WorldWideScience

Sample records for surrounding energy production

  1. Bookending the Opportunity to Lower Wind’s LCOE by Reducing the Uncertainty Surrounding Annual Energy Production

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Div.

    2017-06-01

    Reducing the performance risk surrounding a wind project can potentially lead to a lower weighted-average cost of capital (WACC), and hence a lower levelized cost of energy (LCOE), through an advantageous shift in capital structure, and possibly also a reduction in the cost of capital. Specifically, a reduction in performance risk will move the 1-year P99 annual energy production (AEP) estimate closer to the P50 AEP estimate, which in turn reduces the minimum debt service coverage ratio (DSCR) required by lenders, thereby allowing the project to be financed with a greater proportion of low-cost debt. In addition, a reduction in performance risk might also reduce the cost of one or more of the three sources of capital that are commonly used to finance wind projects: sponsor or cash equity, tax equity, and/or debt. Preliminary internal LBNL analysis of the maximum possible LCOE reduction attainable from reducing the performance risk of a wind project found a potentially significant opportunity for LCOE reduction of ~$10/MWh, by reducing the P50 DSCR to its theoretical minimum value of 1.0 (Bolinger 2015b, 2014) and by reducing the cost of sponsor equity and debt by one-third to one-half each (Bolinger 2015a, 2015b). However, with FY17 funding from the U.S. Department of Energy’s Atmosphere to Electrons (A2e) Performance Risk, Uncertainty, and Finance (PRUF) initiative, LBNL has been revisiting this “bookending” exercise in more depth, and now believes that its earlier preliminary assessment of the LCOE reduction opportunity was overstated. This reassessment is based on two new-found understandings: (1) Due to ever-present and largely irreducible inter-annual variability (IAV) in the wind resource, the minimum required DSCR cannot possibly fall to 1.0 (on a P50 basis), and (2) A reduction in AEP uncertainty will not necessarily lead to a reduction in the cost of capital, meaning that a shift in capital structure is perhaps the best that can be expected (perhaps

  2. Low-energy neutron flux measurement using a resonance absorption filter surrounding a lithium glass scintillator

    Science.gov (United States)

    Ghal-Eh, N.; Koohi-Fayegh, R.; Hamidi, S.

    2007-06-01

    The resonance absorption filter technique has been used to determine the thermal/epithermal neutron flux. The main idea in this technique is to use an element with a high and essentially singular resonance in the neutron absorption cross section as a filter surrounding a miniature-type lithium glass scintillator. The count with and without the filter surrounding the detector gives the number of resonance-energy neutrons. Some preliminary results and a comparison with the MCNP code are shown.

  3. Quasi-Local Energy Distribution and Thermodynamics of Reissner-Nordstrom Black Hole Surrounded by Quintessence

    Institute of Scientific and Technical Information of China (English)

    Mahamat Saleh; Bouetou Bouetou Thomas; Timoleon Crepin Kofane

    2011-01-01

    We investigate quasi-local energy distribution and thermodynamics of the Reissner-Nordstrom black hole space-time surrounded by quintessence.We use the quasi-local energy distribution from Einstein energy-momentum complex.We plot the variation of the energies, temperature and heat capacity with the state parameter related to the quintessence ωq.We show that due to the presence of quintessence, the total energy of the outer region as well as the temperature and heat capacity decreases with the increase of the density of quintessence, while the total energy of the black hole region increases.

  4. Relationship between the number of cells surrounding oocytes and energy states of oocytes.

    Science.gov (United States)

    Munakata, Yasuhisa; Ichinose, Tomoya; Ogawa, Kaori; Itami, Nobuhiko; Tasaki, Hidetaka; Shirasuna, Koumei; Kuwayama, Takehito; Iwata, Hisataka

    2016-10-15

    Lipid content, ATP content, and histone acetylation are thought to reflect the energy state of cells. In addition, the energy state closely associates with growth and developmental ability of oocytes. Oocyte growth is accompanied by active proliferation of the surrounding granulosa cells (GCs), and GCs play a key role in the provision of energy substrates to the oocytes. In the present study, we first examined the relationship among the average number of GCs per follicle, the average number of cumulus cells (CCs) per oocyte, and the average lipid content in oocytes that developed in vivo within individual donor gilts. Second, we validated the relationship between the number of cells surrounding oocytes and the energy states of oocytes by using an IVC system of oocyte granulosa cell complexes (OGCs) derived from early antral follicles. We collected cumulus cells and oocyte complexes (COCs) from antral follicles (3-5 mm in diameter) and found that average lipid content in oocytes significantly correlated with the average number of both GCs/follicle and CCs/oocyte (P cell number of OGCs, as well as the lipid content, ATP content, and acetylation level of H4K12 in oocytes grown in vitro. In addition, glucose consumption by OGCs was calculated from the sample media collected at Days 13 and 14. The lipid content of oocytes grown in vitro, significantly correlated with the number of cells surrounding the oocytes (P number of cells surrounding the oocytes (P number of cells surrounding the oocytes, and glucose uptake by OGCs is crucial for lipid content and ATP content, and H4K12 acetylation in oocytes.

  5. Wavestar Energy Production Outlook

    DEFF Research Database (Denmark)

    Frigaard, Peter Bak; Andersen, Thomas Lykke; Kofoed, Jens Peter

    It is of paramount importance to decrease the Cost of Energy (CoE) from Wavestar wave energy con-verters (WECs) in order to make the WECs competitive to other sources of renewable energy. The CoE can be decreased by reducing the cost of the machines (CAPEX and OPEX) and by increasing the in-come.......-come. The income can most obviously be enlarged by increasing the energy production. The focus of the present note is solely on expectations to the yearly energy production from future Wavestar WECs....

  6. Energy production systems engineering

    CERN Document Server

    Blair, Thomas Howard

    2017-01-01

    Energy Production Systems Engineering presents IEEE, Electrical Apparatus Service Association (EASA), and International Electrotechnical Commission (IEC) standards of engineering systems and equipment in utility electric generation stations. Electrical engineers that practice in the energy industry must understand the specific characteristics of electrical and mechanical equipment commonly applied to energy production and conversion processes, including the mechanical and chemical processes involved, in order to design, operate and maintain electrical systems that support and enable these processes. To aid this understanding, Energy Production Systems Engineeringdescribes the equipment and systems found in various types of utility electric generation stations. This information is accompanied by examples and practice problems. It also addresses common issues of electrical safety that arise in electric generation stations.

  7. Production and zooplankton community structure in the lagoon and surrounding sea at Kavaratti atoll (Lakshadweep)

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, S.C.

    .6 degrees C, 35.7 x 10/3, ml.l/1 and 0.8, 1.5 and 3.6 mu g-at.l/1 respectively. Fluctuations in the secondary production were greater in the surrounding sea (19.9 to 44.8 mgC.m/2.d/1) than at lagoon (6.6 to 15.7 mgC.m/2 d/1). Zooplankton community structure...

  8. Material and energy productivity.

    Science.gov (United States)

    Steinberger, Julia K; Krausmann, Fridolin

    2011-02-15

    Resource productivity, measured as GDP output per resource input, is a widespread sustainability indicator combining economic and environmental information. Resource productivity is ubiquitous, from the IPAT identity to the analysis of dematerialization trends and policy goals. High resource productivity is interpreted as the sign of a resource-efficient, and hence more sustainable, economy. Its inverse, resource intensity (resource per GDP) has the reverse behavior, with higher values indicating environmentally inefficient economies. In this study, we investigate the global systematic relationship between material, energy and carbon productivities, and economic activity. We demonstrate that different types of materials and energy exhibit fundamentally different behaviors, depending on their international income elasticities of consumption. Biomass is completely inelastic, whereas fossil fuels tend to scale proportionally with income. Total materials or energy, as aggregates, have intermediate behavior, depending on the share of fossil fuels and other elastic resources. We show that a small inelastic share is sufficient for the total resource productivity to be significantly correlated with income. Our analysis calls into question the interpretation of resource productivity as a sustainability indicator. We conclude with suggestions for potential alternatives.

  9. Estimation of Specific Effective Energy of Surrounding Organs with Prostate as the Source Organ

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Hoon; Lim, Chang Seon; Whang, Joo Ho [Kyunghee Univ., Konyang (Korea, Republic of)

    2008-10-15

    The incidence of prostate cancer has increased rapidly due to such as aging population and western dietary habits and it is the fifth most common cancer among male cancers and the most common cancer in urinary system. Prostate cancer is treated in various ways, but suitable treatments are selected case by case instead of particularly superior treatments chosen. One of them is cancer treatment via irradiation and it is widely available because of its simplicity and outstanding effectiveness; however compromised local selectivity inevitably results in side effects in surrounding tissues like bladder, urethra and rectum. These tough problems have been able to be solved since mid-1980s when radioisotope seeds such as {sup 1}'2{sup 5}I or {sup 103}Pd which could be implanted in the body were produced, and now much less invasive brachytherapy is widely used in the US and Europe. But there is a lack of investigations related to this therapy in Korea. In the present study, we intend to estimate specific effective energy of prostate and surrounding organs using {sup 125}I and {sup 103}Pd and thus provide basic data of radiation exposure assessments during prostate brachytherapy.

  10. Insuring wind energy production

    Science.gov (United States)

    D'Amico, Guglielmo; Petroni, Filippo; Prattico, Flavio

    2017-02-01

    This paper presents an insurance contract that the supplier of wind energy may subscribe in order to immunize the production of electricity against the volatility of the wind speed process. The other party of the contract may be any dispatchable energy producer, like gas turbine or hydroelectric generator, which can supply the required energy in case of little or no wind. The adoption of a stochastic wind speed model allows the computation of the fair premium that the wind power supplier has to pay in order to hedge the risk of inadequate output of electricity at any time. Recursive type equations are obtained for the prospective mathematical reserves of the insurance contract and for their higher order moments. The model and the validity of the results are illustrated through a numerical example.

  11. Environmental consequences of energy production: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1989-01-01

    The Seventeenth Annual Illinois Energy conference entitled Environmental consequences of Energy Production was held in Chicago, Illinois on October 19-20, 1989. The purpose of the meeting was to provide a forum for exchange of information on the technical, economic and institutional issues surrounding energy production and related environmental problems. The conference program was developed by a planning committee which included Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. The conference included presentations on four major topic areas. The issue areas were: urban pollution: where are we now and what needs to be done in the future; the acid rain problem: implications of proposed federal legislation on the Midwest; global warming: an update on the scientific debate; and strategies to minimize environmental damage. Separate abstracts have been prepared for the individual presentations. (FL)

  12. GeV and higher energy photon interactions in gamma-ray burst fireballs and surroundings

    CERN Document Server

    Razzaque, S; Zhang, B; Razzaque, Soebur; Meszaros, Peter; Zhang, Bing

    2004-01-01

    We have calculated the opacities and secondary production mechanisms of high energy photons arising in gamma-ray burst internal shocks, using exact cross-sections for the relevant processes. We find that for reasonable choices of parameters, photons in the range of 10's to 100's of GeV may be emitted in the prompt phase. Photons above this range are subject to electron-positron pair production with fireball photons and would be absent from the spectrum escaping the gamma-ray burst. We find that, in such cases, the fireball becomes optically thin again at ultra-high energies ($\\gtrsim$ PeV). On the other hand, for sufficiently large fireball bulk Lorentz factors, the fireball is optically thin at all energies. Both for $\\gamma\\gamma$ self-absorbed and optically thin cases, the escaping high energy photons can interact with infra-red and microwave background photons to produce delayed secondary photons in the GeV-TeV range. These may be observable with GLAST, or at low redshifts with ground-based air Cherenkov ...

  13. Animals and their products utilized as medicines by the inhabitants surrounding the Ranthambhore National Park, India

    Directory of Open Access Journals (Sweden)

    Jaroli DP

    2006-11-01

    Full Text Available Abstract The present ethnozoological study describes the traditional knowledge related to the use of different animals and animal-derived products as medicines by the inhabitants of villages surrounding the Ranthambhore National Park of India (Bawaria, Mogya, Meena, which is well known for its very rich biodiversity. The field survey was conducted from May to July 2005 by performing interviews through structured questionnaires with 24 informants (16 men and 8 women, who provided information regarding therapeutic uses of animals. A total of 15 animals and animal products were recorded and they are used for different ethnomedical purposes, including tuberculosis, asthma, paralysis, jaundice, earache, constipation, weakness, snake poisoning. The zootherapeutic knowledge was mostly based on domestic animals, but some protected species like the collared dove (Streptopelia sp., hard shelled turtle (Kachuga tentoria, sambhar (Cervus unicolor were also mentioned as important medicinal resources. We would suggest that this kind of neglected traditional knowledge should be included into the strategies of conservation and management of faunistic resources in the investigated area.

  14. Energy efficiency: a necessity in complex surroundings; Eficiencia energetica: una necesidad en un entorno complejo

    Energy Technology Data Exchange (ETDEWEB)

    Menendez Perez, E. [Alcion Ingenieria Quimica, S.A. (Spain)

    2005-10-15

    A global analysis of the energy system with reference to the energy case of Spain in comparison to the yield of the European Union is proposed. The analysis discusses the problems originated by the climatic change and exhibits three decisive concepts in energy efficiency (investment, good use and productivity) along with three indicating phenomena of an efficient or incompetent development (mobility, tourism and urbanism). Next, it exemplifies possible evolution criteria of the electrical production systems along with an ideal of evolution in the generation systems simultaneously mentioning measures for the emissions reduction in the industry, particularly in the automotive industry. In addition, it considers the imposition of energy taxes in front of the non fulfillment of the emissions' control as an important restrictive measurement. In between, the solution initiatives that have had a short reach, such as the Kyoto protocol, and categorical conclusions are contemplated: The cleanest energy is the one than is not consumed, not because it is not available but because it is not necessary, therefore it is not demanded. [Spanish] Se propone un analisis global del sistema de energia con referencia al caso energetico de Espana en equiparacion al rendimiento de la Union Europea. El analisis discute las problematicas originadas por el cambio climatico y exhibe tres conceptos decisivos en la eficiencia energetica (inversion, buen uso y productividad) junto con tres fenomenos indicadores de un desarrollo eficiente o incompetente (movilidad, turismo y urbanismo). Enseguida ejemplifica posibles criterios de evolucion de los sistemas de produccion electrica junto con un ideal de evolucion en los sistemas de generacion, a la vez que cita medidas para la reduccion de emisiones en la industria, particularmente en la industria automotriz. Se considera la imposicion de impuestos energeticos frente al incumplimiento en el control de emisiones como una importante medida

  15. Consumer behaviour regarding energy products

    National Research Council Canada - National Science Library

    Evelina Gradinaru; Lorant Bucs; Gabriel Bratucu

    2016-01-01

    ... challenge if one considers achieving them sustainably. That being said, the present paper gives emphasis to some theoretical and practical information regarding the consumer behaviour regarding energy products...

  16. Analytical interconnection of energy processes of the human body with the surrounding atmosphere

    Directory of Open Access Journals (Sweden)

    Кристина Валеріївна Ходаріна

    2015-03-01

    Full Text Available Scientific research, described by the author in this article addresses the important scientific and practical issues of social ecological safety of life, which is to stabilize the performance of the RT for the passengers and crew РMV by the regulatory impact on air quality computer equipment. The problem of habitability sea and river transport vehicles associated with the creation of the microclimate in the passenger cabin, crew, production and office space remains unresolved and is located at 50 years old due to a lack of new technical means for climate control air pollution. Using the theoretical basis for the creation of the ship microclimate for the formation of algorithms for control and management of indoor air, the author carried out a study to establish the relationship between patterns of complex refractive thermal sensation human PMV and complex refractive energy state ambient air by RT multifactor experiment and mathematical description in the form of the regression equation. The results of mathematical modeling showed non-linear relationship between PMV and PT and yielded quite correct empirical formula. Nonlinear coefficients of the regression equation has a physical confirmation, since metabolism (M and the work (W of the human body are united by the - heart rate. Establishing the analytical relationship between the parameters of the control object in the court system and microclimate integral indicator of the environment allows to proceed to further improvement of the management systems, which is aimed at the development of optimal controllers comfortable microclimate

  17. Electricity production from renewables energies

    CERN Document Server

    Robyns, Benoit; François, Bruno; Henneton, Antoine; Sprooten, Jonathan

    2012-01-01

    Energy and environmental issues have caused a marked increase in electricity production from renewable energy sources since the beginning of the 21st Century. The concept of sustainable development and concern for future generations challenge us every day to produce new technologies for energy production, and new patterns of use for these energies. Their rapid emergence can make the understanding and therefore the perception of these new technologies difficult. This book aims to contribute to a better understanding of the new electricity generation technologies by addressing a diverse audie

  18. Improving Energy Efficiency Cable Production

    Directory of Open Access Journals (Sweden)

    Iashutina Olga

    2016-01-01

    Full Text Available During the energy calculation is made at different temperatures of the heating surface. The influence of the speed of pulling on the cost of the finished products of cable products. The interrelation of speed broaching and temperature of the heating surface.

  19. Strangeness production at SPS energies

    CERN Document Server

    Alt, C; Baatar, B; Barna, D; Bartke, Jerzy; Betev, L; Bialkowska, H; Blume, C; Boimska, B; Botje, M; Bracinik, J; Bramm, R; Buncic, P; Cerny, V; Christakoglou, P; Chung, P; Chvala, O; Cramer, J G; Csató, P; Dinkelaker, P; Eckardt, V; Flierl, D; Fodor, Z; Foka, P; Friese, V; Gál, J; Gazdzicki, M; Genchev, V; Georgopoulos, G; Gladysz-Dziadus, E; Grebieszkow, K; Hegyi, S; Höhne, C; Kadija, K; Karev, A; Kikola, D; Kliemant, M; Kniege, S; Kolesnikov, V I; Kornas, E; Korus, R; Kowalski, M; Kraus, I; Kreps, M; Laszlo, A; Lacey, R; Van Leeuwen, M; Lévai, Peter; Litov, L; Lungwitz, B; Makariev, M; Malakhov, A I; Mateev, M; Melkumov, G L; Meurer, C; Mischke, A; Mitrovski, M; Molnár, J; Mrówczynski, S; Nicolic, V; Pálla, G; Panagiotou, A D; Panayotov, D; Petridis, A; Peryt, W; Pikna, M; Pluta, J; Prindle, D; Pühlhofer, F; Renfordt, R; Roland, C; Roland, G; Rybczynski, M; Rybicki, A; Sandoval, A; Schmitz, N; Schuster, T; Seyboth, P; Siklér, F; Sitár, B; Skrzypczak, E; Slodkowski, M; Stefanek, G; Stock, R; Strabel, C; Ströbele, H; Susa, T; Szentpétery, I; Sziklai, J; Szuba, M; Szymanski, P; Trubnikov, V; Varga, D; Vassiliou, Maria; Veres, G I; Vesztergombi, G; Vranic, D; Wetzler, A; Wlodarczyk, Z; Yoo, I K; Mitrovski, Michael

    2006-01-01

    We present a summary of measurements of strange particles performed by the experiment NA49 in central and minimum bias Pb+Pb collisions in the beam energy range 20A - 158A GeV. New results on Xi production in central Pb+Pb collisions and on Lambda, Xi production in minimum bias collisions are shown. Transverse mass spectra and rapidity distributions of strange particles at different energies are compared. The energy dependence of the particle yields and ratios is discussed. NA49 measurements of the Lambda and Xi enhancement factors are shown for the first time.

  20. Determining Mean Annual Energy Production

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    2016-01-01

    of energy for a wave energy converter or wave farm. Fundamentally, the MAEP is equal to the sum of the product of the power capture of a set of sea-states and their average annual occurrence. In general, it is necessary in the calculation of the MAEP to achieve a balance between computational demand......This robust book presents all the information required for numerical modelling of a wave energy converter, together with a comparative review of the different available techniques. The calculation of the mean annual energy production (MAEP) is critical to the assessment of the levelized cost...... obtained through system identification. The traditional method for representing the wave climate is using a scatter table, indexed by significant wave height and energy period; however, it has been found that this can lead to high errors in the MAEP due to the necessary assumptions regarding spectral shape...

  1. Hydrogen production from solar energy

    Science.gov (United States)

    Eisenstadt, M. M.; Cox, K. E.

    1975-01-01

    Three alternatives for hydrogen production from solar energy have been analyzed on both efficiency and economic grounds. The analysis shows that the alternative using solar energy followed by thermochemical decomposition of water to produce hydrogen is the optimum one. The other schemes considered were the direct conversion of solar energy to electricity by silicon cells and water electrolysis, and the use of solar energy to power a vapor cycle followed by electrical generation and electrolysis. The capital cost of hydrogen via the thermochemical alternative was estimated at $575/kW of hydrogen output or $3.15/million Btu. Although this cost appears high when compared with hydrogen from other primary energy sources or from fossil fuel, environmental and social costs which favor solar energy may prove this scheme feasible in the future.

  2. Fusion Energy for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J. A.; Powell, J. R.; Steinberg, M.; Salzano, F.; Benenati, R.; Dang, V.; Fogelson, S.; Isaacs, H.; Kouts, H.; Kushner, M.; Lazareth, O.; Majeski, S.; Makowitz, H.; Sheehan, T. V.

    1978-09-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approximately 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approximately 50 to 70% are projected for fusion reactors using high temperature blankets.

  3. Experimental estimation of the heat energy dissipated in a volume surrounding the tip of a fatigue crack

    Directory of Open Access Journals (Sweden)

    G. Meneghetti

    2016-01-01

    Full Text Available Fatigue crack initiation and propagation involve plastic strains that require some work to be done on the material. Most of this irreversible energy is dissipated as heat and consequently the material temperature increases. The heat being an indicator of the intense plastic strains occurring at the tip of a propagating fatigue crack, when combined with the Neuber’s structural volume concept, it might be used as an experimentally measurable parameter to assess the fatigue damage accumulation rate of cracked components. On the basis of a theoretical model published previously, in this work the heat energy dissipated in a volume surrounding the crack tip is estimated experimentally on the basis of the radial temperature profiles measured by means of an infrared camera. The definition of the structural volume in a fatigue sense is beyond the scope of the present paper. The experimental crack propagation tests were carried out on hot-rolled, 6-mm-thick AISI 304L stainless steel specimens subject to completely reversed axial fatigue loading.

  4. Water, energy, and farm production

    Energy Technology Data Exchange (ETDEWEB)

    Ulibarri, C.A.; Seely, H.S.; Willis, D.B.; Anderson, D.M.

    1996-04-01

    Electric utility rate deregulation can have disproportionate impacts on water-intensive crops, which have historically relied upon pressurized irrigation technologies and surface water resources. Based on a case study of agricultural growers in southern California, the paper models the impacts of utility rates considered in the Western Area Power Administration`s Sierra Nevada Customer Service Region. The study was performed as part of the 2004 Power Marketing Program Draft Environmental Impact Statement. The empirical results reflect linear-programming estimates of the income transfers from growers to energy providers based on county-wide coverage of 13 junior and senior irrigation districts and short-run production possibilities of 11 irrigated crops. Transfers of income from growers to energy suppliers occur through their losses in producer surplus.

  5. Dynamics Analysis of Wind Energy Production Development

    Science.gov (United States)

    Berg, V. I.; Zakirzakov, A. G.; Gordievskaya, E. F.

    2017-01-01

    The paper presents the analysis of the introduction experience and dynamics development of the world wind energy production. Calculated the amount of wind energy sources investments and the production capacity growth dynamics of the wind turbines. The studies have shown that the introduction dynamics of new wind energy sources is higher than any other energy source.

  6. Conjugated Polymers for Energy Production

    DEFF Research Database (Denmark)

    Livi, Francesco

    arylation (DAr) and direct arylation polymerization (DArP) have been applied to the preparation of PPDTBT, making this polymer readily available in only 4 synthetic steps and thus easily transferable to a large scale-production setup. DArP avoids organometallic species and therefore is an appealing......This dissertation is aimed at developing materials for flexible, large area, ITO-free polymer solar cells (PSCs) fully printed under ambient conditions. A large screening of conjugated polymers, both novel and well-known materials, has been carried out in order to find suitable candidates...... for scalable PSCs fully printed under ambient conditions [Adv. Energy Mater. 2015, 5, 1402186]. PPDTBT resulted to be the conjugated polymer with the best photovoltaic performance within the 104 synthesized macromolecules. Therefore, further studies have been done on such material. The impact of side chain...

  7. The exchange of water between the Faroe Shelf and the surrounding waters and its effect on the primary production

    Science.gov (United States)

    Eliasen, Sólvá Karadóttir; Hansen, Bogi; Larsen, Karin Margretha Húsgarð; Hátún, Hjálmar

    2016-01-01

    The interannual variation of the spring bloom and its effect on the marine ecosystem on the Faroe Shelf has been observed for a couple of decades. However, the mechanism controlling the spring bloom has so far not been known and attempts to explain the mechanism have mostly ruled out possibilities. The Faroe Shelf is to a variable degree isolated from the surrounding waters by a tidal front. It has previously been suggested that variations in the density difference across the front and how water masses are transferred across it affect the spring primary production, which is thought to be a driver of the shelf ecosystem. Using air-sea heat flux data and sea temperature observations on the shelf and off the shelf, we estimate the cross-frontal volume exchange in January-April and find that it increases with the tidal current speed and decreases with the cross-frontal temperature difference. Using the observed exchange rates, we show that the phytoplankton growth rate may be reduced by more than 0.05 day- 1 when the exchange is intense and off-shelf production is still low. Based on frontal dynamics theory, we suggest that the cross-frontal exchange rate in the above mentioned period is determined by the rate of vertical turbulent diffusion through the front. A simple theoretical model is found to support this hypothesis qualitatively as well as quantitatively. This supports that variations in horizontal exchange are an important controlling factor of the initial spring bloom and that the horizontal exchange during the winter can be determined by vertical turbulent diffusion. Our results will be relevant for the primary production in other similar systems of small geographical extent and also for other problems involving cross-shelf exchange, such as oil spill dispersal.

  8. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H.; Morris, M.; Rensfelt, E. [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1997-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  9. Sources contributing to radioactive contamination of the Techa river and areas surrounding the Mayak production association, Urals, Russia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    A Russian-Norwegian expert group has performed joint investigations of possible impacts of the Mayak plant on the contamination of the Arctic Ocean. This plant that was the first in the former Soviet Union to produce nuclear weapons material, had five special nuclear reactors for production of plutonium and a facility for separation of the plutonium as weapons material. A system of dams along the upper part of Techa River was constructed in order to retain most of the radioactivity, creating several artificial water reservoirs along the old river bed. The paper describes the results of the investigations of the working group. it is concluded that sediment samples from reservoir No. 10 and 11, and from the floodplain along the upper Techa River, have the highest radioactivities (more than 2 MBq/kg d.w. of cesium-137). Flooding of the surrounding swamp and rupture in the reservoirs may cause substantial releases to the river system and thus contaminate the Arctic waters. Also transport of radioactivity by underground water from the reservoirs may contaminate the river system. The future work of the group will be focussed on risk assessment of potential accident scenarios, and possible long-term consequences for man and the environment. 21 refs.

  10. Energy intensities of food products. Energie-intensiteiten van voedingsmiddelen

    Energy Technology Data Exchange (ETDEWEB)

    Kok, R.; Biesiot, W.; Wilting, H.C.

    1993-08-01

    The energy intensity of a product is the amount of primary energy used per Dutch guilder spent on consumer goods. The energy intensity can differ for each spending and varies from household to household. The aim of this study is to calculate the energy intensities and to provide an overview of the total package of consumer goods, including sociological categories and lifestyles, and the related use of primary energy to produce these goods. Use is made of the Energy Analysis Program (EAP) to calculate the energy intensities. EAP is based on the hybrid method: both the process analysis and the input-output analysis are applied in the model. The data input of the model consists of data from the Budget Survey 1990 of the Dutch Central Bureau of Statistics, which holds data of consumptions from 2767 households. In the chapters 4 to 10 energy intensities are given of the categories bread, pastry and groceries (chapter four), potatoes, vegetables and fruits (chapter five), sugary products and beverages (chapter six), oils and fats (chapter seven), meat, meat products and fish (chapter eight), dairy products (chapter nine), and other food products (chapter ten). The highest energy intensity is found for oils and fats (13.5 MJ per Dutch guilder). The energy intensities for the other products vary from 4.0 to 6.6 MJ/gld. It appears that most of the energy intensive products are products which do not use a large part of the primary energy, mainly because the consumption of these products is low. On the other hand many of the products that consume much of the primary energy (i.e. are consumed much themselves) are relatively energy extensive. The products that show a high consumption rate have relatively low energy intensities. Some of the options to shift towards a more energy extensive food package are the use of fresh products and outside grown products instead of treated products or greenhouse products and a more balanced diet. 5 figs., 18 tabs., 2 appendices, 52 refs.

  11. Energy management study for lunar oxygen production

    Science.gov (United States)

    Fazzolare, R. A.; Wong-Swanson, B. G.

    1989-01-01

    Energy management opportunities in the process of hydrogen reduction of ilmenite for lunar oxygen production are being investigated. An optimal energy system to supply the power requirements for the process will be determined.

  12. IEA Energy Technology Essentials: Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biofuel Production is the topic covered in this edition.

  13. Promoting greater Federal energy productivity [Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Mark; Dudich, Luther

    2003-03-05

    This document is a close-out report describing the work done under this DOE grant to improve Federal Energy Productivity. Over the four years covered in this document, the Alliance To Save Energy conducted liaison with the private sector through our Federal Energy Productivity Task Force. In this time, the Alliance held several successful workshops on the uses of metering in Federal facilities and other meetings. We also conducted significant research on energy efficiency, financing, facilitated studies of potential energy savings in energy intensive agencies, and undertook other tasks outlined in this report.

  14. Expected energy production evaluation for photovoltaic systems

    DEFF Research Database (Denmark)

    Ding, Yi; Østergaard, Jacob; Peng, Wang

    2011-01-01

    A photovoltaic (PV) system consists of many solar panels, which are connected in series, parallel or a combination of both. Energy production for the PV system with various configurations is different. In this paper, a methodology is developed to evaluate and analyze the expected energy production...

  15. Energy-Efficient Shaping of Contemporary Buildings and Their Surroundings as an Essential Element of Modernization of Built-Up Areas

    Science.gov (United States)

    Bocheński, Stanisław; Bocheńska-Skałecka, Anna; Kuczyński, Tadeusz

    2016-06-01

    A comprehensive design of a building along with the development of a surrounding land may counterbalance the tendency of housing estates comprising houses built on the basis of "ready-made projects" - which have no references to the existing urban tissue and which do not create a new one. In the first place, the energy intensity of buildings using the so-called passive methods should be lowered, and only then active systems should be applied, considering economic balance. The problem should be considered from two different perspectives i.e. for intensively and for less urbanised areas. The article results in the formulation of guidelines for energy-efficient modernization of contemporary buildings and their surroundings.

  16. Energy-Efficient Shaping of Contemporary Buildings and Their Surroundings as an Essential Element of Modernization of Built-Up Areas

    Directory of Open Access Journals (Sweden)

    Bocheński Stanisław

    2016-06-01

    Full Text Available A comprehensive design of a building along with the development of a surrounding land may counterbalance the tendency of housing estates comprising houses built on the basis of “ready-made projects” - which have no references to the existing urban tissue and which do not create a new one. In the first place, the energy intensity of buildings using the so-called passive methods should be lowered, and only then active systems should be applied, considering economic balance. The problem should be considered from two different perspectives i.e. for intensively and for less urbanised areas. The article results in the formulation of guidelines for energy-efficient modernization of contemporary buildings and their surroundings.

  17. Dispersion of Short- and Medium-Chain Chlorinated Paraffins (CPs) from a CP Production Plant to the Surrounding Surface Soils and Coniferous Leaves.

    Science.gov (United States)

    Xu, Jiazhi; Gao, Yuan; Zhang, Haijun; Zhan, Faqiang; Chen, Jiping

    2016-12-06

    Chlorinated paraffin (CP) production is one important emission source for short- and medium-chain CPs (SCCPs and MCCPs) in the environment. In this study, 48 CP congener groups were measured in the surface soils and coniferous leaves collected from the inner and surrounding environment of a CP production plant that has been in operation for more than 30 years to investigate the dispersion and deposition behavior of SCCPs and MCCPs. The average concentrations of the sum of SCCPs and MCCPs in the in-plant coniferous leaves and surface soils were 4548.7 ng g(-1) dry weight (dw) and 3481.8 ng g(-1) dw, which were 2-fold and 10-fold higher than those in the surrounding environment, respectively. The Gaussian air pollution model explained the spatial distribution of CPs in the coniferous leaves, whereas the dispersion of CPs to the surrounding surface soils fits the Boltzmann equation well. Significant fractionation effect was observed for the atmospheric dispersion of CPs from the production plant. CP congener groups with higher octanol-air partitioning coefficients (KOA) were more predominant in the in-plant environment, whereas the ones with lower KOA values had the elevated proportion in the surrounding environment. A radius of approximately 4 km from the CP production plant was influenced by the atmospheric dispersion and deposition of CPs.

  18. Energy production, conversion, storage, conservation, and coupling

    CERN Document Server

    Demirel, Yaşar

    2012-01-01

    Understanding the sustainable use of energy in various processes is an integral part of engineering and scientific studies, which rely on a sound knowledge of energy systems. Whilst many institutions now offer degrees in energy-related programs, a comprehensive textbook, which introduces and explains sustainable energy systems and can be used across engineering and scientific fields, has been lacking. Energy: Production, Conversion, Storage, Conservation, and Coupling provides the reader with a practical understanding of these five main topic areas of energy including 130 examples and over 600 practice problems. Each chapter contains a range of supporting figures, tables, thermodynamic diagrams and charts, while the Appendix supplies the reader with all the necessary data including the steam tables. This new textbook presents a clear introduction of basic vocabulary, properties, forms, sources, and balances of energy before advancing to the main topic areas of: • Energy production and conversion in importa...

  19. Energy Recovery Linacs for Commercial Radioisotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Sy, Amy [Jefferson Lab, Newport News, VA; Krafft, Geoffrey A. [Jefferson Lab, Newport News, VA; Johnson, Rolland [Muons, Inc., Batavia, IL; Roberts, Tom; Boulware, Chase; Hollister, Jerry

    2015-09-01

    Photonuclear reactions with bremsstrahlung photon beams from electron linacs can generate radioisotopes of critical interest. An SRF Energy Recovery Linac (ERL) provides a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes in a more compact footprint and at a lower cost than those produced by conventional reactor or ion accelerator methods. Use of an ERL enables increased energy efficiency of the complex through energy recovery of the waste electron beam, high electron currents for high production yields, and reduced neutron production and shielding activation at beam dump components. Simulation studies using G4Beamline/GEANT4 and MCNP6 through MuSim, as well as other simulation codes, will design an ERL-based isotope production facility utilizing bremsstrahlung photon beams from an electron linac. Balancing the isotope production parameters versus energy recovery requirements will inform a choice of isotope production target for future experiments.

  20. Automatic control algorithm effects on energy production

    Science.gov (United States)

    Mcnerney, G. M.

    1981-01-01

    A computer model was developed using actual wind time series and turbine performance data to simulate the power produced by the Sandia 17-m VAWT operating in automatic control. The model was used to investigate the influence of starting algorithms on annual energy production. The results indicate that, depending on turbine and local wind characteristics, a bad choice of a control algorithm can significantly reduce overall energy production. The model can be used to select control algorithms and threshold parameters that maximize long term energy production. The results from local site and turbine characteristics were generalized to obtain general guidelines for control algorithm design.

  1. Energy aspects of microalgal biodiesel production

    Directory of Open Access Journals (Sweden)

    Edith Martinez-Guerra

    2016-03-01

    Full Text Available Algal biodiesel production will play a significant role in sustaining future transportation fuel supplies. A large number of researchers around the world are investigating into making this process sustainable by increasing the energy gains and by optimizing resource-utilization efficiencies. Although, research is being pursued aggressively in all aspects of algal biodiesel production from microalgal cell cultivation, cell harvesting, and extraction and transesterification steps to the final product separation and purification, there is a large disparity in the data presented in recent reports making it difficult to assess the real potential of microalgae as a future energy source. This article discusses some of the key issues in energy consumption in the process of algal biodiesel production and identifies the areas for improvement to make this process energy-positive and sustainable.

  2. Wood for energy production. Technology - environment - economy

    Energy Technology Data Exchange (ETDEWEB)

    Serup, H.; Falster, H.; Gamborg, C. [and others

    1999-10-01

    `Wood for Energy Production`, 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named `Wood Chips for Energy Production`. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. `Wood for Energy Production` is also available in German and Danish. (au)

  3. Relighting for energy efficiency and productivity

    Energy Technology Data Exchange (ETDEWEB)

    Harris, L. [USDOE, Washington, DC (United States); Purcell, C.W. [Pacific Northwest Lab., Richland, WA (United States)

    1992-10-01

    This paper presents an overview of the process and approach of the Federal Relighting Initiative (FRI). It describes the major steps in relighting Federal buildings for energy efficiency and increased productivity.

  4. Relighting for energy efficiency and productivity

    Energy Technology Data Exchange (ETDEWEB)

    Harris, L. (USDOE, Washington, DC (United States)); Purcell, C.W. (Pacific Northwest Lab., Richland, WA (United States))

    1992-01-01

    This paper presents an overview of the process and approach of the Federal Relighting Initiative (FRI). It describes the major steps in relighting Federal buildings for energy efficiency and increased productivity.

  5. Spatial distribution of neutrons in paraffin moderator surrounding a lead target irradiated with protons at intermediate energies

    CERN Document Server

    Adam, J; Bradnova, V

    2002-01-01

    The distribution of neutrons emitted during the irradiation with 0.65, 1.0 and 1.5 GeV protons from a lead target (O / = 8 cm, l = 20 cm) and moderated by a surrounding paraffin moderator of 6 cm thick was studied with a radiochemical sensor along the beam axis on top of the moderator. Small sup 1 sup 3 sup 9 La-sensors of approximately 1 g were used to measure essentially the thermal neutron fluence at different depths near the surface: i.e., on top of the moderator, in 10 mm deep holes and in 20 mm deep holes. The reaction sup 1 sup 3 sup 9 La(n, gamma) sup 1 sup 4 sup 0 La (tau sub 1 sub / sub 2 = 40.27 h) was studied using standard procedures of gamma spectroscopy and data analysis. The neutron induced activity of sup 1 sup 4 sup 0 La increases strongly with the depth of the hole inside the moderator, its activity distribution along the beam direction on top of the moderator has its maximum about 10 cm downstream the entrance of the protons into the lead and the induced activity increases about linearity ...

  6. Hydrogen evolution by fermentation using seaweed as substrates and the contribution to the clean energy production

    Energy Technology Data Exchange (ETDEWEB)

    Tanisho, S.; Suganuma, T.; Yamaguchi, A. [Yokohama National Univ. (Japan). Dept. of Environmental Sciences

    2001-07-01

    It is an important theme in Japan to use the sea for energy production, because Japan is surrounded by seas on all sides. Brown algae such as Laminaria have high value as the substrate of fermentative hydrogen production, since they have very high growth rate and also have high ability on the productivity of mannitol. I would like to present about the affection of salt concentration on the hydrogen production of Enterobacter aerogenes, and also the contribution on clean energy production by the seaweed cultivation in Japan. (orig.)

  7. The influence of environment and energy macro surroundings on the development of tourism in the 21st century.

    Science.gov (United States)

    Jovicić, Dobrica

    2012-06-01

    Trying to anticipate the future of tourism may be a particularly fraught task. However, this does not mean that trying to predict the future of tourism is not without value. From a business perspective, examining the future enables firms to anticipate new business conditions and develop new strategies. From a destination perspective, reflections on the future enable consideration of how to maintain or improve the qualities of a destination. The paper is focused on an analysis of the impacts of the energy and ecological macro environments on tourism trends in 21st century. Mass international tourism has thrived on the abundant and cheap supply of energy, and this may be about to change as the world moves towards 'Peak Oil'. The resultant scarcity and high price of all energy fuels will produce changes in human activities, specifically in tourism. The basis of the health of the economy is the health of the environment. Therefore issues of global environmental changes are increasingly influencing consideration of trends in tourism. In this looming transitional era tourism needs to make some dramatic changes to harmonize with the new realities of a post-energy world affected additionaly by global warming and other environmental changes.

  8. Electrostatic Self-energy of a Charged Particle in the Surroundings of a Topologically Charged Black Hole in the Brane

    CERN Document Server

    Larranaga, Alexis; Torres, Daniel Alexdy

    2014-01-01

    We determine the self-energy for a point charge held stationary in a topologically charged black hole spacetime arising from the Randall-Sundrum II braneworld model, showing that it has two contributions, one of geometric origin and the other of topological one.

  9. Self-energy production applied to buildings

    Energy Technology Data Exchange (ETDEWEB)

    Carlo, Fabricio Ramos del; Balestieri, Jose Antonio Perrella [Sao Paulo State University Julio de Mesquita Filho (UNESP), Guaratingueta, SP (Brazil)], E-mail: perrella@feg.unesp.br; Holanda, Marcelo Rodrigues de [Sao Paulo Univ. (EEL/USP), Lorena, SP (Brazil). Engineering School], E-mail: marcelo@debas.eel.usp.br

    2010-07-01

    The decentralization of energy production in order to obtain better environmental conditions, reducing greenhouse gas emissions and the cost reduction of electricity and thermal energy consumed in residential buildings has been proposed in the literature. This paper proposes to demonstrate what are the chances of having a microcogeneration system toward the residential application. In this study, we contemplate the technologies involved and their possible inputs that are arranged in a superstructure to be studied. As a first step we obtain the cost of the products generated by the configuration that consists basically of two sources of power generation, and through optimization calculations intended to obtain the best configuration, taking into consideration the selection between four fuels, two equipment generators (Fuel Cell and Internal Combustion Engine)and three levels of energy production for each one. An economic analysis is also presented to evaluate the opportunity of selling the energy generated considering the fluctuations of the residential building consumption needs. (author)

  10. Grasses for energy production: hydrological guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.L.

    2003-07-01

    This report provides hydrological guidelines for growers, land and water resource managers, environmental groups and other parties interested in utilising grasses for energy production. The aim of the report is to help interested parties decide if a location is suitable for planting energy grasses by considering whether potential hydrological impacts will have an adverse effect on crop productivity and yield. The guidelines consider: the water use of energy grasses compared with other crops; the factors governing water use; the water requirements for a productive crop; and the likely impacts on the availability and quantity of water. The report points out that there are still gaps in our knowledge of the processes controlling the water use and growth of energy grasses and notes that, in some situations, there will be considerable uncertainty in predictions of water use and the magnitude of the associated hydrological impacts.

  11. The `seafood gap' in the food-water nexus literature-issues surrounding freshwater use in seafood production chains

    NARCIS (Netherlands)

    Gephart, Jessica A.; Troell, Max; Henriksson, Patrik J.G.; Beveridge, Malcolm C.M.; Verdegem, Marc; Metian, Marc; Mateos, Lara D.; Deutsch, Lisa

    2017-01-01

    Freshwater use for food production is projected to increase substantially in the coming decades with population growth, changing demographics, and shifting diets. Ensuring joint food-water security has prompted efforts to quantify freshwater use for different food products and production methods.

  12. Straw for energy production. Technology - Environment - Economy

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L.; Nielsen, C.; Larsen, M.G.; Nielsen, V.; Zielke, U.; Kristensen, J.K.; Holm-Christensen, B.

    1998-12-31

    `Straw for Energy Production`, second edition, provides a readily accessible background information of special relevance to the use of straw in the Danish energy supply. Technical, environmental, and economic aspects are described in respect of boiler plants for farms, district heating plants, and combined heat and power plants (CHP). The individual sections deal with both well-known, tested technology and the most recent advances in the field of CHP production. This publication is designed with the purpose of reaching the largest possible numbers of people and so adapted that it provides a valuable aid and gives the non-professional, general reader a thorough knowledge of the subject. `Straw for Energy Production` is also available in German and Danish. (au)

  13. Geothermal energy and the production of electricity

    Science.gov (United States)

    Varet, J.

    Geothermal production of electricity, about 2,500 MW throughout the world, is considered. The types of geothermal resources are reviewed. A geothermal field can be used for the production of electricity only if the layer, a porous and permeable stock located at depths of 500 and 1500 m, is carried by a magmatic source at high temperatures. Prospecting and development of high energy geothermal energy are discussed, including feasibility studies and the construction of electric power stations. Once the existence of a field is determined, exploitation can begin, consisting of drilling, steam collecting and purifying, and the construction of turboalternator power plants. An example, the Bouillante-Guadeloupe geothermal power station, is presented. Production sites across the globe are reviewed, and electrical energy costs are discussed.

  14. Electrorheology for energy production and conservation

    Science.gov (United States)

    Huang, Ke

    Recently, based on the physics of viscosity, we developed a new technology, which utilizes electric or magnetic fields to change the rheology of complex fluids to reduce the viscosity, while keeping the temperature unchanged. The method is universal and applicable to all complex fluids with suspended particles of nano-meter, submicrometer, or micrometer size. Completely different from the traditional viscosity reduction method, raising the temperature, this technology is energy-efficient, as it only requires small amount of energy to aggregate the suspended particles. In this thesis, we will first discuss this new technology in detail, both in theory and practice. Then, we will report applications of our technology to energy science research. Presently, 80% of all energy sources are liquid fuels. The viscosity of liquid fuels plays an important role in energy production and energy conservation. With an electric field, we can reduce the viscosity of asphalt-based crude oil. This is important and useful for heavy crude oil and off-shore crude oil production and transportation. Especially, since there is no practical way to raise the temperature of crude oil inside the deepwater pipelines, our technology may play a key role in future off-shore crude oil production. Electrorehology can also be used to reduce the viscosity of refinery fuels, such as diesel fuel and gasoline. When we apply this technology to fuel injection, the fuel droplets in the fuel atomization become smaller, leading to faster combustion in the engine chambers. As the fuel efficiency of internal combustion engines depends on the combustion speed and timing, the fast combustion produces much higher fuel efficiency. Therefore, adding our technology on existing engines improves the engine efficiency significantly. A theoretical model for the engine combustion, which explains how fast combustion improves the engine efficiency, is also presented in the thesis. As energy is the key to our national

  15. Energy production from agriculture: an economic evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Becker, J.J.

    1986-05-01

    The crisis in sales on the world market of the European Economic Community's traditional agricultural products as well as Europe's concern for its energy independence, have led to the elaboration of agricultural diversification strategies and more specifically of agricultural projects which produce energy. This article evaluates the interest of such schemes in relation to the criterion of collective profitability.

  16. Deep Geothermal Energy Production in Germany

    OpenAIRE

    Thorsten Agemar; Josef Weber; Rüdiger Schulz

    2014-01-01

    Germany uses its low enthalpy hydrothermal resources predominantly for balneological applications, space and district heating, but also for power production. The German Federal government supports the development of geothermal energy in terms of project funding, market incentives and credit offers, as well as a feed-in tariff for geothermal electricity. Although new projects for district heating take on average six years, geothermal energy utilisation is growing rapidly, especially in souther...

  17. Energy condensed packaged systems. Composition, production, properties

    Directory of Open Access Journals (Sweden)

    Igor L. Kovalenko

    2015-03-01

    Full Text Available In this paper it is presented the substantiation of choice of fuel phase composition and optimal technology of emulsion production on the basis of binary solution of ammonium and calcium nitrates, which provide the obtaining of energy condensed packaged systems with specified properties. The thermal decomposition of energy condensed systems on the basis of ammonium nitrate is investigated. It is shown that the fuel phase of emulsion systems should be based on esters of polyunsaturated acids or on combinations thereof with petroleum products. And ceresin or petroleum wax can be used as the structuring additive. The influence of the technology of energy condensed systems production on the physicochemical and detonation parameters of emulsion explosives is considered. It is shown the possibility of obtaining of emulsion systems with dispersion of 1.3...1.8 microns and viscosity higher than 103 Pa∙s in the apparatus of original design. The sensitizing effect of chlorinated paraffin CP-470 on the thermolysis of energy condensed emulsion system is shown. The composition and production technology of energy condensed packaged emulsion systems of mark Ukrainit-P for underground mining in mines not dangerous on gas and dust are developed.

  18. Energy Production Demonstrator for Megawatt Proton Beams

    CERN Document Server

    Pronskikh, Vitaly S; Novitski, Igor; Tyutyunnikov, Sergey I

    2014-01-01

    A preliminary study of the Energy Production Demonstrator (EPD) concept - a solid heavy metal target irradiated by GeV-range intense proton beams and producing more energy than consuming - is carried out. Neutron production, fission, energy deposition, energy gain, testing volume and helium production are simulated with the MARS15 code for tungsten, thorium, and natural uranium targets in the proton energy range 0.5 to 120 GeV. This study shows that the proton energy range of 2 to 4 GeV is optimal for both a natU EPD and the tungsten-based testing station that would be the most suitable for proton accelerator facilities. Conservative estimates, not including breeding and fission of plutonium, based on the simulations suggest that the proton beam current of 1 mA will be sufficient to produce 1 GW of thermal output power with the natU EPD while supplying < 8% of that power to operate the accelerator. The thermal analysis shows that the concept considered has a problem due to a possible core meltdown; however...

  19. Transforming Global Markets for Clean Energy Products

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This paper looks at three clean energy product categories: equipment energy efficiency; low-carbon transport, including high-efficiency vehicles and electric/plug-in hybrid electric vehicles (EV/PHEVs); and solar photovoltaic (PV) power. Each section identifies ways to enhance global co-operation among major economies through case studies and examples, and ends with specific suggestions for greater international collaboration on market transformation efforts. An annex with more detailed case studies on energy-efficient electric motors, televisions, external power supplies and compact fluorescent lights is included in the paper.

  20. Energy management analysis of lunar oxygen production

    Science.gov (United States)

    Fazzolari, R.; Wong-Swanson, B. G.

    1990-01-01

    Energy load models in the process of hydrogen reduction of ilmenite for lunar oxygen production are being developed. The load models will be used as a first step to ultimately determine the optimal energy system needed to supply the power requirements for the process. The goal is to determine the energy requirements in the process of hydrogen reduction of ilmenite to produce oxygen. The general approach is shown, and the objectives are to determine the energy loads of the processes in the system. Subsequent energy management studies will be made to minimize the system losses (irreversibilities) and to design optimal energy system power requirements. A number of processes are being proposed as possible candidates for lunar application and some detailed experimental efforts are being conducted within this project at the University of Arizona. Priorities are directed toward developing the energy models for each of the proposed processes being considered. The immediate goals are to identify the variables that would impact energy requirements and energy sources of supply.

  1. Implementing the Data Center Energy Productivity Metric

    Energy Technology Data Exchange (ETDEWEB)

    Sego, Landon H.; Marquez, Andres; Rawson, Andrew; Cader, Tahir; Fox, Kevin M.; Gustafson, William I.; Mundy, Christopher J.

    2012-10-01

    As data centers proliferate in both size and number, their energy efficiency is becoming increasingly important. We discuss the properties of a number of the proposed metrics of energy efficiency and productivity. In particular, we focus on the Data Center Energy Productivity (DCeP) metric, which is the ratio of useful work produced by the data center to the energy consumed performing that work. We describe our approach for using DCeP as the principal outcome of a designed experiment using a highly instrumented, high performance computing data center. We found that DCeP was successful in clearly distinguishing between different operational states in the data center, thereby validating its utility as a metric for identifying configurations of hardware and software that would improve (or even maximize) energy productivity. We also discuss some of the challenges and benefits associated with implementing the DCeP metric, and we examine the efficacy of the metric in making comparisons within a data center and among data centers.

  2. Energy Crop and Biotechnology for Biofuel Production

    Institute of Scientific and Technical Information of China (English)

    Liangcai Peng; Neal Gutterson

    2011-01-01

    @@ Selection of energy crops is the first priority for large-scale biofuel production in China.As a major topic, it was extensively discussed in the Second International Symposium on Bioenergy and Biotechnology, held from October 16-19(th), 2010 in Huazhong Agricultural University(HZAU), Wuhan, China, with more than one hundred registered participants(Figure 1).

  3. Reactors Save Energy, Costs for Hydrogen Production

    Science.gov (United States)

    2014-01-01

    While examining fuel-reforming technology for fuel cells onboard aircraft, Glenn Research Center partnered with Garrettsville, Ohio-based Catacel Corporation through the Glenn Alliance Technology Exchange program and a Space Act Agreement. Catacel developed a stackable structural reactor that is now employed for commercial hydrogen production and results in energy savings of about 20 percent.

  4. Production of Energy Efficient Preform Structures (PEEPS)

    Energy Technology Data Exchange (ETDEWEB)

    Dr. John A. Baumann

    2012-06-08

    Due to its low density, good structural characteristics, excellent fabrication properties, and attractive appearance, aluminum metal and its alloys continue to be widely utilized. The transportation industry continues to be the largest consumer of aluminum products, with aerospace as the principal driver for this use. Boeing has long been the largest single company consumer of heat-treated aluminum in the U.S. The extensive use of aluminum to build aircraft and launch vehicles has been sustained, despite the growing reliance on more structurally efficient carbon fiber reinforced composite materials. The trend in the aerospace industry over the past several decades has been to rely extensively on large, complex, thin-walled, monolithic machined structural components, which are fabricated from heavy billets and thick plate using high speed machining. The use of these high buy-to-fly ratio starting product forms, while currently cost effective, is energy inefficient, with a high environmental impact. The widespread implementation of Solid State Joining (SSJ) technologies, to produce lower buy-to-fly ratio starting forms, tailored to each specific application, offers the potential for a more sustainable manufacturing strategy, which would consume less energy, require less material, and reduce material and manufacturing costs. One objective of this project was to project the energy benefits of using SSJ techniques to produce high-performance aluminum structures if implemented in the production of the world fleet of commercial aircraft. A further objective was to produce an energy consumption prediction model, capable of calculating the total energy consumption, solid waste burden, acidification potential, and CO2 burden in producing a starting product form - whether by conventional or SSJ processes - and machining that to a final part configuration. The model needed to be capable of computing and comparing, on an individual part/geometry basis, multiple possible

  5. Nuclear-Renewable Energy Systems Secondary Product Market Analysis Study

    Energy Technology Data Exchange (ETDEWEB)

    Deason, Wesley Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    In order to properly create a program surrounding the development of any technological concept it is necessary to fully understand the market in which it is being developed. In the case of Integrated Nuclear-Renewable Hybrid Energy Systems (HES), there are two economic markets in which it must be able to participate in: the electricity market and the secondary product market associated with the specific system. The purpose of the present report is to characterize the secondary product market in the U.S. and to provide recommendations for further developing the HES program. While HESs have been discussed in depth in many other reports, it is helpful to discuss them briefly in the present work [REF]. The concept of the HES can be deduced to a system, featuring a combination of a nuclear power plant, a renewable energy source, and an industrial manufacturing plant . The system is designed in a fashion that allows it either to produce electricity or to manufacture a secondary product as needed. The primary benefit of this concept lies in its ability to maximize economic performance of the integrated system and to manufacture products in a carbon-free manner. A secondary benefit is the enhanced supply-side flexibility gained by allowing the HES to economically provide grid services. A key tenant to nuclear power plant economics in today’s electricity market is their ability to operate at a very high capacity factor. Unfortunately, in regions with a high penetration of renewable energy, the carbon free energy produced by nuclear power may not be needed at all times. This forces the nuclear power plant to find a user for its excess capacity. This may include paying the electric grid to find a user, releasing energy to the environment by ‘dumping steam’, or reducing power. If the plant is unable to economically or safely do any of these actions, the plant is at risk of being shutdown. In order to allow for nuclear power plants to continue to contribute carbon free

  6. Photosynthetic pathway and biomass energy production.

    Science.gov (United States)

    Marzola, D L; Bartholomew, D P

    1979-08-10

    The current interest in locating new or alternative sources of energy has focused attention on solar energy capture by crops that can be subsequently utilized as a substitute for fossil fuels. The very high productivity of sugarepane and the fact that it accumulates sugars that are directly fermentable to alcohol may have caused seemingly less productive crops to be overlooked. We show here that recoverable alcohol from achievable commercial yields of pineapple can actually equal that of sugarcane, with the pineapple crop requiring only a fraction of the water used by sugarcane. Pineapple is well adapted to the subhumid or semiarid tropics and thus is particularly well suited for exploiting large areas not now under cultivation with any crop of commercial value.

  7. Energy from biomass production - photosynthesis of microalgae?

    Energy Technology Data Exchange (ETDEWEB)

    Lamparter, Tilman [Universitaet Karlsruhe, Botanisches Institut, Geb. 10.40, Kaiserstr. 2, D-76131 Karlsruhe (Germany)

    2009-07-01

    The composition of our atmosphere in the past, present and future is largely determined by photosynthetic activity. Other biological processes such as respiration consume oxygen and produce, like the use of the limited fossil fuel resources, CO{sub 2} whose increasing atmospheric concentration is a major concern. There is thus a demand on the development of alternative energy sources that replace fossil fuel. The use of crop plants for the production of biofuel is one step towards this direction. Since most often the same areas are used as for the production of food, the increased production of biofuel imposes secondary problems, however. In this context, the use of microalgae for biomass production has been proposed. Not only algae in the botanical sense (lower plants, photosynthetic eukaryotes) but also cyanobacteria, which belong to the prokaryotes, are used as ''microalgae''. The conversion of light energy into biomass can reach much higher efficiencies than in crop plants, in which a great portion of photosynthesis products is used to build up non-photosynthetic tissues such as roots or stems. Microalgae can grow in open ponds or bioreactors and can live on water of varying salinity. It has been proposed to grow microalgae in sea water on desert areas. Ongoing research projects aim at optimizing growth conditions in bioreactors, the recycling of CO{sub 2} from flue gases (e.g. from coal-fired power plants), the production of hydrogen, ethanol or lipids, and the production of valuable other substances such as carotenoids.

  8. Nanomaterials for renewable energy production and storage.

    Science.gov (United States)

    Chen, Xiaobo; Li, Can; Grätzel, Michaël; Kostecki, Robert; Mao, Samuel S

    2012-12-07

    Over the past decades, there have been many projections on the future depletion of the fossil fuel reserves on earth as well as the rapid increase in green-house gas emissions. There is clearly an urgent need for the development of renewable energy technologies. On a different frontier, growth and manipulation of materials on the nanometer scale have progressed at a fast pace. Selected recent and significant advances in the development of nanomaterials for renewable energy applications are reviewed here, and special emphases are given to the studies of solar-driven photocatalytic hydrogen production, electricity generation with dye-sensitized solar cells, solid-state hydrogen storage, and electric energy storage with lithium ion rechargeable batteries.

  9. Energy production with a tubular propeller turbine

    Science.gov (United States)

    Samora, I.; Hasmatuchi, V.; Münch-Alligné, C.; Franca, M. J.; Schleiss, A. J.; Ramos, H. M.

    2016-11-01

    Micro-hydropower is a way of improving the energetic efficiency of existent water systems. In the particular case of drinking water systems, several studies have showed that pressure reducing valves can be by-passed with turbines in order to recover the dissipated hydraulic energy to produce electricity. As conventional turbines are not always cost-effective for power under 20 kW, a new energy converter is studied. A five blade tubular propeller (5BTP), assessed through laboratorial tests on a reduced model with a diameter of 85 mm diameter and a maximal output power of 300 W, is addressed in this work. Having showed promising potential for further development, since global efficiencies of around 60% were observed, the turbine has been further used to estimate the potential for energy production in a real case study. A sub-grid of the drinking water system of the city of Lausanne, Switzerland, has been used to obtain an annual energy production through hourly simulations with several turbines.

  10. Efficiency in energy production and consumption

    Science.gov (United States)

    Kellogg, Ryan Mayer

    This dissertation deals with economic efficiency in the energy industry and consists of three parts. The first examines how joint experience between pairs of firms working together in oil and gas drilling improves productivity. Part two asks whether oil producers time their drilling optimally by taking real options effects into consideration. Finally, I investigate the efficiency with which energy is consumed, asking whether extending Daylight Saving Time (DST) reduces electricity use. The chapter "Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch" examines how oil production companies and the drilling rigs they hire improve drilling productivity by learning through joint experience. I find that the joint productivity of a lead firm and its drilling contractor is enhanced significantly as they accumulate experience working together. Moreover, this result is robust to other relationship specificities and standard firm-specific learning-by-doing effects. The second chapter, "Drill Now or Drill Later: The Effect of Expected Volatility on Investment," investigates the extent to which firms' drilling behavior accords with a key prescription of real options theory: irreversible investments such as drilling should be deferred when the expected volatility of the investments' payoffs increases. I combine detailed data on oil drilling with expectations of future oil price volatility that I derive from the NYMEX futures options market. Conditioning on expected price levels, I find that oil production companies significantly reduce the number of wells they drill when expected price volatility is high. I conclude with "Daylight Time and Energy: Evidence from an Australian Experiment," co-authored with Hendrik Wolff. This chapter assesses DST's impact on electricity demand using a quasi-experiment in which parts of Australia extended DST in 2000 to facilitate the Sydney Olympics. We show that the extension did not reduce overall

  11. Wave Energy Converter Annual Energy Production Uncertainty Using Simulations

    Directory of Open Access Journals (Sweden)

    Clayton E. Hiles

    2016-09-01

    Full Text Available Critical to evaluating the economic viability of a wave energy project is: (1 a robust estimate of the electricity production throughout the project lifetime and (2 an understanding of the uncertainty associated with said estimate. Standardization efforts have established mean annual energy production (MAEP as the metric for quantification of wave energy converter (WEC electricity production and the performance matrix approach as the appropriate method for calculation. General acceptance of a method for calculating the MAEP uncertainty has not yet been achieved. Several authors have proposed methods based on the standard engineering approach to error propagation, however, a lack of available WEC deployment data has restricted testing of these methods. In this work the magnitude and sensitivity of MAEP uncertainty is investigated. The analysis is driven by data from simulated deployments of 2 WECs of different operating principle at 4 different locations. A Monte Carlo simulation approach is proposed for calculating the variability of MAEP estimates and is used to explore the sensitivity of the calculation. The uncertainty of MAEP ranged from 2%–20% of the mean value. Of the contributing uncertainties studied, the variability in the wave climate was found responsible for most of the uncertainty in MAEP. Uncertainty in MAEP differs considerably between WEC types and between deployment locations and is sensitive to the length of the input data-sets. This implies that if a certain maximum level of uncertainty in MAEP is targeted, the minimum required lengths of the input data-sets will be different for every WEC-location combination.

  12. 78 FR 72533 - Energy Conservation Program: Energy Conservation Standards for Certain Consumer Products

    Science.gov (United States)

    2013-12-03

    ...-AD08 Energy Conservation Program: Energy Conservation Standards for Certain Consumer Products AGENCY... energy conservation standards enacted through the American Energy Manufacturing Technical Corrections Act, among which were a revised definition and revised energy conservation standards for small duct...

  13. Energy production from marine biomass (Ulva lactuca)

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L.; Daugbjerg Jensen, P.; Svane Bech, K. [Danish Technological Institute (DTI), Taastrup (Denmark)] [and others

    2011-11-15

    In this project, methods for producing liquid, gaseous and solid biofuel from the marine macroalgae Ulva lactuca has been studied. To get an understanding of the growth conditions of Ulva lactuca, laboratory scale growth experiments describing N, P, and CO{sub 2} uptake and possible N{sub 2}O and CH{sub 4} production are carried out. The macroalgae have been converted to bioethanol and methane (biogas) in laboratory processes. Further the potential of using the algae as a solid combustible biofuel is studied. Harvest and conditioning procedures are described together with the potential of integrating macroalgae production at a power plant. The overall conclusions are: 1. Annual yield of Ulva lactuca is 4-5 times land-based energy crops. 2. Potential for increased growth rate when bubbling with flue gas is up to 20%. 3. Ethanol/butanol can be produced from pretreated Ulva of C6 and - for butanol - also C5 sugars. Fermentation inhibitors can possibly be removed by mechanical pressing. The ethanol production is 0,14 gram pr gram dry Ulva lactuca. The butanol production is lower. 4. Methane yields of Ulva are at a level between cow manure and energy crops. 5. Fast pyrolysis produces algae oil which contains 78 % of the energy content of the biomass. 6. Catalytic supercritical water gasification of Ulva lactuca is feasible and a methane rich gas can be obtained. 7. Thermal conversion of Ulva is possible with special equipment as low temperature gasification and grate firing. 8. Co-firing of Ulva with coal in power plants is limited due to high ash content. 9. Production of Ulva only for energy purposes at power plants is too costly. 10. N{sub 2}O emission has been observed in lab scale, but not in pilot scale production. 11. Analyses of ash from Ulva lactuca indicates it as a source for high value fertilizers. 12. Co-digestion of Ulva lactuca together with cattle manure did not alter the overall fertilization value of the digested cattle manure alone. (LN)

  14. Deep Geothermal Energy Production in Germany

    Directory of Open Access Journals (Sweden)

    Thorsten Agemar

    2014-07-01

    Full Text Available Germany uses its low enthalpy hydrothermal resources predominantly for balneological applications, space and district heating, but also for power production. The German Federal government supports the development of geothermal energy in terms of project funding, market incentives and credit offers, as well as a feed-in tariff for geothermal electricity. Although new projects for district heating take on average six years, geothermal energy utilisation is growing rapidly, especially in southern Germany. From 2003 to 2013, the annual production of geothermal district heating stations increased from 60 GWh to 530 GWh. In the same time, the annual power production increased from 0 GWh to 36 GWh. Currently, almost 200 geothermal facilities are in operation or under construction in Germany. A feasibility study including detailed geological site assessment is still essential when planning a new geothermal facility. As part of this assessment, a lot of geological data, hydraulic data, and subsurface temperatures can be retrieved from the geothermal information system GeotIS, which can be accessed online [1].

  15. Assessment of environmental external effects in the production of energy

    DEFF Research Database (Denmark)

    Schleisner, L.; Meyer, H.J.; Morthorst, P.E.

    1995-01-01

    A project in Denmark has been carried out with the purpose to assess the environmental damages and the external costs in the production of energy. The energy production technologies that will be reported in this paper are wind power and a conventional coal fired plant. In the project...... the environmental damages for the energy production technologies are compared, and externalities in the production of energy using renewable energy and fossil fuels are identified, estimated and monetized....

  16. Performance Indicators of Wind Energy Production

    CERN Document Server

    D'Amico, G; Prattico, F

    2015-01-01

    Modeling wind speed is one of the key element when dealing with the production of energy through wind turbines. A good model can be used for forecasting, site evaluation, turbines design and many other purposes. In this work we are interested in the analysis of the future financial cash flows generated by selling the electrical energy produced. We apply an indexed semi-Markov model of wind speed that has been shown, in previous investigation, to reproduce accurately the statistical behavior of wind speed. The model is applied to the evaluation of financial indicators like the Internal Rate of Return, semi-Elasticity and relative Convexity that are widely used for the assessment of the profitability of an investment and for the measurement and analysis of interest rate risk. We compare the computation of these indicators for real and synthetic data. Moreover, we propose a new indicator that can be used to compare the degree of utilization of different power plants.

  17. Drell-Yan production at collider energies

    Energy Technology Data Exchange (ETDEWEB)

    Neerven, W.L. Van [Univ. of Leiden (Netherlands)

    1995-07-01

    We present some results of the Drell-Yan cross sections d{sigma}/dm and {sigma}{sub tot} which includes the O ({alpha}{sub s}{sup 2}) contribution to the coefficient function. In particular we study the total cross section {sigma}{sub tot} for vector boson production and d{sigma}/dm for low invariant masses m of the lepton pairs at large hadron collider energies. This study includes a detailed discussion of the dependence of the cross sections on the chosen scheme ({bar M}S versus DIS) and the factorization scale.

  18. Impacts from Partial Removal of Decommissioned Oil and Gas Platforms on Fish Biomass and Production on the Remaining Platform Structure and Surrounding Shell Mounds.

    Directory of Open Access Journals (Sweden)

    Jeremy T Claisse

    Full Text Available When oil and gas platforms become obsolete they go through a decommissioning process. This may include partial removal (from the surface to 26 m depth or complete removal of the platform structure. While complete removal would likely eliminate most of the existing fish biomass and associated secondary production, we find that the potential impacts of partial removal would likely be limited on all but one platform off the coast of California. On average 80% of fish biomass and 86% of secondary fish production would be retained after partial removal, with above 90% retention expected for both metrics on many platforms. Partial removal would likely result in the loss of fish biomass and production for species typically found residing in the shallow portions of the platform structure. However, these fishes generally represent a small proportion of the fishes associated with these platforms. More characteristic of platform fauna are the primarily deeper-dwelling rockfishes (genus Sebastes. "Shell mounds" are biogenic reefs that surround some of these platforms resulting from an accumulation of mollusk shells that have fallen from the shallow areas of the platforms mostly above the depth of partial removal. We found that shell mounds are moderately productive fish habitats, similar to or greater than natural rocky reefs in the region at comparable depths. The complexity and areal extent of these biogenic habitats, and the associated fish biomass and production, will likely be reduced after either partial or complete platform removal. Habitat augmentation by placing the partially removed platform superstructure or some other additional habitat enrichment material (e.g., rock boulders on the seafloor adjacent to the base of partially removed platforms provides additional options to enhance fish production, potentially mitigating reductions in shell mound habitat.

  19. 75 FR 12144 - Energy Conservation Program for Consumer Products: Energy Conservation Standards for Residential...

    Science.gov (United States)

    2010-03-15

    ...; ] DEPARTMENT OF ENERGY 10 CFR Part 430 RIN 1904-AC06 Energy Conservation Program for Consumer Products: Energy Conservation Standards for Residential Furnaces AGENCY: Office of Energy Efficiency and Renewable Energy... the product classes that DOE plans to analyze for purposes of amending energy conservation...

  20. Energy efficiency in the agricultural and food industry illustrated with the example of the feed production plant

    Directory of Open Access Journals (Sweden)

    Gembicki Jacek

    2016-01-01

    Full Text Available Energy efficiency is an indicator specifying the amount of saved electric energy thanks to implementation of suitable systems and solutions aimed at reducing the energy consumption in a production plant. Effective use of electric energy or heat energy is intended to reduce the amount of energy required to manufacture products and provide services. Decreased demand for electric energy in the production plant by only a few percent’s may result in considerable savings which in turn assure increased production profitability. If we reduce the energy consumption, it will translate into reduced pollution generated and emitted to the environment. Thanks to this, the plant may limit its negative impact on the surrounding. The feed industry is known to consume much amount of energy for the purposes of production. This energy is intended for pre-processing of substrates, actual production and preparation of ready product to be taken over by the customer. Farmers use fodders to feed their animals. Quality of fodders (feeds and their ingredients determine health of farm animals, which has a direct impact on the quality of products we consume, and consequently on our health. An thorough analysis of feed production plants and reduction of their energy consumption should translate into improved effectiveness. Saved energy allows producing high-quality products and using ingredients of higher quality, which in turn may influence competitiveness of prices of ready products.

  1. Analysis of specific absorption rate and internal electric field in human biological tissues surrounding an air-core coil-type transcutaneous energy transmission transformer.

    Science.gov (United States)

    Shiba, Kenji; Zulkifli, Nur Elina Binti; Ishioka, Yuji

    2017-06-01

    In this study, we analyzed the internal electric field E and specific absorption rate (SAR) of human biological tissues surrounding an air-core coil transcutaneous energy transmission transformer. Using an electromagnetic simulator, we created a model of human biological tissues consisting of a dry skin, wet skin, fat, muscle, and cortical bone. A primary coil was placed on the surface of the skin, and a secondary coil was located subcutaneously inside the body. The E and SAR values for the model representing a 34-year-old male subject were analyzed using electrical frequencies of 0.3-1.5 MHz. The transmitting power was 15 W, and the load resistance was 38.4 Ω. The results showed that the E values were below the International Commission on Non-ionizing Radiation Protection (ICNIRP) limit for the general public exposure between the frequencies of 0.9 and 1.5 MHz, and SAR values were well below the limit prescribed by the ICNIRP for the general public exposure between the frequencies of 0.3 and 1.2 MHz.

  2. Finite element analysis of equine incisor teeth. Part 2: investigation of stresses and strain energy densities in the periodontal ligament and surrounding bone during tooth movement.

    Science.gov (United States)

    Schrock, P; Lüpke, M; Seifert, H; Staszyk, C

    2013-12-01

    This study investigated the hypothetical contribution of biomechanical loading to the onset of equine odontoclastic tooth resorption and hypercementosis (EOTRH) and to elucidate the physiological age-related positional changes of the equine incisors. Based on high resolution micro-computed tomography (μCT) datasets, 3-dimensional models of entire incisor arcades and the canine teeth were constructed representing a young and an old incisor dentition. Special attention was paid to constructing an anatomically correct model of the periodontal ligament (PDL). Using previously determined Young's moduli for the equine incisor PDL, finite element (FE) analysis was performed. Resulting strains, stresses and strain energy densities (SEDs), as well as the resulting regions of tension and compression within the PDL and the surrounding bone were investigated during occlusion. The results showed a distinct distribution pattern of high stresses and corresponding SEDs in the PDL and bone. Due to the tooth movement, peaks of SEDs were obtained in the PDL as well as in the bone on the labial and palatal/lingual sides of the alveolar crest. At the root, highest SEDs were detected in the PDL on the palatal/lingual side slightly occlusal of the root tip. This distribution pattern of high SEDs within the PDL coincides with the position of initial resorptive lesions in EOTRH affected teeth. The position of high SEDs in the bone can explain the typical age-related alteration of shape and angulation of equine incisors.

  3. Particle Production at RHIC and LHC Energies

    CERN Document Server

    Tawfik, A; Shalaby, A G

    2012-01-01

    The production of different particle species is recently measured in $Pb-Pb$ collisions by the ALICE experiment at $\\sqrt{s}=7 $TeV. This motivates the use of various bosons and baryons measured at lower center-of-mass energies in comparing their ratios to the hadron resonance (HRG) gas model and PYTHIA event generator. It is found that the particle-to-antiparticle ratios are perfectly reproduce by means of HRG and PYTHIA at RHIC and LHC energies. The kaon-to-pion and proton-to-pion ratios are entirely overestimated by the HRG model. The PYTHIA event generator obviously underestimates the kaon-to-pion ratio and simultaneously reproduces the proton-to-pion ratio, almost perfectly, especially at LHC energy. While matter-to-antimatter and non-strange abundances are partly in line with predictions from the HRG model, it is found in the ALICE experiment that the measured baryon ratios are suppressed by a factor of $\\sim1.5$. The strange abundances are overestimated in the HRG model.

  4. Molten salts and nuclear energy production

    Science.gov (United States)

    Le Brun, Christian

    2007-01-01

    Molten salts (fluorides or chlorides) were considered near the beginning of research into nuclear energy production. This was initially due to their advantageous physical and chemical properties: good heat transfer capacity, radiation insensitivity, high boiling point, wide range solubility for actinides. In addition it was realised that molten salts could be used in numerous situations: high temperature heat transfer, core coolants with solid fuels, liquid fuel in a molten salt reactor, solvents for spent nuclear solid fuel in the case of pyro-reprocessing and coolant and tritium production in the case of fusion. Molten salt reactors, one of the six innovative concepts chosen by the Generation IV international forum, are particularly interesting for use as either waste incinerators or thorium cycle systems. As the neutron balance in the thorium cycle is very tight, the possibility to perform online extraction of some fission product poisons from the salt is very attractive. In this article the most important questions that must be addressed to demonstrate the feasibility of molten salt reactor will be reviewed.

  5. Molten salts and nuclear energy production

    Energy Technology Data Exchange (ETDEWEB)

    Le Brun, Christian [Laboratoire de Physique Subatomique et de Cosmologie, 53 Avenue des Martyrs, 38026 Grenoble cedex (France)]. E-mail: christian.lebrun@lpsc.in2p3.fr

    2007-01-15

    Molten salts (fluorides or chlorides) were considered near the beginning of research into nuclear energy production. This was initially due to their advantageous physical and chemical properties: good heat transfer capacity, radiation insensitivity, high boiling point, wide range solubility for actinides. In addition it was realised that molten salts could be used in numerous situations: high temperature heat transfer, core coolants with solid fuels, liquid fuel in a molten salt reactor, solvents for spent nuclear solid fuel in the case of pyro-reprocessing and coolant and tritium production in the case of fusion. Molten salt reactors, one of the six innovative concepts chosen by the Generation IV international forum, are particularly interesting for use as either waste incinerators or thorium cycle systems. As the neutron balance in the thorium cycle is very tight, the possibility to perform online extraction of some fission product poisons from the salt is very attractive. In this article the most important questions that must be addressed to demonstrate the feasibility of molten salt reactor will be reviewed.

  6. Assessment of wind energy potential and cost estimation of wind-generated electricity at hilltops surrounding the city of Maroua in Cameroon

    Science.gov (United States)

    Kaoga, Dieudonné Kidmo; Bogno, Bachirou; Aillerie, Michel; Raidandi, Danwe; Yamigno, Serge Doka; Hamandjoda, Oumarou; Tibi, Beda

    2016-07-01

    In this work, 28 years of wind data, measured at 10m above ground level (AGL), from Maroua meteorological station is utilized to assess the potential of wind energy at exposed ridges tops of mountains surrounding the city of Maroua. The aim of this study is to estimate the cost of wind-generated electricity using six types of wind turbines (50 to 2000 kW). The Weibull distribution function is employed to estimate Weibull shape and scale parameters using the energy pattern factor method. The considered wind shear model to extrapolate Weibull parameters and wind profiles is the empirical power law correlation. The results show that hilltops in the range of 150-350m AGL in increments of 50, fall under Class 3 or greater of the international system of wind classification and are deemed suitable to outstanding for wind turbine applications. A performance of the selected wind turbines is examined as well as the costs of wind-generated electricity at the considered hilltops. The results establish that the lowest costs per kWh are obtained using YDF-1500-87 (1500 kW) turbine while the highest costs are delivered by P-25-100 (90 kW). The lowest costs (US) per kWh of electricity generated are found to vary between a minimum of 0.0294 at hilltops 350m AGL and a maximum of 0.0366 at hilltops 150m AGL, with corresponding energy outputs that are 6,125 and 4,932 MWh, respectively. Additionally, the matching capacity factors values are 38.05% at hilltops 150m AGL and 47.26% at hilltops 350m AGL. Furthermore, YDF-1500-87 followed by Enercon E82-2000 (2000 kW) wind turbines provide the lowest cost of wind generated electricity and are recommended for use for large communities. Medium wind turbine P-15-50 (50 kW), despite showing the best coefficients factors (39.29% and 48.85% at hilltops 150 and 350m AGL, in that order), generates electricity at an average higher cost/kWh of US0.0547 and 0.0440 at hilltops 150 and 350m AGL, respectively. P-15-50 is deemed a more advantageous option

  7. 78 FR 9631 - Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Residential...

    Science.gov (United States)

    2013-02-11

    ... Part 430 RIN 1904-AC88 Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Residential Boilers AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy... Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J, 1000 Independence Avenue...

  8. Towards a more efficient energy use in photovoltaic powered products

    NARCIS (Netherlands)

    Kan, S.Y; Strijk, R.

    2006-01-01

    This paper analyzes the energy saving and power management solutions necessary to improve the energy consumption efficiency in photovoltaic powered products. Important in the design of such products is not only the energy supply optimization required to deliver the actual energy to fulfil their func

  9. Renewable energy for productive uses in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hanley, C.

    1997-12-01

    This paper describes a USAID/USDOE sponsored program to implement renewable energy in Mexico for productive uses. The objectives are to expand markets for US and Mexican industries, and to combat global climate change - primarily greenhouse gas emissions. The focus is on off-grid applications, with an emphasis on developing the institution structure to support the development of these industries within the country. Agricultural development is an example of the type of industry approached, where photovoltaic and wind power can be used for water pumping. There are hundreds of projects under review, and this interest has put renewables as a line item in Mexico`s rural development budget. Village power projects are being considered in the form of utility partnerships.

  10. 48 CFR 52.223-15 - Energy Efficiency in Energy-Consuming Products.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Energy Efficiency in... Provisions and Clauses 52.223-15 Energy Efficiency in Energy-Consuming Products. As prescribed in 23.206, insert the following clause: Energy Efficiency in Energy-Consuming Products (DEC 2007) (a) Definition....

  11. Energy saving avoiding the centrifugal motor-compressors air vents discharge to the surrounding atmosphere; Ahorro de energia evitando venteo de aire a la atmosfera en motocompresores centrifugos

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Alex [Compressor Controls Corporation, Houston, TX (United States)

    1996-12-31

    The motor-compressors are a key part of the industrial processes. The reliability and efficient operation of a compressor is critical. The surge phenomenon is a threat in the reliability of a compressor and therefore for the process. Surge, in a centrifugal compressor is defined as a dramatic flow and pressure drop, including back-flow. This is always a significant process disturbance. Continuous surge results into costly process shutdowns and mechanical damages. To prevent surge, and control the discharge pressure with simple or obsolete controls it is needed to vent air to the surrounding atmosphere. This form of control is very inefficient and costly. An advanced control with leading technology, besides providing an economical value preventing surge damages, offers substantial energy saving reducing or eliminating the venting of air to the atmosphere. [Espanol] Los motocompresores son un aparte clave de los procesos industriales. La confiable y eficiente operacion de un compresor es critica. El fenomeno de surge es una amenaza a la confiabilidad de un compresor y por lo tanto del proceso. El surge en un compresor centrifugo es definido como una dramatica caida de flujo y presion, incluyendo flujo inverso. Esto es siempre un significante disturbio del proceso. El surge continuo resulta en costosos paros de proceso y danos mecanicos. Para prevenir el surge y controlar la presion de descarga con controles simples u obsoletos, es necesario ventear aire a la atmosfera. Esta forma de control es muy ineficiente y costosa. Un control avanzado con tecnologia de punta ademas de proveer valor economico previniendo danos por surge, provee sustanciales ahorros de energia reduciendo o eliminando el venteo de aire a la atmosfera.

  12. Modelling energy consumption in a manufacturing plant using productivity KPIs

    Energy Technology Data Exchange (ETDEWEB)

    Gallachoir, Brian O.; Cahill, Caiman (Sustainable Energy Research Group, Dept. of Civil and Environmental Engineering, Univ. College Cork (Ireland))

    2009-07-01

    Energy efficiency initiatives in industrial plants are often focused on getting energy-consuming utilities and devices to operate more efficiently, or on conserving energy. While such device-oriented energy efficiency measures can achieve considerable savings, greater energy efficiency improvement may be achieved by improving the overall productivity and quality of manufacturing processes. The paper highlights the observed relationship between productivity and energy efficiency using aggregated data on unit consumption and production index data for Irish industry. Past studies have developed simple top-down models of final energy consumption in manufacturing plants using energy consumption and production output figures, but these models do not help identify opportunities for energy savings that could achieved through increased productivity. This paper proposes an improved and innovative method of modelling plant final energy demand that introduces standard productivity Key Performance Indicators (KPIs) into the model. The model demonstrates the relationship between energy consumption and productivity, and uses standard productivity metrics to identify the areas of manufacturing activity that offer the most potential for improved energy efficiency. The model provides a means of comparing the effect of device-oriented energy efficiency measures with the potential for improved energy efficiency through increased productivity.

  13. Hybrid reactors: Nuclear breeding or energy production?

    Energy Technology Data Exchange (ETDEWEB)

    Piera, Mireia [UNED, ETSII-Dp Ingenieria Energetica, c/Juan del Rosal 12, 28040 Madrid (Spain); Lafuente, Antonio; Abanades, Alberto; Martinez-Val, J.M. [ETSII-UPM, c/Jose Gutierrez Abascal 2, 28006 Madrid (Spain)

    2010-09-15

    After reviewing the long-standing tradition on hybrid research, an assessment model is presented in order to characterize the hybrid performance under different objectives. In hybrids, neutron multiplication in the subcritical blanket plays a major role, not only for energy production and nuclear breeding, but also for tritium breeding, which is fundamental requirement in fusion-fission hybrids. All three objectives are better achieved with high values of the neutron multiplication factor (k-eff) with the obvious and fundamental limitation that it cannot reach criticality under any event, particularly, in the case of a loss of coolant accident. This limitation will be very important in the selection of the coolant. Some general considerations will be proposed, as guidelines for assessing the hybrid potential in a given scenario. Those guidelines point out that hybrids can be of great interest for the future of nuclear energy in a framework of Sustainable Development, because they can contribute to the efficient exploitation of nuclear fuels, with very high safety features. Additionally, a proposal is presented on a blanket specially suited for fusion-fission hybrids, although this reactor concept is still under review, and new work is needed for identifying the most suitable blanket composition, which can vary depending on the main objective of the hybrid. (author)

  14. 48 CFR 23.203 - Energy-efficient products.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203...

  15. Advancing Opportunities in Renewable Energy Production

    Directory of Open Access Journals (Sweden)

    Vokony István

    2015-12-01

    Full Text Available The organization - WEC Hungarian Young Professionals in Energy (HYPE - in line with WEC’s (World Energy Council visions aims for the dissemination of the principle of sustainable energy development in Hungary. The HYPE’s goals are to represent the Hungarian energy sector’s viewpoint at national, regional and international events; to introduce and evaluate the key energy issues by preparing studies; and to foster the development of future energy professionals.

  16. Biofuels, fossil energy ratio, and the future of energy production

    Science.gov (United States)

    Consiglio, David

    2017-05-01

    Two hundred years ago, much of humanity's energy came from burning wood. As energy needs outstripped supplies, we began to burn fossil fuels. This transition allowed our civilization to modernize rapidly, but it came with heavy costs including climate change. Today, scientists and engineers are taking another look at biofuels as a source of energy to fuel our ever-increasing consumption.

  17. Energy production and use in Dutch agriculture

    NARCIS (Netherlands)

    Dekkers, W.A.; Lange, J.M.; Wit, de C.T.

    1974-01-01

    Energy relationschips in the agriculture of one of the most densely populated areas of the world, the Nether lands, are described. The Netherlands appear selfsupporting in food energy. However, if one takes account of energy consumption in horticulture, the direct and indirect fossil energy cost exc

  18. Simulation Tool For Energy Consumption and Production

    DEFF Research Database (Denmark)

    Nysteen, Michael; Mynderup, Henrik; Poulsen, Bjarne

    2013-01-01

    the energy consumption in smart homes. This paper presents a prototype simulation tool that allows graphical modeling of a home. Based on the modeled homes the user is able to simulate the energy consumptions and compare scenarios. The simulations are based on dynamic weather and energy price data as well...

  19. Energy efficiency in tomato greenhouse production. a preliminary study

    NARCIS (Netherlands)

    Baptista, F.; Briassoulis, D.; Stanghellini, C.; Silva, L.L.; Balafoutis, A.T.; Meyer-Aurich, A.; Mistriotis, A.

    2014-01-01

    Improved energy efficiency is the combination of efforts to reduce the amount of energy required to provide products and services. It includes all measures that are suitable to reduce specific components of the energy input, improving energy utilisa-tion and contributing directly to the reduction of

  20. Occurrence, sources, and potential human health risks of polycyclic aromatic hydrocarbons in agricultural soils of the coal production area surrounding Xinzhou, China.

    Science.gov (United States)

    Zhao, Long; Hou, Hong; Shangguan, Yuxian; Cheng, Bin; Xu, Yafei; Zhao, Ruifen; Zhang, Yigong; Hua, Xiaozan; Huo, Xiaolan; Zhao, Xiufeng

    2014-10-01

    A comprehensive investigation of the levels, distribution patterns, and sources of polycyclic aromatic hydrocarbons (PAHs) in agricultural soils of the coal production area surrounding Xinzhou, China, was conducted, and the potential human health risks associated with the levels observed were addressed. A total of 247 samples collected from agricultural soils from the area were analyzed for sixteen PAHs, including highly carcinogenic isomers. The PAH concentrations had a range of n.d. to 782ngg(-1), with a mean value of 202ngg(-1). The two-three ring PAHs were the dominant species, making up 60 percent of total PAHs. Compared with the pollution levels and carcinogenic potential risks reported in other studies, the soil PAH concentrations in the study area were in the low to intermediate range. A positive matrix factorization model indicates that coal/biomass combustion, coal and oil combustion, and coke ovens are the primary PAH sources, accounting for 33 percent, 26 percent, and 24 percent of total PAHs, respectively. The benzo[a]pyrene equivalent (BaPeq) concentrations had a range of n.d. to 476ngg(-1) for PAH7c, with a mean value of 34ngg(-1). The BaPeq concentrations of PAH7c accounted for more than 99 percent of the ∑PAH16, which suggests that seven PAHs were major carcinogenic contributors of ∑PAH16. According to the Canadian Soil Quality Guidelines, only six of the soil samples had concentrations above the safe BaPeq value of 600ngg(-1); the elevated concentrations observed at these sites can be attributed to coal combustion and industrial activities. Exposure to these soils through direct contact probably poses a significant risk to human health as a result of the carcinogenic effects of PAHs. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. IEA Energy Technology Essentials: Hydrogen Production and Distribution

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-04-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Hydrogen Production and Distribution are the topics covered in this edition.

  2. ENERGY USE IN APPLE PRODUCTION IN THE ESFAHAN ...

    African Journals Online (AJOL)

    journal

    Department of Agricultural Machinery Engineering, Shahid Chamran University of Ahvaz, Iran ... The aim of this study was to evaluate energy use in apple production in the Esfahan Province in Iran. Data used ..... Energy use in US agriculture.

  3. Greener energy systems energy production technologies with minimum environmental impact

    CERN Document Server

    Jeffs, Eric

    2012-01-01

    Recent years have seen acceleration in the development of cleaner energy systems. In Europe and North America, many old coal-fired power plants will be shut down in the next few years and will likely be replaced by combined cycle plants with higher-efficiency gas turbines that can start up and load quickly. With the revival of nuclear energy, designers are creating smaller nuclear reactors of a simpler integrated design that could expand the application of clean, emission-free energy to industry. And a number of manufacturers now offer hybrid cars with an electric motor and a gasoline engine t

  4. Production systems and energy potential of tidal energy

    Directory of Open Access Journals (Sweden)

    Julián Rodrigo Quintero-González

    2016-01-01

    Full Text Available This article discusses the concept of tidal power and distinguishes the types of systems to exploitation the tidal energy; the same way; it also shows how this technology serves as a source of energy in some countries around the world, which is a role associated with the energy potential available in each region. This point equally shows through numbers in GWh/year per km2 reservoir surface. Last but not least, it is the influence that this technology has had on the environment, its contributions for improving and evaluating from an environmental point of view.

  5. 76 FR 13168 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Science.gov (United States)

    2011-03-10

    ... of Energy Efficiency and Renewable Energy Energy Conservation Program for Consumer Products... pursuant to the Energy Policy and Conservation Act. The five sources are electricity, natural gas, No. 2... of the Energy Policy and Conservation Act (Act) requires that DOE prescribe test procedures for...

  6. From Policy to Compliance: Federal Energy Efficient Product Procurement

    Energy Technology Data Exchange (ETDEWEB)

    DeMates, Laurèn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Scodel, Anna [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-09-06

    Federal buyers are required to purchase energy-efficient products in an effort to minimize energy use in the federal sector, save the federal government money, and spur market development of efficient products. The Federal Energy Management Program (FEMP)’s Energy Efficient Product Procurement (EEPP) Program helps federal agencies comply with the requirement to purchase energy-efficient products by providing technical assistance and guidance and setting efficiency requirements for certain product categories. Past studies have estimated the savings potential of purchasing energy-efficient products at over $500 million per year in energy costs across federal agencies.1 Despite the strong policy support for EEPP and resources available, energy-efficient product purchasing operates within complex decision-making processes and operational structures; implementation challenges exist that may hinder agencies’ ability to comply with purchasing requirements. The shift to purchasing green products, including energy-efficient products, relies on “buy in” from a variety of potential actors throughout different purchasing pathways. Challenges may be especially high for EEPP relative to other sustainable acquisition programs given that efficient products frequently have a higher first cost than non-efficient ones, which may be perceived as a conflict with fiscal responsibility, or more simply problematic for agency personnel trying to stretch limited budgets. Federal buyers may also face challenges in determining whether a given product is subject to EEPP requirements. Previous analysis on agency compliance with EEPP, conducted by the Alliance to Save Energy (ASE), shows that federal agencies are getting better at purchasing energy-efficient products. ASE conducted two reviews of relevant solicitations for product and service contracts listed on Federal Business Opportunities (FBO), the centralized website where federal agencies are required to post procurements greater

  7. PARITY PRICE OF AGRICULTURAL PRODUCTS, ENERGY AND MATERIAL RESOURCES

    Directory of Open Access Journals (Sweden)

    A. Alpatov

    2012-02-01

    Full Text Available The article describes the main approaches to parity of agricultural products to energy and material resources, are the price indices for certain types of energy resources, and presents data on the availability of agricultural machinery in agricultural organizations of the Russian Federation. The dynamics of growth in energy prices in relation to the specific energy consumption per 1 ha of sown area in the agricultural organizations of the Russian Federation, the consumption of resources such as petroleum products, electricity and fuel. In addition, the article shows the average sales price for agricultural products and logistical resources. Shown the equivalence of the exchange of products between agriculture and industry.

  8. Energy and food production with a Systemic Approach"

    OpenAIRE

    Fassio, Franco; Barbero, Silvia

    2011-01-01

    we suggest a new innovativ approach to sustainable production of energy and food. We also offer concrete policies for addressing a range of problems and difficulties associated with our current production model

  9. Energy consumption and energy saving potentials in piglet production; Energieverbrauch und energetische Einsparpotenziale in der Ferkelerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Neiber, Josef; Neser, Stefan [Bayerische Landesanstalt fuer Landwirtschaft (LFL), Freising (DE). Inst. fuer Landtechnik und Tierhaltung (ILT)

    2010-07-01

    For agricultural farms, a considerable share of variable costs is due to the energy consumption for agricultural production processes. In particular, piglet production and nursery have a high thermal and electric energy demand. For the planning and the redevelopment of pig housing systems, a good knowledge of the energy demand of different consumers is of great importance. With this knowledge, it is possible to derive measures for improving energy efficiency and reducing energy consumption. (orig.)

  10. 75 FR 13217 - Energy Conservation Program for Consumer Products: Classifying Products as Covered Products

    Science.gov (United States)

    2010-03-19

    ... explicitly include such areas. For example, the 2001 RECS addressed swimming pool heaters, well water pumps... other group or individual. The content of these definitions is consistent with the legislative history..., for example, where a product consumes energy in a housing unit's backyard or outdoor pool or accessory...

  11. Calendar Year 2008 Program Benefits for ENERGY STAR Labeled Products

    Energy Technology Data Exchange (ETDEWEB)

    Homan, GregoryK; Sanchez, Marla; Brown, RichardE; Lai, Judy

    2010-08-24

    This paper presents current and projected savings for ENERGY STAR labeled products, and details the status of the model as implemented in the September 2009 spreadsheets. ENERGY STAR is a voluntary energy efficiency labeling program operated jointly by the Environmental Protection Agency (US EPA) and the U.S. Department of Energy (US DOE), designed to identify and promote energy-efficient products, buildings and practices. Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products, and currently labels more than thirty products, spanning office equipment, heating, cooling and ventilation equipment, commercial and residential lighting, home electronics, and major appliances. ENERGY STAR's central role in the development of regional, national and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with stakeholders. This report presents savings estimates for ENERGY STAR labeled products. We present estimates of energy, dollar, and carbon savings achieved by the program in the year 2008, annual forecasts for 2009 and 2010, and cumulative savings estimates for the period 1993 through 2008 and cumulative forecasts for the period 2009 through 2015. Through 2008 the program saved 8.8 Quads of primary energy and avoided the equivalent of 158 metric tones carbon (MtC). The forecast for the period 2009-2015 is 18.1 Quads or primary energy saved and 316 MtC emissions avoided. The sensitivity analysis bounds the best estimate of carbon avoided between 104 MtC and 213 MtC (1993 to 2008) and between 206 MtC and 444 MtC (2009 to 2015). In this report we address the following questions for ENERGY STAR labeled products: (1) How are ENERGY STAR impacts quantified; (2) What are the ENERGY STAR achievements; and (3) What are the limitations to our method?

  12. Nanoenergy Nanotechnology Applied for Energy Production

    CERN Document Server

    Leite, Edson

    2013-01-01

    Low dimensional systems have revolutionized the science and technology in several areas. However, their understanding is still a great challenge for the scientific community. Solar energy conversion devices based on nanostructured materials have shown exceptional gains in efficiency and stability. In this context, nanostructures allow an improvement of surface properties, transport and charge transfer, as well as direct application as sensors and storage devices and energy conversion. This book discuss the recent advances and future trends of the nanoscience in solar energy conversion and storage. It explores and discusses recent developments both in theory as well as in experimental studies and is of interest to materials scientists, chemists, physicists and engineers.

  13. On turbulent energy production in wall bounded flows

    Science.gov (United States)

    Gurka, R.; Hetsroni, G.; Liberzon, A.; Nikitin, N.; Tsinober, A.

    2004-07-01

    The main point of this Brief Communication is that the turbulent energy production is due to the compressing of material elements rather than stretching. This is understood in the sense that the positiveness of the turbulent energy production is due to the contribution of the term associated with the compressive (negative) eigenvalue/eigenvector of the mean strain.

  14. Production, consumption and research on solar energy

    DEFF Research Database (Denmark)

    Sanz-Casado, Elias; Lascurain-Sánchez, Maria Luisa; Serrano-Lopez, Antonio Eleazar

    2014-01-01

    An analysis of scientific publications on solar energy was conducted to determine whether public interest in the subject is mirrored by more intense research in the area. To this end, the research published by Spain and Germany, the two EU countries with the highest installed photovoltaic capacit...... intense. The main conclusion is the divergence in Germany and Spain between solar energy demand/output growth, being exponential, and the growth of research papers on the subject, which is linear...

  15. The power of design product innovation in sustainable energy technologies

    CERN Document Server

    Reinders, Angele H; Brezet, Han

    2012-01-01

    The Power of Design offers an introduction and a practical guide to product innovation, integrating the key topics that are necessary for the design of sustainable and energy-efficient products using sustainable energy technologies. Product innovation in sustainable energy technologies is an interdisciplinary field. In response to its growing importance and the need for an integrated view on the development of solutions, this text addresses the functional principles of various energy technologies next to the latest design processes and innovation methods. From the perspec

  16. Impact Factors of Energy Productivity in China: An Empirical Analysis

    Institute of Scientific and Technical Information of China (English)

    Wei Chu; Shen Manhong

    2007-01-01

    This article developed a decomposition model of energy productivity on the basis of the economic growth model. Four factors were considered which may influence China's energy productivity according to this model: technology improvement, resource allocation structure, industrial structure and institute arrangement. Then, an econometric model was employed to test the four factors empirically on the basis of China's statistical data from 1978 to 2004. Results indicated that capital deepening contributes the most (207%) to energy efficiency improvement, and impact from labor forces (13%) is the weakest one in resource factor; industrial structure (7%) and institute innovation (9.5%) positively improve the energy productivity.

  17. Production of chemical energy carriers by non-expendable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Nitsch, J.

    1976-01-01

    The different forms of energy (radiation, high-temperature heat and electricity) arising from non-expendable energy sources like solar energy can be used for the production of chemical energy-carriers. Possible methods are the splitting of water by means of photolysis, thermochemical cycles and electrolysis, as well as the storage of energy in closed loop chemical systems. These methods are described and efficiencies and costs of the production of these energy carriers are specified. Special problems of the long-distance transportation of hydrogen produced by solar energy are described and the resulting costs are estimated.

  18. Practices Surrounding Event Photos

    NARCIS (Netherlands)

    Vyas, Dhaval; Nijholt, Antinus; van der Veer, Gerrit C.; Kotzé, P.; Marsden, G.; Lindgaard, G.; Wesson, J.; Winckler, M.

    Sharing photos through mobile devices has a great potential for creating shared experiences of social events between co-located as well as remote participants. In order to design novel event sharing tools, we need to develop indepth understanding of current practices surrounding these so called

  19. The Energy Relationships of Corn Production and Alcohol Fermentation.

    Science.gov (United States)

    Van Koevering, Thomas E.; And Others

    1987-01-01

    Proposes that the production of alcohol from corn be used as a practical application of scientific principles that deal with energy transformations. Discusses the solar energy available for growth, examining the utilization of solar energy by plants. Describes the conversion of corn to alcohol, with suggestions for classroom and laboratory study.…

  20. Alfalfa -- a sustainable crop for biomass energy production

    Science.gov (United States)

    Alfalfa (Medicago sativa) has the potential to be a significant contributor to America's renewable energy future. In an alfalfa biomass energy production system, alfalfa forage would be separated into stem and leave fractions. The stems would be processed to produce energy, and the leaves would be s...

  1. energy use and gross margin analysis for sesame production in ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    As the negative impacts of energy by-products affect the climate, the knowledge and efficient use of ... Diesel and labour energy inputs dominated the total energy inputs for the two systems. .... such as output of sesame, quantity and type of.

  2. Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products

    Energy Technology Data Exchange (ETDEWEB)

    Homan, Gregory K; Sanchez, Marla C.; Brown, Richard E.

    2010-11-15

    ENERGY STAR is a voluntary energy efficiency labeling program operated jointly by the Environmental Protection Agency (US EPA) and the U.S. Department of Energy (US DOE), designed to identify and promote energy-efficient products, buildings and practices. Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products, and currently labels more than thirty products, spanning office equipment, heating, cooling and ventilation equipment, commercial and residential lighting, home electronics, and major appliances. ENERGY STAR's central role in the development of regional, national and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with stakeholders. This report presents savings estimates from the use ENERGY STAR labeled products. We present estimates of energy, dollar, and carbon savings achieved by the program in the year 2009, annual forecasts for 2010 and 2011, and cumulative savings estimates for the period 1993 through 2009 and cumulative forecasts for the period 2010 through 2015. Through 2009 the program saved 9.5 Quads of primary energy and avoided the equivalent of 170 million metric tons carbon (MMTC). The forecast for the period 2009-2015 is 11.5 Quads or primary energy saved and 202 MMTC emissions avoided. The sensitivity analysis bounds the best estimate of carbon avoided between 110 MMTC and 231 MMTC (1993 to 2009) and between 130 MMTC and 285 MMTC (2010 to 2015).

  3. Energy saving potential of emerging technologies in milk powder production

    NARCIS (Netherlands)

    Moejes, S.N.; Boxtel, van A.J.B.

    2017-01-01

    Background

    The food industry has a large potential for energy reduction which, with an eye on the future, has to be exploited. Milk powder production consists of many thermal processes and is responsible for 15% of the total energy use in the dairy industry. A reduction in energy consumptio

  4. 78 FR 77607 - Energy Conservation Program for Consumer Products: Energy Conservation Standards for Residential...

    Science.gov (United States)

    2013-12-24

    ... Parts 429 and 430 RIN 1904-AC22 Energy Conservation Program for Consumer Products: Energy Conservation... January 23, 2014. ADDRESSES: Any comments submitted must identify the NOPR for Energy Conservation... (78 FR 64067) to make available and invite comments on the proposed rule regarding energy...

  5. 78 FR 77019 - Energy Conservation Program: Energy Conservation Standards for Certain Consumer Products

    Science.gov (United States)

    2013-12-20

    ... Part 430 RIN 1904-AD08 Energy Conservation Program: Energy Conservation Standards for Certain Consumer... the Energy Policy and Conservation Act of 1975 (EPCA or ``the Act'') (42 U.S.C. 6291-6309, as codified), which provides for an energy conservation program for consumer products other than automobiles, and...

  6. 78 FR 25626 - Energy Conservation Program for Consumer Products: Energy Conservation Standards for Ceiling Fans...

    Science.gov (United States)

    2013-05-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY 10 CFR Part 430 RIN 1904-AC87 Energy Conservation Program for Consumer Products: Energy Conservation Standards... and invite comments on the Framework Document regarding energy conservation standards for...

  7. Associated strangeness production at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Saghai, B.

    1996-04-01

    Elementary strangeness production reactions with hadronic and electromagnetic probes are briefly reviewed. Some recent theoretical and experimental findings are underlined and a few open questions are singled out. (author). 59 refs.

  8. Studies of meson production at SIS energies

    Energy Technology Data Exchange (ETDEWEB)

    Hartnack, Ch.; David, Ch.; Aichelin, J.

    1996-12-31

    IQMD results on kaon and pion data are presented. The influence of the equation of state and of the elementary kaon cross sections on the excitation function and on the system size dependence is analyzed. Effects of density dependent threshold reductions for the production of positive and negative kaons are studied. The influence of the Delta lifetime on the pion production is discussed. (author). 32 refs.

  9. Simulation Tool For Energy Consumption and Production

    DEFF Research Database (Denmark)

    Nysteen, Michael; Mynderup, Henrik; Poulsen, Bjarne

    2013-01-01

    In order to promote adoption of smart grid with the general public it is necessary to be able to visualize the benefits of a smart home. Software tools that model the effects can help significantly with this. However, only little work has been done in the area of simulating and visualizing...... the energy consumption in smart homes. This paper presents a prototype simulation tool that allows graphical modeling of a home. Based on the modeled homes the user is able to simulate the energy consumptions and compare scenarios. The simulations are based on dynamic weather and energy price data as well...... as a controller unit of the user’s choice. The results of the simulations can be compared using a dynamic reporting window that allows the user to create custom charts of the data. The application has been designed such that it can easily be extended with additional controller units, price and weather data...

  10. Textiles, body care products, amenity horticulture and energy production

    OpenAIRE

    2014-01-01

    Food production is the most evident result of Organic Farming. However, farm products are used for other human needs. Some of those Organic sectors beyond food, e.g. the amenity horticulture are in an early stage of development, but have big potentials. Awareness inside and outside of the Organic world and development of the value chain need to be further developed. Other Organic sectors beyond food, e.g. Organic cotton have made impressive progress during the past few years.

  11. Algae production for energy and foddering

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Attila; Jobbagy, Peter; Durko, Emilia [University of Debrecen, Faculty of Applied Economics and Rural Development (UD-FAERD), Centre for Agricultural and Applied Economic Sciences, Debrecen (Hungary)

    2011-09-15

    This study not only presents the results of our own experiments in alga production, but also shows the expected economic results of the various uses of algae (animal feed, direct burning, pelleting, bio-diesel production), the technical characteristics of a new pelleting method based on literature, and also our own recommended alga production technology. In our opinion, the most promising alternative could be the production of alga species with high levels of oil content, which are suitable for utilization as by-products for animal feed and in the production of bio-diesel, as well as for use in waste water management and as a flue gas additive. Based on the data from our laboratory experiments, of the four species we analyzed, Chlorella vulgaris should be considered the most promising species for use in large-scale experiments. Taking expenses into account, our results demonstrate that the use of algae for burning technology purposes results in a significant loss under the current economic conditions; however, the utilization of algae for feeding and bio-diesel purposes - in spite of their innovative nature - is nearing the level needed for competitiveness. By using the alga production technology recommended by us and described in the present study in detail, with an investment of 545 to 727 thousand EUR/ha, this technology should be able to achieve approximately 0-29 thousand EUR/ha net income, depending on size. More favorable values emerge in the case of the 1-ha (larger) size, thanks to the significant savings on fixed costs (depreciation and personnel costs). (orig.)

  12. White Paper on Energy Efficiency Status of Energy-Using Products in China (2011)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Romankiewicz, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-06-01

    This White Paper focuses on the areas and products involved in the above tasks, based on the White Paper - Energy Efficiency Status of Energy-Using Products in China (2010), here referred to as “White Paper 2010”, which analyzed the energy efficiency status of 21 typical energy-using products in five sectors: household appliances, office equipment, commercial equipment, industrial equipment, and lighting equipment. Table 1 illustrates the detailed product coverage for this year’s paper, noting the addition of three household appliance items (automatic electric rice cooker, AC electric fan, and household induction cooktop) and one industrial sector item (three-phase distribution transformer).

  13. Sustainable Production of Switchgrass for Biomass Energy

    Science.gov (United States)

    Switchgrass (Panicum virgatum L.) is a C4 grass native to the North American tallgrass prairies, which historically extended from Mexico to Canada. It is the model perennial warm-season grass for biomass energy. USDA-ARS in Lincoln, NE has studied switchgrass continuously since 1936. Plot-scale rese...

  14. Energy Production from Marine Biomass (Ulva lactuca)

    DEFF Research Database (Denmark)

    Nikolaisen, Lars; Daugbjerg Jensen, Peter; Svane Bech, Karin;

    The background for this research activity is that the 2020 goals for reduction of the CO2 emissions to the atmosphere are so challenging that exorbitant amounts of biomass and other renewable sources of energy must be mobilised in order to – maybe – fulfil the ambitious 2020 goals. The macroalgae...

  15. Energy Address Delivery Technologies and Thermal Transformations in Food Production

    OpenAIRE

    Burdo O.G.; Sit M.L.; Zikov A.V.; Reznychenco D.N.; Juravleov A.A.

    2016-01-01

    In this article, energetic and technical paradoxes in food nanotechnologies and traditional approaches to evaluation of energy recourses using are considered. Hypotheses of improvement of food production energy technologies are formulated. Classification of principles of address delivery of energy to food raw materials elements is given. We had substantiated the perspective objectives for heat-pumps installations and biphasic heat-transfer systems. The energy efficiency of new technolo-gies i...

  16. Dimesoatoms production in high energy collisions

    CERN Document Server

    Afanasyev, L; Voskresenskaya, O

    2016-01-01

    The production of two meson electromagnetic bound states and free meson pairs $\\pi^+\\pi^-$, $K^+K^-$, $\\pi^+ K^{\\mp}$ in relativistic collisions has been considered. It was shown that making use of the exact Coulomb wave function for dimesoatom (DMA) allows one to calculate the yield of any nS state with desired accuracy. The relative probabilities of production of DMA and meson pairs in the free state are estimated. The amplitude of DMA transition from 1S to 2P state, which is essential for the pionium Lamb shift measurements, has been obtained.

  17. Water Use of Fossil Energy Production and Supply in China

    Directory of Open Access Journals (Sweden)

    Gang Lin

    2017-07-01

    Full Text Available Fossil energy and water resources are both important for economic and social development in China, and they are tightly interlinked. Fossil energy production consumes large amounts of water, and it is essential to investigate the water footprint of fossil energy production (WFEP in China. In addition, fossil energy is supplied to consumers in China by both domestic and foreign producers, and understanding the water footprint of fossil energy supply (WFES is also highly significant for water and energy development programs in the long-term. The objectives of this paper were to provide an estimation of the blue component of WFEP and WFES in China for the period from 2001 to 2014, and to evaluate the impact on water resources from energy production, the contribution of internal and external WFES, and water-energy related issues of the international energy trade by applying water footprint analysis based on the bottom-up approach. The results indicate that generally, the WFEP and WFES in China both maintained steady growth before 2013, with the WFEP increasing from approximately 3900 million m3/year to 10,400 million m3/year, while the WFES grew from 3900 million m3/year to 11,600 million m3/year. The fossil energy production caps of the 13th Five Year Plan can bring the water consumed for fossil energy production back to a sustainable level. Over the long-term, China’s energy trade plan should also consider the water and energy resources of the countries from which fossil energy is imported.

  18. Agroforestry practice in villages surrounding Nyamure former ...

    African Journals Online (AJOL)

    cntaganda

    Key words: Agroforestry, fuel wood, tree products, woodlot, forest plantation. INTRODUCTION ... The study area included three administrative cells in the surroundings of Nyamure ..... Table 6: Distance and time spent on firewood collection.

  19. DEPENDENCE OF ENERGY EFFICIENCY AND COST OF PRODUCTION

    Directory of Open Access Journals (Sweden)

    D. Sklyarov

    2016-01-01

    Full Text Available Economic systems exist on condition of receipt and spending of energy. Energy consumption is a necessary condition for the existence and functioning of the economic systems of any scale: macroeconomics, microeconomics, regional economy or the world economy.The economic system operates on the scale at which it is able to produce energy and get access to energy. Moreover, receipt and consumption of energy in the operation of the economic system is mainly determined by, the level of energy production from energy sources, since this level is determined by the level of energy consumption by industries and enterprises of the economy.Currently, the economic system does not produce energy in reserve. Thus, the question of energy effi ciency and energy saving was always acute.The article describes the energy efficiency and energy saving effect on the cost of production. Were used two methods: “costs and release” matrix and “price - value added” matrix. The result is the equation of dependence of energy efficiency and costs.

  20. Energy requirement and economic analysis of citrus production in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ozkan, Burhan E-mail: bozkan@akdeniz.edu.tr; Akcaoz, Handan; Karadeniz, Feyza

    2004-07-01

    The aim of this research was to examine the energy requirements of the inputs and output in citrus production in the Antalya province of Turkey. Data for the production of citrus fruits (orange, lemon and mandarin) were collected from 105 citrus farms by using a face to face questionnaire method. The research results revealed that lemon production was the most energy intensive among the three fruits investigated. The energy input of chemical fertilizer (49.68%), mainly nitrogen, has the biggest share in the total energy inputs followed by Diesel (30.79%). The lemon production consumed a total of 62 977.87 MJ/ha followed by orange and mandarin with 60 949.69 and 48 838.17 MJ/ha, respectively. The energy ratios for orange, mandarin and lemon were estimated to be 1.25, 1.17 and 1.06, respectively. On average, the non-renewable form of energy input was 95.90% of the total energy input used in citrus production compared to only 3.74% for the renewable form. The benefit-cost ratio was the highest in orange production (2.37) followed by lemon. The results indicate that orange production in the research area is most remunerative to growers compared to lemon and mandarin.

  1. Low-energy thermal processing technology of foamed concrete products in landfills using solar energy

    Directory of Open Access Journals (Sweden)

    Dauzhanov Nabi Tokmurzaevich

    2014-03-01

    Full Text Available Based on the comprehensive research and industrial development there is a new method developed for accelerating the hardening of foamed products using thermal heating of products by soft modes, which allows to receive high quality material and organize energy-efficient and environmentally friendly production of foam concrete products.

  2. Identifying productive resources in secondary school students' discourse about energy

    Science.gov (United States)

    Harrer, Benedikt

    A growing program of research in science education acknowledges the beginnings of disciplinary reasoning in students' ideas and seeks to inform instruction that responds productively to these disciplinary progenitors in the moment to foster their development into sophisticated scientific practice. This dissertation examines secondary school students' ideas about energy for progenitors of disciplinary knowledge and practice. Previously, researchers argued that students' ideas about energy were constrained by stable and coherent conceptual structures that conflicted with an assumed unified scientific conception and therefore needed to be replaced. These researchers did not attend to the productive elements in students' ideas about energy. To analyze the disciplinary substance in students' ideas, a theoretical perspective was developed that extends Hammer and colleagues' resources framework. This elaboration allows for the identification of disciplinary productive resources---i.e., appropriately activated declarative and procedural pieces of knowledge---in individual students' utterances as well as in the interactions of multiple learners engaged in group learning activities. Using this framework, original interview transcripts from one of the most influential studies of students' ideas about energy (Watts, 1983. Some alternative views of energy. Physics Education, 18/5, 213-217) were analyzed. Disciplinary productive resources regarding the ontology of energy, indicators for energy, and mechanistic reasoning about energy were found to be activated by interviewed students. These valuable aspects were not recognized by the original author. An interpretive analysis of video recorded student-centered discourse in rural Maine middle schools was carried out to find cases of resource activation in classroom discussions. Several cases of disciplinary productive resources regarding the nature of energy and its forms as well as the construction of a mechanistic energy story

  3. Icing Impacts on Wind Energy Production

    DEFF Research Database (Denmark)

    Davis, Neil

    and the turbine power loss. The model took the shape of a hierarchal model that combined a decision tree model, based on the existence of ice on the turbine blade, and two Generalized Additive Models (GAM). The GAM for periods where icing was forecast was found to include the terms wind speed, total ice mass...... forecasts. This thesis explores the impact of icing on produced power through observational analysis and numerical modeling. I begin by investigating the impact of icing on power production through observations. Since there are no direct observations of ice growth on the turbine blades, a methodology...... was developed for the identification of icing periods from the turbine power data and the nacelle wind speeds. This method was based on the spread of power production observations at cold temperatures that was not seen during warmer periods. Using the insights gained through the observational analysis...

  4. Model for valuating decentralized energy production

    OpenAIRE

    Cider, Muammer

    2008-01-01

    Ankara : The Department of Economics, Bilkent University, 2008. Thesis (Master's) -- Bilkent University, 2008. Includes bibliographical references leaves 78-79. The purpose of this thesis is to assess decentralized production technologies in an economical framework. Throughout the thesis, technological aspects such as smart metering or connectivity issues are ignored. All assumptions are based on specification sheets by the producers of the technologies to provide an imparti...

  5. Department of Energy programs and objectives: energy conservation in agricultural production

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    This document describes the current Department of Energy agriculture research program as it relates to the research recommendations submitted by a 1976 workshop on energy conservation in agricultural production. In-depth discussions on fertilizers, irrigation, crop drying, fuel substitution, crop and animal production systems, greenhouses, materials handling, and transport systems are included. (MCW)

  6. Sustainable Algal Energy Production and Environmental Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, William E. [College of William and Mary, Williamsburg, VA (United States). Dept. of Physics

    2012-07-14

    Overall, our results confirm that wild algal species sequester a wide range of organic and metal contaminants and excess nutrients (PAHs, trace metals, and nutrients) from natural waters, and suggest parameters that could be useful in predicting uptake rates for algae growing on an algal floway or other algal growth systems in the environment or in industrial processes. The implication for various fuel production processes differ with the detailed unit operations involved, and these results will be of use in the developing of scaling experiments for various types of engineering process designs.

  7. Energy use pattern and optimization of energy required for broiler production using data envelopment analysis

    Directory of Open Access Journals (Sweden)

    Sama Amid

    2016-06-01

    Full Text Available A literature review shows that energy consumption in agricultural production in Iran is not efficient and a high degree of inefficiency in broiler production exists in Iran. Energy consumption of broiler production in Ardabil province of Iran was studied and the non-parametric method of data envelopment analysis (DEA was used to analyze energy efficiency, separate efficient from inefficient broiler producers, and calculate wasteful use of energy to optimize energy. Data was collected using face-to-face questionnaires from 70 broiler farmers in the study area. Constant returns to scale (CCR and variable returns to scale (BCC models of DEA were applied to assess the technical efficiency of broiler production. The results indicated that total energy use was 154,283 MJ (1000 bird−1 and the share of fuel at 61.4% was the highest of all inputs. The indices of energy efficiency, energy productivity, specific energy, and net energy were found to be 0.18, 0.02 kg MJ−1, 59.56 MJ kg−1, and −126,836 MJ (1000 bird−1, respectively. The DEA results revealed that 40% and 22.86% of total units were efficient based on the CCR and BCC models, respectively. The average technical, pure technical, and scale efficiency of broiler farmers was 0.88, 0.93, and 0.95, respectively. The results showed that 14.53% of total energy use could be saved by converting the present units to optimal conditions. The contribution of fuel input to total energy savings was 72% and was the largest share, followed by feed and electricity energy inputs. The results of this study indicate that there is good potential for increasing energy efficiency of broiler production in Iran by following the recommendations for efficient energy use.

  8. THERMODYNAMIC CYCLE OPTIMIZATION IN THE GEOTHERMAL ENERGY PRODUCTION

    Directory of Open Access Journals (Sweden)

    Miroslav Golub

    2004-12-01

    Full Text Available Optimization of geothermal energy production process means the minimization of all energy losses from the reservoir conditions to the user. As the available energy is being utilized mostly in the wellbore and in the surface equipment, process optimization requires scientific access including the extraction technology parameters.Specific energy on the geothermal wellhead is calculated for two possible cases. The first embraces only geothermal water production, while the other takes into account the saturated steam production as well. Each of these working conditions defines unambiguously designed pressure on the wellhead.The steam and water energy ratio, in function of predicted sink temperature for reinjection of geothermal water, points out the possibilities for commercialization of reservoir Velika Ciglena.

  9. Biohydrogen production as a potential energy fuel in South Africa

    Directory of Open Access Journals (Sweden)

    P.T. Sekoai

    2015-06-01

    Full Text Available Biohydrogen production has captured increasing global attention due to it social, economic and environmental benefits. Over the past few years, energy demands have been growing significantly in South Africa due to rapid economic and population growth. The South African parastatal power supplier i.e. Electricity Supply Commission (ESKOM has been unable to meet the country’s escalating energy needs. As a result, there have been widespread and persistent power cuts throughout the country. This prompts an urgent need for exploration and implementation of clean and sustainable energy fuels like biohydrogen production in order to address this crisis. Therefore, this paper discusses the current global energy challenges in relation to South Africa’s problems. It then examines the feasibility of using biohydrogen production as a potential energy fuel in South Africa. Finally, it reviews the hydrogen-infrastructure development plans in the country.

  10. THE RENEWABLE ENERGY PRODUCTION-ECONOMIC DEVELOPMENT NEXUS

    Directory of Open Access Journals (Sweden)

    Gorkemli Kazar

    2014-04-01

    Full Text Available As renewable energy requirements increases, its relation with development is controversial. In this study, by taking human development index for development level, the relationship between renewable electricity net generation values and development has been searched with panel analysis. Study covers two different time periods: 1980-2010 with 5 year data to analyze long term effects and 2005-2010 yearly data for short term effects. Unlike previous studies, energy generation has been taken into consideration for it is thought to be more related with economic development. It is found that in the long run economic development will be leading to renewable energy production, while in the short run there exists a bidirectional causal relationship between renewable energy production and economic development. In addition, the causal relationship between economic development and renewable energy production varies both in the long run and in the short run due to human development level of the countries.

  11. Wood for energy production. Technology - environment - economy[Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Serup, H.; Falster, H.; Gamborg, C. [and others

    1999-07-01

    'Wood for Energy Production', 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named 'Wood Chips for Energy Production'. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. 'Wood for Energy Production' is also available in German and Danish. (au)

  12. Energy Production System Management - Renewable energy power supply integration with Building Automation System

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, Joao [Centre of Mechatronics Engineering - CEM/Institut of Mechanical Engineering - IDMEC, University of Evora, R. Romao Ramalho, 59, 7000-671 Evora (Portugal); Martins, Joao [Centre of Technology and Systems/Faculdade de Ciencias e Tecnologia, Universidade Nova Lisboa, 1049-001 Lisboa (Portugal)

    2010-06-15

    Intelligent buildings, historically and technologically, refers to the integration of four distinctive systems: Building Automation Systems (BAS), Telecommunication Systems, Office Automation Systems and Computer Building Management Systems. The increasing sophisticated BAS has become the ''heart and soul'' of modern intelligent buildings. Integrating energy supply and demand elements - often known as Demand-Side Management (DSM) - has became an important energy efficiency policy concept. Nowadays, European countries have diversified their power supplies, reducing the dependence on OPEC, and developing a broader mix of energy sources maximizing the use of renewable energy domestic sources. In this way it makes sense to include a fifth system into the intelligent building group: Energy Production System Management (EPSM). This paper presents a Building Automation System where the Demand-Side Management is fully integrated with the building's Energy Production System, which incorporates a complete set of renewable energy production and storage systems. (author)

  13. Industrial Assessment Centers - Small Manufacturers Reduce Energy & Increase Productivity

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-11-06

    Since 1976, the Industrial Assessment Centers (IACs), administered by the US Department of Energy, have supported small and medium-sized American manufacturers to reduce energy use and increase their productivity and competitiveness. The 24 IACs, located at premier engineering universities around the country (see below), send faculty and engineering students to local small and medium-sized manufacturers to provide no-cost assessments of energy use, process performance and waste and water flows. Under the direction of experienced professors, IAC engineering students analyze the manufacturer’s facilities, energy bills and energy, waste and water systems, including compressed air, motors/pumps, lighting, process heat and steam. The IACs then follow up with written energy-saving and productivity improvement recommendations, with estimates of related costs and payback periods.

  14. Wood Energy Production, Sustainable Farming Livelihood and Multifunctionality in Finland

    Science.gov (United States)

    Huttunen, Suvi

    2012-01-01

    Climate change and the projected depletion of fossil energy resources pose multiple global challenges. Innovative technologies offer interesting possibilities to achieve more sustainable outcomes in the energy production sector. Local, decentralized alternatives have the potential to sustain livelihoods in rural areas. One example of such a…

  15. Energy Production from Zoo Animal Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, KT

    2003-04-07

    Elephant and rhinoceros dung was used to investigate the feasibility of generating methane from the dung. The Knoxville Zoo produces 30 cubic yards (23 m{sup 3}) of herbivore dung per week and cost of disposal of this dung is $105/week. The majority of this dung originates from the Zoo's elephant and rhinoceros population. The estimated weight of the dung is 20 metric tons per week and the methane production potential determined in experiments was 0.033 L biogas/g dung (0.020 L CH{sub 4}/g dung), and the digestion of elephant dung was enhanced by the addition of ammonium nitrogen. Digestion was better overall at 37 C when compared to digestion at 50 C. Based on the amount of dung generated at the Knoxville Zoo, it is estimated that two standard garden grills could be operated 24 h per day using the gas from a digester treating 20 metric ton herbivore dung per week.

  16. Energy Requirement of Extra Virgin Olive Oil Production

    Directory of Open Access Journals (Sweden)

    Giulio Mario Cappelletti

    2014-08-01

    Full Text Available The scope of this chapter is to calculate the net energy of the production chain for virgin olive oil. Therefore, the determination was carried out for the direct and indirect energy inputs and the energy present as feedstock in the outputs (products and by-products. To perform this analysis, all of the production processes for olives and for oil extraction were studied. For the agricultural phase, three systems of cultivation were taken into consideration: the centenary olive grove (COO, the “intensive” olive grove (HDO and, the more recently introduced, “super-intensive” olive grove (HSDO. The last two models are distinguished by the high number of trees per hectare and by an intense mechanization of agricultural practices. Regarding the oil extraction phase, four different technologies were compared: the pressure system (PS, the two-phase system (2PS, the three-phase (3PS, and the system, called “de-pitted”, which provides for the separation of the pits before the oil is extracted (DPS. The analysis showed that the production of olives needs more than 90% of energy requirements, much of which is met by non-renewable sources of energy. The production of fertilizers, and also irrigation, are the production factors that require a considerable amount of energy. Among the three agricultural systems analyzed, the COO system of cultivation is the one that requires less energy as compared to the other systems. The scenario that enables the most energy return, however, is the SHDO system of cultivation, due to the greater amount of pruning residues that can be obtained.

  17. Comparative analysis of wind energy production in Oklahoma

    Science.gov (United States)

    Ermilova, Ekaterina Alexeevna

    Scope and method of study. In the last decades humanity has realized the necessity of developing alternative energy sources for its efficient economic development and simple survival in the future. During the last 30 years major improvements were made in renewable energy technologies and they started to become competitive with traditional energy sources (fossil fuels), especially with consideration of external costs. Among the renewable energy sources, wind energy is one of the cheapest and fastest growing nowadays. Oklahoma is a very promising site for wind energy development considering its excellent wind resources. Developing wind energy can allow not only electricity production for in-state consumption, but also exporting to other states. The development of wind energy could encourage economic growth with very few adverse impacts on the environment. However, traditional energy sources are still the cheapest and, thus, the introduction of the wind energy in Oklahoma should be critically analyzed from economic, ecological and social points of view. The goal of this study is to conduct analysis of wind energy electricity production in Oklahoma on the four main stages: (1) Investment Analysis from Private Perspective: Calculate present value net benefits for wind energy and traditional energy (natural gas), make sure that both of them are positive. (2) Investment Analysis from Social Perspective: Evaluate present value net private benefits (PVNPB) and present value net social benefit from both projects (PVNSB). (3) Government Subsidy Analysis: recognize the necessity of the subsidies and evaluate the amount of subsidies if any. (4) Investment Analysis from a Geographic Perspective: determine economic feasibility of wind power generation for 77 Oklahoma counties. Findings and conclusions. The final output of the study is the recommendations concerning wind energy development in Oklahoma with consideration of economic efficiency, ecological and social impacts. Study

  18. REDUCING ENERGY CONSUMPTION IN AGRICULTURAL PRODUCTION (POTATO EXAMPLE

    Directory of Open Access Journals (Sweden)

    Byshоv N. V.

    2016-06-01

    Full Text Available In recent years, in many countries around the world, much attention is paid to the issues of ensuring of rational use of energy resources, due to a number of objective factors, chief among which are: the lack of own energy resources to meet domestic energy needs; the sharp increase in the cost of production and the production of energy resources; further growth in energy needs; the presence of large potential opportunities to reduce unproductive losses of fuel and energy. In the world, the challenge now is to ensure a gradual but steady transfer of the economy on energy saving way of development. To achieve the goal of reducing energy costs we might use two ways: firstly, the widespread introduction of energy saving technologies, and secondly, the reduction of material production, improving its quality and service. In agriculture, the improvement of the technological process can be carried out using new tillage methods, improving the organization of production and tools. Further development of mechanization in agriculture will contribute to further growth of electrification in the agricultural sector, which will significantly reduce the use of the most expensive and limited energy resources. The article offers a technique of the estimation of the efficiency of consumption of energy in agricultural production. In order to compare the efficiency of machines in the cultivation and harvesting of potatoes, there was conducted an energy assessment of the operations of modern technology. As variables, there were investigated different operation modes of the machine: working speed and working width, depth of stroke of the working bodies. In the process of evaluating energy operations, modern technology to prepare the soil for planting potatoes was determined humidity, mechanical composition and soil type. As a main factor in the analysis of technological methods, we have taken the overall specific energy consumption and specific energy consumption for

  19. Synergies between renewable energy and fresh water production. Scoping study

    Energy Technology Data Exchange (ETDEWEB)

    Geurts, F.; Noothout, P.; Schaap, A. [Ecofys Netherlands, Utrecht (Netherlands)

    2011-02-15

    The IEA Implementing Agreement for Renewable Energy Technology Deployment (IEA-RETD) investigated the opportunities for coupling renewable energy systems with fresh water supply systems. The four main conclusions of the scoping study, carried out by Ecofys, are: (1) Fresh water production based on desalination technologies provide most options for synergies with renewable energy production; (2) Linking desalination to renewable sources is currently not economically viable; (3) There is a large potential for small scale (decentralised) desalination plants; (4) Current commercially-sized desalination technologies are in need of a constant operation point. Reverse osmosis and thermal membrane technologies might give future synergies as deferrable load.

  20. Maritime surroundings with geothermal energy. Kiel' conveying terraces put on a sustainable power supply; Maritimes Wohnen mit Erdwaerme. Kieler Foerdeterrassen setzen auf nachhaltige Energieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Frank

    2012-11-01

    In November 2009, the first stage of construction of conveying terraces was completed with an innovative energy concept in Holtenau (Federal Republic of Germany). After an operating time of more than three years, there is a positive experience report exceeding the theoretical expectations. Within this project heat from solar collectors and brine-to-water heat pumps form the basis of a heat contracting for high-value apartments with sea views.

  1. Energy production study of crops with biofuel potential in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Donato, Lidia; Huerga, Ignacio; Hilbert, Jorge [Instituto Nacional de Tecnologia Agropecuaria (CIA/INTA), Buenos Aires (Argentina). Centro de Investigacion de Agroindustria. Inst. de Ingenieria Rural], Emails: ingdonato@cnia.inta.gov.ar, ihuerga@cnia.inta.gov.ar, hilbert@cnia.inta.gov.ar

    2008-07-01

    The present study is focus on the final energy balance of bioenergy production in Argentina using soybean, sunflower, rapeseed, corn and sorghum as feedstocks. The balance considers the difference between the energy contained per unit and the amount used for its generation in all the different steps from sowing to final destination. For direct energy consumption Costo Maq software was employed using local fuel consumption forecast for each field labor. Particular attention is paid to the energy consumption in the agricultural steps considering the distinctive no till system spread out in Argentina that has a very low energy input. Direct and indirect energy were considered in the different steps of bioethanol and biodiesel generation. Industrial conversion consumption was based on international literature data. Comparisons were made between tilled and no till practices and considering or not the energy contained in co products. Results indicate a balance ranging from 0.96 to 1.54 not considering the co products. If co products were introduced the balances ranged between 1.09 and 4.67. (author)

  2. Assessment of energy return on energy investment (EROEI of oil bearing crops for renewable fuel production

    Directory of Open Access Journals (Sweden)

    A. Restuccia

    2013-09-01

    Full Text Available As reported in literature the production of biodiesel should lead to a lower energy consumption than those obtainable with its use. So, to justify its consumption, a sustainable and “low input” production should be carried out. In order to assess the sustainability of Linum usitatissimum, Camelina sativa and Brassica carinata cultivation for biodiesel production in terms of energy used compared to that obtained, the index EROEI (Energy Return On Energy Invested has been used. At this aim, an experimental field was realised in the south-eastern Sicilian land. During the autumn-winter crop cycle, no irrigation was carried out and some suitable agricultural practices have been carried out taking into account the peculiarity of each type of used seeds. The total energy consumed for the cultivation of oil bearing crops from sowing to the production of biodiesel represents the Input of the process. In particular, this concerned the energy embodied in machinery and tools utilized, in seed, chemical fertilizer and herbicide but also the energy embodied in diesel fuels and lubricant oils. In addition, the energy consumption relating to machines and reagents required for the processes of extraction and transesterification of the vegetable oil into biodiesel have been calculated for each crops. The energy obtainable from biodiesel production, taking into account the energy used for seed pressing and for vegetable oil transesterification into biodiesel, represents the Output of the process. The ratio Output/Input gets the EROEI index which in the case of Camelina sativa and Linum usatissimum is greater than one. These results show that the cultivation of these crops for biofuels production is convenient in terms of energy return on energy investment. The EROEI index for Brassica carinata is lower than one. This could means that some factors, concerning mechanisation and climatic

  3. Hydrogen Production Costs of Various Primary Energy Sources

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-11-15

    Many studies on the economical aspects of hydrogen energy technologies have been conducted with the increase of the technical and socioeconomic importance of the hydrogen energy. However, there is still no research which evaluates the economy of hydrogen production from the primary energy sources in consideration of Korean situations. In this study, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations such as feedstock price, electricity rate, and load factor. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S. The present study focuses on the possible future technology scenario defined by NAS. The scenario assumes technological improvement that may be achieved if present research and development (R and D) programs are successful. The production costs by the coal and natural gas are 1.1 $/kgH{sub 2} and 1.36 $/kgH{sub 2}, respectively. However, the fossil fuels are susceptible to the price variation depending on the oil and the raw material prices, and the hydrogen production cost also depends on the carbon tax. The economic competitiveness of the renewable energy sources such as the wind, solar, and biomass are relatively low when compared with that of the other energy sources. The estimated hydrogen production costs from the renewable energy sources range from 2.35 $/kgH{sub 2} to 6.03 $/kgH{sub 2}. On the other hand, the production cost by nuclear energy is lower than that of natural gas or coal when the prices of the oil and soft coal are above $50/barrel and 138 $/ton, respectively. Taking into consideration the recent rapid increase of the oil and soft coal prices and the limited fossil resource, the nuclear-hydrogen option appears to be the most economical way in the future.

  4. Follow the ATP: tumor energy production: a perspective.

    Science.gov (United States)

    Oronsky, Bryan T; Oronsky, Neil; Fanger, Gary R; Parker, Christopher W; Caroen, Scott Z; Lybeck, Michelle; Scicinski, Jan J

    2014-01-01

    As early as the 1920s, the eminent physician and chemist, Otto Warburg, nominated for a second Nobel Prize for his work on fermentation, observed that the core metabolic signature of cancer cells is a high glycolytic flux. Warburg averred that the prime mover of cancer is defective mitochondrial respiration, which drives a switch to an alternative energy source, aerobic glycolysis in lieu of Oxidative Phosphorylation (OXPHOS), in an attempt to maintain cellular viability and support critical macromolecular needs. The cell, deprived of mitochondrial ATP production, must reprogram its metabolism as a secondary survival mechanism to maintain sufficient ATP and NADH levels for macromolecule production, membrane integrity and DNA synthesis as well as maintenance of membrane ionic gradients. A time-tested method to identify and disrupt criminal activity is to "follow the money" since the illicit proceeds from crime are required to underwrite it. By analogy, strategies to target cancer involve following and disrupting the flow of ATP and NADH, the energetic and redox "currencies" of the cell, respectively, since the tumor requires high levels of ATP and NADH, not only for metastasis and proliferation, but also, on a more basic level, for survival. Accordingly, four broad ATP reduction strategies to impact and potentially derail cancer energy production are highlighted herein: 1) small molecule energy-restriction mimetic agents (ERMAs) that target various aspects of energy metabolism, 2) reduction of energy 'subsidization' with autophagy inhibitors, 3) acceleration of ATP turnover to increase energy inefficiency, and 4) dietary energy restriction to limit the energy supply.

  5. Microalgal cultivation and utilization in sustainable energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lakaniemi, A.-M.

    2012-07-01

    Microalgae are a promising feedstock for biofuel and bioenergy production due to their high photosynthetic efficiencies, high growth rates and no need for external organic carbon supply. However, microalgal biomass cultivation for energy production purposes is still rare in commercial scale. Further research and development is needed to make microalgal derived energy sustainable and economically competitive. This work investigated cultivation of fresh water microalga Chlorella vulgaris and marine microalga Dunaliella tertiolecta and their utilization in production of hydrogen, methane, electricity, butanol and bio-oil after bulk harvesting the biomass. Growth of the two microalgae was studied in five different photobioreactor (PBR) configurations especially concentrating on the quantification and characterization of heterotrophic bacteria in non-axenic microalgal cultivations and microalgal utilization of different nitrogen sources. Anaerobic cultures used for the energy conversion processes were enriched from a mesophilic municipal sewage digester separately for production of H{sub 2}, CH{sub 4} and electricity from the two microalgal species. After culture enrichment, energy conversion yields of microalgal biomass to the different energy carriers were compared. In summary, this study demonstrated that both C. vulgaris and D. tertiolecta can be used for production of Hv(2), CHv(4), electricity, butanol and lipids. Based on this study C. vulgaris is more suitable for bioenergy production than D. tertiolecta. Depending on cellular lipid content, lipid utilization for bio-oil production and anaerobic digestion were the most potent means of converting C. vulgaris biomass to energy. The study also revealed diverse microbial communities in non-axenic microalgal photobioreactor cultures and in anaerobic consortia converting microalgal biomass to energy carriers

  6. Properties of Eucalyptus benthamii wood for energy production

    Directory of Open Access Journals (Sweden)

    Dimas Agostinho Silva

    2015-12-01

    Full Text Available The objective of this study was to evaluate the energy potential of Eucalyptus benthamii Maiden et Cambage wood. The samples were collected in the municipality of Cerro Negro, Santa Catarina State, Brazil. Samples were collected from 5 trees at 0%, 25%, 50%, 75% and 100% of commercial height. It was determined basic density, high calorific value, elemental composition, immediate chemical analysis, lower calorific value, energy density, carbon storage and energy production. The physical and chemical variables studied and energy potential of wood did not present differences along the stem.

  7. Energy Address Delivery Technologies and Thermal Transformations in Food Production

    Directory of Open Access Journals (Sweden)

    Burdo O.G.

    2016-08-01

    Full Text Available In this article, energetic and technical paradoxes in food nanotechnologies and traditional approaches to evaluation of energy recourses using are considered. Hypotheses of improvement of food production energy technologies are formulated. Classification of principles of address delivery of energy to food raw materials elements is given. We had substantiated the perspective objectives for heat-pumps installations and biphasic heat-transfer systems. The energy efficiency of new technolo-gies is compared on base of the number of energy impact. Principles of mass transfer modeling in ex-traction, dehydration and pasteurization combined processes are considered by food production exam-ple. The objectives of mathematical modeling of combined hydrodynamic and heat and mass transfer processes in modern energy technologies are set. The fuel energy conversion diagrams for drying, in-novative installations on the base of thermal siphons, heat pumps and electromagnetic energy genera-tors are represented. In this article, we illustrate how electromagnetic field, biphasic heat-transfer sys-tems and heat pumps can be effective tools for energy efficiency technologies.

  8. Maximizing Utilization of Energy from Crop By-products

    Directory of Open Access Journals (Sweden)

    Budi Haryanto

    2014-03-01

    Full Text Available The availability of crop by-products is huge during harvesting times as related to the vast agricultural land area; however, their utilization is still limited due to lack of knowledge and handling problem. Seasonal effect is obvious especially during wet season when high rainfall hinders proper management of crop by-products. Crop by-products are energy rich feedstuffs in the form of chemical substance such as cellulose and hemicellulose. The utilization of cellulose and hemicellulose as sources of energy can be maximized by the application of technologies to increase the digestibility. Cellulose is polymer of glucose while hemicellulose is polymer of xylose which both can be converted to volatile fatty acids by rumen microbial enzyme activities and subsequently used by the host animal as source of energy. In addition, cellulose and hemicellulose can also be used as substrates for bioethanol production leaving behind residual matter with higher concentration of protein which is also appropriate for ruminant feeds. The fat content of crop by-products such as those in rice bran and corn germ can be extracted for oil production that can be used for human consumption with concomitant production of high nutritive value of residues for ruminant feeds. The oil extraction technologies are available; however the high cost of ethanol and oil production should obtain high attention to make the technologies more applicable at farmers’ level.

  9. Marginal land-based biomass energy production in China.

    Science.gov (United States)

    Tang, Ya; Xie, Jia-Sui; Geng, Shu

    2010-01-01

    Fast economic development in China has resulted in a significant increase in energy demand. Coal accounts for 70% of China's primary energy consumption and its combustion has caused many environmental and health problems. Energy security and environmental protection requirements are the main drivers for renewable energy development in China. Small farmland and food security make bioenergy derived from corn or sugarcane unacceptable to China: the focus should be on generating bioenergy from ligno-cellulosic feedstock sources. As China cannot afford biomass energy production from its croplands, marginal lands may play an important role in biomass energy production. Although on a small scale, marginal land has already been used for various purposes. It is estimated that some 45 million hm(2) of marginal land could be brought into high potential biomass energy production. For the success of such an initiative, it will likely be necessary to develop multipurpose plants. A case study, carried out on marginal land in Ningnan County, Sichuan Province with per capita cropland of 0.07 ha, indicated that some 380,000 tons of dry biomass could be produced each year from annual pruning of mulberry trees. This study supports the feasibility of producing large quantities of biomass from marginal land sources.

  10. Energy Dependence of String Fragmentation Function and φ Meson Production

    Institute of Scientific and Technical Information of China (English)

    SA Ben-Hao; CAI Xu; Chinorat Kobdaj; WANG Zhong-Qi; YAN Yu-Peng; ZHOU Dai-Mei

    2004-01-01

    The φ meson productions in A u+A u and/or P b+Pb collisions at AGS, SPS, RHIC, and LHC energies have been studied systematically with a hadron and string cascade model LUCIAE.After considering the energy dependence of the model parameter α in string fragmentation function and adjusting it to the experimental data of charged multiplicity to a certain extent, the model predictions for φ meson yield, rapidity, and transverse mass distributions are compatible with the experimental data at AGS, SPS and RHIC energies. A calculation for Pb+Pb collisions at LHC energy is given as well. The obtained fractional variable in string fragmentation function shows a saturation in energy dependence. It is discussed that the saturation of fractional variable in string fragmentation function might be a qualitative representation of the energy dependence of nuclear transparency.

  11. Energy Efficiency Indicators for Public Electricity Production from Fossil Fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This paper presents a set of indicators that are used to analyse the energy efficiency of electricity production from fossil fuels on a global level and for a number of key countries and regions. The analysis is based on IEA statistics and includes public electricity plants and public CHP plants. Electricity production by autoproducers is not included and represents less than 6% of global electricity production. However, the share of autoproducers is significant in certain countries, particularly in Europe. Austria, Finland, Luxembourg, the Netherlands and Spain all have a share of electricity production from autoproducers that is more than twice the global average.

  12. Model for Energy Analysis of Miscanthus Production and Transportation

    Directory of Open Access Journals (Sweden)

    Alessandro Sopegno

    2016-05-01

    Full Text Available A computational tool is developed for the estimation of the energy requirements of Miscanthus x giganteus on individual fields that includes a detailed analysis and account of the involved in-field and transport operations. The tool takes into account all the individual involved in-field and transport operations and provides a detailed analysis on the energy requirements of the components that contribute to the energy input. A basic scenario was implemented to demonstrate the capabilities of the tool. Specifically, the variability of the energy requirements as a function of field area and field-storage distance changes was shown. The field-storage distance highly affects the energy requirements resulting in a variation in the efficiency if energy (output/input ratio from 15.8 up to 23.7 for the targeted cases. Not only the field-distance highly affects the energy requirements but also the biomass transportation system. Based on the presented example, different transportation systems adhering to the same configuration of the production system creates variation in the efficiency of energy (EoE between 12.9 and 17.5. The presented tool provides individualized results that can be used for the processes of designing or evaluating a specific production system since the outcomes are not based on average norms.

  13. Indicators of energy efficiency in ammonia productions plants

    Directory of Open Access Journals (Sweden)

    Flavio V. Tavares

    2013-07-01

    Full Text Available This paper presents and analyzes tools for the assessment of energy efficiency in ammonia production plants using key performance indicators (KPI. Monitoring the consumption of inputs in the industry could generate reductions in greenhouse gas emissions while simultaneously producing gains in energy efficiency in industrial operations. The continuous monitoring of performance indicators relative to emissions data and the consumption of natural resources allows for effective and direct intervention, resulting in improvements in production processes and operating practices. The use of such information by operating teams, in conjunction with management actions focused on continuous improvement, could lead to energy efficiency gains, a reduction in greenhouse gas emissions, and make production processes more profitable.

  14. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis

    DEFF Research Database (Denmark)

    Münster, Marie; Meibom, Peter

    2010-01-01

    production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments...... and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO2 quota costs are analysed. It is demonstrated that the waste...... incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste...

  15. 78 FR 57922 - American Energy Production, Inc., Best Energy Services, Inc., Community Central Bank Corporation...

    Science.gov (United States)

    2013-09-20

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION American Energy Production, Inc., Best Energy Services, Inc., Community Central Bank Corporation... Central Bank Corporation because it has not filed any periodic reports since the period ended September 30...

  16. Energy consumption in the production of cellulose and paper

    Energy Technology Data Exchange (ETDEWEB)

    Kubelka, V.

    1979-01-01

    The specific consumption of energy in the cellulose and paper industry of Czechoslovakia is 20% higher than in Austria and the Federal Republic of Germany. For the last 20 years, the specific consumption of fuel decreased by 29% in the Austrian cellulose and paper industry, while the consumption of electricity increased by 16%. The possibility for decreasing the specific consumption of energy in Czechoslovakia by burning by-products, heat recovery, equipment modernization, etc. are examined.

  17. Using Geothermal Energy for Raffine Heating in Copper Production

    OpenAIRE

    Arnar Freyr Sigmundsson 1985

    2012-01-01

    The aim of this work was to study the feasibility of using geothermal energy for heating raffine (raffinate) solution in the process of copper production. Small-scale experiments have indicated that copper extraction levels can be improved significantly by adding heat to the solution. Two thermal energy sources were considered, namely the cooling water sourced from an adjacent geothermal power plant and low-temperature geothermal brine produced in the vicinity of the mine. These two alternati...

  18. Energy and nutrient cycling in pig production systems

    Science.gov (United States)

    Lammers, Peter J.

    United States pig production is centered in Iowa and is a major influence on the economic and ecological condition of that community. A pig production system includes buildings, equipment, production of feed ingredients, feed processing, and nutrient management. Although feed is the largest single input into a pig production system, nearly 30% of the non-solar energy use of a conventional--mechanically ventilated buildings with liquid manure handling--pig production system is associated with constructing and operating the pig facility. Using bedded hoop barns for gestating sows and grow-finish pigs reduces construction resource use and construction costs of pig production systems. The hoop based systems also requires approximately 40% less non-solar energy to operate as the conventional system although hoop barn-based systems may require more feed. The total non-solar energy input associated with one 136 kg pig produced in a conventional farrow-to-finish system in Iowa and fed a typical corn-soybean meal diet that includes synthetic lysine and exogenous phytase is 967.9 MJ. Consuming the non-solar energy results in emissions of 79.8 kg CO2 equivalents. Alternatively producing the same pig in a system using bedded hoop barns for gestating sows and grow-finish pigs requires 939.8 MJ/pig and results in emission of 70.2 kg CO2 equivalents, a reduction of 3 and 12% respectively. Hoop barn-based swine production systems can be managed to use similar or less resources than conventional confinement systems. As we strive to optimally allocate non-solar energy reserves and limited resources, support for examining and improving alternative systems is warranted.

  19. Biogas Production from Energy Crops and Agriculture Residues

    DEFF Research Database (Denmark)

    Wang, Guangtao

    In this thesis, the feasibility of utilizing energy crops (willow and miscanthus) and agriculture residues (wheat straw and corn stalker) in an anaerobic digestion process for biogas production was evaluated. Potential energy crops and agriculture residues were screened according...... to their suitability for biogas production. Moreover, pretreatment of these biomasses by using wet explosion method was studied and the effect of the wet explosion process was evaluated based on the increase of (a) sugar release and (b) methane potential when comparing the pretreated biomass and raw biomass. Ensiling...

  20. Implications of energy efficiency measures in wheat production

    DEFF Research Database (Denmark)

    Meyer-Aurich, Andreas; Ziegler, T.; Scholz, L.

    The economic and environmental effect of energy saving measures were analyzed for a typical wheat production system in Germany. The introduction of precision farming, reduced nitrogen fertilization and improved crop drying technologies proved to be efficient measures for enhancing energy efficiency...... in wheat production. While the measures precision farming and improved crop drying require investments, reduced fertilizer input can be realized without investments. The environmental effects of all measures are comparable and do not show a clear advantage of one measure against the others. However...

  1. Implications of energy efficiency measures in wheat production

    DEFF Research Database (Denmark)

    Meyer-Aurich, Andreas; Ziegler, T.; Scholz, L.;

    The economic and environmental effect of energy saving measures were analyzed for a typical wheat production system in Germany. The introduction of precision farming, reduced nitrogen fertilization and improved crop drying technologies proved to be efficient measures for enhancing energy efficiency...... in wheat production. While the measures precision farming and improved crop drying require investments, reduced fertilizer input can be realized without investments. The environmental effects of all measures are comparable and do not show a clear advantage of one measure against the others. However......, reduced fertilizer input implies an economic loss which is unlikely to be realized by farmers unless they are forced to do so....

  2. Strange particle production at low and intermediate energies

    CERN Document Server

    Alam, M Rafi; Athar, M Sajjad; Vacas, M J Vicente

    2011-01-01

    The weak kaon production off the nucleon induced by neutrinos and antineutrinos is studied at low and intermediate energies of interest for some ongoing and future neutrino oscillation experiments. We develop a microscopical model based on the SU(3) chiral Lagrangians. The studied mechanisms are the main source of kaon production for neutrino energies up to 2 GeV for the various channels and the cross sections are large enough to be amenable to be measured by experiments such as Minerva, T2K and NO$\

  3. Thermal engineering cuts energy use to speed production

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-05-01

    This article gives details of energy saving designs in manufacturing processes implemented by Mannings Thermal and Environmental Engineers of Southport. Descriptions are given of reduced energy consumption and increased production resulting from the thermoforming tool presses used in producing car trim; the introduction of heating units to preheat moulding tools in the production of high performance rubber seals; the simultaneous controlled heating of several metal tools with low voltage ceramic heating elements set in the brickwork housing having a motorised insulated cover forming a sealed heating chamber; and the conversion of a brick lined hearth furnace from electric to gas using hard wearing firebricks, gas burners, and forced cooling system. (UK)

  4. The Variance of Energy Estimates for the Product Model

    Directory of Open Access Journals (Sweden)

    David Smallwood

    2003-01-01

    , is the product of a slowly varying random window, {w(t}, and a stationary random process, {g(t}, is defined. A single realization of the process will be defined as x(t. This is slightly different from the usual definition of the product model where the window is typically defined as deterministic. An estimate of the energy (the zero order temporal moment, only in special cases is this physical energy of the random process, {x(t}, is defined as m0=∫∞∞|x(t|2dt=∫−∞∞|w(tg(t|2dt Relationships for the mean and variance of the energy estimates, m0, are then developed. It is shown that for many cases the uncertainty (4π times the product of rms duration, Dt, and rms bandwidth, Df is approximately the inverse of the normalized variance of the energy. The uncertainty is a quantitative measure of the expected error in the energy estimate. If a transient has a significant random component, a small uncertainty parameter implies large error in the energy estimate. Attempts to resolve a time/frequency spectrum near the uncertainty limits of a transient with a significant random component will result in large errors in the spectral estimates.

  5. Advertising, marketing and purchase behavior for energy-related products

    Energy Technology Data Exchange (ETDEWEB)

    Tiedemann, K.; Nelson, D.

    1998-07-01

    Energy conservation programs have relied heavily on incentives and regulatory standards to reduce residential energy consumption. However, in the changing market environment characterized by competitive pressures, alternative mechanisms such as marketing and promotions may increase substantially in importance compared to the demand-side management programs which have been the focus of most research. This paper describes the role of marketing and promotions in encouraging energy efficiency at the household level in British Columbia. The paper examines three related issues: first, the purchase process for energy-related products; second, the criteria used by customers in making purchase decisions; and third, the impact and effectiveness of alternative marketing tools. A key finding is the energy-related purchases do not fall into the impulse purchase category. There are two reasons for this: first, most of these products require installation and this requires a high level of commitment on the part of the purchaser; second, many energy-related products require a significant outlay of funds and this reduces impulse buying.

  6. Environmental assessment. Energy efficiency standards for consumer products

    Energy Technology Data Exchange (ETDEWEB)

    McSwain, Berah

    1980-06-01

    The Energy Policy and Conservation Act of 1975 requires DOE to prescribe energy efficiency standards for 13 consumer products. The Consumer Products Efficiency Standards (CPES) program covers: refrigerators and refrigerator-freezers, freezers, clothes dryers, water heaters, room air conditioners, home heating equipment, kitchen ranges and ovens, central air conditioners (cooling and heat pumps), furnaces, dishwashers, television sets, clothes washers, and humidifiers and dehumidifiers. This Environmental Assessment evaluates the potential environmental and socioeconomic impacts expected as a result of setting efficiency standards for all of the consumer products covered by the CPES program. DOE has proposed standards for eight of the products covered by the Program in a Notice of Proposed Rulemaking (NOPR). DOE expects to propose standards for home heating equipment, central air conditioners (heat pumps only), dishwashers, television sets, clothes washers, and humidifiers and dehumidifiers in 1981. No significant adverse environmental or socioeconomic impacts have been found to result from instituting the CPES.

  7. Heavy Meson Production at a Low-Energy Photon Collider

    Energy Technology Data Exchange (ETDEWEB)

    Asztalos, S

    2004-04-15

    A low-energy {gamma}{gamma} collider has been discussed in the context of a testbed for a {gamma}{gamma} interaction region at the Next Linear Collider(NLC). We consider the production of heavy mesons at such a testbed using Compton-backscattered photons and demonstrate that their production rivals or exceeds those by BELLE, BABAR or LEP where they are produced indirectly via virtual {gamma}{gamma} luminosities.

  8. Production of low energy spread ion beams with multicusp sources

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. [Lawrence Berkeley National Lab., CA (United States); Perkins, L.T. [Lawrence Berkeley National Lab., CA (United States); Gough, R.A. [Lawrence Berkeley National Lab., CA (United States); Hoffmann, M. [Lawrence Berkeley National Lab., CA (United States); Kunkel, W.B. [Lawrence Berkeley National Lab., CA (United States); Leung, K.N. [Lawrence Berkeley National Lab., CA (United States); Sarstedt, M. [Lawrence Berkeley National Lab., CA (United States); Vujic, J. [Lawrence Berkeley National Lab., CA (United States); Weber, M. [Lawrence Berkeley National Lab., CA (United States); Williams, M.D. [Lawrence Berkeley National Lab., CA (United States)

    1996-05-11

    The use of multicusp sources to generate ion beams with narrow energy spread has been investigated. It is found that the presence of a magnetic filter can reduce the longitudinal energy spread significantly. This is achieved by creating a uniform plasma potential distribution in the discharge chamber region, eliminating ion production in the extraction chamber and in the sheath of the exit aperture and by minimizing the probability of charge exchange processes in the extraction chamber. An energy spread as low as 1 eV has been measured. (orig.).

  9. Production of low energy spread ion beams with multicusp sources

    Science.gov (United States)

    Y., Lee; Perkins, L. T.; Gough, R. A.; Hoffmann, M.; Kunkel, W. B.; N. Leung, K.; Sarstedt, M.; Vujic, J.; Weber, M.; Williams, M. D.

    1996-02-01

    The use of multicusp sources to generate ion beams with narrow energy spread has been investigated. It is found that the presence of a magnetic filter can reduce the longitudinal energy spread significantly. This is achieved by creating a uniform plasma potential distribution in the discharge chamber region, eliminating ion production in the extraction chamber and in the sheath of the exit aperture and by minimizing the probability of charge exchange processes in the extraction chamber. An energy spread as low as 1 eV has been measured.

  10. Airports offer unrealized potential for alternative energy production.

    Science.gov (United States)

    DeVault, Travis L; Belant, Jerrold L; Blackwell, Bradley F; Martin, James A; Schmidt, Jason A; Wes Burger, L; Patterson, James W

    2012-03-01

    Scaling up for alternative energy such as solar, wind, and biofuel raises a number of environmental issues, notably changes in land use and adverse effects on wildlife. Airports offer one of the few land uses where reductions in wildlife abundance and habitat quality are necessary and socially acceptable, due to risk of wildlife collisions with aircraft. There are several uncertainties and limitations to establishing alternative energy production at airports, such as ensuring these facilities do not create wildlife attractants or other hazards. However, with careful planning, locating alternative energy projects at airports could help mitigate many of the challenges currently facing policy makers, developers, and conservationists.

  11. High-Energy Proton-Induced Dimuon Production from Nuclei

    Institute of Scientific and Technical Information of China (English)

    段春贵; 王宏民; 厉光烈

    2002-01-01

    In the framework of the Glauber model, taking into account the energy loss of the beam proton through the nucleus, we analyse the measured Drell-Yan production cross sections for an 800 GeV proton beam incident on Be, Fe and W nuclear targets. We have found that the nuclear Drell-Yan cross section ratios are suppressed due to the energy loss in the initial state. The calculated results of the energy loss are in very good agreement with the Fermilab experiment 866.

  12. Microalgae as sustainable renewable energy feedstock for biofuel production.

    Science.gov (United States)

    Medipally, Srikanth Reddy; Yusoff, Fatimah Md; Banerjee, Sanjoy; Shariff, M

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  13. India's Fertilizer Industry: Productivity and Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, K.; Sathaye, J.

    1999-07-01

    Historical estimates of productivity growth in India's fertilizer sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Our analysis shows that in the twenty year period, 1973 to 1993, productivity in the fertilizer sector increased by 2.3% per annum. An econometric analysis reveals that technical progress in India's fertilizer sector has been biased towards the use of energy, while it has been capital and labor saving. The increase in productivity took place during the era of total control when a retention price system and distribution control was in effect. With liberalization of the fertilizer sector and reduction of subsidies productivity declined substantially since the early 1990s. Industrial policies and fiscal incentives still play a major role in the Indian fertilizer sect or. As substantial energy savings and carbon reduction potential exists, energy policies can help overcome barriers to the adoption of these measures in giving proper incentives and correcting distorted prices.

  14. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    Directory of Open Access Journals (Sweden)

    Srikanth Reddy Medipally

    2015-01-01

    Full Text Available The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  15. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    Science.gov (United States)

    Yusoff, Fatimah Md.; Shariff, M.

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties. PMID:25874216

  16. Mapping water consumption for energy production around the Pacific Rim

    Science.gov (United States)

    Tidwell, Vincent; Moreland, Barbie

    2016-09-01

    World energy demand is projected to increase by more than a third by 2035 and with it the use of water to extract and process fuels and generate electricity. Management of this energy-water nexus requires a clear understanding of the inter-related demands of these resources as well as their regional distribution. Toward this need the fresh water consumed for energy production was mapped for almost 12 000 watersheds distributed across the 21-economies comprising the Asia-Pacific Economic Cooperation. Fresh water consumption was estimated for ten different sectors including thermoelectric and hydroelectric power; energy extraction including coal, oil, natural gas, uranium and unconventional oil/gas; energy processing including oil and biofuels; and biofuel feedstock irrigation. These measures of water consumption were put in context by drawing comparison with published measures of water risk. In total 791 watersheds (32%) of the 2511 watersheds where energy related water consumption occurred were also characterized by high to extreme water risk, these watersheds were designated as being at energy-water risk. For six economies watersheds at energy-water risk represented half or more of all basins where energy related water consumption occurred, while four additional economies exceeded 30%.

  17. Calendar Year 2007 Program Benefits for ENERGY STAR Labeled Products

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Marla Christine; Homan, Gregory; Brown, Richard

    2008-10-31

    ENERGY STAR is a voluntary energy efficiency-labeling program operated jointly by the United States Department of Energy and the United States Environmental Protection Agency (US EPA). Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products. ENERGY STAR's central role in the development of regional, national, and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with committed stakeholders. Through 2007, the program saved 7.1 Quads of primary energy and avoided 128 MtC equivalent. The forecast shows that the program is expected to save 21.2 Quads of primary energy and avoid 375 MtC equivalent over the period 2008-2015. The sensitivity analysis bounds the best estimate of carbon avoided between 84 MtC and 172 MtC (1993 to 2007) and between 243 MtC and 519 MtC (2008 to 2015).

  18. Coupling of energy and agricultural policies on promoting the production of biomass energy from energy crops and grasses in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Wen-Tien [Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung 912 (China)

    2009-08-15

    This paper examined promotion programs and implementing regulations that provide a framework for the application of energy and agricultural policies for the local energy crops cultivation by the reactivation of fallow land (about 100,000 ha) and their utilizations in the bioenergy production in Taiwan. The contents were thus addressed on current energy supply and biomass energy production, estimation of carbon dioxide (CO{sub 2}) emissions from energy use (consumption) using the Reference Approach of the Intergovernmental Panel on Climate Change (IPCC) method, national energy goal in biomass energy supply in the near future, and government policies and measures for encouraging bioenergy production and consumption. For the promotion of biofuels, the incentive programs were initiated in the period of 2006-2011. The potential benefits of the program include the upgrade of industrial investment in the bioenergy plants, the reactivation of fallow land (about 100,000 ha), the mitigation of CO{sub 2} emissions, and so on. Concerning the utilization of napier grass (a potential energy grass) as biomass energy (electricity generation) for co-firing, its impacts on ambient air quality and non-CO{sub 2} greenhouse gases (i.e., CH{sub 4} and N{sub 2}O) emissions were also discussed in the paper. (author)

  19. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis.

    Science.gov (United States)

    Münster, M; Meibom, P

    2010-12-01

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO(2) quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO(2) quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Energy production forecasting, experiences from Lillgrund. Lillgrund Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Lasse; Schelander, Peter; Haakansson, Maans; Hansson, Johan (Vattenfall Vindkraft AB, Stockholm (Sweden))

    2010-01-15

    Forecasts of energy production at Lillgrund are being made with the prediction tool WPPT. The forecasts are updated every hour with observed wind- and production data. WPPT combines statistical and physical methods and the nature of the model changes with time. In the very short range, the observed data is the dominant factor predicting energy production while the physical methods, e.g. the weather forecasts, gradually are given more weight as we go further away from the production hour. Until recently Vattenfall has relied solely on weather forecasts from one institute, namely DMI (The Danish Meteorological Institute), in predicting the energy produced at Lillgrund. The uncertainty in the forecast has been given some attention but since only one source of information has been available the possibilities of a comprehensive uncertainty analysis has been limited. To meet the growing demand for quality and delivery reliability, Vattenfall has begun to purchase additional weather data from the Swedish supplier WeatherTech Scandinavia. These data will be used together with data from DMI. You get a kind of ensemble forecast approach. The difference in structure, configuration and physical approaches of the models presumably makes the model related forecast errors uncorrelated. This lays the path for quality improvements when the different forecasts are combined optimally. WPPT has been used in forecasting the energy production at Lillgrund since production began in 2007. The average absolute error in the production forecast / turbine is 0.17 MW. If WPPT only relied on a persistence forecast for the next 24 hours the error will become almost three times as high. So far WPPT has a skill score of 86% in the 24-hour forecasts compared to an assumption of persistence. There is a clearly visible pattern that WPPT underestimates production in situations with strong winds and conversely overestimate production when winds are weak. This is also typical for pure persistence

  1. Energy-Based Evaluations on Eucalyptus Biomass Production

    Directory of Open Access Journals (Sweden)

    Thiago L. Romanelli

    2012-01-01

    Full Text Available Dependence on finite resources brings economic, social, and environmental concerns. Planted forests are a biomass alternative to the exploitation of natural forests. In the exploitation of the planted forests, planning and management are key to achieve success, so in forestry operations, both economic and noneconomic factors must be considered. This study aimed to compare eucalyptus biomass production through energy embodiment of anthropogenic inputs and resource embodiment including environmental contribution (emergy for the commercial forest in the Sao Paulo, Brazil. Energy analyses and emergy synthesis were accomplished for the eucalyptus production cycles. It was determined that emergy synthesis of eucalyptus production and sensibility analysis for three scenarios to adjust soil acidity (lime, ash, and sludge. For both, energy analysis and emergy synthesis, harvesting presented the highest input demand. Results show the differences between energy analysis and emergy synthesis are in the conceptual underpinnings and accounting procedures. Both evaluations present similar trends and differ in the magnitude of the participation of an input due to its origin. For instance, inputs extracted from ores, which represent environmental contribution, are more relevant for emergy synthesis. On the other hand, inputs from industrial processes are more important for energy analysis.

  2. Production of heavy charged Higgs particles at very high energies

    OpenAIRE

    Grifols, Josep Antoni; Solà Peracaula, Joan

    1981-01-01

    The production of heavy charged Higgs bosons at very high energies (LEP) is investigated. It turns out that, in favorable circumstances, charged scalars of mass 50-100 GeV could be detected and be even more copiously produced than the standard neutral Weinberg-Salam-type Higgs particle of the same mass.

  3. Energy Resiliency for Marine Corps Logistics Base Production Plant Barstow

    Science.gov (United States)

    2014-12-01

    Barstow, we would like to thank Mr. Paul Florez and Mr. Tony Mesa for their critical energy-related inputs. At Marine Corps Logistics Command...Production Plant Barstow, we would like to thank Mrs. Alicia Florez and Mr. John Peterson for hosting us and creating a detailed picture of the inner

  4. Harnessing Solar Energy for the Production of Clean Fuel

    NARCIS (Netherlands)

    Pandit, A.; Holzwarth, A.; de Groot, H.J.M.

    2008-01-01

    The European Union and its member states are being urged by leading scientists to make a major multi million Euro commitment to solar driven production of environmentally clean electricity, hydrogen and other fuels, as the only sustainable long-term solution for global energy needs. The most

  5. Harnessing Solar Energy for the Production of Clean Fuel

    NARCIS (Netherlands)

    Pandit, A.; Holzwarth, A.; de Groot, H.J.M.

    2008-01-01

    The European Union and its member states are being urged by leading scientists to make a major multi million Euro commitment to solar driven production of environmentally clean electricity, hydrogen and other fuels, as the only sustainable long-term solution for global energy needs. The most promisi

  6. Green energy products in the United Kingdom, Germany and Finland

    Science.gov (United States)

    Hast, Aira; McDermott, Liisa; Järvelä, Marja; Syri, Sanna

    2014-12-01

    In liberalized electricity markets, suppliers are offering several kinds of voluntary green electricity products marketed as environmentally friendly. This paper focuses on the development of these voluntary markets at household level in the UK, Germany and Finland. Since there are already existing renewable energy policies regulating and encouraging the use of renewable energy, it is important to consider whether voluntary products offer real additional benefits above these policies. Problems such as double counting or re-marketing hydropower produced in existing plants are identified. According to our study, the demand varies between countries: in Germany the number of green electricity customers has increased and is also higher than in the UK or Finland. Typically the average additional cost to consumer from buying green electricity product instead of standard electricity product is in the range of 0-5% in all studied countries, although the level of price premium depends on several factors like electricity consumption. Case study of Finland and literature show that the impacts of green energy are not solely environmental. Renewable energy can benefit local public policy.

  7. Harnessing Solar Energy for the Production of Clean Fuel

    NARCIS (Netherlands)

    Pandit, A.; Holzwarth, A.; de Groot, H.J.M.

    2008-01-01

    The European Union and its member states are being urged by leading scientists to make a major multi million Euro commitment to solar driven production of environmentally clean electricity, hydrogen and other fuels, as the only sustainable long-term solution for global energy needs. The most promisi

  8. Turkey's High Temperature Geothermal Energy Resources and Electricity Production Potential

    Science.gov (United States)

    Bilgin, Ö.

    2012-04-01

    Turkey is in the first 7 countries in the world in terms of potential and applications. Geothermal energy which is an alternative energy resource has advantages such as low-cost, clean, safe and natural resource. Geothermal energy is defined as hot water and steam which is formed by heat that accumulated in various depths of the Earth's crust; with more than 20oC temperature and which contain more than fused minerals, various salts and gases than normal underground and ground water. It is divided into three groups as low, medium and high temperature. High-temperature fluid is used in electricity generation, low and medium temperature fluids are used in greenhouses, houses, airport runways, animal farms and places such as swimming pools heating. In this study high temperature geothermal fields in Turkey which is suitable for electricity production, properties and electricity production potential was investigated.

  9. ENTROPY PRODUCTION AT HIGH ENERGY AND mu B.

    Energy Technology Data Exchange (ETDEWEB)

    STEINBERG,P.

    2006-07-03

    The systematics of bulk entropy production in experimental data on Ai-A, p + y and e{sup +}e{sup -} interactions at high energies and large {mu}{sub B} is discussed. It is proposed that scenarios with very early thermalization, such as Landau's hydrodynamical model, capture several essential features of the experimental results. It is also pointed out that the dynamics of systems which reach the hydrodynamic regime give similar multiplicities and angular distributions as those calculated in weak-coupling approximations (e.g. pQCD) over a wide range of beam energies. Finally, it is shown that the dynamics of baryon stopping are relevant to the physics of total entropy production, explaining why A+A and e{sup +}e{sup -} multiplicities are different at low beam energies.

  10. Predictive Model of Energy Consumption in Beer Production

    Directory of Open Access Journals (Sweden)

    Tiecheng Pu

    2013-07-01

    Full Text Available The predictive model of energy consumption is presented based on subtractive clustering and Adaptive-Network-Based Fuzzy Inference System (for short ANFIS in the beer production. Using the subtractive clustering on the historical data of energy consumption, the limit of artificial experience is conquered while confirming the number of fuzzy rules. The parameters of the fuzzy inference system are acquired by the structure of adaptive network and hybrid on-line learning algorithm. The method can predict and guide the energy consumption of the factual production process. The reducing consumption scheme is provided based on the actual situation of the enterprise. Finally, using concrete examples verified the feasibility of this method comparing with the Radial Basis Functions (for short RBF neural network predictive model.

  11. Energy efficiency regulation for industrial products and manufacturing

    Directory of Open Access Journals (Sweden)

    Badea George-Vlad

    2017-01-01

    Full Text Available The paper deals with the energy efficiency of industrial products or manufacturing as compared to the framework legislative measures implemented by EU through the Eco-design and Energy Labeling Directives. The Eco-design implementing measures such as taking into account all phases of the life cycle (manufacturing, transport, use, disposal, as well as the essential environmental aspects (consumption, materials, emissions, waste, etc. for each phase, are considered. The implementing measures should have no significant negative impact on the functionality, health and safety, affordability and industry's competitiveness, as well as they should not impose proprietary technology on manufacturers and not be an excessive administrative burden for them. In this paper a method for implementing Legislative measures concerning the Eco-design and Energy labeling of industrial product is proposed. It grounds on the analysis of particular interest versus general interest relation, for each product case. Method application consists in products classifying relative to the two types of interest, followed by a voluntary agreement between manufacturers operating on market and EU. Finally, the paper presents the limits and possibilities for Eco-design of industrial products and manufacturing industry.

  12. Energy efficiency and energy homeostasis as genetic and epigenetic components of plant performance and crop productivity.

    Science.gov (United States)

    De Block, Marc; Van Lijsebettens, Mieke

    2011-06-01

    The importance of energy metabolism in plant performance and plant productivity is conceptually well recognized. In the eighties, several independent studies in Lolium perenne (ryegrass), Zea mays (maize), and Festuca arundinacea (tall fescue) correlated low respiration rates with high yields. Similar reports in the nineties largely confirmed this correlation in Solanum lycopersicum (tomato) and Cucumis sativus (cucumber). However, selection for reduced respiration does not always result in high-yielding cultivars. Indeed, the ratio between energy content and respiration, defined here as energy efficiency, rather than respiration on its own, has a major impact on the yield potential of a crop. Besides energy efficiency, energy homeostasis, representing the balance between energy production and consumption in a changing environment, also contributes to an enhanced plant performance and this happens mainly through an increased stress tolerance. Although a few single gene approaches look promising, probably whole interacting networks have to be modulated, as is done by classical breeding, to improve the energy status of plants. Recent developments show that both energy efficiency and energy homeostasis have an epigenetic component that can be directed and stabilized by artificial selection (i.e. selective breeding). This novel approach offers new opportunities to improve yield potential and stress tolerance in a wide variety of crops.

  13. Salmonella in pork retail outlets and dissemination of its pulsotypes through pig production chain in Chiang Mai and surrounding areas, Thailand.

    Science.gov (United States)

    Patchanee, Prapas; Tansiricharoenkul, Kankanok; Buawiratlert, Tunyamai; Wiratsudakul, Anuwat; Angchokchatchawal, Kittipat; Yamsakul, Panuwat; Yano, Terdsak; Boonkhot, Phacharaporn; Rojanasatien, Suvichai; Tadee, Pakpoom

    2016-08-01

    Salmonella spp. is acknowledged as a significant zoonotic foodborne pathogen throughout the world. Contaminated pork consumption is considered as a main cause of human salmonellosis. In the later stage of the pig production chain, poor hygiene and unsuitable storage conditions in retail outlets are considered to be key factors linked to the risk of Salmonella infection. The purpose of current study, which was conducted throughout April 2014 to September 2014, was to determine the prevalence and characteristics of Salmonella spp. in pork sold at the retail stage in wet markets and supermarkets in the Chiang Mai urban area of Thailand. Additionally, clonal relations between Salmonella strains described in this study and those identified in earlier study from the same geographical area were considered. It is provided as a means of contributing to current knowledge regarding Salmonella epidemiology with an ultimate aim of improved food security and consumer protection in this region. From a total of 82 pork samples analyzed in this study, 41% were positive for Salmonella, with prevalence of 73.2% from wet markets (n=30/41) and 9.8% from supermarkets (n=4/41). Twelve Salmonella serovars were identified, S. Rissen being the most commonly encountered. Antibiotic resistance of the isolates was highest for ampicillin and tetracycline (53%), followed by streptomycin (44%). Pulsed-field gel electrophoresis (PFGE) and subsequent geographical distribution analysis indicated that the clonal Salmonella strains originated from multiple sources had been spread over a wide area. The existence of a common pig supply chain "farm-slaughterhouse-retail" transmission route is inferred. Continuous monitoring of Salmonella along the entire production chain is needed to reduce contamination loads and to ensure the safety of pork products for end consumers.

  14. Every silver lining has a cloud: the scientific and animal welfare issues surrounding a new approach to the production of transgenic animals.

    Science.gov (United States)

    Combes, Robert D; Balls, Michael

    2014-05-01

    The scientific basis and advantages of using recently developed CRISPR/Cas-9 technology for transgenesis have been assessed with respect to other production methods, laboratory animal welfare, and the scientific relevance of transgenic models of human diseases in general. As the new technology is straightforward, causes targeted DNA double strand breaks and can result in homozygous changes in a single step, it is more accurate and more efficient than other production methods and speeds up transgenesis. CRISPR/Cas-9 also obviates the use of embryonic stem cells, and is being used to generate transgenic non-human primates (NHPs). While the use of this method reduces the level of animal wastage resulting from the production of each new strain, any long-term contribution to reduction will be offset by the overall increase in the numbers of transgenic animals likely to result from its widespread usage. Likewise, the contribution to refinement of using a more-precise technique, thereby minimising the occurrence of unwanted genetic effects, will be countered by a probable substantial increase in the production of transgenic strains of increasingly sentient species. For ethical and welfare reasons, we believe that the generation of transgenic NHPs should be allowed only in extremely exceptional circumstances. In addition, we present information, which, on both welfare and scientific grounds, leads us to question the current policy of generating ever-more new transgenic models in light of the general failure of many of them, after over two decades of ubiquitous use, to result in significant advances in the understanding and treatment of many key human diseases. Because this unsatisfactory situation is likely to be due to inherent, as well as possibly avoidable, limitations in the transgenic approach to studying disease, which are briefly reviewed, it is concluded that a thorough reappraisal of the rationale for using genetically-altered animals in fundamental research and

  15. Contributions of parent molecule fixed and excess energies to product energy partitioning in four-center elimination reactions

    Science.gov (United States)

    Benito, R. M.; Santamaría, J.

    1989-03-01

    In four-center elimination reactions such as hydrogen halide elimination from halogenated hydrocarbons the energy barrier is higher than the difference in enthalpy of formation between the parent molecule and its fragments (HX and olefin). This determines that the energy available to products has two origins: the reverse reaction barrier (fixed energy), and the excess energy (energy above the barrier). Both types of energy are partitioned among products following different laws: more or less statistical for excess energy and non-statistical for fixed energy. In a study of CF 3-CH 3 decomposition, we describe a practical method, based on the variation of product energy partitioning with excess energy, to determine the partitioning of the fixed energy among different types of product energy, thus defining the exact nature of the reverse reaction energy barrier. We applied this model to other types of reactions, such as three-center molecular eliminations.

  16. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Penev, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-09-01

    This study examines the energy resources required to produce 4-10 million metric tonnes of domestic, low-carbon hydrogen in order to fuel approximately 20-50 million fuel cell electric vehicles. These projected energy resource requirements are compared to current consumption levels, projected 2040 business as usual consumptions levels, and projected 2040 consumption levels within a carbonconstrained future for the following energy resources: coal (assuming carbon capture and storage), natural gas, nuclear (uranium), biomass, wind (on- and offshore), and solar (photovoltaics and concentrating solar power). The analysis framework builds upon previous analysis results estimating hydrogen production potentials and drawing comparisons with economy-wide resource production projections

  17. Electric utility capacity expansion and energy production models for energy policy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Aronson, E.; Edenburn, M.

    1997-08-01

    This report describes electric utility capacity expansion and energy production models developed for energy policy analysis. The models use the same principles (life cycle cost minimization, least operating cost dispatching, and incorporation of outages and reserve margin) as comprehensive utility capacity planning tools, but are faster and simpler. The models were not designed for detailed utility capacity planning, but they can be used to accurately project trends on a regional level. Because they use the same principles as comprehensive utility capacity expansion planning tools, the models are more realistic than utility modules used in present policy analysis tools. They can be used to help forecast the effects energy policy options will have on future utility power generation capacity expansion trends and to help formulate a sound national energy strategy. The models make renewable energy source competition realistic by giving proper value to intermittent renewable and energy storage technologies, and by competing renewables against each other as well as against conventional technologies.

  18. White Paper on Energy Efficiency Status of Energy-Using Products in China (2012)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Romankiewicz, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-06-01

    2011 is the first year of the 12th Five-Year Plan and, as such, it is a crucial year to push forward the work of energy conservation and emissions reduction. Important large-scale energy conservation policies issued in 2011 include Outline of the 12th Five-year Plan for National Economic and Social Development of The People’s Republic of China (the “Plan”) and Notice of the State Council on Issuing the Comprehensive Work Proposal for Energy Conservation and Emission Reduction during the 12th Five-Year Plan Period (GF (2011) No. 26) (the “Proposal”). These two policies have established strategic objectives for energy conservation during the 12th Five-Year Plan in China, and they have also identified the key tasks and direction of energy efficiency programs for energy-using products.

  19. Space-time dependence between energy sources and climate related energy production

    Science.gov (United States)

    Engeland, Kolbjorn; Borga, Marco; Creutin, Jean-Dominique; Ramos, Maria-Helena; Tøfte, Lena; Warland, Geir

    2014-05-01

    The European Renewable Energy Directive adopted in 2009 focuses on achieving a 20% share of renewable energy in the EU overall energy mix by 2020. A major part of renewable energy production is related to climate, called "climate related energy" (CRE) production. CRE production systems (wind, solar, and hydropower) are characterized by a large degree of intermittency and variability on both short and long time scales due to the natural variability of climate variables. The main strategies to handle the variability of CRE production include energy-storage, -transport, -diversity and -information (smart grids). The three first strategies aim to smooth out the intermittency and variability of CRE production in time and space whereas the last strategy aims to provide a more optimal interaction between energy production and demand, i.e. to smooth out the residual load (the difference between demand and production). In order to increase the CRE share in the electricity system, it is essential to understand the space-time co-variability between the weather variables and CRE production under both current and future climates. This study presents a review of the literature that searches to tackle these problems. It reveals that the majority of studies deals with either a single CRE source or with the combination of two CREs, mostly wind and solar. This may be due to the fact that the most advanced countries in terms of wind equipment have also very little hydropower potential (Denmark, Ireland or UK, for instance). Hydropower is characterized by both a large storage capacity and flexibility in electricity production, and has therefore a large potential for both balancing and storing energy from wind- and solar-power. Several studies look at how to better connect regions with large share of hydropower (e.g., Scandinavia and the Alps) to regions with high shares of wind- and solar-power (e.g., green battery North-Sea net). Considering time scales, various studies consider wind

  20. Technology diffusion of energy-related products in residential markets

    Energy Technology Data Exchange (ETDEWEB)

    Davis, L.J.; Bruneau, C.L.

    1987-05-01

    Acceptance of energy-related technologies by end residential consumers, manufacturers of energy-related products, and other influential intermediate markets such as builders will influence the potential for market penetration of innovative energy-related technologies developed by the Department of Energy, Office of Building and Community Systems (OBCS). In this report, Pacific Northwest Laboratory reviewed the available information on technology adoption, diffusion, and decision-making processes to provide OBCS with a background and understanding of the type of research that has previously been conducted on this topic. Insight was gained as to the potential decision-making criteria and motivating factors that influence the decision-maker(s) selection of new technologies, and some of the barriers to technology adoption faced by potential markets for OBCS technologies.

  1. Wind energy in electric power production, preliminary study

    Science.gov (United States)

    Lento, R.; Peltola, E.

    1984-01-01

    The wind speed conditions in Finland have been studied with the aid of the existing statistics of the Finnish Meteorological Institute. With the aid of the statistics estimates on the available wind energy were also made. Eight hundred wind power plants, 1.5 MW each, on the windiest west coast would produce about 2 TWh energy per year. Far more information on the temporal, geographical and vertical distribution of the wind speed than the present statistics included is needed when the available wind energy is estimated, when wind power plants are dimensioned optimally, and when suitable locations are chosen for them. The investment costs of a wind power plant increase when the height of the tower or the diameter of the rotor is increased, but the energy production increases, too. Thus, overdimensioning the wind power plant in view of energy needs or the wind conditions caused extra costs. The cost of energy produced by wind power can not yet compete with conventional energy, but the situation changes to the advantage of wind energy, if the real price of the plants decreases (among other things due to large series production and increasing experience), or if the real price of fuels rises. The inconvinience on the environment caused by the wind power plants is considered insignificant. The noise caused by the plant attenuates rapidly with distance. No harmful effects to birds and other animals caused by the wind power plants have been observed in the studies made abroad. Parts of the plant getting loose during an accident, or ice forming on the blades are estimated to fly even from a large plant only a few hundred meters.

  2. Sustainable energy consumption and production - a global view

    Energy Technology Data Exchange (ETDEWEB)

    Hernes, H.

    1995-12-31

    The paper gives a global view of sustainable energy consumption and production both in developed and developing countries. There is a need of replacing fossil fuel sources with renewable energy at a speed parallel to the depletion of the oil and gas sources. According to the author, the actual growth in developing countries` use of oil, coal and other sources of energy has almost tripled since 1970. Future population growth alone will spur a further 70% jump in energy use in 30 years, even if per capita consumption remains at current levels. For the OECD countries, energy use rose one fifth as much as economic growth between 1973 and 1989. Countries like China and India, and other developing countries, have huge coal reserves and energy needs. Policy makers have to integrate environmental concerns in decision making over the choice between different fuels, energy technologies and stricter environmental standards. Life cycle analyses can contribute to the development of overall indicators of environmental performance of different technologies. According to the IPCC (Intergovernmental Panel on Climate Change), anthropogenic CO{sub 2} emissions must be reduced by more than 60% in order to stabilize the CO{sub 2} concentration in the atmosphere. 8 refs.

  3. Initial study - compilation and synthesis of knowledge about energy crops from field to energy production

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Magnus; Bubholz, Monika; Forsberg, Maya; Myringer, Aase; Palm, Ola; Roennbaeck, Marie; Tullin, Claes

    2007-11-15

    Energy crops constitute an yet not fully utilised potential as fuel for heating and power production. As competition for biomass increases interest in agricultural fuels such as straw, energy grain, willow, reed canary grass and hemp is increasing. Exploiting the potential for energy crops as fuels will demand that cultivation and harvest be coordinated with transportation, storage and combustion of the crops. Together, Vaermeforsk and the Swedish Farmers' Foundation for Agricultural Research (SLF), have taken the initiative to a common research programme. The long-term aim of the programme is to increase production and utilisation of bioenergy from agriculture to combustion for heat and power production in Sweden. The vision is that during the course of the 2006 - 2009 programme, decisive steps will be taken towards a functioning market for biofuels for bioenergy from agriculture. This survey has compiled and synthesised available knowledge and experiences about energy crops from field to energy production. The aim has been to provide a snapshot of knowledge today, to identify knowledge gaps and to synthesise knowledge we have today into future research needs. A research plan proposal has been developed for the research programme

  4. On the potential of an RST-based analysis of the MODIS-derived chl-a product over Condor seamount and surrounding areas (Azores, NE Atlantic)

    Science.gov (United States)

    Ciancia, Emanuele; Magalhães Loureiro, Clara; Mendonça, Ana; Coviello, Irina; Di Polito, Carmine; Lacava, Teodosio; Pergola, Nicola; Satriano, Valeria; Tramutoli, Valerio; Martins, Ana

    2016-09-01

    Oceanographic cruises have been conducted on the Condor seamount (SW Faial Island, Azores archipelago, NE Atlantic) since 2009 to collect in situ data and understand potential seamount effects on local biodiversity. Satellite data have been concurrently collected to infer the space-time upper-ocean optical property variability and the associated physical processes. The main limitation of this analysis is the persistent and significant cloud coverage above the region that, especially in some seasons, can significantly hinder satellite data availability. This study was meant to test the robust satellite technique (RST) over the Condor seamount, assess its capability to estimate multiyear trends and identify space-time anomalies. To this aim, 11-year MODIS/AQUA level 2-derived chlorophyll-a (chl-a) data were used. Results achieved for October 2010 show, within a large-scale analysis, the presence of well-defined areas of near-surface chl-a anomalies, highlighting the occurrence of a trapping effect due to flow-topography interaction processes. Regarding the Condor area, the chl-a anomalies detected along the eastern side of the seamount were linked to a strong vertical mixing that provided sufficient inorganic nutrients requested for productivity. The achieved results, whose accuracy was also tested through a comparison with in situ data, are consistent with those independently obtained by other authors who described the phytoplankton variability around the Condor seamount. This study shows the high potential of the RST approach to assess the chl-a variability in the space-time domain in oligotrophic regions such as the Azores, allowing the identification of the most important areas to be preserved and/or managed.

  5. Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering.

    Science.gov (United States)

    Quintana, Naira; Van der Kooy, Frank; Van de Rhee, Miranda D; Voshol, Gerben P; Verpoorte, Robert

    2011-08-01

    The need to develop and improve sustainable energy resources is of eminent importance due to the finite nature of our fossil fuels. This review paper deals with a third generation renewable energy resource which does not compete with our food resources, cyanobacteria. We discuss the current state of the art in developing different types of bioenergy (ethanol, biodiesel, hydrogen, etc.) from cyanobacteria. The major important biochemical pathways in cyanobacteria are highlighted, and the possibility to influence these pathways to improve the production of specific types of energy forms the major part of this review.

  6. Investigation of Rare Particle Production in High Energy Nuclear Collisions

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-09-02

    Our program is an investigation of the hadronization process through measurement of rare particle production in high energy nuclear interactions. Such collisions of heavy nuclei provide an environment similar in energy density to the conditions in the Big Bang. We are currently involved in two major experiments to study this environment, E896 at the AGS and STAR at RHIC. We have completed our physics running of E896, a search for the H dibaryon and measurement of hyperon production in AuAu collisions, and are in the process of analyzing the data. We have produced the electronics and software for the STAR trigger and will begin to use these tools to search for anti-nuclei and strange hadrons when RHIC turns on later this year.

  7. Energy-efficient photobioreactor configuration for algal biomass production.

    Science.gov (United States)

    Pegallapati, Ambica Koushik; Arudchelvam, Yalini; Nirmalakhandan, Nagamany

    2012-12-01

    An internally illuminated photobioreactor (IIPBR) design is proposed for energy-efficient biomass production. Theoretical rationale of the IIPBR design and its advantages over the traditional bubble column photobioreactors (PBRs) are presented, followed by experimental results from prototype scale cultivation of freshwater and marine algal strains in an 18L IIPBR. Based on theoretical considerations, the proposed IIPBR design has the potential to support 160% higher biomass density and higher biomass productivity per unit energy input, B/E, than a bubble column PBR of equal incident area per unit culture volume. Experimental B/E values recorded in this study with fresh water algae and marine algae (1.42 and 0.37 gW(-1)d(-1), respectively) are at least twice as those reported in the literature for comparable species cultivated in bubble column and airlift PBRs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Energy-Recovery Linacs for Commercial Radioisotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland Paul [Muplus, Inc., Newport News, VA (United States)

    2016-11-19

    Most radioisotopes are produced by nuclear reactors or positive ion accelerators, which are expensive to construct and to operate. Photonuclear reactions using bremsstrahlung photon beams from less-expensive electron linacs can generate isotopes of critical interest, but much of the beam energy in a conventional electron linac is dumped at high energy, making unwanted radioactivation. The largest part of this radioactivation may be completely eliminated by applying energy recovery linac technology to the problem with an additional benefit that the energy cost to produce a given amount of isotope is reduced. Consequently, a Superconducting Radio Frequency (SRF) Energy Recovery Linac (ERL) is a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes at a cost lower than that of isotopes produced by reactors or positive-ion accelerators. A Jefferson Lab approach to this problem involves a thin photon production radiator, which allows the electron beam to recirculate through rf cavities so the beam energy can be recovered while the spent electrons are extracted and absorbed at a low enough energy to minimize unwanted radioactivation. The thicker isotope photoproduction target is not in the beam. MuPlus, with Jefferson Lab and Niowave, proposed to extend this ERL technology to the commercial world of radioisotope production. In Phase I we demonstrated that 1) the ERL advantage for producing radioisotopes is at high energies (~100 MeV), 2) the range of acceptable radiator thickness is narrow (too thin and there is no advantage relative to other methods and too thick means energy recovery is too difficult), 3) using optics techniques developed under an earlier STTR for collider low beta designs greatly improves the fraction of beam energy that can be recovered (patent pending), 4) many potentially useful radioisotopes can be made with this ERL technique that have never before been available in significant commercial quantities

  9. Dilepton Production at SIS Energies Studied with HADES

    Science.gov (United States)

    Hades Collaboration; Holzmann, Romain; Balanda, A.; Belver, D.; Belyaev, A. V.; Blanco, A.; Böhmer, M.; Boyard, J. L.; Braun-Munzinger, P.; Cabanelas, P.; Castro, E.; Chernenko, S.; Díaz, J.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O. V.; Finocchiaro, P.; Fonte, P.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gernhäuser, R.; Gil, A.; Golubeva, M.; González-Díaz, D.; Guber, F.; Hennino, T.; Holzmann, R.; Huck, P.; Ierusalimov, A. P.; Iori, I.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Koenig, I.; Koenig, W.; Kolb, B. W.; Kopp, A.; Kotte, R.; Kozuch, A.; Krása, A.; Krizek, F.; Krücken, R.; Kühn, W.; Kugler, A.; Kurepin, A.; Khlitz, P. K.; Lamas-Valverde, J.; Lang, S.; Lange, J. S.; Lapidus, K.; Liu, T.; Lopes, L.; Lorenz, M.; Maier, L.; Mangiarotti, A.; Markert, J.; Metag, V.; Michalska, B.; Michel, J.; Morinière, E.; Mousa, J.; Müntz, C.; Naumann, L.; Pachmayer, Y. C.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pietraszko, J.; Przygoda, W.; Ramstein, B.; Reshetin, A.; Roskoss, J.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Schmah, A.; Siebenson, J.; Simon, R.; Sobolev, Yu. G.; Spruck, B.; Ströbele, H.; Stroth, J.; Sturm, C.; Sudol, M.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Trebacz, R.; Tsertos, H.; Veretenkin, I.; Wagner, V.; Weber, M.; Wisniowski, M.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y. V.

    2010-03-01

    One of the main goals of the HADES experiment is to achieve a detailed understanding of dielectron emission from hadronic systems at moderate bombarding energies. Results obtained on electron pair production in elementary N+N collisions pave the way to a better understanding of the origin of the pair excess seen in heavy-ion collisions. This puzzling excess, reported first by the former DLS experiment, is now being investigated systematically by HADES.

  10. Geothermal Energy Production With Innovative Methods Of Geothermal Heat Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, Allen [GeoTek Energy, LLC, Frisco, TX (United States); Darlow, Rick [GeoTek Energy, LLC, Frisco, TX (United States); Sanchez, Angel [GeoTek Energy, LLC, Frisco, TX (United States); Pierce, Michael [GeoTek Energy, LLC, Frisco, TX (United States); Sellers, Blake [GeoTek Energy, LLC, Frisco, TX (United States)

    2014-12-19

    The ThermalDrive™ Power System (“TDPS”) offers one of the most exciting technological advances in the geothermal power generation industry in the last 30 years. Using innovations in subsurface heat recovery methods, revolutionary advances in downhole pumping technology and a distributed approach to surface power production, GeoTek Energy, LLC’s TDPS offers an opportunity to change the geothermal power industry dynamics.

  11. Clinical Application of Surrounding Puncture

    Institute of Scientific and Technical Information of China (English)

    GUO Yao-jie; HAN Chou-ping

    2003-01-01

    Surrounding puncture can stop pathogenic qi from spreading, consolidate the connection between local meridians and enrich local qi and blood, which can eventually supplement anti-pathogenic qi and remove pathogenic qi, and consequently remedy diseases. The author of this article summrized and analyzed the clinical application of surrounding puncture for the purpose of studying this technique and improving the therapeutic effect.

  12. Experiences of a grid connected solar array energy production

    Science.gov (United States)

    Hagymássy, Zoltán; Vántus, András

    2015-04-01

    Solar energy possibilities of Hungary are higher than in Central Europe generally. The Institute for Land Utilisation, Technology and Regional Development of the University of Debrecen installed a photovoltaic (PV) system. The PV system is structured into 3 subsystems (fields). The first subsystem has 24 pieces of Kyocera KC 120 W type modules, the second subsystem has 72 pieces of Siemens ST 40W, and the remaining has 72 pieces of Dunasolar DS 40W In order to be operable independently of each other three inverter modules (SB 2500) had been installed. The recorder can be connected directly to a desktop PC. Operating and meteorological dates are recorded by MS Excel every 15 minutes. The power plant is connected to a weather station, which contents a PT 100 type temperature and humidity combined measuring instrument, a CM 11 pyranometer, and a wind speed measuring instrument. The produced DC, and AC power, together with the produced energy are as well, and the efficiency can be determined for each used PV technology. The measured operating and meteorological dates are collected by Sunny Boy Control, produced by the SMA. The energy productions of the subsystems are measured continually and the subsystems are measured separately. As an expected, the produced energy of polycrystalline -Si PV module and monocrystalline -Si PV was higher than amorphous-Si PV module. It is well known that energy analysis is more suitable for energy balance when we design a system. The air temperature and the temperature of the panels and the global irradiation conditions were measured. In summertime the panel temperature reaches 60-80 degrees in a sunny day. The panel temperatures are in a spring sunny day approximately 30-40 degrees. It can be concluded that the global irradiation is a major impact feature to influence the amount of energy produced. The efficiency depends on several parameters (spectral distribution of the incoming light, temperature values, etc.). The energy efficiency

  13. Microbial Production of Energy Colloquium- March 10-12, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Merry Buckley; Judy Wall

    2006-10-01

    The American Academy of Microbiology convened a colloquium March 10-12, 2006, in San Francisco, California, to discuss the production of energy fuels by microbial conversions. The status of research into various microbial energy technologies, the advantages and disadvantages of each of these approaches, research needs in the field, and education and training issues were examined, with the goal of identifying routes for producing biofuels that would both decrease the need for fossil fuels and reduce greenhouse gas emissions. Currently, the choices for providing energy are limited. Policy makers and the research community must begin to pursue a broader array of potential energy technologies. A diverse energy portfolio that includes an assortment of microbial energy choices will allow communities and consumers to select the best energy solution for their own particular needs. Funding agencies and governments alike need to prepare for future energy needs by investing both in the microbial energy technologies that work today and in the untested technologies that will serve the world’s needs tomorrow. More mature bioprocesses, such as ethanol production from starchy materials and methane from waste digestors, will find applications in the short term. However, innovative techniques for liquid fuel or biohydrogen production are among the longer term possibilities that should also be vigorously explored, starting now. Microorganisms can help meet human energy needs in any of a number of ways. In their most obvious role in energy conversion, microorganisms can generate fuels, including ethanol, hydrogen, methane, lipids, and butanol, which can be burned to produce energy. Alternatively, bacteria can be put to use in microbial fuel cells, where they carry out the direct conversion of biomass into electricity. Microorganisms may also be used some day to make oil and natural gas technologies more efficient by sequestering carbon or by assisting in the recovery of oil and

  14. Low Energy Technology. A Unit of Instruction on Energy Conservation in Field Crop Production.

    Science.gov (United States)

    Davis, George; Scanlon, Dennis C.

    This unit of instruction on energy conservation in field crop production was designed for use by agribusiness and natural resources teachers in Florida high schools and by agricultural extension agents as they work with adults and students. It is one of a series of 11 instructional units (see note) written to help teachers and agents to educate…

  15. Energy Production from Biogas: Competitiveness and Support Instruments in Latvia

    Science.gov (United States)

    Klāvs, G.; Kundziņa, A.; Kudrenickis, I.

    2016-10-01

    Use of renewable energy sources (RES) might be one of the key factors for the triple win-win: improving energy supply security, promoting local economic development, and reducing greenhouse gas emissions. The authors ex-post evaluate the impact of two main support instruments applied in 2010-2014 - the investment support (IS) and the feed-in tariff (FIT) - on the economic viability of small scale (up to 2MWel) biogas unit. The results indicate that the electricity production cost in biogas utility roughly corresponds to the historical FIT regarding electricity production using RES. However, if in addition to the FIT the IS is provided, the analysis shows that the practice of combining both the above-mentioned instruments is not optimal because too high total support (overcompensation) is provided for a biogas utility developer. In a long-term perspective, the latter gives wrong signals for investments in new technologies and also creates unequal competition in the RES electricity market. To provide optimal biogas utilisation, it is necessary to consider several options. Both on-site production of electricity and upgrading to biomethane for use in a low pressure gas distribution network are simulated by the cost estimation model. The authors' estimates show that upgrading for use in a gas distribution network should be particularly considered taking into account the already existing infrastructure and technologies. This option requires lower support compared to support for electricity production in small-scale biogas utilities.

  16. Energy indicators for electricity production : comparing technologies and the nature of the indicators Energy Payback Ratio (EPR), Net Energy Ratio (NER) and Cumulative Energy Demand (CED). [Oestfoldforskning AS

    Energy Technology Data Exchange (ETDEWEB)

    Raadal, Hanne Lerche [Ostfold research, Fredrikstad (Norway); Modahl, Ingunn Saur [Ostfold research, Fredrikstad (Norway); Bakken, Tor Haakon [SINTEF Energy, Trondheim (Norway)

    2012-11-01

    CEDREN (Centre for Environmental Design of Renewable Energy) is founded by The Research Council of Norway and energy companies and is one of eight centres that were part of the scheme Centre for Environment-friendly Energy Research (FME) when the scheme was launched in 2009. The main objective of CEDREN is to develop and communicate design solutions for transforming renewable energy sources to the desired energy products, and at the same time address the environmental and societal challenges at local, regional, national and global levels. CEDREN's board initiated in 2011 a pilot project on the topics 'Energy Pay-back Ratio (EPR)', 'Ecosystem services' and 'multi-criteria analysis (MCA)' in order to investigate the possible use of these concepts/indices in the management of regulated river basins and as tools to benchmark strategies for the development of energy projects/resources. The energy indicator part (documented in this report) has aimed at reviewing the applicability of different energy efficiency indicators, as such, in the strategic management and development of energy resources, and to compare and benchmark technologies for production of electricity. The main findings from this pilot study is also reported in a policy memo (in Norwegian), that is available at www.cedren.no. The work carried out in this project will be continued in the succeeding research project EcoManage, which was granted by the Research Council of Norway's RENERGI programme in December 2011. Energy indicators: Several energy indicators for extraction and delivery of an energy product (e.g. transport fuel, heat, electricity etc.) exist today. The main objective of such indicators is to give information about the energy efficiency of the needed extraction and transforming processes throughout the value chain related to the delivered energy product. In this project the indicators Energy Payback Ratio (EPR), Net Energy Ration (NER) and Cumulative

  17. ASSESSMENT OF COMBINED STRAW PULP AND ENERGY PRODUCTION

    Directory of Open Access Journals (Sweden)

    Anja Paula Maria Leponiemi

    2011-04-01

    Full Text Available The aim of this study was to evaluate the potential of a new, straw-based fibre manufacturing technology integrated to bioenergy and biofuels production. The process is based on a novel hot water treatment and subsequent mechanical refining, both of which are performed at a high temperature. Soda process, ethanol production, and chemical defibration based on hot water treatment and subsequent alkaline peroxide bleaching were selected as references. The idea is to utilise the fibre fraction for packaging and the dissolved solids and the formed fines for energy. The investment costs of this process are significantly lower than those of a soda process. Additionally, a chemicals recovery process is unnecessary. Furthermore, the process offers an attractive alternative for biogas production. However, the assessment showed that the process could only be economical in some terms. Subsidies for investment would probably be needed to promote the acceptance of this environmentally safe process.

  18. Diphoton production in high-energy p+A collisions

    CERN Document Server

    Kovner, Alex

    2014-01-01

    We consider semi-inclusive diphoton+jet and inclusive diphoton production in high-energy proton-nucleus collisions, treating the target nucleus as a Color-Glass-Condensate while the projectile proton in the parton model. We obtain the prompt diphoton production cross-section in terms of fragmentation and direct contributions. The fragmentation part is given in terms of single-photon and double-photon fragmentation functions. We study prompt, direct and fragmentation diphoton correlations in p+p and p+A collisions at the LHC, and show that at low values of transverse momenta of the produced photon pair, these correlations are sensitive to saturation effects. We show that back-to-back (de)-correlations in prompt diphoton production are stronger in fragmentation part than in the direct one.

  19. Diphoton production in high-energy p+A collisions

    Science.gov (United States)

    Kovner, Alex; Rezaeian, Amir H.

    2014-07-01

    We consider semi-inclusive diphoton +jet and inclusive diphoton production in high-energy proton-nucleus collisions, treating the target nucleus as a color-glass condensate and the projectile proton in the parton model. We obtain the prompt diphoton production cross section in terms of fragmentation and direct contributions. The fragmentation part is given in terms of single-photon and double-photon fragmentation functions. We study prompt, direct, and fragmentation diphoton correlations in p +p and p +A collisions at the LHC and show that at low values of transverse momenta of the produced photon pair these correlations are sensitive to saturation effects. We show that back-to-back (de)correlations in prompt diphoton production are stronger in the fragmentation part than in the direct one.

  20. The energy production rate & the generation spectrum of UHECRs

    CERN Document Server

    Katz, Boaz; Waxman, Eli

    2008-01-01

    We derive simple analytic expressions for the flux and spectrum of ultra-high energy cosmic-rays (UHECRs) predicted in models where the CRs are protons produced by extra-Galactic sources. For a power-law scaling of the CR production rate with redshift and energy, d\\dot{n} /dE\\propto E^-\\alpha (1+z)^m, our results are accurate at high energy, E>10^18.7 eV, to better than 15%, providing a simple and straightforward method for inferring d\\dot{n}/dE from the observed flux at E. We show that current measurements of the UHECR spectrum, including the latest Auger data, imply E^2d\\dot{n}/dE(z=0)=(0.45\\pm0.15)(\\alpha-1) 10^44 erg Mpc^-3 yr^-1 at E<10^19.5 eV with \\alpha roughly confined to 2\\lesseq\\alpha<2.7. The uncertainty is dominated by the systematic and statistic errors in the experimental determination of individual CR event energy, (\\Delta E/E)_{sys}~(\\Delta E/E)_{stat} ~20%. At lower energy, d\\dot{n}/dE is uncertain due to the unknown Galactic contribution. Simple models in which \\alpha\\simeq 2 and the ...

  1. Production and transfer of energy and information in Hamiltonian systems.

    Directory of Open Access Journals (Sweden)

    Chris G Antonopoulos

    Full Text Available We present novel results that relate energy and information transfer with sensitivity to initial conditions in chaotic multi-dimensional Hamiltonian systems. We show the relation among Kolmogorov-Sinai entropy, Lyapunov exponents, and upper bounds for the Mutual Information Rate calculated in the Hamiltonian phase space and on bi-dimensional subspaces. Our main result is that the net amount of transfer from kinetic to potential energy per unit of time is a power-law of the upper bound for the Mutual Information Rate between kinetic and potential energies, and also a power-law of the Kolmogorov-Sinai entropy. Therefore, transfer of energy is related with both transfer and production of information. However, the power-law nature of this relation means that a small increment of energy transferred leads to a relatively much larger increase of the information exchanged. Then, we propose an "experimental" implementation of a 1-dimensional communication channel based on a Hamiltonian system, and calculate the actual rate with which information is exchanged between the first and last particle of the channel. Finally, a relation between our results and important quantities of thermodynamics is presented.

  2. Production and transfer of energy and information in Hamiltonian systems.

    Science.gov (United States)

    Antonopoulos, Chris G; Bianco-Martinez, Ezequiel; Baptista, Murilo S

    2014-01-01

    We present novel results that relate energy and information transfer with sensitivity to initial conditions in chaotic multi-dimensional Hamiltonian systems. We show the relation among Kolmogorov-Sinai entropy, Lyapunov exponents, and upper bounds for the Mutual Information Rate calculated in the Hamiltonian phase space and on bi-dimensional subspaces. Our main result is that the net amount of transfer from kinetic to potential energy per unit of time is a power-law of the upper bound for the Mutual Information Rate between kinetic and potential energies, and also a power-law of the Kolmogorov-Sinai entropy. Therefore, transfer of energy is related with both transfer and production of information. However, the power-law nature of this relation means that a small increment of energy transferred leads to a relatively much larger increase of the information exchanged. Then, we propose an "experimental" implementation of a 1-dimensional communication channel based on a Hamiltonian system, and calculate the actual rate with which information is exchanged between the first and last particle of the channel. Finally, a relation between our results and important quantities of thermodynamics is presented.

  3. Energy Efficiency as a Factor of Engineering Product Competitiveness and its Formation on Product Economic Life Cycle Stages

    OpenAIRE

    Ivan V. Evstratov

    2011-01-01

    This article discusses the concept of energy efficiency of enterprises and engineering products. The author research how energy efficiency effect on engineering product competitiveness and how rate of enterprise and engineering product formation on stages of the economic product life cycle.

  4. Energy Efficiency as a Factor of Engineering Product Competitiveness and its Formation on Product Economic Life Cycle Stages

    Directory of Open Access Journals (Sweden)

    Ivan V. Evstratov

    2011-11-01

    Full Text Available This article discusses the concept of energy efficiency of enterprises and engineering products. The author research how energy efficiency effect on engineering product competitiveness and how rate of enterprise and engineering product formation on stages of the economic product life cycle.

  5. Coastal eutrophication in Europe caused by production of energy crops.

    Science.gov (United States)

    van Wijnen, Jikke; Ivens, Wilfried P M F; Kroeze, Carolien; Löhr, Ansje J

    2015-04-01

    In Europe, the use of biodiesel may increase rapidly in the coming decades as a result of policies aiming to increase the use of renewable fuels. Therefore, the production of biofuels from energy crops is expected to increase as well as the use of fertilisers to grow these crops. Since fertilisers are an important cause of eutrophication, the use of biodiesel may have an effect on the water quality in rivers and coastal seas. In this study we explored the possible effects of increased biodiesel use on coastal eutrophication in European seas in the year 2050. To this end, we defined a number of illustrative scenarios in which the biodiesel production increases to about 10-30% of the current diesel use. The scenarios differ with respect to the assumptions on where the energy crops are cultivated: either on land that is currently used for agriculture, or on land used for other purposes. We analysed these scenarios with the Global NEWS (Nutrient Export from WaterSheds) model. We used an existing Millennium Ecosystem Assessment Scenario for 2050, Global Orchestration (GO2050), as a baseline. In this baseline scenario the amount of nitrogen (N) and phosphorus (P) exported by European rivers to coastal seas decreases between 2000 and 2050 as a result of environmental and agricultural policies. In our scenarios with increased biodiesel production the river export of N and P increases between 2000 and 2050, indicating that energy crop production may more than counterbalance this decrease. Largest increases in nutrient export were calculated for the Mediterranean Sea and the Black Sea. Differences in nutrient export among river basins are large.

  6. Energy efficiency, low-carbon energy production, and economic growth in CIS countries

    Science.gov (United States)

    Vazim, A.; Kochetkova, O.; Azimzhamov, I.; Shvagrukova, E.; Dmitrieva, N.

    2016-09-01

    The paper studies the peculiarities of energy efficiency increase in national economy and decrease of carbon dioxide emission for CIS countries. The conditions that allow achieving parameters of sustainable development are determined according to indexes of GDP energy intensity and carbon intensity. Focusing on the indexes of GDP energy intensity and carbon intensity dynamics as well as on carbon intensity of energy production, a real movement towards implementation of program conditions presented by international organizations is analyzed, namely, economic conversion to the model of sustainable development. The examples demonstrate both the presence of significant differences between 12 countries and the lack of fatality in these differences. At determining dependencies linear models are preferred to non-linear ones, with the explanation of reasons in each particular case. Attention to success of these countries may help to understand the advantages of conversion to the model of sustainable development and also it helps to decrease demands in terms of costs for this conversion.

  7. The perspectives of fusion energy: The roadmap towards energy production and fusion energy in a distributed energy system

    DEFF Research Database (Denmark)

    Naulin, Volker; Juul Rasmussen, Jens; Korsholm, Søren Bang

    2014-01-01

    Controlled thermonuclear fusion has the potential of providing an environmentally friendly and inexhaustible energy source for mankind. Fusion energy, which powers our sun and the stars, is released when light elements, such as the hydrogen isotopes deuterium and tritium, fuse together. This occurs...... The presentation will discuss the present status of the fusion energy research and review the EU Roadmap towards a fusion power plant. Further the cost of fusion energy is assessed as well as how it can be integrated in the distributed energy system...

  8. 76 FR 56678 - Energy Efficiency Program for Consumer Products: Public Meeting and Availability of the Framework...

    Science.gov (United States)

    2011-09-14

    ... Edwards, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building... Part 430 RIN 1904-AC43 Energy Efficiency Program for Consumer Products: Public Meeting and Availability... AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of...

  9. Biogas production from energy crops and agriculture residues

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.

    2010-12-15

    In this thesis, the feasibility of utilizing energy crops (willow and miscanthus) and agriculture residues (wheat straw and corn stalker) in an anaerobic digestion process for biogas production was evaluated. Potential energy crops and agriculture residues were screened according to their suitability for biogas production. Moreover, pretreatment of these biomasses by using wet explosion method was studied and the effect of the wet explosion process was evaluated based on the increase of (a) sugar release and (b) methane potential when comparing the pretreated biomass and raw biomass. Ensiling of perennial crops was tested as a storage method and pretreatment method for enhancement of the biodegradability of the crops. The efficiency of the silage process was evaluated based on (a) the amount of biomass loss during storage and (b) the effect of the silage on methane potential. Co-digestion of raw and wet explosion pretreated energy crops and agriculture residues with swine manure at various volatile solids (VS) ratio between crop and manure was carried out by batch tests and continuous experiments. The efficiency of the co-digestion experiment was evaluated based on (a) the methane potential in term of ml CH4 produced per g of VS-added and (b) the amount of methane produced per m3 of reactor volume. (Author)

  10. Low energy observables and exclusive production with the ATLAS Detector

    CERN Document Server

    Martin, Tim; The ATLAS collaboration

    2017-01-01

    Low energy phenomena have been studied in detail at the LHC, providing important input for improving models of non-perturbative QCD effects. The ATLAS collaboration has performed several new measurements in this sector: We present charged-particle distributions sensitive to the underlying event, measured by the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV. The results are corrected for detector effects and compared to predictions from various Monte Carlo generators. In addition, we present studies on the correlated hadron production, as they are an important source for information on the early stages of hadron formation. In particular, an analysis of the momentum difference between charged hadrons in high–energy proton–proton collisions is performed in order to study coherent particle production. The results are compared to the predictions of a helical QCD string fragmenting model. In the absence of forward proton tagging, exclusive processes can be distinguished in the ...

  11. Charged Particle, Photon Multiplicity, and Transverse Energy Production in High-Energy Heavy-Ion Collisions

    Directory of Open Access Journals (Sweden)

    Raghunath Sahoo

    2015-01-01

    Full Text Available We review the charged particle and photon multiplicities and transverse energy production in heavy-ion collisions starting from few GeV to TeV energies. The experimental results of pseudorapidity distribution of charged particles and photons at different collision energies and centralities are discussed. We also discuss the hypothesis of limiting fragmentation and expansion dynamics using the Landau hydrodynamics and the underlying physics. Meanwhile, we present the estimation of initial energy density multiplied with formation time as a function of different collision energies and centralities. In the end, the transverse energy per charged particle in connection with the chemical freeze-out criteria is discussed. We invoke various models and phenomenological arguments to interpret and characterize the fireball created in heavy-ion collisions. This review overall provides a scope to understand the heavy-ion collision data and a possible formation of a deconfined phase of partons via the global observables like charged particles, photons, and the transverse energy measurement.

  12. Forecasting energy demand and CO{sub 2}-emissions from energy production in the forest industry

    Energy Technology Data Exchange (ETDEWEB)

    Malinen, H.

    1997-12-31

    The purpose of this study was to develops new energy forecasting methods for the forest industry energy use. The scenarios have been the most commonly used forecasts, but they require a lot of work. The recent scenarios, which are made for the forest industry, give a wide range of results; e.g. from 27,8 TWh to 38 TWh for electricity use in 2010. There is a need for more simple and accurate methods for forecasting. The time scale for the study is from 1975 to 2010, i.e. 36 years. The basic data for the study is collected from time period 1975 - 1995. It includes the wood use, production of main product categories and energy use in the forest industry. The factors affecting energy use at both industry level and at mill level are presented. The most probable technology trends, which can have an effect on energy production and use and CO{sub 2}-emissions are studied. Recent forecasts for the forest industry energy use till the year 2010 are referred and analysed. Three alternative forecasting methods are studied more closely. These methods are (a) Regression analysis, (b) Growth curves and (c) Delphi-method. Total electricity demand, share of purchased electricity, total fuel demand and share of process-based biofuels are estimated for the time period 1996 - 2010. The results from the different methods are compared to each other and to the recent scenarios. The comparison is made for the results concerning the energy use and the usefulness of the methods in practical work. The average energy consumption given by the forecasts for electricity was 31,6 TWh and for fuel 6,2 Mtoe in 2010. The share of purchased electricity totalled 73 % and process based fuels 77 %. The figures from 1995 are 22,8 TWh, 5,5 Mtoe, 64 % and 68 % respectively. All three methods were suitable for forecasting. All the methods required less working hours and were easier to use than scenarios. The methods gave results with a smaller deviation than scenarios, e.g. with electricity use in 2010 from

  13. The features of product positioning for the Ukrainian solar energy

    Directory of Open Access Journals (Sweden)

    N.V. Yazvinska

    2015-06-01

    Full Text Available The features of the positioning on the basis of forming a consumer value for solar energy are examined in the article; it makes possible to form the main principles of positioning as a provision basis of competitiveness of enterprises, which do activities on the solar energy market. Effective positioning and promotion of the science-technical production for solar energy on the domestic market is essential for the country innovation potential realization, enhancement of national economy competitiveness in conditions of globalization of world business activities. The criteria of distinctive features are defined on the basis of market environment and determination of the solar energy market segments. The aim of the article. Defining of the priorities of enterprises market positioning, which conduct their activity of the solar energy market. The results of the analysis. Effective strategy of competitive positioning has the aim to form in the consciousness of target market an image of particular product (trade mark and to protect its competitive differentiation. Examination of motivation features of Ukrainian consumers on the solar energy market made it possible to define that the rational motivation prevails due to the choice of supplier which must be done by consumers in terms of current phase of market development. Main criteria of making «to buy» decision is quality of photovoltaic (photovoltaics characteristics, certificates, service, prices, presence of minimum 50% of «domestic» component which is crucial for gaining the «green» tariff, and this is the basis for defining competitive positions on the market. At the presence of normal market environment enterprises would have an opportunity to use almost all criteria of distinctive features by positioning on the photovoltaic market. But, taking into account the law norm about the 50% of «domestic» component, the majority of market operators should be moved into segments where the norm is

  14. Visual surround suppression in schizophrenia

    Directory of Open Access Journals (Sweden)

    Marc Samuel Tibber

    2013-02-01

    Full Text Available Compared to unaffected observers patients with schizophrenia show characteristic differences in visual perception, including a reduced susceptibility to the influence of context on judgements of contrast - a manifestation of weaker surround suppression. To examine the generality of this phenomenon we measured the ability of 24 individuals with schizophrenia to judge the luminance, contrast, orientation and size of targets embedded in contextual surrounds that would typically influence the target’s appearance. Individuals with schizophrenia demonstrated weaker surround suppression compared to matched controls for stimuli defined by contrast or size, but not for those defined by luminance or orientation. As perceived luminance is thought to be regulated at the earliest stages of visual processing our findings are consistent with a suppression deficit that is predominantly cortical in origin. In addition, we propose that preserved orientation surround suppression in schizophrenia may reflect the sparing of broadly tuned mechanisms of suppression. We attempt to reconcile these data with findings from previous studies.

  15. Educational Success and Surrounding Culture

    Science.gov (United States)

    Walters, Garrison

    2016-01-01

    The curriculum, instruction, and services we provide in schools, colleges, and universities matter a lot, but if we continue to ignore our students' "surrounding culture," progress toward a more educated nation will continue to be disappointing.

  16. Educational Success and Surrounding Culture

    Science.gov (United States)

    Walters, Garrison

    2016-01-01

    The curriculum, instruction, and services we provide in schools, colleges, and universities matter a lot, but if we continue to ignore our students' "surrounding culture," progress toward a more educated nation will continue to be disappointing.

  17. Multichannel spatial surround sound system

    Institute of Scientific and Technical Information of China (English)

    RAO Dan; XIE Bosun

    2004-01-01

    Based on the consideration of being compatible with 5.1 channel horizontal surround sound system, a spatial surround sound system is proposed. Theoretical and experimental results show that the system has a wide listening area. It can not only recreate stable image in the front and rear direction, but also eliminate the defect of poor lateral image of 5.1 channel system. The system can be used to reproduce special 3D sound effect and the spaciousness of hall.

  18. Experiences with waste incineration for energy production in Denmark

    DEFF Research Database (Denmark)

    Kirkeby, Janus; Grohnheit, Poul Erik; Møller Andersen, Frits

    The Bioenergy Department in SENER have requested assistance with planning for the deployment of bioenergy (Biomass, biogas and waste incineration) in Mexico and information on Danish experiences with developing policy initiatives promoting bioenergy. This introduction to the Danish experiences wi...... with waste incineration for energy production use is compiled as preparation for SENER’s potential visit to Denmark in 2014. This report was prepared 19 June, 2014 by COWI DTU System Analysis to Danish Energy Agency (DEA) as part of a frame contract agreement.......The Bioenergy Department in SENER have requested assistance with planning for the deployment of bioenergy (Biomass, biogas and waste incineration) in Mexico and information on Danish experiences with developing policy initiatives promoting bioenergy. This introduction to the Danish experiences...

  19. Risoe energy report 4: The future energy system - distributed production and use

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L.

    2005-10-01

    The world is facing major challenges in providing energy services to meet the future needs of the developed world and the growing needs of developing countries. These challenges are exacerbated by the need to provide energy services with due respect to economic growth, sustainability and security of supply. Today, the world's energy system is based mainly on oil, gas and coal, which together supply around 80% of our primary energy. Only around 0.5% of primary energy comes from renewable sources such as wind, solar and geothermal. Despite the rapid development of new energy technologies, the world will continue to depend on fossil fuels for several decades to come - and global primary energy demand is forecasted to grow by 60% between 2002 and 2030. The expected post Kyoto targets call for significant CO{sub 2} reductions, increasing the demand to decouple the energy and transport systems from fossil fuels. There is a strong need for closer links between electricity, heat and other energy carriers, including links to the transport sector. On a national scale Denmark has three main characteristics. Firstly, it has a diverse and distributed energy system based on the power grid, the district heating grid and the natural gas grid. Secondly, renewable energy, especially wind power, plays an increasingly important role in the Danish energy system. Thirdly, Denmark's geographical location allows it to act as a buffer between the energy systems of the European continent and the Nordic countries. Energy systems can be made more robust by decentralising both power generation and control. Distributed generation (DG) is characterised by a variety of energy production technologies integrated into the electricity supply system, and the ability of different segments of the grid to operate autonomously. The use of a more distributed power generation system would be an important element in the protection of the consumers against power interruptions and blackouts, whether

  20. Future electricity production methods. Part 1: Nuclear energy

    Science.gov (United States)

    Nifenecker, Hervé

    2011-02-01

    The global warming challenge aims at stabilizing the concentrations of Green House Gas (GHG) in the atmosphere. Carbon dioxide is the most effective of the anthropogenic GHG and is essentially produced by consumption of fossil fuels. Electricity production is the dominant cause of CO2 emissions. It is, therefore, crucial that the share of 'carbon less' electricity production techniques increases at a fast pace. This is the more so, that 'clean' electricity would be useful to displace 'dirty' techniques in other fields such as heat production and transportation. Here we examine the extent to which nuclear energy could be operational in providing 'clean' electricity. A nuclear intensive scenario is shown to give the possibility to divide CO2 emissions by a factor of 2 worldwide, within 50 years. However, the corresponding sharp increase in nuclear power will put a heavy burden on uranium reserves and will necessitate the development of breeding reactors as soon as possible. A review of present and future reactors is given with special attention to the safety issues. The delicate question of nuclear fuel cycle is discussed concerning uranium reserves and management of used fuels. It is shown that dealing with nuclear wastes is more a socio-political problem than a technical one. The third difficult question associated with the development of nuclear energy is the proliferation risk. It is advocated that, while this is, indeed, a very important question, it is only weakly related to nuclear power development. Finally, the possibilities of nuclear fusion are discussed and it is asserted that, under no circumstances, could nuclear fusion give a significant contribution to the solution of the energy problem before 50 years, too late for dealing with the global warming challenge.

  1. Energy integration of nitric acid production using pinch methodology

    Directory of Open Access Journals (Sweden)

    Ivaniš Gorica R.

    2015-01-01

    Full Text Available Pinch methodology was applied to the heat exchangers network (HEN synthesis of nitric acid production. The integration is analyzed in two ways, and the results are presented as two different solutions: (i the first solution is based on the original heat transfer equipment arrangement, (ii in order to eliminate the shortages of the first solution the second HEN was obtained using process simulation with optimized process parameters. Optimized HEN, with new arrangement of heat exchangers, gave good results in energy and process optimization. [Projekat Ministarstva nauke Republike Srbije, br. P172063

  2. Biorefineries to integrate fuel, energy and chemical production processes

    Directory of Open Access Journals (Sweden)

    Enrica Bargiacchi

    2007-12-01

    Full Text Available The world of renewable energies is in fast evolution and arouses political and public interests, especially as an opportunity to boost environmental sustainability by mitigation of greenhouse gas emissions. This work aims at examining the possibilities related to the development of biorefineries, where biomass conversion processes to produce biofuels, electricity and biochemicals are integrated. Particular interest is given to the production processes of biodiesel, bioethanol and biogas, for which present world situation, problems, and perspectives are drawn. Potential areas for agronomic and biotech researches are also discussed. Producing biomass for biorefinery processing will eventually lead to maximize yields, in the non food agriculture.

  3. Evaluation of Alnus species and hybrids. [For biomass energy production

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.B. (Iowa State Univ., Ames, IA (US). Dept. of Forestry); Burgess, D. (Petawawa National Forestry Inst., Chalk River, Ontario (CA))

    1990-01-01

    Trials of a common set of seed lots representing 39 parents and five species of Alnus have been started in four countries: Belgium, Canada, the UK, and the US. Initial results indicate that cold hardiness is a problem in using A. acuminata but that sufficiently hardy A. rubra sources are available. A. glutinosa had the best growth in the nursery, and A. cordata had the best survival under severe moisture-stress conditions. A summary also is given of a workshop on alder improvement that further demonstrates the potential for developing the genus for biomass energy production. (author).

  4. Production and evolution path of dileptons at HADES energies

    OpenAIRE

    2008-01-01

    Dilepton production in intermediate energy nucleus-nucleus collisions as well as in elementary proton-proton reactions is analysed within the UrQMD transport model. For C+C collisions at 1 AGeV and 2 AGeV the resulting invariant mass spectra are compared to recent HADES data. We find that the experimental spectrum for C+C at 2 AGeV is slightly overestimated by the theoretical calculations in the region around the vector meson peak, but fairly described in the low mass region, where the data i...

  5. Production of cement requiring low energy expenditure. An industrial test

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez, S.; Blanco, M.T.; Palomo, A.; Puertas, F. (Instituto de Ciencias de la Construccion, Madrid (Spain))

    1991-01-01

    A new method for making cement is proposed. It is based on the use of CaF{sub 2} and CaSO{sub 4} for partial replacement of the usual raw materials in cement manufacturing. This paper shows the feasibility of the proposed method on an industrial scale. A test carried out in a Spanish cement factory (1500 t yield of the new cement) has revealed that the mehtod can not only be adapted to the current technology but also requires a much lower energy expenditure. The final product is shown to have excellent properties in comparison with OPC. (orig.).

  6. Central Exclusive Particle Production at High Energy Hadron Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Albrow, M.G.; /Fermilab; Coughlin, T.D.; /University Coll. London; Forshaw, J.R.; /Manchester U.

    2010-06-01

    We review the subject of central exclusive particle production at high energy hadron colliders. In particular we consider reactions of the type A + B {yields} A + X + B, where X is a fully specified system of particles that is well separated in rapidity from the outgoing beam particles. We focus on the case where the colliding particles are strongly interacting and mainly they will be protons (or antiprotons) as at the ISR, Sp{bar p}S, Tevatron and LHC. The data are surveyed and placed within the context of theoretical developments.

  7. Heavy Quarkonium Production at Collider Energies (I): Factorization and Evolution

    CERN Document Server

    Kang, Zhong-Bo; Qiu, Jian-Wei; Sterman, George

    2014-01-01

    We present a factorization formalism for inclusive production of heavy quarkonia of large transverse momentum, $p_T$ at collider energies, including both leading power (LP) and next-to-leading power (NLP) behavior in $p_T$. We demonstrate that both LP and NLP contributions can be factorized in terms of perturbatively calculable short-distance partonic coefficient functions and universal non-perturbative fragmentation functions, and derive the evolution equations that are implied by the factorization. We identify projection operators for all channels of the factorized LP and NLP infrared safe short-distance partonic hard parts, and corresponding operator definitions of fragmentation functions. For the NLP, we focus on the contributions involving the production of a heavy quark pair, a necessary condition for producing a heavy quarkonium. We evaluate the first non-trivial order of evolution kernels for all relevant fragmentation functions, and discuss the role of NLP contributions.

  8. Heavy flavor production at high energy ep colliders

    Science.gov (United States)

    Glück, M.; Godbole; Reya, E.

    1988-09-01

    The total production rates for heavy quark pairs due to gauge boson fusion processes at high energy ep colliders are evaluated. At HERA, b bar t production dominates over t bar t production for m t ≧60 GeV and is observable up to m t ≃80(90)GeV where the number of expected b bar t events is about 15(10) for ∝ L=200pb-1. Including the contributions from ep→ WX→ btX the total number of expected bt events amounts to about 50 events for m t ≃80GeV. The influence of thresholds for heavy quark pair production is also studied for the relevant structure functions F i (x,Q 2) and shown to contribute to the measured scaling violations. All these effects are sensitive to the heavy quark masses and to the shape of the gluon distribution which can thus be tested experimentally by analyzing heavy quark pair signals.

  9. Energy dependence of resonance production in relativistic heavy ion collisions

    CERN Document Server

    Shao, Feng-lan; Wang, Rui-qin; Zhang, Mao-sheng

    2016-01-01

    The production of hadronic resonances $K^{*}(892)$, $\\phi(1020)$, $\\Sigma^{*}(1385)$, and $\\Xi^{*}(1530)$ in central AA collisions at $\\sqrt{s_{NN}}=$ 17.3, 200, and 2760 GeV are systematically studied. The direct production of these resonances at system hadronization are described by the quark combination model and the effects of hadron multiple-scattering stage are dealt with by a ultra-relativistic quantum molecular dynamics model (UrQMD). We study the contribution of these two production sources to final observation and compare the final spectra with the available experimental data. The $p_T$ spectra of $K^{*}(892)$ calculated directly by quark combination model are explicitly higher than the data at low $p_T \\lesssim 1.5$ GeV and taking into account the modification of rescattering effects the resulting final spectra well agree with the data at all three collision energies. The rescattering effect on $\\phi(1020)$ production is weak and including it can slightly improve our description at low $p_T$ on the...

  10. Energy dependence of resonance production in relativistic heavy ion collisions

    Science.gov (United States)

    Shao, Feng-Lan; Song, Jun; Wang, Rui-Qin; Zhang, Mao-Sheng

    2017-01-01

    The production of the hadronic resonances K*0(892), ϕ(1020), Σ*(1385), and Ξ*(1530) in central AA collisions at , 200, and 2760 GeV is systematically studied. The direct production of these resonances at system hadronization is described by the quark combination model and the effects of hadron multiple-scattering stage are dealt with by a ultra-relativistic quantum molecular dynamics model (UrQMD). We study the contribution of these two production sources to final observation and compare the final spectra with the available experimental data. The p T spectra of K*0(892) calculated directly by quark combination model are explicitly higher than the data at low p T ≲ 1.5 GeV, and taking into account the modification of rescattering effects, the resulting final spectra well agree with the data at all three collision energies. The rescattering effect on ϕ(1020) production is weak and including it can slightly improve our description at low p T on the basis of overall agreement with the data. We also predict the p T spectra of Σ*(1385) and Ξ*(1530), to be tested by the future experimental data. Supported by National Natural Science Foundation of China (11575100, 11305076, 11505104)

  11. Biodiesel Fuel Production from Algae as Renewable Energy

    Directory of Open Access Journals (Sweden)

    A. B.M. Sharif Hossain

    2008-01-01

    Full Text Available Biodiesel is biodegradable, less CO2 and NOx emissions. Continuous use of petroleum sourced fuels is now widely recognized as unsustainable because of depleting supplies and the contribution of these fuels to the accumulation of carbon dioxide in the environment. Renewable, carbon neutral, transport fuels are necessary for environmental and economic sustainability. Algae have emerged as one of the most promising sources for biodiesel production. It can be inferred that algae grown in CO2-enriched air can be converted to oily substances. Such an approach can contribute to solve major problems of air pollution resulting from CO2 evolution and future crisis due to a shortage of energy sources. This study was undertaken to know the proper transesterification, amount of biodiesel production (ester and physical properties of biodiesel. In this study we used common species Oedogonium and Spirogyra to compare the amount of biodiesel production. Algal oil and biodiesel (ester production was higher in Oedogonium than Spirogyra sp. However, biomass (after oil extraction was higher in Spirogyra than Oedogonium sp. Sediments (glycerine, water and pigments was higher in Spirogyra than Oedogonium sp. There was no difference of pH between Spirogyra and Oedogonium sp. These results indicate that biodiesel can be produced from both species and Oedogonium is better source than Spirogyra sp.

  12. Gluino pair production in high-energy photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Berge, S.; Klasen, M. [II. Institut fuer Theoretische Physik, Universitaet Hamburg, Luruper Chaussee 149, 22761, Hamburg (Germany)

    2003-09-01

    We study the potential of high-energy photon colliders for the production of gluino pairs within the minimal supersymmetric standard model (MSSM). In this model, the process {gamma}{gamma}{yields}gg is mediated by quark/squark box diagrams with enhancements for up-type quarks/squarks from their larger charges and for third generation squarks from their large mass splittings, generated by the mixing of left- and right-handed states. Far above threshold and in scenarios with very heavy squarks, resolved photons can contribute significantly at tree level. Taking into account the laser photon backscattering spectrum, electron and laser beam polarization effects, and current mass exclusion limits, we find that gluino pair production in high-energy photon collisions should be visible over large regions of the MSSM parameter space, contrary to what has been found for e{sup +}e{sup -} annihilation. In addition, the cross section rises rather steeply, so that a gluino mass determination with a precision of a few GeV should be feasible for a wide range of post-LEP benchmark points. (orig.)

  13. Gluino pair production in high-energy photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Berge, S.; Klasen, M. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2003-03-01

    We study the potential of high-energy photon colliders for the production of gluino pairs within the minimal supersymmetric standard model (MSSM). In this model, the process {gamma}{gamma} {yields} gg is mediated by quark/squark box diagrams with enhancements for up-type quarks/squarks from their larger charges and for third generation squarks from their large mass splittings, generated by the mixing of left- and right-handed states. Far above threshold and in scenarios with very heavy squarks, resolved photons can contribute significantly at tree level. Taking into account the laser photon backscattering spectrum, electron and laser beam polarization effects, and current mass exclusion limits, we find that gluino pair production in high-energy photon collisions should be visible over large regions of the MSSM parameter space, contrary to what has been found for e{sup +}e{sup -} annihilation. In addition, the cross section rises rather steeply, so that a gluino mass determination with a precision of a few GeV should be feasible for a wide range of post-LEP benchmark points. (orig.)

  14. Neutrino-induced pion production from nuclei at medium energies

    CERN Document Server

    Praet, C; Jachowicz, N; Ryckebusch, J

    2008-01-01

    We present a fully relativistic formalism for describing neutrino-induced $\\Delta$-mediated single-pion production from nuclei. We assess the ambiguities stemming from the $\\Delta$ interactions. Variations in the cross sections of over 10% are observed, depending on whether or not magnetic-dipole dominance is assumed to extract the vector form factors. These uncertainties have a direct impact on the accuracy with which the axial-vector form factors can be extracted. Different predictions for $C_5^A(Q^2)$ induce up to 40-50% effects on the $\\Delta$-production cross sections. To describe the nucleus, we turn to a relativistic plane-wave impulse approximation (RPWIA) using realistic bound-state wave functions derived in the Hartree approximation to the $\\sigma$-$\\omega$ Walecka model. For neutrino energies larger than 1 GeV, we show that a relativistic Fermi-gas model with appropriate binding-energy correction produces comparable results as the RPWIA which naturally includes Fermi motion, nuclear-binding effects...

  15. Sustainable Energy Production - Facing up to our Common Challenge

    Energy Technology Data Exchange (ETDEWEB)

    Bondevik, Kjell Magne [Prime Minister (Norway)

    1998-12-31

    With this presentation the Norwegian Prime Minister opened the conference, the Offshore Northern Seas Conference, an important meeting place for the oil and gas industry. Today, sustainable development, the environment and human rights are vital issues that politicians and the petroleum industry have included on their agendas. The end of the 1980s and the beginning of the 1990s mark the beginning of a new era in terms of de regulated markets and a growing concern about the Earth`s capacity to sustain a growing population and the present production and consumption patterns. This shift in political and economic practices has promoted far-reaching institutional changes and a rapid spread of capital, information and skills and an unprecedented integration of the world economy. Energy demand over the next 25 years will depend on fossil fuels, but renewable energy will become increasingly more important. The environmental issues discussed are (1) the local impact of production, distribution and use of fossil fuels, (2) the limited availability of fossil fuels and (3) the impact of the emission of greenhouse gases. The Prime Minister then discusses issues of human rights in sustainable development

  16. Exergy efficient production, storage and distribution of solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Sandnes, Bjoernar

    2003-07-01

    There are two main themes in this thesis. 1) Exergy efficient utilization of solar energy, where the introduction of alternative technologies such as photovoltaic/thermal collectors and phase change energy storage in a low temperature solar system is investigated. 2) The possibility of storing thermal energy in supercooled liquids is investigated. The introductory chapters introduce the concept of exergy, and focus on the use of solar heat as an inherently low quality source for covering low quality demands associated with space heating and hot water. The different stages of solar energy production, storage, and distribution of heat is discussed, with emphasis on exergy relevant issues. With the low temperature solar heating system as background, the introduction of some additional technologies that are investigated. A section of this thesis presents a study of a small scale PV/T collector as a possible component in a low temperature system. In another section the instrumentation that has been built for studies of full-size PV and thermal systems is described, and the possibility of using the PV unit outputs as parameters for controlling the thermal system operation is briefly discussed. It is suggested that the design of the PV/T unit in terms of whether priority should be given to electricity or heat production should be based on how consumption of high quality auxiliary energy is minimized, and not on adding up the combined exergy which is being produced. Solar combisystems require larger heat storage capacities compared to the more common solar hot water systems. Increased volumetric heat storage capacity can be achieved by latent heat storage systems where thermal energy is stored as heat of fusion in phase change materials (PCMs). A section presents a study where spherically encapsulated PCM is incorporated in a solar heat store. Solar combisystems are often complex, and have a relatively large number of interacting components. Another section describes a

  17. Utilisation of biomass gasification by-products for onsite energy production.

    Science.gov (United States)

    Vakalis, S; Sotiropoulos, A; Moustakas, K; Malamis, D; Baratieri, M

    2016-06-01

    Small scale biomass gasification is a sector with growth and increasing applications owing to the environmental goals of the European Union and the incentivised policies of most European countries. This study addresses two aspects, which are at the centre of attention concerning the operation and development of small scale gasifiers; reuse of waste and increase of energy efficiency. Several authors have denoted that the low electrical efficiency of these systems is the main barrier for further commercial development. In addition, gasification has several by-products that have no further use and are discarded as waste. In the framework of this manuscript, a secondary reactor is introduced and modelled. The main operating principle is the utilisation of char and flue gases for further energy production. These by-products are reformed into secondary producer gas by means of a secondary reactor. In addition, a set of heat exchangers capture the waste heat and optimise the process. This case study is modelled in a MATLAB-Cantera environment. The model is non-stoichiometric and applies the Gibbs minimisation principle. The simulations show that some of the thermal energy is depleted during the process owing to the preheating of flue gases. Nonetheless, the addition of a secondary reactor results in an increase of the electrical power production efficiency and the combined heat and power (CHP) efficiency. © The Author(s) 2016.

  18. Applicability of unconventional energy raw materials in ethanol production

    Directory of Open Access Journals (Sweden)

    Małgorzata Gumienna

    2009-12-01

    Full Text Available Background. The difficult position of Polish agriculture, including one of its branches, i.e. sugar industry, is conducive of search for solutions aiming at an improvement of the condition of industry. One of the potential solutions in this respect may be to focus on alternative raw materials and search for ways to overcome recession in renewable energy sources. The aim of this work was to evaluate the possibilities of using non-starchy materials – sugar materials, without enzymatic treatment for ethanol production using selected yeast strains. Material and methods. Sugar beet pulp and thick juice, as a semi product from sugar beet, were fermented. The efficiency of the process was assessed using two Saccharomyces cerevisiae preparations – Ethanol Red, Fermiol. Fermentation was run for 72 h at 30°C. Quality of produced raw distillates was evaluated using the GC method. Results. The research on fermentation processes showed that sugar beet pulp let obtain higher ethanol yield – 87% of theoretical than sugar beet thick juice – 84% of theoretical, both for Ethanol Red and Fermiol yeast preparations. Moreover, it was exhibited that the increase of sugar concentration in the fermentation medium obtained from thick juice, statistically importantly influenced ethanol yield decrease, for both yeast preparations. The distillates’ quality analysis showed the influence of raw materials and microorganism used for fermentation on pollution degree. Distillate obtained from thick juice was characterised with the lowest by-products content after fermentation with Ethanol Red. Conclusions. The results make additional possibilities for sugar beet utilization in distillery industry and new markets using production surpluses both for sugar beet and its semi-product – thick juice.

  19. The regional control of the canadian energy production; Le contraste provincial de la production energetique canadienne

    Energy Technology Data Exchange (ETDEWEB)

    Petitlaurent, S.; Sarrazin, J

    2004-12-01

    This document provides information and presents data on the energy situation in many regions of Canada. The first part deals with the petroleum and the bitumen shales of Alberta (reserves, exploitation and production, environmental impacts), the second part discusses with the hydroelectricity choice of Quebec and the 2004 crisis. The nuclear situation of Ontario is presented in the third part (nuclear park, programs, uranium reserves, research and development on Candu reactors), while the fourth part deals with the renewable energies (wind power and biomass). The canadian situation facing the Kyoto protocol is discussed in the last part. (A.L.B.)

  20. Energy System Analysis of Solid Oxide Electrolysis cells for Synthetic Fuel Production

    DEFF Research Database (Denmark)

    Ridjan, Iva; Mathiesen, Brian Vad; Connolly, David

    2013-01-01

    When restricting energy production to renewable energy sources, biomass, sun and wind energy are the pillars of 100% renewable energy system after implementing energy savings. Biomass resources are limited and the sustainable use of them needs to be prioritized. Future energy systems will require...

  1. 76 FR 57612 - Energy Efficiency Program for Consumer Products: Test Procedures for Residential Refrigerators...

    Science.gov (United States)

    2011-09-15

    ... Part 430 RIN 1904-AB92 Energy Efficiency Program for Consumer Products: Test Procedures for Residential Refrigerators, Refrigerator-Freezers, and Freezers AGENCY: Office of Energy Efficiency and Renewable Energy... Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J,...

  2. Energy System Analysis of Solid Oxide Electrolysis cells for Synthetic Fuel Production

    DEFF Research Database (Denmark)

    Ridjan, Iva; Mathiesen, Brian Vad; Connolly, David

    2013-01-01

    When restricting energy production to renewable energy sources, biomass, sun and wind energy are the pillars of 100% renewable energy system after implementing energy savings. Biomass resources are limited and the sustainable use of them needs to be prioritized. Future energy systems will require...

  3. Sources of energy productivity growth and its distribution dynamics in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunhua [School of International Trade and Economics, University of International Business and Economics, Beijing 100029 (China); Department of Geography and Earth Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 (United States)

    2011-01-15

    The purposes of this paper are to determine the sources of energy productivity growth at the provincial level in China and to examine the relative contributions of the sources and their impacts on regional inequality. Energy productivity change is first decomposed into five components attributable to changes in capital-energy ratio, labor-energy ratio, output structure, and technical efficiency change and technological change. Then a nonparametric analysis is implemented to statistically test the relative contributions of the components and their roles in the distribution dynamics of energy productivity. It is found that (1) changes in capital-energy ratio, output structure, and technological change contribute to energy productivity growth in China, (2) increase in capital-energy ratio caused by capital accumulation is the primary driving force for energy productivity growth, and (3) capital accumulation contributes to energy productivity convergence between Chinese provinces over the time period of 1990-2005. (author)

  4. Hybrid energy system evaluation in water supply system energy production: neural network approach

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Fabio V.; Ramos, Helena M. [Civil Engineering Department, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon (Portugal); Reis, Luisa Fernanda R. [Universidade de Sao Paulo, EESC/USP, Departamento de Hidraulica e Saneamento., Avenida do Trabalhador Saocarlense, 400, Sao Carlos-SP (Brazil)

    2010-07-01

    Water supply systems are large consumers of energy and the use of hybrid systems for green energy production is this new proposal. This work presents a computational model based on neural networks to determine the best configuration of a hybrid system to generate energy in water supply systems. In this study the energy sources to make this hybrid system can be the national power grid, micro-hydro and wind turbines. The artificial neural network is composed of six layers, trained to use data generated by a model of hybrid configuration and an economic simulator - CES. The reason for the development of an advanced model of forecasting based on neural networks is to allow rapid simulation and proper interaction with hydraulic and power model simulator - HPS. The results show that this computational model is useful as advanced decision support system in the design of configurations of hybrid power systems applied to water supply systems, improving the solutions in the development of its global energy efficiency.

  5. Hybrid energy system evaluation in water supply system energy production: neural network approach

    Directory of Open Access Journals (Sweden)

    Fabio V. Goncalves, Helena M. Ramos, Luisa Fernanda R. Reis

    2010-01-01

    Full Text Available Water supply systems are large consumers of energy and the use of hybrid systems for green energy production is this new proposal. This work presents a computational model based on neural networks to determine the best configuration of a hybrid system to generate energy in water supply systems. In this study the energy sources to make this hybrid system can be the national power grid, micro-hydro and wind turbines. The artificial neural network is composed of six layers, trained to use data generated by a model of hybrid configuration and an economic simulator – CES. The reason for the development of an advanced model of forecasting based on neural networks is to allow rapid simulation and proper interaction with hydraulic and power model simulator – HPS. The results show that this computational model is useful as advanced decision support system in the design of configurations of hybrid power systems applied to water supply systems, improving the solutions in the development of its global energy efficiency.

  6. Energy indicators for electricity production : comparing technologies and the nature of the indicators Energy Payback Ratio (EPR), Net Energy Ratio (NER) and Cumulative Energy Demand (CED). [Oestfoldforskning AS

    Energy Technology Data Exchange (ETDEWEB)

    Raadal, Hanne Lerche [Ostfold research, Fredrikstad (Norway); Modahl, Ingunn Saur [Ostfold research, Fredrikstad (Norway); Bakken, Tor Haakon [SINTEF Energy, Trondheim (Norway)

    2012-11-01

    CEDREN (Centre for Environmental Design of Renewable Energy) is founded by The Research Council of Norway and energy companies and is one of eight centres that were part of the scheme Centre for Environment-friendly Energy Research (FME) when the scheme was launched in 2009. The main objective of CEDREN is to develop and communicate design solutions for transforming renewable energy sources to the desired energy products, and at the same time address the environmental and societal challenges at local, regional, national and global levels. CEDREN's board initiated in 2011 a pilot project on the topics 'Energy Pay-back Ratio (EPR)', 'Ecosystem services' and 'multi-criteria analysis (MCA)' in order to investigate the possible use of these concepts/indices in the management of regulated river basins and as tools to benchmark strategies for the development of energy projects/resources. The energy indicator part (documented in this report) has aimed at reviewing the applicability of different energy efficiency indicators, as such, in the strategic management and development of energy resources, and to compare and benchmark technologies for production of electricity. The main findings from this pilot study is also reported in a policy memo (in Norwegian), that is available at www.cedren.no. The work carried out in this project will be continued in the succeeding research project EcoManage, which was granted by the Research Council of Norway's RENERGI programme in December 2011. Energy indicators: Several energy indicators for extraction and delivery of an energy product (e.g. transport fuel, heat, electricity etc.) exist today. The main objective of such indicators is to give information about the energy efficiency of the needed extraction and transforming processes throughout the value chain related to the delivered energy product. In this project the indicators Energy Payback Ratio (EPR), Net Energy Ration (NER) and Cumulative

  7. First ALICE results on quarkonium production at Run 2 energies

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Quarkonium production in hadronic collisions (either proton-proton or heavy ions) has been extensively studied in both fixed target and collider experiments. It is understood as the production of a heavy quark pair (ccbar or bbar depending on the quarkonium state) in a hard scattering process which occurs early in the collision, followed by the evolution of this quark pair into a colorless bound state. While the production of the quark pair is reasonably well described by perturbative QCD calculations, its evolution into the bound state is inherently non-perturbative and is studied experimentally in pp collisions. In heavy ion collisions on the other hand, quarkonia are used to probe the properties of the medium formed in the collision and in particular that of the quark-gluon plasma, via competing mechanisms such as color screening, thermal dissociation or recombination, as well as so-called cold nuclear matter effects such as shadowing, gluon saturation or energy loss. The first ALICE results on quarkonium...

  8. Recommended Ventilation Strategies for Energy-Efficient Production Homes

    Energy Technology Data Exchange (ETDEWEB)

    Roberson, J.; Brown, R.; Koomey, J.; Warner, J.; Greenberg, S.

    1998-12-01

    This report evaluates residential ventilation systems for the U.S. Environmental Protection Agency's (EPA's) ENERGY STAR{reg_sign} Homes program and recommends mechanical ventilation strategies for new, low-infiltration, energy-efficient, single-family, ENERGY STAR production (site-built tract) homes in four climates: cold, mixed (cold and hot), hot humid, and hot arid. Our group in the Energy Analysis Department at Lawrence Berkeley National Lab compared residential ventilation strategies in four climates according to three criteria: total annualized costs (the sum of annualized capital cost and annual operating cost), predominant indoor pressure induced by the ventilation system, and distribution of ventilation air within the home. The mechanical ventilation systems modeled deliver 0.35 air changes per hour continuously, regardless of actual infiltration or occupant window-opening behavior. Based on the assumptions and analysis described in this report, we recommend independently ducted multi-port supply ventilation in all climates except cold because this strategy provides the safety and health benefits of positive indoor pressure as well as the ability to dehumidify and filter ventilation air. In cold climates, we recommend that multi-port supply ventilation be balanced by a single-port exhaust ventilation fan, and that builders offer balanced heat-recovery ventilation to buyers as an optional upgrade. For builders who continue to install forced-air integrated supply ventilation, we recommend ensuring ducts are airtight or in conditioned space, installing a control that automatically operates the forced-air fan 15-20 minutes during each hour that the fan does not operate for heating or cooling, and offering ICM forced-air fans to home buyers as an upgrade.

  9. Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters

    DEFF Research Database (Denmark)

    Pant, Deepak; Singh, Anoop; Van Bogaert, Gilbert

    2012-01-01

    Bioelectrochemical systems (BESs) are unique systems capable of converting the chemical energy of organic waste including low-strength wastewaters and lignocellulosic biomass into electricity or hydrogen/chemical products in microbial fuel cells (MFCs) or microbial electrolysis cells (MECs......) respectively, or other products formed at the cathode by an electrochemical reduction process. As compared to conventional fuel cells, BESs operate under relatively mild conditions, use a wide variety of organic substrates and mostly do not use expensive precious metals as catalysts. The recently discovered...

  10. Contracting for Efficiency. A Best Practices Guide for Energy -Efficient Product Procurement

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Berkeley National Laboratory

    2016-04-25

    The requirement to buy energy- and water-efficient products applies to federal purchases made through any procurement pathway (e.g., purchase cards, e-retailers, and solicitations) and to a wide variety of federal projects. The Federal Energy Management Program’s (FEMP's) Buy Energy-Efficient Products buyer overview fact sheet and Contracting for Efficiency best practices guide for product procurement are designed to support federal buyers in the purchase of energy- and water-efficient products.

  11. Energy Supply- Production of Fuel from Agricultural and Animal Waste

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel Miller

    2009-03-25

    The Society for Energy and Environmental Research (SEER) was funded in March 2004 by the Department of Energy, under grant DE-FG-36-04GO14268, to produce a study, and oversee construction and implementation, for the thermo-chemical production of fuel from agricultural and animal waste. The grant focuses on the Changing World Technologies (CWT) of West Hempstead, NY, thermal conversion process (TCP), which converts animal residues and industrial food processing biproducts into fuels, and as an additional product, fertilizers. A commercial plant was designed and built by CWT, partially using grant funds, in Carthage, Missouri, to process animal residues from a nearby turkey processing plant. The DOE sponsored program consisted of four tasks. These were: Task 1 Optimization of the CWT Plant in Carthage - This task focused on advancing and optimizing the process plant operated by CWT that converts organic waste to fuel and energy. Task 2 Characterize and Validate Fuels Produced by CWT - This task focused on testing of bio-derived hydrocarbon fuels from the Carthage plant in power generating equipment to determine the regulatory compliance of emissions and overall performance of the fuel. Task 3 Characterize Mixed Waste Streams - This task focused on studies performed at Princeton University to better characterize mixed waste incoming streams from animal and vegetable residues. Task 4 Fundamental Research in Waste Processing Technologies - This task focused on studies performed at the Massachusetts Institute of Technology (MIT) on the chemical reformation reaction of agricultural biomass compounds in a hydrothermal medium. Many of the challenges to optimize, improve and perfect the technology, equipment and processes in order to provide an economically viable means of creating sustainable energy were identified in the DOE Stage Gate Review, whose summary report was issued on July 30, 2004. This summary report appears herein as Appendix 1, and the findings of the report

  12. Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production

    NARCIS (Netherlands)

    Jonker, J.G.G.; Faaij, A.P.C.

    2013-01-01

    This paper determines the energy consumption ratio and overall bio-energy production costs of microalgae cultivation, harvesting and conversion to secondary energy carriers, thus helping to clarify future perspectives of micro-algae production for energy purposes. A limitation growth model is develo

  13. Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production

    NARCIS (Netherlands)

    Jonker, J.G.G.; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X

    2013-01-01

    This paper determines the energy consumption ratio and overall bio-energy production costs of microalgae cultivation, harvesting and conversion to secondary energy carriers, thus helping to clarify future perspectives of micro-algae production for energy purposes. A limitation growth model is develo

  14. Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production

    NARCIS (Netherlands)

    Jonker, J.G.G.; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X

    2013-01-01

    This paper determines the energy consumption ratio and overall bio-energy production costs of microalgae cultivation, harvesting and conversion to secondary energy carriers, thus helping to clarify future perspectives of micro-algae production for energy purposes. A limitation growth model is

  15. Application of Bacterial Laccases for Sustainable Energy Production

    DEFF Research Database (Denmark)

    Lörcher, Samuel; Koschorreck, Katja; Shipovskov, Stepan

    production. Progress in enzyme biotechnology and electrochemistry enables now construction of biofuel cells exploiting a wide spectrum of enzymes wired to electrodes, able of prolonged for up to several months function.1-3 One of the most attractive designs exploits direct electronic communication between...... of laccase-based biocathodes in the biofuel cells and in the hybrid biobattery-type or photovoltaic power sources could essentially broaden their application, enabling extraction of energy from the sea water/water dissolved oxygen. Here we demonstrate up to 0.8 mW cm-2 extracted power densities and 1.5 month...... in physiological fluids or sea water, having basic/neutral pH. We have studied several bacterial laccases that might enable biocathode operation in basic media, and for which hitherto their wiring to electrodes was not successful. We demonstrate that the absence of bioelectrocatalysis was connected...

  16. Lighting Energy Saving with Light Pipe in Farm Animal Production

    Directory of Open Access Journals (Sweden)

    Hans von Wachenfelt

    2015-12-01

    Full Text Available The Swedish animal production sector has potential for saving electric lighting of €4-9 million per year using efficient daylight utilisation. To demonstrate this, two light pipe systems, Velux® (house 1 and Solatube® (house 2, are installed in two identical pig houses to determine if the required light intensity, daylight autonomy (DA, and reduced electricity use for illumination can be achieved. In each house, three light sensors continuously measure the indoor daylight relative to an outdoor sensor. If the horizontal illuminance at pig height decreases below 40 lux between 08.00 and 16.00 hours, an automatic control system activates the lights, and electricity use is measured. The daylight factor (DF and DA are determined for each house, based on annual climate data. The mean annual DA of 48% and 55% is achieved for house 1 and house 2, respectively. Light pipes in house 2 have delivered significantly more DA than those in house 1. The most common illuminance range between 0 and 160 lux is recorded in both houses, corresponding to approximately 82% and 83% of daylight time for house 1 and house 2, respectively. Further, the daylighting system for house 2 has produced a uniform DF distribution between 0.05 and 0.59. The results demonstrate that considerable electric energy savings can be achieved in the animal production sector using light pipes. Saving 50% of electric lighting would correspond to 36 GWh or 2520 t CO2 per year for Sweden, but currently the energy savings are not making the investment profitable.

  17. Fuels from solar energy: photosynthetic systems--state of the art and potential for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, J.C.

    1978-07-01

    Research on the mass culturing of microalgae has been carried out over the past 30 years in many parts of the world. Today there are numerous potential applications for algal mass cultures including protein production, wastewater treatment, water renovation, closed life-support systems, production of commercial chemicals, aquaculture, and bioconversion of energy. Photosynthetic yields over 30 gr dry wt m/sup -2/ day/sup -1/ have been attained on occasion in many locations for short periods and yields between 15 to 25 gr dry wt m/sup -2/ day/sup -1/ for longer periods are now common. This apparent upper limit in productivity is not coincidental. Under outdoor conditions peak yields are possible only under conditions of light limitation. Photosynthetic algae absorb light energy and convert it to stored chemical energy under rigid adherence to the laws of thermodynamics. By examining the basic physics of photosynthesis, it is possible to clearly demonstrate that under conditions of full sunlight in the most ideal locations maximum yields of 30 to 40 gr m/sup -2/ day/sup -1/ can be expected. For long-term operation of large-scale outdoor cultures, many bioengineering factors are involved and realistic yields considerably less than the maximum potential can be anticipated. Manipulation of the two independent variables, flow rate and depth, is the key to maximizing yields for varying outdoor sunlight intensities. Future applications for algal mass cultures will probably be restricted to small well-managed systems for solving specific environmental problems in individual communities and not on the grand scale envisaged in the past.

  18. Renewable power production in a Pan-Caribbean energy grid

    Science.gov (United States)

    Miller, David

    The Small Island Developing States of the Caribbean are victims of geography and geopolitics. Lacking access to large fossil fuel reserves, they are forced to import fuel at prices they have no control over. Renewable energy resources, particularly wind, have the potential to help break the Caribbean dependency on fossil fuels and allow for increased development at the same time. Working from a sustainable development point of view, this project discusses the history of the area, the theoretical background for the idea of large scale renewable power production, the regional initiatives already in place that address both the cost of fossil fuels and the policy hurdles that need to be overcome to assist the region in gaining energy independence. Haiti is highlighted as a special case in the region and the potential use of several renewable resources are discussed, along with a potential business model based on the idea of the Internet. Power storage is covered, specifically the potential of battery operated vehicles to have a positive impact on the Caribbean region and other developing states. The role of government regulation and policy comes into play next, followed by a discussion on the need for developed states to change patterns of behavior in order to achieve sustainability. Finally, nuclear power and liquefied natural gas are reviewed and rejected as power options for the region.

  19. Low-energy radioactive ion beam production of 22Mg

    Science.gov (United States)

    Duy, N. N.; Kubono, S.; Yamaguchi, H.; Kahl, D.; Wakabayashi, Y.; Teranishi, T.; Iwasa, N.; Kwon, Y. K.; Khiem, L. H.; Kim, Y. H.; Song, J. S.; Hu, J.; Ayyad, Y.

    2013-09-01

    The 22Mg nucleus plays an important role in nuclear astrophysics, specially in the 22Mg(α,p)25Al and proton capture 22Mg(p,γ)23Al reactions. It is believed that 22Mg is a waiting point in the αp-process of nucleosynthesis in novae. We proposed a direct measurement of the 22Mg+α resonance reaction in inverse kinematics using a radioactive ion (RI) beam. A 22Mg beam of 3.73 MeV/u was produced at CRIB (Center for Nuclear Study (CNS) low-energy RI Beam) facility of the University of Tokyo located at RIKEN (Japan) in 2011. In this paper we present the results about the production of the 22Mg beam used for the direct measurement of the scattering reaction 22Mg(α,α)22Mg, and the stellar reaction 22Mg(α,p)25Al in the energy region concerning an astrophysical temperature of T9=1-3 GK.

  20. Electronic Structure and Maximum Energy Product of MnBi

    Directory of Open Access Journals (Sweden)

    Jihoon Park

    2014-08-01

    Full Text Available We have performed first-principles calculations to obtain magnetic moment, magnetocrystalline anisotropy energy (MAE, i.e., the magnetic crystalline anisotropy constant (K, and the Curie temperature (Tc of low temperature phase (LTP MnBi and also estimated the maximum energy product (BHmax at elevated temperatures. The full-potential linearized augmented plane wave (FPLAPW method, based on density functional theory (DFT within the local spin density approximation (LSDA, was used to calculate the electronic structure of LPM MnBi. The Tc was calculated by the mean field theory. The calculated magnetic moment, MAE, and Tc are 3.63 μB/f.u. (formula unit (79 emu/g or 714 emu/cm3, −0.163 meV/u.c. (or K = −0.275 × 106 J/m3 and 711 K, respectively. The (BHmax at the elevated temperatures was estimated by combining experimental coercivity (Hci and the temperature dependence of magnetization (Ms(T. The (BHmax is 17.7 MGOe at 300 K, which is in good agreement with the experimental result for directionally-solidified LTP MnBi (17 MGOe. In addition, a study of electron density maps and the lattice constant c/a ratio dependence of the magnetic moment suggested that doping of a third element into interstitial sites of LTP MnBi can increase the Ms.

  1. Sustainable Energy Production from Jatropha Bio-Diesel

    Science.gov (United States)

    Yadav, Amit Kumar; Krishna, Vijai

    2012-10-01

    The demand for petroleum has risen rapidly due to increasing industrialization and modernization of the world. This economic development has led to a huge demand for energy, where the major part of that energy is derived from fossil sources such as petroleum, coal and natural gas. Continued use of petroleum sourced fuels is now widely recognized as unsustainable because of depleting supplies. There is a growing interest in using Jatropha curcas L. oil as the feedstock for biodiesel production because it is non-edible and thus does not compromise the edible oils, which are mainly used for food consumption. Further, J. curcas L. seed has a high content of free fatty acids that is converted in to biodiesel by trans esterification with alcohol in the presence of a catalyst. The biodiesel produced has similar properties to that of petroleum-based diesel. Biodiesel fuel has better properties than petro diesel fuel; it is renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. Biodiesel seems to be a realistic fuel for future. Biodiesel has the potential to economically, socially, and environmentally benefit communities as well as countries, and to contribute toward their sustainable development.

  2. Possible technical solutions to reduce energy consumption in audio products

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, K.; Andersen, M.A.E.

    1999-07-01

    In common audio products nearly all the supplied power is dissipated as heat. The major consumers are with almost no exception the power supply and the audio amplifier. This paper is divided in two parts, concentrating on typical efficiency measures for the concepts of today and the possibly technical solutions, by which the overall efficiency can be considerably improved in the future. Traditional power supplies are made using a transformer operating on the mains frequency followed by a linear regulator. These are bulky and the efficiency is only around 40%. Using high frequency switch mode power supplies the size of the power supply can be reduced and the efficiency can be increased to 80-90%. Construction of optimal amplifiers in regard to total energy consumption over life time, can only be accomplished by considering both the general volume control distribution, and the general spectral amplitude distribution of audio signals. The traditional efficiency measure specified at the maximum efficiency level says only very little about the real energy consumption of the audio amplifier. As an example, the theoretical efficiency for at traditional class B amplifier is 78%. Using a new efficiency measure defined on the basis of the approximate volume control distribution, an 50W amplifier example shows an overall efficiency of only 1%. In the paper possible solutions and guidelines to increase the real amplifier efficiency are given. (au)

  3. 78 FR 43974 - Energy and Water Use Labeling for Consumer Products Under the Energy Policy and Conservation Act...

    Science.gov (United States)

    2013-07-23

    ... From the Federal Register Online via the Government Publishing Office FEDERAL TRADE COMMISSION 16 CFR Part 305 Energy and Water Use Labeling for Consumer Products Under the Energy Policy and... standards and to aid shoppers who compare products during this period, AHAM proposed two measures. First,...

  4. A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali; Price, Lynn; Aden, Nathaniel; Chunxia, Zhang; Xiuping, Li; Fangqin, Shangguan

    2011-06-15

    Production of iron and steel is an energy-intensive manufacturing process. In 2006, the iron and steel industry accounted for 13.6% and 1.4% of primary energy consumption in China and the U.S., respectively (U.S. DOE/EIA, 2010a; Zhang et al., 2010). The energy efficiency of steel production has a direct impact on overall energy consumption and related carbon dioxide (CO2) emissions. The goal of this study is to develop a methodology for making an accurate comparison of the energy intensity (energy use per unit of steel produced) of steel production. The methodology is applied to the steel industry in China and the U.S. The methodology addresses issues related to boundary definitions, conversion factors, and indicators in order to develop a common framework for comparing steel industry energy use. This study uses a bottom-up, physical-based method to compare the energy intensity of China and U.S. crude steel production in 2006. This year was chosen in order to maximize the availability of comparable steel-sector data. However, data published in China and the U.S. are not always consistent in terms of analytical scope, conversion factors, and information on adoption of energy-saving technologies. This study is primarily based on published annual data from the China Iron & Steel Association and National Bureau of Statistics in China and the Energy Information Agency in the U.S. This report found that the energy intensity of steel production is lower in the United States than China primarily due to structural differences in the steel industry in these two countries. In order to understand the differences in energy intensity of steel production in both countries, this report identified key determinants of sector energy use in both countries. Five determinants analyzed in this report include: share of electric arc furnaces in total steel production, sector penetration of energy-efficiency technologies, scale of production equipment, fuel shares in the iron and steel

  5. Photobiological production of hydrogen: a solar energy conversion option

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, P.; Lien, S.; Seibert, M.

    1979-01-01

    This literature survey of photobiological hydrogen production covers the period from its discovery in relatively pure cultures during the early 1930s to the present. The focus is hydrogen production by phototrophic organisms (and their components) which occurs at the expense of light energy and electron-donating substrates. The survey covers the major contributions in the area; however, in many cases, space has limited the degree of detail provided. Among the topics included is a brief historical overview of hydrogen metabolism in photosynthetic bacteria, eucaryotic algae, and cyanobacteria (blue--green algae). The primary enzyme systems, including hydrogenase and nitrogenase, are discussed along with the manner in which they are coupled to electron transport and the primary photochemistry of photosynthesis. A number of in vivo and in vitro photobiological hydrogen evolving schemes including photosynthetic bacterial, green algal, cyanobacterial, two-stage, and cell-free systems are examined in some detail. The remainder of the review discusses specific technical problem areas that currently limit the yield and duration of many of the systems and research that might lead to progress in these specific areas. The final section outlines, in broadest terms, future research directions necessary to develop practical photobiological hydrogen-producing systems. Both whole cell (near- to mid-term) and cell-free (long-term) systems should be emphasized. Photosynthetic bacteria currently show the most promise for near-term applied systems.

  6. System and Energy Dependence of Strangeness Production with STAR

    CERN Document Server

    Salur, S

    2006-01-01

    The yields and spectra of strange hadrons have each been measured by STAR as a function of centrality in $\\rm \\sqrt{s_{NN}}=$ 200 GeV AuAu collisions. By comparison to measurements in pp and dAu at $\\rm \\sqrt{s_{NN}}=200$ GeV and in AuAu at $\\rm \\sqrt{s_{NN}}=62$ GeV the dependence on system size and energy is studied. Short-lived resonances, such as $\\Sigma (1385)$ and $\\Lambda (1520)$, that may decay and regenerate in the medium, are used to examine the dynamical evolution between production and freeze-out for these systems. Particle production is investigated by comparison to thermal models, which assume a simple scaling of the yield with $\\rm N_{part}$, in order to calculate the strangeness enhancement. Our hyperon measurements in AuAu indicate that $\\rm N_{bin}$ may be a more appropriate scale for the strangeness correlation volume. In this case canonical suppression can not be simply parameterized with the geometrical overlap volume but will depend on the individual quark content of each particle. This ...

  7. Indication of anomalous heat energy production in a reactor device

    CERN Document Server

    Levi, Giuseppe; Hartman, Torbjörn; Höistad, Bo; Pettersson, Roland; Tegnér, Lars; Essén, Hanno

    2013-01-01

    An experimental investigation of possible anomalous heat production in a special type of reactor tube named E-Cat HT is carried out. The reactor tube is charged with a small amount of hydrogen loaded nickel powder plus some additives. The reaction is primarily initiated by heat from resistor coils inside the reactor tube. Measurement of the produced heat was performed with high-resolution thermal imaging cameras, recording data every second from the hot reactor tube. The measurements of electrical power input were performed with a large bandwidth three-phase power analyzer. Data were collected in two experimental runs lasting 96 and 116 hours, respectively. An anomalous heat production was indicated in both experiments. The 116-hour experiment also included a calibration of the experimental set-up without the active charge present in the E-Cat HT. In this case, no extra heat was generated beyond the expected heat from the electric input. Computed volumetric and gravimetric energy densities were found to be fa...

  8. Biogas from poultry waste-production and energy potential.

    Science.gov (United States)

    Dornelas, Karoline Carvalho; Schneider, Roselene Maria; do Amaral, Adriana Garcia

    2017-08-01

    The objective of this study was to evaluate the effect of heat treatment on poultry litter with different levels of reutilisation for potential generation of biogas in experimental biodigesters. Chicken litter used was obtained from two small-scale poultry houses where 14 birds m(-2) were housed for a period of 42 days per cycle. Litter from aviary 1 received no heat treatment while each batch of litter produced from aviary 2 underwent a fermentation process. For each batch taken, two biodigesters were set for each aviary, with hydraulic retention time of 35 days. The efficiency of the biodigestion process was evaluated by biogas production in relation to total solids (TS) added, as well as the potential for power generation. Quantified volumes ranged from 8.9 to 41.1 L of biogas for aviary 1, and 6.7 to 33.9 L of biogas for aviary 2, with the sixth bed reused from both aviaries registering the largest biogas potential. Average potential biogas in m(3) kg(-1) of TS added were 0.022 to 0.034 for aviary 1 and 0.015 to 0.022 for aviary 2. Energy values ​​of biogas produced were calculated based on calorific value and ranged from 0.06 to 0.33 kWh for chicken litter without fermentation and from 0.05 to 0.27 kWh for chicken litter with fermentation. It was concluded that the re-use of poultry litter resulted in an increase in biogas production, and the use of fermentation in the microbiological treatment of poultry litter seems to have negatively influenced production of biogas.

  9. Africa's technology options for renewable energy production and distribution

    CSIR Research Space (South Africa)

    Amigun, B

    2011-12-01

    Full Text Available This chapter presents a critical appraisal of Africa's modern energy technologies for renewable energy. It highlights issues of scale and location-specific attributes. A critical review of different renewable energies is presented, the state...

  10. Visual Surround Suppression in Schizophrenia

    Science.gov (United States)

    Tibber, Marc S.; Anderson, Elaine J.; Bobin, Tracy; Antonova, Elena; Seabright, Alice; Wright, Bernice; Carlin, Patricia; Shergill, Sukhwinder S.; Dakin, Steven C.

    2013-01-01

    Compared to unaffected observers patients with schizophrenia (SZ) show characteristic differences in visual perception, including a reduced susceptibility to the influence of context on judgments of contrast – a manifestation of weaker surround suppression (SS). To examine the generality of this phenomenon we measured the ability of 24 individuals with SZ to judge the luminance, contrast, orientation, and size of targets embedded in contextual surrounds that would typically influence the target’s appearance. Individuals with SZ demonstrated weaker SS compared to matched controls for stimuli defined by contrast or size, but not for those defined by luminance or orientation. As perceived luminance is thought to be regulated at the earliest stages of visual processing our findings are consistent with a suppression deficit that is predominantly cortical in origin. In addition, we propose that preserved orientation SS in SZ may reflect the sparing of broadly tuned mechanisms of suppression. We attempt to reconcile these data with findings from previous studies. PMID:23450069

  11. Methane production and energy evaluation of a farm scaled biogas plant in cold climate area.

    Science.gov (United States)

    Fjørtoft, Kristian; Morken, John; Hanssen, Jon Fredrik; Briseid, Tormod

    2014-10-01

    The aim of this study was to investigate the specific methane production and the energy balance at a small farm scaled mesophilic biogas plant in a cold climate area. The main substrate was dairy cow slurry. Fish silage was used as co-substrate for two of the three test periods. Energy production, substrate volumes and thermal and electric energy consumption was monitored. Methane production depended mainly on type and amount of substrates, while energy consumption depended mainly on the ambient temperature. During summer the main thermal energy consumption was caused by heating of new substrates, while covering for thermal energy losses from digester and pipes required most thermal energy during winter. Fish silage gave a total energy production of 1623 k Wh/m(3), while the dairy cow slurry produced 79 k Wh/m(3) slurry. Total energy demand at the plant varied between 26.9% and 88.2% of the energy produced.

  12. Waste to Energy Power Production at DOE and DOD Sites

    Science.gov (United States)

    2011-01-13

    BiomassHeat and Power USAF: Hill Air Force Base • Landfill Gasto Energy Generation Ameresco independent...coal each year. DOESR– Project Benefits Ameresco independent Hill AFBLandfill Gasto Energy Ameresco independent...AFBRenewable Energy Initiatives Landfill Gasto Energy Electrical Generation (LFGTE) • First of itskind in the USAF/ DOD/ Utah • First Project Under

  13. Microalgal hydrogen production: prospects of an essential technology for a clean and sustainable energy economy.

    Science.gov (United States)

    Bayro-Kaiser, Vinzenz; Nelson, Nathan

    2017-09-01

    Modern energy production is required to undergo a dramatic transformation. It will have to replace fossil fuel use by a sustainable and clean energy economy while meeting the growing world energy needs. This review analyzes the current energy sector, available energy sources, and energy conversion technologies. Solar energy is the only energy source with the potential to fully replace fossil fuels, and hydrogen is a crucial energy carrier for ensuring energy availability across the globe. The importance of photosynthetic hydrogen production for a solar-powered hydrogen economy is highlighted and the development and potential of this technology are discussed. Much successful research for improved photosynthetic hydrogen production under laboratory conditions has been reported, and attempts are underway to develop upscale systems. We suggest that a process of integrating these achievements into one system to strive for efficient sustainable energy conversion is already justified. Pursuing this goal may lead to a mature technology for industrial deployment.

  14. The 2004 production of renewable energy in France; La production d'energie d'origine renouvelable en France en 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-15

    This presentation offers a state of the art of the production of all types of renewable energies, taking into account the primary electric power connected or not the the network. The first chart concerns the primary production, the second the available electric and thermal productions. (A.L.B.)

  15. Sustainability and energy development: influences of greenhouse gas emission reduction options on water use in energy production.

    Science.gov (United States)

    Cooper, D Craig; Sehlke, Gerald

    2012-03-20

    Climate change mitigation strategies cannot be evaluated solely in terms of energy cost and greenhouse gas (GHG) mitigation potential. Maintaining GHGs at a "safe" level will require fundamental change in the way we approach energy production, and a number of environmental, economic, and societal factors will come into play. Water is an essential component of energy production, and water resource constraints will limit our options for meeting society's growing demand for energy while also reducing GHG emissions. This study evaluates these potential constraints from a global perspective by revisiting the climate wedges proposal of Pacala and Socolow (Science2004, 305 (5686), 968-972) and evaluating the potential water-use impacts of the wedges associated with energy production. GHG mitigation options that improve energy conversion or use efficiency can simultaneously reduce GHG emissions, lower energy costs, and reduce energy impacts on water resources. Other GHG mitigation options (e.g., carbon capture and sequestration, traditional nuclear, and biofuels from dedicated energy crops) increase water requirements for energy. Achieving energy sustainability requires deployment of alternatives that can reduce GHG emissions, water resource impacts, and energy costs.

  16. Thermoelectric Performance Enhancement by Surrounding Crystalline Semiconductors with Metallic Nanoparticles

    Science.gov (United States)

    Kim, Hyun-Jung; King, Glen C.; Park, Yeonjoon; Lee, Kunik; Choi, Sang H.

    2011-01-01

    Direct conversion of thermal energy to electricity by thermoelectric (TE) devices may play a key role in future energy production and utilization. However, relatively poor performance of current TE materials has slowed development of new energy conversion applications. Recent reports have shown that the dimensionless Figure of Merit, ZT, for TE devices can be increased beyond the state-of-the-art level by nanoscale structuring of materials to reduce their thermal conductivity. New morphologically designed TE materials have been fabricated at the NASA Langley Research Center, and their characterization is underway. These newly designed materials are based on semiconductor crystal grains whose surfaces are surrounded by metallic nanoparticles. The nanoscale particles are used to tailor the thermal and electrical conduction properties for TE applications by altering the phonon and electron transport pathways. A sample of bismuth telluride decorated with metallic nanoparticles showed less thermal conductivity and twice the electrical conductivity at room temperature as compared to pure Bi2Te3. Apparently, electrons cross easily between semiconductor crystal grains via the intervening metallic nanoparticle bridges, but phonons are scattered at the interfacing gaps. Hence, if the interfacing gap is larger than the mean free path of the phonon, thermal energy transmission from one grain to others is reduced. Here we describe the design and analysis of these new materials that offer substantial improvements in thermoelectric performance.

  17. Process energy comparison for the production and harvesting of algal biomass as a biofuel feedstock.

    Science.gov (United States)

    Weschler, Matthew K; Barr, William J; Harper, Willie F; Landis, Amy E

    2014-02-01

    Harvesting and drying are often described as the most energy intensive stages of microalgal biofuel production. This study analyzes two cultivation and eleven harvest technologies for the production of microalgae biomass with and without the use of drying. These technologies were combined to form 122 different production scenarios. The results of this study present a calculation methodology and optimization of total energy demand for the production of algal biomass for biofuel production. The energetic interaction between unit processes and total process energy demand are compared for each scenario. Energy requirements are shown to be highly dependent on final mass concentration, with thermal drying being the largest energy consumer. Scenarios that omit thermal drying in favor of lipid extraction from wet biomass show the most promise for energy efficient biofuel production. Scenarios which used open ponds for cultivation, followed by settling and membrane filtration were the most energy efficient. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Transmutation of Isotopes --- Ecological and Energy Production Aspects

    Science.gov (United States)

    Gudowski, Waclaw

    2000-01-01

    This paper describes principles of Accelerator-Driven Transmutation of Nuclear Wastes (ATW) and gives some flavour of the most important topics which are today under investigations in many countries. An assessment of the potential impact of ATW on a future of nuclear energy is also given. Nuclear reactors based on self-sustained fission reactions --- after spectacular development in fifties and sixties, that resulted in deployment of over 400 power reactors --- are wrestling today more with public acceptance than with irresolvable technological problems. In a whole spectrum of reasons which resulted in today's opposition against nuclear power few of them are very relevant for the nuclear physics community and they arose from the fact that development of nuclear power had been handed over to the nuclear engineers and technicians with some generically unresolved problems, which should have been solved properly by nuclear scientists. In a certain degree of simplification one can say, that most of the problems originate from very specific features of a fission phenomenon: self-sustained chain reaction in fissile materials and very strong radioactivity of fission products and very long half-life of some of the fission and activation products. And just this enormous concentration of radioactive fission products in the reactor core is the main problem of managing nuclear reactors: it requires unconditional guarantee for the reactor core integrity in order to avoid radioactive contamination of the environment; it creates problems to handle decay heat in the reactor core and finally it makes handling and/or disposal of spent fuel almost a philosophical issue, due to unimaginable long time scales of radioactive decay of some isotopes. A lot can be done to improve the design of conventional nuclear reactors (like Light Water Reactors); new, better reactors can be designed but it seems today very improbable to expect any radical change in the public perception of conventional

  19. Energy production and storage inorganic chemical strategies for a warming world

    CERN Document Server

    Crabtree, Robert H

    2013-01-01

    Energy production and storage are central problems for our time. In principle, abundant energy is available from the sun to run the earth in a sustainable way. Solar energy can be directly harnessed by agricultural and photovoltaic means, but the sheer scale of the energy demand poses severe challenges, for example any major competition between biomass production and food production would simply transfer scarcity from energy to food. Indirect use of solar energy in the form of wind looks also promising, especially for those regions not blessed with abundant sunlight. Other modes such as tidal

  20. Energy and materials flows in the production of olefins and their derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.L.; Shen, S.Y.

    1980-08-01

    Production of olefins and their derivatives uses almost 3.5% of the oil and gas consumed annually in the United States. It is estimated that their production requires an input energy of 2 Q, which is 50% of the energy used in the production of all petrochemicals. Substantial amounts of this energy could be recovered through recycling. For example, recycling of a single plastic product, polyester soft drink bottles, could have recovered about 0.014 Q in 1979. (About 1.4 Q is used to produce plastic derivatives of olefins). Petrochemical processes use fuels as feedstocks, as well as for process energy, and a portion of this energy is not foregone and can be recovered through combustion of the products. The energy foregone in the production of ethylene is estimated to be 7800 Btu/lb. The energy foregone in plastics production ranges from 12,100 Btu/lb for the new linear low-density polyethylene to 77,200 Btu/lb for nylon 66, which is about 60% of the total energy input for that product. Further investigation of the following areas could yield both material and energy savings in the olefins industry: (1) recycling of petrochemical products to recover energy in addition to that recoverable through combustion, (2) impact of feedstock substitution on utilization of available national resources, and (3) effective use of the heat embodied in process steam. This steam accounts for a major fraction of the industry's energy input.

  1. Topologically stratified energy minimizers in a product Abelian field theory

    Directory of Open Access Journals (Sweden)

    Xiaosen Han

    2015-09-01

    Full Text Available We study a recently developed product Abelian gauge field theory by Tong and Wong hosting magnetic impurities. We first obtain a necessary and sufficient condition for the existence of a unique solution realizing such impurities in the form of multiple vortices. We next reformulate the theory into an extended model that allows the coexistence of vortices and anti-vortices. The two Abelian gauge fields in the model induce two species of magnetic vortex-lines resulting from Ns vortices and Ps anti-vortices (s=1,2 realized as the zeros and poles of two complex-valued Higgs fields, respectively. An existence theorem is established for the governing equations over a compact Riemann surface S which states that a solution with prescribed N1, N2 vortices and P1,P2 anti-vortices of two designated species exists if and only if the inequalities |N1+N2−(P1+P2|<|S|π,|N1+2N2−(P1+2P2|<|S|π, hold simultaneously, which give bounds for the ‘differences’ of the vortex and anti-vortex numbers in terms of the total surface area of S. The minimum energy of these solutions is shown to assume the explicit value E=4π(N1+N2+P1+P2, given in terms of several topological invariants, measuring the total tension of the vortex-lines.

  2. Topologically Stratified Energy Minimizers in a Product Abelian Field Theory

    CERN Document Server

    Han, Xiaosen

    2015-01-01

    The recently developed product Abelian gauge field theory by Tong and Wong hosting magnetic impurities is reformulated into an extended model that allows the coexistence of vortices and anti-vortices. The two Abelian gauge fields in the model induce two species of magnetic vortex-lines resulting from $N_s$ vortices and $P_s$ anti-vortices ($s=1,2$) realized as the zeros and poles of two complex-valued Higgs fields, respectively. An existence theorem is established for the governing equations over a compact Riemann surface $S$ which states that a solution with prescribed $N_1, N_2$ vortices and $P_1,P_2$ anti-vortices of two designated species exists if and only if the inequalities \\[ \\left|N_1+N_2-(P_1+P_2)\\right|<\\frac{|S|}{\\pi},\\quad \\left|N_1+2N_2-(P_1+2P_2)\\right|<\\frac{|S|}{\\pi}, \\] hold simultaneously, which give bounds for the `differences' of the vortex and anti-vortex numbers in terms of the total surface area of $S$. The minimum energy of these solutions is shown to assume the explicit value \\...

  3. 77 FR 76831 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Furnaces and...

    Science.gov (United States)

    2012-12-31

    ... Furnaces and Boilers (June 7, 2010),\\5\\ the ENERGY STAR Product Databases for Gas and Oil Furnaces (Jan. 4, 2010),\\6\\ the California Energy Commission's Appliance Database for Residential Furnaces and Boilers,\\7.... Department of Commerce, ENERGY STAR Furnaces--Product Databases for Gas and Oil Furnaces (Jan. 4,...

  4. Renewable Energy Supply for Power Dominated, Energy Intense Production Processes - A Systematic Conversion Approach for the Anodizing Process

    Science.gov (United States)

    >D Stollenwerk, T Kuvarakul, I Kuperjans,

    2013-06-01

    European countries are highly dependent on energy imports. To lower this import dependency effectively, renewable energies will take a major role in future energy supply systems. To assist the national and inter-European efforts, extensive changes towards a renewable energy supply, especially on the company level, will be unavoidable. To conduct this conversion in the most effective way, the methodology developed in this paper can support the planning procedure. It is applied to the energy intense anodizing production process, where the electrical demand is the governing factor for the energy system layout. The differences between the classical system layout based on the current energy procurement and an approach with a detailed load-time-curve analysis, using process decomposition besides thermodynamic optimization, are discussed. The technical effects on the resulting energy systems are shown besides the resulting energy supply costs which will be determined by hourly discrete simulation.

  5. Integration of energy, GHG and economic accounting to optimize biogas production based on co-digestion

    DEFF Research Database (Denmark)

    Fitamo, Temesgen; Boldrin, Alessio; Raj Baral, Khagendra

    Several countries have set a number of targets to boost energy production from renewable sources. Biogas production is expected to increase significantly over the next few decades and to play an important role in future energy systems. To achieve these ambitious targets, the biogas production has...

  6. Factors Influencing Renewable Energy Production & Supply - A Global Analysis

    Science.gov (United States)

    Ali, Anika; Saqlawi, Juman Al

    2016-04-01

    Renewable energy is one of the key technologies through which the energy needs of the future can be met in a sustainable and carbon-neutral manner. Increasing the share of renewable energy in the total energy mix of each country is therefore a critical need. While different countries have approached this in different ways, there are some common aspects which influence the pace and effectiveness of renewable energy incorporation. This presentation looks at data and information from 34 selected countries, analyses the patterns, compares the different parameters and identifies the common factors which positively influence renewable energy incorporation. The most successful countries are analysed for their renewable energy performance against their GDP, policy/regulatory initiatives in the field of renewables, landmass, climatic conditions and population to identify the most influencing factors to bring about positive change in renewable energy share.

  7. Energy of the wood – to quality of agricultural production

    Directory of Open Access Journals (Sweden)

    Viktor Rijov

    2014-04-01

    Full Text Available The group of authors is engaged in development and deployment in production of products of biomass of the wood in agriculture. Lately we introduced in production more than five domestic import-substituting products, more than 20 applications for inventions are submitted, 4 patents are taken out, more than 30 articles on this subject are published.

  8. The problem of non-renewable energy resources in the production of physical capital

    OpenAIRE

    Perez-Barahona, Agustin

    2007-01-01

    This paper studies the possibilities of technical progress to deal with the growth limit problem imposed by the usage of non-renewable energy resources, when physical capital production is relatively more energy-intensive than consumption. In particular, this work presents the conditions under which energy-saving technologies can sustain long-run growth, although energy is produced by means of non-renewable energy resources. The mechanism behind that is energy efficiency.

  9. An Examination of Energy Considerations in the Product Acquisition Process.

    Science.gov (United States)

    1980-12-01

    everyone. Richard C. Dorf , in his book Energy, Resources, & Policy, states that the conservation of energy can cause a signifi- cant drop in the energy...Department of the Air Force. AF Regulation 70-15. Source Selection Policy and Procedures. Washington: Government Printing Office, 1976. Dorf , Richard C...Btu’s) of energy ( Dorf , 1978; McRae, et al, 1977; AFIT School of Civil Engineering, 1975; Tetra Tech, Inc., 1977). This is approximately one-third of the

  10. Evaluation of the photochemical production of hydrogen from solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Heppert, J. A.

    1977-08-09

    The potential for utilizing solar energy through photochemical storage were investigated. Both water and nitrosyl chloride systems are examined. A comprehensive review of the literature led to the conclusion that many major questions must be answered before photochemical energy storage becomes a viable alternate means of exploiting solar energy.

  11. Utilisation of coal for energy production in fuel cells

    Directory of Open Access Journals (Sweden)

    Dudek Magdalena

    2016-01-01

    Full Text Available In this paper a brief characterization of fuel cell technology and its possible application in sustainable energy development was described. Special attention was paid to direct carbon fuel cell technology. The direct carbon fuel cell is an electrochemical device which directly converts the chemical energy of carbonaceous based fuel into electricity without ‘flame burning’. The electrical efficiency of a DCFC is indeed very high (in practice exceeding 80%, and the product of conversion consists of almost pure CO2, eliminating the most expensive step of sequestration: the separation of carbon from flue gases. In this paper the process of electrochemical oxidation of carbon particles on the surface of oxide electrolytes at 8% mol Y2O3 in ZrO2 (8YSZ as well as cermet anode Ni-8YSZ was analysed. The graphite, carbon black powders were considered as reference solid fuels for coal samples. It was found that the main factors contributing to the electrochemical reactivity of carbon particles is not only the high carbon content in samples but also structural disorder. It was found that structurally disordered carbon-based materials are the most promising solid fuels for direct carbon solid oxide fuel cells. Special impact was placed on the consideration of coal as possible solid fuels for DC-SOFC. Statistical and economic analyses show that in the coming decades, in developing countries such as China, India, and some EU countries, coal-fuelled power plants will maintain their strong position in the power sector due to their reliability and low costs as well as the large reserves of coal and lignite in the world. Coal is mined in politically stable areas, which guarantees its easy and safe purchase and transport. The impact of the physiochemical properties of raw and purified coal on the performance of the DC-SOFC was studied. An analysis of the stability of electrical parameters was performed for a DC-SOFC operating under a load over an extended

  12. An Analysis of Current Energy Consumption in China’s Agricultural Production

    Institute of Scientific and Technical Information of China (English)

    Xia; ZHANG; Zongshou; CAI; Lihong; CHEN; Dezheng; ZHANG; Zhe; ZHANG

    2015-01-01

    Energy consumption is one of the important symbols of modern agriculture,and it is also an important input in modern agricultural production. The study on the agricultural energy consumption not only has a positive significance to agricultural energy saving,emission reduction and ecological environment protection,but also can greatly reduce the cost of agricultural production and improve the economic benefit of farmers. Through the analysis of the national statistical data about energy consumption for agriculture production from 2005 to 2012 year,the results show that the amount of energy consumption for agricultural production in China has increased year by year since 2005. Because of the continued growth of the total energy consumption in China,the proportion of energy consumption for agricultural production to the total energy consumption of China has declined slightly since 2005. At present,the energy consumption structure for agricultural production in China is diesel fuel,coal,electric power,gasoline,and indirect energy consumption. With the rapid development of the agricultural technology in recent years,the total agricultural output value in China has increased greatly,the direct and indirect agricultural energy consumption per unit of agricultural output value in China has decreased year by year,and the efficiency of energy consumption for agricultural production has increased consequently.

  13. 78 FR 62988 - Energy Conservation Program: Energy Conservation Standards for Certain Consumer Products and...

    Science.gov (United States)

    2013-10-23

    ... Parts 430 and 431 RIN 1904-AD08 Energy Conservation Program: Energy Conservation Standards for Certain... American Energy Manufacturing Technical Corrections Act amended the Energy Policy and Conservation Act as... revised energy conservation standards and definitions, as well as technical corrections, which...

  14. 77 FR 24940 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Science.gov (United States)

    2012-04-26

    ...: Representative Average Unit Costs of Energy'', dated March 10, 2011, 76 FR 13168. May 29, 2012, the cost figures...: Representative Average Unit Costs of Energy AGENCY: Office of Energy Efficiency and Renewable Energy, Department... forecasting the representative average unit costs of five residential energy sources for the year...

  15. Cost-effectiveness analysis of algae energy production in the EU

    NARCIS (Netherlands)

    Kovacevic, V.; Wesseler, J.H.H.

    2010-01-01

    Today’s society relies heavily on fossil fuels as a main energy source. Global energy demand increase, energy security and climate change are the main drivers of the transition towards alternative energy sources. This paper analyses algal biodiesel production for the EU road transportation and

  16. Cost-effectiveness analysis of algae energy production in the EU

    NARCIS (Netherlands)

    Kovacevic, V.; Wesseler, J.H.H.

    2010-01-01

    Today’s society relies heavily on fossil fuels as a main energy source. Global energy demand increase, energy security and climate change are the main drivers of the transition towards alternative energy sources. This paper analyses algal biodiesel production for the EU road transportation and compa

  17. Workshop on induced Seismicity due to fluid injection/production from Energy-Related Applications

    Energy Technology Data Exchange (ETDEWEB)

    Majer, E.L.; Asanuma, Hiroshi; Rueter, Horst; Stump, Brian; Segall, Paul; Zoback, Mark; Nelson, Jim; Frohlich, Cliff; Rutledge, Jim; Gritto, Roland; Baria, Roy; Hickman, Steve; McGarr, Art; Ellsworth, Bill; Lockner, Dave; Oppenheimer, David; Henning, Peter; Rosca, Anca; Hornby, Brian; Wang, Herb; Beeler, Nick; Ghassemi, Ahmad; Walters, Mark; Robertson-Tait, Ann; Dracos, Peter; Fehler, Mike; Abou-Sayed, Ahmed; Ake, Jon; Vorobiev, Oleg; Julian, Bruce

    2011-04-01

    Geothermal energy, carbon sequestration, and enhanced oil and gas recovery have a clear role in U.S. energy policy, both in securing cost-effective energy and reducing atmospheric CO{sub 2} accumulations. Recent publicity surrounding induced seismicity at several geothermal and oil and gas sites points out the need to develop improved standards and practices to avoid issues that may unduly inhibit or stop the above technologies from fulfilling their full potential. It is critical that policy makers and the general community be assured that EGS, CO{sub 2} sequestration, enhanced oil/gas recovery, and other technologies relying on fluid injections, will be designed to reduce induced seismicity to an acceptable level, and be developed in a safe and cost-effective manner. Induced seismicity is not new - it has occurred as part of many different energy and industrial applications (reservoir impoundment, mining, oil recovery, construction, waste disposal, conventional geothermal). With proper study/research and engineering controls, induced seismicity should eventually allow safe and cost-effective implementation of any of these technologies. In addition, microseismicity is now being used as a remote sensing tool for understanding and measuring the success of injecting fluid into the subsurface in a variety of applications, including the enhancement of formation permeability through fracture creation/reactivation, tracking fluid migration and storage, and physics associated with stress redistribution. This potential problem was envisaged in 2004 following observed seismicity at several EGS sites, a study was implemented by DOE to produce a white paper and a protocol (Majer et al 2008) to help potential investors. Recently, however, there have been a significant number of adverse comments by the press regarding induced seismicity which could adversely affect the development of the energy sector in the USA. Therefore, in order to identify critical technology and research

  18. Excess heat production of future net zero energy buildings within district heating areas in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Möller, Bernd

    2012-01-01

    Denmark’s long-term energy goal is to develop an energy system solely based on renewable energy sources by 2050. To reach this goal, energy savings in buildings is essential. Therefore, the focus on energy efficient measures in buildings and netzeroenergybuildings (NZEBs) has increased. Most...... buildings in Denmark are connected to electricity grids and around half are connected to districtheating (DH) systems. Connecting buildings to larger energy systems enables them to send and receive energy from these systems. This paper’s objective is to examine how excess heat production from NZEBs...... excess heat production from solar thermal collectors. The main findings are that the excess heat from NZEBs can benefit DH systems by decreasing the production from production units utilizing combustible fuels. In DH areas where the heat demand in summer months is already covered by renewable energy...

  19. Perspectives of energy investments: production system; Perspectivas do investimento em energia: sistema produtivo

    Energy Technology Data Exchange (ETDEWEB)

    Bicalho, Ronaldo

    2009-04-15

    This paper analyses the investment dynamic of energy production system in Brazil, from the identification of the determining factors and discussions on the perspectives of the evolution of the investment of the production dynamic system - establishing the key questions for the definition of the system future in the Brazil, and proposing strategies, investments and energy politic actions which guarantee the necessary energy to the productive development of Brazil. (author)

  20. Production control in the steel industry with energy conservation considerations: a preliminary evaluation. [GASP

    Energy Technology Data Exchange (ETDEWEB)

    Takamoto, H.; Williams, T.J.

    1979-06-01

    The work here consists mainly of three tasks; the first is to construct the basic production model for the raw-material preparation and the iron-making area which had been ignored in the earlier work, but is vital to the energy problem. The second is to construct the energy utilization and energy generation models over all the steel production units involved in the plant. The third is to develop the hierarchy structure to control the energy management function.

  1. Renewable Energy Production from DoD Installation Solid Wastes By Anaerobic Digestion

    Science.gov (United States)

    2016-08-06

    have required more sustainable use of energy . Renewable Energy Production From DoD Installation Solid Wastes by Anaerobic Digestion 9 June 2016...Schafer, P., D. Trueblood, K. Fonda, and C. Lekven. 2007. Grease Processing for Renewable Energy , Profit, Sustainability , and Environmental Enhancement...Demirul. 2013. Ammonia inhibition in anaerobic digestion: A review . Process Biochemistry 48: 901-911. Renewable Energy Production From DoD

  2. Analysis of Federal incentives used to stimulate energy production

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-01

    Federal incentives for the development of solar energy are examined. A Federal incentive is any action that can be taken by the government to expand residential and commercial use of solar energy. The development of solar energy policy could be enhanced by identification, quantification, and analysis of Federal incentives that have been used to simulate the development of other forms of energy. The text of this report identifies, quantifies, and analyzes such incentives and relates them to current thought about solar energy. Four viewpoints used in this discussion come from 4 types of analysis: economic, political, organizational, and legal. The next chapter identifies actions (primarily domestic) that the Federal government has taken concerning energy. This analysis uses the typology of actions described in the previous chapter to identify actions, and the four viewpoints described there to determine whether an action concerns energy. Once identified, the actions are described and then quantified by an estimate of the 1976 cost of accomplishing them. Then incentives, investments, liabilities, regulations, and other factors are analyzed in detail for nuclear energy, hydroelectric power, coal, petroleum, and natural gas. Incentives of all energy sources are then discussed with respect to solar energy policy. (MCW)

  3. Effect of Energy Intake during Dry Period on Production Performance of Postparturient Cows

    Institute of Scientific and Technical Information of China (English)

    LI Yan-fei; WANG Zhe; NIU Shu-ling

    2004-01-01

    24 healthy periparturient cows were randomly allocated into three groups and fed 100% energy diet (NRC standard diets), 120% energy diet and 80% energy diet, respectively, beginning at 28 days prior to anticipated parturition. After parturition, all the cows were provided with the lactation ration ad libitum until the day 56 postpartum.The objectives of the study were to investigate the effect of energy intake during the dry period on the production performance in the postpartum cows. The results indicated that the cows fed with high energy diet during the dry period had a lower dry material intake (DMI) and reduced milk production and a significant body weight (BW) loss compared with the cows fed with 80% energy diet and 100% energy diet, The results suggested that energy intake during the dry period was an important factor that influences and regulates DMI, milk production and energy equilibration of postparturient cows.

  4. Estimating the Equivalent Energy for Single Super Phosphate Production in Iran

    Directory of Open Access Journals (Sweden)

    Payman Salami

    2010-02-01

    Full Text Available Fertilizer is a major factor in expanding food output. Fertilizer production is also highly energy-intensive. The aim of this study is to determine the equivalent energy for Single Super Phosphate (SSP fertilizer production in Iran. This study was carried out in a fertilizer plant in Sanandaj city. The primary energy resources that were utilized in the plant for single superphosphate fertilizer production were natural gas, electrical and human energy. The raw materials that were used in the production were phosphate rock, sulfuric acid, and water. The Diesel fuel was used for transporting the raw materials by trucks. As we were not sure about efficient use of the attained energy in sulfuric acid production industry in Iran, we estimated the equivalent energy for Single Super Phosphate production by two methods. The total energy consumption for single superphosphate production was 465956 MJ in a month, and it was 790677 MJ without estimating the equivalent energy of sulfuric acid. Pursuant to 225000 kg total fertilizer production in a month, the estimated equivalent energy for producing this fertilizer was 2.07 MJ kg-1, and it was 3.5 MJ kg-1 without estimating the equivalent energy of sulfuric acid.

  5. Scientific production and international collaboration on Solar Energy in Spain and Germany (1995-2009)

    DEFF Research Database (Denmark)

    Sanz-Casado, Elias; Lascurain-Sanchez, Maria-Louisa; Garcia-Zorita, J. Carlos

    2013-01-01

    Renewable energies carry political and financial significance in all EU countries. Their importance is translated into a major research and innovation trend, particularly in relation to the achievement of sustainable resources (Walz; Schleich & Ragwitz, 2011). Solar and Wind Energies offer...... in the case of Solar Energy production (2560 versus 2734 of increment), measured in tonnes of oil quivalent (during 1995-2009)....... the biggest potential for energy production, as it has been highlighted in the last decade (Sanz-Casado; García-Zorita; Serrano-López; Larsen & Ingwersen, 2012). Within he overall conglomerate of renewable energies, Germany has a bigger production than Spain, although the increase is higher for Spain...

  6. Scientific production and international collaboration on Solar Energy in Spain and Germany (1995-2009)

    DEFF Research Database (Denmark)

    Sanz-Casado, Elias; Lascurain-Sanchez, Maria-Louisa; Garcia-Zorita, J. Carlos

    2013-01-01

    Renewable energies carry political and financial significance in all EU countries. Their importance is translated into a major research and innovation trend, particularly in relation to the achievement of sustainable resources (Walz; Schleich & Ragwitz, 2011). Solar and Wind Energies offer...... in the case of Solar Energy production (2560 versus 2734 of increment), measured in tonnes of oil quivalent (during 1995-2009)....... the biggest potential for energy production, as it has been highlighted in the last decade (Sanz-Casado; García-Zorita; Serrano-López; Larsen & Ingwersen, 2012). Within he overall conglomerate of renewable energies, Germany has a bigger production than Spain, although the increase is higher for Spain...

  7. Modeling Energy Flow and Economic Analysis for Walnut Production in Iran

    Directory of Open Access Journals (Sweden)

    Narges Banaeian and Morteza Zangeneh

    2011-03-01

    Full Text Available The aims of this study were to determine energy use pattern, to obtain relationship between energy inputs and yield, and to make an economical analysis in walnut orchards in Hamadan, Iran. Required data were obtained from 47 walnut orchards based on random sampling method. The results indicate that walnut production consumed a total energy of 15196.1 MJ/ha where chemical fertilizers with about 41% were the major energy consumer. Energy use efficiency, energy productivity and specific energy of walnut production were 2.9, 0.3 and 3.4 MJ/kg, respectively. Econometric estimation results revealed that energy inputs of human labor, farmyard manure, chemical fertilizers, water for irrigation and transformation contributed significantly to the yield. The results of sensitivity analysis of the energy inputs showed that the Marginal Physical Productivity (MPP value of human labor was the highest, followed by farmyard manure and water for irrigation energy inputs, respectively. The results also showed that direct, indirect and renewable and nonrenewable, energy forms had a positive impact on output level and the MPP value of direct and renewable energy were higher. The benefit to cost ratio, mean net return and productivity from walnut production was obtained as 2.1, 2043.7 $/ha and 0.3 kg/$, respectively.

  8. Application of advanced methods for the prognosis of production energy consumption

    Science.gov (United States)

    Stetter, R.; Witczak, P.; Staiger, B.; Spindler, C.; Hertel, J.

    2014-12-01

    This paper, based on a current research project, describes the application of advanced methods that are frequently used in fault-tolerance control and addresses the issue of the prognosis of energy efficiency. Today, the energy a product requires during its operation is the subject of many activities in research and development. However, the energy necessary for the production of goods is very often not analysed in comparable depth. In the field of electronics, studies come to the conclusion that about 80% of the total energy used by a product is from its production [1]. The energy consumption in production is determined very early in the product development process by designers and engineers, for example through selection of raw materials, explicit and implicit requirements concerning the manufacturing and assembly processes, or through decisions concerning the product architecture. Today, developers and engineers have at their disposal manifold design and simulation tools which can help to predict the energy consumption during operation relatively accurately. In contrast, tools with the objective to predict the energy consumption in production and disposal are not available. This paper aims to present an explorative study of the use of methods such as Fuzzy Logic to predict the production energy consumption early in the product development process.

  9. International inequality in energy intensity levels and the role of production composition and energy efficiency. An analysis of OECD countries

    Energy Technology Data Exchange (ETDEWEB)

    Duro, Juan Antonio; Alcantara, Vicent; Padilla, Emilio

    2010-10-15

    This paper analyses the inequality of energy intensity levels between OECD countries, its causes and evolution. The paper develops a methodology which allows the inequality in energy consumption per capita to be decomposed into explanatory factors. It also analyses the contribution of different groups of countries to this inequality. The results show that although differences in affluence are the most significant factor in explaining inequality in energy consumption per capita, the inequality in energy intensity levels plays a prominent role in reducing the inequality in energy consumption per capita over the analysed period. The paper also develops a methodology which determines the importance of different production structures and energy efficiency of productive sectors in the differences in energy use per unit of GDP between the countries analysed. The results show that sector specialisation becomes increasingly important in explaining the inequality of energy intensity, while there is a significant trend towards the convergence of energy efficiency between countries sector by sector. This trend would explain the decreasing weight of energy intensity as an explanatory factor of the inequalities in energy consumption per capita. (author)

  10. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    OpenAIRE

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technical...

  11. An assessment of energy use efficiency and sensitivity analysis of inputs in rice paddy production

    Science.gov (United States)

    Mohammadi, A.; Rafiee, S.; Jafari, A.; Keyhani, A.

    2012-04-01

    This research studies the energy balance between the inputs and the output and estimation of inputs sensitivity for paddy production in Golestan province, Iran. The sensitivity of energy inputs was estimated using the marginal physical productivity (MPP) method and partial regression coefficients on rice yield. The results indicated that total energy inputs were found to be 29668 MJ ha-1. The results showed that among energy inputs, the share of chemical fertilizers was highest with 39% followed by water for irrigation with 32%. Energy use efficiency and energy productivity were found to be 2.5 and 0.2 ¬kg MJ-1, respectively. Sensitivity analysis indicates that highest MPP was for machinery energy, followed by human labour energy. The MPP estimated for biocides energy was found negative, indicating that biocides energy consumption is high in paddy production. It is suggested that specific policy is to be taken to increase yield by raising partial productivity of energy inputs without depending on mainly non-renewable energy sources such as chemical fertilizers and biocides that create environmental risk problems. Keywords:Energy input, Sensitivity analysis, Chemical fertilizers, Paddy

  12. IT support of energy-sensitive product development. Energy-efficient product and process innovations in production engineering. Virtual product development for energy-efficient products and processes; IT-Unterstuetzung zur energiesensitiven Produktentwicklung. Energieeffiziente Produkt- und Prozessinnovationen in der Produktionstechnik. Handlungsfeld virtuelle Produktentwicklung fuer energieeffiziente Produkte und Prozesse (PE)

    Energy Technology Data Exchange (ETDEWEB)

    Reichel, Thomas; Ruenger, Gudula; Steger, Daniel; Xu, Haibin

    2010-07-07

    The development of low-cost, energy-saving and resources-saving products is increasingly important. Thecalculation of the life cycle cost is an important basis for this. For this, it is necessary to extract empirical, decision-relevant data from IT systems of product development (e.g. product data management systems) and operation (e.g. enterprise resource planning systems), and to give the planner appropriate methods for data aggregation. Life cycle data are particularly important for optimising energy efficiency, which may be achieved either by enhanced productivity at constant energy consumption or by reduced energy consumption at constant productivity. The report presents an IT view of the product development process. First, modern methods of product development are analysed including IT support and IT systems. Requirements on IT systems are formulated which enable energy efficiency assessment and optimisation in all phases of product development on the basis of the IT systems used. IT systems for energy-sensitive product development will support the construction engineer in the development of energy-efficient products. For this, the functionalities of existing PDM systems must be enhanced by methods of analysis, synthesis and energy efficiency assessment. Finally, it is shown how the methods for analyzing energy-relevant data can be integrated in the work flow.

  13. Buy Energy-Efficient Products: A Guide for Federal Purchasers and Specifiers

    Energy Technology Data Exchange (ETDEWEB)

    2016-07-01

    In a single year, energy-efficient product purchases could save the federal government almost a half billion dollars worth of energy. By purchasing products that exceed the minimum required efficiency levels, buyers can save the government even more energy and money. Federal employees and contractors must take an active role in ensuring that the government receives products that meet efficiency requirements. This document provides an overview of product purchasing requirements and shows you how to write compliant contracts, find funding, and confirm product compliance.

  14. Tidal and marine energy in the uk– identifying the future challenges for supply chain development

    OpenAIRE

    Thomas, Andrew; Mason-Jones, Rachel; Turner, David,; Davies, Paul; O’Doherty, Tim; O’Doherty, Daphne; Mason-Jones, Allan; Murphy, Lyndon

    2013-01-01

    The purpose of this paper is to investigate the current technical and operational supply chain issues surrounding the development of tidal and marine energy production in the UK. The paper outlines the market and growth potential of tidal energy production in the UK before identifying the key supply chain themes surrounding tidal energy production including an analysis of the portability and transferability of current supply chain thinking and development from other renewable energy systems s...

  15. Effect of dietary energy source on energy balance, production, metabolic disorders and reproduction in lactating dairy cattle

    NARCIS (Netherlands)

    Knegsel, van A.T.M.; Brand, van den H.; Dijkstra, J.; Tamminga, S.; Kemp, B.

    2005-01-01

    The pathway for oxidation of energy involves a balanced oxidation of C2 and C3 compounds. During early lactation in dairy cattle this C2/C3 ratio is out of balance, due to a high availability of lipogenic (C2) products and a low availability of glycogenic (C3) products relative of the C2 and C3 prod

  16. 75 FR 1121 - Energy Conservation Program: Energy Conservation Standards for Certain Consumer Products...

    Science.gov (United States)

    2010-01-08

    ... relevant to the price elasticity of demand for calculating the anticipated energy and water savings at... Analysis 1. Equipment Prices 2. Installation Cost 3. Annual Energy Consumption 4. Energy and Water Prices a. Energy Prices b. Water and Wastewater Prices 5. Repair and Maintenance Costs 6. Equipment Lifetime...

  17. Assessment of potential biomass energy production in China towards 2030 and 2050

    DEFF Research Database (Denmark)

    Zhao, Guangling

    2016-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste......, energy crops and woody crops, animal manure, and municipal solid waste. The potential biomass production is predicted based on the resource availability. In the process of identifying biomass resources production, assumptions are made regarding arable land, marginal land, crops yields, forest growth rate......, and meat consumption and waste production. Four scenarios were designed to describe the potential biomass energy production to elaborate the role of biomass energy in the Chinese energy system in 2030. The assessment shows that under certain restrictions on land availability, the maximum potential biomass...

  18. Energy balance of biofuel production from biological conversion of crude glycerol.

    Science.gov (United States)

    Zhang, Xiaolei; Yan, Song; Tyagi, Rajeshwar D; Surampalli, Rao Y; Valéro, Jose R

    2016-04-01

    Crude glycerol, a by-product of biodiesel production, has gained significant attention as a carbon source for biofuel production. This study evaluated the energy balance of biodiesel, hydrogen, biogas, and ethanol production from 3.48 million L of crude glycerol (80% w/v). The conversion efficiency (energy output divided by energy invested) was 1.16, 0.22, 0.27, and 0.40 for the production of biodiesel, hydrogen, biogas, and ethanol respectively. It was found that the use of crude glycerol for biodiesel production was an energy gain process, with a positive energy balance and conversion efficiency of greater than 1. The energy balance revealed a net energy gain of 5226 GJ per 1 million kg biodiesel produced. Production of hydrogen, biogas and ethanol from crude glycerol were energy loss processes. Therefore, the conversion of crude glycerol to lipids and subsequently to biodiesel is suggested to be a better option compared to hydrogen, biogas, or ethanol production with respect to energy balance.

  19. Energy production and consumption in the Yemen Arab Republic

    Energy Technology Data Exchange (ETDEWEB)

    Saqqaf, A.

    The energy sector reflects the major changes in the socio-economic structure and massive private and government investments that have given North Yemen a 6% real growth rate since 1970. The author surveys the energy sector over the past decade, and uses an earlier energy balance to forecast to the end of this decade. The survey, which focuses on consumption and supply, considers various potential sources of energy, including renewable forms and discusses new developments in oil exploration and refining capacity. The most significant development is not the dramatic rise in energy consumption, but in the discovery and exploitation of oil which allowed the Yemen Arab Republic to join the league of oil-producing nations. 1 figure, 2 tables.

  20. Environmental assessment of energy production from waste and biomass

    DEFF Research Database (Denmark)

    Tonini, Davide

    Optimal utilization of biomass and waste for energy purposes offers great potentials for reducing fossil fuel dependency and resource consumption. The common understanding is that bioenergy decreases greenhouse gas (GHG) emissions as the carbon released during energy conversion has previously been...... a consistent framework for the environmental assessment of innovative bioenergy and waste-to-energy systems including the integration of LCA with other tools (mentioned earlier). The focus was on the following aspects: - Evaluation of potential future energy scenarios for Denmark. This was doneby integrating...... the results of energy system analysis into life cycle assessment scenarios. - Identification of the criticalities of bioenergy systems, particularly in relation to land use changes. - Identification of potentials and criticalities associated with innovative waste refinery technologies. This was done...

  1. Energy return on investment for algal biofuel production coupled with wastewater treatment.

    Science.gov (United States)

    Beal, Colin M; Stillwell, Ashlynn S; King, Carey W; Cohen, Stuart M; Berberoglu, Halil; Bhattarai, Rajendra P; Connelly, Rhykka L; Webber, Michael E; Hebner, Robert E

    2012-09-01

    This study presents a second-order energy return on investment analysis to evaluate the mutual benefits of combining an advanced wastewater treatment plant (WWTP) (with biological nutrient removal) with algal biofuel production. With conventional, independently operated systems, algae production requires significant material inputs, which require energy directly and indirectly, and the WWTP requires significant energy inputs for treatment of the waste streams. The second-order energy return on investment values for independent operation of the WWTP and the algal biofuels production facility were determined to be 0.37 and 0.42, respectively. By combining the two, energy inputs can be reduced significantly. Consequently, the integrated system can outperform the isolated system, yielding a second-order energy return on investment of 1.44. Combining these systems transforms two energy sinks to a collective (second-order) energy source. However, these results do not include capital, labor, and other required expenses, suggesting that profitable deployment will be challenging.

  2. Optimal control strategies for hydrogen production when coupling solid oxide electrolysers with intermittent renewable energies

    Science.gov (United States)

    Cai, Qiong; Adjiman, Claire S.; Brandon, Nigel P.

    2014-12-01

    The penetration of intermittent renewable energies requires the development of energy storage technologies. High temperature electrolysis using solid oxide electrolyser cells (SOECs) as a potential energy storage technology, provides the prospect of a cost-effective and energy efficient route to clean hydrogen production. The development of optimal control strategies when SOEC systems are coupled with intermittent renewable energies is discussed. Hydrogen production is examined in relation to energy consumption. Control strategies considered include maximizing hydrogen production, minimizing SOEC energy consumption and minimizing compressor energy consumption. Optimal control trajectories of the operating variables over a given period of time show feasible control for the chosen situations. Temperature control of the SOEC stack is ensured via constraints on the overall temperature difference across the cell and the local temperature gradient within the SOEC stack, to link materials properties with system performance; these constraints are successfully managed. The relative merits of the optimal control strategies are analyzed.

  3. Calendar Year 2007 Program Benefits for U.S. EPA Energy Star Labeled Products: Expanded Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Marla; Homan, Gregory; Lai, Judy; Brown, Richard

    2009-09-24

    This report provides a top-level summary of national savings achieved by the Energy Star voluntary product labeling program. To best quantify and analyze savings for all products, we developed a bottom-up product-based model. Each Energy Star product type is characterized by product-specific inputs that result in a product savings estimate. Our results show that through 2007, U.S. EPA Energy Star labeled products saved 5.5 Quads of primary energy and avoided 100 MtC of emissions. Although Energy Star-labeled products encompass over forty product types, only five of those product types accounted for 65percent of all Energy Star carbon reductions achieved to date, including (listed in order of savings magnitude)monitors, printers, residential light fixtures, televisions, and furnaces. The forecast shows that U.S. EPA?s program is expected to save 12.2 Quads of primary energy and avoid 215 MtC of emissions over the period of 2008?2015.

  4. Electric energy costs and firm productivity in the countries of the Pacific Alliance

    Science.gov (United States)

    Camacho, Anamaria

    This paper explores the relation between energy as an input of production and firm-level productivity for Chile, Colombia, Mexico and Peru, all country members of the Pacific Alliance economic bloc. The empirical literature, has explored the impact of infrastructure on productivity; however there is limited analysis on the impact of particular infrastructure variables, such as energy, on productivity at the firm level in Latin America. Therefore, this study conducts a quantitative assessment of the responsiveness of productivity to energy cost and quality for Chile, Colombia, Mexico and Peru. For this, the empirical strategy is to estimate a Cobb-Douglas production function using the World Bank's Enterprise Survey to obtain comparable measures of output and inputs of production. This approach provides estimates of input factor elasticities for all of the factors of production including energy. The results indicate that electric energy costs explain cross-country differences in firm level productivity. For the particular case of Colombia, the country exhibits the lowest capital and labor productivity of the PA, and firm output is highly responsive to changes in energy use. As a result, the evidence suggests that policies reducing electric energy costs are an efficient alternative to increase firm performance, particularly in the case of Colombia.

  5. Organic waste treatment for power production and energy supply

    Energy Technology Data Exchange (ETDEWEB)

    Omer, A.M. [Energy Research Inst., Nottingham (United Kingdom)

    2010-07-01

    Sudan has ample biomass resources that can be efficiently exploited in a profitable and sustainable manner. The basic form of biomass comes mainly from firewood, charcoal and crop residues. Biogas, biofuels and woody biomass are other forms of energy sources that can be derived from organic waste materials. These renewable energy sources have the potential to address climate change concerns. This paper provided an overview of some salient points and perspectives of biomass technology in Sudan. It presented a literature review regarding the ecological, social, cultural and economic impacts of biomass technology. Biomass energy activities in Sudan were described and future plans concerning the optimum technical and economical utilization of biomass energy in Sudan were highlighted. 12 refs., 8 tabs., 4 figs.

  6. Exclusive glueball production in high energy nucleus-nucleus collisions

    CERN Document Server

    Machado, M V T

    2010-01-01

    The cross sections for the glueball candidates production in quasi-real photon-photon collisions and on central diffraction processes, i.e. double Pomeron exchange, in heavy ion interactions at RHIC and LHC are computed. The rates for these distinct production channels are compared and they may be a fruitful approach to the investigation of glueballs.

  7. Energy yields in intensive and extensive biomass production systems

    NARCIS (Netherlands)

    Nonhebel, S.

    2002-01-01

    As for agricultural crops, biomass crops can be grown in intensive production systems (external inputs such as pesticides and artificial fertilisers) or extensive systems with few external inputs. The choice between an intensive or extensive production system has consequences for yields. A method is

  8. Potential For Agricultural Biomass Production for Energy Purposes in Poland: a Review

    Directory of Open Access Journals (Sweden)

    Rafał Baum

    2013-03-01

    Full Text Available This article reviews the production capacity of Polish agriculture with respect to biomass used for energy production. The forecast production potential of agricultural biomass in Poland in 2020 includes three key areas: the expected consumption of renewable energy according to energy type, the energy potential of agriculture and barriers to the use of biomass. Studies have shown that in Poland, total energy consumption will significantly increase (over 10% by 2020. Growth of demand for renewable energy will primarily result from strong growth of demand for transport biofuels and electricity. In 2020, approximately 80% of final energy from renewable sources will come from biomass. More than three-quarters of the biomass will be generated from agriculture. In Poland, crops from 1.0 to 4.3 million ha can be used for energy production. The study shows changes in the structure of biomass use, and the analysis confirms the declining share of biomass for heat production and the increasing share of biomass for electricity and biofuels. The main obstacles to the continued use of agricultural biomass are a lack of local markets for biomass energy and poor financial support for energy crop production.

  9. Energy efficiency improvement and GHG abatement in the global production of primary aluminium

    NARCIS (Netherlands)

    Kermeli, Katerina; Ter Weer, Peter Hans; Crijns - Graus, Wina; Worrell, Ernst

    2015-01-01

    Primary aluminium production is a highly energy-intensive and greenhouse gas (GHG)-emitting process responsible for about 1 % of global GHG emissions. In 2009, the two most energy-intensive processes in primary aluminium production, alumina refining and aluminium smelting consumed 3.1 EJ, of which 2

  10. Geographical analyses of wood chips potentials, cost and supply for sustainable energy production in Denmark

    DEFF Research Database (Denmark)

    Möller, Bernd

    2004-01-01

    The paper presents a study which uses a practical application of rasterbased geographical information system to perform cost-supply analysis of wood chips resources for energy production.......The paper presents a study which uses a practical application of rasterbased geographical information system to perform cost-supply analysis of wood chips resources for energy production....

  11. Geographical analyses of wood chips potentials, cost and supply for sustainable energy production in Denmark

    DEFF Research Database (Denmark)

    Möller, Bernd

    2004-01-01

    The paper presents a study which uses a practical application of rasterbased geographical information system to perform cost-supply analysis of wood chips resources for energy production.......The paper presents a study which uses a practical application of rasterbased geographical information system to perform cost-supply analysis of wood chips resources for energy production....

  12. 77 FR 7547 - Energy Conservation Standards for Wine Chillers and Miscellaneous Refrigeration Products: Public...

    Science.gov (United States)

    2012-02-13

    ... Part 430 RIN 1904-AC51 Energy Conservation Standards for Wine Chillers and Miscellaneous Refrigeration... standards for residential wine chillers and other residential refrigeration products. DOE will hold an... document for Energy Conservation Standards for Wine Chillers and Miscellaneous Refrigeration Products,...

  13. Energy consumption in the food chain - Comparing alternative options in food production and consumption

    NARCIS (Netherlands)

    Dutilh, CE; Kramer, KJ

    Energy consumption in the various stages of the food chain, provides a reasonable indicator for the environmental impact in the production of food. This paper provides specific information on the energy requirement for the main alternatives in each production stage, which should allow the

  14. Energy consumption in the food chain - Comparing alternative options in food production and consumption

    NARCIS (Netherlands)

    Dutilh, CE; Kramer, KJ

    2000-01-01

    Energy consumption in the various stages of the food chain, provides a reasonable indicator for the environmental impact in the production of food. This paper provides specific information on the energy requirement for the main alternatives in each production stage, which should allow the identifica

  15. CO2 balance in production of energy based on biogas

    DEFF Research Database (Denmark)

    Nielsen, Per Sieverts; Holm-Nielsen, J.B.

    1997-01-01

    Biogas is an essential biomass source for achieving a reduction of CO2 emission by 50% in year 2030 in Denmark. The physical potential for biogas production in Denmark is more than 10 times the present biogas production in Denmark. In Denmark the largest part of the biogas production is produced...... of increased transportation distances at large biogas plants on the total CO2 balance of the biogas plant. The advantage of constructing large biogas plants is the cost-effective possibility of using industrial organic waste to increase biogas production. In some cases co-fermentation increases biogas...... production up 100%. The present study evaluate optimal transportation strategies for biogas plants taking CO2 balances into account....

  16. Binaural Rendering in MPEG Surround

    Directory of Open Access Journals (Sweden)

    Kristofer Kjörling

    2008-04-01

    Full Text Available This paper describes novel methods for evoking a multichannel audio experience over stereo headphones. In contrast to the conventional convolution-based approach where, for example, five input channels are filtered using ten head-related transfer functions, the current approach is based on a parametric representation of the multichannel signal, along with either a parametric representation of the head-related transfer functions or a reduced set of head-related transfer functions. An audio scene with multiple virtual sound sources is represented by a mono or a stereo downmix signal of all sound source signals, accompanied by certain statistical (spatial properties. These statistical properties of the sound sources are either combined with statistical properties of head-related transfer functions to estimate “binaural parameters” that represent the perceptually relevant aspects of the auditory scene or used to create a limited set of combined head-related transfer functions that can be applied directly on the downmix signal. Subsequently, a binaural rendering stage reinstates the statistical properties of the sound sources by applying the estimated binaural parameters or the reduced set of combined head-related transfer functions directly on the downmix. If combined with parametric multichannel audio coders such as MPEG Surround, the proposed methods are advantageous over conventional methods in terms of perceived quality and computational complexity.

  17. Reduced surround inhibition in musicians.

    Science.gov (United States)

    Shin, Hae-Won; Kang, Suk Y; Hallett, Mark; Sohn, Young H

    2012-06-01

    To investigate whether surround inhibition (SI) in the motor system is altered in professional musicians, we performed a transcranial magnetic stimulation (TMS) study in 10 professional musicians and 15 age-matched healthy non-musicians. TMS was set to be triggered by self-initiated flexion of the index finger at different intervals ranging from 3 to 1,000 ms. Average motor evoked potential (MEP) amplitudes obtained from self-triggered TMS were normalized to average MEPs of the control TMS at rest and expressed as a percentage. Normalized MEP amplitudes of the abductor digiti minimi (ADM) muscles were compared between the musicians and non-musicians with the primary analysis being the intervals between 3 and 80 ms (during the movement). A mixed-design ANOVA revealed a significant difference in normalized ADM MEPs during the index finger flexion between groups, with less SI in the musicians. This study demonstrated that the functional operation of SI is less strong in musicians than non-musicians, perhaps due to practice of movement synergies involving both muscles. Reduced SI, however, could lead susceptible musicians to be prone to develop task-specific dystonia.

  18. Binaural Rendering in MPEG Surround

    Science.gov (United States)

    Breebaart, Jeroen; Villemoes, Lars; Kjörling, Kristofer

    2008-12-01

    This paper describes novel methods for evoking a multichannel audio experience over stereo headphones. In contrast to the conventional convolution-based approach where, for example, five input channels are filtered using ten head-related transfer functions, the current approach is based on a parametric representation of the multichannel signal, along with either a parametric representation of the head-related transfer functions or a reduced set of head-related transfer functions. An audio scene with multiple virtual sound sources is represented by a mono or a stereo downmix signal of all sound source signals, accompanied by certain statistical (spatial) properties. These statistical properties of the sound sources are either combined with statistical properties of head-related transfer functions to estimate "binaural parameters" that represent the perceptually relevant aspects of the auditory scene or used to create a limited set of combined head-related transfer functions that can be applied directly on the downmix signal. Subsequently, a binaural rendering stage reinstates the statistical properties of the sound sources by applying the estimated binaural parameters or the reduced set of combined head-related transfer functions directly on the downmix. If combined with parametric multichannel audio coders such as MPEG Surround, the proposed methods are advantageous over conventional methods in terms of perceived quality and computational complexity.

  19. Factors that promote renewable energy production in U.S. states: A fixed effect estimation

    Science.gov (United States)

    Nwokeji, Ekwuniru Chika

    2011-12-01

    The unsustainability of conventional energy sources and its environmental destructions are well-known; the sustainability of renewable energy and its environmental benefits are also well-documented. The United States in common with many other countries is increasingly focused on developing renewable energy. At first, the pursuit of this strategy in U.S. was seen more as a way to reduce dependence on oil importation. With increased awareness of environmental challenges resulting from the consumption and production of conventional energy, an additional strategy for the continued interest in renewable energy development in the United States was as a result of its potential to ameliorate environmental problems. The U.S. government are utilizing policy measures and dedicating funding to encourage the development of renewable energy technologies. Beside government policies, there are contextual factors that also affect renewable energy production. These include, but not limited to population growth, energy demand, economic growth, and public acceptance. Given the pressing need to develop a sustainable energy, this study embarks on an outcome assessment of the nature of relationship of renewable energy policy incentives, and selected contextual factors on renewable energy production in the United States. The policy incentive evaluated in this study is the Renewable Energy Production Incentive program. The contextual factors evaluated in this study are energy consumption, population growth, employment, and poverty. Understanding the contextual factors within which policies are placed is essential to defining the most appropriate policy features. The methodological approach to the study is quantitative, using panel data from 1976 to 2007. The study tested two hypotheses using fixed effect estimation with robust standard error as a statistical model. Statistical analyses reveal several interesting results which lend support that besides policy incentives, contextual factors

  20. The energy balance of utilising meadow grass in Danish biogas production

    DEFF Research Database (Denmark)

    Meyer, Ane Katharina Paarup; Raju, Chitra Sangaraju; Kucheryavskiy, Sergey V.

    2015-01-01

    This paper presents a study of the energy balance of utilising nature conservation biomass from meadow habitats in Danish biogas production. Utilisation of nature conservation grass in biogas production in Denmark represents an interesting perspective for enhancing nature conservation of the open...... grassland habitats, while introducing an alternative to the use of intensively cultivated energy crops as co-substrates in manure based biogas plants. The energy balance of utilising nature conservation grass was investigated by using: data collected from previous investigations on the productivity...... of meadow areas, different relevant geo-datasets, spatial analyses, and various statistical analyses. The results show that values for the energy return on energy invested (EROEI) ranging from 1.7 to 3.3 can be obtained when utilising meadow grasses in local biogas production. The total national net energy...

  1. 78 FR 12969 - Energy Conservation Program for Consumer Products: Energy Conservation Standards for Residential...

    Science.gov (United States)

    2013-02-26

    ... manufactures thermal storage water heater controls. This is referred to as the ``Joint Utilities comment'' in... Conservation Standards for Residential Water Heaters AGENCY: Office of Energy Efficiency and Renewable Energy... heaters. EPCA also requires the U.S. Department of Energy (DOE) to determine whether more...

  2. 76 FR 69122 - Energy Conservation Program: Energy Conservation Standards for Certain Consumer Products...

    Science.gov (United States)

    2011-11-08

    ... published amended energy and water conservation standards for commercial clothes washers on January 8, 2010... and water conservation standards and effective dates. (a) Each commercial clothes washer manufactured... Part 431 RIN 1904-AB93 Energy Conservation Program: Energy Conservation Standards for Certain...

  3. Energy and economic potential of maize straw used for biofuels production

    Directory of Open Access Journals (Sweden)

    Zbytek Zbyszek

    2016-01-01

    Full Text Available The paper presents the energy and economic comparison of two technologies of maize straw utilization: solid biofuel production (briquettes and methane fermentation. The research experiments have shown that maize straw is the material which can be efficiently implemented in both technologies. Maize straw usage as briquettes can generate more energy (10.956 GJ Mg−1 than methane fermentation (9.74. In Europe, biogas is used in co-generation units for production of electric and heat energy. Due to higher price of electricity, economic profitability of maize straw usage for biogas production is over twice higher (182 USD than in case of briquettes production (96 USD.

  4. Proceedings of the first Seattle workshop on incentives used to stimulate energy production

    Energy Technology Data Exchange (ETDEWEB)

    Cone, B.W. (ed.)

    1979-02-01

    The introductory paper of this workshop was an overview of report PNL-2410, an Analysis of Federal Incentives Used to Stimulate Energy Production; the next four papers critiqued the report. The next 28 presentations were from individuals or various workshop discussion groups on either incentives for solar energy development or for energy source development in general. A separate abstract was prepared for each.

  5. Microwave pretreatment of rape straw for bioethanol production: Focus on energy efficiency

    DEFF Research Database (Denmark)

    Lu, Xuebin; Xi, Bo; Zhang, Yimin;

    2011-01-01

    The energy efficiency of microwave-assisted dilute sulfuric acid pretreatment of rape straw for the production of ethanol was investigated. Different microwave energy inputs and solid loadings were tested to find economic pretreatment conditions. The lowest energy consumption was observed when so...

  6. Biomass storage for further energy use through biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Atem, A.D. [Instituto CEDIAC, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Instituto de Medio Ambiente, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Instituto de Energia, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas - CONICET, Mendoza (Argentina); Indiveri, M.E. [Instituto de Medio Ambiente, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Instituto de Energia, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Llamas, S. [Instituto de Medio Ambiente, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina)

    2010-06-15

    The present work approaches the residual biomass conservation for later digestion in an anaerobic batch reactor. Twenty 4 L capacity PET reactors were used. A measuring device was constructed to quantify the biogas production. As substrate were used tomato wastes from local industry and rumen fluid as inoculum. Digestion start up was able to be controlled by varying the temperature, during a period of 118 days was not verified biogas production. After re-inoculated with rumen fluid stabilized for 34 days, biogas production was verified. They were obtained 0.10 m{sup 3} of biogas per kilogram of volatile solids, with 50% of methane content. (author)

  7. DISAGGREGATE ENERGY CONSUMPTION AND TOTAL FACTOR PRODUCTIVITY: A COINTEGRATION AND CAUSALITY ANALYSIS FOR THE TURKISH ECONOMY.

    Directory of Open Access Journals (Sweden)

    Can Tansel Tugcu

    2013-01-01

    Full Text Available The aim of this study is to investigate the long and the short-run relationships between disaggregate energy consumption (i.e. alternative and nuclear, fossil and renewable and total factor productivity growth in the Turkish economy for the period 1970-2011. To this end, ARDL bounds testing approach to cointegration and the Dolado and Lütkepohl’s Granger causality analyses were employed. Results showed that disaggregate energy consumption is cointegrated to total factor productivity growth and there exists bi-directional causal relationships among the variables in consideration. Besides, findings revealed that the share of renewable energy consumption in total energy consumption is the only energy type which positively affects total factor productivity growth in the Turkish economy. This result implies that an improvement in the share of renewable energy consumption in total energy consumption is crucial for economic efficiency.

  8. Energy and economic analysis of sweet cherry production in Turkey: A case study from Isparta province

    Energy Technology Data Exchange (ETDEWEB)

    Demircan, Vecdi [Faculty of Agriculture, Department of Agricultural Economics, Suleyman Demirel University, Isparta 32260 (Turkey); Ekinci, Kamil [Faculty of Agriculture, Department of Agricultural Machinery, Suleyman Demirel University, Isparta 32260 (Turkey)]. E-mail: kekinci@ziraat.sdu.edu.tr; Keener, Harold M. [Department of Food, Agricultural, and Biological Engineering, Ohio Agricultural Research Centre, The Ohio State University, Wooster, Ohio 44691 (United States); Akbolat, Davut [Faculty of Agriculture, Department of Agricultural Machinery, Suleyman Demirel University, Isparta 32260 (Turkey); Ekinci, Caglar [Faculty of Civil Engineering, Infrastructure and Environment Department, Bauhaus University (Germany)

    2006-08-15

    A survey was conducted using a face to face questionnaire with 92 sweet cherry (Prunus avium L.) producers from 10 villages in five districts of the Isparta province where there is intensive sweet cherry production. The data collected was analyzed for the energy and economics of sweet cherry production. The results showed that the most energy consuming input for the different operations investigated was chemical fertilisers (45.35%), especially nitrogen (38.05%). The energy consumption for Diesel fuel was 21.53% of the total energy input. Although chemicals for plant protection had a small portion (1.45%) of the total energy input, the use of pesticide in sweet cherry production per hectare in the Isparta province was 5.36 times higher than that of Turkey's average, increasing the environmental risk problem. The energy use efficiency, defined as energy produced per unit of energy used, was 1.23. The specific energy of sweet cherry production was determined to be 3163.43 MJ tonnes{sup -1}. It was found that the direct and indirect energy inputs were 34.48% and 54.91% of the total energy input, respectively. Among the inputs, renewable energy sources constituted 16.34% of the total energy input, which was lower than that of the non-renewable resources (chemical fertilisers and Diesel fuel). The results showed that the net return from sweet cherry production in the surveyed farms was satisfactory, as demonstrated by the benefit-cost ratio of 2.53 calculated by dividing the gross value of production by the total cost of production per hectare.

  9. Soft particle production in very high energy hadron interactions

    Science.gov (United States)

    Ebr, Jan; Nečesal, Petr; Ridky, Jan

    2017-04-01

    Indications of a discrepancy between simulations and data on the number of muons in cosmic ray (CR) showers exist over a large span of energies. We focus in particular on the excess of multi-muon bundles observed by the DELPHI detector at LEP and on the excess in the muon number in general reported by the Pierre Auger Observatory. Even though the primary CR energies relevant for these experiments differ by orders of magnitude, we can find a single mechanism which can simultaneously increase predicted muon counts for both, while not violating constraints from accelerators or from the longitudinal shower development as observed by the Pierre Auger Observatory. We present a brief motivation and describe a practical implementation of such a model, based on the addition of soft particles to interactions above a chosen energy threshold. Results of an extensive set of simulations show the behavior of this model in various parts of a simplified parameter space.

  10. Soft Particle Production in Very High Energy Hadron Interactions

    CERN Document Server

    Ebr, Jan; Ridky, Jan

    2016-01-01

    Indications of a discrepancy between simulations and data on the number of muons in cosmic ray (CR) showers exist over a large span of energies. We focus in particular on the excess of multi-muon bundles observed by the DELPHI detector at LEP and on the excess in the muon number in general reported by the Pierre Auger Observatory. Even though the primary CR energies relevant for these experiments differ by orders of magnitude, we can find a single mechanism which can simultaneously increase predicted muon counts for both, while not violating constraints from accelerators or from the longitudinal shower development as observed by the Pierre Auger Observatory. We present a brief theoretical motivation and describe a practical implementation of such a model, based on the addition of soft particles to interactions above a chosen energy threshold. Results of an extensive set of simulations show the behavior of this model in various parts of a simplified parameter space.

  11. The Nuclear Alternative: Energy Production within Ulaanbaatar, Mongolia

    Science.gov (United States)

    Liodakis, Emmanouel Georgiou

    2011-06-01

    Over ninety percent of Mongolia's energy load is run through the Central Energy System. This primary grid provides Mongolia's capital, Ulaanbaatar, with the power it uses to function. In the first half of 2010 the Central Energy System managed 1739.45 million kWhs, a 4.6 percent increase from 2009. If this growth rate continues, by 2015 Ulaanbaatar's three power plants will be unable to generate enough heat and electricity to meet the city's needs. Currently, plans have been proposed to rehabilitate the aging coal power plants. However, rising maintenance costs and growing emission levels make the long-term sustainability of this solution uncertain. The following paper analyzes the capital, maintenance, and decommissioning costs associated with the current rehabilitation plans and compares them with a nuclear alternative.

  12. Assessment of the externalise of biomass energy for electricity production

    Energy Technology Data Exchange (ETDEWEB)

    Linares, P.; Leal, J.; Saez, R.M.

    1996-07-01

    This study presents a methodology for the quantification of the socioeconomic and environmental externalities of the biomass fuel cycle. It is based on the one developed by the ExternE Project of the European Commission, based in turm in the damage function approach, and which has been extended and modified for a better adaptation to biomass energy systems. The methodology has been applied to a 20 MW biomass power plant, fueled by Cynara cardunculus, in southern Spain. The externalities addressed have been macroeconomic effects, employment, CO2, fixation, erosion, and non-point source pollution. The results obtained should be considered only as subtotals, since there are still other externalities to be quantified. Anyway, and in spite of the uncertainty existing, these results suggest that the total cost (those including internal and external costs) of biomass energy are lower than those of conventional energy sources, what, if taken into account, would make biomass more competitive than it is now. (Author) 44 refs.

  13. Assessment of the externalities of biomass energy for electricity production

    Energy Technology Data Exchange (ETDEWEB)

    Linares, P.; Leal, J.; Saez, R.M.

    1996-10-01

    This study presents a methodology for the quantification of the socioeconomic and environmental externalities of the biomass fuel cycle. It is based on the one developed by the ExternE Project of the European Commission, based in turn in the damage function approach, and which has been extended and modified for a better adaptation to biomass energy systems. The methodology has been applied to a 20 MW biomass power plant, fueled by Cynara cardunculus, in southern Spain. The externalities addressed have been macroeconomic effects, employment, CO{sub 2}, fixation, erosion, and non-point source pollution. The results obtained should be considered only as subtotals, since there are still other externalities to be quantified. anyway, and in spite of the uncertainty existing, these results suggest that total cost (those including internal and external costs) of biomass energy are lower than those of conventional energy sources, what, if taken into account, would make biomass more competitive than it is now. (Author)

  14. Factorial estimation of energy requirement for egg production

    DEFF Research Database (Denmark)

    Chwalibog, André

    1992-01-01

    is different between protein and fat, the ME requirement was calculated as the sum of ME for maintenance and the partial requirements for protein, fat, and carbohydrate deposition. For practical applications, functions for prediction of protein (OP), fat (OF), and energy (OE) in eggs during the laying period...... efficiencies for energy retention in protein (Kop = .50), fat (Kof = .79), and carbohydrates (Koc = .79)] increased from .26 Mcal at 27 wk of age to .29 Mcal at 48 wk, corresponding to 5.93 and 6.07 Mcal/kg egg....

  15. Production, Delivery and Application of Vibration Energy in Healthcare

    Energy Technology Data Exchange (ETDEWEB)

    Abundo, Paolo; Trombetta, Chiara [Medical Engineering Service, Fondazione Policlinico Tor Vergata, Viale Oxford 81 - Roma (Italy); Foti, Calogero; Rosato, Nicola, E-mail: paolo.abundo@ptvonline.it [Tor Vergata University, Physical and Rehabilitation Medicine, Public Health Department, Via Montpellier 1 - Roma (Italy)

    2011-02-01

    In Rehabilitation Medicine therapeutic application of vibration energy in specific clinical treatments and in sport rehabilitation is being affirmed more and more.Vibration exposure can have positive or negative effects on the human body depending on the features and time of the characterizing wave. The human body is constantly subjected to different kinds of vibrations, inducing bones and muscles to actively modify their structure and metabolism in order to fulfill the required functions. Like every other machine, the body supports only certain vibration energy levels over which long term impairments can be recognized. As shown in literature anyway, short periods of vibration exposure and specific frequency values can determine positive adjustments.

  16. Energy star product specification development framework: Using data and analysis to make program decisions

    Energy Technology Data Exchange (ETDEWEB)

    McWhinney, Marla; Fanara, Andrew; Clark, Robin; Hershberg, Craig; Schmeltz, Rachel; Roberson, Judy

    2003-09-12

    The Product Development Team (PD) in the US Environmental Protection Agency's ENERGY STAR Labeling Program fuels the long-term market transformation process by delivering new specifications. PD's goal is to expand the reach and visibility of ENERGY STAR as well as the market for new energy-efficient products. Since 2000, PD has launched nine new ENERGY STAR specifications and continues to evaluate new program opportunities. To evaluate the ENERGY STAR carbon savings potential for a diverse group of products, PD prepared a framework for developing new and updating existing specifications that rationalizes new product opportunities and draws upon the expertise and resources of other stakeholders, including manufacturers, utilities, environmental groups and other government agencies. By systematically reviewing the potential of proposed product areas, PD makes informed decisions as to whether or not to proceed with developing a specification. In support of this strategy, PD ensures that new product specifications are consistent with the ENERGY STAR guidelines and that these guidelines are effectively communicated to stakeholders during the product development process. To date, the framework has been successful in providing consistent guidance on collecting the necessary information on which to base sound program decisions. Through the application of this framework, PD increasingly recognizes that each industry has unique market and product characteristics that can require reconciliation with the ENERGY STAR guidelines. The new framework allows PD to identify where reconciliation is needed to justify program decisions.

  17. Energy Analysis of the Danish Food Production System: Food-EROI and Fossil Fuel Dependency

    DEFF Research Database (Denmark)

    Markussen, Mads Ville; Østergård, Hanne

    2013-01-01

    Modern food production depends on limited natural resources for providing energy and fertilisers. We assess the fossil fuel dependency for the Danish food production system by means of Food Energy Returned on fossil Energy Invested (Food-EROI) and by the use of energy intensive nutrients from....... Furthermore, nutrients in commercial fertiliser and imported feed account for 84%, 90% and 90% of total supply of N, P and K, respectively. We conclude that the system is unsustainable because it is embedded in a highly fossil fuel dependent system based on a non-circular flow of nutrients. As energy and thus...... imported livestock feed and commercial fertilisers. The analysis shows that the system requires 221 PJ of fossil energy per year and that for each joule of fossil energy invested in farming, processing and transportation, 0.25 J of food energy is produced; 0.28 when crediting for produced bioenergy...

  18. Research on the Application of Energy Conservative Principal in Lining Design of Tunnel with V-class Surrounding Rock%能量守恒原理在吁级围岩隧道衬砌设计中的应用研究

    Institute of Scientific and Technical Information of China (English)

    胡磊; 王志杰; 许瑞宁; 马安震; 何晟亚

    2014-01-01

    There exists energy delivery and transformation in the closed surrounding rock - tunnel lining system during the process of tunnel construction. When thermal energy transformation is left out of consideration and the surrounding rock is treated as an elastic body, the release of static energy of surrounding rock equals the increase in the elastic strain energy of tunnel lining. According to this energy conservative principle, Liu Hongyan and other researchers[1 2] calculated the thickness of lining of single track tunnel subject to Ⅲ-class surrounding rock. Based on these research findings, this paper further studies the application of energy conservative principle in V-class tunnel lining design. V-class surrounding rock of the three-dimensional FLAC3D model is established, dynamically simulating the process of tunnel excavation. With MATLAB language to the program of elastic strain energy density function, elastic strain energy of each unit of solid model is obtained, thus, static energy curves of surrounding rock associated with excavation depth within the specific scope of monitoring surrounding rock are finally obtained. According to the above curves, we are able to obtain the release value of static energy of surrounding rock. Additionally, toughness tests of steel fiber reinforced concrete ( SFRC) members are conducted, which leads to the finding of the relationship between energy expenditure of SFRC trisection beam under critical conditions and that of SFRC tunnel lining. Thus, theoretical tunnel lining thickness can be defined by solving the energy equation deduced from the energy expenditure relationship, and proved to satisfy the safety requirements. The research results show that, the tunnel lining design method with energy conservative principles is no longer limited by the conditions of II,Ⅲ-class surrounding rock in small section tunnels, and it is also applicable to the lining design of large section tunnels with Ⅴ-class surrounding rock.%在

  19. Energy saving by soil insulation in greenhouse freesia production

    NARCIS (Netherlands)

    Helm, van der F.P.M.; Weel, van P.A.; Steenhuizen, J.W.; Zwart, de H.F.; Gelder, de A.

    2014-01-01

    This paper describes attempts to find practical methods for mulching in Freesia to prevent evaporation from the soil. If mulching could insulate soil not only for temperature, but also for evaporation, more energy might be saved. Two experi-ments at commercial greenhouses were done to test soil

  20. Direct photon production in high-energy nuclear collisions

    NARCIS (Netherlands)

    Peitzmann, T.

    2016-01-01

    Direct photons have always been considered a promising probe for the very early phases of high-energy nuclear collisions. Prompt photons reveal information about the initial state and its possible modifications in nuclei. In this context they should be one of the best probes for effects of gluon sat

  1. Energy Efficiency, Building Productivity and the Commercial Buildings Market

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.W.

    2002-05-16

    The energy-efficiency gap literature suggests that building buyers are often short-sighted in their failure to apply life-cycle costing principles to energy efficient building technologies, with the result that under investment in these advanced technology occurs. This study examines the reasons this behavior may occur, by analyzing the pressures that market forces place on purchasers of buildings. Our basic conclusion is that the fundamental manner in which the buildings sector does business creates pressures to reduce initial capital outlays and to hedge against a variety of risks, including the ability of building owners to capture benefits from energy efficiency. Starting from the position that building buyers' willingness to pay drives choices over building attributes, we examine basic market principles, the structure of the buildings market, including the role of lenders, and policies that promote penetration of energy efficient technologies. We conclude that greater attention to buyers, and to the incentives and constraints they face, would promote a better understanding of building investment choices and contribute to better policies to promote the penetration of these technologies into markets.

  2. NASA Products to Enhance Energy Utility Load Forecasting

    Science.gov (United States)

    Lough, G.; Zell, E.; Engel-Cox, J.; Fungard, Y.; Jedlovec, G.; Stackhouse, P.; Homer, R.; Biley, S.

    2012-01-01

    Existing energy load forecasting tools rely upon historical load and forecasted weather to predict load within energy company service areas. The shortcomings of load forecasts are often the result of weather forecasts that are not at a fine enough spatial or temporal resolution to capture local-scale weather events. This project aims to improve the performance of load forecasting tools through the integration of high-resolution, weather-related NASA Earth Science Data, such as temperature, relative humidity, and wind speed. Three companies are participating in operational testing one natural gas company, and two electric providers. Operational results comparing load forecasts with and without NASA weather forecasts have been generated since March 2010. We have worked with end users at the three companies to refine selection of weather forecast information and optimize load forecast model performance. The project will conclude in 2012 with transitioning documented improvements from the inclusion of NASA forecasts for sustained use by energy utilities nationwide in a variety of load forecasting tools. In addition, Battelle has consulted with energy companies nationwide to document their information needs for long-term planning, in light of climate change and regulatory impacts.

  3. Energy-, exergy- and emergy analysis of biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Hovelius, K.

    1997-11-01

    In this report, results from analyzing salix-, winter wheat-, and winter rape cultivations from energy, exergy, and EMERGY perspectives are presented. The exchange in terms of energy for this Salix cultivation is 28 times , but if instead an exergy analysis is done the exchange for exactly the same process is 36 times. The energy analysis gives an energy exchange of 8.1 for winter wheat cultivation, and 5.7 for winter rape cultivation. Corresponding exchanges for the exergy analysis are 9.3 for winter wheat and 6.6 for winter rape. The EMERGY analysis gives a transformity for salix of 1.04E+11 sej/kg DM, for winter wheat 3.85E+11 sej/kg DM, and for winter rape 1.03E+12 sej/kg DM. Thus, the EMERGY need is bigger for rape cultivation than for winter wheat and salix cultivations. The NEYR is the ratio between the EMERGY yield and the EMERGY invested from society (economy, services and other resources), and it is 1.10 for this salix cultivation, and 0.66 for both the winter wheat and the winter rape cultivations. The EIR is the ratio between the EMERGY invested from society and the EMERGY invested from the environment, and it is 2.23 for this salix cultivation, 11.5 for the winter wheat cultivation , and 11.8 for the winter rape cultivation. 26 refs, 11 figs, 25 tabs

  4. Environmental sustainable utilization of waste resources for energy production

    DEFF Research Database (Denmark)

    Fruergaard, Thilde

    for livscyklusvurderinger (LCA) af affaldsbaserede energiteknologier, samt undersøge hvorledes den sparede energi kan identificeres. Følgende faktorer blev identificeret som kritiske i forhold til at sikre gennemsigtighed og sammenhæng i LCA-studier af affaldssystemer: 1) definition af målsætning, 2) LCA-metodikken, 3...

  5. Energy product options for Eucalyptus species grown as short rotation woody crops

    Science.gov (United States)

    Donald Rockwood; Alan W. Rudie; Sally A. Ralph; J.Y. Zhu; Jerrold E. Winandy

    2008-01-01

    Eucalyptus species are native to Australia but grown extensively worldwide as short rotation hardwoods for a variety of products and as ornamentals. We describe their general importance with specific emphasis on existing and emerging markets as energy products and the potential to maximize their productivity as short rotation woody crops. Using experience in Florida...

  6. Development of Energy Models for Production Systems and Processes to Inform Environmentally Benign Decision-Making

    Science.gov (United States)

    Diaz-Elsayed, Nancy

    Between 2008 and 2035 global energy demand is expected to grow by 53%. While most industry-level analyses of manufacturing in the United States (U.S.) have traditionally focused on high energy consumers such as the petroleum, chemical, paper, primary metal, and food sectors, the remaining sectors account for the majority of establishments in the U.S. Specifically, of the establishments participating in the Energy Information Administration's Manufacturing Energy Consumption Survey in 2006, the non-energy intensive" sectors still consumed 4*109 GJ of energy, i.e., one-quarter of the energy consumed by the manufacturing sectors, which is enough to power 98 million homes for a year. The increasing use of renewable energy sources and the introduction of energy-efficient technologies in manufacturing operations support the advancement towards a cleaner future, but having a good understanding of how the systems and processes function can reduce the environmental burden even further. To facilitate this, methods are developed to model the energy of manufacturing across three hierarchical levels: production equipment, factory operations, and industry; these methods are used to accurately assess the current state and provide effective recommendations to further reduce energy consumption. First, the energy consumption of production equipment is characterized to provide machine operators and product designers with viable methods to estimate the environmental impact of the manufacturing phase of a product. The energy model of production equipment is tested and found to have an average accuracy of 97% for a product requiring machining with a variable material removal rate profile. However, changing the use of production equipment alone will not result in an optimal solution since machines are part of a larger system. Which machines to use, how to schedule production runs while accounting for idle time, the design of the factory layout to facilitate production, and even the

  7. World Energy Balance Outlook and OPEC Production Capacity: Implications for Global Oil Security

    OpenAIRE

    2012-01-01

    The imbalance between energy resource availability, demand, and production capacity, coupled with inherent economic and environmental uncertainties make strategic energy resources planning, management, and decision-making a challenging process. In this paper, a descriptive approach has been taken to synthesize the world’s energy portfolio and the global energy balance outlook in order to provide insights into the role of Organization of Petroleum Exporting Countries (OPEC) in maintaining “sta...

  8. Pulses Production Systems in Term of Energy Use Efficiency and Economical Analysis in Iran

    OpenAIRE

    Alireza Koocheki; Reza Ghorbani; Farzad Mondani; Yaser Alizade

    2011-01-01

    Energy analysis of agroecosystems seems to be a promising approach to assess environmental problems and their relations to sustainability. The aim of the present study was to compare bean, lentil, irrigated and dryland chickpea farms in terms of energy efficiency, energy productivity, benefit to cost ratio and the amount of renewable energy use. Data were collected from 18 bean, 27 lentil, 24 irrigated chickpea and 46 dryland chickpea growers, using a face-to-face questionnaire during 2010. T...

  9. Production of dimeson atoms in high-energy collisions

    Science.gov (United States)

    Afanasyev, L.; Gevorkyan, S.; Voskresenskaya, O.

    2017-04-01

    The production of two-meson electromagnetic bound states and free meson pairs π^+π^- , K^+K^- , π^+K^{∓} in relativistic collisions has been considered. It is shown that using of exact Coulomb wave functions for dimeson atom (DMA) allows one to calculate the yield of discrete states with the desired accuracy. The relative probabilities of production of DMA and meson pairs in the free state are estimated. The amplitude of DMA transition from 1 S to 2 P state, which is essential for the pionium Lamb shift measurements, has been obtained.

  10. Production of dimeson atoms in high-energy collisions

    Energy Technology Data Exchange (ETDEWEB)

    Afanasyev, L.; Gevorkyan, S.; Voskresenskaya, O. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2017-04-15

    The production of two-meson electromagnetic bound states and free meson pairs π{sup +}π{sup -}, K{sup +}K{sup -}, π{sup +}K{sup -+} in relativistic collisions has been considered. It is shown that using of exact Coulomb wave functions for dimeson atom (DMA) allows one to calculate the yield of discrete states with the desired accuracy. The relative probabilities of production of DMA and meson pairs in the free state are estimated. The amplitude of DMA transition from 1S to 2P state, which is essential for the pionium Lamb shift measurements, has been obtained. (orig.)

  11. Energy resources' utilization in organic and conventional vineyards: Energy flow, greenhouse gas emissions and biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Kavargiris, Stefanos E.; Mamolos, Andreas P.; Nikolaidou, Anna E.; Kalburtji, Kiriaki L. [Laboratory of Ecology and Environmental Protection, Faculty of Agriculture, Aristotle University of Thessaloniki, 541 24 Thessaloniki (Greece); Tsatsarelis, Constantinos A. [Laboratory of Agricultural Engineering, Faculty of Agriculture, Aristotle University of Thessaloniki, 541 24 Thessaloniki (Greece)

    2009-09-15

    An energy analysis, in conventional and organic vineyards, combined with ethanol production and greenhouse gas emissions, is useful in evaluating present situation and deciding best management strategies. The objective of this study was to evaluate the differences in the energy flow between organic and conventional vineyards in three locations, to calculate CO{sub 2}, CH{sub 4} and N{sub 2}O-emissions based on the used fossil energy and to explore if wine industry wastes can be used to extract bioethanol. The data were collected through personal interviews with farmers during 2004-2005. Eighteen farmers, who owned vineyards about 1 ha each, were randomly selected to participate in this study [(3 conventional and 3 organic) x 3 locations]. The means averaged over all locations for fertilizer application, plant protection products application, transportation, harvesting, labor, machinery, fuels, plant protections products and tools energy inputs, total energy inputs, outputs (grapes), outputs (grapes + shoots), grape yield, man hour, pomace and ethanol from pomace were significantly higher in conventional than in organic vineyards, while the opposite occurred for the pruning. Means averaged over two farming systems for harvesting, tools energy inputs, energy outputs (grapes), grape yield, pomace and ethanol from pomace were significantly higher at location A, followed by location C and location B. Finally, for irrigation, the means averaged over the two farming systems were significantly lower at location C. Greenhouse gas emissions were significant lower in organic than in conventional vineyards. The results show a clear response of energy inputs to energy outputs that resulted from the farming system and location. (author)

  12. The Potential for Biomass District Energy Production in Port Graham, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Charles Sink, Chugachmiut; Keeryanne Leroux, EERC

    2008-05-08

    This project was a collaboration between The Energy & Environmental Research Center (EERC) and Chugachmiut – A Tribal organization Serving the Chugach Native People of Alaska and funded by the U.S. Department of Energy (DOE) Tribal Energy Program. It was conducted to determine the economic and technical feasibility for implementing a biomass energy system to service the Chugachmiut community of Port Graham, Alaska. The Port Graham tribe has been investigating opportunities to reduce energy costs and reliance on energy imports and support subsistence. The dramatic rise in the prices of petroleum fuels have been a hardship to the village of Port Graham, located on the Kenai Peninsula of Alaska. The Port Graham Village Council views the forest timber surrounding the village and the established salmon industry as potential resources for providing biomass energy power to the facilities in their community. Benefits of implementing a biomass fuel include reduced energy costs, energy independence, economic development, and environmental improvement. Fish oil–diesel blended fuel and indoor wood boilers are the most economical and technically viable options for biomass energy in the village of Port Graham. Sufficient regional biomass resources allow up to 50% in annual heating savings to the user, displacing up to 70% current diesel imports, with a simple payback of less than 3 years for an estimated capital investment under $300,000. Distributive energy options are also economically viable and would displace all imported diesel, albeit offering less savings potential and requiring greater capital. These include a large-scale wood combustion system to provide heat to the entire village, a wood gasification system for cogeneration of heat and power, and moderate outdoor wood furnaces providing heat to 3–4 homes or community buildings per furnace. Coordination of biomass procurement and delivery, ensuring resource reliability and technology acceptance, and arbitrating

  13. Life cycle energy efficiency and environmental impact assessment of bioethanol production from sweet potato based on different production modes.

    Science.gov (United States)

    Zhang, Jun; Jia, Chunrong; Wu, Yi; Xia, Xunfeng; Xi, Beidou; Wang, Lijun; Zhai, Youlong

    2017-01-01

    The bioethanol is playing an increasingly important role in renewable energy in China. Based on the theory of circular economy, integration of different resources by polygeneration is one of the solutions to improve energy efficiency and to reduce environmental impact. In this study, three modes of bioethanol production were selected to evaluate the life cycle energy efficiency and environmental impact of sweet potato-based bioethanol. The results showed that, the net energy ratio was greater than 1 and the value of net energy gain was positive in the three production modes, in which the maximum value appeared in the circular economy mode (CEM). The environment emission mainly occurred to bioethanol conversion unit in the conventional production mode (CPM) and the cogeneration mode (CGM), and eutrophication potential (EP) and global warming potential (GWP) were the most significant environmental impact category. While compared with CPM and CGM, the environmental impact of CEM significantly declined due to increasing recycling, and plant cultivation unit mainly contributed to EP and GWP. And the comprehensive evaluation score of environmental impact decreased by 73.46% and 23.36%. This study showed that CEM was effective in improving energy efficiency, especially in reducing the environmental impact, and it provides a new method for bioethanol production.

  14. Strategic importance of the energy independent production; Importancia estrategica da producao independente de energia

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Antonio; Neves, Luis [CENEL - Elecricidade do Centro, S.A., Coimbra (Portugal)

    1999-07-01

    This paper studies the independent energy production in Portugal, referring to the main instruments which defined the legal scenery and are stimulating the construction of various power production units. The CENEL independent production is considered by analyzing the connection of independent production systems to the public network, under the present legal aspects and establishing perspectives under the new regulation. A synthesis of the independent production sector is proceeded considering advantages and disadvantages and opportunities resulting from the independent production systems connection, analyzing the independent production interaction with others systems connected to the framework.

  15. Biomass and multi-product crops for agricultural and energy production - an AGE analysis

    NARCIS (Netherlands)

    Ignaciuk, A.; Dellink, R.B.

    2006-01-01

    By-products from agriculture and forestry can contribute to production of clean and cheap (bio)electricity. To assess the role of such multi-product crops in the response to climate policies, we present an applied general equilibrium model with special attention to biomass and multi-product crops.

  16. Energy and economic analysis of greenhouse strawberry production in Tehran province of Iran

    Energy Technology Data Exchange (ETDEWEB)

    Banaeian, Narges; Omid, Mahmoud; Ahmadi, Hojat [Department of Agricultural Machinery Engineering, School of Agriculture and Natural Resources, University of Tehran, Karaj (Iran, Islamic Republic of)

    2011-02-15

    The aims of this study were to determine energy use pattern, to investigate the energy use efficiency, and to make an economical analysis in greenhouse strawberry production in Iran. Data used in this study were obtained from 25 greenhouse strawberry growers using a face to face questionnaire method. The results indicate that greenhouse strawberry production consumed a total energy of 121891.33 MJ ha{sup -1}. About 78% of this was generated by diesel fuel, 10% from chemical fertilizers, and 4.5% from electricity. Energy ratio, specific energy, net energy and energy intensiveness of greenhouse strawberry production were 0.15, 12.55 MJ kg{sup -1}, -683488.37 MJ ha{sup -1} and 8.18 MJ {sup -1}, respectively. Determination of the efficient allocation of energy resources were modeled by Cobb-Douglas production function. Econometric model evaluation showed the impact of human labor, fertilizers, installation of equipment and transportation costs for strawberry production were all significant at 1% level. The elasticity estimates indicated that among the cost inputs, transportation is the most important input (-0.75) that influences total cost of production, followed by labor (0.31), fertilizers (0.18) and installation of equipments (0.22). The benefit-cost ratio and net return were obtained as 1.74 and 151907.91 ha{sup -1}, respectively. (author)

  17. The global contribution of energy consumption by product exports from China.

    Science.gov (United States)

    Tang, Erzi; Peng, Chong

    2017-06-01

    This paper presents a model to analyze the mechanism of the global contribution of energy usage by product exports. The theoretical analysis is based on the perspective that contribution estimates should be in relatively smaller sectors in which the production characteristics could be considered, such as the productivity distribution for each sector. Then, we constructed a method to measure the global contribution of energy usage. The simple method to estimate the global contribution is the percentage of goods export volume compared to the GDP as a multiple of total energy consumption, but this method underestimates the global contribution because it ignores the structure of energy consumption and product export in China. According to our measurement method and based on the theoretical analysis, we calculated the global contribution of energy consumption only by industrial manufactured product exports in a smaller sector per industry or manufacturing sector. The results indicated that approximately 42% of the total energy usage in the whole economy for China in 2013 was contributed to foreign regions. Along with the primary products and service export in China, the global contribution of energy consumption for China in 2013 by export was larger than 42% of the total energy usage.

  18. Energy and materials flows in the production of liquid and gaseous oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Shen, S.; Wolsky, A.M.

    1980-08-01

    Liquid and gaseous oxygen is produced in an energy-intensive air separation processo that also generates nitrogen. More than 65% of the cost of oxygen is attributable to energy costs. Energy use and materials flows are analyzed for various air separation methods. Effective approaches to energy and material conservation in air separation plants include efficient removal of contaminants (carbon dioxide and water), centralization of air products user-industries so that large air separation plants are cost-effective and the energy use in transportation is minimized, and increased production of nitrogen. Air separation plants can produce more than three times more nitrogen than oxygen, but present markets demand, at most, only 1.5 times more. Full utlization of liquid and gaseous nitrogen should be encouraged, so that the wasted separation energy is minimized. There are potential markets for nitrogen in, for example, cryogenic separation of metallic and plastic wastes, cryogenic particle size reduction, and production of ammonia for fertilizer.

  19. Success factors for the acceptance of renewable energy production plants; Erfolgsfaktoren fuer die Akzeptanz von Erneuerbare-Energie-Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Goetz [Zuerich Univ. (Switzerland). Lehrstuhl Sozialpsychologie; Krauter, Sven; Schwenzer, Andreas [The Advisory House GmbH, Muenchen (Germany)

    2011-03-15

    The majority of the German population is in support of the expansion of renewable energies. However, when it comes to construction work, project developers often meet with fierce opposition from the local population. One success factor in raising local acceptance of renewable energy production plants lies in planning projects such that citizens' interests and concerns are taken into account and well-conceived means of public participation are provided. Moreover, municipalities themselves can take on a pivotal role by becoming actively involved in the planning and development process and advertising renewable energy as a way towards municipal emancipation. This gives citizens less reasons to make a stand against such projects.

  20. Integration of energy, GHG and economic accounting to optimize biogas production based on co-digestion

    DEFF Research Database (Denmark)

    Fitamo, Temesgen; Boldrin, Alessio; Raj Baral, Khagendra

    Several countries have set a number of targets to boost energy production from renewable sources. Biogas production is expected to increase significantly over the next few decades and to play an important role in future energy systems. To achieve these ambitious targets, the biogas production has...... to be improved. The economic and environmental performances of the biogas chain must be optimised to ensure viable and sustainable solutions. Different types of feedstock materials will have to be considered, including agricultural residues, agro-industrial residues and, to some extent, dedicated energy crops...... of increased energy production. However, the profitability of biogas production is negatively affected when utilising SB, because of the increased costs involved in feedstock supply. The scale of the processing plant is neutral in terms of profitability when SB is added. The results indicate that medium...

  1. Integration of energy, GHG and economic accounting to optimize biogas production based on co-digestion

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Boldrin, Alessio; Baral, Khagendra Raj

    2015-01-01

    Several countries have set a number of targets to boost energy production from renewable sources. Biogas production is expected to increase significantly over the next few decades and to play an important role in future energy systems. To achieve these ambitious targets, the biogas production has...... to be improved. The economic and environmental performances of the biogas chain must be optimised to ensure viable and sustainable solutions. Different types of feedstock materials will have to be considered, including Agricultural residues, agro-industrial residues and, to some extent, dedicated energy crops...... of increased energy production. However, the profitability of biogas production is negatively affected when utilising SB, because of the increased costs involved in feedstock supply. The scale of the processing plant is neutral in terms of profitability when SB is added. The results indicate that medium...

  2. Integration of energy, GHG and economic accounting to optimize biogas production based on co-digestion

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Boldrin, Alessio; Baral, Khagendra Raj

    Several countries have set a number of targets to boost energy production from renewable sources. Biogas production is expected to increase significantly over the next few decades and to play an important role in future energy systems. To achieve these ambitious targets, the biogas production has...... to be improved. The economic and environmental performances of the biogas chain must be optimised to ensure viable and sustainable solutions. Different types of feedstock materials will have to be considered, including Agricultural residues, agro-industrial residues and, to some extent, dedicated energy crops...... of increased energy production. However, the profitability of biogas production is negatively affected when utilising SB, because of the increased costs involved in feedstock supply. The scale of the processing plant is neutral in terms of profitability when SB is added. The results indicate that medium...

  3. Energy recovery from solid waste. [production engineering model

    Science.gov (United States)

    Dalton, C.; Huang, C. J.

    1974-01-01

    A recent group study on the problem of solid waste disposal provided a decision making model for a community to use in determining the future for its solid waste. The model is a combination of the following factors: technology, legal, social, political, economic and environmental. An assessment of local or community needs determines what form of energy recovery is desirable. A market for low pressure steam or hot water would direct a community to recover energy from solid waste by incineration to generate steam. A fuel gas could be produced by a process known as pyrolysis if there is a local market for a low heating value gaseous fuel. Solid waste can also be used directly as a fuel supplemental to coal in a steam generator. An evaluation of these various processes is made.

  4. Improvement of Wind Energy Production through HVDC Systems

    Directory of Open Access Journals (Sweden)

    Morris Brenna

    2017-01-01

    Full Text Available Variable and non-programmable resources, such as solar and wind, have undergone a stunning growth in recent years and are likely to gain even more importance in the future. Their strong presence in the national electricity mix has created issues in many countries regarding the secure operation of the power system. In order to guarantee the stability of the system, several TSOs have resorted to wind energy curtailment, which represents a waste of clean energy and an economic loss. In order to analyze this issue, a model of the Italian power system was developed, a program able to simulate the electricity dispatching mechanism. The model was, then, used to evaluate possible solutions to reduce wind curtailment. In particular, a proposal for the construction of an HVDC line linking Southern and Northern Italy was studied.

  5. Energy recovery from solid waste. [production engineering model

    Science.gov (United States)

    Dalton, C.; Huang, C. J.

    1974-01-01

    A recent group study on the problem of solid waste disposal provided a decision making model for a community to use in determining the future for its solid waste. The model is a combination of the following factors: technology, legal, social, political, economic and environmental. An assessment of local or community needs determines what form of energy recovery is desirable. A market for low pressure steam or hot water would direct a community to recover energy from solid waste by incineration to generate steam. A fuel gas could be produced by a process known as pyrolysis if there is a local market for a low heating value gaseous fuel. Solid waste can also be used directly as a fuel supplemental to coal in a steam generator. An evaluation of these various processes is made.

  6. Neutrino induced coherent single pion production at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Nahnhauer, R. (Institut fuer Hochenergiephysik, Zeuthen (Germany, F.R.))

    1991-04-01

    Available data about coherent single pion production in charged and neutral current reactions are reviewed and compared to the results of two corresponding models. A comparison of the axialvector-isovector coupling constant /{beta}/ derived in different experiments is given. Agreement is found between them and the prediction of the Standard Model. Possible new information from future analyses is mentioned. (orig.).

  7. Radiative Corrections to $W$ Pair Production at High Energies

    CERN Document Server

    Anlauf, H; Himmler, A; Manakos, P; Mannel, T

    1993-01-01

    Radiative Corrections to $W$ Pair Production and effects of finite width of the $W$ bosons are studied using the Monte Carlo {\\tt WOPPER}. As an example the influence of QED radiative corrections on the reconstruction of the $W$ helicities at LEP 200 and a future 500 GeV $e^+ e^-$ collider is discussed.

  8. Characterization of Woodchips for Energy from Forestry and Agroforestry Production

    Directory of Open Access Journals (Sweden)

    Rodolfo Picchio

    2012-09-01

    Full Text Available We set out to determine the particle-size distribution, the fiber, the bark and the leaves content, the heating value, the CNH and the ash content of a wide sample of wood chips, collected from 10 forestry and 10 agroforestry production sources. This sampling focused on two main production types: forestry (Full Tree System—FTS—and logging residues—LR and agroforestry (Short Rotation Coppice—SRC. For the forestry production wood chips from coniferous and broadleaf species were considered. For the agroforestry production wood chips from poplar plantations were examined (different clones with two different harvesting intervals. Overall, we collected 400 samples. Particle size distribution was determined with an automatic screening device on 200 samples. The higher heating value was determined on 200 subsamples using an adiabatic bomb calorimeter. The CNH and the ash content was ascertained on another 200 subsamples. FTS and SRC (with three year old sprouts offered the best quality, with high fiber content (71%–80%, favorable particle-size distribution and good energetic parameters. On the contrary, both logging residues and SRC (with two year old sprouts presented a high bark content (18%–27% and occasionally a mediocre particle-size distribution, being often too rich in fines (6%–12%, but the energetic parameters are in the normal range.

  9. Reverse flow catalytic membrane reactors for energy efficient syngas production

    NARCIS (Netherlands)

    Smit, Joris

    2006-01-01

    To improve the recuperative heat exchange, a Reverse Flow Catalytic Membrane Reactor (RFCMR) with porous membranes is proposed in this thesis, in which very efficient heat exchange between the feed and product streams is achieved by using the reverse flow concept (i.e. periodic alternation of the

  10. MAGNETIC ENERGY PRODUCTION BY TURBULENCE IN BINARY NEUTRON STAR MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    Zrake, Jonathan; MacFadyen, Andrew I. [Center for Cosmology and Particle Physics, Physics Department, New York University, New York, NY 10003 (United States)

    2013-06-01

    The simultaneous detection of electromagnetic and gravitational wave emission from merging neutron star binaries would greatly aid in their discovery and interpretation. By studying turbulent amplification of magnetic fields in local high-resolution simulations of neutron star merger conditions, we demonstrate that magnetar-level ({approx}> 10{sup 16} G) fields are present throughout the merger duration. We find that the small-scale turbulent dynamo converts 60% of the randomized kinetic energy into magnetic fields on a merger timescale. Since turbulent magnetic energy dissipates through reconnection events that accelerate relativistic electrons, turbulence may facilitate the conversion of orbital kinetic energy into radiation. If 10{sup -4} of the {approx}10{sup 53} erg of orbital kinetic available gets processed through reconnection and creates radiation in the 15-150 keV band, then the fluence at 200 Mpc would be 10{sup -7} erg cm{sup -2}, potentially rendering most merging neutron stars in the advanced LIGO and Virgo detection volumes detectable by Swift BAT.

  11. Magnetic energy production by turbulence in binary neutron star mergers

    CERN Document Server

    Zrake, Jonathan

    2013-01-01

    The simultaneous detection of electromagnetic and gravitational wave emission from merging neutron star binaries would aid greatly in their discovery and interpretation. By studying turbulent amplification of magnetic fields in local high-resolution simulations of neutron star merger conditions, we demonstrate that magnetar-level (~10^16) G fields are present throughout the merger duration. We find that the small-scale turbulent dynamo converts 60% of the randomized kinetic energy into magnetic fields on a merger time scale. Since turbulent magnetic energy dissipates through reconnection events which accelerate relativistic electrons, turbulence may facilitate the conversion of orbital kinetic energy into radiation. If 10^-4 of the ~ 10^53 erg of orbital kinetic available gets processed through reconnection, and creates radiation in the 15-150 keV band, then the fluence at 200 Mpc would be 10^-7 erg/cm^2, potentially rendering most merging neutron stars in the advanced LIGO and Virgo detection volumes detecta...

  12. Energy production and consumption prediction and their response to environment based on coupling model in China

    Institute of Scientific and Technical Information of China (English)

    LI Qiang; REN Zhiyuan

    2012-01-01

    The paper presents the prediction of total energy production and consumption in all provinces and autonomous regions as well as determination of the variation of gravity center of the energy production,consumption and total discharge of industrial waste water,gas and residue of China via the energy and environmental quality data from 1978 to 2009 in China by use of GM(1,1) model and gravity center model,based on which the paper also analyzes the dynamic variation in regional difference in energy production,consumption and environmental quality and their relationship.The results are shown as follows.1) The gravity center of energy production is gradually moving southwestward and the entire movement track approximates to linear variation,indicating that the difference of energy production between the east and west,south and north is narrowing to a certain extent,with the difference between the east and the west narrowing faster than that between the south and the north.2) The gravity center of energy consumption is moving southwestward with perceptible fluctuation,of which the gravity center position from 2000 to 2005 was relatively stable,with slight annual position variation,indicating that the growth rates of all provinces and autonomous regions are basically the same.3) The gravity center of the total discharge of industrial waste water,gas and residue is characterized by fluctuation in longitude and latitude to a certain degree.But,it shows a southwestward trend on the whole.4) There are common ground and discrepancy in the variation track of the gravity center of the energy production & consumption of China,and the comparative analysis of the gravity center of them and that of total discharge of industrial waste water,gas and residue shows that the environmental quality level is closely associated with the energy production and consumption (especially the energy consumption),indicating that the environment cost in economy of energy is higher in China.

  13. Consumer response to product-integrated energy feedback: behavior, goal level shifts, and energy conservation

    NARCIS (Netherlands)

    McCalley, L.T.; Vries, de Peter W.; Midden, Cees J.H.

    2011-01-01

    Results of recent experiments suggest that interactive control panels of individual appliances can be used to stimulate energy saving behavior by offering the means for consumers to set a goal and receive immediate energy use feedback. The underlying source of the behavioral response, however, remai

  14. 77 FR 38743 - Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Battery...

    Science.gov (United States)

    2012-06-29

    ... for Battery Chargers and External Power Supplies AGENCY: Office of Energy Efficiency and Renewable... proposed rulemaking to establish energy conservation standards for battery chargers and external power... Standards for Battery Chargers and External Power Supplies'') and provide the appropriate docket number...

  15. Production and Energy Partition of Lactating Dairy Goats Fed Rations Containing Date Fruit Waste

    Directory of Open Access Journals (Sweden)

    E. Yuniarti

    2016-04-01

    Full Text Available Dates fruit waste (DFW is a by-product of dates juice industry that contains high energy. So, it is suitable for an energy source in dairy goat ration. This study was conducted to observe the effect of DFW utilization in the ration on energy partition and productivity of lactating dairy goats. The experimental design was randomized block design using 9 primiparous lactating dairy goats. There were three types of ration as treatments used in this study, i.e. R0= 35% forage + 65% concentrate, R1= 35% forage + 55% concentrate + 10% DFW, and R2= 35% forage + 45% concentrate + 20% DFW. Data were analyzed using ANOVA and polynomial orthogonal test. The evaluated variables were dry matter intake (DMI, energy partition including energy intake, digestible and metabolizable energy, fecal and urine energy, energy in methane gas, and energy in milk, milk production and quality. The results showed that the linear decreased of DMI, energy intake, digestible energy, metabolizable energy, and urine energy with the increased of DFW level in the rations. The use of 10% DFW (R1 showed the lowest energy loss through feces and methane gas of all treatments about 1089.57 kcal/head/d and 2.36 kcal/head/d, respectively. The use of DFW did not affect energy retention in milk. The utilization of DFW in ration did not significantly prevent the decline of milk production and milk quality. It can be concluded that DFW can be used as an alternative feed for the lactating dairy goat up to 10% in the ration.

  16. A comparative analysis of environmental impacts of non-fossil energy production methods

    Directory of Open Access Journals (Sweden)

    Kiss Adam

    2014-01-01

    Full Text Available The widespread proliferation of other then fossil based energy production methods is a development, which inevitable comes in the next future. It is proven that the photovoltaic conversion or the use of heat of Sun radiation, the water energy, the utilization of the wind, the biomass production, the use of geothermal energy can all produce big amounts of energy for human use. In addition, the nuclear energy from fission is a technology, which has already long history and is widely used. However, these all, like the fossil energy sources, have great impacts on the environment. Nevertheless, the comparison of the environmental effects of these alternative energy sources is not easy. The effects are of considerable different natures and their spatial and the time distributions vary on large scales. The present work overviews the principles and the methodological prerequisites of performing a comparative analysis of the environmental effects for the non-fossil energy production methods. After establishing the basic principles for comparison, we shall go through all the non-fossil energy sources and analyze the most important environmental impacts of each energy production method. In conclusion, the comparison of the environmental effects will be discussed.

  17. Study of renewable energy, fuel cell and demotics integration for stationary energy production

    Energy Technology Data Exchange (ETDEWEB)

    Andaloro, L.; Ferraro, M.; Sergi, F.; Brunaccini, G.; Antonucci, V. [National Research Inst., Messina (Italy)

    2009-07-01

    This paper described a study in which a small house equipped with various renewable technologies was modelled. The aim of the study was to evaluated the integration of fuel cells with various other energy sources. Technologies installed in the house included a photovoltaic (PV) system; a hydrogen system; fuel cells; a battery-storage system; and a thermal solar panel. Maximum energy savings were evaluated for different configurations and combinations of the installed energy sources. A domotic system was also used to automatically control the use of electrical appliances and improve safety and comfort. An energy side management system was designed and compared with a demand side management system. Various scenarios were simulated in order to test the energy management systems in relation to the automated domotic system.

  18. Daqing Petrochemical Adopted Technology of Agglomeration New Energy Saving Production%Daqing Petrochemical Adopted Technology of Agglomeration New Energy Saving Production

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    To reduce energy consumption of equipment and exhaust emission to the uttermost, Daqing Petrochemical Company has developed pre-agglomeration production flow successfully and confirmed an optimized energy-saving method of differential pressure agglomeration. For a long time, BR equipment of 80,000 tons per year in Daqing Petrochemical Company have been adopting general isobaric technology and elutriation method to separate polymer and solvent, which caused over 10 tons of steam per ton of rubber and restricted the energy conservation and emission reduction of the enterprise.

  19. Production of electroweak bosons in e+e- annihilation at high energies

    CERN Document Server

    Ermolaev, B I; Troyan, S I

    2002-01-01

    Production of electroweak bosons in e+e- annihilation into quarks and into leptons at energies much greater than 100 Gev is considered. We account for double-logarithmic contributions to all orders in electroweak couplings. It is assumed that the bosons are emitted in the multi-Regge kinematics. The explicit expressions for the scattering amplitudes of the process are obtained. It is shown that the cross sections of the photon and Z production have the identical energy dependence and asymptotically their ratio depends only on the Weinberg angle whereas the energy dependence of the cross section of the W production is suppressed by factor s^{-0.4} compared to them.

  20. Do the Czech Production Plants Measure the Performance of Energy Processes?

    Directory of Open Access Journals (Sweden)

    Zuzana Tučková

    2016-04-01

    Full Text Available The research was focused to the actual situation in Performance Measurement of the energy processes in Czech production plants. The results are back – upped by the previous researches which were aimed to performance measurement methods usage in the whole organizational structure of the plants. Although the most of big industrial companies declared using of modern Performance Measurements methods, the previous researches shown that it is not purely true. The bigger differences were found in the energy area – energy processes. The authors compared the Energy concepts of European Union (EU and Czech Republic (CZ which are very different and do not create any possibilities for manager’s clear decision in the process management strategy of energy processes in their companies. Next step included the Energy department’s analysis. The significant part of energy processes in the production plants is still not mapped, described and summarized to one methodical manual for managing and performance measurement.

  1. AN INVESTIGATION OF THE APPLICABILITY OF SOFTWARE PRODUCT LINE ENGINEERING FOR ENERGY AND COST-EFFICIENT GREENHOUSE PRODUCTION

    DEFF Research Database (Denmark)

    Mærsk-Møller, Hans Martin

    Software product line engineering (SPLE) has shown promising results with respect to software reuse and has a wide range of benefits. Thus, we want to investigate the applicability of SPLE to develop tools for improving the energy and cost-efficiency of greenhouse production in Denmark...... control concept, called DynaLight, which reduces the energy consumption and cost by optimizing the use of the supplementary light in greenhouses. As the DynaLight concept can be used to analyze, plan and control production, a tool suite has to be developed. The need for developing multiple tools...... context especially with respect to small teams, it reports on the experience and describes the application in a detailed and tangible way. It describes the development process, the results of the tools with respect to cost and energy-efficiency, how component-based architecture is utilized as software...

  2. High energy effects in multi-jet production at LHC

    CERN Document Server

    Caporale, F; Chachamis, G; Gomez, D Gordo; Murdaca, B; Vera, A Sabio

    2016-01-01

    We study differential cross sections for the production of three and four jets in multi-Regge kinematics, the main interest lying on azimuthal angle dependences. The theoretical setup is the jet production from a single BFKL ladder with a convolution of two/three BFKL Green functions, where two forward/backward jets are always tagged in the final state. Furthermore, we require the tagging of one/two further jets in more central regions of the detectors with a relative separation in rapidity. We found, as result, that the dependence on transverse momenta and rapidities of the central jets can be considered as a distinct signal of the onset of BFKL dynamics.

  3. Charmonium production in polarized high-energy collisions

    Energy Technology Data Exchange (ETDEWEB)

    Klasen, M.; Kniehl, B.A.; Mihaila, L.N.; Steinhauser, M. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2003-06-01

    We investigate the inclusive production of prompt J/{psi} mesons in polarized hadron-hadron, photon-hadron, and photon-photon collisions in the factorization formalism of nonrelativistic quantum chromodynamics (NRQCD) providing all contributing partonic cross sections in analytic form. In the case of photoproduction, we also include the resolved-photon contributions. We present numerical results appropriate for BNL RHIC-Spin, the approved SLAC fixed-target experiment E161, and the e{sup +}e{sup -} and {gamma}{gamma} modes of TESLA. Specifically, we assess the feasibility to access the spin-dependent parton distributions in the polarized proton and photon. We also point out that preliminary data on J/{psi} inclusive production taken by the PHENIX Collaboration in unpolarized proton-proton collisions at RHIC tends to favor the NRQCD factorization hypothesis, while it significantly overshoots the theoretical prediction of the color-singlet model at large values of transverse momentum. (orig.)

  4. Strange hadron production at SIS energies: an update from HADES

    Science.gov (United States)

    Lorenz, M.; Adamczewski-Musch, J.; Arnold, O.; Atomssa, E. T.; Behnke, C.; Berger-Chen, J. C.; Biernat, J.; Blanco, A.; Blume, C.; Böhmer, M.; Bordalo, P.; Chernenko, S.; Deveaux, C.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O.; Fonte, P.; Franco, C.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gill, K.; Golubeva, M.; Guber, F.; Gumberidze, M.; Harabasz, S.; Hennino, T.; Hlavac, S.; Höhne, C.; Holzmann, R.; Ierusalimov, A.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Kardan, B.; Koenig, I.; Koenig, W.; Kolb, B. W.; Korcyl, G.; Kornakov, G.; Kotte, R.; Krása, A.; Krebs, E.; Kuc, G.; Kugler, A.; Kunz, T.; Kurepin, A.; Kurilkin, A.; Kurilkin, P.; Ladygin, V.; Lalik, R.; Lapidus, K.; Lebedev, A.; Lopes, L.; Mahmoud, T.; Maier, L.; Mangiarotti, A.; Markert, J.; Metag, V.; Michel, J.; Müntz, C.; Münzer, R.; Naumann, L.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Petousis, V.; Pietraszko, J.; Przygoda, W.; Ramstein, B.; Rehnisch, L.; Reshetin, A.; Rost, A.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Scheib, T.; Schmidt-Sommerfeld, K.; Schuldes, H.; Sellheim, P.; Siebenson, J.; Silva, L.; Sobolev, Yu. G.; Spataro, S.; Ströbele, H.; Stroth, J.; Strzempek, P.; Sturm, C.; Svoboda, O.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Tsertos, H.; Vasiliev, T.; Wagner, V.; Wendisch, C.; Wirth, J.; Wüstenfeld, J.; Zanevsky, Y.; Zumbruch, P.

    2016-01-01

    We present and discuss recent experimental activities of the HADES collaboration on open and hidden strangeness production close or below the elementary NN threshold. Special emphasis is put on the feed-down from ϕ mesons to antikaons, the presence of the Ξ- excess in cold nuclear matter and the comparison of statistical model rates to elementary p+p data. The implications for the interpretation of heavy-ion data are discussed as well.

  5. Biodiesel Fuel Production from Algae as Renewable Energy

    OpenAIRE

    Sharif Hossain, A.B.M.; Aishah Salleh; Amru Nasrulhaq Boyce; Partha chowdhury; Mohd Naqiuddin

    2008-01-01

    Biodiesel is biodegradable, less CO2 and NOx emissions. Continuous use of petroleum sourced fuels is now widely recognized as unsustainable because of depleting supplies and the contribution of these fuels to the accumulation of carbon dioxide in the environment. Renewable, carbon neutral, transport fuels are necessary for environmental and economic sustainability. Algae have emerged as one of the most promising sources for biodiesel production. It can be inferred that algae grown in CO...

  6. Antideuteron production in high energy heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Nagle, J.L.; Kumar, B.S.; Bennett, M.J.; Coe, S.D.; Diebold, G.E.; Pope, J.K. (A.W. Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520-8124 (United States)); Jahns, A.; Sorge, H. (Institut fuer Theoretische Physik, 60054 Frankfurt am Main 11, (Germany))

    1994-10-31

    Experiment E858 at the Brookhaven National Laboratory Alternating Gradient Synchrotron has recently reported the detection of two antideuterons produced in 14.6[ital A] GeV/[ital c] Si+Au collisions. The data were interpreted as implying antideuteron production rates about an order of magnitude below expectations. We use an extended RQMD model to demonstrate that the antideuteron yields are readily explained in a dynamical scenario that includes collective expansion and strong antinucleon absorption.

  7. Analysis of Changes in Energy Consumption and Demand Trend in China’s Agricultural Production

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    China’s energy consumption for agricultural production has relied on petroleum and coal with relatively low input from power and other types of energy for a long time.Projections indicate that as China’s existing development trend leads to substantial growth of energy demand for agricultural production,such a long term irrational energy consumption pattern would unlikely be able to meet the needs of the country’s developing agricultural sector.As such,it is recommended that China’s agricultural sector should follow the national energy development strategy guideline by gradually increasing the use of wind power,solar energy,biomass and other new energy sources while advancing technological innovations on traditional energy sources.Meanwhile,as the consumption structure of three major energy sources(i.e.petroleum,coal,and power)is optimized,development and application of biomass from agriculture as raw materials for alternative energy should be enhanced.Lastly,the development and application of wind power,solar energy,and hydropower in agricultural production should be increased in areas where appropriate.

  8. Energy conversion and fuel production from electrochemical interfaces

    Science.gov (United States)

    Markovic, Nenad

    2012-02-01

    Design and synthesis of energy efficient and stable electrochemical interfaces (materials and double layer components) with tailor properties for accelerating and directing chemical transformations is the key to developing new alternative energy systems -- fuel cells, electrolizers and batteries. In aqueous electrolytes, depending on the nature of the reacting species, the supporting electrolyte, and the metal electrodes, two types of interactions have traditionally been considered: (i) direct -- covalent - bond formation between adsorbates and electrodes, involving chemisorption, electron transfer, and release of the ion hydration shell; and (ii) relatively weak non-covalent metal-ion forces that may affect the concentration of ions in the vicinity of the electrode but do not involve direct metal-adsorbate bonding. The range of physical phenomena associated with these two classes of bonds is unusually broad, and are of paramount importance to understand activity of both metal-electrolyte two phase interfaces and metal-Nafion-electrolyte three phase interfaces. Furthermore, in the past, researcher working in the field of fuel cells (converting hydrogen and oxygen into water) and electrolyzers (splitting water back to H2 and O2) ) seldom focused on understanding the electrochemical compliments of these reactions in battery systems, e.g., the lithium-air system. In this lecture, we address the importance of both covalent and non-covalent interactions in controlling catalytic activity at the two-phase and three-phase interfaces. Although the field is still in its infancy, a great deal has already been learned and trends are beginning to emerge that give new insight into the relationship between the nature of bonding interactions and catalytic activity/stability of electrochemical interfaces. In addition, to bridge the gap between the ``water battery'' (fuel cell electrolyzer) and the Li-air battery systems we demonstrate that this would require fundamentally new

  9. Energy savings in the production chains of Tronox

    Energy Technology Data Exchange (ETDEWEB)

    De Buck, A.; Croezen, H.; Afman, M.; Van Lieshout, M.

    2012-09-15

    For Tronox, a titanium dioxide producer at the Port of Rotterdam, CE Delft has conducted a study on the scope for improved energy efficiency and CO2 emission cuts. Because the company has already implemented numerous on-site efficiency improvements, the emphasis was now on higher-quality uses of waste streams. The scope for using biomass as a raw material was also investigated. The study was carried out in the framework of the 'MEE agreement', a voluntary agreement on energy efficiency in the energy-intensive industry, with financial support from NL Agency. Five options were elaborated in the project: (1) supply of waste heat to the Rotterdam heat grid; (2) supply of CO2 as a resource for greenhouse horticulture; (3) marketing of HCl from a wastewater stream; (4) use of a slurry waste stream as a raw material for road construction; (5) use of bio-coke as a substitute for petroleum coke. The options were analysed in terms of technological feasibility, costs/benefits and impact on CO2 emissions. Overall, the options lead to a surprisingly large reduction in the company's CO2 footprint: around 25%. Tronox will be using the results to elaborate and plan follow-up action. Prompted by this study, VNCI and NL Agency have also included the issue of bio-coke in the so-called Roadmap for the Chemical Industry and commissioned a study to examine the potential for using bio-coke throughout the Dutch chemical sector.

  10. Economic optimization of waste treatment and energy production in Denmark

    DEFF Research Database (Denmark)

    Münster, Marie; Ravn, Hans; Hedegaard, Karsten

    2013-01-01

    This article presents an optimization model that incorporates LCA methodology and captures important characteristics of waste management systems. The most attractive waste management options are in the model identified as part the optimization. The model renders it possible to apply different...... optimization objectives such as minimizing costs or greenhouse gas emissions or to prioritise several objectives given different weights. An illustrative case is analyzed, covering alternative treatments of 1 tonne residual household waste: incineration of the full amount or sorting out organic waste...... shows that it is feasible to combine LCA approaches with optimization and highlights the need for including the integrated waste and energy system into the model....

  11. Wave Loadings Acting on an Innovative Breakwater for Energy Production

    DEFF Research Database (Denmark)

    Vicinanza, Diego; Ciardulli, F.; Buccino, M.

    2011-01-01

    The paper reports on 2D small scale experiments conducted to investigate wave loadings acting on a pilot project of device for the conversion of wave energy into electricity. The conversion concept is based on the overtopping principle and the structure is worldwide known with the acronym SSG....... The hydraulic model tests have been carried out at the LInC laboratory of the University of Naples Federico II using random waves. Results indicate wave overtopping is able to cause a sudden inversion of vertical force under wave crest, so that it is alternatively upward and downward directed over a short time...

  12. [National Institute for Petroleum and Energy Research] quarterly technical report, July 1--September 30, 1991. Volume 2, Energy production research

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The report is submitted in two volumes, Volume I representing the work accomplished under Fuels Research and Volume II the work for Energy Production Research during the period July 1--Sept. 30, 1991. Topics covered include: chemical flooding, gas displacement, thermal recovery, geoscience technology, resource assessment technology, microbial technology, environmental technology.

  13. Microbial desalination cells for energy production and desalination

    KAUST Repository

    Kim, Younggy

    2013-01-01

    Microbial desalination cells (MDCs) are a new, energy-sustainable method for using organic matter in wastewater as the energy source for desalination. The electric potential gradient created by exoelectrogenic bacteria desalinates water by driving ion transport through a series of ion-exchange membranes (IEMs). The specific MDC architecture and current conditions substantially affect the amount of wastewater needed to desalinate water. Other baseline conditions have varied among studies making comparisons of the effectiveness of different designs problematic. The extent of desalination is affected by water transport through IEMs by both osmosis and electroosmosis. Various methods have been used, such as electrolyte recirculation, to avoid low pH that can inhibit exoelectrogenic activity. The highest current density in an MDC to date is 8.4A/m2, which is lower than that produced in other bioelectrochemical systems. This implies that there is a room for substantial improvement in desalination rates and overall performance. We review here the state of the art in MDC design and performance, safety issues related to the use of MDCs with wastewater, and areas that need to be examined to achieve practical application of this new technology. © 2012 Elsevier B.V.

  14. Risø energy report 4. The future energy system - distributed production and use

    DEFF Research Database (Denmark)

    Larsen, Hans Hvidtfeldt; Sønderberg Petersen, Leif

    2005-01-01

    The coming decades will bring big changes in energy systems throughout the world. The systems are expected to change from central power plants producing electricity and maybe heat for the customers to a combination of central units and a variety ofdistributed units such as renewable energy...... technologies or fuel cells. Furthermore the following developments are expected: -closer link between supply and end-use -closer link between the various energy carriers distributed through grids such aselectricity, heat, natural gas and maybe hydrogen in the future -increased energy trade across national...... by an international panel of independent experts. Information on current developments is taken from the most up-to-date and authoritative sources available. Our target groups are colleagues, collaborating partners, customers, fundingorganisations, the Danish government and international organisations including...

  15. Combined energy production and waste management in manned spacecraft utilizing on-demand hydrogen production and fuel cells

    Science.gov (United States)

    Elitzur, Shani; Rosenband, Valery; Gany, Alon

    2016-11-01

    Energy supply and waste management are among the most significant challenges in human spacecraft. Great efforts are invested in managing solid waste, recycling grey water and urine, cleaning the atmosphere, removing CO2, generating and saving energy, and making further use of components and products. This paper describes and investigates a concept for managing waste water and urine to simultaneously produce electric and heat energies as well as fresh water. It utilizes an original technique for aluminum activation to react spontaneously with water at room temperature to produce hydrogen on-site and on-demand. This reaction has further been proven to be effective also when using waste water and urine. Applying the hydrogen produced in a fuel cell, one obtains electric energy as well as fresh (drinking) water. The method was compared to the traditional energy production technology of the Space Shuttle, which is based on storing the fuel cell reactants, hydrogen and oxygen, in cryogenic tanks. It is shown that the alternative concept presented here may provide improved safety, compactness (reduction of more than one half of the volume of the hydrogen storage system), and management of waste liquids for energy generation and drinking water production. Nevertheless, it adds mass compared to the cryogenic hydrogen technology. It is concluded that the proposed method may be used as an emergency and backup power system as well as an additional hydrogen source for extended missions in human spacecraft.

  16. Energy potential, energy ratios, and the amount of net energy in Finnish field crop production; Peltobioenergian tuotanto Suomessa. Potentiaali, energiasuhteet ja nettoenergia

    Energy Technology Data Exchange (ETDEWEB)

    Mikkola, H.

    2012-11-01

    Energy potential, energy ratios, and the amount of net energy in Finnish field crop production were studied in this thesis. Special attention was paid to indirect energy inputs and how to treat them in energy analysis. Manufacturing of machines and agrochemicals and production of seeds are examples of indirect energy inputs.The bioenergy potential of the Finnish field crop production could be as large as 12 - 22 TWh, or 3 - 5% of the total energy consumption in Finland in 2008. The major part of this energy would originate from straw and biomass like reed canary grass cultivated for energy use. However, only 0.5 TWh of the potential is utilized. The output/input energy ratios of the studied field crops varied from 3 to 18, being highest (18) for reed canary grass and second highest (7) for sugar beet and grass cultivated for silage. The energy ratio of cereals and oil seed crops varied from 3 to 5 if only the yield of seeds was considered. If the yield of straw and stems was also taken into account the energy ratios would have been almost twofold. The energy ratios for Finnish wheat and barley were as high as those gained in Italian and Spanish conditions, respectively. However, the energy ratios of maize, elephant grass and giant reed were even over 50 in Central and Southern Europe. Plants that use the C4 photosynthesis pathway and produce high biomass yields thrive best in warm and sunny climate conditions. They use nitrogen and water more sparingly than C3 plants typically thriving in the cooler part of the temperate zone. When evaluating energy ratios for field crops it should be kept in mind that the maximal energy potential of the energy crop is the heating value of the dry matter at the field gate. Transportation of the crop and production of liquid fuels and electricity from biomass lowers the energy ratio. A comparison of field energy crops to a reforested field suggested that fast growing trees, as hybrid aspen and silver birch, would yield almost as

  17. Energy-dense fast food products cost less: an observational study of the energy density and energy cost of Australian fast foods.

    Science.gov (United States)

    Wellard, Lyndal; Havill, Michelle; Hughes, Clare; Watson, Wendy L; Chapman, Kathy

    2015-12-01

    To examine the association between energy cost and energy density of fast food products. Twenty Sydney outlets of the five largest fast food chains were surveyed four times. Price and kilojoule data were collected for all limited-time-only menu items (n=54) and a sample of standard items (n=67). Energy cost ($/kilojoule) and energy density (kilojoules/gram) of menu items were calculated. There was a significant inverse relationship between menu item energy density and energy cost (ppricing of larger serve sizes, or change defaults in meals to healthier options. More research is required to determine the most effective strategy to reduce the negative impact of fast food on the population's diet. Current pricing in the fast food environment may encourage unhealthier purchases. © 2015 Public Health Association of Australia.

  18. Exploitation of geothermal energy for the production of electric energy and warm for the town agglomeration of Litoměřice

    Directory of Open Access Journals (Sweden)

    Vlastimil Myslil

    2007-01-01

    Full Text Available The Municipality of Litoměřice is very actively engaged in actions for an improvement of environmental conditions in the town as well as in its surroundings.The most appropriate solution seems to be the exploitation of geothermal energy using a HDR method for which there are good conditions near the town Litoměřice. Due to relatively high uncertainties of deep underground data as well as the innovativeness of the proposed HDR method, a preparatory exploration phase of the project is necessary.The estimated capacity of the drill is 50 MWt. It will be used for the electricity generation and the heat production. The proposed power plant design is 4 MWe and 15 MWt for heating. The proposed technology of the power plant is to be decided (Organic Rankine Cycle or Kalina Cycle.The structure is covered with deposits of the Bohemian Cretaceous Basin. Relics of Permian-Carboniferous basins are found beneath the Cretaceous strata. The sedimentary successions are underlain by relics of metamorphic rocks that, in turn, rest on granites. Several structural systems meet in this area. The systems include: southeastern margin of the Stredohori volcanic complex, the main axis of the “syncline” of the Bohemian Cretaceous Basin, north-south oriented relics of the Permian-Carboniferous basins, and SW-NE oriented Ohre rift. The Litomerice area was affected by four major phases of tectonic deformation: Cadomian, Caledonian, Hercynian, and Alpine phases

  19. Application of Bacterial Laccases for Sustainable Energy Production

    DEFF Research Database (Denmark)

    Lörcher, Samuel; Koschorreck, Katja; Shipovskov, Stepan

    production. Progress in enzyme biotechnology and electrochemistry enables now construction of biofuel cells exploiting a wide spectrum of enzymes wired to electrodes, able of prolonged for up to several months function.1-3 One of the most attractive designs exploits direct electronic communication between...... in vivo glucose monitoring in diabetes patients). However, the most attractive are oxygen-reducing enzymes such as blue-copper-containing laccases coupled to electrodes, which provide the 4e- bioelectroreduction of O2 to H2O (1.23 V vs. NHE) at potentials approaching the thermodynamic ones. Exploitation...

  20. Evaluation of photoneutron production at high energy LINACS

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Z.W.

    1995-04-24

    This report describes an estimate of neutron production at a 9 MeV LINAC, and the potential for photoactivation of materials present at the LINAC facility. It was found that only isotopes of U, W, Ta, and Pb had daughters whose activities might be measurable. The LINAC was found to be capable of producing in the neighborhood of 10{sup 10} neutrons/second from these heavy metals, and that subsequent neutron activation might be more of a concern. Monte Carlo simulation of neutron transport and capture in the concrete and steel found in the LINAC vault indicates that {sup 55}Fe may be produced in measurable quantities.

  1. Lambda production in p+p interactions at SPS energies

    CERN Document Server

    Wilczek, Andrzej Gabriel; Kowalski, S

    The method of analysis for determination of Lambda production in p+p interactions has been developed, described, and applied to 158 GeV/c p+p data. The procedure has been used for calculation of double-differential spectra (d2n/dydpT, d2n/dydmT, d2n/dxFdpT), single-differential distributions (dn/dy , dn/dxF), mean transverse mass , and the dependence of inverse slope parameter T on y. Finally, mean Lambda multiplicity extrapolated to 4pi has been calculeted.

  2. 48 CFR 2923.271 - Purchase and use of environmentally sound and energy efficient products and services.

    Science.gov (United States)

    2010-10-01

    ... environmentally sound and energy efficient products and services. 2923.271 Section 2923.271 Federal Acquisition... content products, environmentally preferable products and services, biobased products, energy- and water... and use of environmentally preferable products and services and implement cost-effective...

  3. Sustainability evaluation of Sicily's lemon and orange production: an energy, economic and environmental analysis.

    Science.gov (United States)

    Pergola, M; D'Amico, M; Celano, G; Palese, A M; Scuderi, A; Di Vita, G; Pappalardo, G; Inglese, P

    2013-10-15

    The island of Sicily has a long standing tradition in citrus growing. We evaluated the sustainability of orange and lemon orchards, under organic and conventional farming, using an energy, environmental and economic analysis of the whole production cycle by using a life cycle assessment approach. These orchard systems differ only in terms of a few of the inputs used and the duration of the various agricultural operations. The quantity of energy consumption in the production cycle was calculated by multiplying the quantity of inputs used by the energy conversion factors drawn from the literature. The production costs were calculated considering all internal costs, including equipment, materials, wages, and costs of working capital. The performance of the two systems (organic and conventional), was compared over a period of fifty years. The results, based on unit surface area (ha) production, prove the stronger sustainability of the organic over the conventional system, both in terms of energy consumption and environmental impact, especially for lemons. The sustainability of organic systems is mainly due to the use of environmentally friendly crop inputs (fertilizers, not use of synthetic products, etc.). In terms of production costs, the conventional management systems were more expensive, and both systems were heavily influenced by wages. In terms of kg of final product, the organic production system showed better environmental and energy performances. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. World Energy Balance Outlook and OPEC Production Capacity: Implications for Global Oil Security

    Directory of Open Access Journals (Sweden)

    Azadeh M. Rouhani

    2012-07-01

    Full Text Available The imbalance between energy resource availability, demand, and production capacity, coupled with inherent economic and environmental uncertainties make strategic energy resources planning, management, and decision-making a challenging process. In this paper, a descriptive approach has been taken to synthesize the world’s energy portfolio and the global energy balance outlook in order to provide insights into the role of Organization of Petroleum Exporting Countries (OPEC in maintaining “stability” and “balance” of the world’s energy market. This synthesis illustrates that in the absence of stringent policies, i.e., if historical trends of the global energy production and consumption hold into the future, it is unlikely that non-conventional liquid fuels and renewable energy sources will play a dominant role in meeting global energy demand by 2030. This should be a source of major global concern as the world may be unprepared for an ultimate shift to other energy sources when the imminent peak oil production is reached. OPEC’s potential to impact the supply and price of oil could enable this organization to act as a facilitator or a barrier for energy transition policies, and to play a key role in the global energy security through cooperative or non-cooperative strategies. It is argued that, as the global energy portfolio becomes more balanced in the long run, OPEC may change its typical high oil price strategies to drive the market prices to lower equilibria, making alternative energy sources less competitive. Alternatively, OPEC can contribute to a cooperative portfolio management approach to help mitigate the gradually emerging energy crisis and global warming, facilitating a less turbulent energy transition path while there is time.

  5. Tidal Energy Conversion Installation at an Estuarine Bridge Site: Resource Evaluation and Energy Production Estimate

    Science.gov (United States)

    Wosnik, M.; Gagnon, I.; Baldwin, K.; Bell, E.

    2015-12-01

    The "Living Bridge" project aims to create a self-diagnosing, self-reporting "smart bridge" powered by a local renewable energy source, tidal energy - transforming Memorial Bridge, a vertical lift bridge over the tidal Piscataqua River connecting Portsmouth, NH and Kittery, ME, into a living laboratory for researchers, engineers, scientists, and the community. The Living Bridge project includes the installation of a tidal turbine at the Memorial Bridge. The energy converted by the turbine will power structural health monitoring, environmental and underwater instrumentation. Utilizing locally available tidal energy can make bridge operation more sustainable, can "harden" transportation infrastructure against prolonged grid outages and can demonstrate a prototype of an "estuarine bridge of the future". A spatio-temporal tidal energy resource assessment was performed using long term bottom-deployed Acoustic Doppler Current Profilers (ADCP) at two locations: near the planned deployment location in 2013-14 for 123 days and mid-channel in 2007 for 35 days. Data were evaluated to determine the amount of available kinetic energy that can be converted into usable electrical energy on the bridge. Changes in available kinetic energy with ebb/flood and spring/neap tidal cycles and electrical energy demand were analyzed. The target deployment site exhibited significantly more energetic ebb tides than flood tides, which can be explained by the local bathymetry of the tidal estuary. A system model is used to calculate the net energy savings using various tidal generator and battery bank configurations. Different resource evaluation methodologies were also analyzed, e.g., using a representative ADCP "bin" vs. a more refined, turbine-geometry-specific methodology, and using static bin height vs. bin height that move w.r.t. the free surface throughout a tidal cycle (representative of a bottom-fixed or floating turbine deployment, respectively). ADCP operating frequencies and bin

  6. The Setting of Progressive Energy Efficiency Performance Standards for Products through the Ecodesign Directive

    Directory of Open Access Journals (Sweden)

    Dalhammar, Carl

    2016-06-01

    Full Text Available The European Union (EU sets mandatory energy efficiency standards for appliances and other energy-relevant products through the Ecodesign Directive. The standards set so far have improved energy efficiency in a very cost-effective way. The main aim of the Directive is to remove the worst performing products from the market. There is a discussion on the potential to set more progressive legal standards in order to more rapidly improve the energy efficiency of products, or even induce ‘technology forcing’, which can be defined as standards requiring technology that goes beyond what is currently available on the market. This contribution examines different legal design options to set progressive energy standards and discusses the advantages and drawbacks with applying stricter standard-setting. The European ecodesign standards for vacuum cleaners are analyzed as they provide a recent example of standards with elements of technology forcing.

  7. Photosynthetic CO{sub 2} fixation and energy production - microalgae as a main subject

    Energy Technology Data Exchange (ETDEWEB)

    Asada, Yasuo [National Inst. of Bioscience and Human-Technology, Tsukuba-shi, Ibaraki-ken (Japan)

    1993-12-31

    Research activities for application of microalgal photosynthesis to CO{sub 2} fixation in Japan are overviewed. Presenter`s studies on energy (hydrogen gas) production by cyanobacteria (blue-green algae) and photosynthetic bacteria are also introduced.

  8. Energy input for tomato production what economy says, and what is good for the environment

    DEFF Research Database (Denmark)

    Houshyar, Ehsan; Dalgaard, Tommy; Tarazkar, Mohammad Hassan

    2015-01-01

    The central Fars province is the main tomato producer region in Southwest Iran. This study was undertaken to evaluate the energy consumption patterns of tomato production, corresponding GHG emissions, and relationships between inputs and output by a Cobb–Douglass econometric model. The changes...... productivities (MPPs), however, indicated that tomato yield is most sensitive to machinery and chemicals energy inputs in the C1 and C2, respectively, which should be considered first to increase in order to achieve productivity enhancement. The result displayed that higher energy consumption according...... to the econometric models and MPPs may lead to much higher CO2 emissions compared to the current average emissions particularly when MPP is low. Hence, it is suggested that production types with the highest MPPs should be considered if change in energy inputs is desired. In addition, it is recommended that “green...

  9. ASSESSMENT OF A WIND TURBINE INTELLIGENT CONTROLLER FOR ENHANCED ENERGY PRODUCTION AND POLLUTION REDUCTION

    Science.gov (United States)

    This study assessed the enhanced energy production which is possible when variable-speed wind turbines are electronically controlled by an intelligent controller for efficiency optimization and performance improvement. The control system consists of three fuzzy- logic controllers...

  10. Photosynthetic bacteria as alternative energy sources: overview on hydrogen production research

    Energy Technology Data Exchange (ETDEWEB)

    Mitsui, A.; Ohta, Y.; Frank, J.

    1979-01-01

    Hydrogen production research towards the application of marine and non-marine species of photosynthetic bacteria is reviewed. Potential use of photosynthetic bacteria as renewable energy resources is discussed.

  11. 76 FR 12421 - Energy Conservation Program: Certification, Compliance, and Enforcement for Consumer Products and...

    Science.gov (United States)

    2011-03-07

    ... as well as a production cycle, and whether there is any change in energy usage above a de minimus... the total number of tests per sample. AHAM, the Air- Conditioning, Heating and Refrigeration...

  12. DBI skyrmion, high energy (large s) scattering and fireball production

    CERN Document Server

    Nastase, H

    2005-01-01

    We analyze the high energy scattering of hadrons in QCD in an effective theory model inspired from a gravity dual description. The nucleons are skyrmion-like solutions of a DBI action, and boosted nucleons give pions field shockwaves necessary for the saturation of the Froissart bound. Nuclei are analogs of BIon crystals, with the DBI skyrmions forming a fluid with a fixed inter-nucleon distance. In shockwave collisions one creates scalar (pion field) ``fireballs'' with horizons of nonzero temperature, whose scaling with mass we calculated. They are analogous to the hydrodynamic ``dumb holes,'' and their thermal horizons are places where the pion field becomes apparently singular. The information paradox becomes then a purely field theoretic phenomenon, not directly related to quantum gravity (except via AdS-CFT).

  13. Optimization of photovoltaic energy production through an efficient switching matrix

    Directory of Open Access Journals (Sweden)

    Pietro Romano

    2013-09-01

    Full Text Available This work presents a preliminary study on the implementation of a new system for power output maximization of photovoltaic generators under non-homogeneous conditions. The study evaluates the performance of an efficient switching matrix and the relevant automatic reconfiguration control algorithms. The switching matrix is installed between the PV generator and the inverter, allowing a large number of possible module configurations. PV generator, switching matrix and the intelligent controller have been simulated in Simulink. The proposed reconfiguration system improved the energy extracted by the PV generator under non-uniform solar irradiation conditions. Short calculation times of the proposed control algorithms allow its use in real time applications even where a higher number of PV modules is required.

  14. Biogas energy production from tropical biomass wastes by anaerobic digestion.

    Science.gov (United States)

    Ge, Xumeng; Matsumoto, Tracie; Keith, Lisa; Li, Yebo

    2014-10-01

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass and food wastes, such as taro, papaya, and sweet potato, are limited. In this study, these tropical biomass wastes were evaluated for biogas production by liquid AD (L-AD) and/or solid-state AD (SS-AD), depending on feedstock characteristics. When albizia leaves and chips were used as feedstocks, L-AD had greater methane yields (161 and 113 L kg(-1)VS, respectively) than SS-AD (156.8 and 59.6 L kg(-1)VS, respectively), while SS-AD achieved 5-fold higher volumetric methane productivity than L-AD. Mono-digestion and co-digestion of taro skin, taro flesh, papaya, and sweet potato achieved methane yields from 345 to 411 L kg(-1)VS, indicating the robustness of AD technology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Sorbent-based Oxygen Production for Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, Vijay [Western Research Inst. (WRI), Laramie, WY (United States)

    2017-01-31

    Project DE-FE0024075 deals with the development of a moderate-temperature sorbent-based oxygen production technology. Sorbent-based oxygen production process utilizes oxygen-storage properties of Perovskites to (1) adsorb oxygen from air in a solid sorbent, and (2) release the adsorbed oxygen into a sweep gas such as CO2 and/or steam for gasification systems or recycled flue gas for oxy-combustion systems. Pure oxygen can be produced by the use of vacuum instead of a sweep gas to affect the pressure swing. By developing more efficient and stable, higher sorption capacity, newer class of materials operating at moderate temperatures this process represents a major advancement in air separation technology. Newly developed perovskite ceramic sorbent materials with order-disorder transition have a higher O2 adsorption capacity, potentially 200 °C lower operating temperatures, and up to two orders of magnitude faster desorption rates than those used in earlier development efforts. The performance advancements afforded by the new materials lead to substantial savings in capital investment and operational costs. Cost of producing oxygen using sorbents could be as much as 26% lower than VPSA and about 13% lower than a large cryogenic air separation unit. Cost advantage against large cryogenic separation is limited because sorbent-based separation numbers up sorbent modules for achieving the larger capacity.

  16. Minimization of Heat Energy Intensity in Food Production Companies Applying Sustainable Industrial Development Methods

    Directory of Open Access Journals (Sweden)

    Irina Kliopova

    2011-10-01

    Full Text Available Lithuanian food and drink sector of industry is characterized by high energy intensity, which is 29% higher than the EU average. At the confectionary plant chosen for the experiment, an environmental impact has been controlled and its maximum managed by creating different procedures to reduce pollution. Assessment of the plant's environmental costs has revealed that the energy costs amount to main part of the environmental ones (up to 55.4%. In recent years several energy efficiency projects have been implemented allowing minimizing the plant's energy intensity up to 15%. An algorithm of feasibility analysis of increasing thermal energy efficiency of the plant was suggested which could also be applied to other food industry plants. Demand for heat energy within the plant was evaluated for each technological process; the fuel and energy balance of the plant boiler-house was drawn up. It was revealed that huge heat energy losses were made during heat energy production and usage. During the research period a control system of significant environmental aspects was suggested, its objective function was estimated. Several environmental alternatives were suggested for optimization of the heat energy production processes. Three projects were chosen for the feasibility analysis. Results of technical, economic and environmental evaluations of Cleaner Production (CP innovations as well as conclusions made are presented in this article.

  17. A case study of energy use and economical analysis of irrigated and dryland wheat production systems

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbani, Reza; Mondani, Farzad; Amirmoradi, Shahram; Feizi, Hassan; Khorramdel, Surror; Teimouri, Mozhgan; Sanjani, Sara; Anvarkhah, Sepideh; Aghel, Hassan [Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775-1163, Mashhad (Iran)

    2011-01-15

    Current conventional agricultural systems using intensive energy has to be re-vitalized by new integrated approaches relying on renewable energy resources, which can allow farmers to stop depending on fossil resources. The aim of the present study was to compare wheat production in dryland (low input) and irrigated (high input) systems in terms of energy ratio, energy efficiency, benefit/cost ratio and amount of renewable energy use. Data were collected from 50 irrigated and 50 dryland wheat growers by using a face-to-face questionnaire in 2009. The results showed that the total energy requirement under low input was 9354.2 MJ ha{sup -1}, whereas under high input systems it was 45367.6 MJ ha{sup -1}. Total energy input consumed in both dryland and irrigated systems could be classified as direct, indirect, renewable and non-renewable energies which average in two wheat production systems were 47%, 53%, 24% and 76%, respectively. Energy ratios of 3.38 in dryland and 1.44 in irrigated systems were achieved. The benefit-cost ratios were 2.56 in dryland and 1.97 in irrigated wheat production systems. Based on the results of the present study, dry-land farming can have a significant positive effect on energy-related factors especially in dry and semi-dry climates such as Iran. (author)

  18. Dry period plane of energy: Effects on feed intake, energy balance, milk production, and composition in transition dairy cows.

    Science.gov (United States)

    Mann, S; Yepes, F A Leal; Overton, T R; Wakshlag, J J; Lock, A L; Ryan, C M; Nydam, D V

    2015-05-01

    The objective was to investigate the effect of different dry cow feeding strategies on the degree of ketonemia postpartum. Epidemiologic studies provide evidence of an association between elevated β-hydroxybutyrate (BHBA) concentrations in postpartum dairy cows and a decreased risk for reproductive success as well as increased risk for several diseases in early lactation, such as displacement of the abomasum and metritis. The plane of energy fed to cows in the prepartum period has been shown to influence ketogenesis and the degree of negative energy balance postpartum. Our hypothesis was that a high-fiber, controlled-energy diet (C) fed during the dry period would lead to a lower degree of hyperketonemia in the first weeks postpartum compared with either a high-energy diet (H), or a diet where an intermediate level of energy would only be fed in the close-up period (starting at 28d before expected parturition), following the same controlled-energy diet in the far-off period. Hyperketonemia in this study was defined as a blood BHBA concentration of ≥1.2mmol/L. Holstein cows (n=84) entering parity 2 or greater were enrolled using a randomized block design and housed in individual tiestalls. All treatment diets were fed for ad libitum intake and contained monensin. Cows received the same fresh cow ration after calving. Blood samples were obtained 3 times weekly before and after calving and analyzed for BHBA and nonesterified fatty acids (NEFA). Milk components, production, and dry matter intake were recorded and energy balance was calculated. Repeated measures ANOVA was conducted for the outcomes dry matter intake, energy balance, BHBA and NEFA concentrations, milk and energy-corrected milk yield, as well as milk composition. Predicted energy balance tended to be less negative postpartum in group C and cows in this group had fewer episodes of hyperketonemia compared with both the intermediate group and group H in the first 3 wk after calving. Postpartum BHBA and

  19. Micro-scale energy valorization of grape marcs in winery production plants.

    Science.gov (United States)

    Fabbri, Andrea; Bonifazi, Giuseppe; Serranti, Silvia

    2015-02-01

    The Biochemical Methane Potential (BMP) of winery organic waste, with reference to two Italian red and white grapes (i.e. Nero Buono and Greco) by-products was investigated. The study was carried out to verify the possibility to reduce the production impact in a green-waste-management-chain-perspective. The possibility to efficiently utilize wine-related-by-products for energy production at a micro-scale (i.e. small-medium scale winery production plant) was also verified. Results showed as a good correlation can be established between the percentage of COD removal and the biogas production, as the winery can produce, from its waste methanization, about 7800 kW h year(-1) electrical and 8900 kW h year(-1) thermal. A critical evaluation was performed about the possibility to utilize the proposed approach to realize an optimal biomass waste management and an energetic valorization in a local-energy-production-perspective.

  20. Neural network modeling of energy use and greenhouse gas emissions of watermelon production systems

    Directory of Open Access Journals (Sweden)

    Ashkan Nabavi-Pelesaraei

    2016-01-01

    Full Text Available This study was conducted in order to determine energy consumption, model and analyze the input–output, energy efficiencies and GHG emissions for watermelon production using artificial neural networks (ANNs in the Guilan province of Iran, based on three different farm sizes. For this purpose, the initial data was collected from 120 watermelon producers in Langroud and Chaf region, two small cities in the Guilan province. The results indicated that total average energy input for watermelon production was 40228.98 MJ ha–1. Also, chemical fertilizers (with 76.49% were the highest energy inputs for watermelon production. Moreover, the share of non-renewable energy (with 96.24% was more than renewable energy (with 3.76% in watermelon production. The rate of energy use efficiency, energy productivity and net energy was calculated as 1.29, 0.68 kg MJ−1 and 11733.64 MJ ha−1, respectively. With respect to GHG analysis, the average of total GHG emissions was calculated about 1015 kgCO2eq. ha−1. The results illustrated that share of nitrogen (with 54.23% was the highest in GHG emissions for watermelon production, followed by diesel fuel (with 16.73% and electricity (with 15.45%. In this study, Levenberg–Marquardt learning Algorithm was used for training ANNs based on data collected from watermelon producers. The ANN model with 11–10–2 structure was the best one for predicting the watermelon yield and GHG emissions. In the best topology, the coefficient of determination (R2 was calculated as 0.969 and 0.995 for yield and GHG emissions of watermelon production, respectively. Furthermore, the results of sensitivity analysis revealed that the seed and human labor had the highest sensitivity in modeling of watermelon yield and GHG emissions, respectively.

  1. Improving energy efficiency in the production processes of dehydration smoked and dried fish.

    Directory of Open Access Journals (Sweden)

    Mihail Ershov

    2013-04-01

    Full Text Available The technology of dehydration fish with cyclical periods of drying and relaxation facility dehydration. This technology is aimed at improving the energy efficiency of the processes of dehydration by drying and cold-smoked fish. Relaxation object dehydration is most effective in a period of falling drying rate. The use of the proposed technology can reduce energy costs in the production of dried and smoked products by 8-12% as compared to conventional technology.

  2. Metabolic energy-based modelling explains product yielding in anaerobic mixed culture fermentations.

    Directory of Open Access Journals (Sweden)

    Rebeca González-Cabaleiro

    Full Text Available The fermentation of glucose using microbial mixed cultures is of great interest given its potential to convert wastes into valuable products at low cost, however, the difficulties associated with the control of the process still pose important challenges for its industrial implementation. A deeper understanding of the fermentation process involving metabolic and biochemical principles is very necessary to overcome these difficulties. In this work a novel metabolic energy based model is presented that accurately predicts for the first time the experimentally observed changes in product spectrum with pH. The model predicts the observed shift towards formate production at high pH, accompanied with ethanol and acetate production. Acetate (accompanied with a more reduced product and butyrate are predicted main products at low pH. The production of propionate between pH 6 and 8 is also predicted. These results are mechanistically explained for the first time considering the impact that variable proton motive potential and active transport energy costs have in terms of energy harvest over different products yielding. The model results, in line with numerous reported experiments, validate the mechanistic and bioenergetics hypotheses that fermentative mixed cultures products yielding appears to be controlled by the principle of maximum energy harvest and the necessity of balancing the redox equivalents in absence of external electron acceptors.

  3. Biomass production as renewable energy resource at reclaimed Serbian lignite open-cast mines

    Directory of Open Access Journals (Sweden)

    Jakovljević Milan

    2015-01-01

    Full Text Available The main goal of this paper is the overview of the scope and dynamics of biomass production as a renewable energy source for substitution of coal in the production of electrical energy in the Kolubara coal basin. In order to successfully realize this goal, it was necessary to develop a dynamic model of the process of coal production, overburden dumping and re-cultivation of dumping sites by biomass planting. The results obtained by simulation of the dynamic model of biomass production in Kolubara mine basin until year 2045 show that 6870 hectares of overburden waste dumps will be re-cultivated by biomass plantations. Biomass production modeling point out the significant benefits of biomass production by planting the willow Salix viminalis cultivated for energy purposes. Under these conditions, a 0.6 % participation of biomass at the end of the period of intensive coal production, year 2037, is achieved. With the decrease of coal production to 15 million tons per year, this percentage steeply rises to 1.4 % in 2045. This amount of equivalent tons of coal from biomass can be used for coal substitution in the production of electrical energy. [Projekat Ministarstva nauke Republike Srbije, br. TR 33039

  4. Topologically stratified energy minimizers in a product Abelian field theory

    Science.gov (United States)

    Han, Xiaosen; Yang, Yisong

    2015-09-01

    We study a recently developed product Abelian gauge field theory by Tong and Wong hosting magnetic impurities. We first obtain a necessary and sufficient condition for the existence of a unique solution realizing such impurities in the form of multiple vortices. We next reformulate the theory into an extended model that allows the coexistence of vortices and anti-vortices. The two Abelian gauge fields in the model induce two species of magnetic vortex-lines resulting from Ns vortices and Ps anti-vortices (s = 1, 2) realized as the zeros and poles of two complex-valued Higgs fields, respectively. An existence theorem is established for the governing equations over a compact Riemann surface S which states that a solution with prescribed N1, N2 vortices and P1, P2 anti-vortices of two designated species exists if and only if the inequalities

  5. Photocatalysis for Renewable Energy Production Using PhotoFuelCells

    Directory of Open Access Journals (Sweden)

    Robert Michal

    2014-11-01

    Full Text Available The present work is a short review of our recent studies on PhotoFuelCells, that is, photoelectrochemical cells which consume a fuel to produce electricity or hydrogen, and presents some unpublished data concerning both electricity and hydrogen production. PhotoFuelCells have been constructed using nanoparticulate titania photoanodes and various cathode electrodes bearing a few different types of electrocatalyst. In the case where the cell functioned with an aerated cathode, the cathode electrode was made of carbon cloth carrying a carbon paste made of carbon black and dispersed Pt nanoparticles. When the cell was operated in the absence of oxygen, the electrocatalyst was deposited on an FTO slide using a special commercial carbon paste, which was again enriched with Pt nanoparticles. Mixing of Pt with carbon paste decreased the quantity of Pt necessary to act as electrocatalyst. PhotoFuelCells can produce electricity without bias and with relatively high open-circuit voltage when they function in the presence of fuel and with an aerated cathode. In that case, titania can be sensitized in the visible region by CdS quantum dots. In the present work, CdS was deposited by the SILAR method. Other metal chalcogenides are not functional as sensitizers because the combined photoanode in their presence does not have enough oxidative power to oxidize the fuel. Concerning hydrogen production, it was found that it is difficult to produce hydrogen in an alkaline environment even under bias, however, this is still possible if losses are minimized. One way to limit losses is to short-circuit anode and cathode electrode and put them close together. This is achieved in the “photoelectrocatalytic leaf”, which was presently demonstrated capable of producing hydrogen even in a strongly alkaline environment.

  6. Photocatalysis for renewable energy production using PhotoFuelCells.

    Science.gov (United States)

    Michal, Robert; Sfaelou, Stavroula; Lianos, Panagiotis

    2014-11-27

    The present work is a short review of our recent studies on PhotoFuelCells, that is, photoelectrochemical cells which consume a fuel to produce electricity or hydrogen, and presents some unpublished data concerning both electricity and hydrogen production. PhotoFuelCells have been constructed using nanoparticulate titania photoanodes and various cathode electrodes bearing a few different types of electrocatalyst. In the case where the cell functioned with an aerated cathode, the cathode electrode was made of carbon cloth carrying a carbon paste made of carbon black and dispersed Pt nanoparticles. When the cell was operated in the absence of oxygen, the electrocatalyst was deposited on an FTO slide using a special commercial carbon paste, which was again enriched with Pt nanoparticles. Mixing of Pt with carbon paste decreased the quantity of Pt necessary to act as electrocatalyst. PhotoFuelCells can produce electricity without bias and with relatively high open-circuit voltage when they function in the presence of fuel and with an aerated cathode. In that case, titania can be sensitized in the visible region by CdS quantum dots. In the present work, CdS was deposited by the SILAR method. Other metal chalcogenides are not functional as sensitizers because the combined photoanode in their presence does not have enough oxidative power to oxidize the fuel. Concerning hydrogen production, it was found that it is difficult to produce hydrogen in an alkaline environment even under bias, however, this is still possible if losses are minimized. One way to limit losses is to short-circuit anode and cathode electrode and put them close together. This is achieved in the "photoelectrocatalytic leaf", which was presently demonstrated capable of producing hydrogen even in a strongly alkaline environment.

  7. Energy balance of maize production in Brazil: the energetic constraints of a net positive outcome

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Luis Henrique de Barros; Alves, Bruno Jose Rodrigues; Urquiaga, Segundo

    2008-07-01

    Among the factors used to analyze and to establish the sustainability of a whole agricultural production system, the energy balance is one of the most powerful and robust. The maize production in Brazil is surely the reflex of an energy intensive system that demands many field operations and heavy fertilizer applications, notably nitrogen in urea form. This work presents an energy balance of this major crop adjusted to the Brazilian conditions of cultivation. The input components were grouped based on their energy contents, and the possible improvements in the agricultural practices that could improve energy balance and net energy withdrawn from the farming were considered. The replacement of N synthetic fertilizer by biological nitrogen fixation, whether the process is directly carried out by endophytic diazotroph bacteria or by means of a N{sub 2}- fixing legume culture planted before the main crop as a green-manure is also discussed. (author)

  8. Calculation of energy deposition, photon and neutron production in proton therapy of thyroid gland using MCNPX.

    Science.gov (United States)

    Mowlavi, Ali Asghar; Fornasie, Maria Rosa; de Denaro, Mario

    2011-01-01

    In this study, the MCNPX code has been used to simulate a proton therapy in thyroid gland, in order to calculate the proton energy deposition in the target region. As well as, we have calculated the photon and neutron production spectra due to proton interactions with the tissue. We have considered all the layers of tissue, from the skin to the thyroid gland, and an incident high energy pencil proton beam. The results of the simulation show that the best proton energy interval, to cover completely the thyroid tissue, is from 42 to 54 MeV, assuming that the thyroid gland has a 14 mm thickness and is located 11.2mm under the skin surface. The most percentage of deposited energy (78%) is related to the 54 MeV proton energy beam. Total photon and neutron production are linear and polynomial second order functions of the proton energy, respectively.

  9. Production and consumption of energy in Chile 1987. Produccion y consumo de energia en Chile 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    Presents information, at a national level, on production and consumption of various types of energy, including statistical data on commercial deals (hydrocarbons, coal) and the activities of the companies (hydromechanical energy, vegetable wastes for power generation and biogas). Electrical energy is described in detail. The first chapter presents an energy overview of the country and its energy sources, evaluating each one in order to obtain the total energy produced in Chile. The second chapter deals with electric power in the country, classifying power installed, generated and consumed by category of producer, consumer and generating type. The third chapter discusses the planned capacity of the Zonas Electricas, and the fourth chapter reviews the characteristics of the installations, production statistics, consumption and operation of the grid.

  10. Self-similarity of negative particle production from the Beam Energy Scan Program at STAR

    CERN Document Server

    Tokarev, M V

    2015-01-01

    We present the spectra of negative charged particle production in Au+Au collisions from STAR for the first phase of the RHIC Beam Energy Scan Program measured over a wide range of collision energy sqrt s{NN}=7.7-200 GeV, and transverse momentum of produced particle in different centralities at |eta|<0.5. The spectra demonstrate strong dependence on collision energy which enhances with pT. An indication of self-similarity of negative charged particle production in Au+Au collisions is found. The constituent energy loss as a function of energy and centrality of collisions and transverse momentum of inclusive particle was estimated in the $z$-scaling approach. The energy dependence of the model parameters - the fractal and fragmentation dimensions and "specific heat", was studied.

  11. Bioethanol Production from Waste Potatoes as a Sustainable Waste-to-energy Resource via Enzymatic Hydrolysis

    Science.gov (United States)

    Memon, A. A.; Shah, F. A.; Kumar, N.

    2017-07-01

    Ever increasing demand of energy and corresponding looming depletion of fossil fuels have transpired into a burning need of time to vie for alternative energy resources before the traditional energy sources are completely exhausted. Scientists are continuously working on sustainable energy production as an alternate source of energy to meet the present and future requirements. This research deals with conversion of the starch to fermentable carbon source (sugars) by fermentation through liquefaction by using yeast and alpha- amylase. The results show that the significant bioethanol production was achieved while using the parameters like temperature (30 °C) pH (6) and incubation time of 84 hrs. About 90 ml of bioethanol was produced from potato intake of 800 g. Pakistan being an agricultural country is rich in potato crop and this research bodes well to open new vistas to arrest the energy shortage in this part of the world

  12. Biodiesel and bioethanol production: A sustainable alternative for the energy crisis?

    Directory of Open Access Journals (Sweden)

    Claudia Castro Martínez

    2012-09-01

    Full Text Available The present contribution intends to give an overview of the current -status of the energy crisis and suggest some sustainable alternatives for energy production. In first place, a brief summary of the history about resources for energy production is presented. The high dependency of fossil combustibles it is well known and has been estimated that more than 90% of the used energy comes from non-renewable resources such as oil, gas and carbon. In the same way, here, it is described that oil is, by far, the main source of energy used to date and as a consequence, this resource is, unavoidably,coming to an end and at the same time is causing and increasing environmental pollution problems. Later in this work, it is suggested that in order to achieve the energetic sustainability, the development of alternative sources that will allow the reduction of toxic greenhouse gas (GHG emissions as well as a decrease of water usage along with a decrease in the energy production costs are needed. One of the alternatives that have been proposed is the production of biofuels, such as biodiesel and bioethanol. Here, some of the main properties at the level of the employed raw materials and production systems are cited. Finally, this work suggests some solutions that are under development worldwide in order to face thiscurrent energy situation.

  13. Technologies for production of Electricity and Heat in Sweden. Wind energy in perspective of international development

    DEFF Research Database (Denmark)

    Clausen, Niels-Erik; Lawaetz, Henrik; Lemming, Jørgen Kjærgaard

    energy consumption in 2020 compared to 39.8% in 2005. To stimulate the development of wind energy and to promote a specific national goals Sweden is mainly using an electricity certificate system. The target is to increase the production of electricity from renewable sources by 17 TWh in 2016, relative...

  14. 75 FR 57556 - Energy Conservation Program for Consumer Products: Test Procedure for Residential Clothes Washers

    Science.gov (United States)

    2010-09-21

    ... technologies not covered by the current procedure; (2) more accurately reflect current consumer behavior and... amendments are based on recent data that more accurately describe current consumer behavior and updated... Energy 10 CFR Part 430 Energy Conservation Program for Consumer Products: Test Procedure for Residential...

  15. 75 FR 57555 - Energy Conservation Program for Consumer Products: Test Procedure for Residential Clothes Washers

    Science.gov (United States)

    2010-09-21

    ... technologies not covered by the current procedure; (2) more accurately reflect current consumer behavior and... amendments are based on recent data that more accurately describe current consumer behavior and updated... Energy 10 CFR Part 430 Energy Conservation Program for Consumer Products: Test Procedure for Residential...

  16. Competition between biomass and food production in the presence of energy policies: a partial equilibrium analysis

    NARCIS (Netherlands)

    Ignaciuk, A.; Vöhringer, F.; Ruijs, A.J.W.; Ierland, van E.C.

    2006-01-01

    Bioenergy has several advantages over fossil fuels. For example, it delivers energy at low net CO2 emission levels and contributes to sustaining future energy supplies. The concern, however, is that an increase in biomass plantations will reduce the land available for agricultural production. The

  17. Full PWA Report: An Assessment of Energy, Waste, and Productivity Improvements for North Star Steel Iowa

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-06-25

    North Star Steel's Wilton, Iowa plant (NSSI) was awarded a subcontract through a competitive process to use Department of Energy/OIT funding to examine potential processes and technologies that could save energy, reduce waste, and increase productivity.

  18. Sustainable energy for cashew production chain using innovative clean technology project developments

    Energy Technology Data Exchange (ETDEWEB)

    Pannir Selvam, P.V.; Nandenha, Julio; Santiago, Brunno Henrique de Souza; Silva, Rosalia Tatiane da [Universidade Federal do Rio Grande do Norte (GPEC/DEQ/UFRN), Lagoa Nova, RN (Brazil). Dept. de Engenharia Quimica. Grupo de Pesquisa em Engenharia de Custos e Processos], e-mail: pannirbr@gmail.com

    2006-07-01

    The main objective is to develop a new process synthesis based on the residual biomass waste for the energy production applied to the fruit processing plant with co-production of hot, cold thermal energy using biogas from the wood biomass and animal wastes. After carried out the bibliographical research about the current state of art technology, an engineering project had been developed with the use of the software Super Pro Designer V 4.9. Some simulations of processes of the fast pyrolysis, gasification, bio digestion, generation of energy have been realized including the system integration of energy production as innovation of the present work. Three cases study have been developed: first, the current process of conventional energy using combustion, another one using combined pyrolysis and gasification, and the last one with bio digestion for combined power, heat and chilling. The results about the project investment and the cost analysis, economic viability and cash balance were obtained using software Orc 2004. Several techno-economic parameters of the selected cases study involving process innovation were obtained and compared, where a better energy and materials utilization were observed in relation to conventional process. This project which is still in development phase, involves small scale energy integrated system design. The energy and the process integration cashew fruit production chain, based on the clean technology process design, has enable significant improvement in terms of economic and environmental using optimal system configurations with viability and sustainability. (author)

  19. Correlations in Particle Production in Nuclear Collisions at LHC Energies

    CERN Document Server

    Sputowska, Iwona

    New data on forward-backward charged particle correlations and multiplicity uctuations in Pb+Pb collisions at p sNN = 2.76 TeV measured by the ALICE detector at CERN are presented. The analysis focuses on the dependence of (a) the correlation coecient bcorr, (b) the intensive quantity ! and (c) the strongly-intensive quantity as a function of (1) the pseudorapidity gap (2) the centrality of the collision and (3) the width of the centrality bin. The considered observables are studied for Pb+Pb data with two dierent centrality estimators. The centrality selection methods are based on charged particle multiplicity measurement by the ALICE VZERO detector and on determination of energy carried by spectator systems by the Zero Degree Calorimeter. A strong dependence of the measured magnitude of forward-backward correlation (bcorr), and of the size of multiplicity uctuations (!), is observed as a function of the ap- plied centrality estimator and as a function of the size of centrality window. A dominant eect on ...

  20. Energy efficiency innovative processes during beer production; Rationelle Energienutzung durch innovative Verfahren bei der Bierwuerzebereitung

    Energy Technology Data Exchange (ETDEWEB)

    Antoni, D.; Stammel, V.; Meyer-Pitroff, R.

    2004-07-01

    The beverages industry is one of the most energy-intensive industries in the nutritional sector, and breweries are among the highest energy consumers. About 40 percent of the heat consumption of a brewery is used for beer heating. The contribution presents the example of thin film and vacuum evaporation in order to show how energy can be saved while maintaining or even improving the quality of the final product, saving resources and reducing CO2 emissions. (orig.)