WorldWideScience

Sample records for surrounding regolith layer

  1. Depth and stratigraphy of regolith. Site descriptive modelling SDM-Site Laxemar

    International Nuclear Information System (INIS)

    Nyman, Helena; Sohlenius, Gustav; Stroemgren, Maarten; Brydsten, Lars

    2008-06-01

    on the geographical distribution of Quaternary deposits. The average regolith depth in each domain was calculated by the use of available data. These average depths were used together with measured depths to interpolate the regolith depths in the model area. The six layers (Z1-Z6) were modelled in the same way. The six layers represent different types of regolith. The uppermost layer, Z1, is influenced by the impact from surface processes, e.g. roots and biological activity. The next layer (Z2) consists of peat. After that follows layer Z3, which is characterised by clay gyttja, followed by layer Z4 that consist of sand/gravel, glaciofluvial sediment or artificial fill. Layer Z5 correspond to glacial clay and the bottom layer Z6 correspond to till, which is resting directly upon the bedrock surface. The resulting model clearly shows the valleys with thick regolith depths, surrounded by higher areas with thin layers of regolith and bedrock outcrops. The glaciofluvial esker (The Tuna esker) is distinctly shown as north-south band with a thick layer of regolith in the western part of the model area. The maximum depth of regolith in the model is about 48 m, and the average depth in this area is 2.2 m with bedrock outcrops included and 3.7 m with outcrops excluded

  2. Depth and stratigraphy of regolith. Site descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, Helena (SWECO Position, Stockholm (Sweden)); Sohlenius, Gustav (Geological Survey of Sweden (SGU), Uppsala (Sweden)); Stroemgren, Maarten; Brydsten, Lars (Umeaa Univ., Umeaa (Sweden))

    2008-06-15

    the geographical distribution of Quaternary deposits. The average regolith depth in each domain was calculated by the use of available data. These average depths were used together with measured depths to interpolate the regolith depths in the model area. The six layers (Z1-Z6) were modelled in the same way. The six layers represent different types of regolith. The uppermost layer, Z1, is influenced by the impact from surface processes, e.g. roots and biological activity. The next layer (Z2) consists of peat. After that follows layer Z3, which is characterised by clay gyttja, followed by layer Z4 that consist of sand/gravel, glaciofluvial sediment or artificial fill. Layer Z5 correspond to glacial clay and the bottom layer Z6 correspond to till, which is resting directly upon the bedrock surface. The resulting model clearly shows the valleys with thick regolith depths, surrounded by higher areas with thin layers of regolith and bedrock outcrops. The glaciofluvial esker (The Tuna esker) is distinctly shown as north-south band with a thick layer of regolith in the western part of the model area. The maximum depth of regolith in the model is about 48 m, and the average depth in this area is 2.2 m with bedrock outcrops included and 3.7 m with outcrops excluded

  3. Numerical Simulations of the Lunar Penetrating Radar and Investigations of the Geological Structures of the Lunar Regolith Layer at the Chang’E 3 Landing Site

    Directory of Open Access Journals (Sweden)

    Chunyu Ding

    2017-01-01

    Full Text Available In the process of lunar exploration, and specifically when studying lunar surface structure and thickness, the established lunar regolith model is usually a uniform and ideal structural model, which is not well-suited to describe the real structure of the lunar regolith layer. The present study aims to explain the geological structural information contained in the channel 2 LPR (lunar penetrating radar data. In this paper, the random medium theory and Apollo drilling core data are used to construct a modeling method based on discrete heterogeneous random media, and the simulation data are processed and collected by the electromagnetic numerical method FDTD (finite-difference time domain. When comparing the LPR data with the simulated data, the heterogeneous random medium model is more consistent with the actual distribution of the media in the lunar regolith layer. It is indicated that the interior structure of the lunar regolith layer at the landing site is not a pure lunar regolith medium but rather a regolith-rock mixture, with rocks of different sizes and shapes. Finally, several reasons are given to explain the formation of the geological structures of the lunar regolith layer at the Chang’E 3 landing site, as well as the possible geological stratification structure.

  4. [Possibility of exacerbation of allergy by lunar regolith].

    Science.gov (United States)

    Horie, Masanori; Kambara, Tatsunori; Kuroda, Etsushi; Miki, Takeo; Honma, Yoshiyuki; Aoki, Shigeru; Morimoto, Yasuo

    2012-09-01

    Japan, U.S.A. and other foreign space agencies have plans for the construction of a lunar base and long-term stay of astronauts on the moon. The surface of the moon is covered by a thick layer of soil that includes fine particles called "lunar regolith", which is formed by meteorite impact and space weathering. Risk assessment of particulate matter on the moon is important for astronauts working in microgravity on the moon. However, there are few investigations about the biological influences of lunar regolith. Especially, there is no investigation about allergic activity to lunar regolith. The main chemical components of lunar regolith are SiO2, Al2O3, CaO, FeO, etc. Of particular interest, approximately 50% of lunar regolith consists of SiO2. There is a report that the astronauts felt hay fever-like symptoms from the inhalation of the lunar regolith. Yellow sand, whose chemical components are similar to lunar regolith, enhances allergenic reactions, suggesting the possibility that lunar regolith has an adjuvant-like activity. Although intraperitoneal administration of lunar regolith with ovalbumin to mouse did not show enhancement of allergenic reactions, further evaluation of lunar regolith's potential to exacerbate the effects of allergies is essential for development of the moon.

  5. Lunar regolith stratigraphy analysis based on the simulation of lunar penetrating radar signals

    Science.gov (United States)

    Lai, Jialong; Xu, Yi; Zhang, Xiaoping; Tang, Zesheng

    2017-11-01

    The thickness of lunar regolith is an important index of evaluating the quantity of lunar resources such as 3He and relative geologic ages. Lunar penetrating radar (LPR) experiment of Chang'E-3 mission provided an opportunity of in situ lunar subsurface structure measurement in the northern mare imbrium area. However, prior work on analyzing LPR data obtained quite different conclusions of lunar regolith structure mainly because of the missing of clear interface reflectors in radar image. In this paper, we utilized finite-difference time-domain (FDTD) method and three models of regolith structures with different rock density, number of layers, shapes of interfaces, and etc. to simulate the LPR signals for the interpretation of radar image. The simulation results demonstrate that the scattering signals caused by numerous buried rocks in the regolith can mask the horizontal reflectors, and the die-out of radar echo does not indicate the bottom of lunar regolith layer and data processing such as migration method could recover some of the subsurface information but also result in fake signals. Based on analysis of simulation results, we conclude that LPR results uncover the subsurface layered structure containing the rework zone with multiple ejecta blankets of small crater, the ejecta blanket of Chang'E-3 crater, and the transition zone and estimate the thickness of the detected layer is about 3.25 m.

  6. Numerical Simulations of the Lunar Penetrating Radar and Investigations of the Geological Structures of the Lunar Regolith Layer at the Chang’E 3 Landing Site

    OpenAIRE

    Ding, Chunyu; Su, Yan; Xing, Shuguo; Dai, Shun; Xiao, Yuan; Feng, Jianqing; Liu, Danqing; Li, Chunlai

    2017-01-01

    In the process of lunar exploration, and specifically when studying lunar surface structure and thickness, the established lunar regolith model is usually a uniform and ideal structural model, which is not well-suited to describe the real structure of the lunar regolith layer. The present study aims to explain the geological structural information contained in the channel 2 LPR (lunar penetrating radar) data. In this paper, the random medium theory and Apollo drilling core data are used to co...

  7. Regolith thickness at the Chang'E-3 landing site from the Lunar Penetrating Radar and impact craters

    Science.gov (United States)

    Fa, W.; Zhu, M.-H.; Liu, T.

    2015-10-01

    The Chang'E-3 lunar penetrating radar (LPR) observations reveal a newly formed regolith layer (<1 m), an ejecta layer (~2-6 m), and a palaeoregolith layer (~4-9 m) from the surface to a depth of ~ 20 m. The thicknesses of the newly formed regolith layer and the palaeoregolith layer are consistent with the estimations based on the excavation depth and morphology of small fresh craters.

  8. The Lunar Regolith as a Recorder of Cosmic History

    Science.gov (United States)

    Cooper, Bonnie; McKay, D.; Riofrio, L.

    2012-01-01

    The Moon can be considered a giant tape recorder containing the history of the solar system and Universe. The lunar regolith (soil) has recorded the early history of the Moon, Earth, the solar system and Universe. A major goal of future lunar exploration should be to find and play back existing fragments of that tape . By reading the lunar tape, we can uncover a record of planetary bombardment, as well as solar and stellar variability. The Moon can tell us much about our place in the Universe. The lunar regolith has likely recorded the original meteoritic bombardment of Earth and Moon, a violent cataclysm that may have peaked around 4 Gyr, and the less intense bombardment occurring since that time. This impact history is preserved on the Moon as regolith layers, ejecta layers, impact melt rocks, and ancient impact breccias. The impact history of the Earth and Moon possibly had profound effects on the origin and development of life. Decrease in meteor bombardment allowed life to develop on Earth. Life may have developed first on another body, such as Mars, then arrived via meteorite on Earth. The solar system may have experienced bursts of severe radiation from the Sun, other stars, or from unknown sources. The lunar regolith has recorded this radiation history in the form of implanted solar wind, solar flare materials and radiation damage. Lunar soil can be found sandwiched between layers of basalt or pyroclastic deposits. This filling constitutes a buried time capsule that is likely to contain well-preserved ancient regolith. Study of such samples will show us how the solar system has evolved and changed over time. The lunar tape recorder can provide detailed information on specific portions of solar and stellar variability. Data from the Moon also offers clues as to whether so-called fundamental constants have changed over time.

  9. Exploring Regolith Depth and Cycling on Mars

    Science.gov (United States)

    Fassett, C.; Needham, D. H.; Watters, W. A.; Hundal, C.

    2017-12-01

    Regolith or loose sediment is ubiquitous on the surface of Mars, but our understanding of how this fragmental layer forms and evolves with time is limited. In particular, how regolith thickness varies spatially on Mars is not well known. A common perspective is to start from the canonical model for lunar regolith, which is not unreasonable, given that both Mars and the Moon are heavily cratered surfaces. However, this lunar-like paradigm is not supported by observations of Mars from recent missions. On Mars, bedrock exposures are more common and bedrock is generally closer to the surface than on the Moon, and the processes modifying the regolith differ substantially on the two bodies. Moreover, boulders on the Moon have much shorter lifetimes than on Mars, so boulders are much less common on the lunar surface. The sediment transport processes infilling craters differs dramatically on these two bodies as well. On Mars, fine-grained sediment is efficiently transported (advectively) by wind and trapped in craters rapidly after they form. Lateral transport of lunar regolith is comparatively inefficient and dominated by slow impact-driven (diffusive) transport of regolith. The goal of this contribution is to discuss observational constraints on Mars' regolith depth, and to place observations into a model for Mars landform evolution and regolith cycle. Our operating hypothesis is that the inter-crater surface on Mars is comparatively starved of fine-grained sediment (compared to the Moon), because transport and trapping of fines in craters out-competes physical weathering. Moreover, thick sedimentary bodies on Mars often get (weakly) cemented and lithified due to interactions with fluids, even in the most recent, Amazonian epoch. This is consistent with what is observed at the MER and MSL landing sites and what is known from the SNC meteorites.

  10. Energy buildup factor for ICRU 33 sphere surrounded by an air layer

    International Nuclear Information System (INIS)

    Ochiana, G.; Oncescu, M.

    1994-01-01

    The buildup factor due to the air surrounding an ICRU 33 sphere is a desirable quantity in the assessment of the air kerma rate for external exposure to gamma emitters distributed on the ground. A Monte Carlo algorithm has been developed to perform the photon transport calculation within the air layer around the sphere. The energy buildup factor due to the air layer has been calculated for an extended radioactive source - the contaminated ground. The transport of photons within the air layer surrounding a sphere -ICRU 33 phantom - is done by calculating separately the energies deposited by photons into the sphere when this one is in vacuum and when it is surrounded by the air, respectively. The results are given for an air layer of 100 m thickness and photon energy between 0.01 and 3.0 MeV. (Author) 1 Fig., 1 Tab., 9 Refs

  11. 3D Additive Construction with Regolith for Surface Systems

    Science.gov (United States)

    Mueller, Robert P.

    2014-01-01

    Planetary surface exploration on Asteroids, the Moon, Mars and Martian Moons will require the stabilization of loose, fine, dusty regolith to avoid the effects of vertical lander rocket plume impingement, to keep abrasive and harmful dust from getting lofted and for dust free operations. In addition, the same regolith stabilization process can be used for 3 Dimensional ( 3D) printing, additive construction techniques by repeating the 2D stabilization in many vertical layers. This will allow in-situ construction with regolith so that materials will not have to be transported from Earth. Recent work in the NASA Kennedy Space Center (KSC) Surface Systems Office (NE-S) Swamp Works and at the University of Southern California (USC) under two NASA Innovative Advanced Concept (NIAC) awards have shown promising results with regolith (crushed basalt rock) materials for in-situ heat shields, bricks, landing/launch pads, berms, roads, and other structures that could be fabricated using regolith that is sintered or mixed with a polymer binder. The technical goals and objectives of this project are to prove the feasibility of 3D printing additive construction using planetary regolith simulants and to show that they have structural integrity and practical applications in space exploration.

  12. Rock fragment distributions and regolith evolution in the Ouachita Mountains, Arkansas, USA

    Science.gov (United States)

    Jonathan D. Phillips; Ken Luckow; Daniel A. Marion; Kristin R. Adams

    2005-01-01

    Rock fragments in the regolith are a persistent property that reflects the combined influences of geologic controls, erosion, deposition, bioturbation, and weathering. The distribution of rock fragments in regoliths of the Ouachita Mountains, Arkansas, shows that sandstone fragments are common in all layers, even if sandstone is absent in parent material. Shale and...

  13. Three-Dimensional (3D) Additive Construction: Printing with Regolith

    Science.gov (United States)

    Tsoras, Alexandra

    2013-01-01

    Three dimensional (3D) printing is a new and booming topic in many realms of research and engineering technology. When it comes to space science and aerospace engineering, it can be useful in numerous ways. As humans travel deeper into space and farther from Earth, sending large quantities of needed supplies from Earth for a mission becomes astronomically expensive and less plausible. In order to reach further to new places, In Situ Resource Utilization (ISRU), a project that pushes for technologies to use materials already present in the destination's environment, is necessary. By using materials already available in space such as regolith from the Moon, Mars, or an asteroid's surface, fewer materials need to be brought into space on a launched vehicle. This allows a vehicle to be filled with more necessary supplies for a deep space mission that may not be found in space, like food and fuel. This project's main objective was to develop a 3D printer that uses regolith to "print" large structures, such as a dome, to be used as a heat shield upon a vehicle's reentry into the atmosphere or even a habitat. 3D printing is a growing technology that uses many different methods to mix, heat, and mold a material into a specific shape. In order to heat the regolith enough to stick together into a solid shape, it must be sintered at each layer of material that is laid. Sintering is a process that heats and compresses a powdered material until it fuses into a solid, which requires a lot of energy input. As an alternative, a polymer can be mixed with the regolith before or as it is sent to the 3D printer head to be placed in the specific shape. The addition of the polymer, which melts and binds at much lower temperatures than sintering temperatures, greatly decreases the required heating temperature and energy input. The main task of the project was to identify a functional material for the printer. The first step was to find a miscible. polymer/solvent solution. This solution

  14. Dielectric properties estimation of the lunar regolith at CE-3 landing site using lunar penetrating radar data

    Science.gov (United States)

    Feng, Jianqing; Su, Yan; Ding, Chunyu; Xing, Shuguo; Dai, Shun; Zou, Yongliao

    2017-03-01

    The second channel (CH2) of the Lunar Penetrating Radar (LPR) carried on the Chang'e-3 (CE-3) Yutu Rover was used to determine the thickness and structure of the lunar regolith. Accurately revealing the true structure beneath the surface requires knowledge of the dielectric permittivity of the regolith, which allows one to properly apply migration to the radar image. In contrast to simple assumptions in previous studies, this paper takes account of heterogeneity of the regolith and derives regolith's permittivity distribution laterally and vertically by a method widely used in data processing of terrestrial Ground Penetrating Radar (GPR). We find that regolith permittivity at the landing site increases with depth more quickly than previously recognized. At a depth of ∼2.5-3 m, the dielectric constant reaches the value of solid basalt. The radar image was migrated on the basis of the permittivity profile. We do not find any continuous distinct layers or an apparent regolith/rock interface in the migrated radargram, which implies that this area is covered by relatively young, poorly layered deposits.

  15. Regolith stratigraphy at the Chang'E-3 landing site as seen by lunar penetrating radar

    Science.gov (United States)

    Fa, Wenzhe; Zhu, Meng-Hua; Liu, Tiantian; Plescia, Jeffrey B.

    2015-12-01

    The Chang'E-3 lunar penetrating radar (LPR) observations at 500 MHz reveal four major stratigraphic zones from the surface to a depth of ~20 m along the survey line: a layered reworked zone (<1 m), an ejecta layer (~2-6 m), a paleoregolith layer (~4-11 m), and the underlying mare basalts. The reworked zone has two to five distinct layers and consists of surface regolith. The paleoregolith buried by the ejecta from a 500 m crater is relatively homogenous and contains only a few rocks. Population of buried rocks increases with depth to ~2 m at first, and then decreases with depth, representing a balance between initial deposition of the ejecta and later turnover of the regolith. Combining with the surface age, the LPR observations indicate a mean accumulation rate of about 5-10 m/Gyr for the surface regolith, which is at least 4-8 times larger than previous estimation.

  16. Detecting Volatiles Deep in the Lunar Regolith

    Science.gov (United States)

    Crotts, A.; Heggy, E.; Ciarletti, V.; Colaprete, A.; Moghaddam, M.; Siegler, M. A.

    2015-12-01

    There is increasing theoretical and empirical evidence, from the Apollo era and after, of volatiles deep in the lunar interior, in the crust and deeper, both hydrogen-rich and otherwise. This comes in the form of fire fountain samples from Apollo 15 and Apollo 17, of hydrated minerals excavated by impacts which reach the base of the lunar crust e.g., crater Bullialdus, of hydration of apatite and other minerals, as well as predictions of a water-concentrated layer along with the KREEP material at the base of the lunar crust. We discuss how the presence of these volatiles might be directly explored. In particular water vapor molecules percolating to the surface through lunar regolith might be expected to stick and freeze into the regolith, at depths of several meters depending on the regolith temperature profile, porosity and particle size distribution, quantities that are not well known beyond two meters depth. To explore these depths in the regolith we use and propose several modes of penetrating radar. We will present results using the SELENE/Kaguya's Lunar Sounding RADAR (LSR) to probe the bulk volatile dielectric and loss structure properties of the regolith in various locations, both within permanently shadowed regions (PSRs) and without, and within neutron suppression regions (NSRs) as traced by epithermal neutrons and without. We also propose installation of ground penetrating RADAR (GPR) on a roving lunar platform that should be able to probe between 0.2 and 1.6 GHz, which will provide a probe of the entire depth of the lunar regolith as well as a high-resolution (about 4 cm FWHM) probe of the upper meter or two of the lunar soil, where other probes of volatiles such as epithermal neutron absorption or drilling might be employed. We discuss predictions for what kinds of volatile density profiles might be distinguished in this way, and whether these will be detected from orbit as NSRs, whether these must be restricted to PSRs, and how these might appear in

  17. Characterising and modelling regolith stratigraphy using multiple geophysical techniques

    Science.gov (United States)

    Thomas, M.; Cremasco, D.; Fotheringham, T.; Hatch, M. A.; Triantifillis, J.; Wilford, J.

    2013-12-01

    Regolith is the weathered, typically mineral-rich layer from fresh bedrock to land surface. It encompasses soil (A, E and B horizons) that has undergone pedogenesis. Below is the weathered C horizon that retains at least some of the original rocky fabric and structure. At the base of this is the lower regolith boundary of continuous hard bedrock (the R horizon). Regolith may be absent, e.g. at rocky outcrops, or may be many 10's of metres deep. Comparatively little is known about regolith, and critical questions remain regarding composition and characteristics - especially deeper where the challenge of collecting reliable data increases with depth. In Australia research is underway to characterise and map regolith using consistent methods at scales ranging from local (e.g. hillslope) to continental scales. These efforts are driven by many research needs, including Critical Zone modelling and simulation. Pilot research in South Australia using digitally-based environmental correlation techniques modelled the depth to bedrock to 9 m for an upland area of 128 000 ha. One finding was the inability to reliably model local scale depth variations over horizontal distances of 2 - 3 m and vertical distances of 1 - 2 m. The need to better characterise variations in regolith to strengthen models at these fine scales was discussed. Addressing this need, we describe high intensity, ground-based multi-sensor geophysical profiling of three hillslope transects in different regolith-landscape settings to characterise fine resolution (i.e. a number of frequencies; multiple frequency, multiple coil electromagnetic induction; and high resolution resistivity. These were accompanied by georeferenced, closely spaced deep cores to 9 m - or to core refusal. The intact cores were sub-sampled to standard depths and analysed for regolith properties to compile core datasets consisting of: water content; texture; electrical conductivity; and weathered state. After preprocessing (filtering, geo

  18. Additive Construction using Basalt Regolith Fines

    Science.gov (United States)

    Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Lippitt, Thomas C.; Mantovani, James G.; Nugent, Matthew W.; Townsend, Ivan I.

    2014-01-01

    Planetary surfaces are often covered in regolith (crushed rock), whose geologic origin is largely basalt. The lunar surface is made of small-particulate regolith and areas of boulders located in the vicinity of craters. Regolith composition also varies with location, reflecting the local bedrock geology and the nature and efficiency of the micrometeorite-impact processes. In the lowland mare areas (suitable for habitation), the regolith is composed of small granules (20 - 100 microns average size) of mare basalt and volcanic glass. Impacting micrometeorites may cause local melting, and the formation of larger glassy particles, and this regolith may contain 10-80% glass. Studies of lunar regolith are traditionally conducted with lunar regolith simulant (reconstructed soil with compositions patterned after the lunar samples returned by Apollo). The NASA Kennedy Space Center (KSC) Granular Mechanics & Regolith Operations (GMRO) lab has identified a low fidelity but economical geo-technical simulant designated as Black Point-1 (BP-1). It was found at the site of the Arizona Desert Research and Technology Studies (RATS) analog field test site at the Black Point lava flow in adjacent basalt quarry spoil mounds. This paper summarizes activities at KSC regarding the utilization of BP-1 basalt regolith and comparative work with lunar basalt simulant JSC-1A as a building material for robotic additive construction of large structures. In an effort to reduce the import or in-situ fabrication of binder additives, we focused this work on in-situ processing of regolith for construction in a single-step process after its excavation. High-temperature melting of regolith involves techniques used in glassmaking and casting (with melts of lower density and higher viscosity than those of metals), producing basaltic glass with high durability and low abrasive wear. Most Lunar simulants melt at temperatures above 1100 C, although melt processing of terrestrial regolith at 1500 C is not

  19. Luna 24 regolith breccias: A possible source of the fine size material of the Luna 24 regolith

    Science.gov (United States)

    Rode, O. D.; Lindstrom, M. M.

    1994-01-01

    The regolith breccias from the Luna 24 core were analyzed. The Luna 24 regolith is a mixture of fine and coarse grain materials. The comparable analysis of the grain size distributions, the modal and chemical compositions of the breccias, and the regolith from the same levels show that the friable slightly litificated breccia with a friable fine grain matrix may be a source of fine grain material of the Luna 24 present day regolith.

  20. Regolith Formation Rates and Evolution from the Diviner Lunar Radiometer

    Science.gov (United States)

    Hayne, P. O.; Ghent, R. R.; Bandfield, J. L.; Vasavada, A. R.; Williams, J. P.; Siegler, M. A.; Lucey, P. G.; Greenhagen, B. T.; Elder, C. M.; Paige, D. A.

    2015-12-01

    Fragmentation and overturn of lunar surface materials produces a layer of regolith, which increases in thickness through time. Experiments on the lunar surface during the Apollo era, combined with remote sensing, found that the upper 10's of cm of regolith exhibit a rapid increase in density and thermal conductivity with depth. This is interpreted to be the signature of impact gardening, which operates most rapidly in the uppermost layers. Gravity data from the GRAIL mission showed that impacts have also extensively fractured the deeper crust. The breakdown and mixing of crustal materials is therefore a central process to lunar evolution and must be understood in order to interpret compositional information from remote sensing and sample analysis. Recently, thermal infrared data from the Lunar Reconnaissance Orbiter (LRO) Diviner radiometer were used to provide the first remote observational constraints on the rate of ejecta breakdown around craters L., Campbell, B. A., Allen, C. C., Carter, L. M., & Paige, D. A. (2014). Constraints on the recent rate of lunar ejecta breakdown and implications for crater ages. Geology, 42(12), 1059-1062.

  1. Resistance of Terrestrial Microbial Communities to Impack of Physical Conditinos of Subsurface Layers of Martian Regolith

    Science.gov (United States)

    Cheptsov, V. S.; Vorobyova, E. A.

    2017-05-01

    Currently, astrobiology is focused on Mars as one of the most perspective objects in the Solar System to search for microbial life. It was assumed that the putative biosphere of Mars could be cryopreserved and had been stored for billions of years in anabiotic state like microbial communities of Arctic and Antarctic permafrost deposits have been preserved till now for millions of years. In this case microbial cells should be not able to repair the damages or these processes have to be significantly depressed, and the main factor causing cell's death should be ionizing radiation. In a series of experiments we simulated the effects of combination of physical factors known as characteristics of the Martian regolith (and close to the space environment) on the natural microbial communities inhabiting xerophytic harsh habitats with extreme temperature conditions: polar permafrost and desert soils. The aim of the study was to examine the cumulative effect of factors (gamma radiation, low temperature, low pressure) to assess the possibility of metabolic reactions, and to find limits of the viability of natural microbial communities after exposure to the given conditions. It was found that microbial biomarkers could be reliably detected in soil samples after radiation dose accumulation up to 1 MGy (not further investigated) in combination with exposure to low temperature and low pressure. Resistance to extremely high doses of radiation in simulated conditions proves that if there was an Earth-like biosphere on the early Mars microorganisms could survive in the surface or subsurface layers of the Martian regolith for more than tens of millions of years after climate change. The study gives also some new grounds for the approval of transfer of viable microorganisms in space.

  2. SSERVI Analog Regolith Simulant Testbed Facility

    Science.gov (United States)

    Minafra, J.; Schmidt, G. K.

    2016-12-01

    SSERVI's goals include supporting planetary researchers within NASA, other government agencies; private sector and hardware developers; competitors in focused prize design competitions; and academic sector researchers. The SSERVI Analog Regolith Simulant Testbed provides opportunities for research scientists and engineers to study the effects of regolith analog testbed research in the planetary exploration field. This capability is essential to help to understand the basic effects of continued long-term exposure to a simulated analog test environment. The current facility houses approximately eight tons of JSC-1A lunar regolith simulant in a test bin consisting of a 4 meter by 4 meter area. SSERVI provides a bridge between several groups, joining together researchers from: 1) scientific and exploration communities, 2) multiple disciplines across a wide range of planetary sciences, and 3) domestic and international communities and partnerships. This testbed provides a means of consolidating the tasks of acquisition, storage and safety mitigation in handling large quantities of regolith simulant Facility hardware and environment testing scenarios include, but are not limited to the following; Lunar surface mobility, Dust exposure and mitigation, Regolith handling and excavation, Solar-like illumination, Lunar surface compaction profile, Lofted dust, Mechanical properties of lunar regolith, and Surface features (i.e. grades and rocks) Numerous benefits vary from easy access to a controlled analog regolith simulant testbed, and planetary exploration activities at NASA Research Park, to academia and expanded commercial opportunities in California's Silicon Valley, as well as public outreach and education opportunities.

  3. Echo simulation of lunar penetrating radar: based on a model of inhomogeneous multilayer lunar regolith structure

    Science.gov (United States)

    Dai, Shun; Su, Yan; Xiao, Yuan; Feng, Jian-Qing; Xing, Shu-Guo; Ding, Chun-Yu

    2014-12-01

    Lunar Penetrating Radar (LPR) based on the time domain Ultra-Wideband (UWB) technique onboard China's Chang'e-3 (CE-3) rover, has the goal of investigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The dielectric constant of the lunar regolith, the velocity of propagation, the reflection, refraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison between the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed.

  4. Echo simulation of lunar penetrating radar: based on a model of inhomogeneous multilayer lunar regolith structure

    International Nuclear Information System (INIS)

    Dai Shun; Su Yan; Xiao Yuan; Feng Jian-Qing; Xing Shu-Guo; Ding Chun-Yu

    2014-01-01

    Lunar Penetrating Radar (LPR) based on the time domain Ultra-Wideband (UWB) technique onboard China's Chang'e-3 (CE-3) rover, has the goal of investigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The dielectric constant of the lunar regolith, the velocity of propagation, the reflection, refraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison between the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed

  5. Low Force Penetration of Icy Regolith

    Science.gov (United States)

    Mantovani, J. G.; Galloway, G. M.; Zacny, K.

    2016-01-01

    A percussive cone penetrometer measures the strength of granular material by using percussion to deliver mechanical energy into the material. A percussive cone penetrometer was used in this study to penetrate a regolith ice mixture by breaking up ice and decompacting the regolith. As compared to a static cone penetrometer, percussion allows low reaction forces to push a penetrometer probe tip more easily into dry regolith in a low gravity environment from a planetary surface rover or a landed spacecraft. A percussive cone penetrates icy regolith at ice concentrations that a static cone cannot penetrate. In this study, the percussive penetrator was able to penetrate material under 65 N of down-force which could not be penetrated using a static cone under full body weight. This paper discusses using a percussive cone penetrometer to discern changes in the concentration of water-ice in a mixture of lunar regolith simulant and ice to a depth of one meter. The rate of penetration was found to be a function of the ice content and was not significantly affected by the down-force. The test results demonstrate that this method may be ideal for a small platform in a reduced gravity environment. However, there are some cases where the system may not be able to penetrate the icy regolith, and there is some risk of the probe tip becoming stuck so that it cannot be retracted. It is also shown that a percussive cone penetrometer could be used to prospect for water ice in regolith at concentrations as high as 8 by weight.

  6. Radiation Shielding of Lunar Regolith/Polyethylene Composites and Lunar Regolith/Water Mixtures

    Science.gov (United States)

    Johnson, Quincy F.; Gersey, Brad; Wilkins, Richard; Zhou, Jianren

    2011-01-01

    Space radiation is a complex mixed field of ionizing radiation that can pose hazardous risks to sophisticated electronics and humans. Mission planning for lunar exploration and long duration habitat construction will face tremendous challenges of shielding against various types of space radiation in an attempt to minimize the detrimental effects it may have on materials, electronics, and humans. In late 2009, the Lunar Crater Observation and Sensing Satellite (LCROSS) discovered that water content in lunar regolith found in certain areas on the moon can be up to 5.6 +/-2.8 weight percent (wt%) [A. Colaprete, et. al., Science, Vol. 330, 463 (2010). ]. In this work, shielding studies were performed utilizing ultra high molecular weight polyethylene (UHMWPE) and aluminum, both being standard space shielding materials, simulated lunar regolith/ polyethylene composites, and simulated lunar regolith mixed with UHMWPE particles and water. Based on the LCROSS findings, radiation shielding experiments were conducted to test for shielding efficiency of regolith/UHMWPE/water mixtures with various percentages of water to compare relative shielding characteristics of these materials. One set of radiation studies were performed using the proton synchrotron at the Loma Linda Medical University where high energy protons similar to those found on the surface of the moon can be generated. A similar experimental protocol was also used at a high energy spalation neutron source at Los Alamos Neutron Science Center (LANSCE). These experiments studied the shielding efficiency against secondary neutrons, another major component of space radiation field. In both the proton and neutron studies, shielding efficiency was determined by utilizing a tissue equivalent proportional counter (TEPC) behind various thicknesses of shielding composite panels or mixture materials. Preliminary results from these studies indicated that adding 2 wt% water to regolith particles could increase shielding of

  7. Preliminary Broadband Measurements of Dielectric Permittivity of Planetary Regolith Analog Materials Using a Coaxial Airline

    Science.gov (United States)

    Boivin, A.; Tsai, C. A.; Ghent, R. R.; Daly, M. G.

    2014-12-01

    When considering radar observations of airless bodies containing regolith, the radar backscatter coefficient is dependent upon the complex dielectric permittivity of the regolith materials. In many current applications of imaging radar data, uncertainty in the dielectric permittivity precludes quantitative estimates of such important parameters as regolith thickness and depth to buried features (e.g., lava flows on the Aristarchus Plateau on the Moon and the flows that surround the Quetzalpetlatl Corona on Venus). For asteroids, radar is an important tool for detecting and characterizing regoliths. Many previous measurements of the real and/or complex parts of the dielectric permittivity have been made, particularly for the Moon (on both Apollo samples and regolith analogues). However, no studies to date have systematically explored the relationship between permittivity and the various mineralogical components such as presence of FeO and TiO2. For lunar materials, the presence of the mineral ilmenite (FeTiO3), which contains equal portions FeO and TiO2, is thought to be the dominant factor controlling the loss tangent (tanδ, the ratio of the imaginary and real components of the dielectric permittivity). Ilmenite, however, is not the only mineral to contain iron in the lunar soil and our understanding of the effect of iron on the loss tangent is insufficient. Beyond the Moon, little is known about the effects on permittivity of carbonaceous materials. This is particularly relevant for missions to asteroids, such as the OSIRIS-REx mission to (101955) Bennu, a carbonaceous asteroid whose regolith composition is largely unknown. Here we present preliminary broadband (300 Mhz to 14 GHz) measurements on materials intended as planetary regolith analogs. Our ultimate goal is to establish a database of the effects of a wide range mineralogical components on dielectric permittivity, in support of the OSIRIS REx mission and ongoing Earth-based radar investigation of the Moon

  8. SSERVI Analog Regolith Simulant Testbed Facility

    Science.gov (United States)

    Minafra, Joseph; Schmidt, Gregory; Bailey, Brad; Gibbs, Kristina

    2016-10-01

    The Solar System Exploration Research Virtual Institute (SSERVI) at NASA's Ames Research Center in California's Silicon Valley was founded in 2013 to act as a virtual institute that provides interdisciplinary research centered on the goals of its supporting directorates: NASA Science Mission Directorate (SMD) and the Human Exploration & Operations Mission Directorate (HEOMD).Primary research goals of the Institute revolve around the integration of science and exploration to gain knowledge required for the future of human space exploration beyond low Earth orbit. SSERVI intends to leverage existing JSC1A regolith simulant resources into the creation of a regolith simulant testbed facility. The purpose of this testbed concept is to provide the planetary exploration community with a readily available capability to test hardware and conduct research in a large simulant environment.SSERVI's goals include supporting planetary researchers within NASA, other government agencies; private sector and hardware developers; competitors in focused prize design competitions; and academic sector researchers.SSERVI provides opportunities for research scientists and engineers to study the effects of regolith analog testbed research in the planetary exploration field. This capability is essential to help to understand the basic effects of continued long-term exposure to a simulated analog test environment.The current facility houses approximately eight tons of JSC-1A lunar regolith simulant in a test bin consisting of a 4 meter by 4 meter area, including dust mitigation and safety oversight.Facility hardware and environment testing scenarios could include, Lunar surface mobility, Dust exposure and mitigation, Regolith handling and excavation, Solar-like illumination, Lunar surface compaction profile, Lofted dust, Mechanical properties of lunar regolith, Surface features (i.e. grades and rocks)Numerous benefits vary from easy access to a controlled analog regolith simulant testbed, and

  9. Assessing the elements mobility through the regolith and their potential as tracers for hydrological processes

    Science.gov (United States)

    Moragues-Quiroga, Cristina; Hissler, Christophe; Chabaux, François; Legout, Arnaud; Stille, Peter

    2017-04-01

    Regoliths encompass different materials from the fresh bedrock to the top of the organic horizons. The regolith is a major component of the critical zone where fluxes of water, energy, solutes and matter occur. Therefore, its bio-physico-chemical properties drastically impact the water that percolates and/or stores in its different parts (organic and mineral soil horizons, and weathered and fractured bedrock). In order to better understand the critical zone functioning, we propose to assess the interaction between chemical elements from the regolith matrix and water during drainage infiltration. For this, we focus firstly on the potential mobility of different groups of major and trace elements according to a leaching experiment made on 10 different layers of a 7.5 m depth slate regolith, which covers a large part of the Rhenish Massif. Secondly, we carried out Sr-Nd-Pb-U-Th isotope analyses for 5 of these samples in both the untreated and leached samples. Given the specific chemical and mineralogical composition of each sampled material, our approach enables to trace the origin of major and trace elements and eventually assess their mobility. The results deliver valuable information on exchange processes at the water-mineral interface in the different zones of the regolith, which could improve the selection of tracers for the study of hydrological processes.

  10. Instrumented Moles for Planetary Subsurface Regolith Studies

    Science.gov (United States)

    Richter, L. O.; Coste, P. A.; Grzesik, A.; Knollenberg, J.; Magnani, P.; Nadalini, R.; Re, E.; Romstedt, J.; Sohl, F.; Spohn, T.

    2006-12-01

    Soil-like materials, or regolith, on solar system objects provide a record of physical and/or chemical weathering processes on the object in question and as such possess significant scientific relevance for study by landed planetary missions. In the case of Mars, a complex interplay has been at work between impact gardening, aeolian as well as possibly fluvial processes. This resulted in regolith that is texturally as well as compositionally layered as hinted at by results from the Mars Exploration Rover (MER) missions which are capable of accessing shallow subsurface soils by wheel trenching. Significant subsurface soil access on Mars, i.e. to depths of a meter or more, remains to be accomplished on future missions. This has been one of the objectives of the unsuccessful Beagle 2 landed element of the ESA Mars Express mission having been equipped with the Planetary Underground Tool (PLUTO) subsurface soil sampling Mole system capable of self-penetration into regolith due to an internal electro-mechanical hammering mechanism. This lightweight device of less than 900 g mass was designed to repeatedly obtain and deliver to the lander regolith samples from depths down to 2 m which would have been analysed for organic matter and, specifically, organic carbon from potential extinct microbial activity. With funding from the ESA technology programme, an evolved Mole system - the Instrumented Mole System (IMS) - has now been developed to a readiness level of TRL 6. The IMS is to serve as a carrier for in situ instruments for measurements in planetary subsurface soils. This could complement or even eliminate the need to recover samples to the surface. The Engineering Model hardware having been developed within this effort is designed for accommodating a geophysical instrument package (Heat Flow and Physical Properties Package, HP3) that would be capable of measuring regolith physical properties and planetary heat flow. The chosen design encompasses a two-body Mole

  11. Construction with Regolith

    Science.gov (United States)

    Mueller, Robert P.

    2017-01-01

    CLASS node of SSERVI at FSI, The Technology and Future of In-Situ Resource Utilization (ISRU): ACapstone Graduate Seminar Orlando, FL. This seminar will discuss the use of regolith and robotics in extra terrestrialconstruction.

  12. Advanced Additive Manufacturing Feedstock from Molten Regolith Electrolysis

    Data.gov (United States)

    National Aeronautics and Space Administration — Demonstrate the feasibility of Molten Regolith Electrolysis (MRE) Reactor start by initiating resistive-heating of the regolith past its melting point using...

  13. Unravelling regolith material types using Mg/Al and K/Al plot to support field regolith identification in the savannah regions of NW Ghana, West Africa

    Science.gov (United States)

    Arhin, Emmanuel; Zango, Saeed M.

    2015-12-01

    The XRF analytical method was used to measure the weight % of the major oxides in regolith samples. The metal weight % of Mg, K and Al were calculated from their oxides and were normalised relative to immobile Al calculated from its oxide. The plot of Mg/Al and K/Al identified the regolith of the study area to consist of 137 transported clays, 4 ferruginous sediments or ferricrete, 2 lateritic duricrust and 4 saprolites. Surface regolith that had undergone secondary transformation and shows compositional overlaps were 4 transported clays with Fe-oxide impregnation may be referred to as nodular laterite and 5 ferruginous saprolites. The variable regolith materials features identified from the 154 samples enabled the characterisation and identification of the different sample materials because an overprint of bedrock geochemistry is reflected in the regolith. Plot of Mg/Al and K/Al highlighted the compositional variability of the regolith samples and refute the notion of the homogeneity of all the sampled materials in the area. The study thus recognized Mg/Al versus K/Al plots to be used in supporting field identification of regolith mapping units particularly in complex regolith terrains of savannah regions of Ghana and in similar areas where geochemical exploration surveys are being carried out under cover.

  14. Volatiles in the Martian regolith

    International Nuclear Information System (INIS)

    Clark, B.C.; Baird, A.K.

    1979-01-01

    An inventory of released volatiles on Mars has been derived based upon Viking measurements of atmospheric and surface chemical composition, and upon the inferred mineralogy of a ubiquitous regolith, assumed to average 200m in depth. This model is consistent with the relative abundances of volatiles (except for S) on the Earth's surface, but implies one-fifteenth of the volatile release of Earth if starting materials were comparable. All constituents are accommodated as chemical components of, or absorbed phases on, regolith materials--without the necessity of invoking unobservable deposits of carbonates, nitrates, or permafrost ice

  15. Population characteristics of submicrometer-sized craters on regolith particles from asteroid Itokawa

    Science.gov (United States)

    Matsumoto, Toru; Hasegawa, S.; Nakao, S.; Sakai, M.; Yurimoto, H.

    2018-03-01

    We investigated impact crater structures on regolith particles from asteroid Itokawa using scanning electron microscopy. We observed the surfaces of 51 Itokawa particles, ranging from 15 μm to 240 μm in size. Craters with average diameters ranging from 10 nm to 2.8 μm were identified on 13 Itokawa particles larger than 80 μm. We examined the abundance, spatial distribution, and morphology of approximately 900 craters on six Itokawa particles. Craters with sizes in excess of 200 nm are widely dispersed, with spatial densities from 2.6 μm2 to 4.5 μm2; a fraction of the craters was locally concentrated with a density of 0.1 μm2. The fractal dimension of the cumulative crater diameters ranges from 1.3 to 2.3. Craters of several tens of nanometers in diameter exhibit pit and surrounding rim structures. Craters of more than 100 nm in diameter commonly have melted residue at their bottom. These morphologies are similar to those of submicrometer-sized craters on lunar regolith. We estimated the impactor flux on Itokawa regolith-forming craters, assuming that the craters were accumulated during direct exposure to the space environment for 102 to 104 yr. The range of impactor flux onto Itokawa particles is estimated to be at least one order of magnitude higher than the interplanetary dust flux and comparable to the secondary impact flux on the Moon. This indicates that secondary ejecta impacts are probably the dominant cratering process in the submicrometer range on Itokawa regolith particles, as well as on the lunar surface. We demonstrate that secondary submicrometer craters can be produced anywhere in centimeter- to meter-sized depressions on Itokawa's surface through primary interplanetary dust impacts. If the surface unevenness on centimeter to meter scales is a significant factor determining the abundance of submicrometer secondary cratering, the secondary impact flux could be independent of the overall shapes or sizes of celestial bodies, and the secondary

  16. Experimental Investigation of InSight HP3 Mole Interaction with Martian Regolith Simulant. Quasi-Static and Dynamic Penetration Testing

    Science.gov (United States)

    Marshall, Jason P.; Hudson, Troy L.; Andrade, José E.

    2017-10-01

    The InSight mission launches in 2018 to characterize several geophysical quantities on Mars, including the heat flow from the planetary interior. This quantity will be calculated by utilizing measurements of the thermal conductivity and the thermal gradient down to 5 meters below the Martian surface. One of the components of InSight is the Mole, which hammers into the Martian regolith to facilitate these thermal property measurements. In this paper, we experimentally investigated the effect of the Mole's penetrating action on regolith compaction and mechanical properties. Quasi-static and dynamic experiments were run with a 2D model of the 3D cylindrical mole. Force resistance data was captured with load cells. Deformation information was captured in images and analyzed using Digitial Image Correlation (DIC). Additionally, we used existing approximations of Martian regolith thermal conductivity to estimate the change in the surrounding granular material's thermal conductivity due to the Mole's penetration. We found that the Mole has the potential to cause a high degree of densification, especially if the initial granular material is relatively loose. The effect on the thermal conductivity from this densification was found to be relatively small in first-order calculations though more complete thermal models incorporating this densification should be a subject of further investigation. The results obtained provide an initial estimate of the Mole's impact on Martian regolith thermal properties.

  17. Martian regolith geochemistry and sampling techniques

    Science.gov (United States)

    Clark, B. C.

    Laboratory study of samples of the intermediate and fine-grained regolith, including duricrust peds, is a fundamental prerequisite for understanding the types of physical and chemical weathering processes on Mars. The extraordinary importance of such samples is their relevance to understanding past changes in climate, availability (and possible physical state) of water, eolian forces, the thermal and chemical influences of volcanic and impact processes, and the inventory and fates of Martian volatiles. Fortunately, this regolith material appears to be ubiquitous over the Martian surface, and should be available at many different landing sites. Viking data has been interpreted to indicate a smectite-rich regolith material, implying extensive weathering involving aqueous activity and geochemical alteration. An all-igneous source of the Martian fines has also been proposed. The X-ray fluorescence measurement data set can now be fully explained in terms of a simple two-component model. The first component is silicate, having strong geochemical similarities with Shergottites, but not other SNC meteorites. The second component is salt. Variations in these components could produce silicate and salt-rich beds, the latter being of high potential importance for microenvironments in which liquid water (brines) could exist. It therefore would be desirable to scan the surface of the regolith for such prospects.

  18. Martian regolith geochemistry and sampling techniques

    Science.gov (United States)

    Clark, B. C.

    1988-01-01

    Laboratory study of samples of the intermediate and fine-grained regolith, including duricrust peds, is a fundamental prerequisite for understanding the types of physical and chemical weathering processes on Mars. The extraordinary importance of such samples is their relevance to understanding past changes in climate, availability (and possible physical state) of water, eolian forces, the thermal and chemical influences of volcanic and impact processes, and the inventory and fates of Martian volatiles. Fortunately, this regolith material appears to be ubiquitous over the Martian surface, and should be available at many different landing sites. Viking data has been interpreted to indicate a smectite-rich regolith material, implying extensive weathering involving aqueous activity and geochemical alteration. An all-igneous source of the Martian fines has also been proposed. The X-ray fluorescence measurement data set can now be fully explained in terms of a simple two-component model. The first component is silicate, having strong geochemical similarities with Shergottites, but not other SNC meteorites. The second component is salt. Variations in these components could produce silicate and salt-rich beds, the latter being of high potential importance for microenvironments in which liquid water (brines) could exist. It therefore would be desirable to scan the surface of the regolith for such prospects.

  19. [Evaluation of Cellular Effects Caused by Lunar Regolith Simulant Including Fine Particles].

    Science.gov (United States)

    Horie, Masanori; Miki, Takeo; Honma, Yoshiyuki; Aoki, Shigeru; Morimoto, Yasuo

    2015-06-01

    The National Aeronautics and Space Administration has announced a plan to establish a manned colony on the surface of the moon, and our country, Japan, has declared its participation. The surface of the moon is covered with soil called lunar regolith, which includes fine particles. It is possible that humans will inhale lunar regolith if it is brought into the spaceship. Therefore, an evaluation of the pulmonary effects caused by lunar regolith is important for exploration of the moon. In the present study, we examine the cellular effects of lunar regolith simulant, whose components are similar to those of lunar regolith. We focused on the chemical component and particle size in particular. The regolith simulant was fractionated to lunar regolith simulant such as cell membrane damage, induction of oxidative stress and proinflammatory effect.

  20. The Strata-l Experiment on Microgravity Regolith Segregation

    Science.gov (United States)

    Fries, M.; Abell, P.; Brisset, J.; Britt, D.; Colwell, J.; Durda, D.; Dove, A.; Graham, L.; Hartzell, C.; John, K.; hide

    2016-01-01

    The Strata-1 experiment studies the segregation of small-body regolith through long-duration exposure of simulant materials to the microgravity environment on the International Space Station (ISS). Many asteroids feature low bulk densities, which implies high values of porosity and a mechanical structure composed of loosely bound particles, (i.e. the "rubble pile" model), a prime example of a granular medium. Even the higher-density, mechanically coherent asteroids feature a significant surface layer of loose regolith. These bodies will evolve in response to very small perturbations such as micrometeoroid impacts, planetary flybys, and the YORP effect. A detailed understanding of asteroid mechanical evolution is needed in order to predict the surface characteristics of as-of-yet unvisited bodies, to understand the larger context of samples from sample return missions, and to mitigate risks for both manned and unmanned missions to asteroidal bodies. Due to observation of rocky regions on asteorids such as Eros and Itokawa, it has been hypothesized that grain size distribution with depth on an asteroid may be inhomogeneous: specifically, that large boulders have been mobilized to the surface. In terrestrial environments, this size-dependent sorting to the surface of the sample is called the Brazil Nut Effect. The microgravity and acceleration environment on the ISS is similar that of a small asteroid. Thus, Strata-1 investigates size segregation of regolith in an environment analogous to that of small bodies. Strata-1 consists of four regolith simulants in evacuated tubes, as shown in Figure 1 (Top and Middle). The simulants are (1) a crushed and sieved ordinary chondrite meteorite to simulate an asteroidal surface, (2) a carbonaceous chondrite simulant with a mixture of fine and course particles, and two simplified silicate glass simulants; (3) one with angular and (4) another with spherical particles. These materials were chosen to span a range of granular

  1. Research on the Horizontal Displacement Coefficient of Soil Surrounding Pile in Layered Foundations by Considering the Soil Mass’s Longitudinal Continuity

    Directory of Open Access Journals (Sweden)

    Yao Wen-Juan

    2013-01-01

    Full Text Available When utilizing the p-y curve to simulate the nonlinear characteristics of soil surrounding pile in layered foundations, due to having not taken into account the soil mass’s longitudinal continuity, the calculation deviation of horizontal displacement increases with the growth of a load. This paper adopted the layered elasticity system theory to consider the soil mass’s longitudinal continuity, as well as utilizing the research method for layered isotropic bodies, assuming that the horizontal resistance is evenly distributed around the perimeter of the pile's cross-section. Then an appropriate transfer matrix method of horizontal displacement coefficient for the soil surrounding pile in layered foundations was established. According to the calculation principle of finite element equivalent load, the horizontal displacement coefficient matrix was deduced as well as providing a corrected formula for the horizontal displacement of soil surrounding pile through the p-y curve method when the external load was increased. Following the established model, a program was created which was used for calculating and analyzing the horizontal displacement coefficient matrix of three-layered soil in order to verify this method’s validity and rationale. Where there is a relatively large discrepancy in the soil layers’ properties, this paper’s method is able to reflect the influence on the layered soil’s actual distributional difference as well as the nearby soil layers’ interaction.

  2. Analysis of Water Extraction From Lunar Regolith

    Science.gov (United States)

    Hegde, U.; Balasubramaniam, R.; Gokoglu, S.

    2012-01-01

    Distribution of water concentration on the Moon is currently an area of active research. Recent studies suggest the presence of ice particles, and perhaps even ice blocks and ice-cemented regolith on the Moon. Thermal extraction of the in-situ water is an attractive means of sa tisfying water requirements for a lunar mission. In this paper, a model is presented to analyze the processes occurring during the heat-up of icy regolith and extraction of the evolved water vapor. The wet regolith is assumed to be present in an initially evacuated and sealed cell which is subsequently heated. The first step of the analysis invol ves calculating the gradual increase of vapor pressure in the closed cell as the temperature is raised. Then, in the second step, the cell is evacuated to low pressure (e.g., vacuum), allowing the water vapor to leave the cell and be captured. The parameters affecting water vap or pressure build-up and evacuation for the purpose of extracting water from lunar regolith are discussed in the paper. Some comparisons wi th available experimental measurements are also made.

  3. A simulated regolith medium for multi-wavelength studies

    Science.gov (United States)

    Wilkman, O.; Muinonen, K.; Parviainen, H.; Näränen, J.

    2012-04-01

    Effects arising from the small-scale surface structure are significant in remote studies of regolith surfaces on atmosphereless solar system bodies, such as the Moon, Mercury and the asteroids. The important properties determining these effects are the porosity of the regolith and the roughness of the interface between the bulk material and empty space. We concentrate on the regolith effects in visible light photometry and X-ray spectrometry. The fluorescent X-ray spectrum induced by solar X-rays contains information about the elemental abundances of the surface material, while the photometry can be used to constrain surface properties such as porosity. We have developed a computer model simulating a regolith medium consisting of spherical particles with variable size distribution and properties. The bulk properties of the medium, such as porosity and surface roughness, can be varied. The model can then be used in ray-tracing simulations of the regolith effects in both visible light scattering and X-ray fluorescence. In photometric studies the scattering law of the constituent particles can be chosen to take into account scattering phenomena such as coherent backscattering. In the X-ray simulations, we can choose the elemental abundances of the material and the spectrum of the incident X-ray radiation. The ray-tracing simulations then allow us to determine the characteristics of the emitted radiation in different observational geometries. We present results from various studies which have been based on our regolith model. The model has been used to simulate the regolith effects on X-ray fluorescence spectra under specific situations. These can be compared to laboratory measurements. The visible light simulations have been applied in a study of the shadowing effects in photometry. The model was also used in a study of lunar photometry from SMART-1/AMIE data. Applications in the analysis of X-ray spectrometry from the BepiColombo MIXS/SIXS instruments are planned. An

  4. Sulfate Deposition in Regolith Exposed in Trenches on the Plains Between the Spirit Landing Site and Columbia Hills in Gusev Crater, Mars

    Science.gov (United States)

    Wang, Alian; Haskin, L. A.; Squyres, S. W.; Arvidson, R.; Crumpler, L.; Gellert, R.; Hurowitz, J.; Schroeder, C.; Tosca, N.; Herkenhoff, K.

    2005-01-01

    During its exploration within Gusev crater between sol 01 and sol 158, the Spirit rover dug three trenches (Fig. 1) to expose the subsurface regolith [1, 2, 9]. Laguna trench (approx. 6 cm deep, approx.203 m from the rim of Bonneville crater) was dug in Laguna Hollow at the boundary of the impact ejecta from Bonneville crater and the surrounding plains. The Big Hole trench (approx. 6-7 cm deep) and The Boroughs trench (approx. 11 cm deep) were dug in the plains between the Bonneville crater and the Columbia Hills (approx.556 m and approx.1698 m from the rim of Bonneville crater respectively). The top, wall and floor regolith of the three trenches were investigated using the entire set of Athena scientific instruments [10].

  5. The Nature of C Asteroid Regolith from Meteorite Observations

    Science.gov (United States)

    Zolensky, M.; Mikouchi, T.; Hagiya, K.; Ohsumi, K.; Komatsu, M.; Jenniskens, P.; Le, L.; Yin, Q.-Z; Kebukawa, Y.; Fries, M.

    2013-01-01

    Regolith from C (and related) asteroid bodies are a focus of the current missions Dawn at Ceres, Hayabusa 2 and OSIRIS REx. An asteroid as large as Ceres is expected to be covered by a mature regolith, and as Hayabusa demonstrated, flat and therefore engineeringly-safe ponded deposits will probably be the sampling sites for both Hayabusa 2 and OSIRIS REx. Here we examine what we have learned about the mineralogy of fine-grained asteroid regolith from recent meteorite studies and the examination of the samples harvested from asteroid Itokawa by Hayabusa.

  6. Using Combustion Synthesis to Reinforce Berms and Other Regolith Structures

    Science.gov (United States)

    Rodriquez, Gary

    2013-01-01

    The Moonraker Excavator and other tools under development for use on the Moon, Mars, and asteroids will be employed to construct a number of civil engineering projects and to mine the soil. Mounds of loose soil will be subject to the local transport mechanisms plus artificial mechanisms such as blast effects from landers and erosion from surface vehicles. Some of these structures will require some permanence, with a minimum of maintenance and upkeep. Combustion Synthesis (CS) is a family of processes and techniques whereby chemistry is used to transform materials, often creating flame in a hard vacuum. CS can be used to stabilize civil engineering works such as berms, habitat shielding, ramps, pads, roadways, and the like. The method is to unroll thin sheets of CS fabric between layers of regolith and then fire the fabric, creating a continuous sheet of crusty material to be interposed among layers of loose regolith. The combination of low-energy processes, ISRU (in situ resource utilization) excavator, and CS fabrics, seems compelling as a general method for establishing structures of some permanence and utility, especially in the role of robotic missions as precursors to manned exploration and settlement. In robotic precursory missions, excavator/ mobility ensembles mine the Lunar surface, erect constructions of soil, and dispense sheets of CS fabrics that are covered with layers of soil, fired, and then again covered with layers of soil, iterating until the desired dimensions and forms are achieved. At the base of each berm, for example, is a shallow trench lined with CS fabric, fired and filled, mounded, and then covered and fired, iteratively to provide a footing against lateral shear. A larger trench is host to a habitat module, backfilled, covered with fabric, covered with soil, and fired. Covering the applied CS fabric with layers of soil before firing allows the resulting matrix to incorporate soil both above and below the fabric ply into the fused layer

  7. Comets, volcanism, the salt-rich regolith, and cycling of volatiles on Mars

    International Nuclear Information System (INIS)

    Clark, B.C.

    1987-01-01

    The composition of the Martian surface and its evolution are examined, reviewing the results of recent theoretical models and composition estimates based on Viking-lander analyses. The data are compiled in tables and characterized in detail, and a high degree of variation among the predictions is noted. The discussion centers on the possible roles of comets (as sources of volatiles), the salt-rich regolith (as an important water sink), and volcanic activity (interfering with volatile-recycling processes and eventually producing a volatile-depleted surface layer). 45 references

  8. A drilling tool design and in situ identification of planetary regolith mechanical parameters

    Science.gov (United States)

    Zhang, Weiwei; Jiang, Shengyuan; Ji, Jie; Tang, Dewei

    2018-05-01

    The physical and mechanical properties as well as the heat flux of regolith are critical evidence in the study of planetary origin and evolution. Moreover, the mechanical properties of planetary regolith have great value for guiding future human planetary activities. For planetary subsurface exploration, an inchworm boring robot (IBR) has been proposed to penetrate the regolith, and the mechanical properties of the regolith are expected to be simultaneously investigated during the penetration process using the drilling tool on the IBR. This paper provides a preliminary study of an in situ method for measuring planetary regolith mechanical parameters using a drilling tool on a test bed. A conical-screw drilling tool was designed, and its drilling load characteristics were experimentally analyzed. Based on the drilling tool-regolith interaction model, two identification methods for determining the planetary regolith bearing and shearing parameters are proposed. The bearing and shearing parameters of lunar regolith simulant were successfully determined according to the pressure-sinkage tests and shear tests conducted on the test bed. The effects of the operating parameters on the identification results were also analyzed. The results indicate a feasible scheme for future planetary subsurface exploration.

  9. Description of regolith at Laxemar-Simpevarp. Site descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Sohlenius, Gustav; Hedenstroem, Anna (Geological Survey of Sweden (SGU), Uppsala (Sweden))

    2008-11-15

    bays where fine-grained sediments can accumulate. The distribution of QD's on both land and sea areas is shown on a map over the whole Laxemar- Simpevarp regional model area. Data obtained from several investigations have been used to produce that map. The accuracy of the map therefore varies and the most detailed information was obtained from the central part of the model area. The geographical distribution and depth of the QD is largely determined by the topography of the underlying bedrock. Areas with exposed bedrock and a thin till cover dominate the whole regional model area, including the sea floor. These areas are crossed by a number of fissure valleys where the regolith cover is considerably thicker. Glacial clay with a thin cover of sand is the dominating surface deposit in the valleys on the sea floor. In the bays and land areas, the valleys are dominated by clay gyttja, which at many locations in the terrestrial areas is covered by a thin layer of peat. There are several glaciofluvial deposits, with a north strike, in the investigated area. The Tuna esker in the western part of the model area is the largest of these deposits. In a morphological sense, that esker is the most significant QD in the model area. In certain areas the till has a more coherent distribution than in the area in general. These areas are characterised by hummocks, which are probably not due to the morphology of the underlying bedrock. The properties of soils have been classified at sites representing ten land classes. These results were used together with the QD map and other geographical information to produce a soil-type map over the terrestrial part of the model area. Podsol, Leptosol and Regosol are the most commonly occurring soil types in the area. Wetlands and areas used as arable land, i.e. for cultivation of crops, are to a large extent covered by different types of Histosol. Most data showing the total depth of the regolith cover were obtained from geophysical

  10. Lunar Regolith Particle Shape Analysis

    Science.gov (United States)

    Kiekhaefer, Rebecca; Hardy, Sandra; Rickman, Douglas; Edmunson, Jennifer

    2013-01-01

    Future engineering of structures and equipment on the lunar surface requires significant understanding of particle characteristics of the lunar regolith. Nearly all sediment characteristics are influenced by particle shape; therefore a method of quantifying particle shape is useful both in lunar and terrestrial applications. We have created a method to quantify particle shape, specifically for lunar regolith, using image processing. Photomicrographs of thin sections of lunar core material were obtained under reflected light. Three photomicrographs were analyzed using ImageJ and MATLAB. From the image analysis measurements for area, perimeter, Feret diameter, orthogonal Feret diameter, Heywood factor, aspect ratio, sieve diameter, and sieve number were recorded. Probability distribution functions were created from the measurements of Heywood factor and aspect ratio.

  11. Strata-1: An International Space Station Experiment into Fundamental Regolith Processes in Microgravity

    Science.gov (United States)

    Fries, M.; Abell, P.; Brisset, J.; Britt, D.; Colwell, J.; Durda, D.; Dove, A.; Graham, L.; Hartzell, C.; John, K.; hide

    2016-01-01

    The Strata-1 experiment will study the evolution of asteroidal regolith through long-duration exposure of simulant materials to the microgravity environment on the International Space Station (ISS). Many asteroids feature low bulk densities, which implies high values of porosity and a mechanical structure composed of loosely bound particles, (i.e. the "rubble pile" model), a prime example of a granular medium. Even the higher-density, mechanically coherent asteroids feature a significant surface layer of loose regolith. These bodies are subjected to a variety of forces and will evolve in response to very small perturbations such as micrometeoroid impacts, planetary flybys, and the YORP effect. Our understanding of this dynamical evolution and the inter-particle forces involved would benefit from long-term observations of granular materials exposed to small vibrations in microgravity. A detailed understanding of asteroid mechanical evolution is needed in order to predict the surface characteristics of as-of-yet unvisited bodies, to understand the larger context of samples collected by missions such as OSIRIS-REx and Hayabusa 1 and 2, and to mitigate risks for both manned and unmanned missions to asteroidal bodies. Understanding regolith dynamics will inform designs of how to land and set anchors, safely sample/move material on asteroidal surfaces, process large volumes of material for in situ resource utilization (ISRU) purposes, and, in general, predict behavior of large and small particles on disturbed asteroid surfaces.

  12. Geographic information system datasets of regolith-thickness data, regolith-thickness contours, raster-based regolith thickness, and aquifer-test and specific-capacity data for the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado

    Science.gov (United States)

    Arnold, L. Rick

    2010-01-01

    These datasets were compiled in support of U.S. Geological Survey Scientific-Investigations Report 2010-5082-Hydrogeology and Steady-State Numerical Simulation of Groundwater Flow in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. The datasets were developed by the U.S. Geological Survey in cooperation with the Lost Creek Ground Water Management District and the Colorado Geological Survey. The four datasets are described as follows and methods used to develop the datasets are further described in Scientific-Investigations Report 2010-5082: (1) ds507_regolith_data: This point dataset contains geologic information concerning regolith (unconsolidated sediment) thickness and top-of-bedrock altitude at selected well and test-hole locations in and near the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. Data were compiled from published reports, consultant reports, and from lithologic logs of wells and test holes on file with the U.S. Geological Survey Colorado Water Science Center and the Colorado Division of Water Resources. (2) ds507_regthick_contours: This dataset consists of contours showing generalized lines of equal regolith thickness overlying bedrock in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. Regolith thickness was contoured manually on the basis of information provided in the dataset ds507_regolith_data. (3) ds507_regthick_grid: This dataset consists of raster-based generalized thickness of regolith overlying bedrock in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. Regolith thickness in this dataset was derived from contours presented in the dataset ds507_regthick_contours. (4) ds507_welltest_data: This point dataset contains estimates of aquifer transmissivity and hydraulic conductivity at selected well locations in the Lost Creek Designated Ground Water Basin, Weld, Adams, and

  13. RASSOR - Regolith Advanced Surface Systems Operations Robot

    Science.gov (United States)

    Gill, Tracy R.; Mueller, Rob

    2015-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) is a lightweight excavator for mining in reduced gravity. RASSOR addresses the need for a lightweight (robot that is able to overcome excavation reaction forces while operating in reduced gravity environments such as the moon or Mars. A nominal mission would send RASSOR to the moon to operate for five years delivering regolith feedstock to a separate chemical plant, which extracts oxygen from the regolith using H2 reduction methods. RASSOR would make 35 trips of 20 kg loads every 24 hours. With four RASSORs operating at one time, the mission would achieve 10 tonnes of oxygen per year (8 t for rocket propellant and 2 t for life support). Accessing craters in space environments may be extremely hard and harsh due to volatile resources - survival is challenging. New technologies and methods are required. RASSOR is a product of KSC Swamp Works which establishes rapid, innovative and cost effective exploration mission solutions by leveraging partnerships across NASA, industry and academia.

  14. Workshop on past and present solar radiation: the record in meteoritic and lunar regolith material

    International Nuclear Information System (INIS)

    Pepin, R.O.; Mckay, D.S.

    1986-01-01

    The principal question addressed in the workshop was the extent to which asteroidal and lunar regoliths have collected and preserved, in meteoritic regolith breccias and in lunar soils and regolith breccias, a record of the flux, energy, and compositional history of the solar wind and solar flares. Six central discussion topics were identified. They are: (1)Trapped solar wind and flare gases, tracks, and micrometeorite pits in regolith components; (2)Comparison between lunar regolith breccias, meteoritic regolith breccias, and the lunar soil; (3)The special role of regolith breccias and the challenge of dating their times of compaction; (4)Implications of the data for the flux and compositional history of solar particle emission, composition, and physical mechanisms in the solar source regions, and the composition of the early nebula; (5)How and to what extent have records of incident radiation been altered in various types of grains; (6) Future research directions

  15. BRDF of Salt Pan Regolith Samples

    Science.gov (United States)

    Georgiev, Georgi T.; Gatebe, Charles K.; Butler, James J.; King, Michael D.

    2008-01-01

    Laboratory Bi-directional Reflectance Distribution Function (BRDF) measurements of salt pan regolith samples are presented in this study in an effort to understand the role of spatial and spectral variability of the natural biome. The samples were obtained from Etosha Pan, Namibia (19.20 deg S, 15.93 deg E, alt. 1100 m). It is shown how the BRDF depends on the measurement geometry - incident and scatter angles and on the sample particle sizes. As a demonstration of the application of the results, airborne BRDF measurements acquires with NASA's Cloud Absorption Radiometer (CAR) over the same general site where the regolith samples were collected are compared with the laboratory results. Good agreement between laboratory measured and field measured BRDF is reported.

  16. Measurements of Regolith Simulant Thermal Conductivity Under Asteroid and Mars Surface Conditions

    Science.gov (United States)

    Ryan, A. J.; Christensen, P. R.

    2017-12-01

    Laboratory measurements have been necessary to interpret thermal data of planetary surfaces for decades. We present a novel radiometric laboratory method to determine temperature-dependent thermal conductivity of complex regolith simulants under rough to high vacuum and across a wide range of temperatures. This method relies on radiometric temperature measurements instead of contact measurements, eliminating the need to disturb the sample with thermal probes. We intend to determine the conductivity of grains that are up to 2 cm in diameter and to parameterize the effects of angularity, sorting, layering, composition, and eventually cementation. We present the experimental data and model results for a suite of samples that were selected to isolate and address regolith physical parameters that affect bulk conductivity. Spherical glass beads of various sizes were used to measure the effect of size frequency distribution. Spherical beads of polypropylene and well-rounded quartz sand have respectively lower and higher solid phase thermal conductivities than the glass beads and thus provide the opportunity to test the sensitivity of bulk conductivity to differences in solid phase conductivity. Gas pressure in our asteroid experimental chambers is held at 10^-6 torr, which is sufficient to negate gas thermal conduction in even our coarsest of samples. On Mars, the atmospheric pressure is such that the mean free path of the gas molecules is comparable to the pore size for many regolith particulates. Thus, subtle variations in pore size and/or atmospheric pressure can produce large changes in bulk regolith conductivity. For each sample measured in our martian environmental chamber, we repeat thermal measurement runs at multiple pressures to observe this behavior. Finally, we present conductivity measurements of angular basaltic simulant that is physically analogous to sand and gravel that may be present on Bennu. This simulant was used for OSIRIS-REx TAGSAM Sample Return

  17. Calibrating the Regolith X-ray Imaging Spectrometer (REXIS)

    OpenAIRE

    McIntosh, Missy; Hong, Jaesub; Allen, Branden; Grindlay, Jonathan

    2014-01-01

    This paper describes the onboard calibration process of REXIS (the Regolith X-ray Imaging Spectrometer), an instrument on OSIRIS-REx. OSIRIS-REx, scheduled to be launched in 2016, is a planetary mission intending to return a regolith sample from a near Earth asteroid called Bennu. REXIS, a student-led collaboration between Harvard and MIT, is a soft X-ray (0.5-7.5 keV) coded-aperture telescope with four X-ray CCDs and a gold coated stainless steel mask. REXIS will measure the surface elementa...

  18. The Strata-1 Regolith Dynamics Experiment: Class 1E Science on ISS

    Science.gov (United States)

    Fries, Marc; Graham, Lee; John, Kristen

    2016-01-01

    The Strata-1 experiment studies the evolution of small body regolith through long-duration exposure of simulant materials to the microgravity environment on the International Space Station (ISS). This study will record segregation and mechanical dynamics of regolith simulants in a microgravity and vibration environment similar to that experienced by regolith on small Solar System bodies. Strata-1 will help us understand regolith dynamics and will inform design and procedures for landing and setting anchors, safely sampling and moving material on asteroidal surfaces, processing large volumes of material for in situ resource utilization (ISRU) purposes, and, in general, predicting the behavior of large and small particles on disturbed asteroid surfaces. This experiment is providing new insights into small body surface evolution.

  19. Spatial Patterns between Regolith Thickness and Forest Productivity in the Southern Sierra CZO

    Science.gov (United States)

    Ferrell, R. M.; Ferrell, D. F.; Hartsough, P. C.; O'Geen, T. T.

    2015-12-01

    Soil in conjunction with underlying weathered bedrock make up what is referred to as regolith, which can be thought of as the substrate that actively contributes water and nutrients to above ground biomass. As a result, regolith thickness is an important regulating factor of forest health and drought tolerance in the Sierra Nevada. Our project examined the relationships between landscape position, regolith thickness, and tree productivity within a sub watershed of the Southern Sierra Critical Zone Observatory. We hypothesized that tree productivity will increase with increasing regolith thickness. Data was collected in the summer of 2015 at sixty-five sites within a 522-ha watershed averaging 1180m in elevation with a MAP of 80cm and a MAT of 11C. Sites were randomly selected from a grid and then stratified in the field to capture representative samples from different landscape positions. Regolith was sampled using a hand auger with attachable extensions. At each site we augered to hard bedrock or a maximum depth of 7.56 m, which ever was shallower. Biomass measurements were made for all conifer species (DBH>20cm) within a 10m radius of the primary auger hole. Tree age was measured from a representative tree for all species in the plots. Preliminary findings suggest that there is a weak correlation between landscape position/slope and regolith thickness, likely due to differences in lithology. It also appears that terrain shape can result in conflicting outcomes: 1. It can focus water to promote physical and chemical weathering and thick regolith; or, 2. water focusing can result in landscape scouring, removing soil and weathered bedrock to create shallow regolith. Productivity appears to be a function of regolith thickness, effective precipitation and landscape position. Water collecting areas in the lower watershed are shallow to bedrock, but typically receive high amounts of effective precipitation resulting in greater tree productivity. Moreover, thick regolith

  20. Moessbauer mineralogy on the Moon: The lunar regolith

    International Nuclear Information System (INIS)

    Morris, Richard V.; Klingelhoefer, Goestar; Korotev, Randy L.; Shelfer, Tad D.

    1998-01-01

    A first-order requirement for spacecraft missions that land on solid planetary objects is instrumentation for mineralogical analyses. For purposes of providing diagnostic information about naturally-occurring materials, the element iron is particularly important because it is abundant and multivalent. Knowledge of the oxidation state of iron and its distribution among iron-bearing mineralogies tightly constrains the types of materials present and provides information about formation and modification (weathering) processes. Because Moessbauer spectroscopy is sensitive to both the valence of iron and its local chemical environment, the technique is unique in providing information about both the relative abundance of iron-bearing phases and oxidation state of the iron. The Moessbauer mineralogy of lunar regolith samples (primarily soils from the Apollo 16 and 17 missions to the Moon) were measured in the laboratory to demonstrate the strength of the technique for in-situ mineralogical exploration of the Moon. The regolith samples were modeled as mixtures of five iron-bearing phases: olivine, pyroxene, glass, ilmenite, and metal. Based on differences in relative proportions of iron associated with these phases, volcanic-ash regolith can be distinguished from impact-derived regolith, impact-derived soils of different geologic affinity (e.g., highlands and maria) can be distinguished on the basis of their constituent minerals, and soil maturity can be estimated. The total resonant absorption area of the Moessbauer spectrum can be used to estimate total FeO concentrations

  1. Decameter-Scale Regolith Textures on Mercury

    Science.gov (United States)

    Kreslavsky, M. A.; Zharkova, A. Yu.; Head, J. W.

    2018-05-01

    Like on the Moon, regolith gardening smooths the surface. Small craters are in equilibrium. “Elephant hide“ typical on the lunar slopes is infrequent on Mercury. Finely Textured Slope Patches have no analog on the Moon.

  2. Description of regolith at Laxemar-Simpevarp. Site descriptive modelling SDM-Site Laxemar

    International Nuclear Information System (INIS)

    Sohlenius, Gustav; Hedenstroem, Anna

    2008-11-01

    bays where fine-grained sediments can accumulate. The distribution of QD's on both land and sea areas is shown on a map over the whole Laxemar- Simpevarp regional model area. Data obtained from several investigations have been used to produce that map. The accuracy of the map therefore varies and the most detailed information was obtained from the central part of the model area. The geographical distribution and depth of the QD is largely determined by the topography of the underlying bedrock. Areas with exposed bedrock and a thin till cover dominate the whole regional model area, including the sea floor. These areas are crossed by a number of fissure valleys where the regolith cover is considerably thicker. Glacial clay with a thin cover of sand is the dominating surface deposit in the valleys on the sea floor. In the bays and land areas, the valleys are dominated by clay gyttja, which at many locations in the terrestrial areas is covered by a thin layer of peat. There are several glaciofluvial deposits, with a north strike, in the investigated area. The Tuna esker in the western part of the model area is the largest of these deposits. In a morphological sense, that esker is the most significant QD in the model area. In certain areas the till has a more coherent distribution than in the area in general. These areas are characterised by hummocks, which are probably not due to the morphology of the underlying bedrock. The properties of soils have been classified at sites representing ten land classes. These results were used together with the QD map and other geographical information to produce a soil-type map over the terrestrial part of the model area. Podsol, Leptosol and Regosol are the most commonly occurring soil types in the area. Wetlands and areas used as arable land, i.e. for cultivation of crops, are to a large extent covered by different types of Histosol. Most data showing the total depth of the regolith cover were obtained from geophysical investigations

  3. Evolution and Transport of Water in the Upper Regolith of Mars

    Science.gov (United States)

    Hudson, T. L.; Aharonson, O.; Schorghofer, N.; Hecht, M. H.; Bridges, N. T.; Green, J. R.

    2003-01-01

    Long standing theoretical predictions [1-3], as well as recent spacecraft observations [4] indicate that large quantities of ice is present in the high latitudes upper decimeters to meters of the Martian regolith. At shallower depths and warmer locations small amounts of H2O, either adsorbed or free, may be present transiently. An understanding of the evolution of water based on theoretical and experimental considerations of the processes operating at the Martian environment is required. In particular, the porosity, diffusivity, and permeability of soils and their effect on water vapor transport under Mars-like conditions have been estimated, but experimental validation of such models is lacking. Goal: Three related mechanisms may affect water transport in the upper Martian regolith. 1) diffusion along a concentration gradient under isobaric conditions, 2) diffusion along a thermal gradient, which may give rise to a concentration gradient as ice sublimes or molecules desorb from the regolith, and 3) hydraulic flow, or mass motion in response to a pressure gradient. Our combined theoretical and experimental investigation seeks to disentangle these mechanisms and determine which process(es) are dominant in the upper regolith over various timescales. A detailed one-dimensional model of the upper regolith is being created which incorporates water adsorption/ desorption, condensation, porosity, diffusivity, and permeability effects. Certain factors such as diffusivity are difficult to determine theoretically due to the wide range of intrinsic grain properties such as particle sizes, shapes, packing densities, and emergent properties such as tortuosity. An experiment is being designed which will allow us to more accurately determine diffusivity, permeability, and water desorption isotherms for regolith simulants.

  4. Mars Regolith Water Extractor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Regolith Water Extractor (MRWE) is a system for acquiring water from the Martian soil. In the MRWE, a stream of CO2 is heated by solar energy or waste heat...

  5. A coupled regolith-lake development model applied to the Forsmark site

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars; Stroemgren, Maarten (Umeaa Univ., Umeaa (Sweden))

    2010-11-15

    The Quaternary geology at the Forsmark site has been characterized using both a map of Quaternary deposits and a regolith depth model (RDM) that show the stratigraphy and thickness of different deposits. Regolith refers to all the unconsolidated deposits overlying the bedrock. The surface geology and regolith depth are important parameters for hydrogeological and geochemical modelling and for the overall understanding of the area. The safety assessment analysis should focus on processes involved during a period of 120,000 years, which includes a full glacial cycle; however, the investigations within the site description model do not cover the temporal change of the regolith, a limitation that does not fulfil the requirements for the safety assessment. To this end, this study constructs a model that can predict the surface geology, stratigraphy, and thickness of different strata at any time during a glacial cycle and applies this model to the Forsmark site. The Weichselian ice sheet covered the study area until around 9500 BC. The deglaciation revealed a marine landscape with bedrock, till and glacial clay. For the safety assessment, the most important unconsolidated strata are clay or silt: these small grains can bind nuclear elements more easily than coarser sediment particles. Thick layers of clay can be found where post-glacial clay settled on top of glacial clay, especially where the middle-aged erosion of postglacial clay is missing and where there is an uninterrupted sequence of accumulation of finegrained particles. Such areas could be found in deep marine basins that later become lakes when raised into a supra-marine position. The coupled regolith-lake development model (RLDM) predicts the course of events described above during an interglacial, especially the dynamics of the clay and silt particles. The RLDM is divided into two modules: a marine module that predicts the sediment dynamics caused by wind waves and a lake module that predicts the lake infill

  6. A coupled regolith-lake development model applied to the Forsmark site

    International Nuclear Information System (INIS)

    Brydsten, Lars; Stroemgren, Maarten

    2010-11-01

    The Quaternary geology at the Forsmark site has been characterized using both a map of Quaternary deposits and a regolith depth model (RDM) that show the stratigraphy and thickness of different deposits. Regolith refers to all the unconsolidated deposits overlying the bedrock. The surface geology and regolith depth are important parameters for hydrogeological and geochemical modelling and for the overall understanding of the area. The safety assessment analysis should focus on processes involved during a period of 120,000 years, which includes a full glacial cycle; however, the investigations within the site description model do not cover the temporal change of the regolith, a limitation that does not fulfil the requirements for the safety assessment. To this end, this study constructs a model that can predict the surface geology, stratigraphy, and thickness of different strata at any time during a glacial cycle and applies this model to the Forsmark site. The Weichselian ice sheet covered the study area until around 9500 BC. The deglaciation revealed a marine landscape with bedrock, till and glacial clay. For the safety assessment, the most important unconsolidated strata are clay or silt: these small grains can bind nuclear elements more easily than coarser sediment particles. Thick layers of clay can be found where post-glacial clay settled on top of glacial clay, especially where the middle-aged erosion of postglacial clay is missing and where there is an uninterrupted sequence of accumulation of finegrained particles. Such areas could be found in deep marine basins that later become lakes when raised into a supra-marine position. The coupled regolith-lake development model (RLDM) predicts the course of events described above during an interglacial, especially the dynamics of the clay and silt particles. The RLDM is divided into two modules: a marine module that predicts the sediment dynamics caused by wind waves and a lake module that predicts the lake infill

  7. Low Temperature Regolith Bricks for In-Situ Structural Material

    Science.gov (United States)

    Grossman, Kevin; Sakthivel, Tamil S.; Mantovani, James; Seal, Sudipta

    2016-01-01

    Current technology for producing in-situ structural materials on future missions to Mars or the moon relies heavily on energy-intensive sintering processes to produce solid bricks from regolith. This process requires heating the material up to temperatures in excess of 1000 C and results in solid regolith pieces with compressive strengths in the range of 14000 to 28000 psi, but are heavily dependent on the porosity of the final material and are brittle. This method is currently preferred over a low temperature cementation process to prevent consumption of precious water and other non-renewable materials. A high strength structural material with low energy requirements is still needed for future colonization of other planets. To fulfill these requirements, a nano-functionalization process has been developed to produce structural bricks from regolith simulant and shows promising mechanical strength results. Functionalization of granular silicate particles into alkoxides using a simple low temperature chemical process produces a high surface area zeolite particles that are held together via inter-particle oxygen bonding. Addition of water in the resulting zeolite particles produces a sol-gel reaction called "inorganic polymerization" which gives a strong solid material after a curing process at 60 C. The aqueous solution by-product of the reaction is currently being investigated for its reusability; an essential component of any ISRU technology. For this study, two batches of regolith bricks are synthesized from JSC-1A; the first batch from fresh solvents and chemicals, the second batch made from the water solution by-product of the first batch. This is done to determine the feasibility of recycling necessary components of the synthesis process, mainly water. Characterization including BET surface area, SEM, and EDS has been done on the regolith bricks as well as the constituent particles,. The specific surface area of 17.53 sq m/g (average) of the granular regolith

  8. Experimental Determination of in Situ Utilization of Lunar Regolith for Thermal Energy Storage

    Science.gov (United States)

    Richter, Scott W.

    1993-01-01

    A Lunar Thermal Energy from Regolith (LUTHER) experiment has been designed and fabricated at the NASA Lewis Research Center to determine the feasibility of using lunar soil as thermal energy storage media. The experimental apparatus includes an alumina ceramic canister (25.4 cm diameter by 45.7 cm length) which contains simulated lunar regolith, a heater (either radiative or conductive), 9 heat shields, a heat transfer cold jacket, and 19 type B platinum rhodium thermocouples. The simulated lunar regolith is a basalt, mined and processed by the University of Minnesota, that closely resembles the lunar basalt returned to earth by the Apollo missions. The experiment will test the effects of vacuum, particle size, and density on the thermophysical properties of the regolith. The properties include melt temperature (range), specific heat, thermal conductivity, and latent heat of storage. Two separate tests, using two different heaters, will be performed to study the effect of heating the system using radiative and conductive heat transfer. The physical characteristics of the melt pattern, material compatibility of the molten regolith, and the volatile gas emission will be investigated by heating a portion of the lunar regolith to its melting temperature (1435 K) in a 10(exp -4) pascal vacuum chamber, equipped with a gas spectrum analyzer. A finite differencing SINDA model was developed at NASA Lewis Research Center to predict the performance of the LUTHER experiment. The analytical results of the code will be compared with the experimental data generated by the LUTHER experiment. The code will predict the effects of vacuum, particle size, and density has on the heat transfer to the simulated regolith.

  9. Differential rates of feldspar weathering in granitic regoliths

    Science.gov (United States)

    White, A.F.; Bullen, T.D.; Schulz, M.S.; Blum, A.E.; Huntington, T.G.; Peters, N.E.

    2001-01-01

    Differential rates of plagioclase and K-feldspar weathering commonly observed in bedrock and soil environments are examined in terms of chemical kinetic and solubility controls and hydrologic permeability. For the Panola regolith, in the Georgia Piedmont Province of southeastern United States, petrographic observations, coupled with elemental balances and 87Sr/86Sr ratios, indicate that plagioclase is being converted to kaolinite at depths > 6 m in the granitic bedrock. K-feldspar remains pristine in the bedrock but subsequently weathers to kaolinite at the overlying saprolite. In contrast, both plagioclase and K-feldspar remain stable in granitic bedrocks elsewhere in Piedmont Province, such as Davis Run, Virginia, where feldspars weather concurrently in an overlying thick saprolite sequence. Kinetic rate constants, mineral surface areas, and secondary hydraulic conductivities are fitted to feldspar losses with depth in the Panola and Davis Run regoliths using a time-depth computer spreadsheet model. The primary hydraulic conductivities, describing the rates of meteoric water penetration into the pristine granites, are assumed to be equal to the propagation rates of weathering fronts, which, based on cosmogenic isotope dating, are 7 m/106 yr for the Panola regolith and 4 m/106 yr for the Davis Run regolith. Best fits in the calculations indicate that the kinetic rate constants for plagioclase in both regoliths are factors of two to three times faster than K-feldspar, which is in agreement with experimental findings. However, the range for plagioclase and K-feldspar rates (kr = 1.5 x 10-17 to 2.8 x 10-16 mol m-2 s-1) is three to four orders of magnitude lower than for that for experimental feldspar dissolution rates and are among the slowest yet recorded for natural feldspar weathering. Such slow rates are attributed to the relatively old geomorphic ages of the Panola and Davis Run regoliths, implying that mineral surface reactivity decreases significantly with

  10. Regolith thickness over Sinus Iridum: Results from morphology and size-frequency distribution of small impact craters

    Science.gov (United States)

    Fa, Wenzhe; Liu, Tiantian; Zhu, Meng-Hua; Haruyama, Junichi

    2014-08-01

    High-resolution optical images returned from recent lunar missions provide a new chance for estimation of lunar regolith thickness using morphology and the size-frequency distribution of small impact craters. In this study, regolith thickness over the Sinus Iridum region is estimated using Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Cameras (NACs) images. A revised relationship between crater geometry and regolith thickness is proposed based on old experimental data that takes into considering the effect of the illumination angle of the images. In total, 227 high-resolution LROC NAC images are used, and 378,556 impact craters with diameters from 4.2 to 249.8 m are counted, and their morphologies are identified. Our results show that 50% of the Sinus Iridum region has a regolith thickness between 5.1 and 10.7 m, and the mean and median regolith thicknesses are 8.5 and 8.0 m, respectively. There are substantial regional variations in the regolith thickness, with its median value varying from 2.6 to 12.0 m for most regions. Local variations of regolith thickness are found to be correlated with the lunar surface age: the older the surface, the greater the thickness. In addition, sporadically distributed impact ejecta and crater rays are associated with relatively larger regolith thickness, which might result from excavation and transport of materials during the formation of the secondaries of Copernican-aged craters. Our estimated regolith thickness can help with future analysis of Chang'E-3 lunar penetrating radar echoes and studies of the subsurface stratigraphic structure of the Moon.

  11. The rate of dielectric breakdown weathering of lunar regolith in permanently shadowed regions

    Science.gov (United States)

    Jordan, A. P.; Stubbs, T. J.; Wilson, J. K.; Schwadron, N. A.; Spence, H. E.

    2017-02-01

    Large solar energetic particle events may cause dielectric breakdown in the upper 1 mm of regolith in permanently shadowed regions (PSRs). We estimate how the resulting breakdown weathering compares to meteoroid impact weathering. Although the SEP event rates measured by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO) are too low for breakdown to have significantly affected the regolith over the duration of the LRO mission, regolith gardened by meteoroid impacts has been exposed to SEPs for ∼106 yr. Therefore, we estimate that breakdown weathering's production rate of vapor and melt in the coldest PSRs is up to 1.8 - 3.5 ×10-7 kg m-2 yr-1 , which is comparable to that produced by meteoroid impacts. Thus, in PSRs, up to 10-25% of the regolith may have been melted or vaporized by dielectric breakdown. Breakdown weathering could also be consistent with observations of the increased porosity ("fairy castles") of PSR regolith. We also show that it is conceivable that breakdown-weathered material is present in Apollo soil samples. Consequently, breakdown weathering could be an important process within PSRs, and it warrants further investigation.

  12. Evolution of Regolith Feed Systems for Lunar ISRU 02 Production Plants

    Science.gov (United States)

    Mueller, Robert P.; Townsend, Ivan I., III; Mantovani, James G.; Metzger, Philip T.

    2010-01-01

    The In-Situ Resource Utilization (ISRU) project of the NASA Constellation Program, Exploration Technology Development Program (ETDP) has been engaged in the design and testing of various Lunar ISRU O2 production plant prototypes that can extract chemically bound oxygen from the minerals in the lunar regolith. This work demands that lunar regolith (or simulants) shall be introduced into the O2 production plant from a holding bin or hopper and subsequently expelled from the ISRU O2 production plant for disposal. This sub-system is called the Regolith Feed System (RFS) which exists in a variety of configurations depending on the O2 production plant oxygen being used (e.g. Hydrogen Reduction, Carbothermal, Molten Oxide Electrolysis). Each configuration may use a different technology and in addition it is desirable to have heat recuperation from the spent hot regolith as an integral part of the RFS. This paper addresses the various RFS and heat recuperation technologies and system configurations that have been developed under the NASA ISRU project since 2007. In addition current design solutions and lessons learned from reduced gravity flight testing will be discussed.

  13. Site Specific Ground Response Analysis for Quantifying Site Amplification at A Regolith Site

    Directory of Open Access Journals (Sweden)

    Bambang Setiawan

    2017-08-01

    Full Text Available DOI: 10.17014/ijog.4.3.159-167A numerical model has demonstrated that it can simulate reasonably well earthquake motions at the ground level during a seismic event. The most widely used model is an equivalent linear approach. The equivalent linear model was used to compute the free-field response of Adelaide regolith during the 1997 Burra earthquake. The aim of this study is to quantify the amplification at the investigated site. The model computed the ground response of horizontally layered soil deposits subjected to transient and vertically propagating shear waves through a one-dimensional-soil column. Each soil layer was assumed to be homogeneous, visco-elastic, and infinite in the horizontal extent. The results of this study were compared to other studies and forward computation of the geotechnical dynamic parameters of the investigated site. The amplification triggered by the 1997 Burra seismic event was deduced. This study reveals the amplification factor up to 3.6 at the studied site.

  14. Field Testing of a Pneumatic Regolith Feed System During a 2010 ISRU Field Campaign on Mauna Kea, Hawaii

    Science.gov (United States)

    Craft, Jack; Zacny, Kris; Chu, Philip; Wilson, Jack; Santoro, Chris; Carlson, Lee; Maksymuk, Michael; Townsend, Ivan I.; Mueller, Robert P.; Mantovani, James G.

    2010-01-01

    Lunar In Situ Resource Utilization (ISRU) consists of a number of tasks starting with mining of lunar regolith, followed by the transfer of regolith to an oxygen extraction reactor and finally processing the regolith and storing of extracted oxygen. The transfer of regolith from the regolith hopper at the ground level to an oxygen extraction reactor many feet above the surface could be accomplished in different ways, including using a mechanical auger, bucket ladder system or a pneumatic system. The latter system is commonly used on earth when moving granular materials since it offers high reliability and simplicity of operation. In this paper, we describe a pneumatic regolith feed system, delivering feedstock to a Carbothermal reactor and lessons learned from deploying the system during the 2010 ISRU field campaign on the Mauna Kea, Hawaii.

  15. Vibrational Locomotion Enabling Subsurface Exploration of Unconsolidated Regolith

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposed effort is to use vibration to propel a small, self-contained device through unconsolidated (loose, granular) material, such as regolith. Small scale robotic...

  16. Investigation of element distributions in Luna-16 regolith

    Science.gov (United States)

    Kuznetsov, R. A.; Lure, B. G.; Minevich, V. Ia.; Stiuf, V. I.; Pankratov, V. B.

    1981-03-01

    The concentrations of 32 elements in fractions of different grain sizes in the samples of the lunar regolith brought back by Luna-16 are determined by means of neutron activation analysis. Four groups of elements are distinguished on the basis of the variations of their concentration with grain size, and concentration variations of the various elements with sample depth are also noted. Chemical leaching of the samples combined with neutron activation also reveals differences in element concentrations in the water soluble, metallic, sulphide, phosphate, rare mineral and rock phases of the samples. In particular, the rare earth elements are observed to be depleted in the regolith with respect to chondritic values, and to be concentrated in the phase extracted with 14 M HNO3.

  17. Mineralogical and chemical properties of the lunar regolith

    Science.gov (United States)

    Mckay, David S.; Ming, Douglas W.

    1989-01-01

    The composition of lunar regolith and its attendant properties are discussed. Tables are provided listing lunar minerals, the abundance of plagioclase feldspar, pyroxene, olivine, and ilmenite in lunar materials, typical compositions of common lunar minerals, and cumulative grain-size distribution for a large number of lunar soils. Also provided are charts on the chemistry of breccias, the chemistry of lunar glass, and the comparative chemistry of surface soils for the Apollo sites. Lunar agglutinates, constructional particles made of lithic, mineral, and glass fragments welded together by a glassy matrix containing extremely fine-grained metallic iron and formed by micrometeoric impacts at the lunar surface, are discussed. Crystalline, igneous rock fragments, breccias, and lunar glass are examined. Volatiles implanted in lunar materials and regolith maturity are also addressed.

  18. Mars Gardens in the University - Red Thumbs: Growing Vegetables in Martian regolith simulant.

    Science.gov (United States)

    Guinan, Edward Francis

    2018-01-01

    Over the next few decades NASA and private enterprise missions plan to send manned missions to Mars with the ultimate aim to establish a permanent human presence on this planet. For a self-sustaining colony on Mars it will be necessary to provide food by growing plants in sheltered greenhouses on the Martian surface. As part of an undergraduate student project in Astrobiology at Villanova University, experiments are being carried out, testing how various plants grow in Martian regolith. A wide sample of plants are being grown and tested in Mars regolith simulant commercially available from The Martian Garden (TheMartian Garden.com). This Mars regolith simulant is based on Mojave Mars Simulant (MMS) developed by NASA and JPL for the Mars Phoenix mission. The MMS is based on the Mojave Saddleback basalt similar that used by JPL/NASA. Additional reagents were added to this iron rich basalt to bring the chemical content close to actual Mars regolith. The MMS used is an approximately 90% similar to regolith found on the surface of Mars - excluding poisonous perchlorates commonly found on actual Mars surface.The students have selected various vegetables and herbs to grow and test. These include carrots, spinach, dandelions, kale, soy beans, peas, onions, garlic and of course potatoes and sweet potatoes. Plants were tested in various growing conditions, using different fertilizers, and varying light conditions and compared with identical “control plants” grown in Earth soil / humus. The results of the project will be discussed from an education view point as well as from usefulness for fundamental research.We thank The Martian Garden for providing Martian regolith simulant at education discounted prices.

  19. Electrical stress and strain in lunar regolith simulants

    Science.gov (United States)

    Marshall, J.; Richard, D.; Davis, S.

    2011-11-01

    Experiments to entrain dust with electrostatic and fluid-dynamic forces result in particulate clouds of aggregates rather than individual dust grains. This is explained within the framework of Griffith-flaw theory regarding the comminution/breakage of weak solids. Physical and electrical inhomogeneities in powders are equivalent to microcracks in solids insofar as they facilitate failure at stress risers. Electrical charging of powders induces bulk sample stresses similar to mechanical stresses experienced by strong solids, depending on the nature of the charging. A powder mass therefore "breaks" into clumps rather than separating into individual dust particles. This contrasts with the expectation that electrical forces on the Moon will eject a submicron population of dust from the regolith into the exosphere. A lunar regolith will contain physical and electrostatic inhomogeneities similar to those in most charged powders.

  20. Measuring the Shock Stage of Asteroid Regolith Grains by Electron Back-Scattered Diffraction

    Science.gov (United States)

    Zolensky, Michael; Martinez, James; Sitzman, Scott; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Terada, Yasuko; Yagi, Naoto; Komatsu, Mutsumi; Ozawa, Hikaru; hide

    2018-01-01

    We have been analyzing Itokawa samples in order to definitively establish the degree of shock experienced by the regolith of asteroid Itokawa, and to devise a bridge between shock determinations by standard light optical petrography, crystal structures as determined by electron and X-ray diffraction. These techniques would then be available for samples returned from other asteroid regoliths.

  1. Telerobotic Perception During Asteroid and Mars Regolith Operations Project

    Science.gov (United States)

    Gaddis, Steven; Zeitlin, Nancy (Compiler); Mueller, Robert (Compiler)

    2015-01-01

    Current space telerobotic systems are constrained to only operating in bright light and dust-free conditions. This project will study the effects of difficult lighting and dust conditions on telerobotic perception systems to better assess and refine regolith operations on other neighboring celestial bodies. In partnership with Embry-Riddle Aeronautical University and Caterpillar, Inc., optical, LiDAR and RADAR sensing equipment will be used in performing the study. This project will create a known dust environment in the Swamp Works Granular Mechanics & Regolith Operations (GMRO) Laboratory regolith test bin to characterize the behavior of the sensing equipment in various calibrated lighting and dust conditions. It will also identify potential methods for mitigating the impacts of these undesirable conditions on the performance of the sensing equipment. Enhancing the capability of telerobotic perception systems will help improve life on earth for those working in dangerous, dusty mining conditions, as well as help advance the same technologies used for safer self-driving automobiles in various lighting and weather conditions. It will also prove to be a critical skill needed for advancing robotic and human exploration throughout our solar system, for activities such as mining on an asteroid or pioneering the first colony on Mars.

  2. Enhanced Mesh-Free Simulation of Regolith Flow, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs simulation tools capable of predicting the behavior of regolith in proposed excavation, transport, and handling or sample acquisition systems. For...

  3. Borehole depth and regolith aquifer hydraulic characteristics of ...

    African Journals Online (AJOL)

    EJIRO

    composition tend to exhibit similar hydraulic characteristics. But the poor performance of ... mum borehole depth in the regolith aquifer for the area and also reveals that ..... most important end products of chemical weathering of rocks of granitic ...

  4. Regolith transport in the Dry Valleys of Antarctica

    Science.gov (United States)

    Putkonen, J.; Rosales, M.; Turpen, N.; Morgan, D.; Balco, G.; Donaldson, M.

    2007-01-01

    The stability of ground surface and preservation of landforms that record past events and environments is of great importance as the geologic and climatic history is evaluated in the Dry Valleys of Antarctica. Currently little is known about the regolith transport that tends to eradicate and confound this record and regolith transport is itself an environmental indicator. Based on analyses of repeat photographs, soil traps, and pebble transport distances, it was found that there is a large spatial variation in topographic diffusivities at least in the annual basis and that counter intuitively the highest topographic diffusivities are found in the alpine valleys that are located farther inland from the coast where the lowest topographic diffusivities were recorded. An average topographic diffusivity for the Dry Valleys was determined to be 10M-5–10-4 m2

  5. Parameters and structure of lunar regolith in Chang'E-3 landing area from lunar penetrating radar (LPR) data

    Science.gov (United States)

    Dong, Zehua; Fang, Guangyou; Ji, Yicai; Gao, Yunze; Wu, Chao; Zhang, Xiaojuan

    2017-01-01

    Chang'E-3 (CE-3) landed in the northwest Mare Imbrium, a region that has not been explored before. Yutu rover that released by CE-3 lander carried the first lunar surface penetrating radar (LPR) for exploring lunar regolith thickness and subsurface shallow geological structures. In this paper, based on the LPR data and the Panoramic Camera (PC) data, we first calculate the lunar surface regolith parameters in CE-3 landing area including its permittivity, density, conductivity and FeO + TiO2 content. LPR data provides a higher spatial resolution and more accuracy for the lunar regolith parameters comparing to other remote sensing techniques, such as orbit radar sounder and microwave sensing or earth-based powerful radar. We also derived the regolith thickness and its weathered rate with much better accuracy in the landing area. The results indicate that the regolith growth rate is much faster than previous estimation, the regolith parameters are not uniform even in such a small study area and the thickness and growth rate of lunar regolith here are different from other areas in Mare Imbrium. We infer that the main reason should be geological deformation that caused by multiple impacts of meteorites in different sizes.

  6. PROGRA2 experiment: new results for dust clouds and regoliths

    Science.gov (United States)

    Renard, J.-B.; Hadamcik, E.; Worms, J.-C.; Levasseur-Regourd, A.-C.; Daugeron, D.

    With the CNES-sponsored PROGRA2 facility, linear polarization of scattered light is performed on various types of dust clouds in microgravity during parabolic flights onboard the CNES- and ESA-sponsored A300 Zéro-G aircraft. Clouds of fluffy aggregates are also studied on the ground when lifted by an air-draught. The effect of the physical properties of the particles, such as the grains size and size distribution, the real part of the refractive index, and the structure is currently being studied. The size distribution of the agglomerates is measured in the field of view from the polarized component images. The large number of phase curves already obtained in the various conditions of measurements, in order to build a database (about 160 curves) allows us to better connect the physical properties with the observed polarization of the dust in the clouds. The aim is to compare these curves with those obtained in the solar system by remote-sensing and in-situ techniques for interplanetary dust, cometary coma, and solid particles in planetary atmospheres (Renard et al., 2003). Measurements on layers of particles (i.e. on the ground) are then compared with remote measurements on asteroidal regoliths and planetary surfaces. New phase curves will be presented and discussed i.e. for quartz samples, crystals, fluffy mixtures of alumina and silica, and a high porosity ``regolith'' analogue made of micron-sized silica spheres. This work will contribute to the choice of the samples to be studied with the IMPACT/ICAPS instrument onboard the ISS. J.-B. Renard, E. Hadamcik, T. Lemaire, J.-C. Worms and A.-C. Levasseur-Regourd (2003). Polarization imaging of dust cloud particles: improvement and applications of the PROGRA2 instrument, ASR 31, 12, 2511-2518.

  7. Optical Extinction Measurements of Dust Density in the GMRO Regolith Test Bin

    Science.gov (United States)

    Lane, J.; Mantovani, J.; Mueller, R.; Nugent, M.; Nick, A.; Schuler, J.; Townsend, I.

    2016-01-01

    A regolith simulant test bin was constructed and completed in the Granular Mechanics and Regolith Operations (GMRO) Lab in 2013. This Planetary Regolith Test Bed (PRTB) is a 64 sq m x 1 m deep test bin, is housed in a climate-controlled facility, and contains 120 MT of lunar-regolith simulant, called Black Point-1 or BP-1, from Black Point, AZ. One of the current uses of the test bin is to study the effects of difficult lighting and dust conditions on Telerobotic Perception Systems to better assess and refine regolith operations for asteroid, Mars and polar lunar missions. Low illumination and low angle of incidence lighting pose significant problems to computer vision and human perception. Levitated dust on Asteroids interferes with imaging and degrades depth perception. Dust Storms on Mars pose a significant problem. Due to these factors, the likely performance of telerobotics is poorly understood for future missions. Current space telerobotic systems are only operated in bright lighting and dust-free conditions. This technology development testing will identify: (1) the impact of degraded lighting and environmental dust on computer vision and operator perception, (2) potential methods and procedures for mitigating these impacts, (3) requirements for telerobotic perception systems for asteroid capture, Mars dust storms and lunar regolith ISRU missions. In order to solve some of the Telerobotic Perception system problems, a plume erosion sensor (PES) was developed in the Lunar Regolith Simulant Bin (LRSB), containing 2 MT of JSC-1a lunar simulant. PES is simply a laser and digital camera with a white target. Two modes of operation have been investigated: (1) single laser spot - the brightness of the spot is dependent on the optical extinction due to dust and is thus an indirect measure of particle number density, and (2) side-scatter - the camera images the laser from the side, showing beam entrance into the dust cloud and the boundary between dust and void. Both

  8. 3D Additive Construction with Regolith for Surface Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Planetary surface exploration on Asteroids, the Moon, Mars and Martian Moons will require the stabilization of loose, fine, dusty regolith to avoid the effects of...

  9. REE enrichment in granite-derived regolith deposits of the southeast United States: Prospective source rocks and accumulation processes

    Science.gov (United States)

    Foley, Nora K.; Ayuso, Robert A.; Simandl, G.J.; Neetz, M.

    2015-01-01

    The Southeastern United States contains numerous anorogenic, or A-type, granites, which constitute promising source rocks for REE-enriched ion adsorption clay deposits due to their inherently high concentrations of REE. These granites have undergone a long history of chemical weathering, resulting in thick granite-derived regoliths, akin to those of South China, which supply virtually all heavy REE and Y, and a significant portion of light REE to global markets. Detailed comparisons of granite regolith profiles formed on the Stewartsville and Striped Rock plutons, and the Robertson River batholith (Virginia) indicate that REE are mobile and can attain grades comparable to those of deposits currently mined in China. A REE-enriched parent, either A-type or I-type (highly fractionated igneous type) granite, is thought to be critical for generating the high concentrations of REE in regolith profiles. One prominent feature we recognize in many granites and mineralized regoliths is the tetrad behaviour displayed in REE chondrite-normalized patterns. Tetrad patterns in granite and regolith result from processes that promote the redistribution, enrichment, and fractionation of REE, such as late- to post- magmatic alteration of granite and silicate hydrolysis in the regolith. Thus, REE patterns showing tetrad effects may be a key for discriminating highly prospective source rocks and regoliths with potential for REE ion adsorption clay deposits.

  10. Grain-Scale Supercharging and Breakdown on Airless Regoliths

    Science.gov (United States)

    Zimmerman, M. I.; Farrell, W. M.; Hartzell, C.M.; Wang, X.; Horanyi, M.; Hurley, D. M.; Hibbitts, K.

    2016-01-01

    Interactions of the solar wind and emitted photoelectrons with airless bodies have been studied extensively. However, the details of how charged particles interact with the regolith at the scale of a single grain have remained largely uncharacterized. Recent efforts have focused upon determining total surface charge under photoemission and solar wind bombardment and the associated electric field and potential. In this work, theory and simulations are used to show that grain-grain charge differences can exceed classical sheath predictions by several orders of magnitude, sometimes reaching dielectric breakdown levels. Temperature-dependent electrical conductivity works against supercharging by allowing current to leak through individual grains; the balance between internal conduction and surface charging controls the maximum possible grain-to-grain electric field. Understanding the finer details of regolith grain charging, conductive equilibrium, and dielectric breakdown will improve future numerical studies of space weathering and dust levitation on airless bodies.

  11. Modeling the Expected Performance of the REgolith X-ray Imaging Spectrometer (REXIS)

    OpenAIRE

    Inamdar, Niraj K.; Binzel, Richard P.; Hong, Jae Sub; Allen, Branden; Grindlay, Jonathan; Masterson, Rebecca A.

    2014-01-01

    OSIRIS-REx is the third spacecraft in the NASA New Frontiers Program and is planned for launch in 2016. OSIRIS-REx will orbit the near-Earth asteroid (101955) Bennu, characterize it, and return a sample of the asteroid's regolith back to Earth. The Regolith X-ray Imaging Spectrometer (REXIS) is an instrument on OSIRIS-REx designed and built by students at MIT and Harvard. The purpose of REXIS is to collect and image sun-induced fluorescent X-rays emitted by Bennu, thereby providing spectrosco...

  12. Regolith-geology mapping with support vector machine: A case study over weathered Ni-bearing peridotites, New Caledonia

    Science.gov (United States)

    De Boissieu, Florian; Sevin, Brice; Cudahy, Thomas; Mangeas, Morgan; Chevrel, Stéphane; Ong, Cindy; Rodger, Andrew; Maurizot, Pierre; Laukamp, Carsten; Lau, Ian; Touraivane, Touraivane; Cluzel, Dominique; Despinoy, Marc

    2018-02-01

    Accurate maps of Earth's geology, especially its regolith, are required for managing the sustainable exploration and development of mineral resources. This paper shows how airborne imaging hyperspectral data collected over weathered peridotite rocks in vegetated, mountainous terrane in New Caledonia were processed using a combination of methods to generate a regolith-geology map that could be used for more efficiently targeting Ni exploration. The image processing combined two usual methods, which are spectral feature extraction and support vector machine (SVM). This rationale being the spectral features extraction can rapidly reduce data complexity by both targeting only the diagnostic mineral absorptions and masking those pixels complicated by vegetation, cloud and deep shade. SVM is a supervised classification method able to generate an optimal non-linear classifier with these features that generalises well even with limited training data. Key minerals targeted are serpentine, which is considered as an indicator for hydrolysed peridotitic rock, and iron oxy-hydroxides (hematite and goethite), which are considered as diagnostic of laterite development. The final classified regolith map was assessed against interpreted regolith field sites, which yielded approximately 70% similarity for all unit types, as well as against a regolith-geology map interpreted using traditional datasets (not hyperspectral imagery). Importantly, the hyperspectral derived mineral map provided much greater detail enabling a more precise understanding of the regolith-geological architecture where there are exposed soils and rocks.

  13. High Fidelity Regolith Simulation Tool for ISRU Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has serious unmet needs for simulation tools capable of predicting the behavior of lunar regolith in proposed excavation, transport and handling systems....

  14. Evolution of Shock Melt Compositions in Lunar Regoliths

    Science.gov (United States)

    Vance, A. M.; Christoffersen, R.; Keller, L. P.; Berger, E. L.; Noble, S. K.

    2016-01-01

    Space weathering processes - driven primarily by solar wind ion and micrometeorite bombardment, are constantly changing the surface regoliths of airless bodies, such as the Moon. It is essential to study lunar soils in order to fully under-stand the processes of space weathering, and how they alter the optical reflectance spectral properties of the lunar surface relative to bedrock. Lunar agglutinates are aggregates of regolith grains fused together in a glassy matrix of shock melt produced during micrometeorite impacts into the lunar regolith. The formation of the shock melt component in agglutinates involves reduction of Fe in the target material to generate nm-scale spherules of metallic Fe (nanophase Fe0 or npFe0). The ratio of elemental Fe, in the form of npFe0, to FeO in a given bulk soil indicates its maturity, which increases with length of surface exposure as well as being typically higher in the finer-size fraction of soils. The melting and mixing process in agglutinate formation remain poorly understood. This includes incomplete knowledge regarding how the homogeneity and overall compositional trends of the agglutinate glass portions (agglutinitic glass) evolve with maturity. The aim of this study is to use sub-micrometer scale X-ray compositional mapping and image analysis to quantify the chemical homogeneity of agglutinitic glass, correlate its homogeneity to its parent soil maturity, and identify the principal chemical components contributing to the shock melt composition variations. An additional focus is to see if agglutinitic glass contains anomalously high Fe sub-micron scale compositional domains similar to those recently reported in glassy patina coatings on lunar rocks.

  15. Thermal Properties of Lunar Regolith Simulants

    Science.gov (United States)

    Street, Kenneth; Ray, Chandra; Rickman, Doug

    2010-01-01

    Various high temperature chemical processes have been developed to extract oxygen and metals from lunar regolith. These processes are tested using terrestrial analogues of the regolith. But all practical terrestrial analogs contain H2O and/or OH-, the presence of which has substantial impact on important system behaviors. We have undertaken studies of lunar regolith simulants to determine the limits of the simulants to validate key components for human survivability during sustained presence on the moon. Differential Thermal Analysis (DTA) yields information on phase transitions and melting temperatures. Themo-Gravimetric Analysis (TGA) with mass spectrometric (MS) determination of evolved gas species yields chemical information on various oxygenated volatiles (water, carbon dioxide, sulfur oxides, nitrogen oxides and phosphorus oxides) and their evolution temperature profiles. The DTA and TGAMS studies included JSC-1A fine, NU-LHT-2M and its proposed feed stocks: anorthosite; dunite; HQ (high quality) glass and the norite from which HQ glass is produced. Fig 1 is a data profile for anorthosite. The DTA (Fig 1a) indicates exothermic transitions at 355 and 490 C and endothermic transitions at 970 and 1235 C. Below the 355 C transition, water (Molecular Weight, MW, 18 in Fig 1c) is lost accounting for approximately 0.1% mass loss due to water removal (Fig 1b). Just above 490 C a second type of water is lost, presumably bound in lattices of secondary minerals. Between 490 and the 970 transition other volatile oxides are lost including those of hydrogen (third water type), carbon (MW = 44), sulfur (MW = 64 and 80), nitrogen (MW 30 and 46) and possibly phosphorus (MW = 79, 95 or 142). Peaks at MW = 35 and 19 may be attributable to loss of chlorine and fluorine respectively. Negative peaks in the NO (MW = 30) and oxygen (MW = 32) MS profiles may indicate the production of NO2 (MW = 46). Because so many compounds are volatilized in this temperature range quantification of

  16. Distribution of Amino Acids in Lunar Regolith

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Noble, S. K.; Gibson, E. K., Jr.

    2014-01-01

    One of the most eagerly studied questions upon initial return of lunar samples was whether significant amounts of organic compounds, including amino acids, were present. Analyses during the 1970s produced only tentative and inconclusive identifications of indigenous amino acids. Those analyses were hampered by analytical difficulties including relative insensitivity to certain compounds, the inability to separate chiral enantiomers, and the lack of compound-specific isotopic measurements, which made it impossible to determine whether the detected amino acids were indigenous to the lunar samples or the results of contamination. Numerous advances have been made in instrumentation and methodology for amino acid characterization in extraterrestrial samples in the intervening years, yet the origin of amino acids in lunar regolith samples has been revisited only once for a single lunar sample, (3) and remains unclear. Here, we present initial data from the analyses of amino acid abundances in 12 lunar regolith samples. We discuss these abundances in the context of four potential amino acid sources: (1) terrestrial biological contamination; (2) contamination from lunar module (LM) exhaust; (3) derivation from solar windimplanted precursors; and (4) exogenous delivery from meteorites.

  17. Apollo 16 regolith breccias and soils - Recorders of exotic component addition to the Descartes region of the moon

    Science.gov (United States)

    Simon, S. B.; Papike, J. J.; Laul, J. C.; Hughes, S. S.; Schmitt, R. A.

    1988-01-01

    Using the subdivision of Apollo 16 regolith breccias into ancient (about 4 Gyr) and younger samples (McKay et al., 1986), with the present-day soils as a third sample, a petrologic and chemical determination of regolith evolution and exotic component addition at the A-16 site was performed. The modal petrologies and mineral and chemical compositions of the regolith breccias in the region are presented. It is shown that the early regolith was composed of fragments of plutonic rocks, impact melt rocks, and minerals and impact glasses. It is found that KREEP lithologies and impact melts formed early in lunar history. The mare components, mainly orange high-TiO2 glass and green low-TiO2 glass, were added to the site after formation of the ancient breccias and prior to the formation of young breccias. The major change in the regolith since the formation of the young breccias is an increase in maturity represented by the formation of fused soil particles with prolonged exposure to micrometeorite impacts.

  18. Production of Oxygen from Lunar Regolith by Molten Oxide Electrolysis

    Science.gov (United States)

    Curreri, Peter A.

    2009-01-01

    This paper describes the use of the molten oxide electrolysis (MOE) process for the extraction of oxygen for life support and propellant, and silicon and metallic elements for use in fabrication on the Moon. The Moon is rich in mineral resources, but it is almost devoid of chemical reducing agents, therefore, molten oxide electrolysis is ideal for extraction, since the electron is the only practical reducing agent. MOE has several advantages over other extraction methods. First, electrolytic processing offers uncommon versatility in its insensitivity to feedstock composition. Secondly, oxide melts boast the twin key attributes of highest solubilizing capacity for regolith and lowest volatility of any candidate electrolytes. The former is critical in ensuring high productivity since cell current is limited by reactant solubility, while the latter simplifies cell design by obviating the need for a gas-tight reactor to contain evaporation losses as would be the case with a gas or liquid phase fluoride reagent operating at such high temperatures. Alternatively, MOE requires no import of consumable reagents (e.g. fluorine and carbon) as other processes do, and does not rely on interfacing multiple processes to obtain refined products. Electrolytic processing has the advantage of selectivity of reaction in the presence of a multi-component feed. Products from lunar regolith can be extracted in sequence according to the stabilities of their oxides as expressed by the values of the free energy of oxide formation (e.g. chromium, manganese, Fe, Si, Ti, Al, magnesium, and calcium). Previous work has demonstrated the viability of producing Fe and oxygen from oxide mixtures similar in composition to lunar regolith by molten oxide electrolysis (electrowinning), also called magma electrolysis having shown electrolytic extraction of Si from regolith simulant. This paper describes recent advances in demonstrating the MOE process by a joint project with participation by NASA KSC and

  19. Water and Regolith Shielding for Surface Reactor Missions

    Science.gov (United States)

    Poston, David I.; Ade, Brian J.; Sadasivan, Pratap; Leichliter, Katrina J.; Dixon, David D.

    2006-01-01

    This paper investigates potential shielding options for surface power fission reactors. The majority of work is focused on a lunar shield that uses a combination of water in stainless-steel cans and lunar regolith. The major advantage of a water-based shield is that development, testing, and deployment should be relatively inexpensive. This shielding approach is used for three surface reactor concepts: (1) a moderated spectrum, NaK cooled, Hastalloy/UZrH reactor, (2) a fast-spectrum, NaK-cooled, SS/UO2 reactor, and (3) a fast-spectrum, K-heat-pipe-cooled, SS/UO2 reactor. For this study, each of these reactors is coupled to a 25-kWt Stirling power system, designed for 5 year life. The shields are designed to limit the dose both to the Stirling alternators and potential astronauts on the surface. The general configuration used is to bury the reactor, but several other options exist as well. Dose calculations are presented as a function of distance from reactor, depth of buried hole, water boron concentration (if any), and regolith repacked density.

  20. Water and Regolith Shielding for Surface Reactor Missions

    International Nuclear Information System (INIS)

    Poston, David I.; Sadasivan, Pratap; Dixon, David D.; Ade, Brian J.; Leichliter, Katrina J.

    2006-01-01

    This paper investigates potential shielding options for surface power fission reactors. The majority of work is focused on a lunar shield that uses a combination of water in stainless-steel cans and lunar regolith. The major advantage of a water-based shield is that development, testing, and deployment should be relatively inexpensive. This shielding approach is used for three surface reactor concepts: (1) a moderated spectrum, NaK cooled, Hastalloy/UZrH reactor, (2) a fast-spectrum, NaK-cooled, SS/UO2 reactor, and (3) a fast-spectrum, K-heat-pipe-cooled, SS/UO2 reactor. For this study, each of these reactors is coupled to a 25-kWt Stirling power system, designed for 5 year life. The shields are designed to limit the dose both to the Stirling alternators and potential astronauts on the surface. The general configuration used is to bury the reactor, but several other options exist as well. Dose calculations are presented as a function of distance from reactor, depth of buried hole, water boron concentration (if any), and regolith repacked density

  1. Non-Fourier Heat Transfer with Phonons and Electrons in a Circular Thin Layer Surrounding a Hot Nanodevice

    Directory of Open Access Journals (Sweden)

    Vito Antonio Cimmelli

    2015-07-01

    Full Text Available A nonlocal model for heat transfer with phonons and electrons is applied to infer the steady-state radial temperature profile in a circular layer surrounding an inner hot component. Such a profile, following by the numerical solution of the heat equation, predicts that the temperature behaves in an anomalous way, since for radial distances from the heat source smaller than the mean-free path of phonons and electrons, it increases for increasing distances. The compatibility of this temperature behavior with the second law of thermodynamics is investigated by calculating numerically the local entropy production as a function of the radial distance. It turns out that such a production is positive and strictly decreasing with the radial distance.

  2. LUNAR OUTGASSING, TRANSIENT PHENOMENA, AND THE RETURN TO THE MOON. II. PREDICTIONS AND TESTS FOR OUTGASSING/REGOLITH INTERACTIONS

    International Nuclear Information System (INIS)

    Crotts, Arlin P. S.; Hummels, Cameron

    2009-01-01

    We follow Paper I with predictions of how gas leaking through the lunar surface could influence the regolith, as might be observed via optical transient lunar phenomena (TLPs) and related effects. We touch on several processes, but concentrate on low and high flow rate extremes, which are perhaps the most likely. We model explosive outgassing for the smallest gas overpressure at the regolith base that releases the regolith plug above it. This disturbance's timescale and affected area are consistent with observed TLPs; we also discuss other effects. For slow flow, escape through the regolith is prolonged by low diffusivity. Water, found recently in deep magma samples, is unique among candidate volatiles, capable of freezing between the regolith base and surface, especially near the lunar poles. For major outgassing sites, we consider the possible accumulation of water ice. Over geological time, ice accumulation can evolve downward through the regolith. Depending on gases additional to water, regolith diffusivity might be suppressed chemically, blocking seepage and forcing the ice zone to expand to larger areas, up to km 2 scales, again, particularly at high latitudes. We propose an empirical path forward, wherein current and forthcoming technologies provide controlled, sensitive probes of outgassing. The optical transient/outgassing connection, addressed via Earth-based remote sensing, suggests imaging and/or spectroscopy, but aspects of lunar outgassing might be more covert, as indicated above. TLPs betray some outgassing, but does outgassing necessarily produce TLPs? We also suggest more intrusive techniques from radar to in situ probes. Understanding lunar volatiles seems promising in terms of resource exploitation for human exploration of the Moon and beyond, and offers interesting scientific goals in its own right. Many of these approaches should be practiced in a pristine lunar atmosphere, before significant confusing signals likely to be produced upon humans

  3. High Fidelity Multi-Scale Regolith Simulation Tool for ISRU, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has serious unmet needs for simulation tools capable of predicting the behavior of lunar regolith in proposed excavation, transport and handling systems....

  4. 2007 Lunar Regolith Simulant Workshop Overview

    Science.gov (United States)

    McLemore, Carole A.; Fikes, John C.; Howell, Joe T.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) vision has as a cornerstone, the establishment of an Outpost on the Moon. This Lunar Outpost will eventually provide the necessary planning, technology development, and training for a manned mission to Mars in the future. As part of the overall activity, NASA is conducting Earth-based research and advancing technologies to a Technology Readiness Level (TRL) 6 maturity under the Exploration Technology Development Program that will be incorporated into the Constellation Project as well as other projects. All aspects of the Lunar environment, including the Lunar regolith and its properties, are important in understanding the long-term impacts to hardware, scientific instruments, and humans prior to returning to the Moon and living on the Moon. With the goal of reducing risk to humans and hardware and increasing mission success on the Lunar surface, it is vital that terrestrial investigations including both development and verification testing have access to Lunar-like environments. The Marshall Space Flight Center (MSFC) is supporting this endeavor by developing, characterizing, and producing Lunar simulants in addition to analyzing existing simulants for appropriate applications. A Lunar Regolith Simulant Workshop was conducted by MSFC in Huntsville, Alabama, in October 2007. The purpose of the Workshop was to bring together simulant developers, simulant users, and program and project managers from ETDP and Constellation with the goals of understanding users' simulant needs and their applications. A status of current simulant developments such as the JSC-1A (Mare Type Simulant) and the NASA/U.S. Geological Survey Lunar Highlands-Type Pilot Simulant (NU-LHT-1 M) was provided. The method for evaluating simulants, performed via Figures of Merit (FoMs) algorithms, was presented and a demonstration was provided. The four FoM properties currently being assessed are: size, shape, density, and composition. Some of the

  5. Solid-Solid Vacuum Regolith Heat-Exchanger for Oxygen Production, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase-1 project will demonstrate the feasibility of using a novel coaxial counterflow solid-solid heat exchanger to recover heat energy from spent regolith...

  6. The Nature of C Asteroid Regolith Revealed from the Jbilet Winselwan CM Chondrite

    Science.gov (United States)

    Zolensky, Michael; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Komatsu, Mutsumi; Chan, Queenie H. S.; Le, Loan; Kring, David; Cato, Michael; Fagan, Amy L.

    2016-01-01

    C-class asteroids frequently exhibit reflectance spectra consistent with thermally metamorphosed carbonaceous chondrites, or a mixture of phyllosilicate-rich material along with regions where they are absent. One particularly important example appears to be asteroid 162173 Ryugu, the target of the Hayabusa 2 mission, although most spectra of Ryugu are featureless, suggesting a heterogeneous regolith. Here we explore an alternative cause of dehydration of regolith of C-class asteroids - impact shock melting. Impact shock melting has been proposed to ex-plain some mineralogical characteristics of CB chondrites, but has rarely been considered a major process for hydrous carbonaceous chondrites.

  7. Distribution and Origin of Amino Acids in Lunar Regolith Samples

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; McLain, H. L.; Noble, S. K.; Gibson, E. K., Jr.

    2015-01-01

    The existence of organic compounds on the lunar surface has been a question of interest from the Apollo era to the present. Investigations of amino acids immediately after collection of lunar samples yielded inconclusive identifications, in part due to analytical limitations including insensitivity to certain compounds, an inability to separate enantiomers, and lack of compound-specific isotopic measurements. It was not possible to determine if the detected amino acids were indigenous to the lunar samples or the result of terrestrial contamination. Recently, we presented initial data from the analysis of amino acid abundances in 12 lunar regolith samples and discussed those results in the context of four potential amino acid sources [5]. Here, we expand on our previous work, focusing on amino acid abundances and distributions in seven regolith samples and presenting the first compound-specific carbon isotopic ratios measured for amino acids in a lunar sample.

  8. Modeling the expected performance of the REgolith X-ray Imaging Spectrometer (REXIS)

    Science.gov (United States)

    Inamdar, Niraj K.; Binzel, Richard P.; Hong, Jae Sub; Allen, Branden; Grindlay, Jonathan; Masterson, Rebecca A.

    2014-09-01

    OSIRIS-REx is the third spacecraft in the NASA New Frontiers Program and is planned for launch in 2016. OSIRIS-REx will orbit the near-Earth asteroid (101955) Bennu, characterize it, and return a sample of the asteroid's regolith back to Earth. The Regolith X-ray Imaging Spectrometer (REXIS) is an instrument on OSIRIS-REx designed and built by students at MIT and Harvard. The purpose of REXIS is to collect and image sun-induced fluorescent X-rays emitted by Bennu, thereby providing spectroscopic information related to the elemental makeup of the asteroid regolith and the distribution of features over its surface. Telescopic reflectance spectra suggest a CI or CM chondrite analog meteorite class for Bennu, where this primitive nature strongly motivates its study. A number of factors, however, will influence the generation, measurement, and interpretation of the X-ray spectra measured by REXIS. These include: the compositional nature and heterogeneity of Bennu, the time-variable solar state, X-ray detector characteristics, and geometric parameters for the observations. In this paper, we will explore how these variables influence the precision to which REXIS can measure Bennu's surface composition. By modeling the aforementioned factors, we place bounds on the expected performance of REXIS and its ability to ultimately place Bennu in an analog meteorite class.

  9. Sputtering of Lunar Regolith Simulant by Protons and Multicharged Heavy Ions at Solar Wind Energies

    International Nuclear Information System (INIS)

    Meyer, Fred W.; Harris, Peter R.; Taylor, C.N.; Meyer, Harry M. III; Barghouty, N.; Adams, J. Jr.

    2011-01-01

    We report preliminary results on sputtering of a lunar regolith simulant at room temperature by singly and multiply charged solar wind ions using quadrupole and time-of-flight (TOF) mass spectrometry approaches. Sputtering of the lunar regolith by solar-wind heavy ions may be an important particle source that contributes to the composition of the lunar exosphere, and is a possible mechanism for lunar surface ageing and compositional modification. The measurements were performed in order to assess the relative sputtering efficiency of protons, which are the dominant constituent of the solar wind, and less abundant heavier multicharged solar wind constituents, which have higher physical sputtering yields than same-velocity protons, and whose sputtering yields may be further enhanced due to potential sputtering. Two different target preparation approaches using JSC-1A AGGL lunar regolith simulant are described and compared using SEM and XPS surface analysis.

  10. Influence of geology, regolith and soil on fluid flow pathways in an upland catchment in central NSW, Australia

    Science.gov (United States)

    Bernardi, Tony

    2014-05-01

    ) profile data were compiled from previous work with colleagues in this area. Preliminary interpretation of the mapping and the geophysics is that there is a three-layer framework for groundwater modelling: fractured granitic rock with an irregular upper surface, finer-grained (volcanic) rock that has either mantled the older granite or has been intruded into, and a weathering profile developed in relation to the land surface. More careful interpretation of the intervals that shallow and deep piezometers and shallow and deep bores are sampling indicates that variability in water chemistry between holes can, in part, be explained because they are sampling different materials in the sub-surface geology/regolith geology. Quartz is a relatively resistant phase throughout the profiles. For both substrates there is a decrease in the feldspar in increasingly weathered regolith materials, with a corresponding increase in kaolinite clay. There is increased homogenisation of the profile, and some horizonation due to pedogenic processes (e.g. bioturbation, illuviation of fines down profile) nearer the land surface. This results in a concentration of more resistant phases (quartz and remnant primary feldspar as sands) at the land surface over the granitic substrate, however kaolinite persists in the profile over the finer substrate. The presence of measurable ferruginous oxides and sesquioxides relates to localised percolation of oxidising fluids through the profiles. Understanding the configuration and composition of rocks and regolith materials in the Baldry catchment facilitates interpretation of observed patterns in hydrological analyses.

  11. Transmission Electron Microscopy of Itokawa Regolith Grains

    Science.gov (United States)

    Keller, Lindsay P.; Berger, E. L.

    2013-01-01

    Introduction: In a remarkable engineering achievement, the JAXA space agency successfully recovered the Hayabusa space-craft in June 2010, following a non-optimal encounter and sur-face sampling mission to asteroid 25143 Itokawa. These are the first direct samples ever obtained and returned from the surface of an asteroid. The Hayabusa samples thus present a special op-portunity to directly investigate the evolution of asteroidal sur-faces, from the development of the regolith to the study of the effects of space weathering. Here we report on our preliminary TEM measurements on two Itokawa samples. Methods: We were allocated particles RA-QD02-0125 and RA-QD02-0211. Both particles were embedded in low viscosity epoxy and thin sections were prepared using ultramicrotomy. High resolution images and electron diffraction data were ob-tained using a JEOL 2500SE 200 kV field-emission scanning-transmission electron microscope. Quantitative maps and anal-yses were obtained using a Thermo thin-window energy-dispersive x-ray (EDX) spectrometer. Results: Both particles are olivine-rich (Fo70) with µm-sized inclusions of FeS and have microstructurally complex rims. Par-ticle RA-QD02-0125 is rounded and has numerous sub-µm grains attached to its surface including FeS, albite, olivine, and rare melt droplets. Solar flare tracks have not been observed, but the particle is surrounded by a continuous 50 nm thick, stuctur-ally disordered rim that is compositionally similar to the core of the grain. One of the surface adhering grains is pyrrhotite show-ing a S-depleted rim (8-10 nm thick) with nanophase Fe metal grains (<5 nm) decorating the outermost surface. The pyrrhotite displays a complex superstructure in its core that is absent in the S-depleted rim. Particle RA-QD02-0211 contains solar flare particle tracks (2x109 cm-2) and shows a structurally disordered rim 100 nm thick. The track density corresponds to a surface exposure of 103-104 years based on the track production rate

  12. Vertical transport of water in the Martian boundary layer

    Science.gov (United States)

    Zent, Aaron P.; Haberle, R. M.; Houben, Howard C.

    1993-01-01

    We are continuing our examination of the transport of H2O through the martian boundary layer, and we have written a one-dimensional numerical model of the exchange of H2O between the atmosphere and subsurface of Mars through the planetary boundary layer (PBL). Our goal is to explore the mechanisms of H2O exchange, and to elucidate the role played by the regolith in the local H2O budget. The atmospheric model includes effects of Coriolis, pressure gradient, and frictional forces for momentum, as well as radiation, sensible heat flux, and advection for heat. The model differs from Flasar and Goody by use of appropriate Viking-based physical constants and inclusion of the radiative effects of atmospheric dust. We specify the pressure gradient force or compute it from a simple slope model. The subsurface model accounts for conduction of heat and diffusion of H2O through a porous adsorbing medium in response to diurnal forcing. The model is initialized with depth-independent H2O concentrations (2 kg M(exp -3)) in the regolith, and a dry atmosphere. The model terminates when the atmospheric H2O column abundance stabilizes at 0.1 percent per sol.

  13. Electrostatic Beneficiation of Lunar Regolith: Applications in In-Situ Resource Utilization

    Science.gov (United States)

    Trigwell, Steve; Captain, James; Weis, Kyle; Quinn, Jacqueline

    2011-01-01

    Upon returning to the moon, or further a field such as Mars, presents enormous challenges in sustaining life for extended periods of time far beyond the few days the astronauts experienced on the moon during the Apollo missions. A stay on Mars is envisioned to last several months, and it would be cost prohibitive to take all the requirements for such a stay from earth. Therefore, future exploration missions will be required to be self-sufficient and utilize the resources available at the mission site to sustain human occupation. Such an exercise is currently the focus of intense research at NASA under the In-situ Resource Utilization (ISRU) program. As well as oxygen and water necessary for human life, resources for providing building materials for habitats, radiation protection, and landing/launch pads are required. All these materials can be provided by the regolith present on the surface as it contains sufficient minerals and metals oxides to meet the requirements. However, before processing, it would be cost effective if the regolith could be enriched in the mineral(s) of interest. This can be achieved by electrostatic beneficiation in which tribocharged mineral particles are separated out and the feedstock enriched or depleted as required. The results of electrostatic beneficiation of lunar simulants and actual Apollo regolith, in lunar high vacuum are reported in which various degrees of efficient particle separation and mineral enrichment up to a few hundred percent were achieved.

  14. Extraction of Water from Martian Regolith Simulant via Open Reactor Concept

    Science.gov (United States)

    Trunek, Andrew J.; Linne, Diane L.; Kleinhenz, Julie E.; Bauman, Steven W.

    2018-01-01

    To demonstrate proof of concept water extraction from simulated Martian regolith, an open reactor design is presented along with experimental results. The open reactor concept avoids sealing surfaces and complex moving parts. In an abrasive environment like the Martian surface, those reactor elements would be difficult to maintain and present a high probability of failure. A general lunar geotechnical simulant was modified by adding borax decahydrate (Na2B4O7·10H2O) (BDH) to mimic the 3 percent water content of hydrated salts in near surface soils on Mars. A rotating bucket wheel excavated the regolith from a source bin and deposited the material onto an inclined copper tray, which was fitted with heaters and a simple vibration system. The combination of vibration, tilt angle and heat was used to separate and expose as much regolith surface area as possible to liberate the water contained in the hydrated minerals, thereby increasing the efficiency of the system. The experiment was conducted in a vacuum system capable of maintaining a Martian like atmosphere. Evolved water vapor was directed to a condensing system using the ambient atmosphere as a sweep gas. The water vapor was condensed and measured. Processed simulant was captured in a collection bin and weighed in real time. The efficiency of the system was determined by comparing pre- and post-processing soil mass along with the volume of water captured.

  15. CNT-Based Smart Electrostatic Filters for Capturing Nanoparticulate Lunar Regolith, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The abrasive, reactive, and ubiquitous nature of lunar regolith created significant and serious problems during the Apollo moon missions. In this Phase I, Agave...

  16. Apollo 14 regolith breccias - Different glass populations and their potential for charting space time variations

    Science.gov (United States)

    Delano, John W.

    1988-01-01

    Apollo 14 regolith breccias (14313, 14307, 14301, 14049, 14047) have been found to have different populations of nonagglutinitic, mare-derived glasses. These variations appear to not only reflect different source regoliths but also different closure ages for these breccias. Based upon these different glass populations, 14301 is inferred to have a closure age sometime during the epoch of mare volcanism. All of the other four breccias were formed after the termination of mare volcanism with a possible age sequence from old to young of the following: 14307, 14313, 14049, 14047. Due to the relative simplicity of acquiring high-quality chemical data on large numbers of glasses by electron microprobe, mare glass populations allow: (1) classification of regolith breccias with respect to provenance and (2) estimation of their relative and absolute closure ages. The determination of (Ar-40)-(Ar-39) ages on individual glass spherules within breccias using the laser probe should in the future prove to be a promising extension of the present study.

  17. Electrostatic Separation of Lunar Regolith for Size Beneficiation Using Same-Material Tribocharging

    Data.gov (United States)

    National Aeronautics and Space Administration — The success of future long-term manned lunar missions depends on the development of certain key technologies. One such technology, the utilization of lunar regolith...

  18. Triassic regolithization: A major stage of pre-enrichment in the formation of unconformity related deposits in Southern France

    International Nuclear Information System (INIS)

    Schmitt, J.M.; Clement, J.Y.

    1989-01-01

    The formation of unconformity related uranium deposits in Canada and Australia is currently thought to have involved some stage of preconcentration within the Proterozoic regolith. Uranium deposits in the southern Massif central (France) are spatially linked to the Mesozoic unconformity. Under this unconformity, rocks of the Hercynian basement as well as Permo-Carboniferous sediments show a regolithic alteration dating back to the Late Permian to Late Triassic period. On the elevated parts of the Triassic landscape, 30 to 50 m deep weathering profiles are preserved. Three main zones can be distinguished: a lower pink coloured zone, showing partly albitized and chloritized rocks: a middle bleached zone with neogenic clays; and an upper reddish zone with Fe-Mn oxyhydroxides. Towards the Triassic basin, much deeper (200-300 m) alteration profiles are observed on Permo-Carboniferous sediments. The two upper regolithic zones are present, but the lower albitized one is very developed with two subzones: analcite/albite at the top, and K-feldspar/albite at the bottom. Geochemical data show that potassium is fixed in the uppermost horizons of the regolith, whereas sodium is transported towards the lower horizons and basin areas and fixed in analcite/albite zones. Uranium, vanadium, copper and less mobile elements such as titanium and zirconium are strongly leached from the weathering profiles in elevated parts of the landscape but are enriched in basin zones of albitization up to 5-15 times. Thus, solutions generated from the weathering profiles have brought about a major redistribution of uranium in the Triassic landscape. The remarkable applanation and tectonic stability of the area as well as a subarid climate seem to have favoured this 'regolithization' process. In southern France, geochemical differentiation during the Triassic has thus given rise to important uranium pre-enrichment, and the regolith is a major control for later uranium deposits. (author). 16 refs, 8

  19. Near-UV Transmittance of Basalt Dust as an Analog of the Martian Regolith: Implications for Sensor Calibration and Astrobiology

    Directory of Open Access Journals (Sweden)

    J. Martínez-Frías

    2006-06-01

    Full Text Available The Martian regolith is exposed to solar irradiation in the near-UV (200-390 nm.Basalt is one of the main components of the dust on Mars surface. The near-UV irradiationof basalt dust on Mars is simulated experimentally in order to determine the transmittance asa function of the mass and thickness of the dust. This data can serve to quantify theabsorption of dust deposited on sensors aiming to measure the UV intensity on Marssurface. The minimum thickness of the dust that corresponds to near-zero-transmittance inthe near-UV is measured. Hypothetical Martian microorganisms living on the dusty regolithat deeper layers would be preserved from the damaging solar UV irradiation.

  20. Mineralization and geophysical exploration by IP/RS and ground magnetic survey in MA-I and surrounding area, Maherabad porphyry Cu-Au prospect area, east of Iran

    Directory of Open Access Journals (Sweden)

    Azadeh Malekzadeh Shafaroudi

    2009-10-01

    Full Text Available Maherabad prospect area, which is studied in detail, is the first porphyry Cu-Au mineralization in the east of Iran. Based on relation of mineralization with subvolcanic intrusive bodies mostly monzonitic with porphyry texture, extent and types of alteration including potassic, sericitic- potassic, quartz- sericite- carbonate- pyrite, quartz- carbonate- pyrite, silicification- propylitic, propylitic, stockwork mineralization, assemblages hypogene mineralization including pyrite, chalcopyrite, bornite and magnetite and high anomalies of Cu and Au, Mineralization is porphyry Cu-Au-type. MA-I area, which is covered by regolith from its surrounding is the most important section of mineralization in the region because of intensive of quartz-sericite-carbonate-pyrite alteration and very high dense quartz-sulfide veinlets. IP/RS and ground magnetic surveys were conducted in the MA-I prospect area and its surrounding plain. Drilling on the IP suede section anomaly resulted to the recognition of sulfide mineralization in on extensive area under the regolith. Surface and underground detailed studies of geology, alteration, mineralization and geochemistry confirm the extension of covered mineralization to the south and west of the area. Based on the ground magnetic anomaly, the center of mineralization system, potassic zone, to the southwest of the area was recognized. Quartz0sericite-carbonate-pyrite alteration zone, which is located around the potassic zone, has very low magnetic response. IP/RS and ground magnetic surveys in a broader area than before are strongly recommended.

  1. Mineralogical sources of groundwater fluoride in Archaen bedrock/regolith aquifers: Mass balances from southern India and north-central Sri Lanka

    Directory of Open Access Journals (Sweden)

    B.M. Hallett

    2015-09-01

    New hydrological insights for the region: An estimate of weathering duration for the in situ regolith in Andhra Pradesh, 250–380 Ka, is close to a previous estimate for southern India. Partial or total destruction of the primary F-bearing bedrock minerals and consistent depletion of F in the remnant minerals result in a much reduced total F content in the regolith. Leaching experiments and field relationships, however, indicate a greater potential for F mobilisation to groundwater from the regolith than the bedrock. Schemes for managed aquifer recharge should beware the risk of mobilising additional F to groundwater.

  2. Performance analysis of a lunar based solar thermal power system with regolith thermal storage

    International Nuclear Information System (INIS)

    Lu, Xiaochen; Ma, Rong; Wang, Chao; Yao, Wei

    2016-01-01

    The manned deep-space exploration is a hot topic of the current space activities. The continuous supply of thermal and electrical energy for the scientific equipment and human beings is a crucial issue for the lunar outposts. Since the night lasts for periods of about 350 h at most locations on the lunar surface, massive energy storage is required for continuous energy supply during the lengthy lunar night and the in-situ resource utilization is demanded. A lunar based solar thermal power system with regolith thermal storage is presented in this paper. The performance analysis is carried out by the finite-time thermodynamics to take into account major irreversible losses. The influences of some key design parameters are analyzed for system optimization. The analytical results shows that the lunar based solar thermal power system with regolith thermal storage can meet the requirement of the continuous energy supply for lunar outposts. - Highlights: • A lunar based solar thermal power system with regolith thermal storage is presented. • The performance analysis is carried out by the finite-time thermodynamics. • The influences of some key design parameters are analyzed.

  3. Joule-Heated Molten Regolith Electrolysis Reactor Concepts for Oxygen and Metals Production on the Moon and Mars

    Science.gov (United States)

    Sibille, Laurent; Dominques, Jesus A.

    2012-01-01

    The maturation of Molten Regolith Electrolysis (MRE) as a viable technology for oxygen and metals production on explored planets relies on the realization of the self-heating mode for the reactor. Joule heat generated during regolith electrolysis creates thermal energy that should be able to maintain the molten phase (similar to electrolytic Hall-Heroult process for aluminum production). Self-heating via Joule heating offers many advantages: (1) The regolith itself is the crucible material, it protects the vessel walls (2) Simplifies the engineering of the reactor (3) Reduces power consumption (no external heating) (4) Extends the longevity of the reactor. Predictive modeling is a tool chosen to perform dimensional analysis of a self-heating reactor: (1) Multiphysics modeling (COMSOL) was selected for Joule heat generation and heat transfer (2) Objective is to identify critical dimensions for first reactor prototype.

  4. Benefits of Mars ISRU Regolith Water Processing: A Case Study for the NASA Evolvable Mars Campaign

    Science.gov (United States)

    Kleinhenz, Julie; Paz, Aaron; Mueller, Robert

    2016-01-01

    ISRU of Mars resources was baselined in 2009 Design Reference Architecture (DRA) 5.0, but only for Oxygen production using atmospheric CO2. The Methane (LCH4) needed for ascent propulsion of the Mars Ascent Vehicle (MAV) would need to be brought from Earth. However: Extracting water from the Martian Regolith enables the production of both Oxygen and Methane from Mars resources: Water resources could also be used for other applications including: Life support, radiation shielding, plant growth, etc. Water extraction was not baselined in DRA5.0 due to perceived difficulties and complexity in processing regolith. The NASA Evolvable Mars Campaign (EMC) requested studies to look at the quantitative benefits and trades of using Mars water ISRUPhase 1: Examined architecture scenarios for regolith water retrieval. Completed October 2015. Phase 2: Deep dive of one architecture concept to look at end-to-end system size, mass, power of a LCH4/LO2 ISRU production system

  5. DIHeDRAL: Downhole Regolith Interrogation with Helium-Assisted Drill and LIBS, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Future landed robotic missions to the lunar poles will seek to characterize the properties of subsurface regolith. Current instruments for such in-situ analysis,...

  6. DIHeDRAL: Downhole Regolith Interrogation with Helium-Assisted DRill And LIBS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future landed robotic missions to the lunar poles will seek to characterize the properties of subsurface regolith. Current instruments for such in-situ analysis,...

  7. An oxygen-rich dust disk surrounding an evolved star in the Red Rectangle

    NARCIS (Netherlands)

    Waters, LBFM; Waelkens, C; van Winckel, H; Molster, FJ; Tielens, AGGM; van Loon, JT; Morris, PW; Cami, J; Bouwman, J; de Koter, A; de Jong, T; de Graauw, T

    1998-01-01

    The Red Rectangle(1) is the prototype of a class of carbon-rich reflection nebulae surrounding low-mass stars in the final stages of evolution. The central star of this nebula has ejected most of its layers (during the red-giant phase), which now form the surrounding cloud, and is rapidly evolving

  8. Robust and Elastic Lunar and Martian Structures from 3D-Printed Regolith Inks

    Science.gov (United States)

    Jakus, Adam E.; Koube, Katie D.; Geisendorfer, Nicholas R.; Shah, Ramille N.

    2017-03-01

    Here, we present a comprehensive approach for creating robust, elastic, designer Lunar and Martian regolith simulant (LRS and MRS, respectively) architectures using ambient condition, extrusion-based 3D-printing of regolith simulant inks. The LRS and MRS powders are characterized by distinct, highly inhomogeneous morphologies and sizes, where LRS powder particles are highly irregular and jagged and MRS powder particles are rough, but primarily rounded. The inks are synthesized via simple mixing of evaporant, surfactant, and plasticizer solvents, polylactic-co-glycolic acid (30% by solids volume), and regolith simulant powders (70% by solids volume). Both LRS and MRS inks exhibit similar rheological and 3D-printing characteristics, and can be 3D-printed at linear deposition rates of 1-150 mm/s using 300 μm to 1.4 cm-diameter nozzles. The resulting LRS and MRS 3D-printed materials exhibit similar, but distinct internal and external microstructures and material porosity (~20-40%). These microstructures contribute to the rubber-like quasi-static and cyclic mechanical properties of both materials, with young’s moduli ranging from 1.8 to 13.2 MPa and extension to failure exceeding 250% over a range of strain rates (10-1-102 min-1). Finally, we discuss the potential for LRS and MRS ink components to be reclaimed and recycled, as well as be synthesized in resource-limited, extraterrestrial environments.

  9. The Role of Planetary Dust and Regolith Mechanics in Technology Developments at NASA

    Science.gov (United States)

    Agui, Juan H.

    2011-01-01

    One of NASA's long term goals continues to be the exploration of other planets and orbital bodies in our solar system. Our sustained presence through the installation of stations or bases on these planetary surfaces will depend on developing properly designed habitation modules, mobility systems and supporting infrastructure. NASA Glenn Research Center is involved in several technology developments in support of this overarching goal. Two key developments are in the area of advanced filtration and excavation systems. The first addresses the issues posed by the accumulation of particulate matter over long duration missions and the intrusion of planetary dust into spacecraft and habitat pressurized cabins. The latter supports the operation and infrastructure of insitu resource utilization (ISRU) processes to derive consumables and construction materials from the planetary regolith. These two developments require a basic understanding of the lunar regolith at the micro (particle) to macro (bulk) level. Investigation of the relevant properties of the lunar regolith and characterization of the standard simulant materials used in. testing were important first steps in these developments. The fundamentals and operational concepts of these technologies as well as descriptions of new NASA facilities, including the Particulate Filtration Testing and the NASA Excavation and Traction Testing facilities, and their capabilities for testing and advancing these technologies will be presented. The test data also serves to validate and anchor computational simulation models.

  10. The Origin of Amino Acids in Lunar Regolith Samples

    Science.gov (United States)

    Cook, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K., Jr.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5 ppb to 651.1 ppb in 6M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: -aminoisobutyric acid (AIB), D-and L-amino-n-butyric acid (-ABA), DL-amino-n-butyric acid, -amino-n-butyric acid, -alanine, and -amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic -ABA were present in some samples.

  11. The properties of the lunar regolith at Chang'e-3 landing site: A study based on LPR data

    Science.gov (United States)

    Feng, J.; Su, Y.; Xing, S.; Ding, C.; Li, C.

    2015-12-01

    In situ sampling from surface is difficult in the exploration of planets and sometimes radar sensing is a better choice. The properties of the surface material such as permittivity, density and depth can be obtained by a surface penetrating radar. The Chang'e-3 (CE-3) landed in the northern Mare Imbrium and a Lunar Penetrating Radar (LPR) is carried on the Yutu rover to detect the shallow structure of the lunar crust and the properties of the lunar regolith, which will give us a close look at the lunar subsurface. We process the radar data in a way which consist two steps: the regular preprocessing step and migration step. The preprocessing part includes zero time correction, de-wow, gain compensation, DC removal, geometric positioning. Then we combine all radar data obtained at the time the rover was moving, and use FIR filter to reduce the noise in the radar image with a pass band frequency range 200MHz-600MHz. A normal radar image is obtained after the preprocessing step. Using a nonlinear least squares fitting method, we fit the most hyperbolas in the radar image which are caused by the buried objects or rocks in the regolith and estimate the EM wave propagation velocity and the permittivity of the regolith. For there is a fixed mathematical relationship between dielectric constant and density, the density profile of the lunar regolith is also calculated. It seems that the permittivity and density at the landing site is larger than we thought before. Finally with a model of variable velocities, we apply the Kirchhoff migration method widely used in the seismology to transform the the unfocused space-time LPR image to a focused one showing the object's (most are stones) true location and size. From the migrated image, we find that the regolith depth in the landing site is smaller than previous study and the stone content rises rapidly with depth. Our study suggests that the landing site is a young region and the reworked history of the surface is short, which is

  12. Hillslope evolution in landscapes dominated by layered rocks

    Science.gov (United States)

    Glade, R.; Anderson, R. S.

    2016-12-01

    Geologic structure and lithology can exert fundamental control over hillslope evolution. Landforms common across the western US, such as mesas, hogbacks, flatirons, and symmetric ridges bounding dikes, develop in the face of differential weathering of layered rocks in a horizontal, tilted, or vertical structural orientation. These features exhibit a characteristic form distinct from that of homogeneous, soil-mantled hillslopes; linear-to-concave up slopes developed on soft underlying rock typically display a thin, non-uniform layer of mobile regolith and are armored by debris derived from the resistant layers. Feedbacks between weathering and transport of both easily eroded rock and embedded resistant material can explain this general form where debris is dominated by large resistant blocks. In the more general case, however, relationships between the size distribution of the resistant material, relative weathering rates, and boundary condition history are not well-understood. Here we use a 1-D numerical model to explore the evolution of two end-member landforms: a hogback associated with a tilted sandstone bed, and a symmetrical ridge associated with a vertical basalt dike, both bounded by shale bedrock. The first, modeled after the Dakota Hogback near Boulder, Colorado, produces large sandstone blocks that both armor the underlying slope from weathering and stall regolith motion. The vertical dike, modeled after Shiprock, New Mexico, produces both large blocks and small basalt chips that armor the bounding slopes. We show that in both settings, feedbacks between armor and soft rock lead to autogenic processes that modulate base level signals, alter hillslope form, and increase relief over time when compared to a control case with no armor. We explore a variety of boundary conditions in which the presence of these feedbacks leads to a quasi-steady state hillslope form that differs both quantitatively and qualitatively from that expected of a traditional parabolic

  13. Some consequences of a liquid water saturated regolith in early Martian history

    Science.gov (United States)

    Fuller, A. O.; Hargraves, R. B.

    1978-01-01

    Flooding of low-lying areas of the Martian regolith may have occurred early in the planet's history when a comparatively dense primitive atmosphere existed. If this model is valid, the following are some pedogenic and mineralogical consequences to be expected. Fluctuation of the water table in response to any seasonal or longer term causes would have resulted in precipitation of ferric oxyhydroxides with the development of a vesicular duricrust (or hardpan). Disruption of such a crust by scarp undercutting or frost heaving accompanied by wind deflation of fines could account for the boulders visible on Utopia Planitia in the vicinity of the second Viking lander site. Laboratory and field evidence on earth suggests that under weakly oxidizing conditions lepidocrocite (rather than goethite) would have preferentially formed in the Martian regolith from the weathering of ferrous silicates, accompanied by montmorillonite, nontronite, and cronstedtite. Maghemite may have formed as a low-temperature dehydrate of lepidocrocite or directly from ferrous precursors.

  14. Extraction and Capture of Water from Martian Regolith Experimental Proof-of-Concept

    Science.gov (United States)

    Linne, Diane; Kleinhenz, Julie; Bauman, Steve; Johnson, Kyle

    2016-01-01

    Mars Design Reference Architecture 5.0:Lists in-situ resource utilization (ISRU) as enabling for robust human Mars missionsLO2LCH4 ascent propulsion 25,000 kg oxygen from atmosphere for ascent and life support Atmospheric based ISRU processes less operationally complex than surface based limited concept evaluation to date and Mars surface water property and distribution uncertainty would not allow [Mars soil water processing] to be base lined at this time Limited Concept Evaluation to Date Lunar regolith O2 extraction processing experience Lunar regolith is fluidized and heated to high temperatures with H2 to produce H2O from iron-bearing minerals Mars similarity concept: Soil placed in fluidized bed reactor Heated to moderate temperatures Inert gas flow used to fluidize the bed and help with water desorption Challenges: High-temperature dusty seals Working gas requires downstream separation and recycling to reduce consumables loss Batch process heating thermally inefficient.

  15. Potential Use of In Situ Material Composites such as Regolith/Polyethylene for Shielding Space Radiation

    Science.gov (United States)

    Theriot, Corey A.; Gersey, Buddy; Bacon, Eugene; Johnson, Quincy; Zhang, Ye; Norman, Jullian; Foley, Ijette; Wilkins, Rick; Zhou, Jianren; Wu, Honglu

    2010-01-01

    NASA has an extensive program for studying materials and methods for the shielding of astronauts to reduce the effects of space radiation when on the surfaces of the Moon and Mars, especially in the use of in situ materials native to the destination reducing the expense of materials transport. The most studied material from the Moon is Lunar regolith and has been shown to be as efficient as aluminum for shielding purposes (1). The addition of hydrogenous materials such as polyethylene should increase shielding effectiveness and provide mechanical properties necessary of structural materials (2). The neutron radiation shielding effectiveness of polyethylene/regolith stimulant (JSC-1A) composites were studied using confluent human fibroblast cell cultures exposed to a beam of high-energy spallation neutrons at the 30deg-left beam line (ICE house) at the Los Alamos Neutron Science Center. At this angle, the radiation spectrum mimics the energy spectrum of secondary neutrons generated in the upper atmosphere and encountered when aboard spacecraft and high-altitude aircraft. Cell samples were exposed in series either directly to the neutron beam, within a habitat created using regolith composite blocks, or behind 25 g/sq cm of loose regolith bulk material. In another experiment, cells were also exposed in series directly to the neutron beam in T-25 flasks completely filled with either media or water up to a depth of 20 cm to test shielding effectiveness versus depth and investigate the possible influence of secondary particle generation. All samples were sent directly back to JSC for sub-culturing and micronucleus analysis. This presentation is of work performed in collaboration with the NASA sponsored Center for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View A&M.

  16. Regolith Advanced Surface Systems Operations Robot (RASSOR) Phase 2 and Smart Autonomous Sand-Swimming Excavator

    Science.gov (United States)

    Sandy, Michael

    2015-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) Phase 2 is an excavation robot for mining regolith on a planet like Mars. The robot is programmed using the Robotic Operating System (ROS) and it also uses a physical simulation program called Gazebo. This internship focused on various functions of the program in order to make it a more professional and efficient robot. During the internship another project called the Smart Autonomous Sand-Swimming Excavator was worked on. This is a robot that is designed to dig through sand and extract sample material. The intern worked on programming the Sand-Swimming robot, and designing the electrical system to power and control the robot.

  17. Global effects of double layers

    International Nuclear Information System (INIS)

    Raad, M.A.

    1984-12-01

    Locally the formation of an electrostatic double layer in a current carrying plasma leads to a direct acceleration of particles which may penetrate far into the surrounding medium. The potential across the double layer, giving this acceleration, must be maintained by the external system and is a basic parameter for the local to global coupling. The double layer potential is associated with an electric field parallel to the magnetic field. In general this leads to a magnetohydrodynamic relaxation of the surrounding medium providing the influx of energy which is dissipated by the double layer. The double layer potential is limited as is the maximum possible rate of energy influx. If the global response of the external medium can be represented by an external circuit and if an equivalent circuit element can be found to represent the double layer, for example a negative resistance for intermediate time scales, it is possible to give a description of the dynamics and stability of the whole system. (Author)

  18. Benefit of Lunar Regolith on Reflector Mass Savings

    International Nuclear Information System (INIS)

    Hatton, Steven A.; El-Genk, Mohamed S.

    2007-01-01

    The 2004 NASA Vision for Space Exploration calls for the return of mankind to the moon by no later than 2020, in preparation for an adventure to Mars and beyond. An envisioned lunar outpost will provide living quarters for initially 5- 10 astronauts for up to 2 weeks, and latter for science experiments, and recovery of mineral and indigenous resources for the day-to-day operation and production of propellant. These activities would require electrical and thermal powers in the order of 10's - 100's of kilowatts 24/7. Potential power options include photovoltaic, requiring massive batteries or fuel cells for energy storage during the long nights on the moon, and nuclear reactor power systems, which are much more compact and operate independent of the sun. This paper examines the benefit of using the lunar regolith as a supplemental neutron reflector on decreasing the launch mass of the Sectored Compact Reactor (SCoRe-S), developed at the Institute for Space and Nuclear Power Studies. In addition to providing at least $2.00 of hot-clean excess reactivity at the beginning of life, various SCoRe-S concepts investigated in this paper are at least $1.00 sub-critical when shutdown, and when the bare reactor cores are submerged in wet sand and flooded with seawater, following a launch abort accident. Design calculations performed using MCNP5 confirmed that using lunar regolith as supplementary reflector reduces the launch mass of the SCoRe-S cores by ∼ 34% - 35%, or 150 - 200 kg, while satisfying the above reactivity requirements

  19. Comparison of Direct Solar Energy to Resistance Heating for Carbothermal Reduction of Regolith

    Science.gov (United States)

    Muscatello, Anthony C.; Gustafson, Robert J.

    2011-01-01

    A comparison of two methods of delivering thermal energy to regolith for the carbo thermal reduction process has been performed. The comparison concludes that electrical resistance heating is superior to direct solar energy via solar concentrators for the following reasons: (1) the resistance heating method can process approximately 12 times as much regolith using the same amount of thermal energy as the direct solar energy method because of superior thermal insulation; (2) the resistance heating method is more adaptable to nearer-term robotic exploration precursor missions because it does not require a solar concentrator system; (3) crucible-based methods are more easily adapted to separation of iron metal and glass by-products than direct solar energy because the melt can be poured directly after processing instead of being remelted; and (4) even with projected improvements in the mass of solar concentrators, projected photovoltaic system masses are expected to be even lower.

  20. RESOLVE: Regolith and Environment Science and Oxygen and Lunar Volatile Extraction

    Science.gov (United States)

    Quinn, Jacqueline; Baird, Scott; Colaprete, Anthony; Larson, William; Sanders, Gerald; Picard, Martin

    2011-01-01

    Regolith & Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) is an internationally developed payload that is intended to prospect for resources on other planetary bodies. RESOLVE is a miniature drilling and chemistry plant packaged onto a medium-sized rover to collect and analyze soil for volatile components such as water or hydrogen that could be used in human exploration efforts.

  1. Mars Atmosphere and Regolith COllector/PrOcessor for Lander Ops (MARCO POLO) Atmospheric Processing Module

    Data.gov (United States)

    National Aeronautics and Space Administration — The multi-NASA center Mars Atmosphere and Regolith COllector/PrOcessor for Lander Operations (MARCO POLO) project was established to build and demonstrate a...

  2. Multi-Use Solar Thermal System for Oxygen Production from Lunar Regolith [7227-570], Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop an innovative solar thermal system for oxygen production from lunar regolith. In this system solar radiation is collected by the concentrator...

  3. Fate of individual sewage disposal system wastewater within regolith in mountainous terrain

    Science.gov (United States)

    Dano, Kathleen; Poeter, Eileen; Thyne, Geoff

    2008-06-01

    In order to improve understanding of the fate of septic tank or individual sewage disposal system (ISDS) effluent in regolith overlying fractured-rock aquifers, effluent from an ISDS in such a setting was tracked via geophysical, hydrological, and geochemical methods. Under typical precipitation conditions, the effluent entered the fractured bedrock within 5 m of the boundary of the constructed infiltration area. During a period of unusually high spring recharge, the plume migrated between 50 and 100 m within the regolith before infiltrating the fractured bedrock. The chemical signature of the effluent is similar to that required to account for the decline in water quality, suggesting a causative relationship (as estimated from mass-balance models of the surface-water chemistry near the mouth of the basin). The elevated salt content of the effluent during periods of high natural recharge to the infiltration area correlates with elevated salt concentrations in surface and groundwater at the basin scale, suggesting that some of the effluent salt load may be stored in the unsaturated zone during dry periods and flushed during periods of elevated natural recharge.

  4. Performance of ground-penetrating radar on granitic regoliths with different mineral composition

    Science.gov (United States)

    Breiner, J.M.; Doolittle, James A.; Horton, Radley M.; Graham, R.C.

    2011-01-01

    Although ground-penetrating radar (GPR) is extensively used to characterize the regolith, few studies have addressed the effects of chemical and mineralogical compositions of soils and bedrock on its performance. This investigation evaluated the performance of GPR on two different granitic regoliths of somewhat different mineralogical composition in the San Jacinto Mountains of southern California. Radar records collected at a site where soils are Alfisols were more depth restricted than the radar record obtained at a site where soils are Entisols. Although the Alfisols contain an argillic horizon, and the Entisols have no such horizon of clay accumulation, the main impact on GPR effectiveness is related to mineralogy. The bedrock at the Alfisol site, which contains more mafic minerals (5% hornblende and 20% biotite), is more attenuating to GPR than the bedrock at the Entisol site, where mafic mineral content is less (<1% hornblende and 10% biotite). Thus, a relatively minor variation in bedrock mineralogy, specifically the increased biotite content, severely restricts the performance of GPR. Copyright ?? 2011 by Lippincott Williams & Wilkins.

  5. Regolith properties under trees and the biomechanical effects caused by tree root systems as recognized by electrical resistivity tomography (ERT)

    Science.gov (United States)

    Pawlik, Łukasz; Kasprzak, Marek

    2018-01-01

    Following previous findings regarding the influence of vascular plants (mainly trees) on weathering, soil production and hillslope stability, in this study, we attempted to test a hypothesis regarding significant impacts of tree root systems on soil and regolith properties. Different types of impacts from tree root system (direct and indirect) are commonly gathered under the key term of "biomechanical effects". To add to the discussion of the biomechanical effects of trees, we used a non-invasive geophysical method, electrical resistivity tomography (ERT), to investigate the profiles of four different configurations at three study sites within the Polish section of the Outer Western Carpathians. At each site, one long profile (up to 189 m) of a large section of a hillslope and three short profiles (up to 19.5 m), that is, microsites occupied by trees or their remnants, were made. Short profiles included the tree root zone of a healthy large tree, the tree stump of a decaying tree and the pit-and-mound topography formed after a tree uprooting. The resistivity of regolith and bedrock presented on the long profiles and in comparison with the short profiles through the microsites it can be seen how tree roots impact soil and regolith properties and add to the complexity of the whole soil/regolith profile. Trees change soil and regolith properties directly through root channels and moisture migration and indirectly through the uprooting of trees and the formation of pit-and-mound topography. Within tree stump microsites, the impact of tree root systems, evaluated by a resistivity model, was smaller compared to microsites with living trees or those with pit-and-mound topography but was still visible even several decades after the trees were windbroken or cut down. The ERT method is highly useful for quick evaluation of the impact of tree root systems on soils and regolith. This method, in contrast to traditional soil analyses, offers a continuous dataset for the entire

  6. Multiphysics Modeling for Dimensional Analysis of a Self-Heated Molten Regolith Electrolysis Reactor for Oxygen and Metals Production on the Moon and Mars

    Science.gov (United States)

    Dominguez, Jesus A.; Sibille, Laurent

    2010-01-01

    The technology of direct electrolysis of molten lunar regolith to produce oxygen and molten metal alloys has progressed greatly in the last few years. The development of long-lasting inert anodes and cathode designs as well as techniques for the removal of molten products from the reactor has been demonstrated. The containment of chemically aggressive oxide and metal melts is very difficult at the operating temperatures ca 1600 C. Containing the molten oxides in a regolith shell can solve this technical issue and can be achieved by designing a self-heating reactor in which the electrolytic currents generate enough Joule heat to create a molten bath. In a first phase, a thermal analysis model was built to study the formation of a melt of lunar basaltic regolith irradiated by a focused solar beam This mode of heating was selected because it relies on radiative heat transfer, which is the dominant mode of transfer of energy in melts at 1600 C. Knowing and setting the Gaussian-type heat flux from the concentrated solar beam and the phase and temperature dependent thermal properties, the model predicts the dimensions and temperature profile of the melt. A validation of the model is presented in this paper through the experimental formation of a spherical cap melt realized by others. The Orbitec/PSI experimental setup uses an 3.6-cm diameter concentrated solar beam to create a hemispheric melt in a bed of lunar regolith simulant contained in a large pot. Upon cooling, the dimensions of the vitrified melt are measured to validate the thermal model. In a second phase, the model is augmented by multiphysics components to compute the passage of electrical currents between electrodes inserted in the molten regolith. The current through the melt generates Joule heating due to the high resistivity of the medium and this energy is transferred into the melt by conduction, convection and primarily by radiation. The model faces challenges in two major areas, the change of phase as

  7. The composition and evolution of an Oligocene regolith on top of the Sesia–Lanzo Zone (Western Alps)

    DEFF Research Database (Denmark)

    Kapferer, Notburga; Mercolli, Ivan; Berger, Alfons

    2011-01-01

    An Oligocene paleosurface (regolith) lies on top of the high-pressure metamorphic rocks of the Sesia–Lanzo Zone near Biella, NW Italy. Only the saprock, the lowermost part in a regolith profile, is preserved. No evidence for any paleosoil can be observed. Field observations indicate that the rego...... with this sequence of subaerial rocks being very close to the intrusion depth of the Valle del Cervo Pluton at the time of its emplacement (4–7 km; Zanoni et al., in Rend Online SGI Note Brevi 1: 199–202, 2008; Zanoni et al., in Int Geol Rev 52: 1244–1267, 2010 and references therein)....

  8. Subsurface Halophilic Microbial Communities in the Hyperarid Core of the Atacama Desert: An Analog for Possible Subsurface Life in Regolith on Mars

    Science.gov (United States)

    Oren, A.; Warren-Rhodes, K.; Rainey, F. T.; Ewing, S.; McKay, C. P.

    2003-12-01

    The Atacama Desert in its driest portion provides an interesting analog for possible past or present life in the Martian regolith. In the hyperarid core of the Atacama, surface soils are virtually abiotic, with no plants and "near sterile" concentrations of heterotrophic bacteria (i.e., exceedingly low densities of approximately 100 colony forming units per gram soil). The dearth of microbial life at the surface is likely maintained through extremely low water availability, low organic content and the highly oxidizing nature of the soil. In marked contrast to the surface, however, extremely halophilic microorganisms exist in salt layers 1.2-1.5m below the surface. Mineralogical analyses indicate the layers are predominantly halite (70% NaCl) but also contain sodium nitrate (5% NaNO3). Culturing and polar lipid analyses suggest the halophiles are archaeal Halobacterium-like motile rods. Microclimate monitoring at 1m indicates a soil relative humidity of 20% which is stable year-round even during decadal rain events such as that experienced in July 2002. This suggests the layers are isolated from even significant moisture influxes at the surface. Although further research is necessary, important parallels exist between this Earthly desert analog and the possible existence and detection of subsurface life on Mars despite harsh abiotic conditions at the surface.

  9. Crack layer theory

    Science.gov (United States)

    Chudnovsky, A.

    1987-01-01

    A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.

  10. Developing a Material Response Model of Biopolymer-Stabilized Regolith to Predict Micrometeorite Damage of ISRU Habitat Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed space technology research aims to investigate the micrometeorite impact performance of Regolith Biocomposite (RBC), an innovative in-situ material...

  11. Regolith Derived Heat Shield for Planetary Body Entry and Descent System with In Situ Fabrication

    Science.gov (United States)

    Hogue, Michael D.; Meuller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.

    2012-01-01

    This NIAC project investigated an innovative approach to provide heat shield protection to spacecraft after launch and prior to each EDL thus potentially realizing significant launch mass savings. Heat shields fabricated in situ can provide a thermal-protection system for spacecraft that routinely enter a planetary atmosphere. By fabricating the heat shield with space resources from materials available on moons and asteroids, it is possible to avoid launching the heat-shield mass from Earth. Regolith has extremely good insulating properties and the silicates it contains can be used in the fabrication and molding of thermal-protection materials. Such in situ developed heat shields have been suggested before by Lewis. Prior research efforts have shown that regolith properties can be compatible with very-high temperature resistance. Our project team is highly experienced in regolith processing and thermal protection systems (TPS). Routine access to space and return from any planetary surface requires dealing with heat loads experienced by the spacecraft during reentry. Our team addresses some of the key issues with the EDL of human-scale missions through a highly innovative investigation of heat shields that can be fabricated in space by using local resources on asteroids and moons. Most space missions are one-way trips, dedicated to placing an asset in space for economical or scientific gain. However, for human missions, a very-reliable heat-shield system is necessary to protect the crew from the intense heat experienced at very high entry velocities of approximately 11 km/s at approximately Mach 33 (Apollo). For a human mission to Mars, the return problem is even more difficult, with predicted velocities of up to 14 km/s, at approximately Mach 42 at the Earth-atmosphere entry. In addition to human return, it is very likely that future space-travel architecture will include returning cargo to the Earth, either for scientific purposes or for commercial reasons

  12. Magnetic Sorting of the Regolith on the Moon: Lunar Swirls

    Science.gov (United States)

    Pieters, C. M.; Garrick-Bethell, I.; Hemingway, D.

    2014-12-01

    All of the mysterious albedo features on the Moon called "lunar swirls" are associated with magnetic anomalies, but not all magnetic anomalies are associated with lunar swirls [1]. It is often hypothesized that the albedo markings are tied to immature regolith on the surface, perhaps due to magnetic shielding of the solar wind and prevention of normal space weathering of the soil. Although interaction of the solar wind with the surface at swirls is indeed affected by the local magnetic field [2], this does not appear to result in immature soils on the surface. Calibrated spectra from the Moon Mineralogy Mapper [M3] (in image format) demonstrate that the high albedo markings for swirls are simply not consistent with immature regolith as is now understood from detailed analyses of lunar samples [eg 3]. However, M3 data show that the high albedo features of swirls are distinct and quite different from normal soils (in both the highlands and the mare). They allexhibit a flatter continuum across the near-infrared, but the actual band strength of ferrous minerals shows little (if any) deviation [4]. Recent analyses of magnetic field direction at swirls [5] mimic the observed albedo patterns (horizontal surface fields in bright areas, vertical surface fields in dark lanes). When coupled with the optical properties of magnetic separates of lunar soils [6] and our knowledge that the magnetic component of the soil results from space weathering [3,6], we propose a new and very simple explanation for these enigmatic albedo markings: the lunar swirls result from magnetic sorting of a well developed regolith. With time, normal gardening of the soil over a magnetic anomaly causes some of the dark magnetic component of the soil to be gradually removed from regions (high albedo areas) and accumulated in others (dark lanes). We are modeling predicted sorting rates using realistic rates of dust production. If this mechanism is tenable, only the origin of these magnetic anomalies

  13. Joule-Heated Molten Regolith Electrolysis Reactor Concepts for Oxygen and Metals Production on the Moon and Mars

    Science.gov (United States)

    Sibille, Laurent; Dominguez, Jesus A.

    2012-01-01

    The technology of direct electrolysis of molten lunar regolith to produce oxygen and molten metal alloys has progressed greatly in the last few years. The development of long-lasting inert anodes and cathode designs as well as techniques for the removal of molten products from the reactor has been demonstrated. The containment of chemically aggressive oxide and metal melts is very difficult at the operating temperatures ca. 1600 C. Containing the molten oxides in a regolith shell can solve this technical issue and can be achieved by designing a Joule-heated (sometimes called 'self-heating') reactor in which the electrolytic currents generate enough Joule heat to create a molten bath. Solutions obtained by multiphysics modeling allow the identification of the critical dimensions of concept reactors.

  14. Mechanical properties of lunar regolith and lunar soil simulant

    Science.gov (United States)

    Perkins, Steven W.

    1989-01-01

    Through the Surveyor 3 and 7, and Apollo 11-17 missions a knowledge of the mechanical properties of Lunar regolith were gained. These properties, including material cohesion, friction, in-situ density, grain-size distribution and shape, and porosity, were determined by indirect means of trenching, penetration, and vane shear testing. Several of these properties were shown to be significantly different from those of terrestrial soils, such as an interlocking cohesion and tensile strength formed in the absence of moisture and particle cementation. To characterize the strength and deformation properties of Lunar regolith experiments have been conducted on a lunar soil simulant at various initial densities, fabric arrangements, and composition. These experiments included conventional triaxial compression and extension, direct tension, and combined tension-shear. Experiments have been conducted at low levels of effective confining stress. External conditions such as membrane induced confining stresses, end platten friction and material self weight have been shown to have a dramatic effect on the strength properties at low levels of confining stress. The solution has been to treat these external conditions and the specimen as a full-fledged boundary value problem rather than the idealized elemental cube of mechanics. Centrifuge modeling allows for the study of Lunar soil-structure interaction problems. In recent years centrifuge modeling has become an important tool for modeling processes that are dominated by gravity and for verifying analysis procedures and studying deformation and failure modes. Centrifuge modeling is well established for terrestrial enginering and applies equally as well to Lunar engineering. A brief review of the experiments is presented in graphic and outline form.

  15. Can the Hydroxyapatite-Coated Skin-Penetrating Abutment for Bone Conduction Hearing Implants Integrate with the Surrounding Skin?

    Science.gov (United States)

    van Hoof, Marc; Wigren, Stina; Duimel, Hans; Savelkoul, Paul H M; Flynn, Mark; Stokroos, Robert Jan

    2015-01-01

    Percutaneous implants, such as bone conduction hearing implants, suffer from complications that include inflammation of the surrounding skin. A sealed skin-abutment interface can prevent the ingress of bacteria, which should reduce the occurrence of peri-abutment dermatitis. It was hypothesized that a hydroxyapatite (HA)-coated abutment in conjunction with soft tissue preservation surgery should enable integration with the adjacent skin. Previous research has confirmed that integration is never achieved with as-machined titanium abutments. Here, we investigate, in vivo, if skin integration is achievable in patients using a HA-coated abutment. One titanium abutment (control) and one HA-coated abutment (case) together with the surrounding skin were surgically retrieved from two patients who had a medical indication for this procedure. Histological sections of the skin were investigated using light microscopy. The abutment was qualitatively analyzed using scanning electron microscopy. The titanium abutment only had a partial and thin layer of attached amorphous biological material. The HA-coated abutment was almost fully covered by a pronounced thick layer of organized skin, composed of different interconnected structural layers. Proof-of-principle evidence that the HA-coated abutment can achieve integration with the surrounding skin was presented for the first time.

  16. Identification of β-SiC surrounded by relatable surrounding diamond ...

    Indian Academy of Sciences (India)

    β-SiC is identified in the presence of a relatable surrounding diamond medium using subtle, but discernible Raman ... Change in the nature of the surrounding material structure and its .... intensity implies very low graphite content in thin film. In.

  17. Designing the Lunar Regolith Excavation Competition

    Science.gov (United States)

    Le, Christopher

    2009-01-01

    The project assigned this summer involves designing a lunar regolith mining robotics competition. This process involves consulting several assets available at the Kennedy Space Center. The process involves several steps. The first step is to determine the requirements for the competition. Once these requirements are determined, the dimensions of the playing field are drawn up, first by hand, and then using computer models. After these drawings are tentatively decided upon, the cost of materials must be determined, so as to fit within the allotted budget for the project. The materials are to then be ordered, assembled, broken down, and stored throughout the duration of the competition. We must also design the advertisements and logos for the competition. This is to market and publicize the competition to college level teams. We must also determine the rules for the competition so as to have uniform requirements for all teams. Once these processes are completed, the competition can be finalized and publicized for the public. The contributing parties are Greg Galloway, Robert Mueller, Susan Sawyer, Gloria Murphy, Julia Nething, and Cassandra Liles.

  18. Experimental Measurements of Heat Transfer through a Lunar Regolith Simulant in a Vibro-Fluidized Reactor Oven

    Science.gov (United States)

    Nayagam, Vedha; Berger, Gordon M.; Sacksteder, Kurt R.; Paz, Aaron

    2012-01-01

    Extraction of mission consumable resources such as water and oxygen from the planetary environment provides valuable reduction in launch-mass and potentially extends the mission duration. Processing of lunar regolith for resource extraction necessarily involves heating and chemical reaction of solid material with processing gases. Vibrofluidization is known to produce effective mixing and control of flow within granular media. In this study we present experimental results for vibrofluidized heat transfer in lunar regolith simulants (JSC-1 and JSC-1A) heated up to 900 C. The results show that the simulant bed height has a significant influence on the vibration induced flow field and heat transfer rates. A taller bed height leads to a two-cell circulation pattern whereas a single-cell circulation was observed for a shorter height. Lessons learned from these test results should provide insight into efficient design of future robotic missions involving In-Situ Resource Utilization.

  19. Effects of topographic data quality on estimates of shallow slope stability using different regolith depth models

    Science.gov (United States)

    Baum, Rex L.

    2017-01-01

    Thickness of colluvium or regolith overlying bedrock or other consolidated materials is a major factor in determining stability of unconsolidated earth materials on steep slopes. Many efforts to model spatially distributed slope stability, for example to assess susceptibility to shallow landslides, have relied on estimates of constant thickness, constant depth, or simple models of thickness (or depth) based on slope and other topographic variables. Assumptions of constant depth or thickness rarely give satisfactory results. Geomorphologists have devised a number of different models to represent the spatial variability of regolith depth and applied them to various settings. I have applied some of these models that can be implemented numerically to different study areas with different types of terrain and tested the results against available depth measurements and landslide inventories. The areas include crystalline rocks of the Colorado Front Range, and gently dipping sedimentary rocks of the Oregon Coast Range. Model performance varies with model, terrain type, and with quality of the input topographic data. Steps in contour-derived 10-m digital elevation models (DEMs) introduce significant errors into the predicted distribution of regolith and landslides. Scan lines, facets, and other artifacts further degrade DEMs and model predictions. Resampling to a lower grid-cell resolution can mitigate effects of facets in lidar DEMs of areas where dense forest severely limits ground returns. Due to its higher accuracy and ability to penetrate vegetation, lidar-derived topography produces more realistic distributions of cover and potential landslides than conventional photogrammetrically derived topographic data.

  20. Exploring Fingerprints of the Extreme Thermoacidophile Metallosphaera sedula Grown on Synthetic Martian Regolith Materials as the Sole Energy Sources

    Directory of Open Access Journals (Sweden)

    Denise Kölbl

    2017-10-01

    Full Text Available The biology of metal transforming microorganisms is of a fundamental and applied importance for our understanding of past and present biogeochemical processes on Earth and in the Universe. The extreme thermoacidophile Metallosphaera sedula is a metal mobilizing archaeon, which thrives in hot acid environments (optimal growth at 74°C and pH 2.0 and utilizes energy from the oxidation of reduced metal inorganic sources. These characteristics of M. sedula make it an ideal organism to further our knowledge of the biogeochemical processes of possible life on extraterrestrial planetary bodies. Exploring the viability and metal extraction capacity of M. sedula living on and interacting with synthetic extraterrestrial minerals, we show that M. sedula utilizes metals trapped in the Martian regolith simulants (JSC Mars 1A; P-MRS; S-MRS; MRS07/52 as the sole energy sources. The obtained set of microbiological and mineralogical data suggests that M. sedula actively colonizes synthetic Martian regolith materials and releases free soluble metals. The surface of bioprocessed Martian regolith simulants is analyzed for specific mineralogical fingerprints left upon M. sedula growth. The obtained results provide insights of biomining of extraterrestrial material as well as of the detection of biosignatures implementing in life search missions.

  1. Exploring Fingerprints of the Extreme Thermoacidophile Metallosphaera sedula Grown on Synthetic Martian Regolith Materials as the Sole Energy Sources.

    Science.gov (United States)

    Kölbl, Denise; Pignitter, Marc; Somoza, Veronika; Schimak, Mario P; Strbak, Oliver; Blazevic, Amir; Milojevic, Tetyana

    2017-01-01

    The biology of metal transforming microorganisms is of a fundamental and applied importance for our understanding of past and present biogeochemical processes on Earth and in the Universe. The extreme thermoacidophile Metallosphaera sedula is a metal mobilizing archaeon, which thrives in hot acid environments (optimal growth at 74°C and pH 2.0) and utilizes energy from the oxidation of reduced metal inorganic sources. These characteristics of M. sedula make it an ideal organism to further our knowledge of the biogeochemical processes of possible life on extraterrestrial planetary bodies. Exploring the viability and metal extraction capacity of M. sedula living on and interacting with synthetic extraterrestrial minerals, we show that M. sedula utilizes metals trapped in the Martian regolith simulants (JSC Mars 1A; P-MRS; S-MRS; MRS07/52) as the sole energy sources. The obtained set of microbiological and mineralogical data suggests that M. sedula actively colonizes synthetic Martian regolith materials and releases free soluble metals. The surface of bioprocessed Martian regolith simulants is analyzed for specific mineralogical fingerprints left upon M. sedula growth. The obtained results provide insights of biomining of extraterrestrial material as well as of the detection of biosignatures implementing in life search missions.

  2. Performance of Regolith Feed Systems for Analog Field Tests of In-Situ Resource Utilization Oxygen Production Plants in Mauna Kea, Hawaii

    Science.gov (United States)

    Townsend, Ivan I.; Mueller, Robert P.; Mantovani, James G.; Zacny, Kris A.; Craft, Jack

    2010-01-01

    This paper focuses on practical aspects of mechanical auger and pneumatic regolith conveying system feeding In-Situ Resource Utilization Oxygen production plants. The subsystems of these feedstock delivery systems include an enclosed auger device, pneumatic venturi educator, jet-lift regolith transfer, innovative electro-cyclone gas-particle separation/filtration systems, and compressors capable of dealing with hot hydrogen and/or methane gas re-circulating in the system. Lessons learned from terrestrial laboratory, reduced gravity and field testing on Mauna Kea Volcano in Hawaii during NASA lunar analog field tests will be discussed and practical design tips will be presented.

  3. INTERACTION OF A LONG PILE OF FINITE STIFFNESS WITH SURROUNDING SOIL AND FOUNDATION CAP

    Directory of Open Access Journals (Sweden)

    Ter-Martirosyan Zaven Grigor’evich

    2015-09-01

    Full Text Available The article presents the formulation and analytical solution to a quantification of stress strain state of a two-layer soil cylinder enclosing a long pile, interacting with the cap. The solution of the problem is considered for two cases: with and without account for the settlement of the heel and the underlying soil. In the first case, the article is offering equations for determining the stresses of pile’s body and the surrounding soil according to their hardness and the ratio of radiuses of the pile and the surrounding soil cylinder, as well as formulating for determining equivalent deformation modulus of the system “cap-pile-surrounding soil” (the system. Assessing the carrying capacity of the soil under pile’s heel is of great necessity. In the second case, the article is solving a second-order differential equation. We gave the formulas for determining the stresses of the pile at its top and heel, as well as the variation of stresses along the pile’s body. The article is also formulating for determining the settlement of the foundation cap and equivalent deformation modulus of the system. It is shown that, pushing the pile into underlying layer results in the reducing of equivalent modulus of the system.

  4. Combustion Joining of Regolith Tiles for In-Situ Fabrication of Launch/Landing Pads on the Moon and Mars

    Science.gov (United States)

    Ferguson, Robert E.; Shafirovich, Evgeny; Mantovani, James G.

    2017-01-01

    To mitigate dust problems during launch/landing operations in lunar and Mars missions, it is desired to build solid pads on the surface. Recently, strong tiles have been fabricated from lunar regolith simulants using high-temperature sintering. The present work investigates combustion joining of these tiles through the use of exothermic intermetallic reactions. Specifically, nickel/aluminum (1:1 mole ratio) mixture was placed in a gap between the tiles sintered from JSC-1A lunar regolith simulant. Upon ignition by a laser, a self-sustained propagation of the combustion front over the mixture occurred. Joining was improved with increasing the tile thickness from 6.3 mm to 12.7 mm. The temperatures sufficient for melting the glass phase of JSC-1A were recorded for 12.7-mm tiles, which explains the observed better joining.

  5. A direct observation the asteroid's structure from deep interior to regolith: why and how do it?

    Science.gov (United States)

    Herique, A.; Kofman, W. W.

    2013-12-01

    The internal structure of asteroids is still poorly known and has never been measured directly. Our knowledge is relying entirely on inferences from remote sensing observations of the surface, and theoretical modeling. Is the body a monolithic piece of rock or a rubble-pile, an aggregate of boulders held together by gravity and how much porosity it contains, both in the form of micro-scale or macro-scale porosity? What is the typical size of the constituent blocs? Are these blocs homogeneous or heterogeneous? Is the body a defunct or dormant comet and such MBC can become active? The body is covered by a regolith from whose properties remains largely unknown in term of depth, size distribution and spatial variation. Is resulting from fine particles re-accretion or from thermal fracturing? What are its coherent forces? How to model is thermal conductivity while this parameter is so important to estimate Yarkowsky and Yorp effects? Knowing asteroid deep interior and regolith structure is a key point for a better understanding of the asteroid accretion and dynamical evolution. There is no way to determine this from ground-based observation. Radar operating from a spacecraft is the only technique capable of achieving this science objective of characterizing the internal structure and heterogeneity from submetric to global scale for the science benefit as well as for the planetary defence and human exploration. The deep interior structure tomography requires low-frequency radar to penetrate throughout the complete body. The radar wave propagation delay and the received power are related to the complex dielectric permittivity (i.e to the composition and microporosity) and the small scale heterogeneities (scattering losses) while the spatial variation of the signal and the multiple paths provide information on the presence of heterogeneities (variations in composition or porosity), layers, ice lens. A partial coverage will provide "cuts" of the body when a dense coverage

  6. Application of airborne gamma-ray spectrometry in soil/regolith mapping and applied geomorphology

    International Nuclear Information System (INIS)

    Wilford, J.R.; Bierwirth, P.N.; Craig, M.A.

    1997-01-01

    Gamma-ray spectrometric surveys are an important source of information for soil, regolith and geomorphological studies, as demonstrated by the interpretation of airborne surveys in Western Australia, central New South Wales and north Queensland. Gamma-rays emitted from the ground surface relate to the primary mineralogy and geochemistry of the bedrock, and the secondary weathered materials. Weathering modifies the distribution and concentration of radioelements from the original bedrock source. Once the radioelement response of bedrock and weathered materials is understood, the gamma-ray data can provide information on geomorphic processes and soil/regolith properties, including their mineralogy, texture, chemistry and style of weathering. This information can contribute significantly to an understanding of the weathering and geomorphic history of a region and, therefore, has the potential to be used in developing more effective land-management strategies and refining geochemical models in support of mineral exploration. Gamma-ray imagery is enhanced when combined with Landsat TM bands and digital elevation models (DEM). This synergy enables geochemical information derived from the gamma-ray data to be interpreted within a geomorphic framework. Draping gamma-ray images over DEMs as 3D landscape perspective views aids interpretation and allows the interpreter to visualise complex relationships between the gamma-ray response and landform features. 44 refs.,1 tab., 11 figs

  7. Sintering of micro-trusses created by extrusion-3D-printing of lunar regolith inks

    Science.gov (United States)

    Taylor, Shannon L.; Jakus, Adam E.; Koube, Katie D.; Ibeh, Amaka J.; Geisendorfer, Nicholas R.; Shah, Ramille N.; Dunand, David C.

    2018-02-01

    The development of in situ fabrication methods for the infrastructure required to support human life on the Moon is necessary due to the prohibitive cost of transporting large quantities of materials from the Earth. Cellular structures, consisting of a regular network (truss) of micro-struts with ∼500 μm diameters, suitable for bricks, blocks, panels, and other load-bearing structural elements for habitats and other infrastructure are created by direct-extrusion 3D-printing of liquid inks containing JSC-1A lunar regolith simulant powders, followed by sintering. The effects of sintering time, temperature, and atmosphere (air or hydrogen) on the microstructures, mechanical properties, and magnetic properties of the sintered lunar regolith micro-trusses are investigated. The air-sintered micro-trusses have higher relative densities, linear shrinkages, and peak compressive strengths, due to the improved sintering of the struts within the micro-trusses achieved by a liquid or glassy phase. Whereas the hydrogen-sintered micro-trusses show no liquid-phase sintering or glassy phase, they contain metallic iron 0.1-2 μm particles from the reduction of ilmenite, which allows them to be lifted with magnets.

  8. Stratification in the lunar regolith - a preliminary view

    International Nuclear Information System (INIS)

    Duke, M.B.; Nagle, J.S.

    1975-01-01

    Although the knowledge of lunar regolith stratification is incomplete, several categories of thick and thin strata have been identified. Relatively thick units average 2 to 3 cm in thickness, and appear surficially to be massive. On more detailed examination, these units can be uniformly fine-grained, can show internal trends, or can show internal variations which apparently are random. Other thick units contain soil clasts apparently reworked from underlying units. Thin laminae average approximately 1 mm in thickness; lenticular distribution and composition of some thin laminae indicates they are fillets shed from adjacent rock fragments. Other dark, fine-grained, well-sorted thin laminae appear to be surficial zones, reworked by micrometeorites. Interpretations of stratigraphic succession can be strengthened by the occurrence of characteristic coarse rock fragments and the orientation of large spatter agglutinates, which are commonly found in their original depositional orientation. (Auth.)

  9. Influence of Martian regolith analogs on the activity and growth of methanogenic archaea, with special regard to long-term desiccation

    Directory of Open Access Journals (Sweden)

    Janosch eSchirmack

    2015-03-01

    Full Text Available Methanogenic archaea have been studied as model organisms for possible life on Mars for several reasons: they can grow lithoautotrophically by using hydrogen and carbon dioxide as energy and carbon sources, respectively; they are anaerobes; and they evolved at a time when conditions on early Earth are believed to have looked similar to those of early Mars. As Mars is currently dry and cold and as water might be available only at certain time intervals, any organism living on this planet would need to cope with desiccation. On Earth there are several regions with low water availability as well, e.g. permafrost environments, desert soils and salt pans. Here, we present the results of a set of experiments investigating the influence of different Martian regolith analogs on the metabolic activity and growth of three methanogenic strains exposed to culture conditions as well as long-term desiccation. In most cases, concentrations below 1 %wt of regolith in the media resulted in an increase of methane production rates, whereas higher concentrations decreased the rates, thus prolonging the lag phase. Further experiments showed that methanogenic archaea are capable of producing methane when incubated on a water-saturated sedimentary matrix of regolith lacking nutrients. Survival of methanogens under these conditions was analyzed with a 400 day desiccation experiment in the presence of regolith analogs. All tested strains of methanogens survived the desiccation period as it was determined through reincubation on fresh medium and via qPCR following propidium monoazide treatment to identify viable cells. The survival of long-term desiccation and the ability of active metabolism on water-saturated MRAs strengthens the possibility of methanogenic archaea or physiologically similar organisms to exist in environmental niches on Mars. The best results were achieved in presence of a phyllosilicate, which provides insights of possible positive effects in habitats

  10. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: An integrated genetic model

    Science.gov (United States)

    Li, Yan Hei Martin; Zhao, Wen Winston; Zhou, Mei-Fu

    2017-10-01

    Regolith-hosted rare earth element (REE) deposits, also called ion-adsorption or weathered crust elution-deposited REE deposits are distributed over Jiangxi, Guangdong, Fujian, Hunan, Guangxi and Yunnan provinces in South China. In general, these deposits can be categorized into the HREE-dominated type, for example the famous Zudong deposit in southern Jiangxi province and the LREE-dominated type, such as the Heling and Dingnan deposits in southern Jiangxi province. Most of these deposits form from weathering of biotite and muscovite granites, syenites, monzogranites, granodiorites, granite porphyries, and rhyolitic tuffs. The parent rocks are generally peraluminous, siliceous, alkaline and contain a variety of REE-bearing minerals. Mostly, REE patterns of regolith are inherited from the parent rocks, and therefore, characteristics of the parent rocks impose a significant control on the ore formation. Data compilation shows that autometasomatism during the latest stage of granite crystallization is likely essential in forming the HREE-enriched granites, whereas LREE-enriched granites could form through magmatic differentiation. These deposits are normally two- to three-fold, but could be up to ten-fold enrichment in REE compared to the parent granites, where the maximum enrichment usually occurs from the lower B to the upper C horizon. Ce shows different behavior with the other REEs. Strongly positive Ce anomalies commonly occur at the upper part of weathering profiles, likely due to oxidation of Ce3+ to Ce4+ and removal of Ce from soil solutions through precipitation of cerianite. Vertical pH and redox gradients in weathering crusts facilitate dissolution of REE-bearing minerals at shallow level and fixation of REE at depth through either adsorption on clay minerals or precipitation of secondary minerals. At the same time, mass removal of major elements plays an important role in concentrating REE in regolith. Combination of mass removal and eluviation

  11. The extent of lunar regolith mixing

    International Nuclear Information System (INIS)

    Nishiizumi, K.; Imamura, M.; Kohl, C.P.; Murrell, M.T.; Arnold, J.R.; Russ, G.P. III

    1979-01-01

    The activity of solar cosmic-ray-produced 53 Mn has been measured as a function of depth in the upper 100 g/cm 2 (approximately 55 cm) of lunar cores 60009-60010 and 12025-12028. Additional samples which supplement earlier work were analyzed from the Apollo 15 and 16 drill stems. These data, taken in conjunction with previously published results and the 22 Na and 26 Al data of the Battelle Northwest group, indicate that in at least three of the four cases studied the regolith has been measureably disturbed within the last 10 m.y. In one case gardening to > 19 g/cm 2 is required. Activities measured in the uppermost 2 g/cm 2 indicate frequent mixing within this depth range. No undisturbed profiles were observed nor were any major discontinuities observed in the profiles. The Monte Carlo gardening model of Arnold has been used to derive profiles for the gardened moon-wide average of 53 Mn and 26 Al as a function of depth. The 53 Mn and 26 Al experimental results are compared with these theoretical predictions. Agreement is good in several respects, but the calculated depth of disturbance appears to be too low. (Auth.)

  12. Distribution, movement, and evolution of the volatile elements in the lunar regolith

    International Nuclear Information System (INIS)

    Gibson, E.K. Jr.

    1975-01-01

    The abundances and distributions of carbon, nitrogen, and sulfur in lunar soils are reviewed. Carbon and nitrogen have a predominantly extra-lunar origin in lunar soils and breccias, while sulfur is mostly indigeneous to the Moon. The lunar processes which effect the movement, distribution, and evolution of carbon, nitrogen, and sulfur, along with the volatile alkali elements sodium, potassium, and rubidium during regolith processes are discussed. Possible mechanisms which may result in the addition to or loss from the Moon of these volatile elements are considered. (Auth.)

  13. Distribution, movement, and evolution of the volatile elements in the lunar regolith

    Science.gov (United States)

    Gibson, E. K., Jr.

    1975-01-01

    The abundances and distributions of carbon, nitrogen, and sulfur in lunar soils are reviewed. Carbon and nitrogen have a predominantly extra-lunar origin in lunar soils and breccias, while sulfur is mostly indigeneous to the moon. The lunar processes which effect the movement, distribution, and evolution of carbon, nitrogen, and sulfur, along with the volatile alkali elements sodium, potassium, and rubidium during regolith processes are discussed. Possible mechanisms which may result in the addition to or loss from the moon of these volatile elements are considered.

  14. Improved Discrimination of Volcanic Complexes, Tectonic Features, and Regolith Properties in Mare Serenitatis from Earth-Based Radar Mapping

    Science.gov (United States)

    Campbell, Bruce A.; Hawke, B. Ray; Morgan, Gareth A.; Carter, Lynn M.; Campbell, Donald B.; Nolan, Michael

    2014-01-01

    Radar images at 70 cm wavelength show 4-5 dB variations in backscatter strength within regions of relatively uniform spectral reflectance properties in central and northern Mare Serenitatis, delineating features suggesting lava flow margins, channels, and superposition relationships. These backscatter differences are much less pronounced at 12.6 cm wavelength, consistent with a large component of the 70 cm echo arising from the rough or blocky transition zone between the mare regolith and the intact bedrock. Such deep probing is possible because the ilmenite content, which modulates microwave losses, of central Mare Serenitatis is generally low (2-3% by weight). Modeling of the radar returns from a buried interface shows that an average regolith thickness of 10m could lead to the observed shifts in 70 cm echo power with a change in TiO2 content from 2% to 3%. This thickness is consistent with estimates of regolith depth (10-15m) based on the smallest diameter for which fresh craters have obvious blocky ejecta. The 70 cm backscatter differences provide a view of mare flow-unit boundaries, channels, and lobes unseen by other remote sensing methods. A localized pyroclastic deposit associated with Rima Calippus is identified based on its low radar echo strength. Radar mapping also improves delineation of units for crater age dating and highlights a 250 km long, east-west trending feature in northern Mare Serenitatis that we suggest is a large graben flooded by late-stage mare flows.

  15. Formation of the outer layer of the Dictyostelium spore coat depends on the inner-layer protein SP85/PsB.

    Science.gov (United States)

    Metcalf, Talibah; Kelley, Karen; Erdos, Gregory W; Kaplan, Lee; West, Christopher M

    2003-02-01

    The Dictyostelium spore is surrounded by a 220 microm thick trilaminar coat that consists of inner and outer electron-dense layers surrounding a central region of cellulose microfibrils. In previous studies, a mutant strain (TL56) lacking three proteins associated with the outer layer exhibited increased permeability to macromolecular tracers, suggesting that this layer contributes to the coat permeability barrier. Electron microscopy now shows that the outer layer is incomplete in the coats of this mutant and consists of a residual regular array of punctate electron densities. The outer layer is also incomplete in a mutant lacking a cellulose-binding protein associated with the inner layer, and these coats are deficient in an outer-layer protein and another coat protein. To examine the mechanism by which this inner-layer protein, SP85, contributes to outer-layer formation, various domain fragments were overexpressed in forming spores. Most of these exert dominant negative effects similar to the deletion of outer-layer proteins, but one construct, consisting of a fusion of the N-terminal and Cys-rich C1 domain, induces a dense mat of novel filaments at the surface of the outer layer. Biochemical studies show that the C1 domain binds cellulose, and a combination of site-directed mutations that inhibits its cellulose-binding activity suppresses outer-layer filament induction. The results suggest that, in addition to a previously described early role in regulating cellulose synthesis, SP85 subsequently contributes a cross-bridging function between cellulose and other coat proteins to organize previously unrecognized structural elements in the outer layer of the coat.

  16. A Subsurface Soil Composition and Physical Properties Experiment to Address Mars Regolith Stratigraphy

    Science.gov (United States)

    Richter, L.; Sims, M.; Economou, T.; Stoker, C.; Wright, I.; Tokano, T.

    2004-01-01

    Previous in-situ measurements of soil-like materials on the surface of Mars, in particular during the on-going Mars Exploration Rover missions, have shown complex relationships between composition, exposure to the surface environment, texture, and local rocks. In particular, a diversity in both compositional and physical properties could be established that is interpreted to be diagnostic of the complex geologic history of the martian surface layer. Physical and chemical properties vary laterally and vertically, providing insight into the composition of rocks from which soils derive, and environmental conditions that led to soil formation. They are central to understanding whether habitable environments existed on Mars in the distant past. An instrument the Mole for Soil Compositional Studies and Sampling (MOCSS) - is proposed to allow repeated access to subsurface regolith on Mars to depths of up to 1.5 meters for in-situ measurements of elemental composition and of physical and thermophysical properties, as well as for subsurface sample acquisition. MOCSS is based on the compact PLUTO (PLanetary Underground TOol) Mole system developed for the Beagle 2 lander and incorporates a small X-ray fluorescence spectrometer within the Mole which is a new development. Overall MOCSS mass is approximately 1.4 kilograms. Taken together, the MOCSS science data support to decipher the geologic history at the landing site as compositional and textural stratigraphy if they exist - can be detected at a number of places if the MOCSS were accommodated on a rover such as MSL. Based on uncovered stratigraphy, the regional sequence of depositional and erosional styles can be constrained which has an impact on understanding the ancient history of the Martian near-surface layer, considering estimates of Mars soil production rates of 0.5... 1.0 meters per billion years on the one hand and Mole subsurface access capability of approximately 1.5 meters. An overview of the MOCSS, XRS

  17. The Evolution of Porosity During Weathering of Serpentinite and the Creation of Thin Regolith in the Appalachian Piedmont

    Science.gov (United States)

    Marcon, V.; Gu, X.; Brantley, S. L.

    2017-12-01

    Life on Earth relies on the breakdown of impermeable bedrock into porous weathered rock to release nutrients and open pathways for gases and fluids to move through the subsurface. Serpentinites, though rare, are found across the globe and often have thin soils. Few studies have evaluated how porosity, a first order control on weathering, evolves from unweathered serpentinite bedrock to the soil. In this study, we evaluated weathering of serpentinites from bedrock to soil along a ridgetop in Nottingham Park, PA. A suite of geochemical analyses were used to determine chemical and physical changes during weathering. We used neutron scattering to measure pores 2nm to 20 microns in size (referred to here as nanoporosity). As this serpentinite weathers, small pores ( 1nm in diameter) are occluded and total nanoporosity and pore connectivity decrease throughout the weathered rock. Specifically, total nanoporosity decreases from 10% in the unweathered parent material to 5% in the weathered rock. However, in the upper meter of the profile, total nanoporosity increases as Fe, Mg, Mn, Si, Ni, Cr, and V are depleted. Additionally, bulk density and strain calculations suggest total volume expansion throughout the weathered rock followed by volume collapse in the upper 0.5m of the profile. We propose that low temperature reactions alter olivine in the parent material to serpentine minerals at the parent-weathered rock interface, resulting in a volume expansion and the loss of nanopores 1-100nm in size in this weathered rock zone. Volume expansion has long been reported to occur during low temperature serpentinization. We also infer that this loss of porosity limits the infiltration of reactive meteoric fluids into the deeper rock material and restricts the depth of regolith development. Following low temperature serpentinization, serpentine minerals (e.g. antigorite and lizardite) dissolve higher in the weathered rock. Because serpentinite rocks lack a non-reactive mineral such

  18. Tissue reaction surrounding miniscrews for orthodontic anchorage: An animal experiment

    Directory of Open Access Journals (Sweden)

    Stephanie Shih-Hsuan Chen

    2012-03-01

    Results and conclusions: (1 Tissue surrounding roots damaged by a miniscrew showed a significant inflammatory response. (2 Root resorption was occasionally observed after 3 weeks following insertion of a miniscrew even if the miniscrew was not in direct contact with the root. (3 Root repair was noted with a cementoblast lining along the resorption surface at as early as 3 weeks after miniscrew insertion. Alveolar bone filled in the lesion when the root damage was large so that the contour of the alveolar bone followed that of the damaged root, with the width of the periodontal ligament space being maintained. (4 Stable miniscrews were mainly those which did not contact adjacent roots, and for which the surrounding tissue showed only a small inflammatory response with some extent of direct bone contact around the miniscrew. On the contrary, most of the failed miniscrews were those which had direct contact with adjacent roots, and which exhibited severe tissue inflammation and were covered by thick layers of soft tissue. Failure was detected 3 weeks after insertion. Surprisingly, the epithelial lining surrounding the miniscrews might not have spontaneously resolved 6 weeks after screw removal. Persistent infection in the sinus tract was noted, and this would require attention.

  19. Patch holography using a double layer microphone array

    DEFF Research Database (Denmark)

    Gomes, Jesper Skovhus

    a closed local element mesh that surrounds the microphone array, and with a part of the mesh coinciding with a patch, the entire source is not needed in the model. Since the array has two layers, sources/reflections behind the array are also allowed. The Equivalent Source Method (ESM) is another technique...... in which the sound field is represented by a set of monopoles placed inside the source. In this paper these monopoles are distributed so that they surround the array, and the reconstruction is compared with the IBEM-based approach. The comparisons are based on computer simulations with a planar double...... layer array and sources with different shapes....

  20. Infrared reflection spectra of multilayer epitaxial heterostructures with embedded InAs and GaAs layers

    International Nuclear Information System (INIS)

    Seredin, P. V.; Domashevskaya, E. P.; Lukin, A. N.; Arsent'ev, I. N.; Vinokurov, D. A.; Tarasov, I. S.

    2008-01-01

    The effect of the thickness of embedded InAs and GaAs layers on the infrared reflection spectra of lattice vibrations for AlInAs/InAs/AlInAs, InGaAs/GaAs/InGaAs, and AlInAs/InGaAs/GaAs/InGaAs/AlInAs multilayer epitaxial heterostructures grown by MOC hydride epitaxy on InP (100) substrates is studied. Relative stresses emerging in the layers surrounding the embedded layers with variation in the number of monolayers from which the quantum dots are formed and with variation the thickness of the layers themselves surrounding the embedded layers are evaluated.

  1. Fat deposition surrounding intracerebral hemorrhage in a patient suffering from Zieve-syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Hilz, M.J.; Druschky, K.F.; Erbguth, F.; Huk, W.

    1989-03-01

    In a 42-year-old man, admitted a few hours after an acute cerebrovascular event, CT demonstrated a hyperdense hemorrhage surrounded by a hypodense rim similar to perifocal edema or liquefying blood, thus raising doubts about the acuteness of the event. Laboratory findings revealed Zieve-syndrome (alcoholic hyperlipemia, hemolytic anemia, and alcoholic fatty liver) and negative Hounsfield Unit measurement of the hypodense rim finally identified it as a layer of fat around the clot.

  2. Assessing extraterrestrial regolith material simulants for in-situ resource utilization based 3D printing

    OpenAIRE

    Goulas, A; Binner, JGP; Harris, RA; Friel, RJ

    2017-01-01

    This research paper investigates the suitability of ceramic multi-component materials, which are found on the Martian and Lunar surfaces, for 3D printing (aka Additive Manufacturing) of solid structures. 3D printing is a promising solution as part of the cutting edge field of future in situ space manufacturing applications. 3D printing of physical assets from simulated Martian and Lunar regolith was successfully performed during this work by utilising laser-based powder bed fusion equipment. ...

  3. A matching approach to communicate through the plasma sheath surrounding a hypersonic vehicle

    International Nuclear Information System (INIS)

    Gao, Xiaotian; Jiang, Binhao

    2015-01-01

    In order to overcome the communication blackout problem suffered by hypersonic vehicles, a matching approach has been proposed for the first time in this paper. It utilizes a double-positive (DPS) material layer surrounding a hypersonic vehicle antenna to match with the plasma sheath enclosing the vehicle. Analytical analysis and numerical results indicate a resonance between the matched layer and the plasma sheath will be formed to mitigate the blackout problem in some conditions. The calculated results present a perfect radiated performance of the antenna, when the match is exactly built between these two layers. The effects of the parameters of the plasma sheath have been researched by numerical methods. Based on these results, the proposed approach is easier to realize and more flexible to the varying radiated conditions in hypersonic flight comparing with other methods

  4. Remote Sensing Observations and Numerical Simulation for Martian Layered Ejecta Craters

    Science.gov (United States)

    Li, L.; Yue, Z.; Zhang, C.; Li, D.

    2018-04-01

    To understand past Martian climates, it is important to know the distribution and nature of water ice on Mars. Impact craters are widely used ubiquitous indicators for the presence of subsurface water or ice on Mars. Remote sensing observations and numerical simulation are powerful tools for investigating morphological and topographic features on planetary surfaces, and we can use the morphology of layered ejecta craters and hydrocode modeling to constrain possible layering and impact environments. The approach of this work consists of three stages. Firstly, the morphological characteristics of the Martian layered ejecta craters are performed based on Martian images and DEM data. Secondly, numerical modeling layered ejecta are performed through the hydrocode iSALE (impact-SALE). We present hydrocode modeling of impacts onto targets with a single icy layer within an otherwise uniform basalt crust to quantify the effects of subsurface H2O on observable layered ejecta morphologies. The model setup is based on a layered target made up of a regolithic layer (described by the basalt ANEOS), on top an ice layer (described by ANEOS equation of H2O ice), in turn on top of an underlying basaltic crust. The bolide is a 0.8 km diameter basaltic asteroid hitting the Martian surface vertically at a velocity of 12.8 km/s. Finally, the numerical results are compared with the MOLA DEM profile in order to analyze the formation mechanism of Martian layered ejecta craters. Our simulations suggest that the presence of an icy layer significantly modifies the cratering mechanics, and many of the unusual features of SLE craters may be explained by the presence of icy layers. Impact cratering on icy satellites is significantly affected by the presence of subsurface H2O.

  5. Instrument for Solvent Extraction and Analysis (ISEE) of Organics from Regolith Simulant Using Supercritical Fluid Extraction and Chromatography

    Science.gov (United States)

    Franco, Carolina; Hintze, Paul E.

    2017-01-01

    ISEE is an instrument with the potential to perform extractions from regolith found on the surface of asteroids and planets, followed by characterization and quantitation of the extracts using supercritical fluid extraction (SFE) and chromatography (SFC). SFE is a developed technique proven to extract a wide range of organic compounds. SFC is similar to High Performance Liquid Chromatography (HPLC) but has the advantage of performing chiral separations without needing to derivatize the chiral compounds. CO2 will be the solvent for both stages as it is readily available in the Mars atmosphere. ISEE will capture CO2 from the environment, and use it for SFE and SFC. If successful, this would allow ISEE to perform analysis of organic compounds without using consumables. This paper will present results on a preliminary, proof-of-principle effort to use SFE and SFC to extract and analyze lunar regolith simulant spiked with organic compounds representing a range of organics that ISEE would expect to characterize. An optimization of variables for the extraction of the organics from the spiked regolith was successfully developed, using 138 bar pressure and 40 C temperature. The extraction flow rate was optimized at 2% SLPM with 30% methanol modifier. The extractions were successful with a value of 77.3+/- 0.9% of organics extracted. However, the recovery of organics after the extraction was very low with only 48.5+/-14.2%. Moreover, three columns were selected to analyze multiple samples at a time; two of them are Viridis HSS C18 SB and Torus DIOL, and the third column, specific for chiral separations, has not yet been selected yet.

  6. Investigation of the Effect of Water Removal from Wells Surrounding Parishan Lake on Groundwater and Surface Water Levels

    International Nuclear Information System (INIS)

    Shafiei, M.; Raini Sarjaz, M.; Fazloli, R.; Gholami Sefidkouhi, M. A.

    2017-01-01

    In recent decades the human impacts on global warming and, its consequences, climate change, stirred up earth ecosystems balance and has created many problems all over the world. Unauthorized underground water removal, especially in arid and semi-arid regions of Iran, along with recent decade drought occurrences significantly lowered underground and surface water levels. To investigate the impacts of water removal from surrounding wells in Parishan Lake water level, during 1996 to 2009 interval, 8 buffer layers surrounding the lake were mapped in ArcGIS 9.3 environment. Each buffer layer wells and their total annual discharges were determined. Using SPSS 16 software, the regression equations between wells water levels and water discharges were computed. By employing Thiessen function and creating Thiessen network (TIN) around observation wells, decline of groundwater levels was evaluated. Finally regression equations between wells discharges and groundwater level declines were created. The findings showed that there are highly significant correlations (p ≤ 0.01), in all buffer layers, between water levels and wells discharges. Investigation of the observation wells surrounding lake showed that severe groundwater level declines has been started since the beginning of the first decade of the 21st century. Using satellite images in ArcGIS 9.3 environment it was confirmed that lake’s area has been reduced significantly. In conclusion, it is obvious that human interferences on lake’s natural ecosystem by digging unauthorized wells and removing underground water more than annual recharges significantly impacted surface and groundwater levels.

  7. Thermally-insulating layer for nuclear reactors

    International Nuclear Information System (INIS)

    1975-01-01

    The thermally-insulating layer has been designed both for insulating surfaces within the core of a nuclear reactor and transmitting loads such as the core-weight. Said layer comprises a layer of bricks and a layer of tiles with smaller clearance between the tiles than between the bricks, the latter having a reduced cross-section against the tiles so as to be surrounded by relatively large interconnected ducts forming a continuous chamber behind the tile-layer in order to induce a substantial decreases in the transverse flow of the reactor-core coolant. The core preferably comprises hexagonal columns supported by rhomb-shaped plates, with channels distributed so as to mix the coolant of twelve columns. The plates are separated from support-tiles by means of pillars [fr

  8. SOIL FORMATION BY ECOLOGICAL FACTORS: CRITICAL REVIEW

    OpenAIRE

    Saeed Zeraat Kar; Aydin Berenjian

    2013-01-01

    Regolith is the term we give parent material that has been weathered. The regolith consists of weathered bedrock near the surface including the soil layer. In the Iranian soil layer we will find: decayed parent materials, decaying plant material, decaying animal matter (manure) along with vegetation. Results of the present study show us that methods stimulating natural fertility in Iran includes composting-adds humus layer, drip irrigation-balances illuviation and eluviation in arid regions, ...

  9. New non-axisymmetric eigenmodes associated with an edge plasma layer

    International Nuclear Information System (INIS)

    Yamanaka, Kaoru; Sugihara, Ryo.

    1989-12-01

    Effects of a rarefied plasma layer surrounding a cylindrical main plasma on Alfven waves are investigated. The plasma is approximated with a two-step density profile and is assumed to be surrounded with a conducting wall. When the Alfven resonance exists inside the rarefied plasma layer, two new modes are generated. One has its maximum of the wave intensity at the wall, is thus similar to a surface wave and the other is a short of a coaxial mode. These results are re-examined in a diffuse boundary plasma and the presence of these modes is confirmed. (author)

  10. Aqueous extracts of a Mars analogue regolith that mimics the Phoenix landing site do not inhibit spore germination or growth of model spacecraft contaminants Bacillus subtilis 168 and Bacillus pumilus SAFR-032

    Science.gov (United States)

    Nicholson, Wayne L.; McCoy, Lashelle E.; Kerney, Krystal R.; Ming, Douglas W.; Golden, D. C.; Schuerger, Andrew C.

    2012-08-01

    Because Mars is a primary target for life detection and habitability assessment missions, its exploration is also by necessity a Planetary Protection issue. The recent finding of significant levels of perchlorate (ClO4-) in regolith sampled from the Phoenix landing site raises the question of its potential biotoxicity to putative indigenous martian life, microbial forward contaminants from Earth, or future human visitors. To address this issue, an analogue regolith was constructed based on regolith chemistry data from the Phoenix landing site. A Mars Aqueous Regolith Extract (MARE) was prepared from the Phoenix analogue regolith and analyzed by ion chromatography. The MARE contained (mg/L) the cations Na+ (1411 ± 181), Mg2+ (1051 ± 160), Ca2+ (832 ± 125), and K+ (261 ± 29), and the anions SO42-(5911±993), ClO4-(5316±1767), Cl(171±25) and F- (2.0 ± 0.4). Nitrogen-containing species NO3-(773±113) and NO2-(6.9±2.3) were also present as a result of regolith preparation procedures, but their relevance to Mars is at present unknown. The MARE was tested for potential toxic effects on two model spacecraft contaminants, the spore-forming bacteria Bacillus subtilis strain 168 and Bacillus pumilus strain SAFR-032. In B. subtilis, spore germination and initial vegetative growth (up to ˜5 h) was not inhibited in a rich complex medium prepared with the MARE, but growth after 5 h was significantly suppressed in medium prepared using the MARE. Both B. subtilis and B. pumilus exhibited significantly higher rates of spore germination and growth in the MARE vs. DW with no additions (likely due to endogenous spore nutrients), but germination and growth was further stimulated by addition of glucose and a combination of buffered inorganic salts (K2HPO4, KH2PO4, (NH4)2SO4, and MgSO4). The data indicate that the aqueous environment in the regolith from the Phoenix landing site containing high levels of perchlorate does not pose a significant barrier to growth of putative

  11. Engineering design of the Regolith X-ray Imaging Spectrometer (REXIS) instrument: an OSIRIS-REx student collaboration

    Science.gov (United States)

    Jones, Michael; Chodas, Mark; Smith, Matthew J.; Masterson, Rebecca A.

    2014-07-01

    OSIRIS-REx is a NASA New Frontiers mission scheduled for launch in 2016 that will travel to the asteroid Bennu and return a pristine sample of the asteroid to Earth. The REgolith X-ray Imaging Spectrometer (REXIS) is a student collaboration instrument on-board the OSIRIS-REx spacecraft. REXIS is a NASA risk Class D instrument, and its design and development is largely student led. The engineering team consists of MIT graduate and undergraduate students and staff at the MIT Space Systems Laboratory. The primary goal of REXIS is the education of science and engineering students through participation in the development of light hardware. In light, REXIS will contribute to the mission by providing an elemental abundance map of the asteroid and by characterizing Bennu among the known meteorite groups. REXIS is sensitive to X-rays between 0.5 and 7 keV, and uses coded aperture imaging to map the distribution of iron with 50 m spatial resolution. This paper describes the science goals, concept of operations, and overall engineering design of the REXIS instrument. Each subsystem of the instrument is addressed with a high-level description of the design. Critical design elements such as the Thermal Isolation Layer (TIL), radiation cover, coded-aperture mask, and Detector Assembly Mount (DAM) are discussed in further detail.

  12. The analysis of water in the Martian regolith.

    Science.gov (United States)

    Anderson, D M; Tice, A R

    1979-12-01

    One of the scientific objectives of the Viking Mission to Mars was to accomplish an analysis of water in the Martian regolith. The analytical scheme originally envisioned was severely compromised in the latter stages of the Lander instrument package design. Nevertheless, a crude soil water analysis was accomplished. Samples from each of the two widely separated sites yielded roughly 1 to 3% water by weight when heated successively to several temperatures up to 500 degrees C. A significant portion of this water was released in the 200 degrees to 350 degrees C interval indicating the presence of mineral hydrates of relatively low thermal stability, a finding in keeping with the low temperatures generally prevailing on Mars. The presence of a duricrust at one of the Lander sites is taken as possible evidence for the presence of hygroscopic minerals on Mars. The demonstrated presence of atmospheric water vapor and thermodynamic calculations lead to the belief that adsorbed water could provide a relatively favorable environment for endolithic organisms on Mars similar to types recently discovered in the dry antarctic deserts.

  13. An Investigation of the Mechanical Properties of Some Martian Regolith Simulants with Respect to the Surface Properties at the InSight Mission Landing Site

    Science.gov (United States)

    Delage, Pierre; Karakostas, Foivos; Dhemaied, Amine; Belmokhtar, Malik; Lognonné, Philippe; Golombek, Matt; De Laure, Emmanuel; Hurst, Ken; Dupla, Jean-Claude; Kedar, Sharon; Cui, Yu Jun; Banerdt, Bruce

    2017-10-01

    In support of the InSight mission in which two instruments (the SEIS seismometer and the HP3 heat flow probe) will interact directly with the regolith on the surface of Mars, a series of mechanical tests were conducted on three different regolith simulants to better understand the observations of the physical and mechanical parameters that will be derived from InSight. The mechanical data obtained were also compared to data on terrestrial sands. The density of the regolith strongly influences its mechanical properties, as determined from the data on terrestrial sands. The elastoplastic compression volume changes were investigated through oedometer tests that also provided estimates of possible changes in density with depth. The results of direct shear tests provided values of friction angles that were compared with that of a terrestrial sand, and an extrapolation to lower density provided a friction angle compatible with that estimated from previous observations on the surface of Mars. The importance of the contracting/dilating shear volume changes of sands on the dynamic penetration of the mole was determined, with penetration facilitated by the ˜1.3 Mg/m3 density estimated at the landing site. Seismic velocities, measured by means of piezoelectric bender elements in triaxial specimens submitted to various isotropic confining stresses, show the importance of the confining stress, with lesser influence of density changes under compression. A power law relation of velocity as a function of confining stress with an exponent of 0.3 was identified from the tests, allowing an estimate of the surface seismic velocity of 150 m/s. The effect on the seismic velocity of a 10% proportion of rock in the regolith was also studied. These data will be compared with in situ data measured by InSight after landing.

  14. Cosmogenic nuclide depth-profiles and geochemical analysis of mountain regolith aimed at quantifying rates of glacial and periglacial erosion

    DEFF Research Database (Denmark)

    Andersen, Jane Lund; Egholm, David Lundbek; Knudsen, Mads Faurschou

    Clay minerals such as kaolinite and gibbsite in mountain regolith in present-day cold environments are often, without further age-constraint, interpreted as products of weathering in a warmer climate (e.g. Rea, 1996; Strømsøe, 2011). This reasoning has, in turn, been used to infer long residence...

  15. Effect of Si implantation on the microstructure of silicon nanocrystals and surrounding SiO2 layer

    International Nuclear Information System (INIS)

    Ross, G.G.; Smirani, R.; Levitcharsky, V.; Wang, Y.Q.; Veilleux, G.; Saint-Jacques, R.G.

    2005-01-01

    Si nanocrystals (Si-nc) embedded in a SiO 2 layer have been characterized by means of transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). For local Si concentration in excess 8 x 10 21 Si + /cm 3 , the size of the Si-nc was found to be ∼3 nm and comparatively homogeneous throughout the whole implanted layer. For local Si concentration in excess of ∼2.4 x 10 22 Si + /cm 3 , the Si-nc diameter ranges from ∼2 to ∼12 nm in the sample, the Si-nc in the middle region of the implanted layer being bigger than those near the surface and the bottom of the layer. Also, Si-nc are visible deeper than the implanted depth. Characterization by XPS shows that a large quantity of oxygen was depleted from the first ∼25 nm in this sample (also visible on TEM image) and most of the SiO 2 bonds have been replaced by Si-O bonds. Experimental and simulation results suggest that a local Si concentration in excess of ∼3 x 10 21 Si/cm 3 is required for the production of Si-nc

  16. Size-dependent Measurements of the Scattering Properties of Planetary Regolith Analogs: A Challenge to Theory

    Science.gov (United States)

    Piatek, J. L.; Hapke, B. W.; Nelson, R. M.; Hale, A. S.; Smythe, W. D.

    2003-01-01

    The nature of the scattering of light is thought to be well understood when the medium is made up of independent scatterers that are much larger than the wavelength of that light. This is not the case when the size of the scattering objects is similar to or smaller than the wavelength or the scatterers are not independent. In an attempt to examine the applicability of independent particle scattering models, to planetary regoliths, a dataset of experimental results were compared with theoretical predictions.

  17. Smart Surroundings

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Jansen, P.G.; Lijding, M.E.M.; Scholten, Johan

    2004-01-01

    Ambient systems are networked embedded systems integrated with everyday environments and supporting people in their activities. These systems will create a Smart Surrounding for people to facilitate and enrich daily life and increase productivity at work. Such systems will be quite different from

  18. Improved Data Reduction Algorithm for the Needle Probe Method Applied to In-Situ Thermal Conductivity Measurements of Lunar and Planetary Regoliths

    Science.gov (United States)

    Nagihara, S.; Hedlund, M.; Zacny, K.; Taylor, P. T.

    2013-01-01

    The needle probe method (also known as the' hot wire' or 'line heat source' method) is widely used for in-situ thermal conductivity measurements on soils and marine sediments on the earth. Variants of this method have also been used (or planned) for measuring regolith on the surfaces of extra-terrestrial bodies (e.g., the Moon, Mars, and comets). In the near-vacuum condition on the lunar and planetary surfaces, the measurement method used on the earth cannot be simply duplicated, because thermal conductivity of the regolith can be approximately 2 orders of magnitude lower. In addition, the planetary probes have much greater diameters, due to engineering requirements associated with the robotic deployment on extra-terrestrial bodies. All of these factors contribute to the planetary probes requiring much longer time of measurement, several tens of (if not over a hundred) hours, while a conventional terrestrial needle probe needs only 1 to 2 minutes. The long measurement time complicates the surface operation logistics of the lander. It also negatively affects accuracy of the thermal conductivity measurement, because the cumulative heat loss along the probe is no longer negligible. The present study improves the data reduction algorithm of the needle probe method by shortening the measurement time on planetary surfaces by an order of magnitude. The main difference between the new scheme and the conventional one is that the former uses the exact mathematical solution to the thermal model on which the needle probe measurement theory is based, while the latter uses an approximate solution that is valid only for large times. The present study demonstrates the benefit of the new data reduction technique by applying it to data from a series of needle probe experiments carried out in a vacuum chamber on JSC-1A lunar regolith stimulant. The use of the exact solution has some disadvantage, however, in requiring three additional parameters, but two of them (the diameter and the

  19. DEM Solutions Develops Answers to Modeling Lunar Dust and Regolith

    Science.gov (United States)

    Dunn, Carol Anne; Calle, Carlos; LaRoche, Richard D.

    2010-01-01

    With the proposed return to the Moon, scientists like NASA-KSC's Dr. Calle are concerned for a number of reasons. We will be staying longer on the planet's surface, future missions may include dust-raising activities, such as excavation and handling of lunar soil and rock, and we will be sending robotic instruments to do much of the work for us. Understanding more about the chemical and physical properties of lunar dust, how dust particles interact with each other and with equipment surfaces and the role of static electricity build-up on dust particles in the low-humidity lunar environment is imperative to the development of technologies for removing and preventing dust accumulation, and successfully handling lunar regolith. Dr. Calle is currently working on the problems of the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces, particularly to those of Mars and the Moon, and is heavily involved in developing instrumentation for future planetary missions. With this end in view, the NASA Kennedy Space Center's Innovative Partnerships Program Office partnered with OEM Solutions, Inc. OEM Solutions is a global leader in particle dynamics simulation software, providing custom solutions for use in tackling tough design and process problems related to bulk solids handling. Customers in industries such as pharmaceutical, chemical, mineral, and materials processing as well as oil and gas production, agricultural and construction, and geo-technical engineering use OEM Solutions' EDEM(TradeMark) software to improve the design and operation of their equipment while reducing development costs, time-to-market and operational risk. EDEM is the world's first general-purpose computer-aided engineering (CAE) tool to use state-of-the-art discrete element modeling technology for the simulation and analysis of particle handling and manufacturing operations. With EDEM you'can quickly and easily create a parameterized model of your granular solids

  20. Data processing of the active neutron experiment DAN for a Martian regolith investigation

    Energy Technology Data Exchange (ETDEWEB)

    Sanin, A.B., E-mail: sanin@mx.iki.rssi.ru [Space Research Institute (IKI), RAS, Moscow (Russian Federation); Mitrofanov, I.G.; Litvak, M.L.; Lisov, D.I. [Space Research Institute (IKI), RAS, Moscow (Russian Federation); Starr, R. [Catholic University of America, Washington, DC (United States); Boynton, W. [University of Arizona, Tucson, AZ (United States); Behar, A.; DeFlores, L. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (United States); Fedosov, F.; Golovin, D. [Space Research Institute (IKI), RAS, Moscow (Russian Federation); Hardgrove, C. [University of Tennessee, Knoxville, TN (United States); Harshman, K. [University of Arizona, Tucson, AZ (United States); Jun, I. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (United States); Kozyrev, A.S. [Space Research Institute (IKI), RAS, Moscow (Russian Federation); Kuzmin, R.O. [Space Research Institute (IKI), RAS, Moscow (Russian Federation); Vernadsky Institute for Geochemistry and Analytical Chemistry, Moscow (Russian Federation); Malakhov, A. [Space Research Institute (IKI), RAS, Moscow (Russian Federation); Milliken, R. [Brown University, Providence, RI (United States); Mischna, M. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (United States); Moersch, J. [University of Tennessee, Knoxville, TN (United States); Mokrousov, M.I. [Space Research Institute (IKI), RAS, Moscow (Russian Federation); and others

    2015-07-21

    Searching for water in the soil of Gale Crater is one of the primary tasks for the NASA Mars Science Laboratory rover named Curiosity. The primary task of the Dynamic Albedo of Neutrons (DAN) experiment on board the rover is to investigate and qualitatively characterize the presence of water along the rover’s traverse across Gale Crater. The water depth distribution may be found from measurements of neutrons generated by the Pulsing Neutron Generator (PNG) included in the DAN instrument, scattered by the regolith and returned back to the detectors. This paper provides a description of the data processing of such measurements and data products of DAN investigation.

  1. Body surface adaptations to boundary-layer dynamics

    NARCIS (Netherlands)

    Videler, J.J.

    1995-01-01

    Evolutionary processes have adapted nektonic animals to interact efficiently with the water that surrounds them. Not all these adaptations serve the same purpose. This paper concentrates on reduction of drag due to friction in the boundary layer close to the body surface. Mucus, compliant skins,

  2. The REgolith X-Ray Imaging Spectrometer (REXIS) for OSIRIS-REx: Identifying Regional Elemental Enrichment on Asteroids

    OpenAIRE

    Allen, Branden; Grindlay, Jonathan; Hong, Jaesub; Binzel, Richard P.; Masterson, Rebecca; Inamdar, Niraj K.; Chodas, Mark; Smith, Matthew W.; Bautz, Marshall W.; Kissel, Steven E.; Villasenor, Joel; Oprescu, Miruna; Induni, Nicholas

    2013-01-01

    The OSIRIS-REx Mission was selected under the NASA New Frontiers program and is scheduled for launch in September of 2016 for a rendezvous with, and collection of a sample from the surface of asteroid Bennu in 2019. 101955 Bennu (previously 1999 RQ36) is an Apollo (near-Earth) asteroid originally discovered by the LINEAR project in 1999 which has since been classified as a potentially hazardous near-Earth object. The REgolith X-Ray Imaging Spectrometer (REXIS) was proposed jointly by MIT an...

  3. A two-phase moisture transport model accounting for sorption hysteresis in layered porous building constructions

    DEFF Research Database (Denmark)

    Johannesson, Björn; Janz, Mårten

    2009-01-01

    Building constructions most commonly consists of layered porous materials such as masonry on bricks. The moisture distribution and its variations due to change in surrounding environment is of special interest in such layered construction since materials adsorb different amounts of water and exhi......Building constructions most commonly consists of layered porous materials such as masonry on bricks. The moisture distribution and its variations due to change in surrounding environment is of special interest in such layered construction since materials adsorb different amounts of water....... The model is developed by carefully examining the mass balance postulates for the two considered constituents together with appropriate and suitable constitutive assumptions. A test example is solved by using an implemented implicit finite element code which uses a modified Newton-Raphson scheme to tackle...

  4. The Shallow Subsurface Geological Structures at the Chang'E-3 Landing Site Based on Lunar Penetrating Radar Channel-2B Data

    Science.gov (United States)

    Zhao, N.; Zhu, P.; Yuan, Y.; Yang, K.; Xiao, L.; Xiao, Z.

    2014-12-01

    The Lunar Penetrating Radar (LPR) carried by the Yutu rover of the Chinese Chang'E-3 mission has detected the shallow subsurface structures for the landing site at the northern Mare Imbrium. The antenna B of the LPR Channel-2 has collected more than 2000 traces of usable raw data. We performed calibration on the LPR data including amplitude compensation, filtering, and deconvolution. The processed results reveal that the shallow subsurface of the landing site can be divided into three major layers whose thicknesses are ~1, ~3, and 2-7 m, respectively. Variations occur on the thickness of each layer at different locations. Considering the geological background of the landing site, we interpret that the first layer is the regolith layer accumulated over ~80 Ma since the formation of the 450 m diameter Chang'E A crater. This regolith layer was formed on the basis of the ejecta deposits of Chang'E A. The second layer is the remnant continuous ejecta deposits from the Chang'E A crater, which is thicker closer to the crater rim and thinning outwardly. The Chang'E A crater formed on a paleo-regolith layer over the Eratosthenian basalts, which represents the third layer detected by the Channel 2B of the LPR.

  5. The Dust Management Project: Characterizing Lunar Environments and Dust, Developing Regolith Mitigation Technology and Simulants

    Science.gov (United States)

    Hyatt, Mark J.; Straka, Sharon A.

    2010-01-01

    A return to the Moon to extend human presence, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth?s economic sphere, will require investment in developing new technologies and capabilities to achieve affordable and sustainable human exploration. From the operational experience gained and lessons learned during the Apollo missions, conducting long-term operations in the lunar environment will be a particular challenge, given the difficulties presented by the unique physical properties and other characteristics of lunar regolith, including dust. The Apollo missions and other lunar explorations have identified significant lunar dust-related problems that will challenge future mission success. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it?s potentially harmful effects on exploration systems and human explorers. The Dust Management Project (DMP) is tasked with the evaluation of lunar dust effects, assessment of the resulting risks, and development of mitigation and management strategies and technologies related to Exploration Systems architectures. To this end, the DMP supports the overall goal of the Exploration Technology Development Program (ETDP) of addressing the relevant high priority technology needs of multiple elements within the Constellation Program (CxP) and sister ETDP projects. Project scope, plans, and accomplishments will be presented.

  6. Two-dimensional nonlinear heat conduction wave in a layer-inhomogeneous medium and the characteristics of heat transfer in laser thermonuclear fusion targets

    International Nuclear Information System (INIS)

    Gus'kov, Sergei Yu; Doskach, I Ya

    1999-01-01

    An analytical solution is obtained to the problem of propagation of a 2-D nonlinear heat conduction wave from a cylindrical energy source, which acts in a planar layer of a material surrounded by a medium with different mass density and degree of ionisation. A theoretical justification is given of several interesting phenomena of 2-D thermal wave propagation through an inhomogeneous medium. These phenomena are related to the difference between the thermal wave velocities in the media with different thermal diffusivities. When the mass density in a layer experiencing the action of an energy source exceeds the density of the surrounding medium, the thermal wave front is shown to glide along the layer boundaries with a spatial velocity exceeding the velocity of the wave inside the layer. Moreover, there is a possibility of 'themal flow' of a layer across the boundaries between the layer and the surrounding medium in front of a thermal wave propagating inside the layer. The problems of heat transfer in multilayer targets for laser thermonuclear fusion are considered as an application. (interaction of laser radiation with matter. laser plasma)

  7. Rayleigh Wave Ellipticity Modeling and Inversion for Shallow Structure at the Proposed InSight Landing Site in Elysium Planitia, Mars

    Science.gov (United States)

    Knapmeyer-Endrun, Brigitte; Golombek, Matthew P.; Ohrnberger, Matthias

    2017-10-01

    The SEIS (Seismic Experiment for Interior Structure) instrument onboard the InSight mission will be the first seismometer directly deployed on the surface of Mars. From studies on the Earth and the Moon, it is well known that site amplification in low-velocity sediments on top of more competent rocks has a strong influence on seismic signals, but can also be used to constrain the subsurface structure. Here we simulate ambient vibration wavefields in a model of the shallow sub-surface at the InSight landing site in Elysium Planitia and demonstrate how the high-frequency Rayleigh wave ellipticity can be extracted from these data and inverted for shallow structure. We find that, depending on model parameters, higher mode ellipticity information can be extracted from single-station data, which significantly reduces uncertainties in inversion. Though the data are most sensitive to properties of the upper-most layer and show a strong trade-off between layer depth and velocity, it is possible to estimate the velocity and thickness of the sub-regolith layer by using reasonable constraints on regolith properties. Model parameters are best constrained if either higher mode data can be used or additional constraints on regolith properties from seismic analysis of the hammer strokes of InSight's heat flow probe HP3 are available. In addition, the Rayleigh wave ellipticity can distinguish between models with a constant regolith velocity and models with a velocity increase in the regolith, information which is difficult to obtain otherwise.

  8. Reactivity Studies of Inconel 625 with Sodium, and Lunar Regolith Stimulant

    Science.gov (United States)

    Gillies, Donald; Salvail, Pat; Reid, Bob; Colebaugh, James; Easterling, Greg

    2008-01-01

    In the event of the need for nuclear power in exploration, high flux heat pipes will be needed for heat transfer from space nuclear reactors to various energy conversion devices, and to safely dissipate excess heat. Successful habitation will necessitate continuous operation of alkali metal filled heat pipes for 10 or-more years in a hostile environment with little maintenance. They must be chemical and creep resistant in the high vacuum of space (lunar), and they must operate reliably in low gravity conditions with intermittent high radiation fluxes. One candidate material for the heat pipe shell, namely Inconel 625, has been tested to determine its compatibility with liquid sodium. Any reactivity could manifest itself as a problem over the long time periods anticipated. In addition, possible reactions with the lunar regolith will take place, as will evaporation of selected elements at the external surfaces of the heat pipes, and so there is a need for extensive long-term testing under simulated lunar conditions.

  9. Changes in unique hues induced by chromatic surrounds.

    Science.gov (United States)

    Klauke, Susanne; Wachtler, Thomas

    2016-03-01

    A chromatic surround can have a strong influence on the perceived hue of a stimulus. We investigated whether chromatic induction has similar effects on the perception of colors that appear pure and unmixed (unique red, green, blue, and yellow) as on other colors. Subjects performed unique hue settings of stimuli in isoluminant surrounds of different chromaticities. Compared with the settings in a neutral gray surround, unique hue settings altered systematically with chromatic surrounds. The amount of induced hue shift depended on the difference between stimulus and surround hues, and was similar for unique hue settings as for settings of nonunique hues. Intraindividual variability in unique hue settings was roughly twice as high as for settings obtained in asymmetric matching experiments, which may reflect the presence of a reference stimulus in the matching task. Variabilities were also larger with chromatic surrounds than with neutral gray surrounds, for both unique hue settings and matching of nonunique hues. The results suggest that the neural representations underlying unique hue percepts are influenced by the same neural processing mechanisms as the percepts of other colors.

  10. Three-dimensional lithospheric density distribution of China and surrounding regions

    Directory of Open Access Journals (Sweden)

    Chuantao Li

    2014-01-01

    Full Text Available In this paper, we analyze lithospheric density distribution of China and surrounding regions on the basis of 30′ × 30′ gravity data and 1° × 1° P-wave velocity data. Firstly, we used the empirical equation between the density and the P-wave velocity difference as the base of the initial model of the Asian lithospheric density. Secondly, we calculated the gravity anomaly, caused by the Moho discontinuity and the sedimentary layer discontinuity, by the Parker formula. Thirdly, the gravity anomaly of the spherical harmonics with 2–40 order for the anomalous body below the lithosphere is calculated based on the model of EGM96. Finally, by using Algebra Reconstruction Techniques (ART, the inversion of 30′ × 30′ residual lithospheric Bouguer gravity anomaly caused by the lithosphere yields a rather detailed structural model. The results show that the lithospheric density distribution of China and surrounding regions has a certain connection with the tectonic structure. The density is relatively high in the Philippine Sea plate, Japan Sea, the Indian plate, the Kazakhstan shield and the Western Siberia plain, whereas the Tibetan Plateau has low-density characteristics. The minimum value of density lies in the north of Philippines, in the Taiwan province and in the Ryukyu island arc.

  11. The Vacuum-Compacted Regolith Gripping Mechanism and Unmanned Flights via Quad-Rotors

    Science.gov (United States)

    Scott, Rollin L.

    2014-01-01

    During the course of the Kennedy Space Center Summer Internship, two main experiments were performed: The Vacuum-Compacted Regolith Gripping Mechanism and Unmanned Flights via Quad-copters. The objectives of the Vacuum-Compacted Regolith Gripping Mechanism, often abbreviated as the Granular Gripper, are to exhibit Space Technology, such as a soft robotic hand, lift different apparatuses used to excavate regolith, and conserve energy while executing its intended task. The project is being conducted to test how much weight the Granular Gripper can hold. With the use of an Animatronic Robotic Hand, Arduino Uno, and other components, the system was calibrated before actually conducting the intended weight test. The maximum weight each finger could hold with the servos running, in the order of pinky, ring, middle, and index fingers, are as follows: 1.340N, 1.456 N, 0.9579 N, and 1.358 N. Using the small vacuum pump system, the maximum weight each finger could hold, in the same order, was: 4.076 N, 6.159 N, 5.454 N, and 4.052 N. The maximum torques on each of the fingers when the servos were running, in the same respective order, was: 0.0777 Nm, 0.0533 Nm, 0.0648 Nm, and 0.0532 Nm. The maximum torques on the individual fingers, when the small vacuum pump was in effect, in the same order as above, was: 0.2318 Nm, 0.3032 Nm, 0.2741 Nm, and 0.1618 Nm. In testing all the fingers with the servos running, the total weight was 5.112 N and the maximum torque on the all the fingers was 0.2515 Nm. However, when the small vacuum pump system was used, the total weight was 19.741 N and the maximum torque on the all the fingers was 0.9713 Nm. The conclusion that was drawn stated that using the small vacuum pump system proved nearly 4 times more effective when testing how much weigh the hand could hold. The resistance provided by the compacted sand in the glove allowed more weight to be held by the hand and glove. Also, when the servos turned off and the hand still retaining its

  12. Cryoseism Vibrational Movement and Sorting of Detritus of Mars' Regolith Bedforms (E.G., ~ Streaks, Gullies): a New, Dry, Midsummer Antarctic Analogue Mechanism

    Science.gov (United States)

    Ford, A. B.

    2015-12-01

    "SNAP!, CRACK!, POP!" The sounds reverberated across newly shaded permafrost of unusual talus aprons (Ford & Andersen, 1967; J. Geol., 75, 722-732) of interior Antarctica (lats. >84°S; Thiel, Pensacola mtns.), coming from ice cracking under tensile failure (cryoseisms). Apron regoliths show conspicuously reversed downslope particle-size sorting and downslope-oriented lineations (debris-cleared tracts; stone stripes) formed by vibrational movement of detritus by midsummer, diurnal cracking of ice. Moving laterally by vibrations away from cracks, with downslope component by gravity, finer detritus becomes concentrated downslope from coarser debris of initial cliff fall — winnowed, as if on a gigantic vibrating shaking table. Slopes outside shade zones remain free of cracking. Diurnal midday shading of solar-warmed, debris-mantled permafrost- and glacier-surface ice at low ambient midsummer temperatures produces high strain-loading rates that exceed tensile toughness of inhomogeneous, polycrystalline ice containing zones of older but sealed cracks. This dry, mechanical, cryoseism mechanism is here proposed also for now waterless Mars and other icy Solar System bodies. Regolith features of Mars' cryosphere may appear different from anrarctic analogues owing to likely operation over tens if not hundreds of millions of years longer than on Earth. The strain distributions in tensile failure of ice better explain a common spacing uniformity of many martian linear features than others' proposed origins, and for some "active" streaks and gully channels, TARS, RSL and dune-slipface channels, as well as for dune orthogonality, diurnal moonquakes and asteroid-regolith detrital sorting (e.g., "rubble-pile" 25143-Itokawa). Because periodic shade from topography (canyons, craters, etc.) is needed, the mechanism is not expected on flattish terrains where more normal annual cooling rates produce the common polygonal tensile fracturing of ice

  13. PIXE characterization of tissues surrounding metallic prostheses coated with biological glasses

    International Nuclear Information System (INIS)

    Barbotteau, Y.; Irigaray, J.L.; Moretto, Ph.

    2004-01-01

    Biological glasses can be used as coatings for metallic prostheses in order to prevent corrosion. According to their composition, these glasses have different properties. We studied, in vivo, two glasses referred to as BVA and BVH. They are used as coatings of Ti6Al4V metallic implant. BVA glass disappears after 3 months of implantation and is replaced by bone. Prostheses initially coated by this glass have a larger osseous contact perimeter compared to the uncoated prostheses. This ensures a better anchoring of the implant and limits the micro-motions which cause wear debris. BVH glass keeps a constant composition during implantation and it is used like a layer which isolates metal implant from biological environment. In order to characterize the bony environment surrounding implants, we have used PIXE and RBS methods. This paper shows results of the behavior of bony tissue under micro-beam, the quality tests of new bone which replaces the BVA glass coating and the evaluation of corrosion effects. Titanium release in bony tissues begins when the metal surface of the prosthesis is exposed to biological fluids. After a few months of implantation, the titanium contamination is stabilized and remains localized within the first tens of micrometers of surrounding bone

  14. Radar-Enabled Recovery of the Sutters Mill Meteorite, a Carbonaceous Chondrite Regolith Breccia

    Science.gov (United States)

    Jenniskens, Petrus M.; Fries, Marc D.; Yin, Qing-Zhu; Zolensky, Michael E.; Krot, Alexander N.; Sandford, Scott A.; Sears, Derek; Beauford, Robert; Ebel, Denton S.; Friedrich, Jon M.; hide

    2012-01-01

    Doppler weather radar imaging enabled the rapid recovery of the Sutter's Mill meteorite after a rare 4-kiloton of TNT-equivalent asteroid impact over the foothills of the Sierra Nevada in northern California. The recovered meteorites survived a record high-speed entry of 28.6 kilometers per second from an orbit close to that of Jupiter-family comets (Tisserand's parameter = 2.8 +/- 0.3). Sutter's Mill is a regolith breccia composed of CM (Mighei)-type carbonaceous chondrite and highly reduced xenolithic materials. It exhibits considerable diversity of mineralogy, petrography, and isotope and organic chemistry, resulting from a complex formation history of the parent body surface. That diversity is quickly masked by alteration once in the terrestrial environment but will need to be considered when samples returned by missions to C-class asteroids are interpreted.

  15. RESOLVE (Regolith & Environmental Science Oxygen & Lunar Volatile Extraction) Project

    Science.gov (United States)

    Parker, Ray; Coan, Mary; Captain, Janine; Cryderman, Kate; Quinn, Jacqueline

    2015-01-01

    The RESOLVE Project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph - mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize component and integrated system performance. Testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments was done. Test procedures were developed to guide experimental tests and test reports to analyze and draw conclusions from the data. In addition, knowledge and experience was gained with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer for the Surge Tank (NIRST), WDD, Sample Delivery System, and GC-MS in the vacuum chamber. Since LAVA is a scientific subsystem, the near infrared spectrometer and GC-MS instruments will be tested during the ETU testing phase.

  16. Three-layer microfibrous peripheral nerve guide conduit composed of elastin-laminin mimetic artificial protein and poly(L-lactic acid

    Directory of Open Access Journals (Sweden)

    Sachiro eKakinoki

    2014-07-01

    Full Text Available We developed a microfibrous poly(L-lactic acid (PLLA nerve conduit with a three-layered structure to simultaneously enhance nerve regeneration and prevent adhesion of surrounding tissue. The inner layer was composed of PLLA microfiber containing 25% elastin-laminin mimetic protein (AG73-(VPGIG30 that promotes neurite outgrowth. The thickest middle layer was constructed of pure PLLA microfibers that impart the large mechanical stremgth to the conduit. A 10% poly(ethylene glycol was added to the outer layer to prevent the adhesion with the surrounding tissue. The AG73-(VPGIG30 composisting of an elastin-like repetitive sequence (VPGIG30 and a laminin-derived sequence (RKRLQVQLSIRT: AG73 was biosynthesized using Escherichia coli. The PLLA microfibrous conduits were fabricated using an electrospinning procedure. AG73-(VPGIG30 was successfully mixed in the PLLA microfibers, and the PLLA/AG73-(VPGIG30 microfibers were stable under physiological conditions. The PLLA/AG73-(VPGIG30 microfibers enhanced adhesion and neurite outgrowth of PC12 cells. The electrospun microfibrous conduit with a three-layered structure was implanted for bridging a 2.0-cm gap in the tibial nerve of a rabbit. Two months after implantation, no adhesion of surrounding tissue was observed, and the action potential was slightly improved in the nerve conduit with the PLLA/AG73-(VPGIG30 inner layer.

  17. Three-layer microfibrous peripheral nerve guide conduit composed of elastin-laminin mimetic artificial protein and poly(L-lactic acid)

    Science.gov (United States)

    Kakinoki, Sachiro; Nakayama, Midori; Moritan, Toshiyuki; Yamaoka, Tetsuji

    2014-07-01

    We developed a microfibrous poly(L-lactic acid) (PLLA) nerve conduit with a three-layered structure to simultaneously enhance nerve regeneration and prevent adhesion of surrounding tissue. The inner layer was composed of PLLA microfiber containing 25% elastin-laminin mimetic protein (AG73-(VPGIG)30) that promotes neurite outgrowth. The thickest middle layer was constructed of pure PLLA microfibers that impart the large mechanical stremgth to the conduit. A 10% poly(ethylene glycol) was added to the outer layer to prevent the adhesion with the surrounding tissue. The AG73-(VPGIG)30 composisting of an elastin-like repetitive sequence (VPGIG)30 and a laminin-derived sequence (RKRLQVQLSIRT: AG73) was biosynthesized using Escherichia coli. The PLLA microfibrous conduits were fabricated using an electrospinning procedure. AG73-(VPGIG)30 was successfully mixed in the PLLA microfibers, and the PLLA/AG73-(VPGIG)30 microfibers were stable under physiological conditions. The PLLA/AG73-(VPGIG)30 microfibers enhanced adhesion and neurite outgrowth of PC12 cells. The electrospun microfibrous conduit with a three-layered structure was implanted for bridging a 2.0-cm gap in the tibial nerve of a rabbit. Two months after implantation, no adhesion of surrounding tissue was observed, and the action potential was slightly improved in the nerve conduit with the PLLA/AG73-(VPGIG)30 inner layer.

  18. Solar Flare Track Exposure Ages in Regolith Particles: A Calibration for Transmission Electron Microscope Measurements

    Science.gov (United States)

    Berger, Eve L.; Keller, Lindsay P.

    2015-01-01

    Mineral grains in lunar and asteroidal regolith samples provide a unique record of their interaction with the space environment. Space weathering effects result from multiple processes including: exposure to the solar wind, which results in ion damage and implantation effects that are preserved in the rims of grains (typically the outermost 100 nm); cosmic ray and solar flare activity, which result in track formation; and impact processes that result in the accumulation of vapor-deposited elements, impact melts and adhering grains on particle surfaces. Determining the rate at which these effects accumulate in the grains during their space exposure is critical to studies of the surface evolution of airless bodies. Solar flare energetic particles (mainly Fe-group nuclei) have a penetration depth of a few millimeters and leave a trail of ionization damage in insulating materials that is readily observable by transmission electron microscope (TEM) imaging. The density of solar flare particle tracks is used to infer the length of time an object was at or near the regolith surface (i.e., its exposure age). Track measurements by TEM methods are routine, yet track production rate calibrations have only been determined using chemical etching techniques [e.g., 1, and references therein]. We used focused ion beam-scanning electron microscope (FIB-SEM) sample preparation techniques combined with TEM imaging to determine the track density/exposure age relations for lunar rock 64455. The 64455 sample was used earlier by [2] to determine a track production rate by chemical etching of tracks in anorthite. Here, we show that combined FIB/TEM techniques provide a more accurate determination of a track production rate and also allow us to extend the calibration to solar flare tracks in olivine.

  19. Detection of morphological changes in cliff face surrounding a waterfall using terrestrial laser scanning and unmanned aerial system

    Science.gov (United States)

    Hayakawa, Yuichi S.; Obanawa, Hiroyuki

    2015-04-01

    Waterfall or bedrock knickpoint appears as an erosional front in bedrock rivers forming deep v-shaped valley downstream. Following the rapid fluvial erosion of waterfall, rockfalls and gravita-tional collapses often occur in surrounding steep cliffs. Although morphological changes of such steep cliffs are sometimes visually observed, quantitative and precise measurements of their spatio-temporal distribution have been limited due to the difficulties in direct access to such cliffs if with classical measurement methods. However, for the clarification of geomorphological processes oc-curring in the cliffs, multi-temporal mapping of the cliff face at a high resolution is necessary. Re-mote sensing approaches are therefore suitable for the topographic measurements and detection of changes in such inaccessible cliffs. To achieve accurate topographic mapping of cliffs around a wa-terfall, here we perform multi-temporal terrestrial laser scanning (TLS), as well as structure-from-motion multi-view stereo (SfM-MVS) photogrammetry based on unmanned aerial system (UAS). The study site is Kegon Falls in central Japan, having a vertical drop of surface water from top of its overhanging cliff, as well as groundwater outflows from its lower portions. The bedrock is composed of alternate layers of andesite lava and conglomerates. Minor rockfalls in the cliffs are often ob-served by local people. The latest major rockfall occurred in 1986, causing ca. 8-m upstream propa-gation of the waterfall lip. This provides a good opportunity to examine the changes in the surround-ing cliffs following the waterfall recession. Multi-time point clouds were obtained by TLS measure-ment over years, and the three-dimensional changes of the rock surface were detected, uncovering the locus of small rockfalls and gully developments. Erosion seems particularly frequent in relatively weak the conglomerates layer, whereas small rockfalls seems to have occurred in the andesite layers. Also, shadows in the

  20. Forest Fragments Surrounded by Sugar Cane Are More Inhospitable to Terrestrial Amphibian Abundance Than Fragments Surrounded by Pasture

    Directory of Open Access Journals (Sweden)

    Paula Eveline Ribeiro D’Anunciação

    2013-01-01

    Full Text Available In recent years, there has been increasing interest in matrix-type influence on forest fragments. Terrestrial amphibians are good bioindicators for this kind of research because of low vagility and high philopatry. This study compared richness, abundance, and species composition of terrestrial amphibians through pitfall traps in two sets of semideciduous seasonal forest fragments in southeastern Brazil, according to the predominant surrounding matrix (sugar cane and pasture. There were no differences in richness, but fragments surrounded by sugar cane had the lowest abundance of amphibians, whereas fragments surrounded by pastures had greater abundance. The most abundant species, Rhinella ornata, showed no biometric differences between fragment groups but like many other amphibians sampled showed very low numbers of individuals in fragments dominated by sugar cane fields. Our data indicate that the sugar cane matrix negatively influences the community of amphibians present in fragments surrounded by this type of land use.

  1. Atomic layer deposition to prevent metal transfer from implants: An X-ray fluorescence study

    Energy Technology Data Exchange (ETDEWEB)

    Bilo, Fabjola [INSTM and Chemistry for Technologies Laboratory, University of Brescia, via Branze, 38, 25123 Brescia (Italy); Borgese, Laura, E-mail: laura.borgese@unibs.itl [INSTM and Chemistry for Technologies Laboratory, University of Brescia, via Branze, 38, 25123 Brescia (Italy); Prost, Josef; Rauwolf, Mirjam; Turyanskaya, Anna; Wobrauschek, Peter; Kregsamer, Peter; Streli, Christina [Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna (Austria); Pazzaglia, Ugo [Dipartimento Specialità Medico Chirurgiche Sc. Radiol. e Sanità Pubblica, University of Brescia, v.le Europa, 11, 25121 Brescia (Italy); Depero, Laura E. [INSTM and Chemistry for Technologies Laboratory, University of Brescia, via Branze, 38, 25123 Brescia (Italy)

    2015-12-30

    Highlights: • Co and Cr migrate from bare alloy implant to the surrounding tissue showing a cluster distribution. • Co and Cr migrate from the TiO{sub 2} coated implant to the surrounding tissue showing a decreasing gradient distribution from the alloy surface. • TiO{sub 2} coating layers obtained by ALD on Co–Cr alloy show a barrier effect for the migration of metals. • The thicker the TiO{sub 2} layer deposited by ALD, the lower the metal migration. • The migration of metals from bare alloy toward the surrounding tissue increases with time. This effect is not detected in the coated samples. - Abstract: We show that Atomic Layer Deposition is a suitable coating technique to prevent metal diffusion from medical implants. The metal distribution in animal bone tissue with inserted bare and coated Co–Cr alloys was evaluated by means of micro X-ray fluorescence mapping. In the uncoated implant, the migration of Co and Cr particles from the bare alloy in the biological tissues is observed just after one month and the number of particles significantly increases after two months. In contrast, no metal diffusion was detected in the implant coated with TiO{sub 2}. Instead, a gradient distribution of the metals was found, from the alloy surface going into the tissue. No significant change was detected after two months of aging. As expected, the thicker is the TiO{sub 2} layer, the lower is the metal migration.

  2. REgolith X-Ray Imaging Spectrometer (REXIS) Aboard NASA’s OSIRIS-REx Mission

    Science.gov (United States)

    Hong, JaeSub; Allen, Branden; Grindlay, Jonathan E.; Binzel, Richard P.; Masterson, Rebecca; Inamdar, Niraj K; Chodas, Mark; Smith, Matthew W; Bautz, Mark W.; Kissel, Steven E; Villasenor, Jesus Noel; Oprescu, Antonia

    2014-06-01

    The REgolith X-Ray Imaging Spectrometer (REXIS) is a student-led instrument being designed, built, and operated as a collaborative effort involving MIT and Harvard. It is a part of NASA's OSIRIS-REx mission, which is scheduled for launch in September of 2016 for a rendezvous with, and collection of a sample from the surface of the primitive carbonaceous chondrite-like asteroid 101955 Bennu in 2019. REXIS will determine spatial variations in elemental composition of Bennu's surface through solar-induced X-ray fluorescence. REXIS consists of four X-ray CCDs in the detector plane and an X-ray mask. It is the first coded-aperture X-ray telescope in a planetary mission, which combines the benefit of high X-ray throughput of wide-field collimation with imaging capability of a coded-mask, enabling detection of elemental surface distributions at approximately 50-200 m scales. We present an overview of the REXIS instrument and the expected performance.

  3. Scaling the heterogeneously heated convective boundary layer

    Science.gov (United States)

    Van Heerwaarden, C.; Mellado, J.; De Lozar, A.

    2013-12-01

    We have studied the heterogeneously heated convective boundary layer (CBL) by means of large-eddy simulations (LES) and direct numerical simulations (DNS). What makes our study different from previous studies on this subject are our very long simulations in which the system travels through multiple states and that from there we have derived scaling laws. In our setup, a stratified atmosphere is heated from below by square patches with a high surface buoyancy flux, surrounded by regions with no or little flux. By letting a boundary layer grow in time we let the system evolve from the so-called meso-scale to the micro-scale regime. In the former the heterogeneity is large and strong circulations can develop, while in the latter the heterogeneity is small and does no longer influence the boundary layer structure. Within each simulation we can now observe the formation of a peak in kinetic energy, which represents the 'optimal' heterogeneity size in the meso-scale, and the subsequent decay of the peak and the development towards the transition to the micro-scale. We have created a non-dimensional parameter space that describes all properties of this system. By studying the previously described evolution for different combinations of parameters, we have derived three important conclusions. First, there exists a horizontal length scale of the heterogeneity (L) that is a function of the boundary layer height (h) and the Richardson (Ri) number of the inversion at the top of the boundary layer. This relationship has the form L = h Ri^(3/8). Second, this horizontal length scale L allows for expressing the time evolution, and thus the state of the system, as a ratio of this length scale and the distance between two patches Xp. This ratio thus describes to which extent the circulation fills up the space that exists between two patch centers. The timings of the transition from the meso- to the micro-scale collapse under this scaling for all simulations sharing the same flux

  4. From Lunar Regolith to Fabricated Parts: Technology Developments and the Utilization of Moon Dirt

    Science.gov (United States)

    McLemore, C. A.; Fikes, J. C.; McCarley, K. S.; Good, J. E.; Gilley, S. D.; Kennedy, J. P.

    2008-01-01

    The U.S. Space Exploration Policy has as a cornerstone the establishment of an outpost on the moon. This lunar outpost wil1 eventually provide the necessary planning, technology development, testbed, and training for manned missions in the future beyond the Moon. As part of the overall activity, the National Aeronautics and Space Administration (NASA) is investigating how the in situ resources can be utilized to improve mission success by reducing up-mass, improving safety, reducing risk, and bringing down costs for the overall mission. Marshall Space Flight Center (MSFC), along with other NASA centers, is supporting this endeavor by exploring how lunar regolith can be mined for uses such as construction, life support, propulsion, power, and fabrication. An infrastructure capable of fabrication and nondestructive evaluation will be needed to support habitat structure development and maintenance, tools and mechanical parts fabrication, as well as repair and replacement of space-mission hardware such as life-support items, vehicle components, and crew systems, This infrastructure will utilize the technologies being developed under the In Situ Fabrication and Repair (ISFR) element, which is working in conjunction with the technologies being developed under the In Situ Resources Utilization (ISRU) element, to live off the land. The ISFR Element supports the Space Exploration Initiative by reducing downtime due to failed components; decreasing risk to crew by recovering quickly from degraded operation of equipment; improving system functionality with advanced geometry capabilities; and enhancing mission safety by reducing assembly part counts of original designs where possible. This paper addresses the need and plan for understanding the properties of the lunar regolith to determine the applicability of using this material in a fabrication process. This effort includes the development of high fidelity simulants that will be used in fabrication processes on the ground to

  5. Enhancement of Afterimage Colors by Surrounding Contours

    Directory of Open Access Journals (Sweden)

    Takao Sato

    2011-05-01

    Full Text Available Presenting luminance contours surrounding the adapted areas in test phase enhances color afterimages in both duration and color appearance. The presence of surrounding contour is crucial to some color phenomenon such as van Lier's afterimage, but the contour-effect itself has not been seriously examined. In this paper, we compared the contour-effect to color afterimages and to actually colored patches to examine the nature of color information subserving color-aftereffect. In the experiment, observers were adapted for 1 sec to a small colored square (red, green, yellow, or blue presented on a gray background. Then, a test field either with or without surrounding contour was presented. Observers matched the color of a test-patch located near the afterimage to the color of afterimage. It was found that the saturation of negative afterimage was almost doubled by the presence of surrounding contours. There was no effect of luminance contrast or polarity of contours. In contrast, no enhancement of saturation by surrounding contours was observed for actually colored patches even though the colors of patches were equalized to that of afterimage without contours. This dissociation in the contour-effect demonstrates the crucial difference between the color information for aftereffects and for ordinary bottom-up color perception.

  6. Peculiarities of light transformation by the plate-lane biisotropic layer

    International Nuclear Information System (INIS)

    Dovydenko, S.N.

    2011-01-01

    In this article the peculiarities of transformation of light wave with arbitrary polarization by a half-infinity biisotropic medium and a biisotropic layer surrounded by different media are considered. Analytical expressions are obtained for refraction and reflection coefficients of transformed waves. The influence of layer parameters on refraction and reflection is investigated. It is shown that at arbitrary polarization of incident light the reflected wave is elliptically polarized. The possibility is established and the conditions are determined for π/2 turning the polarization plate of the wave at reflection from the biisotropic medium/layer. The refraction of the light wave by a plate-lake biisotropic layer is analyzed. It is grounded that the wave, transmitted the layer, is elliptically polarized, at that its ellipticity depends on chiral and non-reciprocal parameters, the non-reciprocality influence is weaker. (authors)

  7. Multiple prismatic calcium phosphate layers in the jaws of present-day sharks (Chondrichthyes; Selachii).

    Science.gov (United States)

    Dingerkus, G; Séret, B; Guilbert, E

    1991-01-15

    Jaws of large individuals, over 2 m in total length, of the shark species Carcharodon carcharias (great white shark) and Isurus oxyrinchus (mako shark) of the family Lamnidae, and Galeocerdo cuvieri (tiger shark) and Carcharhinus leucas (bull shark) of the family Carcharhinidae were found to have multiple, up to five, layers of prismatic calcium phosphate surrounding the cartilages. Smaller individuals of these species and other known species of living chondrichthyans have only one layer of prismatic calcium phosphate surrounding the cartilages, as also do most species of fossil chondrichthyans. Two exceptions are the fossil shark genera Xenacanthus and Tamiobatis. Where it is found in living forms, this multiple layered calcification does not appear to be phylogenetic, as it appears to be lacking in other lamnid and carcharhinid genera and species. Rather it appears to be functional, only appearing in larger individuals and species of these two groups, and hence may be necessary to strengthen the jaw cartilages of such individuals for biting.

  8. Chromatic induction from surrounding stimuli under perceptual suppression.

    Science.gov (United States)

    Horiuchi, Koji; Kuriki, Ichiro; Tokunaga, Rumi; Matsumiya, Kazumichi; Shioiri, Satoshi

    2014-11-01

    The appearance of colors can be affected by their spatiotemporal context. The shift in color appearance according to the surrounding colors is called color induction or chromatic induction; in particular, the shift in opponent color of the surround is called chromatic contrast. To investigate whether chromatic induction occurs even when the chromatic surround is imperceptible, we measured chromatic induction during interocular suppression. A multicolor or uniform color field was presented as the surround stimulus, and a colored continuous flash suppression (CFS) stimulus was presented to the dominant eye of each subject. The subjects were asked to report the appearance of the test field only when the stationary surround stimulus is invisible by interocular suppression with CFS. The resulting shifts in color appearance due to chromatic induction were significant even under the conditions of interocular suppression for all surround stimuli. The magnitude of chromatic induction differed with the surround conditions, and this difference was preserved regardless of the viewing conditions. The chromatic induction effect was reduced by CFS, in proportion to the magnitude of chromatic induction under natural (i.e., no-CFS) viewing conditions. According to an analysis with linear model fitting, we revealed the presence of at least two kinds of subprocesses for chromatic induction that reside at higher and lower levels than the site of interocular suppression. One mechanism yields different degrees of chromatic induction based on the complexity of the surround, which is unaffected by interocular suppression, while the other mechanism changes its output with interocular suppression acting as a gain control. Our results imply that the total chromatic induction effect is achieved via a linear summation of outputs from mechanisms that reside at different levels of visual processing.

  9. S-layer fusion protein as a tool functionalizing emulsomes and CurcuEmulsomes for antibody binding and targeting.

    Science.gov (United States)

    Ucisik, Mehmet H; Küpcü, Seta; Breitwieser, Andreas; Gelbmann, Nicola; Schuster, Bernhard; Sleytr, Uwe B

    2015-04-01

    Selective targeting of tumor cells by nanoparticle-based drug delivery systems is highly desirable because it maximizes the drug concentration at the desired target while simultaneously protecting the surrounding healthy tissues. Here, we show a design for smart nanocarriers based on a biomimetic approach that utilizes the building principle of virus envelope structures. Emulsomes and CurcuEmulsomes comprising a tripalmitin solid core surrounded by phospholipid layers are modified by S-layer proteins that self-assemble into a two-dimensional array to form a surface layer. One significant advantage of this nanoformulation is that it increases the solubility of the lipophilic anti-cancer agent curcumin in the CurcuEmulsomes by a factor of 2700. In order to make the emulsomes specific for IgG, the S-layer protein is fused with two protein G domains. This S-layer fusion protein preserves its recrystallization characteristics, forming an ordered surface layer (square lattice with 13 nm unit-by-unit distance). The GG domains are presented in a predicted orientation and exhibit a selective binding affinity for IgG. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  10. MicroCT Bone Densitometry: Context Sensitivity, Beam Hardening Correction and the Effect of Surrounding Media

    Directory of Open Access Journals (Sweden)

    Philip L. Salmon

    2014-12-01

    Full Text Available The context-sensitivity of microCT bone densitometry due to beam hardening artefacts was assessed. Bones and teeth are scanned with varying thickness of surrounding media (water, alcohol, biological tissue and it is important to understand how this affects reconstructed attenuation (“density” of the mineralized tissue. Aluminium tubes and rods with thickness 0.127mm–5mm were scanned both in air or surrounded by up to 2cm of water. Scans were performed with different energy filters and degrees of software beam hardening correction (BHC. Also tested were the effects of signal-to-noise ratio, magnification and truncation. The thickness of an aluminium tube significantly affected its mean reconstructed attenuation. This effect of thickness could be reduced substantially by BHC for scans in air, but not for scans in water. Varying thickness of surrounding water also changed the mean attenuation of an aluminium tube. This artefact could be almost eliminated by an optimal BHC value. The “cupping” artefact of heterogeneous attenuation (elevated at outer surfaces could be corrected if aluminium was scanned in air, but in water BHC was much less effective. Scan truncation, changes to magnification and signal-to-noise ratio also caused artificial changes to measured attenuation. Measurement of bone mineral density by microCT is highly context sensitive. A surrounding layer of liquid or biological tissue reduces the ability of software BHC to remove bone density artefacts. Sample thickness, truncation, magnification and signal to noise ratio also affect reconstructed attenuation. Thus it is important for densitometry that sample and calibration phantom dimensions and mounting materials are standardised.

  11. Modelling of the dose-rate variations with depth in the Martian regolith using GEANT4

    International Nuclear Information System (INIS)

    Morthekai, P.; Jain, M.; Dartnell, L.; Murray, A.S.; Botter-Jensen, L.; Desorgher, L.

    2007-01-01

    The environmental radiation field at the Martian surface consists mainly of Galactic Cosmic Rays (GCR) and charged particles ejected during the Solar Particle Events (SPE). Interactions between these radiation fluxes and the regolith result in a complex radiation field that varies both as a function of depth and time and can only be quantified using radiation transport models. We first describe here the main issues and constraints in deriving Martian dose rates. Preliminary results, obtained using the GEANT4 Monte Carlo simulation tool kit, suggest the surface dose rate is ∼63 mGy a -1 during quiet periods in solar activity. The accuracy of the model predictions has been tested by comparison with published observations of cosmic ray dose-rate variation in the Earth's atmosphere

  12. Comparison of Socioeconomic Factors between Surrounding and Non-Surrounding Areas of the Qinghai–Tibet Railway before and after Its Construction

    Directory of Open Access Journals (Sweden)

    Shicheng Li

    2016-08-01

    Full Text Available As the world’s highest railway, and the longest highland railway, the Qinghai–Tibet Railway (QTR has been paid considerable attention by researchers. However, most attention has been paid to the ecological and environmental issues affecting it, and sustainable ecological, social, and economic development-related studies of the QTR are rare. In this study, by analyzing the passenger traffic, freight traffic, passenger-kilometers, and freight-kilometers of the QTR for the period 1982–2013 and the transport structure of the Tibetan Plateau (TP for 1990–2013, the evolutionary process of the transport system in the TP following the construction of the QTR has been revealed. Subsequently, by comparing Gross Domestic Product (GDP, population, industrial structure, and urbanization level at the county and 1 km scales between surrounding and non-surrounding areas of the QTR, the differences in socioeconomic performance before and after its construction were detected. The results show that (1 in the TP, the highway-dominated transport system will break up and an integrated and sustainable transport system will form; (2 at the county scale, the annual growth rates of GDP of counties surrounding the QTR were greater than those of non-surrounding counties for the period 2000–2010. At the 1 km scale, following the opening of the completed line, the GDP of surrounding areas had a greater growth rate than before; (3 analysis at the county and 1 km scales indicated that population was not aggregated into the surrounding areas of the QTR in the period 2000–2010; (4 in terms of industrial structure, the proportion of primary industry decreased continuously, while the proportion of secondary and tertiary industries increased overall in the period 1984–2012. The QTR had no obvious impact on changes in the urbanization level of its surrounding areas.

  13. Direct Electrolysis of Molten Lunar Regolith for the Production of Oxygen and Metals on the Moon

    Science.gov (United States)

    Sirk, Aislinn H. C.; Sadoway, Donald R.; Sibille, Laurent

    2010-01-01

    When considering the construction of a lunar base, the high cost ($ 100,000 a kilogram) of transporting materials to the surface of the moon is a significant barrier. Therefore in-situ resource utilization will be a key component of any lunar mission. Oxygen gas is a key resource, abundant on earth and absent on the moon. If oxygen could be produced on the moon, this provides a dual benefit. Not only does it no longer need to be transported to the surface for breathing purposes; it can also be used as a fuel oxidizer to support transportation of crew and other materials more cheaply between the surface of the moon, and lower earth orbit (approximately $20,000/kg). To this end a stable, robust (lightly manned) system is required to produce oxygen from lunar resources. Herein, we investigate the feasibility of producing oxygen, which makes up almost half of the weight of the moon by direct electrolysis of the molten lunar regolith thus achieving the generation of usable oxygen gas while producing primarily iron and silicon at the cathode from the tightly bound oxides. The silicate mixture (with compositions and mechanical properties corresponding to that of lunar regolith) is melted at temperatures near 1600 C. With an inert anode and suitable cathode, direct electrolysis (no supporting electrolyte) of the molten silicate is carried out, resulting in production of molten metallic products at the cathode and oxygen gas at the anode. The effect of anode material, sweep rate, and electrolyte composition on the electrochemical behavior was investigated and implications for scale-up are considered. The activity and stability of the candidate anode materials as well as the effect of the electrolyte composition were determined. Additionally, ex-situ capture and analysis of the anode gas to calculate the current efficiency under different voltages, currents and melt chemistries was carried out.

  14. Mars - CO2 adsorption and capillary condensation on clays: Significance for volatile storage and atmospheric history

    Science.gov (United States)

    Fanale, F. P.; Cannon, W. A.

    1979-01-01

    Results on the adsorbate-adsorbent system CO2-nontronite are reported at 230, 196, and 158 deg K, covering the range of subsurface regolith temperature on Mars. A three-part regolith-atmosphere-cap model reveals that cold nontronite, and expanding clays in general, are far better but far more complex CO2 adsorbers than cold pulverized basalt. In addition, the layered terrain, and possibly the adjacent debris mantle, contains about 2% or more by mass of atmosphere-exchangeable CO2 and the total regolith inventory of available adsorbed CO2 is estimated to be 400 g/ sq cm.

  15. The Moon as a recorder of organic evolution in the early solar system: a lunar regolith analog study.

    Science.gov (United States)

    Matthewman, Richard; Court, Richard W; Crawford, Ian A; Jones, Adrian P; Joy, Katherine H; Sephton, Mark A

    2015-02-01

    The organic record of Earth older than ∼3.8 Ga has been effectively erased. Some insight is provided to us by meteorites as well as remote and direct observations of asteroids and comets left over from the formation of the Solar System. These primitive objects provide a record of early chemical evolution and a sample of material that has been delivered to Earth's surface throughout the past 4.5 billion years. Yet an effective chronicle of organic evolution on all Solar System objects, including that on planetary surfaces, is more difficult to find. Fortunately, early Earth would not have been the only recipient of organic matter-containing objects in the early Solar System. For example, a recently proposed model suggests the possibility that volatiles, including organic material, remain archived in buried paleoregolith deposits intercalated with lava flows on the Moon. Where asteroids and comets allow the study of processes before planet formation, the lunar record could extend that chronicle to early biological evolution on the planets. In this study, we use selected free and polymeric organic materials to assess the hypothesis that organic matter can survive the effects of heating in the lunar regolith by overlying lava flows. Results indicate that the presence of lunar regolith simulant appears to promote polymerization and, therefore, preservation of organic matter. Once polymerized, the mineral-hosted newly formed organic network is relatively protected from further thermal degradation. Our findings reveal the thermal conditions under which preservation of organic matter on the Moon is viable.

  16. Inspection of power and ground layers in PCB images

    Science.gov (United States)

    Bunyak, Filiz; Ercal, Fikret

    1998-10-01

    In this work, we present an inspection method for power and ground (P&G) layers of printed circuit boards (PCB) also called utility layers. Design considerations for the P&G layers are different than those of signal layers. Current PCB inspection approaches cannot be applied to these layers. P&G layers act as internal ground, neutral or power sources. P&G layers are predominantly copper with occasional pad areas (without copper) called clearance. Defect definition is based on the spacing between the holes that will be drilled in clearances and the surrounding copper. Overlap of pads of different sizes and shapes are allowed. This results in complex, hard to inspect clearances. Our inspection is based on identification of shape, size and position of the individual pads that contribute to an overlapping clearance and then inspection of each pad based on design rules and tolerances. Main steps of our algorithm are as follows: (1) extraction and preprocessing of clearance contours; (2) decomposition of contours into segments: corner detection and matching lines or circular arcs between two corners; (3) determination of the pads from partial contour information obtained in step (2), and (4) design rules checking for each detected pad.

  17. Thermal design and performance of the REgolith x-ray imaging spectrometer (REXIS) instrument

    Science.gov (United States)

    Stout, Kevin D.; Masterson, Rebecca A.

    2014-08-01

    The REgolith X-ray Imaging Spectrometer (REXIS) instrument is a student collaboration instrument on the OSIRIS-REx asteroid sample return mission scheduled for launch in September 2016. The REXIS science mission is to characterize the elemental abundances of the asteroid Bennu on a global scale and to search for regions of enhanced elemental abundance. The thermal design of the REXIS instrument is challenging due to both the science requirements and the thermal environment in which it will operate. The REXIS instrument consists of two assemblies: the spectrometer and the solar X-ray monitor (SXM). The spectrometer houses a 2x2 array of back illuminated CCDs that are protected from the radiation environment by a one-time deployable cover and a collimator assembly with coded aperture mask. Cooling the CCDs during operation is the driving thermal design challenge on the spectrometer. The CCDs operate in the vicinity of the electronics box, but a 130 °C thermal gradient is required between the two components to cool the CCDs to -60 °C in order to reduce noise and obtain science data. This large thermal gradient is achieved passively through the use of a copper thermal strap, a large radiator facing deep space, and a two-stage thermal isolation layer between the electronics box and the DAM. The SXM is mechanically mounted to the sun-facing side of the spacecraft separately from the spectrometer and characterizes the highly variable solar X-ray spectrum to properly interpret the data from the asteroid. The driving thermal design challenge on the SXM is cooling the silicon drift detector (SDD) to below -30 °C when operating. A two-stage thermoelectric cooler (TEC) is located directly beneath the detector to provide active cooling, and spacecraft MLI blankets cover all of the SXM except the detector aperture to radiatively decouple the SXM from the flight thermal environment. This paper describes the REXIS thermal system requirements, thermal design, and analyses, with

  18. Growth of cyanobacteria on Martian Regolith Simulant after exposure to vacuum

    Science.gov (United States)

    Arai, Mayumi; Sato, Seigo; Ohmori, Masayuki; Tomita-Yokotani, Kaori; Hashimoto, Hirofumi; Yamashita, Masamichi

    Habitation on Mars is one of our challenges in this century. The growth of cyanobacteria on Martian Regolith Simulant (MRS) was studied with two species of terrestrial cyanobacteria, Nostoc, and one species of other cyanobacterium, Synechosystis. Their vacuum tolerances was examined in order to judge feasibility of the use of cyanobacteria to creat habitable environment on a distant planet. The viability of cyanobacteria tested was evaluated by the microscopic observation after staining by FDA (fluorescein diacetate). A part of them were also re-incubated again in a liquid culture medium, and viability and the chlorophyll production were examined in detail. Nostoc was found to grow for over 140 days with their having normal function of chlorophyll synthesis on the MRS. After the exposure to high vacuum environment (10-5 Pa) for a year, Nostoc sp. started growth. Chlorophyll was produced after this vacuum exposure as well. The A'MED (Arai's Mars Ecosystem Dome, A'MED) is designed to install on Mars for conducting agricultural production in it. We performed the fundamental experiment with MRS. These results show a possibility that cyanobacteria could adapt to MRS, and grow under the low pressure environment expected on Mars.

  19. Metamorphism of cosmic dust: Processing from circumstellar outflows to the cometary regolith

    International Nuclear Information System (INIS)

    Nuth, J.A. III.

    1989-01-01

    Metamorphism of refractory particles continues in the interstellar medium (ISM) where the driving forces are sputtering by cosmic ray particles, annealing by high energy photons, and grain destruction in supernova generated shocks. Studies of the depletion of the elements from the gas phase of the interstellar medium tell us that if grain destruction occurs with high efficiency in the ISM, then there must be some mechanism by which grains can be formed in the ISM. Most grains in a cloud which collapses to form a star will be destroyed; many of the surviving grains will be severely processed. Grains in the outermost regions of the nebula may survive relatively unchanged by thermal processing or hydration. It is these grains which one hopes to find in comets. However, only those grains encased in ice at low temperature can be considered pristine since a considerable degree of hydrous alteration might occur in a cometary regolith if the comet enters the inner solar system. The physical, chemical and isotopic properties of a refractory grain at each stage of its life cycle will be discussed

  20. A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties

    Directory of Open Access Journals (Sweden)

    Sergio Solinas

    2010-05-01

    Full Text Available The way the cerebellar granular layer transforms incoming mossy fiber signals into new spike patterns to be related to Purkinje cells is not yet clear. Here, a realistic computational model of the granular layer was developed and used to address four main functional hypotheses: center-surround organization, time-windowing, high-pass filtering in responses to spike bursts and coherent oscillations in response to diffuse random activity. The model network was activated using patterns inspired by those recorded in vivo. Burst stimulation of a small mossy fiber bundle resulted in granule cell bursts delimited in time (time windowing and space (center-surround by network inhibition. This burst-burst transmission showed marked frequency-dependence configuring a high-pass filter with cut-off frequency around 100 Hz. The contrast between center and surround properties was regulated by the excitatory-inhibitory balance. The stronger excitation made the center more responsive to 10-50 Hz input frequencies and enhanced the granule cell output (with spike occurring earlier and with higher frequency and number compared to the surround. Finally, over a certain level of mossy fiber background activity, the circuit generated coherent oscillations in the theta-frequency band. All these processes were fine-tuned by NMDA and GABA-A receptor activation and neurotransmitter vesicle cycling in the cerebellar glomeruli. This model shows that available knowledge on cellular mechanisms is sufficient to unify the main functional hypotheses on the cerebellum granular layer and suggests that this network can behave as an adaptable spatio-temporal filter coordinated by theta-frequency oscillations.

  1. Monitoring program of surrounding of the NPP SE-EBO

    International Nuclear Information System (INIS)

    Dobis, L.; Kostial, J.

    1997-01-01

    The paper dealt with monitoring program of radiation control of surrounding of the NPP Bohunice, which has the aim: (1) to ensure the control of influence of work of the NPP Bohunice on the environment in their surrounding; (2) to ensure the back-ground for regular brief of control and supervisory organs about condition of the environment in surrounding of the NPP Bohunice; (3) to maintain the expected technical level of control of the NPP Bohunice and to exploit optimally the technical means; (4) to solicit permanently the data about the radioactivity of environment in surrounding of the NPP Bohunice for forming of files of the data; (5) to exploit purposefully the technical equipment, technical workers and to maintain their in permanent emergency and technical eligibility for the case of the breakdown; (6) to obtain permanently the files of the values for qualification of the reference levels. This program of monitoring includes the radiation control of surrounding of the NPP Bohunice, in the time of normal work of power-station's blocks, inclusively of all types of trouble-shooting and repairer works in surrounding of the NPP Bohunice, up to distance 20 km from power-station. The monitoring includes: outlets from the NPP Bohunice, monitoring of radiation characteristics in surrounding of the NPP Bohunice, (aerosols, fall-outs, soil), the links of food chains: (grass and fodder, milk, agriculture products), hydrosphere in surrounding (surface waters, drink water, bores of radiation control in complex of the NPP Bohunice, components of the hydrosphere), measurement of radiation from external sources (measurement of the dose rates, measurement of the doses [sk

  2. Financial Brownian Particle in the Layered Order-Book Fluid and Fluctuation-Dissipation Relations

    Science.gov (United States)

    Yura, Yoshihiro; Takayasu, Hideki; Sornette, Didier; Takayasu, Misako

    2014-03-01

    We introduce a novel description of the dynamics of the order book of financial markets as that of an effective colloidal Brownian particle embedded in fluid particles. The analysis of comprehensive market data enables us to identify all motions of the fluid particles. Correlations between the motions of the Brownian particle and its surrounding fluid particles reflect specific layering interactions; in the inner layer the correlation is strong and with short memory, while in the outer layer it is weaker and with long memory. By interpreting and estimating the contribution from the outer layer as a drag resistance, we demonstrate the validity of the fluctuation-dissipation relation in this nonmaterial Brownian motion process.

  3. The screening of sound in a subsonic flow by a cylindrical airbubble layer and a semi-infinite tube

    NARCIS (Netherlands)

    Grand, Pieter le

    1971-01-01

    The problem here under discussion lies in the field of sound waves in layered media. The presence of a layer with a velocity of sound less than that of the surroundings will enable sound waves to travel along great distances. In this domain many investigations have been made e. g. in connection with

  4. Stimulus size dependence of hue changes induced by chromatic surrounds.

    Science.gov (United States)

    Kellner, Christian Johannes; Wachtler, Thomas

    2016-03-01

    A chromatic surround induces a change in the perceived hue of a stimulus. This shift in hue depends on the chromatic difference between the stimulus and the surround. We investigated how chromatic induction varies with stimulus size and whether the size dependence depends on the surround hue. Subjects performed asymmetric matching of color stimuli with different sizes in surrounds of different chromaticities. Generally, induced hue shifts decreased with increasing stimulus size. This decrease was quantitatively different for different surround hues. However, when size effects were normalized to an overall induction strength, the chromatic specificity was largely reduced. The separability of inducer chromaticity and stimulus size suggests that these effects are mediated by different neural mechanisms.

  5. Explaining preferences for home surroundings and locations

    DEFF Research Database (Denmark)

    Andersen, Hans Skifter

    2011-01-01

    This article is based on a survey carried out in Denmark that asked a random sample of the population about their preferences for home surroundings and locations. It shows that the characteristics of social surroundings are very important and can be divided into three independent dimensions......: avoiding social nuisances, preferring social homogeneity and living close to one’s social network and place of origin. The study shows that most people have many detailed preferences, whereas some have very few. This confirms an earlier theory that some people are very connected to certain places...... with given characteristics and thus do not have priorities regarding home surroundings and locations. For others, mostly young people and singles, home is just a place to sleep and relax, whereas life is lived elsewhere. For this group, there are only preferences for location and there are few specific...

  6. HIV behavioural surveillance among refugees and surrounding host ...

    African Journals Online (AJOL)

    We used a standardised behavioural surveillance survey (BSS), modified to be directly relevant to populations in conflict and post-conflict settings as well as to their surrounding host populations, to survey the populations of a refugee settlement in south-western Uganda and its surrounding area. Two-stage probability ...

  7. Metallic layer-by-layer photonic crystals for linearly-polarized thermal emission and thermophotovoltaic device including same

    Science.gov (United States)

    Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P.

    2016-07-26

    Metallic thermal emitters consisting of two layers of differently structured nickel gratings on a homogeneous nickel layer are fabricated by soft lithography and studied for polarized thermal radiation. A thermal emitter in combination with a sub-wavelength grating shows a high extinction ratio, with a maximum value close to 5, in a wide mid-infrared range from 3.2 to 7.8 .mu.m, as well as high emissivity up to 0.65 at a wavelength of 3.7 .mu.m. All measurements show good agreement with theoretical predictions. Numerical simulations reveal that a high electric field exists within the localized air space surrounded by the gratings and the intensified electric-field is only observed for the polarizations perpendicular to the top sub-wavelength grating. This result suggests how the emissivity of a metal can be selectively enhanced at a certain range of wavelengths for a given polarization.

  8. Design and Test of a Deployable Radiation Cover for the REgolith X-Ray Imaging Spectrometer

    Science.gov (United States)

    Carte, David B.; Inamdar, Niraj K.; Jones, Michael P.; Masterson, Rebecca A.

    2014-01-01

    The REgolith X-ray Imaging Spectrometer (REXIS) instrument contains a one-time deployable radiation cover that is opened using a shape memory alloy actuator (a "Frangibolt") from TiNi Aerospace and two torsion springs. The door will be held closed by the bolt for several years in cold storage during travel to the target asteroid, Bennu, and it is imperative to gain confidence that the door will open at predicted operational temperatures. This paper briefly covers the main design features of the radiation cover and measures taken to mitigate risks to cover deployment. As the chosen FD04 model Frangibolt actuator has minimal flight heritage, the main focus of this paper is the testing, results and conclusions with the FD04 while discussing key lessons learned with respect to the use of the FD04 actuator in this application.

  9. Optical characterizations of silver nanoprisms embedded in polymer thin film layers

    Science.gov (United States)

    Carlberg, Miriam; Pourcin, Florent; Margeat, Olivier; Le Rouzo, Judikael; Berginc, Gerard; Sauvage, Rose-Marie; Ackermann, Jorg; Escoubas, Ludovic

    2017-10-01

    The precise control of light-matter interaction has a wide range of applications and is currently driven by the use of nanoparticles (NPs) by the recent advances in nanotechnology. Taking advantage of the material, size, shape, and surrounding media dependence of the optical properties of plasmonic NPs, thin film layers with tunable optical properties are achieved. The NPs are synthesized by wet chemistry and embedded in a polyvinylpyrrolidone (PVP) polymer thin film layer. Spectrophotometer and spectroscopic ellipsometry measurements are coupled to finite-difference time domain numerical modeling to optically characterize the heterogeneous thin film layers. Silver nanoprisms of 10 to 50 nm edge size exhibit high absorption through the visible wavelength range. A simple optical model composed of a Cauchy law and a Lorentz law, accounting for the optical properties of the nonabsorbing polymer and the absorbing property of the nanoprisms, fits the spectroscopic ellipsometry measurements. Knowing the complex optical indices of heterogeneous thin film layers let us design layers of any optical properties.

  10. Circumstances surrounding aneurysmal subarachnoid hemorrhage

    NARCIS (Netherlands)

    Schievink, W. I.; Karemaker, J. M.; Hageman, L. M.; van der Werf, D. J.

    1989-01-01

    The circumstances surrounding aneurysmal subarachnoid hemorrhage were investigated in a group of 500 consecutive patients admitted to a neurosurgical center. Subarachnoid hemorrhage occurred during stressful events in 42.8% of the patients, during nonstrenuous activities in 34.4%, and during rest or

  11. Scattering characteristics of relativistically moving concentrically layered spheres

    Science.gov (United States)

    Garner, Timothy J.; Lakhtakia, Akhlesh; Breakall, James K.; Bohren, Craig F.

    2018-02-01

    The energy extinction cross section of a concentrically layered sphere varies with velocity as the Doppler shift moves the spectral content of the incident signal in the sphere's co-moving inertial reference frame toward or away from resonances of the sphere. Computations for hollow gold nanospheres show that the energy extinction cross section is high when the Doppler shift moves the incident signal's spectral content in the co-moving frame near the wavelength of the sphere's localized surface plasmon resonance. The energy extinction cross section of a three-layer sphere consisting of an olivine-silicate core surrounded by a porous and a magnetite layer, which is used to explain extinction caused by interstellar dust, also depends strongly on velocity. For this sphere, computations show that the energy extinction cross section is high when the Doppler shift moves the spectral content of the incident signal near either of olivine-silicate's two localized surface phonon resonances at 9.7 μm and 18 μm.

  12. Ion-adsorption REEs in regolith of the Liberty Hill pluton, South Carolina, USA: An effect of hydrothermal alteration

    Science.gov (United States)

    Bern, Carleton R.; Yesavage, Tiffany; Foley, Nora K.

    2017-01-01

    Ion-adsorbed rare earth element (REE) deposits supply the majority of world heavy REE production and substantial light REE production, but relatively little is known of their occurrence outside Southeast Asia. We examined the distribution and forms of REEs on a North American pluton located in the highly weathered and slowly eroding South Carolina Piedmont. The Hercynian Liberty Hill pluton experiences a modern climate that includes ~ 1500 mm annual rainfall and a mean annual temperature of 17 °C. The pluton is medium- to coarse-grained biotite-amphibole granite with minor biotite granite facies. REE-bearing phases are diverse and include monazite, zircon, titanite, allanite, apatite and bastnäsite. Weathered profiles were sampled up to 7 m-deep across the ~ 400 km2 pluton. In one profile, ion-adsorbed REEs plus yttrium (REE + Y) ranged up to 581 mg/kg and accounted for up to 77% of total REE + Y in saprolite. In other profiles, ion-adsorbed REE + Y ranged 12–194 mg/kg and only accounted for 3–37% of totals. The profile most enriched in ion-adsorbed REEs was located along the mapped boundary of two granite facies and contained trioctahedral smectite in the saprolite, evidence suggestive of hydrothermal alteration of biotite at that location. Post-emplacement deuteric alteration can generate easily weathered REE phases, particularly fluorocarbonates. In the case of Liberty Hill, hydrothermal alteration may have converted less soluble to more soluble REE minerals. Additionally, regolith P content was inversely correlated with the fraction ion-adsorbed REEs, and weathering related secondary REE-phosphates were found in some regolith profiles. Both patterns illustrate how low P content aids in the accumulation of ion-adsorbed REEs. The localized occurrence at Liberty Hill sheds light on conditions and processes that generate ion-adsorbed REEs.

  13. Potential of Probing the Lunar Regolith using Rover-Mounted Ground Penetrating Radar: Moses Lake Dune Field Analog Study

    Science.gov (United States)

    Horz, F.; Heggy, E.; Fong, T.; Kring, D.; Deans, M.; Anglade, A.; Mahiouz, K.; Bualat, M.; Lee, P.; Bluethmann, W.

    2009-01-01

    Probing radars have been widely recognized by the science community to be an efficient tool to explore lunar subsurface providing a unique capability to address several scientific and operational issues. A wideband (200 to 1200 MHz) Ground Penetrating Radar (GPR) mounted on a surface rover can provide high vertical resolution and probing depth from few tens of centimeters to few tens of meters depending on the sounding frequency and the ground conductivity. This in term can provide a better understand regolith thickness, elemental iron concentration (including ilmenite), volatile presence, structural anomalies and fracturing. All those objectives are of important significance for understanding the local geology and potential sustainable resources for future landing sites in particular exploring the thickness, structural heterogeneity and potential volatiles presence in the lunar regolith. While the operation and data collection of GPR is a straightforward case for most terrestrial surveys, it is a challenging task for remote planetary study especially on robotic platforms due to the complexity of remote operation in rough terrains and the data collection constrains imposed by the mechanical motion of the rover and limitation in data transfer. Nevertheless, Rover mounted GPR can be of great support to perform systematic subsurface surveys for a given landing site as it can provide scientific and operational support in exploring subsurface resources and sample collections which can increase the efficiency of the EVA activities for potential human crews as part of the NASA Constellation Program. In this study we attempt to explore the operational challenges and their impact on the EVA scientific return for operating a rover mounted GPR in support of potential human activity on the moon. In this first field study, we mainly focused on the ability of GPR to support subsurface sample collection and explore shallow subsurface volatiles.

  14. Topographic imprint on chemical weathering in deeply weathered soil-mantled landscapes (southern Brazil)

    Science.gov (United States)

    Vanacker, Veerle; Schoonejans, Jerome; Ameijeiras-Marino, Yolanda; Opfergelt, Sophie; Minella, Jean

    2017-04-01

    The regolith mantle is defined as the thin layer of unconsolidated material overlaying bedrock that contributes to shape the Earth's surface. The development of the regolith mantle in a landscape is the result of in-situ weathering, atmospheric input and downhill transport of weathering products. Bedrock weathering - the physical and chemical transformations of rock to soil - contributes to the vertical development of the regolith layer through downward propagation of the weathering front. Lateral transport of soil particles, aggregates and solutes by diffusive and concentrated particle and solute fluxes result in lateral redistribution of weathering products over the hillslope. In this study, we aim to expand the empirical basis on long-term soil evolution at the landscape scale through a detailed study of soil weathering in subtropical soils. Spatial variability in chemical mass fluxes and weathering intensity were studied along two toposequences with similar climate, lithology and vegetation but different slope morphology. This allowed us to isolate the topographic imprint on chemical weathering and soil development. The toposequences have convexo-concave slope morphology, and eight regolith profiles were analysed involving the flat upslope, steep midslope and flat toeslope part. Our data show a clear topographic imprint on soil development. Along hillslope, the chemical weathering intensity of the regolith profiles increases with distance from the crest. In contrast to the upslope positions, the soils in the basal concavities develop on in-situ and transported regolith. While the chemical weathering extent on the slope convexities (the upslope profiles) is similar for the steep and gentle toposequence, there is a clear difference in the rate of increase of the chemical weathering extent with distance from the crest. The increase of chemical weathering extent along hillslope is highest for the steep toposequence, suggesting that topography enhances soil particle

  15. The Mars water cycle at other epochs: History of the polar caps and layered terrain

    Science.gov (United States)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1992-01-01

    The atmospheric water cycle at the present epoch involves summertime sublimation of water from the north polar cap, transport of water through the atmosphere, and condensation on one or both winter CO2 caps. Exchange with the regolith is important seasonally, but the water content of the atmosphere appears to be controlled by the polar caps. The net annual transport through the atmosphere, integrated over long timescales, must be the driving force behind the long-term evolution of the polar caps; clearly, this feeds back into the evolution of the layered terrain. We have investigated the behavior of the seasonal water cycle and the net integrated behavior at the pole for the last 10 exp 7 years. Our model of the water cycle includes the solar input, CO2 condensation and sublimation, and summertime water sublimation through the seasonal cycles, and incorporates the long-term variations in the orbital elements describing the Martian orbit.

  16. Kinetic and Potential Sputtering Enhancements of Lunar Regolith Erosion: The Contribution of the Heavy Multicharged (Minority) Solar Wind Constituents

    Science.gov (United States)

    Meyer, F. W.; Barghouty, A. F.

    2012-01-01

    We report preliminary results for H+, Ar+1, Ar+6 and Ar+9 ion sputtering of JSC-1A lunar regolith simulant at solar wind velocities, obtain ed at the ORNL Multicharged Ion Research Facility using quadrupole ma ss spectrometry. The multi-charged Ar ions were used as proxies for i ntermediate mass solar wind multicharged ions. Prior to the Ar beam e xposures, the sample was exposed to high fluence H+ irradiation to si mulate H-loading due to the dominant solar wind constituent. A x80 en hancement of oxygen sputtering by Ar+ over same velocity H+ was measu red and an additional x2 increase for Ar+9 over same velocity Ar+ was demonstrated, giving clear evidence of the importance of potential s puttering by multicharged ions. This enhancement was observed to pers ist to the maximum fluences investigated (approx 10(exp 16)/sq cm). As discussed in a companion abstract by N. Barghouty, such persistent s puttering enhancement has significant implications on weathering and aging of lunar regolith. In addition, XPS measurements showed strong evidence of Fe reduction for those target areas that had been exposed to high fluence Ar+ and Ar+8 beams. Preferential oxidation of the Fe -reduced beam-exposed regions during transfer to the XPS system led t o enhanced O concentrations in those regions as well. On the basis of these very promising preliminary results, a NASA-LASER project on mo re extensive measurements was recently selected for funding. The prop osal expands the collaboration with NASA-MSFC for the simulation effort, and adds a new collaboration with NASA-GSFC for lunar mission-rele vant measurements.

  17. Cholinergic enhancement reduces orientation-specific surround suppression but not visual crowding

    Directory of Open Access Journals (Sweden)

    Anna A. Kosovicheva

    2012-09-01

    Full Text Available Acetylcholine (ACh reduces the spatial spread of excitatory fMRI responses in early visual cortex and the receptive field sizes of V1 neurons. We investigated the perceptual consequences of these physiological effects of ACh with surround suppression and crowding, two tasks that involve spatial interactions between visual field locations. Surround suppression refers to the reduction in perceived stimulus contrast by a high-contrast surround stimulus. For grating stimuli, surround suppression is selective for the relative orientations of the center and surround, suggesting that it results from inhibitory interactions in early visual cortex. Crowding refers to impaired identification of a peripheral stimulus in the presence of flankers and is thought to result from excessive integration of visual features. We increased synaptic ACh levels by administering the cholinesterase inhibitor donepezil to healthy human subjects in a placebo-controlled, double-blind design. In Exp. 1, we measured surround suppression of a central grating using a contrast discrimination task with three conditions: 1 surround grating with the same orientation as the center (parallel, 2 surround orthogonal to the center, or 3 no surround. Contrast discrimination thresholds were higher in the parallel than in the orthogonal condition, demonstrating orientation-specific surround suppression (OSSS. Cholinergic enhancement reduced thresholds only in the parallel condition, thereby reducing OSSS. In Exp. 2, subjects performed a crowding task in which they reported the identity of a peripheral letter flanked by letters on either side. We measured the critical spacing between the target and flanking letters that allowed reliable identification. Cholinergic enhancement had no effect on critical spacing. Our findings suggest that ACh reduces spatial interactions in tasks involving segmentation of visual field locations but that these effects may be limited to early visual cortical

  18. Laboratory simulations of planetary surfaces: Understanding regolith physical properties from remote photopolarimetric observations

    Science.gov (United States)

    Nelson, Robert M.; Boryta, Mark D.; Hapke, Bruce W.; Manatt, Kenneth S.; Shkuratov, Yuriy; Psarev, V.; Vandervoort, Kurt; Kroner, Desire; Nebedum, Adaze; Vides, Christina L.; Quiñones, John

    2018-03-01

    We present reflectance and polarization phase curve measurements of highly reflective planetary regolith analogues having physical characteristics expected on atmosphereless solar system bodies (ASSBs) such as a eucritic asteroids or icy satellites. We used a goniometric photopolarimeter (GPP) of novel design to study thirteen well-sorted particle size fractions of aluminum oxide (Al2O3). The sample suite included particle sizes larger than, approximately equal to, and smaller than the wavelength of the incident monochromatic radiation (λ = 635 nm). The observed phase angle, α, was 0.056 o ∼95%). The incident radiation has a very high probability of being multiply scattered before being backscattered toward the incident direction or ultimately absorbed. The five smallest particle sizes exhibited extremely high void space (> ∼95%). The reflectance phase curves for all particle size fractions show a pronounced non-linear reflectance increase with decreasing phase angle at α∼ ∼1 we detect no polarization. This polarization behavior is distinct from that observed in low albedo solar system objects such as the Moon and asteroids and for absorbing materials in the laboratory. We suggest this behavior arises because photons that are backscattered have a high probability of having interacted with two or more particles, thus giving rise to the CB process. These results may explain the unusual negative polarization behavior observed near small phase angles reported for several decades on highly reflective ASSBs such as the asteroids 44 Nysa, 64 Angelina and the Galilean satellites Io, Europa and Ganymede. Our results suggest these ASSB regoliths scatter electromagnetic radiation as if they were extremely fine grained with void space > ∼95%, and grain sizes of the order geo-engineering, particularly to suggestions that earth's radiation balance can be modified by injecting Al2O3 particulates into the stratosphere thereby offsetting the effect of anthropogenic

  19. Leak Rate Performance of Silicone Elastomer O-Rings Contaminated with JSC-1A Lunar Regolith Simulant

    Science.gov (United States)

    Oravec, Heather Ann; Daniels, Christopher C.

    2014-01-01

    Contamination of spacecraft components with planetary and foreign object debris is a growing concern. Face seals separating the spacecraft cabin from the debris filled environment are particularly susceptible; if the seal becomes contaminated there is potential for decreased performance, mission failure, or catastrophe. In this study, silicone elastomer O-rings were contaminated with JSC- 1A lunar regolith and their leak rate performance was evaluated. The leak rate values of contaminated O-rings at four levels of seal compression were compared to those of as-received, uncontaminated, O-rings. The results showed a drastic increase in leak rate after contamination. JSC-1A contaminated O-rings lead to immeasurably high leak rate values for all levels of compression except complete closure. Additionally, a mechanical method of simulant removal was examined. In general, this method returned the leak rate to as-received values.

  20. In silico, in vitro and antifungal activity of the surface layers formed on zinc during this biomaterial degradation

    Science.gov (United States)

    Alves, Marta M.; Marques, Luísa M.; Nogueira, Isabel; Santos, Catarina F.; Salazar, Sara B.; Eugénio, Sónia; Mira, Nuno P.; Montemor, M. F.

    2018-07-01

    Zinc (Zn) has been proposed as an alternative metallic biodegradable material to support transient wound-healing processes. Once a Zn piece is implanted inside the organism the degradation will depend upon the physiological surrounding environment. This, by modulating the composition of the surface layers formed on Zn devices, will govern the subsequent interactions with the surrounding living cells (e.g. biocompatibility and/or antifungal behaviour). In silico simulation of an implanted Zn piece at bone-muscle interface or inside the bone yielded the preferential precipitation of simonkolleite or zincite, respectively. To study the impact of these surface layers in the in vitro behaviour of Zn biomaterials, simonkolleite and zincite where synthesised. The successful production of simonkolleite or zincite was confirmed by an extensive physicochemical characterization. An in vitro layer formed on the top of these surface layers revealed that simonkolleite was rather inert, while zincite yielded a complex matrix containing hydroxyapatite, an important bone analogue. When analysing the "anti-biofilm" activity simonkolleite stood out for its activity against an important pathogenic fungi involved in implant-device infections, Candida albicans. The possible physiological implications of these findings are discussed.

  1. Photoluminescence characteristics of Pb-doped, molecular-beam-epitaxy grown ZnSe crystal layers

    International Nuclear Information System (INIS)

    Mita, Yoh; Kuronuma, Ryoichi; Inoue, Masanori; Sasaki, Shoichiro; Miyamoto, Yoshinobu

    2004-01-01

    The characteristic green photoluminescence emission and related phenomena in Pb-doped, molecular-beam-epitaxy (MBE)-grown ZnSe crystal layers were investigated to explore the nature of the center responsible for the green emission. The intensity of the green emission showed a distinct nonlinear dependence on excitation intensity. Pb-diffused polycrystalline ZnSe was similarly examined for comparison. The characteristic green emission has been observed only in MBE-grown ZnSe crystal layers with moderate Pb doping. The results of the investigations on the growth conditions, luminescence, and related properties of the ZnSe crystal layers suggest that the green emission is due to isolated Pb replacing Zn and surrounded with regular ZnSe lattice with a high perfection

  2. Metal-silicate fractionation in the surface dust layers of accreting planetesimals: Implications for the formation of ordinary chondrites and the nature of asteroid surfaces

    Science.gov (United States)

    Huang, Shaoxiong; Akridge, Glen; Sears, Derek W. G.

    Some of the most primitive solar system materials available for study in the laboratory are the ordinary chondrites, the largest meteorite class. The size and distribution of the chondrules (silicate beads) and metal, which leads to the definition of the H, L, and LL classes, suggest sorting before or during aggregation. We suggest that meteorite parent bodies (probably asteroids) had thick dusty surfaces during their early evolution that were easily mobilized by gases evolving from their interiors. Density and size sorting would have occurred in the surface layers as the upward drag forces of the gases (mainly water) acted against the downward force of gravity. The process is analogous to the industrially important process of fluidization and sorting in pyroclastic volcanics. We calculate that gas flow velocities and gas fluxes for the regolith of an asteroid-sized object heated by the impact of accreting objects or by 26Al would have been sufficient for fluidization. It can also explain, quantitatively in some cases, the observed metal-silicate sorting of ordinary chondrites, which has long been ascribed to processes occurring in the primordial solar nebula. Formation of the chondrites in the thick dynamic regolith is consistent with the major properties of chondritic meteorites (i.e., redox state, petrologic type, cooling rate, matrix abundance). These ideas have implications for the nature of asteroid surfaces and the virtual lack of asteroids with ordinary chondrite-like surfaces.

  3. Placental vascular responses are dependent on surrounding tissue

    DEFF Research Database (Denmark)

    Brøgger, Torbjørn Halle

    -depth understanding of the mechanism regulating blood flow and perfusion is necessary if we are to come up with new ideas for intervention and treatment. Method: From fresh born placentas stem villi arteries were carefully dissected. The artery branches were divided. The surrounding tissue was removed from one end...... and was left untouched in the other end. Then using wire myography they were investigated in terms of contractility and sensitivity to physiological relevant human-like agonists. Results: Sensitivity to PGF2α, Tx-analog, 5-HT and endothelin-1 was significantly lower in arteries with intact surrounding tissue...... compared to arteries stripped of the tissue. The maximal force development was also significantly lower in arteries with surrounding tissue, when they were depolarized high extracellular [K+] or stimulated with PGF2α or endotheline-1. Conclusion: The perivascular tissue significantly alters stem villi...

  4. Placental vascular responses are dependent on surrounding tissue

    DEFF Research Database (Denmark)

    Brøgger, Torbjørn Halle

    . Materials and methods. From fresh born placentas, stem villi arteries were carefully dissected. The artery branches were divided. The surrounding tissue was removed from one end and was left untouched in the other end.Then, using wire myography, they were investigated in terms of contractility...... and sensitivity to physiological relevant human-like agonists. Results. Sensitivity to PGF2α, Tx-analog, 5-HT and endothelin-1 was significantly lower in arteries with intact surrounding tissue compared to arteries stripped of the tissue. The maximal force development was also significantly lower in arteries...... with surrounding tissue when they were depolarized high extracellular [K+] or stimulated with PGF2α or endotheline-1. Conclusion. The perivascular tissue significantly alters stem villi arteries' sensitivity and force development in a suppressive way. This implicates a new aspect of blood flow regulation...

  5. A synchronous surround increases the motion strength gain of motion.

    Science.gov (United States)

    Linares, Daniel; Nishida, Shin'ya

    2013-11-12

    Coherent motion detection is greatly enhanced by the synchronous presentation of a static surround (Linares, Motoyoshi, & Nishida, 2012). To further understand this contextual enhancement, here we measured the sensitivity to discriminate motion strength for several pedestal strengths with and without a surround. We found that the surround improved discrimination of low and medium motion strengths, but did not improve or even impaired discrimination of high motion strengths. We used motion strength discriminability to estimate the perceptual response function assuming additive noise and found that the surround increased the motion strength gain, rather than the response gain. Given that eye and body movements continuously introduce transients in the retinal image, it is possible that this strength gain occurs in natural vision.

  6. Robust Object Segmentation Using a Multi-Layer Laser Scanner

    Science.gov (United States)

    Kim, Beomseong; Choi, Baehoon; Yoo, Minkyun; Kim, Hyunju; Kim, Euntai

    2014-01-01

    The major problem in an advanced driver assistance system (ADAS) is the proper use of sensor measurements and recognition of the surrounding environment. To this end, there are several types of sensors to consider, one of which is the laser scanner. In this paper, we propose a method to segment the measurement of the surrounding environment as obtained by a multi-layer laser scanner. In the segmentation, a full set of measurements is decomposed into several segments, each representing a single object. Sometimes a ghost is detected due to the ground or fog, and the ghost has to be eliminated to ensure the stability of the system. The proposed method is implemented on a real vehicle, and its performance is tested in a real-world environment. The experiments show that the proposed method demonstrates good performance in many real-life situations. PMID:25356645

  7. Cytoplasmic movement profiles of mouse surrounding nucleolus and not-surrounding nucleolus antral oocytes during meiotic resumption.

    Science.gov (United States)

    Bui, Thi Thu Hien; Belli, Martina; Fassina, Lorenzo; Vigone, Giulia; Merico, Valeria; Garagna, Silvia; Zuccotti, Maurizio

    2017-05-01

    Full-grown mouse antral oocytes are classified as surrounding nucleolus (SN) or not-surrounding nucleolus (NSN), depending on the respective presence or absence of a ring of Hoechst-positive chromatin surrounding the nucleolus. In culture, both types of oocytes resume meiosis and reach the metaphase II (MII) stage, but following insemination, NSN oocytes arrest at the two-cell stage whereas SN oocytes may develop to term. By coupling time-lapse bright-field microscopy with image analysis based on particle image velocimetry, we provide the first systematic measure of the changes to the cytoplasmic movement velocity (CMV) occurring during the germinal vesicle-to-MII (GV-to-MII) transition of these two types of oocytes. Compared to SN oocytes, NSN oocytes display a delayed GV-to-MII transition, which can be mostly explained by retarded germinal vesicle break down and first polar body extrusion. SN and NSN oocytes also exhibit significantly different CMV profiles at four main time-lapse intervals, although this difference was not predictive of SN or NSN oocyte origin because of the high variability in CMV. When CMV profile was analyzed through a trained artificial neural network, however, each single SN or NSN oocyte was blindly identified with a probability of 92.2% and 88.7%, respectively. Thus, the CMV profile recorded during meiotic resumption may be exploited as a cytological signature for the non-invasive assessment of the oocyte developmental potential, and could be informative for the analysis of the GV-to-MII transition of oocytes of other species. © 2017 Wiley Periodicals, Inc.

  8. Eroded Layered Material in Southwest Utopia Planitia

    Science.gov (United States)

    1999-01-01

    Images from the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC)dramatically illustrate that many places on the red planet have outcrops of layered geologic materials. The two pictures above show the remains of layered material inside craters in southwestern Utopia Planitia (see inset for detailed view). These remnant layers indicate that the craters--and perhaps the plains that surround them--were once buried beneath a deposit that has since been eroded away. This theme of layered outcrops and exhumed craters appears to be one of the dominant observations that MGS MOC has made--to date--about Mars. The origin and composition of the layered material--and its ultimate fate once it was largely eroded away--are unknown. Each of the two pictures shown here covers an area about 4 kilometers (2.5 miles)by 6.3 kilometers (3.9 miles). Illumination is from the lower right. These are subframes of a single MOC image acquired in July 1998 during the MGS Science Phasing Orbits imaging campaign. This figure was presented at the 30th Lunar and Planetary Science Conference in Houston, Texas, March 1999. Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  9. Longevity of Compositionally Stratified Layers in Ice Giants

    Science.gov (United States)

    Friedson, A. J.

    2017-12-01

    In the hydrogen-rich atmospheres of gas giants, a decrease with radius in the mixing ratio of a heavy species (e.g. He, CH4, H2O) has the potential to produce a density stratification that is convectively stable if the heavy species is sufficiently abundant. Formation of stable layers in the interiors of these planets has important implications for their internal structure, chemical mixing, dynamics, and thermal evolution, since vertical transport of heat and constituents in such layers is greatly reduced in comparison to that in convecting layers. Various processes have been suggested for creating compositionally stratified layers. In the interiors of Jupiter and Saturn, these include phase separation of He from metallic hydrogen and dissolution of dense core material into the surrounding metallic-H envelope. Condensation of methane and water has been proposed as a mechanism for producing stable zones in the atmospheres of Saturn and the ice giants. However, if a stably stratified layer is formed adjacent to an active region of convection, it may be susceptible to progressive erosion as the convection intrudes and entrains fluid into the unstable envelope. We discuss the principal factors that control the rate of entrainment and associated erosion and present a specific example concerning the longevity of stable layers formed by condensation of methane and water in Uranus and Neptune. We also consider whether the temporal variability of such layers may engender episodic behavior in the release of the internal heat of these planets. This research is supported by a grant from the NASA Solar System Workings Program.

  10. Surrounding Moving Obstacle Detection for Autonomous Driving Using Stereo Vision

    Directory of Open Access Journals (Sweden)

    Hao Sun

    2013-06-01

    Full Text Available Detection and tracking surrounding moving obstacles such as vehicles and pedestrians are crucial for the safety of mobile robotics and autonomous vehicles. This is especially the case in urban driving scenarios. This paper presents a novel framework for surrounding moving obstacles detection using binocular stereo vision. The contributions of our work are threefold. Firstly, a multiview feature matching scheme is presented for simultaneous stereo correspondence and motion correspondence searching. Secondly, the multiview geometry constraint derived from the relative camera positions in pairs of consecutive stereo views is exploited for surrounding moving obstacles detection. Thirdly, an adaptive particle filter is proposed for tracking of multiple moving obstacles in surrounding areas. Experimental results from real-world driving sequences demonstrate the effectiveness and robustness of the proposed framework.

  11. Hybrid layer difference between sixth and seventh generation bonding agent

    Directory of Open Access Journals (Sweden)

    Grace Syavira Suryabrata

    2006-03-01

    Full Text Available Since etching is completed at the same stage as priming and bonding, when applying the sixth and seventh generation bonding, the exposed smear layers are constantly surrounded by primer and bonding and cannot collapse. The smear layer and the depth of penetration of resin bonding in dentinal tubules are completely integrated into hybrid layer. The purpose of this laboratory research was to study the penetration depth of two self etching adhesive. Fourteen samples of human extracted teeth were divided into two groups. Each groups consisted of seven samples, each of them was treated with sixth generation bonding agent and the other was treated with seventh generation bonding agent. The results disclosed that the penetration into dentinal tubules of seventh generation bonding agent was deeper than sixth generation bonding agent. Conclusion: bond strength will improve due to the increasing of penetration depth of resin bonding in dentinal tubules.

  12. An electrochemical aptasensor for chiral peptide detection using layer-by-layer assembly of polyelectrolyte-methylene blue/polyelectrolyte-graphene multilayer

    International Nuclear Information System (INIS)

    Qin Haixia; Liu Jiyang; Chen Chaogui; Wang Jiahi; Wang Erkang

    2012-01-01

    Highlights: ► An electrochemical aptasensor for selective detection of peptide is constructed. ► This aptasensor is based on grapheme multilayer via layer-by-layer assembly. ► Such multilayer facilitates electron transfer and provides more adsorption sites. - Abstract: Here we demonstrate for the first time that by physically adsorbing aptamer onto conductive film assembled via alternate adsorption of graphene/polyelectrolyte and methylene blue/polyelectrolyte, a label-free electrochemical aptasensor with high sensitivity and selectivity for peptide detection is constructed. Graphene multilayer derived from layer-by-layer assembly has played significant roles in this sensing strategy: allowing accumulation of methylene blue, facilitating electron transfer and providing much more adsorption site. As compared to previous electrochemical aptasensors, the current sensor based on graphene multilayer alternated with electroactive molecule layer offers extremely high capability for sensitive detection of target without interference of environmental surrounding. This electroactive probe-confined graphene multilayer confers great flexibility to combine with differential pulse voltammetry (DPV) together. In the presence of target D entiomer of arginine vasopressin (D-VP), the binding of peptide to aptamer block the electron transfer process of MB, leading to decreased current peak of DPV. By this way, this electrochemical aptasensor based on electroactive molecule-intercalated graphene multilayer provide highly sensitive and specific detection of D-VP with the lowest detectable concentration of 1 ng mL −1 and a wide detection range from 1 to 265 ng mL −1 .

  13. One directional polarized neutron reflectometry with optimized reference layer method

    International Nuclear Information System (INIS)

    Masoudi, S. Farhad; Jahromi, Saeed S.

    2012-01-01

    In the past decade, several neutron reflectometry methods for determining the modulus and phase of the complex reflection coefficient of an unknown multilayer thin film have been worked out among which the method of variation of surroundings and reference layers are of highest interest. These methods were later modified for measurement of the polarization of the reflected beam instead of the measurement of the intensities. In their new architecture, these methods not only suffered from the necessity of change of experimental setup but also another difficulty was added to their experimental implementations. This deficiency was related to the limitations of the technology of the neutron reflectometers that could only measure the polarization of the reflected neutrons in the same direction as the polarization of the incident beam. As the instruments are limited, the theory has to be optimized so that the experiment could be performed. In a recent work, we developed the method of variation of surroundings for one directional polarization analysis. In this new work, the method of reference layer with polarization analysis has been optimized to determine the phase and modulus of the unknown film with measurement of the polarization of the reflected neutrons in the same direction as the polarization of the incident beam.

  14. Influence of Surrounding Colors in the Illuminant-Color Mode on Color Constancy

    Directory of Open Access Journals (Sweden)

    Kazuho Fukuda

    2011-05-01

    Full Text Available On color constancy, we showed that brighter surrounding colors had greater influence than dim colors (Uchikawa, Kitazawa, MacLeod, Fukuda, 2010 APCV. Increasing luminance of a stimulus causes the change in appearance from the surface-color to the illuminant-color mode. However it is unknown whether the visual system considers such color appearance mode of surrounding colors to achieve color constancy. We investigated the influence of surrounding colors that appeared illuminant on color constancy. The stimulus was composed of a central test stimulus and surrounding six colors: bright and dim red, green and blue. The observers adjusted the chromaticity of the test stimulus to be appeared as an achromatic surface. The luminance balance of three bright surrounding colors was equalized with that of the optimal colors in three illuminant conditions, then, the luminance of one of the three bright colors was varied in the range beyond the critical luminance of color appearance mode transition. The results showed that increasing luminance of a bright surrounding color shifted the observers' achromatic setting toward its chromaticity, but this effect diminished for the surrounding color in the illuminant-color mode. These results suggest that the visual system considers color appearance mode of surrounding colors to accomplish color constancy.

  15. P1-13: Color Induction from Surround Color under Interocular Suppression

    Directory of Open Access Journals (Sweden)

    Ichiro Kuriki

    2012-10-01

    Full Text Available The effect of surround colors on color appearance is known to subserve color constancy in humans, but how multiple mechanisms in the visual system are involved in this effect is controversial. We used an interocular-suppression technique to examine how the effect occurs at the level higher than the interaction of binocular information. A test color chip (1.7 × 1.7 deg visual angle was presented in a static surround either with continuous-flash suppression in the dominant eye (CFS condition to make the surround inperceptible or without the suppression (no-CFS condition. The surround stimulus was either a Mondrian or a uniform field of the same mean chromaticity. Stimuli were simulated OSA color chips under red, white (D65, or green illuminant color and were presented on a CRT display. Unique yellows were measured by asking the subjects to judge whether the test stimulus appeared reddish or greenish. Two sizes of the surround stimuli (widths of 1 deg and 4 deg were used. Results showed significant shifts in unique yellow even under the CFS conditions, except for the 1 deg uniform-surround condition. Under the no-CFS condition, the shifts showed remarkable difference between subjects, except for the 4 deg Mondrian-surround condition. Interestingly, trends of the shifts showed high consistency within each subject, across conditions. These results indicate that mechanisms at both higher and lower levels than the neuronal site of interocular suppression are involved, and that the color shifts follow each subject's strategy in the higher-order mechanisms when only insufficient clues are available in the surround to estimate illuminant color.

  16. Confronting, Confirming, and Dispelling Myths Surrounding ERP-in-the-Cloud

    DEFF Research Database (Denmark)

    Beaulieu, Tanya; C. Martin, Todd; Sarker, Saonee

    2015-01-01

    on the topic, there is substantial uncertainty surrounding the benefits and challenges of ERP cloud computing. Consequently, as often is the case with new technologies, popular myths surrounding the technology are used to make adoption and implementation decisions. As a first step toward providing an informed...... with stakeholders related to an ERP cloud-based solution. Our results dispel some of the myths, while supporting others, and highlight how ERP vendors work around the different types of challenges surrounding this technology. Our study also helps understand the benefits of ERP cloud computing, and informs about how...

  17. Effect of layer thickness on the properties of nickel thermal sprayed steel

    Energy Technology Data Exchange (ETDEWEB)

    Nurisna, Zuhri, E-mail: zuhri-nurisna@yahoo.co.id; Triyono,, E-mail: triyonomesin@uns.ac.id; Muhayat, Nurul, E-mail: nurulmuhayat@staff.uns.ac.id; Wijayanta, Agung Tri, E-mail: agungtw@uns.ac.id [Department of Mechanical Engineering, Sebelas Maret University, Jl. Jr. Sutami 36 A, Surakarta (Indonesia)

    2016-03-29

    Thermal arc spray nickel coating is widely used for decorative and functional applications, by improving corrosion resistance, wear resistance, heat resistence or by modifying other properties of the coated materials. There are several properties have been studied. Layer thickness of nickel thermal sprayed steel may be make harder the substrate surface. In this study, the effect of layer thickness of nickel thermal sprayed steel has been investigated. The rectangular substrate specimens were coated by Ni–5 wt.% Al using wire arc spray method. The thickness of coating layers were in range from 0.4 to 1.0 mm. Different thickness of coating layers were conducted to investigate their effect on hardness and morphology. The coating layer was examined by using microvickers and scanning electron microscope with EDX attachment. Generally, the hardness at the interface increased with increasing thickness of coating layers for all specimens due to higher heat input during spraying process. Morphology analysis result that during spraying process aluminum would react with surrounding oxygen and form aluminum oxide at outer surface of splat. Moreover, porosity was formed in coating layers. However, presence porosity is not related to thickness of coating material. The thicker coating layer resulted highesr of hardness and bond strength.

  18. The crack layer approach to toughness characterization in steel

    Science.gov (United States)

    Bessendorff, M.; Chudnovsky, A.

    1986-01-01

    In a study of the laws of crack propagation and toughness characterization, it is feasible to employ two alternative approaches, including the fracture mechanics approach and the material science approach. The crack layer (CL) theory discussed by Khandogin and Chudnovsky (1978) and Chudnovsky (1980) considers the crack together with the surrounding defects as one system which has several degrees of freedom. It is pointed out that the CL theory defines the relationship between the parameters of fracture mechanics and the characteristics of microstructural changes which are the subject of material science. Experiments are described, taking into account a toughness characterization test and microscopic studies. Attention is given to a phenomenological study of toughness characterization, the morphology of crack layer, and the evaluation of energy stored in the dislocation network.

  19. Hydrogeologic investigation of the Maxey Flats radioactive waste burial site, Fleming County, Kentucky

    Science.gov (United States)

    Zehner, H.H.

    1983-01-01

    Burial trenches at the Maxey Flats radioactive waste burial site cover an area of about 20 acres, and are located on a plateau, about 300 to 400 feet above surrounding valleys. All waste is buried in the Nancy Member of the Borden Formation, and most is in the weathered shale (regolith) part of this member. Recharge to the rocks is probably by infiltration of rainfall through regolith at the top of the hill. At least two water tables are present: near the base of the regolith, at a depth of about 25 feet and; in the Ohio Shale, at a depth of about 300 feet. About 95 percent of ground-water discharge to streams is from colluvium on hillsides and valley alluvium. The remaining 5 percent is discharge from bedrock, of which about 0.5 percent is from rocks underlying the burial area. Waste radionuclides in the subsurface, other than tritium, were observed only in the regolith of the Nancy Member. Only tritium was observed with certainty in deeper rocks and in the adjacent valley alluvium. Other waste radionuclides were in streamwater and stream sediment, and may have been transported with overland runoff from the surface of the burial site. (USGS)

  20. Ecological mechanisms linking protected areas to surrounding lands.

    Science.gov (United States)

    Hansen, Andrew J; DeFries, Ruth

    2007-06-01

    Land use is expanding and intensifying in the unprotected lands surrounding many of the world's protected areas. The influence of this land use change on ecological processes is poorly understood. The goal of this paper is to draw on ecological theory to provide a synthetic framework for understanding how land use change around protected areas may alter ecological processes and biodiversity within protected areas and to provide a basis for identifying scientifically based management alternatives. We first present a conceptual model of protected areas embedded within larger ecosystems that often include surrounding human land use. Drawing on case studies in this Invited Feature, we then explore a comprehensive set of ecological mechanisms by which land use on surrounding lands may influence ecological processes and biodiversity within reserves. These mechanisms involve changes in ecosystem size, with implications for minimum dynamic area, species-area effect, and trophic structure; altered flows of materials and disturbances into and out of reserves; effects on crucial habitats for seasonal and migration movements and population source/sink dynamics; and exposure to humans through hunting, poaching, exotics species, and disease. These ecological mechanisms provide a basis for assessing the vulnerability of protected areas to land use. They also suggest criteria for designing regional management to sustain protected areas in the context of surrounding human land use. These design criteria include maximizing the area of functional habitats, identifying and maintaining ecological process zones, maintaining key migration and source habitats, and managing human proximity and edge effects.

  1. The nature of surround-induced depolarizing responses in goldfish cones

    NARCIS (Netherlands)

    Kraaij, D. A.; Spekreijse, H.; Kamermans, M.

    2000-01-01

    Cones in the vertebrate retina project to horizontal and bipolar cells and the horizontal cells feedback negatively to cones. This organization forms the basis for the center/surround organization of the bipolar cells, a fundamental step in the visual signal processing. Although the surround

  2. Investigation of the readout electronics of DELPHI surround muon chamber

    International Nuclear Information System (INIS)

    Khovanskij, N.; Krumshtejn, Z.; Ol'shevskij, A.; Sadovskij, A.; Sedykh, Yu.; Molnar, J.; Sicho, P.; Tomsa, Z.

    1995-01-01

    The characteristics of the readout electronics of the DELPHI surround muon chambers with various AMPLEX chips (AMPLEX 16 and AMPLEX-SICAL) are presented. This electronics is studied in a cosmic rays test of the real surround muon chamber model. 4 refs., 6 figs., 1 tab

  3. Investigation of metalloproteins distributions in cytosol of hepatocellular carcinoma and its surrounding tissues by using synchrotron radiation X-ray fluorescence

    International Nuclear Information System (INIS)

    Gao Yuxi; Chen Chunying; Li Bai; Chai Zhifang; Huang Yuying; He Wei; Deng Guilong; Liu Yingbin

    2004-01-01

    Synchrotron radiation X-ray fluorescence (SRXRF) spectroscopy is an advanced quantitative multielemental analytical technique with space resolution of several μm and sensitivities in the μ g/g range. It can be used for keeping track of trace elements in biological samples after an electrophoretic separation. In this paper, proteins in cytosol of human hepatocellular carcinoma and the surrounding 'normal' tissue were separated with thin layer isoelectric focusing (IEF). The contents of metal ions in protein bands were determined by SRXRF. The results showed that the metal-containing proteins detected in the two samples were very much alike, but their distribution patterns were easily distinguishable. The contents of iron, zinc, and copper in bands from the surrounding 'normal' tissue were generally higher than that from hepatoma tissue, especially in Fe-containing proteins with pIs of 6.5, 7.7, 8.0 and less than 3.5, Cu-containing proteins with PIs of 3.2, 4.9, 5.5, 5.9 and 6.5, as well as Zn-containing proteins with pI of 5.5 and 6.5. However, Fe contents in Fe-containing proteins of 4.0, and 7.0 from the hepatoma tissue were slight higher than that from the surrounding 'normal' tissue. Further studies are necessary to validate the universality and the biological meaning of the pattern. (authors)

  4. Processing of hazardous material, or damage treatment method for shallow layer underground storage structure

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Sakaguchi, Takehiko; Nishioka, Yoshihiro.

    1997-01-01

    In radioactive waste processing facilities and shallow layer underground structures for processing hazardous materials, sheet piles having freezing pipes at the joint portions are spiked into soils at the periphery of a damaged portion of the shallow layer underground structure for processing or storing hazardous materials. Liquid nitrogen is injected to the freezing pipes to freeze the joint portions of adjacent sheet piles. With such procedures, continuous waterproof walls are formed surrounding the soils at the peripheries of the damaged portion. Further, freezing pipes are disposed in the surrounding soils, and liquid nitrogen is injected to freeze the soils. The frozen soils are removed, and artificial foundation materials are filled in the space except for the peripheries of the damaged portion after the removal thereof, and liquid suspension is filled in the peripheries of the damaged portion, and restoration steps for closing the damaged portion are applied. Then, the peripheries of the damaged portion are buried again. With such procedures, series of treatments for removing contaminated soils and repairing a damaged portion can be conducted efficiently at a low cost. (T.M.)

  5. Modeling the reflectance of the lunar regolith by a new method combining Monte Carlo Ray tracing and Hapke's model with application to Chang'E-1 IIM data.

    Science.gov (United States)

    Wong, Un-Hong; Wu, Yunzhao; Wong, Hon-Cheng; Liang, Yanyan; Tang, Zesheng

    2014-01-01

    In this paper, we model the reflectance of the lunar regolith by a new method combining Monte Carlo ray tracing and Hapke's model. The existing modeling methods exploit either a radiative transfer model or a geometric optical model. However, the measured data from an Interference Imaging spectrometer (IIM) on an orbiter were affected not only by the composition of minerals but also by the environmental factors. These factors cannot be well addressed by a single model alone. Our method implemented Monte Carlo ray tracing for simulating the large-scale effects such as the reflection of topography of the lunar soil and Hapke's model for calculating the reflection intensity of the internal scattering effects of particles of the lunar soil. Therefore, both the large-scale and microscale effects are considered in our method, providing a more accurate modeling of the reflectance of the lunar regolith. Simulation results using the Lunar Soil Characterization Consortium (LSCC) data and Chang'E-1 elevation map show that our method is effective and useful. We have also applied our method to Chang'E-1 IIM data for removing the influence of lunar topography to the reflectance of the lunar soil and to generate more realistic visualizations of the lunar surface.

  6. Religion's relationship with social boundaries surrounding gender ...

    African Journals Online (AJOL)

    Religion's relationship with social boundaries surrounding gender. ... is associated with segregation, marginalization and differentiation between men and women. ... are necessary in the society it should not be mistaken for gender inequality.

  7. Vasculature surrounding a nodule: A novel lung cancer biomarker.

    Science.gov (United States)

    Wang, Xiaohua; Leader, Joseph K; Wang, Renwei; Wilson, David; Herman, James; Yuan, Jian-Min; Pu, Jiantao

    2017-12-01

    To investigate whether the vessels surrounding a nodule depicted on non-contrast, low-dose computed tomography (LDCT) can discriminate benign and malignant screen detected nodules. We collected a dataset consisting of LDCT scans acquired on 100 subjects from the Pittsburgh Lung Screening study (PLuSS). Fifty subjects were diagnosed with lung cancer and 50 subjects had suspicious nodules later proven benign. For the lung cancer cases, the location of the malignant nodule in the LDCT scans was known; while for the benign cases, the largest nodule in the LDCT scan was used in the analysis. A computer algorithm was developed to identify surrounding vessels and quantify the number and volume of vessels that were connected or near the nodule. A nonparametric receiver operating characteristic (ROC) analysis was performed based on a single nodule per subject to assess the discriminability of the surrounding vessels to provide a lung cancer diagnosis. Odds ratio (OR) were computed to determine the probability of a nodule being lung cancer based on the vessel features. The areas under the ROC curves (AUCs) for vessel count and vessel volume were 0.722 (95% CI=0.616-0.811, plung cancer group 9.7 (±9.6) compared to the non-lung cancer group 4.0 (±4.3) CONCLUSION: Our preliminary results showed that malignant nodules are often surrounded by more vessels compared to benign nodules, suggesting that the surrounding vessel characteristics could serve as lung cancer biomarker for indeterminate nodules detected during LDCT lung cancer screening using only the information collected during the initial visit. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Childhood Suicide and Myths Surrounding It.

    Science.gov (United States)

    Greene, Dorothea B.

    1994-01-01

    Dispels five misconceptions surrounding the suicide of children: that children under the age of six do not commit suicide; that suicide in latency years is extremely rare; that psychodynamically and developmentally true depression is not possible in childhood; that child cannot understand finality of death; and that children are cognitively and…

  9. Local structure and defect chemistry of [(SnSe)1.15]m(TaSe2) ferecrystals – A new type of layered intergrowth compound

    International Nuclear Information System (INIS)

    Grosse, Corinna; Atkins, Ryan; Kirmse, Holm; Mogilatenko, Anna; Neumann, Wolfgang; Johnson, David C.

    2013-01-01

    Highlights: •The crystal structure of [(SnSe) 1.15 ] m (TaSe 2 ) ferecrystals was analyzed by TEM. •The layers exhibit turbostratic disorder, but we also observed a local ordering. •The structures of the SnSe and TaSe 2 layers are similar to binary SnSe and 2H-TaSe 2 . •An increasing in-plane SnSe grain size with increasing m was observed. •Defect areas with missing, substituted or additional layers were found. -- Abstract: The atomic structure of the family of ferecrystals [(SnSe) 1.15 ] m (TaSe 2 ) (m = 1, 3, and 6) was investigated by means of transmission electron microscopy. The tantalum in the TaSe 2 layers was observed to have trigonal prismatic coordination similar to that found in the 2H polytype of bulk TaSe 2 . The structure of the SnSe constituent was found to be similar to that of orthorhombic α-SnSe. In the compounds with m = 1 and m = 3, regions with a local ordering of the layers along a commensurate axis, similar to the ordering in conventional misfit layer compounds, were observed. However, on a longer range the ferecrystals were found to exhibit a turbostratically disordered structure. Stacking defects were occasionally found in the samples in which a layer is interrupted and the surrounding layers are bent around these defects, while maintaining abrupt interfaces instead of interdiffusing. Volume defects were found in one sample of [(SnSe) 1.15 ] 1 (TaSe 2 ) 1 in which a SnSe layer locally substitutes a part of a TaSe 2 layer without interrupting the surrounding layers

  10. Brightening and Volatile Distribution Within Shackleton Crater Observed by the LRO Laser Altimeter.

    Science.gov (United States)

    Smith, D. E.; Zuber, M. T.; Head, J. W.; Neumann, G. A.; Mazarico, E.; Torrence, M. H.; Aharonson, O.; Tye, A. R.; Fassett, C. I.; Rosengurg, M. A.; hide

    2012-01-01

    Shackleton crater, whose interior lies largely in permanent shadow, is of interest due to its potential to sequester volatiles. Observations from the Lunar Orbiter Laser Altimeter onboard the Lunar Reconnaissance Orbiter have enabled an unprecedented topographic characterization, revealing Shackleton to be an ancient, unusually well-preserved simple crater whose interior walls are fresher than its floor and rim. Shackleton floor deposits are nearly the same age as the rim, suggesting little floor deposition since crater formation over 3 billion years ago. At 1064 nm the floor of Shackleton is brighter than the surrounding terrain and the interiors of nearby craters, but not as bright as the interior walls. The combined observations are explainable primarily by downslope movement of regolith on the walls exposing fresher underlying material. The relatively brighter crater floor is most simply explained by decreased space weathering due to shadowing, but a 1-mm-thick layer containing approx 20% surficial ice is an alternative possibility.

  11. Modifications of center-surround, spot detection and dot-pattern selective operators

    NARCIS (Netherlands)

    Petkov, Nicolai; Visser, Wicher T.

    2005-01-01

    This paper describes modifications of the models of center-surround and dot-pattern selective cells proposed previously. These modifications concern mainly the normalization of the difference of Gaussians (DoG) function used to model center-surround receptive fields, the normalization of

  12. Surrounding rock stress analysis of underground high level waste repository

    International Nuclear Information System (INIS)

    Liu Wengang; Wang Ju; Wang Guangdi

    2006-01-01

    During decay of nuclear waste, enormous energy was released, which results in temperature change of surrounding rock of depository. Thermal stress was produced because thermal expansion of rock was controlled. Internal structure of surrounding rock was damaged and strength of rock was weakened. So, variation of stress was a dynamic process with the variation of temperature. BeiShan region of Gansu province was determined to be the depository field in the future, it is essential to make research on granite in this region. In the process of experiment, basic physical parameters of granite were analyzed preliminary with MTS. Long range temperature and stress filed was simulated considering the damage effect of surrounding rock, and rules of temperature and stress was achieved. (authors)

  13. Pressure Shell Approach to Integrated Environmental Protection

    Science.gov (United States)

    Kennedy, Kriss J.

    2011-01-01

    The next generation of exploration mission human systems will require environmental protection such as radiation protection that is effective and efficient. In order to continue human exploration, habitat systems will require special shells to protect astronauts from hostile environments. The Pressure Shell Approach to integrated environmental (radiation) protection is a multi-layer shell that can be used for multifunctional environmental protection. Self-healing, self-repairing nano technologies and sensors are incorporated into the shell. This shell consists of multiple layers that can be tailored for specific environmental protection needs. Mainly, this innovation focuses on protecting crew from exposure to micrometeorites, thermal, solar flares, and galactic cosmic ray (GCR) radiation. The Pressure Shell Approach consists of a micrometeoroid and secondary ejecta protection layer; a thin, composite shell placed in between two layers that is non-structural; an open cavity layer that can be filled with water, regolith, or polyethylene foam; a thicker composite shell that is a structural load bearing that is placed between two layers; and a bladder coating on the interior composite shell. This multi-layer shell creates an effective radiation protection system. Most of its layers can be designed with the materials necessary for specific environments. In situ materials such as water or regolith can be added to the shell design for supplemental radiation protection.

  14. Iron signatures in Planetary Regoliths: The Moon as Case Study

    Science.gov (United States)

    McFadden, L. A.; Clark, P. E.; Basu, A.

    1998-09-01

    We consider the distribution of iron in the lunar crust by combining two complementary remote sensing techniques, Apollo Gamma-ray (AGR) spectroscopy and Clementine reflectance spectroscopy (CRS). Both maps were compared in areas of overlap controlled by Apollo 15 and 16 ground tracks. The CRS map was scaled to the same lower spatial resolution (200 km) as AGR using the same color map in a mercator projection. Both AGR and CRS maps show bimodal distributions of iron abundance and have large scale similarities, but there are quantitative and significant differences. Maria account for the high iron peak and highlands, the low iron peak. CSR-derived Fe has a greater overall range, very narrow modal peaks and greater separation between high and low modes compared to AGR Fe values. If both techniques measure total iron in the regolith then both approaches should agree, their residuals should be zero. After failure to explain the differences in a systematic manner, we recalibrated the CSR iron map to the iron abundance in the pyroxene component of Apollo landing site soils, an approach consistent with crystal field theory and the algorithm used to produce the CSR map. The difference between total iron measured by AGR and iron in pyroxene now measured by CSR gives a map of the non-pyroxene iron component of the lunar crust and its distribution. We now see a correlation with lunar morphology and an anti-correlation with age of mare basins and their iron abundance, the younger basins having a higher component of non-pyroxene iron than the older ones. These results can be checked with Lunar Prospector data on other areas of the Moon. Combining remote sensing data sets has promise for determining the distribution of iron in different oxidation states on Eros with data from the NEAR mission.

  15. Neutron spectrum in small iron pile surrounded by lead reflector

    International Nuclear Information System (INIS)

    Kimura, Itsuro; Hayashi, S.A.; Kobayashi, Katsuhei; Matsumura, Tetsuo; Nishihara, Hiroshi.

    1978-01-01

    In order to save the quantity of sample material, a possibility to assess group constants of a reactor material through measurement and analysis of neutron spectrum in a small sample pile surrounded by a reflector of heavy moderator, was investigated. As the sample and the reflector, we chose iron and lead, respectively. Although the time dispersion in moderation of neutrons was considerably prolonged by the lead reflector, this hardly interferes with the assessment of group constants. Theoretical calculation revealed that both the neutron flux spectrum and the sensitivity coefficient of group constants in an iron sphere, 35 cm in diameter surrounded by the lead reflector, 25 cm thick, were close to those of the bare iron sphere, 108 cm in diameter. The neutron spectra in a small iron pile surrounded by a lead reflector were experimentally obtained by the time-of-flight method with an electron linear accelerator and the result was compared with the predicted values. It could be confirmed that a small sample pile surrounded by a reflector, such as lead, was as useful as a much larger bulk pile for the assessment of group constants of a reactor material. (auth.)

  16. Smart Chips for Smart Surroundings -- 4S

    NARCIS (Netherlands)

    Schuler, Eberhard; König, Ralf; Becker, Jürgen; Rauwerda, G.K.; van de Burgwal, M.D.; Smit, Gerardus Johannes Maria; Cardoso, João M.P.; Hübner, Michael

    2011-01-01

    The overall mission of the 4S project (Smart Chips for Smart Surroundings) was to define and develop efficient flexible, reconfigurable core building blocks, including the supporting tools, for future Ambient System Devices. Reconfigurability offers the needed flexibility and adaptability, it

  17. Boundary layer attenuation in turbulent sodium flows

    International Nuclear Information System (INIS)

    Tenchine, D.

    1994-01-01

    Temperature fluctuations are produced in the sodium coolant of Liquid Metal Reactors when flows at different temperatures are mixing. That occurs in various areas of the reactor plant, in the primary and the secondary circuits. This paper deals with secondary circuit pipings, specifically the Superphenix steam generator outlet. The possibility of thermal striping in this area is studied because of the mixing of a main 'hot' flow surrounded by a smaller 'cold' flow in the vertical pipe located below the steam generator. This work was developed in the frame of a collaboration between CEA, EDF and FRAMATOME. The purpose of our study is to measure temperature fluctuations in the fluid and on the structures, on a sodium reduced scale model of the outlet region of the steam generator. We want to evidence the boundary layer attenuation by comparing wall and fluid measurements. From these experimental data, we shall propose a methodology to predict the boundary layer attenuation and the temperature fluctuations at the surface of the structure, for pipe flow configurations

  18. Improvement of corrosion resistance of transparent conductive multilayer coating consisting of silver layers and transparent metal oxide layers

    International Nuclear Information System (INIS)

    Koike, Katsuhiko; Yamazaki, Fumiharu; Okamura, Tomoyuki; Fukuda, Shin

    2007-01-01

    An optical filter for plasma display panel (PDP) requires an electromagnetic shield with very high ability. The authors investigated a transparent conductive multilayer coating consisting of silver (Ag) layers and transparent metal oxide layers. The durability of the multilayer sputter coating, including the silver layer, is very sensitive to the surrounding atmosphere. For example, after an exposure test they found discolored points on the multilayer sputter coatings, possibly caused by migration of silver atoms in the silver layers. In their investigation, they modified the top surface of the multilayer sputter coatings with transition metals to improve the corrosion resistance of the multilayer coating. Specifically, they deposited transition metals 0.5-2 nm thick on the top surface of the multilayer coatings by sputtering. They chose indium tin oxide (ITO) as the transparent metal oxide. They applied the multilayer sputter coatings of seven layers to a polyethylene terephthalate (PET) film substrate. A cross-sectional structure of the film with the multilayer coatings is PET film/ITO/Ag/ITO/Ag/ITO/Ag/ITO. They evaluated the corrosion resistance of the films by a salt-water immersion test. In the test, they immersed the film with multilayer coatings into salt water, and then evaluated the appearance, transmittance, and electrical resistance of the multilayer coatings. They investigated several transition metals as the modifying material, and found that titanium and tantalum drastically improved the resistance of the multilayer coatings to the salt-water exposure without a significant decline in transmittance. They also investigated the relation between elapsed time after deposition of the modifying materials and resistance to the salt water. Furthermore, they investigated the effects of a heat treatment and an oxide plasma treatment on resistance to the salt water

  19. Layer 5 Pyramidal Neurons’ Dendritic Remodeling and Increased Microglial Density in Primary Motor Cortex in a Murine Model of Facial Paralysis

    Directory of Open Access Journals (Sweden)

    Diana Urrego

    2015-01-01

    Full Text Available This work was aimed at characterizing structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with microglial density induced by facial nerve lesion using a murine facial paralysis model. Adult transgenic mice, expressing green fluorescent protein in microglia and yellow fluorescent protein in projecting neurons, were submitted to either unilateral section of the facial nerve or sham surgery. Injured animals were sacrificed either 1 or 3weeks after surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1. It was found that facial nerve lesion induced long-lasting changes in the dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Dendritic arborization of the pyramidal cells underwent overall shrinkage. Apical dendrites suffered transient shortening while basal dendrites displayed sustained shortening. Moreover, dendrites suffered transient spine pruning. Significantly higher microglial cell density was found surrounding vM1 layer 5 pyramidal neurons after facial nerve lesion with morphological bias towards the activated phenotype. These results suggest that facial nerve lesions elicit active dendrite remodeling due to pyramidal neuron and microglia interaction, which could be the pathophysiological underpinning of some neuropathic motor sequelae in humans.

  20. Layer 5 Pyramidal Neurons' Dendritic Remodeling and Increased Microglial Density in Primary Motor Cortex in a Murine Model of Facial Paralysis

    Science.gov (United States)

    Urrego, Diana; Troncoso, Julieta; Múnera, Alejandro

    2015-01-01

    This work was aimed at characterizing structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with microglial density induced by facial nerve lesion using a murine facial paralysis model. Adult transgenic mice, expressing green fluorescent protein in microglia and yellow fluorescent protein in projecting neurons, were submitted to either unilateral section of the facial nerve or sham surgery. Injured animals were sacrificed either 1 or 3weeks after surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1). It was found that facial nerve lesion induced long-lasting changes in the dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Dendritic arborization of the pyramidal cells underwent overall shrinkage. Apical dendrites suffered transient shortening while basal dendrites displayed sustained shortening. Moreover, dendrites suffered transient spine pruning. Significantly higher microglial cell density was found surrounding vM1 layer 5 pyramidal neurons after facial nerve lesion with morphological bias towards the activated phenotype. These results suggest that facial nerve lesions elicit active dendrite remodeling due to pyramidal neuron and microglia interaction, which could be the pathophysiological underpinning of some neuropathic motor sequelae in humans. PMID:26064916

  1. Creating a Ruggedness Layer for Use in Habitat Suitability Modeling for Ikh Nart Nature Reserve, Mongolia

    Directory of Open Access Journals (Sweden)

    Nanette Bragin

    2013-12-01

    Full Text Available Spatially-explicit wildlife habitat models are increasingly used to study optimal habitat for species of conservation focus. A ruggedness layer, that summarizes aspect and slope, provides a useful tool for analyses conducted in a Geographic Information System (GIS, such as developing a habitat suitability index model to measure species habitat use. Ruggedness layers prove especially useful in areas where topography represents a key habitat component. We created a ruggedness layer for the Ikh Nart Nature Reserve and surrounding areas in northern Dornogobi Aimag (province, Mongolia. Using a 90 m Shuttle Radar Topography Mission (SRTM digital elevation model (DEM and ArcGIS 10 spatial analyst, we created 9 categories for ruggedness. When combined with other thematic layers such as vegetation, the ruggedness layer becomes a powerful tool for analyzing habitat use by individual animals. The results of such analyses may inform decision makers in protected area planning and conservation of endangered species.

  2. Simultaneous measurement of temperature and emissivity of lunar regolith simulant using dual-channel millimeter-wave radiometry.

    Science.gov (United States)

    McCloy, J S; Sundaram, S K; Matyas, J; Woskov, P P

    2011-05-01

    Millimeter wave (MMW) radiometry can be used for simultaneous measurement of emissivity and temperature of materials under extreme environments (high temperature, pressure, and corrosive environments). The state-of-the-art dual channel MMW passive radiometer with active interferometric capabilities at 137 GHz described here allows for radiometric measurements of sample temperature and emissivity up to at least 1600 °C with simultaneous measurement of sample surface dynamics. These capabilities have been used to demonstrate dynamic measurement of melting of powders of simulated lunar regolith and static measurement of emissivity of solid samples. The paper presents the theoretical background and basis for the dual-receiver system, describes the hardware in detail, and demonstrates the data analysis. Post-experiment analysis of emissivity versus temperature allows further extraction from the radiometric data of millimeter wave viewing beam coupling factors, which provide corroboratory evidence to the interferometric data of the process dynamics observed. These results show the promise of the MMW system for extracting quantitative and qualitative process parameters for industrial processes and access to real-time dynamics of materials behavior in extreme environments.

  3. Gases Emission From Surface Layers of Sand Moulds and Cores Stored Under the Humid Air Conditions

    Directory of Open Access Journals (Sweden)

    Kaźnica N.

    2017-12-01

    Full Text Available A large number of defects of castings made in sand moulds is caused by gases. There are several sources of gases: gases emitted from moulds, cores or protective coatings during pouring and casting solidification; water in moulding sands; moisture adsorbed from surroundings due to atmospheric conditions changes. In investigations of gas volumetric emissions of moulding sands amounts of gases emitted from moulding sand were determined - up to now - in dependence of the applied binders, sand grains, protective coatings or alloys used for moulds pouring. The results of investigating gas volumetric emissions of thin-walled sand cores poured with liquid metal are presented in the hereby paper. They correspond to the surface layer in the mould work part, which is decisive for the surface quality of the obtained castings. In addition, cores were stored under conditions of a high air humidity, where due to large differences in humidity, the moisture - from surroundings - was adsorbed into the surface layer of the sand mould. Due to that, it was possible to asses the influence of the adsorbed moisture on the gas volumetric emission from moulds and cores surface layers by means of the new method of investigating the gas emission kinetics from thin moulding sand layers heated by liquid metal. The results of investigations of kinetics of the gas emission from moulding sands with furan and alkyd resins as well as with hydrated sodium silicate (water glass are presented. Kinetics of gases emissions from these kinds of moulding sands poured with Al-Si alloy were compared.

  4. A Stimuli-Responsive Biosensor of Glucose on Layer-by-Layer Films Assembled through Specific Lectin-Glycoenzyme Recognition

    Directory of Open Access Journals (Sweden)

    Huiqin Yao

    2016-04-01

    Full Text Available The research on intelligent bioelectrocatalysis based on stimuli-responsive materials or interfaces is of great significance for biosensors and other bioelectronic devices. In the present work, lectin protein concanavalin A (Con A and glycoenzyme glucose oxidase (GOD were assembled into {Con A/GOD}n layer-by-layer (LbL films by taking advantage of the biospecific lectin-glycoenzyme affinity between them. These film electrodes possess stimuli-responsive properties toward electroactive probes such as ferrocenedicarboxylic acid (Fc(COOH2 by modulating the surrounding pH. The CV peak currents of Fc(COOH2 were quite large at pH 4.0 but significantly suppressed at pH 8.0, demonstrating reversible stimuli-responsive on-off behavior. The mechanism of stimuli-responsive property of the films was explored by comparative experiments and attributed to the different electrostatic interaction between the films and the probes at different pH. This stimuli-responsive films could be used to realize active/inactive electrocatalytic oxidation of glucose by GOD in the films and mediated by Fc(COOH2 in solution, which may establish a foundation for fabricating novel stimuli-responsive electrochemical biosensors based on bioelectrocatalysis with immobilized enzymes.

  5. A PIXE/PIGE study of lateritic gold mineralization from the regolith of the Mystery Zone, Mt Percy, Western Australia

    International Nuclear Information System (INIS)

    Li, X.; Van Moort, J.C.

    1998-01-01

    PIXE/PIGE have been utilized extensively in the search for gold and volcanic hosted massive sulphide deposits, using rock powders from relatively fresh rock. The present study uses regolith samples, from which weathering products (oxides, hydroxides, carbonates, sulphates and clay) have been removed by sequential treatment with aqua regia and sulphuric acid. The samples come from the Mystery Zone, Mt Percy, Kalgoorlie, comprising both mineralized and barren samples. The acid insoluble residue consist essentially of quartz with minor sericite. The PlXE/PIGE data from the acid insoluble residue shows that the geochemical character of W, Al, K, Ca, V, Ga, Rb, Rb/K and Rb/Al could correctly define the location of underlying mineralization at depth. The ratio of Ti/Zr remained relatively constant in different geological units and can be used to distinguish lithologies. (authors)

  6. A PIXE/PIGE study of lateritic gold mineralization from the regolith of the Mystery Zone, Mt Percy, Western Australia

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Van Moort, J.C. [Tasmania Univ., Sandy Bay, TAS (Australia). Dept. of Geology

    1998-06-01

    PIXE/PIGE have been utilized extensively in the search for gold and volcanic hosted massive sulphide deposits, using rock powders from relatively fresh rock. The present study uses regolith samples, from which weathering products (oxides, hydroxides, carbonates, sulphates and clay) have been removed by sequential treatment with aqua regia and sulphuric acid. The samples come from the Mystery Zone, Mt Percy, Kalgoorlie, comprising both mineralized and barren samples. The acid insoluble residue consist essentially of quartz with minor sericite. The PlXE/PIGE data from the acid insoluble residue shows that the geochemical character of W, Al, K, Ca, V, Ga, Rb, Rb/K and Rb/Al could correctly define the location of underlying mineralization at depth. The ratio of Ti/Zr remained relatively constant in different geological units and can be used to distinguish lithologies. (authors). Extended abstract. 5 refs.

  7. Layered Black Phosphorus as a Selective Vapor Sensor.

    Science.gov (United States)

    Mayorga-Martinez, Carmen C; Sofer, Zdeněk; Pumera, Martin

    2015-11-23

    Black phosphorus is a layered material that is sensitive to the surrounding atmosphere. This is generally considered as a disadvantage, especially when compared to more stable layered compounds, such as graphite or MoS2. This sensitivity is now turned into an advantage. A vapor sensor that is based on layered black phosphorus and uses electrochemical impedance spectroscopy as the detection method is presented; the device selectively detects methanol vapor. The impedance phase measured at a constant frequency is used as a distinctive parameter for the selective quantification of methanol, and increases with the methanol concentration. The low detection limit of 28 ppm is well below the approved exposure limit of 200 ppm. The results are highly reproducible, and the vapor sensor is shown to be very selective in the presence of other vapors and to have long-term stability. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  8. About perfectly adapted layers for the temporal resolution of Maxwell's equations

    International Nuclear Information System (INIS)

    Le Potier, Ch.

    1995-01-01

    The major obstacle encountered in diffraction problems is the limitation in place memory. One solution is to approach the Sommerfeld condition by taking into account absorbing boundary conditions on a boundary surface surrounding the studied object. Many authors have studied these problems, but, unfortunately, the implementation of absorbing boundary conditions of order greater than two for 3-dimensional non-structural meshes in the temporal case is a still unresolved problem to our knowledge. Another way is to add a dummy absorbent layer around the computational domain. J.P. Berenger has revived this method and considerably improved the resolution of the problems of time diffraction. His idea is to split the Maxwell equations in their anisotropic version in a layer surrounding the computational domain. On the other hand, J.Y. Wu introduced a new system of anisotropic equations in the frequency case. The author shows that this new system possesses the same properties as that of Berenger and this idea has been generalized to the temporal case with discretization in space by finite volumes in 3 dimensions for a structured or not structured mesh. The report also presents the implementation of these new methods in the SUMER-T code and the accuracy of these is compared with conventional absorbing boundary conditions [fr

  9. Simulation of the convective mixed layer in Athens

    Energy Technology Data Exchange (ETDEWEB)

    Frank, H.P. [Risoe National Lab., Roskilde (Denmark)

    1997-10-01

    The region of Athens, Greece, has a highly complicated terrain with irregular coastline and mountains next to the sea. This results in complex flow fields. A case study of a simulation of a sea breeze with the Karlsruhe Atmospheric Mesoscale model KAMM is presented together with remarks on the advection of mixed layer air. The valley of Athens is open to the sea towards the south-west and surrounded by mountains on the other sides. Gaps between the mountains channel the flow into the valley. Simulations were done for 14 September 1994 to compare them with measurements at 6 masts by Risoe during the MEDCAPHOT-TRACE experiment. (au)

  10. In Situ Observation of Hard Surrounding Rock Displacement at 2400-m-Deep Tunnels

    Science.gov (United States)

    Feng, Xia-Ting; Yao, Zhi-Bin; Li, Shao-Jun; Wu, Shi-Yong; Yang, Cheng-Xiang; Guo, Hao-Sen; Zhong, Shan

    2018-03-01

    This paper presents the results of in situ investigation of the internal displacement of hard surrounding rock masses within deep tunnels at China's Jinping Underground Laboratory Phase II. The displacement evolution of the surrounding rock during the entire excavation processes was monitored continuously using pre-installed continuous-recording multi-point extensometers. The evolution of excavation-damaged zones and fractures in rock masses were also observed using acoustic velocity testing and digital borehole cameras, respectively. The results show four kinds of displacement behaviours of the hard surrounding rock masses during the excavation process. The displacement in the inner region of the surrounding rock was found to be greater than that of the rock masses near the tunnel's side walls in some excavation stages. This leads to a multi-modal distribution characteristic of internal displacement for hard surrounding rock masses within deep tunnels. A further analysis of the evolution information on the damages and fractures inside the surrounding rock masses reveals the effects of excavation disturbances and local geological conditions. This recognition can be used as the reference for excavation and supporting design and stability evaluations of hard-rock tunnels under high-stress conditions.

  11. The surrounding concrete structure of the containment as a safety component

    International Nuclear Information System (INIS)

    Alex, H.; Kuntze, W.M.

    1978-01-01

    This paper will briefly discuss the containments of the various types of reactors in the Federal Republic of Germany and will try to show the importance of the surrounding concrete structures with respect to safety. It will be seen that the surrounding concrete structures serve in any case - as protection against external events - as secondary shielding and must therefore be considered as a passive safety feature. The design requirements for the surrounding concrete structures with respect to protection against external events and to physical protection generally supplement each other. Reference will be made to possible alternatives, which might result from studies of underground siting of nuclear power plants. Whether or not this type of construction can lead to additional safety can only be judged when the results of all these studies - some of which are still under way - are evaluated. The concluding part of this paper will deal with the responsibilities of the civil engineering supervisory authorities and the nuclear licensing authorities with respect to the surrounding concrete structures. (orig.) [de

  12. Thermographic analysis of plasma facing components covered by carbon surface layer in tokamaks

    International Nuclear Information System (INIS)

    Gardarein, Jean-Laurent

    2007-01-01

    Tokamaks are reactors based on the thermonuclear fusion energy with magnetic confinement of the plasma. In theses machines, several MW are coupled to the plasma for about 10 s. A large part of this power is directed towards plasma facing components (PFC). For better understanding and control the heat flux transfer from the plasma to the surrounding wall, it is very important to measure the surface temperature of the PFC and to estimate the imposed heat flux. In most of tokamaks using carbon PFC, the eroded carbon is circulating in the plasma and redeposited elsewhere. During the plasma operations, this leads at some locations to the formation of thin or thick carbon layers usually poorly attached to the PFC. These surface layers with unknown thermal properties complicate the calculation of the heat flux from IR surface temperature measurements. To solve this problem, we develop first, inverse method to estimate the heat flux using thermocouple (not sensitive to the carbon surface layers) temperature measurements. Then, we propose a front face pulsed photothermal method allowing an estimation of layers thermal diffusivity, conductivity, effusivity and the thermal contact resistance between the layer and the tile. The principle is to study with an infrared sensor, the cooling of the layer surface after heating by a short laser pulse, this cooling depending on the thermal properties of the successive layers. (author) [fr

  13. A thermal control system for long-term survival of scientific instruments on lunar surface

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, K., E-mail: ogawa@astrobio.k.u-tokyo.ac.jp [Department of Complexity Science and Engineering, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba (Japan); Iijima, Y.; Tanaka, S. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa (Japan); Sakatani, N. [The Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawa (Japan); Otake, H. [JAXA Space Exploration Center, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa (Japan)

    2014-03-15

    A thermal control system is being developed for scientific instruments placed on the lunar surface. This thermal control system, Lunar Mission Survival Module (MSM), was designed for scientific instruments that are planned to be operated for over a year in the future Japanese lunar landing mission SELENE-2. For the long-term operations, the lunar surface is a severe environment because the soil (regolith) temperature varies widely from nighttime −200 degC to daytime 100 degC approximately in which space electronics can hardly survive. The MSM has a tent of multi-layered insulators and performs a “regolith mound”. Temperature of internal devices is less variable just like in the lunar underground layers. The insulators retain heat in the regolith soil in the daylight, and it can keep the device warm in the night. We conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. Thermal vacuum tests were also conducted by using a thermal evaluation model in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The numerical and experimental results indicated a sufficient survivability potential of the concept of our thermal control system.

  14. A thermal control system for long-term survival of scientific instruments on lunar surface.

    Science.gov (United States)

    Ogawa, K; Iijima, Y; Sakatani, N; Otake, H; Tanaka, S

    2014-03-01

    A thermal control system is being developed for scientific instruments placed on the lunar surface. This thermal control system, Lunar Mission Survival Module (MSM), was designed for scientific instruments that are planned to be operated for over a year in the future Japanese lunar landing mission SELENE-2. For the long-term operations, the lunar surface is a severe environment because the soil (regolith) temperature varies widely from nighttime -200 degC to daytime 100 degC approximately in which space electronics can hardly survive. The MSM has a tent of multi-layered insulators and performs a "regolith mound". Temperature of internal devices is less variable just like in the lunar underground layers. The insulators retain heat in the regolith soil in the daylight, and it can keep the device warm in the night. We conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. Thermal vacuum tests were also conducted by using a thermal evaluation model in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The numerical and experimental results indicated a sufficient survivability potential of the concept of our thermal control system.

  15. A thermal control system for long-term survival of scientific instruments on lunar surface

    International Nuclear Information System (INIS)

    Ogawa, K.; Iijima, Y.; Tanaka, S.; Sakatani, N.; Otake, H.

    2014-01-01

    A thermal control system is being developed for scientific instruments placed on the lunar surface. This thermal control system, Lunar Mission Survival Module (MSM), was designed for scientific instruments that are planned to be operated for over a year in the future Japanese lunar landing mission SELENE-2. For the long-term operations, the lunar surface is a severe environment because the soil (regolith) temperature varies widely from nighttime −200 degC to daytime 100 degC approximately in which space electronics can hardly survive. The MSM has a tent of multi-layered insulators and performs a “regolith mound”. Temperature of internal devices is less variable just like in the lunar underground layers. The insulators retain heat in the regolith soil in the daylight, and it can keep the device warm in the night. We conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. Thermal vacuum tests were also conducted by using a thermal evaluation model in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The numerical and experimental results indicated a sufficient survivability potential of the concept of our thermal control system

  16. Consistent and robust determination of border ownership based on asymmetric surrounding contrast.

    Science.gov (United States)

    Sakai, Ko; Nishimura, Haruka; Shimizu, Ryohei; Kondo, Keiichi

    2012-09-01

    Determination of the figure region in an image is a fundamental step toward surface construction, shape coding, and object representation. Localized, asymmetric surround modulation, reported neurophysiologically in early-to-intermediate-level visual areas, has been proposed as a mechanism for figure-ground segregation. We investigated, computationally, whether such surround modulation is capable of yielding consistent and robust determination of figure side for various stimuli. Our surround modulation model showed a surprisingly high consistency among pseudorandom block stimuli, with greater consistency for stimuli that yielded higher accuracy of, and shorter reaction times in, human perception. Our analyses revealed that the localized, asymmetric organization of surrounds is crucial in the detection of the contrast imbalance that leads to the determination of the direction of figure with respect to the border. The model also exhibited robustness for gray-scaled natural images, with a mean correct rate of 67%, which was similar to that of figure-side determination in human perception through a small window and of machine-vision algorithms based on local processing. These results suggest a crucial role of surround modulation in the local processing of figure-ground segregation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Enhanced sources of acoustic power surrounding AR 11429

    International Nuclear Information System (INIS)

    Donea, Alina; Hanson, Christopher

    2013-01-01

    Multi-frequency power maps of the local acoustic oscillations show acoustic enhancements (''acoustic-power halos'') at high frequencies surrounding large active region. Computational seismic holography reveals a high-frequency ''acoustic-emission halo'', or ''seismic glory'' surrounding large active regions. In this study, we have applied computational seismic holography to map the seismic seismic source density surrounding AR 11429. Studies of HMI/SDO Doppler data, shows that the ''acoustic halos'' and the ''seismic glories'' are prominent at high frequencies 5–8 mHz. We investigate morphological properties of acoustic-power and acoustic emission halos around an active region to see if they are spatially correlated. Details about the local magnetic field from vectormagnetograms of AR 11429 are included. We identify a 15'' region of seismic deficit power (dark moat) shielding the white-light boundary of the active region. The size of the seismic moat is related to region of intermediate magnetic field strength. The acoustic moat is circled by the halo of enhanced seismic amplitude as well as enhanced seismic emission. Overall, the results suggest that features are related. However, if we narrow the frequency band to 5.5 – 6.5 mHz, we find that the seismic source density dominates over the local acoustic power, suggesting the existence of sources that emit more energy downward into the solar interior than upward toward the solar surface.

  18. Holocene history and environmental reconstruction of a Hercynian mire and surrounding mountain landscape based on multiple proxies

    Science.gov (United States)

    Dudová, Lydie; Hájková, Petra; Opravilová, Věra; Hájek, Michal

    2014-07-01

    We discovered the first peat section covering the entire Holocene in the Hrubý Jeseník Mountains, representing an island of unique alpine vegetation whose history may display transitional features between the Hercynian and Carpathian regions. We analysed pollen, plant macrofossils (more abundant in bottom layers), testate amoebae (more abundant in upper layers), peat stratigraphy and chemistry. We found that the landscape development indeed differed from other Hercynian mountains located westward. This is represented by Pinus cembra and Larix during the Pleistocene/Holocene transition, the early expansion of spruce around 10,450 cal yr BP, and survival of Larix during the climatic optimum. The early Holocene climatic fluctuations are traced in our profile by species compositions of both the mire and surrounding forests. The mire started to develop as a calcium-rich percolation fen with some species recently considered to be postglacial relicts (Meesia triquetra, Betula nana), shifted into ombrotrophy around 7450 cal yr BP by autogenic succession and changed into a pauperised, nutrient-enriched spruce woodland due to modern forestry activities. We therefore concluded that its recent vegetation is not a product of natural processes. From a methodological viewpoint we demonstrated how using multiple biotic proxies and extensive training sets in transfer functions may overcome taphonomic problems.

  19. Solar Wind Implantation into Lunar Regolith II: Monte Carlo Simulations of Hydrogen Retention in a Surface with Defects and the Hydrogen (H, H2) Exosphere

    Science.gov (United States)

    Tucker, O. J.; Farrell, W. M.; Killen, R. M.; Hurley, D. M.

    2018-01-01

    Recently, the near-infrared observations of the OH veneer on the lunar surface by the Moon Mineralogy Mapper (M3) have been refined to constrain the OH content to 500-750 parts per million (ppm). The observations indicate diurnal variations in OH up to 200 ppm possibly linked to warmer surface temperatures at low latitude. We examine the M3 observations using a statistical mechanics approach to model the diffusion of implanted H in the lunar regolith. We present results from Monte Carlo simulations of the diffusion of implanted solar wind H atoms and the subsequently derived H and H2 exospheres.

  20. Radiometric Measurements of the Thermal Conductivity of Complex Planetary-like Materials

    Science.gov (United States)

    Piqueux, S.; Christensen, P. R.

    2012-12-01

    Planetary surface temperatures and thermal inertias are controlled by the physical and compositional characteristics of the surface layer material, which result from current and past geological activity. For this reason, temperature measurements are often acquired because they provide fundamental constraints on the geological history and habitability. Examples of regolith properties affecting surface temperatures and inertias are: grain sizes and mixture ratios, solid composition in the case of ices, presence of cement between grains, regolith porosity, grain roughness, material layering etc.. Other important factors include volatile phase changes, and endogenic or exogenic heat sources (i.e. geothermal heat flow, impact-related heat, biological activity etc.). In the case of Mars, the multitude of instruments observing the surface temperature at different spatial and temporal resolutions (i.e. IRTM, Thermoskan, TES, MiniTES, THEMIS, MCS, REMS, etc.) in conjunction with other instruments allows us to probe and characterize the thermal properties of the surface layer with an unprecedented resolution. While the derivation of thermal inertia values from temperature measurements is routinely performed by well-established planetary regolith numerical models, constraining the physical properties of the surface layer from thermal inertia values requires the additional step of laboratory measurements. The density and specific heat are usually constant and sufficiently well known for common geological materials, but the bulk thermal conductivity is highly variable as a function of the physical characteristics of the regolith. Most laboratory designs do not allow an investigation of the thermal conductivity of complex regolith configurations similar to those observed on planetary surfaces (i.e. cemented material, large grains, layered material, and temperature effects) because the samples are too small and need to be soft to insert heating or measuring devices. For this

  1. Measurements in Vacuum of the Complex Permittivity of Planetary Regolith Analog Materials in Support of the OSIRIS-REx Mission

    Science.gov (United States)

    Boivin, A.; Hickson, D. C.; Cunje, A.; Tsai, C. A.; Ghent, R. R.; Daly, M. G.

    2017-12-01

    In preparation for the OSIRIS-REx sample return mission, ground based radar data have been used to help characterize the carbonaceous asteroid (101955) Bennu as well as to produce a 3-D shape model. Radar data have also been used to derive the near-surface bulk density of the asteroid, a key engineering factor for sample acquisition and return. The relationship between radar albedo and bulk density of the nearsurface depends on the relative permittivity of the material, in this case regolith. The relative permittivity is complex such that ɛ r = ɛ r' + i ɛ r'', where ɛ r' is the dielectric constant and ɛ r'' is the loss factor. Laboratory permittivity measurements have been made in the past on a myriad of samples including Earth materials, lunar Apollo and analog samples, Mars soil analog samples, some meteorites, and cometary analog samples in support of the Rosetta mission. These measurements have been made in different frequency bands and in various conditions; however, no measurements to date have systematically explored the effect of changes in mineralogy on the complex permittivity, and particularly the loss tangent (tanδ , the ratio of ɛ r'' to ɛ r'). The loss tangent controls the absorption of the signal by the material. Continuing our investigation of the effects of mineralogy on these properties, we will present for the first time results of complex permittivity measurements of the UCF/DSI-CI-2 CI asteroid regolith simulant produced by Deep Space Industries Inc. The simulant is mineralogically similar to the CI meteorite Orgueil. CI meteorites are the most spectrally similar meteorites to (101955) Bennu. Since the simulant has been provided to us un-mixed, several sub-samples will be created containing different amounts of carbon, thus allowing us to systematically investigate the effects of carbon content on the permittivity. In order to remove moisture from our samples, powders are baked at 250°C for 48hrs prior to being loaded into a coaxial

  2. Opportunity's Surroundings on Sol 1818

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings during the 1,818th Martian day, or sol, of Opportunity's surface mission (March 5, 2009). South is at the center; north at both ends. The rover had driven 80.3 meters (263 feet) southward earlier on that sol. Tracks from the drive recede northward in this view. The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock. This view is presented as a cylindrical projection with geometric seam correction.

  3. Lithium implantation at low temperature in silicon for sharp buried amorphous layer formation and defect engineering

    International Nuclear Information System (INIS)

    Oliviero, E.; David, M. L.; Beaufort, M. F.; Barbot, J. F.; Fichtner, P. F. P.

    2013-01-01

    The crystalline-to-amorphous transformation induced by lithium ion implantation at low temperature has been investigated. The resulting damage structure and its thermal evolution have been studied by a combination of Rutherford backscattering spectroscopy channelling (RBS/C) and cross sectional transmission electron microscopy (XTEM). Lithium low-fluence implantation at liquid nitrogen temperature is shown to produce a three layers structure: an amorphous layer surrounded by two highly damaged layers. A thermal treatment at 400 °C leads to the formation of a sharp amorphous/crystalline interfacial transition and defect annihilation of the front heavily damaged layer. After 600 °C annealing, complete recrystallization takes place and no extended defects are left. Anomalous recrystallization rate is observed with different motion velocities of the a/c interfaces and is ascribed to lithium acting as a surfactant. Moreover, the sharp buried amorphous layer is shown to be an efficient sink for interstitials impeding interstitial supersaturation and {311} defect formation in case of subsequent neon implantation. This study shows that lithium implantation at liquid nitrogen temperature can be suitable to form a sharp buried amorphous layer with a well-defined crystalline front layer, thus having potential applications for defects engineering in the improvement of post-implantation layers quality and for shallow junction formation.

  4. Chemical characteristics of surface systems in the Forsmark area. Visualisation and statistical evaluation of data from shallow groundwater, precipitation, and regolith

    International Nuclear Information System (INIS)

    Troejbom, Mats; Soederbaeck, Bjoern

    2006-02-01

    The Swedish Nuclear Fuel and Waste management Co (SKB) initiated site investigations for a deep repository for spent nuclear fuel at two different sites in Sweden, Forsmark and Oskarshamn, in 2002. This report evaluates the results from chemical investigations of the surface system in the Forsmark area during the period November 2002 - March 2005. The evaluation includes data from surface waters (lakes, streams and the sea), precipitation, shallow groundwater and regolith (till, soil, peat, sediments and biota) in the area. Results from surface waters are not presented in this report since these were treated in a recently published report. The main focus of the study is to visualize the vast amount of data collected hitherto in the site investigations, and to give a chemical characterisation of the investigated media at the site. The results will be used to support the site descriptive models, which in turn are used for safety assessment studies and for the environmental impact assessment. The data used consist of water chemical composition in lakes, streams, coastal sites, and in precipitation, predominantly sampled on a monthly basis, and in groundwater from soil tubes and wells, sampled up to four times per year. Moreover, regolith data includes information on the chemical composition of till, soil, sediment and vegetation samples from the area. The characterisations include all measured chemical parameters, i.e. major and minor constituents, trace elements, nutrients, isotopes and radio nuclides, as well as field measured parameters. The evaluation of data from each medium has been divided into the following parts: Characterisation of individual sampling sites, and comparisons within and among sampling sites as well as comparisons with local, regional and national reference data; Analysis of time trends and seasonal variation (for shallow groundwater); Exploration of relationships among the various chemical parameters. For all investigated parameters, the

  5. Performance Testing of Molten Regolith Electrolysis with Transfer of Molten Material for the Production of Oxygen and Metals on the Moon

    Science.gov (United States)

    Sibille, Laurent; Sadoway, Donald; Tripathy, Prabhat; Standish, Evan; Sirk, Aislinn; Melendez, Orlando; Stefanescu, Doru

    2010-01-01

    Previously, we have demonstrated the production of oxygen by electrolysis of molten regolith simulants at temperatures near 1600 C. Using an inert anode and suitable cathode, direct electrolysis (no supporting electrolyte) of the molten silicate is carried out, resulting in the production of molten metallic products at the cathode and oxygen gas at the anode. Initial direct measurements of current efficiency have confirmed that the process offer potential advantages of high oxygen production rates in a smaller footprint facility landed on the moon, with a minimum of consumables brought from Earth. We now report the results of a scale-up effort toward the goal of achieving production rates equivalent to 1 metric ton O2/year, a benchmark established for the support of a lunar base. We previously reported on the electrochemical behavior of the molten electrolyte as dependent on anode material, sweep rate and electrolyte composition in batches of 20-200g and at currents of less than 0.5 A. In this paper, we present the results of experiments performed at currents up to 10 Amperes) and in larger volumes of regolith simulant (500 g - 1 kg) for longer durations of electrolysis. The technical development of critical design components is described, including: inert anodes capable of passing continuous currents of several Amperes, container materials selection, direct gas analysis capability to determine the gas components co-evolving with oxygen. To allow a continuous process, a system has been designed and tested to enable the withdrawal of cathodically-reduced molten metals and spent molten oxide electrolyte. The performance of the withdrawal system is presented and critiqued. The design of the electrolytic cell and the configuration of the furnace were supported by modeling the thermal environment of the system in an effort to realize a balance between external heating and internal joule heating. We will discuss the impact these simulations and experimental findings have

  6. Seismic crustal structure of the North China Craton and surrounding area: Synthesis and analysis

    Science.gov (United States)

    Xia, B.; Thybo, H.; Artemieva, I. M.

    2017-07-01

    We present a new digital model (NCcrust) of the seismic crustal structure of the Neoarchean North China Craton (NCC) and its surrounding Paleozoic-Mesozoic orogenic belts (30°-45°N, 100°-130°E). All available seismic profiles, complemented by receiver function interpretations of crustal thickness, are used to constrain a new comprehensive crustal model NCcrust. The model, presented on a 0.25° × 0.25°grid, includes the Moho depth and the internal structure (thickness and velocity) of the crust specified for four layers (the sedimentary cover, upper, middle, and lower crust) and the Pn velocity in the uppermost mantle. The crust is thin (30-32 km) in the east, while the Moho depth in the western part of the NCC is 38-44 km. The Moho depth of the Sulu-Dabie-Qinling-Qilian orogenic belt ranges from 31 km to 51 km, with a general westward increase in crustal thickness. The sedimentary cover is 2-5 km thick in most of the region, and typical thicknesses of the upper crust, middle crust, and lower crust are 16-24 km, 6-24 km, and 0-6 km, respectively. We document a general trend of westward increase in the thickness of all crustal layers of the crystalline basement and as a consequence, the depth of the Moho. There is no systematic regional pattern in the average crustal Vp velocity and the Pn velocity. We examine correlation between the Moho depth and topography for seven tectonic provinces in the North China Craton and speculate on mechanisms of isostatic compensation.

  7. Shallow lunar structure determined from the passive seismic experiment

    International Nuclear Information System (INIS)

    Nakamura, Y.; Dorman, J.; Duennebier, F.; Lammlein, D.; Latham, G.

    1975-01-01

    Data relevant to the shallow structure of the Moon obtained at the Apollo seismic stations are compared with previously published results of the active seismic experiments. It is concluded that the lunar surface is covered by a layer of low seismic velocity (Vsub(p) approximately equal to 100 ms -1 ), which appears to be equivalent to the lunar regolith defined previously by geological observations. This layer is underlain by a zone of distinctly higher seismic velocity at all of the Apollo landing sites. The regolith thicknesses at the Apollo 11, 12, and 15 sites are estimated from the shear-wave resonance to be 4.4, 3.7, and 4.4m, respectively. These thicknesses and those determined at the other Apollo sites by the active seismic experiments appear to be correlated with the age determinations and the abundances of extra-lunar components at the sites. (Auth.)

  8. Asteroid (16) Psyche: Evidence for a silicate regolith from spitzer space telescope spectroscopy

    Science.gov (United States)

    Landsman, Zoe A.; Emery, Joshua P.; Campins, Humberto; Hanuš, Josef; Lim, Lucy F.; Cruikshank, Dale P.

    2018-04-01

    Asteroid (16) Psyche is a unique, metal-rich object belonging to the "M" taxonomic class. It may be a remnant protoplanet that has been stripped of most silicates by a hit-and-run collision. Because Psyche offers insight into the planetary formation process, it is the target of NASA's Psyche mission, set to launch in 2023. In order to constrain Psyche's surface properties, we have carried out a mid-infrared (5-14 μm) spectroscopic study using data collected with the Spitzer Space Telescope's Infrared Spectrograph. Our study includes two observations covering different rotational phases. Using thermophysical modeling, we find that Psyche's surface is smooth and likely has a thermal inertia Γ = 5-25 J/m2/K/s1/2 and bolometric emissivity ɛ = 0.9, although a scenario with ɛ = 0.7 and thermal inertia up to 95 J/m2/K/s1/2 is possible if Psyche is somewhat larger than previously determined. The smooth surface is consistent with the presence of a metallic bedrock, which would be more ductile than silicate bedrock, and thus may not readily form boulders upon impact events. From comparisons with laboratory spectra of silicate and meteorite powders, Psyche's 7-14 μm emissivity spectrum is consistent with the presence of fine-grained (Psyche's surface. We conclude that Psyche is likely covered in a fine silicate regolith, which may also contain iron grains, overlying an iron-rich bedrock.

  9. Microstructure and Texture in Surface Deformation Layer of Al-Zn-Mg-Cu Alloy Processed by Milling

    Directory of Open Access Journals (Sweden)

    CHEN Yanxia

    2017-12-01

    Full Text Available The microstructural and crystallographic features of the surface deformation layer in Al-Zn-Mg-Cu alloy induced by milling were investigated by means of transmission electron microscopy (TEM and precession electron diffraction (PED assisted nanoscale orientation mapping. The result shows that the surface deformation layer is composed by the top surface of equiaxed nanograins/ultrafine grains and the subsurface of lamellar nanograins/ultrafine grains surrounded by coarse grain boundary precipitates (GBPs. The recrystallized nanograins/ultrafine grains in the deformation layer show direct evidence that dynamic recrystallization plays an important role in grain refining process. The GBPs and grain interior precipitates (GIPs show a great difference in size and density with the matrix due to the thermally and mechanically induced precipitate redistribution. The crystallographic texture of the surface deformation layer is proved to be a mixture of approximate copper{112}, rotated cube{001} and F {111}. The severe shear deformation of the surface induced by milling is responsible for the texture evolution.

  10. University of Central Florida / Deep Space Industries Asteroid Regolith Simulants

    Science.gov (United States)

    Britt, Daniel; Covey, Steven D.; Schultz, Cody

    2017-10-01

    Introduction: The University of Central Florida (UCF), in partnership with Deep Space Industries (DSI) are working under a NASA Phase 2 SBIR contract to develop and produce a family of asteroid regolith simulants for use in research, engineering, and mission operations testing. We base simulant formulas on the mineralogy, particle size, and physical characteristics of CI, CR, CM, C2, CV, and L-Chondrite meteorites. The advantage in simulating meteorites is that the vast majority of meteoritic materials are common rock forming minerals that are available in commercial quantities. While formulas are guided by the meteorites our approach is one of constrained maximization under the limitations of safety, cost, source materials, and ease of handling. In all cases our goal is to deliver a safe, high fidelity analog at moderate cost.Source Materials, Safety, and Biohazards: A critical factor in any useful simulant is to minimize handling risks for biohazards or toxicity. All the terrestrial materials proposed for these simulants were reviewed for potential toxicity. Of particular interest is the organic component of volatile rich carbonaceous chondrites which contain polycyclic aromatic hydrocarbons (PAHs), some of which are known carcinogens and mutagens. Our research suggests that we can maintain rough chemical fidelity by substituting much safer sub-bituminous coal as our organic analog. A second safety consideration is the choice of serpentine group materials. While most serpentine polymorphs are quite safe we avoid fibrous chrysotile because of its asbestos content. Terrestrial materials identified as inputs for our simulants are common rock forming minerals that are available in commercial quantities. These include olivine, pyroxene, plagioclase feldspar, smectite, serpentine, saponite, pyrite, and magnetite in amounts that are appropriate for each type. For CI's and CR’s, their olivines tend to be Fo100 which is rare on Earth. We have substituted Fo90 olivine

  11. El enfoque de la mezcla surround en la música

    OpenAIRE

    Castro Gómez, Albert

    2010-01-01

    El método estandarizado de escuchar música es el conocido sistema estéreo. Únicamente con dos altavoces o dos auriculares se escucha cualquier tipo de sonido de la manera más cómoda, usándolo en la mayoría de reproductores, ordenadores, coches, etc… pero hay otras formas de escuchar música. Nuevas técnicas de sonido que amplían la respuesta auditiva. Este nuevo sonido se conoce como sonido envolvente, internacionalmente llamado sonido surround. El sonido surround trabaja con más canales audit...

  12. The REgolith X-Ray Imaging Spectrometer (REXIS) for OSIRIS-REx: identifying regional elemental enrichment on asteroids

    Science.gov (United States)

    Allen, Branden; Grindlay, Jonathan; Hong, Jaesub; Binzel, Richard P.; Masterson, Rebecca; Inamdar, Niraj K.; Chodas, Mark; Smith, Matthew W.; Bautz, Marshall W.; Kissel, Steven E.; Villasenor, Joel; Oprescu, Miruna; Induni, Nicholas

    2013-09-01

    The OSIRIS-REx Mission was selected under the NASA New Frontiers program and is scheduled for launch in September of 2016 for a rendezvous with, and collection of a sample from the surface of asteroid Bennu in 2019. 101955 Bennu (previously 1999 RQ36) is an Apollo (near-Earth) asteroid originally discovered by the LINEAR project in 1999 which has since been classified as a potentially hazardous near-Earth object. The REgolith X-Ray Imaging Spectrometer (REXIS) was proposed jointly by MIT and Harvard and was subsequently accepted as a student led instrument for the determination of the elemental composition of the asteroid's surface as well as the surface distribution of select elements through solar induced X-ray fluorescence. REXIS consists of a detector plane that contains 4 X-ray CCDs integrated into a wide field coded aperture telescope with a focal length of 20 em for the detection of regions with enhanced abundance in key elements at 50 m scales. Elemental surface distributions of approximately 50-200 m scales can be detected using the instrument as a simple collimator. An overview of the observation strategy of the REXIS instrument and expected performance are presented here.

  13. Regolith X-Ray Imaging Spectrometer (REXIS) Aboard the OSIRIS-REx Asteroid Sample Return Mission

    Science.gov (United States)

    Masterson, R. A.; Chodas, M.; Bayley, L.; Allen, B.; Hong, J.; Biswas, P.; McMenamin, C.; Stout, K.; Bokhour, E.; Bralower, H.; Carte, D.; Chen, S.; Jones, M.; Kissel, S.; Schmidt, F.; Smith, M.; Sondecker, G.; Lim, L. F.; Lauretta, D. S.; Grindlay, J. E.; Binzel, R. P.

    2018-02-01

    The Regolith X-ray Imaging Spectrometer (REXIS) is the student collaboration experiment proposed and built by an MIT-Harvard team, launched aboard NASA's OSIRIS-REx asteroid sample return mission. REXIS complements the scientific investigations of other OSIRIS-REx instruments by determining the relative abundances of key elements present on the asteroid's surface by measuring the X-ray fluorescence spectrum (stimulated by the natural solar X-ray flux) over the range of energies 0.5 to 7 keV. REXIS consists of two components: a main imaging spectrometer with a coded aperture mask and a separate solar X-ray monitor to account for the Sun's variability. In addition to element abundance ratios (relative to Si) pinpointing the asteroid's most likely meteorite association, REXIS also maps elemental abundance variability across the asteroid's surface using the asteroid's rotation as well as the spacecraft's orbital motion. Image reconstruction at the highest resolution is facilitated by the coded aperture mask. Through this operation, REXIS will be the first application of X-ray coded aperture imaging to planetary surface mapping, making this student-built instrument a pathfinder toward future planetary exploration. To date, 60 students at the undergraduate and graduate levels have been involved with the REXIS project, with the hands-on experience translating to a dozen Master's and Ph.D. theses and other student publications.

  14. Ultrastructural study of tissues surrounding replanted teeth and dental implants.

    Science.gov (United States)

    Shioya, Kazuhiro; Sawada, Takashi; Miake, Yasuo; Inoue, Sadayuki; Yanagisawa, Takaaki

    2009-03-01

    The aim of this study was to describe the ultrastructure of the dentogingival border at replanted teeth and implants. Wistar rats (8 weeks old) were divided into groups for replantation and implantation experiments. In the former, the upper right first molars were extracted and then immediately replanted. In the latter, pure titanium implants were used. All tissues were fixed, demineralized and embedded in epoxy resin for ultrastructural observations. One week after replantation, the junctional epithelium was lost, and the oral sulcular epithelium covered the enamel surface. The amount of the epithelium increased in 2 weeks, and resembled the junctional epithelium, and the internal basal lamina and hemidesmosomes were formed in 4 weeks. One week after implantation, peri-implant epithelium was formed, and in 2 and 4 weeks, this epithelium with aggregated connective tissue cells were observed. In 8 weeks, the peri-implant epithelium receded, and aligned special cells with surrounding elongated fibroblasts and bundles of collagen fibers appeared to seal the implant interface. In replantation of the tooth, the internal basal lamina remained at the surface of the enamel of the replanted tooth, which is likely to be related to regeneration of the junctional epithelium and the attachment apparatus at the epithelium-tooth interface. Following implantation, a layer of cells with characteristics of connective tissue cells, but no junctional epithelium and attachment apparatus, was formed to seal the site of the implant.

  15. Study on the Optimal Equivalent Radius in Calculating the Heat Dissipation of Surrounding Rock

    Directory of Open Access Journals (Sweden)

    H. T. Song

    2015-11-01

    Full Text Available The heat dissipation of surrounding rock of a non-circular roadway is computed using an equivalent circular roadway approach under three circumstances when the area, perimeter, or hydraulic diameter of the circular roadway is equal to the non-circular roadway to obtain the optimal equivalent radius. The differential equations of heat conduction for unstable surrounding rock are established in cylindrical and rectangular coordinate systems using dimensionless analysis method. The calculation formulas of heat dissipation capacity and heat transfer resistance are derived from differential equations. Based on the method of equivalent radius, the similarities and differences between non-circular and circular roadways in calculating the heat dissipation of surrounding rock are discussed. Using the finite volume method, the calculation models for non-circular and circular roadways in the heat dissipation of surrounding rock are also established, among the non-circular roadways including three circumstances, namely, trapezoid, rectangle, and arch. The relation errors of heat dissipation of the surrounding rock of the three equivalent circular roadway methods are investigated for the three non-circular roadways. Results show that the calculation approach with equal perimeters is the best for the heat dissipation of surrounding rock of non-circular roadways.

  16. Analysis of the geomorphology surrounding the Chang'e-3 landing site

    Science.gov (United States)

    Li, Chun-Lai; Mu, Ling-Li; Zou, Xiao-Duan; Liu, Jian-Jun; Ren, Xin; Zeng, Xing-Guo; Yang, Yi-Man; Zhang, Zhou-Bin; Liu, Yu-Xuan; Zuo, Wei; Li, Han

    2014-12-01

    Chang'e-3 (CE-3) landed on the Mare Imbrium basin in the east part of Sinus Iridum (19.51°W, 44.12°N), which was China's first soft landing on the Moon and it started collecting data on the lunar surface environment. To better understand the environment of this region, this paper utilizes the available high-resolution topography data, image data and geological data to carry out a detailed analysis and research on the area surrounding the landing site (Sinus Iridum and 45 km×70 km of the landing area) as well as on the topography, landform, geology and lunar dust of the area surrounding the landing site. A general topographic analysis of the surrounding area is based on a digital elevation model and digital elevation model data acquired by Chang'e-2 that have high resolution; the geology analysis is based on lunar geological data published by USGS; the study on topographic factors and distribution of craters and rocks in the surrounding area covering 4 km×4 km or even smaller is based on images from the CE-3 landing camera and images from the topographic camera; an analysis is done of the effect of the CE-3 engine plume on the lunar surface by comparing images before and after the landing using data from the landing camera. A comprehensive analysis of the results shows that the landing site and its surrounding area are identified as typical lunar mare with flat topography. They are suitable for maneuvers by the rover, and are rich in geological phenomena and scientific targets, making it an ideal site for exploration.

  17. Redox Reactions between Mn(II) and Hexagonal Birnessite Change Its Layer Symmetry.

    Science.gov (United States)

    Zhao, Huaiyan; Zhu, Mengqiang; Li, Wei; Elzinga, Evert J; Villalobos, Mario; Liu, Fan; Zhang, Jing; Feng, Xionghan; Sparks, Donald L

    2016-02-16

    Birnessite, a phyllomanganate and the most common type of Mn oxide, affects the fate and transport of numerous contaminants and nutrients in nature. Birnessite exhibits hexagonal (HexLayBir) or orthogonal (OrthLayBir) layer symmetry. The two types of birnessite contain contrasting content of layer vacancies and Mn(III), and accordingly have different sorption and oxidation abilities. OrthLayBir can transform to HexLayBir, but it is still vaguely understood if and how the reverse transformation occurs. Here, we show that HexLayBir (e.g., δ-MnO2 and acid birnessite) transforms to OrthLayBir after reaction with aqueous Mn(II) at low Mn(II)/Mn (in HexLayBir) molar ratios (5-24%) and pH ≥ 8. The transformation is promoted by higher pH values, as well as smaller particle size, and/or greater stacking disorder of HexLayBir. The transformation is ascribed to Mn(III) formation via the comproportionation reaction between Mn(II) adsorbed on vacant sites and the surrounding layer Mn(IV), and the subsequent migration of the Mn(III) into the vacancies with an ordered distribution in the birnessite layers. This study indicates that aqueous Mn(II) and pH are critical environmental factors controlling birnessite layer structure and reactivity in the environment.

  18. Electric double layer and electrokinetic potential of pectic macromolecules in sugar beet

    Directory of Open Access Journals (Sweden)

    Kuljanin Tatjana A.

    2008-01-01

    Full Text Available Electrokinetic potential is an important property of colloidal particles and, regarding the fact that it is a well defined and easily measurable property, it is considered to be a permanent characteristic of a particular colloidal system. In fact, it is a measure of electrokinetic charge that surrounds the colloidal particle in a solution and is in direct proportion with the mobility of particles in an electric field. Gouy-Chapman-Stern-Graham's model of electric double layer was adopted and it was proven experimentally that the addition of Cu++ ions to sugar beet pectin caused a reduction in the negative electrokinetic potential proportional to the increase of Cu++ concentration. Higher Cu++ concentrations increased the proportion of cation specific adsorption (Cu++ and H+ with regard to electrostatic Coulombic forces. Consequently, there is a shift in the shear plane between the fixed and diffuse layers directed towards the diffuse layer, i.e. towards its compression and decrease in the electrokinetic potential or even charge inversion of pectin macromolecules.

  19. Organic-Inorganic Hybrid Interfacial Layer for High-Performance Planar Perovskite Solar Cells.

    Science.gov (United States)

    Yang, Hao; Cong, Shan; Lou, Yanhui; Han, Liang; Zhao, Jie; Sun, Yinghui; Zou, Guifu

    2017-09-20

    4,7-Diphenyl-1,10-phenanthroline (Bphen) is an efficient electron transport and hole blocking material in organic photoelectric devices. Here, we report cesium carbonate (Cs 2 CO 3 ) doped Bphen as cathode interfacial layer in CH 3 NH 3 PbI 3-x Cl x based planar perovskite solar cells (PSCs). Investigation finds that introducing Cs 2 CO 3 suppresses the crystallization of Bphen and benefits a smooth interface contact between the perovskite and electrode, resulting in the decrease in carrier recombination and the perovskite degradation. In addition, the matching energy level of Bphen film in the PSCs effectively blocks the holes diffusion to cathode. The resultant power conversion efficiency (PCE) achieves as high as 17.03% in comparison with 12.67% of reference device without doping. Besides, experiments also demonstrate the stability of PSCs have large improvement because the suppressed crystallization of Bphen by doping Cs 2 CO 3 as a superior barrier layer blocks the Ag atom and surrounding moisture access to the vulnerable perovskite layer.

  20. Enhanced ionic conductivity in composite materials due to interfacial space charge layers

    International Nuclear Information System (INIS)

    Dudney, N.J.

    1985-01-01

    The ionic conductivity of a number of salts (e.g., β-AgI, LiI, CuCl, HgI 2 , etc.) can be enhanced by one to three orders of magnitude with the addition of fine particles of an insoluble and nonconducting material such as Al 2 O 3 or SiO 2 . Typically the conductivity increases with addition of the inert particles and reaches a peak at 10-40 vol % of the particles. The mechanism responsible for the enhanced conductivity of the composite is not understood at this time. Some claim that this effect is due to an increased concentration of charge carriers in a diffuse space charge layer near the charged surface of the particle. The goal of the present study is to test this proposed mechanism by calculating the maximum space charge layer effect and then using this result to estimate the conductivity of a composite with a random distribution of Al 2 O 3 particles. Also, the conductivity of composite systems has been investigated assuming an ordered distribution of particles which are surrounded by a high conductivity layer

  1. Ultrastructural relationship of the phagophore with surrounding organelles.

    Science.gov (United States)

    Biazik, Joanna; Ylä-Anttila, Päivi; Vihinen, Helena; Jokitalo, Eija; Eskelinen, Eeva-Liisa

    2015-01-01

    Phagophore nucleates from a subdomain of the endoplasmic reticulum (ER) termed the omegasome and also makes contact with other organelles such as mitochondria, Golgi complex, plasma membrane and recycling endosomes during its formation. We have used serial block face scanning electron microscopy (SB-EM) and electron tomography (ET) to image phagophore biogenesis in 3 dimensions and to determine the relationship between the phagophore and surrounding organelles at high resolution. ET was performed to confirm whether membrane contact sites (MCSs) are evident between the phagophore and those surrounding organelles. In addition to the known contacts with the ER, we identified MCSs between the phagophore and membranes from putative ER exit sites, late endosomes or lysosomes, the Golgi complex and mitochondria. We also show that one phagophore can have simultaneous MCSs with more than one organelle. Future membrane flux experiments are needed to determine whether membrane contacts also signify lipid translocation.

  2. Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE): Lunar Advanced Volatile Analysis (LAVA) Capillary Fluid Dynamic Restriction Effects on Gas Chromatography

    Science.gov (United States)

    Gonzalez, Marianne; Quinn, Jacqueline; Captain, Janine; Santiago-Bond, Josephine; Starr, Stanley

    2015-01-01

    The Resource Prospector (RP) mission with the Regolith and Environment Science and Oxygen Lunar Volatile Extraction (RESOLVE) payload aims to show the presence of water in lunar regolith, and establish a proving ground for NASAs mission to Mars. One of the analysis is performed by the Lunar Advanced Volatiles Analysis (LAVA) subsystem, which consists of a fluid network that facilitates the transport of volatile samples to a gas chromatograph and mass spectrometer (GC-MS) instrument. The understanding of fluid dynamics directed from the GC to the MS is important due to the influence of flow rates and pressures that affect the accuracy of and prevent the damage to the overall GC-MS instrument. The micro-scale capillary fluid network within the GC alone has various lengths and inner-diameters; therefore, determination of pressure differentials and flow rates are difficult to model computationally, with additional complexity from the vacuum conditions in space and lack of a lunar atmosphere. A series of tests were performed on an experimental set-up of the system where the inner diameters of the GC transfer line connecting to the MS were varied. The effect on chromatography readings were also studied by applying these lines onto a GC instrument. It was found that a smaller inner diameter transfer line resulted in a lower flow rate, as well as a lower pressure differential across the thermal conductivity detector (TCD) unit of the GC and a negligible pressure drop across the mock-up capillary column. The chromatography was affected with longer retention times and broader peak integrations. It was concluded that a 0.050 mm inner diameter line still proved most suitable for the systems flow rate preferences. In addition, it was evident that this small transfer line portrayed some expense to GC signal characteristics and the wait time for steady-state operation.

  3. A helical magnetic limiter for boundary layer control in large tokamaks

    International Nuclear Information System (INIS)

    Feneberg, W.; Wolf, G.H.

    1981-01-01

    In a tokamak configuration, superposition of the magnetic field of resonant helical windings which surround the toroidal plasma current outside the first wall destroys the magnetic surfaces in the boundary layer (ergodization). A transport model is analysed, where convective flow of the plasma from the boundary layer to the first wall permits elevated particle densities in the boundary layer and leads to very high particle and energy transport. The convective flow is driven by the pressure gradient along the field lines which intersect the toroidal wall at an oblique small angle epsilon. The required thickness Δ of the boundary layer is around 10 15 n -1 .cm -2 . As a result, the plasma temperature there can be reduced towards the threshold of critical plasma-wall-interaction processes, the plasma core can be shielded against impurities from the wall and, at the same time, a very short life-time of all particles in the boundary layer can be achieved (use of pumpholes and/or scrape-off-limiters for removing ash). Thus, this model also improves the concepts of edge radiation cooling. An estimate is given of the parameters of INTOR using only a weak helical perturbation field which conserves the magnetic surfaces in the plasma core: one can reach wall temperatures Tsub(w) between 20 and 30 eV in the presence of wall densities nsub(w) approaching 10 14 cm -3 . (author)

  4. A two-layered forward model of tissue for electrical impedance tomography

    International Nuclear Information System (INIS)

    Kulkarni, Rujuta; Saulnier, Gary J; Kao, Tzu-Jen; Newell, Jonathan C; Boverman, Gregory; Isaacson, David

    2009-01-01

    Electrical impedance tomography is being explored as a technique to detect breast cancer, exploiting the differences in admittivity between normal tissue and tumors. In this paper, the geometry is modeled as an infinite half space under a hand-held probe. A forward solution and a reconstruction algorithm for this geometry were developed previously by Mueller et al (1999 IEEE Trans. Biomed. Eng. 46 1379). In this paper, we present a different approach which uses the decomposition of the forward solution into its Fourier components to obtain the forward solution and the reconstructions. The two approaches are compared in terms of the forward solutions and the reconstructions of experimental tank data. We also introduce a two-layered model to incorporate the presence of the skin that surrounds the body area being imaged. We demonstrate an improvement in the reconstruction of a target in a layered medium using this layered model with finite difference simulated data. We then extend the application of our layered model to human subject data and estimate the skin and the tissue admittivities for data collected on the human abdomen using an ultrasound-like hand-held EIT probe. Lastly, we show that for this set of human subject data, the layered model yields an improvement in predicting the measured voltages of around 81% for the lowest temporal frequency (3 kHz) and around 61% for the highest temporal frequency (1 MHz) applied when compared to the homogeneous model

  5. An experimental investigation of transient heat transfer in surrounding rock mass of high geothermal roadway

    Directory of Open Access Journals (Sweden)

    Zhang Yuan

    2016-01-01

    Full Text Available A self-designed experimental installation for transient heat transfer in the modelling surrounding rock mass of high geothermal roadways was elaborated in this paper. By utilizing the new installation, the temperature variation rules in surrounding rock mass of the high geothermal roadway during mechanical ventilation were studied. The results show that the roadway wall temperature decreases dramatically at the early stage of ventilation, and the temperature at every position of the surrounding rock mass is decreasing constantly with time passing by. From roadway wall to deep area, the temperature gradually increases until reaching original rock temperature. The relationship between dimensionless temperature and dimensionless radius demonstrates approximately exponential function. Meanwhile, the temperature disturbance range in the simulated surrounding rock mass extends gradually from the roadway wall to deep area in the surrounding rock mass. Besides, as the air velocity increases, heat loss in the surrounding rock mass rises and the ratio of temperature reduction becomes larger, the speed of disturbance range expansion also gets faster.

  6. Fission gas behaviour and interdiffusion layer growth in in-pile and out-of-pile irradiated U-Mo/Al nuclear fuels

    International Nuclear Information System (INIS)

    Zweifel, Tobias

    2014-01-01

    Worldwide, research and test reactors are to convert their fuel from highly towards lower enriched uranium, among them the FRM II. One prospective fuel is an alloy of uranium and molybdenum (abbr. U-Mo). Test irradiations showed an insufficient irradiation behavior of this new fuel due to the growth of an interdiffusion layer (abbr. IDL) between the U-Mo fuel and the surrounding Al matrix. Furthermore, this layer accumulates fission gases. In this work, heavy ion irradiated U-Mo/Al layer systems were studied and compared to in-reactor irradiated fuel to study the fission gas dynamics. It is demonstrated that the gas behavior is identical for both in-reactor and out-of-reactor approaches.

  7. Linking disadvantaged housing areas to the surrounding city

    DEFF Research Database (Denmark)

    Stender, Marie

    Several disadvantaged social housing areas in Denmark are currently undergo-ing thorough physical refurbishments, aiming to integrate them better with the surrounding city. The ambition is to attract new users and residents by opening up the borders of the area and establish attractive, new...

  8. A double-layer based model of ion confinement in electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, D., E-mail: davidmascali@lns.infn.it; Neri, L.; Celona, L.; Castro, G.; Gammino, S.; Ciavola, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Torrisi, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile, Via Graziella, I-89100 Reggio Calabria (Italy); Sorbello, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica, Viale Andrea Doria 6, 95125 Catania (Italy)

    2014-02-15

    The paper proposes a new model of ion confinement in ECRIS, which can be easily generalized to any magnetic configuration characterized by closed magnetic surfaces. Traditionally, ion confinement in B-min configurations is ascribed to a negative potential dip due to superhot electrons, adiabatically confined by the magneto-static field. However, kinetic simulations including RF heating affected by cavity modes structures indicate that high energy electrons populate just a thin slab overlapping the ECR layer, while their density drops down of more than one order of magnitude outside. Ions, instead, diffuse across the electron layer due to their high collisionality. This is the proper physical condition to establish a double-layer (DL) configuration which self-consistently originates a potential barrier; this “barrier” confines the ions inside the plasma core surrounded by the ECR surface. The paper will describe a simplified ion confinement model based on plasma density non-homogeneity and DL formation.

  9. Resistivity profiling for mapping gravel layers that may control contaminant migration at the Amargosa Desert Research Site, Nevada

    Science.gov (United States)

    Lucius, Jeffrey E.; Abraham, Jared D.; Burton, Bethany L.

    2008-01-01

    Gaseous contaminants, including CFC 113, chloroform, and tritiated compounds, move preferentially in unsaturated subsurface gravel layers away from disposal trenches at a closed low-level radioactive waste-disposal facility in the Amargosa Desert about 17 kilometers south of Beatty, Nevada. Two distinct gravel layers are involved in contaminant transport: a thin, shallow layer between about 0.5 and 2.2 meters below the surface and a layer of variable thickness between about 15 and 30 meters below land surface. From 2003 to 2005, the U.S. Geological Survey used multielectrode DC and AC resistivity surveys to map these gravel layers. Previous core sampling indicates the fine-grained sediments generally have higher water content than the gravel layers or the sediments near the surface. The relatively higher electrical resistivity of the dry gravel layers, compared to that of the surrounding finer sediments, makes the gravel readily mappable using electrical resistivity profiling. The upper gravel layer is not easily distinguished from the very dry, fine-grained deposits at the surface. Two-dimensional resistivity models, however, clearly identify the resistive lower gravel layer, which is continuous near the facility except to the southeast. Multielectrode resistivity surveys provide a practical noninvasive method to image hydrogeologic features in the arid environment of the Amargosa Desert.

  10. Ultimate capacity of piles penetrating in weak soil layers

    Directory of Open Access Journals (Sweden)

    Al-Obaidi Ahmed

    2018-01-01

    Full Text Available A pile foundation is one of the most popular forms of deep foundations. They are routinely employed to transfer axial structure loads through the soft soil to stronger bearing strata. Piles generally used to increase the load carrying capacity of the foundation and reduce the settlement of the foundation. On the other hand, many cases in practice where piles pass through different layers of soil that contain weak layers located at different depths and extension, also some time cavities with a different shape, size, and depth are found. In this study, a total of 96 cases is considered and simulated in PLAXIS 2D program aiming to understand the influence of weak soil on the ultimate pile capacity. The piles embedded in the dense sand with a layer of weak soil at different extension and location. The cross section of the geometry used in this study was designed as an axisymmetric model with the 15-node element; the boundary condition recommended at least 5D in the horizontal direction, and (L+5D in the vertical direction where D and L are the diameter and length of pile, respectively. The soil is modeled as Mohr-Coulomb, with five input parameters and the behavior of pile material represented by the linear elastic model. The results of the above cases are compared with the results found in a pile embedded in dense soil without weak layers or cavities. The results indicated that the existence of weak soil layer within the surrounding soil around the pile decreases the ultimate capacity. Furthermore, it has been found that increase in the weak soil width (extension leads to reduction in the ultimate capacity of the pile. This phenomenon is applicable to all depth of weak soil. The influence of weak layer extension on the ultimate capacity is less when it is presentin the upper soil layers.

  11. On non-linear magnetic-charged black hole surrounded by quintessence

    Science.gov (United States)

    Nam, Cao H.

    2018-06-01

    We derive a non-linear magnetic-charged black hole surrounded by quintessence, which behaves asymptotically like the Schwarzschild black hole surrounded by quintessence but at the short distances like the dS geometry. The horizon properties of this black hole are investigated in detail. The thermodynamics of the black hole is studied in the local and global views. Finally, by calculating the heat capacity and the free energy, we point to that the black hole may undergo a thermal phase transition, between a larger unstable black hole and a smaller stable black hole, at a critical temperature.

  12. Crust Structure Data of Seas Surrounding Turkey

    International Nuclear Information System (INIS)

    Maden, N.; Gelisli, K.

    2007-01-01

    Black Sea, Aegean, Mediterranean and Marmara Sea, which surround the Turkey, have not been examined with respect to the Geological, Geophysical and other natural sciences sufficiently. In fact, it is not attach importance the Turkish seas adequately and abandoned with respect to the scientific researches. The most important reason of this situation is the lack of the education of the Marine Sciences in the Turkish Universities. In this study, it is tried to construct a crustal structure data base of the surrounding seas of the Turkey by collecting crustal structure data sets done by different authors in different times so far. The data acquired in the base are collected from different data base sources by dragging. The Moho depth in the eastern and western basin of the Black sea is 22 km and 19 km, respectively. In the Marmara Sea the Moho depth is 24 km. The moho value in the southern Aegean is 20 km, in the northern Aegean the moho depth is 30 km. on the other hand, the moho depth value in the eastern and western basin of the Mediterranean Sea are 15-20 km and 25-30 km, respectively

  13. Enhancing area surrounding breast carcinoma on MR mammography: comparison with pathological examination

    International Nuclear Information System (INIS)

    Goethem, M. van; Verslegers, I.; Biltjes, I.; Schepper, A. de; Schelfout, K.; Colpaert, C.; Kersschot, E.; Tjalma, W.A.; Weyler, J.

    2004-01-01

    The enhancing area surrounding breast carcinoma on MR mammography is correlated with findings from pathological examination. We studied 194 patients with breast cancer who underwent preoperative MR mammography. Of all malignant lesions presenting with an enhancing surrounding area on MR mammography, morphologic features including long spicules, a ductal pattern, diffuse enhancement or nodules were evaluated and compared with histopathological examination. A double breast coil was used; we performed a 3D FLASH sequence with contiguous coronal slices of 2 mm, before and after injection of 0.2 mmol/kg GD-DTPA, and subtraction images were obtained. In total, 297 malignant lesions were detected at MR mammography and 101 of them had one or more types of enhancing surrounding area. In 49 of the 53 cancers with long spicules and in 49 of the 55 cancers with surrounding ductal pattern of enhancement, pathological examination showed in situ and/or invasive carcinoma. Multiple nodules adjacent to the carcinoma were seen in 20 patients and corresponded with six cases of invasive and ten cases of ductal in situ carcinoma. A diffuse enhancing area next to a mass was seen in ten patients and consisted of carcinoma in all cases: seven in situ and three invasive carcinomas. Enhancing areas including long spicules, a ductal pattern, noduli, or diffuse enhancement surrounding a carcinoma corresponded with in situ or invasive extension of the carcinoma in 92.5, 89, 80 and 100% of cases, respectively. (orig.)

  14. Effectively Communicating the Uncertainties Surrounding Ebola Virus Transmission.

    Directory of Open Access Journals (Sweden)

    Andy Kilianski

    2015-10-01

    Full Text Available The current Ebola virus outbreak has highlighted the uncertainties surrounding many aspects of Ebola virus virology, including routes of transmission. The scientific community played a leading role during the outbreak-potentially, the largest of its kind-as many of the questions surrounding ebolaviruses have only been interrogated in the laboratory. Scientists provided an invaluable resource for clinicians, public health officials, policy makers, and the lay public in understanding the progress of Ebola virus disease and the continuing outbreak. Not all of the scientific communication, however, was accurate or effective. There were multiple instances of published articles during the height of the outbreak containing potentially misleading scientific language that spurred media overreaction and potentially jeopardized preparedness and policy decisions at critical points. Here, we use articles declaring the potential for airborne transmission of Ebola virus as a case study in the inaccurate reporting of basic science, and we provide recommendations for improving the communication about unknown aspects of disease during public health crises.

  15. Effectively Communicating the Uncertainties Surrounding Ebola Virus Transmission.

    Science.gov (United States)

    Kilianski, Andy; Evans, Nicholas G

    2015-10-01

    The current Ebola virus outbreak has highlighted the uncertainties surrounding many aspects of Ebola virus virology, including routes of transmission. The scientific community played a leading role during the outbreak-potentially, the largest of its kind-as many of the questions surrounding ebolaviruses have only been interrogated in the laboratory. Scientists provided an invaluable resource for clinicians, public health officials, policy makers, and the lay public in understanding the progress of Ebola virus disease and the continuing outbreak. Not all of the scientific communication, however, was accurate or effective. There were multiple instances of published articles during the height of the outbreak containing potentially misleading scientific language that spurred media overreaction and potentially jeopardized preparedness and policy decisions at critical points. Here, we use articles declaring the potential for airborne transmission of Ebola virus as a case study in the inaccurate reporting of basic science, and we provide recommendations for improving the communication about unknown aspects of disease during public health crises.

  16. Time resolved measurements of plasma potential across an anode double layer

    International Nuclear Information System (INIS)

    Pohoata, V.; Popa, Gh.; Schrittwieser, R.; Ionita, Codrina

    2002-01-01

    Experimental results are presented on self-sustained oscillations produced by the dynamics of an anode double layer or fireball in a DP-machine. By additional ionisation processes the fireball is formed in front of an additional small plane anode inserted in the diffusive plasma. An annular (ring) electrode surrounds the anode. The thickness of the ion sheath in front of this ring affects the anode current by controlling its effective diameter during the fireball oscillations. The ring potential controls first the oscillation frequency of the anode current, but also other characteristics of the instability. The ring potential was chosen as a pulsed one so that only single anode double layer instability can be excited. The ring signal was used for triggering the data acquisition system. The spatial distribution of the plasma potential in front of the anode is presented as a time resolved measurement one. A negative drop potential was found that controls the charge flux particle across the double layer. Also the plasma density inside the fireball relaxes during the disrupting time controlled by ambipolar diffusion and also by the negative potential drop. (authors)

  17. Effects of Rocket Exhaust on Lunar Soil Reflectance Properties

    Science.gov (United States)

    Clegg, R. N.; Jolliff, B. L.; Robinson, M. S.; Hapke, B. W.; Plescia, J. B.

    2012-12-01

    The Apollo, Surveyor, and Luna spacecraft descent engine plumes affected the regolith at and surrounding their landing sites. Owing to the lack of rapid weathering processes on the Moon, surface alterations are still visible as photometric anomalies in Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) images. These areas are interpreted as disturbance of the regolith by rocket exhaust during descent of the spacecraft, which we refer to as "blast zones" (BZs). The BZs consist of an area of lower reflectance (LR-BZ) compared to the surroundings that extends up to a few meters out from the landers, as well as a broader halo of higher reflectance (HR-BZ) that extends tens to hundreds of meters out from the landers. We use phase-ratio images for each landing site to determine the spatial extent of the disturbed regions and to quantify differences in reflectance and backscattering characteristics within the BZs compared to nearby undisturbed regolith. We also compare the reflectance changes and BZ dimensions at the Apollo sites with those at Luna and Surveyor sites. We seek to determine the effects of rocket exhaust in terms of erosion and particle redistribution, as well as the cause(s) of the reflectance variations, i.e., physical changes at the regolith surface. When approximated as an ellipse, the average Apollo BZ area is ~29,000 m2 (~175 ± 60 m by 200 ± 27 m) which is 10x larger than the average Luna BZ, and over 100x larger than the average Surveyor BZ. Moreover, BZ area scales roughly with lander mass (as a proxy for thrust). The LR-BZs are evident at the Apollo sites, especially where astronaut bioturbation has roughened the soil, leading to a 2-14% reduction in reflectance at ~30° phase. The LR-BZs at the Luna and Surveyor sites are less evident and may be mostly confined to the area below the landers. The average normalized reflectance in the HR-BZs for images with a 30° phase angle is 2-16% higher than in the undisturbed surrounding

  18. Opportunity's Surroundings on Sol 1687

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this 360-degree view of the rover's surroundings on the 1,687th Martian day, or sol, of its surface mission (Oct. 22, 2008). Opportunity had driven 133 meters (436 feet) that sol, crossing sand ripples up to about 10 centimeters (4 inches) tall. The tracks visible in the foreground are in the east-northeast direction. Opportunity's position on Sol 1687 was about 300 meters southwest of Victoria Crater. The rover was beginning a long trek toward a much larger crater, Endeavour, about 12 kilometers (7 miles) to the southeast. This view is presented as a cylindrical projection with geometric seam correction.

  19. Opportunity's Surroundings on Sol 1798

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this 180-degree view of the rover's surroundings during the 1,798th Martian day, or sol, of Opportunity's surface mission (Feb. 13, 2009). North is on top. The rover had driven 111 meters (364 feet) southward on the preceding sol. Tracks from that drive recede northward in this view. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock. This view is presented as a cylindrical projection with geometric seam correction.

  20. The Preliminary Processing and Geological Interpretation of Lunar Penetrating Radar Channel-1 Data from Chang'E-3

    Science.gov (United States)

    Yuan, Y.; Zhu, P.; Zhao, N.; Guo, S.; Xiao, L.; Xiao, Z.

    2014-12-01

    This is the first time to obtain the subsurface profiles using the lunar penetrating radar (LPR) on the Moon surface. Two types of antennas, channel-1 and channel-2, with different resolutions were equipped on the LPR, which detected the lunar subsurface structure with low frequency and the thickness of regolith with high frequency, respectively. We focus on the study of the lunar subsurface structure using channel-1 data. Considering the propagation characteristics of radar wave, the processing of amplitude compensation and filtering are applied to improve the imaging quality, and the processed profile clearly represents deeper than 300 meters of layered information. Based on the geological background around landing site, we present the preliminary geological interpretation for the lunar subsurface structure. More than 5 obvious reflecting events should be concerned along the track of the Yutu rover, which infer different lava sequences, including the Eratosthenian basalts, paleo-regolith formed between Eratosthenian and Imbrium, and multistage infilled lavas formed inter-layers among the Imbrium basalts.

  1. Concentric layered Hermite scatterers

    Science.gov (United States)

    Astheimer, Jeffrey P.; Parker, Kevin J.

    2018-05-01

    The long wavelength limit of scattering from spheres has a rich history in optics, electromagnetics, and acoustics. Recently it was shown that a common integral kernel pertains to formulations of weak spherical scatterers in both acoustics and electromagnetic regimes. Furthermore, the relationship between backscattered amplitude and wavenumber k was shown to follow power laws higher than the Rayleigh scattering k2 power law, when the inhomogeneity had a material composition that conformed to a Gaussian weighted Hermite polynomial. Although this class of scatterers, called Hermite scatterers, are plausible, it may be simpler to manufacture scatterers with a core surrounded by one or more layers. In this case the inhomogeneous material property conforms to a piecewise continuous constant function. We demonstrate that the necessary and sufficient conditions for supra-Rayleigh scattering power laws in this case can be stated simply by considering moments of the inhomogeneous function and its spatial transform. This development opens an additional path for construction of, and use of scatterers with unique power law behavior.

  2. Surrounding information consideration promotes cooperation in Prisoner’s dilemma game

    International Nuclear Information System (INIS)

    Shu, Gang; Du, Xia; Li, Ya

    2016-01-01

    Highlights: • A new method of strategy updating is proposed in the Prisoner’s dilemma game. • The stochastic players only consider their neighbor’s payoff and update strategy by classical Fermi rule. • The advanced player would consider not only the neighbor’s payoff but also the neighbors’ local surrounding information. • The simulation result illustrates that with the increase of advanced players in the network, the fraction of cooperation increases. - Abstract: Evolutionary game theory provides a useful, integrative framework for studying the evolution of cooperation. A new strategy updating method is proposed in our model. Due to people with diversified thinking, players are divided into two categories based on their different strategy updating method: ordinary players and advanced players. The former players only consider their neighbor’s payoff and updating strategy by classical Fermi rule, while the latter players take both the neighbors’ surrounding information and payoff into account. The results show that the neighbors surrounding information consideration contributes to the evolution of cooperation and finds the fraction of cooperation grows evidently with the increase of advanced players numbers. Our model may provide a pragmatic approach to the research of cooperation in social network.

  3. Evidence for aeolian origins of heuweltjies from buried gravel layers

    Directory of Open Access Journals (Sweden)

    Michael D. Cramer

    2016-02-01

    Full Text Available Although heuweltjies (19–32 m diameter dominate the surface of much of the southwestern Cape of South Africa, their origins, distribution and age remain controversial. Current hypotheses are that the heuweltjies are (1 constructed by the excavation and mounding habits of burrowing animals; (2 the result of erosion by water of areas between patches protected from fluvial action by denser vegetation or (3 the product of localised aeolian sediment accumulation beneath denser vegetation associated with termitaria. At a site where quartz-containing gravels occur on the soil surface in areas between heuweltjies, these gravels were found to extend as a relatively intact layer of uniform concentration from the inter-mound area into the mound at the same plane as the surrounding soil surface. This buried layer suggests that heuweltjies were either built-up by deposition on a previous soil surface layer or eroded from sediment accumulated above the buried gravel layer. Mounds contain a relatively large proportion of silt consistent with sediment deposition. Mound sediment elemental composition was strongly correlated with that of local shale, indicating a local source of sediment. Pedogenesis was considerably more advanced off- than on-mound. There was no evidence of extensive regional aeolian sediment mantling over the vast area in which the heuweltjies occur. These findings and observations support the aeolian deposition hypothesis of heuweltjie origins combined with a degree of erosion, rather than a termite bioturbation hypothesis or a predominantly erosion-based hypothesis.

  4. Glow phenomenon surrounding the vertical stabilizer and OMS pods

    Science.gov (United States)

    1994-01-01

    This 35mm frame, photographed as the Space Shuttle Columbia was orbiting Earth during a 'night' pass, documents the glow phenomenon surrounding the vertical stabilizer and the Orbital Maneuvering System (OMS) pods of the spacecraft.

  5. Traditional Indian customs surrounding birth A review | Chalmers ...

    African Journals Online (AJOL)

    Since 1960, only a few studies have been made of traditional custOIns surrounding birth in Indian culture. Very few of these have described customs followed by Indians in South Africa. A review of these publications is presented here. Customs described include religious, social and psychological aspects of behaviour in ...

  6. Reduced visual surround suppression in schizophrenia shown by measuring contrast detection thresholds

    Directory of Open Access Journals (Sweden)

    Ignacio eSerrano-Pedraza

    2014-12-01

    Full Text Available Visual perception in schizophrenia is attracting a broad interest given the deep knowledge that we have about the visual system in healthy population. In visual science it is known that the visibility of a grating located in the visual periphery is impaired by the presence of a surrounding grating of the same spatial frequency and orientation. Previous studies have suggested abnormal visual surround suppression in patients with schizophrenia. Given that schizophrenia patients have cortical alterations including hypofunction of NMDA receptors and reduced concentration of GABA neurotransmitter, which affect lateral inhibitory connections, then they should perform better than controls in visual suppression tasks. We tested this hypothesis by measuring contrast detection thresholds using a new stimulus configuration. We tested two groups: 21 schizophrenia patients and 24 healthy subjects. Thresholds were obtained using Bayesian staircases in a 4AFC detection task where the target was a grating within a 3 deg Butterworth window that appeared in one of four possible positions at 5 deg eccentricity. We compared three conditions, a target with no surround (NS, b target on top of a surrounding grating of 20 deg diameter and 25% contrast with same spatial frequency and orthogonal orientation (OS, and c target on top of a surrounding grating with parallel (same orientation (PS. Our results show significantly lower thresholds for controls than for patients in NS and OS conditions. We also found significant lower suppression ratios PS/NS in patients. Our results support the hypothesis that inhibitory lateral connections in early visual cortex are impaired in schizophrenia patients.

  7. Analysis of borophosphosilicate glass layers on silicon wafers by X-ray emission from photon and electron excitation

    International Nuclear Information System (INIS)

    Elgersma, O.; Borstrok, J.J.M.

    1989-01-01

    Phosphorus and oxygen concentrations in the homogeneous layer of borosilicate glass (BPSG) deposited on Si-integrated circuits are determined by X-ray fluorescence from photon excitation. The X-ray emission from electron excitation in an open X-ray tube instrument yields a sufficiently precise determination of the boron content. The thickness of the layer can be derived from silicon Kα-fluorescence. A calibration model is proposed for photon as well as for electron excitation. The experimentally determined parameters in this model well agree with those derived from fundamental parameters for X-ray absorption and emission. The chemical surrounding of silicon affects strongly the peak profile of the silicon Kβ-emission. This enables to distinguish emission from the silicon atoms in the wafer and from the silicon atoms in the silicon oxide complexes of the BPSG-layer. (author)

  8. How A Black Hole Lights Up Its Surroundings

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    How do the supermassive black holes that live at the centers of galaxies influence their environments? New observations of a distant active galaxy offer clues about this interaction.Signs of CoevolutionPlot demonstrating the m-sigma relation, the empirical correlation between the stellar velocity dispersion of a galactic bulge and the mass of the supermassive black hole at its center. [Msigma]We know that the centers of active galaxies host supermassive black holes with masses of millions to billions of suns. One mystery surrounding these beasts is that they are observed to evolve simultaneously with their host galaxies for instance, an empirical relationship is seen between the growth of a black hole and the growth of its host galaxys bulge. This suggests that there must be a feedback mechanism through which the evolution of a black hole is linked to that of its host galaxy.One proposed source of this coupling is the powerful jets emitted from the poles of these supermassive black holes. These jets are thought to be produced as some of the material accreting onto the black hole is flung out, confined by surrounding gas and magnetic fields. Because the jets of hot gas and radiation extend outward through the host galaxy, they provide a means for the black hole to influence the gas and dust of its surroundings.In our current model of a radio-loud active galactic nuclei,a region of hot, ionized gas the narrow-line region lies beyond the sphere of influence of the supermassive black hole. [C.M. Urry and P. Padovani]Clues in the Narrow-Line RegionThe region of gas thought to sit just outside of the black holes sphere of influence (at a distance of perhaps a thousand to a few thousand light-years) is known as the narrow line region so named because we observe narrow emission lines from this gas. Given its hot, ionized state, this gas must somehow be being pummeled with energy. In the canonical picture, radiation from the black hole heats the gas directly in a process

  9. Monitoring of arched sched ground layer

    International Nuclear Information System (INIS)

    Listjak, M.; Slaninka, A.; Rau, L.; Pajersky, P.

    2015-01-01

    Arched Shed was a part of controlled area of NPP A1 site in Jaslovske Bohunice (Slovakia). It had been used for temporary storage of loose radioactive waste (RAW) which has been characterized within the BIDSF project C13, Characterisation of Loose Radioactive Waste'. Stored RAW has been treated and sorted within the project ',Realization of the 2 nd stage of Decommissioning Project of NPP A1'. Area of Arched Shed represents approximately 270 m 2 (45 m x 6 m). Ground layer of the AS consists mostly of soil with solid elements (stones and gravel). The aim of monitoring was to remove the contaminated soil up to 1 m below ground level. Requirement for detail monitoring of the Arched Shed ground layer resulted from conclusions of the BIDSF project C13 which has proved that massic activity 137 Cs of soil was up to few thousands Bq·kg -1 in underground layer. Dominant easy to measure radionuclide in the soil is 137 Cs which has been used as a key radionuclide for methodology of in-situ soil monitoring. Following methods has been applied during characterization: dose rate survey, sampling from defined ground layer followed by laboratory gamma spectrometry analysis by the accredited testing laboratory of radiation dosimetry VUJE (S-219) and in-situ scintillation gamma spectrometry by 1.5''x1.5'' LaBr detector. Massic activity of the remaining soil (not excavated) comply the criteria for free release into the environment (Government Regulation of Slovak Republic 345/2006 Coll.). Area was filled up by non-contaminated soil up to the ground level of surroundings. Afterward the area was covered with geotextile and concrete panels and nowadays it is ready for further usage within the NPP A1 decommissioning project as a place for treatment, conditioning and disposal of contaminated soil and concrete. (authors)

  10. Surface plasmon resonance based fiber optic pH sensor utilizing Ag/ITO/Al/hydrogel layers.

    Science.gov (United States)

    Mishra, Satyendra K; Gupta, Banshi D

    2013-05-07

    The fabrication and characterization of a surface plasmon resonance based pH sensor using coatings of silver, ITO (In2O3:SnO2), aluminium and smart hydrogel layers over an unclad core of an optical fiber have been reported. The silver, aluminium and ITO layers were coated using a thermal evaporation technique, while the hydrogel layer was prepared using a dip-coating method. The sensor works on the principle of detecting changes in the refractive index of the hydrogel layer due to its swelling and shrinkage caused by changes in the pH of the fluid surrounding the hydrogel layer. The sensor utilizes a wavelength interrogation technique and operates in a particular window of low and high pH values. Increasing the pH value of the fluid causes swelling of the hydrogel layer, which decreases its refractive index and results in a shift of the resonance wavelength towards blue in the transmitted spectra. The thicknesses of the ITO and aluminium layers have been optimized to achieve the best performance of the sensor. The ITO layer increases the sensitivity while the aluminium layer increases the detection accuracy of the sensor. The proposed sensor possesses maximum sensitivity in comparison to the sensors reported in the literature. A negligible effect of ambient temperature in the range 25 °C to 45 °C on the performance of the sensor has been observed. The additional advantages of the sensor are short response time, low cost, probe miniaturization, probe re-usability and the capability of remote sensing.

  11. Laminar Module Cascade from Layer 5 to 6 Implementing Cue-to-Target Conversion for Object Memory Retrieval in the Primate Temporal Cortex.

    Science.gov (United States)

    Koyano, Kenji W; Takeda, Masaki; Matsui, Teppei; Hirabayashi, Toshiyuki; Ohashi, Yohei; Miyashita, Yasushi

    2016-10-19

    The cerebral cortex computes through the canonical microcircuit that connects six stacked layers; however, how cortical processing streams operate in vivo, particularly in the higher association cortex, remains elusive. By developing a novel MRI-assisted procedure that reliably localizes recorded single neurons at resolution of six individual layers in monkey temporal cortex, we show that transformation of representations from a cued object to a to-be-recalled object occurs at the infragranular layer in a visual cued-recall task. This cue-to-target conversion started in layer 5 and was followed by layer 6. Finally, a subset of layer 6 neurons exclusively encoding the sought target became phase-locked to surrounding field potentials at theta frequency, suggesting that this coordinated cell assembly implements cortical long-distance outputs of the recalled target. Thus, this study proposes a link from local computation spanning laminar modules of the temporal cortex to the brain-wide network for memory retrieval in primates. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Review of Ordered Anarchy: Jasay and his Surroundings

    Directory of Open Access Journals (Sweden)

    Aschwin de Wolf

    2009-02-01

    Full Text Available Anthony de Jasay is among the most important social thinkers of our time. His oeuvre offers a sustained critique of government and its defenders. In the book Ordered Anarchy: Jasay and His Surroundings, colleagues and friends pay tribute to the man in the form of an inspiring collection of essays.

  13. Turbulent mixing layers in supersonic protostellar outflows, with application to DG Tauri

    Science.gov (United States)

    White, M. C.; Bicknell, G. V.; Sutherland, R. S.; Salmeron, R.; McGregor, P. J.

    2016-01-01

    Turbulent entrainment processes may play an important role in the outflows from young stellar objects at all stages of their evolution. In particular, lateral entrainment of ambient material by high-velocity, well-collimated protostellar jets may be the cause of the multiple emission-line velocity components observed in the microjet-scale outflows driven by classical T Tauri stars. Intermediate-velocity outflow components may be emitted by a turbulent, shock-excited mixing layer along the boundaries of the jet. We present a formalism for describing such a mixing layer based on Reynolds decomposition of quantities measuring fundamental properties of the gas. In this model, the molecular wind from large disc radii provides a continual supply of material for entrainment. We calculate the total stress profile in the mixing layer, which allows us to estimate the dissipation of turbulent energy, and hence the luminosity of the layer. We utilize MAPPINGS IV shock models to determine the fraction of total emission that occurs in [Fe II] 1.644 μm line emission in order to facilitate comparison to previous observations of the young stellar object DG Tauri. Our model accurately estimates the luminosity and changes in mass outflow rate of the intermediate-velocity component of the DG Tau approaching outflow. Therefore, we propose that this component represents a turbulent mixing layer surrounding the well-collimated jet in this object. Finally, we compare and contrast our model to previous work in the field.

  14. Transport of gaseous pollutants by convective boundary layer around a human body

    DEFF Research Database (Denmark)

    Licina, Dusan; Melikov, Arsen Krikor; Sekhar, Chandra

    2015-01-01

    This study investigates the ability of the human convective boundary layer to transport pollution in a quiescent indoor environment. The impact of the source location in the vicinity of a human body is examined in relation to pollution distribution in the breathing zone and the thickness...... of the pollution boundary layer. The study, in addition, evaluates the effects of the room air temperature, table positioning, and seated body inclination. The human body is represented by a thermal manikin that has a body shape, size, and surface temperature that resemble those of a real person. The results show...... at the upper back or behind the chair. The results also indicate that a decrease in personal exposure to pollutants released from or around the human body increases the extent to which the pollution spreads to the surroundings. Reducing the room air temperature or backward body inclination intensifies...

  15. A permeability barrier surrounds taste buds in lingual epithelia

    Science.gov (United States)

    Dando, Robin; Pereira, Elizabeth; Kurian, Mani; Barro-Soria, Rene; Chaudhari, Nirupa

    2014-01-01

    Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003–1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste. PMID:25209263

  16. A permeability barrier surrounds taste buds in lingual epithelia.

    Science.gov (United States)

    Dando, Robin; Pereira, Elizabeth; Kurian, Mani; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D

    2015-01-01

    Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003-1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste. Copyright © 2015 the American Physiological Society.

  17. Chemical characteristics of surface systems in the Forsmark area. Visualisation and statistical evaluation of data from surface water, precipitation, shallow groundwater, and regolith

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-02-15

    The Swedish Nuclear Fuel and Waste management Co (SKB) initiated site investigations for a deep repository for spent nuclear fuel at two different sites in Sweden, Forsmark and Oskarshamn, in 2002. This report evaluates the results from chemical investigations of the surface system in the Forsmark area during the period November 2002 - March 2005. The evaluation includes data from surface waters (lakes, streams and the sea), precipitation, shallow groundwater and regolith (till, soil, peat, sediments and biota) in the area. Results from surface waters are not presented in this report since these were treated in a recently published report. The main focus of the study is to visualize the vast amount of data collected hitherto in the site investigations, and to give a chemical characterisation of the investigated media at the site. The results will be used to support the site descriptive models, which in turn are used for safety assessment studies and for the environmental impact assessment. The data used consist of water chemical composition in lakes, streams, coastal sites, and in precipitation, predominantly sampled on a monthly basis, and in groundwater from soil tubes and wells, sampled up to four times per year. Moreover, regolith data includes information on the chemical composition of till, soil, sediment and vegetation samples from the area. The characterisations include all measured chemical parameters, i.e. major and minor constituents, trace elements, nutrients, isotopes and radio nuclides, as well as field measured parameters. The evaluation of data from each medium has been divided into the following parts: Characterisation of individual sampling sites, and comparisons within and among sampling sites as well as comparisons with local, regional and national reference data; Analysis of time trends and seasonal variation (for shallow groundwater); Exploration of relationships among the various chemical parameters. For all investigated parameters, the

  18. Chemical characteristics of surface systems in the Simpevarp area. Visualisation and statistical evaluation of data from surface water, precipitation, shallow groundwater, and regolith

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-01-15

    The Swedish Nuclear Fuel and Waste management Co (SKB) initiated site investigations for a deep repository for spent nuclear fuel at two different sites in Sweden, Forsmark and Oskarshamn, in 2002. This report evaluates the results from chemical investigations of the surface system in the Simpevarp area in Oskarshamn, i.e. both the Laxemar subarea and the Simpevarp subarea, during the period Nov 2002 - Mar 2005. The evaluation includes data from surface waters (lakes, streams and the sea), precipitation, shallow groundwater and regolith (till, soil, peat, sediments and biota) in the area. The main focus of the study is to visualize the vast amount of data collected hitherto in the site investigations, and to give a chemical characterisation of the investigated media at the site. The results will be used to support the site descriptive models, which in turn are used for safety assessment studies and for the environmental impact assessment. The data used consist of water chemical composition in lakes, streams and coastal sites, and in precipitation, predominantly sampled on a monthly basis, and in groundwater from soil tubes and wells. Moreover, regolith data includes information on the chemical composition of till, soil, sediment and vegetation samples from the area. The characterisations include all measured chemical parameters, i.e. major and minor constituents, trace elements, nutrients, isotopes and radio nuclides, as well as field measured parameters. The evaluation of data from each medium has been divided into the following parts: Characterisation of individual sampling sites, and comparisons within and among sampling sites as well as comparisons with local, regional and national reference data. Analysis of time trends and seasonal variation (for surface waters). Exploration of relationships among the various chemical parameters. For all investigated parameters, the report presents selected statistics for each sampling site, as well as for available reference

  19. Chemical characteristics of surface systems in the Simpevarp area. Visualisation and statistical evaluation of data from surface water, precipitation, shallow groundwater, and regolith

    International Nuclear Information System (INIS)

    Troejbom, Mats; Soederbaeck, Bjoern

    2006-01-01

    The Swedish Nuclear Fuel and Waste management Co (SKB) initiated site investigations for a deep repository for spent nuclear fuel at two different sites in Sweden, Forsmark and Oskarshamn, in 2002. This report evaluates the results from chemical investigations of the surface system in the Simpevarp area in Oskarshamn, i.e. both the Laxemar subarea and the Simpevarp subarea, during the period Nov 2002 - Mar 2005. The evaluation includes data from surface waters (lakes, streams and the sea), precipitation, shallow groundwater and regolith (till, soil, peat, sediments and biota) in the area. The main focus of the study is to visualize the vast amount of data collected hitherto in the site investigations, and to give a chemical characterisation of the investigated media at the site. The results will be used to support the site descriptive models, which in turn are used for safety assessment studies and for the environmental impact assessment. The data used consist of water chemical composition in lakes, streams and coastal sites, and in precipitation, predominantly sampled on a monthly basis, and in groundwater from soil tubes and wells. Moreover, regolith data includes information on the chemical composition of till, soil, sediment and vegetation samples from the area. The characterisations include all measured chemical parameters, i.e. major and minor constituents, trace elements, nutrients, isotopes and radio nuclides, as well as field measured parameters. The evaluation of data from each medium has been divided into the following parts: Characterisation of individual sampling sites, and comparisons within and among sampling sites as well as comparisons with local, regional and national reference data. Analysis of time trends and seasonal variation (for surface waters). Exploration of relationships among the various chemical parameters. For all investigated parameters, the report presents selected statistics for each sampling site, as well as for available reference

  20. Summertime ozone formation in Xi'an and surrounding areas, China

    Directory of Open Access Journals (Sweden)

    T. Feng

    2016-04-01

    Full Text Available In this study, the ozone (O3 formation in China's northwest city of Xi'an and surrounding areas is investigated using the Weather Research and Forecasting atmospheric chemistry (WRF-Chem model during the period from 22 to 24 August 2013, corresponding to a heavy air pollution episode with high concentrations of O3 and PM2.5. The model generally performs well compared to measurements in simulating the surface temperature, relative humidity, and wind speed and direction, near-surface O3 and PM2.5 mass concentrations, and aerosol constituents. High aerosol concentrations in Xi'an and surrounding areas significantly decrease the photolysis frequencies and can reduce O3 concentrations by more than 50 µg m−3 (around 25 ppb on average. Sensitivity studies show that the O3 production regime in Xi'an and surrounding areas is complicated, varying from NOx to VOC (volatile organic compound-sensitive chemistry. The industrial emissions contribute the most to the O3 concentrations compared to biogenic and other anthropogenic sources, but neither individual anthropogenic emission nor biogenic emission plays a dominant role in the O3 formation. Under high O3 and PM2.5 concentrations, a 50 % reduction in all the anthropogenic emissions only decreases near-surface O3 concentrations by about 14 % during daytime. The complicated O3 production regime and high aerosol levels pose a challenge for O3 control strategies in Xi'an and surrounding areas. Further investigation regarding O3 control strategies will need to be performed, taking into consideration the rapid changes in anthropogenic emissions that are not reflected in the current emission inventories and the uncertainties in the meteorological field simulations.

  1. Particle Shape Characterization of Lunar Regolith using Reflected Light Microscopy

    Science.gov (United States)

    McCarty, C. B.; Garcia, G. C.; Rickman, D.

    2014-12-01

    Automated identification of particles in lunar thin sections is necessary for practical measurement of particle shape, void characterization, and quantitative characterization of sediment fabric. This may be done using image analysis, but several aspects of the lunar regolith make such automations difficult. For example, many of the particles are shattered; others are aggregates of smaller particles. Sieve sizes of the particles span 5 orders of magnitude. The physical thickness of a thin section, at a nominal 30 microns, is large compared to the size of many of the particles. Image acquisition modes, such as SEM and reflected light, while superior to transmitted light, still have significant ambiguity as to the volume being sampled. It is also desirable to have a technique that is inexpensive, not resource intensive, and analytically robust. To this end, we have developed an image acquisition and processing protocol that identifies and delineates resolvable particles on the front surface of a lunar thin section using a petrographic microscope in reflected light. For a polished thin section, a grid is defined covering the entire thin section. The grid defines discrete images taken with 20% overlap, minimizing the number of particles that intersect image boundaries. In reflected light mode, two images are acquired at each grid location, with a closed aperture diaphragm. One image, A, is focused precisely on the front surface of the thin section. The second image, B, is made after the stage is brought toward the objective lens just slightly. A bright fringe line, analogous to a Becke line, appears inside all transparent particles at the front surface of the section in the second image. The added light in the bright line corresponds to a deficit around the particles. Particle identification is done using ImageJ and uses multiple steps. A hybrid 5x5 median filter is used to make images Af and Bf. This primarily removes very small particles just below the front surface

  2. Analysis of the geomorphology surrounding the Chang'e-3 landing site

    International Nuclear Information System (INIS)

    Li Chun-Lai; Mu Ling-Li; Zou Xiao-Duan; Liu Jian-Jun; Ren Xin; Zeng Xing-Guo; Yang Yi-Man; Zhang Zhou-Bin; Liu Yu-Xuan; Zuo Wei; Li Han

    2014-01-01

    Chang'e-3 (CE-3) landed on the Mare Imbrium basin in the east part of Sinus Iridum (19.51°W, 44.12°N), which was China's first soft landing on the Moon and it started collecting data on the lunar surface environment. To better understand the environment of this region, this paper utilizes the available high-resolution topography data, image data and geological data to carry out a detailed analysis and research on the area surrounding the landing site (Sinus Iridum and 45 km×70 km of the landing area) as well as on the topography, landform, geology and lunar dust of the area surrounding the landing site. A general topographic analysis of the surrounding area is based on a digital elevation model and digital elevation model data acquired by Chang'e-2 that have high resolution; the geology analysis is based on lunar geological data published by USGS; the study on topographic factors and distribution of craters and rocks in the surrounding area covering 4 km×4 km or even smaller is based on images from the CE-3 landing camera and images from the topographic camera; an analysis is done of the effect of the CE-3 engine plume on the lunar surface by comparing images before and after the landing using data from the landing camera. A comprehensive analysis of the results shows that the landing site and its surrounding area are identified as typical lunar mare with flat topography. They are suitable for maneuvers by the rover, and are rich in geological phenomena and scientific targets, making it an ideal site for exploration

  3. Insights into the Martian Regolith from Martian Meteorite Northwest Africa 7034

    Science.gov (United States)

    McCubbin, Francis M.; Boyce, Jeremy W.; Szabo, Timea; Santos, Alison R.; Domokos, Gabor; Vazquez, Jorge; Moser, Desmond E.; Jerolmack, Douglas J.; Keller, Lindsay P.; Tartese, Romain

    2015-01-01

    Everything we know about sedimentary processes on Mars is gleaned from remote sensing observations. Here we report insights from meteorite Northwest Africa (NWA) 7034, which is a water-rich martian regolith breccia that hosts both igneous and sedimentary clasts. The sedimentary clasts in NWA 7034 are poorly-sorted clastic siltstones that we refer to as protobreccia clasts. These protobreccia clasts record aqueous alteration process that occurred prior to breccia formation. The aqueous alteration appears to have occurred at relatively low Eh, high pH conditions based on the co-precipitation of pyrite and magnetite, and the concomitant loss of SiO2 from the system. To determine the origin of the NWA 7034 breccia, we examined the textures and grain-shape characteristics of NWA 7034 clasts. The shapes of the clasts are consistent with rock fragmentation in the absence of transport. Coupled with the clast size distribution, we interpret the protolith of NWA 7034 to have been deposited by atmospheric rainout resulting from pyroclastic eruptions and/or asteroid impacts. Cross-cutting and inclusion relationships and U-Pb data from zircon, baddelleyite, and apatite indicate NWA 7034 lithification occurred at 1.4-1.5 Ga, during a short-lived hydrothermal event at 600-700 C that was texturally imprinted upon the submicron groundmass. The hydrothermal event caused Pb-loss from apatite and U-rich metamict zircons, and it caused partial transformation of pyrite to submicron mixtures of magnetite and maghemite, indicating the fluid had higher Eh than the fluid that caused pyrite-magnetite precipitation in the protobreccia clasts. NWA 7034 also hosts ancient 4.4 Ga crustal materials in the form of baddelleyites and zircons, providing up to a 2.9 Ga record of martian geologic history. This work demonstrates the incredible value of sedimentary basins as scientific targets for Mars sample return missions, but it also highlights the importance of targeting samples that have not been

  4. Numerical Simulation on Zonal Disintegration in Deep Surrounding Rock Mass

    Directory of Open Access Journals (Sweden)

    Xuguang Chen

    2014-01-01

    Full Text Available Zonal disintegration have been discovered in many underground tunnels with the increasing of embedded depth. The formation mechanism of such phenomenon is difficult to explain under the framework of traditional rock mechanics, and the fractured shape and forming conditions are unclear. The numerical simulation was carried out to research the generating condition and forming process of zonal disintegration. Via comparing the results with the geomechanical model test, the zonal disintegration phenomenon was confirmed and its mechanism is revealed. It is found to be the result of circular fracture which develops within surrounding rock mass under the high geostress. The fractured shape of zonal disintegration was determined, and the radii of the fractured zones were found to fulfill the relationship of geometric progression. The numerical results were in accordance with the model test findings. The mechanism of the zonal disintegration was revealed by theoretical analysis based on fracture mechanics. The fractured zones are reportedly circular and concentric to the cavern. Each fracture zone ruptured at the elastic-plastic boundary of the surrounding rocks and then coalesced into the circular form. The geometric progression ratio was found to be related to the mechanical parameters and the ground stress of the surrounding rocks.

  5. Numerical simulation on zonal disintegration in deep surrounding rock mass.

    Science.gov (United States)

    Chen, Xuguang; Wang, Yuan; Mei, Yu; Zhang, Xin

    2014-01-01

    Zonal disintegration have been discovered in many underground tunnels with the increasing of embedded depth. The formation mechanism of such phenomenon is difficult to explain under the framework of traditional rock mechanics, and the fractured shape and forming conditions are unclear. The numerical simulation was carried out to research the generating condition and forming process of zonal disintegration. Via comparing the results with the geomechanical model test, the zonal disintegration phenomenon was confirmed and its mechanism is revealed. It is found to be the result of circular fracture which develops within surrounding rock mass under the high geostress. The fractured shape of zonal disintegration was determined, and the radii of the fractured zones were found to fulfill the relationship of geometric progression. The numerical results were in accordance with the model test findings. The mechanism of the zonal disintegration was revealed by theoretical analysis based on fracture mechanics. The fractured zones are reportedly circular and concentric to the cavern. Each fracture zone ruptured at the elastic-plastic boundary of the surrounding rocks and then coalesced into the circular form. The geometric progression ratio was found to be related to the mechanical parameters and the ground stress of the surrounding rocks.

  6. Evaluating the effect of the space surrounding the condenser of a household refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Bassiouny, Ramadan [Dept. of Mech. Power Eng. and Energy, Faculty of Engineering, Minia University, Minia 61111 (Egypt)

    2009-11-15

    The paper presents an analytical and computational modeling of the effect of the space surrounding the condenser of a household refrigerator on the rejected heat. The driving force for rejecting the heat carried by the refrigerant from the interior of a refrigerator is the temperature difference between the condenser outer surface and surrounding air. The variation of this difference, because of having an insufficient space, increasing the room air temperature, or blocking this space, is of interest to quantify its effect The results showed that having an enough surrounding space width (s > 200 mm) leads to a decrease in the temperature of the air flowing vertically around the condenser coil. Accordingly, this would significantly increase the amount of heat rejected. Moreover, blocking this space retards the buoyant flow up the condenser surface, and hence increases the air temperature around the condenser. This would also decrease the heat rejected from the condenser. Predicted temperature contours are displayed to visualize the air plumes' variation surrounding the condenser in all cases. (author)

  7. Geothermal Heating, Convective Flow and Ice Thickness on Mars

    Science.gov (United States)

    Rosenberg, N. D.; Travis, B. J.; Cuzzi, J.

    2001-01-01

    Our 3D calculations suggest that hydrothermal circulation may occur in the martian regolith and may significantly thin the surface ice layer on Mars at some locations due to the upwelling of warm convecting fluids driven solely by background geothermal heating. Additional information is contained in the original extended abstract.

  8. Layering and Ordering in Electrochemical Double Layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yihua [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Kawaguchi, Tomoya [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Pierce, Michael S. [Rochester Institute of Technology, School of Physics and Astronomy, Rochester, New York 14623, United States; Komanicky, Vladimir [Faculty of Science, Safarik University, 041 54 Kosice, Slovakia; You, Hoydoo [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States

    2018-02-26

    Electrochemical double layers (EDL) form at electrified interfaces. While Gouy-Chapman model describes moderately charged EDL, formation of Stern layers was predicted for highly charged EDL. Our results provide structural evidence for a Stern layer of cations, at potentials close to hydrogen evolution in alkali fluoride and chloride electrolytes. Layering was observed by x-ray crystal truncation rods and atomic-scale recoil responses of Pt(111) surface layers. Ordering in the layer is confirmed by glancing-incidence in-plane diffraction measurements.

  9. Anomalous output characteristic shift for the n-type lateral diffused metal-oxide-semiconductor transistor with floating P-top layer

    International Nuclear Information System (INIS)

    Liu, Siyang; Zhang, Chunwei; Sun, Weifeng; Su, Wei; Wang, Shaorong; Ma, Shulang; Huang, Yu

    2014-01-01

    Anomalous output characteristic shift of the n-type lateral diffused metal-oxide-semiconductor transistor with floating P-top layer is investigated. It shows that the linear drain current has obvious decrease when the output characteristic of fresh device is measured for two consecutive times. The charge pumping experiments demonstrate that the decrease is not from hot-carrier degradation. The reduction of cross section area for the current flowing, which results from the squeezing of the depletion region surrounding the P-top layer, is responsible for the shift. Consequently, the current capability of this special device should be evaluated by the second measured output characteristic

  10. Anomalous output characteristic shift for the n-type lateral diffused metal-oxide-semiconductor transistor with floating P-top layer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Siyang; Zhang, Chunwei; Sun, Weifeng, E-mail: swffrog@seu.edu.cn [National ASIC System Engineering Research Center, Southeast University, Nanjing 210096 (China); Su, Wei; Wang, Shaorong; Ma, Shulang; Huang, Yu [CSMC Technologies Corporation, Wuxi 214061 (China)

    2014-04-14

    Anomalous output characteristic shift of the n-type lateral diffused metal-oxide-semiconductor transistor with floating P-top layer is investigated. It shows that the linear drain current has obvious decrease when the output characteristic of fresh device is measured for two consecutive times. The charge pumping experiments demonstrate that the decrease is not from hot-carrier degradation. The reduction of cross section area for the current flowing, which results from the squeezing of the depletion region surrounding the P-top layer, is responsible for the shift. Consequently, the current capability of this special device should be evaluated by the second measured output characteristic.

  11. An anatomical and histological study of the structures surrounding the proximal attachment of the hamstring muscles.

    Science.gov (United States)

    Pérez-Bellmunt, Albert; Miguel-Pérez, Maribel; Brugué, Marc Blasi; Cabús, Juan Blasi; Casals, Martí; Martinoli, Carlo; Kuisma, Raija

    2015-06-01

    The proximal attachment of hamstring muscles has a very high incidence of injuries due to a wide number of factors and its morphology may be one of the underlying factors as scientific literature points out. The connective tissue component of the attachment of hamstring muscles is not well known. For this reason the aim of this study is to describe the anatomy and histology surrounding the proximal attachment of the hamstring muscles (PAHM) and its direct anatomic relations. Forty-eight cryopreserved lower limbs have sequentially been studied by means of dissection, anatomical sections and histology. All specimens studied presented an annular connective tissue structure that resembles a retinaculum, which covers and adapts to the attachment of hamstring muscles on the ischial tuberosity. The results show how this retinaculum is continuous with the long head of biceps femoris muscle, however there is a layer of loose connective tissue between the retinaculum and the semitendinosus muscle. Furthermore, this structure receives expansions of the anterior epimysium of the gluteus maximus muscle (GIM). Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The influence of the surrounding gas on drop impact onto a wet substrate

    Science.gov (United States)

    Deegan, Robert; Zhang, Li; Toole, Jameson

    2011-11-01

    The impact of a droplet with a wet or solid substrate creates a spray of secondary droplets. The effect of the surrounding gas on this process was widely neglected prior to the work of Xu, Zhang, & Nagel which showed that lowering the gas pressure suppresses splashing for impact with a dry solid substrate. Here we present the results of our experimental investigation of the effect of the surrounding gas on the evolution of splashes from a wet substrate. We varied the density and pressure of the surrounding gas. We find quantitative changes to the onset thresholds of splashing and on the size distribution of, but no qualitative changes. The effects are most pronounced on the evolution of the ejecta sheet.

  13. Opportunity's Surroundings on Sol 1818 (Vertical)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings during the 1,818th Martian day, or sol, of Opportunity's surface mission (March 5, 2009). South is at the center; north at both ends. This view is presented as a vertical projection with geometric seam correction. North is at the top. The rover had driven 80.3 meters (263 feet) southward earlier on that sol. Tracks from the drive recede northward in this view. The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock.

  14. Opportunity's Surroundings on Sol 1818 (Polar)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings during the 1,818th Martian day, or sol, of Opportunity's surface mission (March 5, 2009). South is at the center; north at both ends. This view is presented as a polar projection with geometric seam correction. North is at the top. The rover had driven 80.3 meters (263 feet) southward earlier on that sol. Tracks from the drive recede northward in this view. The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock.

  15. Badlands in humid regions - redbed desertification in Nanxiong Basin, China

    Science.gov (United States)

    Yan, Luobin; Hua, Peng; Simonson, Scott

    2016-04-01

    The redbed badlands in Nanxiong City, China, well represent badlands in humid regions. The erosion rate in humid regions is much higher than that in arid regions and can reach 1 cm per month during the summer. The purpose of this study is to introduce the research of badlands in China, which have not been extensively studied so far, and to compare the badlands between arid and humid regions. Furthermore, the aim is to study the impact of mineralogical and chemical composition on the disintegration of soft rock in Nanxiong Basin badlands. For the purpose of this study field observations, sampling, and digging profiles were done. The mineralogical and chemical compositions of the Nanxiong Basin badland lithologies were determined by XRD, XRF and thin sections. Weathering resistance, process of weathering, and disintegration features were studied by weathering experiments under natural conditions. Weathering profiles can be easily divided into four layers: regolith, a strongly weathered layer, a poorly weathered layer, and an unweathered sediment. The depth of the weathering profile is influenced by the weathering resistance of the soft rock. Weathering resistance affects the erosion rate and evolution of landforms in badlands by influencing the rate from unweathered rock to regolith. Analyzed sediments have high content of illite and illite-smectite interstratifications. This composition of clay minerals together with poor sediment consolidation jointly leads to weathering prone sediment. The weathering and disintegration of soft rock in Nanxiong Basin badlands has a close relationship with rainfall. Sheet erosion, a kind of solid-liquid phase flow, formed in the regolith of the badland during rainfall events and can be the most instrumental to erosion. The mineral composition and liquidity plasticity index were also analyzed, and the results show that the regolith are low liquid limit silts with liquid limit of 21%-25%, plastic limit of 13%-18% and plasticity index

  16. Macular Choroidal Small-Vessel Layer, Sattler's Layer and Haller's Layer Thicknesses: The Beijing Eye Study.

    Science.gov (United States)

    Zhao, Jing; Wang, Ya Xing; Zhang, Qi; Wei, Wen Bin; Xu, Liang; Jonas, Jost B

    2018-03-13

    To study macular choroidal layer thickness, 3187 study participants from the population-based Beijing Eye Study underwent spectral-domain optical coherence tomography with enhanced depth imaging for thickness measurements of the macular small-vessel layer, including the choriocapillaris, medium-sized choroidal vessel layer (Sattler's layer) and large choroidal vessel layer (Haller's layer). In multivariate analysis, greater thickness of all three choroidal layers was associated (all P  0.05) associated with the prevalence of open-angle glaucoma or diabetic retinopathy. There was a tendency (0.07 > P > 0.02) toward thinner choroidal layers in chronic angle-closure glaucoma. The ratio of small-vessel layer thickness to total choroidal thickness increased (P layer and Haller's layer thickness to total choroidal thickness decreased. A higher ratio of small-vessel layer thickness to total choroidal thickness was significantly associated with a lower prevalence of AMD (early type, intermediate type, late geographic type). Axial elongation-associated and aging-associated choroidal thinning affected Haller's and Sattler's layers more markedly than the small-vessel layer. Non-exudative and exudative AMD, except for geographic atrophy, was associated with slightly increased choroidal thickness.

  17. A new planetary structure fabrication process using phosphoric acid

    Science.gov (United States)

    Buchner, Christoph; Pawelke, Roland H.; Schlauf, Thomas; Reissner, Alexander; Makaya, Advenit

    2018-02-01

    Minimising the launch mass is an important aspect of exploration mission planning. In-situ resource utilisation (ISRU) can improve this by reducing the amount of terrestrial materials needed for planetary exploration activities. We report on a recently concluded investigation into the requirements and available technologies for creating hardware on extra-terrestrial bodies, using the limited resources available on site. A trade-off of ISRU technologies for hardware manufacturing was conducted. A new additive manufacturing process suitable for fabricating structures on the Moon or Mars was developed. The process uses planetary regolith as the base material and concentrated phosphoric acid as the liquid binder. Mixing the reagents creates a sticky construction paste that slowly solidifies into a hard, rock-like material. Prior to solidification, the paste is extruded in layers, creating the desired structures in a 3D printing process. We used Martian regolith simulant JSC-Mars-1A, but the process is not selective towards regolith composition. Samples were exposed to thermal cycles and were mechanically characterised. Reduced-scale demonstrator structures were printed to demonstrate structure fabrication using the developed process.

  18. Magnetic field dependence of the superconducting proximity effect in a two atomic layer thin metallic film

    Energy Technology Data Exchange (ETDEWEB)

    Caminale, Michael; Leon Vanegas, Augusto A.; Stepniak, Agnieszka; Oka, Hirofumi; Fischer, Jeison A.; Sander, Dirk; Kirschner, Juergen [Max-Planck-Institut fuer Mikrostrukturphysik, Halle (Germany)

    2015-07-01

    The intriguing possibility to induce superconductivity in a metal, in direct contact with a superconductor, is under renewed interest for applications and for fundamental aspects. The underlying phenomenon is commonly known as proximity effect. In this work we exploit the high spatial resolution of scanning tunneling spectroscopy at sub-K temperatures and in magnetic fields. We probe the differential conductance along a line from a superconducting 9 ML high Pb nanoisland into the surrounding two layer thin Pb/Ag wetting layer on a Si(111) substrate. A gap in the differential conductance indicates superconductivity of the Pb island. We observe an induced gap in the wetting layer, which decays with increasing distance from the Pb island. This proximity length is 21 nm at 0.38 K and 0 T. We find a non-trivial dependence of the proximity length on magnetic field. Surprisingly, we find that the magnetic field does not affect the induced superconductivity up to 0.3 T. However, larger fields of 0.6 T suppress superconductivity in the wetting layer, where the Pb island still remains superconducting. We discuss the unexpected robustness of induced superconductivity in view of the high electronic diffusivity in the metallic wetting layer.

  19. Caving thickness effects of surrounding rocks macro stress shell evolving characteristics

    Institute of Scientific and Technical Information of China (English)

    XIE Guang-xiang; YANG Ke

    2009-01-01

    In order to explore the influence of different caving thicknesses on the MSS dis-tribution and evolving characteristics of surrounding rocks in unsymmetrical disposal and fully mechanized top-coal caving (FMTC), based on unsymmetrical disposal characteris-tics, the analyses of numerical simulation, material simulation and in-situ observation were synthetically applied according to the geological and technical conditions of the 1151(3) working face in Xieqiao Mine. The results show that the stress peak value of the MSS-base and the ratio of MSS-body height to caving thickness are nonlinear and inversely proportional to the caving thickness. The MSS-base width, the MSS-body height, the MSS-base distance to working face wall and the rise distance of MSS-base beside coal pillar are nonlinear and directly proportional to the caving thickness. The characteristics of MSS distribution and its evolving rules of surrounding rocks and the integrated caving thickness effects are obtained. The investigations will provide lots of theoretic references to the surrounding rocks' stability control of the working face and roadway, roadway layout, gas extraction and exploitation, and efficiency of caving, etc.

  20. Study on water migration of tunnel surrounding rock in nuclear waste repository based on coupling theory

    International Nuclear Information System (INIS)

    Jiang Zhongming; Zhang Xinmin

    2008-01-01

    Excavation of tunnel changes not only the stresses and deformation of tunnel surrounding rock, but also disturbs the underground water environment in tunnel surrounding rock Water migration happens due to variation of pore water pressure and redistribution. Based on the mechanics of porous media, saturated and unsaturated hydro-mechanical coupling analysis method is employed to study the variation of the stresses, deformation and pore pressure of the surrounding rock. Case study indicates that the excavation of tunnel will induce redistribution of stress and pore water pressure. Redistribution of pore water pressure will seriously affect on evaluation of surrounding rock stability and diffusion of nucleon in the pore water. (authors)

  1. Effects of Surrounding Information and Line Length on Text Comprehension from the Web

    Directory of Open Access Journals (Sweden)

    Jess McMullin

    2002-02-01

    Full Text Available The World Wide Web (Web is becoming a popular medium for transmission of information and online learning. We need to understand how people comprehend information from the Web to design Web sites that maximize the acquisition of information. We examined two features of Web page design that are easily modified by developers, namely line length and the amount of surrounding information, or whitespace. Undergraduate university student participants read text and answered comprehension questions on the Web. Comprehension was affected by whitespace; participants had better comprehension for information surrounded by whitespace than for information surrounded by meaningless information. Participants were not affected by line length. These findings demonstrate that reading from the Web is not the same as reading print and have implications for instructional Web design.

  2. Data Processing and Primary results of Lunar Penetrating Radar on Board the Chinese Yutu Rover

    Science.gov (United States)

    Su, Yan; Xing, Shuguo; Feng, Jianqing; Dai, Shun; Ding, Chunyu; Xiao, Yuan; Zhang, Hongbo; Zhao, Shu; Xue, Xiping; Zhang, Xiaoxia; Liu, Bin; Yao, Meijuan; Li, Chunlai

    2015-04-01

    60MHz and tens of meters at 500MHz. Based on the previous lunar subsurface research and Apollo samples analysis, the dielectric constantɛr of the lunar rock is set to be 7 and the dielectric constantɛr of the lunar regolith is set to be 3.1 The LPR observations reveal that Mare Imbrium has subsurface stratifications. The regolith is not uniform and structures with multiple layers have been observed. The results indicate the thickness of the regolith is 4-6 m. The typical hyperbolic shapes that might be caused by rocks underneath the regolith have been found. Furthermore, several prominent reflective layers at depths of hundreds of meters have been clearly derived. The buried regolith layer might have been accumulated during the depositional hiatus of mare basalts.

  3. Spot testing on mechanical characteristics of surrounding rock in gates of fully mechanized top-coal caving face

    Energy Technology Data Exchange (ETDEWEB)

    Xie Guang-xiang; Yang Ke; Chang Ju-cai [Anhui University of Science and Technology, Anhui (China). Department of Resource Exploration and Management Engineering

    2006-07-01

    The distribution patterns of mechanical characteristics for surrounding rock in the gateways of fully mechanized top-coal caving (FMTC) face were put forward by analyzing deep displacement, surface displacement, stress distribution and supports loading. The results show that the surrounding rock of the gateways lies in abutment pressure decrease zone near the working face, so that the support load decreases. But the deformations of supports and surrounding rock are very acute. The deformation of surrounding rock appears mainly in abutment pressure influence zone. Reasonable roadway supporting should control the deformation of surrounding rock in intense stage of mining influence. Supporting design ideas of tailentry and head entry should be changed from loading control to deformation control. 8 refs., 10 figs., 1 tab.

  4. Contamination of nebulisers and surrounding air at the bedside of ...

    African Journals Online (AJOL)

    An air sampler was used to collect air samples from the surrounding bedside environment. .... individualised resealable plastic bags and stored upside down in a cooler .... conventional and mesh technology nebulisers used at home by adults.

  5. Phase-specific Surround suppression in Mouse Primary Visual Cortex Correlates with Figure Detection Behavior Based on Phase Discontinuity.

    Science.gov (United States)

    Li, Fengling; Jiang, Weiqian; Wang, Tian-Yi; Xie, Taorong; Yao, Haishan

    2018-05-21

    In the primary visual cortex (V1), neuronal responses to stimuli within the receptive field (RF) are modulated by stimuli in the RF surround. A common effect of surround modulation is surround suppression, which is dependent on the feature difference between stimuli within and surround the RF and is suggested to be involved in the perceptual phenomenon of figure-ground segregation. In this study, we examined the relationship between feature-specific surround suppression of V1 neurons and figure detection behavior based on figure-ground feature difference. We trained freely moving mice to perform a figure detection task using figure and ground gratings that differed in spatial phase. The performance of figure detection increased with the figure-ground phase difference, and was modulated by stimulus contrast. Electrophysiological recordings from V1 in head-fixed mice showed that the increase in phase difference between stimuli within and surround the RF caused a reduction in surround suppression, which was associated with an increase in V1 neural discrimination between stimuli with and without RF-surround phase difference. Consistent with the behavioral performance, the sensitivity of V1 neurons to RF-surround phase difference could be influenced by stimulus contrast. Furthermore, inhibiting V1 by optogenetically activating either parvalbumin (PV)- or somatostatin (SOM)-expressing inhibitory neurons both decreased the behavioral performance of figure detection. Thus, the phase-specific surround suppression in V1 represents a neural correlate of figure detection behavior based on figure-ground phase discontinuity. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. 3D Room Visualization on Android Based Mobile Device (with Philips™’ Surround Sound Music Player

    Directory of Open Access Journals (Sweden)

    Durio Etgar

    2012-12-01

    Full Text Available This project’s specifically purposed as a demo application, so anyone can get the experience of a surround audio room without having to physically involved to it, with a main idea of generating a 3D surround sound room scenery coupled with surround sound in a handier package, namely, a “Virtual Listen Room”. Virtual Listen Room set a foundation of an innovative visualization that later will be developed and released as one of way of portable advertisement. This application was built inside of Android environment. Android device had been chosen as the implementation target, since it leaves massive development spaces and mostly contains essential components needed on this project, including graphic processor unit (GPU.  Graphic manipulation can be done using an embedded programming interface called OpenGL ES, which is planted in all Android devices generally. Further, Android has a Accelerometer Sensor that is needed to be coupled with scene to produce a dynamic movement of the camera. Surround sound effect can be reached with a decoder from Phillips called MPEG Surround Sound Decoder. To sum the whole project, we got an application with sensor-dynamic 3D room visualization coupled with Philips’ Surround Sound Music Player. We can manipulate several room’s properties; Subwoofer location, Room light, and how many speakers inside it, the application itself works well despite facing several performance problems before, later to be solved. [Keywords : Android,Visualization,Open GL; ES; 3D; Surround Sensor

  7. Modelling mass diffusion for a multi-layer sphere immersed in a semi-infinite medium: application to drug delivery.

    Science.gov (United States)

    Carr, Elliot J; Pontrelli, Giuseppe

    2018-04-12

    We present a general mechanistic model of mass diffusion for a composite sphere placed in a large ambient medium. The multi-layer problem is described by a system of diffusion equations coupled via interlayer boundary conditions such as those imposing a finite mass resistance at the external surface of the sphere. While the work is applicable to the generic problem of heat or mass transfer in a multi-layer sphere, the analysis and results are presented in the context of drug kinetics for desorbing and absorbing spherical microcapsules. We derive an analytical solution for the concentration in the sphere and in the surrounding medium that avoids any artificial truncation at a finite distance. The closed-form solution in each concentric layer is expressed in terms of a suitably-defined inverse Laplace transform that can be evaluated numerically. Concentration profiles and drug mass curves in the spherical layers and in the external environment are presented and the dependency of the solution on the mass transfer coefficient at the surface of the sphere analyzed. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Varieties of Quest and the Religious Openness Hypothesis within Religious Fundamentalist and Biblical Foundationalist Ideological Surrounds

    Directory of Open Access Journals (Sweden)

    P. J. Watson

    2013-12-01

    Full Text Available According to the Religious Openness Hypothesis, the religious and psychological openness of American Christians is obscured by a defensive ghettoization of thought associated with a Religious Fundamentalist Ideological Surround and can be discovered instead within a Biblical Foundationalist Ideological Surround. A test of this claim examined Religious Fundamentalism, Biblical Foundationalism, Quest, and Multidimensional Quest Scales in 432 undergraduates. Christian Religious Reflection, Religious Schema, and Religious Orientation measures clarified these two ideological surrounds. Partial correlations controlling for Biblical Foundationalism described a Religious Fundamentalist Ideological Surround that more strongly rejected Quest and that more generally displayed a failure to integrate faith with intellect. Partial correlations controlling for Religious Fundamentalism revealed a Biblical Foundationalist Ideological Surround that was more open to Quest and that offered numerous demonstrations of an ability to unite faith with intellect. These data supplemented previous investigations in demonstrating that Christianity and other traditional religions have ideological resources for promoting a faithful intellect.

  9. Orientation-specific surround suppression in the primary visual cortex varies as a function of autistic tendency

    Directory of Open Access Journals (Sweden)

    Anastasia V Flevaris

    2015-01-01

    Full Text Available Individuals with autism spectrum disorder (ASD exhibit superior performance on tasks that rely on local details in an image, and they exhibit deficits in tasks that require integration of local elements into a unified whole. These perceptual abnormalities have been proposed to underlie many of the characteristic features of ASD, but the underlying neural mechanisms are poorly understood. Here, we investigated the degree to which orientation-specific surround suppression, a well-known form of contextual modulation in visual cortex, is associated with autistic tendency in neurotypical individuals. Surround suppression refers to the phenomenon that the response to a stimulus in the receptive field of a neuron is suppressed when it is surrounded by stimuli just outside the receptive field. The suppression is greatest when the center and surrounding stimuli share perceptual features such as orientation. Surround suppression underlies a number of fundamental perceptual processes that are known to be atypical in individuals with ASD, including perceptual grouping and perceptual pop-out. However, whether surround suppression in the primary visual cortex (V1 is related to autistic traits has not been directly tested before. We used fMRI to measure the neural response to a center Gabor when it was surrounded by Gabors having the same or orthogonal orientation, and calculated a suppression index (SI for each participant that denoted the magnitude of suppression in the same versus orthogonal conditions. SI was positively correlated with degree of autistic tendency in each individual, as measured by the Autism Quotient (AQ scale, a questionnaire designed to assess autistic traits in the general population. Age also correlated with SI and with autistic tendency in our sample, but did not account for the correlation between SI and autistic tendency. These results suggest a reduction in orientation-specific surround suppression in V1 with increasing autistic

  10. Perturbation of hydration layer in solvated proteins by external electric and electromagnetic fields: Insights from non-equilibrium molecular dynamics

    Science.gov (United States)

    Nandi, Prithwish K.; Futera, Zdenek; English, Niall J.

    2016-11-01

    Given the fundamental role of water in governing the biochemistry of enzymes, and in regulating their wider biological activity (e.g., by local water concentration surrounding biomolecules), the influence of extraneous electric and electromagnetic (e/m) fields thereon is of central relevance to biophysics and, more widely, biology. With the increase in levels of local and atmospheric microwave-frequency radiation present in modern life, as well as other electric-field exposure, the impact upon hydration-water layers surrounding proteins, and biomolecules generally, becomes a particularly pertinent issue. Here, we present a (non-equilibrium) molecular-dynamics-simulation study on a model protein (hen egg-white lysozyme) hydrated in water, in which we determine, inter alia, translational self-diffusivities for both hen egg-white lysozyme and its hydration layer together with relaxation dynamics of the hydrogen-bond network between the protein and its hydration-layer water molecules on a residue-per-residue basis. Crucially, we perform this analysis both above and below the dynamical-transition temperature (at ˜220 K), at 300 and 200 K, respectively, and we compare the effects of external static-electric and e/m fields with linear-response-régime (r.m.s.) intensities of 0.02 V/Å. It was found that the translational self-diffusivity of hen egg-white lysozyme and its hydration-water layer are increased substantially in static fields, primarily due to the induced electrophoretic motion, whilst the water-protein hydrogen-bond-network-rearrangement kinetics can also undergo rather striking accelerations, primarily due to the enhancement of a larger-amplitude local translational and rotational motion by charged and dipolar residues, which serves to promote hydrogen-bond breakage and re-formation kinetics. These external-field effects are particularly evident at 200 K, where they serve to induce the protein- and solvation-layer-response effects redolent of dynamical

  11. Opportunity's Surroundings on Sol 1798 (Polar)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this 180-degree view of the rover's surroundings during the 1,798th Martian day, or sol, of Opportunity's surface mission (Feb. 13, 2009). North is on top. This view is presented as a polar projection with geometric seam correction. The rover had driven 111 meters (364 feet) southward on the preceding sol. Tracks from that drive recede northward in this view. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock.

  12. Opportunity's Surroundings on Sol 1798 (Vertical)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this 180-degree view of the rover's surroundings during the 1,798th Martian day, or sol, of Opportunity's surface mission (Feb. 13, 2009). North is on top. This view is presented as a vertical projection with geometric seam correction. The rover had driven 111 meters (364 feet) southward on the preceding sol. Tracks from that drive recede northward in this view. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock.

  13. Opportunity's Surroundings on Sol 1687 (Vertical)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this 360-degree view of the rover's surroundings on the 1,687th Martian day, or sol, of its surface mission (Oct. 22, 2008). Opportunity had driven 133 meters (436 feet) that sol, crossing sand ripples up to about 10 centimeters (4 inches) tall. The tracks visible in the foreground are in the east-northeast direction. Opportunity's position on Sol 1687 was about 300 meters southwest of Victoria Crater. The rover was beginning a long trek toward a much larger crater, Endeavour, about 12 kilometers (7 miles) to the southeast. This view is presented as a vertical projection with geometric seam correction.

  14. Opportunity's Surroundings on Sol 1687 (Polar)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this 360-degree view of the rover's surroundings on the 1,687th Martian day, or sol, of its surface mission (Oct. 22, 2008). Opportunity had driven 133 meters (436 feet) that sol, crossing sand ripples up to about 10 centimeters (4 inches) tall. The tracks visible in the foreground are in the east-northeast direction. Opportunity's position on Sol 1687 was about 300 meters southwest of Victoria Crater. The rover was beginning a long trek toward a much larger crater, Endeavour, about 12 kilometers (7 miles) to the southeast. This view is presented as a polar projection with geometric seam correction.

  15. Dynamics of ozone layer under Serbia and solar activity: Previous statement

    Directory of Open Access Journals (Sweden)

    Ducić Vladan

    2008-01-01

    Full Text Available The aim of this paper is to identify ozone layer dynamics under Serbian area, as well as possible relations of change in stratospheric ozone concentration with some parameters of solar activity. During the period 1979-2005, the statistical decrease of ozone concentration was noticed under Serbian territory cumulatively for 24.5 DU (7.2%, apropos 9.4 DU (2.8% by decade. These changes are consistent with the changes in surrounding countries. From absolute minimum 1993, flexible trend of ozone layer pentad values validate hypotheses of its recovery. Correspondence of ozone thickness extreme period with Wolf's number and with the greatest volcanic eruptions shows that interannual variations of stratospheric ozone concentration are still in the function of natural factors above all, as are solar and volcanic activities. Investigation of larger number solar activity parameters shows statistically important antiphase synchronous between the number of polar faculae on the Sun and stratospheric ozone dynamics under Serbia. Respecting that relation between these two features until now isn't depicted, some possible causal mechanisms are proposed.

  16. Data processing and initial results of Chang'e-3 lunar penetrating radar

    Science.gov (United States)

    Su, Yan; Fang, Guang-You; Feng, Jian-Qing; Xing, Shu-Guo; Ji, Yi-Cai; Zhou, Bin; Gao, Yun-Ze; Li, Han; Dai, Shun; Xiao, Yuan; Li, Chun-Lai

    2014-12-01

    To improve our understanding of the formation and evolution of the Moon, one of the payloads onboard the Chang'e-3 (CE-3) rover is Lunar Penetrating Radar (LPR). This investigation is the first attempt to explore the lunar subsurface structure by using ground penetrating radar with high resolution. We have probed the subsurface to a depth of several hundred meters using LPR. In-orbit testing, data processing and the preliminary results are presented. These observations have revealed the configuration of regolith where the thickness of regolith varies from about 4 m to 6 m. In addition, one layer of lunar rock, which is about 330 m deep and might have been accumulated during the depositional hiatus of mare basalts, was detected.

  17. Data processing and initial results of Chang'e-3 lunar penetrating radar

    International Nuclear Information System (INIS)

    Su Yan; Feng Jian-Qing; Xing Shu-Guo; Li Han; Dai Shun; Xiao Yuan; Li Chun-Lai; Fang Guang-You; Ji Yi-Cai; Zhou Bin; Gao Yun-Ze

    2014-01-01

    To improve our understanding of the formation and evolution of the Moon, one of the payloads onboard the Chang'e-3 (CE-3) rover is Lunar Penetrating Radar (LPR). This investigation is the first attempt to explore the lunar subsurface structure by using ground penetrating radar with high resolution. We have probed the subsurface to a depth of several hundred meters using LPR. In-orbit testing, data processing and the preliminary results are presented. These observations have revealed the configuration of regolith where the thickness of regolith varies from about 4 m to 6 m. In addition, one layer of lunar rock, which is about 330 m deep and might have been accumulated during the depositional hiatus of mare basalts, was detected

  18. INTERACTIONS OF THE INFRARED BUBBLE N4 WITH ITS SURROUNDINGS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong-Li; Li, Jin-Zeng; Yuan, Jing-Hua; Huang, Maohai; Huang, Ya-Fang; Zhang, Si-Ju [National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012 (China); Wu, Yuefang [Department of Astronomy, Peking University, 100871 Beijing (China); Liu, Tie [Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon, 305-348 (Korea, Republic of); Dubner, G.; Paron, S.; Ortega, M. E. [1Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), CC 67, Suc. 28, 1428 Buenos Aires (Argentina); Molinari, Sergio [Istituto di Astrofisica e Planetologia Spaziali—IAPS, Istituto Nazionale di Astrofisica—INAF, via Fosso del Cavaliere 100, I-00133 Roma (Italy); Zavagno, Annie; Samal, Manash R., E-mail: hlliu@nao.cas.cn [Aix Marseille Universit, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388, Marseille (France)

    2016-02-10

    The physical mechanisms that induce the transformation of a certain mass of gas in new stars are far from being well understood. Infrared bubbles associated with H ii regions have been considered to be good samples for investigating triggered star formation. In this paper we report on the investigation of the dust properties of the infrared bubble N4 around the H ii region G11.898+0.747, analyzing its interaction with its surroundings and star formation histories therein, with the aim of determining the possibility of star formation triggered by the expansion of the bubble. Using Herschel PACS and SPIRE images with a wide wavelength coverage, we reveal the dust properties over the entire bubble. Meanwhile, we are able to identify six dust clumps surrounding the bubble, with a mean size of 0.50 pc, temperature of about 22 K, mean column density of 1.7 × 10{sup 22} cm{sup −2}, mean volume density of about 4.4 × 10{sup 4} cm{sup −3}, and a mean mass of 320 M{sub ⊙}. In addition, from PAH emission seen at 8 μm, free–free emission detected at 20 cm, and a probability density function in special regions, we could identify clear signatures of the influence of the H ii region on the surroundings. There are hints of star formation, though further investigation is required to demonstrate that N4 is the triggering source.

  19. Mechanical Characteristics Analysis of Surrounding Rock on Anchor Bar Reinforcement

    Science.gov (United States)

    Gu, Shuan-cheng; Zhou, Pan; Huang, Rong-bin

    2018-03-01

    Through the homogenization method, the composite of rock and anchor bar is considered as the equivalent material of continuous, homogeneous, isotropic and strength parameter enhancement, which is defined as reinforcement body. On the basis of elasticity, the composite and the reinforcement are analyzed, Based on strengthening theory of surrounding rock and displacement equivalent conditions, the expression of reinforcement body strength parameters and mechanical parameters is deduced. The example calculation shows that the theoretical results are close to the results of the Jia-mei Gao[9], however, closer to the results of FLAC3D numerical simulation, it is proved that the model and surrounding rock reinforcement body theory are reasonable. the model is easy to analyze and calculate, provides a new way for determining reasonable bolt support parameters, can also provides reference for the stability analysis of underground cavern bolting support.

  20. Trajectories and Maneuvers of Surrounding Vehicles with Panoramic Camera Arrays

    DEFF Research Database (Denmark)

    Dueholm, Jacob Velling; Kristoffersen, Miklas Strøm; Satzoda, Ravi K.

    2016-01-01

    Vision-based research for intelligent vehicles have traditionally focused on specific regions around a vehicle, such as a front looking camera for, e.g., lane estimation. Traffic scenes are complex and vital information could be lost in unobserved regions. This paper proposes a framework that uses...... four visual sensors for a full surround view of a vehicle in order to achieve an understanding of surrounding vehicle behaviors. The framework will assist the analysis of naturalistic driving studies by automating the task of data reduction of the observed trajectories. To this end, trajectories...... are estimated using a vehicle detector together with a multiperspective optimized tracker in each view. The trajectories are transformed to a common ground plane, where they are associated between perspectives and analyzed to reveal tendencies around the ego-vehicle. The system is tested on sequences from 2.5 h...

  1. Efficient and stable perfectly matched layer for CEM

    KAUST Repository

    Duru, Kenneth

    2014-02-01

    An efficient unsplit perfectly matched layer for numerical simulation of electromagnetic waves in unbounded domains is derived via a complex change of variables. In order to surround a Cartesian grid with the PML, the time-dependent PML requires only one (scalar) auxiliary variable in two space dimensions and six (scalar) auxiliary variables in three space dimensions. It is therefore cheap and straightforward to implement. We use Fourier and energy methods to prove the stability of the PML. We extend the stability result to a semi-discrete PML approximated by central finite differences of arbitrary order of accuracy and to a fully discrete problem for the \\'Leap-Frog\\' schemes. This makes precise the usefulness of the derived PML model for longtime simulations. Numerical experiments are presented, illustrating the accuracy and stability of the PML. © 2013 IMACS.

  2. An Investigation into the Aerodynamics Surrounding Vertical-Axis Wind Turbines

    Science.gov (United States)

    Parker, Colin M.

    The flow surrounding a scaled model vertical-axis wind turbine (VAWT) at realistic operating conditions was studied. The model closely matches geometric and dynamic properties--tip-speed ratio and Reynolds number--of a full-size turbine. The flowfield is measured using particle imaging velocimetry (PIV) in the mid-plane upstream, around, and after (up to 4 turbine diameters downstream) the turbine, as well as a vertical plane behind the turbine. Ensemble-averaged results revealed an asymmetric wake behind the turbine, regardless of tip-speed ratio, with a larger velocity deficit for a higher tip-speed ratio. For the higher tip-speed ratio, an area of averaged flow reversal is present with a maximum reverse flow of -0.04Uinfinity. Phase-averaged vorticity fields--achieved by syncing the PIV system with the rotation of the turbine--show distinct structures form from each turbine blade. There are distinct differences in the structures that are shed into the wake for tip-speed ratios of 0.9, 1.3 and 2.2--switching from two pairs to a single pair of shed vortices--and how they convect into the wake--the middle tip-speed ratio vortices convect downstream inside the wake, while the high tip-speed ratio pair is shed into the shear layer of the wake. The wake structure is found to be much more sensitive to changes in tip-speed ratio than to changes in Reynolds number. The geometry of a turbine can influence tip-speed ratio, but the precise relationship among VAWT geometric parameters and VAWT wake characteristics remains unknown. Next, we characterize the wakes of three VAWTs that are geometrically similar except for the ratio of the turbine diameter (D), to blade chord (c), which was chosen to be D/c = 3, 6, and 9, for a fixed freestream Reynolds number based on the blade chord of Rec =16,000. In addition to two-component PIV and single-component constant temperature anemometer measurements are made at the horizontal mid-plane in the wake of each turbine. Hot

  3. Seismic Tomography of the Arabian-Eurasian Collision Zone and Surrounding Areas

    National Research Council Canada - National Science Library

    Toksoz, M. N; Van der Hilst, Robert D; Sun, Youshun; Gulen, Levent; Kalafat, Dogan; Kuleli, Huseyin S; Li, Chang; Zhang, Haijiang

    2008-01-01

    ... and surrounding areas, including Iran, Arabia, Eastern Turkey, and the Caucasus. The Arabian-Eurasian plate boundary is a complex tectonic zone shaped by continent-continent collision processes...

  4. Blooming Trees: Substructures and Surrounding Groups of Galaxy Clusters

    Science.gov (United States)

    Yu, Heng; Diaferio, Antonaldo; Serra, Ana Laura; Baldi, Marco

    2018-06-01

    We develop the Blooming Tree Algorithm, a new technique that uses spectroscopic redshift data alone to identify the substructures and the surrounding groups of galaxy clusters, along with their member galaxies. Based on the estimated binding energy of galaxy pairs, the algorithm builds a binary tree that hierarchically arranges all of the galaxies in the field of view. The algorithm searches for buds, corresponding to gravitational potential minima on the binary tree branches; for each bud, the algorithm combines the number of galaxies, their velocity dispersion, and their average pairwise distance into a parameter that discriminates between the buds that do not correspond to any substructure or group, and thus eventually die, and the buds that correspond to substructures and groups, and thus bloom into the identified structures. We test our new algorithm with a sample of 300 mock redshift surveys of clusters in different dynamical states; the clusters are extracted from a large cosmological N-body simulation of a ΛCDM model. We limit our analysis to substructures and surrounding groups identified in the simulation with mass larger than 1013 h ‑1 M ⊙. With mock redshift surveys with 200 galaxies within 6 h ‑1 Mpc from the cluster center, the technique recovers 80% of the real substructures and 60% of the surrounding groups; in 57% of the identified structures, at least 60% of the member galaxies of the substructures and groups belong to the same real structure. These results improve by roughly a factor of two the performance of the best substructure identification algorithm currently available, the σ plateau algorithm, and suggest that our Blooming Tree Algorithm can be an invaluable tool for detecting substructures of galaxy clusters and investigating their complex dynamics.

  5. A numerical two layer model for blood oxygenation in lungs

    International Nuclear Information System (INIS)

    Aminatai, A.

    2001-01-01

    In the modelling of the simultaneous transport of O 2 and CO 2 in the pulmonary circulation described in our earlier studies, the blood has been treated as a homogeneous layer of haemoglobin solution. Since the size of the erythrocyte is not negligible in comparison with that of the capillary, the blood can no longer be considered as a homogeneous fluid and hence, It is worthwhile to consider the blood flow as a two-phase flow consisting of cells and plasma. In the present study, the heterogeneous nature of blood has been proposed by considering the axial train model for the flow [whitmore (1967)], in order to analyze the effect of cell free plasma layer on the process of blood oxygenation in pulmonary capillaries. The proposed model consists of a core of suspended erythrocytes surrounded by a cell free plasma layer near the wall. The coupled system of convective diffusion equaions together with the physiologically relevant boundary, entrance and interface conditions is solved numerically by a four-point semi-implicit scheme to gether with a fixed point iterative technique. The distance traversed by the blood before getting fully oxygenated is computed. It is shown that the core haematocrit and the thickness of the cell depleted layer affect the oxygenation process significantly. It is found that (i) oxygen takes longest and carbondioxide is the fastest to attain equilibraton, (ii) the blood is completely oxygenated within one-fifth part of its transit and (iii) the rate of oxygenation is smaller in case of homogeneous model than that in heterogenous model in the capillary. Finally, the effect of various physiological parameters on the rate of oxygenation has been examined

  6. A Mixed-Valent Molybdenum Monophosphate with a Layer Structure: KMo 3P 2O 14

    Science.gov (United States)

    Guesdon, A.; Borel, M. M.; Leclaire, A.; Grandin, A.; Raveau, B.

    1994-03-01

    A new mixed-valent molybdenum monophosphate with a layer structure KMo 3P 2O 14 has been isolated. It crystallizes in the space group P2 1/ m with a = 8.599(2) Å, b = 6.392(2) Å, c = 10.602(1) Å, and β = 111.65(2)°. The layers [Mo 3P 2O 14] ∞ are parallel to (100) and consist of [MoPO 8] ∞ chains running along limitb→ , in which one MoO 6 octahedron alternates with one PO 4 tetrahedron. In fact, four [MoPO 8] ∞ chains share the corners of their polyhedra and the edges of their octahedra, forming [Mo 4P 4O 24] ∞ columns which are linked through MoO 5 bipyramids along limitc→. The K + ions interleaved between these layers are surrounded by eight oxygens, forming bicapped trigonal prisms KO 8. Besides the unusual trigonal bipyramids MoO 5, this structure is also characterized by a tendency to the localization of the electrons, since one octahedral site is occupied by Mo(V), whereas the other octahedral site and the trigonal bipyramid are occupied by Mo(VI). The similarity of this structure with pure octahedral layer structures suggests the possibility of generating various derivatives, and of ion exchange properties.

  7. TRIGGERED STAR FORMATION SURROUNDING WOLF-RAYET STAR HD 211853

    Energy Technology Data Exchange (ETDEWEB)

    Liu Tie; Wu Yuefang; Zhang Huawei [Department of Astronomy, Peking University, 100871 Beijing (China); Qin Shengli, E-mail: liutiepku@gmail.com [I. Physikalisches Institut, Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany)

    2012-05-20

    The environment surrounding Wolf-Rayet (W-R) star HD 211853 is studied in molecular, infrared, as well as radio, and H I emission. The molecular ring consists of well-separated cores, which have a volume density of 10{sup 3} cm{sup -3} and kinematic temperature {approx}20 K. Most of the cores are under gravitational collapse due to external pressure from the surrounding ionized gas. From the spectral energy distribution modeling toward the young stellar objects, the sequential star formation is revealed on a large scale in space spreading from the W-R star to the molecular ring. A small-scale sequential star formation is revealed toward core 'A', which harbors a very young star cluster. Triggered star formations are thus suggested. The presence of the photodissociation region, the fragmentation of the molecular ring, the collapse of the cores, and the large-scale sequential star formation indicate that the 'collect and collapse' process functions in this region. The star-forming activities in core 'A' seem to be affected by the 'radiation-driven implosion' process.

  8. TRIGGERED STAR FORMATION SURROUNDING WOLF-RAYET STAR HD 211853

    International Nuclear Information System (INIS)

    Liu Tie; Wu Yuefang; Zhang Huawei; Qin Shengli

    2012-01-01

    The environment surrounding Wolf-Rayet (W-R) star HD 211853 is studied in molecular, infrared, as well as radio, and H I emission. The molecular ring consists of well-separated cores, which have a volume density of 10 3 cm –3 and kinematic temperature ∼20 K. Most of the cores are under gravitational collapse due to external pressure from the surrounding ionized gas. From the spectral energy distribution modeling toward the young stellar objects, the sequential star formation is revealed on a large scale in space spreading from the W-R star to the molecular ring. A small-scale sequential star formation is revealed toward core 'A', which harbors a very young star cluster. Triggered star formations are thus suggested. The presence of the photodissociation region, the fragmentation of the molecular ring, the collapse of the cores, and the large-scale sequential star formation indicate that the 'collect and collapse' process functions in this region. The star-forming activities in core 'A' seem to be affected by the 'radiation-driven implosion' process.

  9. Chandrayaan-2 dual-frequency SAR: Further investigation into lunar water and regolith

    Science.gov (United States)

    Putrevu, Deepak; Das, Anup; Vachhani, J. G.; Trivedi, Sanjay; Misra, Tapan

    2016-01-01

    The Space Applications Centre (SAC), one of the major centers of the Indian Space Research Organization (ISRO), is developing a high resolution, dual-frequency Synthetic Aperture Radar as a science payload on Chandrayaan-2, ISRO's second moon mission. With this instrument, ISRO aims to further the ongoing studies of the data from S-band MiniSAR onboard Chandrayaan-1 (India) and the MiniRF of Lunar Reconnaissance Orbiter (USA). The SAR instrument has been configured to operate with both L- and S-bands, sharing a common antenna. The S-band SAR will provide continuity to the MiniSAR data, whereas L-band is expected to provide deeper penetration of the lunar regolith. The system will have a selectable slant-range resolution from 2 m to 75 m, along with standalone (L or S) and simultaneous (L and S) modes of imaging. Various features of the instrument like hybrid and full-polarimetry, a wide range of imaging incidence angles (∼10° to ∼35°) and the high spatial resolution will greatly enhance our understanding of surface properties especially in the polar regions of the Moon. The system will also help in resolving some of the ambiguities in interpreting high values of Circular Polarization Ratio (CPR) observed in MiniSAR data. The added information from full-polarimetric data will allow greater confidence in the results derived particularly in detecting the presence (and estimating the quantity) of water-ice in the polar craters. Being a planetary mission, the L&S-band SAR for Chandrayaan-2 faced stringent limits on mass, power and data rate (15 kg, 100 W and 160 Mbps respectively), irrespective of any of the planned modes of operation. This necessitated large-scale miniaturization, extensive use of on-board processing, and devices and techniques to conserve power. This paper discusses the scientific objectives which drive the requirement of a lunar SAR mission and presents the configuration of the instrument, along with a description of a number of features of the

  10. Analytical Solution of Tunnel Surrounding Rock for Stress and Displacement Based on Lade–Duncan Criterion

    Directory of Open Access Journals (Sweden)

    MingZheng Zhu

    2018-01-01

    Full Text Available The deformation and failure of tunnel surrounding rock is the result of tunnel excavation disturbance and rock stress release. When the local stress of surrounding rock exceeds the elastic limit of rock mass, the plastic analysis of surrounding rock must be carried out to judge the stability of tunnel. In this study, the Lade–Duncan yield criterion is used to calculate the analytic solutions for the surrounding rock in a tunnel, and the radius and displacement of the plastic zone are deduced using an equilibrium equation. The plastic zone radius and displacement based on Lade–Duncan criterion and Mohr–Coulomb criterion were compared by using single-factor analysis method under the different internal friction angles, in situ stresses, and support resistances. The results show that the solutions of the radius and displacement of plastic zone calculated by the Lade–Duncan criterion are close to those of Mohr–Coulomb criterion under the high internal friction angle and support resistance or low in situ rock stress; however, the radius and displacement of the plastic zone calculated by the Lade–Duncan criterion are larger under normal circumstances, and the Lade–Duncan criterion is more applicable to the stability analysis of the surrounding rock in a tunnel.

  11. Plasma immersion ion implantation: duplex layers from a single process

    International Nuclear Information System (INIS)

    Hutchings, R.; Collins, G.A.; Tendys, J.

    1992-01-01

    Plasma immersion ion implantation (PI 3 ) is an alternative non-line-of-sight technique for implanting ions directly from a plasma which surrounds the component to be treated. In contrast to plasma source ion implantation, the PI 3 system uses an inductively coupled r.f. plasma. It is shown that nitrogen can be retained during implantation at elevated temperatures, even for unalloyed steels. This allows controlled diffusion of nitrogen to greater depths, thereby improving the load bearing capacity of the implanted layer. Components can be heated directly, using the energy deposited by the incident ions during the pulsed implantation. The necessary temperature control can be accomplished simply by regulating the frequency and length of the high voltage pulses applied to the component. Chemical depth profiles and microstructural data obtained from H13 tool steel are used to show that PI 3 can, in a single process, effectively produce a duplex subsurface structure. This structure consists of an outer non-equilibrium layer typical of nitrogen implantation (containing in excess of 20 at.% nitrogen) backed by a substantial diffusion zone of much lower nitrogen content. The relationship between implantation temperature and the resultant subsurface microstructure is explored. (orig.)

  12. Reflection and Transmission of Plane Electromagnetic Waves by a Geologic Layer.

    Energy Technology Data Exchange (ETDEWEB)

    Aldridge, David F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-04-01

    Electric field and magnetic field reflection and transmission responses generated by a plane wave normally incident onto a finite - thickness geologic layer are mathematically derived and numerically evaluated. A thin layer with enhanced electric current conductivity and/or magnetic permeability is a reasonable geophysical representation of a hydraulic fracture inject ed with a high - contrast proppant pack. Both theory and numerics indicate that backward - and forward - scattered electromagnetic wavefields are potentially observable in a field experiment, despite the extreme thinness of a fracture compared to a typical low - frequency electromagnetic wavelength. The First Born Approximation (FBA) representation of layer scattering, significant for inversion studies, is shown to be accurate for a thin layer with mild medium parameter (i.e., conductivity, permeability, and per mittivity) contrasts with the surrounding homogeneous wholespace. However, FBA scattering theory breaks down for thick layers and strong parameter contrasts. ACKNOWLEDGEMENTS Sandia National Laboratories is a multi - mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. This research is conducted under the auspices of CRADA (Cooperative Research and Development Agreement) SC11/01780.00 between Carbo Ceramics Inc. and Sandia National Laboratories. The author acknowledges former Carbo R&D Vic e - President Mr. Chad Cannan and former SNL Geophysics Department manage r Ms. Amy Halloran for their interest i n and support of this work. Technical discussions with Project Manager and Principal Investigator Dr. Chester J. Weiss of the SNL Geophysics Department greatly benefited this work. Dr. Lewis C. Bartel, formerly with S NL and presently a consultant to Carbo Ceramics, provided many useful and intuitive insights, and

  13. Hydrogen Distribution in the Lunar Polar Regions

    Science.gov (United States)

    Sanin, A. B.; Mitrofanov, I. G.; Litvak, M. L.; Bakhtin, B. N.; Bodnarik, J. G.; Boynton, W. V.; Chin, G.; Evans, L. G.; Harshmann, K.; Fedosov, F.; hide

    2016-01-01

    We present a method of conversion of the lunar neutron counting rate measured by the Lunar Reconnaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) instrument collimated neutron detectors, to water equivalent hydrogen (WEH) in the top approximately 1 m layer of lunar regolith. Polar maps of the Moon’s inferred hydrogen abundance are presented and discussed.

  14. Damaged Goods: Perception of Pornography Addiction as a Mediator Between Religiosity and Relationship Anxiety Surrounding Pornography Use.

    Science.gov (United States)

    Leonhardt, Nathan D; Willoughby, Brian J; Young-Petersen, Bonnie

    2018-01-01

    Recent research on pornography suggests that perception of addiction predicts negative outcomes above and beyond pornography use. Research has also suggested that religious individuals are more likely to perceive themselves to be addicted to pornography, regardless of how often they are actually using pornography. Using a sample of 686 unmarried adults, this study reconciles and expands on previous research by testing perceived addiction to pornography as a mediator between religiosity and relationship anxiety surrounding pornography. Results revealed that pornography use and religiosity were weakly associated with higher relationship anxiety surrounding pornography use, whereas perception of pornography addiction was highly associated with relationship anxiety surrounding pornography use. However, when perception of pornography addiction was inserted as a mediator in a structural equation model, pornography use had a small indirect effect on relationship anxiety surrounding pornography use, and perception of pornography addiction partially mediated the association between religiosity and relationship anxiety surrounding pornography use. By understanding how pornography use, religiosity, and perceived pornography addiction connect to relationship anxiety surrounding pornography use in the early relationship formation stages, we hope to improve the chances of couples successfully addressing the subject of pornography and mitigate difficulties in romantic relationships.

  15. Barrier layer arrangement for conductive layers on silicon substrates

    International Nuclear Information System (INIS)

    Hung, L.S.; Agostinelli, J.A.

    1990-01-01

    This patent describes a circuit element comprised of a silicon substrate and a conductive layer located on the substrate. It is characterized in that the conductive layer consists essentially of a rare earth alkaline earth copper oxide and a barrier layer triad is interposed between the silicon substrate and the conductive layer comprised of a first triad layer located adjacent the silicon substrate consisting essentially of silica, a third triad layer remote from the silicon substrate consisting essentially of a least one Group 4 heavy metal oxide, and a second triad layer interposed between the first and third triad layers consisting essentially of a mixture of silica and at lease one Group 4 heavy metal oxide

  16. Structure and function of the interphotoreceptor matrix surrounding retinal photoreceptor cells.

    Science.gov (United States)

    Ishikawa, Makoto; Sawada, Yu; Yoshitomi, Takeshi

    2015-04-01

    The interphotoreceptor matrix (IPM) is a highly organized structure with interconnected domains surrounding cone and rod photoreceptor cells and extends throughout the subretinal space. Based on known roles of the extracellular matrix in other tissues, the IPM is thought to have several prominent functions including serving as a receptor for growth factors, regulating retinoid transport, participating in cytoskeletal organization in surrounding cells, and regulation of oxygen and nutrient transport. In addition, a number of studies suggest that the IPM also may play a significant role in the etiology of retinal degenerative disorders. In this review, we describe the present knowledge concerning the structure and function of the IPM under physiological and pathological conditions. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Hydraulic Stability of Single-Layer Dolos and Accropode Armour Layers

    DEFF Research Database (Denmark)

    Christensen, M.; Burcharth, H. F.

    1995-01-01

    A new design for Dolos breakwater armour layers is presented: Dolos armour units are placed in a selected geometric pattern in a single layer. A series of model tests have been performed in order to determine the stability of such single-layer Dolos armour layers. The test results are presented...... and compared to the stability formula for the traditional double-layer, randomly placed Dolos armour layer design presented by Burcharth (1992). The results of a series of stability tests performed with Accropode® armour layers is presented and compared to the test results obtained with single-layer Dolos...... armour layers. Run-up and reflection are presented for both single-layer Dolos armour and Accropode armour....

  18. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing.

    Science.gov (United States)

    Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang

    2017-01-03

    Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future.

  19. 3D Room Visualization on Android Based Mobile Device (with Philips™’ Surround Sound Music Player

    Directory of Open Access Journals (Sweden)

    Durio Etgar

    2013-01-01

    Full Text Available This project’s specifically purposed as a demo application, so anyone can get the experience of a surround audio room without having to physically involved to it, with a main idea of generating a 3D surround sound room scenery coupled with surround sound in a handier package, namely, a “Virtual Listen Room”. Virtual Listen Room set a foundation of an innovative visualization that later will be developed and released as one of way of portable advertisement. This application was built inside of Android environment. Android device had been chosen as the implementation target, since it leaves massive development spaces and mostly contains essential components needed on this project, including graphic processor unit (GPU. Graphic manipulation can be done using an embedded programming interface called OpenGL ES, which is planted in all Android devices generally. Further, Android has a Accelerometer Sensor that is needed to be coupled with scene to produce a dynamic movement of the camera. Surround sound effect can be reached with a decoder from Phillips called MPEG Surround Sound Decoder. To sum the whole project, we got an application with sensor-dynamic 3D room visualization coupled with Philips’ Surround Sound Music Player. We can manipulate several room’s properties; Subwoofer location, Room light, and how many speakers inside it, the application itself works well despite facing several performance problems before, later to be solved.

  20. EXPERIMENTAL STUDY ON THE STABILITY OF SURROUNDING ROCK IN TUNNEL BLASTING CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    Hongxian Fu

    2018-04-01

    Full Text Available In this study, criteria and blasting technologies are introduced in order to control the stability of surrounding rock of tunnel built using drill-and-blast safety. The paper is composed of three parts, namely, a blast vibration propagation law in roof surrounding rock in close proximity to tunnel face, two formulae to calculate particle critical vibration velocity of shotcrete and key structural element at the roof of tunnel, and innovative technologies of tunnel blasting. The blast vibration propagation law is the base to control the stability of surrounding rock during tunnel blasting. Based on Morhr-Coulomb criterion and the dynamic analysis, two formulae to calculate the critical particle vibration velocity are proposed. Based on a series of trial blasts using electronic detonators, two innovative blasting technologies are derived. One is the blast holes detonated one by one by using electronic detonator, and another is the blast holes detonated by combining initiation system of electronic detonators and nonel detonators. The use of electronic detonators in tunnel blasting not only leads to a smaller blast vibration but also to a smaller extent of the EDZ (excavation damaged zone.

  1. The role of molecular architecture and layer composition on the properties and performance of CuPc-C6 photovoltaic devices

    International Nuclear Information System (INIS)

    Schultes, S.M.; Sullivan, P.; Heutz, S.; Sanderson, B.M.; Jones, T.S.

    2005-01-01

    We have studied the effects of molecular architecture, co-deposition and annealing on the properties and performance of photovoltaic cells based on copper phthalocyanine (CuPc)-fullerene (C 6 ) heterojunctions. Significant improvements in performance are achieved when mixed CuPc:C 6 layers are incorporated into the device structure due to the creation of an intermolecularly mixed donor (D)-acceptor (A) blend that favours efficient exciton dissociation. We utilise the control afforded by organic molecular beam deposition to show that the mixed-layer composition plays an important role in determining device performance and correlate device efficiency to the morphological and spectroscopic properties of the organic layers. A maximum power conversion efficiency of η p = 1.17% is achieved for devices containing a mixed layer of ratio 75:25 CuPc:C 6 surrounded by thin continuous layers of pure organic material at the electrode interfaces. A structure containing a compositional gradient where the CuPc:C 6 composition is varied from purely D to purely A via three mixed layers of increasing A composition leads to a further improvements in efficiency (η p = 1.36%). Finally, we use thermal annealing to show how structural defects and morphological templating of organic thin films reduces the interfacial area for exciton separation and yields poor device performance

  2. Fractal morphological analysis of Bacteriorhodopsin (bR) layers deposited onto Indium Tin Oxide (ITO) electrodes

    International Nuclear Information System (INIS)

    Vengadesh, P.; Muniandy, S.V.; Majid, W.H. Abd.

    2009-01-01

    Uniform Bacteriorhodopsin layers for the purpose of fabricating Bacteriorhodopsin-based biosensors were prepared by allowing drying of the layers under a constant electric field. To properly observe and understand the 'electric field effect' on the protein Bacteriorhodopsin, the electric and non-electric field influenced Bacteriorhodopsin layers prepared using a manual syringe-deposition method applied onto Indium Tin Oxide electrodes were structurally investigated using Scanning Electron Microscopy and Atomic Force Microscopy. The results yield obvious morphological differences between the electric and non-electric field assisted Bacteriorhodopsin layers and brings to attention the occurrence of the so-called 'coffee-ring' effect in the latter case. We applied stochastic fractal method based on the generalized Cauchy process to describe the morphological features surrounding the void. Fractal dimension is used to characterize the local regularity of the Bacteriorhodopsin clusters and the correlation exponent is used to describe the long-range correlation between the clusters. It is found that the Bacteriorhodopsin protein tends to exhibit with strong spatial correlation in the presence of external electric field compared to in absence of the electric field. Long-range correlation in the morphological feature may be associated to the enhancement of aggregation process of Bacteriorhodopsin protein in the presence of electric field, thereby inhibiting the formation of the so-called 'coffee-ring' effect. As such, the observations discussed in this work suggest some amount of control of surface uniformity when forming layers.

  3. 33 CFR 165.1411 - Security zone; waters surrounding U.S. Forces vessel SBX-1, HI.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security zone; waters surrounding U.S. Forces vessel SBX-1, HI. 165.1411 Section 165.1411 Navigation and Navigable Waters COAST GUARD... § 165.1411 Security zone; waters surrounding U.S. Forces vessel SBX-1, HI. (a) Location. The following...

  4. Diversity of vascular plants of Piestany and surroundings

    International Nuclear Information System (INIS)

    Penzesova, A.; Galusova, T.

    2013-01-01

    In the present work is a summary of the results of floristic research aimed at determining diversity of vascular plants of Piestany and its surroundings. Plant taxa we determined using the designation keys. We have compiled a list of plant species occurring in the monitored area, we evaluated the selected botanical-phytogeographical characteristics of flora, we've put together a list of local protected, endangered and rare species and a list of local invasive and expansive species according to sources. (Authors)

  5. Opportunity's Surroundings After Sol 1820 Drive

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings during the 1,820th to 1,822nd Martian days, or sols, of Opportunity's surface mission (March 7 to 9, 2009). South is at the center; north at both ends. The rover had driven 20.6 meters toward the northwest on Sol 1820 before beginning to take the frames in this view. Tracks from that drive recede southwestward. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and small exposures of lighter-toned bedrock. This view is presented as a cylindrical projection with geometric seam correction.

  6. Lovelock black holes surrounded by quintessence

    Science.gov (United States)

    Ghosh, Sushant G.; Maharaj, Sunil D.; Baboolal, Dharmanand; Lee, Tae-Hun

    2018-02-01

    Lovelock gravity consisting of the dimensionally continued Euler densities is a natural generalization of general relativity to higher dimensions such that equations of motion are still second order, and the theory is free of ghosts. A scalar field with a positive potential that yields an accelerating universe has been termed quintessence. We present exact black hole solutions in D-dimensional Lovelock gravity surrounded by quintessence matter and also perform a detailed thermodynamical study. Further, we find that the mass, entropy and temperature of the black hole are corrected due to the quintessence background. In particular, we find that a phase transition occurs with a divergence of the heat capacity at the critical horizon radius, and that specific heat becomes positive for r_h

  7. The dose distribution surrounding 192Ir and 137Cs seed sources

    International Nuclear Information System (INIS)

    Thomason, C.; Mackie, T.R.; Wisconsin Univ., Madison, WI; Lindstrom, M.J.; Higgins, P.D.

    1991-01-01

    Dose distributions in water were measured using LiF thermoluminescent dosemeters for 192 Ir seed sources with stainless steel and with platinum encapsulation to determine the effect of differing encapsulation. Dose distribution was measured for a 137 Cs seed source. In addition, dose distributions surrounding these sources were calculated using the EGS4 Monte Carlo code and were compared to measured data. The two methods are in good agreement for all three sources. Tables are given describing dose distribution surrounding each source as a function of distance and angle. Specific dose constants were also determined from results of Monte Carlo simulation. This work confirms the use of the EGS4 Monte Carlo code in modelling 192 Ir and 137 Cs seed sources to obtain brachytherapy dose distributions. (author)

  8. Influence of mercury ore roasting sites from 16th and 17th century on the mercury dispersion in surroundings of Idrija

    Directory of Open Access Journals (Sweden)

    Mateja Gosar

    2006-06-01

    Full Text Available In the first decade of mercury mining in Idrija the ore was roasted in piles. After that the ore was roasted for 150 years, until 1652, in earthen vessels at various sites in the woods around Idrija. Up to present 21 localities of ancient roasting sites were established.From the roasting areas Frbej‘ene trate, lying on a wide dolomitic terrace on the left side of the road from Idrija to ^ekovnik, 3 soil profiles are discussed. In all three profiles in the upper, organic matter rich soil horizon very high mercury contents (from 3 to 4,000mg/kg were found. In two profiles the contents rapidly decrease with depth, to about 10- times lower values already at 0.5 m. Below that, the mercury contents decrease slowly, to reach at the 1.3 m depth a few mg/kg metal. In the third profile the upper humic layer is followed downward by an additional humic layer containing very abundant pottery fragments. In this layer the maximum mercury contents were determined, 7.474 mg/kg Hg. The underlying loamy soil contains between 1000 and 2000 mg/kg mercury. Pšenk is one of the larger localities of roasting vessels fragments. It is located at Lačna voda brook below Hlev{e, above its confluence with the Padar ravine. The most abundant pottery remains are found in the upper western margin of the area, just below the way to Hleviše. The considered geochemical profile P{enk contains at the top a 45 cm thick humic layer with 4,000 to 5,000 mg/kg mercury. Deeper the contents fall to around 100 mg/kg mercury. The alculations result in an estimated amount of 1.4 t mercury still present at the P{enk locality, and in about 40 t of mercury on all roasting sites described up to present.The determined mercury contents in soils at old roasting sites are very high, and they surpass all hitherto described localities at Idrija and in the surroundings.

  9. Demands for improvement in working surroundings for older workers in nuclear power plants

    International Nuclear Information System (INIS)

    Shizawa, Yasuhiro; Sakuda, Hiroshi; Ohashi, Tomoki

    2003-01-01

    Workers in three nuclear power plants belonging to Kansai Electric Power Co., Inc. were asked to complete a questionnaire. According to the accident reports, workers aged 50 or older had more accidents than those in 30s or 40s. Moreover, it is predicted that the average age of workers in Japan will increase during the first half of the 21st century. Therefore, investigations into working surroundings in which older workers can better perform their work would be useful. To this end, a questionnaire addressing issues related to working surroundings was conducted among workers in nuclear power plants and the demands for improvement of working surroundings for older workers are summarized. The demands of 'better lighting', 'making things less heavy', and installation of an elevator' were correlated with age, indicating that younger people have a tendency not to notice these issues. Thus, if the authority deciding on improvements in working surroundings is not an older worker, it is especially important that lighting, the weights of objects to be moved, and methods of moving between floors is taken into account. Findings specific to nuclear power plants were also reported. For example, employees who worked in the non-radiation controlled area demanded the installation of air conditioning and those who worked in the radiation controlled area demanded the establishment of a rest area. Further, we have developed a guidebook entitled 'a guidebook supporting workers' cooperation among all generations' to promote cooperation between older and younger workers. (author)

  10. Models and Approaches for Integrating Protected Areas with Their Surroundings: A Review of the Literature

    Directory of Open Access Journals (Sweden)

    Wenwu Du

    2015-06-01

    Full Text Available Several studies have identified threats that originate in areas surrounding protected areas (PAs. While there have been various efforts to integrate PAs with their surroundings, considerable challenges remain. Here we summarize these efforts to date, discuss their effectiveness, and provide recommendations for future research. Based on a broad literature review of theoretical and applied approaches, we have outlined 68 models for balancing conservation and sustainable development in PAs. We comprehensively analyzed 23 of these models for integrating PAs with their surroundings. They were divided into two categories: area-oriented and process-oriented approaches. This review reveals the absolute necessity of combining these two approaches for future conservation and sustainable development of PAs.

  11. Convective Cold Pool Structure and Boundary Layer Recovery in DYNAMO

    Science.gov (United States)

    Savarin, A.; Chen, S. S.; Kerns, B. W.; Lee, C.; Jorgensen, D. P.

    2012-12-01

    One of the key factors controlling convective cloud systems in the Madden-Julian Oscillation (MJO) over the tropical Indian Ocean is the property of the atmospheric boundary layer. Convective downdrafts and precipitation from the cloud systems produce cold pools in the boundary layer, which can inhibit subsequent development of convection. The recovery time is the time it takes for the boundary layer to return to pre convective conditions. It may affect the variability of the convection on various time scales during the initiation of MJO. This study examines the convective cold pool structure and boundary layer recovery using the NOAA WP-3D aircraft observations, include the flight-level, Doppler radar, and GPS dropsonde data, collected during the Dynamics of MJO (DYNAMO) field campaign from November-December 2011. The depth and strength of convective cold pools are defined by the negative buoyancy, which can be computed from the dropsonde data. Convective downdraft can be affected by environmental water vapor due to entrainment. Mid-level dry air observed during the convectively suppressed phase of MJO seems to enhance convective downdraft, making the cold pools stronger and deeper. Recovery of the cold pools in the boundary layer is determined by the strength and depth of the cold pools and also the air-sea heat and moisture fluxes. Given that the water vapor and surface winds are distinct for the convectively active and suppressed phases of MJO over the Indian Ocean, the aircraft data are stratified by the two different large-scale regimes of MJO. Preliminary results show that the strength and depth of the cold pools are inversely correlated with the surrounding mid-level moisture. During the convectively suppressed phase, the recovery time is ~5-20 hours in relative weak wind condition with small air-sea fluxes. The recovery time is generally less than 6 hours during the active phase of MJO with moist mid-levels and stronger surface wind and air-sea fluxes.

  12. Vertical distribution of ozone and VOCs in the low boundary layer of Mexico City

    Directory of Open Access Journals (Sweden)

    E. Velasco

    2008-06-01

    Full Text Available The evolution of ozone (O3 and 13 volatile organic compounds (VOCs in the boundary layer of Mexico City was investigated during 2000–2004 to improve our understanding of the complex interactions between those trace gases and meteorological variables, and their influence on the air quality of a polluted megacity. A tethered balloon, fitted with electrochemical and meteorological sondes, was used to obtain detailed vertical profiles of O3 and meteorological parameters up to 1000 m above ground during part of the diurnal cycle (02:00–18:00 h. VOCs samples were collected up to 200 m by pumping air to canisters with a Teflon tube attached to the tether line. Overall, features of these profiles were found to be consistent with the formation of an upper residual layer during nighttime carrying over a fraction of the O3 from the previous day that contributes to the background concentration in surrounding regions. At the same time the release of heat stored in the urban surface forms a shallow unstable layer close to the ground, where the nocturnal emissions are trapped. After sunrise an O3 balance is determined by photochemical production, entrainment from the upper residual layer and destruction by titration with nitric oxide, delaying the ground-level O3 rise by 2 h. The subsequent evolution of the conductive boundary layer and vertical distribution of pollutants are discussed in terms of the energy balance, the presence of turbulence and the atmospheric stability.

  13. Dynamic stabilization of the magnetic field surrounding the neutron electric dipole moment spectrometer at the Paul Scherrer Institute

    Energy Technology Data Exchange (ETDEWEB)

    Afach, S.; Fertl, M.; Franke, B., E-mail: beatrice.franke@psi.ch, E-mail: bernhard.lauss@psi.ch; Kirch, K. [Paul Scherrer Institute, Villigen (Switzerland); Institute for Particle Physics, Eidgenössische Technische Hochschule, Zürich (Switzerland); Bison, G.; Burri, F.; Chowdhuri, Z.; Daum, M.; Henneck, R.; Lauss, B., E-mail: beatrice.franke@psi.ch, E-mail: bernhard.lauss@psi.ch; Meier, M.; Schmidt-Wellenburg, P.; Zsigmond, G. [Paul Scherrer Institute, Villigen (Switzerland); Bodek, K.; Zejma, J. [Jagellonian University, Cracow (Poland); Grujic, Z.; Kasprzak, M.; Weis, A. [University of Fribourg (Switzerland); Hélaine, V. [Laboratoire de Physique Corpusculaire, Caen (France); Paul Scherrer Institute, Villigen (Switzerland); Koch, H.-C. [Institut für Physik, Johannes-Gutenberg-Universität, Mainz (Germany); University of Fribourg (Switzerland); and others

    2014-08-28

    The Surrounding Field Compensation (SFC) system described in this work is installed around the four-layer Mu-metal magnetic shield of the neutron electric dipole moment spectrometer located at the Paul Scherrer Institute. The SFC system reduces the DC component of the external magnetic field by a factor of about 20. Within a control volume of approximately 2.5 m × 2.5 m × 3 m, disturbances of the magnetic field are attenuated by factors of 5–50 at a bandwidth from 10{sup −3} Hz up to 0.5 Hz, which corresponds to integration times longer than several hundreds of seconds and represent the important timescale for the neutron electric dipole moment measurement. These shielding factors apply to random environmental noise from arbitrary sources. This is achieved via a proportional-integral feedback stabilization system that includes a regularized pseudoinverse matrix of proportionality factors which correlates magnetic field changes at all sensor positions to current changes in the SFC coils.

  14. The analysis of creep characteristics of the surrounding rock of the carbonaceous rock tunnel based on Singh-Mitchell model

    Science.gov (United States)

    Luo, Junhui; Mi, Decai; Ye, Qiongyao; Deng, Shengqiang; Zeng, Fuquan; Zeng, Yongjun

    2018-01-01

    Carbonaceous rock has the characteristics of easy disintegration, softening, swelling and environmental sensitivity, which belongs to soft surrounding rock, and the deformation during excavation and long-term stability of the surrounding rock of carbonaceous rock tunnel are common problems in the construction of carbonaceous rock tunnel. According to the above, the Monitor and measure the displacement, temperature and osmotic pressure of the surrounding carbonaceous rock of the tunnel of Guangxi Hebai highway. Then it based on the obtaining data to study the creep mechanism of surrounding rock using Singh-Mitchell model and predict the deformation of surrounding rock before the tunnel is operation. The results show that the Singh-Mitchell creep model can effectively analyse and predict the deformation development law of surrounding rock of tunnel without considering temperature and osmotic pressure, it can provide reference for the construction of carbonaceous rock tunnel and the measures to prevent and reinforce it..

  15. An Extension of Analysis of Solar-Heated Thermal Wadis to Support Extended-Duration Lunar Exploration

    Science.gov (United States)

    Balasubramaniam, R.; Gokoglu, S. A.; Sacksteder, K. R.; Wegeng, R. S.; Suzuki, N. H.

    2010-01-01

    The realization of the renewed exploration of the Moon presents many technical challenges; among them is the survival of lunar surface assets during periods of darkness when the lunar environment is very cold. Thermal wadis are engineered sources of stored solar energy using modified lunar regolith as a thermal storage mass that can supply energy to protect lightweight robotic rovers or other assets during the lunar night. This paper describes an extension of an earlier analysis of performance of thermal wadis based on the known solar illumination of the Moon and estimates of producible thermal properties of modified lunar regolith. The current analysis has been performed for the lunar equatorial region and validates the formerly used 1-D model by comparison of predictions to those obtained from 2-D and 3-D computations. It includes the effects of a thin dust layer covering the surface of the wadi, and incorporating either water as a phase-change material or aluminum stakes as a high thermal conductivity material into the regolith. The calculations indicate that thermal wadis can provide the desired thermal energy and temperature control for the survival of rovers or other equipment during periods of darkness.

  16. Novel two-step laser ablation and ionization mass spectrometry (2S-LAIMS) of actor-spectator ice layers: Probing chemical composition of D2O ice beneath a H2O ice layer

    International Nuclear Information System (INIS)

    Yang, Rui; Gudipati, Murthy S.

    2014-01-01

    In this work, we report for the first time successful analysis of organic aromatic analytes imbedded in D 2 O ices by novel infrared (IR) laser ablation of a layered non-absorbing D 2 O ice (spectator) containing the analytes and an ablation-active IR-absorbing H 2 O ice layer (actor) without the analyte. With these studies we have opened up a new method for the in situ analysis of solids containing analytes when covered with an IR laser-absorbing layer that can be resonantly ablated. This soft ejection method takes advantage of the tenability of two-step infrared laser ablation and ultraviolet laser ionization mass spectrometry, previously demonstrated in this lab to study chemical reactions of polycyclic aromatic hydrocarbons (PAHs) in cryogenic ices. The IR laser pulse tuned to resonantly excite only the upper H 2 O ice layer (actor) generates a shockwave upon impact. This shockwave penetrates the lower analyte-containing D 2 O ice layer (spectator, a non-absorbing ice that cannot be ablated directly with the wavelength of the IR laser employed) and is reflected back, ejecting the contents of the D 2 O layer into the vacuum where they are intersected by a UV laser for ionization and detection by a time-of-flight mass spectrometer. Thus, energy is transmitted from the laser-absorbing actor layer into the non-absorbing spectator layer resulting its ablation. We found that isotope cross-contamination between layers was negligible. We also did not see any evidence for thermal or collisional chemistry of PAH molecules with H 2 O molecules in the shockwave. We call this “shockwave mediated surface resonance enhanced subsurface ablation” technique as “two-step laser ablation and ionization mass spectrometry of actor-spectator ice layers.” This method has its roots in the well-established MALDI (matrix assisted laser desorption and ionization) method. Our method offers more flexibility to optimize both the processes—ablation and ionization. This new technique

  17. Usefulness of virtual endoscopy for evaluating the relationship between the neck of intracranial aneurysm and surrounding vessels

    International Nuclear Information System (INIS)

    Ikeda, Jota; Horie, Hitoshi; Ishikura, Reiichi; Ando, Kumiko; Morikawa, Tsutomu; Tominaga, Satoru; Nakao, Norio

    2000-01-01

    Application of three-dimensional CT virtual endoscopy for evaluation of the neck and surrounding vessels of intracranial aneurysms. 3D-CT virtual endoscopy (VE) is a reconstructed image using computer processing of 3D-CT images. We evaluated the usefulness of a virtual endoscopy to analyze the relationship between the neck of an intracranial aneurysm and the surrounding vessels. Eight cases with intracranial aneurysms underwent digital subtraction angiography (DSA) and enhanced CT with transarterial infusion of contrast media. 3D-CT angiogram (3D-CTA) and virtual endoscopic images were obtained from the CT image data sets using surface rendering method. The relationship between the neck of an intracranial aneurysm and the surrounding vessels was confirmed by operation or IVR. VE clearly visualized the neck and surrounding vessels in all cases. Operation/IVR findings agreed with the virtual endoscopic findings in all cases, but not with the DSA or 3D-CTA findings in 4 and 2 cases, respectively. 3D-CTA and virtual endoscopy clearly visualizes the relationship between cerebral aneurysms and surrounding vessels, which is useful for determining IVR procedures. (author)

  18. Processes for multi-layer devices utilizing layer transfer

    Science.gov (United States)

    Nielson, Gregory N; Sanchez, Carlos Anthony; Tauke-Pedretti, Anna; Kim, Bongsang; Cederberg, Jeffrey; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2015-02-03

    A method includes forming a release layer over a donor substrate. A plurality of devices made of a first semiconductor material are formed over the release layer. A first dielectric layer is formed over the plurality of devices such that all exposed surfaces of the plurality of devices are covered by the first dielectric layer. The plurality of devices are chemically attached to a receiving device made of a second semiconductor material different than the first semiconductor material, the receiving device having a receiving substrate attached to a surface of the receiving device opposite the plurality of devices. The release layer is etched to release the donor substrate from the plurality of devices. A second dielectric layer is applied over the plurality of devices and the receiving device to mechanically attach the plurality of devices to the receiving device.

  19. Recent advances in pericentriolar material organization: ordered layers and scaffolding gels.

    Science.gov (United States)

    Fry, Andrew M; Sampson, Josephina; Shak, Caroline; Shackleton, Sue

    2017-01-01

    The centrosome is an unusual organelle that lacks a surrounding membrane, raising the question of what limits its size and shape. Moreover, while electron microscopy (EM) has provided a detailed view of centriole architecture, there has been limited understanding of how the second major component of centrosomes, the pericentriolar material (PCM), is organized. Here, we summarize exciting recent findings from super-resolution fluorescence imaging, structural biology, and biochemical reconstitution that together reveal the presence of ordered layers and complex gel-like scaffolds in the PCM. Moreover, we discuss how this is leading to a better understanding of the process of microtubule nucleation, how alterations in PCM size are regulated in cycling and differentiated cells, and why mutations in PCM components lead to specific human pathologies.

  20. A spherically-shaped PZT thin film ultrasonic transducer with an acoustic impedance gradient matching layer based on a micromachined periodically structured flexible substrate.

    Science.gov (United States)

    Feng, Guo-Hua; Liu, Wei-Fan

    2013-10-09

    This paper presents the microfabrication of an acoustic impedance gradient matching layer on a spherically-shaped piezoelectric ultrasonic transducer. The acoustic matching layer can be designed to achieve higher acoustic energy transmission and operating bandwidth. Also included in this paper are a theoretical analysis of the device design and a micromachining technique to produce the novel transducer. Based on a design of a lead titanium zirconium (PZT) micropillar array, the constructed gradient acoustic matching layer has much better acoustic transmission efficiency within a 20-50 MHz operation range compared to a matching layer with a conventional quarter-wavelength thickness Parylene deposition. To construct the transducer, periodic microcavities are built on a flexible copper sheet, and then the sheet forms a designed curvature with a ball shaping. After PZT slurry deposition, the constructed PZT micropillar array is released onto a curved thin PZT layer. Following Parylene conformal coating on the processed PZT micropillars, the PZT micropillars and the surrounding Parylene comprise a matching layer with gradient acoustic impedance. By using the proposed technique, the fabricated transducer achieves a center frequency of 26 MHz and a -6 dB bandwidth of approximately 65%.

  1. One Japanese case on taxation surrounding foreign trust

    OpenAIRE

    SUZUKI, Yuya

    2015-01-01

    Taxation surrounding trust at cross-border situation is paid attention to byworldwide basis. Japan is not exception. According to recent Japanesejurisprudence, where a trust had been established in accordance with State law ofNew Jersey, the U.S., it was disputed whether or not the act settling that trust fellwithin “shintaku koui (an act of trust)” and one of the related members, who had beena minor child at that time, fell within “jyueki sha (beneficiary)” under JapaneseInheritance Tax Act....

  2. The cerebellar Golgi cell and spatiotemporal organization of granular layer activity

    Directory of Open Access Journals (Sweden)

    Egidio eD‘Angelo

    2013-05-01

    Full Text Available The cerebellar granular layer has been suggested to perform a complex spatiotemporal reconfiguration of incoming mossy fiber signals. Central to this role is the inhibitory action exerted by Golgi cells over granule cells: Golgi cells inhibit granule cells through double feedforward and feedback inhibitory loops and generate a broad lateral inhibition that extends beyond the afferent synaptic field. This characteristic connectivity has recently been investigated in great detail and been correlated with specific functional properties of the neuron. These include theta-frequency pacemaking, network entrainment into coherent oscillations and phase resetting. Important advances have also been made in terms of determining the membrane and synaptic properties of the neuron, and clarifying the mechanisms of activation by input bursts. Moreover, voltage sensitive dye imaging and multi-electrode array recordings, combined with mathematical simulations based on realistic computational models, have improved our understanding of the impact of Golgi cell activity on granular layer circuit computations. These investigations have highlighted the critical role of Golgi cells in: generating dense clusters of granule cell activity organized in center-surround structures, implementing combinatorial operations on multiple mossy fiber inputs, regulating transmission gain and cut-off frequency, controlling spike timing and burst transmission, and determining the sign, intensity and extension of long-term synaptic plasticity at the mossy fiber-granule cell relay. This review considers recent advances in the field, highlighting the functional implications of Golgi cells for granular layer network computation and indicating new challenges for cerebellar research.

  3. The bird species of pandam wildlife park and the surrounding ...

    African Journals Online (AJOL)

    The effect of time of day as well as vegetation variables on bird species diversity in the park and surrounding farmlands was also conducted. 10 transects in each study site were surveyed twice between during the dry season and vegetation variables (trees, fingers, finger-rings two- hand, grazing, farming, canopy cover, ...

  4. Lovelock black holes surrounded by quintessence

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sushant G. [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa); Centre for Theoretical Physics, Multidisciplinary Centre for Advanced Research and Studies (MCARS), New Delhi (India); Maharaj, Sunil D.; Baboolal, Dharmanand; Lee, Tae-Hun [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa)

    2018-02-15

    Lovelock gravity consisting of the dimensionally continued Euler densities is a natural generalization of general relativity to higher dimensions such that equations of motion are still second order, and the theory is free of ghosts. A scalar field with a positive potential that yields an accelerating universe has been termed quintessence. We present exact black hole solutions in D-dimensional Lovelock gravity surrounded by quintessence matter and also perform a detailed thermodynamical study. Further, we find that the mass, entropy and temperature of the black hole are corrected due to the quintessence background. In particular, we find that a phase transition occurs with a divergence of the heat capacity at the critical horizon radius, and that specific heat becomes positive for r{sub h} < r{sub c} allowing the black hole to become thermodynamically stable. (orig.)

  5. Surrounding land cover types as predictors of palustrine wetland vegetation quality in conterminous USA

    Science.gov (United States)

    Stapanian, Martin A.; Gara, Brian; Schumacher, William

    2018-01-01

    The loss of wetland habitats and their often-unique biological communities is a major environmental concern. We examined vegetation data obtained from 380 wetlands sampled in a statistical survey of wetlands in the USA. Our goal was to identify which surrounding land cover types best predict two indices of vegetation quality in wetlands at the regional scale. We considered palustrine wetlands in four regions (Coastal Plains, North Central East, Interior Plains, and West) in which the dominant vegetation was emergent, forested, or scrub-shrub. For each wetland, we calculated weighted proportions of eight land cover types surrounding the area in which vegetation was assessed, in four zones radiating from the edge of the assessment area to 2 km. Using Akaike's Information Criterion, we determined the best 1-, 2- and 3-predictor models of the two indices, using the weighted proportions of the land cover types as potential predictors. Mean values of the two indices were generally higher in the North Central East and Coastal Plains than the other regions for forested and emergent wetlands. In nearly all cases, the best predictors of the indices were not the dominant surrounding land cover types. Overall, proportions of forest (positive effect) and agriculture (negative effect) surrounding the assessment area were the best predictors of the two indices. One or both of these variables were included as predictors in 65 of the 72 models supported by the data. Wetlands surrounding the assessment area had a positive effect on the indices, and ranked third (33%) among the predictors included in supported models. Development had a negative effect on the indices and was included in only 28% of supported models. These results can be used to develop regional management plans for wetlands, such as creating forest buffers around wetlands, or to conserve zones between wetlands to increase habitat connectivity.

  6. S-Layer Based Bio-Imprinting - Synthetic S-Layer Polymers

    Science.gov (United States)

    2015-07-09

    AFRL-OSR-VA-TR-2015-0161 S-Layer Based Bio- Imprinting - Synthetic S-Layer Polymers Dietmar Pum ZENTRUM FUER NANOBIOTECHNOLOGIE Final Report 07/09...COVERED (From - To)      01-06-2012 to 31-05-2015 4.  TITLE AND SUBTITLE S-Layer Based Bio- Imprinting - Synthetic S-Layer Polymers 5a.  CONTRACT...technology for the fabrication of nano patterned thin film imprints by using functional S-layer protein arrays as templates. The unique feature of

  7. The Application of Layer Theory to Design: The Control Layer

    Science.gov (United States)

    Gibbons, Andrew S.; Langton, Matthew B.

    2016-01-01

    A theory of design layers proposed by Gibbons ("An Architectural Approach to Instructional Design." Routledge, New York, 2014) asserts that each layer of an instructional design is related to a body of theory closely associated with the concerns of that particular layer. This study focuses on one layer, the control layer, examining…

  8. A comparison of fossilized dinosaur bone and the surrounding rock using PIXE analysis

    International Nuclear Information System (INIS)

    Neilsen, D.W.; Rees, L.B.; Mangelson, N.F.; Hill, M.W.

    1992-01-01

    Six samples of fossilized dinosaur bone and surrounding rock were analyzed by PIXE to investigate general relations between the bone and rock. The powdered samples were brought into an acid solution by a lithium metaborate fusion process. The data were analyzed with chemometric methods to successfully differentiate the bone samples from the complementary rock samples. The Sr/Ca ratio is consistently higher in fossilized bone than the surrounding rock. Ba, Y and U, when found in the rock, appear in significantly higher concentrations in the bone. S and Ti, elements commonly found in rock samples, are not found in the bone samples. (author)

  9. Earthquakes in Switzerland and surrounding regions during 2007

    Energy Technology Data Exchange (ETDEWEB)

    Baer, M.; Deichmann, N.; Clinton, J.; Husen, S.; Faeh, D.; Giardini, D.; Kaestli, P.; Kradolfer, U.; Wiemer, S

    2008-12-15

    This report of the Swiss Seismological Service summarizes the seismic activity in Switzerland and surrounding regions during 2007. During this period, 531 earthquakes and 92 quarry blasts were detected and located in the region under consideration. Of these earthquakes, 30 are aftershocks of the stimulation of a proposed geothermal reservoir beneath the city of Basel in December of 2006. With 20 events with {mu}{sub {iota}} {>=} 2.5, four of which were artificially induced, the seismic activity in the year 2007 was far below the average over the previous 32 years. (author)

  10. Earthquakes in Switzerland and surrounding regions during 2007

    International Nuclear Information System (INIS)

    Baer, M.; Deichmann, N.; Clinton, J.; Husen, S.; Faeh, D.; Giardini, D.; Kaestli, P.; Kradolfer, U.; Wiemer, S.

    2008-01-01

    This report of the Swiss Seismological Service summarizes the seismic activity in Switzerland and surrounding regions during 2007. During this period, 531 earthquakes and 92 quarry blasts were detected and located in the region under consideration. Of these earthquakes, 30 are aftershocks of the stimulation of a proposed geothermal reservoir beneath the city of Basel in December of 2006. With 20 events with Μ ι ≥ 2.5, four of which were artificially induced, the seismic activity in the year 2007 was far below the average over the previous 32 years. (author)

  11. Identification of mineral dust layers in high alpine snow packs

    Science.gov (United States)

    Greilinger, Marion; Kau, Daniela; Schauer, Gerhard; Kasper-Giebl, Anne

    2017-04-01

    Deserts serve as a major source for aerosols in the atmosphere with mineral dust as a main contributor to primary aerosol mass. Especially the Sahara, the largest desert in the world, contributes roughly half of the primarily emitted aerosol mass found in the atmosphere [1]. The eroded Saharan dust is episodically transported over thousands of kilometers with synoptic wind patterns towards Europe [2] and reaches Austria about 20 to 30 days per year. Once the Saharan dust is removed from the atmosphere via dry or wet deposition processes, the chemical composition of the precipitation or the affected environment is significantly changed. Saharan dust serves on the one hand as high ionic input leading to an increase of ionic species such as calcium, magnesium or sulfate. On the other hand Saharan dust provides a high alkaline input neutralizing acidic components and causing the pH to increase [3]. Based on these changes in the ion composition, the pH and cross plots of the ion and conductivity balance [4] we tried to develop a method to identify Saharan dust layers in high alpine snow packs. We investigated seasonal snow packs of two high alpine sampling sites situated on the surrounding glaciers of the meteorological Sonnblick observatory serving as a global GAW (Global Atmospheric Watch) station located in the National Park Hohe Tauern in the Austrian Alps. Samples with 10 cm resolution representing the whole winter accumulation period were taken just prior to the start of snow melt at the end of April 2016. In both snow packs two layers with clearly different chemical behavior were observed. In comparison with the aerosol data from the Sonnblick observatory, these layers could be clearly identified as Saharan dust layers. Identified Saharan dust layers in the snow pack allow calculations of the ecological impact of deposited ions, with and without Saharan dust, during snow melt. Furthermore the chemical characteristics for the identification of Saharan dust layers

  12. Layer-by-layer cell membrane assembly

    Science.gov (United States)

    Matosevic, Sandro; Paegel, Brian M.

    2013-11-01

    Eukaryotic subcellular membrane systems, such as the nuclear envelope or endoplasmic reticulum, present a rich array of architecturally and compositionally complex supramolecular targets that are as yet inaccessible. Here we describe layer-by-layer phospholipid membrane assembly on microfluidic droplets, a route to structures with defined compositional asymmetry and lamellarity. Starting with phospholipid-stabilized water-in-oil droplets trapped in a static droplet array, lipid monolayer deposition proceeds as oil/water-phase boundaries pass over the droplets. Unilamellar vesicles assembled layer-by-layer support functional insertion both of purified and of in situ expressed membrane proteins. Synthesis and chemical probing of asymmetric unilamellar and double-bilayer vesicles demonstrate the programmability of both membrane lamellarity and lipid-leaflet composition during assembly. The immobilized vesicle arrays are a pragmatic experimental platform for biophysical studies of membranes and their associated proteins, particularly complexes that assemble and function in multilamellar contexts in vivo.

  13. Assembly of 1D nanofibers into a 2D bi-layered composite nanofibrous film with different functionalities at the two layers via layer-by-layer electrospinning.

    Science.gov (United States)

    Wang, Zijiao; Ma, Qianli; Dong, Xiangting; Li, Dan; Xi, Xue; Yu, Wensheng; Wang, Jinxian; Liu, Guixia

    2016-12-21

    A two-dimensional (2D) bi-layered composite nanofibrous film assembled by one-dimensional (1D) nanofibers with trifunctionality of electrical conduction, magnetism and photoluminescence has been successfully fabricated by layer-by-layer electrospinning. The composite film consists of a polyaniline (PANI)/Fe 3 O 4 nanoparticle (NP)/polyacrylonitrile (PAN) tuned electrical-magnetic bifunctional layer on one side and a Tb(TTA) 3 (TPPO) 2 /polyvinylpyrrolidone (PVP) photoluminescent layer on the other side, and the two layers are tightly combined face-to-face together into the novel bi-layered composite film of trifunctionality. The brand-new film has totally different characteristics at the double layers. The electrical conductivity and magnetism of the electrical-magnetic bifunctional layer can be, respectively, tunable via modulating the PANI and Fe 3 O 4 NP contents, and the highest electrical conductivity can reach up to the order of 10 -2 S cm -1 , and predominant intense green emission at 545 nm is obviously observed in the photoluminescent layer under the excitation of 357 nm single-wavelength ultraviolet light. More importantly, the luminescence intensity of the photoluminescent layer remains almost unaffected by the electrical-magnetic bifunctional layer because the photoluminescent materials have been successfully isolated from dark-colored PANI and Fe 3 O 4 NPs. By comparing with the counterpart single-layered composite nanofibrous film, it is found that the bi-layered composite nanofibrous film has better performance. The novel bi-layered composite nanofibrous film with trifunctionality has potential in the fields of nanodevices, molecular electronics and biomedicine. Furthermore, the design conception and fabrication technique for the bi-layered multifunctional film provide a new and facile strategy towards other films of multifunctionality.

  14. Gastroesophageal anastomosis: single-layer versus double-layer technique

    International Nuclear Information System (INIS)

    Aslam, V.A.; Bilal, A.; Khan, A.; Ahmed, M.

    2008-01-01

    Considerable controversy exists regarding the optimum technique for gastroesophageal anastomosis. Double layer technique has long been considered important for safe healing but there is evidence that single layer technique is also safe and can be performed in much shorter time. The purpose of this study was to compare the outcome of single layer and double layer techniques for gastroesophageal anastomosis. A prospective randomized study was conducted in cardiothoracic unit, Lady Reading Hospital from Jan 2006 to Jan 2008. Fifty patients with oesophageal carcinoma undergoing subtotal oesophagectomy were randomized to have the anastomosis by single layer continuous or double layer continuous technique (group A (n=24) and B (n=26) respectively). The demographic data, operative and anastomosis time, postoperative complications and hospital mortality were recorded on a proforma and analyzed on SPSS 10. There was no significant difference between group A and B in terms of age, gender, postoperative complications and duration of hospital stay. Anastomotic leak occurred in 4.2% patients in group A and 7.7% in group B (p=NS). Mean anastomosis time was 10.04 minutes in group A and 19.2 minutes in group B (p=0.0001). Mean operative time was 163.83 minutes and 170.96 minutes in group A and B respectively. Overall hospital mortality was 2%; no deaths occurred due to anastomotic leak. Single layer continuous technique is equally safe and can be performed in shorter time and at a lower cost than the double layer technique. (author)

  15. Analysis of photonic band gaps in two-dimensional photonic crystals with rods covered by a thin interfacial layer

    International Nuclear Information System (INIS)

    Trifonov, T.; Marsal, L.F.; Pallares, J.; Rodriguez, A.; Alcubilla, R.

    2004-01-01

    We investigate different aspects of the absolute photonic band gap (PBG) formation in two-dimensional photonic structures consisting of rods covered with a thin dielectric film. Specifically, triangular and honeycomb lattices in both complementary arrangements, i.e., air rods drilled in silicon matrix and silicon rods in air, are studied. We consider that the rods are formed of a dielectric core (silicon or air) surrounded by a cladding layer of silicon dioxide (SiO 2 ), silicon nitride (Si 3 N 4 ), or germanium (Ge). Such photonic lattices present absolute photonic band gaps, and we study the evolution of these gaps as functions of the cladding material and thickness. Our results show that in the case of air rods in dielectric media the existence of dielectric cladding reduces the absolute gap width and may cause complete closure of the gap if thick layers are considered. For the case of dielectric rods in air, however, the existence of a cladding layer can be advantageous and larger absolute PBG's can be achieved

  16. Effects of Spacecraft Landings on the Moon

    Science.gov (United States)

    Metzger, Philip T.; Lane, John E.

    2013-01-01

    The rocket exhaust of spacecraft landing on the Moon causes a number of observable effects that need to be quantified, including: disturbance of the regolith and volatiles at the landing site; damage to surrounding hardware such as the historic Apollo sites through the impingement of high-velocity ejecta; and levitation of dust after engine cutoff through as-yet unconfirmed mechanisms. While often harmful, these effects also beneficially provide insight into lunar geology and physics. Some of the research results from the past 10 years is summarized and reviewed here.

  17. Methods of Assessing Noise Nuisance of Real Estate Surroundings

    Directory of Open Access Journals (Sweden)

    Szopińska Kinga

    2016-03-01

    Full Text Available Testing what factors create the market value of real estate is key information when preparing property valuations as well as other opinions and professional evaluations on the basis of which court verdicts or administrative decisions are made. One of the factors influencing the value of some real estate is the level of noise present in the surroundings, which can lead to the occurrence of noise nuisance negatively affecting social relations.

  18. Deep Space 2: The Mars Microprobe Mission

    Science.gov (United States)

    Smrekar, Suzanne; Catling, David; Lorenz, Ralph; Magalhães, Julio; Moersch, Jeffrey; Morgan, Paul; Murray, Bruce; Presley-Holloway, Marsha; Yen, Albert; Zent, Aaron; Blaney, Diana

    The Mars Microprobe Mission will be the second of the New Millennium Program's technology development missions to planetary bodies. The mission consists of two penetrators that weigh 2.4 kg each and are being carried as a piggyback payload on the Mars Polar Lander cruise ring. The spacecraft arrive at Mars on December 3, 1999. The two identical penetrators will impact the surface at ~190 m/s and penetrate up to 0.6 m. They will land within 1 to 10 km of each other and ~50 km from the Polar Lander on the south polar layered terrain. The primary objective of the mission is to demonstrate technologies that will enable future science missions and, in particular, network science missions. A secondary goal is to acquire science data. A subsurface evolved water experiment and a thermal conductivity experiment will estimate the water content and thermal properties of the regolith. The atmospheric density, pressure, and temperature will be derived using descent deceleration data. Impact accelerometer data will be used to determine the depth of penetration, the hardness of the regolith, and the presence or absence of 10 cm scale layers.

  19. Accumulation and circulation of gaseous radon between lunar fines

    International Nuclear Information System (INIS)

    Lambert, G.; Bristeau, P.; CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette; Le Roulley, J.C.

    1975-01-01

    During the lunar night, the temperature of the regolith upper layer is lower than the radon freezing point. Thus radon atoms coming from the interior can be trapped at the surface of the cold lunar fines. The 222 Rn daughter products, 210 Pb and 210 Po, are embedded in a very thin layer at the surface of the grains. It is therefore possible, by spectrometry, to distinguish between the continuum due to uranium, thorium (and decay products) homogeneously distributed and the narrow peak at 5.3MeV, due to an excess of 210 Pb. The mean day-and-night concentration was about 3.5x10 3 atoms of intergranular 222 Rn per g of superficial fines, corresponding to a continuous flow of 3 atoms per minute and per cm 2 of soil. To account for such a flow of radon atoms moving in a random walk from a 6 meter source depth, the pore size of the regolith should be 60μ. On the other hand, the involved changes in the isotopic composition of the radiogenic lead remain less than 1% [fr

  20. Analytical solution for static and dynamic analysis of magnetically affected viscoelastic orthotropic double-layered graphene sheets resting on viscoelastic foundation

    Science.gov (United States)

    Jalaei, M. H.; Arani, A. Ghorbanpour

    2018-02-01

    By considering the small scale effect based on the nonlocal Eringen's theory, the static and dynamic analysis of viscoelastic orthotropic double-layered graphene sheets subjected to longitudinal magnetic field and mechanical load is investigated analytically. For this objective, first order shear deformation theory (FSDT) is proposed. The surrounding medium is simulated by visco-Pasternak foundation model in which damping, normal and transverse shear loads are taken into account. The governing equations of motion are obtained via energy method and Hamilton's principle which are then solved analytically by means of Navier's approach and Laplace inversion technique in the space and time domains, respectively. Through various parametric studies, the influences of the nonlocal parameter, structural damping, van der Waals (vdW) interaction, stiffness and damping coefficient of the foundation, magnetic parameter, aspect ratio and length to thickness ratio on the static and dynamic response of the nanoplates are examined. The results depict that when the vdW interaction is considered to be zero, the upper layer deflection reaches a maximum point whereas the lower layer deflection becomes zero. In addition, it is observed that with growing the vdW interaction, the effect of magnetic field on the deflection of the lower layer increases while this effect reduces for the upper layer deflection.

  1. CT after gastrectomy for gastric carcinoma : significance of soft tissue surrounding the celiac axis

    International Nuclear Information System (INIS)

    Baek, Seung Yon; Kim, Hae Young; Choi, Hye Young; Lee, Sun Wha; Ko, Eun Joo; Lee, Myung Sook

    1997-01-01

    To evaluate whether soft tissue surrounding the celiac axis, as seen on abdominal CT imaging after gastrectomy for gastric carcinoma, should be considered as the recurrence of carcinoma or postoperative change. One hundred and forty-one abdominal CT examinations of 71 patients who had undergone subtotal or total gastrectomy for gastric carcinoma were included in our study. Conventional CT scans were obtained with 1cm thickness and interval from the diaphragm to the kidneys after contrast enhancement. It was considered that carcinoma had not recurred if findings were negative on UGI series, endoscopy with biopsy and a normal level of carcinoembryonic antigen except for soft tissue surrounding the celiac axis on abdominal CT. We then divided subjects into a recurrence group(N=20) and normal group(N=51) and on initial follow-up CT(FU-CT), analyzed the incidence, margin, shape, extent, degree and pattern of attenuation of the soft tissue surrounding the celiac axis in both groups. Since the second FU-CT examination, we observed changes in the soft tissue surrounding the celiac axis. On initial follow-up CT, at mean 308 days after surgery, fifty-five percent(39/71) of total patients (70%(14/20) of the recurrence group and 49%(25/51) of the normal group) showed soft tissue surrounding the celiac axis. The margin was distinct in 12(86%) of the recurrence group and indistinct in 21(84%) of the normal group(p<0.001). Twelve (86%) of the recurrence group showed a nodular or confluent nodular shape and 21(84%) of the normal group showed a permeative shape (p<0.001). Extent was unilateral in eight (57%) of the recurrence group and bilateral in 16(64%) of the normal group. Attenuation was similar to that of the spleen and muscle in seven(50%) of the recurrence group and was similar to that of muscle in 18(72%) of the normal group. The pattern of attenuation was homogeneous in 13(93%) of the recurrence group and 21(84%) of the normal group. There was no significant difference in

  2. Neutron diffusion approximation solution for the the three layer borehole cylindrical geometry. Pt. 1. Theoretical description

    International Nuclear Information System (INIS)

    Czubek, J.A.; Woznicka, U.

    1997-01-01

    A solution of the neutron diffusion equation is given for a three layer cylindrical coaxial geometry. The calculation is performed in two neutron-energy groups which distinguish the thermal and epithermal neutron fluxes in the media irradiated by the fast point neutron source. The aim of the calculation is to define the neutron slowing down and migration lengths which are observed at a given point of the system. Generally, the slowing down and migration lengths are defined for an infinite homogenous medium (irradiated by the point neutron source) as a quotient of the neutron flux moment of the (2n + 2)-order to the moment of the 2n-order. Czubek(1992) introduced in the same manner the apparent neutron slowing down length and the apparent migration length for a given multi-region cylindrical geometry. The solutions in the present paper are applied to the method of semi-empirical calibration of neutron well-logging tools. The three-region cylindrical geometry corresponds to the borehole of radius R 1 surrounded by the intermediate region (e.g. mud cake) of thickness (R 2 -R 1 ) and finally surrounded by the geological formation which spreads from R 2 up to infinity. The cylinders of an infinite length are considered. The paper gives detailed solutions for the 0-th, 2-nd and 4-th neutron moments of the neutron fluxes for each neutron energy group and in each cylindrical layer. A comprehensive list of the solutions for integrals containing Bessel functions or their derivatives, which are absent in common tables of integrals, is also included. (author)

  3. Manipulation of Superparamagnetic Beads on Patterned Exchange-Bias Layer Systems for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Arno Ehresmann

    2015-11-01

    Full Text Available A technology platform based on a remotely controlled and stepwise transport of an array arrangement of superparamagnetic beads (SPB for efficient molecular uptake, delivery and accumulation in the context of highly specific and sensitive analyte molecule detection for the application in lab-on-a-chip devices is presented. The near-surface transport of SPBs is realized via the dynamic transformation of the SPBs’ magnetic potential energy landscape above a magnetically stripe patterned Exchange-Bias (EB thin film layer systems due to the application of sub-mT external magnetic field pulses. In this concept, the SPB velocity is dramatically influenced by the magnitude and gradient of the magnetic field landscape (MFL above the magnetically stripe patterned EB substrate, the SPB to substrate distance, the magnetic properties of both the SPBs and the EB layer system, respectively, as well as by the properties of the external magnetic field pulses and the surrounding fluid. The focus of this review is laid on the specific MFL design in EB layer systems via light-ion bombardment induced magnetic patterning (IBMP. A numerical approach is introduced for the theoretical description of the MFL in comparison to experimental characterization via scanning Hall probe microscopy. The SPB transport mechanism will be outlined in terms of the dynamic interplay between the EB substrate’s MFL and the pulse scheme of the external magnetic field.

  4. Manipulation of Superparamagnetic Beads on Patterned Exchange-Bias Layer Systems for Biosensing Applications.

    Science.gov (United States)

    Ehresmann, Arno; Koch, Iris; Holzinger, Dennis

    2015-11-13

    A technology platform based on a remotely controlled and stepwise transport of an array arrangement of superparamagnetic beads (SPB) for efficient molecular uptake, delivery and accumulation in the context of highly specific and sensitive analyte molecule detection for the application in lab-on-a-chip devices is presented. The near-surface transport of SPBs is realized via the dynamic transformation of the SPBs' magnetic potential energy landscape above a magnetically stripe patterned Exchange-Bias (EB) thin film layer systems due to the application of sub-mT external magnetic field pulses. In this concept, the SPB velocity is dramatically influenced by the magnitude and gradient of the magnetic field landscape (MFL) above the magnetically stripe patterned EB substrate, the SPB to substrate distance, the magnetic properties of both the SPBs and the EB layer system, respectively, as well as by the properties of the external magnetic field pulses and the surrounding fluid. The focus of this review is laid on the specific MFL design in EB layer systems via light-ion bombardment induced magnetic patterning (IBMP). A numerical approach is introduced for the theoretical description of the MFL in comparison to experimental characterization via scanning Hall probe microscopy. The SPB transport mechanism will be outlined in terms of the dynamic interplay between the EB substrate's MFL and the pulse scheme of the external magnetic field.

  5. Evaluation of white matter hyperintensities and retinal fiber layer, ganglion cell layer, inner-plexiform layer, and choroidal layer in migraine patients.

    Science.gov (United States)

    Tak, Ali Zeynel Abidin; Sengul, Yıldızhan; Bilak, Şemsettin

    2018-03-01

    The aim of our study is to assess retinal nerve fiber layer (RNFL), the ganglion cell layer (GCL), inner-plexiform layer (IPL), and choroidal layer in migraine patients with white matter lesion (WML) or without WML, using spectral domain optical coherence tomography (OCT). To our study, 77 migraine patients who are diagnosed with migraine in accordance to the International Classification of Headache Disorders (ICHD)-3 beta and 43 healthy control are included. In accordance to cranial MRI, migraine patients are divided into two groups as those who have white matter lesions (39 patients), and those who do not have a lesion (38 patients). OCT was performed for participants. The average age of participants was comparable. The RNFL average thickness parameter in the migraine group was significantly lower than in the control group (p layer measuring scales. The proofs showing that affected retinal nerve fiber layer are increased in migraine patients. However, it is not known whether this may affect other layers of retina, or whether there is a correlation between affected retinal structures and white matter lesions. In our study, we found thinner RNFL in migraine patients when we compared with controls but IPL, GCL, and choroid layer values were similar between each patient groups and controls. Also, all parameters were similar between patients with WML and without WML. Studies in this regard are required.

  6. The influence of thickness and viscosity of liquid annular layer on dynamic behavior of cylindrical shell

    International Nuclear Information System (INIS)

    Kuzelka, V.; Neuman, F.; Pecinka, L.

    1983-01-01

    This paper presents the results of experiments concerning the influence of thickness and viscosity of inner and outer annular layers of a liquid on the dynamic behaviour of a cylindrical shell, and a mathematical model of the problem based on acoustic approach is formulated to compare experimental and theoretical results. The measurements of natural frequencies and of damping ratios of a cylindrical shell were carried out with water and with two kinds of mineral oils of different viscosities. The results point towards the fact that with a decreasing thickness of the liquid layer the influence of the added liquid mass increases and the frequency drop is higher. On the other hand there is a certain relative magnitude of the surrounding medium at which the system behaves as an unlimited one. This magnitude depends on the mode order. The statement that the lesser is the thickness of the annular liquid layer the more important is its influence and the larger is the added liquid mass holds up to a certain thickness of the gap, comparable with the thickness of the thin liquid layer on the surface of the shell in which there has not yet been formed a transverse wave. The flowing in this layer is not potential. The governing equation for the description of this problem then is not Euler equation but Stokes's and Helmholtz's theorems for whirling motion. The thickness of the surface layer depends on the viscosity of the liquid. The frequencies measured for the least gap for water were well identified, while for both the mineral oils were chaotical, without any conspicuous resonances. (orig./GL)

  7. An improved model for surround suppression by steerable filters and multilevel inhibition with application to contour detection

    NARCIS (Netherlands)

    Papari, Giuseppe; Petkov, Nicolai

    Psychophysical and neurophysiological evidence about the human visual system shows the existence of a mechanism, called surround suppression, which inhibits the response of an edge in the presence of other similar edges in the surroundings. A simple computational model of this phenomenon has been

  8. Ornitocenosis of the Sursky pond and its close the surroundings

    International Nuclear Information System (INIS)

    Lacko, J.; Ambrus, B.; Fupso, A.

    2013-01-01

    The paper focuses on the qualitative-quantitative research of fishpond bird community of the Sursky and its surroundings as well as on analysis of seasonal population dynamics of the avifauna as well as on placing the determined species into environmental groups and guilds. Another object is the comparison of our results with recent work focused on research of bird communities on this site.

  9. Experiences during the decontamination process of areas surrounding to Fukushima

    International Nuclear Information System (INIS)

    Molina, G.

    2014-10-01

    In this work the experience gained during the decontamination of areas surrounding to Fukushima NPP, rugged during the earthquake and tsunami in 2011 and caused the contamination with fission products in these areas is described. Actions taken by the Japanese government are reported and some of the techniques used, the intervention levels and the progress made and disposal techniques considered are presented. (Author)

  10. Isoperimetric inequalities in surround system and space science

    OpenAIRE

    JiaJin Wen; Jun Yuan; ShanHe Wu

    2016-01-01

    Abstract By means of the algebraic, analysis, convex geometry, computer, and inequality theories we establish the following isoperimetric inequality in the centered 2-surround system S ( 2 ) { P , Γ , l } $S^{(2)} \\{P,\\varGamma ,l \\}$ : ( 1 | Γ | ∮ Γ r ¯ P p ) 1 / p ⩽ | Γ | 4 π sin l π | Γ | [ csc l π | Γ | + cot 2 l π | Γ | ln ( tan l π | Γ | + sec l π | Γ | ) ] , ∀ p ⩽ − 2 . $$\\begin{aligned}& \\biggl(\\frac{1}{|\\varGamma |} \\oint_{\\varGamma }\\bar{r}_{P}^{p} \\biggr)^{1/p}\\leqslant\\frac{|\\varG...

  11. Impacts of Artificial Reefs on Surrounding Ecosystems

    Science.gov (United States)

    Manoukian, Sarine

    aggregations associated with Senigallia reef based on the analysis of multibeam backscatter data in the water column is also explored. The settlement of the reefs and any terrain change are investigated over time providing a useful description of the local hydrodynamics and geological processes. All the artificial structures (made up by water-based concrete for Senigallia reef and mainly steel for St. Petersburg Beach reef) are identified and those showing substantial horizontal and/or vertical movements are analyzed in detail. Most artificial modules of Senigallia reef are not intact and scour signatures are well depicted around them, indicating reversals of the local current. This is due to both the wind pattern and to the quite close arrangement of the reef units that tend to deflect the bottom flow. As regards to the St. Petersburg Beach reef, all the man-made steel units are still in their upright position. Only a large barge shows a gradual collapse of its south side, and presents well-developed scouring at its east-northeast side, indicating dominant bottom flow from west-southwest to east-northeast. While an overall seafloor depth shallowing of about 0.30 m from down-current deposits was observed for Senigallia reef, an overall deepening of about 0.08 m due to scour was observed at the St. Petersburg Beach reef. Based on the backscatter data interpretation, surficial sediments are coarser in the vicinities of both artificial reefs than corresponding surrounding sediments. Scouring reveals this coarser layer underneath the prevalent mud sediment at Senigallia reef, and the predominant silt sediment at St. Petersburg Beach reef. In the ten years of Senigalia reef study, large-scale variations between clay and silt appear to be directly linked to large flood events that have occurred just prior to the change. As regards the water column investigation, acoustic backscatter from fish aggregations gives detailed information on their morphology and spatial distribution. In

  12. Towards Semantic Understanding of Surrounding Vehicular Maneuvers

    DEFF Research Database (Denmark)

    Kristoffersen, Miklas Strøm; Dueholm, Jacob Velling; Satzoda, Ravi K.

    2016-01-01

    This paper proposes the use of multiple low-cost visual sensors to obtain a surround view of the ego-vehicle for semantic understanding. A multi-perspective view will assist the analysis of naturalistic driving studies (NDS), by automating the task of data reduction of the observed sequences...... into events. A user-centric vision-based framework is presented using a vehicle detector and tracker in each separate perspective. Multi-perspective trajectories are estimated and analyzed to extract 14 different events, including potential dangerous behaviors such as overtakes and cut-ins. The system...... is tested on ten sequences of real-world data collected on U. S. highways. The results show the potential use of multiple low-cost visual sensors for semantic understanding around the ego-vehicle....

  13. Migration of metallic ions from screwposts into dentin and surrounding tissues

    International Nuclear Information System (INIS)

    Arvidson, K.; Wroblewski, R.

    1978-01-01

    Previous investigations have shown that corrosion and other electrochemical processes occur when different alloys or metals are found together in the same mouth. In the present report, when teeth were restored using non-noble metallic posts, the metals diffused out to surrounding hard and soft connective tissues. The material consisted of extracted teeth with screwposts and surrounding discolored connective tissues. The screwposts had been cemented to the teeth 3-10 years earlier. The distribution of metal ion was determined by means of energy-dispersive X-ray microanalysis. Copper and zinc were found in both hard and soft tissues. Relatively high concentrations of copper ions were identified in areas of the teeth with blue-green discolorations. Zinc ions were detected in the dentin; they most probably originated from the screwposts and the cement, but zinc is also found in normal human dentin. Copper, zinc, silver and iron were found in the dark discolorations of the gingiva adjacent to the extracted teeth. (author)

  14. Water on Mars: Volatile history and resource availability

    Science.gov (United States)

    Jakosky, Bruce M.

    1991-01-01

    The existence of water on Mars is undisputed today. Measurements of atmospheric water vapor have shown that the abundance varies with location and season in a systematic way which depends on processes of exchange with the polar caps, regolith, and atmosphere. Channels, which give the appearance of having been carved by water or of having had water involved in their formation, appear in various locations on the surface; some were formed by catastrophic outflow of water from beneath the surface, while others form valley networks which give the appearance of having formed over long periods of time primarily early in the planet's history. The north polar residual cap consists of water ice, possibly containing an amount of water equivalent to a global layer several tens of meters thick. Finally, water is observed within the regolith, as adsorbed water or as water of hydration.

  15. Mg-Sulfate Salts as Possible Water Reservoirs in Martian Regolith

    Science.gov (United States)

    Vaniman, D. T.; Bish, D. L.; Chipera, S. J.; Carey, J. W.; Feldman, W. C.

    2003-12-01

    analysis of this amorphous solid shows that it contains ˜26% H2O (compared with 47% in crystalline hexahydrite), and its observed macroscopic expansion behavior suggests that it can reversibly hydrate and dehydrate. Although neither epsomite nor hexahydrite is likely to be stable near the surface of Mars, their amorphous derivatives or crystalline forms of the lower hydrates might be present (preliminary thermogravimetric data indicate that kieserite is likely to be stable). However, the limited rehydration of structurally degraded hexahydrite indicates that unrealistically large amounts ( ˜50%) would be required in the upper meter of regolith to account for the higher water contents ( ˜13%) suggested for some martian equatorial regions; even larger amounts of kieserite ( ˜100%) would be required. A more important role for sulfates may be in the formation of a low-permeability salt crust that could restrict dewatering of underlying soil horizons.

  16. Experimental study of soil-structure interaction for proving the three dimensional thin layered element method

    International Nuclear Information System (INIS)

    Kuwabara, Y.; Ogiwara, Y.; Suzuki, T.; Tsuchiya, H.; Nakayama, M.

    1981-01-01

    It is generally recognized that the earthquake response of a structure can be significantly affected by the dynamic interaction between the structure and the surrounding soil. Dynamic soil-structure interaction effects are usually analyzed by using a lumped mass model or a finite element model. In the lumped mass model, the soil is represented by springs and dashpots based on the half-space elastic theory. Each model has its advantages and limitations. The Three Dimensional Thin Layered Element Theory has been developed by Dr. Hiroshi Tajimi based on the combined results of the abovementioned lumped mass model and finite element model. The main characteristic of this theory is that, in consideration and can be applied in the analysis of many problems in soil-structure interaction, such as those involving radiation damping, embedded structures, and multi-layered soil deposits. This paper describes test results on a small scale model used to prove the validity of the computer program based on the Thin Layered Element Theory. As a numerical example, the response analysis of a PWR nuclear power plant is carried out using this program. The vibration test model is simplified and the scale is 1/750 for line. The soil layer of the model is made of congealed gelatine. The test soil layer is 80 cm long, 35 cm wide and 10 cm thick. The super structure is a one mass model made of metal sheet spring and solid mass metal. As fixed inputs, sinusoidal waves (10, 20 gal level) are used. The displacements of the top and base of the super structure, and the accelerations and the displacements of the shaking table are measured. The main parameter of the test is the shear wave velocity of the soil layer. (orig./RW)

  17. Influence of the mole penetrator on measurements of heat flow in lunar subsurface layers

    Science.gov (United States)

    Wawrzaszek, Roman; Drogosz, Michal; Seweryn, Karol; Banaszkiewicz, Marek; Grygorczuk, Jerzy

    Measuring the thermal gradient in subsurface layers is a basic method of determination the heat flux from the interior of a planetary body to its surface. In case of the Moon, such measurements complemented with the results of theoretical analysis and modeling can significantly improve our understanding of the thermal and geological evolution of the Moon. In practice, temperature gradient measurements are performed by at least two sensors located at different depths under the surface. These sensors will be attached to a penetrator [1] or to a cable pulled behind the penetrator. In both cases the object that carries the sensors, e.g. penetrator, perturb temperature measurements. In our study we analyze a case of two thermal sensors attached to the ends of 350mm long penetrator made of a composite material. In agreement with the studies of other authors we have found that the penetrator should be placed at the depth of 2-3 meters, where periodic changes of the temperature due to variation of solar flux at the surface are significantly smaller than the error of temperature measurement. The most important result of our analysis is to show how to deconvolve the real gradient of the temperature from the measurements perturbed by the penetrator body. In this way it will be possible to more accurately determine heat flux in the lunar regolith. [1] Grygorczuk J., Seweryn K., Wawrzaszek R., Banaszkiewicz M., Insertion of a Mole Pene-trator -Experimental Results, /39th Lunar and Planetary Science Conference /League City, Texas 2008

  18. Organic Matter Responses to Radiation under Lunar Conditions

    Science.gov (United States)

    Matthewman, Richard; Crawford, Ian A.; Jones, Adrian P.; Joy, Katherine H.

    2016-01-01

    Abstract Large bodies, such as the Moon, that have remained relatively unaltered for long periods of time have the potential to preserve a record of organic chemical processes from early in the history of the Solar System. A record of volatiles and impactors may be preserved in buried lunar regolith layers that have been capped by protective lava flows. Of particular interest is the possible preservation of prebiotic organic materials delivered by ejected fragments of other bodies, including those originating from the surface of early Earth. Lava flow layers would shield the underlying regolith and any carbon-bearing materials within them from most of the effects of space weathering, but the encapsulated organic materials would still be subject to irradiation before they were buried by regolith formation and capped with lava. We have performed a study to simulate the effects of solar radiation on a variety of organic materials mixed with lunar and meteorite analog substrates. A fluence of ∼3 × 1013 protons cm−2 at 4–13 MeV, intended to be representative of solar energetic particles, has little detectable effect on low-molecular-weight (≤C30) hydrocarbon structures that can be used to indicate biological activity (biomarkers) or the high-molecular-weight hydrocarbon polymer poly(styrene-co-divinylbenzene), and has little apparent effect on a selection of amino acids (≤C9). Inevitably, more lengthy durations of exposure to solar energetic particles may have more deleterious effects, and rapid burial and encapsulation will always be more favorable to organic preservation. Our data indicate that biomarker compounds that may be used to infer biological activity on their parent planet can be relatively resistant to the effects of radiation and may have a high preservation potential in paleoregolith layers on the Moon. Key Words: Radiation—Moon—Regolith—Amino acids—Biomarkers. Astrobiology 16, 900–912. PMID:27870583

  19. The lithosphere-asthenosphere Italy and surroundings

    CERN Document Server

    Panza, G F; Chimera, G; Pontevivo, A; Raykova, R

    2003-01-01

    The velocity-depth distribution of the lithosphere-asthenosphere in the Italian region and surroundings is imaged, with a lateral resolution of about 100 km, by surface wave velocity tomography and non-linear inversion. Maps of the Moho depth, of the thickness of the lithosphere and of the shear-wave velocities, down to depths of 200 km and more, are constructed. A mantle wedge, identified in the uppermost mantle along the Apennines and the Calabrian Arc, underlies the principal recent volcanoes, and partial melting can be relevant in this part of the uppermost mantle. In Calabria a lithospheric doubling is seen, in connection with the subduction of the Ionian lithosphere. The asthenosphere is shallow in the Southern Tyrrhenian Sea. High velocity bodies, cutting the asthenosphere, outline the Adria-lonian subduction in the Tyrrhenian Sea and the deep-reaching lithospheric root in the Western Alps. Less deep lithospheric roots are seen in the Central Apennines. The lithosphere-asthenosphere properties delineat...

  20. Research on radiation characteristics of dipole antenna modulation by sub-wavelength inhomogeneous plasma layer

    Directory of Open Access Journals (Sweden)

    Fanrong Kong

    2018-02-01

    Full Text Available The modulation and enhancement effect of sub-wavelength plasma structures on compact antennas exhibits obvious technological advantage and considerable progress. In order to extend the availability of this technology under complex and actual environment with inhomogeneous plasma structure, a numerical simulation analysis based on finite element method has been conducted in this paper. The modulation function of the antenna radiation with sub-wavelength plasma layer located at different positions was investigated, and the inhomogeneous plasma layer with multiple electron density distribution profiles were employed to explore the effect of plasma density distribution on the antenna radiation. It has been revealed that the optical near-field modulated distance and reduced plasma distribution are more beneficial to enhance the radiation. On the basis above, an application-focused research about communication through the plasma sheath surrounding a hypersonic vehicle has been carried out aiming at exploring an effective communication window. The relevant results devote guiding significance in the field of antenna radiation modulation and enhancement, as well as the development of communication technology in hypersonic flight.