WorldWideScience

Sample records for surplus energetic materials

  1. Conversion of Surplus Energetic Materials to Higher Value Products. A New Production of TATB

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, A R; Coburn, M D; Schmidt, R D; Pagoria, P F; Lee, G S

    2002-07-11

    The progression of this project from a general demilitarization activity to the development of a new production of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) is described. There are four major synthetic routes to TATB. Only one of these routes has been used in the industrial production of TATB. There is a need to replace this route, which employs relatively harsh reaction conditions (elevated temperatures, strong acid) and a halocarbon starting material, with a less expensive and more environmentally friendly process. The Livermore process, which uses chemistry based on the vicarious nucleophilic substitution (VNS) of hydrogen and employment of relatively inexpensive feedstocks, is described and compared with other routes to TATB. Process development studies and the issue of TATB purification are also discussed.

  2. Chemical Conversion of Energetic Materials to Higher Value Products

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, A R; Hsu, P C; Coburn, M D; Schmidt, R D; Pagoria, P F; Lee, G S

    2005-04-19

    The objective of this program is to develop new processes for the disposal of surplus energetic materials. Disposal through open burning/open detonation (OB/OD) is considered less attractive today due to environmental, cost and safety concerns. The use of energetic materials as chemical feedstocks for higher value products can provide environmentally sound and cost-effective alternatives to OB/OD. Our recent studies on the conversion of surplus energetic materials (Explosive D, TNT) to higher value products will be described.

  3. Shock Sensitivity of energetic materials

    Science.gov (United States)

    Kim, K.

    1980-01-01

    Viscoplastic deformation is examined as the principal source of hot energy. Some shock sensitivity data on a proposed model is explained. A hollow sphere model is used to approximate complex porous matrix of energetic materials. Two pieces of shock sensitivity data are qualitatively compared with results of the proposed model. The first is the p2 tau law. The second is the desensitization of energetic materials by a ramp wave applied stress. An approach to improve the model based on experimental observations is outlined.

  4. Energetic materials at extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Millar, David I.A. [Edinburgh Univ. (United Kingdom). EaStCHEM Research School of Chemistry

    2012-07-01

    This thesis describes the high-pressure structural behaviour of a series of energetic compounds that includes the widely used explosive RDX and gas generators such as sodium azide. Using a combination of X-ray and neutron diffraction techniques, crystal structures of these compounds have been obtained under conditions of elevated pressure and temperature. Such studies present significant technical challenges associated with both data collection and analysis, especially for compounds containing conformationally flexible molecules, but the structural information obtained is crucial for enhancing the understanding of the characteristics of energetic materials. Particularly significant is the observation that a high-pressure, high-temperature form of RDX may be recovered to ambient pressure. This has implications for the discovery of new forms of energetic materials that may exhibit enhanced properties, e.g. reduced sensitivity to accidental initiation. The rich high-pressure behaviour of the simple inorganic azides is also noteworthy. All of the six compounds studied in this work were found to undergo at least one phase transition and a total of ten polymorphs have been identified at variable pressure and/or temperature. For example, at high pressure sodium azide adopts the same structure observed for the larger alkali metal azides at atmospheric conditions. The first two chapters of this thesis provide a very accessible introduction to high-pressure research and energetic materials. The subsequent chapters detail the results of these high-pressure studies of energetic materials, demonstrating excellent clarity of expression and highly developed critical analysis. The final chapter points clearly to future opportunities for extending these studies to other energetic materials and for alternative methodologies for their structural modification. (orig.)

  5. Nano Engineered Energetic Materials (NEEM)

    Science.gov (United States)

    2011-01-12

    reactivity of the nitro group. The more perpendicular orientation of the NO2 in p- NBA leaves both oxygen atoms available to complex vapor deposited Al...different solutes have been recorded in supercritical CO2 in the past, the information on the solubility of many energetic materials including RDX is...The pH level of the solution was monitored before and after to record the ionic activity of the solution. Different amounts of dispersant and

  6. Energetic materials research using scanning electron microscopy

    NARCIS (Netherlands)

    Elshout, J.J.M.H. van den; Duvalois, W.; Benedetto, G.L. Di; Bouma, R.H.B.; Heijden, A.E.D.M. van der

    2016-01-01

    A key-technique for the research of energetic materials is scanning electron microscopy. In this paper several examples are given of characterization studies on energetic materials, including a solid composite propellant formulation. Results of the characterization of energetic materials using scann

  7. Energetic materials research using scanning electron microscopy

    NARCIS (Netherlands)

    Elshout, J.J.M.H. van den; Duvalois, W.; Benedetto, G.L. Di; Bouma, R.H.B.; Heijden, A.E.D.M. van der

    2016-01-01

    A key-technique for the research of energetic materials is scanning electron microscopy. In this paper several examples are given of characterization studies on energetic materials, including a solid composite propellant formulation. Results of the characterization of energetic materials using

  8. Nanoporous Silicon Based Energetic Materials

    Science.gov (United States)

    2008-12-01

    performed at SINTEF , Norway as shown in Figure 4 (line a). 3 Annealing PSi in air at different temperatures can be used to change the surface...3h (c)PSi annealed at 500C for 0.5 h (courtesy SINTEF ) e is C d magnification bright field TEM image of PSi-Fe2O3. The inset electron...Dr. Knut Thorshaug and Dr Diplos Spyros of SINTEF Norway for DRIFTS and XPS data. REFERENCES dvanced Energetics Materials, 2004; report byA ring

  9. Femtosecond Laser Interaction with Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E; Benterou, J; Lee, R; Roeske, F; Stuart, B

    2002-03-25

    Femtosecond laser ablation shows promise in machining energetic materials into desired shapes with minimal thermal and mechanical effects to the remaining material. We will discuss the physical effects associated with machining energetic materials and assemblies containing energetic materials, based on experimental results. Interaction of ultra-short laser pulses with matter will produce high temperature plasma at high-pressure which results in the ablation of material. In the case of energetic material, which includes high explosives, propellants and pyrotechnics, this ablation process must be accomplished without coupling energy into the energetic material. Experiments were conducted in order to characterize and better understand the phenomena of femtosecond laser pulse ablation on a variety of explosives and propellants. Experimental data will be presented for laser fluence thresholds, machining rates, cutting depths and surface quality of the cuts.

  10. Molten salt destruction of energetic material wastes as an alternative to open burning

    Energy Technology Data Exchange (ETDEWEB)

    Upadhye, R.S.; Pruneda, C.O.; Watkins, B.E.

    1995-09-26

    The Lawrence Livermore National Laboratory in conjunction with the Energetic Materials Center ( a partnership of Lawrence Livermore and Sandia National Laboratories), is developing methods for the safe and environmentally sound destruction of explosives and propellants as a part of the Laboratory`s ancillary demilitarization mission. As a result of the end of the Cold War and the shift in emphasis to a smaller stockpile, many munitions, both conventional and nuclear, are scheduled for retirement and rapid dismantlement and demilitarization. Major components of these munitions are the explosives and propellants, or energetic materials. The Department of Energy has thousands of pounds of energetic materials which result from dismantlement operations at the Pantex Plant. The Department of Defense has several hundred million pounds of energetic materials in its demilitarization inventory, with millions more added each year. In addition, there are vast energetic materials demilitarization inventories world-wide, including those in the former Soviet Union and eastern Bloc countries. Although recycling and reusing is the preferred method of dealing with these surplus materials, there will always be the necessity of destroying intractable or unusable energetic materials. Traditionally, open bum/open detonation (OB/OD) has been the method of choice for the destruction of energetic materials. Public concerns and increasingly stringent environmental regulations have made open burning and open detonation of energetic materials increasingly costly and nearly unacceptable. Thus, the impetus to develop environmentally sound alternatives to dispose of energetic materials is great.

  11. Energetic materials and methods of tailoring electrostatic discharge sensitivity of energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Michael A.; Heaps, Ronald J.; Wallace, Ronald S.; Pantoya, Michelle L.; Collins, Eric S.

    2016-11-01

    An energetic material comprising an elemental fuel, an oxidizer or other element, and a carbon nanofiller or carbon fiber rods, where the carbon nanofiller or carbon fiber rods are substantially homogeneously dispersed in the energetic material. Methods of tailoring the electrostatic discharge sensitivity of an energetic material are also disclosed.

  12. Destruction of Energetic Materials in Supercritical Water

    Science.gov (United States)

    2002-06-25

    THERMOCHEMISTRY OF ENERGETIC MATERIALS IN SUPERCRITICAL WATER...fringe spacing is 13.5 µm and the acoustic signal period is 28.3 ns. 138 SECTION VI THERMOCHEMISTRY OF ENERGETIC MATERIALS IN...validation calculation studied the solvation free energies of alkali–chloride ion pairs in liquid water. Such information can teach us about the

  13. Safer energetic materials by a nanotechnological approach.

    Science.gov (United States)

    Siegert, Benny; Comet, Marc; Spitzer, Denis

    2011-09-01

    Energetic materials - explosives, thermites, populsive powders - are used in a variety of military and civilian applications. Their mechanical and electrostatic sensitivity is high in many cases, which can lead to accidents during handling and transport. These considerations limit the practical use of some energetic materials despite their good performance. For industrial applications, safety is one of the main criteria for selecting energetic materials. The sensitivity has been regarded as an intrinsic property of a substance for a long time. However, in recent years, several approaches to lower the sensitivity of a given substance, using nanotechnology and materials engineering, have been described. This feature article gives an overview over ways to prepare energetic (nano-)materials with a lower sensitivity.

  14. Amination of energetic anions: high-performing energetic materials.

    Science.gov (United States)

    Klapötke, Thomas M; Piercey, Davin G; Stierstorfer, Jörg

    2012-08-21

    The new energetic materials 2-amino-5-nitrotetrazole (ANT, 1), 1-amino-3,4-dinitro-1,2,4-triazole (ADNT, 2), and both 1,1'-diamino-5,5'-bistetrazole and 1,2'-diamino-5,5'-bistetrazole (11DABT, 3 and 12DABT, 4) have been prepared by the amination of the parent anion with O-tosylhydroxylamine. The 5-H-tetrazolate anion has also been aminated using hydroxylamine O-sulfonic acid to both 1-aminotetrazole and 2-aminotetrazole (1AT, 5 and 2AT, 6). The prepared materials have been characterized chemically (XRD (1-4, 6·AtNO(2), 8), multinuclear NMR, IR, Raman) and as explosives (mechanical and electrostatic sensitivity) and their explosive performances calculated using the EXPLO5 computer code. The prepared N-amino energetic materials, which can also be used as new ligands for high energy-capacity transition metal complexes, exhibit high explosive performances (in the range of hexogen and octogen) and a range of sensitivities from low to extremely high.

  15. Compatibility testing of energetic materials, which technique?

    NARCIS (Netherlands)

    Klerk, W.P.C. de; Schrader, M.A.; Steen, A.C. van der

    1999-01-01

    Compatibility is an important safety aspect related to the production and storage of energetic materials. To test different combinations of materials a simple test method with clear criteria is advisable. At the last ESTAC the use of microcalorimetry and the vacuum stability test for the

  16. Reapplication of energetic materials at fuels

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L.; Sinquefield, S.; Huey, S.; Lipkin, J.; Shah, D.; Ross, J.; Sclippa, G. [Sandia National Labs., Livermore, CA (United States); Davis, K. [Reaction Engineering Internaional, Salt Lake City, UT (United States)

    1995-05-01

    This investigation addresses the combustion-related aspects of the reapplication of energetic materials as fuels in boilers as an economically viable and environmentally acceptable use of excess energetic materials. The economics of this approach indicate that the revenues from power generation and chemical recovery approximately equal the costs of boiler modification and changes in operation. The primary tradeoff is the cost of desensitizing the fuels against the cost of open burn/open detonation (OB/OD) or other disposal techniques. Two principal combustion-related obstacles to the use of energetic-material-derived fuels are NO{sub x} generation and the behavior of metals. NO{sub x} measurements obtained in this investigation indicate that the nitrated components (nitrocellulose, nitroglycerin, etc.) of energetic materials decompose with NO{sub x} as the primary product. This can lead to high uncontrolled NO{sub x} levels (as high as 2600 ppM on a 3% O{sub 2} basis for a 5% blend of energetic material in the fuel). NO{sub x} levels are sensitive to local stoichiometry and temperature. The observed trends resemble those common during the combustion of other nitrogen containing fuels. Implications for NO{sub x} control strategies are discussed. The behavior of inorganic components in energetic materials tested in this investigation could lead to boiler maintenance problems such as deposition, grate failure, and bed agglomeration. The root cause of the problem is the potentially extreme temperature generated during metal combustion. Implications for furnace selection and operation are discussed.

  17. Fluidjet machining of energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sang-Wook; Reitter, T.; Carlson, G. [Lawrence Livermore National Lab., CA (United States); Do, B. [Mason and Hanger-Silas Mason Co., Inc., Amarillo, TX (United States)

    1994-01-01

    Fluidjet machining phenomena have been analyzed as a potential method for dismantling nuclear weapons in a way that is environmentally clean, efficient and safe. Preliminary experiments and analyses have revealed that at small standoff distances there is no mass removal from the workpiece, and that far from the nozzle there exists an optimum standoff distance at which the mass removal rate is a maximum. Such results suggest a mass-removal process due to the droplets and ligaments impinging on the material that cause sudden pressure increases in the impact regions. This proposed material-removal mechanism has been addressed theoretically by considering a series of multiple droplet impacts on a material. The calculated results display a series of pressure peaks at the target surface as each of these droplets strikes the material, supporting the plausibility of the proposed mass-removal scenario at the optimum standoff distance. Further experiments and analyses are planned to verify the proposed mechanism of mass removal by means of fluidjet machining processes.

  18. Energetic materials standards – Chemical compatibility

    NARCIS (Netherlands)

    Tuukkanen, I.M.; Bouma, R.H.B.

    2014-01-01

    Subgroup A Energetic Materials Team, SG/A (EMT), develops and maintains standards that are relevant to all life-cycle phases of ammunition/weapon systems. STANAG 4147 is the standard regarding chemical compatibility of explosives with munition components, and is a document of prime importance.

  19. Carbonyl-bridged energetic materials: biomimetic synthesis, organic catalytic synthesis, and energetic performances.

    Science.gov (United States)

    Feng, Yong-An; Qiu, Hao; Yang, Sa-Sha; Du, Jiang; Zhang, Tong-Lai

    2016-11-01

    In order to obtain high-performance energetic materials, in this work, carbonyl groups (C[double bond, length as m-dash]O) have been newly introduced as sole bridging groups in the field of energetic materials. To this end, two tailored green methods for the synthesis of carbonyl-bridged energetic compounds have been developed for the first time. One is a biomimetic synthesis, in which the conversion route of heme to biliverdin has been used to obtain metal-containing energetic compounds. The other one is an organocatalysis, in which guanidinium serves as an energetic catalyst to afford other energetic compounds. Experimental studies and theoretical calculations have shown that carbonyl-bridged energetic compounds exhibit excellent energetic properties, which is promising for the carbonyl group as a new important and effective linker in energetic materials.

  20. Sol-Gel Manufactured Energetic Materials

    Science.gov (United States)

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2005-05-17

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  1. Formation of energetic materials using supercritical fluids

    Energy Technology Data Exchange (ETDEWEB)

    Teipel, U.; Kroeber, H.; Krause, H.H. [Fraunhofer-Institut fuer Chemische Technologie (ICT), Pfinztal (Germany)

    2001-10-01

    A new field of applications of compressed gases is the formation of solid particles with well-defined properties, e.g. the particle size, the particle size distribution, the particle shape, the specific surface area and free of solvent inclusions. It is possible to process moderately solids like energetic materials which are difficult to comminute due to their sensitivity to mechanical or thermal stress. The characteristics of compressed gases allow to vary the morphology of solid particles in a wide range. A pilot plant is presented, which has been built to prepare fine particles by the rapid expansion of supercritical solutions (RESS process) and precipitation by a compressed fluid antisolvent (PCA process). In this contribution the micronization of different energetic materials by the RESS and PCA processes will be under investigation. (orig.)

  2. Energetic oxygen atom material degradation studies

    Science.gov (United States)

    Caledonia, George E.; Krech, Robert H.

    1987-01-01

    As part of a study designed to test potential Shuttle surface materials for the extents of degradation and mass loss expected to be suffered in space from the velocity impacts of ambient oxygen atoms, a novel technique was developed for generation of a high flux of energetic oxygen atoms. The generation technique involves laser-induced breakdown of molecular oxygen followed by a rapid expansion of energetic oxygen atoms. The high-velocity streams developed in an evacuated hypersonic nozzle have average O-atom velocities of about 5 to 13 km/s, with an estimated total production of 10 to the 18th atoms per pulse over pulse durations of several microseconds. Results on preliminary material degradation tests conducted with this test facility have been reported by Caledonia et al. (1987). Diagrams of the experimental setup are included.

  3. Commercial nuclear fuel from U.S. and Russian surplus defense inventories: Materials, policies, and market effects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Nuclear materials declared by the US and Russian governments as surplus to defense programs are being converted into fuel for commercial nuclear reactors. This report presents the results of an analysis estimating the market effects that would likely result from current plans to commercialize surplus defense inventories. The analysis focuses on two key issues: (1) the extent by which traditional sources of supply, such as production from uranium mines and enrichment plants, would be displaced by the commercialization of surplus defense inventories or, conversely, would be required in the event of disruptions to planned commercialization, and (2) the future price of uranium considering the potential availability of surplus defense inventories. Finally, the report provides an estimate of the savings in uranium procurement costs that could be realized by US nuclear power generating companies with access to competitively priced uranium supplied from surplus defense inventories.

  4. High Strain Rate Experiments of Energetic Material Binder

    OpenAIRE

    Rangel Mendoza, Roberto; Harr, Michael; Chen, Weinong

    2016-01-01

    Energetic materials, in particular HMX, is widely used in many applications as polymer bonded explosives (PBX) and rocket propellant. However, when damaged, HMX is known to be an unstable substance which renders it a hazardous material and in some cases unreliable. Finding critical mechanical conditions at high rates that render various forms of energetic materials as unreliable would be vital to understand the effects that vibrations and compression forces have on energetic materials. A bett...

  5. Nonlinear Electromagnetic Interactions in Energetic Materials

    CERN Document Server

    Wood, M A; Moore, D S

    2016-01-01

    We study the scattering of electromagnetic waves in anisotropic energetic materials. Nonlinear light-matter interactions in molecular crystals result in frequency-conversion and polarization changes. Applied electromagnetic fields of moderate intensity can induce these nonlinear effects without triggering chemical decomposition, offering a mechanism for non-ionizing identification of explosives. We use molecular dynamics simulations to compute such two-dimensional Raman spectra in the terahertz range for planar slabs made of PETN and ammonium nitrate. We discuss third-harmonic generation and polarization-conversion processes in such materials. These observed far-field spectral features of the reflected or transmitted light may serve as an alternative tool for stand-off explosive detection.

  6. Towards coherent control of energetic material initiation

    Energy Technology Data Exchange (ETDEWEB)

    Greenfield, Margo T [Los Alamos National Laboratory; Mcgrane, Shawn D [Los Alamos National Laboratory; Scharff, R Jason [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory

    2009-01-01

    Direct optical initiation (DOI) of energetic materials using coherent control of localized energy deposition requires depositing energy into the material to produce a critical size hot spot, which allows propagation of the reaction and thereby initiation, The hot spot characteristics needed for growth to initiation can be studied using quantum controlled initiation (QCI). Achieving direct quantum controlled initiation (QCI) in condensed phase systems requires optimally shaped ultrafast laser pulses to coherently guide the energy flow along the desired paths. As a test of our quantum control capabilities we have successfully demonstrated our ability to control the reaction pathway of the chemical system stilbene. An acousto-optical modulator based pulse shaper was used at 266 nm, in a shaped pump/supercontinuum probe technique, to enhance and suppress th relative yields of the cis- to trans-stilbene isomerization. The quantum control techniques tested in the stilbene experiments are currently being used to investigate QCI of the explosive hexanitroazobenzene (HNAB).

  7. Characterization of thermally degraded energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Renlund, A.M.; Miller, J.C.; Trott, W.M.; Erickson, K.L.; Hobbs, M.L.; Schmitt, R.G.; Wellman, G.W.; Baer, M.R.

    1997-12-31

    Characterization of the damage state of a thermally degraded energetic material (EM) is a critical first step in understanding and predicting cookoff behavior. Unfortunately, the chemical and mechanical responses of heated EMs are closely coupled, especially if the EM is confined. The authors have examined several EMs in small-scale experiments (typically 200 mg) heated in both constant-volume and constant-load configurations. Fixtures were designed to minimize free volume and to contain gas pressures to several thousand psi. The authors measured mechanical forces or displacements that correlated to thermal expansion, phase transitions, material creep and gas pressurization as functions of temperature and soak time. In addition to these real-time measurements, samples were recovered for postmortem examination, usually with scanning electron microscopy (SEM) and chemical analysis. The authors present results on EMs (HMX and TATB), with binders (e.g., PBX 9501, PBX 9502, LX-14) and propellants (Al/AP/HTPB).

  8. Environmentally compatible next generation green energetic materials (GEMs).

    Science.gov (United States)

    Talawar, M B; Sivabalan, R; Mukundan, T; Muthurajan, H; Sikder, A K; Gandhe, B R; Rao, A Subhananda

    2009-01-30

    This paper briefly reviews the literature work reported on the environmentally compatible green energetic materials (GEMs) for defence and space applications. Currently, great emphasis is laid in the field of high-energy materials (HEMs) to increase the environmental stewardship along with the deliverance of improved performance. This emphasis is especially strong in the areas of energetic materials, weapon development, processing, and disposal operations. Therefore, efforts are on to develop energetic materials systems under the broad concept of green energetic materials (GEMs) in different schools all over the globe. The GEMs program initiated globally by different schools addresses these challenges and establishes the framework for advances in energetic materials processing and production that promote compliance with environmental regulations. This review also briefs the principles of green chemistry pertaining to HEMs, followed by the work carried out globally on environmentally compatible green energetic materials and allied ingredients.

  9. Multidimensional DDT modeling of energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Baer, M.R.; Hertel, E.S.; Bell, R.L.

    1995-07-01

    To model the shock-induced behavior of porous or damaged energetic materials, a nonequilibrium mixture theory has been developed and incorporated into the shock physics code, CTH. The foundation for this multiphase model is based on a continuum mixture formulation given by Baer and Nunziato. This multiphase mixture model provides a thermodynamic and mathematically-consistent description of the self-accelerated combustion processes associated with deflagration-to-detonation and delayed detonation behavior which are key modeling issues in safety assessment of energetic systems. An operator-splitting method is used in the implementation of this model, whereby phase diffusion effects are incorporated using a high resolution transport method. Internal state variables, forming the basis for phase interaction quantities, are resolved during the Lagrangian step requiring the use of a stiff matrix-free solver. Benchmark calculations are presented which simulate low-velocity piston impact on a propellant porous bed and experimentally-measured wave features are well replicated with this model. This mixture model introduces micromechanical models for the initiation and growth of reactive multicomponent flow that are key features to describe shock initiation and self-accelerated deflagration-to-detonation combustion behavior. To complement one-dimensional simulation, two-dimensional numerical calculations are presented which indicate wave curvature effects due to the loss of wall confinement. This study is pertinent for safety analysis of weapon systems.

  10. Biocidal Energetic Materials for the Destruction of Spore Forming Bacteria

    Science.gov (United States)

    2015-07-01

    L R E P O R T DTRA-TR-13-52 Biocidal Energetic Materials for the Destruction of Spore Forming Bacteria Distribution Statement A...Z39.18 00-07-2015 Technical N/A Biocidal Energetic Materials for the Destruction of Spore Forming Bacteria HDTRA1-10-1-0108 Emily M. Hunt, Ph.D. West...understand the interaction between spore forming bacteria and thermite reactions and products and to exploit energetic material reactions with

  11. Energetic materials destruction using molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Upadhye, R.S.; Watkins, B.E.; Pruneda, C.O.; Brummond, W.A.

    1994-04-29

    The Lawrence Livermore National Laboratory in conjunction with the Energetic Materials Center is developing methods for the safe and environmentally sound destruction of explosives and propellants as a part of the Laboratory`s ancillary demilitarization mission. LLNL has built a small-scale unit to test the destruction of HE using the Molten Salt Destruction (MSD) Process. In addition to the high explosive HMX, destruction has been carried out on RDX, PETN, ammonium picrate, TNT, nitroguanadine, and TATB. Also destroyed was a liquid gun propellant comprising hydroxyammonium nitrate, triethanolammonium nitrate and water. In addition to these pure components, destruction has been carried out on a number of commonly used formulations, such as LX-10, LX-16, LX-17, and PBX-9404.

  12. Chemical conversion of energetic materials to higher value products

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, A.R.; Sanner, R.D.; Pagoria, P.F.

    1996-05-01

    The objective of this program is to develop novel, innovative solutions for the disposal of surplus explosives resulting from the demilitarization of nuclear and conventional munitions. Studies related to the conversion of TNT and Explosive D to potentially useful materials are described.

  13. Nanostructured energetic materials using sol-gel methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Tillotson, T M; Simpson, R L; Hrubesh, L W; Gash, A E; Thomas, I M; Poco, J F

    2000-09-27

    The fundamental differences between energetic composites and energetic materials made from a monomolecular approach are the energy density attainable and the energy release rates. For the past 4 years, we have been exploiting sol-gel chemistry as a route to process energetic materials on a microstructural scale. At the last ISA conference, we described four specific sol-gel approaches to fabricating energetic materials and presented our early work and results on two methods - solution crystallization and powder addition. Here, we detail our work on a third approach, energetic nanocomposites. Synthesis of thermitic types of energetic nanocomposites are presented using transition and main group metal-oxide skeletons. Results on characterization of structure and performance will also be given.

  14. Energetic materials: crystallization, characterization and insensitive plastic bonded explosives

    NARCIS (Netherlands)

    Heijden, A.E.D.M. van der; Creyghton, Y.L.M.; Marino, E.; Bouma, R.H.B.; Scholtes, G.J.H.G.; Duvalois, W.; Roelands, C.P.M.

    2008-01-01

    The product quality of energetic materials is predominantly determined by the crystallization process applied to produce these materials. It has been demonstrated in the past that the higher the product quality of the solid energetic ingredients, the less sensitive a plastic bonded explosive contain

  15. Particle coating – a novel trend in energetic materials engineering

    NARCIS (Netherlands)

    Abadjieva, E.; Heijden, A.E.D.M. van der; Creyghton, Y.L.M.

    2010-01-01

    The development of new energetic materials with enhanced blast properties requires better understanding of factors as particle type, size and particle/matrix distribution. The ability of growing a coating on particles opens new possibilities in energetic materials engineering. Functionalities as

  16. Synthesis and Characterization of Mixed Metal Oxide Nanocomposite Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Gash, A; Pantoya, M; Jr., J S; Zhao, L; Shea, K; Simpson, R; Clapsaddle, B

    2003-11-18

    In the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology, affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. Furthermore, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. As a result, the desired organic functionality is well dispersed throughout the composite material on the nanoscale. By introducing a fuel metal into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of these metal oxide/silicon oxide nanocomposites and their performance as energetic materials will be discussed.

  17. Energetic materials: crystallization, characterization and insensitive plastic bonded explosives

    NARCIS (Netherlands)

    Heijden, A.E.D.M. van der; Creyghton, Y.L.M.; Marino, E.; Bouma, R.H.B.; Scholtes, G.J.H.G.; Duvalois, W.; Roelands, C.P.M.

    2008-01-01

    The product quality of energetic materials is predominantly determined by the crystallization process applied to produce these materials. It has been demonstrated in the past that the higher the product quality of the solid energetic ingredients, the less sensitive a plastic bonded explosive

  18. Shear initiated reactions in energetic and reactive materials

    NARCIS (Netherlands)

    Meuken, B.; Martinez Pacheco, M.; Verbeek, H.J.; Bouma, R.H.B.; Katgerman, L.

    2006-01-01

    Deformation of energetic materials may cause undesired reactions and therefore hazardous situations. The deformation of an energetic material and in particular shear deformation is studied in this paper. Understanding of the phenomena leading to shear initiation is not only necessary to explain for

  19. Shear initiated reactions in energetic and reactive materials

    NARCIS (Netherlands)

    Meuken, B.; Martinez Pacheco, M.; Verbeek, H.J.; Bouma, R.H.B.; Katgerman, L.

    2006-01-01

    Deformation of energetic materials may cause undesired reactions and therefore hazardous situations. The deformation of an energetic material and in particular shear deformation is studied in this paper. Understanding of the phenomena leading to shear initiation is not only necessary to explain for

  20. Enforced Layer-by-Layer Stacking of Energetic Salts towards High-Performance Insensitive Energetic Materials.

    Science.gov (United States)

    Zhang, Jiaheng; Mitchell, Lauren A; Parrish, Damon A; Shreeve, Jean'ne M

    2015-08-26

    Development of modern high-performance insensitive energetic materials is significant because of the increasing demands for both military and civilian applications. Here we propose a rapid and facile strategy called the "layer hydrogen bonding pairing approach" to organize energetic molecules via layer-by-layer stacking, which grants access to tunable energetic materials with targeted properties. Using this strategy, an unusual energetic salt, hydroxylammonium 4-amino-furazan-3-yl-tetrazol-1-olate, with good detonation performances and excellent sensitivities, was designed, synthesized, and fully characterized. In addition, the expected unique layer-by-layer structure with a high crystal packing coefficient was confirmed by single-crystal X-ray crystallography. Calculations indicate that the layer-stacking structure of this material can absorb the mechanical stimuli-induced kinetic energy by converting it to layer sliding, which results in low sensitivity.

  1. Synthesis and Characterization of Mixed Metal Oxide Nanocomposite Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Clapsaddle, B; Gash, A; Plantier, K; Pantoya, M; Jr., J S; Simpson, R

    2004-04-27

    In the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. By introducing a fuel metal, such as aluminum, into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. In addition, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. These organic additives can cause the generation of gas upon ignition of the materials, therefore resulting in a composite material that can perform pressure/volume work. Furthermore, the desired organic functionality is well dispersed throughout the composite material on the nanoscale with the other components, and is therefore subject to the same increased reaction kinetics. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of iron(III) oxide/organosilicon oxide nanocomposites and their performance as energetic materials will be discussed.

  2. Investigations of Novel Energetic Materials to Stabilize Rocket Motors

    Science.gov (United States)

    2002-04-30

    and various additives were developed in the second half of the 20th Century. The earliest such propellants were asphalt -based developed at GALCIT with...Decomposition of Energetic Materials 74. Volatile Metal Isocyanates from Flash Pyrolysis of Metal-NTO and Metal-Picrate Salts and an Application Hypothesis...B. Brill, T. L. Zhang and B. C. Tappan, Thermal Decomposition of Energetic Materials 74. Volatile Metal Isocyanates from Flash Pyrolysis of Metal-NTO

  3. Energetic Materials Effects on Essential Soil Processes: Decomposition of Orchard Grass (Dactylis glomerata) Litter in Soil Contaminated with Energetic Materials

    Science.gov (United States)

    2014-02-01

    GRASS (DACTYLIS GLOMERATA) LITTER IN SOIL CONTAMINATED WITH ENERGETIC MATERIALS ECBC-TR-1199 Roman G. Kuperman Ronald T. Checkai Michael Simini...of Orchard Grass (Dactylis glomerata) Litter in Soil Contaminated with Energetic Materials 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...soils using the U.S. Environmental Protection Agency Method 8330A. The results showed that soil contamination with 2,4-DNT or NG can inhibit litter

  4. Environmentally Responsible Energetic Materials: Another Look at the Styphnates

    Science.gov (United States)

    Collins, Adam; Angliss, Timothy; Proud, William

    2009-06-01

    Lead Styphnate (lead 2,4,6-trinitroresorcinate) has many applications as a primary explosive, most notably in priming compositions. Its largest drawback, however, is the toxicity of lead. Heavy metals often feature in primary explosives, providing favourable density, bonding, and reaction products; but, the toxic nature of heavy metals makes these explosives of limited use. Current research efforts are being made to design new energetic materials (such as those based around the 5-nitrotetrazole molecule), but familiar energetics can still be of use. The styphnate anion provides many favourable energetic qualities (such as a ring structure and nitro groups), and while the lead salt has proven its usefulness, other metallic styphnates also provide a range of energetic qualities. This paper reports on ignition thresholds, energetic output, and thermal properties of the following salts of trinitroresorcinol: Barium, Bismuth, Calcium, Copper, Lithium, and Lead. Such information provides a list of characterized energetic materials, but also insight into how metal cations can control measurable energetic effects at the molecular and crystal level.

  5. SURPLUS DILEMMA

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    On top of yuan revaluation and a huge trade surplus, the Chinese Government must also address ballooning forex reserves At the end of 2005, China's foreign exchange surplus totaled $818.87 billion, a leap of $208.9 billion over the previous year and an amount that is expected to have topped Japan's to become the world's largest.

  6. Chemical rocket propulsion a comprehensive survey of energetic materials

    CERN Document Server

    Shimada, Toru; Sinditskii, Valery; Calabro, Max

    2017-01-01

    Developed and expanded from the work presented at the New Energetic Materials and Propulsion Techniques for Space Exploration workshop in June 2014, this book contains new scientific results, up-to-date reviews, and inspiring perspectives in a number of areas related to the energetic aspects of chemical rocket propulsion. This collection covers the entire life of energetic materials from their conceptual formulation to practical manufacturing; it includes coverage of theoretical and experimental ballistics, performance properties, as well as laboratory-scale and full system-scale, handling, hazards, environment, ageing, and disposal. Chemical Rocket Propulsion is a unique work, where a selection of accomplished experts from the pioneering era of space propulsion and current technologists from the most advanced international laboratories discuss the future of chemical rocket propulsion for access to, and exploration of, space. It will be of interest to both postgraduate and final-year undergraduate students in...

  7. Cesium pentazolate: A new nitrogen-rich energetic material

    Science.gov (United States)

    Steele, Brad A.; Stavrous, Elissaios; Prakapenka, Vitali B.; Radousky, Harry; Zaug, Joseph; Crowhurst, Jonathan C.; Oleynik, Ivan I.

    2017-01-01

    We report theoretical and experimental evidence for a new class of high-nitrogen content energetic material compounds consisting of molecular pentazoles, which are stabilized in the crystal phase upon introduction of elemental cesium. First-principles structural predictions show that the material with composition CsN5 is thermodynamically stable above 15 GPa. Indexing of the measured X-ray diffraction spectra indicate the synthesis of this material at 60 GPa as well its stability upon decompression down to 24 GPa.

  8. Thermal Damage Characterization of Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, P C; DeHaven, M R; Springer, H K; Maienschein, J L

    2009-08-14

    We conducted thermal damage experiments at 180?C on PBXN-9 and characterized its material properties. Volume expansion at high temperatures was very significant which led to a reduction in material density. 2.6% of weight loss was observed, which was higher than other HMX-based formulations. Porosity of PBXN-9 increased to 16% after thermal exposure. Small-scale safety tests (impact, friction, and spark) showed no significant sensitization when the damaged samples were tested at room temperature. Gas permeation measurements showed that gas permeability in damaged materials was several orders of magnitude higher than that in pristine materials. In-situ measurements of gas permeability and density were proved to be possible at higher temperatures.

  9. Fissile material disposition program: Screening of alternate immobilization candidates for disposition of surplus fissile materials

    Energy Technology Data Exchange (ETDEWEB)

    Gray, L.W.

    1996-01-08

    With the end of the Cold War, the world faces for the first time the need to dismantle vast numbers of ``excess`` nuclear weapons and dispose of the fissile materials they contain, together with fissile residues in the weapons production complex left over from the production of these weapons. If recently agreed US and Russian reductions are fully implemented, tens of thousands of nuclear weapons, containing a hundred tons or more of plutonium and hundreds of tonnes* of highly enriched uranium (HEU), will no longer be needed worldwide for military purposes. These two materials are the essential ingredients of nuclear weapons, and limits on access to them are the primary technical barrier to prospective proliferants who might desire to acquire a nuclear weapons capability. Theoretically, several kilograms of plutonium, or several times that amount of HEU, is sufficient to make a nuclear explosive device. Therefore, these materials will continue to be a potential threat to humanity for as long as they exist.

  10. New fluidized bed reactor for coating of energetic materials

    NARCIS (Netherlands)

    Abadjieva, E.; Huijser, T.; Creyghton, Y.L.M.; Heijden, A.E.D.M. van der

    2009-01-01

    The process of altering and changing the properties of the energetic materials by coating has been studied extensively by several scientific groups. According to the desired application different coating techniques have been developed and applied to achieve satisfactory results. Among the already de

  11. New fluidized bed reactor for coating of energetic materials

    NARCIS (Netherlands)

    Abadjieva, E.; Huijser, T.; Creyghton, Y.L.M.; Heijden, A.E.D.M. van der

    2009-01-01

    The process of altering and changing the properties of the energetic materials by coating has been studied extensively by several scientific groups. According to the desired application different coating techniques have been developed and applied to achieve satisfactory results. Among the already

  12. Propulsion and energetic materials research in the Netherlands

    NARCIS (Netherlands)

    Zevenbergen, J.F.; Pekalski, A.A.; Heijden, A.E.D.M. van der; Keizers, H.L.J.; Berg, R.P. van den; Maree, A.G.M.; Vliet, L.D. van; Welland, W.H.M.; Wierckx, F.J.M.

    2005-01-01

    Fundamental research on new and existing propellant formulations and energetic materials in the Netherlands is essentially carried out by the Delft University of Technology, Utrecht University, the Dutch Defense Laboratory ‘TNO Defense Security and Safety’ and the SME Aerospace Propulsion Products.

  13. Nanostructured energetic materials derived from sol-gel chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, R L; Tillotson, T M; Hrubesh, L W; Gash, A E

    2000-03-15

    Initiation and detonation properties are dramatically affected by an energetic material's microstructural properties. Sol-gel chemistry allows intimacy of mixing to be controlled and dramatically improved over existing methodologies. One material goal is to create very high power energetic materials which also have high energy densities. Using sol-gel chemistry we have made a nanostructured composite energetic material. Here a solid skeleton of fuel, based on resorcinol-formaldehyde, has nanocrystalline ammonium perchlorate, the oxidizer, trapped within its pores. At optimum stoichiometry it has approximately the energy density of HMX. Transmission electron microscopy indicated no ammonium perchlorate crystallites larger than 20 nm while near-edge soft x-ray absorption microscopy showed that nitrogen was uniformly distributed, at least on the scale of less than 80 nm. Small-angle neutron scattering studies were conducted on the material. Those results were consistent with historical ones for this class of nanostructured materials. The average skeletal primary particle size was on the order of 2.7 nm, while the nanocomposite showed the growth of small 1 nm size crystals of ammonium perchlorate with some clustering to form particles greater than 10 nm.

  14. The Reactivity of Energetic Materials At Extreme Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fried, L E

    2006-10-23

    Energetic materials are unique for having a strong exothermic reactivity, which has made them desirable for both military and commercial applications. Energetic materials are commonly divided into high explosives, propellants, and pyrotechnics. We will focus on high explosive (HE) materials here, although there is a great deal of commonality between the classes of energetic materials. Although the history of HE materials is long, their condensed-phase properties are poorly understood. Understanding the condensed-phase properties of HE materials is important for determining stability and performance. Information regarding HE material properties (for example, the physical, chemical, and mechanical behaviors of the constituents in plastic-bonded explosive, or PBX, formulations) is necessary for efficiently building the next generation of explosives as the quest for more powerful energetic materials (in terms of energy per volume) moves forward. In modeling HE materials there is a need to better understand the physical, chemical, and mechanical behaviors from fundamental theoretical principles. Among the quantities of interest in plastic-bonded explosives (PBXs), for example, are thermodynamic stabilities, reaction kinetics, equilibrium transport coefficients, mechanical moduli, and interfacial properties between HE materials and the polymeric binders. These properties are needed (as functions of stress state and temperature) for the development of improved micro-mechanical models, which represent the composite at the level of grains and binder. Improved micro-mechanical models are needed to describe the responses of PBXs to dynamic stress or thermal loading, thus yielding information for use in developing continuum models. Detailed descriptions of the chemical reaction mechanisms of condensed energetic materials at high densities and temperatures are essential for understanding events that occur at the reactive front under combustion or detonation conditions. Under

  15. Modeling thermal/chemical/mechanical response of energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Baer, M.R.; Hobbs, M.L.; Gross, R.J. [and others

    1995-07-01

    An overview of modeling at Sandia National Laboratories is presented which describes coupled thermal, chemical and mechanical response of energetic materials. This modeling addresses cookoff scenarios for safety assessment studies in systems containing energetic materials. Foundation work is discussed which establishes a method for incorporating chemistry and mechanics into multidimensional analysis. Finite element analysis offers the capabilities to simultaneously resolve reactive heat transfer and structural mechanics in complex geometries. Nonlinear conduction heat transfer, with multiple step finite-rate chemistry, is resolved using a thermal finite element code. Rate equations are solved element-by-element using a modified matrix-free stiff solver This finite element software was developed for the simulation of systems requiring large numbers of finite elements. An iterative implicit scheme, based on the conjugate gradient method, is used and a hemi-cube algorithm is employed for the determination of view factors in surface-to-surface radiation transfer The critical link between the reactive heat transfer and mechanics is the introduction of an appropriate constitutive material model providing a stress-strain relationship for quasi-static mechanics analysis. This model is formally derived from bubble nucleation theory, and parameter variations of critical model parameters indicate that a small degree of decomposition leads to significant mechanical response. Coupled thermal/chemical/mechanical analysis is presented which simulates experiments designed to probe cookoff thermal-mechanical response of energetic materials.

  16. Modeling the Reactions of Energetic Materials in the Condensed Phase

    Energy Technology Data Exchange (ETDEWEB)

    Fried, L E; Manaa, M R; Lewis, J P

    2003-12-03

    High explosive (HE) materials are unique for having a strong exothermic reactivity, which has made them desirable for both military and commercial applications. Although the history of HE materials is long, condensed-phase properties are poorly understood. Understanding the condensed-phase properties of HE materials is important for determining stability and performance. Information regarding HE material properties (for example, the physical, chemical, and mechanical behaviors of the constituents in plastic-bonded explosive, or PBX, formulations) is necessary in efficiently building the next generation of explosives as the quest for more powerful energetic materials (in terms of energy per volume) moves forward. In addition, understanding the reaction mechanisms has important ramifications in disposing of such materials safely and cheaply, as there exist vast stockpiles of HE materials with corresponding contamination of earth and groundwater at these sites, as well as a military testing sites The ability to model chemical reaction processes in condensed phase energetic materials is rapidly progressing. Chemical equilibrium modeling is a mature technique with some limitations. Progress in this area continues, but is hampered by a lack of knowledge of condensed phase reaction mechanisms and rates. Atomistic modeling is much more computationally intensive, and is currently limited to very short time scales. Nonetheless, this methodology promises to yield the first reliable insights into the condensed phase processes responsible for high explosive detonation. Further work is necessary to extend the timescales involved in atomistic simulations. Recent work in implementing thermostat methods appropriate to shocks may promise to overcome some of these difficulties. Most current work on energetic material reactivity assumes that electronically adiabatic processes dominate. The role of excited states is becoming clearer, however. These states are not accessible in perfect

  17. Sensitivity and performance of azole-based energetic materials.

    Science.gov (United States)

    Yu, Zijun; Bernstein, Elliot R

    2013-10-24

    Imidazole, pyrazole, 1,2,3-triazole-, 1,2,4-triazole-, and tetrazole-based energetic materials are theoretically investigated by employing density functional theory (DFT). Heats of formation (ΔfH(0)'s) for the studied compounds (298 K) in the gas phase are determined at the B3P86/6-311G (d, p) theory level through isodesmic reactions. The bond dissociation energies (BDEs) corresponding to NO2, NH2, CH3, and Cl removal from carbon or nitrogen positions of the azole ring are also calculated at the B3P86/6-311G (d, p) theory level. The substituent effect of electron-withdrawing (NO2, Cl) and electron-donating (NH2, CH3) groups on the ΔfH(0)s and BDEs is discussed. Both electron-withdrawing groups and electron-donating groups (except the CH3 group) dramatically increase the ΔfH(0)s of these energetic materials when the substituent is at an N position on the azole ring. For substitution at a C atom on the azole ring, electron-withdrawing and electron-donating groups have different effects on the ΔfH(0)s for different azole compounds. A correlation is developed for this series of energetics between impact sensitivity h50% and the defined sensitivity index (SI): based on this empirical relationship and its extrapolation, the impact sensitivities of compounds for which experiments are not available are provided. The promising energetic compounds in each groups, which have potentially good energetic performance and low sensitivity, are 1-amino-2,4,5-trinitroimidazole, 1-amino-3,4,5-trinitropyrazole, 1,4-dinitro-1,2,3-triazole, 1,3-dinitro-1,2,4-triazole, and 1-nitrotetrazole.

  18. Evaluation of nanoparticles in the performance of energetic materials

    Directory of Open Access Journals (Sweden)

    José Atílio Fritz Fidel Rocco

    2010-04-01

    Full Text Available The addition of nanosized metal particles in propulsion systems such as solid and liquid propellants, hybrid propellant and ramjet motors has recently became a major focus of research. Significant increases in the burning velocity and in the specific impulse are some of the advantages of using nano-scale energetic materials in many different types of propulsion systems. Aluminum has been largely employed as a metallic additive in energetic materials, also in a recently new propulsion system (aluminum/ice propulsion, “Alice”, and some studies show that the advantages of using nanosized aluminum instead of microsized aluminum are facilitating the ignition of the systems and allowing better incorporation of the components in the formulations and improving its homogeneity. Some of the combustion processes that require high pressures and even higher temperatures can occur in moderate conditions due to the increase of the surface area of the reactants, in this case, the metallic additive.

  19. Ultrafast laser diagnostics to investigate initiation fundamentals in energetic materials.

    Energy Technology Data Exchange (ETDEWEB)

    Farrow, Darcie; Jilek, Brook Anton; Kohl, Ian Thomas; Kearney, Sean Patrick

    2013-08-01

    We present the results of a two year early career LDRD project, which has focused on the development of ultrafast diagnostics to measure temperature, pressure and chemical change during the shock initiation of energetic materials. We compare two single-shot versions of femtosecond rotational CARS to measure nitrogen temperature: chirped-probe-pulse and ps/fs hybrid CARS thermometry. The applicability of measurements to the combustion of energetic materials will be discussed. We have also demonstrated laser shock and particle velocity measurements in thin film explosives using stretched femtosecond laser pulses. We will discuss preliminary results from Al and PETN thin films. Agreement between our results and previous work will be discussed.

  20. Electronic State Decomposition of Energetic Materials and Model Systems

    Science.gov (United States)

    2010-11-17

    tetrazine1,4-dioxde ( DATO ), is investigated. Although these molecules are based on N -oxides of a tetrazine aromatic heterocyclic ring, their...nitramines, furazan, tetrazines, tetrazine-N oxides, terazoles, PETN, RDX,HMX,CL-20,DAATO,ACTO, DATO ,conical intersections Elliot R Bernstein Colorado State...Tetrazine-N-Oxide Based High Nitrogen Content Energetic Materials from Excited Electronic States," J. Chem. Phys. 131, 194304 (2009). A

  1. Preparation and reactivity of gasless nanostructured energetic materials.

    Science.gov (United States)

    Manukyan, Khachatur V; Shuck, Christopher E; Rogachev, Alexander S; Mukasyan, Alexander S

    2015-04-02

    High-Energy Ball Milling (HEBM) is a ball milling process where a powder mixture placed in the ball mill is subjected to high-energy collisions from the balls. Among other applications, it is a versatile technique that allows for effective preparation of gasless reactive nanostructured materials with high energy density per volume (Ni+Al, Ta+C, Ti+C). The structural transformations of reactive media, which take place during HEBM, define the reaction mechanism in the produced energetic composites. Varying the processing conditions permits fine tuning of the milling-induced microstructures of the fabricated composite particles. In turn, the reactivity, i.e., self-ignition temperature, ignition delay time, as well as reaction kinetics, of high energy density materials depends on its microstructure. Analysis of the milling-induced microstructures suggests that the formation of fresh oxygen-free intimate high surface area contacts between the reagents is responsible for the enhancement of their reactivity. This manifests itself in a reduction of ignition temperature and delay time, an increased rate of chemical reaction, and an overall decrease of the effective activation energy of the reaction. The protocol provides a detailed description for the preparation of reactive nanocomposites with tailored microstructure using short-term HEBM method. It also describes a high-speed thermal imaging technique to determine the ignition/combustion characteristics of the energetic materials. The protocol can be adapted to preparation and characterization of a variety of nanostructured energetic composites.

  2. Diagnostics for the Analysis of Surface Chemistry Effects on Composite Energetic Material Reactions

    Science.gov (United States)

    2015-10-30

    Distribution Unlimited Final Report: Diagnostics for the Analysis of Surface Chemistry Effects on Composite Energetic Material Reactions The views...peer-reviewed journals: Final Report: Diagnostics for the Analysis of Surface Chemistry Effects on Composite Energetic Material Reactions Report...2.00 4.00 Evan Vargas, Michelle L. Pantoya, Mohammed A Saed, Brandon L Weeks. Advanced Susceptors for Microwave Heating of Energetic Materials

  3. 77 FR 25932 - Revisions to the Export Administration Regulations (EAR): Control of Energetic Materials and...

    Science.gov (United States)

    2012-05-02

    ... Regulations (EAR): Control of Energetic Materials and Related Articles That the President Determines No Longer... this proposed rule describing how energetic materials and related articles that the President determines no longer warrant control under Category V (Explosives and Energetic Materials, Propellants...

  4. Nanostructured Energetic Materials with Sol-Gel Methods

    Energy Technology Data Exchange (ETDEWEB)

    Gash, A; Satcher, J; Simpson, R; Clapsaddle, B

    2003-11-25

    The utilization of sol-gel chemical methodology to prepare nanostructured energetic materials as well as the concepts of nanoenergetics is described. The preparation and characterization of two totally different compositions is detailed. In one example, nanostructured aerogel and xerogel composites of sol-gel iron (III) oxide and ultra fine grained aluminum (UFG Al) are prepared, characterized, and compared to a conventional micron-sized Fe{sub 2}O{sub 3}/Al thermite. The exquisite degree of mixing and intimate nanostructuring of this material is illustrated using transmission and scanning electron microscopies (TEM and SEM). The nanocomposite material has markedly different energy release (burn rate) and thermal properties compared to the conventional composite, results of which will be discussed. Small-scale safety characterization was performed aerogels and xerogels of the nanostructured thermite. The second nanostructured energetic material consists of a nanostructured hydrocarbon resin fuel network with fine ammonium perchlorate (NH{sub 4}ClO{sub 4}) oxidizer present.

  5. Dynamic behavior of particulate/porous energetic materials

    Science.gov (United States)

    Nesterenko, Vitali F.; Chiu, Po-Hsun; Braithwaite, C. H.; Collins, Adam; Williamson, David Martin; Olney, Karl L.; Benson, David; McKenzie, Francesca

    2012-03-01

    Dynamic behavior of particulate/porous energetic materials in a broad range of dynamic conditions (low velocity impact and explosively driven expansion of rings) is discussed. Samples of these materials were fabricated using Cold Isostatic Pressing and Hot Isostatic Pressing with and without vacuum encapsulation. The current interest in these materials is due to the combination of their high strength and output of energy under critical conditions of mechanical deformation. They may exhibit high compressive and tensile strength with the ability to undergo bulk distributed fracture resulting in small size reactive fragments. The mechanical properties of these materials and the fragment sizes produced by fracturing are highly sensitive to mesostructure. For example, the dynamic strength of Al-W composites with fine W particles is significantly larger than the strength of composites with coarse W particles at the same porosity. The morphology of W inclusions had a strong effect on the dynamic strength and fracture pattern. Experimental results are compared with numerical data.

  6. Advances in science and technology of modern energetic materials: an overview.

    Science.gov (United States)

    Badgujar, D M; Talawar, M B; Asthana, S N; Mahulikar, P P

    2008-03-01

    Energetic materials such as explosives, propellants and pyrotechnics are widely used for both civilian and military explosives applications. The present review focuses briefly on the synthesis aspects and some of the physico-chemical properties of energetic materials of the class: (a) aminopyridine-N-oxides, (b) energetic azides, (c) high nitrogen content energetic materials, (d) imidazoles, (e) insensitive energetic materials, (f) oxidizers, (g) nitramines, (h) nitrate esters and (i) thermally stable explosives. A brief comment is also made on the emerging nitration concepts. This paper also reviews work done on primary explosives of current and futuristic interest based on energetic co-ordination compounds. Lead-free co-ordination compounds are the candidates of tomorrow's choice in view of their additional advantage of being eco-friendly. Another desirable attribute of lead free class of energetic compounds is the presence of almost equivalent quantity of fuel and oxidizer moieties. These compounds may find wide spectrum of futuristic applications in the area of energetic materials. The over all aim of the high energy materials research community is to develop the more powerful energetic materials/explosive formulations/propellant formulations in comparison to currently known benchmark materials/compositions. Therefore, an attempt is also made to highlight the important contributions made by the various researchers in the frontier areas energetic ballistic modifiers, energetic binders and energetic plasticizers.

  7. Electrostatic Discharge Sensitivity and Electrical Conductivity of Composite Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Michael A. Daniels; Daniel J. Prentice; Chelsea Weir; Michelle L. Pantoya; Gautham Ramachandran; Tim Dallas

    2013-02-01

    Composite energetic material response to electrical stimuli was investigated and a correlation between electrical conductivity and ignition sensitivity was examined. The composites consisted of micrometer particle aluminum combined with another metal, metal oxide, or fluoropolymer. Of the nine tested mixtures, aluminum with copper oxide was the only mixture to ignite by electrostatic discharge with minimum ignition energy (MIE) of 25 mJ and an electrical conductivity of 1246.25 nS; two orders of magnitude higher than the next composite. This study showed a similar trend in MIE for ignition triggered by a discharged spark compared with a thermal hot wire source.

  8. Synthesis of New Energetic Materials and Ionic Liquids Derived from Metronidazole

    OpenAIRE

    Romero, Miguel A.

    2016-01-01

    Simple and efficient synthetic procedures were established for the preparation of new energetic covalent compounds, salts, and protonated ionic liquids based on the readily available antimicrobial agent metronidazole. Some of these materials exhibit the desirable properties of energetic materials and energetic ionic liquids, such as low vapor pressure, low melting point, good chemical and thermal stability, and high energetic content. For each of the relevant compounds prepared, thermal stabi...

  9. Theoretical studies on energetic materials bearing pentaflurosulphyl (SF5) groups

    Indian Academy of Sciences (India)

    Li Xiao-Hong; Cui Hong-Ling; Ju Wei-Wei; Li Tong-Wei; Zhang Rui-Zhou; Yong Yong-Liang

    2014-07-01

    Heats of formation (HOF) for a series of energetic materials containing SF5 group were studied by density functional theory. Results show that HOFs increase with the augmention of field effects of substituted groups. Addition of furazan or furoxan ring increases HOF of the energetic materials. All the SF5-containing compounds have densities which are ∼0.19 g/cm3 higher than those containing -NH2 group. S-F bond is the trigger bond for the thermolysis process in the title compounds and bond dissociation energies of the weakest bonds range from 351.1 to 388.3 kJ/mol. Detonation velocities (D) and pressures (P) are evaluated by Kamlet-Jacobs equations with the calculated densities and HOFs. Results show that increasing the amount of furazan rings results in a larger D and P. Considering the detonation performance and thermal stability, eight compounds may be considered as potential candidates for high-energy density materials.

  10. On the propagation of Voigt waves in energetically active materials

    Science.gov (United States)

    Mackay, Tom G.; Lakhtakia, Akhlesh

    2016-11-01

    If Voigt-wave propagation is possible in a dissipative anisotropic dielectric material characterised by the permittivity dyadic \\mathop{\\varepsilon }\\limits\\raise{2pt=}, then it is also possible in the analogous energetically active material characterised by the permittivity dyadic \\mathop{\\tilde{\\varepsilon }}\\limits\\raise{2pt=}, where \\mathop{\\tilde{\\varepsilon }}\\limits\\raise{2pt=} is the hermitian conjugate of \\mathop{\\varepsilon }\\limits\\raise{2pt=}. This symmetry follows directly from a theoretical analysis of the necessary and sufficient conditions for Voigt-wave propagation in anisotropic materials. As a consequence of this symmetry, a porous dissipative material that exhibits Voigt-wave propagation can be used to construct a material that allows the propagation of Voigt waves with attendant linear gain in amplitude with propagation distance, by means of infiltration with an electrically or optically activated dye, for example. This phenomenon is captured by the Bruggeman formalism for homogenised composite materials based on isotropic dielectric component materials that are randomly distributed as oriented spheroidal particles.

  11. Controlled nanopatterning & modifications of materials by energetic ions

    Science.gov (United States)

    Sinha, O. P.

    2016-05-01

    Compound semiconductors (InP, InAs and GaSb) has been exposed to energetic 3kev Ar+ ions for a varying fluence range of 1013 ions/cm2 to 1018 ions/cm2 at room temperature. Morphological modifications of the irradiated surfaces have been investigated by Scanning Tunneling Microscopy (STM) in UHV conditions. It is observed that InP and GaSb have fluence dependent nanopattering e.g. nanoneedle, aligned nanodots, superimposed nanodots ripple like structures while InAs has little fluence dependent behaviour indicating materials dependent growth of features on irradiated surfaces. Moreover, surface roughness and wavelength of the features are also depending on the materials and fluences. The RMS surface roughness has been found to be increased rapidly in the early stage of irradiation followed by slower escalate rate and later tends to saturate indicating influence of the nonlinear processes.

  12. Characterization of Representative Materials in Support of Safe, Long Term Storage of Surplus Plutonium in DOE-STD-3013 Containers

    Energy Technology Data Exchange (ETDEWEB)

    Narlesky, Joshua E. [Los Alamos National Laboratory; Stroud, Mary Ann [Los Alamos National Laboratory; Smith, Paul Herrick [Los Alamos National Laboratory; Wayne, David M. [Los Alamos National Laboratory; Mason, Richard E. [MET-1: ACTINIDE PROCESSING SUPPORT; Worl, Laura A. [Los Alamos National Laboratory

    2013-02-15

    The Surveillance and Monitoring Program is a joint Los Alamos National Laboratory/Savannah River Site effort funded by the Department of Energy-Environmental Management to provide the technical basis for the safe, long-term storage (up to 50 years) of over 6 metric tons of plutonium stored in over 5,000 DOE-STD-3013 containers at various facilities around the DOE complex. The majority of this material is plutonium that is surplus to the nuclear weapons program, and much of it is destined for conversion to mixed oxide fuel for use in US nuclear power plants. The form of the plutonium ranges from relatively pure metal and oxide to very impure oxide. The performance of the 3013 containers has been shown to depend on moisture content and on the levels, types and chemical forms of the impurities. The oxide materials that present the greatest challenge to the storage container are those that contain chloride salts. Other common impurities include oxides and other compounds of calcium, magnesium, iron, and nickel. Over the past 15 years the program has collected a large body of experimental data on 54 samples of plutonium, with 53 chosen to represent the broader population of materials in storage. This paper summarizes the characterization data, moisture analysis, particle size, surface area, density, wattage, actinide composition, trace element impurity analysis, and shelf life surveillance data and includes origin and process history information. Limited characterization data on fourteen nonrepresentative samples is also presented.

  13. Shock induced chemical reactions in energetic structural materials

    Science.gov (United States)

    Reding, Derek J.

    Energetic structural materials (ESMs) constitute a new class of materials that provide dual functions of strength and energetic characteristics. ESMs are typically composed of micron-scale or nano-scale intermetallic mixtures or mixtures of metals and metal oxides, polymer binders, and structural reinforcements. Voids are included to produce a composite with favorable chemical reaction characteristics. In this thesis, a continuum approach is used to simulate gas-gun or explosive loading experiments where a strong shock is induced in the ESM by an impacting plate. Algorithms are developed to obtain equations of state of mixtures. It is usually assumed that the shock loading increases the energy of the ESM and causes the ESM to reach the transition state. It is also assumed that the activation energy needed to reach the transition state is a function of the temperature of the mixture. In this thesis, it is proposed that the activation energy is a function of temperature and the stress state of the mixture. The incorporation of such an activation energy is selected in this thesis. Then, a multi-scale chemical reaction model for a heterogeneous mixture is introduced. This model incorporates reaction initiation, propagation, and extent of completed reaction in spatially heterogeneous distributions of reactants. A new model is proposed for the pore collapse of mixtures. This model is formulated by modifying the Carol, Holt, and Nesterenko spherically symmetric model to include mixtures and compressibility effects. Uncertainties in the model result from assumptions in formulating the models for continuum relationships and chemical reactions in mixtures that are distributed heterogeneously in space and in numerical integration of the resulting equations. It is important to quantify these uncertainties. In this thesis, such an uncertainty quantification is investigated by systematically identifying the physical processes that occur during shock compression of ESMs which are

  14. Prospective Symbiosis of Green Chemistry and Energetic Materials.

    Science.gov (United States)

    Kuchurov, Ilya V; Zharkov, Mikhail N; Fershtat, Leonid L; Makhova, Nina N; Zlotin, Sergey G

    2017-07-06

    A global increase in environmental pollution demands the development of new "cleaner" chemical processes. Among urgent improvements, the replacement of traditional hydrocarbon-derived toxic organic solvents with neoteric solvents less harmful for the environment is one of the most vital issues. As a result of the favorable combination of their unique properties, ionic liquids (ILs), dense gases, and supercritical fluids (SCFs) have gained considerable attention as suitable green chemistry media for the preparation and modification of important chemical compounds and materials. In particular, they have a significant potential in a specific and very important area of research associated with the manufacture and processing of high-energy materials (HEMs). These large-scale manufacturing processes, in which hazardous chemicals and extreme conditions are used, produce a huge amount of hard-to-dispose-of waste. Furthermore, they are risky to staff, and any improvements that would reduce the fire and explosion risks of the corresponding processes are highly desirable. In this Review, useful applications of almost nonflammable ILs, dense gases, and SCFs (first of all, CO2 ) for nitration and other reactions used for manufacturing HEMs are considered. Recent advances in the field of energetic (oxygen-balanced and hypergolic) ILs are summarized. Significant attention is paid to the SCF-based micronization techniques, which improve the energetic performance of HEMs through an efficient control of the morphology and particle size distribution of the HEM fine particles, and to useful applications of SCFs in HEM processing that makes them less hazardous. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Energetic salts with π-stacking and hydrogen-bonding interactions lead the way to future energetic materials.

    Science.gov (United States)

    Zhang, Jiaheng; Zhang, Qinghua; Vo, Thao T; Parrish, Damon A; Shreeve, Jean'ne M

    2015-02-04

    Among energetic materials, there are two significant challenges facing researchers: 1) to develop ionic CHNO explosives with higher densities than their parent nonionic molecules and (2) to achieve a fine balance between high detonation performance and low sensitivity. We report a surprising energetic salt, hydroxylammonium 3-dinitromethanide-1,2,4-triazolone, that exhibits exceptional properties, viz., higher density, superior detonation performance, and improved thermal, impact, and friction stabilities, then those of its precursor, 3-dinitromethyl-1,2,4-triazolone. The solid-state structure features of the new energetic salt were investigated with X-ray diffraction which showed π-stacking and hydrogen-bonding interactions that contribute to closer packing and higher density. According to the experimental results and theoretical analysis, the newly designed energetic salt also gives rise to a workable compromise in high detonation properties and desirable stabilities. These findings will enhance the future prospects for rational energetic materials design and commence a new chapter in this field.

  16. Structure and Stability of Deflagrations in Porous Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    stephen B. Margolis; Forman A. Williams

    1999-03-01

    Theoretical two-phase-flow analyses have recently been developed to describe the structure and stability of multi-phase deflagrations in porous energetic materials, in both confined and unconfined geometries. The results of these studies are reviewed, with an emphasis on the fundamental differences that emerge with respect to the two types of geometries. In particular, pressure gradients are usually negligible in unconfined systems, whereas the confined problem is generally characterized by a significant gas-phase pressure difference, or overpressure, between the burned and unburned regions. The latter leads to a strong convective influence on the burning rate arising from the pressure-driven permeation of hot gases into the solid/gas region and the consequent preheating of the unburned material. It is also shown how asymptotic models that are suitable for analyzing stability may be derived based on the largeness of an overall activation-energy parameter. From an analysis of such models, it is shown that the effects of porosity and two-phase flow are generally destabilizing, suggesting that degraded propellants, which exhibit greater porosity than their pristine counterparts, may be more readily subject to combustion instability and nonsteady deflagration.

  17. Kinetic stability and propellant performance of green energetic materials.

    Science.gov (United States)

    Rahm, Martin; Brinck, Tore

    2010-06-11

    A thorough theoretical investigation of four promising green energetic materials is presented. The kinetic stability of the dinitramide, trinitrogen dioxide, pentazole, and oxopentazole anions has been evaluated in the gas phase and in solution by using high-level ab initio and DFT calculations. Theoretical UV spectra, solid-state heats of formation, density, as well as propellant performance for the corresponding ammonium salts are reported. All calculated properties for dinitramide are in excellent agreement with experimental data. The stability of the trinitrogen dioxide anion is deemed sufficient to enable synthesis at low temperature, with a barrier for decomposition of approximately 27.5 kcal mol(-1) in solution. Oxopentazolate is expected to be approximately 1200 times more stable than pentazolate in solution, with a barrier exceeding 30 kcal mol(-1), which should enable handling at room temperature. All compounds are predicted to provide high specific impulses when combined with aluminum fuel and a polymeric binder, and rival or surpass the performance of a corresponding ammonium perchlorate based propellant. The investigated substances are also excellent monopropellant candidates. Further study and attempted synthesis of these materials is merited.

  18. Strategies for Tuning the Reactivity of NanoEnergetic Materials

    Science.gov (United States)

    Prakash, Anand

    2005-07-01

    Nanostructured fuel/oxidizer composites are being looked upon as a possible approach to enhance energy release rates. Here we report on two approaches to moderate/tune reactivity. In the first example we accelerate reactivity. The method is based on electrostatically enhanced assembly to promote the preferential arrangement of aluminum (fuel) nanoparticles with iron oxide (oxidizer) nanoparticles in the aerosol phase. Two unipolar chargers are employed to generate oppositely charged aluminum and iron oxide particles, which enhance the formation of intimately interconnected nanocomposite energetic materials. The results of burning tests and thermal analysis using differential scanning calorimetry (DSC) showed that aluminum/iron oxide nanocomposite aerosol materials synthesized by bipolar assembly had burning rates that are a factor of 10 higher than those produced by random Brownian coagulation. In a second approach we employ a very reactive oxidizer (Potassium permanganate; ˜150 nm) and create a less reactive shell (Iron oxide). The measured reactivity for a nano-Al/composite oxidizer could be varied by more than a factor of 10 as measured by the pressurization rate in a closed vessel (Psi/microsecond), by changing the coating thickness of the iron oxide. The composite oxidizer nanoparticles were synthesized by a new aerosol approach, where the non-wetting interaction between iron oxide and molten potassium permanganate aids the phase segregation of a nanocomposite droplet into a core-shell structure.

  19. Friction, impact, and electrostatic discharge sensitivities of energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, P.S.; Hall, G.F.

    1985-05-31

    Impact, friction, and electrostatic discharge sensitivities of energetic materials (explosives and pyrotechnics) used or manufactured at Mound were tested by the ''one-shot'' method. The Bruceton statistical method was used to derive 50% initiation levels, and the results were compared. The materials tested include: PETN, HMX, Plastic Bonded Explosives (PBX), CP, TATB, RX26BB, RX26BH, barium styphnate, LX-15, LX-16, Ti/KClO/sub 4/, TiH/sub 0.65//KClO/sub 4/, TiH/sub 1.65//KClO/sub 4/, Fe/KClO/sub 4/, TiH/sub 1.75//B/CaCrO/sub 4/, Ti/B/CaCrO/sub 4/, B/CaCrO/sub 4/, TiH/sub 0.65//2B, TiH/sub 0.65//3B, 2Ti/B, TiH/sub 1.67//2B, Ti/2B, TiH/sub 1/67//3B, Ti/B, and Ti/3B. Some samples were investigated for aging effects, physical variables, and the effect of manufacturing paramters on sensitivities. The results show that in both friction and impact tests, CP and barium styphnate are the most sensitive; TiH/sub 1.65/KClO/sub 4/, LX-15, TATB and its related materials are the least sensitive; and other materials such as PETN and HMX are in the mid-range. In the electrostatic tests of Ti-based pyrotechnics, a decrease of sensitivity with increasing hydrogen concentration was observed. 20 refs., 12 figs., 7 tabs.

  20. The reapplication of energetic materials as boiler fuels

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, S.G.; Sclippa, G.C.; Ross, J.R. [and others

    1997-02-01

    Decommissioning of weapons stockpiles, off-specification production, and upgrading of weapons systems results in a large amount of energetic materials (EM) such as rocket propellant and primary explosives that need to be recycled or disposed of each year. Presently, large quantities of EM are disposed of in a process known as open-burn/open-detonation (OB/OD), which not only wastes their energy content, but may release large quantities of hazardous material into the environment. Here the authors investigate the combustion properties of several types of EM to determine the feasibility of reapplication of these materials as boiler fuels, a process that could salvage the energy content of the EM as well as mitigate any potential adverse environmental impact. Reapplication requires pretreatment of the fuels to make them safe to handle and to feed. Double-base nitrocellulose and nitroglycerin, trinitrotoluene (TNT), nitroguanidine, and a rocket propellant binder primarily composed of polybutidiene impregnated with aluminum flakes have been burned in a 100-kW downfired flow reactor. Most of these fuels have high levels of fuel-bound nitrogen, much of it bound in the form of nitrate groups, resulting in high NO{sub x} emissions during combustion. The authors have measured fuel-bound nitrate conversion efficiencies to NO{sub x} of up to 80%, suggesting that the nitrate groups do not follow the typical path of fuel nitrogen through HCN leading to NO{sub x}, but rather form NO{sub x} directly. They show that staged combustion is effective in reducing NO{sub x} concentrations in the postcombustion gases by nearly a factor of 3. In the rocket binder, measured aluminum particle temperatures in excess of 1700{degrees}C create high levels of thermal NO{sub x}, and also generate concern that molten aluminum particles could potentially damage boiler equipment. Judicious selection of the firing method is thus required for aluminum-containing materials.

  1. STUDY OF THERMAL SENSITIVITY AND THERMAL EXPLOSION VIOLENCE OF ENERGETIC MATERIALS IN THE LLNL ODTX SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    HSU, P C; Hust, G; May, C; Howard, M; Chidester, S K; Springer, H K; Maienschein, J L

    2011-08-03

    Some energetic materials may explode at fairly low temperatures and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults for safe handling and storage of energetic materials. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory can measure times to explosion, lowest explosion temperatures, and determine kinetic parameters of energetic materials. Samples of different configurations can be tested in the system. The ODTX testing can also generate useful data for determining thermal explosion violence of energetic materials. We also performed detonation experiments of LX-10 in aluminum anvils to determine the detonation violence and validated the Zerilli Armstrong aluminum model. Results of the detonation experiments agreed well with the model prediction.

  2. Synthesis of New Energetic Materials and Ionic Liquids Derived from Metronidazole

    Directory of Open Access Journals (Sweden)

    Miguel A. Romero

    2016-01-01

    Full Text Available Simple and efficient synthetic procedures were established for the preparation of new energetic covalent compounds, salts, and protonated ionic liquids based on the readily available antimicrobial agent metronidazole. Some of these materials exhibit the desirable properties of energetic materials and energetic ionic liquids, such as low vapor pressure, low melting point, good chemical and thermal stability, and high energetic content. For each of the relevant compounds prepared, thermal stability was determined by differential scanning calorimetry. Some of these compounds may be considered promising precursors of pharmaceuticals such as antimicrobial, antiparasitic, antifungal, antineoplastic agents, or enzyme inhibitors.

  3. Nano-scale spinning detonation in condensed phase energetic materials

    Science.gov (United States)

    Zhakhovsky, Vasily; Budzevich, Mikalai; Landerville, Aaron; White, Carter; Oleynik, Ivan

    2013-06-01

    Single- and multi-headed spinning detonation waves are observed in molecular dynamics simulations of a condensed phase detonation of an energetic material (EM) confined in round tubes of different radii. The EM is modeled using a modified AB Reactive Empirical Bond Order potential. The thermochemistry and reactive equation of state are varied by adjusting the barrier height for the exothermic reaction AB +B --> A +BB. This allows us to study the evolution of the detonation-wave structure as a function of physico-chemical properties of the AB explosive. The detonation wave is found to exhibit a pulsating planar front in a tube of 8 nm radius, which later collapses due to the development of longitudinal perturbations. Upon increase of the tube's radius to 16 nm, the detonation wave structure is stabilized through the development of a single-headed spinning detonation. The spinning detonation displays a four-wave configuration, including incident, oblique, transverse, and contact shock waves. The contact shock generated by a contact discontinuity is observed for the first time in our MD simulations. A multi-headed turbulent-like detonation structure develops within tubes of larger radii, and exhibit features similar to those observed in gases.

  4. Synthesis and Investigation of Advanced Energetic Materials Based on Bispyrazolylmethanes.

    Science.gov (United States)

    Fischer, Dennis; Gottfried, Jennifer L; Klapötke, Thomas M; Karaghiosoff, Konstantin; Stierstorfer, Jörg; Witkowski, Tomasz G

    2016-12-23

    Herein we present the preparation and characterization of three new bispyrazolyl-based energetic compounds with great potential as explosive materials. The reaction of sodium 4-amino-3,5-dinitropyrazolate (5) with dimethyl iodide yielded bis(4-amino-3,5-dinitropyrazolyl)methane (6), which is a secondary explosive with high heat resistance (Tdec =310 °C). The oxidation of this compound afforded bis(3,4,5-trinitropyrazolyl)methane (7), which is a combined nitrogen- and oxygen-rich secondary explosive with very high theoretical and estimated experimental detonation performance (Vdet (theor)=9304 m s(-1) versus Vdet (exp)=9910 m s(-1) ) in the range of that of CL-20. Also, the thermal stability (Tdec =205 °C) and sensitivities of 7 are auspicious. The reaction of 6 with in situ generated nitrous acid yielded the primary explosive bis(4-diazo-5-nitro-3-oxopyrazolyl)methane (8), which showed superior properties to those of currently used diazodinitrophenol (DDNP). © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Shock-Induced Chemical Reactions in Structural Energetic Materials

    Science.gov (United States)

    Narayanan, V.; Lu, X.; Hanagud, S.

    2006-07-01

    Various powder mixtures like intermetallic mixtures and mixtures of metals and metal oxides have potential applications as structural energetic materials (SEMs). Technologies of varying the compositions and the powder sizes and their synthesis are being investigated to provide multiple desirable characteristics, like high strength and high energy content. In this paper, we formulate a model for SEMs for their application in shock conditions, in the framework of nonequilibrium thermodynamics and continuum mechanics. A mixture of Al and KClO4 is selected as the example for SEMs. A mixture, pore collapse and chemical reaction model are included. By adapting energy barriers for reaction as a function of temperature, particle size and pressure and introducing a relaxation mechanism in the reaction model, a shock-induced chemical reaction model is developed. The variation of the relaxation mechanism is also modeled. The initiation and propagation of chemical reactions are studied. The time and spatial dependency of chemical reaction on the shock wave conditions are investigated.

  6. Bis(nitroamino-1,2,4-triazolates): N-bridging strategy toward insensitive energetic materials.

    Science.gov (United States)

    Yin, Ping; Parrish, Damon A; Shreeve, Jean'ne M

    2014-11-17

    Modern energetic motifs for military and civilian applications are most often evaluated using various criteria, for example, energetic properties, production costs, and safety issues. Given this background, the design of energetic materials requires a deep understanding of both detonation performance and molecular stability. Here a new family of energetic bis(nitroamino-1,2,4-triazolates), which exhibit good thermal stabilities, excellent detonation properties, and low sensitivities, has been designed. Furthermore, two hydroxylammonium bis(azolates) with pyrazole and tetrazole backbones were synthesized, and they exhibit energetic properties analogous to the triazoles. This work highlights the application potential of N-bridged bis(azolates) as promising energetic materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Analysis of ignition of a porous energetic material

    Energy Technology Data Exchange (ETDEWEB)

    Telengator, A.M.; Williams, F.A. [Univ. of California, San Diego, La Jolla, CA (United States). Dept. of Applied Mechanics and Engineering Sciences; Margolis, S.B. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility

    1998-04-01

    A theory of ignition is presented to analyze the effect of porosity on the time to ignition of a semi-infinite porous energetic solid subjected to a constant energy flux. An asymptotic perturbation analysis, based on the smallness of the gas-to-solid density ratio and the largeness of the activation energy, is utilized to describe the inert and transition stages leading to thermal runaway. As in the classical study of a nonporous solid, the transition stage consists of three spatial regions in the limit of large activation energy: a thin reactive-diffusive layer adjacent to the exposed surface of the material where chemical effects are first felt, a somewhat thicker transient-diffusive zone, and finally an inert region where the temperature field is still governed solely by conductive heat transfer. Solutions in each region are constructed at each order with respect to the density-ratio parameter and matched to one another using asymptotic matching principles. It is found that the effects of porosity provide a leading-order reduction in the time to ignition relative to that for the nonporous problem, arising from the reduced amount of solid material that must be heated and the difference in thermal conductivities of the solid and gaseous phases. A positive correction to the leading-order ignition-delay time, however, is provided by the convective flow of gas out of the solid, which stems from the effects of thermal expansion and removes energy from the system. The latter phenomenon is absent from the corresponding calculation for the nonporous problem and produces a number of modifications at the next order in the analysis arising from the relative transport effects associated with the gas flow.

  8. Recent advances in the molten salt destruction of energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Pruneda, C. O., LLNL

    1996-09-01

    We have demonstrated the use of the Molten Salt Destruction (MSD) Process for destroying explosives, liquid gun propellant, and explosives-contaminated materials on a 1.5 kg of explosive/hr bench- scale unit (1, 2, 3, 4, 5). In our recently constructed 5 kg/hr pilot- scale unit we have also demonstrated the destruction of a liquid gun propellant and simulated wastes containing HMX (octogen). MSD converts the organic constituents of the waste into non-hazardous substances such as carbon dioxide, nitrogen, and water. Any inorganic constituents of the waste, such as metallic particles, are retained in the molten salt. The destruction of energetic materials waste is accomplished by introducing it, together with air, into a vessel containing molten salt (a eutectic mixture of sodium, potassium, and lithium carbonates). The following pure explosives have been destroyed in our bench-scale experimental unit located at Lawrence Livermore National Laboratory`s (LLNL) High Explosives Applications Facility (HEAF): ammonium picrate, HMX, K- 6 (keto-RDX), NQ, NTO, PETN, RDX, TATB, and TNT. In addition, the following compositions were also destroyed: Comp B, LX- IO, LX- 1 6, LX- 17, PBX-9404, and XM46 (liquid gun propellant). In this 1.5 kg/hr bench-scale unit, the fractions of carbon converted to CO and of chemically bound nitrogen converted to NO{sub x} were found to be well below 1%. In addition to destroying explosive powders and compositions we have also destroyed materials that are typical of residues which result from explosives operations. These include shavings from machined pressed parts of plastic-bonded explosives and sump waste containing both explosives and non-explosive debris. Based on the process data obtained on the bench-scale unit we designed and constructed a next-generation 5 kg/hr pilot-scale unit, incorporating LLNL`s advanced chimney design. The pilot unit has completed process implementation operations and explosives safety reviews. To date, in this

  9. Defect evolution and pore collapse in crystalline energetic materials

    Science.gov (United States)

    Barton, Nathan R.; Winter, Nicholas W.; Reaugh, John E.

    2009-04-01

    This work examines the use of crystal based continuum mechanics in the context of dynamic loading. In particular, we examine model forms and simulations which are relevant to pore collapse in crystalline energetic materials. Strain localization and the associated generation of heat are important for the initiation of chemical reactions in this context. The crystal mechanics based model serves as a convenient testbed for the interactions among wave motion, slip kinetics, defect generation kinetics and physical length scale. After calibration to available molecular dynamics and single crystal gas gun data for HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), the model is used to predict behaviors for the collapse of pores under various conditions. Implications for experimental observations are discussed. This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

  10. Preparation and characterization of energetic materials coated superfine aluminum particles

    Science.gov (United States)

    Liu, Songsong; Ye, Mingquan; Han, Aijun; Chen, Xin

    2014-01-01

    This work is devoted to protect the activity of aluminum in solid rocket propellants by means of solvent/non-solvent method in which nitrocellulose (NC) and Double-11 (shortened form of double-base gun propellant, model 11) have been used as coating materials. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to characterize the morphology of coated Al particles. Other characterization data of coated and uncoated Al particles, such as infrared absorption spectrum, laser particle size analysis and the active aluminum content were also studied. The thermal behavior of pure and coated aluminum samples have also been studied by simultaneous thermogravimetry-differential thermal analysis (TG-DTA) and differential scanning calorimetry (DSC). The results indicated that: superfine aluminum particles could be effectively coated with nitrocellulose and Double-11 through a solvent/non-solvent method. The energetic composite particles have core-shell structures and the thickness of the coating film is about 20-50 nm. The active aluminum content of different coated samples was measured by means of oxidation-reduction titration method. The results showed that after being stored in room temperature and under 50% humidity condition for about 4months the active aluminum content of coated Al particles decreased from 99.8 to 95.8% (NC coating) and 99.2% (Double-11 coating) respectively. Double-11 coating layer had a much better protective effect. The TG-DTA and DSC results showed that the energy amount and energy release rate of NC coated and Double-11 coated Al particles were larger than those of the raw Al particles. Double-11 coated Al particles have more significant catalytic effect on the thermal decomposition characters of AP than that of NC coated Al particles. These features accorded with the energy release characteristics of solid propellant.

  11. Preparation and characterization of energetic materials coated superfine aluminum particles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Songsong; Ye, Mingquan, E-mail: liusong8366@gmail.com; Han, Aijun; Chen, Xin

    2014-01-01

    This work is devoted to protect the activity of aluminum in solid rocket propellants by means of solvent/non-solvent method in which nitrocellulose (NC) and Double-11 (shortened form of double-base gun propellant, model 11) have been used as coating materials. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to characterize the morphology of coated Al particles. Other characterization data of coated and uncoated Al particles, such as infrared absorption spectrum, laser particle size analysis and the active aluminum content were also studied. The thermal behavior of pure and coated aluminum samples have also been studied by simultaneous thermogravimetry–differential thermal analysis (TG–DTA) and differential scanning calorimetry (DSC). The results indicated that: superfine aluminum particles could be effectively coated with nitrocellulose and Double-11 through a solvent/non-solvent method. The energetic composite particles have core-shell structures and the thickness of the coating film is about 20–50 nm. The active aluminum content of different coated samples was measured by means of oxidation–reduction titration method. The results showed that after being stored in room temperature and under 50% humidity condition for about 4months the active aluminum content of coated Al particles decreased from 99.8 to 95.8% (NC coating) and 99.2% (Double-11 coating) respectively. Double-11 coating layer had a much better protective effect. The TG–DTA and DSC results showed that the energy amount and energy release rate of NC coated and Double-11 coated Al particles were larger than those of the raw Al particles. Double-11 coated Al particles have more significant catalytic effect on the thermal decomposition characters of AP than that of NC coated Al particles. These features accorded with the energy release characteristics of solid propellant.

  12. Liquid Nitrogen and Water Jet Milling of Energetic Material Production Wastes

    Science.gov (United States)

    1996-05-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP017711 TITLE: Liquid Nitrogen and Water Jet Milling of Energetic...NITROGEN AND WATER JET MILLING OF ENERGETIC MATERIAL PRODUCTION WASTES Roger L. Schneider Rho Sigma Associates, Inc. Whitefish Bay, WI 53217-5968 USA 414

  13. Probing the Dynamics of Ultra-Fast Condensed State Reactions in Energetic Materials

    Science.gov (United States)

    Piekiel, Nicholas William

    2012-01-01

    Energetic materials (EMs) are substances with a high amount of stored energy and the ability to release that energy at a rapid rate. Nanothermites and green organic energetics are two classes of EMs which have gained significant interest as they each have desirable properties over traditional explosives. These systems also possess downfalls, which…

  14. Coupled thermal/chemical/mechanical modeling of energetic materials in ALE3D

    Science.gov (United States)

    Nichols, A. L.; Couch, R.; Maltby, J. D.; McCallen, R. C.; Otero, I.

    1996-01-01

    We must improve our ability to model the response of energetic materials to thermal stimuli and the processes involved in the energetic response. We have developed and used a time step option to efficiently and accurately compute the hours that the energetic material can take to react. Since on these longer film scales, materials can be expected to have significant motion, it is even more important to provide high-order advection for all components, including the chemical species. We show an example cook-off problem to illustrate these capabilities.

  15. Conversion of Surplus Picric Acid/Explosive D to Higher Value Products

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, A R; Hsu, P C; Coburn, M D; Schmidt, R D; Pagoria, P F; Lee, G S; Kwak, S S W

    2003-02-28

    The global demilitarization of nuclear and conventional munitions is producing millions of pounds of surplus energetic materials. Historically, energetic materials (high explosives, propellants, and pyrotechnics) have been disposed of by open burning/open detonation (OB/OD). The use of OB/OD is becoming unacceptable due to public concerns and increasingly stringent environmental regulations. Clearly, there is a great need to develop environmentally sound and cost-effective alternatives to OB/OD. The conversion of surplus picric acid and/or ammonium picrate (Explosive D) to 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) has been subject of extensive process development studies at Lawrence Livermore National Laboratory (LLNL). LLNL, under the direction and sponsorship of the U.S. Army Defense Ammunition Center (DAC), is developing a process for the conversion of picric acid to TATB on a pilot scale.

  16. Ammonia Oxide as a Building Block for High-Performance and Insensitive Energetic Materials.

    Science.gov (United States)

    Tang, Yongxing; Mitchell, Lauren A; Imler, Gregory H; Parrish, Damon A; Shreeve, Jean'ne M

    2017-05-15

    3,5-Dinitrimino-1,2,4-triazole (2) with three protons has the potential of deprotonation to form energetic salts. Neutralization of 2 with 50 % hydroxylamine in varying molar ratios leads to the formation of the corresponding mono/dihydroxylammonium energetic salts. Additionally compound 5, an ammonia oxide adduct of dihydroxylammonium 3,5-dinitramino-1,2,4-triazolate, was prepared when excess hydroxylamine was used. The structures of 3-5 are supported by single-crystal X-ray diffraction. The energetic properties of the new materials are competitive. Utilization of ammonia oxide adducts in hydroxylammonium energetic salts could lead to future practical applications as energetic materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Furazans with Azo Linkages: Stable CHNO Energetic Materials with High Densities, Highly Energetic Performance, and Low Impact and Friction Sensitivities.

    Science.gov (United States)

    Qu, Yanyang; Zeng, Qun; Wang, Jun; Ma, Qing; Li, Hongzhen; Li, Haibo; Yang, Guangcheng

    2016-08-22

    Various highly energetic azofurazan derivatives were synthesized by simple and efficient chemical routes. These nitrogen-rich materials were fully characterized by FTIR spectroscopy, elemental analysis, multinuclear NMR spectroscopy, and high-resolution mass spectrometry. Four of them were further confirmed structurally by single-crystal X-ray diffraction. These compounds exhibit high densities, ranging from 1.62 g cm(-3) up to a remarkably high 2.12 g cm(-3) for nitramine-substituted azofurazan DDAzF (2), which is the highest yet reported for an azofurazan-based CHNO energetic compound and is a consequence of the formation of strong intermolecular hydrogen-bonding networks. From the heats of formation, calculated with Gaussian 09, and the experimentally determined densities, the energetic performances (detonation pressure and velocities) of the materials were ascertained with EXPLO5 v6.02. The results suggest that azofurazan derivatives exhibit excellent detonation properties (detonation pressures of 21.8-46.1 GPa and detonation velocities of 6602-10 114 m s(-1) ) and relatively low impact and friction sensitivities (6.0-80 J and 80-360 N, respectively). In particular, they have low electrostatic spark sensitivities (0.13-1.05 J). These properties, together with their high nitrogen contents, make them potential candidates as mechanically insensitive energetic materials with high-explosive performance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Energetic and chemical use of waste material and renewable energies

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, C.; Houmoeller, A.P. [ELSAM, Fredericia (Denmark)

    1996-12-31

    The paper will begin with a summary of the Danish energy policies from the mid-1970s and until today when the focus is on national self-sufficiency and combined heat and power - including industrial combined heat and power and renewable energies with emphasis on wind turbines and biofuels. The planning conditions of the Danish electricity utilities will be discussed, i.e. 20 per cent CO{sub 2} reduction by 2005, continuous reduction of SO{sub 2} and NO{sub x}, and finally the conversion of 5 per cent of the fuel from coal to straw and wood chips. Afterwards, the status of biofuels in Denmark will be described with emphasis on resources and prices. The main biofuel in Denmark is surplus production from agriculture - straw or other biofuels with straw-like properties. (orig./GL)

  19. Experimental characterization of energetic material dynamics for multiphase blast simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Beresh, Steven Jay; Wagner, Justin L.; Kearney, Sean Patrick; Wright, Elton K.; Baer, Melvin R.; Pruett, Brian Owen Matthew

    2011-09-01

    Currently there is a substantial lack of data for interactions of shock waves with particle fields having volume fractions residing between the dilute and granular regimes, which creates one of the largest sources of uncertainty in the simulation of energetic material detonation. To close this gap, a novel Multiphase Shock Tube has been constructed to drive a planar shock wave into a dense gas-solid field of particles. A nearly spatially isotropic field of particles is generated in the test section by a gravity-fed method that results in a spanwise curtain of spherical 100-micron particles having a volume fraction of about 19%. Interactions with incident shock Mach numbers of 1.66, 1.92, and 2.02 were achieved. High-speed schlieren imaging simultaneous with high-frequency wall pressure measurements are used to reveal the complex wave structure associated with the interaction. Following incident shock impingement, transmitted and reflected shocks are observed, which lead to differences in particle drag across the streamwise dimension of the curtain. Shortly thereafter, the particle field begins to propagate downstream and spread. For all three Mach numbers tested, the energy and momentum fluxes in the induced flow far downstream are reduced about 30-40% by the presence of the particle field. X-Ray diagnostics have been developed to penetrate the opacity of the flow, revealing the concentrations throughout the particle field as it expands and spreads downstream with time. Furthermore, an X-Ray particle tracking velocimetry diagnostic has been demonstrated to be feasible for this flow, which can be used to follow the trajectory of tracer particles seeded into the curtain. Additional experiments on single spherical particles accelerated behind an incident shock wave have shown that elevated particle drag coefficients can be attributed to increased compressibility rather than flow unsteadiness, clarifying confusing results from the historical database of shock tube

  20. Experimental characterization of energetic material dynamics for multiphase blast simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Beresh, Steven Jay; Wagner, Justin L.; Kearney, Sean Patrick; Wright, Elton K.; Baer, Melvin R.; Pruett, Brian Owen Matthew

    2011-09-01

    Currently there is a substantial lack of data for interactions of shock waves with particle fields having volume fractions residing between the dilute and granular regimes, which creates one of the largest sources of uncertainty in the simulation of energetic material detonation. To close this gap, a novel Multiphase Shock Tube has been constructed to drive a planar shock wave into a dense gas-solid field of particles. A nearly spatially isotropic field of particles is generated in the test section by a gravity-fed method that results in a spanwise curtain of spherical 100-micron particles having a volume fraction of about 19%. Interactions with incident shock Mach numbers of 1.66, 1.92, and 2.02 were achieved. High-speed schlieren imaging simultaneous with high-frequency wall pressure measurements are used to reveal the complex wave structure associated with the interaction. Following incident shock impingement, transmitted and reflected shocks are observed, which lead to differences in particle drag across the streamwise dimension of the curtain. Shortly thereafter, the particle field begins to propagate downstream and spread. For all three Mach numbers tested, the energy and momentum fluxes in the induced flow far downstream are reduced about 30-40% by the presence of the particle field. X-Ray diagnostics have been developed to penetrate the opacity of the flow, revealing the concentrations throughout the particle field as it expands and spreads downstream with time. Furthermore, an X-Ray particle tracking velocimetry diagnostic has been demonstrated to be feasible for this flow, which can be used to follow the trajectory of tracer particles seeded into the curtain. Additional experiments on single spherical particles accelerated behind an incident shock wave have shown that elevated particle drag coefficients can be attributed to increased compressibility rather than flow unsteadiness, clarifying confusing results from the historical database of shock tube

  1. Molten salt destruction of energetic material wastes as an alternative to open burning

    Energy Technology Data Exchange (ETDEWEB)

    Upadhye, R.S.; Brummond, W.A.; Pruneda, C.O.; Watkins, B.E.

    1994-09-08

    The Lawrence Livermore National Laboratory in conjunction with the Energetic Materials Center (a partnership of Lawrence Livermore and Sandia National Laboratories), is developing methods for the safe and environmentally sound destruction of explosives and propellants as a part of the Laboratory`s ancillary demilitarization mission. As a result of the end of the Cold War and the shift in emphasis to a smaller stockpile, many munitions, both conventional and nuclear, are scheduled for retirement and rapid dismantlement and demilitarization. major components of these munitions are the explosives and propellants, or energetic materials. The Department of Energy has thousands of pounds of energetic materials which result from dismantlement operations at the Pantex Plant. The Department of Defense has several hundred million pounds of energetic materials in its demilitarization inventory, with millions more added each year.

  2. Indirect ignition of energetic materials with laser-driven flyer plates.

    Science.gov (United States)

    Dean, Steven W; De Lucia, Frank C; Gottfried, Jennifer L

    2017-01-20

    The impact of laser-driven flyer plates on energetic materials CL-20, PETN, and TATB has been investigated. Flyer plates composed of 25 μm thick Al were impacted into the energetic materials at velocities up to 1.3 km/s. The flyer plates were accelerated by means of an Nd:YAG laser pulse. The laser pulse generates rapidly expanding plasma between the flyer plate foil and the substrate to which it is adhered. As the plasma grows, a section of the metal foil is ejected at high speed, forming the flyer plate. The velocity of the flyer plate was determined using VISAR, time of flight, and high-speed video. The response of the energetic material to impact was determined by light emission recorded by an infrared-sensitive photodiode. Following post-impact analysis of the impacted energetic material, it was hypothesized that the light emitted by the material after impact is not due to the impact of the flyer itself but rather is caused by the decomposition of energetic material ejected (via the shock of flyer plate impact) into a cloud of hot products generated during the launch of the flyer plate. This hypothesis was confirmed through schlieren imaging of a flyer plate launch, clearly showing the ejection of hot gases and particles from the region surrounding the flyer plate launch and the burning of the ejected energetic material particles.

  3. Compatibility Study of DNTF with Some Insensitive Energetic Materials and Inert Materials

    Science.gov (United States)

    Li, Xi; Wang, Bo-Liang; Lin, Qiu-Han; Chen, Li-Ping

    2016-10-01

    The compatibility of 3,4-dinitrofurazanfuroxan (DNTF) with insensitive energetic materials and inert materials was studied in detail using differential scanning calorimetry (DSC). 2,4,6-Trinitrotoluene (TNT), 2,4,6-triamino-1,3,5-trinitrobenzene (TATB), 3-nitro-1,2,4-triazol-5-one (NTO), 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105), 2,6-diamino-3,5-dinitropyridine-1-oxide (ANPyO), and 5-amino-1H-tetrazole nitrate (5-ATEZN) are used as insensitive energetic materials, and polymer(vinyl acetate) (PVAC), hydroxyl-terminated polybutadiene (HTPB), dinoctylsebacate (DOS), 2,4-dinitrotoluene (DNT), and wax are used as inert materials. The results show that DNTF/TNT and DNTF/5-ATEZN possess good compatibility, DNTF/NTO and DNTF/TATB have moderate compatibility, and the compatibility of DNTF/LLM-105 and DNTF/PVAC is poor; in addition, DNTF/ANPyO, DNTF/HTPB, DNTF/DNT, DNTF/DOS, and DNTF/wax have bad compatibility.

  4. Stabilized super-thermite colloids: A new generation of advanced highly energetic materials

    Science.gov (United States)

    Elbasuney, Sherif; Gaber Zaky, M.; Radwan, Mostafa; Mostafa, Sherif F.

    2017-10-01

    One of the great impetus of nanotechnology on energetic materials is the achievement of nanothermites (metal-oxide/metal) which are characterized by massive heat output. Yet, full exploitation of super-thermites in highly energetic systems has not been achieved. This manuscript reports on the sustainable fabrication of colloidal Fe2O3 and CuO nanoparticles for thermite applications. TEM micrographs demonstrated mono-dispersed Fe2O3 and CuO with an average particle size of 3 and 15 nm respectively. XRD diffractograms demonstrated highly crystalline materials. SEM micrographs demonstrated a great tendency of the developed oxides to aggregate over drying process. The effective integration and dispersion of mono-dispersed colloidal thermite particles into energetic systems are vital for enhanced performance. Aluminum is of interest as highly energetic metal fuel. In this paper, synthesized Fe2O3 and CuO nanoparticles were re-dispersed in isopropyl alcohol (IPA) with aluminum nanoparticles using ultrasonic prope homogenizer. The colloidal thermite peraticles can be intgegrated into highly energetic system for subsequent nanocomposite development. Thanks to stabilization of colloidal CuO nanoparticles in IPA which could offer intimate mixing between oxidizer and metal fuel. The stabilization mechanism of CuO in IPA was correlated to steric stabilization with solvent molecules. This approach eliminated nanoparticle drying and the re-dispersion of dry aggregates into energetic materials. This manuscript shaded the light on the real development of colloidal thermite mixtures and their integration into highly energetic systems.

  5. Synthesis, Characterization, and Multimillion-Atom Simulation of Halogen-Based Energetic Materials for Agent Defeat

    Science.gov (United States)

    2013-04-01

    Kolesnikov NIST: Liu New Discoveries, Inventions, or Patent Disclosures K. O. Christe and G. Drake, “Energetic Ionic Liquids ,” US Patent 7,771,549, Aug...DTRA-TR-13-23 Synthesis, Characterization, and Multimillion-Atom Simulation of Halogen -Based Energetic Materials for Agent Defeat Approved for...second foot foot-pound-force gallon (U.S. liquid ) inch jerk joule/kilogram (J/kg) radiation dose absorbed kilotons kip (1000 lbf) kip/inch 2

  6. Near-Resonant Thermomechanics of Energetic and Mock Energetic Composite Materials

    Science.gov (United States)

    2016-11-01

    the inelastic behavior of many materials like metals [12,13], concrete [14], soils [15], metal matrix composites [16], filled rubber [17], Asphalt...endochronic constitutive equations in 3D. The scheme has been modified to include rate-dependent (viscoplastic) effects. In addition, an efficient...histories. Strength of Materials. 1993. 25(5): p. 315–322. 14. Z. P. Bazant and P. D. Bath. Endochronic theory of inelasticity and failure of concrete

  7. Pentazadiene: a high-nitrogen linkage in energetic materials.

    Science.gov (United States)

    Wang, Qi; Pang, Fuqing; Wang, Guilong; Huang, Jinglun; Nie, Fude; Chen, Fu-Xue

    2017-02-16

    A novel N5-linear energetic moiety of pentazadiene has been constructed for the first time from a triazene precursor. Thus, a series of 1,3,5-tri(tetrazol-5-yl)pentaza-1,4-dienes have been synthesized in moderate to high yields by treatment of 1,3-bis(tetr-azol-5-yl)triazenes with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI) under mild conditions. All compounds were fully characterized using IR spectroscopy, (1)H and (13)C NMR spectroscopy, HRMS, and differential scanning calorimetry (DSC), and, in the case of 1,3,5-tri(2-methyltetrazol-5-yl)pentaza-1,4-diene (2a) together with single crystal X-ray structuring and (15)N NMR spectroscopy. Calculations predict that 2a has a heat of formation of 1699.2 kJ mol(-1).

  8. Advances in the chemical conversion of energetic materials to higher value products

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, A.R.; Pagoria, P.F.; Sanner, R.D. [Lawrence Livermore National Lab., CA (United States). Energetic Materials Center

    1995-01-24

    The objective of this program is to develop novel, innovative solutions for the disposal of surplus explosives resulting from the demilitarization of nuclear and conventional munitions by DOE and DoD. Studies related to the conversion of TNT and Explosive D to potentially useful materials are described. The paper describes the feasibility of conversion of TNT to TATB; conversion of TNT to 3,5-diamino-2,4,6-trinitrotoluene (DATNT); conversion of TNT to tolylene 2,4-diisocyanate (TDI) and nitrotolylene and diisocyanate (NTDI); chelating resins derived from trinitroarenes.

  9. Compatibility testing of energetic materials at TNO-PML and MIAT

    NARCIS (Netherlands)

    Krabbendam-La Haye, E.L.M.; Klerk, W.P.C. de; Miszczak, M.; Szymanowski, J.

    2003-01-01

    Compatibility is an important property for energetic materials and their additives such as a casing material or a binder. If these substances are incompatible an extra risk is introduced in handling and storage of ammunition and explosives. As part of a co-operation program between the Dutch TNO-PML

  10. From surplus to shortage. Pt. 3. Renewable grow faster - an energetical expansion is necessary; Vom Ueberfluss zur Knappheit. T. 3. Erneuerbare wachsen schneller - energischer Ausbau notwendig

    Energy Technology Data Exchange (ETDEWEB)

    Seltmann, Thomas [' Energy Watch Group, Berlin (Germany)

    2010-07-15

    The growth of the renewable energies will not close the foreseeable energy gap with the conventional energy sources fast enough. Thus, the policy has to create still better incentives for investments in renewable energies, because the most important raw material of the renewable energies is money. The first two parts of this three-part contribution describe the shortage of fossil energy sources. We are now on the apex of the conventional power supply in the next ten to fifteen years. At the same time, the renewable energies only are at the beginning of their growth. The renewable energies only can close the gap between the rising energy consumption and sinking availability of fossil energy sources in time if the growth of the renewable energies is accelerated. In principle, the development of the renewable energy takes place in three phases: (a) Within the start-up phase with a relatively slow growth, the techniques are made suitable for mass production. The prerequisites for a fast growth are created; (b) Afterwards, a rapidly accelerating exponential growth with mass production follows; (c) After reaching a high market share, the development of the renewable energies passes into a saturation.

  11. On the decomposition mechanisms of new imidazole-based energetic materials.

    Science.gov (United States)

    Yu, Zijun; Bernstein, Elliot R

    2013-02-28

    New imidazole-based energetic molecules (1,4-dinitroimidazole, 2,4-dinitroimidazole, 1-methyl-2,4-dinitroimidazole, and 1-methyl-2,4,5-trinitroimidazole) are studied both experimentally and theoretically. The NO molecule is observed as a main decomposition product from the above nitroimidazole energetic molecules excited at three UV wavelengths (226, 236, and 248 nm). Resolved rotational spectra related to three vibronic bands (0-0), (0-1), and (0-2) of the NO (A (2)Σ(+) ← X (2)Π) electronic transition have been obtained. A unique excitation wavelength independent dissociation channel is characterized for these four nitroimidazole energetic molecules: this pathway generates the NO product with a rotationally cold (10-60 K) and vibrationally hot (1300-1600 K) internal energy distribution. The predicted reaction mechanism for the nitroimidazole energetic molecule decomposition subsequent to electronic excitation is the following: electronically excited nitroimidazole energetic molecules descend to their ground electronic states through a series of conical intersections, dissociate on their ground electronic states subsequent to a nitro-nitrite isomerization, and produce NO molecules. Different from PETN, HMX, and RDX, the thermal dissociation process (ground electronic state decomposition from the Franck-Condon equilibrium point) of multinitroimidazoles is predicted to be a competition between NO(2) elimination and nitro-nitrite isomerization followed by NO elimination for all multinitroimidazoles except 1,4-dinitroimidazole. In this latter instance, N-NO(2) homolysisis becomes the dominant decomposition channel on the ground electronic state, as found for HMX and RDX. Comparison of the stability of nitro-containing energetic materials with R-NO(2) (R = C, N, O) moieties is also discussed. Energetic materials with C-NO(2) are usually more thermally stable and impact/shock insensitive than are other energetic materials with N-NO(2) and O-NO(2) moieties. The

  12. Azole energetic materials: initial mechanisms for the energy release from electronical excited nitropyrazoles.

    Science.gov (United States)

    Yuan, Bing; Yu, Zijun; Bernstein, Elliot R

    2014-01-21

    Decomposition of energetic material 3,4-dinitropyrazole (DNP) and two model molecules 4-nitropyrazole and 1-nitropyrazole is investigated both theoretically and experimentally. The initial decomposition mechanisms for these three nitropyrazoles are explored with complete active space self-consistent field (CASSCF) level. The NO molecule is observed as an initial decomposition product from all three materials subsequent to UV excitation. Observed NO products are rotationally cold (energetic material DNP, NO is produced on the ground state surface, as the S1 decomposition pathway is energetically unavailable. The theoretically predicted mechanism is consistent with the experimental results, as DNP decomposes in a lower electronic state than do the model systems and thus the vibrational energy in the NO product from DNP should be hotter than from the model systems. The observed rotational energy distributions for NO are consistent with the final structures of the respective transition states for each molecule.

  13. Combustion aspects of the reapplication of energetic materials as fuels as a viable demil technology

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L.; Davis, K.; Sinquefield, S.; Huey, S.; Lipkin, J.; Shah, D.; Ross, J.; Sclippa, G. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility

    1996-05-01

    This investigation addresses the combustion-related aspects of the reapplication of energetic materials as fuels in boilers as an economically viable and environmentally acceptable use of excess energetic materials. The economics of this approach indicate that the revenues from power generation and chemical recovery approximately equal the costs of boiler modification and changes in operation. The primary tradeoff is the cost of desensitizing the fuels against the cost of open burn/open detonation (OB/OD) or other disposal techniques. Two principal combustion-related obstacles to the use of energetic-material-derived fuels are NO{sub x} generation and the behavior of metals. NO{sub x} measurements obtained in this investigation indicate that the nitrated components (nitrocellulose, nitroglycerin, etc.) of energetic materials decompose with NO{sub x} as the primary product. This can lead to high uncontrolled NO{sub x} levels (as high as 2,600 ppm on a 3% O{sub 2} basis for a 5% blend of energetic material in the fuel). NO{sub x} levels are sensitive to local stoichiometry and temperature. The observed trends resemble those common during the combustion of other nitrogen-containing fuels. Implications for NO{sub x} control strategies are discussed. The behavior of inorganic components in energetic materials tested in this investigation could lead to boiler maintenance problems such as deposition, grate failure, and bed agglomeration. The root cause of the problem is the potentially extreme temperature generated during metal combustion. Implications for furnace selection and operation are discussed.

  14. Theoretical Studies of Small-System Thermodynamics in Energetic Materials

    Science.gov (United States)

    2016-01-06

    3D hard - sphere and Lennard-Jones fluids for which the surroundings are modelled as reflecting hard walls that confine the system along one direction...Molecular Materials under Static and Dynamic Compression " 2013 Fall ACS COMP Symposium: "Chemical Mechanisms in Advanced Materials" in the Materials...Jiang: 19th Biennial Conference of the APS Topical Group on Shock Compression of Condensed Matter (SCCM-2015) Tampa, Florida, 2015; “Molecular

  15. An evaluation of complementary approaches to elucidate fundamental interfacial phenomena driving adhesion of energetic materials.

    Science.gov (United States)

    Hoss, Darby J; Knepper, Robert; Hotchkiss, Peter J; Tappan, Alexander S; Boudouris, Bryan W; Beaudoin, Stephen P

    2016-07-01

    Cohesive Hamaker constants of solid materials are measured via optical and dielectric properties (i.e., Lifshitz theory), inverse gas chromatography (IGC), and contact angle measurements. To date, however, a comparison across these measurement techniques for common energetic materials has not been reported. This has been due to the inability of the community to produce samples of energetic materials that are readily compatible with contact angle measurements. Here we overcome this limitation by using physical vapor deposition to produce thin films of five common energetic materials, and the contact angle measurement approach is applied to estimate the cohesive Hamaker constants and surface energy components of the materials. The cohesive Hamaker constants range from 85zJ to 135zJ across the different films. When these Hamaker constants are compared to prior work using Lifshitz theory and nonpolar probe IGC, the relative magnitudes can be ordered as follows: contact angle>Lifshitz>IGC. Furthermore, the dispersive surface energy components estimated here are in good agreement with those estimated by IGC. Due to these results, researchers and technologists will now have access to a comprehensive database of adhesion constants which describe the behavior of these energetic materials over a range of settings. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Computational studies on energetic properties of nitrogen-rich energetic materials with ditetrazoles

    Indian Academy of Sciences (India)

    Li Xiao-Hong; Zhang Rui-Zhou

    2014-11-01

    Based on the full optimized molecular geometric structures at B3LYP/6-311++G**level, the densities (), heats of formation (HOFs), detonation velocities (D) and pressures (P) for a series of ditetrazoles derivatives, were investigated to look for high energy density materials (HEDMs). The results show that the influence of different substituted groups on HOFs has the order of -N3>-CN>-NH2>-NO2>-NF2>-ONO2>-H>-CH3>-CF3. The introduction of -CF3 groups is more favourable for increasing the density and the introduction of -CH3 groups is not favourable for increasing the density. In addition, all the series combined with -NF2 group except B-NF2 all have higher densities, larger D and P. F-NF2 may be regarded as the potential candidates of HEDMs because of the largest detonation velocity and pressure among these derivatives.The energy gaps between the HOMO and LUMO of the studied compounds are also investigated.

  17. Computational studies on 1,2,4-Triazolium-based salts as energetic materials

    Indian Academy of Sciences (India)

    Rakhi Singh; Hari Ji Singh; S K Sengupta

    2015-06-01

    The results of the computational studies performed on 1,2,4-triazolium cation-based salts designed by pairing it with energetic nitro-substituted 5- membered N-heterocyclic anions such as 5-nitrotetrazolate, 3,5-dinitrotriazolate, and 2,4,5 trinitroimidazolate are reported. Condensed phase heats of formation of the designed ionic salts and their thermodynamic and energetic properties have also been calculated. The results show that these salts are potential energetic materials and possess high positive heats of formation. The detonation velocity, D, and detonation pressure, P, have been calculated using the Kamlet-Jacobs equation and found to be 7–8 km/s and 25–29 GPa, respectively. These values fall in the range of the criteria to designate them as high-energy-density materials. Nucleus independent chemical shift (NICS) studies performed on the designed molecules show that these salts are stable in nature.

  18. Hydrogen Transfer in Energetic Materials from ReaxFF and DFT Calculations.

    Science.gov (United States)

    Sergeev, Oleg V; Yanilkin, Alexey V

    2017-04-27

    Energetic materials are characterized by fast and complex chemical reactions. It makes them hardly available for kinetic experiments in relevant conditions and a good target for reactive molecular dynamics simulations. In this work, unimolecular and condensed-phase thermal decomposition of pentaerythritol tetranitrate (PETN) are investigated by ReaxFF molecular dynamics. It is shown that the decomposition kinetics in condensed phase may be described with the activation barrier lower by a factor of 2 than that for isolated molecules. The effect of the intermolecular hydrogen transfer is revealed in condensed phase. Energetic barriers for hydrogen transfer in two energetic materials (methyl nitrate, which is a nitroester as well as PETN, and o-nitrotoluene) are studied with ReaxFF and DFT using nudged elastic band technique. The results indicate that ReaxFF gives significantly lower activation energy for intermolecular hydrogen transfer in nitroesters than different DFT approximations, which explains the molecular dynamics results for PETN.

  19. Thermal Energetic Reactor with High Reproduction of Fission Materials

    Directory of Open Access Journals (Sweden)

    Vladimir M. Kotov

    2012-01-01

    On the base of thermal reactors with high fission materials reproduction world atomic power engineering development supplying higher power and requiring smaller speed of raw uranium mining, than in the variant with fast reactors, is possible.

  20. Studies on compatibility of energetic materials by thermal methods

    Directory of Open Access Journals (Sweden)

    Maria Alice Carvalho Mazzeu

    2010-04-01

    Full Text Available The chemical compatibility of explosives, pyrotechnics and propellants with those materials is studied to evaluate potential hazards when in contact with other materials during production, storage and handling. Compatibility can be studied by several thermal methods as DSC (differential scanning calorimetry, TG (Thermogravimetry, VST (Vacuum stability test and others. The test methods and well defined criteria are the most important elements when a compatibility study is being accomplished. In this paper, the compatibility of two very important high explosives used in ammunition, RDX (Cyclo-1,3,5-trimethylene-2,4,6-trinitramine and HMX (Cyclotetramethylene tetranitramine was studied with the materials: fluoroelastomer (Viton and powdered aluminum (Al, using DSC and VST methods. The criteria to judge the compatibility between materials is based on a standardization agreement (STANAG 4147, 2001, and the final conclusion is that explosives and this materials are compatible, but in DSC it was observed that the peak of decomposition temperature of the admixture of RDX with Al decreased in 3º C and another peak appeared after the decomposition peak.

  1. Encapsulation of energetic materials by cooling and electrospray crystallization

    NARCIS (Netherlands)

    Reus, M.A.; Horst, J.H. ter; Stankiewicz, A.I.; Heijden, A.E.D.M. van der

    2012-01-01

    In this work cooling and electrospray crystallization have been used to create encapsulated (sub-)micron sized particles of different crystalline materials. Encapsulation experiments have been conducted, creating the core particle in situ from solution, with the model systems isonicotinamide (INA) –

  2. Encapsulation of energetic materials by cooling and electrospray crystallization

    NARCIS (Netherlands)

    Reus, M.A.; Horst, J.H. ter; Stankiewicz, A.I.; Heijden, A.E.D.M. van der

    2012-01-01

    In this work cooling and electrospray crystallization have been used to create encapsulated (sub-)micron sized particles of different crystalline materials. Encapsulation experiments have been conducted, creating the core particle in situ from solution, with the model systems isonicotinamide (INA) –

  3. Self-Channeling of Femtosecond Laser Pulses for Rapid and Efficient Standoff Detection of Energetic Materials

    Science.gov (United States)

    2009-01-01

    Laser Pulses for Rapid and Efficient Standoff Detection of Energetic Materials Matthieu Baudelet, Martin Richardson, Townes laser Institute, CREOL...2007 [3] D.A. Cremers and L.J. Radziemski, Handbook of laser-induced breakdown spectroscopy, Wiley, 2006 [4] A.W. Miziolek, V. Palleschi and I

  4. High-Energy-Density LCA-Coupled Structural Energetic Materials for Counter WMD Applications

    Science.gov (United States)

    2014-04-01

    morphology , etc.) of reactants. In the case of the equivolumetric Ta+Fe2O3 powder mixtures, pre-densification results in generating Fe2O3 as the more...published in the following papers. • N.N. Thadhani and J.K. Cochran, "Energetic Materials", DTRA Basic and Applied Research Program Newsletter , V2, N3, p

  5. Growth and energetics in Spisula subtruncata (Da Costa) and the effect of suspended bottom material

    DEFF Research Database (Denmark)

    Møhlenberg, F.; Kiørboe, Thomas

    1981-01-01

    The influence of suspended bottom material (0-25 mg/l) and algal cells (Phaeodactylum tricornutum) (0-500 .mu.g dry org wt[organic weight]/l) on clearance, growth and energetics in S. subtruncata (da Costa) was studied. Clearance and respiration rate were independent of concentrations of algae...

  6. Recent Progress on the Conversion of Surplus Picric Acid/Explosive D to Higher Value Products

    Energy Technology Data Exchange (ETDEWEB)

    R.Mitchell, A; Hsu, P C; Coburn, M D; Schmidt, R D; Pagoria, P F; Lee, G S; Kwak, S W

    2004-07-06

    The global demilitarization of nuclear and conventional munitions is producing millions of pounds of surplus energetic materials. Historically, energetic materials (high explosives, propellants, and pyrotechnics) have been disposed of by open burning/open detonation (OB/OD). The use of OB/OD is becoming unacceptable due to public concerns and increasingly stringent environmental regulations. Clearly, there is a great need to develop environmentally sound and cost-effective alternatives to OB/OD. The conversion of surplus picric acid and/or ammonium picrate (Explosive D) to1,3,5-triamino-2,4,6- trinitrobenzene (TATB) has been subject of extensive process development studies at Lawrence Livermore National Laboratory (LLNL). LLNL, under the direction and sponsorship of the U.S. Army Defense Ammunition Center (DAC), is developing a process for the conversion of picric acid to TATB on a larger scale. In FY 03, a 10 g per batch process was developed with good results. Development for a one pound per batch system is required as part of overall scale up process for producing TATB from the surplus feedstocks.

  7. Spallation products induced by energetic neutrons in plastic detector material

    CERN Document Server

    Grabisch, K; Enge, W; Scherzer, R

    1977-01-01

    Cellulose nitrate plastic detector sheets were irradiated with secondary neutrons of the 22 GeV/c proton beam at the CERN accelerator. He, Li and Be particles which are produced in nuclear interactions of the neutrons with the target elements C, N and O of the plastic detector material are measured. Preliminary angle and range distributions and isotropic abundances of the secondary particles are discussed. (6 refs).

  8. DMSO/base hydrolysis method for the disposal of high explosives and related energetic materials

    Science.gov (United States)

    Desmare, Gabriel W.; Cates, Dillard M.

    2002-05-14

    High explosives and related energetic materials are treated via a DMSO/base hydrolysis method which renders them non-explosive and/or non-energetic. For example, high explosives such as 1,3,5,7-tetraaza-1,3,5,7-tetranitrocyclooctane (HMX), 1,3,5-triaza-1,3,5-trinitrocyclohexane (RDX), 2,4,6-trinitrotoluene (TNT), or mixtures thereof, may be dissolved in a polar, aprotic solvent and subsequently hydrolyzed by adding the explosive-containing solution to concentrated aqueous base. Major hydrolysis products typically include nitrite, formate, and nitrous oxide.

  9. N-Nitrosarcosine: An Economic Precursor for the Synthesis of New Energetic Materials.

    Science.gov (United States)

    Klapötke, Thomas M; Krumm, Burkhard; Scharf, Regina

    2016-11-07

    New energetic compounds have been synthesized starting from the readily available N-(cyanomethyl)-N-methylamine. From this, N-nitrosarcosine was prepared in few steps, which serves as a starting material for the synthesis of oxygen-rich compounds. The compounds were thoroughly characterized including multinuclear NMR and vibrational spectroscopy and also molecular structures by single X-ray diffraction were obtained. Their energetic properties were determined including the sensitivities towards impact and friction, their heat of formations were calculated and the detonation and combustion parameters were predicted using EXPLO5 V6.02. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Surplus Value & Income Distribution

    OpenAIRE

    Yoshizawa,Masayasu

    1993-01-01

    Introduction 1. Marx's Theory of Surplus-Value 1.1. Use-Value and Exchange-Value 1.2. Surplus-Value 1.3. Variable Capital and Constant Capital 2. Implications of Marx's Theory of Surplus-Value 2.1. First Implication-Exploitation 2.2. Second Implication-Deviation of Price from Value 2.3. Third Implication-Capitalist Corporation 3. Capital Accumulation and Income Distribution 3.1. The Effect of Capital Accumulation 3.2. Fall in the Rate of Profit 4. Conclusion 

  11. Energetic N-Nitramino/N-Oxyl-Functionalized Pyrazoles with Versatile π-π Stacking: Structure-Property Relationships of High-Performance Energetic Materials.

    Science.gov (United States)

    Yin, Ping; Mitchell, Lauren A; Parrish, Damon A; Shreeve, Jean'ne M

    2016-11-07

    N-Nitramino/N-oxyl functionalization strategies were employed to investigate structure-property relationships of energetic materials. Based on single-crystal diffraction data, π-π stacking of pyrazole backbones can be tailored effectively by energetic functionalities, thereby resulting in diversified energetic compounds. Among them, hydroxylammonium 4-amino-3,5-dinitro-1H-pyrazol-1-olate and dipotassium N,N'-(3,5-dinitro-1H-pyrazol-1,4-diyl)dinitramidate, with unique face-to-face π-π stacking, can be potentially used as a high-performance explosive and an energetic oxidizer, respectively. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Benefits of a Surplus

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    China has growing surplus in its trade and capital accounts, which have prompted warnings and criticism from both domestic and foreign economists. Some think this represents an imbalance in international payments and suggest China speed up the appreciation of the yuan to adjust that imbalance. But Qu Hongbin, Chief China Economist for HSBC, and Ma Xiaoping, an economic analyst, argue that the double-surplus issue should be viewed from a broader perspective. In their article in The Economic Observer, they...

  13. Development of numerical framework to study microstructural effects on shock initiation in heterogeneous energetic materials

    Science.gov (United States)

    Schmidt, Martin; Rai, Nirmal; Udaykumar, H. S.

    2015-06-01

    Heterogeneous energetic materials like plastic bonded explosives (PBX) have very detailed and non-uniform microstructure. The heterogeneity is mainly because of presence of HMX crystals embedded in a polymer binder matrix. Also, manufacturing defects often creates pores and cracks in the material. Shock interaction with these heterogeneities leads to local heated regions known as hot spots. It is widely accepted that these hot spots are predominantly the cause of triggering reaction and eventually ignition in these energetic materials. There are various physical phenomenon through which hot spot can be created such as pore collapse, inter-granular friction in HMX crystals, shock heating of HMX crystals and binder etc. Hence, microstructural heterogeneity can play a vital role for shock initiation in PBX. In the current work, a general framework has been established for performing mesoscale simulations on heterogeneous energetic material. In order to get an accurate representation of the microstructure, image processing algorithms have been employed on XCMT images of PBX microstructure. The image processing framework has been built up with massively parallel Eulerian code, SCIMITAR3D. Shock simulation on PBX microstructures has been performed and the effect of microstructure geometry has been studied for different shock strengths case. The simulation results have been shown to resolve hot spots created due to various heterogeneities present in the microstructure.

  14. Computational survey of representative energetic materials as propellants for microthruster applications

    Science.gov (United States)

    Fuchs, Brian; Stec, Daniel, III

    2007-04-01

    Microthrusters are critical for the development of terrestrial micromissiles and nano air vehicles for reconnaissance, surveillance, and sensor emplacement. With the maturation of MEMS manufacturing technology, the physical components of the thrusters can be readily fabricated. The thruster type that is the most straightforward is chemical combustion of a propellant that is ignited by a heating element giving a single shot thrust. Arrays of MEMS manufactured thrusters can be ganged to give multiple firings. The basic model for such a system is a solid rocket motor. The desired elements for the propellant of a chemical thruster are high specific impulse (I sp), high temperature and pressure, and low molecular weight combustion gases. Since the combustion chamber of a microthruster is extremely small, the propellant material must be able to ignite, sustain and complete its burn inside the chamber. The propellant can be either a solid or a liquid. There are a large number of energetic materials available as candidates for a propellant for microthrusters. There has been no systematic evaluation of the available energetic materials as propellant candidates for microthrusters. This report summarizes computations done on a series of energetic materials to address their suitabilities as microthruster propellants.

  15. Emissions from energetic material waste during the Molten Salt Destruction process

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, B.E.; Upadhye, R.S.; Pruneda, C.O.; Brummond, W.A.

    1994-07-05

    The Molten Salt Destruction (MSD) process is an alternative to open burn/open detonation for destroying energetic materials; MSD has inherently low gaseous emissions, and the salt bath can scrub both acidic gases and particulates. It was demonstrated that high explosives and a liquid propellant can be safely and completely destroyed using MSD. Gaseous emissions of NOx and CO are very low. Nitrate builds up in the salt bath when nitrate-rich materials are destroyed, but addition fuel reduces the nitrate to NO. A program has been begun to add catalytic materials to the bed to further reduce emissions; a small molten salt bath has been constructed for chemical kinetic studies.

  16. Effect of pressure vents on the fast cookoff of energetic materials.

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Marcia A.; Oliver, Michael S.; Erikson, William W

    2013-10-01

    The effect of vents on the fast cookoff of energetic materials is studied through experimental modifications to the confinement vessel of the Radiant Heat Fast Cookoff Apparatus. Two venting schemes were investigated: 1) machined grooves at the EM-cover plate interface; 2) radial distribution of holes in PEEK confiner. EM materials of PBXN-109 and PBX 9502 were tested. Challenges with the experimental apparatus and EM materials were identified such that studying the effect of vents as an independent parameter was not realized. The experimental methods, data and post-test observations are presented and discussed.

  17. Unreacted equation of states of typical energetic materials under static compression: A review

    Science.gov (United States)

    Zhaoyang, Zheng; Jijun, Zhao

    2016-07-01

    The unreacted equation of state (EOS) of energetic materials is an important thermodynamic relationship to characterize their high pressure behaviors and has practical importance. The previous experimental and theoretical works on the equation of state of several energetic materials including nitromethane, 1,3,5-trinitrohexahydro-1,3,5-triazine (RDX), 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX), hexanitrostilbene (HNS), hexanitrohexaazaisowurtzitane (HNIW or CL-20), pentaerythritol tetranitrate (PETN), 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105), triamino-trinitrobenzene (TATB), 1,1-diamino-2,2-dinitroethene (DADNE or FOX-7), and trinitrotoluene (TNT) are reviewed in this paper. The EOS determined from hydrostatic and non-hydrostatic compressions are discussed and compared. The theoretical results based on ab initio calculations are summarized and compared with the experimental data. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174045 and 11404050).

  18. Potential space debris shield structure using impact-initiated energetic materials composed of polytetrafluoroethylene and aluminum

    Science.gov (United States)

    Wu, Qiang; Zhang, Qingming; Long, Renrong; Zhang, Kai; Guo, Jun

    2016-03-01

    A whipple shield using Al/PTFE (polytetrafluoroethylene) energetic material to protect against space debris is presented. The hypervelocity impact characteristics were investigated experimentally using a two-stage light gas gun at velocities between 3 and 6 km/s. A good protection of the shield was obtained through comparative experiments which used the same bumper areal density. The results showed that the critical projectile diameter can be improved by 28% by contrast with the Christiansen ballistic limit equations. The Al/PTFE energetic material bumper can break up the projectile into smaller, less massive, and slower projectiles due to the combined effect of impact and explosion, thereby producing a sharp rise in the spacecraft protection ability.

  19. Damaging impacts of energetic charge particles on materials in plasma energy explosive events

    Institute of Scientific and Technical Information of China (English)

    Deng Bai-Quan; Peng Li-Lin; Yan Jian-Cheng; Luo Zheng-Ming; Chen Zhi

    2006-01-01

    To provide some reference data for estimation of the erosion rates and lifetimes of some candidate plasma facing component (PF3 materials in the plasma stored energy explosive events (PSEEE), this paper calculates the sputtering yields of Mo, W and deuterium saturated Li surface bombarded by energetic charged particles by a new sputtering physics description method based on bipartition model of charge particle transport theory. The comparisons with Monte Carlo data of TRIM code and experimental results are made. The dependences of maximum energy deposition,particle and energy reflection coefficients on the incident energy of energetic runaway electrons impinging on the different material surfaces are also calculated. Results may be useful for estimating the lifetime of PFC and analysing the impurity contamination extent, especially in the PSEEE for high power density and with high plasma current fusion reactor.

  20. SEARCHBreast: a new resource to locate and share surplus archival material from breast cancer animal models to help address the 3Rs.

    Science.gov (United States)

    Blyth, Karen; Carter, Phil; Morrissey, Bethny; Chelala, Claude; Jones, Louise; Holen, Ingunn; Speirs, Valerie

    2016-04-01

    Animal models have contributed to our understanding of breast cancer, with publication of results in high-impact journals almost invariably requiring extensive in vivo experimentation. As such, many laboratories hold large collections of surplus animal material, with only a fraction being used in publications relating to the original projects. Despite being developed at considerable cost, this material is an invisible and hence an underutilised resource, which often ends up being discarded. Within the breast cancer research community there is both a need and desire to make this valuable material available for researchers. Lack of a coordinated system for visualisation and localisation of this has prevented progress. To fulfil this unmet need, we have developed a novel initiative called Sharing Experimental Animal Resources: Coordinating Holdings-Breast (SEARCHBreast) which facilitates sharing of archival tissue between researchers on a collaborative basis and, de facto will reduce overall usage of animal models in breast cancer research. A secure searchable database has been developed where researchers can find, share, or upload materials related to animal models of breast cancer, including genetic and transplant models. SEARCHBreast is a virtual compendium where the physical material remains with the original laboratory. A bioanalysis pipeline is being developed for the analysis of transcriptomics data associated with mouse models, allowing comparative study with human and cell line data. Additionally, SEARCHBreast is committed to promoting the use of humanised breast tissue models as replacement alternatives to animals. Access to this unique resource is freely available to all academic researchers following registration at https://searchbreast.org.

  1. Structural and vibrational properties of nitrogen-rich energetic material guanidinium 2-methyl-5-nitraminotetrazolate

    OpenAIRE

    Babu, K Ramesh; Vaitheeswaran, G.

    2014-01-01

    We present density functional theory calculations on the crystal structure, equation of state, vibrational properties and electronic structure of nitrogen-rich solid energetic material guanidinium 2-methyl-5-nitraminotetrazolate (G-MNAT). The ground state structural properties calculated with dispersion corrected density functionals are in good agreement with experiment. The computed equilibrium crystal structure is further used to calculate the equation of state and zone-center vibrational f...

  2. Explosive Chemistry: Simulating the Chemistry of Energetic Materials at Extreme Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Reed, E J; Manaa, M R; Fried, L E

    2003-11-18

    In the brief instant of a high-explosive detonation, the shock wave produces a pressure 500,000 times that of the Earth's atmosphere, the detonation wave travels as fast as 10 kilometers per second, and internal temperatures soar up to 5,500 Kelvin. As the shock propagates through the energetic material, the rapid heating coupled with compression that results in almost 30% volume reduction, initiate complex chemical reactions. A dense, highly reactive supercritical fluid is established behind the propagating detonation front. Energy release from the exothermic chemical reactions serve in turn to drive and sustain the detonation process until complete reactivity is reached. Several experimental results suggest the existence of strong correlations between the applied mechanical stress and shocks, the local heterogeneity and defects (dislocations, vacancies, cracks, impurities, etc.), and the onset of chemical reactions. The reaction chemistry of energetic materials at high pressure and temperature is, therefore, of considerable importance in understanding processes that these materials experience under impact and detonation conditions. Chemical decomposition models are critical ingredients in order to predict, among other things, the measured times to explosion and the conditions for ignition of hot spots, localized regions of highly concentrated energy associated with defects. To date, chemical kinetic rates of condense-phase energetic materials at detonation conditions are virtually non-existent, and basic questions such as: (a) which bond in a given energetic molecule breaks first, and (b) what type of chemical reactions (unimolecular versus bimolecular, etc.) that dominate early in the decomposition process, are still largely unknown.

  3. Microscale electromagnetic heating in heterogeneous energetic materials based on X-ray CT imaging

    CERN Document Server

    Kort-Kamp, W J M; Ionita, A; Glover, B B; Duque, A L Higginbotham; Perry, W L; Patterson, B M; Dalvit, D A R; Moore, D S

    2015-01-01

    Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on X-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations, to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. We analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder meso-structures, and compare the heating rate for various binder systems.

  4. Isotope abundances of solar coronal material derived from solar energetic particle measurements

    Science.gov (United States)

    Mewaldt, R. A.; Stone, E. C.

    1989-01-01

    Coronal isotopic abundances for the elements He, C, N, O, Ne, and Mg are derived from previously published measurements of the isotopic composition of solar energetic particles by first measuring, and then correcting for, the charge-to-mass-dependent fractionation due to solar flare acceleration and propagation processes. The resulting coronal composition generally agrees with that of other samples of solar system material, but the previously noted difference between the solar flare and solar wind Ne-22/Ne-20 ratios remains unresolved.

  5. Energetic materials research and development activities at Sandia National Laboratories supported under DP-10 programs

    Energy Technology Data Exchange (ETDEWEB)

    Ratzel, A.C. III

    1998-09-01

    This report provides summary descriptions of Energetic Materials (EM) Research and Development activities performed at Sandia National Laboratories and funded through the Department of Energy DP-10 Program Office in FY97 and FY98. The work falls under three major focus areas: EM Chemistry, EM Characterization, and EM Phenomenological Model Development. The research supports the Sandia component mission and also Sandia's overall role as safety steward for the DOE Nuclear Weapons Complex.

  6. Experimental Investigation of the Role of Defects in Detonation Sensitivity of Energetic Materials: Development of Techniques for Characterization

    Science.gov (United States)

    2008-03-04

    Chein . B 2007, 111, 3430-3437 Computer Simulations and Analysis of Structural and Energetic Features of Some Crystalline Energetic Materials Craig J...B, Vol. I H, No. 13, 2007 3437 Brand, H. V. Combust. Flame 2002. 130, 185-203. (c) Taylor, J. W.; (11) (a) Gavezzotti, A. J1 Phys. Chein . B 2002, 106

  7. Meeting the challenge of characterizing emissions produced by burning chlorinated energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, J.L. [Army West Desert Test Center, Dugway, UT (United States); Bacon, D.P. [ECO, L.C., Salt Lake City, UT (United States)

    1996-12-01

    As the US Environmental Protection Agency (USEPA) and state regulators increase the stringency and enforcement of regulations concerning emissions produced by open-air detonation of energetic materials, research must provide the means of obtaining emissions data. The BangBox emissions testing program established the technical foundations for emissions characterization which have been accepted by the USEPA and other regulatory agencies; the technical issues remaining are nettlesome and require new approaches in test procedures. Characterizing emissions produced by the open burning (OB) or open detonation (OD) of chlorine-containing energetics is an excellent example. Highly reactive, chlorine combines with a number of materials found in most testing environments, e.g., metal in sampling devices and moisture in the air, thus greatly complicating the testing situation. This paper describes the materials tested, special considerations in preparing the test facility, the means used to account for chlorine, and preliminary results of a developmental test on solid rocket-motor propellants conducted in July and August 1995 at the BangBox test facility at the US Army West Desert Test Center in Utah. The paper also projects how the creative processes used in developing the means for testing chlorine-containing energetics can be applied in resolving other emissions-data needs of the explosives industry such as supporting OB/OD permit applications and responding to notices of deficiency and notices of violation.

  8. Searching for new energetic materials: Computational design of novel nitro-substituted heterocyclic explosives

    Science.gov (United States)

    Tsyshevsky, Roman V.; Pagoria, Philip; Kuklja, Maija M.

    2017-01-01

    The continuous search for safe and powerful energetic materials is an exciting research challenge that attracts experts in material science, chemistry, physics, and engineering. Elucidation of meaningful relationships between sensitivity and structures of explosives is a fundamental problem, which needs to be addressed to ensure successful design of new materials and improvements of existing energetics. In this paper, quantum-chemical DFT study of thermal decomposition of a series of recently synthesized oxadiazole-based explosives, BNFF (3,4-bis(4-Nitro-1,2,5-oxadiazol-3-yl)-1,2,5-oxadiazole-N-oxide), BNFF-1 (3,4-bis(4-nitro-1,2,5-oxadiazol-3-yl)-1,2,5-oxadiazole) and ANFF-1 (3-(4-amino-1,2,5-oxadiazol-3-yl)-4-(4-nitro-1,2,5-oxadiazol-3-yl)-1,2,5-oxadiazole) is presented. We also show how the knowledge of discovered interplay between the structures and thermal stability of these compounds is used to design several novel candidate heterocyclic energetic molecules, including DNBTT (2,7-dinitro-4H,9H-bis([1,2,4]triazolo)[1,5-b:1',5'-e][1,2,4,5]tetrazine), the compound with high thermal stability, which is on predicted to be par or better than that of TATB.

  9. Experimental Study on Reaction Characteristics of PTFE/Ti/W Energetic Materials under Explosive Loading

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-11-01

    Full Text Available Metal/fluoropolymer composites represent a new category of energetic structural materials that release energy through exothermic chemical reactions initiated under shock loading conditions. This paper describes an experiment designed to study the reaction characteristics of energetic materials with low porosity under explosive loading. Three PTFE (polytetrafluoroethylene/Ti/W mixtures with different W contents are processed through pressing and sintering. An inert PTFE/W mixture without reactive Ti particles is also prepared to serve as a reference. Shock-induced chemical reactions are recorded by high-speed video through a narrow observation window. Related shock parameters are calculated based on experimental data, and differences in energy release are discussed. The results show that the reaction propagation of PTFE/Ti/W energetic materials with low porosity under explosive loading is not self-sustained. As propagation distance increases, the energy release gradually decreases. In addition, reaction failure distance in PTFE/Ti/W composites is inversely proportional to the W content. Porosity increased the failure distance due to higher shock temperature.

  10. Experimental Study on Reaction Characteristics of PTFE/Ti/W Energetic Materials under Explosive Loading.

    Science.gov (United States)

    Li, Yan; Jiang, Chunlan; Wang, Zaicheng; Luo, Puguang

    2016-11-18

    Metal/fluoropolymer composites represent a new category of energetic structural materials that release energy through exothermic chemical reactions initiated under shock loading conditions. This paper describes an experiment designed to study the reaction characteristics of energetic materials with low porosity under explosive loading. Three PTFE (polytetrafluoroethylene)/Ti/W mixtures with different W contents are processed through pressing and sintering. An inert PTFE/W mixture without reactive Ti particles is also prepared to serve as a reference. Shock-induced chemical reactions are recorded by high-speed video through a narrow observation window. Related shock parameters are calculated based on experimental data, and differences in energy release are discussed. The results show that the reaction propagation of PTFE/Ti/W energetic materials with low porosity under explosive loading is not self-sustained. As propagation distance increases, the energy release gradually decreases. In addition, reaction failure distance in PTFE/Ti/W composites is inversely proportional to the W content. Porosity increased the failure distance due to higher shock temperature.

  11. Sensitivity Characterization of Pressed Energetic Materials using Flyer Plate Mesoscale Simulations

    Science.gov (United States)

    Rai, Nirmal; Udaykumar, H. S.

    Heterogeneous energetic materials like pressed explosives have complicated microstructure and contain various forms of heterogeneities such as pores, micro-cracks, energetic crystals etc. It is widely accepted that the presence of these heterogeneities can affect the sensitivity of these materials under shock load. The interaction of shock load with the microstructural heterogeneities may leads to the formation of local heated regions known as ``hot spots''. Chemical reaction may trigger at the hot spot regions depending on the hot spot temperature and the duration over which the temperature can be maintained before phenomenon like heat conduction, rarefaction waves withdraws energy from it. There are different mechanisms which can lead to the formation of hot spots including void collapse. The current work is focused towards the sensitivity characterization of two HMX based pressed energetic materials using flyer plate mesoscale simulations. The aim of the current work is to develop mesoscale numerical framework which can perform simulations by replicating the laboratory based flyer plate experiments. The current numerical framework uses an image processing approach to represent the microstructural heterogeneities incorporated in a massively parallel Eulerian code SCIMITAR3D. The chemical decomposition of HMX is modeled using Henson-Smilowitz reaction mechanism. The sensitivity characterization is aimed towards obtaining James initiation threshold curve and comparing it with the experimental results.

  12. Cooperative enhancement of the nonlinear optical response in conjugated energetic materials: A TD-DFT study.

    Science.gov (United States)

    Sifain, Andrew E; Tadesse, Loza F; Bjorgaard, Josiah A; Chavez, David E; Prezhdo, Oleg V; Scharff, R Jason; Tretiak, Sergei

    2017-03-21

    Conjugated energetic molecules (CEMs) are a class of explosives with high nitrogen content that posses both enhanced safety and energetic performance properties and are ideal for direct optical initiation. As isolated molecules, they absorb within the range of conventional lasers. Crystalline CEMs are used in practice, however, and their properties can differ due to intermolecular interaction. Herein, time-dependent density functional theory was used to investigate one-photon absorption (OPA) and two-photon absorption (TPA) of monomers and dimers obtained from experimentally determined crystal structures of CEMs. OPA scales linearly with the number of chromophore units, while TPA scales nonlinearly, where a more than 3-fold enhancement in peak intensity, per chromophore unit, is calculated. Cooperative enhancement depends on electronic delocalization spanning both chromophore units. An increase in sensitivity to nonlinear laser initiation makes these materials suitable for practical use. This is the first study predicting a cooperative enhancement of the nonlinear optical response in energetic materials composed of relatively small molecules. The proposed model quantum chemistry is validated by comparison to crystal structure geometries and the optical absorption of these materials dissolved in solution.

  13. Development of quantitative structure property relationships for predicting the melting point of energetic materials.

    Science.gov (United States)

    Morrill, Jason A; Byrd, Edward F C

    2015-11-01

    The accurate prediction of the melting temperature of organic compounds is a significant problem that has eluded researchers for many years. The most common approach used to develop predictive models entails the derivation of quantitative structure-property relationships (QSPRs), which are multivariate linear relationships between calculated quantities that are descriptors of molecular or electronic features and a property of interest. In this report the derivation of QSPRs to predict melting temperatures of energetic materials based on descriptors calculated using the AM1 semiempirical quantum mechanical method are described. In total, the melting points and experimental crystal structures of 148 energetic materials were analyzed. Principal components analysis was performed in order to assess the relative importance and roles of the descriptors in our QSPR models. Also described are the results of k means cluster analysis, performed in order to identify natural groupings within our study set of structures. The QSPR models resulting from these analyses gave training set R(2) values of 0.6085 (RMSE = ± 15.7 °C) and 0.7468 (RMSE = ± 13.2 °C). The test sets for these clusters had R(2) values of 0.9428 (RMSE = ± 7.0 °C) and 0.8974 (RMSE = ± 8.8 °C), respectively. These models are among the best melting point QSPRs yet published for energetic materials. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Growth and energetics in Spisula subtruncata (Da Costa) and the effect of suspended bottom material

    DEFF Research Database (Denmark)

    Møhlenberg, F.; Kiørboe, Thomas

    1981-01-01

    The influence of suspended bottom material (0-25 mg/l) and algal cells (Phaeodactylum tricornutum) (0-500 .mu.g dry org wt[organic weight]/l) on clearance, growth and energetics in S. subtruncata (da Costa) was studied. Clearance and respiration rate were independent of concentrations of algae...... and suspended bottom material. Algal ingestion rate was proportional to algal concentration and independent of the concentration of suspended bottom material. Growth rate increased with algal concentration and was further increased by 10-110% by adding suspended bottom material. The positive effect of suspended...... bottom material on growth is due to a higher efficiency of assimilation of the ingested algae and/or the utilization of organic matter in the suspended bottom material. The efficiency of algal assimilation decreased from 76% at a low (150 .mu.g dry org wt/l) to 33% at a high (500 .mu.g) algal...

  15. Energetic multifunctionalized nitraminopyrazoles and their ionic derivatives: ternary hydrogen-bond induced high energy density materials.

    Science.gov (United States)

    Yin, Ping; Parrish, Damon A; Shreeve, Jean'ne M

    2015-04-15

    Diverse functionalization was introduced into the pyrazole framework giving rise to a new family of ternary hydrogen-bond induced high energy density materials. By incorporating extended cationic interactions, nitramine-based ionic derivatives exhibit good energetic performance and enhanced molecular stability. Performance parameters including heats of formation and detonation properties were calculated by using Gaussian 03 and EXPLO5 v6.01 programs, respectively. It is noteworthy to find that 5-nitramino-3,4-dinitropyrazole, 4, has a remarkable measured density of 1.97 g cm(-3) at 298 K, which is consistent with its crystal density (2.032 g cm(-3), 150 K), and ranks highest among azole-based CHNO compounds. Energetic evaluation indicates that, in addition to the molecular compound 4, some ionic derivatives, 9, 11, 12, 17, 19, and 22, also have high densities (1.83-1.97 g cm(-3)), excellent detonation pressures and velocities (P, 35.6-41.6 GPa; vD, 8880-9430 m s(-1)), as well as acceptable impact and friction sensitivities (IS, 4-30 J; FS, 40-240 N). These attractive features highlight the application potential of nitramino hydrogen-bonded interactions in the design of advanced energetic materials.

  16. Photoelectron spectroscopy and density functional theory studies of N-rich energetic materials.

    Science.gov (United States)

    Zeng, Zhen; Bernstein, Elliot R

    2016-10-28

    The geometric and electronic structures of molecular anionic energetic materials (EMs) DAAF (3,3'-diamino-4,4'-azoxyfurazan), FOX-7 (1,1-diamino-2,2-dinitroethene), 5,5'-BT (5,5'-bistetrazole), and 1,5'-BT (1,5'-bistetrazole) are explored employing anionic photoelectron spectroscopy and density functional theory calculations. The electron binding energies of the observed anionic, energetic material related species are determined and their corresponding anionic structures are assigned. Decomposition reactions for negatively charged EMs can proceed with different energy barriers, and thus mechanisms, from those for their related neutral EMs. Reactivity based on the anionic initial fragments of these EM species further reinforces their respective highly reactive and explosive nature. Fragment ions of the form EM(-)-H-X (X = N2, N2+NH, …) are additionally observed. Detection of such species suggests that EM(-)-H could serve as promising new candidates for EMs, assuming that such species are synthetically available, perhaps as energetic salts. Vertical detachment energies for transitions to the ground and first triplet electronic excited states of neutral matrix dye anion DCM(-) are additionally determined.

  17. Photoelectron spectroscopy and density functional theory studies of N-rich energetic materials

    Science.gov (United States)

    Zeng, Zhen; Bernstein, Elliot R.

    2016-10-01

    The geometric and electronic structures of molecular anionic energetic materials (EMs) DAAF (3,3'-diamino-4,4'-azoxyfurazan), FOX-7 (1,1-diamino-2,2-dinitroethene), 5,5'-BT (5,5'-bistetrazole), and 1,5'-BT (1,5'-bistetrazole) are explored employing anionic photoelectron spectroscopy and density functional theory calculations. The electron binding energies of the observed anionic, energetic material related species are determined and their corresponding anionic structures are assigned. Decomposition reactions for negatively charged EMs can proceed with different energy barriers, and thus mechanisms, from those for their related neutral EMs. Reactivity based on the anionic initial fragments of these EM species further reinforces their respective highly reactive and explosive nature. Fragment ions of the form EM--H-X (X = N2, N2+NH, …) are additionally observed. Detection of such species suggests that EM--H could serve as promising new candidates for EMs, assuming that such species are synthetically available, perhaps as energetic salts. Vertical detachment energies for transitions to the ground and first triplet electronic excited states of neutral matrix dye anion DCM- are additionally determined.

  18. New high-nitrogen energetic materials for gas generators in space ordnance

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, M.S.; Lee, Kien-Yin; Hiskey, M.A.

    1995-08-01

    High-nitrogen nitroheterocyclic energetic compounds are used as explosives, propellants, and gas generants when safe, thermally stable, cool-burning energetic materials are desired. A series of compounds are compared for sensitivity properties and calculated burn performance. Thermodynamic equilibrium calculations by NASA/Lewis rocket propellant and Blake gun propellant codes gave flame temperatures, average molecular weight, and identity of the equilibrium burn products for ambient, rocket, and gun pressure environments. These compounds were subjected to calculations both as monopropellants and as 50/50 weight ratio mixtures with ammonium nitrate (AN). Special attention was paid to calculated toxic products such as carbon monoxide and hydrogen cyanide, and how these were affected by the addition of an oxidizer AN. Several compounds were noted for further calculations of a formulation ad experimental evaluation.

  19. Laser-shocked energetic materials with metal additives: evaluation of detonation performance

    Science.gov (United States)

    Gottfried, Jennifer; Bukowski, Eric

    A focused, nanosecond-pulsed laser with sufficient energy to exceed the breakdown threshold of a material generates a laser-induced plasma with high peak temperatures, pressures, and shock velocities. Depending on the laser parameters and material properties, nanograms to micrograms of material is ablated, atomized, ionized and excited in the laser-induced plasma. The subsequent shock wave expansion into the air above the sample has been monitored using high-speed schlieren imaging in a recently developed technique, laser-induced air shock from energetic materials (LASEM). The estimated detonation velocities using LASEM agree well with published experimental values. A comparison of the measured shock velocities for various energetic materials including RDX, DNTF, and LLM-172 doped with Al or B to the detonation velocities predicted by CHEETAH for inert or active metal participation demonstrates that LASEM has potential for predicting the early time participation of metal additives in detonation events. The LASEM results show that reducing the amount of hydrogen present in B formulations increases the resulting detonation velocities

  20. Comparative Study of Various Pyrazole-based Anions: A Promising Family of Ionic Derivatives as Insensitive Energetic Materials.

    Science.gov (United States)

    Yin, Ping; Mitchell, Lauren A; Parrish, Damon A; Shreeve, Jean'ne M

    2017-02-01

    In the design of advanced energetic materials, high-density explosophores play a pivotal role because of their remarkable enhancement of both density and molecular stability. Using diversified functionalization strategies, a comparative study involving various nitropyrazole anions shows that these are crucially important in determining performance and stability. A promising family of pyrazole-based energetic ionic derivatives were synthesized and characterized by NMR and IR spectroscopies, and elemental analysis. Among them, 7, 8, 11-13 exhibit favorable overall performance as energetic materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Slowdown Trade Surplus Growth

    Institute of Scientific and Technical Information of China (English)

    Leo Zhao

    2008-01-01

    @@ According to Ma Kai's economic planning report submitted to the NPC session on March 5th.(Ma Kai is the Minister in charge of the National Development and Reform Commission),the government has listed the slowdown in trade surplus growth and the steady expansion of,external investment as major tasks for 2008.

  2. 'Nonprofits' need surplus too.

    Science.gov (United States)

    Young, D W

    1982-01-01

    By definition profit refers to the difference between revenue and expenses. In for-profit organizations profit or surplus gives a return to the owners of the company and serves as a source of financing for capital acquisitions and working capital. Nonprofit organizations, which are not allowed a surplus, don't suffer on the first count because they have no owners. But they do suffer on the second count because, if expected to grow, they need to finance asset replacement and growth. In these days when funds for long-term debt are becoming scarcer, this author asserts, the need for regulators to allow 'nonprofits' to keep a surplus is increasing. In this article, he argues for a surplus and then discusses how managers and regulators can determine how much a nonprofit organization should be allowed. He presents a combination of a modified version of the return-on-asset pricing model used in for-profit organizations and a model for assessing working capital needs associated with growth.

  3. Racism and Surplus Repression.

    Science.gov (United States)

    Johnson, Howard

    1983-01-01

    Explores the relationship between Herbert Marcuse's theory of "surplus repression" and Freud's theory of the "unconscious" with respect to latent, hidden, covert, or subliminal aspects of racism in the United States. Argues that unconscious racism, manifested in evasion/avoidance, acting out/projection, and attempted justification, perpetuates…

  4. A micro-macro coupling approach of MD-SPH method for reactive energetic materials

    Science.gov (United States)

    Liu, Gui Rong; Wang, Guang Yu; Peng, Qing; De, Suvranu

    2017-01-01

    The simulation of reactive energetic materials has long been the interest of researchers because of the extensive applications of explosives. Much research has been done on the subject at macro scale in the past and research at micro scale has been initiated recently. Equation of state (EoS) is the relation between physical quantities (pressure, temperature, energy and volume) describing thermodynamic states of materials under a given set of conditions. It plays a significant role in determining the characteristics of energetic materials, including Chapman-Jouguet point and detonation velocity. Furthermore, EoS is the key to connect microscopic and macroscopic phenomenon when simulating the macro effects of an explosion. For instance, an ignition and growth model for high explosives uses two JWL EoSs, one for solid explosive and the other for gaseous products, which are often obtained from experiments that can be quite expensive and hazardous. Therefore, it is ideal to calculate the EoS of energetic materials through computational means. In this paper, the EoSs for both solid and gaseous products of β-HMX are calculated using molecular dynamics simulation with ReaxFF-d3, a reactive force field obtained from quantum mechanics. The microscopic simulation results are then compared with experiments and the continuum ignition and growth model. Good agreement is observed. Then, the EoSs obtained through micro-scale simulation is applied in a smoothed particle hydrodynamics (SPH) code to simulate the macro effects of explosions. Simulation results are compared with experiments.

  5. The quest for greater chemical energy storage in energetic materials: Grounding expectations

    Science.gov (United States)

    Lindsay, C. Michael; Fajardo, Mario E.

    2017-01-01

    It is well known that the performance of modern energetic materials based on organic chemistry has plateaued, with only ˜ 40% improvements realized over the past half century. This fact has stimulated research on alternative chemical energy storage schemes in various U.S. government funded "High Energy Density Materials" (HEDM) programs since the 1950's. These efforts have examined a wide range of phenomena such as free radical stabilization, metallic hydrogen, metastable helium, polynitrogens, extended molecular solids, nanothermites, and others. In spite of the substantial research investments, significant improvements in energetic material performance have not been forthcoming. This paper discusses the lessons learned in the various HEDM programs, the different degrees of freedom in which to store energy in materials, and the fundamental limitations and orders of magnitude of the energies involved. The discussion focuses almost exclusively on the topic of energy density and only mentions in passing other equally important properties of explosives and propellants such as gas generation and reaction rate.

  6. Importance of the gas phase role to the prediction of energetic material behavior: An experimental study

    Science.gov (United States)

    Ali, A. N.; Son, S. F.; Asay, B. W.; Sander, R. K.

    2005-03-01

    Various thermal (radiative, conductive, and convective) initiation experiments are performed to demonstrate the importance of the gas phase role in combustion modeling of energetic materials (EM). A previously published condensed phase model that includes a predicted critical irradiance above which ignition is not possible is compared to experimental laser ignition results for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 2,4,6-trinitrotoluene (TNT). Experimental results conflict with the predicted critical irradiance concept. The failure of the model is believed to result from a misconception about the role of the gas phase in the ignition process of energetic materials. The model assumes that ignition occurs at the surface and that evolution of gases inhibits ignition. High speed video of laser ignition, oven cook-off and hot wire ignition experiments captures the ignition of HMX and TNT in the gas phase. A laser ignition gap test is performed to further evaluate the effect of gas phase laser absorption and gas phase disruption on the ignition process. Results indicate that gas phase absorption of the laser energy is probably not the primary factor governing the gas phase ignition observations. It is discovered that a critical gap between an HMX pellet and a salt window of 6mm±0.4mm exists below which ignition by CO2 laser is not possible at the tested irradiances of 29W /cm2 and 38W/cm2 for HMX ignition. These observations demonstrate that a significant disruption of the gas phase, in certain scenarios, will inhibit ignition, independent of any condensed phase processes. These results underscore the importance of gas phase processes and illustrate that conditions can exist where simple condensed phase models are inadequate to accurately predict the behavior of energetic materials.

  7. Calculated Lattice Energies of Energetic Materials in a Prediction of their Heats of Fusion and Sublimation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The paper specifies an unambiguous basic relationship between the published results of ab initio calculations of lattice energies,EL,and heats of sublimation,ΔHs,of individual energetic materials. In this relationship,the ΔHs value has been replaced by heats of fusion,ΔHm,tr. Thereby its unambiguity has been lost,and the similarity of details of molecular structure begins to be of decisive importance. The resulting partial relationships,together with the basic relationship,have been used for prediction of ΔHs,and ΔHm,tr values of technically attractive polynitro compounds.

  8. Isentropic Compression Experiments Performed By LLNL On Energetic Material Samples Using The Z Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Vandersall, K S; Reisman, D B; Forbes, J W; Hare, D E; Garcia, F; Uphaus, T M; Elsholz, A J; Tarver, C M; Eggert, J H

    2007-10-25

    Several experiments have been conducted by LLNL researchers using isentropic compression experiments (ICE) on energetic materials as samples from Fiscal Year 2001 (FY01) to Fiscal Year 2005 (FY05). Over this span of time, advancements of the experimental techniques and modeling of the results have evolved to produce improved results. This report documents the experiments that have been performed, provides details of the results generated, and modeling and analysis advances to fully understand the results. Publications on the topics by the various principal investigators (PI's) are detailed in the Appendices for quick reference for the work as it progressed.

  9. Isotope-specific detection of low density materials with mono-energetic (gamma)-rays

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F; Anderson, S G; Gibson, D J; Hagmann, C A; Johnson, M S; Messerly, M J; Semenov, V A; Shverdin, M Y; Tremaine, A M; Hartemann, F V; Siders, C W; McNabb, D P; Barty, C J

    2009-03-16

    The first demonstration of isotope-specific detection of a low-Z, low density object, shielded by a high-Z and high density material using mono-energetic gamma-rays is reported. Isotope-specific detection of LiH shielded by Pb and Al is accomplished using the nuclear resonance fluorescence line of {sup 7}Li at 0.478 MeV. Resonant photons are produced via laser-based Compton scattering. The detection techniques are general and the confidence level obtained is shown to be superior to that yielded by conventional x-ray/{gamma}-ray techniques in these situations.

  10. Eye-safe infrared laser-induced breakdown spectroscopy (LIBS) emissions from energetic materials

    Science.gov (United States)

    Brown, Ei E.; Hömmerich, Uwe; Yang, Clayton C.; Jin, Feng; Trivedi, Sudhir B.; Samuels, Alan C.

    2016-05-01

    Laser-induced breakdown spectroscopy is a powerful diagnostic tool for detection of trace elements by monitoring the atomic and ionic emission from laser-induced plasmas. Besides elemental emissions from conventional UV-Vis LIBS, molecular LIBS emission signatures of the target compounds were observed in the long-wave infrared (LWIR) region in recent studies. Most current LIBS studies employ the fundamental Nd:YAG laser output at 1.064 μm, which has extremely low eye-damage threshold. In this work, comparative LWIR-LIBS emissions studies using traditional 1.064 μm pumping and eye-safe laser wavelength at 1.574 μm were performed on several energetic materials for applications in chemical, biological, and explosive (CBE) sensing. A Q-switched Nd: YAG laser operating at 1.064 μm and the 1.574 μm output of a pulsed Nd:YAG pumped Optical Parametric Oscillator were employed as the excitation sources. The investigated energetic materials were studied for the appearance of LWIR-LIBS emissions (4-12 μm) that are directly indicative of oxygenated breakdown products as well as partially dissociated and recombination molecular species. The observed molecular IR LIBS emission bands showed strong correlation with FTIR absorption spectra of the studied materials for 1.064 μm and 1.574 μm pump wavelengths.

  11. Insensitive high-energy energetic structural material of tungsten-polytetrafluoroethylene-aluminum composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liu; Liu, Jinxu, E-mail: liujinxu@bit.edu.cn; Zhang, Xinbo [School of Material Science and Engineering, Beijing Institute of Technology, No.5 yard, Zhong Guan Cun South Street, Beijing, 100081 (China); Li, Shukui [School of Material Science and Engineering, Beijing Institute of Technology, No.5 yard, Zhong Guan Cun South Street, Beijing, 100081 (China); State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, No. 5 yard, Zhong Guan Cun South Street, Beijing 100081 (China)

    2015-11-15

    Energetic structural material is a kind of materials that are inert under normal conditions but could produce exothermic chemical reaction when subjected to impact. This report shows a kind of energetic structural material of tungsten (W)-polytetrafluoroethylene (PTFE)-aluminum (Al) with density of 4.12 g/cm{sup 3}, excellent ductility and dynamic compressive strength of 96 MPa. Moreover, 50W-35PTFE-15Al (wt%) can exhibit a high reaction energy value of more than 2 times of TNT per unit mass and 5 times of TNT per unit volume, respectively, but with excellent insensitivity compared with traditional explosives. Under thermal conditions, the W-PTFE-Al composite can keep stable at 773 K. Under impact loading, when the strain rate up to ∼4820 s{sup −1} coupled with the absorbed energy per unit volume of 120 J/cm{sup 3}, deflagration occurs and combustion lasts for 500 μs. During impact compressive deformation, the PTFE matrix is elongated into nano-fibers, thus significantly increases the reaction activity of W-PTFE-Al composites. The nano-fiber structure is necessary for the reaction of W-PTFE-Al composites. The formation of PTFE nano-fibers must undergo severe plastic deformation, and therefore the W-PTFE-Al composites exhibit excellent insensitivity and safety. Furthermore, the reaction mechanisms of W-PTFE-Al composites in argon and in air are revealed.

  12. Insensitive high-energy energetic structural material of tungsten-polytetrafluoroethylene-aluminum composites

    Directory of Open Access Journals (Sweden)

    Liu Wang

    2015-11-01

    Full Text Available Energetic structural material is a kind of materials that are inert under normal conditions but could produce exothermic chemical reaction when subjected to impact. This report shows a kind of energetic structural material of tungsten (W-polytetrafluoroethylene (PTFE-aluminum (Al with density of 4.12 g/cm3, excellent ductility and dynamic compressive strength of 96 MPa. Moreover, 50W-35PTFE-15Al (wt% can exhibit a high reaction energy value of more than 2 times of TNT per unit mass and 5 times of TNT per unit volume, respectively, but with excellent insensitivity compared with traditional explosives. Under thermal conditions, the W-PTFE-Al composite can keep stable at 773 K. Under impact loading, when the strain rate up to ∼4820 s−1 coupled with the absorbed energy per unit volume of 120 J/cm3, deflagration occurs and combustion lasts for 500 μs. During impact compressive deformation, the PTFE matrix is elongated into nano-fibers, thus significantly increases the reaction activity of W-PTFE-Al composites. The nano-fiber structure is necessary for the reaction of W-PTFE-Al composites. The formation of PTFE nano-fibers must undergo severe plastic deformation, and therefore the W-PTFE-Al composites exhibit excellent insensitivity and safety. Furthermore, the reaction mechanisms of W-PTFE-Al composites in argon and in air are revealed.

  13. Hazards Response of Energetic Materials - Initiation Mechanisms, Experimental Characterization, and Development of Predictive Capability

    Energy Technology Data Exchange (ETDEWEB)

    Maienschein, J; Nichols III, A; Reaugh, J; McClelland, M; Hsu, P C

    2005-04-15

    We present our approach to develop a predictive capability for hazards -- thermal and non-shock impact -- response of energetic material systems based on: (A) identification of relevant processes; (B) characterization of the relevant properties; (C) application of property data to predictive models; and (D) application of the models into predictive simulation. This paper focuses on the first two elements above, while a companion paper by Nichols et al focuses on the final two elements. We outline the underlying mechanisms of hazards response and their interactions, and present our experimental work to characterize the necessary material parameters, including thermal ignition, thermal and mechanical properties, fracture/fragmentation behavior, deflagration rates, and the effect of material damage. We also describe our validation test, the Scaled Thermal Explosion Experiment. Finally, we integrate the entire collection of data into a qualitative understanding that is useful until such time as the predictive models become available.

  14. MATEO: a software package for the molecular design of energetic materials.

    Science.gov (United States)

    Mathieu, Didier

    2010-04-15

    To satisfy the need of energetic materials chemists for reliable and efficient predictive tools in order to select the most promising candidates for synthesis, a custom software package is developed. Making extensive use of publicly available software, it integrates a wide range of models and can be used for a variety of tasks, from the calculation of molecular properties to the prediction of the performance of heterogeneous materials, such as propellant compositions based on ammonium perchlorate/aluminium mixtures. The package is very easy to use through a graphical desktop environment. According to the material provided as input, suitable models and parameters are automatically selected. Therefore, chemists can apply advanced predictive models without having to learn how to use complex computer codes. To make the package more versatile, a command-line interface is also provided. It facilitates the assessment of various procedures by model developers.

  15. Enzymes for Degradation of Energetic Materials and Demilitarization of Explosives Stockpiles - SERDP Annual (Interim) Report, 12/98

    Energy Technology Data Exchange (ETDEWEB)

    Shah, M.M.

    1999-01-18

    The current stockpile of energetic materials requiring disposal contains about half a million tons. Through 2001, over 2.1 million tons are expected to pass through the stockpile for disposal. Safe and environmentally acceptable methods for disposing of these materials are needed. This project is developing safe, economical, and environmentally sound processes using biocatalyst (enzymes) to degrade energetic materials and to convert them into economically valuable products. Alternative methods for destroying these materials are hazardous, environmentally unacceptable, and expensive. These methods include burning, detonation, land and sea burial, treatment at high temperature and pressure, and treatment with harsh chemicals. Enzyme treatment operates at room temperature and atmospheric pressure in a water solution.

  16. Threshold Studies of Heated HMX-Based Energetic Material Targets Using the Steven Impact Test

    Energy Technology Data Exchange (ETDEWEB)

    Switzer, L L; Vandersall, K S; Chidester, S K; Greenwood, D W; Tarver, C M

    2003-07-01

    Impact tests performed at low velocity on heated energetic material samples are of interest when considering the situation of energetic materials involved in a fire. To determine heated reaction thresholds, Steven Test targets containing PBX 9404 or LX-04 samples heated to the range of 150-170 C were impacted at velocities up to 150 m/s by two different projectile head geometries. Comparing these measured thresholds to ambient temperature thresholds revealed that the heated LX-04 thresholds were considerably higher than ambient, whereas the heated PBX 9404 thresholds were only slightly higher than the ambient temperature thresholds. The violence of reaction level of the PBX 9404 was considerably higher than that of the LX-04 as measured with four overpressure gauges. The varying results in these samples with different HMX/binder configurations indicate that friction plays a dominant role in reaction ignition during impact. This work outlines the experimental details, compares the thresholds and violence levels of the heated and ambient temperature experiments, and discusses the dominant mechanisms of the measured thresholds.

  17. Laser-shocked energetic materials with metal additives: evaluation of chemistry and detonation performance.

    Science.gov (United States)

    Gottfried, Jennifer L; Bukowski, Eric J

    2017-01-20

    A focused, nanosecond-pulsed laser has been used to ablate, atomize, ionize, and excite milligram quantities of metal-doped energetic materials that undergo exothermic reactions in the laser-induced plasma. The subsequent shock wave expansion in the air above the sample has been monitored using high-speed schlieren imaging in a recently developed technique, laser-induced air shock from energetic materials (LASEM). The method enables the estimation of detonation velocities based on the measured laser-induced air-shock velocities and has previously been demonstrated for organic military explosives. Here, the LASEM technique has been extended to explosive formulations with metal additives. A comparison of the measured laser-induced air-shock velocities for TNT, RDX, DNTF, and LLM-172 doped with Al or B to the detonation velocities predicted by the thermochemical code CHEETAH for inert or active metal participation demonstrates that LASEM has potential for predicting the early time (<10  μs) participation of metal additives in detonation events. The LASEM results show that while Al is mostly inert at early times in the detonation event (confirmed from large-scale detonation testing), B is active-and reducing the amount of hydrogen present during the early chemical reactions increases the resulting estimated detonation velocities.

  18. Molecular design and performance prediction of poly-dinitroamino pyrrole compounds as energetic materials

    Indian Academy of Sciences (India)

    MEI LI; FENG-MIN WU; HANG XU

    2017-01-01

    To identify superior and safe energetic materials, eighteen poly-dinitroamino pyrrole derivatives were studied at the B3LYP/6-311G** level of density functional theory (DFT). The isodesmic reactions were employed to calculate the heats of formation (HOFs) for these compounds. The detonation velocity (D) and pressure (P) were evaluated using the Kamlet-Jacobs equations. Results indicate that –N(NO₂)₂ group is an effective substituent for enhancing the detonation performance since most of the molecules have larger energy density than RDX (1,3,5-trinitro-1,3,5-triazinane), and a few molecules, C1(N-R) - D3(N-R), with D ranging from 8.55 to 9.04 km s−1 and P ranging from 35.53 to 40.36 GPa outperform RDX (D = 8.75 km s⁻¹ and P = 34.00 GPa). The calculated bond dissociation energy (BDE) revealed that the new compounds exhibit good thermal stability and meet the requirements of energetic materials. Besides, the N-NO₂ bond on the side chain was found to be the trigger bond during decomposition. The characteristic height (h₅₀) of the compound was calculated, and thirteen compounds exhibited lower sensitivity than CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane).

  19. A Market-Basket Approach to Predict the Acute Aquatic Toxicity of Munitions and Energetic Materials.

    Science.gov (United States)

    Burgoon, Lyle D

    2016-06-01

    An ongoing challenge in chemical production, including the production of insensitive munitions and energetics, is the ability to make predictions about potential environmental hazards early in the process. To address this challenge, a quantitative structure activity relationship model was developed to predict acute fathead minnow toxicity of insensitive munitions and energetic materials. Computational predictive toxicology models like this one may be used to identify and prioritize environmentally safer materials early in their development. The developed model is based on the Apriori market-basket/frequent itemset mining approach to identify probabilistic prediction rules using chemical atom-pairs and the lethality data for 57 compounds from a fathead minnow acute toxicity assay. Lethality data were discretized into four categories based on the Globally Harmonized System of Classification and Labelling of Chemicals. Apriori identified toxicophores for categories two and three. The model classified 32 of the 57 compounds correctly, with a fivefold cross-validation classification rate of 74 %. A structure-based surrogate approach classified the remaining 25 chemicals correctly at 48 %. This result is unsurprising as these 25 chemicals were fairly unique within the larger set.

  20. Excited electronic state decomposition mechanisms and dynamics of nitramine energetic materials and model systems

    Science.gov (United States)

    Greenfield, Margo

    Energetic materials play an important role in aeronautics, the weapon industry, and the propellant industry due to their broad applications as explosives and fuels. RDX (1,3,5-trinitrohexahydro-s-triazine), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), and CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) are compounds which contain high energy density. Although RDX and HMX have been studied extensively over the past several decades a complete understanding of their decomposition mechanisms and dynamics is unknown. Time of flight mass spectroscopy (TOFMS) UV photodissociation (ns) experiments of gas phase RDX, HMX, and CL-20 generate the NO molecule as the initial decomposition product. Four different vibronic transitions of the initial decomposition product, the NO molecule, are observed: A2Sigma(upsilon'=0)←X 2pi(upsilon"=0,1,2,3). Simulations of the rovibronic intensities for the A←X transitions demonstrate that NO dissociated from RDX, HMX, and CL-20 is rotationally cold (˜20 K) and vibrationally hot (˜1800 K). Conversely, experiments on the five model systems (nitromethane, dimethylnitramine (DMNA), nitropyrrolidine, nitropiperidine and dinitropiperazine) produce rotationally hot and vibrationally cold spectra. Laser induced fluorescence (LIF) experiments are performed to rule out the possible decomposition product OH, generated along with NO, perhaps from the suggested HONO elimination mechanism. The OH radical is not observed in the fluorescence experiments, indicating the HONO decomposition intermediate is not an important pathway for the excited electronic state decomposition of cyclic nitramines. The NO molecule is also employed to measure the dynamics of the excited state decomposition. A 226 nm, 180 fs light pulse is utilized to photodissociate the gas phase systems. Stable ion states of DMNA and nitropyrrolidine are observed while the energetic materials and remaining model systems present the NO molecule as the only

  1. Effect of energetic materials wettability on their outdoor effective elution rate.

    Science.gov (United States)

    Lapointe, Marie-Claude; Martel, Richard; Lange, Sébastien F; Coté, Sébastien

    2016-07-05

    Energetic materials (EM) contained in military ammunitions have been found in the surface soil and water of training areas and may potentially represent a threat to human health and the environment. EM wettability is an essential physical parameter to characterize because it controls EM dissolution rate. This paper was conducted to determine the wettability of conventional and new EM formulations used in military ammunition. Wettability was estimated in the laboratory via contact angle measurements of water droplets on different EM surfaces. Results show that 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazinane (RDX), Octol and energetic thermoplastic elastomer (ETPE) 1000 are hydrophilic while Composition B, XRT, GIM, CX-85, ETPE 2000, and C4 are hydrophobic whereas HELOVA gun propellant has a mixed wettability oscillating between hydrophilic and hydrophobic. The present study demonstrates that wettability of EM formulation is generally controlled by their matrix constituents. Results indicate that hydrophobic formulations have a much slower outdoor environmental effective elution rate than hydrophilic ones, with the exception of the hydrophobic C4 formulation whose elution rate is extremely high. The addition of hydrophobic components into EM formulations is recommended to diminish the environmental impact on water, as it has already been done with XRT, GIM and CX-85 formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. From FOX-7 to H-FOX to insensitive energetic materials with hypergolic properties.

    Science.gov (United States)

    Srinivas, Dharavath; Mitchell, Lauren A; Parrish, Damon A; Shreeve, Jean'ne M

    2016-06-08

    Nitrogen/halogen rich derivatives, , , , and of FOX-7 (1,1-diamino-2,2-dinitroethene), and H-FOX (1-hydrazinyl-2,2-dinitroethenamine) have been synthesized, characterized and found to exhibit good energetic properties. Compound displays hypergolic properties with commonly utilized fuels such as monomethyl hydrazine (MMH), and hydrazine hydrate (HH), as well as with ethylenediamine (EN), and 1,3-diaminopropane (DAP) showing ignition delay times between 2.5 to 10 ms. Additionally, the hypergolic properties of 4 and 8 were further studied by using ammonia borane as a fuel solubilized in a green ionic liquid, 1-allyl-3-methyl imidazolium dicyanamide, (1 : 1 molar ratio). This is a new role for a derivative of H-FOX. The energetic and physical properties of all the molecules were either measured or calculated. All of materials were characterized by NMR, and infrared spectra, elemental analyses, and differential scanning calorimetry. Single crystal X-ray structural measurements for and were helpful in their confirmation.

  3. N-oxide 1,2,4,5-tetrazine-based high-performance energetic materials.

    Science.gov (United States)

    Wei, Hao; Gao, Haixiang; Shreeve, Jean'ne M

    2014-12-15

    One route to high density and high performance energetic materials based on 1,2,4,5-tetrazine is the introduction of 2,4-di-N-oxide functionalities. Based on several examples and through theoretical analysis, the strategy of regioselective introduction of these moieties into 1,2,4,5-tetrazines has been developed. Using this methodology, various new tetrazine structures containing the N-oxide functionality were synthesized and fully characterized using IR, NMR, and mass spectroscopy, elemental analysis, and single-crystal X-ray analysis. Hydrogen peroxide (50 %) was used very effectively in lieu of the usual 90 % peroxide in this system to generate N-oxide tetrazine compounds successfully. Comparison of the experimental densities of N-oxide 1,2,4,5-tetrazine compounds with their 1,2,4,5-tetrazine precursors shows that introducing the N-oxide functionality is a highly effective and feasible method to enhance the density of these materials. The heats of formation for all compounds were calculated with Gaussian 03 (revision D.01) and these values were combined with measured densities to calculate detonation pressures (P) and velocities (νD ) of these energetic materials (Explo 5.0 v. 6.01). The new oxygen-containing tetrazines exhibit high density, good thermal stability, acceptable oxygen balance, positive heat of formation, and excellent detonation properties, which, in some cases, are superior to those of 1,3,5-tritnitrotoluene (TNT), 1,3,5-trinitrotriazacyclohexane (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Recent advances in the molten salt technology for the destruction of energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Upadhye, R.S.; Watkins, B.E.; Pruneda, C.O.

    1995-11-01

    The DOE has thousands of pounds of energetic materials which result from dismantlement operations at the Pantex Plant. The authors have demonstrated the Molten Salt Destruction (MSD) Process for the treatment of explosives and explosive-containing wastes on a 1.5 kilogram of explosive per hour scale and are currently building a 5 kilogram per hour unit. MSD converts the organic constituents of the waste into non-hazardous substances such as carbon dioxide, nitrogen and water. Any inorganic constituents of the waste, such as binders and metallic particles, are retained in the molten salt. The destruction of energetic material waste is accomplished by introducing it, together with air, into a crucible containing a molten salt, in this case a eutectic mixture of Na, K, and Li carbonates. The following pure component DOE and DoD explosives have been destroyed in LLNL`s experimental unit at their High Explosives Applications Facility (HEAF): ammonium picrate, HMX, K-6, NQ, NTO, PETN, RDX, TATB, and TNT. In addition, the following formulations were also destroyed: Comp B, LX-10, LX-16, LX-17, PBX-9404, and XM46, a US Army liquid gun propellant. In this 1.5 kg/hr unit, the fractions of carbon converted to CO and of chemically bound nitrogen converted to NOx were found to be well below 1T. In addition to destroying explosive powders and molding powders the authors have also destroyed materials that are typical of real world wastes. These include shavings from machined pressed parts of plastic bonded explosives and sump waste containing both explosives and non-explosive debris. Based on the information obtained on the smaller unit, the authors have constructed a 5 kg/hr MSD unit, incorporating LLNL`s advanced chimney design. This unit is currently under shakedown tests and evaluation.

  5. Large-Scale Reactive Atomistic Simulation of Shock-induced Initiation Processes in Energetic Materials

    Science.gov (United States)

    Thompson, Aidan

    2013-06-01

    Initiation in energetic materials is fundamentally dependent on the interaction between a host of complex chemical and mechanical processes, occurring on scales ranging from intramolecular vibrations through molecular crystal plasticity up to hydrodynamic phenomena at the mesoscale. A variety of methods (e.g. quantum electronic structure methods (QM), non-reactive classical molecular dynamics (MD), mesoscopic continuum mechanics) exist to study processes occurring on each of these scales in isolation, but cannot describe how these processes interact with each other. In contrast, the ReaxFF reactive force field, implemented in the LAMMPS parallel MD code, allows us to routinely perform multimillion-atom reactive MD simulations of shock-induced initiation in a variety of energetic materials. This is done either by explicitly driving a shock-wave through the structure (NEMD) or by imposing thermodynamic constraints on the collective dynamics of the simulation cell e.g. using the Multiscale Shock Technique (MSST). These MD simulations allow us to directly observe how energy is transferred from the shockwave into other processes, including intramolecular vibrational modes, plastic deformation of the crystal, and hydrodynamic jetting at interfaces. These processes in turn cause thermal excitation of chemical bonds leading to initial chemical reactions, and ultimately to exothermic formation of product species. Results will be presented on the application of this approach to several important energetic materials, including pentaerythritol tetranitrate (PETN) and ammonium nitrate/fuel oil (ANFO). In both cases, we validate the ReaxFF parameterizations against QM and experimental data. For PETN, we observe initiation occurring via different chemical pathways, depending on the shock direction. For PETN containing spherical voids, we observe enhanced sensitivity due to jetting, void collapse, and hotspot formation, with sensitivity increasing with void size. For ANFO, we

  6. Combustion of porous energetic materials in the merged-flame regime

    Energy Technology Data Exchange (ETDEWEB)

    Margolis, S.B. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility; Williams, F.A.; Telengator, A.M. [Univ. of California, San Diego, La Jolla, CA (United States). Dept. of Applied Mechanics and Engineering Sciences

    1996-02-01

    The structure and burning rate of an unconfined deflagration propagating through a porous energetic material is analyzed in the limit of merged condensed and gas-phase reaction zones. A global two-step reaction mechanism, applicable to certain types of degraded nitramine propellants and consisting of sequential condensed and gaseous steps, is postulated. Taking into account important effects due to multiphase flow and exploiting the limit of large activation energies, a theoretical analysis based on activation energy asymptotics leads to explicit formulas for the deflagration velocity in a specifically identified regime that is consistent with the merged-flame assumption. The results clearly indicate the influences of two-phase flow and the multiphase, multi-step chemistry on the deflagration structure and the burning rate, and define conditions that support the intrusion of the primary gas flame into the two-phase condensed decomposition region at the propellant surface.

  7. The thermochemistry and reaction mechanisms in the decomposition of energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Melius, C.F.

    1994-05-01

    The chemical processes involved in the decomposition of energetic materials have been investigated theoretically using quantum chemical methods to determine the thermochemistry and reaction pathways. The Bond-Additivity-Corrected Moller-Plesset 4th order perturbation theory method (BAC-MP4) has been used to determine heats of formation and free energies of reaction intermediates of decomposition. In addition, the BAC-MP4 method has been used to determine action pathways involving these intermediates. A theoretical method for calculating solvation energies has been developed to treat the non-idealities of high pressure and the condensed phase. The resulting chemical processes involving decomposition and ignition are presented for nitrate compounds, nitramines, and nitromethane.

  8. Efficient Synthesis of Primary Nitrocarbamates of Sugar Alcohols: From Food to Energetic Materials.

    Science.gov (United States)

    Axthammer, Quirin J; Klapötke, Thomas M; Krumm, Burkhard

    2016-02-18

    The synthesis of various new polyvalent nitrocarbamates derived from sugar alcohols was accomplished by an economically benign two-step synthesis. The precursor carbamates were synthesized with the reagent chlorosulfonyl isocyanate (CSI) and further nitrated using mixed acid. The starting materials, sugar alcohols, are renewable biomass, mainly used in food and cosmetic industry. The structures of one carbamate and one nitrocarbamate were exemplary described by single-crystal X-ray-analysis. The heat of formation is calculated by the use of isodesmic reactions and the energetic performance data were estimated. All compounds were fully characterized by elemental analysis, vibrational spectroscopy, (1)H, (13)C, and (14/15)N NMR spectroscopy and thermal analysis (DSC). The nitrocarbamates exhibit good detonation performance and have significantly lower sensitivities compared to the commonly used nitrate ester explosive PETN.

  9. Propagation of combustion waves in the shell-core energetic materials with external heat losses.

    Science.gov (United States)

    Gubernov, V V; Kudryumov, V N; Kolobov, A V; Polezhaev, A A

    2017-03-01

    In this paper, the properties and stability of combustion waves propagating in the composite solid energetic material of the shell-core type are numerically investigated within the one-dimensional diffusive-thermal model with heat losses to the surroundings. The flame speed is calculated as a function of the parameters of the model. The boundaries of stability are determined in the space of parameters by solving the linear stability problem and direct integration of the governing non-stationary equations. The results are compared with the characteristics of the combustion waves in pure solid fuel. It is demonstrated that a stable travelling combustion wave solution can exist for the parameters of the model for which the flame front propagation is unstable in pure solid fuel and it can propagate several times faster even in the presence of significant heat losses.

  10. Investigations on deflagration to detonation transition in porous energetic materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, D.S. [Univ. of Illinois, Urbana, IL (United States)

    1999-07-01

    The research carried out by this contract was part of a larger effort funded by LANL in the areas of deflagration to detonation in porous energetic materials (DDT) and detonation shock dynamics in high explosives (DSD). In the first three years of the contract the major focus was on DDT. However, some researchers were carried out on DSD theory and numerical implementation. In the last two years the principal focus of the contract was on DSD theory and numerical implementation. However, during the second period some work was also carried out on DDT. The paper discusses DDT modeling and DSD modeling. Abstracts are included on the following topics: modeling deflagration to detonation; DSD theory; DSD wave front tracking; and DSD program burn implementation.

  11. Application of simultaneous thermogravimetric modulated beam mass spectrometry to the study of energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, R. Jr. [Sandia National Labs., Livermore, CA (United States)

    1995-03-01

    Simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) and time-of-flight velocity (TOF) spectra have been developed to study reactions that occur during the thermal decomposition of liquids and solids. The data obtained with these techniques are the identity of the reaction products and their rates of gas formation as a function of time. Over the past several years, these techniques have been applied to the study of energetic materials that are used in propellants and explosives. In this presentation, the details of the STMBMS and TOF velocity spectra techniques will be reviewed, the advantages of the techniques over more conventional thermal analysis and mass spectrometry measurements will be discussed, and the use of the techniques will be illustrated with results on the thermal decomposition of hexahydro-1,3,5-s-triazine (RDX).

  12. Pressure Dependent Decomposition Kinetics of the Energetic Material HMX up to 3.6 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Glascoe, E A; Zaug, J M; Burnham, A K

    2009-05-29

    The effect of pressure on the thermal decomposition rate of the energetic material HMX was studied. HMX was precompressed in a diamond anvil cell (DAC) and heated at various rates. The parent species population was monitored as a function of time and temperature using Fourier transform infrared (FTIR) spectroscopy. Decomposition rates were determined by fitting the fraction reacted to the extended-Prout-Tompkins nucleation-growth model and the Friedman isoconversional method. The results of these experiments and analysis indicate that pressure accelerates the decomposition at low to moderate pressures (i.e. between ambient pressure and 1 GPa) and decelerates the decomposition at higher pressures. The decomposition acceleration is attributed to pressure enhanced autocatalysis whereas the deceleration at high pressures is attributed pressure inhibiting bond homolysis step(s), which would result in an increase in volume. These results indicate that both {beta} and {delta} phase HMX are sensitive to pressure in the thermally induced decomposition kinetics.

  13. Tungsten bridge for the low energy ignition of explosive and energetic materials

    Science.gov (United States)

    Benson, David A.; Bickes, Jr., Robert W.; Blewer, Robert S.

    1990-01-01

    A tungsten bridge device for the low energy ignition of explosive and energetic materials is disclosed. The device is fabricated on a silicon-on-sapphire substrate which has an insulating bridge element defined therein using standard integrated circuit fabrication techniques. Then, a thin layer of tungsten is selectively deposited on the silicon bridge layer using chemical vapor deposition techniques. Finally, conductive lands are deposited on each end of the tungsten bridge layer to form the device. It has been found that this device exhibits substantially shorter ignition times than standard metal bridges and foil igniting devices. In addition, substantially less energy is required to cause ignition of the tungsten bridge device of the present invention than is required for common metal bridges and foil devices used for the same purpose.

  14. Computational investigation of the properties of double furazan-based and furoxan-based energetic materials.

    Science.gov (United States)

    Xia, Mingzhu; Chu, Yuting; Wang, Tianyi; Lei, Wu; Wang, Fengyun

    2016-11-01

    As a kind of promising energetic materials, the double furazan-based and furoxan-based compounds have raised concerns of many researchers in recent years. In this paper, the optimized structures, energetic properties, heat of formation (HOF), detonation properties, and bond dissociation energies of these compounds were calculated by density functional theory (DFT) method. The results show that the N-O bond, which is close to the adjacent coordinated oxygen atom in furoxan ring, is more fragile than the other N-O bonds in the ring. The double furazan-based derivatives are more stable than the double furoxan-based derivatives. All the titled compounds are divided into five groups because of the different substitute groups on both ends. The HOFs of the substances offer the order of 4 group (the both ends are 1,2,3,4-tetrazine ) ≈ 5 group (1,2,4,5-tetrazine) > 3 group (tetrazole) ≈ 1 group (1,2,3-triazole) > 2 group (1,2,4-triazole). All the title compounds also can be divided into three types with the different linkages, -N=N-, -N=N(O)-, and -NH-NH-. The results show that the HOFs of the compounds with different linkages obey the order -N=N- type > -N=N(O)- type> -NH-NH- type. For all titled compounds, bis(4-(1,2,4,5-tetrazin-3-yl)-1,2,5-oxadiazol-3-yl) diazene (E5) has the best gas-phase and solid-phase HOFs. The heat of detonation(Q) of bis(3-(1,2,3,4-tetrazin-5-yl)-1,2,5-oxidiazole-2 -oxide)diazene-1,2-diyl (B4) is the best of all titled compounds. The density of bis((3-2H-tetrazol-5-yl)-1,2,5-oxidiazole -2-oxide)oxidodiazene-1,2-diyl (A3) is the best and the second best is bis((4-2H-tetrazol-5-yl)-1,2,5-oxidiazol-3-yl) diazene (E3). The detonation velocities and detonation pressure of A3 and E3 are better than other titled compounds. 1,2-bis((4-2H-tetrazol-5-yl)-1,2,5 -oxidiazol-3-yl) diazene-1-oxide (D3) and 1,2-bis((4-2H-tetrazol-5-yl)-1,2,5-oxidiazol-3-yl) hydrazine (F3) have superior D and P with low sensitivity. The tetrazole ring plays a vital role in

  15. Micro- and Nanoscale Energetic Materials as Effective Heat Energy Sources for Enhanced Gas Generators.

    Science.gov (United States)

    Kim, Sang Beom; Kim, Kyung Ju; Cho, Myung Hoon; Kim, Ji Hoon; Kim, Kyung Tae; Kim, Soo Hyung

    2016-04-13

    In this study, we systematically investigated the effect of micro- and nanoscale energetic materials in formulations of aluminum microparticles (Al MPs; heat source)/aluminum nanoparticles (Al NPs; heat source)/copper oxide nanoparticles (CuO NPs; oxidizer) on the combustion and gas-generating properties of sodium azide microparticles (NaN3 MPs; gas-generating agent) for potential applications in gas generators. The burn rate of the NaN3 MP/CuO NP composite powder was only ∼0.3 m/s. However, the addition of Al MPs and Al NPs to the NaN3 MP/CuO NP matrix caused the rates to reach ∼1.5 and ∼5.3 m/s, respectively. In addition, the N2 gas volume flow rate generated by the ignition of the NaN3 MP/CuO NP composite powder was only ∼0.6 L/s, which was significantly increased to ∼1.4 and ∼3.9 L/s by adding Al MPs and Al NPs, respectively, to the NaN3 MP/CuO NP composite powder. This suggested that the highly reactive Al MPs and NPs, with the assistance of CuO NPs, were effective heat-generating sources enabling the complete thermal decomposition of NaN3 MPs upon ignition. Al NPs were more effective than Al MPs in the gas generators because of the increased reactivity induced by the reduced particle size. Finally, we successfully demonstrated that a homemade airbag with a specific volume of ∼140 mL could be rapidly and fully inflated by the thermal activation of nanoscale energetic material-added gas-generating agents (i.e., NaN3 MP/Al NP/CuO NP composites) within the standard time of ∼50 ms for airbag inflation.

  16. EOS determination through microscopy- interferometry measurements: A low symmetry energetic materials case study

    Science.gov (United States)

    Stavrou, Elissaios; Zaug, Joseph; Crowhurst, Jonathan; Bastea, Sorin; Armstrong, Mike

    2015-03-01

    Measuring equation of state (EOS) of solid specimens under pressure usually involves the determination of the primitive cell volume using x-ray diffraction (XRD) measurements. However, in the case of low symmetry (e.g. triclinic) materials with twining features and large primitive cells, this can be problematic and ambiguous. In order to address this issue we examine the possibility of a direct approach which is based on measuring the surface area and thickness with microscopy and optical interferometry respectively. To test the validity of this approach applied to a crystalline material, we first compared our results from Triamino-Trinitrobenzene (TATB, SG P-1) with the published EOS, as determined with XRD measurements, by Stevens et al. [1]. A near perfect match between the two sets of data has been observed. We also present the results of our study on the energetic material 5-nitro-2,4-dihydro-1,2,4,-triazol-3-one (a-NTO) which crystallizes as a four-component twin [2] with triclinic symmetry. No high-pressure XRD data have been published on a-NTO, probably due to its highly complex crystal structure, making this technique a viable way to probe the cold compression EOS of such compounds. Work performed by the U.S. Department of Energy jointly by Lawrence Livermore National Laboratory; Contract DE-AC52-07NA27344.

  17. Experimental and Numerical Investigations of Thermal Ignition of a Phase Changing Energetic Material

    Directory of Open Access Journals (Sweden)

    Priyanka Shukla

    2016-04-01

    Full Text Available Fortuitous exposure to high temperatures initiates reaction in energetic materials and possibilities of such event are of great concern in terms of the safe and controlled usage of explosive devices. Experimental and numerical investigations on time to explosion and location of ignition of a phase changing polymer bonded explosive material (80 per cent RDX and 20 per cent binder, contained in a metallic confinement subjected to controlled temperature build-up on its surface, are presented. An experimental setup was developed in which the polymer bonded explosive material filled in a cylindrical confinement was provided with a precise control of surface heating rate. Temperature at various radial locations was monitored till ignition. A computational model for solving two dimensional unsteady heat transfer with phase change and heat generation due to multi-step chemical reaction was developed. This model was implemented using a custom field function in the framework of a finite volume method based standard commercial solver. Numerical study could simulate the transient heat conduction, the melting pattern of the explosive within the charge and also the thermal runaway. Computed values of temperature evolution at various radial locations and the time to ignition were closely agreeing with those measured in experiment. Results are helpful both in predicting the possibility of thermal ignition during accidents as well as for the design of safety systems.

  18. Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms: Tools for Physics-Based Model Development.

    Energy Technology Data Exchange (ETDEWEB)

    Kearney, Sean Patrick; Jilek, Brook Anton; Kohl, Ian Thomas; Farrow, Darcie; Urayama, Junji

    2014-11-01

    We present the results of an LDRD project to develop diagnostics to perform fundamental measurements of material properties during shock compression of condensed phase materials at micron spatial scales and picosecond time scales. The report is structured into three main chapters, which each focus on a different diagnostic devel opment effort. Direct picosecond laser drive is used to introduce shock waves into thin films of energetic and inert materials. The resulting laser - driven shock properties are probed via Ultrafast Time Domain Interferometry (UTDI), which can additionally be used to generate shock Hugoniot data in tabletop experiments. Stimulated Raman scattering (SRS) is developed as a temperature diagnostic. A transient absorption spectroscopy setup has been developed to probe shock - induced changes during shock compressio n. UTDI results are presented under dynamic, direct - laser - drive conditions and shock Hugoniots are estimated for inert polystyrene samples and for the explosive hexanitroazobenzene, with results from both Sandia and Lawrence Livermore presented here. SRS a nd transient absorption diagnostics are demonstrated on static thin - film samples, and paths forward to dynamic experiments are presented.

  19. High Surplus Means High Profits?

    Institute of Scientific and Technical Information of China (English)

    Guo Yan

    2007-01-01

    @@ In recent years,China has been in the limelight worldwide due to its constant high trade surplus.Its trade surplus hit US$ 24.974 billion in August, a record high and an increase of US$ 624 million versus the previous month, according to the latest data from China Customs.

  20. Asymmetrically substituted 5,5 `-bistriazoles - nitrogen-rich materials with various energetic functionalities

    OpenAIRE

    Dippold, Alexander A.; Klapötke, Thomas M.; Oswald, Michaela

    2013-01-01

    In this contribution the synthesis and full structural and spectroscopic characterization of three asymmetrically substituted bis-1,2,4-triazoles, along with different energetic moieties like amino, nitro, nitrimino and azido moieties, is presented. Additionally, selected nitrogen-rich ionic derivatives have been prepared and characterized. This comparative study on the influence of these energetic moieties on structural and energetic properties constitutes a complete characterization includi...

  1. Synthesis of pentafluorosulfanylpyrazole and pentafluorosulfanyl-1,2,3-triazole and their derivatives as energetic materials by click chemistry.

    Science.gov (United States)

    Ye, Chengfeng; Gard, Gary L; Winter, Rolf W; Syvret, Robert G; Twamley, Brendan; Shreeve, Jean'ne M

    2007-09-13

    1-Pentafluorosulfanyl acetylene and its derivatives react with azide or diazomethane giving rise to an SF5-substituted 1,2,3-triazole or pyrazole. The SF5 group increases density remarkably and as a result enhances the detonation performance of the energetic materials relative to the CF3 group.

  2. Hot spots in energetic materials generated by infrared and ultrasound, detected by thermal imaging microscopy.

    Science.gov (United States)

    Chen, Ming-Wei; You, Sizhu; Suslick, Kenneth S; Dlott, Dana D

    2014-02-01

    We have observed and characterized hot spot formation and hot-spot ignition of energetic materials (EM), where hot spots were created by ultrasonic or long-wavelength infrared (LWIR) exposure, and were detected by high-speed thermal microscopy. The microscope had 15-20 μm spatial resolution and 8.3 ms temporal resolution. LWIR was generated by a CO2 laser (tunable near 10.6 μm or 28.3 THz) and ultrasound by a 20 kHz acoustic horn. Both methods of energy input created spatially homogeneous energy fields, allowing hot spots to develop spontaneously due to the microstructure of the sample materials. We observed formation of hot spots which grew and caused the EM to ignite. The EM studied here consisted of composite solids with 1,3,5-trinitroperhydro-1,3,5-triazine crystals and polymer binders. EM simulants based on sucrose crystals in binders were also examined. The mechanisms of hot spot generation were different with LWIR and ultrasound. With LWIR, hot spots were most efficiently generated within the EM crystals at LWIR wavelengths having longer absorption depths of ∼25 μm, suggesting that hot spot generation mechanisms involved localized absorbing defects within the crystals, LWIR focusing in the crystals or LWIR interference in the crystals. With ultrasound, hot spots were primarily generated in regions of the polymer binder immediately adjacent to crystal surfaces, rather than inside the EM crystals.

  3. Ignition analysis of a porous energetic material. 2. Ignition at a closed heated end

    Energy Technology Data Exchange (ETDEWEB)

    Alexander M. Telegentor; Stephen B. Margolis; Forman A. Williams

    1998-11-01

    A continuation of an ignition analysis for porous energetic materials subjected to a constant energy flux is presented. In the first part, the analysis was developed for the case of an open-end, semi-infinite material such that gas flow, generated by thermal expansion, flowed out of the porous solid, thereby removing energy from the system. In the present study, the case of a closed end is considered, and thus the thermally-induced gas flow is now directed into the solid. In these studies, an asymptotic perturbation analysis, based on the smallness of the gas-to-solid density ratio and the largeness of the activation energy, is utilized to describe the inert and transition stages leading to thermal runaway. In both cases it is found that the effects of porosity provide a leading-order reduction in the time to ignition relative to that for the nonporous problem, arising from the reduced amount of solid material that must be heated and the difference in thermal conductivities of the solid and gaseous phases. A correction to the leading-order ignition-delay time, however, is provided by the convective flow of gas through the solid, and the sign of this correction is shown to depend on the direction of the gas flow. Thus, gas flowing out of an open-end solid was previously shown to give a positive correction to the leading-order time to ignition. Here, however, it is demonstrated that when the flow of gas is directed into the porous solid, the relative transport effects associated with the gas flow serve to preheat the material, resulting in a negative correction and hence a decrease in the ignition-delay time.

  4. Stability of quasi-steady deflagrations in confined porous energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Alexander M. Telengator; Stephen B. Margolis; Forman A. Williams

    2000-03-01

    Previous analyses have shown that unconfined deflagrations propagating through both porous and nonporous energetic materials can exhibit a thermal/diffusive instability that corresponds to the onset of various oscillatory modes of combustion. For porous materials, two-phase-flow effects, associated with the motion of the gas products relative to the condensed material, play a significant role that can shift stability boundaries with respect to those associated with the nonporous problem. In the present work, additional significant effects are shown to be associated with confinement, which produces an overpressure in the burned-gas region that leads to reversal of the gas flow and hence partial permeation of the hot gases into the unburned porous material. This results in a superadiabatic effect that increases the combustion temperature and, consequently, the burning rate. Under the assumption of gas-phase quasi-steadiness, an asymptotic model is presented that facilitates a perturbation analysis of both the basic solution, corresponding to a steadily propagating planar combustion wave, and its stability. The neutral stability boundaries collapse to the previous results in the absence of confinement, but different trends arising from the presence of the gas-permeation layer are predicted for the confined problem. Whereas two-phase-flow effects are generally destabilizing in the unconfined geometry, the effects of increasing overpressure and hence combustion temperature associated with confinement are shown to be generally stabilizing with respect to thermal/diffusive instability, analogous to the effects of decreasing heat losses on combustion temperature and stability in single-phase deflagrations.

  5. Crystal engineering of energetic materials: co-crystals of Ethylenedinitramine (EDNA) with modified performance and improved chemical stability.

    Science.gov (United States)

    Aakeröy, Christer B; Wijethunga, Tharanga K; Desper, John

    2015-07-27

    In the area of energetic materials, co-crystallization is emerging as a new technology for modifying or enhancing the properties of existing energetic substances. Ethylenedinitramine (EDNA) is a known energetic material which requires attention partly due to its chemical instability originating with its two highly acidic protons. In order to stabilize EDNA, a co-crystallization approach targeting the acidic protons using a series of co-crystallizing agents with suitable hydrogen-bond acceptors was employed. Fifteen attempted co-crystallizations resulted in eight successful outcomes and six of these were crystallographically characterized and all showed evidence of hydrogen bonds to the intended protons. Calculated detonation properties and experimental thermal and impact data for the co-crystals were obtained and compared with those of pure EDNA. The co-crystal of EDNA and 1,2-bis(4-pyridyl)ethylene was recognized as a more thermally stable alternative to EDNA while the co-crystal of EDNA and pyrazine N,N'-dioxide showed comparable detonation strengths (and much improved chemical stability) compared with that of EDNA. The co-crystals EDNA:4,4'-bipyridine and EDNA:pyrazine N,N'-dioxide were found to be about 50 % less impact sensitive than EDNA, all of which illustrate how co-crystallizations can be utilized for successfully modifying specific aspects of energetic materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Excited Electronic and Vibrational State Decomposition of Energetic Materials and Model Systems on Both Nanosecond and Femtosecond Time Scales

    Science.gov (United States)

    2014-07-22

    behavior of these species is then compared with that of very similar model systems in order to enable the synthesis of new materials that will be...systems in order to enable the synthesis of new materials that will be energetic by design. This must be the first step in the determination of the unique...1,2,4- triazole -1,1’-diol, respectively), following electronic state excitation, is investigated both experimentally and theoretically. Different from

  7. Energetics Conditioning Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Conditioning Facility is used for long term and short term aging studies of energetic materials. The facility has 10 conditioning chambers of which 2...

  8. Energetics Conditioning Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Conditioning Facility is used for long term and short term aging studies of energetic materials. The facility has 10 conditioning chambers of which 2...

  9. The potential, limitations, and challenges of divide and conquer quantum electronic structure calculations on energetic materials.

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Jon R.; Magyar, Rudolph J.

    2012-02-01

    High explosives are an important class of energetic materials used in many weapons applications. Even with modern computers, the simulation of the dynamic chemical reactions and energy release is exceedingly challenging. While the scale of the detonation process may be macroscopic, the dynamic bond breaking responsible for the explosive release of energy is fundamentally quantum mechanical. Thus, any method that does not adequately describe bonding is destined to lack predictive capability on some level. Performing quantum mechanics calculations on systems with more than dozens of atoms is a gargantuan task, and severe approximation schemes must be employed in practical calculations. We have developed and tested a divide and conquer (DnC) scheme to obtain total energies, forces, and harmonic frequencies within semi-empirical quantum mechanics. The method is intended as an approximate but faster solution to the full problem and is possible due to the sparsity of the density matrix in many applications. The resulting total energy calculation scales linearly as the number of subsystems, and the method provides a path-forward to quantum mechanical simulations of millions of atoms.

  10. Thermally stable 3,6-dinitropyrazolo[4,3-c]pyrazole-based energetic materials.

    Science.gov (United States)

    Zhang, Jiaheng; Parrish, Damon A; Shreeve, Jean'ne M

    2014-10-01

    3,6-Dinitropyrazolo[4,3-c]pyrazole was prepared using an efficient modified process. With selected cations, ten nitrogen-rich energetic salts and three metal salts were synthesized in high yield based on the 3,6-dinitropyrazolo[4,3-c]pyrazolate anion. These compounds were fully characterized by IR and multinuclear NMR spectroscopies, as well as elemental analyses. The structures of the neutral compounds 4 and its salt 16 were confirmed by single-crystal X-ray diffraction showing extensive hydrogen-bonding interactions. The neutral pyrazole precursor and its salts are remarkably thermally stable. Based on the calculated heats of formation and measured densities, detonation pressures (22.5-35.4 GPa) and velocities (7948-9005 m s(-1)) were determined, and they compare favorably with those of TNT and RDX. Their impact and friction sensitivities range from 12 to >40 J and 80 to 360 N, respectively. These properties make them competitive as insensitive and thermally stable high-energy density materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Energetic materials identification by laser-induced breakdown spectroscopy combined with artificial neural network.

    Science.gov (United States)

    Farhadian, Amir Hossein; Tehrani, Masoud Kavosh; Keshavarz, Mohammad Hossein; Darbani, Seyyed Mohammad Reza

    2017-04-20

    In this study, for the first time to the best of our knowledge, a combination of the laser-induced breakdown spectroscopy (LIBS) technique and artificial neural network (ANN) analysis has been implemented for the identification of energetic materials, including TNT, RDX, black powder, and propellant. Also, aluminum, copper, inconel, and graphite have been used for more accurate investigation and comparison. After the LIBS test and spectrum acquisition on all samples in both air and argon ambient, optimized neural networks were designed by LIBS data. Based on input data, three ANN algorithms are proposed: the first is fed with the whole LIBS spectra in air (ANN1) and the second with the principle component analysis (PCA) scores of each spectrum in air (ANN2) and the other with the PCA scores of the spectrum in Ar (ANN3). According to the results, error of the network is very low in ANN2 and 3 and the best identification and discrimination was obtained by ANN3. After these, in order to validate and for more investigation of this combined method, we also used Al/RDX standard samples for analysis.

  12. Detection of highly energetic materials on non-reflective substrates using quantum cascade laser spectroscopy.

    Science.gov (United States)

    Castro-Suarez, John R; Hidalgo-Santiago, Migdalia; Hernández-Rivera, Samuel P

    2015-09-01

    A quantum cascade laser spectrometer was used to obtain the reflection spectra of highly energetic materials (HEMs) deposited on nonideal, low-reflectivity substrates, such as travel-bag fabric (polyester), cardboard, and wood. Various deposition methods were used to prepare the standards and samples in the study. The HEMs used were the nitroaromatic explosive 2,4,6-trinitrotoluene (TNT), the aliphatic nitrate ester pentaerythritol tetranitrate (PETN), and the aliphatic nitramine 1,3,5-trinitroperhydro-1,3,5-triazine (RDX). Chemometrics algorithms were applied to analyze the recorded spectra. Partial least squares (PLS) regression analysis was used to find the best correlation between the infrared signals and the surface concentrations of the samples, and PLS combined with discriminant analysis (PLS-DA) was used to discriminate, classify, and identity similarities in the spectral datasets. Several preprocessing steps were applied to prepare the mid-infrared spectra of HEMs deposited on the target substrates. The results demonstrate that the infrared vibrational method described in this study is well suited for the rapid screening analysis of HEMs on low-reflectivity substrates when a supervised model has been previously constructed or when a reference spectrum of the clean substrate can be acquired to be subtracted from the HEM-substrate spectrum.

  13. Analysis of selected specimens from the STS-46 Energetic Oxygen Interaction with Materials-3 experiment

    Science.gov (United States)

    Golden, Johnny L.; Bourassa, Roger J.; Dursch, Harry W.; Pippin, H. Gary

    1995-01-01

    The Energetic Oxygen Interaction with Materials 3 (EOIM-3) experiment was flown on the STS-46 mission, which was launched on 31 Jul. 1992 and returned 8 Aug. 1992. Boeing specimens were located on both the NASA Marshall Space Flight Center (MSFC) tray and the Ballistic Missile Defense Organization (BMDO) tray integrated by the Jet Propulsion Laboratory (JPL). The EOIM-3 pallet was mounted in the Space Shuttle payload bay near the aft bulkhead. During the mission, the atomic oxygen (AO) exposure levels of specimens in these passive sample trays was about 2.3 x 10(exp 20) atoms/sq cm. The specimens also received an estimated 22 equivalent sun hours of solar exposure. In addition, it appears that the EOIM-3 pallet was exposed to a silicone contamination source and many specimens had a thin layer of silicon based deposit on their surfaces after the flight. The specimens on the MSFC tray included seven solid film lubricants, a selection of butyl rubber (B612) and silicone (S383) o-rings, three indirect scatter surfaces, and Silver/Fluorinated Ethylene Propylene (Ag/FEP) and Chemglaze A276 specimens which had previously flown on trailing edge locations of the Long Duration Exposure Facility (LDEF). The specimens on the JPL tray included composites previously flown on LDEF and two indirect scattering surfaces.

  14. Effects of bimetallic catalysts on synthesis of nitrogen-doped carbon nanotubes as nanoscale energetic materials

    Institute of Scientific and Technical Information of China (English)

    Hao Liu; Yong Zhang; Ruying Li; Xueliang Sun; Hakima Abou-Rachid

    2011-01-01

    Well aligned nitrogen-doped carbon nanotubes (CNx-NTs),as energetic materials,are synthesized on a silicon substrate by aerosol-assisted chemical vapor deposition.Tungsten (W) and molybdenum (Mo) metals are respectively introduced to combine with iron (Fe) to act as a bimetallic co-catalyst layer.Correlations between the composition and shape of the co-catalyst and morphology,size,growth rate and nitrogen doping amount of the synthesized CNx-NTs are investigated by secondary and backscattered electron imaging in a field emission scanning electron microscope (FESEM) and X-ray photoelectron spectrometer (XPS).Compared to pure iron catalyst.W-Fe co-catalyst can result in lower growth rate,larger diameter and wider size distribution of the CNx-NTs; while incorporation of molybdenum into the iron catalyst layer can reduce the diameter and size distribution of the nanotubes.Compared to the sole iron catalyst,Fe-W catalyst impedes nitrogen doping while Fe-Mo catalyst promotes the incorporation of nitrogen into the nanotubes.The present work indicates that CNx-NTs with modulated size,growth rate and nitrogen doping concentration are expected to be synthesized by tuning the size and composition of co-catalysts,which may find great potential in producing CNx-NTs with controlled structure and properties.

  15. Explosive Compations of Intermetallic-Forming Powder Mixtures for Fabricating Structural Energetic Materials

    Science.gov (United States)

    Du, S. W.; Aydelotte, B.; Fondse, D.; Wei, C.-T.; Jiang, F.; Herbold, E.; Vecchio, K.; Meyers, M. A.; Thadhani, N. N.

    2009-12-01

    A double-tube implosion geometry is used to explosively shock consolidate intermetallic-forming Ni-Al, Ta-Al, Nb-Al, Mo-Al and W-Al powder mixtures for fabricating bulk structural energetic materials, with mechanical strength and ability to undergo impact-initiated exothermic reactions. The compacts are characterized based on uniformity of micro structure and degree of densification. Mechanical properties of the compacts are characterized over the strain-rate range of 10-3 to 104 s-1. The impact reactivity is determined using rod-on-anvil experiments, in which disk-shaped compacts mounted on a copper projectile, are impacted against a steel anvil in using a 7.62 mm gas gun. The impact reactivity of the various explosively-consolidated reactive powder mixture compacts is correlated with overall kinetic energy and impact stress to determine their influence on threshold for reaction initiation. The characteristics of the various compacts, their mechanical properties and impact-initiated chemical reactivity will be described in this paper.

  16. Molecular Theory of Detonation Initiation: Insight from First Principles Modeling of the Decomposition Mechanisms of Organic Nitro Energetic Materials.

    Science.gov (United States)

    Tsyshevsky, Roman V; Sharia, Onise; Kuklja, Maija M

    2016-02-19

    This review presents a concept, which assumes that thermal decomposition processes play a major role in defining the sensitivity of organic energetic materials to detonation initiation. As a science and engineering community we are still far away from having a comprehensive molecular detonation initiation theory in a widely agreed upon form. However, recent advances in experimental and theoretical methods allow for a constructive and rigorous approach to design and test the theory or at least some of its fundamental building blocks. In this review, we analyzed a set of select experimental and theoretical articles, which were augmented by our own first principles modeling and simulations, to reveal new trends in energetic materials and to refine known existing correlations between their structures, properties, and functions. Our consideration is intentionally limited to the processes of thermally stimulated chemical reactions at the earliest stage of decomposition of molecules and materials containing defects.

  17. Molecular Theory of Detonation Initiation: Insight from First Principles Modeling of the Decomposition Mechanisms of Organic Nitro Energetic Materials

    Directory of Open Access Journals (Sweden)

    Roman V. Tsyshevsky

    2016-02-01

    Full Text Available This review presents a concept, which assumes that thermal decomposition processes play a major role in defining the sensitivity of organic energetic materials to detonation initiation. As a science and engineering community we are still far away from having a comprehensive molecular detonation initiation theory in a widely agreed upon form. However, recent advances in experimental and theoretical methods allow for a constructive and rigorous approach to design and test the theory or at least some of its fundamental building blocks. In this review, we analyzed a set of select experimental and theoretical articles, which were augmented by our own first principles modeling and simulations, to reveal new trends in energetic materials and to refine known existing correlations between their structures, properties, and functions. Our consideration is intentionally limited to the processes of thermally stimulated chemical reactions at the earliest stage of decomposition of molecules and materials containing defects.

  18. Disposal of energetic materials by alkaline pressure hydrolysis and combined techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bunte, G.; Krause, H.H.; Hirth, T. [Fraunhofer-Institut fuer Chemische Technologie (ICT), Pfinztal-Berghausen (Germany)

    1997-07-01

    Due to the reduction of armament and especially due to the German reunification we are met by objective of the diposal of energetic materials. Environmentally friendly disposal methods available for the different propellants, explosives and pyrotechnics are urgently needed. The main component of gun and rocket propellants is the energetic polymer nitrocellulose. One method to dispose nitrocellulose containing propellants is the combination of rapid chemical destruction by pressure hydrolysis and the biological degradation of the reaction mixture. The study describes the results of pressure hydrolysis of different gun and rocket propellants. Under alkaline conditions (propellant to NaOH ratio 2.3:1; reaction temperature 150 C; pressure below 30 bar) biological degradable reaction products were formed. The main products in the liquid phase were simple mono- and dicarboxylic acids. Dependent on the reaction conditions 30-50% of the nitrogen content of the propellants was transformed to nitrite and nitrate. The gaseous nitrogen containing products were N{sub 2} (16-46%), N{sub 2}O (2-23%), NO{sub x} (0-5%). Overall 40%-60% of the propellant nitrogen was transformed to gaseous products. In the solid residues a nitrogen content between 2% and 9% was found. The residues were mostly due to additives used in propellant manufacturing. In the case of nitrocellulose pressure hydrolysis below 30 bar and reaction temperature about 150 C are sufficient. (orig.) [Deutsch] Nicht zuletzt aufgrund der in den letzten Jahren erfolgten Abruestungsmassnahmen sowie auch der Wiedervereinigung beider deutscher Staaten ergab sich die Problematik der Entsorgung von energetischen Materialien. Alternativ zur Verbrennung besteht Bedarf an der Entwicklung von Entsorgungsverfahren, die eine umweltfreundliche Entsorgung von Treibladungspulvern, Raketenfesttreibstoffen oder pyrotechnischen Komponenten ermoeglichen. Eine interessante Methode zur Beseitigung von auf Nitrocellulose basierenden

  19. Nitramines with varying sensitivities: functionalized dipyrazolyl-N-nitromethanamines as energetic materials.

    Science.gov (United States)

    Zhang, Jiaheng; He, Chunlin; Parrish, Damon A; Shreeve, Jean'ne M

    2013-07-01

    1,3-Dichloro-2-nitro-2-azapropane is an excellent precursor to dense energetic functionalized dipyrazolyl-N-nitromethanamines. This new family of energetic compounds was fully characterized by using (1)H, (13)C, and (15)N NMR and IR spectroscopy, differential scanning calorimetry, elemental analysis, and impact sensitivity tests. Additionally, single-crystal X-ray structuring was done for 3 and 5·CH3CN, which gave insight into structural characteristics. The experimentally determined densities of 2-9 fall between 1.69 and 1.90 g cm(-3). Heats of formation and detonation properties were calculated by using Gaussian 03 and EXPLO5 programs, respectively. The influence of different energetic moieties on the structural and energetic properties was established theoretically. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Properties of heterogeneous energetic materials under high strain, high strain rate deformation

    Science.gov (United States)

    Cai, Jing

    Heterogeneous energetic materials have many applications. Their dynamic behavior and microstructural evolution upon plastic deformation have remained not fully understood. The following heterogeneous materials were investigated in the this study: the pure PTFE (usually a mixture of crystalline and amorphous phases), PTFE-Sn, PTFE-Al, PTFE-Al-W, and carbon fibers filled Al alloy. Sample manufacturing processes involving ball milling and Cold Isostatic Pressing were employed. Quasi-static and Hopkinson bar tests were carried out to obtain the compressive strengths of composites. The Conventional Thick-walled Cylinder (TWC) method and newly developed small-scale Hopkinson bar based TWC experiments were conducted to investigate single shear bands and their assembly. Conventional and "soft" drop-weight tests were performed to examine the mechanical properties and the initiation of chemical reactions. Scanning Electron Microscopy was used to detect the details of the microstructures and failure mechanisms of heterogeneous materials. New features in the dynamic behavior of heterogeneous materials were observed. They include the following: (1) Strain softening, instead of thermal softening, is the main mechanism in the initiation of shear bands in explosively driven TWC tests of solid PTFE. (2) Cold isostatically pressed PTFE-Sn samples were more stable with respect to shear localization than solid PTFE. (3) The dynamic collapse of solid PTFE-Al samples with different particle sizes was accomplished with the shear localization bands and cracks. (4) Force chains in the fine W and Al particles were attributed to the high strength of the porous PTFE-Al-W composite containing fine W particles in comparison with composites with coarse W particles. (5) Debonding of metal particles from the PTFE matrix and the fracture of the matrix were identified to be two major mechanisms for the failure of the PTFE-Al-W composites. (6) The formation of PTFE nano-fibers during high strain flow

  1. The contrasting features of Asian summer monsoon during surplus and deficient rainfall over India

    Science.gov (United States)

    Raju, P. V. S.; Mohanty, U. C.; Rao, P. L. S.; Bhatla, R.

    2002-12-01

    An endeavour is made to distinguish the mean summer monsoon features during surplus and deficient monsoon seasons. Based on all-India summer monsoon rainfall, over 42 years (1958-99), seven surplus and ten deficient monsoon seasons are identified. Making use of daily averaged (00 Z and 12 Z) reanalysis data sets from the National Center for Environmental Prediction-National Center for Atmospheric Research for the corresponding surplus and deficient monsoon seasons, the mean circulation characteristics and large-scale energetics are examined.The circulation features denote that the cross equatorial flow, low-level jet and tropical easterly jet are stronger during a surplus monsoon. Further, strong Tibetan anticyclonic flow characterizes a surplus monsoon. The large-scale balances of kinetic energy, heat and moisture show a significantly large quantity of diabatic heating, adiabatic generation of kinetic energy, and horizontal convergence of heat and moisture during the surplus monsoon season compared with the deficient state. The regions with statistically significant difference between surplus and deficient monsoon seasons are delineated by a Student's t-test at the 95% confidence level. The remarkable aspect noticed in this study is that the Arabian Sea branch of the monsoon circulation is more vigorous during a surplus monsoon season, whereas the eastern Bay of Bengal branch is stronger during a deficient monsoon. The various large-scale budget terms of kinetic energy, heat and moisture are found to be consistent and in agreement with the seasonal monsoon activity over India.

  2. Synthesis of one-molecule-thick single-crystalline nanosheets of energetic material for high-sensitive force sensor.

    Science.gov (United States)

    Yang, Guangcheng; Hu, Hailong; Zhou, Yong; Hu, Yingjie; Huang, Hui; Nie, Fude; Shi, Weimei

    2012-01-01

    Energetic material is a reactive substance that contains a great amount of potential energy, which is extremely sensitive to external stimuli like force. In this work, one-molecule-thick single-crystalline nanosheets of energetic material were synthesized. Very small force applied on the nanosheet proves to lead to the rotation of the tilted nitro groups, and subsequently change of current of the nanosheet. We apply this principle to design high-sensitive force sensor. A theoretical model of force-current dependence was established based on the nanosheets' molecular packing structure model that was well supported with the high resolution XPS, AFM analysis results. An ultra-low-force with range of several picoNewton to several nanoNewton can be measured by determination of corresponding current value.

  3. Collapse of elongated voids in porous energetic materials: Effects of void orientation and aspect ratio on initiation

    Science.gov (United States)

    Rai, Nirmal Kumar; Schmidt, Martin J.; Udaykumar, H. S.

    2017-04-01

    The sensitivity of porous energetic materials depends on mesostructural heterogeneities such as voids, defects, cracks, and grain boundaries. The mesostructure of pressed explosives contains voids of arbitrary shapes including elongated voids of various orientations and aspect ratios. Mesoscale simulations to date have analyzed the effect of void morphology on the sensitivity of energetic materials for idealized shapes such as cylindrical, conical, and elliptical. This work analyzes the sensitivity behavior of elongated voids in an HMX matrix subject to shock loading. Simulations show that sensitivity of elongated voids depends strongly on orientation as well as aspect ratio. Ranges of orientations and aspects ratios are identified that enhance or inhibit initiation. Insights obtained from single elongated void analyses are used to identify sensitive locations in an imaged mesostructure of a pressed explosive sample.

  4. Theoretical Study of the N-NO2 Bond Dissociation Energies for Energetic Materials with Density Functional Theory

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Hong; TANG Zheng-Xin; Abraham F.Jalbout; ZHANG Xian-Zhou; CHENG Xin-Lu

    2008-01-01

    The N-NO2 bond dissociation energies (BDEs) for 7 energetic materials were computed by means of accurate density functional theory (B3LYP, B3PW91 and B3P86) with 6-31G** and 6-311G** basis sets. By comparing the computed energies and experimental results, we find that the B3P86/6-311G** method can give good results of BDE, which has the mean absolute deviation of 1.30 kcal/mol. In addition, substituent effects were also taken into account. It is noted that the Hammett constants of substituent groups are related to the BDEs of the N-NO2 bond and the bond dissociation energies of the energetic materials studied decrease when increasing the number of NO2 group.

  5. Shock response of single crystal and nanocrystalline pentaerythritol tetranitrate: Implications to hotspot formation in energetic materials.

    Science.gov (United States)

    Cai, Y; Zhao, F P; An, Q; Wu, H A; Goddard, W A; Luo, S N

    2013-10-28

    hotspot formation related to initiation in energetic materials, in the absence of other, likely more effective, means for hotspot formation such as void collapse.

  6. Determination of nitroaromatic and nitramine type energetic materials in synthetic and real mixtures by cyclic voltammetry.

    Science.gov (United States)

    Üzer, Ayşem; Sağlam, Sener; Tekdemir, Yasemin; Ustamehmetoğlu, Belkıs; Sezer, Esma; Erçağ, Erol; Apak, Reşat

    2013-10-15

    Nitro-explosives contain reducible aromatic -NO2 groups or cyclic >N-NO2 bonds that may undergo reductive cleavage. This work reports the development of a cyclic voltammetric (CV) assay for nitro-aromatics (trinitrotoluene (TNT), dinitrotoluene (DNT)) and nitramines (1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)) using a glassy carbon electrode. This determination was first used for these energetic materials by resolving current responses of reduction potentials primarily due to one constituent but partly contributed by other constituents. Calibration curves of current intensity versus concentration were linear in the range of 30-120 mg L(-1) for RDX with a limit of detection (LOD) of 10.2 mg L(-1), 40-120 mg L(-1) for HMX (LOD=11.7 mg L(-1)), 40-120 mg L(-1) for TNT (LOD=11.2 mg L(-1)), and 40-140 mg L(-1) for DNT (LOD=10.8 mg L(-1)). Results showed that the CV method could provide a sensitive approach for the simultaneous determination of RDX and TNT in synthetic and real mixtures. Deconvolution of current contributions of mixtures at peak potentials of constituents was performed by multiple linear regression. The proposed method was successfully applied to the analysis of military explosives comp A5 and octol, and method validation was performed both against HPLC on a comp B (TNT+RDX) sample and against GC-MS on real post-blast residual samples containing both explosives.

  7. Inhibition of soil microbial activity by nitrogen-based energetic materials.

    Science.gov (United States)

    Kuperman, Roman G; Minyard, Morgan L; Checkai, Ronald T; Sunahara, Geoffrey I; Rocheleau, Sylvie; Dodard, Sabine G; Paquet, Louise; Hawari, Jalal

    2017-05-18

    We investigated individual toxicities of the nitrogen-based energetic materials (EMs) 2,4-dinitrotoluene (2,4-DNT); 2-amino-4,6-dinitrotoluene (2-ADNT); 4-amino-2,6-dinitrotoluene (4-ADNT); and nitroglycerin (NG) on microbial activity in Sassafras sandy loam (SSL) soil, which has physicochemical characteristics that support very high qualitative relative bioavailability for organic chemicals. Batches of SSL soil for basal respiration (BR) and substrate-induced respiration (SIR) assays were separately amended with individual EMs or acetone carrier control. Total microbial biomass carbon (biomass C) was determined from CO2 production increases after addition of 2500 mg/kg of glucose-water slurry to the soil. Exposure concentrations of each EM in soil were determined using US Environmental Protection Agency method 8330A. Basal respiration was the most sensitive endpoint for assessing the effects of nitroaromatic EMs on microbial activity in SSL, whereas SIR and biomass C were more sensitive endpoints for assessing the effects of NG in soil. The orders of toxicity (from greatest to least) were 4-ADNT > 2,4-DNT = 2-ADNT > NG for BR; but for SIR and biomass C, the order of toxicity was NG > 2,4-DNT > 2-ADNT = 4-ADNT. No inhibition of SIR was found up to and including the greatest concentration of each ADNT tested in SSL. These ecotoxicological data will be helpful in identifying concentrations of contaminant EMs in soil that present acceptable ecological risks for biologically mediated processes in soil. Environ Toxicol Chem 2017;9999:1-10. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2017 Wiley Periodicals Inc., on behalf of SETAC.

  8. Electric Spark Sensitivity of Polynitro Compounds. Part V. A Relationship between Electric Spark and Impact Sensitivities of Energetic Materials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The spark energy, EES, required for 50 percent initiation probability of 41 polynitro compounds was determined. The relationships between the EES values and impact sensitivity, expressed as drop energies Ed of the "first reaction", were established and discussed. The conclusion is made that depending on intermolecular interaction factors in crystals of energetic materials, the mechanism of impact energy transition to the reaction centre of their molecule can be differ from that of transition of energy of electric spark.

  9. Toxicity of Nitro-Heterocyclic and Nitroaromatic Energetic Materials to Folsomia candida in a Natural Sandy Loam Soil

    Science.gov (United States)

    2015-04-01

    FOLSOMIA CANDIDA IN A NATURAL SANDY LOAM SOIL ECBC-TR-1272 Carlton T. Phillips Ronald T. Checkai Roman G. Kuperman Michael Simini Jan E...SUBTITLE Toxicity of Nitro-Heterocyclic and Nitroaromatic Energetic Materials to Folsomia candida in a Natural Sandy Loam Soil 5a. CONTRACT NUMBER 5b...2,4-dinitrotoluene (2,4-DNT) Folsomia candida octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) 2,6-dinitrotoluene

  10. Dancing with Energetic Nitrogen Atoms: Versatile N-Functionalization Strategies for N-Heterocyclic Frameworks in High Energy Density Materials.

    Science.gov (United States)

    Yin, Ping; Zhang, Qinghua; Shreeve, Jean'ne M

    2016-01-19

    Nitrogen-rich heterocycles represent a unique class of energetic frameworks featuring high heats of formation and high nitrogen content, which have generated considerable research interest in the field of high energy density materials (HEDMs). Although traditional C-functionalization methodology of aromatic hydrocarbons has been fully established, studies on N-functionalization strategies of nitrogen-containing heterocycles still have great potential to be exploited by virtue of forming diverse N-X bonds (X = C, N, O, B, halogen, etc.), which are capable of regulating energy performance and the stability of the resulting energetic compounds. In this sense, versatile N-functionalization of N-heterocyclic frameworks offers a flexible strategy to meet the requirements of developing new-generation HEDMs. In this Account, the role of strategic N-functionalization in designing new energetic frameworks, including the formation of N-C, N-N, N-O, N-B and N-halogen bonds, is emphasized. In the family of N-functionalized HEDMs, energetic derivatives, by virtue of forming N-C bonds, are the most widely used type due to the good nucleophilic capacity of most heterocyclic backbones. Although introduction of carbon tends to decrease energetic performance, significant improvement in material sensitivity makes this strategy attractive for safety concerns. More importantly, most "explosophores" can be readily introduced into the N-C linkage, thus providing a promising route to various HEDMs. Formation of additional N-N bonds typically gives rise to higher heats of formation, implying the potential enhancement in detonation performance. In many cases, the increased hydrogen bonding interactions within N-N functionalized heterocycles also improve thermal stability accordingly. Introduction of a single N,N'-azo bridge into several azole moieties leads to an extended nitrogen chain, demonstrating a new strategy for designing high-nitrogen compounds. The strategy of N-O functionalization

  11. QSPR modeling of detonation parameters and sensitivity of some energetic materials: DFT vs. PM3 calculations.

    Science.gov (United States)

    Zhang, Jianying; Chen, Gangling; Gong, Xuedong

    2017-06-01

    The quantitative structure-property relationship (QSPR) methodology was applied to describe and seek the relationship between the structures and energetic properties (and sensitivity) for some common energy compounds. An extended series of structural and energetic descriptors was obtained with density functional theory (DFT) B3LYP and semi-empirical PM3 approaches. Results indicate that QSPR model constructed using quantum descriptors can be applied to verify the confidence of calculation results compared with experimental data. It can be extended to predict the properties of similar compounds.

  12. 3,6-Dinitropyrazolo[4,3-c]pyrazole-Based Multipurpose Energetic Materials through Versatile N-Functionalization Strategies.

    Science.gov (United States)

    Yin, Ping; Zhang, Jiaheng; Mitchell, Lauren A; Parrish, Damon A; Shreeve, Jean'ne M

    2016-10-04

    A family of 3,6-dinitropyrazolo[4,3-c]pyrazole-based energetic compounds was synthesized by using versatile N-functionalization strategies. Subsequently, nine ionic derivatives of the N,N'-(3,6-dinitropyrazolo[4,3-c]pyrazole-1,4-diyl)dinitramidate anion were prepared by acid-base reactions and fully characterized by infrared, multinuclear NMR spectra, and elemental analysis. The structures of four of these compounds were further confirmed by single-crystal X-ray diffraction. Based on their different physical and detonation properties, these compounds exhibit promising potential as modern energetic materials and can be variously classified as green primary explosives, high-performance secondary explosives, fuel-rich propellants, and propellant oxidizers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Measurement and modeling of energetic-material mass transfer to soil-pore water - Project CP-1227 final technical report.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S.; Sallaberry, Cedric M.; Webb, Stephen Walter; Phelan, James M.; Hadgu, Teklu

    2006-05-01

    Military test and training ranges operate with live-fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low-order detonations also disperse solid-phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g., weather and geostratigraphy) contribute to groundwater pollution. This final report documents the results of experimental and simulation model development for evaluating mass transfer processes from solid-phase energetics to soil-pore water.

  14. Asymmetrically substituted 5,5'-bistriazoles--nitrogen-rich materials with various energetic functionalities.

    Science.gov (United States)

    Dippold, Alexander A; Klapötke, Thomas M; Oswald, Michaela

    2013-08-21

    In this contribution the synthesis and full structural and spectroscopic characterization of three asymmetrically substituted bis-1,2,4-triazoles, along with different energetic moieties like amino, nitro, nitrimino and azido moieties, is presented. Additionally, selected nitrogen-rich ionic derivatives have been prepared and characterized. This comparative study on the influence of these energetic moieties on structural and energetic properties constitutes a complete characterization including IR, Raman and multinuclear NMR spectroscopy. Single crystal X-ray crystallographic measurements were performed and provide insight into structural characteristics as well as inter- and intramolecular interactions. The standard enthalpies of formation were calculated for all compounds at the CBS-4M level of theory, revealing highly positive heats of formation for all compounds. The detonation parameters were calculated using the EXPLO5 program and compared to the common secondary explosive RDX as well as recently published symmetric bistriazoles. As expected, the measured sensitivities to mechanical stimuli and decomposition temperatures strongly depend on the energetic moiety of the triazole ring. All compounds were characterized in terms of sensitivities (impact, friction, electrostatic) and thermal stabilities, the ionic derivatives were found to be thermally stable, insensitive compounds.

  15. Initial mechanisms for the unimolecular decomposition of electronically excited bisfuroxan based energetic materials.

    Science.gov (United States)

    Yuan, Bing; Bernstein, Elliot R

    2017-01-07

    Unimolecular decomposition of energetic molecules, 3,3'-diamino-4,4'-bisfuroxan (labeled as A) and 4,4'-diamino-3,3'-bisfuroxan (labeled as B), has been explored via 226/236 nm single photon laser excitation/decomposition. These two energetic molecules, subsequent to UV excitation, create NO as an initial decomposition product at the nanosecond excitation energies (5.0-5.5 eV) with warm vibrational temperature (1170 ± 50 K for A, 1400 ± 50 K for B) and cold rotational temperature (energetic barrier is that for which the furoxan ring opens on the S1 state via the breaking of the N1-O1 bond. Subsequently, the molecule moves to the ground S0 state through related ring-opening conical intersections, and an NO product is formed on the ground state surface with little rotational excitation at the last NO dissociation step. For the ground state ring opening decomposition mechanism, the N-O bond and C-N bond break together in order to generate dissociated NO. With the MP2 correction for the CASSCF(12,12) surface, the potential energies of molecules with dissociated NO product are in the range from 2.04 to 3.14 eV, close to the theoretical result for the density functional theory (B3LYP) and MP2 methods. The CASMP2(12,12) corrected approach is essential in order to obtain a reasonable potential energy surface that corresponds to the observed decomposition behavior of these molecules. Apparently, highly excited states are essential for an accurate representation of the kinetics and dynamics of excited state decomposition of both of these bisfuroxan energetic molecules. The experimental vibrational temperatures of NO products of A and B are about 800-1000 K lower than previously studied energetic molecules with NO as a decomposition product.

  16. Bioinspired High-Performance Energetic Materials Using Heme-Containing Crystals.

    Science.gov (United States)

    Slocik, Joseph M; Drummy, Lawrence F; Dickerson, Matthew B; Crouse, Christopher A; Spowart, Jonathan E; Naik, Rajesh R

    2015-08-05

    Synthetic hemozoin crystals (β-hematin) are assembled with aluminium nanoparticles (nAl) to create a nanomaterial composite that is highly energetic and reactive. The results here demonstrate that hemozoin rapidly oxidizes the nAl fuel to release large amounts of energy (+12.5 ± 2.4 kJ g(-1) ). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Looking Through the Trade Surplus Prism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Huge trade surplus attracks more and more attention to the China's economy operation,a controversial topic on people's lips as well. The years from 2005 to 2007,China's most rapid trade surplus growing period,have witnessed China's continuous trade surplus growing,breaking out the threshold of US$100 billion,and 200 billion US Dollar successivcly.

  18. Behind the Ever-Widening Trade Surplus

    Institute of Scientific and Technical Information of China (English)

    Guo Yan

    2007-01-01

    @@ China's trade surplus has been on the rise since 2005.The surplus hit US$ 32.1 billion in 2004,and has soared to us$177.5 billion in 2006.The Chinese government has made the reduction of the trade surplus one of its major macro-economic goals since last September.

  19. Computational and Experimental Study of Energetic Materials in a Counterflow Microgravity Environment

    Science.gov (United States)

    Takahashi, Fumiaki (Technical Monitor); Urban, David (Technical Monitor); Smooke, M. D.; Parr, T. P.; Hanson-Parr, D. M.; Yetter, R. A.; Risha, G.

    2004-01-01

    thermal wave penetration into the liquid, these experiments were found feasible, but not used for obtaining quantitative data. Microgravity experiments are needed to eliminate the dripping and boiling phenomena of these systems at normal gravity. Microgravity tests in the NASA Glenn 2.2 second drop tower were performed (1) to demonstrate the feasibility of performing propellant experiments using the NASA Glenn microgravity facilities, (2) to develop the operational procedures for safe handing of the energetic materials and disposal of their toxic combustion by-products and (3) to obtain initial measurements of the AP burning rate and flame structure under microgravity conditions. Experiments were conducted on the CH4/AP system previously studied at normal gravity using a modified design of the counterflow burner and a NASA Glenn Pig Rig, i.e., one of the existing drop rigs for general-purpose usage. In these experiments, the AP burning rate was measured directly with a linear variable differential transducer (LVDT) and video imaging of the flame structure was recorded ignition was achieved by hot wires stretched across the AP surfaces. Initial drop tower combustion data show that with the same burner separation distance and flow conditions of the normal gravity experiments, the AP burning rate is approximately a factor of two lower. This difference is likely a result of radiation effects, but further tests with longer test times need to be conducted to verify that steady state conditions were achieved under microgravity conditions.

  20. Nitramino- and Dinitromethyl-Substituted 1,2,4-Triazole Derivatives as High-Performance Energetic Materials.

    Science.gov (United States)

    Tang, Yongxing; Dharavath, Srinivas; Imler, Gregory H; Parrish, Damon A; Shreeve, Jean'ne M

    2017-07-06

    Since highly nitrated nitrogen-rich heterocycles are important motifs in high energy density materials, extensive studies for the development of such novel molecules have been underway. A highly energetic moiety, 3-dinitromethyl-5-nitramino-1,2,4-triazole, which consists of a triazole ring, and nitramino and dinitromethyl groups, has been designed and synthesized. By pairing with nitrogen-rich cations, several ionic derivatives were obtained. Theoretical and experimental studies show that the hydroxylammonium salt (7) is highly dense, and has excellent detonation performance with acceptable thermal stablity and sensitivities, which are superior to those of RDX. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Prediction of detonation and JWL eos parameters of energetic materials using EXPLO5 computer code

    CSIR Research Space (South Africa)

    Peter, Xolani

    2016-09-01

    Full Text Available (Cowperthwaite and Zwisler, 1976), CHEETAH (Fried, 1996), EXPLO5(Sućeska , 2001), BARUT-X (Cengiz et al., 2007). These computer codes describe the detonation on the basis of the solution of Euler’s hydrodynamic equation based on the description of an equation... of detonation products equation of state from cylinder test: Analytical model and numerical analysis. Thermal Science, 19(1), pp. 35-48. Fried, L.E., 1996. CHEETAH 1.39 user’s manual. Lawrence Livermore National Laboratory. Göbel, M., 2009. Energetic...

  2. One-pot synthesis of interpenetrating inorganic/organic networks of CuO/resorcinol-formaldehyde aerogels: nanostructured energetic materials.

    Science.gov (United States)

    Leventis, Nicholas; Chandrasekaran, Naveen; Sadekar, Anand G; Sotiriou-Leventis, Chariklia; Lu, Hongbing

    2009-04-01

    For many applications ranging from catalysis to sensors to energetic materials, it is desirable to produce intimate mixtures of nanoparticles. For instance, to improve the reaction rates of energetic materials, the oxidizing agent and the fuel need to be mixed as intimately as possible, ideally at the nanoscopic level. In this context, the acidity of a hydrated CuCl(2) solution reacting toward a network of CuO nanoparticles (a good oxidant) is used to induce one-pot cogelation of a nanostructured network of a resorcinol-formaldehyde resin (RF, the fuel). The resulting wet gels are dried to aerogels, and upon pyrolysis under Ar, the interpenetrating CuO/RF network undergoes a smelting reaction toward metallic Cu. Upon ignition in the open air, pure RF aerogels do not burn, while CuO/RF composites, even with substoichiometric CuO, sustain combustion, burning completely leaving only a solid residue of CuO whose role then has been that of a redox mediator through the smelting reaction.

  3. Elucidating the decomposition mechanism of energetic materials with geminal dinitro groups using 2-bromo-2-nitropropane photodissociation.

    Science.gov (United States)

    Booth, Ryan S; Lam, Chow-Shing; Brynteson, Matthew D; Wang, Lei; Butler, Laurie J

    2013-10-03

    These experiments photolytically generate two key intermediates in the decomposition mechanisms of energetic materials with nitro substituents, 2-nitropropene, and 2-nitro-2-propyl radicals. These intermediates are produced at high internal energies and access a number of competing unimolecular dissociation channels investigated herein. We use a combination of crossed laser-molecular beam scattering and velocity map imaging to study the photodissociation of 2-bromo-2-nitropropane at 193 nm and the subsequent unimolecular dissociation of the intermediates above. Our results demonstrate that 2-bromo-2-nitropropane has four primary photodissociation pathways: C-Br bond fission yielding the 2-nitro-2-propyl radical, HBr elimination yielding 2-nitropropene, C-N bond fission yielding the 2-bromo-2-propyl radical, and HONO elimination yielding 2-bromopropene. The photofragments are formed with significant internal energy and undergo many secondary dissociation events, including the exothermic dissociation of 2-nitro-2-propyl radicals to NO + acetone. Calculations at the G4//B3LYP/6-311++g(3df,2p) level show that the presence of a radical at a nitroalkyl center changes the mechanism for and substantially lowers the barrier to NO loss. This mechanism involves an intermediate with a three-center ring rather than the intermediate formed during the traditional nitro-nitrite isomerization. The observed dissociation pathways of the 2-nitro-2-propyl radical and 2-nitropropene help elucidate the decomposition mechanism of larger energetic materials with geminal dinitro groups.

  4. Detection of anionic energetic material residues in enhanced fingermarks on porous and non-porous surfaces using ion chromatography.

    Science.gov (United States)

    Love, Catherine; Gilchrist, Elizabeth; Smith, Norman; Barron, Leon

    2013-09-10

    The ability to link criminal activity and identity using validated analytical approaches can be of great value to forensic scientists. Herein, the factors affecting the recovery and detection of inorganic and organic energetic material residues within chemically or physically enhanced fingermarks on paper and glass substrates are presented using micro-bore anion exchange chromatography with suppressed conductivity detection. Fingermarks on both surfaces were enhanced using aluminium powder or ninhydrin after spiking with model test mixtures or through contact with black-powder substitutes. A quantitative study of the effects of environmental/method interferences, the sweat matrix, the surface and the enhancement technique on the relative anion recovery of forensically relevant species is presented. It is shown that the analytical method could detect target analytes at the nanogram level even within excesses of enhancement reagents and their reaction products when using solid phase extraction and/or microfiltration. To our knowledge, this work demonstrates for the first time that ion chromatography can detect anions in energetic materials within fingermarks on two very different surfaces, after operational enhancement techniques commonly used by forensic scientists and police have been applied.

  5. Energetic Systems

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetic Systems Division provides full-spectrum energetic engineering services (project management, design, analysis, production support, in-service support,...

  6. Quantum-chemical Investigation of Substituted s-Tetrazine Derivatives as Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ghule, Vikas D.; Tewari, Surya P. [University of Hyderabad, Hyderabad (India); Sarangapani, Radhakrishnan; Jadhav, Pandurang M. [High Energy Materials Research Laboratory, Pune (India)

    2012-02-15

    s-Tetrazine is the essential candidate of many energetic compounds due to its high nitrogen content, enthalpy of formation and thermal stability. The present study explores the design of s-tetrazine derivatives in which different -NO{sub 2}, -NH{sub 2} and -N{sub 3} substituted azoles are attached to the tetrazine ring via C-N linkage. The density functional theory (DFT) is used to predict the geometries, heats of formation (HOFs) and other energetic properties. The predicted results show that azide group plays a very important role in increasing HOF values of the s-tetrazine derivatives. The densities for designed molecules were predicted by using the crystal packing calculations. The introduction of -NO{sub 2} group improves the density as compared to -N{sub 3}, and -NH{sub 2} groups and hence the detonation performance. Bond dissociation energy analysis and insensitivity correlations revealed that amino derivatives are better candidates considering insensitivity and stability.

  7. Computational Study on Substituted s-Triazine Derivatives as Energetic Materials

    Directory of Open Access Journals (Sweden)

    Vikas D. Ghule

    2012-01-01

    Full Text Available s-Triazine is the essential candidate of many energetic compounds due to its high nitrogen content, enthalpy of formation and thermal stability. The present study explores s-triazine derivatives in which different -NO2, -NH2 and -N3 substituted azoles are attached to the triazine ring via C-N linkage. The density functional theory is used to predict geometries, heats of formation and other energetic properties. Among the designed compounds, -N3 derivatives show very high heats of formation. The densities for designed compounds were predicted by using the crystal packing calculations. Introduction of -NO2 group improves density as compared to -NH2 and -N3, their order of increasing density can be given as NO2>N3>NH2. Analysis of the bond dissociation energies for C-NO2, C-NH2 and C-N3 bonds indicates that substitutions of the -N3 and -NH2 group are favorable for enhancing the thermal stability of s-triazine derivatives. The nitro and azido derivatives of triazine are found to be promising candidates for the synthetic studies.

  8. 1-(3,5-Dinitro-1H-pyrazol-4-yl)-3-nitro-1H-1,2,4-triazol-5-amine (HCPT) and its energetic salts: highly thermally stable energetic materials with high-performance.

    Science.gov (United States)

    Li, Chuan; Zhang, Man; Chen, Qishan; Li, Yingying; Gao, Huiqi; Fu, Wei; Zhou, Zhiming

    2016-11-28

    A novel energetic heat-resistant explosive, 1-(3,5-dinitro-1H-pyrazol-4-yl)-3-nitro-1H-1,2,4-triazol-5-amine (HCPT), has been synthesized along with its salts. An intensive characterization of the compounds is given, including (1)H and (13)C NMR spectroscopy, IR spectroscopy, and elemental analysis. The crystal structures of neutral HCPT (3), its triaminoguanidinium salt (10), 3,4,5-triamino-1,2,4-triazolium salt (12), and copper(ii) complex (16) were determined by single-crystal X-ray diffraction. The physicochemical properties of the compounds, such as density, thermal stability, and sensitivity towards impact and friction were evaluated; all energetic compounds exhibited excellent thermal stabilities with decomposition temperatures ranging from 215 °C to 340 °C, and high positive heats of formation between 622.8 kJ mol(-1) and 1211.7 kJ mol(-1). The detonation pressures and velocities for the energetic compounds were calculated using EXPLO5 (V6.01) based on experimental densities and calculated heats of formation, and the corresponding values were in the ranges of 26.5 GPa to 37.8 GPa and 8236 m s(-1) to 9167 m s(-1). Based on thermal stability values and energetic parameters, compounds 3 and 7 were superior to those of all of the commonly used heat-resistant explosives, which may find potential application as heat-resistant energetic materials.

  9. Synthesis of 5-aminotetrazole-1N-oxide and its azo derivative: a key step in the development of new energetic materials.

    Science.gov (United States)

    Fischer, Dennis; Klapötke, Thomas M; Piercey, Davin G; Stierstorfer, Jörg

    2013-04-01

    1-Hydroxy-5-aminotetrazole (1), which is a long-desired starting material for the synthesis of hundreds of new energetic materials, was synthesized for the first time by the reaction of aqueous hydroxylamine with cyanogen azide. The use of this unique precursor was demonstrated by the preparation of several energetic compounds with equal or higher performance than that of commonly used explosives, such as hexogen (RDX). The prepared compounds, including energetic salts of 1-hydroxy-5-aminotetrazole (hydroxylammonium (2, two polymorphs) and ammonium (3)), azo-coupled derivatives (potassium (5), hydroxylammonium (6), ammonium (7), and hydrazinium 5,5'-azo-bis(1-N-oxidotetrazolate (8, two polymorphs)), as well as neutral compounds 5,5'-azo-bis(1-oxidotetrazole) (4) and 5,5'-bis(1-oxidotetrazole)hydrazine (9), were intensively characterized by low-temperature X-ray diffraction, IR, Raman, and multinuclear NMR spectroscopy, elemental analysis, and DSC. The calculated energetic performance, by using the EXPLO5 code, based on the calculated (CBS-4M) heats of formation and X-ray densities confirm the high energetic performance of tetrazole-N-oxides as energetic materials. Last but not least, their sensitivity towards impact, friction, and electrostatic discharge were explored. 5,5'-Azo-bis(1-N-oxidotetrazole) deflagrates close to the DDT (deflagration-to-detonation transition) faster than all compounds that have been investigated in our research group to date.

  10. Surplus yeast tank failing catastrophically

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2016-01-01

    GOOD REASON FOR CAUTION I A large surplus yeast tank shot into the air leaving the floor plate and the contents behind. Although not designed for overpressure, the tank was kept at “very slight overpressure” to suppress nuisance foaming. The brewery was unaware of the hazards of compressed air. T....... The accident described in this article serves to illustrate that care should be taken if a tank originally designed for atmospheric pressure is modified to operate at slight overpressure.......GOOD REASON FOR CAUTION I A large surplus yeast tank shot into the air leaving the floor plate and the contents behind. Although not designed for overpressure, the tank was kept at “very slight overpressure” to suppress nuisance foaming. The brewery was unaware of the hazards of compressed air...

  11. Influence of pressure-driven gas permeation on the quasi-steady burning of porous energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Margolis, S.B.

    1997-09-01

    A theoretical two-phase-flow analysis is developed to describe the quasi-steady propagation, across a pressure jump, of a multi-phase deflagration in confined porous energetic materials. The difference, or overpressure, between the upstream (unburned) and downstream (burned) gas pressure leads to a more complex structure than that which is obtained for an unconfined deflagration in which the pressure across the multi-phase flame region is approximately constant. In particular, the structure of such a wave is shown by asymptotic methods to consist of a thin boundary layer characterized by gas permeation into the unburned solid, followed by a liquid/gas flame region, common to both types of problems, in which the melted material is preheated further and ultimately converted to gaseous products. The effect of gas flow relative to the condensed material is shown to be significant, both in the porous unburned solid as well as in the exothermic liquid/gas melt layer, and is, in turn, strongly affected by the overpressure. Indeed, all quantities of interest, including the burned temperature, gas velocity and the propagation speed, depend on this pressure difference, leading to a significant enhancement of the burning rate with increasing overpressure. In the limit that the overpressure becomes small, the pressure gradient is insufficient to drive gas produced in the reaction zone in the upstream direction, and all gas flow relative to the condensed material is directed in the downstream direction, as in the case of an unconfined deflagration. The present analysis is particularly applicable to those types of porous energetic solids, such as degraded nitramine propellants, that can experience significant gas flow in the solid preheat region and which are characterized by the presence of exothermic reactions in a bubbling melt layer at their surfaces. 7 refs., 6 figs.

  12. Effects of two-phase flow on the deflagration of porous energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Margolis, S.B. [Sandia National Labs., Livermore, CA (United States); Williams, F.A. [Univ. of California, San Diego, La Jolla, CA (United States). Dept. of Applied Mechanics and Engineering Sciences

    1994-07-01

    Theoretical analyses are developed for the multi-phase deflagration of porous energetic solids, such as degraded nitramine propellants, that experience significant gas flow in the solid preheat region and are characterized by the presence of exothermic reactions in a bubbling melt layer at their surfaces. Relative motion between the gas and condensed phases is taken into account in both regions, and expressions for the mass burning rate and other quantities of interest, such as temperature and volume-fraction profiles, are derived by activation-energy asymptotics. The model extends recent work by allowing for gas flow in the unburned solid, and by incorporating pressure effects through the gas-phase equation of state. As a consequence, it is demonstrated how most aspects of the deflagration wave, including its structure, propagation speed and final temperature, depend on the local pressure in the two-phase regions.

  13. Diffuse Interface Methods for Multiple Phase Materials: An Energetic Variational Approach

    CERN Document Server

    Brannick, J; Qian, T; Sun, H

    2014-01-01

    In this paper, we introduce a diffuse interface model for describing the dynamics of mixtures involving multiple (two or more) phases. The coupled hydrodynamical system is derived through an energetic variational approach. The total energy of the system includes the kinetic energy and the mixing (interfacial) energies. The least action principle (or the principle of virtual work) is applied to derive the conservative part of the dynamics, with a focus on the reversible part of the stress tensor arising from the mixing energies. The dissipative part of the dynamics is then introduced through a dissipation function in the energy law, in line with the Onsager principle of least energy dissipation. The final system, formed by a set of coupled time-dependent partial differential equations, reflects a balance among various conservative and dissipative forces and governs the evolution of velocity and phase fields. To demonstrate the applicability of the proposed model, a few two-dimensional simulations have been car...

  14. Transport of energetic electrons in solids computer simulation with applications to materials analysis and characterization

    CERN Document Server

    Dapor, Maurizio

    2017-01-01

    This new edition describes all the mechanisms of elastic and inelastic scattering of electrons with the atoms of the target as simple as possible. The use of techniques of quantum mechanics is described in detail for the investigation of interaction processes of electrons with matter. It presents the strategies of the Monte Carlo method, as well as numerous comparisons among the results of the simulations and the experimental data available in the literature. New in this edition is the description of the Mermin theory, a comparison between Mermin theory and Drude theory, a discussion about the dispersion laws, and details about the calculation of the phase shifts that are used in the relativistic partial wave expansion method. The role of secondary electrons in proton cancer therapy is discussed in the chapter devoted to applications. In this context, Monte Carlo results about the radial distribution of the energy deposited in PMMA by secondary electrons generated by energetic proton beams are presented.

  15. Electrostatic interactions for directed assembly of high performance nanostructured energetic materials of Al/Fe{sub 2}O{sub 3}/multi-walled carbon nanotube (MWCNT)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tianfu; Ma, Zhuang; Li, Guoping; Wang, Zhen; Zhao, Benbo; Luo, Yunjun, E-mail: yjluo@bit.edu.cn

    2016-05-15

    Electrostatic self-assembly in organic solvent without intensively oxidative or corrosive environments, was adopted to prepare Al/Fe{sub 2}O{sub 3}/MWCNT nanostructured energetic materials as an energy generating material. The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe{sub 2}O{sub 3} (oxide) nanoparticles. This spontaneous assembly method without any surfactant chemistry or other chemical and biological moieties decreased the aggregation of the same nanoparticles largely, moreover, the poor interfacial contact between the Al (fuel) and Fe{sub 2}O{sub 3} (oxide) nanoparticles was improved significantly, which was the key characteristic of high performance nanostructured energetic materials. In addition, the assembly process was confirmed as Diffusion-Limited Aggregation. The assembled Al/Fe{sub 2}O{sub 3}/MWCNT nanostructured energetic materials showed excellent performance with heat release of 2400 J/g, peak pressure of 0.42 MPa and pressurization rate of 105.71 MPa/s, superior to that in the control group Al/Fe{sub 2}O{sub 3} nanostructured energetic materials prepared by sonication with heat release of 1326 J/g, peak pressure of 0.19 MPa and pressurization rate of 33.33 MPa/s. Therefore, the approach, which is facile, opens a promising route to the high performance nanostructured energetic materials. - Graphical abstract: The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe{sub 2}O{sub 3} (oxide) nanoparticles. - Highlights: • A facile spontaneous electrostatic assembly strategy without surfactant was adopted. • The fuels and oxidizers assembled into densely packed nanostructured composites. • The assembled nanostructured energetic materials have excellent performance. • This high performance energetic material can be scaled up for practical application. • This

  16. Tuning the particle size and morphology of high energetic material nanocrystals

    Directory of Open Access Journals (Sweden)

    Raj Kumar

    2015-12-01

    Full Text Available Morphology controlled synthesis of nanoparticles of powerful high energetic compounds (HECs such as 1,3,5-trinitro-1,3,5-triazinane (RDX and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX were achieved by a simple solvent–antisolvent interaction (SAI method at 70 °C. The effects of different solvents on particle size and morphology of the prepared nano-HECs were studied systematically. Particle size and morphology of the nano-HECs was characterized using field emission scanning electron microscopy (FE-SEM imaging. X-ray diffraction (XRD and Fourier transform infrared (FTIR spectroscopy studies revealed that RDX and HMX were precipitated in their most stable polymorphic forms, i.e. α and β, respectively. Thermogravimetric analysis coupled with differential scanning calorimetry (TGA-DSC studies showed that the thermal response of the nanoparticles was similar to the respective raw-HECs. HEC nanoparticles with spherical and rod shaped morphology were observed under different solvent conditions. The mean particle size also varied considerably with the use of different solvents.

  17. Building energetic material from novel salix leaf-like CuO and nano-Al through electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yan Jun; Li, Xueming [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing (China)

    2016-11-15

    In this study, an energetic material was prepared by depositing nano-Al on CuO arrays via electrophoretic deposition (EPD), which offers a feasible route for nano-Al integration. The morphology and structure of the CuO arrays and Al/CuO composites were characterized by scanning electron microscopy and X-ray diffraction. The CuO arrays were homogenously salix leaf-like structure with a width of ⁓150 to 200 nm. The energy density of Al/CuO composites was approximate to 1454.5 J/g by integrating the differential scanning calorimetry (DSC) plot and the combustion performance was recorded by a high-speed camera. Moreover, the combustion flames were violent and the whole reaction process only lasted 72.2 ms, indicating that the energy of the Al/CuO nanothermite can be released effectively.

  18. New Micro-Method for Prediction of Vapor Pressure of Energetic Materials

    Science.gov (United States)

    2014-07-01

    and HNS (20), caffeine (19, 21 both values used in linear regression), naphthalene (22), benzoic acid (23), adipic acid (24), anthraquinone (25...establishing an equilibrium concentration of vapor in a carrier gas above a test material. The test material is then separated from the carrier gas...equilibrium concentration of vapor in the headspace above a test material. Samples are then collected and analyzed by GC, which is calibrated in advance

  19. Conditioning ad energetic utilization of wooden materials for landscape conservation; Aufbereitung und Energetische Nutzung von holzigem Landschaftspflegematerial

    Energy Technology Data Exchange (ETDEWEB)

    Letalik, Christian [C.A.R.M.E.N. e.V., Straubing (Germany). Abt. Festbrennstoffe

    2013-10-01

    It has become common practice to energetically recover ligneous materials from landscape conservation activities in heat (and power) generation plants. The treatment of green cuttings along roads, railways or power supply lines is state of the art. Such landscaping materials are ligneous green residues e.g. from tree lopping in orchard meadows or shrub hedges - there are about 45,000 kilometers of hedgerows in Schleswig-Holstein, Germany, alone. Shredder machines disintegrate the materials into any required size. By means of adjustable perforated baskets on the disintegrating engine and subsequent sieving steps, homogenous fuels of defined dimensions and low shares of fines can be provided, whichever required. Depending on the water content, such wood chips contain about 20% less energy (calorific value) than comparable forest wood chips. It is important, however, that mineral fine particles like sand, soil or small stones are being sieved out before the combustion because they do not only decrease the calorific value and hence the boiler performance but also cause problems in the combustion areas resulting in higher costs for maintenance, cleaning and ash utilization. Composting plants are regularly well-equipped. They use well-proven management concepts for the material flow to merely condition as much landscape cuttings into fuels, enable the aerobe composting process with less ligneous and more humid materials to continue. For both compost and wood fuels there is sufficient demand resulting in increasing revenues. The EEG amendment 2012 classifies landscape conservation materials as raw materials of remuneration class II (= 8 ct/kWhel on top of the basic remuneration). This is likely to further increment the demand for ligneous fuel from landscape conservation. According to the EEG 2012 there will no longer be power plants without reasonable heat concepts. (orig.)

  20. Molecular and Material Approaches to Overcome Kinetic and Energetic Constraints in Dye-Sensitized Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, Thomas [Michigan State Univ., East Lansing, MI (United States)

    2016-08-14

    Dye-sensitized solar cells (DSSCs) have attracted a lot of interest as they proffer the possibility of extremely inexpensive and efficient solar energy conversion. The excellent performance of the most efficient DSSCs relies on two main features: 1) a high surface area nanoparticle semiconductor photoanode to allow for excellent light absorption with moderate extinction molecular dyes and 2) slow recombination rates from the photoanode to I3- allowing good charge collection. The I3-/I- couple, however, has some disadvantages, notably the redox potential limits the maximum open-circuit voltage, and the dye regeneration requires a large driving force which constrains the light harvesting ability. Thus, the design features that allow DSSCs to perform as well as they do also prevent further significant improvements in performance. As a consequence, the most efficient device configuration, and the maximum efficiency, has remained essentially unchanged over the last 16 years. Significant gains in performance are possible; however it will likely require a substantial paradigm shift. The general goal of this project is to understand the fundamental role of dye-sensitized solar cell, DSSC, components (sensitizer, redox shuttle, and photoanode) involved in key processes in order to overcome the kinetic and energetic constraints of current generation DSSCs. For example, the key to achieving high energy conversion efficiency DSSCs is the realization of a redox shuttle which fulfills the dual requirements of 1) efficient dye regeneration with a minimal driving force and 2) efficient charge collection. In current generation DSSCs, however, only one or the other of these requirements is met. We are currently primarily interested in understanding the physical underpinnings of the regeneration and recombination reactions. Our approach is to systematically vary the components involved in reactions and interrogate them with a

  1. Two dimensional numerical prediction of deflagration-to-detonation transition in porous energetic materials.

    Science.gov (United States)

    Narin, B; Ozyörük, Y; Ulas, A

    2014-05-30

    This paper describes a two-dimensional code developed for analyzing two-phase deflagration-to-detonation transition (DDT) phenomenon in granular, energetic, solid, explosive ingredients. The two-dimensional model is constructed in full two-phase, and based on a highly coupled system of partial differential equations involving basic flow conservation equations and some constitutive relations borrowed from some one-dimensional studies that appeared in open literature. The whole system is solved using an optimized high-order accurate, explicit, central-difference scheme with selective-filtering/shock capturing (SF-SC) technique, to augment central-diffencing and prevent excessive dispersion. The sources of the equations describing particle-gas interactions in terms of momentum and energy transfers make the equation system quite stiff, and hence its explicit integration difficult. To ease the difficulties, a time-split approach is used allowing higher time steps. In the paper, the physical model for the sources of the equation system is given for a typical explosive, and several numerical calculations are carried out to assess the developed code. Microscale intergranular and/or intragranular effects including pore collapse, sublimation, pyrolysis, etc. are not taken into account for ignition and growth, and a basic temperature switch is applied in calculations to control ignition in the explosive domain. Results for one-dimensional DDT phenomenon are in good agreement with experimental and computational results available in literature. A typical shaped-charge wave-shaper case study is also performed to test the two-dimensional features of the code and it is observed that results are in good agreement with those of commercial software. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Variations in Cathodoluminescent Intensity of Spacecraft Materials Exposed to Energetic Electron Bombardment

    Science.gov (United States)

    Dekany, Justin; Christensen, Justin; Dennison, J. R.; Jensen, Amberly Evans; Wilson, Gregory; Schneider, Todd; Bowers, Charles W.; Meloy, Robert

    2015-01-01

    Many contemporary spacecraft materials exhibit cathodoluminescence when exposed to electron flux from the space plasma environment. A quantitative, physics-based model has been developed to predict the intensity of the total glow as a function of incident electron current density and energy, temperature, and intrinsic material properties. We present a comparative study of the absolute spectral radiance for more than 20 types of dielectric and composite materials based on this model which spans more than three orders of magnitude. Variations in intensity are contrasted for different electron environments, different sizes of samples and sample sets, different testing and analysis methods, and data acquired at different test facilities. Together, these results allow us to estimate the accuracy and precision to which laboratory studies may be able to determine the response of spacecraft materials in the actual space environment. It also provides guidance as to the distribution of emissions that may be expected for sets of similar flight hardware under similar environmental conditions.

  3. Non-Newtonian behavior observed via dynamic rheology for various particle types in energetic materials and simulant composites

    Science.gov (United States)

    Choi, Jong Han; Lee, Sangmook; Lee, Jae Wook

    2017-02-01

    The rheological properties of polymer composites highly filled with different filler materials were examined using a stress-controlled rheometer with a parallel-plate configuration, for particle characterization of the filler materials in plastic (polymer) bonded explosive (PBX). Ethylene vinyl acetate (EVA) with dioctyl adipate (DOA) was used as the matrix phase, which was shown to exhibit Newtonian-like behavior. The dispersed phase consisted of one of two energetic materials, i.e., explosive cyclotrimethylene trinitramine (RDX) or cyclotetramethylene tetranitramine (HMX), or a simulant (Dechlorane) in a bimodal size distribution. Before the test, preshearing was conducted to identify the initial condition of each sample. All examined filled polymer specimens exhibited yield stress and shear-thinning behavior over the investigated frequency range. The complex viscosity dependence on the dynamic oscillation frequency was also fitted using an appropriate rheological model, suggesting the model parameters. Furthermore, the temperature dependency of the different filler particle types was determined for different filler volume fractions. These comparative studies revealed the influence of the particle characteristics on the rheological properties of the filled polymer.

  4. Surface characterization of an energetic material, pentaerythritoltetranitrate (PETN), having a thin coating achieved through a starved addition microencapsulation technique

    Energy Technology Data Exchange (ETDEWEB)

    Worley, C.M.

    1986-05-07

    The objective of this research was to: (1) determine the nature of a thin coating on an explosive material which was applied using a starved addition microencapsulation technique, (2) understand the coating/crystal bond, and (3) investigate the wettability/adhesion of plastic/solvent combinations using the coating process. The coating used in this work was a Firestone Plastic Company copolymer (FPC-461) of vinylchloride/trifluorochloroethylene in a 1.5/1.0 weight ratio. The energetic explosive examined was pentaerythritoltetranitrate (PETN). The coating process used was starved addition followed by a solvent evaporation technique. Surface analytical studies, completed for characterization of the coating process, show (1) evidence that the polymer coating is present, but not continuous, over the surface of PETN; (2) the average thickness of the polymer coating is between 16-32 A and greater than 44 A, respectively, for 0.5 and 20 wt % coated PETN; (3) no changes in surface chemistry of the polymer or the explosive material following microencapsulation; and (4) the presence of explosive material on the surface of 0.5 wt % FPC-461 coated explosives. 5 refs., 15 figs., 6 tabs.

  5. Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakova, Nadezhda M., E-mail: nadezhda.bulgakova@hilase.cz [HiLASE Centre, Institute of Physics ASCR, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic); Institute of Thermophysics SB RAS, 1 Lavrentyev Ave., 630090 Novosibirsk (Russian Federation); Zhukov, Vladimir P. [Institute of Computational Technologies SB RAS, 6 Lavrentyev Ave., 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Ave., 630073, Novosibirsk (Russian Federation); Sonina, Svetlana V. [Novosibirsk State University, 1 Koptuga Ave., 630090 Novosibirsk (Russian Federation); Meshcheryakov, Yuri P. [Design and Technology Branch of Lavrentyev Institute of Hydrodynamics SB RAS, Tereshkovoi street 29, 630090 Novosibirsk (Russian Federation)

    2015-12-21

    A comprehensive analysis of laser-induced modification of bulk glass by single ultrashort laser pulses is presented which is based on combination of optical Maxwell-based modeling with thermoelastoplastic simulations of post-irradiation behavior of matter. A controversial question on free electron density generated inside bulk glass by ultrashort laser pulses in modification regimes is addressed on energy balance grounds. Spatiotemporal dynamics of laser beam propagation in fused silica have been elucidated for the regimes used for direct laser writing in bulk glass. 3D thermoelastoplastic modeling of material relocation dynamics under laser-induced stresses has been performed up to the microsecond timescale when all motions in the material decay. The final modification structure is found to be imprinted into material matrix already at sub-nanosecond timescale. Modeling results agree well with available experimental data on laser light transmission through the sample and the final modification structure.

  6. Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?

    Science.gov (United States)

    Bulgakova, Nadezhda M.; Zhukov, Vladimir P.; Sonina, Svetlana V.; Meshcheryakov, Yuri P.

    2015-12-01

    A comprehensive analysis of laser-induced modification of bulk glass by single ultrashort laser pulses is presented which is based on combination of optical Maxwell-based modeling with thermoelastoplastic simulations of post-irradiation behavior of matter. A controversial question on free electron density generated inside bulk glass by ultrashort laser pulses in modification regimes is addressed on energy balance grounds. Spatiotemporal dynamics of laser beam propagation in fused silica have been elucidated for the regimes used for direct laser writing in bulk glass. 3D thermoelastoplastic modeling of material relocation dynamics under laser-induced stresses has been performed up to the microsecond timescale when all motions in the material decay. The final modification structure is found to be imprinted into material matrix already at sub-nanosecond timescale. Modeling results agree well with available experimental data on laser light transmission through the sample and the final modification structure.

  7. The role of energetic ions from plasma in the creation of nanostructured materials and stable polymer surface treatments

    Energy Technology Data Exchange (ETDEWEB)

    Bilek, M.M.M. [Department of Applied and Plasma Physics, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia)]. E-mail: mmmb@physics.usyd.edu.au; Newton-McGee, K. [Department of Applied and Plasma Physics, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); McKenzie, D.R. [Department of Applied and Plasma Physics, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); McCulloch, D.G. [Department of Applied and Plasma Physics, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia)

    2006-01-15

    Plasma processes for the synthesis of new materials as thin films have enabled the production of a wide variety of new materials. These include meta-stable phases, which are not readily found in nature, and more recently, materials with structure on the nanoscale. Study of plasma synthesis processes at the fundamental level has revealed that ion energy, depositing flux and growth surface temperature are the critical parameters affecting the microstructure and the properties of the thin film materials formed. In this paper, we focus on the role of ion flux and impact energy in the creation of thin films with nanoscale structure in the form of multilayers. We describe three synthesis strategies, based on the extraction of ions from plasma sources and involving modulation of ion flux and ion energy. The microstructure, intrinsic stress and physical properties of the multilayered samples synthesized are studied and related back to the conditions at the growth surface during deposition. When energetic ions of a non-condensing species are used, it is possible to place active groups on the surfaces of materials such as polymers. These active groups can then be used as bonding sites in subsequent chemical attachment of proteins or other macromolecules. If the energy of the non-condensing ions is increased to a few keV then modified layers buried under the surface can be produced. Here we describe a method by which the aging effect, which is often observed in plasma surface modifications on polymers, can be reduced and even eliminated using high energy ion bombardment.

  8. Ab initio Defect Energetics in LaBO3 Perovskite Solid Oxide Fuel Cell Materials

    DEFF Research Database (Denmark)

    Lee, Yueh-Lin; Morgan, Dane; Kleis, Jesper;

    2009-01-01

    Perovskite materials of the form ABO3 are a promising family of compounds for use in solid oxide fuel cell (SOFC) cathodes. Study of the physics of these compounds under SOFC conditions with ab initio methods is particularly challenging due to high temperatures, exchange of oxygen with O2 gas...

  9. Crystallisation of energetic materials: The effect on stability,sensitivity and processing properties

    NARCIS (Netherlands)

    Meulenbrugge, J.J.; Steen, A.C. van der; Heijden, A.E.D.M. van der

    1995-01-01

    Resuits are presented from HNF and RDX ciystallisation experiments and the effect thereof on the properties of these materials. Control of the crystallisation process for HNF will improve the particle shape, the stability and the processability. Other parameters, like sensitivity, are much better

  10. Towards recognition of energetic materials -Terahertz imaging and sensing at higher frequencies

    NARCIS (Netherlands)

    Huhn, A.K.; Spiegel, W. von; Maagt, P. de; Duvalois. W.; Jagt, O.C. van der; Roskos, H.G.; Haring Bolivar, P.

    2011-01-01

    The terahertz (THz) frequency range is located between microwave and infrared radiation in the electroma¬gnetic spectrum. It spans from 300 GHz up to 10 THz. The transparency of different materials (e.g. cotton, paper, plastics, etc.) especially at lower THz frequencies opens a great variety of

  11. Towards recognition of energetic materials -Terahertz imaging and sensing at higher frequencies

    NARCIS (Netherlands)

    Huhn, A.K.; Spiegel, W. von; Maagt, P. de; Duvalois. W.; Jagt, O.C. van der; Roskos, H.G.; Haring Bolivar, P.

    2011-01-01

    The terahertz (THz) frequency range is located between microwave and infrared radiation in the electroma¬gnetic spectrum. It spans from 300 GHz up to 10 THz. The transparency of different materials (e.g. cotton, paper, plastics, etc.) especially at lower THz frequencies opens a great variety of appl

  12. Toxicity of the Cyclic Nitramine Energetic Material CL-20 to Aquatic Receptors

    Science.gov (United States)

    2007-10-01

    MATERIAL CL-20 TO AQUATIC RECEPTORS Mark V. Haley John S. Anthony Emily A. Davis Carl W. Kurnas Roman G. Kuperman Ronald T. Checkai RESEARCH AND...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Haley, Mark V.; Anthony, John S.; Davis, Emily A.; Kurnas , Carl W.; Kuperman

  13. Progress of All-nitrogen Ultrahigh-energetic Materials%全氮型超高能含能材料研究进展

    Institute of Scientific and Technical Information of China (English)

    李玉川; 庞思平

    2012-01-01

    从合成和理论方面综述了全氮型超高能含能材料的研究进展.介绍了从N3到N13、N60、聚合氮(Cg- N)等氮簇含能材料的合成及理论研究情况,总结了各种全氮结构的特点以及在全氮型含能材料合成和理论研究中面临的技术问题,指出了部分全氮型含能材料的研究发展趋势.附参考文献61篇.%The recent developments of all-nitrogen ultrahigh-energetic materials in both experiment and theory were reviewed. The synthesis and theoretical calculation of nitrogen cluster energetic materials from N3 to N13,N60 and cubic gauche nitrogen(Cg-N) , etc were introduced. The characteristics of various all-nitrogen structures and the key issues faced with synthesis and theoretical research of all-nitrogen energetic materials were summarized. The development trends of all-nitrogen ultrahigh-energetic materials were pointed out with 61 references.

  14. Energetics Laboratory Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — These energetic materials laboratories are equipped with explosion proof hoods with blow out walls for added safety, that are certified for safe handling of primary...

  15. Habit formation, surplus consumption and return predictability

    DEFF Research Database (Denmark)

    Engsted, Tom; Hyde, Stuart; Vinther Møller, Stig

    2010-01-01

    -varying risk-free rate. In addition, we analyze the predictive power of the surplus consumption ratio for future stock and bond returns. We find that, although there are important cross-country differences and economically significant pricing errors, for the majority of countries in our sample the model gets...... empirical support in a variety of different dimensions, including reasonable estimates of risk-free rates. Further, for the majority of countries the surplus consumption ratio captures time-variation in expected returns. Together with the price-dividend ratio, the surplus consumption ratio contains...... significant information about future stock returns, also during the 1990s. In addition, in most countries the surplus consumption ratio is also a powerful predictor of future bond returns. Thus, the surplus consumption ratio captures time-varying expected returns in both stock and bond markets....

  16. Study of void sizes and loading configurations effects on shock initiation due to void collapse in heterogeneous energetic materials

    Science.gov (United States)

    Roy, Sidhartha; Rai, Nirmal; Udaykumar, H. S.

    2015-06-01

    In heterogeneous energetic materials, presence of porosity has been seen to increase its sensitivity towards shock initiation and ignition. Under the application of shock load, the viscoplastic deformation of voids and its collapse leads to the formation of local high temperature regions known as hot spots. The chemical reaction triggers at the hot spot depending on the local temperature and grows eventually leading to ignition and formation of detonation waves in the material. The temperature of the hot spot depends on various factors such as shock strength, void size, void arrangements, loading configuration etc. Hence, to gain deeper understanding on shock initiation and ignition study due to void collapse, a parametric study involving various factors which can affect the hot spot temperature is desired. In the current work, effects of void sizes, shock strength and loading configurations has been studied for shock initiation in HMX using massively parallel Eulerian code, SCIMITAR3D. The chemical reaction and decomposition for HMX has been modeled using Henson-Smilowitz multi step mechanism. The effect of heat conduction has also been taken into consideration. Ignition threshold criterion has been established for various factors as mentioned. The critical hot spot temperature and its size which can lead to ignition has been obtained from numerical experiments.

  17. Improved detection of highly energetic materials traces on surfaces by standoff laser-induced thermal emission incorporating neural networks

    Science.gov (United States)

    Figueroa-Navedo, Amanda; Galán-Freyle, Nataly Y.; Pacheco-Londoño, Leonardo C.; Hernández-Rivera, Samuel P.

    2013-05-01

    Terrorists conceal highly energetic materials (HEM) as Improvised Explosive Devices (IED) in various types of materials such as PVC, wood, Teflon, aluminum, acrylic, carton and rubber to disguise them from detection equipment used by military and security agency personnel. Infrared emissions (IREs) of substrates, with and without HEM, were measured to generate models for detection and discrimination. Multivariable analysis techniques such as principal component analysis (PCA), soft independent modeling by class analogy (SIMCA), partial least squares-discriminant analysis (PLS-DA), support vector machine (SVM) and neural networks (NN) were employed to generate models, in which the emission of IR light from heated samples was stimulated using a CO2 laser giving rise to laser induced thermal emission (LITE) of HEMs. Traces of a specific target threat chemical explosive: PETN in surface concentrations of 10 to 300 ug/cm2 were studied on the surfaces mentioned. Custom built experimental setup used a CO2 laser as a heating source positioned with a telescope, where a minimal loss in reflective optics was reported, for the Mid-IR at a distance of 4 m and 32 scans at 10 s. SVM-DA resulted in the best statistical technique for a discrimination performance of 97%. PLS-DA accurately predicted over 94% and NN 88%.

  18. A Multi-Scale Modeling Framework for Shear Initiated Reactions in Energetic Materials

    Science.gov (United States)

    2013-07-01

    of the dissipative particle dynamics method ( DPD -E) is used for the mesoscale modeling portion of this study. DPD -E is a particle-based mesoscale...method that conserves both momentum and energy, while allowing the mesoparticles to exchange both viscous and thermal energy [11,12]. In the DPD -E...Figure 3. Fig. 3. Sample DPD -E simulation configuration of sheared material just prior to release of elastic energy. Verification of Approach

  19. Seeded Reaction Waves in Composites: Fast Structure Transforming Materials that Respond to Energetic Stimuli

    Science.gov (United States)

    2016-10-21

    network rapidly forms an endoskeletal structure within a flexible rubber, stiffening it up to 18x. Polymer seed particles have also been developed...polarization behaviors (Figure 14b), capsules seem to slightly dark until 40-43 oc (whole screen becomes dark). Interestingly, during cooling process, when...within a flexible material. (Figure 44) The FP process increases Young’s modulus up to 18x and allows for freestanding structures to be rapidly

  20. In-situ nano-crystal-to-crystal transformation synthesis of energetic materials based on three 5,5′-azotetrazolate Cr(III) salts

    Science.gov (United States)

    Miao, Yu; Qiu, Yanxuan; Cai, Jiawei; Wang, Zizhou; Yu, Xinwei; Dong, Wen

    2016-01-01

    The in-situ nano-crystal-to-crystal transformation (SCCT) synthesis provides a powerful approach for tailoring controllable feature shapes and sizes of nano crystals. In this work, three nitrogen-rich energetic nano-crystals based on 5,5′-azotetrazolate(AZT2−) Cr(III) salts were synthesized by means of SCCT methodology. SEM and TEM analyses show that the energetic nano-crystals feature a composition- and structure-dependent together with size-dependent thermal stability. Moreover, nano-scale decomposition products can be obtained above 500 °C, providing a new method for preparing metallic oxide nano materials. PMID:27869221

  1. In-situ nano-crystal-to-crystal transformation synthesis of energetic materials based on three 5,5'-azotetrazolate Cr(III) salts.

    Science.gov (United States)

    Miao, Yu; Qiu, Yanxuan; Cai, Jiawei; Wang, Zizhou; Yu, Xinwei; Dong, Wen

    2016-11-21

    The in-situ nano-crystal-to-crystal transformation (SCCT) synthesis provides a powerful approach for tailoring controllable feature shapes and sizes of nano crystals. In this work, three nitrogen-rich energetic nano-crystals based on 5,5'-azotetrazolate(AZT(2-)) Cr(III) salts were synthesized by means of SCCT methodology. SEM and TEM analyses show that the energetic nano-crystals feature a composition- and structure-dependent together with size-dependent thermal stability. Moreover, nano-scale decomposition products can be obtained above 500 °C, providing a new method for preparing metallic oxide nano materials.

  2. Molecular dynamics simulations of interactions between energetic dust and plasma-facing materials

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Guo-jian, E-mail: niugj@ipp.ac.cn [Institute of Plasma Physics Chinese Academy of Sciences, Hefei (China); Li, Xiao-chun; Xu, Qian; Yang, Zhong-shi [Hefei Center Physical Science and Technology, Hefei (China); Luo, Guang-nan [Institute of Plasma Physics Chinese Academy of Sciences, Hefei (China); Hefei Center Physical Science and Technology, Hefei (China); Hefei Science Center of CAS, Hefei (China)

    2015-11-15

    The interactions between dust and plasma-facing material (PFM) relate to the lifetime of PFM and impurity production. Series results have been obtained theoretically and experimentally but more detailed studies are needed. In present research, we investigate the evolution of kinetic, potential and total energy of plasma-facing material (PFM) in order to understand the dust/PFM interaction process. Three typical impacting energy are selected, i.e., 1, 10 and 100 keV/dust for low-, high- and hyper-energy impacting cases. For low impacting energy, dust particles stick on PFM surface without damaging it. Two typical time points exist and the temperature of PFM grows all the time but PFM structure experience a modifying process. Under high energy case, three typical points appear. The temperature curve fluctuates in the whole interaction process which indicates there are dust/PFM and kinetic/potential energy exchanges. In the hyper-energy case in present simulation, the violence dust/PFM interactions cause sputtering and crater investigating on energy evolution curves. We further propose the statistics of energy distribution. Results show that about half of impacting energy consumes on heating plasma-facing material meanwhile the other half on PFM structure deformation. Only a small proportion becomes kinetic energy of interstitial or sputtering atoms.

  3. Synthesis, characterization and evaluation of 1,2-bis(2,4,6-trinitrophenyl) hydrazine: a key precursor for the synthesis of high performance energetic materials.

    Science.gov (United States)

    Badgujar, D M; Talawar, M B; Harlapur, Sujata F; Asthana, S N; Mahulikar, P P

    2009-12-15

    1,2-Bis(2,4,6-trinitrophenyl) hydrazine (3) is one of the precursors in the synthesis of an important energetic material viz., hexanitrazobenzene. The simple and convenient lab scale synthesis of title compound (3) was carried out by the condensation of picryl chloride (2) with hydrazine hydrate at 30-50 degrees C in methanol based on the lines of scanty literature reports. Picryl chloride was synthesized by the reaction of picric acid (1) with phosphorous oxychloride based on the lines of reported method. The synthesized compound (3) was characterized by IR and 1H NMR spectral data. Some of the energetic properties of the synthesized compound have also been studied. The theoretically computed energetic properties of the title compound (3) indicated the superior performance in comparison to tetranitrodibenzo tetraazapentalene (TACOT) and hexanitrostilbene (HNS) in terms of velocity of detonation.

  4. Development of a high flow source of energetic oxygen atoms for material degradation studies. [of Space Shuttles in low earth orbit environments

    Science.gov (United States)

    Caledonia, G. E.; Krech, R. H.

    1985-01-01

    A technique for the generation, in the laboratory, of thermally 'cold', high flux of energetic oxygen atoms is presented. The flux of nearly mono-energetic oxygen atoms is obtained after a laser-induced breakdown of oxygen molecules followed by a rapid expansion of the recombining plasma. The experimental apparatus, the optical and spectral measurements, the O-atom source characterization, and the material degradation studies are discussed. Average oxygen atom velocities of about 5 to 13 km/s are measured with an estimated flux of 10 to the 18th per pulse, over pulse durations of several microseconds. The flow of the O2 gas for about 200 microseconds before applying the laser pulse is found to give best results. It is also found that the energetic O-atom irradiation of sample targets such as Al, Fe, and polyethylene, induces mass removal. In addition, spectral scans of the radiation reveals the existence of two main spectral subsets.

  5. Simultaneous Imaging and Spectroscopy of Detonation Interaction in Reactive and Energetic Materials.

    Science.gov (United States)

    Johnson, Stephanie; Clemenson, Michael; Glumac, Nick

    2017-01-01

    A dual framing camera system was coupled with custom-designed ultrafast imaging spectrometer optics to yield simultaneous imaging and imaging spectroscopy of extremely short detonation interaction events in reactive materials. For short exposures of 100 ns or less, spectral resolutions of 2.4 Å are achievable, allowing for time-resolved identification of key intermediate species evolving from prompt reaction. Under some circumstances, emission can be fit to a local emission temperature, assuming the optically thin limit. Applications to reactive metal systems involving aluminum, magnesium, titanium, boron, and silicon are demonstrated.

  6. Final report on the oxidation of energetic materials in supercritical water. Final Air Force report

    Energy Technology Data Exchange (ETDEWEB)

    Buelow, S.J.; Allen, D.; Anderson, G.K. [and others

    1995-04-03

    The objective of this project was to determine the suitability of oxidation in supercritical fluids (SCO), particularly water (SCWO), for disposal of propellants, explosives, and pyrotechnics (PEPs). The SCO studies of PEPs addressed the following issues: The efficiency of destruction of the substrate. The products of destruction contained in the effluents. Whether the process can be conducted safely on a large scale. Whether energy recovery from the process is economically practicable. The information essential for process development and equipment design was also investigated, including issues such as practical throughput of explosives through a SCWO reactor, reactor materials and corrosion, and models for process design and optimization.

  7. From N-Nitro to N-Nitroamino: Preparation of High-Performance Energetic Materials by Introducing Nitrogen-Containing Ions.

    Science.gov (United States)

    Yin, Ping; Shreeve, Jean'ne M

    2015-11-23

    In the design of energetic materials, high energetic performance and good molecular stability are two main goals. Energetic functionalization which strives for maximum energy often results in unstable chemical bonds and causes safety problems in practical production and storage operations. In this work, N-nitro- and N-nitroamino-functionalized mono- and bis(1,2,4-triazoles) were synthesized and characterized by infrared, and multinuclear NMR spectra, and elemental analyses. The N-nitroamino-functionalization strategy was employed for bis(imidazole), leading to high density compound 14 (2.007 g cm(-3) at 100 K; 1.94 g cm(-3) at room temperature) and energetic salt 15. While N-nitro-functionalized products are thermally unstable and highly moisture sensitive, N-nitroamino-functionalized energetic salts, which are comprised of additional nitrogen-containing ions, exhibit good density, moderate to excellent structural stabilities, and high performance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The effects of energetic proton bombardment on polymeric materials: Experimental studies and degradation models

    Science.gov (United States)

    Coulter, D. R.; Gupta, A.; Smith, M. V.; Fornes, R. E.

    1986-01-01

    This report describes 3 MeV proton bombardment experiments on several polymeric materials of interest to NASA carried out on the Tandem Van De Graff Accelerator at the California Institute of Technology's Kellogg Radiation Laboratory. Model aromatic and aliphatic polymers such as poly(1-vinyl naphthalene) and poly(methyl methacrylate), as well as polymers for near term space applications such as Kapton, Epoxy and Polysulfone, have been included in this study. Chemical and physical characterization of the damage products have been carried out in order to develop a model of the interaction of these polymers with the incident proton beam. The proton bombardment methodology developed at the Jet Propulsion Laboratory and reported here is part of an ongoing study on the effects of space radiation on polymeric materials. The report is intended to provide an overview of the mechanistic, as well as the technical and experimental, issues involved in such work rather than to serve as an exhaustive description of all the results.

  9. Analysis on shock attenuation in gap test configuration for characterizing energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bohoon; Yoh, Jack J., E-mail: jjyoh@snu.ac.kr [Seoul National University, Seoul 151-742 (Korea, Republic of); Park, Jungsu [Agency for Defense Development, Daejeon 305-600 (Korea, Republic of)

    2016-04-14

    A pyrotechnic system consisting of donor/acceptor pair separated by a gap relies on shock attenuation characteristics of the gap material and shock sensitivity of the donor and the acceptor charges. Despite of its common use, a numerical study of such a pyrotechnic train configuration is seldom reported because proper modeling of the full process requires precise capturing of the shock wave attenuation in the gap prior to triggering a full detonation of a high explosive and accurate description of the high strain rate dynamics of the explosively loaded inert confinements. We apply a hybrid particle level-set based multimaterial hydrocode with reactive flow models for pentolite donor and heavily aluminized cyclotrimethylene-trinitramine as the acceptor charge. The complex shock interaction, a critical gap thickness, an acoustic impedance, and go/no-go characteristics of the pyrotechnic system are quantitatively investigated.

  10. Experimental and Theoretical Investigation of Shock-Induced Reactions in Energetic Materials.

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Jeffrey J; Park, Samuel; Kohl, Ian Thomas; Knepper, Robert

    2017-09-01

    In this work, shock-induced reactions in high explosives and their chemical mechanisms were investigated using state-of-the-art experimental and theoretical techniques. Experimentally, ultrafast shock interrogation (USI, an ultrafast interferometry technique) and ultrafast absorption spectroscopy were used to interrogate shock compression and initiation of reaction on the picosecond timescale. The experiments yielded important new data that appear to indicate reaction of high explosives on the timescale of tens of picoseconds in response to shock compression, potentially setting new upper limits on the timescale of reaction. Theoretically, chemical mechanisms of shock-induced reactions were investigated using density functional theory. The calculations generated important insights regarding the ability of several hypothesized mechanisms to account for shock-induced reactions in explosive materials. The results of this work constitute significant advances in our understanding of the fundamental chemical reaction mechanisms that control explosive sensitivity and initiation of detonation. * Principal Investigator. jjkay@sandia.gov

  11. Altered combustion characteristics of metallized energetics due to stable secondary material inclusion

    Science.gov (United States)

    Terry, Brandon C.

    Though metals and metalloids have been widely considered as reactive fuels, the ability to tune their ignition and combustion characteristics remains challenging. One means to accomplish this may be through low-level inclusion of secondary materials into the metallized fuel. While there are several potential methods to stably introduce secondary inclusion materials, this work focuses on the use of mechanical activation (MA) and metal alloys. Recent work has shown that low-level inclusion of fluoropolymers into aluminum particles can have a substantial effect on their combustion characteristics. The reflected shock ignition of mechanically activated aluminum/polytetrafluoroethylene (MA Al/PTFE) is compared to a physical mixture (PM) of Al/PTFE, neat spherical aluminum, and flake aluminum. It was found that the powders with higher specific surface areas ignited faster than the spherical particles of the same size, and had ignition delay times comparable to agglomerates of aluminum particles that were two orders of magnitude smaller in size. Flake aluminum powder had the same ignition delay as MA Al/PTFE, indicating that any initial aluminum/fluoropolymer reactions did not yield an earlier onset of aluminum oxidation. However, MA Al/PTFE did have a shorter total burn time. The PM of Al/PTFE powder had a shorter ignition delay than neat spherical aluminum due to the rapid decomposition of PTFE into reactive fluorocarbon compounds, but the subsequent fluorocarbon reactions also created a secondary luminosity profile that significantly increased the total burn time of the system. The explosive shock ignition of aluminum and aluminum-silicon eutectic alloy compacts was evaluated with and without polymer inclusions. A statistical analysis was completed, investigating the effects of: detonation train orientation (into or not into a hard surface); the high explosive driver; whether the metal/polymer system is mechanically activated; particle size; particle morphology

  12. Theoretical study of an energetic material di-1H-1,3,4-triazole derivatives

    Directory of Open Access Journals (Sweden)

    Hua Zhou

    2014-12-01

    Full Text Available Computations by density functional theory (DFT method are performed on a series of di-1H-1,3,4-triazole derivatives with different substituents and linkages. The heat of formation (HOF is predicted by the designed isodesmic reactions. The predicted results reveal that –N3 and –NN– groups are effective structural units for increasing the HOF values of the di-1H-1,3,4-triazole derivatives. The HOMO–LUMO gap is affected by the substituents and linkage groups. Detonation performance is evaluated using the Kamlet–Jacobs approach based on the calculated density and HOF. The results indicate that –NO2, –NF2, –NH–, –NH–NH– and –NN– groups are helpful for enhancing the detonation properties of di-1H-1,3,4-triazole derivatives. The bond dissociation energy and bond order of the weakest bonds are analyzed to investigate their stability. It is observed that the –CH2–, –CH2–CH2– and –CHCH– groups are effective structural units for improving the stabilities of these derivatives. Considering the detonation performance and the stability, five compounds are screened as the potential candidates for high energy density materials.

  13. Theoretical study of an energetic material di-1H-1,3,4-triazole derivatives

    Institute of Scientific and Technical Information of China (English)

    Hua ZHOU; Zhong-liang MA; Jian-long WANG; Dong WANG

    2014-01-01

    Computations by density functional theory (DFT) method are performed on a series of di-1H-1,3,4-triazole derivatives with different sub-stituents and linkages. The heat of formation (HOF ) is predicted by the designed isodesmic reactions. The predicted results reveal that eN3 and eN]Ne groups are effective structural units for increasing the HOF values of the di-1H-1,3,4-triazole derivatives. The HOMOeLUMO gap is affected by the substituents and linkage groups. Detonation performance is evaluated using the KamleteJacobs approach based on the calculated density and HOF. The results indicate that eNO2, eNF2, eNHe, eNHeNHe and eN]Ne groups are helpful for enhancing the detonation properties of di-1H-1,3,4-triazole derivatives. The bond dissociation energy and bond order of the weakest bonds are analyzed to investigate their stability. It is observed that the eCH2e, eCH2eCH2e and eCH]CHe groups are effective structural units for improving the stabilities of these derivatives. Considering the detonation performance and the stability, five compounds are screened as the potential candidates for high energy density materials.

  14. The Many Faces of FOX-7: A Precursor to High-Performance Energetic Materials.

    Science.gov (United States)

    Gao, Haixiang; Shreeve, Jean'ne M

    2015-05-18

    New derivatives of 1,1-diamino-2, 2-dinitroethene (FOX-7) are reported. These highly oxygen- and nitrogen-rich compounds were fully characterized using IR and multinuclear NMR spectroscopy, elemental analysis (EA), and differential scanning calorimetry (DSC). X-ray structure determination of (E)-1,2-bis{(E)-2-chloro-1-(chloroimino)-2,2-dinitroethyl}diazene) (10), N1, N2-dichloro-1, 2-diazenedicarboximidamide (11), and (E,E)-N,N'-1,2-ethanediylidenebis(2, 2-dinitro-2-chloro-ethanamine) (12) was helpful in their characterization. Heats of formation (HOF) were calculated (Gaussian 03) and combined with experimental densities to estimate the detonation velocities (D) and pressures (P) of the high-energy-density materials (HEDMs) (EXPLO5, v6.01). The compounds exhibit good thermal stability, high density, positive HOF, acceptable oxygen balances, and excellent detonation properties, which often are superior to that of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesis and energetic properties of TAGDNAT: a new high-nitrogen material

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, David E [Los Alamos National Laboratory

    2008-01-01

    This paper describes the synthesis and characterization of Bis-(triaminoguanidinium)3,3'-dinitro5,5'-azo-1,2,4-triazolate (TAGDNAT), a novel high-nitrogen molecule that derives its energy release from both a high heat of formation and intramolecular oxidation reactions. TAGDNAT shows promise as a propellant or explosive ingredient not only due to its high nitrogen content (66.35 wt%) but additionally due to its high hydrogen content (4.34 wt%). This new molecule has been characterized with respect to its morphology, sensitivity properties, explosive and combustion performance. The heat of formation of TAGDNAT was also experimentally determined. The results of these studies show that TAGDNAT has one of the gastest low-pressure burning rates (at 1000 PSI) we have yet measured, 6.79 cm/s at 100 p.s.i. (39% faster than triaminoguanidinium azotetrazolate (TAGzT), a comparable high-nitrogen/high-hydrogen material). Furthermore, its pressure sensitivity is 0.507, a 33% reduction compared to TAGzT.

  16. Evaluating the bulk Lorentz factors of outflow material: lessons learned from the extremely-energetic outburst GRB 160625B

    CERN Document Server

    Wang, Yuan-Zhu; Zhang, Shuai; Liang, Yun-Feng; Jin, Zhi-Ping; He, Hao-Ning; Liao, Neng-Hui; Fan, Yi-Zhong; Wei, Da-Ming

    2016-01-01

    GRB 160625B is an extremely-bright outburst with well-monitored afterglow emission. The geometry-corrected energy is high up to $\\sim 5.2\\times10^{52}$ erg or even $\\sim 8\\times 10^{52}$ erg, rendering it the most energetic GRB prompt emission recorded so far. We analyzed the time-resolved spectra of the prompt emission and found that in some intervals there were likely thermal-radiation components and the high energy emission were characterized by significant cutoff. The bulk Lorentz factors of the outflow material are estimated accordingly. We found out that the Lorentz factors derived in the thermal-radiation model are consistent with the luminosity-Lorentz factor correlation found in other bursts as well as in GRB 090902B for the time-resolved thermal-radiation components. While the spectral cutoff model yields much lower Lorentz factors that are in tension with the constraints set by the electron pair Compoton scattering process. We then suggest that these spectral cutoffs are more likely related to the ...

  17. Eigenvalue analysis and calculations for the deflagration of porous energetic materials in the merged-flame regime

    Energy Technology Data Exchange (ETDEWEB)

    Ilincic, N. [Univ. of California, La Jolla, CA (United States). Dept. of Applied Mechanics and Engineering Sciences; Margolis, S.B. [Sandia National Labs., Livermore, CA (United States)

    1996-07-01

    Analytical and numerical calculations of the structure and burning rate of a deflagrating porous energetic material are presented for the limiting case of merged condensed and gas-phase reaction zones. The reaction scheme is modeled by a global two-step mechanism, applicable to certain types of degraded nitramine propellants and consisting of sequential condensed and gaseous steps. Taking into account important effects due to multiphase flow and exploiting the limit of large activation energies, a theoretical analysis may be developed based on activation-energy asymptotics. For steady, planar deflagration, this leads to an eigenvalue problem for the inner reaction-zone, the solution of which determines the burning rate. Numerical solutions give a reasonably complete description of the dependence of the structure and burning rate on the various parameters in the problem, and show excellent agreement with analytical results that are obtained in a more limited parameter regime in which most of the heat release is produced by the condensed-phase reaction and the porosity of the solid is small. These calculations indicate the significant influences of two-phase flow and the multiphase, multi-step chemistry on the deflagration structure and the burning rate, and thus serve to define an important parameter regime that supports the intrusion of the primary gas flame into the two-phase condensed decomposition region at the propellant surface.

  18. Economic and environmental assessment on the energetic valorization of organic material for a municipality in Quebec, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Morin, Philippe; Marcos, Bernard [Departement de genie chimique et genie biotechnologique, Universite de Sherbrooke, Sherbrooke, Quebec (Canada); Moresoli, Christine [Chemical Engineering Department, University of Waterloo, Waterloo, Ontario (Canada); Laflamme, Claude B. [Laboratoire des technologies de l' energie (LTE), Hydro-Quebec - Institut de recherche, Shawinigan, Quebec (Canada)

    2010-01-15

    Waste-to-energy provides a solution to two problems: waste management and energy generation. An integrated anaerobic waste valorization process is an interesting option, but because of investments cost and low energy value in the province of Quebec, it is hard for a municipality to commit to that solution. This paper investigated the economic possibilities to manage organic material, organic fraction of municipal solid waste, and municipal wastewater sludge by anaerobic digestion for a 150,000 inhabitant municipality, with consideration to energy generation and greenhouse gas emission reduction. Using the biogas to co-generation solution brings a payback time on investment (PBT) of 3.7 years with electricity price at 0.10 $Cdn/kW h. The addition of manure from surrounding farms increases the biogas production by 37%, but increases the PBT to 6.8 years unless the leftover digestate can be used for agronomic valorization; then it becomes economically advantageous. The natural gas purchasing cost is too low to promote the enrichment of biogas into renewable natural gas. However, this scenario has the lowest energetic payback time (3.3 years) and reduces the most greenhouse gas emissions (4261 tCO{sub 2}eq/a). (author)

  19. Proximal Detection of Traces of Energetic Materials with an Eye-Safe UV Raman Prototype Developed for Civil Applications.

    Science.gov (United States)

    Chirico, Roberto; Almaviva, Salvatore; Colao, Francesco; Fiorani, Luca; Nuvoli, Marcello; Schweikert, Wenka; Schnürer, Frank; Cassioli, Luigi; Grossi, Silvana; Murra, Daniele; Menicucci, Ivano; Angelini, Federico; Palucci, Antonio

    2015-12-22

    A new Raman-based apparatus for proximal detection of energetic materials on people, was developed and tested for the first time. All the optical and optoelectronics components of the apparatus, as well as their optical matching, were carefully chosen and designed to respect international eye-safety regulations. In this way, the apparatus is suitable for civil applications on people in public areas such as airports and metro or railway stations. The acquisition software performs the data analysis in real-time to provide a fast response to the operator. Moreover, it allows for deployment of the apparatus either as a stand alone device or as part of a more sophisticated warning system architecture made up of several sensors. Using polyamide as substrate, the apparatus was able to detect surface densities of ammonium nitrate (AN), 2-methyl-1,3,5-trinitrobenzene (TNT), 3-nitrooxy-2,2-bis(nitrooxymethyl)propyl] nitrate (PETN) and urea nitrate (UN) in the range of 100-1000 μg/cm² at a distance of 6.4 m using each time a single laser pulse of 3 mJ/cm². The limit of detection calculated for AN is 289 μg/cm². AN and UN provided the highest percentages of true positives (>82% for surface densities of 100-400 μg/cm² and fingerprints) followed by TNT and PETN (17%-70% for surface densities of 400-1000 μg/cm² and fingerprints).

  20. Proximal Detection of Traces of Energetic Materials with an Eye-Safe UV Raman Prototype Developed for Civil Applications

    Directory of Open Access Journals (Sweden)

    Roberto Chirico

    2015-12-01

    Full Text Available A new Raman-based apparatus for proximal detection of energetic materials on people, was developed and tested for the first time. All the optical and optoelectronics components of the apparatus, as well as their optical matching, were carefully chosen and designed to respect international eye-safety regulations. In this way, the apparatus is suitable for civil applications on people in public areas such as airports and metro or railway stations. The acquisition software performs the data analysis in real-time to provide a fast response to the operator. Moreover, it allows for deployment of the apparatus either as a stand alone device or as part of a more sophisticated warning system architecture made up of several sensors. Using polyamide as substrate, the apparatus was able to detect surface densities of ammonium nitrate (AN, 2-methyl-1,3,5-trinitrobenzene (TNT, 3-nitrooxy-2,2-bis(nitrooxymethylpropyl] nitrate (PETN and urea nitrate (UN in the range of 100–1000 μg/cm2 at a distance of 6.4 m using each time a single laser pulse of 3 mJ/cm2. The limit of detection calculated for AN is 289 μg/cm2. AN and UN provided the highest percentages of true positives (>82% for surface densities of 100–400 μg/cm2 and fingerprints followed by TNT and PETN (17%–70% for surface densities of 400–1000 μg/cm2 and fingerprints.

  1. Evaluating the Bulk Lorentz Factors of Outflow Material: Lessons Learned from the Extremely Energetic Outburst GRB 160625B

    Science.gov (United States)

    Wang, Yuan-Zhu; Wang, Hao; Zhang, Shuai; Liang, Yun-Feng; Jin, Zhi-Ping; He, Hao-Ning; Liao, Neng-Hui; Fan, Yi-Zhong; Wei, Da-Ming

    2017-02-01

    GRB 160625B is an extremely bright outburst with well-monitored afterglow emission. The geometry-corrected energy is high, up to ˜5.2 × 1052 erg or even ˜8 × 1052 erg, rendering it the most energetic GRB prompt emission recorded so far. We analyzed the time-resolved spectra of the prompt emission and found that in some intervals there were likely thermal-radiation components and the high energy emission was characterized by significant cutoff. The bulk Lorentz factors of the outflow material are estimated accordingly. We found out that the Lorentz factors derived in the thermal-radiation model are consistent with the luminosity-Lorentz factor correlation found in other bursts, as well as in GRB 090902B for the time-resolved thermal-radiation components, while the spectral cutoff model yields much lower Lorentz factors that are in tension with the constraints set by the electron pair Compton scattering process. We then suggest that these spectral cutoffs are more likely related to the particle acceleration process and that one should be careful in estimating the Lorentz factors if the spectrum cuts at a rather low energy (e.g., ˜tens of MeV). The nature of the central engine has also been discussed, and a stellar-mass black hole is favored.

  2. SPECTRAL PROPERTIES OF LARGE GRADUAL SOLAR ENERGETIC PARTICLE EVENTS. I. FE, O, AND SEED MATERIAL

    Energy Technology Data Exchange (ETDEWEB)

    Desai, M. I.; Dayeh, M. A.; Ebert, R. W.; Mccomas, D. J.; Schwadron, N. A. [Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States); Mason, G. M. [Johns Hopkins University/Applied Physics Laboratory, Laurel, MD 20723 (United States); Li, G. [CSPAR, University of Alabama in Huntsville, Huntsville, AL 35756 (United States); Cohen, C. M. S.; Mewaldt, R. A. [California Institute of Technology, Pasadena, CA 91125 (United States); Smith, C. W., E-mail: mdesai@swri.edu [Department of Physics and Space Science Center, University of New Hampshire, Durham, NH 03824 (United States)

    2016-01-10

    We have surveyed ∼0.1–100 MeV nucleon{sup −1} O and Fe fluence spectra during 46 isolated, large gradual SEP events observed at ACE during solar cycles 23 and 24. Most SEP spectra are well represented by the four-parameter Band function with a normalization constant, low-energy spectral slope, high-energy spectral slope, and break energy. The O and Fe spectral slopes are similar and most spectra steepen above the break energy, probably due to common acceleration and transport processes affecting different ion species. SEP spectra above the break energies depend on the origin of the seed population; larger contributions of suprathermal flare material result in higher Fe/O ratios and flatter spectra at higher energies. SEP events with steeper O spectra at low energies and higher break energies are associated with slower coronal mass ejections (CMEs), while those associated with fast (>2000 km s{sup −1}) CMEs and ground level enhancements have harder or flatter spectra at low and high energies, and O break energies between ∼1 and 10 MeV nucleon{sup −1}. The latter events are enriched in {sup 3}He and higher-energy Fe, and have Fe spectra that rollover at significantly lower energies compared with O, probably because Fe ions with smaller Q/M ratios can escape from the distant shock more easily than O ions with larger Q/M ratios. We conclude that SEP spectral properties result from many complex and competing effects, namely Q/M-dependent scattering, shock properties, and the origin of the seed populations, all of which must be taken into account to develop a comprehensive picture of CME-driven shock acceleration of large gradual SEP events.

  3. Initial mechanisms for the unimolecular decomposition of electronically excited nitrogen-rich energetic materials with tetrazole rings: 1-DTE, 5-DTE, BTA, and BTH.

    Science.gov (United States)

    Yuan, Bing; Bernstein, Elliot R

    2016-06-21

    Unimolecular decomposition of nitrogen-rich energetic molecules 1,2-bis(1H-tetrazol-1-yl)ethane (1-DTE), 1,2-bis(1H-tetrazol-5-yl)ethane (5-DET), N,N-bis(1H-tetrazol-5-yl)amine (BTA), and 5,5'-bis(tetrazolyl)hydrazine (BTH) has been explored via 283 nm two photon laser excitation. The maximum absorption wavelength in the UV-vis spectra of all four materials is around 186-222 nm. The N2 molecule, with a cold rotational temperature (energetic molecules open at the N1-N2 ring bond with the lowest energy barrier: the C-N bond opening has higher energy barrier than that for any of the N-N ring bonds. Therefore, the tetrazole rings open at their N-N bonds to release N2. The vibrational temperatures of N2 product from all four energetic materials are hot based on theoretical calculations. The different groups (CH2-CH2, NH-NH, and NH) joining the tetrazole rings can cause apparent differences in explosive behavior of 1-DTE, 5-DTE, BTA, and BTH. Conical intersections, non-Born-Oppenheimer interactions, and dynamics are the key features for excited electronic state chemistry of organic molecules, in general, and energetic molecules, in particular.

  4. 45 CFR 12.7 - Applications for surplus real property.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Applications for surplus real property. 12.7 Section 12.7 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION DISPOSAL AND UTILIZATION OF SURPLUS REAL PROPERTY FOR PUBLIC HEALTH PURPOSES § 12.7 Applications for surplus real property. Applications for surplus real...

  5. Experimental measurement of the thermal diffusivity of energetic materials in unsteady regime; Mesure experimentale de la diffusivite thermique des materiaux energetiques en regime instationnaire

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, L.; Lombard, J.M.; Morand, P. [Giat Industries, 18 - Bourges (France); Blaise, B. [Universite d`Orleans, 45 - Orleans (France)

    1996-12-31

    The Fourier conduction law is used in any modeling of thermal aggressions of energetic materials where chemical reaction kinetics and phase transformations interfere. The heat conduction capability of the material is explained by the thermal diffusivity. This work describes the procedure used for the measurement of this parameter according to the experimental constraints linked with the handling of explosive materials. A calculation code allowing the exploitation of measurements is presented. The validation of this procedure and its variability are also described. (J.S.) 3 refs.

  6. Energetic Materials Laboratory

    Science.gov (United States)

    2015-04-30

    reactions with mechanically alloyed Al·Mg powder, Combustion and Flame, (04 2015): 1498. doi: 10.1016/j.combustflame.2014.11.019 Marco A. Machado, Daniel A...Received Paper 5.00 6.00 7.00 8.00 Sergio E. Guerrero, Marco A. Machado, Daniel A. Rodriguez, Edward L. Dreizin, Evgeny Shafirovich. Chemical Gas...Equivalent: Total Number: ...... ...... Sub Contractors (DD882) Names of Personnel receiving masters degrees Names of personnel receiving PHDs Names of other

  7. Polymorphism in Energetic Materials

    Science.gov (United States)

    2008-01-01

    salicylic acid ) was first prepared by Charles Frederic Gerhardt in 1853, a second polymorph of this drug was not discovered until 2005. Studies have...the crystallization conditions post- synthesis were not recorded, reproducing the condi- tions resulting in the analyzed sample was not possible. All

  8. New Trends in Research of Energetic Materials (5th Seminar) Held in Pardubice, Czech Republic on 24-25 Apr 2002

    Science.gov (United States)

    2002-04-01

    of April 2003 in the Aula Magna of our University. Pardubice, March 30’b, 2002 Svatopluk Z e m a n 9 NEW TRENDS IN RESEARCH OF ENERGETIC MATERIALS...perchlorate decomposition. Including a stoichiometric amount of sodium or calcium nitrate in the mixture can solve this problem and then virtually no...spherical geometry, but with the virtual center of initiation located inside the bulk charge. It presents also some peculiarities on the equatorial zone

  9. Comment on the paper "Extensive theoretical studies of a new energetic material: tetrazino-tetrazine-tetraoxide (TTTO)" by Xinli Song, Jicun Li, Hua Hou, and Baoshan Wang.

    Science.gov (United States)

    Jorgensen, Kameron R; Wilson, Angela K

    2012-09-15

    Discrepancies are noted in the implementation and presentation of the ccCA methodology in a previous publication, "Extensive Theoretical Studies of a New Energetic Material: Tetrazino-tetrazine-tetraoxide (TTTO)" by Xinli Song, Jicun Li, Hua Hou, and Baoshan Wang. The enthalpy of formation for TTTO has been re-evaluated using the correct implementation of the ccCA methodology, demonstrating the results to be comparable to those of other ab initio composite methods. Copyright © 2012 Wiley Periodicals, Inc.

  10. Compatibility study of trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin (TNAD) with some energetic components and inert materials.

    Science.gov (United States)

    Yan, Qi-Long; Xiao-Jiang, Li; La-Ying, Zhang; Ji-Zhen, Li; Hong-Li, Li; Zi-Ru, Liu

    2008-12-30

    The compatibility of trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin (TNAD) with some energetic components and inert materials of solid propellants was studied by using the pressure DSC method where, cyclotetramethylenetetranitroamine (HMX), cyclotrimethylenetrinitramine (RDX), 1,4-dinitropiperazine (DNP), 1.25/1-NC/NG mixture, lead 3-nitro-1,2,4-triazol-5-onate (NTO-Pb), aluminum powder (Al, particle size=13.6microm) and N-nitrodihydroxyethylaminedinitrate (DINA) were used as energetic components and polyethylene glycol (PEG), polyoxytetramethylene-co-oxyethylene (PET), addition product of hexamethylene diisocyanate and water (N-100), 2-nitrodianiline (2-NDPA), 1,3-dimethyl-1,3-diphenyl urea (C2), carbon black (C.B.), aluminum oxide (Al2O3), cupric 2,4-dihydroxy-benzoate (beta-Cu), cupric adipate (AD-Cu) and lead phthalate (phi-Pb) were used as inert materials. It was concluded that the binary systems of TNAD with NTO-Pb, RDX, PET and Al powder are compatible, and systems of TNAD with DINA and HMX are slightly sensitive, and with 2-NDPA, phi-Pb, beta-Cu, AD-Cu and Al2O3 are sensitive, and with PEG, N-100, C2 and C.B. are incompatible. The impact and friction sensitivity data of the TNAD and TNAD in combination with the other energetic materials under present study was also obtained, and there was no consequential affiliation between sensitivity and compatibility.

  11. Nonadiabatic reaction of energetic molecules.

    Science.gov (United States)

    Bhattacharya, Atanu; Guo, Yuanqing; Bernstein, Elliot R

    2010-12-21

    Energetic materials store a large amount of chemical energy that can be readily converted into mechanical energy via decomposition. A number of different ignition processes such as sparks, shocks, heat, or arcs can initiate the excited electronic state decomposition of energetic materials. Experiments have demonstrated the essential role of excited electronic state decomposition in the energy conversion process. A full understanding of the mechanisms for the decomposition of energetic materials from excited electronic states will require the investigation and analysis of the specific topography of the excited electronic potential energy surfaces (PESs) of these molecules. The crossing of multidimensional electronic PESs creates a funnel-like topography, known as conical intersections (CIs). CIs are well established as a controlling factor in the excited electronic state decomposition of polyatomic molecules. This Account summarizes our current understanding of the nonadiabatic unimolecular chemistry of energetic materials through CIs and presents the essential role of CIs in the determination of decomposition pathways of these energetic systems. Because of the involvement of more than one PES, a decomposition process involving CIs is an electronically nonadiabatic mechanism. Based on our experimental observations and theoretical calculations, we find that a nonadiabatic reaction through CIs dominates the initial decomposition process of energetic materials from excited electronic states. Although the nonadiabatic behavior of some polyatomic molecules has been well studied, the role of nonadiabatic reactions in the excited electronic state decomposition of energetic molecules has not been well investigated. We use both nanosecond energy-resolved and femtosecond time-resolved spectroscopic techniques to determine the decomposition mechanism and dynamics of energetic species experimentally. Subsequently, we employ multiconfigurational methodologies (such as, CASSCF

  12. Parameterizing complex reactive force fields using multiple objective evolutionary strategies (MOES): Part 2: transferability of ReaxFF models to C-H-N-O energetic materials.

    Science.gov (United States)

    Rice, Betsy M; Larentzos, James P; Byrd, Edward F C; Weingarten, N Scott

    2015-02-10

    The Multiple Objective Evolutionary Strategies (MOES) algorithm was used to parametrize force fields having the form of the reactive models ReaxFF (van Duin, A. C. T.; Dasgupta, S.; Lorant, F.; Goddard, W. A. J. Phys. Chem. A 2001, 105, 9396) and ReaxFF-lg (Liu, L.; Liu, Y.; Zybin, S. V.; Sun, H.; Goddard, W. A. J. Phys. Chem. A 2011, 115, 11016) in an attempt to produce equal or superior ambient state crystallographic structural results for cyclotrimethylene trinitramine (RDX). Promising candidates were then subjected to molecular dynamics simulations of five other well-known conventional energetic materials to assess the degree of transferability of the models. Two models generated through the MOES search were shown to have performance better than or as good as ReaxFF-lg in describing the six energetic systems modeled. This study shows that MOES is an effective and efficient method to develop complex force fields.

  13. Heat release mechanism of energetics

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, N. [Third Research Center, Technical Research and development Institute (Japan)

    1996-12-31

    Determination of the heat release mechanism of energetic materials is a major subject of combustion study. In order to elucidate the combustion process of various types of energetic materials a generalized combustion wave structure was proposed and the heat release process was discussed. The heat release process was significantly different between the physical structures of the materials: homogeneous and heterogeneous materials. The thermal structure of an azide polymer was evaluated to demonstrate the heat release mechanism. (author) 6 refs.

  14. 3,3'-Dinitroamino-4,4'-azoxyfurazan and its derivatives: an assembly of diverse N-O building blocks for high-performance energetic materials.

    Science.gov (United States)

    Zhang, Jiaheng; Shreeve, Jean'ne M

    2014-03-19

    On the basis of a design strategy that results in the assembly of diverse N-O building blocks leading to energetic materials, 3,3'-dinitroamino-4,4'-azoxyfurazan and its nitrogen-rich salts were obtained and fully characterized via spectral and elemental analyses. Oxone (potassium peroxomonosulfate) is an efficient oxidizing agent for introducing the azoxy N-oxide functionality into the furazan backbone, giving a straightforward and low-cost synthetic route. On the basis of heats of formation calculated with Gaussian 03 and combined with experimentally determined densities, energetic properties (detonation velocity, pressure and specific impulse) were obtained using the EXPLO v6.01 program. These new molecules exhibit high density, moderate to good thermal stability, acceptable impact and friction sensitivities, and excellent detonation properties, which suggest potential applications as energetic materials. Interestingly, 3,3'-dinitroamino-4,4'-azoxyfurazan (4) has the highest calculated crystal density of 2.02 g cm(-3) at 173 K (gas pycnometer measured density is 1.96 g cm(-3) at 298 K) for N-oxide energetic compounds yet reported. Another promising compound is the hydroxylammonium salt (6), which has four different kinds of N-O moieties and a detonation performance superior to those of 1,3,5,7-tetranitrotetraazacyclooctane (HMX), and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclododecane (CL-20). Furthermore, computational results, viz., NBO charges and ESP, also support the superior qualities of the newly prepared compounds and the design strategy.

  15. 从生物质到火炸药:含能材料的生物合成%From Biomass to Explosives:Biosynthesis of Energetic Materials

    Institute of Scientific and Technical Information of China (English)

    咸漠; 曹玉锦

    2015-01-01

    The traditional chemical preparation processes of energetic materials have many drawbacks:insufficient supply of raw materials,severe environmental pollutions,diverse by-products and poor manufacturing safety.Bio-synthesis can overcome the disadvantages of traditional chemical routes,which is required by the development of this field.This review summarized recent advances in biological production of energetic materials and their precursors, with special emphasis on the biosynthetic pathway of polyols and aromatic compounds and the current production levels.The bio-nitrification technology was discussed and the future trends of bio-based energetic materials were also put forward,with 49 references.%传统的化学法制备含能材料普遍存在原料供给不足、环境污染严重、副产物多、过程安全性差的问题。生物合成技术能够克服传统化学合成技术所存在的缺点,是含能材料制备领域技术变革的共性迫切需求。本文综述了生物法制备含能材料及其前驱体的最新进展,重点介绍了多元醇类和芳香族类含能材料前驱体的合成路线及目前的技术水平,探讨了生物硝化技术的现状,对未来生物法制备含能材料的发展方向进行了展望。附参考文献49篇。

  16. Numerical Modeling and Experimental Validation by Calorimetric Detection of Energetic Materials Using Thermal Bimorph Microcantilever Array: A Case Study on Sensing Vapors of Volatile Organic Compounds (VOCs).

    Science.gov (United States)

    Kang, Seok-Won; Fragala, Joe; Banerjee, Debjyoti

    2015-08-31

    Bi-layer (Au-Si₃N₄) microcantilevers fabricated in an array were used to detect vapors of energetic materials such as explosives under ambient conditions. The changes in the bending response of each thermal bimorph (i.e., microcantilever) with changes in actuation currents were experimentally monitored by measuring the angle of the reflected ray from a laser source used to illuminate the gold nanocoating on the surface of silicon nitride microcantilevers in the absence and presence of a designated combustible species. Experiments were performed to determine the signature response of this nano-calorimeter platform for each explosive material considered for this study. Numerical modeling was performed to predict the bending response of the microcantilevers for various explosive materials, species concentrations, and actuation currents. The experimental validation of the numerical predictions demonstrated that in the presence of different explosive or combustible materials, the microcantilevers exhibited unique trends in their bending responses with increasing values of the actuation current.

  17. Trade Surplus Drops,more Rebate Cutting?

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Almost everyone was surprised when the China Customs released the latest export and import statistics on April, 10th:6.87 billion US dollars,China’s favorable balance of trade in March.But only one month earlier,the trade surplus

  18. The (Surplus) Value of Scientific Communication.

    Science.gov (United States)

    Frohlich, Gerhard

    1996-01-01

    Discusses research on scientific communication. Topics include theory-less and formal technical/natural scientific models of scientific communication; social-scientific, power-sensitive models; the sociology of scientific communication; sciences as fields of competition; fraud and deception; potential surplus value across subject information…

  19. Double-Blade Sword: Trade Surplus

    Institute of Scientific and Technical Information of China (English)

    Eva

    2007-01-01

    @@ In the famous animation Saint Saiya,the golden saint of Gemini, Saga,Left audience the deepest impression of being an angel at one side and a demon at the other.So does China's trade surplus.It is a double-blade sword.

  20. Overview of surplus weapons plutonium disposition

    Energy Technology Data Exchange (ETDEWEB)

    Rudy, G.

    1996-05-01

    The safe disposition of surplus weapons useable plutonium is a very important and urgent task. While the functions of long term storage and disposition directly relate to the Department`s weapons program and the environmental management program, the focus of this effort is particularly national security and nonproliferation.

  1. 45 CFR 12.8 - Assignment of surplus real property.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Assignment of surplus real property. 12.8 Section 12.8 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION DISPOSAL AND UTILIZATION OF SURPLUS REAL PROPERTY FOR PUBLIC HEALTH PURPOSES § 12.8 Assignment of surplus real property. (a) Notice of interest in a specific...

  2. 26 CFR 1.815-3 - Shareholders surplus account.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 8 2010-04-01 2010-04-01 false Shareholders surplus account. 1.815-3 Section 1... (CONTINUED) INCOME TAXES Distributions to Shareholders § 1.815-3 Shareholders surplus account. (a) In general... maintain a shareholders surplus account. This account shall be established as of January 1, 1958, and...

  3. Time resolved long-wave infrared laser-induced breakdown spectroscopy of inorganic energetic materials by a rapid mercury-cadmium-telluride linear array detection system.

    Science.gov (United States)

    Yang, Clayton S-C; Jin, Feng; Trivedi, Sudhir; Brown, Eiei; Hommerich, Uwe; Khurgin, Jacob B; Samuels, Alan C

    2016-11-10

    A mercury-cadmium-telluride linear array detection system that is capable of rapidly capturing (∼1-5 s) a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared region (LWIR, ∼5.6-10 μm) was recently developed. Similar to the conventional ultraviolet-visible LIBS, a broadband emission spectrum of condensed phase samples covering a 5.6-10 μm spectral region could be acquired from just a single laser-induced micro-plasma. Intense and distinct atomic and molecular LWIR emission signatures of various solid inorganic energetic materials were readily observed and identified. Time resolved emissions of inorganic energetic materials were studied to assess the lifetimes of LWIR atomic and molecular emissions. The LWIR atomic emissions generally decayed fast on the scale of tens of microseconds, while the molecular signature emissions from target molecules excited by the laser-induced plasma appeared to be very long lived (∼millisecond). The time dependence of emission intensities and peak wavelengths of these signature emissions gave an insight into the origin and the environment of the emitting target species. Moreover, observed lifetimes of these LWIR emissions can be utilized for further optimization of the signal quality and detection limits of this technique.

  4. Stabilization effects of surplus soft clay with cement and GBF slag

    Institute of Scientific and Technical Information of China (English)

    LU Jiang; Chirdchanin MODMOLTIN; Katsutada ONITSUKA

    2004-01-01

    Utilization of industrial waste and surplus construction soft clay as construction material was recommended, and many attempts at geotechnical waste utilization were undertaken. This study aimed at the application of cement and a kind of industrial wastes, i.e. granulated blast furnace slag, on stabilization of surplus soft clay. The results showed that the cement and slag can successfully stabilize Ariake clays even though this high organic clay fails to be stabilized by lime and cement. Addition of slag in cement for stabilization induces higher strength than cement alone for longer curing time. The application of the cement with slag is more suitable than cement alone for stabilization because of economical consideration.

  5. Stab Sensitivity of Energetic Nanolaminates

    Energy Technology Data Exchange (ETDEWEB)

    Gash, A; Barbee, T; Cervantes, O

    2006-05-22

    This work details the stab ignition, small-scale safety, and energy release characteristics of bimetallic Al/Ni(V) and Al/Monel energetic nanolaminate freestanding thin films. The influence of the engineered nanostructural features of the energetic multilayers is correlated with both stab initiation and small-scale energetic materials testing results. Structural parameters of the energetic thin films found to be important include the bi-layer period, total thickness of the film, and presence or absence of aluminum coating layers. In general the most sensitive nanolaminates were those that were relatively thick, possessed fine bi-layer periods, and were not coated. Energetic nanolaminates were tested for their stab sensitivity as freestanding continuous parts and as coarse powders. The stab sensitivity of mock M55 detonators loaded with energetic nanolaminate was found to depend strongly upon both the particle size of the material and the configuration of nanolaminate material, in the detonator cup. In these instances stab ignition was observed with input energies as low as 5 mJ for a coarse powder with an average particle dimension of 400 {micro}m. Selected experiments indicate that the reacting nanolaminate can be used to ignite other energetic materials such as sol-gel nanostructured thermite, and conventional thermite that was either coated onto the multilayer substrate or pressed on it. These results demonstrate that energetic nanolaminates can be tuned to have precise and controlled ignition thresholds and can initiate other energetic materials and therefore are viable candidates as lead-free impact initiated igniters or detonators.

  6. Initial mechanisms for the decomposition of electronically excited energetic materials: 1,5'-BT, 5,5'-BT, and AzTT.

    Science.gov (United States)

    Yuan, Bing; Yu, Zijun; Bernstein, Elliot R

    2015-03-28

    Decomposition of nitrogen-rich energetic materials 1,5'-BT, 5,5'-BT, and AzTT (1,5'-Bistetrazole, 5,5'-Bistetrazole, and 5-(5-azido-(1 or 4)H-1,2,4-triazol-3-yl)tetrazole, respectively), following electronic state excitation, is investigated both experimentally and theoretically. The N2 molecule is observed as an initial decomposition product from the three materials, subsequent to UV excitation, with a cold rotational temperature (materials are explored at the complete active space self-consistent field (CASSCF) level. Potential energy surface calculations at the CASSCF(12,8)/6-31G(d) level illustrate that conical intersections play an essential role in the decomposition mechanism. Electronically excited S1 molecules can non-adiabatically relax to their ground electronic states through (S1/S0)CI conical intersections. 1,5'-BT and 5,5'-BT materials have several (S1/S0)CI conical intersections between S1 and S0 states, related to different tetrazole ring opening positions, all of which lead to N2 product formation. The N2 product for AzTT is formed primarily by N-N bond rupture of the -N3 group. The observed rotational energy distributions for the N2 products are consistent with the final structures of the respective transition states for each molecule on its S0 potential energy surface. The theoretically derived vibrational temperature of the N2 product is high, which is similar to that found for energetic salts and molecules studied previously.

  7. The Interstellar Boundary Explorer (IBEX): Tracing the Interaction between the Heliosphere and Surrounding Interstellar Material with Energetic Neutral Atoms

    CERN Document Server

    Frisch, Priscilla C

    2010-01-01

    The Interstellar Boundary Explorer (IBEX) mission is exploring the frontiers of the heliosphere where energetic neutral atoms (ENAs) are formed from charge exchange between interstellar neutral hydrogen atoms and solar wind ions and pickup ions. The geography of this frontier is dominated by an unexpected nearly complete arc of ENA emission, now known as the IBEX 'Ribbon'. While there is no consensus agreement on the Ribbon formation mechanism, it seems certain this feature is seen for sightlines that are perpendicular to the interstellar magnetic field as it drapes over the heliosphere. At the lowest energies, IBEX also measures the flow of interstellar H, He, and O atoms through the inner heliosphere. The asymmetric helium profile suggests that a secondary flow of helium is present, such as would be expected if some fraction of helium is lost through charge exchange in the heliosheath regions. The detailed spectra characterized by the ENAs provide time-tagged samples of the energy distributions of the under...

  8. Unimolecular decomposition of tetrazine-N-oxide based high nitrogen content energetic materials from excited electronic states

    Science.gov (United States)

    Bhattacharya, A.; Guo, Y. Q.; Bernstein, E. R.

    2009-11-01

    Unimolecular excited electronic state decomposition of novel high nitrogen content energetic molecules, such as 3,3'-azobis(6-amino-1,2,4,5-tetrazine)-mixed N-oxides (DAATO3.5), 3-amino-6-chloro-1,2,4,5-tetrazine-2,4-dioxide (ACTO), and 3,6-diamino-1,2,4,5-tetrazine-1,4-dioxde (DATO), is investigated. Although these molecules are based on N-oxides of a tetrazine aromatic heterocyclic ring, their decomposition behavior distinctly differs from that of bare tetrazine, in which N2 and HCN are produced as decomposition products through a concerted dissociation mechanism. NO is observed to be an initial decomposition product from all tetrazine-N-oxide based molecules from their low lying excited electronic states. The NO product from DAATO3.5 and ACTO is rotationally cold (20 K) and vibrationally hot (1200 K), while the NO product from DATO is rotationally hot (50 K) and vibrationally cold [only the (0-0) vibronic transition of NO is observed]. DAATO3.5 and ACTO primarily differ from DATO with regard to molecular structure, by the relative position of oxygen atom attachment to the tetrazine ring. Therefore, the relative position of oxygen in tetrazine-N-oxides is proposed to play an important role in their energetic behavior. N2O is ruled out as an intermediate precursor of the NO product observed from all three molecules. Theoretical calculations at CASMP2/CASSCF level of theory predict a ring contraction mechanism for generation of the initial NO product from these molecules. The ring contraction occurs through an (S1/S0)CI conical intersection.

  9. Keeping Food Alive: Surplus Food Management

    OpenAIRE

    Sedef Sert; Paola Garrone; Marco Melacini

    2014-01-01

    This paper is motivated by the paradoxical reality of food waste in a world of food insecurity, which is an important issue even for developed countries. Today, in Europe,nearly 43.6 million people are estimated to be food insecure, while European countries are reported to generate 179 kg per capita of food waste every year. Previous empirical studies highlight the potential of surplus food management, i.e. managerial processes and practices that strike a balance between social, environmental...

  10. Some molecular/crystalline factors that affect the sensitivities of energetic materials: molecular surface electrostatic potentials, lattice free space and maximum heat of detonation per unit volume.

    Science.gov (United States)

    Politzer, Peter; Murray, Jane S

    2015-02-01

    We discuss three molecular/crystalline properties that we believe to be among the factors that influence the impact/shock sensitivities of energetic materials (i.e., their vulnerabilities to unintended detonation due to impact or shock). These properties are (a) the anomalously strong positive electrostatic potentials in the central regions of their molecular surfaces, (b) the free space per molecule in their crystal lattices, and (c) their maximum heats of detonation per unit volume. Overall, sensitivity tends to become greater as these properties increase; however these are general trends, not correlations. Nitramines are exceptions in that their sensitivities show little or no variation with free space in the lattice and heat of detonation per unit volume. We outline some of the events involved in detonation initiation and show how the three properties are related to different ones of these events.

  11. Numerical Modeling and Experimental Validation by Calorimetric Detection of Energetic Materials Using Thermal Bimorph Microcantilever Array: A Case Study on Sensing Vapors of Volatile Organic Compounds (VOCs)

    Science.gov (United States)

    Kang, Seok-Won; Fragala, Joe; Banerjee, Debjyoti

    2015-01-01

    Bi-layer (Au-Si3N4) microcantilevers fabricated in an array were used to detect vapors of energetic materials such as explosives under ambient conditions. The changes in the bending response of each thermal bimorph (i.e., microcantilever) with changes in actuation currents were experimentally monitored by measuring the angle of the reflected ray from a laser source used to illuminate the gold nanocoating on the surface of silicon nitride microcantilevers in the absence and presence of a designated combustible species. Experiments were performed to determine the signature response of this nano-calorimeter platform for each explosive material considered for this study. Numerical modeling was performed to predict the bending response of the microcantilevers for various explosive materials, species concentrations, and actuation currents. The experimental validation of the numerical predictions demonstrated that in the presence of different explosive or combustible materials, the microcantilevers exhibited unique trends in their bending responses with increasing values of the actuation current. PMID:26334276

  12. Numerical Modeling and Experimental Validation by Calorimetric Detection of Energetic Materials Using Thermal Bimorph Microcantilever Array: A Case Study on Sensing Vapors of Volatile Organic Compounds (VOCs

    Directory of Open Access Journals (Sweden)

    Seok-Won Kang

    2015-08-01

    Full Text Available Bi-layer (Au-Si3N4 microcantilevers fabricated in an array were used to detect vapors of energetic materials such as explosives under ambient conditions. The changes in the bending response of each thermal bimorph (i.e., microcantilever with changes in actuation currents were experimentally monitored by measuring the angle of the reflected ray from a laser source used to illuminate the gold nanocoating on the surface of silicon nitride microcantilevers in the absence and presence of a designated combustible species. Experiments were performed to determine the signature response of this nano-calorimeter platform for each explosive material considered for this study. Numerical modeling was performed to predict the bending response of the microcantilevers for various explosive materials, species concentrations, and actuation currents. The experimental validation of the numerical predictions demonstrated that in the presence of different explosive or combustible materials, the microcantilevers exhibited unique trends in their bending responses with increasing values of the actuation current.

  13. Bioaccumulation of chemical warfare agents, energetic materials, and metals in deep-sea shrimp from discarded military munitions sites off Pearl Harbor

    Science.gov (United States)

    Koide, Shelby; Silva, Jeff A. K.; Dupra, Vilma; Edwards, Margo

    2016-06-01

    The bioaccumulation of munitions-related chemicals at former military deep-water disposal sites is poorly understood. This paper presents the results of human-food-item biota sampling to assess the potential for bioaccumulation of chemical warfare agents, energetic materials, arsenic, and additional munitions-related metals in deep-sea shrimp tissue samples collected during the Hawai'i Undersea Military Munitions Assessment (HUMMA) project to date. The HUMMA investigation area is located within a former munitions sea-disposal site located south of Pearl Harbor on the island of O'ahu, Hawai'i, designated site Hawaii-05 (HI-05) by the United States Department of Defense. Indigenous deep-sea shrimp (Heterocarpus ensifer) were caught adjacent to discarded military munitions (DMM) and at control sites where munitions were absent. Tissue analysis results showed that chemical warfare agents and their degradation products were not present within the edible portions of these samples at detectable concentrations, and energetic materials and their degradation products were detected in only a few samples at concentrations below the laboratory reporting limits. Likewise, arsenic, copper, and lead concentrations were below the United States Food and Drug Administration's permitted concentrations of metals in marine biota tissue (if defined), and their presence within these samples could not be attributed to the presence of DMM within the study area based on a comparative analysis of munitions-adjacent and control samples collected. Based on this current dataset, it can be concluded that DMM existing within the HUMMA study area is not contributing to the bioaccumulation of munitions-related chemicals for the biota species investigated to date.

  14. ReaxFF-lg: correction of the ReaxFF reactive force field for London dispersion, with applications to the equations of state for energetic materials.

    Science.gov (United States)

    Liu, Lianchi; Liu, Yi; Zybin, Sergey V; Sun, Huai; Goddard, William A

    2011-10-13

    The practical levels of density functional theory (DFT) for solids (LDA, PBE, PW91, B3LYP) are well-known not to account adequately for the London dispersion (van der Waals attraction) so important in molecular solids, leading to equilibrium volumes for molecular crystals ~10-15% too high. The ReaxFF reactive force field is based on fitting such DFT calculations and suffers from the same problem. In the paper we extend ReaxFF by adding a London dispersion term with a form such that it has low gradients (lg) at valence distances leaving the already optimized valence interactions intact but behaves as 1/R(6) for large distances. We derive here these lg corrections to ReaxFF based on the experimental crystal structure data for graphite, polyethylene (PE), carbon dioxide, and nitrogen and for energetic materials: hexahydro-1,3,5-trinitro-1,3,5-s-triazine (RDX), pentaerythritol tetranitrate (PETN), 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), and nitromethane (NM). After this dispersion correction the average error of predicted equilibrium volumes decreases from 18.5 to 4.2% for the above systems. We find that the calculated crystal structures and equation of state with ReaxFF-lg are in good agreement with experimental results. In particular, we examined the phase transition between α-RDX and γ-RDX, finding that ReaxFF-lg leads to excellent agreement for both the pressure and volume of this transition occurring at ~4.8 GPa and ~2.18 g/cm(3) density from ReaxFF-lg vs 3.9 GPa and ~2.21 g/cm(3) from experiment. We expect ReaxFF-lg to improve the descriptions of the phase diagrams for other energetic materials.

  15. Savannah River Site Surplus Facilities Available for Reuse

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, R.M.; Owens, M.B.; Lentz, D.W.

    1995-09-14

    The purpose of this document is to provide a current, centralized list of Savannah River Site facilities, which are surplus and available for reuse. These surplus facilities may be made available for other DOE site missions, commercial economic development reuse, or other governmental reuse. SRS procedures also require that before new construction can be approved, available surplus facilities are screened for possible reuse in lieu of the proposed new construction.

  16. 1,2,3-Triazolo[4,5,-e]furazano[3,4,-b]pyrazine 6-oxide--a fused heterocycle with a roving hydrogen forms a new class of insensitive energetic materials.

    Science.gov (United States)

    Thottempudi, Venugopal; Yin, Ping; Zhang, Jiaheng; Parrish, Damon A; Shreeve, Jean'ne M

    2014-01-01

    The straightforward synthesis and energetic properties of a new class of energetic materials, 1,2,3-triazolo- [4,5-e]furazano[3,4-b]pyrazine 6-oxide and its energetic salts are described. They were characterized by IR and multinuclear NMR spectroscopy, elemental analysis, differential scanning calorimetry, and single-crystal X-ray diffraction are given. The X-ray structures show that in the title compound, the hydrogen atom is bonded to the nitrogen in the pyrazine ring; however, in the salts, the negative charge is associated with the triazole nitrogen. Heats of formation for all compounds were calculated with the G2 method and then combined with experimentally determined densities to obtain detonation pressures (P) and velocities (D) by using EXPLO5 program. These new materials exhibit good densities and thermal stabilities, high heats of formation, acceptable detonation properties, and are insensitive to impact.

  17. Water decontamination via the removal of Pb (II) using a new generation of highly energetic surface nano-material: Co(+2)Mo(+6) LDH.

    Science.gov (United States)

    Mostafa, Mohsen S; Bakr, Al-Sayed A; El Naggar, Ahmed M A; Sultan, El-Sayed A

    2016-01-01

    CoMo(CO3(2-)) layered double hydroxide of a highly energetic surface, as a new LDH consisting of divalent and hexavalent cations (M(+2)/M(+6)-LDH), was prepared by a homogeneous co-precipitation method. The structure and morphology of the prepared material was confirmed by several analytical techniques namely; X-ray diffraction analysis (XRD), X-ray fluorescence (XRF), Fourier transform infra-red (FT-IR) spectroscopy, differential scanning calorimetry and thermal gravimetric analysis (DSC-TGA), N2 adsorption-desorption isotherm and scanning electron microscope (SEM). The highly energetic surface of the prepared LDH was demonstrated via the X-ray photoelectron spectroscopy (XPS). The surface energy is due to the formation of +4 surface charges in the brucite layer between Co(+2) and Mo(+6). The prepared LDH was applied as a novel adsorbent for the removal of Pb (II) from its aqueous solution at different experimental conditions of time, temperature and initial Pb (II) concentrations. The change of the Pb (II) concentrations; due to adsorption, was monitored by atomic absorption spectrophotometer (AAS). The maximum uptake of Pb (II) by the Co Mo LDH was (73.4 mg/g) at 298 K. The Pb (II) adsorption was found to follow Langmuir isotherm and pseudo second order model. The adsorption process was spontaneous and endothermic. The interference of other cations on the removal of the Pb (II) was studied. Na(+) and K(+) were found to increase the adsorption capacity of the Co Mo LDH toward Pb (II) while it was slightly decreased by the presence of Mn(+2) and Cu(+2). The synthesized LDH showed a great degree of recoverability (7 times) while completely conserving its parental morphology and adsorption capacity. The mechanism of the lead ions removal had exhibited more reliability through a surface adsorption by the coordination between the Mo(+6) of the brucite layers and the oxygen atoms of the nitrates counter ions.

  18. 绝热加速量热仪表征含能材料热感度的探讨%Thermal Sensitivity of Energetic Materials Characterized by Accelerating Rate Calorimeter(ARC)

    Institute of Scientific and Technical Information of China (English)

    刘颖; 杨茜; 陈利平; 何中其; 陆燕; 陈网桦

    2011-01-01

    对现有的固体含能材料热感度表征方法进行了简述,并针对现有表征方法无法适用于液态含能材料热感度测试的局限性,提出了采用绝热加速量热仪( ARC)表征含能材料热感度的方法.用ARC测试了4种固体含能材料太安(PETN)、黑索今(RDX)、奥克托今(HMX)、梯恩梯(TNT)以及2种液态含能材料硝基乙烷(NE)、硝酸异辛酯(EHN)的绝热分解过程,根据所得热动力学数据计算得出了这些被测试样不同爆炸延滞期对应的爆发点.就4种固体含能材料而言,ARC测试得到的热感度排序为PETN >RDX >HMX >TNT,此结果与传统的伍德合金浴法的测试结论一致,认为ARC可以应用于固体及液态含能材料的热感度测试.6种被测试样的热感度排序为EHN>PETN >RDX>HMX>TNT>NE.%Traditional test methods for thermal sensitivity of solid energetic materials were summarized. Aiming at the limitation of the fact that these methods cannot be applied to liquid energetic materials, a method using Accelerating Rate Calorimeter (ARC) to test thermal sensitivity of energetic materials was put forward. The decompositions of four solid explosives Pentaerythritol tetranitrate ( PETN ), Hexogen (RDX), Octogen (HMX), 2,4,6-Trinitrotoluene (TNT) and two liquid energetic materials Nitroethane (NE), 2-Ethylhexyl nitrate (EHN) were studied by ARC. Kinetic and thermodynamics parameters were calculated and analyzed. Temperature corresponding different time to maximum rate under adiabatic condition (0) was calculated. Thermal sensitivity of four solid energetic materials is PETN > RDX >HMX >TNT, which is consistent with the conclusion obtained by the traditional Wood's alloy bath method, therefore ARC can be employed to the test of the thermal sensitivity of both solid and liquid energetic material. The thermal sensitivity order of six energetic materials from high to low is EHN >PETN >RDX >HMX >TNT>NE.

  19. 含能材料物理化学性能理论预估研究进展%Research Progress in Theoretical Prediction of Physicochemical Properties for Energetic Materials

    Institute of Scientific and Technical Information of China (English)

    严启龙; 宋振伟; 安亭; 张晓宏; 赵凤起

    2016-01-01

    从含能材料领域的最近发展成果出发,讨论了该领域的主要研究方向,重点论述了当前含能材料物理化学性能理论预估的最新成果,主要包括量子化学、分子动力学或者半经验QSPR建模的方法预估含能材料的感度、燃烧爆轰性能、反应活性、固化机制与力学性能的研究进展.总结了目前存在的主要技术壁垒,包括缺乏完备统一的含能材料性能标准实验数据库,没有自主知识产权的商业化含能材料性能计算软件,且国际上商业软件对含能材料的物理化学性能的可靠预测仅局限于爆轰性能和燃烧性能.文献调研表明,我国需要进一步加强该领域研究,最终建立一个能评价含能材料性能与安全的综合软件平台.附参考文献90篇.%Starting from the related achievements of recent development in the field of energetic materials, the main research direction in this field was discussed, and the latest achievements of theoretical prediction of the physicochemical properties of energetic materials were described in particular, mainly including quantum chemistry, molecular dynamics or semi empirical QSPR modeling approaches to predict the research progress in sensitivity, combustion and detonation performances, reaction activity, curing mechanism and mechanical properties of energetic materials.The main technical barriers existed at present were summarized, including the lack of complete and unified standard experimental database on performances of energetic materials, no commercial software with independent intellectual property rights to calculate the energetic material properties, and international commercial software with reliable predictors of physical and chemical properties of energetic materials is limited to the detonation performance and combustion performance. Literature research shows that China needs to further strengthen the research in this field, and finally build a comprehensive software

  20. Synthesis and Characterization of 2,2'-Dinitramino-5,5'-bi(1-oxa-3,4-diazole) and Derivatives as Economic and Highly Dense Energetic Materials.

    Science.gov (United States)

    Hermann, Tobias S; Karaghiosoff, Konstantin; Klapötke, Thomas M; Stierstorfer, Jörg

    2017-09-07

    2,2'-Dinitramino-5,5'-bi(1-oxa-3,4-diazole) (2) is a new highly energetic material with superior calculated detonation performance in comparison to cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX) and penta-erythritoltetranitrate (PETN) and can be prepared by an economical and practical two-step synthesis. The starting material 2,2'-diamino-5,5'-bi(1-oxa-3,4-diazole) (1) is synthesized by the reaction of oxalyl dihydrazide with cyanogen bromide. Nitration of 1 yields the title compound in perfect yield and purity. The combination of its high density of 1.986 g cm(-3) , the positive heat of formation (+190 kJ mol(-1) ), and a slightly positive oxygen balance (+6.2 %) results in ideal calculated detonation parameters (e.g. detonation velocity 9296 m s(-1) ). The sensitivities toward impact and friction can be adjusted by deprotonation and formation of corresponding nitrogen-rich salts, for example, ammonium (3), hydroxylammonium (4), and guanidinium (5) salts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Radiation Engineering Analysis of Shielding Materials to Assess Their Ability to Protect Astronauts in Deep Space From Energetic Particle Radiation

    Science.gov (United States)

    Singleterry, R. C.

    2013-01-01

    An analysis is performed on four typical materials (aluminum, liquid hydrogen, polyethylene, and water) to assess their impact on the length of time an astronaut can stay in deep space and not exceed a design basis radiation exposure of 150 mSv. A large number of heavy lift launches of pure shielding mass are needed to enable long duration, deep space missions to keep astronauts at or below the exposure value with shielding provided by the vehicle. Therefore, vehicle mass using the assumptions in the paper cannot be the sole shielding mechanism for long duration, deep space missions. As an example, to enable the Mars Design Reference Mission 5.0 with a 400 day transit to and from Mars, not including the 500 day stay on the surface, a minimum of 24 heavy lift launches of polyethylene at 89,375 lbm (40.54 tonnes) each are needed for the 1977 galactic cosmic ray environment. With the assumptions used in this paper, a single heavy lift launch of water or polyethylene can protect astronauts for a 130 day mission before exceeding the exposure value. Liquid hydrogen can only protect the astronauts for 160 days. Even a single launch of pure shielding material cannot protect an astronaut in deep space for more than 180 days using the assumptions adopted in the analysis. It is shown that liquid hydrogen is not the best shielding material for the same mass as polyethylene for missions that last longer than 225 days.

  2. Radiation Engineering Analysis of Shielding Materials to Assess Their Ability to Protect Astronauts in Deep Space From Energetic Particle Radiation

    Science.gov (United States)

    Singleterry, R. C.

    2013-01-01

    An analysis is performed on four typical materials (aluminum, liquid hydrogen, polyethylene, and water) to assess their impact on the length of time an astronaut can stay in deep space and not exceed a design basis radiation exposure of 150 mSv. A large number of heavy lift launches of pure shielding mass are needed to enable long duration, deep space missions to keep astronauts at or below the exposure value with shielding provided by the vehicle. Therefore, vehicle mass using the assumptions in the paper cannot be the sole shielding mechanism for long duration, deep space missions. As an example, to enable the Mars Design Reference Mission 5.0 with a 400 day transit to and from Mars, not including the 500 day stay on the surface, a minimum of 24 heavy lift launches of polyethylene at 89,375 lbm (40.54 tonnes) each are needed for the 1977 galactic cosmic ray environment. With the assumptions used in this paper, a single heavy lift launch of water or polyethylene can protect astronauts for a 130 day mission before exceeding the exposure value. Liquid hydrogen can only protect the astronauts for 160 days. Even a single launch of pure shielding material cannot protect an astronaut in deep space for more than 180 days using the assumptions adopted in the analysis. It is shown that liquid hydrogen is not the best shielding material for the same mass as polyethylene for missions that last longer than 225 days.

  3. The Vulnerability Framework Integrates Various Models of Generating Surplus Revenue

    Science.gov (United States)

    Maniaci, Vincent

    2004-01-01

    Budgets operationalize the strategic planning process, and institutions must have surplus revenue to be able to cope with future operations. There are three approaches to generate surplus revenue: increased revenue, decreased cost, and reallocation of resources. Extending their earlier work, where they established strategic benchmarks for annual…

  4. The assessment of labour surplus in agricultural farms

    Directory of Open Access Journals (Sweden)

    Adam Marcysiak

    2009-01-01

    Full Text Available Polish agriculture is characterised by high labour surplus in agricultural farms. The aim of the study is showing the methods used for assessment of labour surplus in agricultural farms. The assessment was made considering two criteria: objective and subjective.

  5. 50 CFR 30.1 - Surplus range animals.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Surplus range animals. 30.1 Section 30.1... NATIONAL WILDLIFE REFUGE SYSTEM RANGE AND FERAL ANIMAL MANAGEMENT Range Animals § 30.1 Surplus range animals. Range animals on fenced wildlife refuge areas, including buffalo and longhorn cattle,...

  6. 50 CFR 30.2 - Disposition of surplus range animals.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Disposition of surplus range animals. 30.2... (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM RANGE AND FERAL ANIMAL MANAGEMENT Range Animals § 30.2 Disposition of surplus range animals. Disposition shall be made only during regularly scheduled...

  7. A stochastic surplus production model in continuous time

    DEFF Research Database (Denmark)

    Pedersen, Martin Wæver; Berg, Casper Willestofte

    2017-01-01

    Surplus production modelling has a long history as a method for managing data-limited fish stocks. Recent advancements have cast surplus production models as state-space models that separate random variability of stock dynamics from error in observed indices of biomass. We present a stochastic su...

  8. Bis[3-(5-nitroimino-1,2,4-triazolate)]-based energetic salts: synthesis and promising properties of a new family of high-density insensitive materials.

    Science.gov (United States)

    Wang, Ruihu; Xu, Hongyan; Guo, Yong; Sa, Rongjian; Shreeve, Jean'ne M

    2010-09-01

    Bis[3-(5-nitroimino-1,2,4-triazolate)]-based energetic salts were synthesized in a simple, straightforward manner. They exhibit low solubility in available solvents, high hydrolytic stability, excellent thermal stability, high density, positive heat of formation, low shock sensitivity, and excellent detonation properties. The physical and energetic properties of some salts are similar and even superior to those of RDX.

  9. How Large Is China’s Rural Surplus Labor Force?

    Institute of Scientific and Technical Information of China (English)

    马晓河; 马建蕾

    2008-01-01

    The existence of surplus labor in the countryside and transfer of agricultural labor to non-agricultural sectors is a common phenomenon in economic development.Supply of rural surplus labor will change with the transfer of labor.By calculating the di erence between the agricultural labor force and current demand of laborin agriculture,this paper seeks to estimate the total amount of China’s rural surplus labor as identified by age,gender and education.Results indicate that there areroughly 110 million rural surplus laborers,of which 50%are aged above 40 years old,55.37%are women,and 42.96%have received an education below primaryschool.Currently,China’s rural surplus labor supply falls short of non-agricultural industry demand.

  10. 1,3-Bis(nitroimido)-1,2,3-triazolate anion, the N-nitroimide moiety, and the strategy of alternating positive and negative charges in the design of energetic materials.

    Science.gov (United States)

    Klapötke, Thomas M; Petermayer, Christian; Piercey, Davin G; Stierstorfer, Jörg

    2012-12-26

    This unique study reports on the 1,3-bis(nitroimido)-1,2,3-triazolate anion. This compound provides unique insight into both academic and practical considerations surrounding high-nitrogen systems. The bonding in this energetic anion can be represented multiple ways, one of which includes a chain of alternating positive/negative charges nine atoms long. The validity of this resonance structure is discussed in terms of experimental, computational, and valence bond results. The prepared materials based on this energetic anion were also characterized chemically (infrared, Raman, NMR, X-ray) and as high explosives in terms of their energetic performances (detonation velocity, pressure, etc.) and sensitivities (impact, friction, electrostatic), and the 1,3-bis(nitroimido)-1,2,3-triazolate anion is found to be very high performing with high thermal stabilities while being quite sensitive to mechanical stimuli.

  11. Innovative techniques for the production of energetic radicals for lunar materials processing including photogeneration via concentrated solar energy

    Science.gov (United States)

    Osborn, D. E.; Lynch, D. C.; Fozzolari, R.

    1991-01-01

    A technique for photo generation of radicals is discussed that can be used in the recovery of oxygen and metals from extraterrestrial resources. The concept behind this work was to examine methods whereby radicals can be generated and used in the processing of refractory materials. In that regard, the focus is on the use of sunlight. Sunlight provides useful energy for processing in the forms of both thermal and quantum energy. A number of experiments were conducted in the chlorination of metals with and without the aid of UV and near UV light. The results of some of those experiments are discussed.

  12. Long Baseline Neutrino Experiment Target Material Radiation Damage Studies Using Energetic Protons of the Brookhaven Linear Isotope Production (BLIP) Facility

    CERN Document Server

    Simos, N; Hurh, P; Mokhov, N; Kotsina, Z

    2014-01-01

    One of the future multi-MW accelerators is the LBNE Experiment where Fermilab aims to produce a beam of neutrinos with a 2.3 MW proton beam as part of a suite of experiments associated with Project X. Specifically, the LBNE Neutrino Beam Facility aims for a 2+ MW, 60 -120 GeV pulsed, high intensity proton beam produced in the Project X accelerator intercepted by a low Z solid target to facilitate the production of low energy neutrinos. The multi-MW level LBNE proton beam will be characterized by intensities of the order of 1.6 e+14 p/pulse, {\\sigma} radius of 1.5 -3.5 mm and a 9.8 microsecond pulse length. These parameters are expected to push many target materials to their limit thus making the target design very challenging. To address a host of critical design issues revealed by recent high intensity beam on target experience a series of experimental studies on radiation damage and thermal shock response conducted at BNL focusing on low-Z materials have been undertaken with the latest one focusing on LBNE.

  13. Dimerization of merocyanine dyes. Structural and energetic characterization of dipolar dye aggregates and implications for nonlinear optical materials.

    Science.gov (United States)

    Würthner, Frank; Yao, Sheng; Debaerdemaeker, Tony; Wortmann, Rüdiger

    2002-08-14

    Aggregation of polar merocyanine dyes has been identified as an important problem in the fabrication of organic materials for photonic applications. In this work, a series of merocyanine dyes is synthesized, and their aggregation is investigated by a combination of several experimental techniques to reveal structure-property relationships. These studies provide clear evidence for the formation of centrosymmetric dimers for all investigated merocyanines in concentrated solution and in the solid state. The thermodynamics of dimerization in liquid solution is studied by concentration-dependent permittivity measurements, UV-vis spectroscopy, and electrooptical absorption experiments. A centrosymmetric dimer structure with antiparallel ordering of the dipole moments is observed in solution by 2D NMR spectroscopy as well as in the solid state by X-ray crystallography and interpreted in terms of dipolar and pi-pi interactions. The optical properties of the dimer aggregates are satisfactorily explained by an excitonic coupling model. The effect of an external electric field on the dimerization equilibrium is considered and quantitatively determined by electrooptical absorption measurements. Implications of the observed findings on the design of nonlinear optical and photorefractive materials are discussed.

  14. Dense energetic nitraminofurazanes.

    Science.gov (United States)

    Fischer, Dennis; Klapötke, Thomas M; Reymann, Marius; Stierstorfer, Jörg

    2014-05-19

    3,3'-Diamino-4,4'-bifurazane (1), 3,3'-diaminoazo-4,4'-furazane (2), and 3,3'-diaminoazoxy-4,4'-furazane (3) were nitrated in 100 % HNO3 to give corresponding 3,3'-dinitramino-4,4'-bifurazane (4), 3,3'-dinitramino-4,4'-azofurazane (5) and 3,3'-dinitramino-4,4'-azoxyfurazane (6), respectively. The neutral compounds show very imposing explosive performance but possess lower thermal stability and higher sensitivity than hexogen (RDX). More than 40 nitrogen-rich compounds and metal salts were prepared. Most compounds were characterized by low-temperature X-ray diffraction, all of them by infrared and Raman spectroscopy, multinuclear NMR spectroscopy, elemental analysis, and by differential scanning calorimetry (DSC). Calculated energetic performances using the EXPLO5 code based on calculated (CBS-4M) heats of formation and X-ray densities support the high energetic performances of the nitraminofurazanes as energetic materials. The sensitivities towards impact, friction, and electrostatic discharge were also explored. Additionally the general toxicity of the anions against vibrio fischeri, representative for an aquatic microorganism, was determined.

  15. Geothermal Prospects in a Shrinking Power Surplus

    Energy Technology Data Exchange (ETDEWEB)

    Geyer, John D.

    1989-03-21

    The western power surplus is finite and electric load growth is persistent. Concerns about availability and environmental effects will overshadow life-cycle cost in selection of tomorrow's sources. Geothermal's growth and achievements qualify it as a preferred resource for the 1990s and beyond but its merits remain largely unknown in political and financial circles. Near-term needs include power sales contracts after 1990, improved comfort for banks and utilities with reservoir assessment techniques and mitigation of financial risks at pilot plants on new fields. Institutional, not technical, issues will dominate geothermal energy's growth, performance, image and utility relationships in the 1990s.

  16. The social surplus of broadband initiatives in compulsory education

    Directory of Open Access Journals (Sweden)

    David Peter Parsons

    2016-10-01

    Full Text Available In 2010, the New Zealand government embarked upon an ambitious programme of broadband infrastructure investment, a process that will continue until at least 2019. Part of this investment is specifically targeted at compulsory education, with initiatives that include bringing fibre connections to the school gate, supporting on-site network upgrades (including wireless and providing teaching, learning and support services delivered through these networks. Such investments are not made without some projections of the likely rate of return, but calculating return on investment (ROI in educational broadband is complex, as it encompasses a range of factors. This article reports on an interview-based study engaging a range of stakeholders in educational broadband provision. The study utilises a research model that considers the various elements of social surplus, namely; producer surplus (savings, producer surplus (profit and consumer surplus (perceived value over and above cost, to explore the elements of social surplus that have been used to define educational broadband ROI calculations and justify the scale of investment. The results indicate that all three components of social surplus are relevant, though the concept of profit can only be seen in the broader context of long term contributions to the economy. A note of caution is that projections of ROI based only on positive returns fail to acknowledge the potential for some innovations to actually increase costs. Further, purely quantitative models do not properly take into account qualitative components of consumer surplus.

  17. A new eye-safe UV Raman spectrometer for the remote detection of energetic materials in fingerprint concentrations: Characterization by PCA and ROC analyzes.

    Science.gov (United States)

    Almaviva, Salvatore; Chirico, Roberto; Nuvoli, Marcello; Palucci, Antonio; Schnürer, Frank; Schweikert, Wenka

    2015-11-01

    We report the results of proximal Raman investigations at a distance of 7 m, to detect traces of explosives (from 0.1 to 0.8 mg/cm(2)) on common clothes with a new eye-safe apparatus. The instrument excites the target with a single laser shot of few ns (10(-9)s) in the UV range (laser wavelength 266 nm) detecting energetic materials like Pentaerythritol tetranitrate (PETN), Trinitrotoluene (TNT), Urea Nitrate (UN) and Ammonium Nitrate (AN). Samples were prepared using a piezoelectric-controlled plotter device to realize well-calibrated amounts of explosives on several cm(2). Common fabrics and tissues such as polyester, polyamide and leather were used as substrates, representative of base-materials used in the production of jackets or coats. Other samples were prepared by touching the substrate with a silicon finger contaminated with explosives, to simulate a spot left by contaminated hands on a jacket or bag during the preparation of an improvised explosive device (IED) by a terrorist. The observed Raman signals showed some peculiar molecular bands of the analyzed compounds, allowing us to identify and discriminate them with high sensitivity and selectivity, also in presence of the interfering signal from the underlying fabric. A dedicated algorithm was developed to remove noise and fluorescence background from the single laser shot spectra and an automatic spectral recognition procedure was also implemented, evaluating the intensity of the characteristic Raman bands of each explosive and allowing their automatic classification. Principal component analysis (PCA) was used to show the discrimination potentialities of the apparatus on different sets of explosives and to highlight possible criticalities in the detection. Receiver operating characteristic (ROC) curves were used to discuss and quantify the sensitivity and the selectivity of the proposed recognition procedure. To our knowledge the developed device is at the highest sensitivity nowadays achievable in the

  18. Ultrafast Dynamics of Energetic Materials

    Science.gov (United States)

    2014-01-23

    make tens of thousands of shocks on the same sample. As shown in Fig. 5, the original sample used a monolayer of nitrobenzoic acid ( NBA ). Also...there is a few micrometer thick polymer tamping layer. The NBA molecule is an EM simulant with a nitro group. We are focused on the nitro groups due...in Fig. 5d. We have 13 Fig.5. Sample construction for ultrafast shock vibrational spectroscopy. A monolayer of NBA is deposited onto a metal

  19. Energetic Materials for WMD Defeat

    Science.gov (United States)

    2014-07-01

    in our previous work to have detonation properties, thermal stabilities, densities, enthalpies of formation and impact sensitivities that were very...with nitric acid; and 2) the reaction of potassium methylnitramine and cyanogen bromide to form methylnitrocyanamide. After interaction of...H) 60 (M) 0.095 (M) RDX, class 5 230 dec. 1.82 0.42 35.2 8977 7.4 16 (M) 108 (M) 0.037 (M) 4 a enthalpy of formation [Gaussian

  20. International Conference on Energetic Materials

    Science.gov (United States)

    2007-11-02

    Results of TNT destruction by electrochemical way M.E. Rabanal, M.A. Martinez, Universidad Carlos III de Madrid, Leganes, E A.J. Criado, Universidad ... Complutense de Madrid, Madrid, E N. Braojos, A. Perez de Diego, Laboratorio Quimico Central de Armamento, San Martin de la Vega, E 49. Biochemical treatment

  1. Pursuing reliable thermal analysis techniques for energetic materials: decomposition kinetics and thermal stability of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50).

    Science.gov (United States)

    Muravyev, Nikita V; Monogarov, Konstantin A; Asachenko, Andrey F; Nechaev, Mikhail S; Ananyev, Ivan V; Fomenkov, Igor V; Kiselev, Vitaly G; Pivkina, Alla N

    2016-12-21

    Thermal decomposition of a novel promising high-performance explosive dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50) was studied using a number of thermal analysis techniques (thermogravimetry, differential scanning calorimetry, and accelerating rate calorimetry, ARC). To obtain more comprehensive insight into the kinetics and mechanism of TKX-50 decomposition, a variety of complementary thermoanalytical experiments were performed under various conditions. Non-isothermal and isothermal kinetics were obtained at both atmospheric and low (up to 0.3 Torr) pressures. The gas products of thermolysis were detected in situ using IR spectroscopy, and the structure of solid-state decomposition products was determined by X-ray diffraction and scanning electron microscopy. Diammonium 5,5'-bistetrazole-1,1'-diolate (ABTOX) was directly identified to be the most important intermediate of the decomposition process. The important role of bistetrazole diol (BTO) in the mechanism of TKX-50 decomposition was also rationalized by thermolysis experiments with mixtures of TKX-50 and BTO. Several widely used thermoanalytical data processing techniques (Kissinger, isoconversional, formal kinetic approaches, etc.) were independently benchmarked against the ARC data, which are more germane to the real storage and application conditions of energetic materials. Our study revealed that none of the Arrhenius parameters reported before can properly describe the complex two-stage decomposition process of TKX-50. In contrast, we showed the superior performance of the isoconversional methods combined with isothermal measurements, which yielded the most reliable kinetic parameters of TKX-50 thermolysis. In contrast with the existing reports, the thermal stability of TKX-50 was determined in the ARC experiments to be lower than that of hexogen, but close to that of hexanitrohexaazaisowurtzitane (CL-20).

  2. A data format 'EUMELDAT: European Material, Energetic and Luminous Data' for luminous and radiometric properties of daylighting systems; EUMELDAT ''Ein europaeisches Datenformat fuer strahlungsphysikalische und lichttechnische Kennzahlen von Tageslichtsystemen

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, B.; Rosemann, A.; Aydinli, S.; Kaase, H. [Technische Univ. Berlin (Germany). Fachgebiet Lichttechnik

    2003-07-01

    This paper describes a data format (EUMELDAT: European Material, Energetic and Luminous Data) for luminous and radiometric properties of daylighting systems for different light incidences and observer directions. The data format is based on a coordinate system whose properties and advantages are discussed in this paper. The technical description of the data format can be found on the web page of the lighting institute (http://ntife.ee.tu-berlin.de/Lichttechnik/Eumeldat.html). (orig.)

  3. Transfert de risques et création de surplus

    OpenAIRE

    Courtault, Jean-Michel; Jean-Pascal GAYANT

    1997-01-01

    In this paper, we use the certain benefit function of Luenberger, which is a generalization of the notion of distributable surplus by Allais, to characterize the classical notions of willingness to pay and willingness to accept. These concepts allow us to study the transfer of one or several risks between two agents or more. Specifically, we determine the conditions under which the maximization of the total distributable surplus leads to a Pareto efficient allocation of risks.; Dans cet artic...

  4. Surplus analysis for variable annuities with a GMDB option

    OpenAIRE

    Haberman, S; Piscopo, G.

    2010-01-01

    In this paper, we analyze the insurance surplus for a Variable Annuity contract with a Guaranteed Minimum Death Benefit (GMDB) option. Initially, we derive the first two moments of the distribution of the surplus; and subsequently, we develop the whole distribution using a stochastic model which involves an integrated analysis of financial and mortality risk for a portfolio of annuities with GMDB embedded options. We offer a model according which the premium can be modified as per the forecas...

  5. A new strategy for storage and transportation of sensitive high-energy materials: guest-dependent energy and sensitivity of 3D metal-organic-framework-based energetic compounds.

    Science.gov (United States)

    Zhang, Sheng; Liu, Xiangyu; Yang, Qi; Su, Zhiyong; Gao, Wenjuan; Wei, Qing; Xie, Gang; Chen, Sanping; Gao, Shengli

    2014-06-23

    Reaction of Co(II) with the nitrogen-rich ligand N,N-bis(1H-tetrazole-5-yl)-amine (H2bta) leads to a mixed-valence, 3D, porous, metal-organic framework (MOF)-based, energetic material with the nitrogen content of 51.78%, [Co9(bta)10(Hbta)2(H2O)10]n⋅(22 H2O)n (1). Compound 1 was thermohydrated to produce a new, stable, energetic material with the nitrogen content of 59.85% and heat of denotation of 4.537 kcal cm(-3), [Co9(bta)10(Hbta)2(H2O)10]n (2). Sensitivity tests show that 2 is more sensitivity to external stimuli than 1, reflecting guest-dependent energy and sensitivity of 3D, MOF-based, energetic materials. Less-sensitive 1 can be regarded as a more safe form for storage and transformation to sensitive 2. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Research Progress in Materialization and Energy Utilization of the Surplus Sludge of Sewage Treatment%污水厂剩余污泥材料化和能源利用技术研究进展

    Institute of Scientific and Technical Information of China (English)

    王鹤; 李芬; 张彦平; 王新; 李梁; 王奇飞

    2016-01-01

    Excess sludge is the byproduct of the sewage treatment plant,which has the complex composition, difficult to dispose of,and could easily breed secondary pollutants characteristics.This paper mainly describes the re-search progress of using excess sludge for sorbent manufacturing and energy utilization technology in recent years. Since excess sludge is rich in organic matter,the paper will first introduce the research status on absorbent manufac-turing from single sludge and excess sludge in combination with agricultural and industrial waste,and it will cause the recontamination of environment due to extensive use of activating agents in the absorbent manufacturing process.Then the paper will go on to summarize the research progress of excess sludge in direct energy utilization,or indirect energy utilization by means of pyrogenic decomposition.In the end,we propose the idea that using biomass waste take the place of chemical activating agents in preparation of sludge absorbents.And it is indicated that the combination of sludge materialization and energy utilization technology will become the mainstream direction in excess sludge re-sources.%剩余污泥为污水处理厂副产物,具有成分复杂难处理,易滋生二次污染的特性。主要介绍了近年来剩余污泥制吸附剂和能源化技术的研究进展。由于剩余污泥中有机质含量丰富,首先对单一污泥和剩余污泥添加工农业废弃物制备吸附剂的研究现状进行了介绍,指出吸附材料制备过程中活化剂大量使用会造成环境的再污染;随后综述了剩余污泥直接能源化,或通过热解等手段将其间接能源化的研究进展;最后提出用生物质废弃物代替化学活化剂制备污泥吸附剂的研究思路,并指出将污泥制备材料和能源利用技术相结合是今后剩余污泥资源化研究的主要发展方向。

  7. Zeolite synthesis: an energetic perspective.

    Science.gov (United States)

    Zwijnenburg, Martijn A; Bromley, Stefan T

    2010-11-21

    Taking |D(H(2)O)(x)|[AlSiO(4)] based materials (where D is Li, Na, K, Rb or Cs) as an archetypal aluminosilicate system, we use accurate density functional theory calculations to demonstrate how the substitution of silicon cations in silica, with pairs of aluminium and (alkali metal) cations, changes the energetic ordering of different competing structure-types. For large alkali metal cations we further show that the formation of porous aluminosilicate structures, the so-called zeolites, is energetically favored. These findings unequivocally demonstrate that zeolites can be energetic preferred reaction products, rather than being kinetically determined, and that the size of the (hydrated) cations in the pore, be it inorganic or organic, is critical for directing zeolite synthesis.

  8. Historical Reflection on Deviation in Transfer Policy of Agricultural Surplus Labor at Early Stage of China

    Institute of Scientific and Technical Information of China (English)

    Chengjun; ZHANG

    2015-01-01

    This paper firstly made an analysis on transfer of agricultural surplus labor in the end of the 20 th century. On this basis,it made reflection on policy of agricultural surplus labor. Then,it stated that there is a great deviation of transfer of agricultural surplus labor from practical requirement and pointed out basic internationally recognized ideas of agricultural surplus labor transfer. Finally,it came up with recommendations for formulating agricultural surplus labor transfer.

  9. Convenient synthesis of energetic polynitro materials including (NO2)3CCH2CH2NH3-salts via Michael addition of trinitromethane.

    Science.gov (United States)

    Axthammer, Quirin J; Klapötke, Thomas M; Krumm, Burkhard; Scharf, Regina; Unger, Cornelia C

    2016-12-21

    The nucleophilic Michael addition of nitroform with acrylamide creates a variety of energetic products. Several interesting compounds with a trinitromethyl group were synthesized, among them salts containing the trinitropropylammonium cation, [(NO2)3CCH2CH2NH3]X. Owing to their positive oxygen balance, the suitability of these compounds as potential high-energy dense oxidizers (HEDOs) in energetic formulations was investigated and discussed. Furthermore, numerous important and reactive compounds for the continuing synthesis of molecules with a high oxygen balance are presented. All compounds were fully characterized, including multinuclear NMR spectroscopy, vibrational analysis (IR, Raman), elemental analysis, as well as single crystal X-ray diffraction. Thermal stabilities were studied using differential scanning calorimetry and sensitivity data against friction, impact and electrostatic discharge were collected. The energies of formation were calculated using Gaussian 09 and energetic properties, such as the specific impulse and detonation velocity, were predicted with the EXPLO5 (V6.02) computer code.

  10. Synthesis, characterization, and energetic properties of 6-amino-tetrazolo[1,5-b]-1,2,4,5-tetrazine-7-N-oxide: a nitrogen-rich material with high density.

    Science.gov (United States)

    Wei, Hao; Zhang, Jiaheng; Shreeve, Jean'ne M

    2015-05-01

    The synthesis and energetic properties of a novel N-oxide high-nitrogen compound, 6-amino-tetrazolo[1,5-b]-1,2,4,5-tetrazine-7-N-oxide, are described. Resulting from the N-oxide and fused rings system, this molecule exhibits high density, excellent detonation properties, and acceptable impact and friction sensitivities, which suggests potential applications as an energetic material. Compared to known high-nitrogen compounds, such as 3,6-diazido-1,2,4,5-tetrazine (DiAT), 2,4,6-tri(azido)-1,3,5-triazine (TAT), and 4,4',6,6'-tetra(azido)azo-1,3,5-triazine (TAAT), a marked performance and stability increase is seen. This supports the superior qualities of this new compound and the advantage of design strategy.

  11. An Important Energetic Material: 5-Substituted Tetrazole Energetic Metal Complexes%一类重要含能材料:5-取代四唑含能金属配合物

    Institute of Scientific and Technical Information of China (English)

    舒远杰; 李华荣; 高晓敏; 殷明; 熊鹰; 李寅川

    2011-01-01

    This paper introduces some synthesis and research trends of 5-subslituted tetrazole energetic metal complexes (TEMCs) .especially TEMCs with the most important ligands 5-cyanoletrazole ( CT), 5-nitrotetrazolium (NT) and 5-aminotetrazole,which may provide not only some academic guide for further sludy on TEMCs,but also designing and searching for new high energetic density compounds.%分类综述了5-取代四唑金属含能配合物(TEMCs)的合成及研究进展.目前,国内外关于TEMCs的研究不多,其中以5-氰基四唑(CT)、5-硝基四唑(NT)、5-氨基四唑(AT)为配体的TEMCs因其优越的性能和突出的特点,成为含能材料领域研究的重要方向.经过调研、分析,得出如下结论:①TEMCs的合成步骤较少、反应条件温和、易于操作和控制、产率高,且环境友好,但对其结构与性能的研究较困难,特别是对其固态摩尔生成焓的探究没有文献报道;②可通过改变外阳离子或中心金属离子、调控配合物分子中配体数目、调控合成过程等方式寻找性能优良的TEMCs;③通过有目的的设计和选择合适的配体与金属离子以及控制反应条件等因素来系统研究配合物的结构与性能,对指导实验研究具有重要意义.

  12. High- and low-strain rate compression properties of several energetic material composites as a function of strain rate and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gray, G.T. III; Idar, D.J.; Blumenthal, W.R.; Cady, C.M.; Peterson, P.D.

    1998-12-31

    High- and low-strain rate compression data were obtained on several different energetic composites: PBX 9501, X0242-92-4-4, PBXN-9, as well as the polymeric binder used in PBX 9501 and X0242-92-4-4 composites. The effects of energetic-to-binder ratios, different binder systems, and different energetic formulations were investigated. All the energetic composites exhibit increasing elastic modulus, E, maximum flow stresses, {sigma}{sub m}, and strain-at-maximum stress, {var_epsilon}{sub m}, with increasing strain rate at ambient temperature. PBX 9501 displays marginally higher ultimate flow strength than X0242-92-4-4, and significantly higher ultimate compressive strength than PBXN-9 at quasi-static and dynamic strain rates. The failure mode of PBX 9501 and X0242-92-4-4 under high-rate loading changes from a mixture of ductile binder tearing and transgranular cleavage and cracking of the HMX when tested at 20 C to transgranular brittle HMX cleavage and glassy fracture of the binder at {minus}40 C.

  13. Nitrogen-rich salts based on the energetic [monoaquabis(N,N-bis(1H-tetrazol-5-yl)amine)-zinc(II)] anion: a promising design in the development of new energetic materials.

    Science.gov (United States)

    Li, Fugang; Bi, Yangang; Zhao, Wenyuan; Zhang, Tonglai; Zhou, Zunning; Yang, Li

    2015-02-16

    Nitrogen-rich energetic salts involving various cations (lithium, 1; ammonium, 2; hydrazinium, 3; hydroxylammonium, 4; guanidinium, 5; aminoguanidinium, 6; diaminoguanidinium, 7; and triaminoguanidinium, 8) based on nitrogen-rich anion [Zn(BTA)2(H2O)](2-) (N% = 65.37, BTA = N,N-bis[1H-tetrazol-5-yl]amine anion) were synthesized with a simple method. The crystal structures of all compounds except 1, 2, and 6 were determined by single-crystal X-ray diffraction and fully characterized by elemental analysis and FT-IR spectroscopy. The thermal stabilities were investigated by differential scanning calorimetry (DSC). The DSC results show that all compounds exhibit high thermal stabilities (decomposition temperature >200 °C). Additionally, the heats of formation were calculated on the basis of the experimental constant-volume energies of combustion measured by using bomb calorimetry. Lastly, the sensitivities toward impact and friction were assessed according to Bundesamt für Materialforschung (BAM) standard methods.

  14. Energetic salt of trinitrophloroglucinol and melamine

    Science.gov (United States)

    Bowden, Patrick R.; Leonard, Philip W.; Lichthardt, Joseph P.; Tappan, Bryce C.; Ramos, Kyle J.

    2017-01-01

    We hope to harness the field of energetic co-crystals for development of insensitive, high-performing explosives. As demonstrated by other groups, co-crystals of energetic materials are diverse in their resultant properties versus the native materials. Herein, we discuss the synthesis, characterization, and testing of an energetic co-crystal of trinitrophloroglucinol (1,3,5-trihydroxy-2,4,6-trinitrobenzene) and melamine. Although melamine is not an energetic material, high nitrogen content and insensitivity can be of benefit in a co-crystal. Currently, trinitrophloroglucinol (TNPG) and melamine have been found to exist as a 1:1 ionic co-crystal. Characterization by NMR, IR, small-scale sensitivity, thermal stability and powder X-ray diffraction have all been used to characterize the individual compounds as well as the co-crystals developed.

  15. Habit Formation, Surplus Consumption and Return Predictability: International Evidence

    DEFF Research Database (Denmark)

    Engsted, Tom; Hyde, Stuart; Møller, Stig V.

    On an international post World War II dataset, we use an iterated GMM pro- cedure to estimate and test the Campbell-Cochrane (1999) habit formation model. In addition, we analyze the predictive power of the surplus consumption ratio for future asset returns. We find that, although there are impor......On an international post World War II dataset, we use an iterated GMM pro- cedure to estimate and test the Campbell-Cochrane (1999) habit formation model. In addition, we analyze the predictive power of the surplus consumption ratio for future asset returns. We find that, although...... there are important cross-country differences, for the majority of countries in our sample the model gets empirical support in a variety of diffrent dimensions, including reasonable estimates of risk- free rates, and the model dominates the time-separable power utility model in terms of pricing errors. Further......, for the majority of countries the surplus consumption ratio captures time-variation in expected returns. Together with the price-dividend ratio, the surplus consumption ratio contains significant information about future stock returns, also during the 1990s. Finally, in most countries the surplus con- sumption...

  16. Habit Formation, Surplus Consumption and Return Predictability: International Evidence

    DEFF Research Database (Denmark)

    Engsted, Tom; Hyde, Stuart; Møller, Stig V.

    On an international post World War II dataset, we use an iterated GMM pro- cedure to estimate and test the Campbell-Cochrane (1999) habit formation model. In addition, we analyze the predictive power of the surplus consumption ratio for future asset returns. We find that, although there are impor......On an international post World War II dataset, we use an iterated GMM pro- cedure to estimate and test the Campbell-Cochrane (1999) habit formation model. In addition, we analyze the predictive power of the surplus consumption ratio for future asset returns. We find that, although...... there are important cross-country differences, for the majority of countries in our sample the model gets empirical support in a variety of diffrent dimensions, including reasonable estimates of risk- free rates, and the model dominates the time-separable power utility model in terms of pricing errors. Further......, for the majority of countries the surplus consumption ratio captures time-variation in expected returns. Together with the price-dividend ratio, the surplus consumption ratio contains significant information about future stock returns, also during the 1990s. Finally, in most countries the surplus con- sumption...

  17. Transfer of Rural Surplus Labor and Vocational Education

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The paper introduces about the rural surplus labor transfer.According to the paper,the transfer of rural surplus labor in China presents such fundamental characteristics as randomness and non-thoroughness,scope and field constraint,and hysteretic nature of employment and industrial structure conversion.Besides,the causes of the difficulties in the transfer of rural surplus labor lie in the barriers from the system and policy,structural imbalance of industry and low quality of rural labor.The paper studies the correlation between the quality and the transfer of rural surplus labor FORCE in a systematical way from three aspects,which are the correlations between rural labor quality and the transfer difficulty & speed,the transfer scope & field and the employment stability & income after transfer respectively.Moreover,the paper carries out analysis of the special effects of vocational education on the transfer of rural surplus labor in China,which shows that vocational education is a help in the improvement of cultural qualities,labor skills and physical & mental health of rural labor.

  18. A Note on Realistic Dividends in Actuarial Surplus Models

    Directory of Open Access Journals (Sweden)

    Benjamin Avanzi

    2016-10-01

    Full Text Available Because of the profitable nature of risk businesses in the long term, de Finetti suggested that surplus models should allow for cash leakages, as otherwise the surplus would unrealistically grow (on average to infinity. These leakages were interpreted as ‘dividends’. Subsequent literature on actuarial surplus models with dividend distribution has mainly focussed on dividend strategies that either maximise the expected present value of dividends until ruin or lead to a probability of ruin that is less than one (see Albrecher and Thonhauser, Avanzi for reviews. An increasing number of papers are directly interested in modelling dividend policies that are consistent with actual practice in financial markets. In this short note, we review the corporate finance literature with the specific aim of fleshing out properties that dividend strategies should ideally satisfy, if one wants to model behaviour that is consistent with practice.

  19. THE CLOWER CONSTRAINTS MODEL DARI SURPLUS ATAU DEFISIT FISKAL PEMERINTAH

    Directory of Open Access Journals (Sweden)

    Jonni Manurung

    2006-01-01

    Full Text Available This study has something as a purpose to building the empirical models and the new hypothesis between the broad money, surpluses or fiscal deficit, the general price index or inflation rate, demand for monetary base and demand for bank deposit. This study also head for optimal interest rate for bank deposit at the given value of broad money, surplus or fiscal deficit, general price index, demand for monetary base, and demand for bank deposit. The model build consist to balance central bank, intertemporal budget constraint at the maximum expected utility for hold monetary base and bank deposit. The evaluation of the surplus or fiscal deficit stabilization is with the alteration of the requirement reserve ratio, Gross Domestic Product, general price index and interest rate. The results of the study show that the requirement reserve ratio, Gross Domestic Product, general price index and interest rate is very respect to surplus or deficit fiscal. The contribution requirement reserve ratio and interest rate for surplus or deficit fiscal are relatively high. This results show that the clower constraint model can explain the necessary of fiscal and monetary coordinate. Fiscal policy still weak and cause the real business cycle slow down, high inflation and interest rate. The other hands, monetary policy is very strong and cause fiscal surplus is relatively high. The prudent of government and monetary authority are needed to build the fiscal and monetary policy for create the dynamic economy, lower inflation, requirement reserve ratio and interest rate, and the monetary and fiscal dynamic equilibrium. Abstract in Bahasa Indonesia : Studi ini bertujuan membuat model empiris dan hipotesis baru tentang faktor-faktor broad money, surplus dan defisit fiskal, tingkat bunga secara umum, atau tingkat inflasi, permintaan uang primer dan deposito. Selain itu studi ini juga mencari tingkat suku bunga deposito optimal pada nilai tertentu dari faktor-faktor tersebut

  20. Does China's Huge External Surplus Imply an Undervalued Renminbi?

    Institute of Scientific and Technical Information of China (English)

    Anthony J. Makin

    2007-01-01

    A pegged exchange rate regime has been pivotal to China's export-led development strategy. However, its huge trade surpluses and massive build up of international reserves have been matched by large deficits for major trading partners, creating acute policy concerns abroad, especially in the USA. This paper provides a straightforward conceptual framework for interpreting the effect of China's exchange rate policy on its own trade balance and that of trading partners in the context of discrepant economic growth rates. It shows how pegging the exchange rate when output is outstripping expenditure induces China's trade surpluses and counterpart deficits for its trading partners. An important corollary is that given its strictly regulated capital account, China's persistently large surpluses imply a significantly undervalued renminbi, which should gradually become more flexible.

  1. Bis(4-nitraminofurazanyl-3-azoxy)azofurazan and Derivatives: 1,2,5-Oxadiazole Structures and High-Performance Energetic Materials.

    Science.gov (United States)

    Liu, Yuji; Zhang, Jiaheng; Wang, Kangcai; Li, Jinshan; Zhang, Qinghua; Shreeve, Jean'ne M

    2016-09-12

    Bis(4-nitraminofurazanyl-3-azoxy)azofurazan (1) and ten of its energetic salts were prepared and fully characterized. Computational analysis based on isochemical shielding surface and trigger bond dissociation enthalpy provide a better understanding of the thermal stabilities for nitramine-furazans. These energetic compounds exhibit good densities, high heats of formation, and excellent detonation velocity and pressure. Some representative compounds, for example, 1 (vD : 9541 m s(-1) ; P: 40.5 GPa), and 4 (vD : 9256 m s(-1) ; P: 38.0 GPa) exhibit excellent detonation performances, which are comparable with current high explosives such as RDX (vD : 8724 m s(-1) ; P: 35.2 GPa) and HMX (vD : 9059 m s(-1) ; P: 39.2 GPa). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Complex Nanostructures: Synthesis and Energetic Applications

    OpenAIRE

    Dunwei Wang; Stafford Sheehan; Sa Zhou; Yongjing Lin; Xiaohua Liu

    2010-01-01

    Connected through single crystalline junctions, low dimensional materials such as nanowires and nanorods form complex nanostructures. These new materials exhibit mechanical strengths and electrical conductivities superior to their constituents while maintaining comparable surface areas, an attribute ideal for energetic applications. More efficient solar cells, higher capacity batteries and better performing photoelectrochemical cells have been built using these materials. This article reviews...

  3. A Study of 5-(1,2,4-Triazol-C-yl)tetrazol-1-ols: Combining the Benefits of Different Heterocycles for the Design of Energetic Materials.

    Science.gov (United States)

    Dippold, Alexander A; Izsák, Dániel; Klapötke, Thomas M

    2013-09-01

    The synthesis and full structural and spectroscopic characterization of three 5-(1,2,4-triazol-C-yl)tetrazol-1-ol compounds with selected energetic moieties including nitrimino (5), nitro (6) and azido (7) groups are reported. The influence of those energetic moieties as well as the C-C connection of a tetrazol-1-ol and a 1,2,4-triazole on structural and energetic properties has been investigated. All compounds were well characterized by various means, including IR and multinuclear NMR spectroscopy, mass spectrometry, and DSC. The molecular structures of 5-8 were determined in the solid state by single-crystal X-ray diffraction. The standard heats of formation were calculated on the CBS-4M level of theory utilizing the atomization energy method, revealing highly positive values for all compounds. The detonation parameters were calculated with the EXPLO5 program and compared to the common secondary explosive RDX. Additionally, sensitivities towards impact, friction and electrostatic discharge were determined.

  4. 晶形控制及形成共晶:含能材料改性研究的重要途径%Crystal Control and Cocrystal Formation:Important Route of Modification Research of Energetic Materials

    Institute of Scientific and Technical Information of China (English)

    舒远杰; 武宗凯; 刘宁; 丁小勇; 吴敏杰; 王可; 卢莹莹

    2015-01-01

    From the two aspects of experiment method and theoretical simulation for typical energetic materials such as HMX,TATB,CL-20,etc.,the latest progresses of study in the modification of energetic materials were re-viewed.Two modification methods about crystal control and cocrystal were mainly introduced.Through crystal con-trol,the stability,charge density and sensitivity etc for explosive can be effectively improved.Through cocrystal, the oxygen balance and sensitivity of explosive can be effectively improved and its heat of detonation,power capabili-ty and safety etc.can be improved.Molecular simulation can effectively reduce the screening work of conditions in the process of modification research of energetic materials.The best experimental method can be obtained through simulation and provides theoretical basis for experimental research.The research situation and development direction of energetic material modification are evaluated with 64 references.%从 HMX、TATB、CL-20等典型含能材料改性的实验方法及理论模拟两个方面,综述了含能材料改性研究的最新进展。重点介绍了晶形控制及共晶两种改性方法,即通过晶形控制可以有效改善炸药的安定性、装药密度、感度等性能,通过共晶可以有效改善炸药的氧平衡及感度,提高其爆热、作功能力及安全性等性能。分子模拟计算可以有效减少含能材料改性研究过程中的条件筛选工作,并得到最佳实验方案,为实验研究提供理论依据。评述了含能材料改性研究的现状及发展方向。附参考文献64篇。

  5. LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required.

  6. How to Promote the Rural Area of Shandong Province to Absorb Surplus Labor by Itself?

    Institute of Scientific and Technical Information of China (English)

    Qujing; DAI

    2014-01-01

    This paper firstly highlights the importance of solving the problem of rural surplus labor force,and then shows the necessity and significance of the rural areas to absorb rural surplus labor on their own. Meanwhile,the paper introduces the situation of rural surplus labor in Shandong Province. At last,it proposes the solutions to promote the rural area to absorb the surplus labor by itself.

  7. 50 CFR 31.1 - Determination of surplus wildlife populations.

    Science.gov (United States)

    2010-10-01

    ... populations. 31.1 Section 31.1 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF... Wildlife § 31.1 Determination of surplus wildlife populations. The populations and requirements of wildlife species on wildlife refuge areas shall be determined by population census, habitat evaluation, and...

  8. The Democratic Surplus that Constitutionalised the European Union

    DEFF Research Database (Denmark)

    Harste, Gorm

    2015-01-01

    This article questions the very foundation of the doctrine of a so-called “democratic deficit” in the EU. Yet in order to argue beyond nationalist myths, clear-cut concepts are necessary. Speaking about democracy in the EU, the article exposes four dimensions that constitute a “democratic surplus...

  9. 46 CFR 387.5 - Surplus property assignment recommendation.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Surplus property assignment recommendation. 387.5 Section 387.5 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION MISCELLANEOUS UTILIZATION AND... property assignment recommendation. Before any assignment recommendation is submitted to the...

  10. 26 CFR 1.815-4 - Policyholders surplus account.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) INCOME TAXES Distributions to Shareholders § 1.815-4 Policyholders surplus account. (a) In...) by reason of distributions to shareholders during the taxable year which are treated as being made...), exceeds $25,000 for the taxable year 1959. Assume that of the amount distributed by S to its...

  11. Why Double Surplus in China's International Balance of Payments?

    Institute of Scientific and Technical Information of China (English)

    Jia Zhengxiang

    2010-01-01

    @@ In accordance with the theory of development economics,developing countries should maintain a current account deficit and capital account surplus, and achieve a higher level of investment through foreign savings rather than just domestic savings. The international financial crisis not only hit the European and US economy, but also gave China's macro-micro economy a heavy blow.

  12. Energetics of Si(001)

    NARCIS (Netherlands)

    Zandvliet, H.J.W.

    2000-01-01

    A classical thermodynamic description of a surface requires the introduction of a number of energetic parameters related to the surface steps. These parameters are the step free energy, the kink creation energy, and the energetic and entropic interactions between steps. This review will demonstrate

  13. 50 CFR 31.2 - Methods of surplus wildlife population control and disposal.

    Science.gov (United States)

    2010-10-01

    ... Surplus Wildlife § 31.2 Methods of surplus wildlife population control and disposal. Upon a determination... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Methods of surplus wildlife population control and disposal. 31.2 Section 31.2 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE...

  14. 41 CFR 102-37.40 - What type of surplus property is available for donation?

    Science.gov (United States)

    2010-07-01

    ... property is available for donation? 102-37.40 Section 102-37.40 Public Contracts and Property Management... 37-DONATION OF SURPLUS PERSONAL PROPERTY General Provisions Donation Overview § 102-37.40 What type of surplus property is available for donation? All surplus property (including property held...

  15. Active interrogation using energetic protons

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Christopher L [Los Alamos National Laboratory; Chung, Kiwhan [Los Alamos National Laboratory; Greene, Steven J [Los Alamos National Laboratory; Hogan, Gary E [Los Alamos National Laboratory; Makela, Mark [Los Alamos National Laboratory; Mariam, Fesseha [Los Alamos National Laboratory; Milner, Edward C [Los Alamos National Laboratory; Murray, Matthew [Los Alamos National Laboratory; Saunders, Alexander [Los Alamos National Laboratory; Spaulding, Randy [Los Alamos National Laboratory; Wang, Zhehui [Los Alamos National Laboratory; Waters, Laurie [Los Alamos National Laboratory; Wysocki, Frederick [Los Alamos National Laboratory

    2010-01-01

    Energetic proton beams provide an attractive alternative when compared to electromagnetic and neutron beams for active interrogation of nuclear threats because they have large fission cross sections, long mean free paths and high penetration, and they can be manipulated with magnetic optics. We have measured time-dependent cross sections and neutron yields for delayed neutrons and gamma rays using 800 MeV and 4 GeV proton beams with a set of bare and shielded targets. The results show significant signals from both unshielded and shielded nuclear materials. Measurements of neutron energies yield suggest a signature unique to fissile material. Results are presented in this paper.

  16. Surplus from and storage of electricity generated by intermittent sources

    Science.gov (United States)

    Wagner, Friedrich

    2016-12-01

    Data from the German electricity system for the years 2010, 2012, 2013, and 2015 are used and scaled up to a 100% supply by intermittent renewable energy sources (iRES). In the average, 330GW wind and PV power are required to meet this 100% target. A back-up system is necessary with the power of 89% of peak load. Surplus electricity accrues at high power levels. Curtailing surplus power to a large extent is found to be uneconomic. Demand-side management will suffer from the strong day-to-day variation of available surplus energy. A day storage is ineffective because of the day-night correlation of surplus power during winter. A seasonal storage loses its character when transformation losses are considered because it can contribute only after periods with excessive surplus production. The option of an oversized iRES system to feed the storage is also not effective because, in this case, energy can be taken directly from the large iRES supply, making storage superfluous. The capacities to be installed stress the difficulty to base heat supply and mobility also on iRES generated electricity in the future. As the German energy transition replaces one CO2-free electricity supply system by another one, no major reduction in CO2 emission can be expected till 2022, when the last nuclear reactor will be switched off. By 2022, an extremely oversized power supply system has to be created, which can be expected to continue running down spot-market electricity prices. The continuation of the economic response -to replace expensive gas fuel by cheap lignite- causes an overall increase in CO2 emission. The German GHG emission targets for 2020 and beyond are therefore in jeopardy.

  17. Energetic Materials Based on 5,5'-Diamino-4,4'-dinitramino-3,3'-bi-1,2,4-triazole.

    Science.gov (United States)

    Klapötke, Thomas M; Leroux, Marcel; Schmid, Philipp C; Stierstorfer, Jörg

    2016-03-18

    A simple and straightforward synthesis of 5,5'-diamino-4,4'-dinitramino-3,3'-bi-1,2,4-triazole by the selective nitration of 4,4',5,5'-tetraamino-3,3'-bi-1,2,4-triazole is presented. The interaction of the amino and nitramino groups improves the energetic properties of this functionalized bitriazole. For a deeper investigation of these properties, various nitrogen-rich derivatives were synthesized. The new compounds were investigated and characterized by spectroscopy ((1)H and (13)C NMR, IR, Raman), elemental analysis, mass spectrometry, differential thermal analysis (DTA), X-ray analysis, and impact and friction sensitivities (IS, FS). X-ray analyses were performed and deliver insight into structural characteristics with which the stability of the compounds can be explained. The standard enthalpies of formation were calculated for all compounds at the CBS-4M level of theory, revealing highly positive heats of formation. The energetic performance of the new molecules was predicted with the EXPLO5 V6.02 computer. A small-scale shock reactivity test (SSRT) and a toxicity test gave a first impression of the performance and toxicity of selective compounds.

  18. Solar Energetic Particles

    Science.gov (United States)

    Király, Péter

    Energetic particles recorded in the Earth environment and in interplanetary space have a multitude of origins, i.e. acceleration and propagation histories. At early days practically all sufficiently energetic particles were considered to have come either from solar flares or from interstellar space. Later on, co-rotating interplanetary shocks, the termination shock of the supersonic solar wind, planetary bow shocks and magnetospheres, and also coronal mass ejections (CME) were recognized as energetic particle sources. It was also recognized that less energetic (suprathermal) particles of solar origin and pick-up ions have also a vital role in giving rise to energetic particles in interplanetary disturbances. The meaning of the term "solar energetic particles" (SEP) is now somewhat vague, but essentially it refers to particles produced in disturbances fairly directly related to solar processes. Variation of intensity fluctuations with energy and with the phase of the solar cycle will be discussed. Particular attention will be given to extremes of time variation, i.e. to very quiet periods and to large events. While quiet-time fluxes are expected to shed light on some basic coronal processes, large events dominate the fluctuation characteristics of cumulated fluence, and the change of that fluctuation with energy and with the phase of the solar cycle may also provide important clues. Mainly ISEE-3 and long-term IMP-8 data will be invoked. Energetic and suprathermal particles that may never escape into interplanetary space may play an important part in heating the corona of the sun.

  19. Analysis of Influential Factors on Agricultural Surplus Labor Pro-fessionalization During China's Economic Downturn

    Institute of Scientific and Technical Information of China (English)

    Yang Xiu-li; Li Lu-tang

    2014-01-01

    This paper contributed to the pool of studies about agricultural surplus labor in China, also acted as the root to the imminent settlement of the issues concerning agriculture, countryside and farmers. Using data from survey of agricultural surplus labor in 2012, which covered three provinces in northern, midwestern and southern parts of China, this paper analyzed the influential factors on agricultural surplus labor professionalization by adoption of a logistic regression model. It showed that agricultural surplus labor shortage could be explained by low-quality professionalization. It was a feasible and effective way to solve the issue of workforce shortage during economic downturn by improving agricultural surplus labor's professionalization.

  20. Addiction surplus: the add-on margin that makes addictive consumptions difficult to contain.

    Science.gov (United States)

    Adams, Peter J; Livingstone, Charles

    2015-01-01

    Addictive consumptions generate financial surpluses over-and-above non-addictive consumptions because of the excessive consumption of addicted consumers. This add-on margin or 'addiction surplus' provides a powerful incentive for beneficiaries to protect their income by ensuring addicted consumers keep consuming. Not only that, addiction surplus provides the financial base that enables producers to sponsor activities which aim to prevent public health initiatives from reducing consumption. This paper examines the potency of addiction surplus to engage industry, governments and communities in an on-going reliance on addiction surplus. It then explores how neo-liberal constructions of a rational consumer disguise the ethical and exploitative dynamics of addiction surplus by examining ways in which addictive consumptions fail to conform to notions of autonomy and rationality. Four measures are identified to contain the distorting effects of addiction surplus. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Energetic ions in ITER plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Pinches, S. D. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul-lez-Durance Cedex (France); Chapman, I. T.; Sharapov, S. E. [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Lauber, Ph. W. [Max-Planck-Institut für Plasmaphysik, EURATOM-Association, Boltzmanstraße 2, D-85748 Garching (Germany); Oliver, H. J. C. [H H Wills Physics Laboratory, University of Bristol, Royal Fort, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Shinohara, K. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Tani, K. [Nippon Advanced Technology Co., Ltd, Naka, Ibaraki 311-0102 (Japan)

    2015-02-15

    This paper discusses the behaviour and consequences of the expected populations of energetic ions in ITER plasmas. It begins with a careful analytic and numerical consideration of the stability of Alfvén Eigenmodes in the ITER 15 MA baseline scenario. The stability threshold is determined by balancing the energetic ion drive against the dominant damping mechanisms and it is found that only in the outer half of the plasma (r/a>0.5) can the fast ions overcome the thermal ion Landau damping. This is in spite of the reduced numbers of alpha-particles and beam ions in this region but means that any Alfvén Eigenmode-induced redistribution is not expected to influence the fusion burn process. The influence of energetic ions upon the main global MHD phenomena expected in ITER's primary operating scenarios, including sawteeth, neoclassical tearing modes and Resistive Wall Modes, is also reviewed. Fast ion losses due to the non-axisymmetric fields arising from the finite number of toroidal field coils, the inclusion of ferromagnetic inserts, the presence of test blanket modules containing ferromagnetic material, and the fields created by the Edge Localised Mode (ELM) control coils in ITER are discussed. The greatest losses and associated heat loads onto the plasma facing components arise due to the use of the ELM control coils and come from neutral beam ions that are ionised in the plasma edge.

  2. Energetic ions in ITER plasmas

    Science.gov (United States)

    Pinches, S. D.; Chapman, I. T.; Lauber, Ph. W.; Oliver, H. J. C.; Sharapov, S. E.; Shinohara, K.; Tani, K.

    2015-02-01

    This paper discusses the behaviour and consequences of the expected populations of energetic ions in ITER plasmas. It begins with a careful analytic and numerical consideration of the stability of Alfvén Eigenmodes in the ITER 15 MA baseline scenario. The stability threshold is determined by balancing the energetic ion drive against the dominant damping mechanisms and it is found that only in the outer half of the plasma ( r / a > 0.5 ) can the fast ions overcome the thermal ion Landau damping. This is in spite of the reduced numbers of alpha-particles and beam ions in this region but means that any Alfvén Eigenmode-induced redistribution is not expected to influence the fusion burn process. The influence of energetic ions upon the main global MHD phenomena expected in ITER's primary operating scenarios, including sawteeth, neoclassical tearing modes and Resistive Wall Modes, is also reviewed. Fast ion losses due to the non-axisymmetric fields arising from the finite number of toroidal field coils, the inclusion of ferromagnetic inserts, the presence of test blanket modules containing ferromagnetic material, and the fields created by the Edge Localised Mode (ELM) control coils in ITER are discussed. The greatest losses and associated heat loads onto the plasma facing components arise due to the use of the ELM control coils and come from neutral beam ions that are ionised in the plasma edge.

  3. Supplement to the Surplus Plutonium Disposition Draft Environmental Impact Statement

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-05-14

    On May 22, 1997, DOE published a Notice of Intent in the Federal Register (62 Federal Register 28009) announcing its decision to prepare an environmental impact statement (EIS) that would tier from the analysis and decisions reached in connection with the ''Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic EIS (Storage and Disposition PEIS)''. ''The Surplus Plutonium Disposition Draft Environmental Impact Statement'' (SPD Draft EIS) (DOWEIS-0283-D) was prepared in accordance with NEPA and issued in July 1998. It identified the potential environmental impacts of reasonable alternatives for the proposed siting, construction, and operation of three facilities for plutonium disposition. These three facilities would accomplish pit disassembly and conversion, immobilization, and MOX fuel fabrication. For the alternatives that included MOX fuel fabrication, the draft also described the potential environmental impacts of using from three to eight commercial nuclear reactors to irradiate MOX fuel. The potential impacts were based on a generic reactor analysis that used actual reactor data and a range of potential site conditions. In May 1998, DCE initiated a procurement process to obtain MOX fuel fabrication and reactor irradiation services. The request for proposals defined limited activities that may be performed prior to issuance of the SPD EIS Record of Decision (ROD) including non-site-specific work associated with the development of the initial design for the MOX fuel fabrication facility, and plans (paper studies) for outreach, long lead-time procurements, regulatory management, facility quality assurance, safeguards, security, fuel qualification, and deactivation. No construction on the proposed MOX facility would begin before an SPD EIS ROD is issued. In March 1999, DOE awarded a contract to Duke Engineering & Services; COGEMA, Inc.; and Stone & Webster (known as DCS) to provide the requested

  4. ANL-W MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1997-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement (EIS). This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. The paper describes the following: Site map and the LA facility; process descriptions; resource needs; employment requirements; wastes, emissions, and exposures; accident analysis; transportation; qualitative decontamination and decommissioning; post-irradiation examination; LA fuel bundle fabrication; LA EIS data report assumptions; and LA EIS data report supplement.

  5. Predator-dependent functional response in wolves: from food limitation to surplus killing.

    Science.gov (United States)

    Zimmermann, Barbara; Sand, Håkan; Wabakken, Petter; Liberg, Olof; Andreassen, Harry Peter

    2015-01-01

    The functional response of a predator describes the change in per capita kill rate to changes in prey density. This response can be influenced by predator densities, giving a predator-dependent functional response. In social carnivores which defend a territory, kill rates also depend on the individual energetic requirements of group members and their contribution to the kill rate. This study aims to provide empirical data for the functional response of wolves Canis lupus to the highly managed moose Alces alces population in Scandinavia. We explored prey and predator dependence, and how the functional response relates to the energetic requirements of wolf packs. Winter kill rates of GPS-collared wolves and densities of cervids were estimated for a total of 22 study periods in 15 wolf territories. The adult wolves were identified as the individuals responsible for providing kills to the wolf pack, while pups could be described as inept hunters. The predator-dependent, asymptotic functional response models (i.e. Hassell-Varley type II and Crowley-Martin) performed best among a set of 23 competing linear, asymptotic and sigmoid models. Small wolf packs acquired >3 times as much moose biomass as required to sustain their field metabolic rate (FMR), even at relatively low moose abundances. Large packs (6-9 wolves) acquired less biomass than required in territories with low moose abundance. We suggest the surplus killing by small packs is a result of an optimal foraging strategy to consume only the most nutritious parts of easy accessible prey while avoiding the risk of being detected by humans. Food limitation may have a stabilizing effect on pack size in wolves, as supported by the observed negative relationship between body weight of pups and pack size. © 2014 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  6. Share-of-Surplus Product Line Optimisation with Price Levels

    Directory of Open Access Journals (Sweden)

    X. G. Luo

    2014-01-01

    Full Text Available Kraus and Yano (2003 established the share-of-surplus product line optimisation model and developed a heuristic procedure for this nonlinear mixed-integer optimisation model. In their model, price of a product is defined as a continuous decision variable. However, because product line optimisation is a planning process in the early stage of product development, pricing decisions usually are not very precise. In this research, a nonlinear integer programming share-of-surplus product line optimization model that allows the selection of candidate price levels for products is established. The model is further transformed into an equivalent linear mixed-integer optimisation model by applying linearisation techniques. Experimental results in different market scenarios show that the computation time of the transformed model is much less than that of the original model.

  7. How Much Surplus Labor Is in the Countryside?

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The long-held belief of an inexhaustible surplus of labor in rural areas of China is fading fast.Amid worries over its aging popula- tion,China is confronted with serious challenges to sustain its labor supply so as to shore up its growing economy.How to fur- ther transfer the remaining surplus labor into cities and how to improve the quality of Chinese laborers are questions the country faces.The Guangming Daily,a newspaper based in Beijing,con- ducted an interview with Cai Fang,an economist and Director of the Institute of Population and Labor Economics under the Chinese Academy of Social Sciences,to delve into China’s labor dilemma.Cai gave his opinions in the following excerpts:

  8. 41 CFR 102-37.200 - What certifications must a SASP make when requesting surplus property for donation?

    Science.gov (United States)

    2010-07-01

    ... a SASP make when requesting surplus property for donation? 102-37.200 Section 102-37.200 Public... MANAGEMENT REGULATION PERSONAL PROPERTY 37-DONATION OF SURPLUS PERSONAL PROPERTY State Agency for Surplus... requesting surplus property for donation? When requesting or applying for property, you must certify that:...

  9. GA/AN 纳米复合含能材料的制备与表征%Preparation and Characterization of Graphene Aerogel/Ammonium Nitrate Nano Composite Energetic Materials

    Institute of Scientific and Technical Information of China (English)

    兰元飞; 罗运军

    2015-01-01

    The graphene aerogel/ammonium nitrate (GA/AN)nano composite energetic material was prepared by the sol-gel method and supercritical CO2 drying method.The morphology and structure of GA/AN nano composite energetic material were characterized by elemental analysis (EA),scanning electron microscope (SEM),nitrogen sorption tests and X-ray diffraction (XRD).The thermal decomposition behavior was investigated by TG and DSC. The results show that AN exists by nano size in the GA with an average particle size of 71 nm,mass fraction of 92.71%.GA exhibits the promoting effects in the thermal decomposition process of AN.Compared to pure AN, the decomposition peak temperature of GA/AN nano composite energetic material decreases by 33.68℃ and the apparent heat of decomposition increases by 532.78 J/g.%通过溶胶-凝胶法和超临界二氧化碳干燥法制备了石墨烯气凝胶/硝酸铵(GA/AN)纳米复合含能材料。采用元素分析(EA)、扫描电子显微镜(SEM)、N2吸附测试和 X 射线衍射(XRD)对 GA/AN 纳米复合含能材料的形貌和结构进行了表征,用 TG 和 DSC 测试了其热分解性能。结果表明,在 GA/AN 纳米复合含能材料中,AN 以纳米尺寸存在于石墨烯气凝胶中,平均粒径为71 nm,质量分数为92.71%。石墨烯对 AN 的热分解具有促进作用,与纯 AN 相比,GA/AN 纳米复合含能材料的热分解温度提前33.68℃,表观分解热增加了532.78 J/g。

  10. Some optimal dividend problems for a surplus process with interest

    Institute of Scientific and Technical Information of China (English)

    YANG Hu; GENG Wen-ting

    2008-01-01

    We derive some results on the dividend payments prior to ruin in the classical surplus process with interest. An integro-differential equation with a boundary conditions satisfied by the expected present value of dividend payments is derived and solved. Furthermore, we derive an integro-differential equation for the moment generating function, through which we analyze the higher moment of the present value of dividend payments. Finally, closed-form expressions for exponential claims are given.

  11. Im/Ex in April:Small Trade Surplus Resurged

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ On May 10,2010,General Administration of Customs of the Peole's Republic of China (GAC) released the Profile of China of foreign trade import and export in April and the first four months of this year China returned to a trade surplus in April on strong exports growth after posting its first monthly deficit in almost six years in March ,the General Administration of Customs (GAC) announced.

  12. Theoretical studies on nitrogen rich energetic azoles.

    Science.gov (United States)

    Ghule, Vikas Dasharath; Sarangapani, Radhakrishnan; Jadhav, Pandurang M; Tewari, Surya P

    2011-06-01

    Different nitro azole isomers based on five membered heterocyclics were designed and investigated using computational techniques in order to find out the comprehensive relationships between structure and performances of these high nitrogen compounds. Electronic structure of the molecules have been calculated using density functional theory (DFT) and the heat of formation has been calculated using the isodesmic reaction approach at B3LYP/6-31G* level. All designed compounds show high positive heat of formation due to the high nitrogen content and energetic nitro groups. The crystal densities of these energetic azoles have been predicted with different force fields. All the energetic azoles show densities higher than 1.87 g/cm(3). Detonation properties of energetic azoles are evaluated by using Kamlet-Jacobs equation based on the calculated densities and heat of formations. It is found that energetic azoles show detonation velocity about 9.0 km/s, and detonation pressure of 40GPa. Stability of the designed compounds has been predicted by evaluating the bond dissociation energy of the weakest C-NO(2) bond. The aromaticity using nucleus independent chemical shift (NICS) is also explored to predict the stability via delocalization of the π-electrons. Charge on the nitro group is used to assess the impact sensitivity in the present study. Overall, the study implies that all energetic azoles are found to be stable and expected to be the novel candidates of high energy density materials (HEDMs).

  13. Combination of 1,2,4-Oxadiazole and 1,2,5-Oxadiazole Moieties for the Generation of High-Performance Energetic Materials.

    Science.gov (United States)

    Wei, Hao; He, Chunlin; Zhang, Jiaheng; Shreeve, Jean'ne M

    2015-08-03

    Salts generated from linked 1,2,4-oxadiazole/1,2,5-oxadiazole precursors exhibit good to excellent thermal stability, density, and, in some cases, energetic performance. The design of these compounds was based on the assumption that by the combination of varying oxadiazole rings, it would be possible to profit from the positive aspects of each of the components. All of the new compounds were fully characterized by elemental analysis, IR spectroscopy, (1)H, (13)C, and (in some cases) (15)N NMR spectroscopy, and thermal analysis (DSC). The structures of 2-3 and 5-1⋅5 H2O were confirmed by single-crystal X-ray analysis. Theoretical performance calculations were carried out by using Gaussian 03 (Revision D.01). Compound 2-3, with its good density (1.85 g cm(-3)), acceptable sensitivity (14 J, 160 N), and superior detonation pressure (37.4 GPa) and velocity (9046 m s(-1)), exhibits performance properties superior to those of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. In situ synthesized 3D metal-organic frameworks (MOFs) constructed from transition metal cations and tetrazole derivatives: a family of insensitive energetic materials.

    Science.gov (United States)

    Xu, Yuangang; Liu, Wei; Li, Dongxue; Chen, Houhe; Lu, Ming

    2017-08-22

    The combination of the hydrothermal method with in situ synthesis has been successfully employed to prepare a family of tetrazole-based energetic metal-organic frameworks (EMOFs) ([Ag(Mtta)]n, 1; [Cd5(Mtta)9]n, 2; [Pb3(bta)2(O)2(H2O)]n, 3; and [Pb(tztr)2(H2O)]n, 4) through [2 + 3] cycloaddition of azide anions and nitrile groups. All the synthesized EMOFs were characterized by single crystal X-ray diffraction, IR spectroscopy, elemental analysis (EA), different scanning calorimetry (DSC), and thermogravimetry (TG). Both complexes 1 and 4 consist of reticular two-dimensional (2D) layers that are linked by π-π overlap interactions between the ligands in neighbouring layers to form 3D supramolecular structures. In contrast, complexes 2 and 3 are 3D frameworks. The in situ formation of ligands bta and tztr has been described for the first time. Remarkably, thermogravimetric measurements demonstrated that the EMOFs 1-4 possess excellent thermostabilities with high decomposition temperatures up to 354, 389, and 372 °C for 1, 2, and 4, respectively. Sensitivity tests revealed that all the EMOFs are extremely insensitive.

  15. Climate protection, natural resources management and soil improvement by combined Energetic and Material Utilization of lignocellulosic agricultural WAstes and residues (CEMUWA); Klimaschutz, Naturressourcenschutz und Bodenverbesserung durch kombinierte energetische und stoffliche Verwertung lignozelluloser landwirtschaftlicher Abfaelle und Reststoffe

    Energy Technology Data Exchange (ETDEWEB)

    Schuech, Andrea; Nelles, Michael; Tscherpel, Burckhard; El Behery, Ahmed; Menanz, Rania; Bahl, Hubert; Scheel, Michael; Nipkow, Mareen

    2015-07-01

    The project Climate protection, natural resources management and soil improvement by combined Energetic and Material Utilization of lignocellulosic agricultural WAstes and residues (CEMUWA) was implemented with long-term partners from Egypt and Germany leaded by the Department Waste Management and Material Flow from September 2011 until October 2013. Aim of the project was the development of technologies for the utilization of agricultural wastes and residues at the example of rice straw, with the focus on the energetic and material use. In the long term a contribution to climate protection and natural resource management could be reached. The focus was on investigations in the field of biogas, ethanol and butanol production including pretreatment as well as the material use in horticulture. The results show that the biogas and ethanol production with adapted pretreatments of rice straws is possible. The technical adaptation of a biogas plant (eo-digestion) would be associated with about 20% higher investment costs and higher operating costs with an approximately 15% higher energy demand. In Germany, however, this may still economically by the substitution of expensive or difficult available energy crops (reduction of substrate costs by 30 to 35% for a 600 kWel-BGP using maize silage). The investigated solutions for material use in Egypt showed good results, which in some cases exceeded the expectations. By the use of rice straw imported peat substrates could be substitute or irrigation water saved, what is ecologically and economically useful. The production of ethanol from rice straw was implemented on laboratory scale and preconditions for investigations in semi-industrial and partly pilot scale were created. The bilateral project'' was funded in the framework of the German-Egypt-Research-Fond (GERF) by the German Federal Ministry of Education and Research (BMBF) and the Egyptian Science and Technology Development Fund in Egypt (STDF). The total budget

  16. Energetic reuse: the use of energy from organic material from urban waste for plastics recycling; Reaproveitamento energetico: uso de energia proveniente de material organico dos residuos urbanos para reciclar plasticos

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Priscila Alves; Rocha, Carlos Roberto [Universidade Federal de Itajuba (EXCEN/UNIFEI), MG (Brazil). Centro de Excelencia em Eficiencia Energetica

    2008-07-01

    The population growth and the elevation of the purchasing status due to economic development impel the gradual increase of residues produced a year. The discarding of these residues represents a great economic and environmental challenge, mainly because of discarded plastic concentration with no energetic and economic use, a also because of the organic material that, after decomposing, produces methane, one of the most responsible for global heating when in contact with atmosphere with no control. The recycling of plastic residues is a solution to minimize its discard and to guarantee an environmental improvement for saving raw matter, however the high consumption of energy endears the process, making it difficult its economic viability. This takes the search of new alternatives for attainment of low cost energy. In the problem of discard of the organic matter it can be the solution for the recycling of these residues. The decomposition of the organic matter produces fuel (biogas) useful as power plant for the generation of necessary electricity to the recycling process. The present study analyses an alternative to recycle plastic residues, after being consumed, in some places for discarding and using energy from biogas produced in landfills or biodigestors. Initially it was carried through a data-collecting and analysis of the physical composition of the residues, indispensable to the development of the study, which allowed to daily find the average percentage of plastics (12,9%) and organic matter (41,9%) made use by the involved population. On the basis of the data of organic matter the determination in such a way of the potential of generation of the biogas as of the electric power 'recycled' was possible to leave of that they would be discarded without any use. Data-collecting on equipment used in the plastic recycling had been essential for attainment of the necessary average energy demand to the process in such a way not only for soft plastic and

  17. Due To Surplus in Aluminum Capacity, a Number of Enterprises Experienced Loss to Varying Degrees

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Beginning from 2002,in China’s aluminum industry,aluminum output began to show surplus due to dwindling demand from downstream industry;in 2008 China’s aluminum surplus was expected to reach 500,000 tonnes.In recent years,capacity surplus in the aluminum industry has become widely known,in the final analysis,the reason is related to the accelerating speed of capacity

  18. A Mystery of the Global Surplus and its Ramification

    Directory of Open Access Journals (Sweden)

    Malović Marko

    2013-07-01

    Full Text Available This paper deals with phenomenon of the increasingly indicative global imbalances and lagging genesis of balance of payments (BoP accounting in an attempt to accommodate the ongoing mutation of international trade and finance. Namely, although BoP of the world as a whole should be zero since international trade in goods, services and financial assets ought to be a zero-sum game, our planet apparently runs a non-negligible and rising BoP surplus, projected to reach 1% of global GDP by 2015! To make the puzzle more bizarre, IMF statistics up until 2004 had recorded a persistent BoP deficit for the entire globe, which P. Krugman dubbed “The Mystery of the missing Surplus”. Well, surplus is back with the vengeance – while this paper tries to make sense of the phenomenon and pinpoint both its determinants and likely economic consequences. In conclusion, it appears that 1 during international financial crises quality and accuracy of the BoP statistics worsens worldwide, 2 net global imbalances may still be much smaller than we commonly believe, 3 true culprits may not be our usual suspects, 4 gross trade exhibits stark differences once confronted with decomposed value-added net exports and imports free of double counted processed exports and indirect exporting, 5 also, deliberate misreporting of cross-border investment proceeds as well as MNE’s transfer pricing practices may account for a relevant portion of registered global imbalances, and finally, 6 even the latest 6th edition of the IMF’s BoP and IIP Manual explicitly tackles but a few of the factors behind the returning surplus mystery.

  19. A Mystery of the Global Surplus and its Ramification

    Directory of Open Access Journals (Sweden)

    Marko G Malovic

    2013-07-01

    Full Text Available This paper deals with phenomenon of the increasingly indicative global imbalances and lagging genesis of balance of payments (BoP accounting in an attempt to accommodate the ongoing mutation of international trade and finance. Namely, although BoP of the world as a whole should be zero since international trade in goods, services and financial assets ought to be a zero-sum game, our planet apparently runs a non-negligible and rising BoP surplus, projected to reach 1% of global GDP by 2015! To make the puzzle more bizarre, IMF statistics up until 2004 had recorded a persistent BoP deficit for the entire globe, which P. Krugman dubbed “The Mystery of the missing Surplus”. Well, surplus is back with the vengeance – while this paper tries to make sense of the phenomenon and pinpoint both its determinants and likely economic consequences. In conclusion, it appears that 1 during international financial crises quality and accuracy of the BoP statistics worsens worldwide, 2 net global imbalances may still be much smaller than we commonly believe, 3 true culprits may not be our usual suspects, 4 gross trade exhibits stark differences once confronted with decomposed value-added net exports and imports free of double counted processed exports and indirect exporting, 5 also, deliberate misreporting of cross-border investment proceeds as well as MNE’s transfer pricing practices may account for a relevant portion of registered global imbalances, and finally, 6 even the latest 6th edition of the IMF’s BoP and IIP Manual explicitly tackles but a few of the factors behind the returning surplus mystery. Normal 0 false false false EN-US X-NONE X-NONE

  20. The Maximum Surplus Distribution before Ruin in an Erlang(n)Risk Process Perturbed by Diffusion

    Institute of Scientific and Technical Information of China (English)

    Zhen Zhong ZHANG; Jie Zhong ZOU; Yuan Yuan LIU

    2011-01-01

    In this paper,we consider the distribution of the maximum surplus before ruin in a generalized Erlang(n) risk process (i.e.,convolution of n exponential distributions with possibly different parameters) perturbed by diffusion.It is shown that the maximum surplus distribution before ruin satisfies the integro-differential equation with certain boundary conditions.Explicit expressions are obtained when claims amounts are rationally distributed.Finally,the surplus distribution at the time of ruin and the surplus distribution immediately before ruin are presented.

  1. Surplus Cost Potential as a Life Cycle Impact Indicator for Metal Extraction

    Directory of Open Access Journals (Sweden)

    Marisa D.M. Vieira

    2016-01-01

    Full Text Available In the evaluation of product life cycles, methods to assess the increase in scarcity of resources are still under development. Indicators that can express the importance of an increase in scarcity of metals extracted include surplus ore produced, surplus energy required, and surplus costs in the mining and the milling stage. Particularly the quantification of surplus costs per unit of metal extracted as an indicator is still in an early stage of development. Here, we developed a method that quantifies the surplus cost potential of mining and milling activities per unit of metal extracted, fully accounting for mine-specific differences in costs. The surplus cost potential indicator is calculated as the average cost increase resulting from all future metal extractions, as quantified via cumulative cost-tonnage relationships. We tested the calculation procedure with 12 metals and platinum-group metals as a separate group. We found that the surplus costs range six orders of magnitude between the metals included, i.e., between $0.01–$0.02 (iron and $13,533–$17,098 (rhodium USD (year 2013 per kilogram of metal extracted. The choice of the reserve estimate (reserves vs. ultimate recoverable resource influenced the surplus costs only to a limited extent, i.e., between a factor of 0.7 and 3.2 for the metals included. Our results provide a good basis to regularly include surplus cost estimates as resource scarcity indicator in life cycle assessment.

  2. The Democratic Surplus that Constitutionalised the European Union

    DEFF Research Database (Denmark)

    Harste, Gorm

    2015-01-01

    This article questions the very foundation of the doctrine of a so-called “democratic deficit” in the EU. Yet in order to argue beyond nationalist myths, clear-cut concepts are necessary. Speaking about democracy in the EU, the article exposes four dimensions that constitute a “democratic surplus.......” It offers, first, a narrative of European integration that does not insist on an identity logic of democratic sovereignty and self-determination; on the contrary, a differentiated and deconstructed constitution of a network society of intermediate institutions seems more realist. Contrary to the classical...

  3. Ruin Probabilities of a Surplus Process Described by PDMPs

    Institute of Scientific and Technical Information of China (English)

    Jing-min He; Rong Wu; Hua-yue Zhang

    2008-01-01

    In this paper we mainly study the ruin probability of a surplus process described by a piecewise deterministic Markov process (PDMP). An integro-differentiai equation for the ruin probability is derived. Under a certain assumption, it can be transformed into the ruin probability of a risk process whose premiums depend on the current reserves. Using the same argument as that in Asmussen and Nielsen[2], the ruin probability and its upper bounds are obtained. Finally, we give an analytic expression for ruin probability and its upper bounds when the claim-size is exponentially distributed.

  4. Nanostructured energetic composites: synthesis, ignition/combustion modeling, and applications.

    Science.gov (United States)

    Zhou, Xiang; Torabi, Mohsen; Lu, Jian; Shen, Ruiqi; Zhang, Kaili

    2014-03-12

    Nanotechnology has stimulated revolutionary advances in many scientific and industrial fields, particularly in energetic materials. Powder mixing is the simplest and most traditional method to prepare nanoenergetic composites, and preliminary findings have shown that these composites perform more effectively than their micro- or macro-sized counterparts in terms of energy release, ignition, and combustion. Powder mixing technology represents only the minimum capability of nanotechnology to boost the development of energetic material research, and it has intrinsic limitations, namely, random distribution of fuel and oxidizer particles, inevitable fuel pre-oxidation, and non-intimate contact between reactants. As an alternative, nanostructured energetic composites can be prepared through a delicately designed process. These composites outperform powder-mixed nanocomposites in numerous ways; therefore, we comprehensively discuss the preparation strategies adopted for nanostructured energetic composites and the research achievements thus far in this review. The latest ignition and reaction models are briefly introduced. Finally, the broad promising applications of nanostructured energetic composites are highlighted.

  5. An Ag(I) energetic metal-organic framework assembled with the energetic combination of furazan and tetrazole: synthesis, structure and energetic performance.

    Science.gov (United States)

    Qu, Xiao-Ni; Zhang, Sheng; Wang, Bo-Zhou; Yang, Qi; Han, Jing; Wei, Qing; Xie, Gang; Chen, San-Ping

    2016-04-28

    A novel Ag(I) energetic MOF [Ag16(BTFOF)9]n·[2(NH4)]n () assembled with Ag(iI ions and a furazan derivative, 4,4'-oxybis[3,3'-(1H-5-tetrazol)]furazan (H2BTFOF) was successfully synthesized and structurally characterized, featuring a three-dimensional porous structure incorporating ammonium cations. The thermal stability and energetic properties were determined, revealing that the 3D energetic MOF had an outstanding insensitivity (IS > 40 J), an ultrahigh detonation pressure (P) of 65.29 GPa and a detonation velocity (D) of 11.81 km cm(-3). In addition, the self-accelerating decomposition temperature (TSADT) and the critical temperature of thermal explosion (Tb) are also discussed in detail. The finding exemplifies that the assembly strategy plays a decisive role in the density and energetic properties of MOF-based energetic materials.

  6. Residues from low-order energetic materials: the comparative performance of a range of sampling approaches prior to analysis by ion chromatography.

    Science.gov (United States)

    Szomborg, Katarzyna; Jongekrijg, Fleur; Gilchrist, Elizabeth; Webb, Tony; Wood, Dan; Barron, Leon

    2013-12-10

    A quantitative study of common forensic evidence collection devices for the recovery of low-explosive residues from non-porous glass and plastic is presented herein. Swabbing materials including cotton, rayon, Nomex(®) (poly(isophthaloylchloride/m-phenylenediamine)), Teflon/Teflon-coated fibreglass (polytetrafluoroethylene) and adhesive-coated tapes were used to collect known quantities of up to 14 forensically relevant inorganic and organic anion and cation species from both surfaces. Analysis was performed using two validated ion chromatography methods. This study revealed that all swabs and surfaces contributed highly variable levels of interfering ionic species and that swabbing materials showed variance in the quantities and total number of analytes recovered from both surfaces. Teflon and Nomex(®) materials demonstrated the most promise due to their ability to collect and release analytes into simple extraction solvents as well as displaying relatively low endogenous interference. In parallel, the ability to extract residue directly from both surfaces via the addition of a suitable extraction solvent was investigated instead of swabbing. This work highlights that direct solvent extraction from a surface should be considered as an alternative approach, especially for small areas or objects. To the best of our knowledge, this work represents the most comprehensive study of the efficiencies of sample collection technologies for low-explosive residues prior to analysis by ion chromatography.

  7. Patients' Attitudes towards the Surplus Frozen Embryos in China

    Directory of Open Access Journals (Sweden)

    Xuan Jin

    2013-01-01

    Full Text Available Background. Assisted reproductive techniques have been used in China for more than 20 years. This study investigates the attitudes of surplus embryo holders towards embryos storage and donation for medical research. Methods. A total of 363 couples who had completed in vitro fertilization (IVF treatment and had already had biological children but who still had frozen embryos in storage were invited to participate. Interviews were conducted by clinics in a narrative style. Results. Family size was the major reason for participants’ (discontinuation of embryo storage; moreover, the moral status of embryos was an important factor for couples choosing embryo storage, while the storage fee was an important factor for couples choosing embryo disposal. Most couples discontinued the storage of their embryos once their children were older than 3 years. In our study, 58.8% of the couples preferred to dispose of surplus embryos rather than donate them to research, citing a lack of information and distrust in science as significant reasons for their decision. Conclusions. Interviews regarding frozen embryos, including patients’ expectations for embryo storage and information to assist them with decisions regarding embryo disposal, are beneficial for policies addressing embryo disposition and embryo donation in China.

  8. Energetic Materials with Promising Properties: Synthesis and Characterization of 4,4'-Bis(5-nitro-1,2,3-2H-triazole) Derivatives.

    Science.gov (United States)

    He, Chunlin; Shreeve, Jean'ne M

    2015-05-18

    Using a variety of functionalization strategies, derivatives of 4, 4'-bis(5-nitro-1,2,3-2H-triazole) were designed, synthesized, and characterized. The isomers were separated, their structures were confirmed with single-crystal X-ray analysis, and their properties were determined by differential scanning calorimetry, density, impact sensitivity, heat of formation, and detonation velocity and pressure (calculated by EXPLO5 V6.01). Those materials were found to exhibit superior detonation performance when compared with the other fully carbon-nitrated bis(azoles).

  9. 一种含硝基-NNO-氧化偶氮基新型含能材料的合成与表征%A Novel Energetic Material Based on Nitro-NNO-azoxy:Synthesis and Characterization

    Institute of Scientific and Technical Information of China (English)

    李辉; 赵凤起; 于倩倩; 来蔚鹏; 王伯周

    2014-01-01

    以3-氨基-4-(特丁基-NNO-氧化偶氮)基呋咱为原料,经过缩合和硝化两步反应合成了未见文献报道的化合物亚甲基-双-[3-(硝基-NNO-氧化偶氮)基-4-硝氨基-呋咱],并采用核磁共振、红外( IR)、元素分析和质谱确定了其结构。通过对其关键中间体晶体结构的研究确认了目标化合物的骨架结构。此外,通过量子化学计算方法预估了目标化合物的爆轰性能,密度为1.94 g·cm-3,爆速9502.52 m·s-1,爆压41.79 GPa ,生成焓1007.67 kJ·mol-1。%A novel energetic compound,N,N′-dinitro-N,N′-bis[3-(nitro-NNO-azoxy)furazan-4-yl]methylenediamine,was synthesized using 3-amino-4-( t-Bu-NNO-azoxy)furazan as starting material. And its structure was characterized by nuclear magnetic resonance(1 H NMR and 13 C NMR),infrared( IR)spectroscopy,elemental analysis and mass spectrometry,and its backbone was also confirmed by the X-ray structure study of the key intermediate. The detonation performance was calculated by VLW equation of state. Results show density is 1.94 g·cm-3,detonation velocity 9502.52 m·s-1,detonation pressure 41.79 GPa and enthalpy of formation 1007.67 kJ·mol-1,indicating it is a competitive energetic materials.

  10. Complex Nanostructures: Synthesis and Energetic Applications

    Directory of Open Access Journals (Sweden)

    Dunwei Wang

    2010-02-01

    Full Text Available Connected through single crystalline junctions, low dimensional materials such as nanowires and nanorods form complex nanostructures. These new materials exhibit mechanical strengths and electrical conductivities superior to their constituents while maintaining comparable surface areas, an attribute ideal for energetic applications. More efficient solar cells, higher capacity batteries and better performing photoelectrochemical cells have been built using these materials. This article reviews this exciting new class of materials and covers topics from controlled syntheses to applications in photovoltaics, chemical energy conversion and electrical charge storage. Mechanisms responsible for the improved performance are discussed. The prospect of their applications in a broader energy-related field is analyzed.

  11. New directions in the science and technology of advanced sheet explosive formulations and the key energetic materials used in the processing of sheet explosives: Emerging trends.

    Science.gov (United States)

    Talawar, M B; Jangid, S K; Nath, T; Sinha, R K; Asthana, S N

    2015-12-30

    This review presents the work carried out by the international community in the area of sheet explosive formulations and its applications in various systems. The sheet explosive is also named as PBXs and is a composite material in which solid explosive particles like RDX, HMX or PETN are dispersed in a polymeric matrix, forms a flexible material that can be rolled/cut into sheet form which can be applied to any complex contour. The designed sheet explosive must possess characteristic properties such as flexible, cuttable, water proof, easily initiable, and safe handling. The sheet explosives are being used for protecting tanks (ERA), light combat vehicle and futuristic infantry carrier vehicle from different attacking war heads etc. Besides, sheet explosives find wide applications in demolition of bridges, ships, cutting and metal cladding. This review also covers the aspects such as risks and hazard analysis during the processing of sheet explosive formulations, effect of ageing on sheet explosives, detection and analysis of sheet explosive ingredients and the R&D efforts of Indian researchers in the development of sheet explosive formulations. To the best of our knowledge, there has been no review article published in the literature in the area of sheet explosives.

  12. Sputtering and surface damage of TFTR protective plate materials (Mo, TZM, graphite) by energetic D/sup +/ ion irradiation. Final report for Princeton Plasma Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kaminsky, M.; Das, S.K.; Dusza, P.

    1978-03-01

    Studies have been conducted in accordance with a service request from the Plasma Physics Laboratory (PPPL) of Princeton University to determine the total sputtering yields and the surface damage of molybdenum (a candidate material for the neutral beam injector protective plate for Princeton's Fusion Test Reactor (TFTR)) caused by the impact of D/sup +/ ions at 120-keV, 60-keV and 40-keV at fluxes and total doses agreed upon between PPPL and ANL. The irradiations have been conducted in a specified pulsed mode as well as in a dc mode. The material TZM (a molybdenum alloy) was included in some tests of surface damage, but not for the full complement of doses planned for molybdenum. According to a request by PPPL the target temperature was not to be controlled (targets were allowed to reach a temperature determined by the beam power deposition and the conductive and radiative heat losses), but the target temperature was to be monitored. The irradiations were conducted at pressures ranging from 4 x 10/sup -9/ torr to 2 x 10/sup -8/ torr.

  13. Synthesis and characterization of ZnO-Al2 O3 oxides as energetic electro-catalytic material for glucose fuel cell

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    One of the thrust areas of research is to find an alternative fuel to meet the increasing demand for energy. Glucose is a good source of alternative fuel for clean energy and is easily available in abundance from both naturally occurring plants and industrial processes. Electrochemical oxidation of glucose in fuel cell requires high electro-catalytic surface of the electrode to produce the clean electrical energy with minimum energy losses in the cell. Pt and Pt based alloys exhibit high electro-catalytic properties but they are expensive. For energy synthesis at economically cheap price, non Pt based inexpensive high electro catalytic material is required. Electro synthesized ZnO-Al2 O3 composite is found to exhibit high electro-catalytic properties for glucose oxidation. The Cyclic Voltammetry and Chronoamperometry curves reflect that the material is very much comparable to Pt as far as the maximum current and the steady state current delivered from the glucose oxidation are concerned. XRD image confirms the mixed oxide composite. SEM images morphology show increased 3D surface areas at higher magnification. This attributed high current delivered from electrochemical oxidation of glucose on this electrode surface.

  14. 41 CFR 105-50.202-4 - Technical assistance incident to Federal surplus personal property.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Technical assistance... Available From General Services Administration § 105-50.202-4 Technical assistance incident to Federal surplus personal property. Technical assistance will be provided in the screening and selection of surplus...

  15. The Impact of Financing Surpluses and Large Financing Deficits on Tests of the Pecking Order Theory

    NARCIS (Netherlands)

    de Jong, Abe; Verbeek, Marno; Verwijmeren, Patrick

    2010-01-01

    This paper extends the basic pecking order model of Shyam-Sunder and Myers by separating the effects of financing surpluses, normal deficits, and large deficits. Using a panel of US firms over the period 1971-2005, we find that the estimated pecking order coefficient is highest for surpluses (0.90),

  16. 41 CFR 102-37.270 - May a SASP retain surplus property for its own use?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false May a SASP retain surplus property for its own use? 102-37.270 Section 102-37.270 Public Contracts and Property Management... Property § 102-37.270 May a SASP retain surplus property for its own use? Yes, you can retain...

  17. 41 CFR 102-37.35 - Who handles the donation of surplus property?

    Science.gov (United States)

    2010-07-01

    ...-DONATION OF SURPLUS PERSONAL PROPERTY General Provisions Donation Overview § 102-37.35 Who handles the... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Who handles the donation of surplus property? 102-37.35 Section 102-37.35 Public Contracts and Property Management...

  18. Ten Ways to Restrict Children's Freedom to Play: The Problem of Surplus Safety

    Science.gov (United States)

    Wyver, Shirley; Tranter, Paul; Naughton, Geraldine; Little, Helen; Sandseter, Ellen Beate Hansen; Bundy, Anita

    2010-01-01

    Play and playgrounds provide essential experiences for young children's growth, development and enjoyment of life. However, such play experiences are now limited for many children due to excessive fear of risk, or "surplus safety". In this article, the authors examine the pervasiveness of surplus safety in the lives of young children. They argue…

  19. Measurement of the stress/strain response of energetic materials as a function of strain rate and temperature: PBX 9501 and Mock 9501

    Energy Technology Data Exchange (ETDEWEB)

    Funk, D.J.; Laabs, G.W.; Peterson, P.D.; Asay, B.W.

    1995-09-01

    We have measured the stress/strain behavior of PBX 9501, Mock 900-21 and two new mocks consisting of monoclinic granular sugar embedded in (1) a BDNPA-F/estane binder (a 9501 material mock; a hard organic crystal embedded in a plastic) and (2) neat estane (an LX-14 mock) at strain rates from 10{sup -3} to 10{sup -1}, at two L/D`s and at two temperatures (25 and 60 C). We find that the compressive strength falls with increasing temperature and rises with increasing strain rate. We also find that the new 9501 sugar mock most closely resembles the behavior of the 9501 explosive and differences may be attributable to the different ages of the estane binder used.

  20. The Estimation Methods for Agricultural Surplus Labor Based on Stochastic Frontier Production Function

    Institute of Scientific and Technical Information of China (English)

    Chaozhou; LU; Yanfen; LUO

    2014-01-01

    The existing calculation methods for the number of agricultural surplus labor have a common flaw,that is,they can not reflect the impact of technical efficiency changes in agricultural production on the surplus labor. Based on the basic principle of stochastic frontier production function,this paper calculates the agricultural production technical efficiency of various provinces,and selects the province with the highest technical efficiency to assume that its agricultural labor is fully utilized,and there is no agricultural surplus labor. With the ratio of agricultural labor number to agricultural output value in this province as a reference,this paper calculates the number of agricultural surplus labor in other provinces. This calculation method makes up for the shortcomings of the existing calculation methods; it reflects the relationship between the number of agricultural surplus labor and production technical efficiency.

  1. Synthesis, characterization and thermolysis studies on 3,7-dinitro-1,3,5,7-tetraazabicyclo[3,3,1]nonane (DPT): A key precursor in the synthesis of most powerful benchmark energetic materials (RDX/HMX) of today.

    Science.gov (United States)

    Radhakrishnan, S; Talawar, M B; Venugopalan, S; Narasimhan, V L

    2008-04-15

    This paper reports studies undertaken on 3,7-dinitro-1,3,5,7-tetraazabicyclo[3,3,1]nonane (DPT). The synthesis of DPT was carried out by the nitration of hexamine based on the lines of reported method with minor modification. DPT was characterized by elemental analysis, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and (1)H nuclear magnetic resonance (NMR) techniques. Thermal stability of DPT was studied using thermogravimetry (TG) and differential scanning calorimetry (DSC). The thermal analysis studies revealed that DPT undergoes decomposition at 211 degrees C. Decomposition of DPT using TG-FTIR indicated the evolution of carbon dioxide, water and oxides of nitrogen as main gaseous products. The electrochemical behavior of DPT was studied using cyclic voltammetric (CV) studies. The experimentally determined sensitivity parameters indicated the insensitive nature of DPT towards external stimuli. The performance parameters of DPT, RDX and HMX have been computed using Linear Output Thermodynamic User Friendly Software for Energetic Systems (LOTUSES) code. The predicted properties of DPT are interesting and important from the point of process technology and/or safety. The work reported in this paper enriches the existing scanty research and development data on one of the key precursor used for synthesis of important high energy materials (HEMs).

  2. Computational study on structure and properties of new energetic material 3,7-bis(dinitromethylene-2,4,6,8-tetranitro-2,4,6,8-tetraaza-bicyclo[3.3.0]octane

    Directory of Open Access Journals (Sweden)

    Xinghui Jin

    2016-05-01

    Full Text Available The IR spectrum, crystal structure, electronic structure, thermodynamic properties, heat of formation and detonation properties of a new polynitro heterocyclic energetic material 3,7-bis(dinitromethylene-2,4,6,8-tetranitro-2,4,6,8-tetraazabicyclo[3.3.0]octane were investigated theoretically. The calculated results show that this compound has a centrosymmetric structure and the molecular packing prediction indicates that the crystalline packing of the title compound is P212121 and the corresponding cell parameters are as follows: Z=4, a= 22.03 Å, b=8.73 Å, c=8.42 Å, Ꮁ=90°, β=90° and γ=90°. Based on the high positive heat of formation (HOF, 740.4 kJ mol-1, excellent detonation properties (detonation velocity D, 9.77 km s−1; detonation pressure P, 45.9 GPa, energy gap (ΔELUMO-HOMO 4.19 eV and the molecular electrostatic potentials (MEP, it is predicted that 3,7-bis(dinitromethylene-2,4,6,8-tetranitro-2,4,6,8-tetraazabicyclo[3.3.0] octane could be may be a superior high-energy density compound (HEDC to RDX and HMX.

  3. Where Should the Rural Surplus Labour Force Go?

    Institute of Scientific and Technical Information of China (English)

    韩康

    2007-01-01

    The Chinese government attaches a great deal of importance to the income growth of farmers.In considering strategies for solving rural problems in China,it is important not to depart from the external development strategy of transferring employment of the rural surplus labour force.For farmers to become rich,they must be fewer in number.This strategic task cannot be replaced by any of the new measures of an internal development strategy.However,certain scholars at home and abroad hold that difficulties have emerged during the transfer process.In this article,the author offers an in- depth analysis of this issue and puts forward some further considerations.

  4. The local field potential reflects surplus spike synchrony

    DEFF Research Database (Denmark)

    Denker, Michael; Roux, Sébastien; Lindén, Henrik;

    2011-01-01

    While oscillations of the local field potential (LFP) are commonly attributed to the synchronization of neuronal firing rate on the same time scale, their relationship to coincident spiking in the millisecond range is unknown. Here, we present experimental evidence to reconcile the notions...... of synchrony at the level of spiking and at the mesoscopic scale. We demonstrate that only in time intervals of significant spike synchrony that cannot be explained on the basis of firing rates, coincident spikes are better phase locked to the LFP than predicted by the locking of the individual spikes....... This effect is enhanced in periods of large LFP amplitudes. A quantitative model explains the LFP dynamics by the orchestrated spiking activity in neuronal groups that contribute the observed surplus synchrony. From the correlation analysis, we infer that neurons participate in different constellations...

  5. Building a 3D Computed Tomography Scanner From Surplus Parts.

    Science.gov (United States)

    Haidekker, Mark A

    2014-01-01

    Computed tomography (CT) scanners are expensive imaging devices, often out of reach for small research groups. Designing and building a CT scanner from modular components is possible, and this article demonstrates that realization of a CT scanner from components is surprisingly easy. However, the high costs of a modular X-ray source and detector limit the overall cost savings. In this article, the possibility of building a CT scanner with available surplus X-ray parts is discussed, and a practical device is described that incurred costs of less than $16,000. The image quality of this device is comparable with commercial devices. The disadvantage is that design constraints imposed by the available components lead to slow scan speeds and a resolution of 0.5 mm. Despite these limitations, a device such as this is attractive for imaging studies in the biological and biomedical sciences, as well as for advancing CT technology itself.

  6. Using information technology for patient education: realizing surplus value?

    Science.gov (United States)

    Stoop, Arjen P; van't Riet, Annemarie; Berg, Marc

    2004-08-01

    Computer-based patient information systems are introduced to replace traditional forms of patient education like brochures, leaflets, videotapes and, to a certain extent, face-to-face communication. In this paper, we claim that though computer-based patient information systems potentially have many advantages compared to traditional means, the surplus value of these systems is much harder to realize than often expected. By reporting on two computer-based patient information systems, both found to be unsuccessful, we will show that building computer-based patient information systems for patient education requires a thorough analysis of the advantages and limitations of IT compared to traditional forms of patient education. When this condition is fulfilled, however, these systems have the potential to improve health status and to be a valuable supplement to (rather than a substitute for) traditional means of patient education.

  7. Estimating the 'consumer surplus' for branded versus standardised tobacco packaging.

    Science.gov (United States)

    Gendall, Philip; Eckert, Christine; Hoek, Janet; Farley, Tessa; Louviere, Jordan; Wilson, Nick; Edwards, Richard

    2016-11-01

    Tobacco companies question whether standardised (or 'plain') packaging will change smokers' behaviour. We addressed this question by estimating how standardised packaging compared to a proven tobacco control intervention, price increases through excise taxes, thus providing a quantitative measure of standardised packaging's likely effect. We conducted an online study of 311 New Zealand smokers aged 18 years and above that comprised a willingness-to-pay task comparing a branded and a standardised pack at four different price levels, and a choice experiment. The latter used an alternative-specific design, where the alternatives were a branded pack or a standardised pack, with warning theme and price varied for each pack. Respondents had higher purchase likelihoods for the branded pack (with a 30% warning) than the standardised pack (with a 75% warning) at each price level tested, and, on average, were willing to pay approximately 5% more for a branded pack. The choice experiment produced a very similar estimate of 'consumer surplus' for a branded pack. However, the size of the 'consumer surplus' varied between warning themes and by respondents' demographic characteristics. These two experiments suggest standardised packaging and larger warning labels could have a similar overall effect on adult New Zealand smokers as a 5% tobacco price increase. The findings provide further evidence for the efficacy of standardised packaging, which focuses primarily on reducing youth initiation, and suggest this measure will also bring notable benefits to adult smokers. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  8. 41 CFR 102-37.80 - What happens to surplus property that isn't transferred for donation?

    Science.gov (United States)

    2010-07-01

    ... property that isn't transferred for donation? 102-37.80 Section 102-37.80 Public Contracts and Property... PROPERTY 37-DONATION OF SURPLUS PERSONAL PROPERTY General Provisions Donation Overview § 102-37.80 What happens to surplus property that isn't transferred for donation? Surplus property not transferred...

  9. 41 CFR 102-37.50 - What is the general process for requesting surplus property for donation?

    Science.gov (United States)

    2010-07-01

    ... process for requesting surplus property for donation? 102-37.50 Section 102-37.50 Public Contracts and... REGULATION PERSONAL PROPERTY 37-DONATION OF SURPLUS PERSONAL PROPERTY General Provisions Donation Overview § 102-37.50 What is the general process for requesting surplus property for donation? The process...

  10. 41 CFR 102-37.110 - What are a holding agency's responsibilities in the donation of surplus property?

    Science.gov (United States)

    2010-07-01

    ... agency's responsibilities in the donation of surplus property? 102-37.110 Section 102-37.110 Public... MANAGEMENT REGULATION PERSONAL PROPERTY 37-DONATION OF SURPLUS PERSONAL PROPERTY Holding Agency § 102-37.110 What are a holding agency's responsibilities in the donation of surplus property? Your...

  11. Energetic particle physics

    Institute of Scientific and Technical Information of China (English)

    F. Zonca; G.Y. Fu; S.J. Wang

    2007-01-01

    @@ The confinement properties of energetic (EsslMeV) ions are a crucial aspect of burning plasmas since they are present both as fast particles generated via additional heating and current drive systems as well as charged fusion products. In the first case, successful plasma operations rely on the possibility of controlling plasma current and flow profiles via neutral beam injection (NBI) and plasma temperature profiles by both NBI and ion cyclotron resonant heating (ICRH). In the second case, fusion alpha particles must provide a significant fraction of the local power density, which is ultimately necessary for the sustainment of the plasma burning.

  12. Highly Energetic, Low Sensitivity Aromatic Peroxy Acids.

    Science.gov (United States)

    Gamage, Nipuni-Dhanesha H; Stiasny, Benedikt; Stierstorfer, Jörg; Martin, Philip D; Klapötke, Thomas M; Winter, Charles H

    2016-02-18

    The synthesis, structure, and energetic materials properties of a series of aromatic peroxy acid compounds are described. Benzene-1,3,5-tris(carboperoxoic) acid is a highly sensitive primary energetic material, with impact and friction sensitivities similar to those of triacetone triperoxide. By contrast, benzene-1,4-bis(carboperoxoic) acid, 4-nitrobenzoperoxoic acid, and 3,5-dinitrobenzoperoxoic acid are much less sensitive, with impact and friction sensitivities close to those of the secondary energetic material 2,4,6-trinitrotoluene. Additionally, the calculated detonation velocities of 3,5-dinitrobenzoperoxoic acid and 2,4,6-trinitrobenzoperoxoic acid exceed that of 2,4,6-trinitrotoluene. The solid-state structure of 3,5-dinitrobenzoperoxoic acid contains intermolecular O-H⋅⋅⋅O hydrogen bonds and numerous N⋅⋅⋅O, C⋅⋅⋅O, and O⋅⋅⋅O close contacts. These attractive lattice interactions may account for the less sensitive nature of 3,5-dinitrobenzoperoxoic acid.

  13. Energetics Manufacturing Technology Center (EMTC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Manufacturing Technology Center (EMTC), established in 1994 by the Office of Naval Research (ONR) Manufacturing Technology (ManTech) Program, is Navy...

  14. 钝感火工品中新技术、新含能材料研究进展%Developing Status of New Techniques and New Energetic Materials in Insensitive Pyrotechnics

    Institute of Scientific and Technical Information of China (English)

    王宇; 魏超; 张嵩

    2013-01-01

    火工品的敏感度及抗干扰能力是影响弹药安全性的重要因素.因此,大力发展钝感火工品,对提高弹药安全性有重要意义.本文对钝感火工品领域的激光点火、爆炸逻辑网络和冲击片雷管等前沿技术进行了综述,介绍了其结构原理、发展历程和国内外最新的研究成果,同时通过对国内外技术水平进行比较,总结了中国与国外技术的差距及技术瓶颈,展望了上述技术未来的发展趋势.另外,对国外最新研制成功的LLM-105、DAAzF、FOX-7、TNAZ等新含能材料进行了综述,介绍了这几种含能材料在安全性和能量水平等方面的巨大优势,并对其在钝感火工品中的应用前景进行展望.最后,总结了中国在钝感火工品研究中存在的不足,并对中国应走的研究路线提出了几点建议.%The sensitivity and anti -interference ability of pyrotechnics is important to ammunition safety. Therefore, improving insensitive pyrotechnics is the key point for the insensitive weapon research. Most advanced techniques, such as light, electricity, and magnetism are taking place of fire and heat in pyrotechnics, making pyrotechnics much more safety. The advances in the areas of new techniques and new energetic materials for insensitive pyrotechnics are discussed. New techniques, such as laser ignition, explosive logic circuit, and slapper detonator, are reviewed. The structure, principle, history, and latest achievements are introduced. The research level between China and developed countries is compared with each other; the developing trend of these techniques is talked about. In addition, new energetic materials invented by developed countries, such as LLM-105, DAAzF, FOX-7, TNAZ are summarized, and their developing status is introduced. By comparing the differences between China and developed countries, the shortcoming of China is pointed out, particularly some deficiencies in insensitive pyrotechnics. Some suggestions about

  15. Novel Energetic Materials for Counter WMD Applications

    Science.gov (United States)

    2011-09-01

    from 1-vinyl-1,2,4-triazole derivatives HX Hy=eH2 N, Hy=eH2 ~N,N "J N eH30H / RT (\\ _!jN X Htf 2- 7 l ~~Tcetone 5moi%AIBN to vinyl unit...AIBN to vinyl unit EtOH / 70 •e X= N03, e104 5 mol % AIBN to vinyl unit EtOH /70 •e +eH-~2 \\ I Tn, ~N, ,,_l Htf 11, 12 +e~H-~2.);, ~N

  16. Silicon-Based Nanoscale Composite Energetic Materials

    Science.gov (United States)

    2013-02-01

    burning than stoichiometric ratios. However, the calculated adiabatic temperature via the equilibrium code, Cheetah 6.0 (30] drops from 3443.6 K...equilibrium code, Cheetah 6.0 [30], though it is also calculated that some excess silicon will react with carbon to form condensed phase SiC at fuel...indicates that AE nSi powder is comprised of roughly 83% SiOz. Accounting for the high oxygen content in thermal equilibrium calculations via Cheetah

  17. Measurement System for Energetic Materials Decomposition

    Science.gov (United States)

    2015-01-05

    5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 5c. PROGRAM ELEMENT NUMBER 5b. GRANT NUMBER 5a. CONTRACT NUMBER Form Approved OMB NO...acknowledge ARO support from the start of the project to the date of this printing. List the papers, including journal references, in the following...The proposal sought funds to purchase a thermal analysis system which included thermogravametric analysis (TGA), differential scanning calorimetry

  18. Novel Energetic Materials for Space Propulsion

    Science.gov (United States)

    2011-04-30

    scales  (compared  to  pure  quantum  mechanics  (QM)  calculations),  molecular  dynamics  (MD)  simulations  were  undertaken  with  a  reactive...T.,  Krier,  H.,  Glumac,  N.,  Shankar   N.,  Wang  X.,  Jackson,  T.L.,  “Decomposition  of  Aluminum Hydride Under Solid Rocket Motor Conditions,” J...110 81. Bazyn, T., Eyer, R., Krier, H., Glumac, N.,  Shankar , N., Wang, X., Jackson, T. L., “Decomposition of  Aluminum Hydride under Solid Rocket

  19. Energetic Materials Optimization via Constrained Search

    Science.gov (United States)

    2015-06-01

    space.18–20 LCAP and VP-DFT interpolate continuously between the Hamiltonians of various chemical species. Furthermore, recently an investigation into...Computational Chemistry Protocol All quantum- mechanical computations were performed using Gaussian 09.24 All geometries were preoptimized with B3LYP/3-21G under...via nonnegative Lagrange multipliers λ ∈ R3+ for the 3 constraints to the augmented Lagrangian function L(x, λ) := P (x) − λC(x) as a constrained min

  20. Multiphase Combustion of Metalized Nanocomposite Energetic Materials

    Science.gov (United States)

    2014-12-19

    than their micron scale counterparts; but, Al+ TiO2 show higher thermal diffusivity for micron-composites. This is explained through investigating the...nature of void space distributions within a compressed powder pellet . Larger void spacing reduces the inter- particle connectivity and hinders the...on their completely different structures. The Al/Teflon had an equivalence ratio of 1.4 and the cylindrical pellet samples had a TMD ranging from 75

  1. Deformation and Thermal Properties of Energetic Materials.

    Science.gov (United States)

    1980-12-01

    process,. on the other hand, the simple theory of Shannon [181 is often successful. This theory is a generalization of the Polanyi - Wigner equation...uous form of Al- 2) in this specific case), although the labour it involves may be undertaken by the computer. The earliest derivative method is

  2. New Trends in Research of Energetic Materials

    Science.gov (United States)

    2007-11-02

    workers and myself: we are looking forward to meet you at the seventh seminar on April 19-21, 2005 in the Aula Magna of our University. Pardubice...HMX levels but was still undesirable. The insolubility of CL-14 in virtually most solvents made recrystallisation difficult. Attempts to...Substances and articles which have a mass explosion hazard (which affects almost the entire load virtually instantaneously) 10 1.5 Very

  3. Energetic Materials for Bio-Agent Destruction

    Science.gov (United States)

    2017-03-01

    1966, 1179-1184. 8. Zhang, D., Tessier, C. A., Youngs, W. J., Chem. Mater. 1999, 11, 3050-3057. 9. Ciusa, R., Grilla, G., Memorias y Revista de la...April 19, 2013. Cited with permission from Dr. Curtis Johnson. 4. Ciusa, R., Grilla, G., Memorias y Revista de la Academia Nacional de Ciencias 1927...with permission from Dr. Curtis Johnson. 4. Ciusa, R., Grilla, G., Memorias y Revista de la Academia Nacional de Ciencias 1927, 46, 213-222

  4. Structure and Properties of Energetic Materials

    Science.gov (United States)

    1992-12-02

    7.76 9.11 30 Gurney energy (MJ/kg) 1.1 1.6 30 Heat of detonation (MJ/kg) -5.02 -6.78 30 In Table 2 we compare the properties of TATB and...velocity of HMX is some 17% greater than that of TATB, the Gurney energy 45% greater, and the heat of detonation 35% greater One reason that TATB...MJ/kg) 1.1 1.6 30 Heat of detonation (MJ/kg) -5.02 -6.78 30 In Table 2 we compare the properties of TATB and cyclotetramethylenetetranitramine (HMX

  5. Dynamic Deformation Properties of Energetic Composite Materials

    Science.gov (United States)

    2005-04-01

    properties are close to that of pure beryllium ( Silversmith and Averbach 1970), but as far as we know no-one has acted on this suggestion. According to...J.L. (1998) "Analysis of load oscillations in instrumented impact testing" Engng Fract. Mech. 60 437-446 Silversmith , D.J. and Averbach, B.L. (1970

  6. Organic Perfluorohalogenate Salts; New Energetic Materials

    Science.gov (United States)

    2014-06-01

    thermochemical) calorie (thermochemical) cal (thermochemical/cm 2 ) curie degree (angle) degree Fahrenheit electron volt erg erg/second foot foot-pound...3IF5 674 (10) 635 (0+) 620 (10) 599 sh 593 (5.3) 585 sh 568 (0+) 554 sh 557 (0+) 543 (3.0) 527 (2) 502 sh 451 (0.3) 391 (0.5) 382 (0.5) 367 (0.3) 347 (0

  7. Lyman α photolysis of solid nitromethane (CH3NO2) and D3-nitromethane (CD3NO2)--untangling the reaction mechanisms involved in the decomposition of model energetic materials.

    Science.gov (United States)

    Maksyutenko, Pavlo; Muzangwa, Lloyd G; Jones, Brant M; Kaiser, Ralf I

    2015-03-21

    Solid nitromethane (CH3NO2) along with its isotopically labelled counterpart D3-nitromethane (CD3NO2) ices were exposed to Lyman α photons to investigate the mechanism involved in the decomposition of energetic materials in the condensed phase. The chemical processes in the ices were monitored online and in situ via infrared spectroscopy complimented by temperature programmed desorption studies utilizing highly sensitive reflectron time-of-flight mass spectrometry coupled with pulsed photoionization (ReTOF-PI) at 10.49 eV. The infrared data revealed the formation of cis-methylnitrite (CH3ONO), formaldehyde (H2CO), water (H2O), carbon monoxide (CO), and carbon dioxide (CO2). Upon sublimation of the irradiated samples, three classes of higher molecular weight products, which are uniquely formed in the condensed phase, were identified via ReTOF-PI: (i) nitroso compounds [nitrosomethane (CH3NO), nitrosoethane (C2H5NO), nitrosopropane (C3H7NO)], (ii) nitrite compounds [methylnitrite (CH3ONO), ethylnitrite (C2H5ONO), propylnitrite (C3H7ONO)], and (iii) higher molecular weight molecules [CH3NONOCH3, CH3NONO2CH3, CH3OCH2NO2, ONCH2CH2NO2]. The mechanistical information obtained in the present study suggest that the decomposition of nitromethane in the condensed phase is more complex compared to the gas phase under collision-free conditions opening up not only hitherto unobserved decomposition pathways of nitromethane (hydrogen atom loss, oxygen atom loss, retro carbene insertion), but also the blocking of several initial decomposition steps due to the 'matrix cage effect'.

  8. Theoretical Studies on Sensitivity Criterion of Energetic Materials——From molecules, crystals, to composite materials%含能材料感度判别理论研究——从分子、晶体到复合材料

    Institute of Scientific and Technical Information of China (English)

    肖鹤鸣; 朱卫华; 肖继军; 王桂香; 裴晓琴

    2012-01-01

    For nearly three decades, many microcosmic theoretical criterions on impact sensitivity of energetic materials at home and abroad have been suggested by using quantum chemistry calculations and molecular dynamics simulations. In this article, we mainly present some work on thermal decomposition mechanisms and sensitivity criterions of energetic molecules, crystals, and composite materials by our research group. Among them, some studies and criterions on impact sensitivity of energetic crystals and composite materials are reported for the first time.%近30多年来,通过量子化学计算和分子动力学模拟,国内外已提出过许多关于含能材料撞击感度的微观理论判据.本文主要介绍我们研究小组从高能分子、高能晶体到高能复合材料的热解机理和感度判别的相关工作,其中关于高能晶体和复合材料的感度判别的一些结果和判据是首次报道.

  9. Energetic Causal Sets

    CERN Document Server

    Cortês, Marina

    2013-01-01

    We propose an approach to quantum theory based on the energetic causal sets, introduced in Cort\\^{e}s and Smolin (2013). Fundamental processes are causal sets whose events carry momentum and energy, which are transmitted along causal links and conserved at each event. Fundamentally there are amplitudes for such causal processes, but no space-time. An embedding of the causal processes in an emergent space-time arises only at the semiclassical level. Hence, fundamentally there are no commutation relations, no uncertainty principle and, indeed, no hbar. All that remains of quantum theory is the relationship between the absolute value squared of complex amplitudes and probabilities. Consequently, we find that neither locality, nor non locality, are primary concepts, only causality exists at the fundamental level.

  10. 77 FR 50447 - Federal Management Regulation; Donation of Surplus Personal Property

    Science.gov (United States)

    2012-08-21

    ... Property AGENCY: Office of Governmentwide Policy, General Services Administration (GSA). ACTION: Proposed... Regulation (FMR) by changing its personal property policy. The proposed changes will (1) include the addition... surplus property those organizations whose membership comprises substantially of veterans, as authorized...

  11. The drying of wood chips with surplus heat in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Nordhagen, E. [Norwegian Forest and Landscape Inst., As (Norway). Dept. of Forest Resources, Forest Operations and Economics

    2010-07-01

    The study evaluated a wood chip drying procedure that used surplus heat from 2 hydroelectric power plants in western Norway. The wood was chipped and then loaded into the dryer using a tractor-trailer and a container. Warm air from the plants was funnelled into the dryer from perforated floors in the plants and an electric fan. Trials of the procedure were conducted to determine the drying capacity of the trailer and container. The study showed that the temperature and the moisture content of the wood chips varied over the course of the drying period. The chips located at the bottom dried first. The moisture content in the chip ranged between 66.1 to 52.1 before drying and between 9.6 and 6.9 per cent after drying. No substantial difference in moisture content between wood chips located at the top and bottom of the piles was noted. The net calorific values of the wood chips ranged from 1340 to 2170 kWh per tonne before drying, and between 4710 to 4860 after drying. The study showed that the cheapest option for the production of wood chips is natural drying and chipping at the roadside.

  12. Characteristics and advantages of the HTW process for efficient recycling of the energetic and material fraction of waste materials; Merkmale und Vorzuege des Hochtemperatur-Winkler (HTW)-Verfahrens zur effizienten energetischen und stofflichen Nutzung von Abfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Wischnewski, R.; Mittelstaedt, A.; Renzenbrink, W. [Rheinbraun AG, Koeln (Germany); Luetge, C.; Abraham, R. [Krupp Uhde GmbH, Dortmund (Germany)

    1998-09-01

    Co-gasification of DSD mixed plastics in the HTW demonstration plant led to the following results: Co-gasification of preprocessed waste materials poses no technical problems - the performance of the gasifier and its downstream components is not affected - the synthesis gas quality remains unchanged - changes in trace element behaviour can be accounted for by design modifications - the large volume of the fluidized bed neutralizes the effects of waste material inhomogeneities and foreign materials - the conversion yield is high - there are well-established ways of disposal of residual material, i.e. bottom deposits and hot-gas filter dust. (orig./SR) [Deutsch] Die Ergebnisse der Mitvergasung von DSD-Mischkunststoffen an der HTW-Demonstrationsanlage haben zusammenfassend gezeigt: - der Abfallstoff laesst sich nach einer Aufbereitung problemlos in den Vergaser eintragen - es tritt keine Beeintraechtigung des Betriebsverhaltens des Vergasers und der nachgeschalteten Teilanlagen auf - die Synthesegasqualitaet veraendert sich nicht - Aenderungen am Spurstoffverhalten sind durch entsprechende Auslegung beherrschbar - der grosse Wirbelbettinhalt fuehrt zu einer Unempfindlichkeit gegenueber Inhomogenitaeten des Reststoffes sowie Fremdeinschluessen - die Umsetzung fuehrt zu einer hohen Ausbeute des Abfallstoffes - fuer die Reststoffe Bodenprodukt und Warmgasfilterstaub gibt es geklaerte Entsorgungswege. (orig./SR)

  13. The Political Economy of the Budget Surplus in the United States

    OpenAIRE

    Alberto Alesina

    2000-01-01

    Current surpluses in the U.S. have been achieved by a combination of a strong economy, low interest rates, and sharp cuts in defense spending. These surpluses follow a period (the 1980s) of rather exceptional budget deficit. This paper investigates the origin, size, and expected future patterns of the U.S. budget balance. It discusses how different political forces may generate alternative fiscal scenarios for the U.S. in the next decade.

  14. Surplus Space Method:A New Numerical Model for Prediction of Shallow-seated Magmatic Bodies

    Institute of Scientific and Technical Information of China (English)

    DENG Jun; HUANG Dinghua; WANG Qingfei; WAN Li; YAO Lingqing; GAO Bangfei; Liu Yan

    2004-01-01

    Based on the data of field measurement and drilling in the Tongling area, a series of numerical simulations are carried out by using the "Surplus Space Method" (SSM), which is first put forward in this paper and applied to predict the shallow-seated magmatic bodies. The results of the numerical simulations show the existence and the 3-D shape of a conical magmatic structure at a depth of-1000 m beneath the center of the area: its top offsets southwards and bifurcates to several branches, while its lower part stretches northeastwards and contracts rapidly to a point at about -1000 m depth.This point is reckoned to be a "sink" of magma system, transferring ore materials and heat energy from the deep magma chamber to the sub-surface apophyses. The preliminary application of the SSM proves that it may be developed as a new detection means for determining the existence of shallow-seated magmatic bodies and analyzing their three-dimensional features.

  15. A study of dinitro-bis-1,2,4-triazole-1,1'-diol and derivatives: design of high-performance insensitive energetic materials by the introduction of N-oxides.

    Science.gov (United States)

    Dippold, Alexander A; Klapötke, Thomas M

    2013-07-01

    In this contribution we report on the synthesis and full structural as well as spectroscopic characterization of 3,3'-dinitro-5,5'-bis-1,2,4-triazole-1,1'-diol and nitrogen-rich salts thereof. The first synthesis and characterization of an energetic 1-hydroxy-bistriazole in excellent yields and high purity is presented. This simple and straightforward method of N-oxide introduction in triazole compounds using commercially available oxone improves the energetic properties and reveals a straightforward synthetic pathway toward novel energetic 1,2,4-triazole derivatives. X-ray crystallographic measurements were performed and deliver insight into structural characteristics and strong intermolecular interactions. The standard enthalpies of formation were calculated for all compounds at the CBS-4 M level of theory, revealing highly positive heats of formation for all compounds. The energetic properties of all compounds (detonation velocity, pressure, etc.) were calculated using the EXPLO5.05 program, and the ionic derivatives show superior performance in comparison to the corresponding compounds bearing no N-oxide. All substances were characterized in terms of sensitivities (impact, friction, electrostatic) and thermal stabilities, and the ionic derivatives were found to be high thermally stable, insensitive compounds that are exceedingly powerful but safe to handle and prepare.

  16. Surplus men, sex work, and the spread of HIV in China.

    Science.gov (United States)

    Tucker, Joseph D; Henderson, Gail E; Wang, Tian F; Huang, Ying Y; Parish, William; Pan, Sui M; Chen, Xiang S; Cohen, Myron S

    2005-03-24

    While 70% of HIV positive individuals live in sub-Saharan Africa, it is widely believed that the future of the epidemic depends on the magnitude of HIV spread in India and China, the world's most populous countries. China's 1.3 billion people are in the midst of significant social transformation, which will impact future sexual disease transmission. Soon approximately 8.5 million 'surplus men', unmarried and disproportionately poor and migrant, will come of age in China's cities and rural areas. Meanwhile, many millions of Chinese sex workers appear to represent a broad range of prices, places, and related HIV risk behaviors. Using demographic and behavioral data, this paper describes the combined effect of sexual practices, sex work, and a true male surplus on HIV transmission. Alongside a rapid increase in sexually transmitted disease incidence across developed parts of urban China, surplus men could become a significant new HIV risk group. The anticipated high sexual risk among many surplus men and injecting drug use use among a subgroup of surplus men may create bridging populations from high to low risk individuals. Prevention strategies that emphasize traditional measures--condom promotion, sex education, medical training--must be reinforced by strategies which acknowledge surplus men and sex workers. Reform within female sex worker mandatory re-education centers and site specific interventions at construction sites, military areas, or unemployment centers may hold promise in curbing HIV/sexually transmitted infections. From a sociological perspective, we believe that surplus men and sex workers will have a profound effect on the future of HIV spread in China and on the success or failure of future interventions.

  17. Photodecomposition of energetic nitro compounds

    Energy Technology Data Exchange (ETDEWEB)

    Mialocq, J.C.

    1989-03-14

    The photodecomposition of energetic nitrocompounds depends on the excitation energy, the light intensity which determines the mono-, bi- or multiphotonic character of the initial process and their gaseous, liquid or solid state. The initial processes of the photodecomposition of nitromethane and nitroalcanes are reviewed and their relevance to the initiation of energetic nitrocompounds detonation is discussed. The case of nitramines (dimethylnitramine and tutorial) is also briefly introduced.

  18. Thermodynamic aspects of heavy metal volatility during utilisation of the energetic and material fraction of waste materials; Schwermetallfluechtigkeit bei der energetischen und stofflichen Verwertung von Abfaellen aus der Sicht der Thermodynamik

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, B.; Starke, A. [TU Bergakademie Freiberg (Germany). Inst. IEC

    1998-09-01

    Co-combustion plants, in which fuel is partly substituted by waste materials, are subject to the 17th BImSchV (Nuisance Control Ordinance) provided that the thermal fraction of 25% is not exceeded. Emission limits are calculated proportionately on the basis of limiting values for emissions from coal power stations (13th BImSchV) and waste incinerators (17th BImSchV). Compared to coal, waste has higher concentrations of heavy metals and halogens, which results in enhanced emissions of heavy metal compounds and chlorides with the flue gas and gasification gas. Plant operators intending to opt for co-combustion must check if the existing flue gas purification system is efficient enough to meet the specifications of the 17th BImSchV. In general, thermodynamic modelling is the most common method of evaluation and optimisation for high-temperature processes of this kind. (orig./SR) [Deutsch] Da bei der Mitverbrennung ein Teil des Brennstoffes durch den Reststoff substituiert wird, unterliegen diese Anlagen der Anteilsregelung nach 17. BImSchV, sofern ein thermischer Anteil von 25% nicht ueberschritten wird. Emissionsgrenzwerte werden anteilig aus den z.B. fuer Kohlekraftwerke gueltigen Grenzwerten nach TA Luft oder 13. BImSchV und denen fuer Abfaelle u.ae. nach 17 BImSchV ermittelt. Der hier betrachtete Reststoff Muell beinhaltet im Vergleich zur Kohle hohe Konzentrationen an Schwermetallen und Halogenen. Dies laesst eine erhoehte Emission von Schwermetallverbindungen und Chloriden mit dem Rauchgas bzw. Vergasungsgas erwarten. Es muss in jedem Fall ueberprueft werden, ob die vorhandene Rauchgasreinigung ausreicht, wenn bei der Mitverbrennung/-vergasung die Emissionsgrenzwerte der 17. BImSchV zur Anwendung kommen. Als Bewertungs- und Optimierungsmethode fuer derartige Hochtemperaturprozesse setzt sich die thermodynamische Modellierung zunehmend durch. (orig./SR)

  19. Avaliação do uso de técnicas FT-IR para caracterização de cobertura polimérica de material energético Evaluation of FT-IR techniques for polymeric coating characterization of energetic material

    Directory of Open Access Journals (Sweden)

    Elizabeth C. Mattos

    2004-06-01

    Full Text Available Técnicas FT-IR de transmissão, reflexão e fotoacústica (PAS foram utilizadas para a caracterização da cobertura polimérica do hexahidro-1,3,5-trinitro-1,3,5-triazina (RDX usando um poliuretano (Estane. Verificou-se no decorrer deste trabalho que, embora seja possível observar as bandas do polímero por meio das diferentes técnicas, as de transmissão (filme vazado e fotoacústica foram aquelas que melhor evidenciaram as absorções do poliuretano na amostra analisada da cobertura polimérica do material energético. Entre as técnicas consideradas de análise de superfície, a espectroscopia PAS apresentou melhor resultado, provavelmente em função da espessura de poucos micra da camada polimérica.The transmission, reflection and photoacoustic FTIR techniques have been used for characterization of polymeric coating of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX using a polyurethane (Estane. Although the bands characteristic of the polymer were indicated by the various techniques, the transmission (casting film and photoacoustic techniques showed better evidence of polyurethane absorptions in the polymer coating of energetic material. Among the surface-sensitive techniques, PAS spectroscopy shows better result, probably because the polymer coating is at few microns from the surface.

  20. Formulation and Performance of Novel Energetic Nanocomposites and Gas Generators Prepared by Sol-Gel Methods

    Energy Technology Data Exchange (ETDEWEB)

    Clapsaddle, B J; Zhao, L; Prentice, D; Pantoya, M L; Gash, A E; Satcher Jr., J H; Shea, K J; Simpson, R L

    2005-03-24

    In the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing nanostructured metal oxide materials. By introducing a fuel metal, such as aluminum, into the nanostructured metal oxide matrix, energetic materials based on thermite reactions can be fabricated. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. Due to the versatility of the preparation method, binary oxidizing phases can also be prepared, thus enabling a potential means of controlling the energetic properties of the subsequent nanocomposites. Furthermore, organic additives can also be easily introduced into the nanocomposites for the production of nanostructured gas generators. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its micro-scale counterparts due to the expected increase of mass transport rates between the reactants. The unique synthesis methodology, formulations, and performance of these materials will be presented. The degree of control over the burning rate of these nanocomposites afforded by the compositional variation of a binary oxidizing phase will also be discussed. These energetic nanocomposites have the potential for releasing controlled amounts of energy at a controlled rate. Due to the versatility of the synthesis method, a large number of compositions and physical properties can be achieved, resulting in

  1. Synthesis of a new energetic nitrate ester

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, David E [Los Alamos National Laboratory

    2008-01-01

    Nitrate esters have been known as useful energetic materials since the discovery of nitroglycerin by Ascanio Sobrero in 1846. The development of methods to increase the safety and utility of nitroglycerin by Alfred Nobel led to the revolutionary improvement in the utility of nitroglycerin in explosive applications in the form of dynamite. Since then, many nitrate esters have been prepared and incorporated into military applications such as double-based propellants, detonators and as energetic plasticizers. Nitrate esters have also been shown to have vasodilatory effects in humans and thus have been studied and used for treatments of ailments such as angina. The mechanism of the biological response towards nitrate esters has been elucidated recently. Interestingly, many of the nitrate esters used for military purposes are liquids (ethylene glycol dinitrate, propylene glycol dinitrate, etc). Pentaerythritol tetranitrate (PETN) is one of the only solid nitrate esters, besides nitrocellulose, that is used in any application. Unfortunately, PETN melting point is above 100 {sup o}C, and thus must be pressed as a solid for detonator applications. A more practical material would be a melt-castable explosive, for potential simplification of manufacturing processes. Herein we describe the synthesis of a new energetic nitrate ester (1) that is a solid at ambient temperatures, has a melting point of 85-86 {sup o}C and has the highest density of any known nitrate ester composed only of carbon, hydrogen, nitrogen and oxygen. We also describe the chemical, thermal and sensitivity properties of 1 as well as some preliminary explosive performance data.

  2. Performance Analysis of a Manufacturing Line Operated under Optimal Surplus-Based Production Control

    Directory of Open Access Journals (Sweden)

    K. K. Starkov

    2012-01-01

    Full Text Available We examine optimality and performance of a tandem manufacturing line driven by a surplus-based decentralized production control strategy. The main objective of this type of production strategies is to guarantee that the cumulative number of produced products follows the cumulative production demand on the output of the given network. The basic idea of surplus-based control strategy is presented for the case of one manufacturing machine. We prove that this strategy is optimal. Then, a flow model of a line composed of arbitrarily many machines with bounded buffers is analyzed. We prove that the surplus-based production control enables this network to efficiently follow the product demand and establish the relation between the efficiency in the production tracking error and the intermediate inventory levels of a line. Performance and robustness of the flow model of the closed-loop manufacturing line are illustrated by computer simulations.

  3. MIGRATION OF SURPLUS AGRICULTURAL LABOR IN THE PROCESS OF ECONOMIC TRANSITION

    Institute of Scientific and Technical Information of China (English)

    黄祖辉; 鲁柏祥; 陈欣欣

    2001-01-01

    This paper on the migration of the surplus farm labor during the economic transition of China, focuses on a case study of Zhejiang, China's eastern coastal province, with 45 million population and located in relatively developed area since the reform in 1978. The background and mechanism of Chinese surplus farm labor migration are discussed briefly in the first section. Detailed analysis and development of this topic are based on the Zhejiang case, and consists of two parts: a review of the migration history of surplus agricultural labor in Zhejiang since the 1978 reform; and further analysis and key points are given in the second part. The third sector focuses on challenges and recommendation of policies.

  4. Im/Ex in July,2010: Biggest Trade Surplus in a Year and a Half

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ On Ausust10,2010,General Administration of Customs of the People's Republic of China(GAC)released the profile of China foreign trade import and export in July and the first seven months of this year.China's trade surplus for July widened to its highest level in a year and a half,likely adding to the pressure on Beijing to allow faster yuan appreciation.A sharp slowdown in import growth sent China's trade surplus to US(S)28.7 billion in July from US(S)20.02 billion in June,far surpassing expectations of economists.July's surplus was the highest since January 2009,when it was US(S)39.11 billion.

  5. Morphological Tuning of the Energetics in Singlet Fission Organic Solar Cells

    NARCIS (Netherlands)

    Lin, Yun Hui L; Fusella, Michael A.; Kozlov, Oleg V.; Lin, Xin; Kahn, Antoine; Pshenichnikov, Maxim S.; Rand, Barry P.

    2016-01-01

    Effective singlet fission solar cells require both fast and efficient singlet fission as well as favorable energetics for harvesting the resulting triplet excitons. Notable progress has been made to engineer materials with rapid and efficient singlet fission, but the ability to control the energetic

  6. Research on Positive or Negative Propelling Force and Driving Force for Rural Surplus Labor Transfer-Analysis and Reflection on “Indoor Survey” Material from Kuandian Manchu Autonomous County%农村剩余劳动力转移的正反“拉力”与“推力”研究--对宽甸满族自治县“入户调查”资料的分析与思考

    Institute of Scientific and Technical Information of China (English)

    林珏

    2014-01-01

    通过对宽甸满族自治县的入户调查发现,农村剩余劳动力在城镇从业一定程度上提高了农村家庭的收入水平,但是当前农村剩余劳动力转移存在正反两个方向的四种动力:城市不仅存在吸引农民入城务工的“拉力”,也存在将外来务工者推回农村的“推力”;而农村不仅存在将剩余劳动力推往城市的“推力”,也存在将外出务工者拽回来的“拉力”。正是在正反“拉力”与“推力”的综合作用下,部分农民选择了“离土不离乡”或“离-返交替”的半农半工模式。因此,小城镇建设具有重要的意义:可以通过发展农村经济“拉住”劳动力,以缓解城市就业压力;同时也有利于农民选择适合自己的生产和生活方式,实现农村剩余劳动力的多元化和逐步有序转移。%“Indoor Survey” on Kuandian Manchu Autonomous County finds that the employment of rural surplus labor in the cities raises the income level of rural households to some extent, however, current rural surplus labor transfer has four kinds of driving forces in positive and negative two directions, i.e., the rural areas not only have the “propelling force” to push the rural surplus labor to the cities but also have the “driving force” to pull the migrant workers back to the rural areas, furthermore, the cities not only have the “driving force” to attract the peasants to work in the cities but also have the “propelling force” to push the migrant workers back to the rural areas. It is under the comprehensive action by “the propelling force” and “the driving force” that a part of the peasants choose half-worker-half-peasant model by“working in the cities but keeping their ID in the rural areas” or by “alternatively working in the cities or working in the rural areas”. Thus, small city construction is of important significance to “keeping” the rural labor in the rural

  7. Surplus weapons-grade plutonium: a resource for exploring and terraforming Mars

    Energy Technology Data Exchange (ETDEWEB)

    Muscatello, A.C.; Houts, M.G.

    1996-12-31

    With the end of the Cold War, greater than 100 metric tons (MT) of weapons-grade plutonium (WGPu) have become surplus to defense needs in the United States and the Former Soviet Union. This paper is a proposal for an option for WGPu disposition, i.e., use of the plutonium as a fuel for nuclear reactors for Mars exploration and eventual terraforming. WGPu was used in nuclear weapons because it has a much smaller critical mass than highly enriched uranium, allowing lighter weapons with consequent longer ranges. Similarly, WGPu reactors would also require smaller amounts of fuel to attain a critical mass, making the reactor much lighter overall and resulting in large savings in launch costs. The greater than 100 MT of WGPu would generate about 1000 billion kilowatt hours of heat energy, much of which could be converted into electricity. The waste heat would also be useful to a Martian outpost or colony. A potential way of getting the WGPu reactors into space is a large gas gun like that being developed at the Lawrence Livermore National Laboratory to orbit materials by achieving high velocity at the surface, greatly reducing launch costs and enhancing reliability. Reactor components would be launched on conventional rockets or space shuttles, the reactor fuel rods would be injected into orbit using the gas gun, and the reactor would be assembled in space. Implementation of this proposal would allow disposition of a serious, expensive problem on earth by removing the WGPu from the planet and simultaneously provide a very large energy resource for Mars exploration and terraforming.

  8. Hanford MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site (SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. Hanford has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 1 facility. In all, a total of three LA MOX fuel fabrication options were identified by Hanford that could accommodate the program. In every case, only minor modification would be required to ready any of the facilities to accept the equipment necessary to accomplish the LA program.

  9. LANL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, S.E.; Holdaway, R.; Ludwig, S.B. [and others

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. LANL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within both Category 1 and 2 areas. Technical Area (TA) 55/Plutonium Facility 4 will be used to store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, assemble rods, and store fuel bundles. Bundles will be assembled at a separate facility, several of which have been identified as suitable for that activity. The Chemistry and Metallurgy Research Building (at TA-3) will be used for analytical chemistry support. Waste operations will be conducted in TA-50 and TA-54. Only very minor modifications will be needed to accommodate the LA program. These modifications consist mostly of minor equipment upgrades. A commercial reactor operator has not been identified for the LA irradiation. Postirradiation examination (PIE) of the irradiated fuel will take place at either Oak Ridge National Laboratory or ANL-W. The only modifications required at either PIE site would be to accommodate full-length irradiated fuel rods. Results from this program are critical to the overall plutonium distribution schedule.

  10. Improving the Material Response for Slow Heat of Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, A L

    2010-03-08

    The goal of modern high explosive slow heat cookoff modeling is to understand the level of mechanical violence. This requires understanding the coupled thermal-mechanical-chemical system that such an environment creates. Recent advances have improved our ability to predict the time to event, and we have been making progress on predicting the mechanical response. By adding surface tension to the product gas pores in the high explosive, we have been able to reduce the current model's tendency to overpressurize confinement vessels. We describe the model and demonstrate how it affects a LX-10 STEX experiment. Issues associated with current product gas equations of state are described and examined.

  11. Helioseismic Effects of Energetic Transients

    Indian Academy of Sciences (India)

    Ashok Ambastha

    2008-03-01

    Photospheric and chromospheric signatures related to large, energetic transients such as flares and CMEs, have been extensively reported during the last several years. In addition, energetic solar transients are expected to cause helioseismic effects. Some of the recent results are reviewed here; in particular, the helioseismic effects of the powerful flares in superactive region, NOAA 10486, including the 4B/X17 superflare of October 28, 2003. We also examine the temporal variations of power in low- modes during the period May 1995–October 2005, and compare with daily, disk-integrated flare- and CME-indices to infer the effect of transients on the scale of whole solar disk.

  12. 41 CFR 102-37.235 - What type of information must a SASP provide when requesting surplus property for cannibalization?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What type of information must a SASP provide when requesting surplus property for cannibalization? 102-37.235 Section 102-37.235... Surplus Property (SASP) Justifying Special Transfer Requests § 102-37.235 What type of information must...

  13. 45 CFR 205.25 - Eligibility of supplemental security income beneficiaries for food stamps or surplus commodities.

    Science.gov (United States)

    2010-10-01

    ....25 Eligibility of supplemental security income beneficiaries for food stamps or surplus commodities... 45 Public Welfare 2 2010-10-01 2010-10-01 false Eligibility of supplemental security income beneficiaries for food stamps or surplus commodities. 205.25 Section 205.25 Public Welfare Regulations...

  14. 41 CFR 102-37.85 - Can surplus property being offered for sale be withdrawn and approved for donation?

    Science.gov (United States)

    2010-07-01

    ... being offered for sale be withdrawn and approved for donation? 102-37.85 Section 102-37.85 Public... MANAGEMENT REGULATION PERSONAL PROPERTY 37-DONATION OF SURPLUS PERSONAL PROPERTY General Provisions Donation Overview § 102-37.85 Can surplus property being offered for sale be withdrawn and approved for...

  15. 41 CFR 102-37.65 - What happens to surplus property that has been approved for transfer when the prospective...

    Science.gov (United States)

    2010-07-01

    ... 37-DONATION OF SURPLUS PERSONAL PROPERTY General Provisions Donation Overview § 102-37.65 What... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What happens to surplus property that has been approved for transfer when the prospective transferee decides it cannot use...

  16. Analytical reasoning for the energetic integration at the South America; Ponderacao analitica para a integracao energetica na America do Sul

    Energy Technology Data Exchange (ETDEWEB)

    Udaeta, Miguel Edgar Morales; Burani, Geraldo Francisco; Faga, Murilo Tadeu Weneck; Oliva, Cidar Ramon Rocha [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia]|[Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia de Energia e Automacao Eletricas. Grupo de Energia]. E-mail: udaeta@pea.usp.br

    2006-07-01

    This paper intends to show the present program for the energetic integration, formulates the involved countries disposition and analyses the bases for strengthening of the energy relationships across the frontiers. For that purpose, the paper starts from the perception that the present situation of the energy industry of some South American countries shows the context and role of energetic integration. The Argentine established a significant infrastructure for negotiation with their neighbors. Although the integration make possible the access to the scale economies and to share reserves, it is not so clear concerning to the business itself referred to legal questions, the regulation and the long term contracts and that is the point when appears the sovereign barriers and internal priorities, proved by recent cases of the Argentine (lack of natural gas) and Bolivia (surplus of natural gas)

  17. MOISTURE HUMIDITY EQUILIBRIUM OF WOOD CHIPS FROM ENERGETIC CROPS

    Directory of Open Access Journals (Sweden)

    Jan Barwicki

    2008-09-01

    Full Text Available Processes occurring during storage of wood chips for energetic or furniture industry purposes were presented. As a result of carried out investigations, dependences of temperature and relative humidity changes of surrounding air were shown. Modified Henderson equation can be utilized for computer simulation of storing and drying processes concerning wood chips for energetic and furniture industry purposes. It reflects also obtained results from experiments carried out with above mentioned material. Using computer simulation program we can examine different wood chips storing conditions to avoid overheating and loss problems.

  18. Environmental contaminants in fish and mussels from Meddybemps Lake, the Dennys River, and East Machias River - Eastern Surplus Superfund Site, Meddybemps, Maine

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — From 1946 to the early 1980s, the 3-acre Eastern Surplus Superfund Site in Meddybemps, Maine, was used for the disposal and storage of surplus military equipment and...

  19. Dose spectra from energetic particles and neutrons

    Science.gov (United States)

    Schwadron, Nathan; Bancroft, Chris; Bloser, Peter; Legere, Jason; Ryan, James; Smith, Sonya; Spence, Harlan; Mazur, Joe; Zeitlin, Cary

    2013-10-01

    spectra from energetic particles and neutrons (DoSEN) are an early-stage space technology research project that combines two advanced complementary radiation detection concepts with fundamental advantages over traditional dosimetry. DoSEN measures not only the energy but also the charge distribution (including neutrons) of energetic particles that affect human (and robotic) health in a way not presently possible with current dosimeters. For heavy ions and protons, DoSEN provides a direct measurement of the lineal energy transfer (LET) spectra behind shielding material. For LET measurements, DoSEN contains stacks of thin-thick Si detectors similar in design to those used for the Cosmic Ray Telescope for the Effects of Radiation. With LET spectra, we can now directly break down the observed spectrum of radiation into its constituent heavy-ion components and through biologically based quality factors that provide not only doses and dose rates but also dose equivalents, associated rates, and even organ doses. DoSEN also measures neutrons from 10 to 100 MeV, which requires enough sensitive mass to fully absorb recoil particles that the neutrons produce. DoSEN develops the new concept of combining these independent measurements and using the coincidence of LET measurements and neutron detection to significantly reduce backgrounds in each measurement. The background suppression through the use of coincidence allows for significant reductions in size, mass, and power needed to provide measurements of dose, neutron dose, dose equivalents, LET spectra, and organ doses. Thus, we introduce the DoSEN concept: a promising low-mass instrument that detects the full spectrum of energetic particles, heavy ions, and neutrons to determine biological impact of radiation in space.

  20. 77 FR 44222 - Notice of Availability of the Draft Surplus Plutonium Disposition Supplemental Environmental...

    Science.gov (United States)

    2012-07-27

    ... an oxide form of plutonium suitable for disposition, and the use of mixed oxide (MOX) fuel fabricated... the decision to fabricate 34 metric tons (MT) (37.5 tons) of surplus plutonium into MOX fuel in the MOX Fuel Fabrication Facility (MFFF) (65 FR 1608, January 11, 2000 and 68 FR 20134, April 24,...