responsibilities. The central office provided general secretarial support. The activities that were started during the first project period included expansion of the central copying facilities, growth of the central reprint, map, aerial and photograph collections, and some expansion of personal computer capabilities. The research and review accomplishments are mainly under the following tasks: quaternary tectonics, geochemical, mineral deposits, volcanic geology, seismology, tectonics, neotectonics, remote sensing, geotechnical assessments, geotechnical rock mass assessment, basinal studies, and strong ground motion

  20. Nevada Test Site flood inundation study: Part of US Geological Survey flood potential and debris hazard study, Yucca Mountain Site for USDOE, Office of Civilian Radioactive Waste Management

    International Nuclear Information System (INIS)

    Blanton, J.O. III.

    1992-01-01

    The Geological Survey (GS), as part of the Yucca Mountain Project (YMP), is conducting studies at Yucca Mountain, Nevada. The purposes of these studies are to provide hydrologic and geologic information to evaluate the suitability of Yucca Mountain for development as a high-level nuclear waste repository, and to evaluate the ability of the mined geologic disposal system (MGDS) to isolate the waste in compliance with regulatory requirements. The Bureau of Reclamation was selected by the GS as a contractor to provide probable maximum flood (PMF) magnitudes and associated inundation maps for preliminary engineering design of the surface facilities at Yucca Mountain. These PMF peak flow estimates and associated inundation maps are necessary for successful waste repository design and construction. The standard step method for backwater computations, incorporating the Bernouli energy equation and the results of the PMF study were chosen as the basis for defining the areal extent of flooding

  1. A bibliography of research conducted by the Earth Resources Observation Systems (EROS) Office, U.S. Geological Survey : 1975-1982

    Science.gov (United States)

    Bowman, Helen L.

    1984-01-01

    The U.S. Geological Survey's Earth Resources Observation Systems (EROS) Program was established in 1967 by Secretarial order to plan and develop techniques for collecting and analyzing remotely sensed data, and to apply these techniques to the resource inventory and management responsibilities of the Department of the Interior. U.S. Geological Survey scientists, realizing the potential benefits of synoptic views of the Earth, were among the first members of America's scientific community to press for the launch of civilian Earth-surface observation satellites. Under the leadership of Director William T. Pecora, U.S. Geological Survey initiatives greatly influenced the National Aeronautics and Space Administration's (NASA) development of the Landsat program.As part of the Landsat program, an agreement between NASA and the Geological Survey was signed to provide Landsat archiving and data production capabilities at the EROS Data Center in Sioux Falls, South Dakota. This partnership with NASA began in 1972 and continued until Presidential Directive 54 designated the National Oceanic and Atmospheric Administration (NOAA) of the Department of Commerce as the manager of U.S. civil operational land remote-sensing activities. NOAA has managed the Landsat program since Fiscal Year 1983, and EROS continues to process, archive, reproduce, and distribute Landsat data under a Memorandum of Understanding between NOAA and the Geological Survey. Archives at the EROS Data Center include over 2 million worldwide Landsat scenes and over 5 million aerial photographs, primarily of U.S. sites. Since the launch of Landsat 1, global imaging of the Earth's surface has become an operational tool for resource exploration and land management. As technology evolved, so did the EROS Program mission. Research and applications efforts began at the EROS Headquarters Office in the Washington metropolitan area in 1966; at the EROS Data Center in 1971; and at the EROS Field Office in Anchorage

  2. Seismic site survey investigations in urban environments: The case of the underground metro project in Copenhagen, Denmark.

    Science.gov (United States)

    Martínez, K.; Mendoza, J. A.; Colberg-Larsen, J.; Ploug, C.

    2009-05-01

    Near surface geophysics applications are gaining more widespread use in geotechnical and engineering projects. The development of data acquisition, processing tools and interpretation methods have optimized survey time, reduced logistics costs and increase results reliability of seismic surveys during the last decades. However, the use of wide-scale geophysical methods under urban environments continues to face great challenges due to multiple noise sources and obstacles inherent to cities. A seismic pre-investigation was conducted to investigate the feasibility of using seismic methods to obtain information about the subsurface layer locations and media properties in Copenhagen. Such information is needed for hydrological, geotechnical and groundwater modeling related to the Cityringen underground metro project. The pre-investigation objectives were to validate methods in an urban environment and optimize field survey procedures, processing and interpretation methods in urban settings in the event of further seismic investigations. The geological setting at the survey site is characterized by several interlaced layers of clay, till and sand. These layers are found unevenly distributed throughout the city and present varying thickness, overlaying several different unit types of limestone at shallow depths. Specific results objectives were to map the bedrock surface, ascertain a structural geological framework and investigate bedrock media properties relevant to the construction design. The seismic test consisted of a combined seismic reflection and refraction analyses of a profile line conducted along an approximately 1400 m section in the northern part of Copenhagen, along the projected metro city line. The data acquisition was carried out using a 192 channels array, receiver groups with 5 m spacing and a Vibroseis as a source at 10 m spacing. Complementarily, six vertical seismic profiles (VSP) were performed at boreholes located along the line. The reflection

  3. Before Smith’s Mill: Archaeological and Geological Investigations, Smithville Lake, Missouri. Volume 2,

    Science.gov (United States)

    1982-06-01

    Investigations G.A.I. M sultmts’ field investigations comprised to oM r WnIt, 1) the excavation or testing of a selected series of a-haeological site" specified...this gulley (see below). The terrace area north of the channel scar is part of the T ter- race system, a series of paired terraces on either side of...Nebo [fill site, 21 CL II, and sinte" it Is (nsi’hered a single component site (Reid 1978), the two project I Ie pocint form, h con temporaleous

  4. Engineering geological and geophysical investigations for road construction in the municipality of Sisimiut, West Greenland

    DEFF Research Database (Denmark)

    Ingeman-Nielsen, Thomas; Clausen, Helle; Foged, Niels Nielsen

    2007-01-01

    In connection with a road construction project between the towns of Sisimiut and Kangerlussuaq in Central West Greenland, the Arctic Technology Centre has been involved in prospecting and site investigations. This paper presents a selection of results concerning the climatic conditions...... and construction work in order to counter the effects of permafrost degradation and increased active layer thickness....

  5. Comments on a letter by George D. DeBuchananne (US Geological Survey) regarding the use of salt domes for high-level waste disposal

    International Nuclear Information System (INIS)

    1984-08-01

    The US Geological Survey (USGS) concluded in a letter to the US Department of Energy, dated March 7, 1981, that subsurface geologic conditions in bedded salt are more predictable and less complex than those in domal salt. This predictability is equated with the relative suitability of bedded and domal salt as repository host media. This report comments on the USGS letter. The key points made are as follows: Complexities which may exist in the geologic setting of a salt dome (or other potential host medium) should not a priori preclude the dome from being an acceptable host medium for a high-level waste (HLW) repository. Predictability, as used by the USGS, focused on the spatial extrapolation of information on geologic conditions and should not be confused with predicting the performance of a repository. Notwithstanding the general characteristics of bedded and domal salt, there are salt domes whose individual characteristics should make them as acceptable as potential bedded salt areas for HLW repository sites. Complexities which may occur in the geologic setting of a salt dome can be explored and characterized with sufficient accuracy by available techniques

  6. A compilation of U.S. Geological Survey pesticide concentration data for water and sediment in the Sacramento–San Joaquin Delta region: 1990–2010

    Science.gov (United States)

    Orlando, James L.

    2013-01-01

    Beginning around 2000, abundance indices of four pelagic fishes (delta smelt, striped bass, longfin smelt, and threadfin shad) within the San Francisco Bay and Sacramento–San Joaquin Delta began to decline sharply (Sommer and others, 2007). These declines collectively became known as the pelagic organism decline (POD). No single cause has been linked to this decline, and current theories suggest that combinations of multiple stressors are likely to blame. Contaminants (including current-use pesticides) are one potential stressor being investigated for its role in the POD (Anderson, 2007). Pesticide concentration data collected by the U.S. Geological Survey (USGS) at multiple sites in the delta region over the past two decades are critical to understanding the potential effects of current-use pesticides on species of concern as well as the overall health of the delta ecosystem. In April 2010, a compilation of contaminant data for the delta region was published by the State Water Resources Control Board (Johnson and others, 2010). Pesticide occurrence was the major focus of this report, which concluded that “there was insufficient high quality data available to make conclusions about the potential role of specific contaminants in the POD.” The report cited multiple sources; however, data collected by the USGS were not included in the publication even though these data met all criteria listed for inclusion in the report. What follows is a summary of publicly available USGS data for pesticide concentrations in surface water and sediments within the Sacramento–San Joaquin Delta region from the years 1990 through 2010. Data were retrieved though the USGS National Water Information System (NWIS) database, a publicly available online-data repository (U.S. Geological Survey, 1998), and from published USGS reports (also available online at http://pubs.er.usgs.gov/). The majority of the data were collected in support of two long term USGS monitoring programs

  7. Chapter 8: US geological survey Circum-Arctic Resource Appraisal (CARA): Introduction and summary of organization and methods

    Science.gov (United States)

    Charpentier, R.R.; Gautier, D.L.

    2011-01-01

    The USGS has assessed undiscovered petroleum resources in the Arctic through geological mapping, basin analysis and quantitative assessment. The new map compilation provided the base from which geologists subdivided the Arctic for burial history modelling and quantitative assessment. The CARA was a probabilistic, geologically based study that used existing USGS methodology, modified somewhat for the circumstances of the Arctic. The assessment relied heavily on analogue modelling, with numerical input as lognormal distributions of sizes and numbers of undiscovered accumulations. Probabilistic results for individual assessment units were statistically aggregated taking geological dependencies into account. Fourteen papers in this Geological Society volume present summaries of various aspects of the CARA. ?? 2011 The Geological Society of London.

  8. Field methods and quality-assurance plan for water-quality activities and water-level measurements, U.S. Geological Survey, Idaho National Laboratory, Idaho

    Science.gov (United States)

    Bartholomay, Roy C.; Maimer, Neil V.; Wehnke, Amy J.

    2014-01-01

    Water-quality activities and water-level measurements by the personnel of the U.S. Geological Survey (USGS) Idaho National Laboratory (INL) Project Office coincide with the USGS mission of appraising the quantity and quality of the Nation’s water resources. The activities are carried out in cooperation with the U.S. Department of Energy (DOE) Idaho Operations Office. Results of the water-quality and hydraulic head investigations are presented in various USGS publications or in refereed scientific journals and the data are stored in the National Water Information System (NWIS) database. The results of the studies are used by researchers, regulatory and managerial agencies, and interested civic groups. In the broadest sense, quality assurance refers to doing the job right the first time. It includes the functions of planning for products, review and acceptance of the products, and an audit designed to evaluate the system that produces the products. Quality control and quality assurance differ in that quality control ensures that things are done correctly given the “state-of-the-art” technology, and quality assurance ensures that quality control is maintained within specified limits.

  9. Field Methods and Quality-Assurance Plan for Quality-of-Water Activities, U.S. Geological Survey, Idaho National Laboratory, Idaho

    Science.gov (United States)

    Knobel, LeRoy L.; Tucker, Betty J.; Rousseau, Joseph P.

    2008-01-01

    Water-quality activities conducted by the staff of the U.S. Geological Survey (USGS) Idaho National Laboratory (INL) Project Office coincide with the USGS mission of appraising the quantity and quality of the Nation's water resources. The activities are conducted in cooperation with the U.S. Department of Energy's (DOE) Idaho Operations Office. Results of the water-quality investigations are presented in various USGS publications or in refereed scientific journals. The results of the studies are highly regarded, and they are used with confidence by researchers, regulatory and managerial agencies, and interested civic groups. In its broadest sense, quality assurance refers to doing the job right the first time. It includes the functions of planning for products, review and acceptance of the products, and an audit designed to evaluate the system that produces the products. Quality control and quality assurance differ in that quality control ensures that things are done correctly given the 'state-of-the-art' technology, and quality assurance ensures that quality control is maintained within specified limits.

  10. Geophysical Investigation using Two Dimensional Electrical Resistivity Tomography method to delineate Subsurface Geological Structures at Dudhkoshi-II (230 MW) Hydroelectric Project, Solukhumbu District, Eastern Nepal

    Science.gov (United States)

    Ghimire, H.; Bhusal, U. C.; Khatiwada, B.; Pandey, D.

    2017-12-01

    Geophysical investigation using two dimensional electrical resistivity tomography (2D-ERT) method plays a significant role in determining the subsurface resistivity distribution by making measurement on the ground surface. This method was carried out at Dudhkoshi-II (230 MW) Hydroelectric Project, lies on Lesser Himalayan region of the Eastern Nepal to delineate the nature of the subsurface geology to assess its suitability for the construction of dam, desanding basin and powerhouse. The main objective of the proposed study consists of mapping vertical as well as horizontal variations of electrical resistivity to enable detection of the boundaries between unconsolidated materials and rocks of the different resistivity, possible geologic structures, such as possible presence of faults, fractures, and voids in intake and powerhouse area. For this purpose, the (WDJD-4 Multi-function Digital DC Resistivity/IP) equipment was used with Wenner array (60 electrodes). To fulfill these objectives of the study, the site area was mapped by Nine ERT profiles with different profile length and space between electrodes was 5 m. The depth of the investigation was 50 m. The acquired data were inverted to tomogram sections using tomographic inversion with RES2DINV commercial software. The Tomography sections show that the subsurface is classified into distinct geo-electric layers of dry unconsolidated overburden, saturated overburden, fractured rock and fresh bedrock of phyllites with quartzite and gneiss with different resistivity values. There were no voids and faults in the study area. Thickness of overburden at different region found to be different. Most of the survey area has bedrock of phyllites with quartzite; gneiss is also present in some location at intake area. Bedrock is found at the varies depth of 5-8 m at dam axis, 20-32 m at desanding basin and 3-10 m at powerhouse area. These results are confirmed and verified by using several boreholes data were drilled on the

  11. U.S. Geological Survey science strategy for highly pathogenic avian influenza in wildlife and the environment (2016–2020)

    Science.gov (United States)

    Harris, M. Camille; Pearce, John M.; Prosser, Diann J.; White, C. LeAnn; Miles, A. Keith; Sleeman, Jonathan M.; Brand, Christopher J.; Cronin, James P.; De La Cruz, Susan; Densmore, Christine L.; Doyle, Thomas W.; Dusek, Robert J.; Fleskes, Joseph P.; Flint, Paul L.; Guala, Gerald F.; Hall, Jeffrey S.; Hubbard, Laura E.; Hunt, Randall J.; Ip, Hon S.; Katz, Rachel A.; Laurent, Kevin W.; Miller, Mark P.; Munn, Mark D.; Ramey, Andy M.; Richards, Kevin D.; Russell, Robin E.; Stokdyk, Joel P.; Takekawa, John Y.; Walsh, Daniel P.

    2016-08-18

    IntroductionThrough the Science Strategy for Highly Pathogenic Avian Influenza (HPAI) in Wildlife and the Environment, the USGS will assess avian influenza (AI) dynamics in an ecological context to inform decisions made by resource managers and policymakers from the local to national level. Through collection of unbiased scientific information on the ecology of AI viruses and wildlife hosts in a changing world, the U.S. Geological Survey (USGS) will enhance the development of AI forecasting tools and ensure this information is integrated with a quality decision process for managing HPAI.The overall goal of this USGS Science Strategy for HPAI in Wildlife and the Environment goes beyond document­ing the occurrence and distribution of AI viruses in wild birds. The USGS aims to understand the epidemiological processes and environmental factors that influence HPAI distribution and describe the mechanisms of transmission between wild birds and poultry. USGS scientists developed a conceptual model describing the process linking HPAI dispersal in wild waterfowl to the outbreaks in poul­try. This strategy focuses on five long-term science goals, which include:Science Goal 1—Augment the National HPAI Surveillance Plan;Science Goal 2—Determine mechanisms of HPAI disease spread in wildlife and the environment;Science Goal 3—Characterize HPAI viruses circulating in wildlife;Science Goal 4—Understand implications of avian ecol­ogy on HPAI spread; andScience Goal 5—Develop HPAI forecasting and decision-making tools.These goals will help define and describe the processes outlined in the conceptual model with the ultimate goal of facilitating biosecurity and minimizing transfer of diseases across the wildlife-poultry interface. The first four science goals are focused on scientific discovery and the fifth goal is application-based. Decision analyses in the fifth goal will guide prioritization of proposed actions in the first four goals.

  12. U.S. Geological Survey laboratory method for methyl tert-Butyl ether and other fuel oxygenates

    Science.gov (United States)

    Raese, Jon W.; Rose, Donna L.; Sandstrom, Mark W.

    1995-01-01

    Methyl tert-butyl ether (MTBE) was found in shallow ground-water samples in a study of 8 urban and 20 agricultural areas throughout the United States in 1993 and 1994 (Squillace and others, 1995, p. 1). The compound is added to gasoline either seasonally or year round in many parts of the United States to increase the octane level and to reduce carbon monoxide and ozone levels in the air. The U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL), near Denver, uses state-of-the-art technology to analyze samples for MTBE as part of the USGS water-quality studies. In addition, the NWQL offers custom analyses to determine two other fuel oxygenates--ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME). The NWQL was not able to obtain a reference standard for tert-amyl ethyl ether (TAEE), another possible fuel oxygenate (Shelley and Fouhy, 1994, p. 63). The shallow ground-water samples were collected as part of the USGS National Water-Quality Assessment Program. These samples were collected from 211 urban wells or springs and 562 agricultural wells sampled by the USGS in 1993 and 1994. The wells were keyed to specific land-use areas to assess the effects of different uses on ground-water quality (Squillace and others, 1995, p. 2). Ground-water samples were preserved on site to pH less than or equal to 2 with a solution of 1:1 hydrochloric acid. All samples were analyzed at the NWQL within 2 weeks after collection. The purpose of this fact sheet is to explain briefly the analytical method implemented by the USGS for determining MTBE and other fuel oxygenates. The scope is necessarily limited to an overview of the analytical method (instrumentation, sample preparation, calibration and quantitation, identification, and preservation of samples) and method performance (reagent blanks, accuracy, and precision).

  13. Acoustic Doppler current profiler applications used in rivers and estuaries by the U.S. Geological Survey

    Science.gov (United States)

    Gotvald, Anthony J.; Oberg, Kevin A.

    2009-01-01

    The U.S. Geological Survey (USGS) has collected streamflow information for the Nation's streams since 1889. Streamflow information is used to predict floods, manage and allocate water resources, design engineering structures, compute water-quality loads, and operate water-control structures. The current (2007) size of the USGS streamgaging network is over 7,400 streamgages nationwide. The USGS has progressively improved the streamgaging program by incorporating new technologies and techniques that streamline data collection while increasing the quality of the streamflow data that are collected. The single greatest change in streamflow measurement technology during the last 100 years has been the development and application of high frequency acoustic instruments for measuring streamflow. One such instrument, the acoustic Doppler current profiler (ADCP), is rapidly replacing traditional mechanical current meters for streamflow measurement (Muste and others, 2007). For more information on how an ADCP works see Simpson (2001) or visit http://hydroacoustics.usgs.gov/. The USGS has used ADCPs attached to manned or tethered boats since the mid-1990s to measure streamflow in a wide variety of conditions (fig. 1). Recent analyses have shown that ADCP streamflow measurements can be made with similar or greater accuracy, efficiency, and resolution than measurements made using conventional current-meter methods (Oberg and Mueller, 2007). ADCPs also have the ability to measure streamflow in streams where traditional current-meter measurements previously were very difficult or costly to obtain, such as streams affected by backwater or tides. In addition to streamflow measurements, the USGS also uses ADCPs for other hydrologic measurements and applications, such as computing continuous records of streamflow for tidally or backwater affected streams, measuring velocity fields with high spatial and temporal resolution, and estimating suspended-sediment concentrations. An overview

  14. Earthquake Scenarios Based Upon the Data and Methodologies of the U.S. Geological Survey's National Seismic Hazard Mapping Project

    Science.gov (United States)

    Rukstales, K. S.; Petersen, M. D.; Frankel, A. D.; Harmsen, S. C.; Wald, D. J.; Quitoriano, V. R.; Haller, K. M.

    2011-12-01

    The U.S. Geological Survey's (USGS) National Seismic Hazard Mapping Project (NSHMP) utilizes a database of over 500 faults across the conterminous United States to constrain earthquake source models for probabilistic seismic hazard maps. Additionally, the fault database is now being used to produce a suite of deterministic ground motions for earthquake scenarios that are based on the same fault source parameters and empirical ground motion prediction equations used for the probabilistic hazard maps. Unlike the calculated hazard map ground motions, local soil amplification is applied to the scenario calculations based on the best available Vs30 (average shear-wave velocity down to 30 meters) mapping, or in some cases using topographic slope as a proxy. Systematic outputs include all standard USGS ShakeMap products, including GIS, KML, XML, and HAZUS input files. These data are available from the ShakeMap web pages with a searchable archive. The scenarios are being produced within the framework of a geographic information system (GIS) so that alternative scenarios can readily be produced by altering fault source parameters, Vs30 soil amplification, as well as the weighting of ground motion prediction equations used in the calculations. The alternative scenarios can then be used for sensitivity analysis studies to better characterize uncertainty in the source model and convey this information to decision makers. By providing a comprehensive collection of earthquake scenarios based upon the established data and methods of the USGS NSHMP, we hope to provide a well-documented source of data which can be used for visualization, planning, mitigation, loss estimation, and research purposes.

  15. U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center-fiscal year 2010 annual report

    Science.gov (United States)

    Nelson, Janice S.

    2011-01-01

    The Earth Resources Observation and Science (EROS) Center is a U.S. Geological Survey (USGS) facility focused on providing science and imagery to better understand our Earth. The work of the Center is shaped by the earth sciences, the missions of our stakeholders, and implemented through strong program and project management, and application of state-of-the-art information technologies. Fundamentally, EROS contributes to the understanding of a changing Earth through 'research to operations' activities that include developing, implementing, and operating remote-sensing-based terrestrial monitoring capabilities needed to address interdisciplinary science and applications objectives at all levels-both nationally and internationally. The Center's programs and projects continually strive to meet, and where possible exceed, the changing needs of the USGS, the Department of the Interior, our Nation, and international constituents. The Center's multidisciplinary staff uses their unique expertise in remote sensing science and technologies to conduct basic and applied research, data acquisition, systems engineering, information access and management, and archive preservation to address the Nation's most critical needs. Of particular note is the role of EROS as the primary provider of Landsat data, the longest comprehensive global land Earth observation record ever collected. This report is intended to provide an overview of the scientific and engineering achievements and illustrate the range and scope of the activities and accomplishments at EROS throughout fiscal year (FY) 2010. Additional information concerning the scientific, engineering, and operational achievements can be obtained from the scientific papers and other documents published by EROS staff or by visiting our web site at http://eros.usgs.gov. We welcome comments and follow-up questions on any aspect of this Annual Report and invite any of our customers or partners to contact us at their convenience. To

  16. Vitrified radwaste from reprocessing. Supplementary geological investigations of the KBS-project, Sweden

    International Nuclear Information System (INIS)

    1979-01-01

    The Swedish nuclear power utilities' application to load two new reactors, according to the so called Stipulation Act was denied by the Swedish Government i Novermber 1978. According to the Government the utilities' KBS-project had not demonstrated the existence of a large, light rockformation suited for disposal of the radioactive wastes or the spent fuels. In this report an account is given of the futher investigations that were undertaken by the KBS-project to prove that such a rockformation exists at Sternoe in Southern Sweden. (L.E.)

  17. Description of the U.S. Geological Survey's water-quality sampling and water-level monitoring program at the Hallam Nuclear Facility, August through September 1997

    International Nuclear Information System (INIS)

    1997-01-01

    A water-quality and water-level program between the US Department of Energy (USDOE) and the US Geological Survey (USGS) was re-established in August 1997 to (1) collect one set of water-quality samples from 17 of the 19 USDOE monitor wells, and (2) make five water-level measurements during a 2-month period from the 19 USDOE monitor wells at the Hallam Nuclear Facility, Hallam, Nebraska. Data from these wells are presented

  18. Destination: Geology?

    Science.gov (United States)

    Price, Louise

    2016-04-01

    to the Canary Islands and Japan. The Great Britain Sasakawa Foundation, provided additional funding to support the recent visit to Japan, which enabled visits to Mount Fuji as well as investigating structural geology in Kobe and Tokyo. "The opportunity to visit Japan really broadened my understanding of geology and sharing that experience with fellow students helped me to reinforce my knowledge of the subject." Jack, geology student, Age 18.

  19. Seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel

    Czech Academy of Sciences Publication Activity Database

    Kaláb, Zdeněk; Šílený, Jan; Lednická, Markéta

    2017-01-01

    Roč. 15, č. 1 (2017), s. 486-493 E-ISSN 2391-5471 R&D Projects: GA MŠk LM2010008; GA MŠk(CZ) LM2015079 Institutional support: RVO:68145535 ; RVO:67985530 Keywords : deep geological repository * earthquake * seismicity * neo-deterministic analysis * probabilistic seismic hazard assessment Subject RIV: DC - Siesmology, Volcanology, Earth Structure; DC - Siesmology, Volcanology, Earth Structure (GFU-E) OBOR OECD: Environmental and geological engineering, geotechnics; Environmental and geological engineering, geotechnics (GFU-E) Impact factor: 0.745, year: 2016 https://www.degruyter.com/downloadpdf/j/phys.2017.15.issue-1/phys-2017-0055/phys-2017-0055.pdf

  20. Attenuation-difference radar tomography: results of a multiple-plane experiment at the U.S. Geological Survey Fractured-Rock Research Site, Mirror Lake, New Hampshire

    Science.gov (United States)

    Lane, J.W.; Day-Lewis, F. D.; Harris, J.M.; Haeni, F.P.; Gorelick, S.M.

    2000-01-01

    Attenuation-difference, borehole-radar tomography was used to monitor a series of sodium chloride tracer injection tests conducted within the FSE, wellfield at the U.S. Geological Survey Fractured-Rock Hydrology Research Site in Grafton County, New Hampshire, USA. Borehole-radar tomography surveys were conducted using the sequential-scanning and injection method in three boreholes that form a triangular prism of adjoining tomographic image planes. Results indicate that time-lapse tomography methods provide high-resolution images of tracer distribution in permeable zones.

  1. Electrical imaging and self-potential surveys to study the geological setting of the quaternary slope deposits in the Agri high valley (Southern Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Giano, S I; Schiattarella, M [Basilicata Univ., Potenza (Italy). Centro di Geodinamica; Lapenna, V; Piscitelli, S [Consiglio Nazionale delle Ricerche, Tito, PZ (Italy). Ist. di Metodologie Avanzate di Analisi Ambientale

    2000-04-01

    The paper presents the results of a geophysical survey carried out to outline the structural modelling of quarternary slope deposits in the northern part of Agri high valley (Basilicata region, Italy). Quaternary folding and brittle deformations of the subaerial slope deposits have been studied combining electrical imaging and self-potential surveys with geological structural analysis. This integrated approach indicates that the area underwent both transpressional and transtensional tectonics during Pleistocene times as testified by the existence of a push up structure in the basement buried by deformed Quaternary breccias. On this basis, the valley appears to be a more complex structure than a simple extensional graben, as traditionally assumed in the literature.

  2. Shahejie-Shahejie/Guantao/Wumishan and Carboniferous/Permian Coal-Paleozoic Total Petroleum Systems in the Bohaiwan Basin, China (based on geologic studies for the 2000 World Energy Assessment Project of the U.S. Geological Survey)

    Science.gov (United States)

    Ryder, Robert T.; Qiang, Jin; McCabe, Peter J.; Nuccio, Vito F.; Persits, Felix

    2012-01-01

    This report discusses the geologic framework and petroleum geology used to assess undiscovered petroleum resources in the Bohaiwan basin province for the 2000 World Energy Assessment Project of the U.S. Geological Survey. The Bohaiwan basin in northeastern China is the largest petroleum-producing region in China. Two total petroleum systems have been identified in the basin. The first, the Shahejie&ndashShahejie/Guantao/Wumishan Total Petroleum System, involves oil and gas generated from mature pods of lacustrine source rock that are associated with six major rift-controlled subbasins. Two assessment units are defined in this total petroleum system: (1) a Tertiary lacustrine assessment unit consisting of sandstone reservoirs interbedded with lacustrine shale source rocks, and (2) a pre-Tertiary buried hills assessment unit consisting of carbonate reservoirs that are overlain unconformably by Tertiary lacustrine shale source rocks. The second total petroleum system identified in the Bohaiwan basin is the Carboniferous/Permian Coal–Paleozoic Total Petroleum System, a hypothetical total petroleum system involving natural gas generated from multiple pods of thermally mature coal beds. Low-permeability Permian sandstones and possibly Carboniferous coal beds are the reservoir rocks. Most of the natural gas is inferred to be trapped in continuous accumulations near the center of the subbasins. This total petroleum system is largely unexplored and has good potential for undiscovered gas accumulations. One assessment unit, coal-sourced gas, is defined in this total petroleum system.

  3. U.S. Geological Survey program of offshore resource and geoenvironmental studies, Atlantic-Gulf of Mexico region, from September 1, 1976, to December 31, 1978

    Science.gov (United States)

    Folger, David W.; Needell, Sally W.

    1983-01-01

    Mineral and energy resources of the continental margins of the United States arc important to the Nation's commodity independence and to its balance of payments. These resources are being studied along the continental margins of the Atlantic Ocean and the Gulf of Mexico in keeping with the mission of the U.S. Geological Survey to survey the geologic structures, mineral resources, and products of the national domain.'(Organic Act of 1879). An essential corollary to these resource studies is the study of potential geologic hazards that may be associated with offshore resource exploration and exploitation. In cooperation with the U.S. Bureau of Land Management, the Geological Survey, through its Atlantic-Gulf of Mexico Marine Geology Program, carries out extensive research to evaluate hazards from sediment mobility, shallow gas, and slumping and to acquire information on the distribution and concentration of trace metals and biogenic and petroleum-derived hydrocarbons in sea-floor sediments. All these studies arc providing needed background information, including information on pollutant dispersal, on the nearshore, estuarine, and lacustrine areas that may be near pipeline and nuclear powerplant sites. Users of these data include the Congress, many Federal agencies, the coastal States, private industry, academia, and the concerned public. The results of the regional structural, stratigraphic, and resource studies carried out under the Atlantic-Gulf of Mexico Marine Geology Program have been used by the Geological Survey and the Bureau of Land Management to select areas for future leasing and to aid in the evaluation of tracts nominated for leasing. Resource studies have concentrated mostly on the Atlantic Outer Continental Shelf frontier areas. Geologic detailing of five major basins along the U.S. Atlantic margin, where sediments are as much as 14 km thick, have been revealed by 25,000 km of 24-and 48-channel common-depth-point seismic data, 187,000 km of

  4. Geologic studies

    International Nuclear Information System (INIS)

    Wayland, T.E.; Rood, A.

    1983-01-01

    The modern Great Divide Basin is the end product of natural forces influenced by the Green River lake system, Laramide tectonism, and intermittent volcanic events. It ranks as one of the most complex structural and stratigtaphic features within the Tertiary basins of Wyoming. Portions of the Great Divide Basin and adjoining areas in Wyoming have been investigated by applying detailed and region exploration methods to known uranium deposits located within the Red Desert portions of the basin. Geologic field investigations conducted by Bendix Field Engineering Corporaton (Bendix) were restricted to reconnaissance observations made during infrequent visits to the project area by various Bendix personnel. Locations of the most comprehensive field activities are shown in Figure II-1. The principal source fo data for geologic studies of the Red Desert project area has been information and materials furnished by industry. Several hundred holes have been drilled by various groups to delineate the uranium deposits. Results from Bendix-drilled holes at selected locations within the project area are summarized in Table II-1. Additional details and gross subsurface characteristics are illustrated in cross sections; pertinent geologic features are illustrated in plan maps. Related details of continental sedimentation that pertain to the Wyoming Basins generally, and the project area specificially, are discussed in subsections of this Geologic Studies section

  5. Three dimensional investigation on the oceanic active fault. A demonstration survey

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Seizo; Kishimoto, Kiyoyuki; Okamoto, Yukinobu; Ikehara, Ken; Kuramoto, Shinichi; Sato, Mikio; Arai, Kosaku [Geological Survey of Japan, Tsukuba, Ibaraki (Japan)

    2000-02-01

    In order to upgrade activity and likelihood ratio on active potential evaluation of the water active fault with possibility of severe effect on nuclear facilities, by generally applying the conventional procedures to some areas and carrying out a demonstration survey, a qualitative upgrading on survey to be conducted by the executives was planned. In 1998 fiscal year, among the water active faults classified to the trench and the inland types, three dimensional survey on the inland type water active fault. The survey was carried out at the most southern part of aftershock area in the 1983 Nihonkai-Chubu earthquake, which is understood to be a place changing shallow geological structure (propagation of fault) from an old report using the sonic survey. As a result, a geological structure thought to be an active fault at a foot of two ridge topographies was found. Each fault was thought to be a reverse fault tilt to its opposite direction and an active fault cutting to its sea bottom. (G.K.)

  6. Three dimensional investigation on the oceanic active fault. A demonstration survey

    International Nuclear Information System (INIS)

    Nakao, Seizo; Kishimoto, Kiyoyuki; Okamoto, Yukinobu; Ikehara, Ken; Kuramoto, Shinichi; Sato, Mikio; Arai, Kosaku

    2000-01-01

    In order to upgrade activity and likelihood ratio on active potential evaluation of the water active fault with possibility of severe effect on nuclear facilities, by generally applying the conventional procedures to some areas and carrying out a demonstration survey, a qualitative upgrading on survey to be conducted by the executives was planned. In 1998 fiscal year, among the water active faults classified to the trench and the inland types, three dimensional survey on the inland type water active fault. The survey was carried out at the most southern part of aftershock area in the 1983 Nihonkai-Chubu earthquake, which is understood to be a place changing shallow geological structure (propagation of fault) from an old report using the sonic survey. As a result, a geological structure thought to be an active fault at a foot of two ridge topographies was found. Each fault was thought to be a reverse fault tilt to its opposite direction and an active fault cutting to its sea bottom. (G.K.)

  7. U.S. Geological Survey and Bureau of Land Management Cooperative Coalbed Methane Project in the Powder River Basin, Wyoming

    Science.gov (United States)

    ,

    2006-01-01

    Introduction: Evidence that earthquakes threaten the Mississippi, Ohio, and Wabash River valleys of the Central United States abounds. In fact, several of the largest historical earthquakes to strike the continental United States occurred in the winter of 1811-1812 along the New Madrid seismic zone, which stretches from just west of Memphis, Tenn., into southern Illinois (fig. 1). Several times in the past century, moderate earthquakes have been widely felt in the Wabash Valley seismic zone along the southern border of Illinois and Indiana (fig. 1). Throughout the region, between 150 and 200 earthquakes are recorded annually by a network of monitoring instruments, although most are too small to be felt by people. Geologic evidence for prehistoric earthquakes throughout the region has been mounting since the late 1970s. But how significant is the threat? How likely are large earthquakes and, more importantly, what is the chance that the shaking they cause will be damaging?The Bureau of Land Management (BLM) Wyoming Reservoir Management Group and the U.S. Geological Survey (USGS) began a cooperative project in 1999 to collect technical and analytical data on coalbed methane (CBM) resources and quality of the water produced from coalbeds in the Wyoming part of the Powder River Basin. The agencies have complementary but divergent goals and these kinds of data are essential to accomplish their respective resource evaluation and management tasks. The project also addresses the general public need for information pertaining to Powder River Basin CBM resources and development. BLM needs, which relate primarily to the management of CBM resources, include improved gas content and gas in-place estimates for reservoir characterization and resource/reserve assessment, evaluation, and utilization. USGS goals include a basinwide assessment of CBM resources, an improved understanding of the nature and origin of coalbed gases and formation waters, and the development of predictive

  8. Refraction and reflection seismic investigations for geological energy-storage site characterization: Dalby (Tornquist Zone), southwest Sweden

    Science.gov (United States)

    Malehmir, Alireza; Bergman, Bo; Andersson, Benjamin; Sturk, Robert; Johansson, Mattis

    2017-04-01

    -looking bedrock is clearly observed in the tomograms suggesting the possibility of weakness zones (likely highly fractured and/or weathered) in the bedrock. Signs of reflections in the raw shot gathers were encouraging and motivated to process the reflection component of the data for the purpose of subsurface imaging. Several northeast dipping, about 60-65 degree, reflections were imaged down to 400 m depth thanks to the close shot and receiver spacing strategy of the data acquisition. These reflections often show coherent character but at occasions are discontinuous and have different appearances. Reflections along profile 4 have for example different characters, shorter and more gently dipping, compared to those observed in profiles 2 and 3 suggesting that the main dip favors the orientation of profiles 2 and 3. The origins of the reflections are unclear ranging from amphibolite sheets to diabase dykes within the gneissic rocks, and each of this implies a different geological scenario (when compared with the geological data from a nearby quarry north of the study area) at where the site will be developed. Future studies should aim at understanding the cause of the reflections, constraining their locations at depth, and if they play any major role for the planning of the underground facilities. This study however illustrates the potential of the combined refraction and reflection imaging for these types of projects. For future developments of the site however a full 3D seismic survey can highly be useful. Acknowledgments: This work was supported by Skanska, and benefited collaborations among experts from Sweco, Lund University and Skanska. Trust project (http://www.trust-geoinfra.se) was fundamental to initiate this project.

  9. Geological techniques used in the siting of South Africa's nuclear facilities

    International Nuclear Information System (INIS)

    Andersen, N.J.B.

    1990-01-01

    Nuclear site selection studies begin with an initial screening phase in order to pick regions which could be potentially suitable. When assessing a potential nuclear site from a structural geological point of view, the most important factors are the presence of 'capable faults', the seismicity of the area, and the existence of good foundation rock. A geological evaluation of a potential site involves a literature survey for all existing geological data on the site, geophysical investigations, structural domain analysis and geological mapping

  10. U.S. Geological Survey Karst Interest Group Proceedings, San Antonio, Texas, May 16–18, 2017

    Science.gov (United States)

    Kuniansky, Eve L.; Spangler, Lawrence E.

    2017-05-15

    karst hydrogeologic systems. As a result, numerous federal, state, and local agencies have a strong interest in the study of karst terrains.Many of the major springs and aquifers in the United States have developed in carbonate rocks, such as the Floridan aquifer system in Florida and parts of Alabama, Georgia, and South Carolina; the Ozark Plateaus aquifer system in parts of Arkansas, Kansas, Missouri, and Oklahoma; and the Edwards-Trinity aquifer system in west-central Texas. These aquifers, and the springs that discharge from them, serve as major water-supply sources and form unique ecological habitats. Competition for the water resources of karst aquifers is common, and urban development and the lack of attenuation of contaminants in karst areas due to dissolution features that form direct pathways into karst aquifers can impact the ecosystem and water quality associated with these aquifers.The concept for developing a platform for interaction among scientists within the U.S. Geological Survey (USGS) working on karst-related studies evolved from the November 1999 National Groundwater Meeting of the USGS. As a result, the Karst Interest Group (KIG) was formed in 2000. The KIG is a loose-knit, grass-roots organization of USGS and non-USGS scientists and researchers devoted to fostering better communication among scientists working on, or interested in, karst science. The primary mission of the KIG is to encourage and support interdisciplinary collaboration and technology transfer among scientists working in karst areas. Additionally, the KIG encourages collaborative studies between the different mission areas of the USGS as well as with other federal and state agencies, and with researchers from academia and institutes.To accomplish its mission, the KIG has organized a series of workshops that have been held near nationally important karst areas. To date (2017) seven KIG workshops, including the workshop documented in this report, have been held. The workshops

  11. Survey of Damage Investigation of Babbitted Industrial Bearings

    Directory of Open Access Journals (Sweden)

    Lyle A. Branagan

    2015-04-01

    Full Text Available This survey collects the efforts to understand the sources and consequences of damage to babbitted industrial bearings, which operate by means of a hydrodynamic, or hydrostatic, film. Major individual damage types are discussed in the context of major damage categories.

  12. Basic notations and survey of the investigations, ch. 1

    International Nuclear Information System (INIS)

    Gunsteren, W.F. van

    1976-01-01

    An introduction and historical survey to spherical quasiparticle calculation is given in relation to the low-seniority approximation of the nuclear shell model. Various methods for the solution of the so-called gap equations are indicated. The effect of particle number projection for the wave functions is discussed. A description of the generator coordinate method, as applied in quasiparticle calculations is given

  13. The availability of hydrogeologic data associated with areas identified by the US Geological Survey as experiencing potentially induced seismicity resulting from subsurface injection

    Science.gov (United States)

    Barnes, Caitlin; Halihan, Todd

    2018-05-01

    A critical need exists for site-specific hydrogeologic data in order to determine potential hazards of induced seismicity and to manage risk. By 2015, the United States Geological Survey (USGS) had identified 17 locations in the USA that are experiencing an increase in seismicity, which may be potentially induced through industrial subsurface injection. These locations span across seven states, which vary in geological setting, industrial exposure and seismic history. Comparing the research across the 17 locations revealed patterns for addressing induced seismicity concerns, despite the differences between geographical locations. Most induced seismicity studies evaluate geologic structure and seismic data from areas experiencing changes in seismic activity levels, but the inherent triggering mechanism is the transmission of hydraulic pressure pulses. This research conducted a systematic review of whether data are available in these locations to generate accurate hydrogeologic predictions, which could aid in managing seismicity. After analyzing peer-reviewed research within the 17 locations, this research confirms a lack of site-specific hydrogeologic data availability for at-risk areas. Commonly, formation geology data are available for these sites, but hydraulic parameters for the seismically active injection and basement zones are not available to researchers conducting peer-reviewed research. Obtaining hydrogeologic data would lead to better risk management for injection areas and provide additional scientific evidential support for determining a potentially induced seismic area.

  14. The Water-Quality Partnership for National Parks—U.S. Geological Survey and National Park Service, 1998–2016

    Science.gov (United States)

    Nilles, Mark A.; Penoyer, Pete E; Ludtke, Amy S.; Ellsworth, Alan C.

    2016-07-13

    The U.S. Geological Survey (USGS) and the National Park Service (NPS) work together through the USGS–NPS Water-Quality Partnership to support a broad range of policy and management needs related to high-priority water-quality issues in national parks. The program was initiated in 1998 as part of the Clean Water Action Plan, a Presidential initiative to commemorate the 25th anniversary of the Clean Water Act. Partnership projects are developed jointly by the USGS and the NPS. Studies are conducted by the USGS and findings are used by the NPS to guide policy and management actions aimed at protecting and improving water quality.The National Park Service manages many of our Nation’s most highly valued aquatic systems across the country, including portions of the Great Lakes, ocean and coastal zones, historic canals, reservoirs, large rivers, high-elevation lakes and streams, geysers, springs, and wetlands. So far, the Water-Quality Partnership has undertaken 217 projects in 119 national parks. In each project, USGS studies and assessments (http://water.usgs.gov/nps_partnership/pubs.php) have supported science-based management by the NPS to protect and improve water quality in parks. Some of the current projects are highlighted in the NPS Call to Action Centennial initiative, Crystal Clear, which celebrates national park water-resource efforts to ensure clean water for the next century of park management (http://www.nature.nps.gov/water/crystalclear/).New projects are proposed each year by USGS scientists working in collaboration with NPS staff in specific parks. Project selection is highly competitive, with an average of only eight new projects funded each year out of approximately 75 proposals that are submitted. Since the beginning of the Partnership in 1998, 189 publications detailing project findings have been completed. The 217 studies have been conducted in 119 NPS-administered lands, extending from Denali National Park and Preserve in Alaska to Everglades

  15. U.S. Geological Survey activities related to American Indians and Alaska Natives: Fiscal years 2007 and 2008

    Science.gov (United States)

    Marcus, Susan M.

    2010-01-01

    In the late 1800s, John Wesley Powell, the second director of the U.S. Geological Survey (USGS), followed his interest in the tribes of the Great Basin and Colorado Plateau and studied their cultures, languages, and surroundings. From that early time, the USGS has recognized the importance of Native knowledge and living in harmony with nature as complements to the USGS mission to better understand the Earth. Combining traditional ecological knowledge with empirical studies allows the USGS and Native American governments, organizations, and people to increase their mutual understanding and respect for this land. The USGS is the earth and natural science bureau within the U.S. Department of the Interior (DOI) and is not responsible for regulations or land management. Climate change is a major current issue affecting Native lives and traditions throughout the United States. Climate projections for the coming century indicate an increasing probability for more frequent and more severe droughts in the Southwest, including the Navajo Nation. Erosion has claimed Native homes in Alaska. Fish have become inedible due to diseases that turn their flesh mushy. Native people who rely on or who are culturally sustained by hunting, fishing, and using local plants are living with climate change now. The traditional knowledge of Native peoples enriches and confirms the work of USGS scientists. The results are truly synergistic-greater than the sum of their parts. Traditional ecological knowledge is respected and increasingly used in USGS studies-when the holders of that knowledge choose to share it. The USGS respects the rights of Native people to maintain their patrimony of traditional ecological knowledge. The USGS studies can help Tribes, Native organizations, and natural resource professionals manage Native lands and resources with the best available unbiased data and information that can be added to their traditional knowledge. Wise Native leaders have noted that traditional

  16. U.S. Geological Survey Streamgage Operation and Maintenance Cost Evaluation...from the National Streamflow Information Program

    Science.gov (United States)

    Norris, J. Michael

    2010-01-01

    To help meet the goal of providing earth-science information to the Nation, the U.S. Geological Survey (USGS) operates and maintains the largest streamgage network in the world, with over 7,600 active streamgages in 2010. This network is operated in cooperation with over 850 Federal, tribal, State, and local funding partners. The streamflow information provided by the USGS is used for the protection of life and property; for the assessment, allocation, and management of water resources; for the design of roads, bridges, dams, and water works; for the delineation of flood plains; for the assessment and evaluation of habitat; for understanding the effects of land-use, water-use, and climate changes; for evaluation of water quality; and for recreational safety and enjoyment. USGS streamgages are managed and operated to rigorous national standards, allowing analyses of data from streamgages in different areas and spanning long time periods, some with more than 100 years of data. About 90 percent of USGS streamgages provide streamflow information real-time on the web. Physical measurements of streamflow are made at streamgages multiple times a year, depending on flow conditions, to ensure the highest level of accuracy possible. In addition, multiple reviews and quality assurance checks are performed before the data is finalized. In 2006, the USGS reviewed all activities, operations, equipment, support, and costs associated with operating and maintaining a streamgage program (Norris and others, 2008). A summary of the percentages of costs associated with activities required to operate a streamgage on an annual basis are presented in figure 1. This information represents what it costs to fund a 'typical' USGS streamgage and how those funds are utilized. It should be noted that some USGS streamgages have higher percentages for some categories than do others depending on location and conditions. Forty-one percent of the funding for the typical USGS streamgage is for labor

  17. U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center-Fiscal Year 2009 Annual Report

    Science.gov (United States)

    Nelson, Janice S.

    2010-01-01

    The Earth Resources Observation and Science (EROS) Center is a U.S. Geological Survey (USGS) facility focused on providing science and imagery to better understand our Earth. As part of the USGS Geography Discipline, EROS contributes to the Land Remote Sensing (LRS) Program, the Geographic Analysis and Monitoring (GAM) Program, and the National Geospatial Program (NGP), as well as our Federal partners and cooperators. The work of the Center is shaped by the Earth sciences, the missions of our stakeholders, and implemented through strong program and project management and application of state-of-the-art information technologies. Fundamentally, EROS contributes to the understanding of a changing Earth through 'research to operations' activities that include developing, implementing, and operating remote sensing based terrestrial monitoring capabilities needed to address interdisciplinary science and applications objectives at all levels-both nationally and internationally. The Center's programs and projects continually strive to meet and/or exceed the changing needs of the USGS, the Department of the Interior, our Nation, and international constituents. The Center's multidisciplinary staff uses their unique expertise in remote sensing science and technologies to conduct basic and applied research, data acquisition, systems engineering, information access and management, and archive preservation to address the Nation's most critical needs. Of particular note is the role of EROS as the primary provider of Landsat data, the longest comprehensive global land Earth observation record ever collected. This report is intended to provide an overview of the scientific and engineering achievements and illustrate the range and scope of the activities and accomplishments at EROS throughout fiscal year (FY) 2009. Additional information concerning the scientific, engineering, and operational achievements can be obtained from the scientific papers and other documents published by

  18. Geographic Information System (GIS) representation of historical seagrass coverage in Perdido Bay from United States Geological Survey/National Wetlands Research Center (USGS/NWRC), 1979 (NODC Accession 0000605)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Historical seagrass coverage in Perdido Bay 1979 from United States Geological Survey/National Wetlands Research Center (USGS/NWRC).

  19. Geographic Information System (GIS) characterization of historical seagrass coverage in Perdido Bay from United States Geological Survey/National Wetlands Research Center (USGS/NWRC), 1987 (NODC Accession 0000606)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Graphical representation of historical seagrass coverage in Perdido Bay in 1987 from United States Geological Survey/National Wetlands Research Center (USGS/NWRC).

  20. Applications of research from the U.S. Geological Survey program, assessment of regional earthquake hazards and risk along the Wasatch Front, Utah

    Science.gov (United States)

    Gori, Paula L.

    1993-01-01

    engineering studies. Translated earthquake hazard maps have also been developed to identify areas that are particularly vulnerable to various causes of damage such as ground shaking, surface rupturing, and liquefaction. The implementation of earthquake hazard reduction plans are now under way in various communities in Utah. The results of a survey presented in this paper indicate that technical public officials (planners and building officials) have an understanding of the earthquake hazards and how to mitigate the risks. Although the survey shows that the general public has a slightly lower concern about the potential for economic losses, they recognize the potential problems and can support a number of earthquake mitigation measures. The study suggests that many community groups along the Wasatch Front, including volunteer groups, business groups, and elected and appointed officials, are ready for action-oriented educational programs. These programs could lead to a significant reduction in the risks associated with earthquake hazards. A DATA BASE DESIGNED FOR URBAN SEISMIC HAZARDS STUDIES: A computerized data base has been designed for use in urban seismic hazards studies conducted by the U.S. Geological Survey. The design includes file structures for 16 linked data sets, which contain geological, geophysical, and seismological data used in preparing relative ground response maps of large urban areas. The data base is organized along relational data base principles. A prototype urban hazards data base has been created for evaluation in two urban areas currently under investigation: the Wasatch Front region of Utah and the Puget Sound area of Washington. The initial implementation of the urban hazards data base was accomplished on a microcomputer using dBASE III Plus software and transferred to minicomputers and a work station. A MAPPING OF GROUND-SHAKING INTENSITIES FOR SALT LAKE COUNTY, UTAH: This paper documents the development of maps showing a

  1. U.S. Geological Survey Karst Interest Group Proceedings, Carlsbad, New Mexico, April 29-May 2, 2014

    Science.gov (United States)

    Kuniansky, Eve L.; Spangler, Lawrence E.; Kuniansky, Eve L.; Spangler, Lawrence E.

    2014-01-01

    strong interest in the study of karst terrains.Many of the major springs and aquifers in the United States have developed in carbonate rocks, such as the Floridan aquifer system in Florida and parts of Alabama, Georgia, and South Carolina; the Ozark Plateaus aquifer system in parts of Arkansas, Kansas, Missouri, and Oklahoma; and the Edwards-Trinity aquifer system in west-central Texas. These aquifers, and the springs that discharge from them, serve as major water-supply sources and as unique ecological habitats. Competition for the water resources of karst aquifers is common, and urban development and the lack of attenuation of contaminants in karst areas can impact the ecosystem and water quality of these aquifers.The concept for developing a platform for interaction among scientists within the U.S. Geological Survey (USGS) working on karst-related studies evolved from the November 1999 National Ground-Water Meeting of the USGS. As a result, the Karst Interest Group (KIG) was formed in 2000. The KIG is a loose-knit, grass-roots organization of USGS and non-USGS scientists and researchers devoted to fostering better communication among scientists working on, or interested in, karst science. The primary mission of the KIG is to encourage and support interdisciplinary collaboration and technology transfer among scientists working in karst areas. Additionally, the KIG encourages collaborative studies between the different mission areas of the USGS as well as other federal and state agencies, and with researchers from academia and institutes. The KIG also encourages younger scientists by participation of students in the poster and oral sessions.To accomplish its mission, the KIG has organized a series of workshops that are held near nationally important karst areas. To date (2014) six KIG workshops, including the workshop documented in this report, have been held. The workshops typically include oral and poster sessions on selected karst-related topics and research, as well

  2. Thermal Maturity Data Used by the U.S. Geological Survey for the U.S. Gulf Coast Region Oil and Gas Assessment

    Science.gov (United States)

    Dennen, Kristin O.; Warwick, Peter D.; McDade, Elizabeth Chinn

    2010-01-01

    The U.S. Geological Survey is currently assessing the oil and natural gas resources of the U.S. Gulf of Mexico region using a total petroleum system approach. An essential part of this geologically based method is evaluating the effectiveness of potential source rocks in the petroleum system. The purpose of this report is to make available to the public RockEval and vitrinite reflectance data from more than 1,900 samples of Mesozoic and Tertiary rock core and coal samples in the Gulf of Mexico area in a format that facilitates inclusion into a geographic information system. These data provide parameters by which the thermal maturity, type, and richness of potential sources of oil and gas in this region can be evaluated.

  3. King's Trough Flank: geological and geophysical investigations of its suitability for high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Kidd, R.B.; Searle, R.C.; Weaver, P.P.E.; Jacobs, C.L.; Huggett, Q.J.; Noel, M.J.; Schultheiss, P.J.

    1983-01-01

    The King's Trough Flank study area in the Northeast Atlantic Ocean was chosen in 1979 as a location at which to examine the suitability of pelagic carbonate sequences for sub-seabed disposal of high-level radioactive waste. This report summarises investigations up to the end of 1982; following visits by four research ships to the area during which geophysical data and sediment samples were collected. The region is a characteristically rugged portion of the deep ocean floor with hills and scarps 10 to 30 km apart and slopes around the hills ranging from 18 deg to 30 deg. Areas of relatively smooth seafloor occur, however, up to 35 km across, where slopes no greater than 2 deg are recorded. At this stage an apparent discrepancy between the geophysical and sediment core data leaves some uncertainty regarding the stability of the sediment cover and the likelihood of current erosion in these areas. The general suitability of the area is discussed by comparing our present geological and geophysical data with the set of 'desirable characteristics' for a sub-seabed disposal site first outlined in 1979. The difficulties involved in extrapolating findings from presently-sampled depths of up to 10 metres to depths envisaged for shallow waste disposal are emphasised. (author)

  4. Environmental impacts of oil production on soil, bedrock, and vegetation at the U.S. Geological Survey Osage-Skiatook Petroleum Environmental Research site A, Osage County, Oklahoma

    Science.gov (United States)

    Otton, J.K.; Zielinski, R.A.; Smith, B.D.; Abbott, M.M.; Keeland, B.D.

    2005-01-01

    The U.S. Geological Survey is investigating the impacts of oil and gas production on soils, groundwater, surface water, and ecosystems in the United States. Two sites in northeastern Oklahoma (sites A and B) are presently being investigated under the Osage-Skiatook Petroleum Environmental Research project. Oil wells on the lease surrounding site A in Osage County, Oklahoma, produced about 100,000 bbl of oil between 1913 ard 1981. Prominent production features on the 1.5-ha (3.7-ac) site A include a tank battery, an oil-filled trench, pipelines, storage pits for both produced water and oil, and an old power unit. Site activities and historic releases have left open areas in the local oak forest adjacent to these features and a deeply eroded salt scar downslope from the pits that extends to nearby Skiatook Lake. The site is underlain by surficial sediments comprised of very fine-grained eolian sand and colluvium as much as 1.4 m (4.6 ft) thick, which, in turn, overlie flat-lying, fractured bedrock comprised of sandstone, clayey sandstone, mudstone, and shale. A geophysical survey of ground conductance and concentration measurements of aqueous extracts (1:1 by weight) of core samples taken in the salt scar and adjacent areas indicate that unusual concentrations of NaCl-rich salt are present at depths to at least 8 m (26 ft) in the bedrock; however, little salt occurs in the eolian sand. Historic aerial photographs, anecdotal reports from oil-lease operators, and tree-ring records indicate that the surrounding oak forest was largely established after 1935 and thus postdates the majority of surface damage at the site. Blackjack oaks adjacent to the salt scar have anomalously elevated chloride (>400 ppm) in their leaves and record the presence of NaCl-rich salt or salty water in the shallow subsurface. The geophysical measurements also indicate moderately elevated conductance beneath the oak forest adjoining the salt scar. Copyright ?? 2005. The American Association of

  5. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the northeastern Alaska Range, Healy, Mount Hayes, Nabesna, and Tanacross quadrangles, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 670 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the northeastern Alaska Range, in the Healy, Mount Hayes, Nabesna, and Tanacross quadrangles, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical

  6. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Kougarok area, Bendeleben and Teller quadrangles, Seward Peninsula, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 302 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Kougarok River drainage as well as smaller adjacent drainages in the Bendeleben and Teller quadrangles, Seward Peninsula, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated

  7. A field study of selected U.S. Geological Survey analytical methods for measuring pesticides in filtered stream water, June - September 2012

    Science.gov (United States)

    Martin, Jeffrey D.; Norman, Julia E.; Sandstrom, Mark W.; Rose, Claire E.

    2017-09-06

    U.S. Geological Survey monitoring programs extensively used two analytical methods, gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry, to measure pesticides in filtered water samples during 1992–2012. In October 2012, the monitoring programs began using direct aqueous-injection liquid chromatography tandem mass spectrometry as a new analytical method for pesticides. The change in analytical methods, however, has the potential to inadvertently introduce bias in analysis of datasets that span the change.A field study was designed to document performance of the new method in a variety of stream-water matrices and to quantify any potential changes in measurement bias or variability that could be attributed to changes in analytical methods. The goals of the field study were to (1) summarize performance (bias and variability of pesticide recovery) of the new method in a variety of stream-water matrices; (2) compare performance of the new method in laboratory blank water (laboratory reagent spikes) to that in a variety of stream-water matrices; (3) compare performance (analytical recovery) of the new method to that of the old methods in a variety of stream-water matrices; (4) compare pesticide detections and concentrations measured by the new method to those of the old methods in a variety of stream-water matrices; (5) compare contamination measured by field blank water samples in old and new methods; (6) summarize the variability of pesticide detections and concentrations measured by the new method in field duplicate water samples; and (7) identify matrix characteristics of environmental water samples that adversely influence the performance of the new method. Stream-water samples and a variety of field quality-control samples were collected at 48 sites in the U.S. Geological Survey monitoring networks during June–September 2012. Stream sites were located across the United States and included sites in agricultural and urban land

  8. A study on site characterization of the deep geological environment around KURT

    International Nuclear Information System (INIS)

    Park, Kw; Kim, Gy; Koh, Yk; Kim, Ks; Choi, Jw

    2009-01-01

    KURT (KAERI Underground Research Tunnel) is a small scale research tunnel which was constructed from 2005 to 2006 at Korea Atomic Energy Research Institute (KAERI). To understand the deep geological environment around KURT area, the surface geological surveys such as lineaments analysis and geophysical survey and borehole investigation were performed. For this study, a 3 dimensional geological model has been constructed using the surface and borehole geological data. The regional lineaments were determined using a topographical map and the surface geophysical survey data were collected for the geological model. In addition, statistical methods were applied to fracture data from borehole televiewer loggings to identify fracture zones in boreholes. For a hydro geological modeling, fixed interval hydraulic tests were carried out for all boreholes. The results of the hydraulic tests were analyzed and classified by the fracture zone data of geological model. At result, the hydrogeological elements were decided and the properties of each element were assessed around the KURT area

  9. Program and plans of the U.S. Geological Survey for producing information needed in National Seismic hazards and risk assessment, fiscal years 1980-84

    Science.gov (United States)

    Hays, Walter W.

    1979-01-01

    In accordance with the provisions of the Earthquake Hazards Reduction Act of 1977 (Public Law 95-124), the U.S. Geological Survey has developed comprehensive plans for producing information needed to assess seismic hazards and risk on a national scale in fiscal years 1980-84. These plans are based on a review of the needs of Federal Government agencies, State and local government agencies, engineers and scientists engaged in consulting and research, professional organizations and societies, model code groups, and others. The Earthquake Hazards Reduction Act provided an unprecedented opportunity for participation in a national program by representatives of State and local governments, business and industry, the design professions, and the research community. The USGS and the NSF (National Science Foundation) have major roles in the national program. The ultimate goal of the program is to reduce losses from earthquakes. Implementation of USGS research in the Earthquake Hazards Reduction Program requires the close coordination of responsibility between Federal, State and local governments. The projected research plan in national seismic hazards and risk for fiscal years 1980-84 will be accomplished by USGS and non-USGS scientists and engineers. The latter group will participate through grants and contracts. The research plan calls for (1) national maps based on existing methods, (2) improved definition of earthquake source zones nationwide, (3) development of improved methodology, (4) regional maps based on the improved methodology, and (5) post-earthquake investigations. Maps and reports designed to meet the needs, priorities, concerns, and recommendations of various user groups will be the products of this research and provide the technical basis for improved implementation.

  10. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain Area Nevada Nuclear Waste Site Investigations (NNWSI). Progress report, October 1, 1991--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-09-30

    This report dated 30 September 1992 provides a summary of progress for the project {open_quotes}Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI){close_quotes}. This progress report was preceded by the progress report for the year from 1 October 1990 to 30 September 1991. This report summarizes the geologic and seismotectonic studies conducted at Yucca Mountain during the contract period including Quaternary tectonics, an evaluation of mineral resource potential of the area, caldera geology, and volcano-tectonic activity at and near the site. A report of basinal studies conducted during the contract period is also included. Selected papers are indexed separately for inclusion in the Energy Science and Technology