WorldWideScience

Sample records for surgery titanium implants

  1. How to Choose between the Implant Materials Steel and Titanium in Orthopedic Trauma Surgery: Part 2 - Biological Aspects.

    Science.gov (United States)

    Perren, S M; Regazzoni, P; Fernandez, A A

    2017-01-01

    BIOLOGICAL ASPECTS OF STEEL AND TITANIUM AS IMPLANT MATERIAL IN ORTHOPEDIC TRAUMA SURGERY The following case from the ICUC database, where a titanium plate was implanted into a flourishing infection, represents the clinical experience leading to preferring titanium over steel. (Fig. 1) (6). Current opinions regarding biological aspects of implant function. The "street" opinions regarding the biological aspects of the use of steel versus titanium as a surgical trauma implant material differ widely. Statements of opinion leaders range from "I do not see any difference in the biological behavior between steel and titanium in clinical application" to "I successfully use titanium implants in infected areas in a situation where steel would act as foreign body "sustaining" infection." Furthermore, some comments imply that clinical proof for the superiority of titanium in human application is lacking. The following tries to clarify the issues addressing the different aspects more through a practical clinical approach than a purely scientific one, this includes simplifications. Today's overall biocompatibility of implant materials is acceptable but: As the vast majority of secondary surgeries are elective procedures this allows the selection of implant materials with optimal infection resistance. The different biological reactions of stainless steel and titanium are important for this segment of clinical pathologies. Biological tole - rance (18) depends on the toxicity and on the amount of soluble implant material released. Release, diffusion and washout through blood circulation determine the local concentration of the corrosion products. Alloying components of steel, especially nickel and chromium, are less than optimal in respect to tissue tolerance and allergenicity. Titanium as a pure metal provides excellent biological tolerance (3, 4, 16). Better strength was obtained by titanium alloys like TiAl6V4. The latter found limited application as surgical implants. It

  2. Guidelines for patient-specific jawline definition with titanium implants in esthetic, deformity, and malformation surgery.

    Science.gov (United States)

    Mommaerts, Maurice Yves

    2016-01-01

    Asymmetry and unfavorable esthetics of the jawline have become possible to correct in three dimensions using computer aided design and computer aided manufacturing. The aim of this study was to provide esthetic, technical, and operative guidelines for mandibular angle and border augmentation using patient-specific titanium implants made by selective laser melting. University hospital - prospective registry. Twelve patients and 17 implantation sites were documented and prospectively registered. Malformational, deformational, and purely esthetic indications were encountered. Descriptive. Patient satisfaction was high, probably because the patients had input into the planned dimensions and shape. A serious infection with implant removal occurred in one patient who had six previous surgeries at the same sites. Technical and surgical guidelines were developed including splitting implants into two segments when the mental nerve was at risk, using a three-dimensional (3D) puzzle connection, providing at least two screw holes per segment, using scaffolds at the bony contact side, using a "satin" finish at the periosteal side, referring to anatomical structures where possible, making provisions for transbuccal and transoral fixation, using a high vestibular incision, and using a double-layer closure. Esthetic guidelines are discussed but could not be upgraded. Mirroring techniques and 3D print accuracy up to 0.1 mm allow precise planning of jaw angle implants. Patients are pleased when given preoperative renderings for their consideration. Infections can be managed using technical and operative recommendations and careful patient selection.

  3. In vitro studies of nanosilver-doped titanium implants for oral and maxillofacial surgery

    Directory of Open Access Journals (Sweden)

    Pokrowiecki R

    2017-06-01

    Full Text Available Rafał Pokrowiecki,1,2 Tomasz Zaręba,3 Barbara Szaraniec,4 Krzysztof Pałka,5 Agnieszka Mielczarek,6 Elżbieta Menaszek,7 Stefan Tyski3,8 1Center for Cranio-Maxillo-Facial Surgery, Voivodeship Children’s Hospital, Olsztyn, 2Department of Oral Surgery, Jagiellonian Medical University, Kraków, 3Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, 4Faculty of Material Science and Ceramics, AGH University of Science and Technology, Kraków, 5Department of Materials Engineering, Lublin University of Technology, Lublin, 6Department of Conservative Dentistry, Medical University of Warsaw, Warsaw, 7Department of Cytobiology, Collegium Medicum, Jagiellonian University, Kraków, 8Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland Abstract: The addition of an antibacterial agent to dental implants may provide the opportunity to decrease the percentage of implant failures due to peri-implantitis. For this purpose, in this study, the potential efficacy of nanosilver-doped titanium biomaterials was determined. Titanium disks were incorporated with silver nanoparticles over different time periods by Tollens reaction, which is considered to be an eco-friendly, cheap, and easy-to-perform method. The surface roughness, wettability, and silver release profile of each disc were measured. In addition, the antibacterial activity was also evaluated by using disk diffusion tests for bacteria frequently isolated from the peri-implant biofilm: Streptococcus mutans, Streptococcus mitis, Streptococcus oralis, Streptococcus sanguis, Porphyromonas gingivalis, Staphylococcus aureus, and Escherichia coli. Cytotoxicity was evaluated in vitro in a natural human osteoblasts cell culture. The addition of nanosilver significantly increased the surface roughness and decreased the wettability in a dose-dependent manner. These surfaces were significantly toxic to all the tested bacteria following a 48-hour exposure

  4. Guidelines for patient-specific jawline definition with titanium implants in esthetic, deformity, and malformation surgery

    OpenAIRE

    Mommaerts, Maurice Yves

    2016-01-01

    Context: Asymmetry and unfavorable esthetics of the jawline have become possible to correct in three dimensions using computer aided design and computer aided manufacturing. Aims: The aim of this study was to provide esthetic, technical, and operative guidelines for mandibular angle and border augmentation using patient-specific titanium implants made by selective laser melting. Settings and Design: University hospital - prospective registry. Subjects and Methods: Twelve patients and 17 impla...

  5. Dental Implant Surgery

    Science.gov (United States)

    ... here to find out more. Dental Implant Surgery Dental Implant Surgery Dental implant surgery is, of course, ... to find out more. Wisdom Teeth Management Wisdom Teeth Management An impacted wisdom tooth can damage neighboring ...

  6. Printing of Titanium implant prototype

    International Nuclear Information System (INIS)

    Wiria, Florencia Edith; Shyan, John Yong Ming; Lim, Poon Nian; Wen, Francis Goh Chung; Yeo, Jin Fei; Cao, Tong

    2010-01-01

    Dental implant plays an important role as a conduit of force and stress to flow from the tooth to the related bone. In the load sharing between an implant and its related bone, the amount of stress carried by each of them directly related to their stiffness or modulus. Hence, it is a crucial issue for the implant to have matching mechanical properties, in particular modulus, between the implant and its related bone. Titanium is a metallic material that has good biocompatibility and corrosion resistance. Whilst the modulus of the bulk material is still higher than that of bone, it is the lowest among all other commonly used metallic implant materials, such as stainless steel or cobalt alloy. Hence it is potential to further reduce the modulus of pure Titanium by engineering its processing method to obtain porous structure. In this project, porous Titanium implant prototype is fabricated using 3-dimensional printing. This technique allows the flexibility of design customization, which is beneficial for implant fabrication as tailoring of implant size and shape helps to ensure the implant would fit nicely to the patient. The fabricated Titanium prototype had a modulus of 4.8-13.2 GPa, which is in the range of natural bone modulus. The compressive strength achieved was between 167 to 455 MPa. Subsequent cell culture study indicated that the porous Titanium prototype had good biocompatibility and is suitable for bone cell attachment and proliferation.

  7. Individual titanium zygomatic implant

    Science.gov (United States)

    Nekhoroshev, M. V.; Ryabov, K. N.; Avdeev, E. V.

    2018-03-01

    Custom individual implants for the reconstruction of craniofacial defects have gained importance due to better qualitative characteristics over their generic counterparts – plates, which should be bent according to patient needs. The Additive Manufacturing of individual implants allows reducing cost and improving quality of implants. In this paper, the authors describe design of zygomatic implant models based on computed tomography (CT) data. The fabrication of the implants will be carried out with 3D printing by selective laser melting machine SLM 280HL.

  8. Cranioplasty with individual titanium implants

    Science.gov (United States)

    Mishinov, S.; Stupak, V.; Sadovoy, M.; Mamonova, E.; Koporushko, N.; Larkin, V.; Novokshonov, A.; Dolzhenko, D.; Panchenko, A.; Desyatykh, I.; Krasovsky, I.

    2017-09-01

    Cranioplasty is the second procedure in the history of neurosurgery after trepanation, and it is still relevant despite the development of civilization and progress in medicine. Each cranioplasty operation is unique because there are no two patients with identical defects of the skull bones. The development of Direct Metal Laser Sintering (DMLS) technique opened up the possibility of direct implant printing of titanium, a biocompatible metal used in medicine. This eliminates the need for producing any intermediate products to create the desired implant. We have produced 8 patient-specific titanium implants using this technique for patients who underwent different decompressive cranioectomies associated with bone tumors. Follow-up duration ranged from 6 to 12 months. We observed no implant-related reactions or complications. In all cases of reconstructive neurosurgery we achieved good clinical and aesthetic results. The analysis of the literature and our own experience in three-dimensional modeling, prototyping, and printing suggests that direct laser sintering of titanium is the optimal method to produce biocompatible surgical implants.

  9. Antibacterial iodine-supported titanium implants.

    Science.gov (United States)

    Shirai, T; Shimizu, T; Ohtani, K; Zen, Y; Takaya, M; Tsuchiya, H

    2011-04-01

    Deep infection remains a serious complication in orthopedic implant surgery. In order to reduce the incidence of implant-associated infections, several biomaterial surface treatments have been proposed. This study focused on evaluating the antibacterial activity of iodine-supported titanium (Ti-I(2)) and its impact on post-implant infection, as well as determining the potential suitability of Ti-I(2) as a biomaterial. External fixation pins were used in this experiment as trial implants because of the ease of making the septic models. The antibacterial activity of the metal was measured using a modification of the Japanese Industrial Standards method. Activity was evaluated by exposing the implants to Staphylococcus aureus or Escherichia coli and comparing reaction of pathogens to Ti-I(2) vs. stainless steel and titanium controls. Ti-I(2) clearly inhibited bacterial colonization more than the control metals. In addition, cytocompatibility was assessed by counting the number of colonies that formed on the metals. The three metals showed the same amount of fibroblast colony formation. Japanese white rabbits were used as an in vivo model. Three pins were inserted into both femora of six rabbits for histological analysis. Pin sites were inspected and graded for infection and inflammation. Fewer signs of infection and inflammatory changes were observed in conjunction with the Ti-I(2) pins. Furthermore, osteoconductivity of the implant was evaluated with osteoid formation surface of the pin. Consecutive bone formation was observed around the Ti-I(2) and titanium pins, while little osteoid formation was found around the stainless steel pins. These findings suggest that Ti-I(2) has antimicrobial activity and exhibits cytocompatibility. Therefore, Ti-I(2) substantially reduces the incidence of implant infection and shows particular promise as a biomaterial. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Long-term hearing result using Kurz titanium ossicular implants.

    Science.gov (United States)

    Hess-Erga, Jeanette; Møller, Per; Vassbotn, Flemming Slinning

    2013-05-01

    Titanium implants in middle ear surgery were introduced in the late 90s and are now frequently used in middle ear surgery. However, long-term studies of patient outcome are few and have only been published in subgroups of patients. We report the long-term effect of titanium middle ear implants for ossicular reconstruction in chronic ear disease investigated in a Norwegian tertiary otological referral centre. Retrospective chart reviews were performed for procedures involving 76 titanium implants between 2000 and 2007. All patients who underwent surgery using the Kurz Vario titanium implant were included in the study. Audiological parameters using four frequencies, 0.5, 1, 2, and 3 kHz, according to AAO-HNS guidelines, was assessed pre and postoperatively. Otosurgical procedures, complications, revisions, and extrusion rates were analyzed. The study had no dropouts. The partial ossicular replacement prosthesis (PORP) was used in 44 procedures and the total ossicular replacement prosthesis (TORP) in 32 procedures, respectively. Mean follow-up was 5.2 years (62 months). The ossiculoplasties were performed as staging procedures or in combination with other chronic ear surgery. The same surgeon performed all the procedures. A postoperative air-bone gap of ≤ 20 dB was obtained in 74 % of the patients, 82 % for the Bell (PORP) prosthesis, and 63 % for the Arial (TORP) prosthesis. The extrusion rate was 5 %. We conclude that titanium ossicular implants give stable and excellent long-term hearing results.

  11. Surface modification of titanium and titanium alloys by ion implantation.

    Science.gov (United States)

    Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han

    2010-05-01

    Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation. (c) 2010 Wiley Periodicals, Inc.

  12. Surface Modification Of Implants For Bone Surgery

    Directory of Open Access Journals (Sweden)

    Marciniak J.

    2015-09-01

    Full Text Available The study discusses the methods of surface modification methods for AISAI 316 L steel and Ti6Al4V ELI titanium alloy, dedicated to complex design implants used in bone surgery. Results of structural tests have been presented along with those evaluating the physicochemical properties of the formed surface layers. Clinical feasibility of the surface layers has also been evaluated.

  13. Titanium implants in irradiated dog mandibles

    International Nuclear Information System (INIS)

    Schweiger, J.W.

    1989-01-01

    The use of osseointegrated titanium implants has been a great benefit to selected cancer patients who otherwise would not be able to wear conventional and/or maxillofacial prostheses. Cognizant of the risk of osteoradionecrosis, we used an animal model to seek experimental evidence for successful osseointegration in bone irradiated to tumoricidal levels. Five healthy male beagle dogs received 60 gray to a previously edentulated and healed area of the right hemimandible. The left hemimandible was kept as a nonirradiated control. After 9 months, titanium implants were placed and allowed an additional 5 1/2 months to osseointegrate. At that time, block specimens were obtained, radiographed, photographed, and analyzed histologically. Although statistical significance cannot be attached to the results, osseointegration was achieved in half of the irradiated specimens

  14. Synthesis of titanium sapphire by ion implantation

    International Nuclear Information System (INIS)

    Morpeth, L.D.; McCallum, J.C.; Nugent, K.W.

    1998-01-01

    Since laser action was first demonstrated in titanium sapphire (Ti:Al 2 O 3 ) in 1982, it has become the most widely used tunable solid state laser source. The development of a titanium sapphire laser in a waveguide geometry would yield an elegant, compact, versatile and highly tunable light source useful for applications in many areas including optical telecommunications. We are investigating whether ion implantation techniques can be utilised to produce suitable crystal quality and waveguide geometry for fabrication of a Ti:Al 2 O 3 waveguide laser. The implantation of Ti and O ions into c-axis oriented α-Al 2 O 3 followed by subsequent thermal annealing under various conditions has been investigated as a means of forming the waveguide and optimising the fraction of Ti ions that have the correct oxidation state required for laser operation. A Raman Microprobe is being used to investigate the photo-luminescence associated with Ti 3+ ion. Initial photoluminescence measurements of ion implanted samples are encouraging and reveal a broad luminescence profile over a range of ∼ .6 to .9 μm, similar to that expected from Ti 3+ . Rutherford Backscattering and Ion Channelling analysis have been used to study the crystal structure of the samples following implantation and annealing. This enables optimisation of the implantation parameters and annealing conditions to minimise defect levels which would otherwise limit the ability of light to propagate in the Ti:Al 2O 3 waveguide. (authors)

  15. Custom-made laser-welded titanium implant prosthetic abutment.

    Science.gov (United States)

    Iglesia-Puig, Miguel A

    2005-10-01

    A technique to create an individually modified implant prosthetic abutment is described. An overcasting is waxed onto a machined titanium abutment, cast in titanium, and joined to it with laser welding. With the proposed technique, a custom-made titanium implant prosthetic abutment is created with adequate volume and contour of metal to support a screw-retained, metal-ceramic implant-supported crown.

  16. Alveolar Ridge Reconstruction with Titanium Meshes and Simultaneous Implant Placement: A Retrospective, Multicenter Clinical Study

    Directory of Open Access Journals (Sweden)

    Raquel Zita Gomes

    2016-01-01

    Full Text Available Objective. To evaluate horizontal bone gain and implant survival and complication rates in patients treated with titanium meshes placed simultaneously with dental implants and fixed over them. Methods. Twenty-five patients treated with 40 implants and simultaneous guided bone regeneration with titanium meshes (i–Gen®, MegaGen, Gyeongbuk, Republic of Korea were selected for inclusion in the present retrospective multicenter study. Primary outcomes were horizontal bone gain and implant survival; secondary outcomes were biological and prosthetic complications. Results. After the removal of titanium meshes, the CBCT evaluation revealed a mean horizontal bone gain of 3.67 mm (±0.89. The most frequent complications were mild postoperative edema (12/25 patients: 48% and discomfort after surgery (10/25 patients: 40%; these complications were resolved within one week. Titanium mesh exposure occurred in 6 patients (6/25 : 24%: one of these suffered partial loss of the graft and another experienced complete graft loss and implant failure. An implant survival rate of 97.5% (implant-based and a peri-implant marginal bone loss of 0.43 mm (±0.15 were recorded after 1 year. Conclusions. The horizontal ridge reconstruction with titanium meshes placed simultaneously with dental implants achieved predictable satisfactory results. Prospective randomized controlled trials on a larger sample of patients are required to validate these positive outcomes.

  17. Porous Titanium for Dental Implant Applications

    Directory of Open Access Journals (Sweden)

    Zena J. Wally

    2015-10-01

    Full Text Available Recently, an increasing amount of research has focused on the biological and mechanical behavior of highly porous structures of metallic biomaterials, as implant materials for dental implants. Particularly, pure titanium and its alloys are typically used due to their outstanding mechanical and biological properties. However, these materials have high stiffness (Young’s modulus in comparison to that of the host bone, which necessitates careful implant design to ensure appropriate distribution of stresses to the adjoining bone, to avoid stress-shielding or overloading, both of which lead to bone resorption. Additionally, many coating and roughening techniques are used to improve cell and bone-bonding to the implant surface. To date, several studies have revealed that porous geometry may be a promising alternative to bulk structures for dental implant applications. This review aims to summarize the evidence in the literature for the importance of porosity in the integration of dental implants with bone tissue and the different fabrication methods currently being investigated. In particular, additive manufacturing shows promise as a technique to control pore size and shape for optimum biological properties.

  18. Short-term results using Kurz titanium ossicular implants.

    Science.gov (United States)

    Vassbotn, Flemming S; Møller, Per; Silvola, Juha

    2007-01-01

    The efficiency of titanium middle ear prosthesis for ossicular reconstruction in chronic ear disease is investigated in a Scandinavian two-center retrospective study from a Norwegian tertiary otology referral center and a Finnish otology referral center. Retrospective chart reviews were performed for procedures involving 73 titanium prostheses between 1999 and 2004. All patients that underwent surgery including the Kurz Vario titanium prosthesis were included in the study, 38 procedures including the partial ossicular replacement prosthesis (PORP) and 35 procedures including the total ossicular replacement prosthesis (TORP). Mean follow-up was 14 months. The ossiculoplasty was performed alone (29 patients) or in combination with other chronic ear surgery procedures (34 patients). Comparisons of preoperative and postoperative pure tone averages (0.5, 1, 2, and 3 kHz) according to AAO-HNS guidelines are presented, as well as data for different PTA definitions. Otosurgery procedures, complications, revisions, and extrusion rates are reported. A postoperative air-bone gap (ABG) of Titanium prostheses have been easy and fast to handle and effective implants for reconstruction of the ossicular chain. We found no difference between reconstruction with or without cholesteatoma surgery during the same procedure. The combination of CWD and Torp gave significant inferior hearing thresholds as compared to Torp/CWU and Porp/CWD combinations.

  19. Characterizations of additive manufactured porous titanium implants.

    Science.gov (United States)

    Basalah, Ahmad; Shanjani, Yaser; Esmaeili, Shahrzad; Toyserkani, Ehsan

    2012-10-01

    This article describes physical, chemical, and mechanical characterizations of porous titanium implants made by an additive manufacturing method to gain insight into the correlation of process parameters and final physical properties of implants used in orthopedics. For the manufacturing chain, the powder metallurgy technology was combined with the additive manufacturing to fabricate the porous structure from the pure tanium powder. A 3D printing machine was employed in this study to produce porous bar samples. A number of physical parameters such as titanium powder size, polyvinyl alcohol (PVA) amount, sintering temperature and time were investigated to control the mechanical properties and porosity of the structures. The produced samples were characterized through porosity and shrinkage measurements, mechanical compression test and scanning electron microscopy (SEM). The results showed a level of porosity in the samples in the range of 31-43%, which is within the range of the porosity of the cancelluous bone and approaches the range of the porosity of the cortical bone. The results of the mechanical test showed that the compressive strength is in the wide range of 56-509 MPa implying the effect of the process parameters on the mechanical strengths. This technique of manufacturing of Ti porous structures demonstrated a low level of shrinkage with the shrinkage percentage ranging from 1.5 to 5%. Copyright © 2012 Wiley Periodicals, Inc.

  20. Demineralized bone matrix and human cancellous bone enhance fixation of titanium implants

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    Best Poster 5Demineralized bone matrix and human cancellous bone enhance fixation of titanium implants AuthorsBabiker , H.; Ding M.; Overgaard S.InstitutionOrthopaedic Research Laboratory, Department of Orthopaedic Surgery, Odense University Hospital, Clinical Institute, University of Southern...... from human tissue were included (IsoTis OrthoBiologics, Inc. USA). Both materials are commercially available. Titanium alloy implants (Biomet Inc.) of 10 mm in length and 10 mm in diameter were inserted bilaterally into the femoral condyles of 8 skeletally mature sheep. Thus four implants...... with a concentric gap of 2 mm were implanted in each sheep. The gap was filled with: DBM; DBM/CB with ratio of 1/3; DBM/allograft with ratio of 1/3; or allograft (Gold standard), respectively. Standardised surgical procedure was used1. At sacrifice, 6 weeks after surgery, both distal femurs were harvested...

  1. Resorbable versus titanium plates for orthognathic surgery.

    Science.gov (United States)

    Agnihotry, Anirudha; Fedorowicz, Zbys; Nasser, Mona; Gill, Karanjot S

    2017-10-04

    Recognition of some of the limitations of titanium plates and screws used for the fixation of bones has led to the development of plates manufactured from bioresorbable materials. Whilst resorbable plates appear to offer clinical advantages over metal plates in orthognathic surgery, concerns remain about the stability of fixation and the length of time required for their degradation and the possibility of foreign body reactions. This review compares the use of titanium versus bioresorbable plates in orthognathic surgery and is an update of the Cochrane Review first published in 2007. To compare the effects of bioresorbable fixation systems with titanium systems used during orthognathic surgery. Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 20 January 2017); the Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 11) in the Cochrane Library (searched 20 January 2017); MEDLINE Ovid (1946 to 20 January 2017); and Embase Ovid (1980 to 20 January 2017). We searched the US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov (clinicaltrials.gov; searched 20 January 2017), and the World Health Organization International Clinical Trials Registry Platform (searched 20 January 2017) for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. Randomised controlled trials comparing bioresorbable versus titanium fixation systems used for orthognathic surgery in adults. Two review authors independently screened the results of the electronic searches, extracted data and assessed the risk of bias of the included studies. We resolved disagreement by discussion. Clinical heterogeneity between the included trials precluded pooling of data, and only a descriptive summary is presented. This review included two trials, involving 103 participants, one comparing titanium with resorbable plates and screws and

  2. Artefacts in multimodal imaging of titanium, zirconium and binary titanium-zirconium alloy dental implants: an in vitro study.

    Science.gov (United States)

    Smeets, Ralf; Schöllchen, Maximilian; Gauer, Tobias; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-02-01

    To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium-zirconium alloy dental implants. Zirconium, titanium and titanium-zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line-distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. While titanium and titanium-zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium-zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium-zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium-zirconium alloy induced more severe artefacts than zirconium and titanium. MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium-zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting.

  3. Strategies For Immobilization Of Bioactive Organic Molecules On Titanium Implant Surfaces – A Review

    Directory of Open Access Journals (Sweden)

    Panayotov Ivan V.

    2015-03-01

    Full Text Available Numerous approaches have been used to improve the tissue-implant interface of titanium (Ti and titanium alloy (Ti6Al4V. They all aim at increasing cell migration and attachment to the metal, preventing unspecific protein adsorption and improving post-implantation healing process. Promising methods for titanium and titanium alloy surface modification are based on the immobilization of biologically active organic molecules. New and interesting biochemical approaches to such surface modification include layer-by-layer deposition of polyelectrolyte films, phage display-selected surface binding peptides and self-assembled DNA monolayer systems. The present review summarizes the scientific information about these methods, which are at in vitro or in vivo development stages, and hopes to promote their future application in dental implantology and in oral and maxillofacial surgery.

  4. Antimicrobial and Osseointegration Properties of Nanostructured Titanium Orthopaedic Implants.

    Science.gov (United States)

    Jäger, Marcus; Jennissen, Herbert P; Dittrich, Florian; Fischer, Alfons; Köhling, Hedda Luise

    2017-11-13

    The surface design of titanium implants influences not only the local biological reactions but also affects at least the clinical result in orthopaedic application. During the last decades, strong efforts have been made to improve osteointegration and prevent bacterial adhesion to these surfaces. Following the rule of "smaller, faster, cheaper", nanotechnology has encountered clinical application. It is evident that the hierarchical implant surface micro- and nanotopography orchestrate the biological cascades of early peri-implant endosseous healing or implant loosening. This review of the literature gives a brief overview of nanostructured titanium-base biomaterials designed to improve osteointegration and prevent from bacterial infection.

  5. Application of micro beam PIXE to detection of titanium ion release from dental and orthopaedic implants

    International Nuclear Information System (INIS)

    Ektessabi, A.M.; Otsuka, T.; Tsuboi, Y.; Yokoyama, K.; Albrektsson, T.; Sennerby, L.; Johansson, C.

    1994-01-01

    In the past two decades the utilization of dental and orthopaedic implants in reconstructive surgery has been spread widely. Most of these implants are inserted in the corrosive environment of the human body for long periods of time. The level of dissolution, release, and transport of metal ions as a result of corrosion of these materials are not fully known at present. We report the results of application of micro ion beam PIXE spectroscopy to detect release of titanium from titanium and titanium alloy implants inserted in the tibiae of rabbits for three months. It was found that titanium ions could be detected in the surrounding tissues, with high precision, as a gradient from the implant surface and in higher amounts in the bone tissue as compared with the soft tissues. It is concluded that application of micro ion beam PIXE spectroscopy for detection of metal ion release, and distribution of the released material around the implants with high special resolution and accuracy may be used to further investigate the mechanism of metal release, and the relation between surface micromorphology and corrosion resistance of the implant materials. (author)

  6. The biocompatibility of SLA-treated titanium implants

    International Nuclear Information System (INIS)

    Kim, Hyeongil; Choi, Seong-Ho; Ryu, Jae-Jun; Koh, Seung-Yong; Park, Ju-Han; Lee, In-Seop

    2008-01-01

    The titanium implant surface was sandblasted with large grits and acid etched (SLA) to increase the implant surface for osseointegration. The topography of the titanium surface was investigated with scanning electron microscopy (SEM) and a profilometer. The SLA implant demonstrated uniform small micro pits (1-2 μm in diameter). The values of average roughness (R a ) and maximum height (R t ) were 1.19 μm and 10.53 μm respectively after sandblasting and the acid-etching treatment. In the cell-surface interaction study, the human osteoblast cells grew well in vitro. The in vivo evaluation of the SLA implant placed in rabbit tibia showed good bone-to-implant contact (BIC) with a mean value of 29% in total length of the implant. In the short-term clinical study, SLA implants demonstrated good clinical performance, maintaining good crestal bone height

  7. Surface analysis of titanium dental implants with different topographies

    Directory of Open Access Journals (Sweden)

    Silva M.H. Prado da

    2000-01-01

    Full Text Available Cylindrical dental implants made of commercially pure titanium were analysed in four different surface finishes: as-machined, Al2O3 blasted with Al2O3 particles, plasma-sprayed with titanium beads and electrolytically coated with hydroxyapatite. Scanning electron microscopy (SEM with Energy Dispersive X-ray Analysis (EDX revealed the topography of the surfaces and provided qualitative results of the chemical composition of the different implants. X-ray Photoelectron Spectroscopy (XPS was used to perform chemical analysis on the surface of the implants while Laser Scanning Confocal Microscopy (LSM produced topographic maps of the analysed surfaces. Optical Profilometry was used to quantitatively characterise the level of roughness of the surfaces. The implant that was plasma-sprayed and the hydroxyapatite coated implant showed the roughest surface, followed by the implant blasted with alumina and the as-machined implant. Some remnant contamination from the processes of blasting, coating and cleaning was detected by XPS.

  8. Numerical assessment of bone remodeling around conventionally and early loaded titanium and titanium-zirconium alloy dental implants.

    Science.gov (United States)

    Akça, Kıvanç; Eser, Atılım; Çavuşoğlu, Yeliz; Sağırkaya, Elçin; Çehreli, Murat Cavit

    2015-05-01

    The aim of this study was to investigate conventionally and early loaded titanium and titanium-zirconium alloy implants by three-dimensional finite element stress analysis. Three-dimensional model of a dental implant was created and a thread area was established as a region of interest in trabecular bone to study a localized part of the global model with a refined mesh. The peri-implant tissues around conventionally loaded (model 1) and early loaded (model 2) implants were implemented and were used to explore principal stresses, displacement values, and equivalent strains in the peri-implant region of titanium and titanium-zirconium implants under static load of 300 N with or without 30° inclination applied on top of the abutment surface. Under axial loading, principal stresses in both models were comparable for both implants and models. Under oblique loading, principal stresses around titanium-zirconium implants were slightly higher in both models. Comparable stress magnitudes were observed in both models. The displacement values and equivalent strain amplitudes around both implants and models were similar. Peri-implant bone around titanium and titanium-zirconium implants experiences similar stress magnitudes coupled with intraosseous implant displacement values under conventional loading and early loading simulations. Titanium-zirconium implants have biomechanical outcome comparable to conventional titanium implants under conventional loading and early loading.

  9. Cochlear implant revision surgeries in children.

    Science.gov (United States)

    Amaral, Maria Stella Arantes do; Reis, Ana Cláudia Mirândola B; Massuda, Eduardo T; Hyppolito, Miguel Angelo

    2018-02-16

    The surgery during which the cochlear implant internal device is implanted is not entirely free of risks and may produce problems that will require revision surgeries. To verify the indications for cochlear implantation revision surgery for the cochlear implant internal device, its effectiveness and its correlation with certain variables related to language and hearing. A retrospective study of patients under 18 years submitted to cochlear implant Surgery from 2004 to 2015 in a public hospital in Brazil. Data collected were: age at the time of implantation, gender, etiology of the hearing loss, audiological and oral language characteristics of each patient before and after Cochlear Implant surgery and any need for surgical revision and the reason for it. Two hundred and sixty-five surgeries were performed in 236 patients. Eight patients received a bilateral cochlear implant and 10 patients required revision surgery. Thirty-two surgeries were necessary for these 10 children (1 bilateral cochlear implant), of which 21 were revision surgeries. In 2 children, cochlear implant removal was necessary, without reimplantation, one with cochlear malformation due to incomplete partition type I and another due to trauma. With respect to the cause for revision surgery, of the 8 children who were successfully reimplanted, four had cochlear calcification following meningitis, one followed trauma, one exhibited a facial nerve malformation, one experienced a failure of the cochlear implant internal device and one revision surgery was necessary because the electrode was twisted. The incidence of the cochlear implant revision surgery was 4.23%. The period following the revision surgeries revealed an improvement in the subject's hearing and language performance, indicating that these surgeries are valid in most cases. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  10. CT provides precise size assessment of implanted titanium alloy pedicle screws.

    Science.gov (United States)

    Elliott, Michael J; Slakey, Joseph B

    2014-05-01

    After performing instrumented spinal fusion with pedicle screws, postoperative imaging using CT to assess screw position may be necessary. Stainless steel implants produce significant metal artifact on CT, and the degree of distortion is at least partially dependent on the cross-sectional area of the implanted device. If the same effect occurs with titanium alloy implants, ability to precisely measure proximity of screws to adjacent structures may be adversely affected as screw size increases. We therefore asked whether (1) CT provides precise measurements of true screw widths; and (2) precision degrades based on the size of the titanium implant imaged. CT scans performed on 20 patients after instrumented spinal fusion for scoliosis were reviewed. The sizes of 151 titanium alloy pedicle screws were measured and compared with known screw size. The amount of metal bloom artifact was determined for each of the four screw sizes. ANOVA with Tukey's post hoc test were performed to evaluate differences in scatter, and Spearman's rho coefficient was used to measure relationship between screw size and scatter. All screws measured larger than their known size, but even with larger 7-mm screws the size differential was less than 1 mm. The four different screw sizes produced scatter amounts that were different from each other (p titanium alloy pedicle screws produces minimal artifact, thus making this the preferred imaging modality to assess screw position after surgery. Although the amount of artifact increases with the volume of titanium present, the degree of distortion is minimal and is usually less than 1 mm.

  11. Investigation of corrosion and ion release from titanium dental implant

    International Nuclear Information System (INIS)

    Ektessabi, A.M.; Mouhyi, J.; Louvette, P.; Sennerby, L.

    1997-01-01

    A thin passive titanium dioxide, in its stoichiometric form, has a very high corrosion resistance, but the same conclusion can not be made on corrosion resistance of a surface which is not stoichiometrically titanium dioxide, or even a surface which is a composition of various elements and oxides. In practice, the implants available on the market have an oxide surface contaminated with other elements. The aim of this paper is to correlate clinical observations that show the deterioration of Ti made implants after certain period of insertion in the patients, and in vitro corrosion resistance of Ti implants with surface passive oxide layer. For this purpose, surface analysis of the retrieved failed implants were performed and in vivo animal experiments with relation to ion release from implants were done. Finally, on the basis of the clinical observation, in vivo animal test, and in vitro electrochemical corrosion test, a model is proposed to explain the corrosion and ion release from the Ti implant. (author)

  12. Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions.

    Science.gov (United States)

    Bosshardt, Dieter D; Chappuis, Vivianne; Buser, Daniel

    2017-02-01

    Bone healing around dental implants follows the pattern and sequence of intramembraneous osteogenesis with formation of woven bone first of all followed later by formation of parallel-fibered and lamellar bone. Bone apposition onto the implant surface starts earlier in trabecular bone than in compact bone. While the first new bone may be found on the implant surface around 1 week after installation, bone remodeling starts at between 6 and 12 weeks and continues throughout life. Bone remodeling also involves the bone-implant interface, thus transiently exposing portions of the implant surface. Surface modifications creating micro-rough implant surfaces accelerate the osseointegration process of titanium implants, as demonstrated in numerous animal experiments. Sandblasting followed by acid-etching may currently be regarded as the gold standard technique to create micro-rough surfaces. Chemical surface modifications, resulting in higher hydrophilicity, further increase the speed of osseointegration of titanium and titanium-zirconium implants in both animals and humans. Surface modifications of zirconia and alumina-toughened zirconia implants also have an influence on the speed of osseointegration, and some implant types reach high bone-to-implant contact values in animals. Although often discussed independently of each other, surface characteristics, such as topography and chemistry, are virtually inseparable. Contemporary, well-documented implant systems with micro-rough implant surfaces, placed by properly trained and experienced clinicians, demonstrate high long-term survival rates. Nevertheless, implant failures do occur. A low percentage of implants are diagnosed with peri-implantitis after 10 years in function. In addition, a low number of implants seem to be lost for primarily reasons other than biofilm-induced infection. Patient factors, such as medications interfering with the immune system and bone cells, may be an element contributing to continuous bone

  13. Implant-supported titanium prostheses following augmentation procedures: a clinical report.

    Science.gov (United States)

    Knabe, C; Hoffmeister, B

    2003-03-01

    This report describes a novel technique for fabricating retrievable implant-supported titanium (Ti) prostheses in patients requiring a comprehensive treatment plan involving the combined efforts of maxillofacial surgery and implant prosthodontics. Following bone graft reconstructive surgery and implant placement prosthetic treatment was initiated by inserting ITI-Octa abutments. An impression was made, and a framework was fabricated by fusing Ti-cast frameworks to prefabricated titanium copings by laser-welding. This was followed by veneering or fabrication of a removable denture with Ti metal re-enforcement. Favourable clinical results have been achieved using these screw-retained Ti implant-supported restorations for patients treated with reconstructive bone graft-surgery, with clinical observation periods ranging from three to four years. The present observations suggest that these screw-retained implant-supported Ti prostheses may be a meaningful contribution to implant prosthodontics, facilitating retrievable restorations of optimum biocompatibility, good marginal precision and with a good esthetic result. However, controlled clinical studies are needed to establish the long-term serviceability of these Ti restorations.

  14. Titanium diffusion in shinbone of rats with osseointegrated implants.

    Science.gov (United States)

    Grenón, Miriam S; Robledo, José; Ibáñez, Juan Carlos; Sánchez, Héctor J

    2016-11-01

    Dental implants are composed of commercially pure Ti (which is actually an alloy of titanium, and minor or trace components such as aluminium and vanadium). When the implant is inserted, its surface undergoes a number of chemical and mechanical processes, releasing particles of titanium to the medium. The metabolism of free ions of titanium is uncertain; the uptaking processes in the body are not well known, nor their toxic dose. In addition, physical properties of newly formed bone, such as diffusivity and activation energy, are scarce and rarely studied. In this study, we analysed the diffusion of titanium in the titanium-implanted shinbones of six adult male Wistar rats by spatially resolved micro x-ray fluorescence. The measurements were carried out at the microfluorescence station of the x-ray fluorescence (XRF) beamline of the Brazilian synchrotron facility LNLS (from Portuguese 'Laboratorio Nacional de Luz Sincrotron'). For each sample, XRF spectra were taken by linear scanning in area near the new bone formed around the Ti implant. The scanning line shows a clear effect of titanium diffusion whereas calcium intensity presents a different behaviour. Moreover, a clear correlation among the different structures of bones is observed in the Ti and Ca intensities. The results obtained in these measurements may allow determining quantitatively the parameters of diffusion rates and other physical properties of new bone like diffusion coefficients. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  15. Rough surfaces of titanium and titanium alloys for implants and prostheses

    International Nuclear Information System (INIS)

    Conforto, E.; Aronsson, B.-O.; Salito, A.; Crestou, C.; Caillard, D.

    2004-01-01

    Titanium and titanium alloys for dental implants and hip prostheses were surface-treated and/or covered by metallic or ceramic rough layers after being submitted to sand blasting. The goal of these treatments is to improve the surface roughness and consequently the osteointegration, the fixation, and the stability of the implant. The microstructure of titanium and titanium alloys submitted to these treatments has been studied and correlated to their mechanical behavior. As-treated/covered and mechanically tested surfaces were characterized by scanning electron microscopy (SEM). Structural analyses performed by transmission electron microscopy (TEM), mainly in cross-section, reveal the degree of adherence and cohesion between the surface layer and the substrate (implant). We observed that, although the same convenient surface roughness was obtained with the two types of process, many characteristics as structural properties and mechanical behavior are very different

  16. Surface Functionalization of Orthopedic Titanium Implants with Bone Sialoprotein.

    Directory of Open Access Journals (Sweden)

    Andreas Baranowski

    Full Text Available Orthopedic implant failure due to aseptic loosening and mechanical instability remains a major problem in total joint replacement. Improving osseointegration at the bone-implant interface may reduce micromotion and loosening. Bone sialoprotein (BSP has been shown to enhance bone formation when coated onto titanium femoral implants and in rat calvarial defect models. However, the most appropriate method of BSP coating, the necessary level of BSP coating, and the effect of BSP coating on cell behavior remain largely unknown. In this study, BSP was covalently coupled to titanium surfaces via an aminosilane linker (APTES, and its properties were compared to BSP applied to titanium via physisorption and untreated titanium. Cell functions were examined using primary human osteoblasts (hOBs and L929 mouse fibroblasts. Gene expression of specific bone turnover markers at the RNA level was detected at different intervals. Cell adhesion to titanium surfaces treated with BSP via physisorption was not significantly different from that of untreated titanium at any time point, whereas BSP application via covalent coupling caused reduced cell adhesion during the first few hours in culture. Cell migration was increased on titanium disks that were treated with higher concentrations of BSP solution, independent of the coating method. During the early phases of hOB proliferation, a suppressive effect of BSP was observed independent of its concentration, particularly when BSP was applied to the titanium surface via physisorption. Although alkaline phosphatase activity was reduced in the BSP-coated titanium groups after 4 days in culture, increased calcium deposition was observed after 21 days. In particular, the gene expression level of RUNX2 was upregulated by BSP. The increase in calcium deposition and the stimulation of cell differentiation induced by BSP highlight its potential as a surface modifier that could enhance the osseointegration of orthopedic implants

  17. Biocompatibility of titanium based implants treated with plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Maendl, S.; Sader, R.; Thorwarth, G.; Krause, D.; Zeilhofer, H.-F.; Horch, H.H.; Rauschenbach, B.

    2003-01-01

    In this work, the biocompatibility of titanium before and after oxygen PIII is investigated using a rat animal model. Pure titanium (grade 2) and pre-anodized titanium were implanted with oxygen at elevated temperatures between 200 and 550 deg. C and subsequently analyzed for oxygen content and phase composition. No deterioration of the tensile strength and the yield strength was detected after the implantation. The mechanical stability of the osseointegration was determined with a pull-out test, where an increased shear strength was measured after PIII treatment. Only a slight improvement of the bone contact area, from an already excellent starting value, was observed for pure titanium. In contrast, a significant improvement was found for anodized titanium after PIII treatment. This astonishing difference can be explained with the surface topography and the phase composition of the anodized titanium samples

  18. Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison

    Science.gov (United States)

    2015-06-05

    of any copyrighted material in the thesis manuscript entitled: Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison Is...Uniformed Services University Date: 02/20/2015 Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison By...the thesis manuscript entitled: Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison Is appropriately acknowledged

  19. Thin hydroxyapatite surface layers on titanium produced by ion implantation

    CERN Document Server

    Baumann, H; Bilger, G; Jones, D; Symietz, I

    2002-01-01

    In medicine metallic implants are widely used as hip replacement protheses or artificial teeth. The biocompatibility is in all cases the most important requirement. Hydroxyapatite (HAp) is frequently used as coating on metallic implants because of its high acceptance by the human body. In this paper a process is described by which a HAp surface layer is produced by ion implantation with a continuous transition to the bulk material. Calcium and phosphorus ions are successively implanted into titanium under different vacuum conditions by backfilling oxygen into the implantation chamber. Afterwards the implanted samples are thermally treated. The elemental composition inside the implanted region was determined by nuclear analysis methods as (alpha,alpha) backscattering and the resonant nuclear reaction sup 1 H( sup 1 sup 5 N,alpha gamma) sup 1 sup 2 C. The results of X-ray photoelectron spectroscopy indicate the formation of HAp. In addition a first biocompatibility test was performed to compare the growing of m...

  20. Multicycle mechanical performance of titanium and stainless steel transpedicular spine implants.

    Science.gov (United States)

    Pienkowski, D; Stephens, G C; Doers, T M; Hamilton, D M

    1998-04-01

    This was a prospective in vitro study comparing titanium alloy and stainless steel alloy in transpedicular spine implants from two different manufactures. To compare the multicycle mechanical performance of these two alloys, used in each of two different implant designs. Transpedicular spine implants primarily have been manufactured from stainless steel, but titanium alloy offers imaging advantages. However, the notch sensitivity of titanium alloy has caused concern regarding how implants made from this material will compare in stiffness and fatigue life with implants made from stainless steel. Twenty-four implants (two alloys, two designs, six implants per group) were mounted in machined polyethylene wafers and repetitively loaded (up to 1 million cycles) from 80 N to 800 N using a 5-Hertz sinusoidal waveform. Load and displacement data were automatically and periodically sampled throughout the entire test. Implant stiffness increased with cycle load number, reached a steady state, then declined just before fatigue failure. Stiffness varied less in titanium transpedicular spine implants than in their stainless counterparts. All stainless steel implant types were stiffer (steady-state value, P titanium alloy counterparts. One titanium implant design failed with fewer (P stainless steel counterpart, whereas a stainless steel implant of another design failed with fewer (P titanium counterpart. Overall, fatigue life, i.e., the total number of load cycles until failure, was related to implant type (P implant material. A transpedicular spine implant's fatigue lifetime depends on both the design and the material and cannot be judged on material alone. Stainless steel implants are stiffer than titanium alloy implants of equal design and size; however, for those designs in which the fatigue life of the titanium alloy version is superior, enlargement of the implant's components can compensate for titanium's lower modulus of elasticity and result in an implant equally stiff

  1. Antimicrobial and Osseointegration Properties of Nanostructured Titanium Orthopaedic Implants

    OpenAIRE

    Jäger, Marcus; Jennissen, Herbert P.; Dittrich, Florian; Fischer, Alfons; Köhling, Hedda Luise

    2017-01-01

    The surface design of titanium implants influences not only the local biological reactions but also affects at least the clinical result in orthopaedic application. During the last decades, strong efforts have been made to improve osteointegration and prevent bacterial adhesion to these surfaces. Following the rule of “smaller, faster, cheaper”, nanotechnology has encountered clinical application. It is evident that the hierarchical implant surface micro- and nanotopography orchestrate the bi...

  2. Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Veronesi, Francesca [Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Via Di Barbiano 1/10, Bologna 40136 (Italy); Giavaresi, Gianluca; Fini, Milena [Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Via Di Barbiano 1/10, Bologna 40136 (Italy); Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Department Rizzoli RIT, Via Di Barbiano 1/10, Bologna 40136 (Italy); Longo, Giovanni [CNR Istituto di Struttura della Materia, CNR, Via del Fosso del Cavaliere 100, 00133 Roma (Italy); Ioannidu, Caterina Alexandra; Scotto d' Abusco, Anna [Dept. of Biochemical Sciences, Sapienza University of Roma, Ple A. Moro 5, 00185 Roma (Italy); Superti, Fabiana; Panzini, Gianluca [Dept. of Technologies and Health, Istituto Superiore di Sanità, Viale Regina Elena, 299 Roma (Italy); Misiano, Carlo [Romana Film Sottili, Anzio, Roma (Italy); Palattella, Alberto [Dept. of Clinical Sciences and Translational Medicine, Tor Vergata University, Via Montpellier 1, 00133 Roma (Italy); Selleri, Paolo; Di Girolamo, Nicola [Exotic Animals Clinic, Via S. Giovannini 53, 00137 Roma (Italy); Garbarino, Viola [Dept. of Radiology, S.M. Goretti Hospital, Via G. Reni 2, 04100 Latina (Italy); Politi, Laura [Dept. of Biochemical Sciences, Sapienza University of Roma, Ple A. Moro 5, 00185 Roma (Italy); Scandurra, Roberto, E-mail: roberto.scandurra@uniroma1.it [Dept. of Biochemical Sciences, Sapienza University of Roma, Ple A. Moro 5, 00185 Roma (Italy)

    2017-01-01

    Titanium implants coated with a 500 nm nanostructured layer, deposited by the Ion Plating Plasma Assisted (IPPA) technology, composed of 60% graphitic carbon, 25% titanium oxides and 15% titanium carbide were implanted into rabbit femurs whilst into the controlateral femurs uncoated titanium implants were inserted as control. At four time points the animals were injected with calcein green, xylenol orange, oxytetracycline and alizarin. After 2, 4 and 8 weeks femurs were removed and processed for histology and static and dynamic histomorphometry for undecalcified bone processing into methylmethacrylate, sectioned, thinned, polished and stained with Toluidine blue and Fast green. The overall bone-implant contacts rate (percentage of bone-implant contacts/weeks) of the TiC coated implant was 1.6 fold than that of the uncoated titanium implant. The histomorphometric analyses confirmed the histological evaluations. More precisely, higher Mineral Apposition Rate (MAR, μm/day) (p < 0.005) and Bone Formation Rate (BFR, μm{sup 2}/μm/day) (p < 0.0005) as well as Bone Implant Contact (Bic) and Bone Ingrowth values (p < 0.0005) were observed for the TiC coated implants compared to uncoated implants. In conclusion the hard nanostructured TiC layer protects the bulk titanium implant against the harsh conditions of biological tissues and in the same time, stimulating adhesion, proliferation and activity of osteoblasts, induces a better bone-implant contacts of the implant compared to the uncoated titanium implant. - Highlights: • Ti implants were coated with a nanostructured film composed of C{sub gr}, TiC and TiO{sub x}. • The TiC layer stimulates adhesion, proliferation and activity of osteoblasts. • Uncoated and TiC coated titanium implants were implanted in rabbit femurs. • Bone-implant contacts of TiC coated implants were higher than that of uncoated. • Mineral Apposition Rate of TiC coated implants were higher than that of uncoated.

  3. Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon

    International Nuclear Information System (INIS)

    Veronesi, Francesca; Giavaresi, Gianluca; Fini, Milena; Longo, Giovanni; Ioannidu, Caterina Alexandra; Scotto d'Abusco, Anna; Superti, Fabiana; Panzini, Gianluca; Misiano, Carlo; Palattella, Alberto; Selleri, Paolo; Di Girolamo, Nicola; Garbarino, Viola; Politi, Laura; Scandurra, Roberto

    2017-01-01

    Titanium implants coated with a 500 nm nanostructured layer, deposited by the Ion Plating Plasma Assisted (IPPA) technology, composed of 60% graphitic carbon, 25% titanium oxides and 15% titanium carbide were implanted into rabbit femurs whilst into the controlateral femurs uncoated titanium implants were inserted as control. At four time points the animals were injected with calcein green, xylenol orange, oxytetracycline and alizarin. After 2, 4 and 8 weeks femurs were removed and processed for histology and static and dynamic histomorphometry for undecalcified bone processing into methylmethacrylate, sectioned, thinned, polished and stained with Toluidine blue and Fast green. The overall bone-implant contacts rate (percentage of bone-implant contacts/weeks) of the TiC coated implant was 1.6 fold than that of the uncoated titanium implant. The histomorphometric analyses confirmed the histological evaluations. More precisely, higher Mineral Apposition Rate (MAR, μm/day) (p < 0.005) and Bone Formation Rate (BFR, μm 2 /μm/day) (p < 0.0005) as well as Bone Implant Contact (Bic) and Bone Ingrowth values (p < 0.0005) were observed for the TiC coated implants compared to uncoated implants. In conclusion the hard nanostructured TiC layer protects the bulk titanium implant against the harsh conditions of biological tissues and in the same time, stimulating adhesion, proliferation and activity of osteoblasts, induces a better bone-implant contacts of the implant compared to the uncoated titanium implant. - Highlights: • Ti implants were coated with a nanostructured film composed of C gr , TiC and TiO x . • The TiC layer stimulates adhesion, proliferation and activity of osteoblasts. • Uncoated and TiC coated titanium implants were implanted in rabbit femurs. • Bone-implant contacts of TiC coated implants were higher than that of uncoated. • Mineral Apposition Rate of TiC coated implants were higher than that of uncoated.

  4. Surface characterization of titanium based dental implants; Caracterizacao de implantes odontologicos a base de titanio

    Energy Technology Data Exchange (ETDEWEB)

    Castilho, Guilherme Augusto Alcaraz

    2006-07-01

    Dental implantology uses metallic devices made of commercially pure titanium in order to replace lost teeth. Titanium presents favorable characteristics as bio material and modern implants are capable of integrate, witch is the union between bone and implant without fibrous tissue development. Three of the major Brazilian implant manufacturers were chosen to join the study. A foreign manufacturer participated as standard. The manufacturers had three specimens of each implant with two different surface finishing, as machined and porous, submitted to analysis. Surface chemical composition and implant morphology were analyzed by X-ray photoelectron spectroscopy (XP S), scanning electron microscopy (SEM) and microprobe. Implant surface is mainly composed of titanium, oxygen and carbon. Few contaminants commonly present on implant surface were found on samples. Superficial oxide layer is basically composed of titanium dioxide (TiO{sub 2}), another oxides as Ti O and Ti{sub 2}O{sub 3} were also found in small amount. Carbon on implant surface was attributed to manufacturing process. Nitrogen, Phosphorous and Silicon appeared in smaller concentration on surface. There was no surface discrepancy among foreign and Brazilian made implants. SEM images were made on different magnification, 35 X to 3500 X, and showed similarity among as machined implants. Porous surface finishing implants presented distinct morphology. This result was attributed to differences on manufacturing process. Implant bioactivity was accessed through immersion on simulated body solution (SBF) in order to verify formation of an hydroxyapatite (HA) layer on surface. Samples were divided on three groups according to immersion time: G1 (7 days), G2 (14 days), G3 (21 days), and deep in SBF solution at 37 deg C. After being removed from solution, XPS analyses were made and then implants have been submitted to microprobe analysis. XPS showed some components of SBF solution on sample surface but microprobe

  5. Adhesion of osteoblasts to a nanorough titanium implant surface

    Directory of Open Access Journals (Sweden)

    Gongadze E

    2011-08-01

    Full Text Available Ekaterina Gongadze1, Doron Kabaso2, Sebastian Bauer3, Tomaž Slivnik2, Patrik Schmuki3, Ursula van Rienen1, Aleš Iglič21Institute of General Electrical Engineering, University of Rostock, Rostock, Germany; 2Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia; 3Department of Materials Science, Friedrich-Alexander University of Erlangen-Nurenberg, Erlangen, GermanyAbstract: This work considers the adhesion of cells to a nanorough titanium implant surface with sharp edges. The basic assumption was that the attraction between the negatively charged titanium surface and a negatively charged osteoblast is mediated by charged proteins with a distinctive quadrupolar internal charge distribution. Similarly, cation-mediated attraction between fibronectin molecules and the titanium surface is expected to be more efficient for a high surface charge density, resulting in facilitated integrin mediated osteoblast adhesion. We suggest that osteoblasts are most strongly bound along the sharp convex edges or spikes of nanorough titanium surfaces where the magnitude of the negative surface charge density is the highest. It is therefore plausible that nanorough regions of titanium surfaces with sharp edges and spikes promote the adhesion of osteoblasts.Keywords: osteoblasts, nanostructures, adhesion, titanium implants, osteointegration

  6. Microhardness of boron, titanium, and nitrogen implanted steel

    International Nuclear Information System (INIS)

    Sowa, M.; Szyszko, W.; Sielanko, J.; Glusiec, L.

    1989-01-01

    Mechanically polished steel (1H18N9T) and (15GTM) samples are implanted with boron, titanium, and nitrogen ions, with dose ranging from 10 16 to 10 17 ions/cm 2 . The implantation energy varied from 100 to 250 keV. Implanted samples are heat-treated at 400 to 800 0 C in vacuum. The microhardness of implanted samples is measured by using a Hanneman tester with loads ranging from 2 to 40 g. The influence of annealing temperature on microhardness of the implanted layers is determined. The diffusion of boron from the implanted layers is also investigated by using the secondary ion mass spectrometer. The diffusion coefficients of boron in steel are determined. (author)

  7. Microstructure and mechanical properties of porous titanium structures fabricated by electron beam melting for cranial implants.

    Science.gov (United States)

    Moiduddin, Khaja

    2018-02-01

    The traditional methods of metallic bone implants are often dense and suffer from adverse reactions, biomechanical mismatch and lack of adequate space for new bone tissue to grow into the implant. The objective of this study is to evaluate the customized porous cranial implant with mechanical properties closer to that of bone and to improve the aesthetic outcome in cranial surgery with precision fitting for a better quality of life. Two custom cranial implants (bulk and porous) are digitally designed based on the Digital Imaging and Communications in Medicine files and fabricated using additive manufacturing. Initially, the defective skull model and the implant were fabricated using fused deposition modeling for the purpose of dimensional validation. Subsequently, the implant was fabricated using titanium alloy (Ti6Al4V extra low interstitial) by electron beam melting technology. The electron beam melting-produced body diagonal node structure incorporated in cranial implant was evaluated based on its mechanical strength and structural characterization. The results show that the electron beam melting-produced porous cranial implants provide the necessary framework for the bone cells to grow into the pores and mimic the architecture and mechanical properties closer to the region of implantation. Scanning electron microscope and micro-computed tomography scanning confirm that the produced porous implants have a highly regular pattern of porous structure with a fully interconnected network channel without any internal defect and voids. The physical properties of the titanium porous structure, containing the compressive strength of 61.5 MPa and modulus of elasticity being 1.20 GPa, represent a promising means of reducing stiffness and stress-shielding effect on the surrounding bone. This study reveals that the use of porous structure in cranial reconstruction satisfies the need of lighter implants with an adequate mechanical strength and structural characteristics

  8. Comparison of titanium mesh implants with PLA-hydroxyapatite coatings for maxillofacial cancer reconstruction

    Science.gov (United States)

    Tverdokhlebov, S. I.; Choinzonov, E. L.; Kolokolova, O. V.; Cherdyntseva, N. V.

    2016-08-01

    Since 2013 physics of TPU and oncologists from the TCRI with participation of the "ConMet" company (Moscow) and the "Sintel" company (Tomsk Special Economic Zone resident) have been working on the theme entitled "Development of the composite implants for reconstructive surgery of a craniofacial areas of the traumatological and oncological patients" supported with the Federal Program "R&D, part 1.3". The goal was to develop the maxillo-facial implants on the basis of the transformable titanium mesh with PLA & hydroxyapatite coating. According to the Contract No. 14.578.21.0031, the team of developers had to start supplying these advanced implants to the industrial partners up to 2017. This research was supported with the preliminary market researches by the ISPMS SB RAS and the TP "MF". The stages of preliminary market researches were: 1) research of the Worldwide CMF market; 2) forecasting the BRIC CMF market up to 2020; 3) the total Russian market (epidemiology) estimation as a sum of official calculations and statistics; 4) looking for the best foreign analogue prices, comparing their and our implant properties; 5) search for the best Russian analogues; 6) the investigation of the world patent database Espacenet for the last years, and finding the owners and applicants of patents of CMF osteosynthesis plates on the basis of titanium coated with PLA & hydroxyapatite; 7) comparison of the domestic implants, and making conclusions. Several variants of the meshes have got the equal quality with the best foreign and Russian implants. The closest analogues were titanium, polyethylene, PEEK composite meshes suited to the patient shape by the Synthes company in 2014, and the only hybrid titanium "Grey" implant with layers of gelatin, dextran, collagen, HAP & BMP-2 was found. This implant was produced by Russian institution, and it was mentioned in the report on clinical trials by L.A. Pavlova et al., 2014 [1]. There are no manufacturers of the coated implants in Russia

  9. Assessment of modified gold surfaced titanium implants on skeletal fixation

    DEFF Research Database (Denmark)

    Zainali, Kasra; Danscher, Gorm; Jakobsen, Thomas

    2013-01-01

    shown to liberate gold ions through the process termed dissolucytosis. Furthermore, gold ions are known to act in an anti-inflammatory manner by inhibiting cellular NF-κB-DNA binding. The present study investigated whether partial coating of titanium implants could augment early osseointegration...... and increase mechanical fixation. Cylindrical porous coated Ti-6Al4V implants partially coated with metallic gold were inserted in the proximal region of the humerus in ten canines and control implants without gold were inserted in contralateral humerus. Observation time was 4 weeks. Biomechanical push out...

  10. Dynamic sterilization of titanium implants with ultraviolet light

    International Nuclear Information System (INIS)

    Singh, S.; Schaaf, N.G.

    1989-01-01

    All implantable devices must be sterile. However, autoclaves produce poor surface properties that jeopardize the integration process. The application of a modified ultraviolet light source has proven to enhance bioreactivity by controlling surface properties, but it lacks validation of its sterilization capabilities. Forty-eight titanium implants were contaminated with spores of the biological indicator Bacillus stearothermophilus and subjected to dynamic sterilization by ultraviolet light. Forty-seven of the implants were successfully sterilized, as indicated by not producing turbidity in a suitable growth medium. This sterilization technique only requires a 20-second exposure to achieve sterility

  11. Ion implantation induced nanotopography on titanium and bone cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Braceras, Iñigo, E-mail: inigo.braceras@tecnalia.com [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Vera, Carolina; Ayerdi-Izquierdo, Ana [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Muñoz, Roberto [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); Lorenzo, Jaione; Alvarez, Noelia [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Maeztu, Miguel Ángel de [Private Practice, P° San Francisco, 43 A-1°, 20400 Tolosa (Spain)

    2014-08-15

    Graphical abstract: Titanium surfaces modified by inert ion implantation affect cell adhesion through modification of the nanotopography in the same dimensional range of that of human bone inorganic phases. - Highlights: • Inert ion implantation on Ti modifies surface nanotopography and bone cell adhesion. • Ion implantation can produce nanostructured surfaces on titanium in the very same range as of those of the mineral phase of the human bone. • Appropriate tool for studying the relevance of nanostructured surfaces on bone mineralization and implant osseointegration. • Ion implantation induced nanotopography have a statistically significant influence on bone cell adhesion. - Abstract: Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40–80 keV), fluence (1–2 e17 ion/cm{sup 2}) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted

  12. Ion implantation induced nanotopography on titanium and bone cell adhesion

    International Nuclear Information System (INIS)

    Braceras, Iñigo; Vera, Carolina; Ayerdi-Izquierdo, Ana; Muñoz, Roberto; Lorenzo, Jaione; Alvarez, Noelia; Maeztu, Miguel Ángel de

    2014-01-01

    Graphical abstract: Titanium surfaces modified by inert ion implantation affect cell adhesion through modification of the nanotopography in the same dimensional range of that of human bone inorganic phases. - Highlights: • Inert ion implantation on Ti modifies surface nanotopography and bone cell adhesion. • Ion implantation can produce nanostructured surfaces on titanium in the very same range as of those of the mineral phase of the human bone. • Appropriate tool for studying the relevance of nanostructured surfaces on bone mineralization and implant osseointegration. • Ion implantation induced nanotopography have a statistically significant influence on bone cell adhesion. - Abstract: Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40–80 keV), fluence (1–2 e17 ion/cm 2 ) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted

  13. Nanotubular topography enhances the bioactivity of titanium implants.

    Science.gov (United States)

    Huang, Jingyan; Zhang, Xinchun; Yan, Wangxiang; Chen, Zhipei; Shuai, Xintao; Wang, Anxun; Wang, Yan

    2017-08-01

    Surface modification on titanium implants plays an important role in promoting mesenchymal stem cell (MSC) response to enhance osseointegration persistently. In this study, nano-scale TiO 2 nanotube topography (TNT), micro-scale sand blasted-acid etched topography (SLA), and hybrid sand blasted-acid etched/nanotube topography (SLA/TNT) were fabricated on the surfaces of titanium implants. Although the initial cell adherence at 60 min among TNT, SLA and TNT/SLA was not different, SLA and SLA/TNT presented to be rougher and suppressed the proliferation of MSC. TNT showed hydrophilic surface and balanced promotion of cellular functions. After being implanted in rabbit femur models, TNT displayed the best osteogenesis inducing ability as well as strong bonding strength to the substrate. These results indicate that nano-scale TNT provides favorable surface topography for improving the clinical performance of endosseous implants compared with micro and hybrid micro/nano surfaces, suggesting a promising and reliable surface modification strategy of titanium implants for clinical application. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Porous Structure Characterization in Titanium Coating for Surgical Implants

    Directory of Open Access Journals (Sweden)

    M.V. Oliveira

    2002-09-01

    Full Text Available Powder metallurgy techniques have been used to produce controlled porous structures, such as the porous coatings applied for dental and orthopedic surgical implants, which allow bony tissue ingrowth within the implant surface improving fixation. This work presents the processing and characterization of titanium porous coatings of different porosity levels, processed through powder metallurgy techniques. Pure titanium sponge powders were used for coating and Ti-6Al7Nb powder metallurgy rods were used as substrates. Characterization was made through quantitative metallographic image analysis using optical light microscope for coating porosity data and SEM analysis for evaluation of the coating/substrate interface integrity. The results allowed optimization of the processing parameters in order to obtain porous coatings that meet the requirements for use as implants.

  15. Chimeric Peptides as Implant Functionalization Agents for Titanium Alloy Implants with Antimicrobial Properties

    Science.gov (United States)

    Yucesoy, Deniz T.; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M.; Snead, Malcolm L.; Tamerler, Candan

    2015-04-01

    Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMPs), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host and bacterial cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with AMPs can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, Streptococcus mutans, Staphylococcus epidermidis, and Escherichia coli. In biological interactions such as occur on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore

  16. Bone compaction enhances fixation of weightbearing titanium implants

    DEFF Research Database (Denmark)

    Kold, Søren; Rahbek, Ole; Vestermark, Marianne

    2005-01-01

    are weightbearing, the effects of compaction on weightbearing implants were examined. The hypothesis was that compaction would increase implant fixation compared with conventional drilling. Porous-coated titanium implants were inserted bilaterally into the weightbearing portion of the femoral condyles of dogs....... In each dog, one knee had the implant cavity prepared with drilling, and the other knee was prepared with compaction. Eight dogs were euthanized after 2 weeks, and eight dogs were euthanized after 4 weeks. Femoral condyles from an additional eight dogs represented Time 0. Compacted specimens had higher...... bone-implant contact and periimplant bone density at 0 and 2 weeks, but not at 4 weeks. A biphasic response of compaction was found with a pushout test, as compaction increased ultimate shear strength and energy absorption at 0 and 4 weeks, but not at 2 weeks. This biphasic response indicates...

  17. Titanium and aluminium ions implanted by plasma on polyethylene

    International Nuclear Information System (INIS)

    Cruz, G.J.; Olayo, M.G.; Lopez, R.; Granda, E.; Munoz, A.; Valencia, R.; Morales, J.

    2007-01-01

    The ion implantation by plasma of titanium and aluminum on polyethylene thin films (PE) is presented. The results indicate that the polymers reacted firstly with the oxygen and/or nitrogen carrying gases, and later its received the metallic particles that formed thin films. The stainless steel and the titanium formed a single phase. The metallic layers grew in the interval of 1 to 2 nm/min, its are thin, but enough to change the hardness of the polymer that it is increased in more of 20 times. (Author)

  18. Biofunctionalization of titanium for dental implant

    Directory of Open Access Journals (Sweden)

    Takao Hanawa

    2010-08-01

    Full Text Available Surface modification is an important and predominant technique for obtaining biofunction in metals for biomedical use including dentistry. One surface modification technique is a process that changes the surface composition, structure, and morphology of a material, leaving the bulk mechanical properties intact. A tremendous number of surface modification techniques to improve the hard tissue compatibility of titanium have been developed. Hydroxyapatite layer, titanium oxide layer, and calcium titanate layer with various morphologies are deposited using electrochemical treatment including micro-arc oxidation. Also, surface modification layers without hydroxyapatite and calcium phosphate are chemically formed that accelerate bone formation. Other approach is the immobilization of biofunctional molecules such as poly(ethylene glycol to the metal surface to control the adsorption of proteins and adhesion of cells, platelets, and bacteria. In the case of immobilization of biomolecules such as collagen and peptide, bone formation and soft tissue adhesion are improved.

  19. Corrosion resistance of titanium ion implanted AZ91 magnesium alloy

    International Nuclear Information System (INIS)

    Liu Chenglong; Xin Yunchang; Tian Xiubo; Zhao, J.; Chu, Paul K.

    2007-01-01

    Degradable metal alloys constitute a new class of materials for load-bearing biomedical implants. Owing to their good mechanical properties and biocompatibility, magnesium alloys are promising in degradable prosthetic implants. The objective of this study is to improve the corrosion behavior of surgical AZ91 magnesium alloy by titanium ion implantation. The surface characteristics of the ion implanted layer in the magnesium alloys are examined. The authors' results disclose that an intermixed layer is produced and the surface oxidized films are mainly composed of titanium oxide with a lesser amount of magnesium oxide. X-ray photoelectron spectroscopy reveals that the oxide has three layers. The outer layer which is 10 nm thick is mainly composed of MgO and TiO 2 with some Mg(OH) 2 . The middle layer that is 50 nm thick comprises predominantly TiO 2 and MgO with minor contributions from MgAl 2 O 4 and TiO. The third layer from the surface is rich in metallic Mg, Ti, Al, and Ti 3 Al. The effects of Ti ion implantation on the corrosion resistance and electrochemical behavior of the magnesium alloys are investigated in simulated body fluids at 37±1 deg. C using electrochemical impedance spectroscopy and open circuit potential techniques. Compared to the unimplanted AZ91 alloy, titanium ion implantation significantly shifts the open circuit potential (OCP) to a more positive potential and improves the corrosion resistance at OCP. This phenomenon can be ascribed to the more compact surface oxide film, enhanced reoxidation on the implanted surface, as well as the increased β-Mg 12 Al 17 phase

  20. Titanium

    Science.gov (United States)

    Woodruff, Laurel G.; Bedinger, George M.; Piatak, Nadine M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Titanium is a mineral commodity that is essential to the smooth functioning of modern industrial economies. Most of the titanium produced is refined into titanium dioxide, which has a high refractive index and is thus able to impart a durable white color to paint, paper, plastic, rubber, and wallboard. Because of their high strength-to-weight ratio and corrosion resistance, titanium metal and titanium metal alloys are used in the aerospace industry as well as for welding rod coatings, biological implants, and consumer goods.Ilmenite and rutile are currently the principal titanium-bearing ore minerals, although other minerals, including anatase, perovskite, and titanomagnetite, could have economic importance in the future. Ilmenite is currently being mined from two large magmatic deposits hosted in rocks of Proterozoic-age anorthosite plutonic suites. Most rutile and nearly one-half of the ilmenite produced are from heavy-mineral alluvial, fluvial, and eolian deposits. Titanium-bearing minerals occur in diverse geologic settings, but many of the known deposits are currently subeconomic for titanium because of complications related to the mineralogy or because of the presence of trace contaminants that can compromise the pigment production process.Global production of titanium minerals is currently dominated by Australia, Canada, Norway, and South Africa; additional amounts are produced in Brazil, India, Madagascar, Mozambique, Sierra Leone, and Sri Lanka. The United States accounts for about 4 percent of the total world production of titanium minerals and is heavily dependent on imports of titanium mineral concentrates to meet its domestic needs.Titanium occurs only in silicate or oxide minerals and never in sulfide minerals. Environmental considerations for titanium mining are related to waste rock disposal and the impact of trace constituents on water quality. Because titanium is generally inert in the environment, human health risks from titanium and titanium

  1. Crystallization of modified hydroxyapatite on titanium implants

    International Nuclear Information System (INIS)

    Golovanova, O A; Izmailov, R R; Zaits, A V; Ghyngazov, S A

    2016-01-01

    Carbonated-hydroxyapatite (CHA) and Si-hydroxyapatite (Si-HA) precipitation have been synthesized from the model bioliquid solutions (synovial fluid and SBF). It is found that all the samples synthesized from the model solutions are single-phase and represent hydroxyapatite. The crystallization of the modified hydroxyapatite on alloys of different composition, roughness and subjected to different treatment techniques was investigated. Irradiation of the titanium substrates with the deposited biomimetic coating can facilitate further growth of the crystal and regeneration of the surface. (paper)

  2. Carbon dioxide ion implantation in Titanium Nitride (Ti N)

    International Nuclear Information System (INIS)

    Torabi, Sh.; Sari, A. H.; Hojabri, A.; Ghoranneviss, M.

    2007-01-01

    Nitrogen ion implantation on titanium samples performed at 3x10 18 , 8x10 17 , 3x10 18 doses. In addition CO 2 ions were also implanted at doses in the range of 1x10 17 ,4 x10 17 ,8x10 17 . Atomic Force Microscopy, used to investigate the topographical changes of implanted samples. The structure of samples and phase composition were characterized using x-ray diffraction. The results show that by increasing of nitrogen ions, the roughness, grain sizes and hardness will increase. But by further increasing of dose, hardness will be decreased. The CO 2 implantation also enhance the roughness, grain size and hardness which could be caused by phase composition.

  3. Highly antibacterial UHMWPE surfaces by implantation of titanium ions

    Energy Technology Data Exchange (ETDEWEB)

    Delle Side, D., E-mail: domenico.delleside@le.infn.it [LEAS, Dipartimento di Matematica e Fisica “Ennio de Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare – Sezione di Lecce, Lecce (Italy); Nassisi, V.; Giuffreda, E.; Velardi, L. [LEAS, Dipartimento di Matematica e Fisica “Ennio de Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare – Sezione di Lecce, Lecce (Italy); Alifano, P.; Talà, A.; Tredici, S.M. [Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce (Italy)

    2014-07-15

    The spreading of pathogens represents a serious threat for human beings. Consequently, efficient antimicrobial surfaces are needed in order to reduce risks of contracting severe diseases. In this work we present the first evidences of a new technique to obtain a highly antibacterial Ultra High Molecular Weight Polyethylene (UHMWPE) based on a non-stoichiometric titanium oxide coating, visible-light responsive, obtained through ion implantation.

  4. Highly antibacterial UHMWPE surfaces by implantation of titanium ions

    Science.gov (United States)

    Delle Side, D.; Nassisi, V.; Giuffreda, E.; Velardi, L.; Alifano, P.; Talà, A.; Tredici, S. M.

    2014-07-01

    The spreading of pathogens represents a serious threat for human beings. Consequently, efficient antimicrobial surfaces are needed in order to reduce risks of contracting severe diseases. In this work we present the first evidences of a new technique to obtain a highly antibacterial Ultra High Molecular Weight Polyethylene (UHMWPE) based on a non-stoichiometric titanium oxide coating, visible-light responsive, obtained through ion implantation.

  5. Silicon-Doped Titanium Dioxide Nanotubes Promoted Bone Formation on Titanium Implants.

    Science.gov (United States)

    Zhao, Xijiang; Wang, Tao; Qian, Shi; Liu, Xuanyong; Sun, Junying; Li, Bin

    2016-02-26

    While titanium (Ti) implants have been extensively used in orthopaedic and dental applications, the intrinsic bioinertness of untreated Ti surface usually results in insufficient osseointegration irrespective of the excellent biocompatibility and mechanical properties of it. In this study, we prepared surface modified Ti substrates in which silicon (Si) was doped into the titanium dioxide (TiO₂) nanotubes on Ti surface using plasma immersion ion implantation (PIII) technology. Compared to TiO₂ nanotubes and Ti alone, Si-doped TiO₂ nanotubes significantly enhanced the expression of genes related to osteogenic differentiation, including Col-I, ALP, Runx2, OCN, and OPN, in mouse pre-osteoblastic MC3T3-E1 cells and deposition of mineral matrix. In vivo, the pull-out mechanical tests after two weeks of implantation in rat femur showed that Si-doped TiO₂ nanotubes improved implant fixation strength by 18% and 54% compared to TiO₂-NT and Ti implants, respectively. Together, findings from this study indicate that Si-doped TiO₂ nanotubes promoted the osteogenic differentiation of osteoblastic cells and improved bone-Ti integration. Therefore, they may have considerable potential for the bioactive surface modification of Ti implants.

  6. Does surface anodisation of titanium implants change osseointegration and make their extraction from bone any easier?

    OpenAIRE

    Langhoff, J; Mayer, J; Faber, L; Kästner, S B; Guibert, G; Zlinszky, K; Auer, J A; von Rechenberg, B

    2008-01-01

    Objectives: Titanium implants have a tendency for high bone-implant bonding, and, in comparison to stainless steel implants are more difficult to remove. The current study was carried out to evaluate, i) the release strength of three selected anodized titanium surfaces with increased nanohardness and low roughness, and ii) bone-implant bonding in vivo. These modified surfaces were intended to give improved anchorage while facilitating easier removal of temporary implants. Material and methods...

  7. Striated muscle microvascular response to silver implants: A comparative in vivo study with titanium and stainless steel.

    Science.gov (United States)

    Kraft, C N; Hansis, M; Arens, S; Menger, M D; Vollmar, B

    2000-02-01

    Local microvascular perfusion is the primary line of defense of tissue against microorganisms and plays a considerable role in reparative processes. The impairment of the microcirculation by a biomaterial may therefore have profound consequences. Silver is known to have excellent antimicrobial activity and, although regional and systemic toxic effects have been described, silver is regularly discussed as an implant material in bone surgery. Because little is known about the influence of silver implants on the adjacent host tissue microvasculature, we studied in vivo nutritive perfusion and leukocytic response, and compared these results with those of the conventionally used materials titanium and stainless steel. Using the hamster dorsal skinfold chamber preparation and intravital microscopy, the implantation of a commercially pure silver sample led to a distinct and persistent activation of leukocytes combined with a marked disruption of the microvascular endothelial integrity, massive leukocyte extravasation, and considerable venular dilation. Whereas animals with stainless-steel implants showed a moderate increase in these parameters with a tendency to recuperate, titanium implants caused only a transient increase of leukocyte-endothelial cell interaction within the first 120 min and no significant change in macromolecular leakage, leukocyte extravasation and venular diameter. After 3 days, five of six preparations with silver samples showed severe inflammation and massive edema. Thus, the use of silver as an implant material should be critically judged despite its bactericidal properties. The implant material titanium seems to be well tolerated by the local vascular system and currently represents the golden standard. Copyright 2000 John Wiley & Sons, Inc.

  8. The osteoinductive effect of chitosan-collagen composites around pure titanium implant surfaces in rats.

    Science.gov (United States)

    Kung, S; Devlin, H; Fu, E; Ho, K-Y; Liang, S-Y; Hsieh, Y-D

    2011-02-01

    The enhancing effects of chitosan on activation of platelets and differentiation of osteoprogenitor cells have been demonstrated in vitro. The purpose of this study was to evaluate the in vivo osteoinductive effect of chitosan-collagen composites around pure titanium implant surfaces. Chitosan-collagen composites containing chitosan of different molecular weights (450 and 750 kDa) were wrapped onto titanium implants and embedded into the subcutaneous area on the back of 15 Sprague-Dawley rats. The control consisted of implants wrapped with plain collagen type I membranes. Implants and surrounding tissues were retrieved 6 wks after surgery and identified by Alizarin red and Alcian blue whole mount staining. The newly formed structures in the test groups were further analyzed by Toluidine blue and Masson-Goldner trichrome staining, and immunohistochemical staining with osteopontin and alkaline phosphotase. The bone formation parameters of the new bone in the two test groups were measured and compared. New bone formed ectopically in both chitosan-collagen groups, whereas no bone induction occurred in the negative control group. These newly formed bone-like structures were further confirmed by immunohistochemical staining. Comparison of bone parameters of the newly induced bone revealed no statistically significant differences between the 450 and 750 kDa chitosan-collagen groups. Our results demonstrated that chitosan-collagen composites might induce in vivo new bone formation around pure titanium implant surfaces. Different molecular weights of chitosan did not show significantly different effects on the osteoinductive potential of the test materials. © 2010 John Wiley & Sons A/S.

  9. The osteoplastic effectiveness of the implants made of mesh titanium nickelide constructs

    Directory of Open Access Journals (Sweden)

    Iurii Mikhailovich Irianov

    2014-05-01

    Full Text Available The purpose of the work was to study the features of reparative osteogenesis for filling the defect of tubular bone under implantation of meshtitanium nickelide constructs. Tibial fenestrated defect was modeled experimentally in 30 Wistar pubertal rats, followed by implant intramedullary insertion. The techniques of radiography, scanning electron microscopy and X-ray electron probe microanalysis were used. The mesh implant of titanium nickelide has been established to possess biocompatibility, osteoconductive and osteoinductive properties, the zone of osteogenesis and angiogenesis is created around it, bone cover is formed. Osteointegration of the implant occurs early, by 7 days after surgery, and by 30 days after surgery organotypical re-modelling of the regenerated bone takes place, as well as the defect is filled with lamellar bone tissue by the type of bone wound primary adhesion. By 30 days after surgery mineral content of the regenerated bone tissue approximates to the composition of intact cortex mineral phase.

  10. Biocompatibility of Advanced Manufactured Titanium Implants-A Review.

    Science.gov (United States)

    Sidambe, Alfred T

    2014-12-19

    Titanium (Ti) and its alloys may be processed via advanced powder manufacturing routes such as additive layer manufacturing (or 3D printing) or metal injection moulding. This field is receiving increased attention from various manufacturing sectors including the medical devices sector. It is possible that advanced manufacturing techniques could replace the machining or casting of metal alloys in the manufacture of devices because of associated advantages that include design flexibility, reduced processing costs, reduced waste, and the opportunity to more easily manufacture complex or custom-shaped implants. The emerging advanced manufacturing approaches of metal injection moulding and additive layer manufacturing are receiving particular attention from the implant fabrication industry because they could overcome some of the difficulties associated with traditional implant fabrication techniques such as titanium casting. Using advanced manufacturing, it is also possible to produce more complex porous structures with improved mechanical performance, potentially matching the modulus of elasticity of local bone. While the economic and engineering potential of advanced manufacturing for the manufacture of musculo-skeletal implants is therefore clear, the impact on the biocompatibility of the materials has been less investigated. In this review, the capabilities of advanced powder manufacturing routes in producing components that are suitable for biomedical implant applications are assessed with emphasis placed on surface finishes and porous structures. Given that biocompatibility and host bone response are critical determinants of clinical performance, published studies of in vitro and in vivo research have been considered carefully. The review concludes with a future outlook on advanced Ti production for biomedical implants using powder metallurgy.

  11. Electrochemical behavior of titanium implanted with platinum

    International Nuclear Information System (INIS)

    Thompson, N.G.; Lichter, B.D.; Appleton, B.R.; Kelly, E.J.; White, C.W.

    1979-01-01

    The following conclusions apply to Ti(Pt) near-surface alloys studied. (1) Open-circuit corrosion measurements show that accumulation of platinum may occur at a surface concentration of 0.32 atomic percent Pt while no accumulation occurs at 0.16 atomic percent Pt. However, these results do not allow a distinction as to cause of accumulation to be made between concentration effects and effects due to the presence of an oxide film. (2) Potentiostatic corrosion at -0.450 V (active corrosion) establish that little or no accumulation of platinum occurs at an oxide-free surface for concentrations less than 0.086 atomic percent Pt; whereas, a large amount of accumulation occurs for a distribution with a peak concentration of 0.83 atomic percent Pt. (3) An initial distribution having a peak concentration of 0.32 atomic percent platinum is sufficient to induce natural passivity in titanium and bring a freely corroding sample to a potential of 0.269 V. This is nearly the applicable reversible potential (-0.260 V) for the hydrogen reaction in 1N H 2 SO 4 . (4) Of three samples which showed accumulation, platinum was eventually lost for two of these samples (0.32 atomic percent, open-circuit corrosion; 0.83 atomic percent, potentiostatic corrosion). The remaining sample (9.1 atomic percent, open-circuit corrosion) maintained the maximum possible potential of -0.260 V for the length of the experiment (approx. 30 days). (5) For samples which had been polarized at -0.300 to -0.340 V and which had eventually reverted to the behavior of pure Ti, post corrosion RBS measurements reveal that a substantial fraction of the Pt fluence is retained on the surface in an electrochemically inactive state

  12. Laser bioengineering of glass-titanium implants surface

    Science.gov (United States)

    Lusquiños, F.; Arias-González, F.; Penide, J.; del Val, J.; Comesaña, R.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pascual, M. J.; Durán, A.; Pou, J.

    2013-11-01

    Osseointegration is the mean challenge when surgical treatments fight against load-bearing bone diseases. Absolute bone replacement by a synthetic implant has to be completed not only from the mechanics point of view, but also from a biological approach. Suitable strength, resilience and stress distribution of titanium alloy implants are spoiled by the lack of optimal biological characteristics. The inert quality of extra low interstitial titanium alloy, which make it the most attractive metallic alloy for biomedical applications, oppose to an ideal surface with bone cell affinity, and capable to stimulate bone attachment bone growth. Diverse laser treatments have been proven as effective tools to modify surface properties, such as wettability in contact to physiological fluids, or osteoblast guided and slightly enhanced attachment. The laser surface cladding can go beyond by providing titanium alloy surfaces with osteoconduction and osteoinduction properties. In this research work, the laser radiation is used to produce bioactive glass coatings on Ti6Al4V alloy substrates. Specific silicate bioactive glass compositions has been investigated to achieve suitable surface tension and viscosity temperature behavior during processing, and to provide with the required release of bone growth gene up regulation agents in the course of resorption mediated by physiological fluids. The produced coatings and interfaces, the surface osteoconduction properties, and the chemical species release in simulated physiological fluid were characterized by scanning electron microscopy (SEM), hot stage microscopy (HSM), X-ray diffraction (XRD), X ray fluorescence (XRF), and Fourier transform infrared spectroscopy (FTIR).

  13. Does surface anodisation of titanium implants change osseointegration and make their extraction from bone any easier?

    Science.gov (United States)

    Langhoff, J D; Mayer, J; Faber, L; Kaestner, S B; Guibert, G; Zlinszky, K; Auer, J A; von Rechenberg, B

    2008-01-01

    Titanium implants have a tendency for high bone-implant bonding, and, in comparison to stainless steel implants are more difficult to remove. The current study was carried out to evaluate, i) the release strength of three selected anodized titanium surfaces with increased nanohardness and low roughness, and ii) bone-implant bonding in vivo. These modified surfaces were intended to give improved anchorage while facilitating easier removal of temporary implants. The new surfaces were referenced to a stainless steel implant and a standard titanium implant surface (TiMAX). In a sheep limb model, healing period was 3 months. Bone-implant bonding was evaluated either biomechanically or histologically. The new surface anodized screws demonstrated similar or slightly higher bone-implant-contact (BIC) and torque release forces than the titanium reference. The BIC of the stainless steel implants was significant lower than two of the anodized surfaces (p = 0.04), but differences between stainless steel and all titanium implants in torque release forces were not significant (p = 0.06). The new anodized titanium surfaces showed good bone-implant bonding despite a smooth surface and increased nanohardness. However, they failed to facilitate implant removal at 3 months.

  14. A study of the bone healing kinetics of plateau versus screw root design titanium dental implants.

    LENUS (Irish Health Repository)

    Leonard, Gary

    2009-03-01

    This study was designed to compare the bone healing process around plateau root from (PRF) and screw root from (SRF) titanium dental implants over the immediate 12 week healing period post implant placement.

  15. Understanding long-term silver release from surface modified porous titanium implants.

    Science.gov (United States)

    Shivaram, Anish; Bose, Susmita; Bandyopadhyay, Amit

    2017-08-01

    Prevention of orthopedic device related infection (ODRI) using antibiotics has met with limited amount of success and is still a big concern during post-surgery. As an alternative, use of silver as an antibiotic treatment to prevent surgical infections is being used due to the well-established antimicrobial properties of silver. However, in most cases silver is used in particulate form with wound dressings or with short-term devices such as catheters but not with load-bearing implants. We hypothesize that strongly adherent silver to load-bearing implants can offer longer term solution to infection in vivo. Keeping that in mind, the focus of this study was to understand the long term release study of silver ions for a period of minimum 6months from silver coated surface modified porous titanium implants. Implants were fabricated using a LENS™ system, a powder based additive manufacturing technique, with at least 25% volume porosity, with and without TiO 2 nanotubes in phosphate buffer saline (pH 7.4) to see if the total release of silver ions is within the toxic limit for human cells. Considering the fact that infection sites may reduce the local pH, silver release was also studied in acetate buffer (pH 5.0) for a period of 4weeks. Along with that, the osseointegrative properties as well as cytotoxicity of porous titanium implants were assessed in vivo for a period of 12weeks using a rat distal femur model. In vivo results indicate that porous titanium implants with silver coating show comparable, if not better, biocompatibility and bonding at the bone-implant interface negating any concerns related to toxicity related to silver to normal cells. The current research is based on our recently patented technology, however focused on understanding longer-term silver release to mitigate infection related problems in load-bearing implants that can even arise several months after the surgery. Prevention of orthopedic device related infection using antibiotics has met

  16. Titanium Nitride and Nitrogen Ion Implanted Coated Dental Materials

    Directory of Open Access Journals (Sweden)

    David W. Berzins

    2012-07-01

    Full Text Available Titanium nitride and/or nitrogen ion implanted coated dental materials have been investigated since the mid-1980s and considered in various applications in dentistry such as implants, abutments, orthodontic wires, endodontic files, periodontal/oral hygiene instruments, and casting alloys for fixed restorations. Multiple methodologies have been employed to create the coatings, but detailed structural analysis of the coatings is generally lacking in the dental literature. Depending on application, the purpose of the coating is to provide increased surface hardness, abrasion/wear resistance, esthetics, and corrosion resistance, lower friction, as well as greater beneficial interaction with adjacent biological and material substrates. While many studies have reported on the achievement of these properties, a consensus is not always clear. Additionally, few studies have been conducted to assess the efficacy of the coatings in a clinical setting. Overall, titanium nitride and/or nitrogen ion implanted coated dental materials potentially offer advantages over uncoated counterparts, but more investigation is needed to document the structure of the coatings and their clinical effectiveness.

  17. Functional results after external vocal fold medialization thyroplasty with the titanium vocal fold medialization implant.

    Science.gov (United States)

    Schneider, Berit; Denk, Doris-Maria; Bigenzahn, Wolfgang

    2003-04-01

    A persistent insufficiency of glottal closure is mostly a consequence of a unilateral vocal fold movement impairment. It can also be caused by vocal fold atrophy or scarring processes with regular bilateral respiratory vocal fold function. Because of consequential voice, breathing, and swallowing impairments, a functional surgical treatment is required. The goal of the study was to outline the functional results after medialization thyroplasty with the titanium vocal fold medialization implant according to Friedrich. In the period of 1999 to 2001, an external vocal fold medialization using the titanium implant was performed on 28 patients (12 women and 16 men). The patients were in the age range of 19 to 84 years. Twenty-two patients had a paralysis of the left-side vocal fold, and six patients, of the right-side vocal fold. Detailed functional examinations were executed on all patients before and after the surgery: perceptive voice sound analysis according to the "roughness, breathiness, and hoarseness" method, judgment of the s/z ratio and voice dysfunction index, voice range profile measurements, videostroboscopy, and pulmonary function tests. In case of dysphagia/aspiration, videofluoroscopy of swallowing was also performed. The respective data were statistically analyzed (paired t test, Wilcoxon-test). All patients reported on improvement of voice, swallowing, and breathing functions postoperatively. Videostroboscopy revealed an almost complete glottal closure after surgery in all of the patients. All voice-related parameters showed a significant improvement. An increase of the laryngeal resistance by the medialization procedure could be excluded by analysis of the pulmonary function test. The results confirm the external medialization of the vocal folds as an adequate method in the therapy of voice, swallowing, and breathing impairment attributable to an insufficient glottal closure. The titanium implant offers, apart from good tissue tolerability, the

  18. Piezoelectric surgery in implant dentistry: clinical applications

    Directory of Open Access Journals (Sweden)

    Lydia Masako Ferreira

    2009-01-01

    Full Text Available Pizosurgery has therapeutic characteristics in osteotomies, such as extremely precise, selective and millimetric cuts and a clear operating field. Piezoelectricity uses ultrasonic frequencies, which cause the points specially designed for osteotomy to vibrate. The points of the instrument oscillate, allowing effective osteotomy with minimal or no injury to the adjacent soft tissues, membranes and nerve tissues. This article presents the various applications of piezoelectricity in oral implant surgery such as: removal of autogenous bone; bone window during elevation of the sinus membrane and removal of fractured implants. The cavitational effect caused by the vibration of the point and the spray of physiological solution, provided a field free of bleeding and easy to visualize. The study showed that the piezoelectric surgery is a new surgical procedurethat presents advantages for bone cutting in many situations in implant dentistry, with great advantages in comparison with conventional instrumentation. Operating time is longer when compared with that of conventional cutters.

  19. FTIR absorption reflection study of biomimetic growth of phosphates on titanium implants

    Science.gov (United States)

    Stoch, A.; Jastrzębski, W.; Brożek, A.; Stoch, J.; Szaraniec, J.; Trybalska, B.; Kmita, G.

    2000-11-01

    Titanium has been used for many medical applications; however, its joining to a living bone still is not satisfactorily good, challenging appropriate investigations. The aim of this work was to generate chemical modifications at its surface such that in vivo conditions, heterogeneous nucleation, and then growth of apatite from the body fluid could be easily induced and successfully performed. For this purpose, on the titanium samples, the oxide sublayers containing titanium, calcium and silicon (TCS) were deposited from a suitable solution using the sol-gel deep-coating procedure. Dried samples were heated at 400°C then cooled and thermostatically held in synthetic body fluids (SBF, SBFIII) under physiological conditions to mimic the natural process of apatite formation. Changes in surface composition of TCS sublayers caused by the heating were studied with XPS. Infrared spectroscopy and scanning electron microscopy monitored successive steps of apatite growth. It was found that in SBF, at the precoated titanium surface, nucleation and growth of the apatite containing carbonate took place. In SBFIII, for a higher concentration of calcium ions in comparison with SBF, a much-enhanced growth of the apatite free of carbonate was observed. TCS precoatings applied on stainless steel and Cr-Co-Mo alloy (Micromed) act also as bioactive interfaces with high ability to nucleation of biologically equivalent apatite. Biomimetic formation of this apatite on biologically inactive materials can be an important step in implant surgery.

  20. Effects of pore size, implantation time and nano-surface properties on rat skin ingrowth into percutaneous porous titanium implants

    OpenAIRE

    Farrell, Brad J.; Prilutsky, Boris I.; Ritter, Jana M.; Kelley, Sean; Popat, Ketul; Pitkin, Mark

    2013-01-01

    The main problem of percutaneous osseointegrated implants is poor skin-implant integration, which may cause infection. This study investigated the effects of pore size (Small, 40–100 microns and Large, 100–160 microns), nanotubular surface treatment (Nano), and duration of implantation (3 and 6 weeks) on skin ingrowth into porous titanium. Each implant type was percutaneously inserted in the back of 35 rats randomly assigned to 7 groups. Implant extrusion rate was measured w...

  1. Interactions between endothelial progenitor cells (EPC) and titanium implant surfaces.

    Science.gov (United States)

    Ziebart, Thomas; Schnell, Anne; Walter, Christian; Kämmerer, Peer W; Pabst, Andreas; Lehmann, Karl M; Ziebart, Johanna; Klein, Marc O; Al-Nawas, Bilal

    2013-01-01

    Endothelial cells play an important role in peri-implant angiogenesis during early bone formation. Therefore, interactions between endothelial progenitor cells (EPCs) and titanium dental implant surfaces are of crucial interest. The aim of our in vitro study was to investigate the reactions of EPCs in contact with different commercially available implant surfaces. EPCs from buffy coats were isolated by Ficoll density gradient separation. After cell differentiation, EPC were cultured for a period of 7 days on different titanium surfaces. The test surfaces varied in roughness and hydrophilicity: acid-etched (A), sand-blasted-blasted and acid-etched (SLA), hydrophilic A (modA), and hydrophilic SLA (modSLA). Plastic and fibronectin-coated plastic surfaces served as controls. Cell numbers and morphology were analyzed by confocal laser scanning microscopy. Secretion of vascular endothelial growth factor (VEGF)-A was measured by enzyme-linked immunosorbent assay and expressions of iNOS and eNOS were investigated by real-time polymerase chain reaction. Cell numbers were higher in the control groups compared to the cells of titanium surfaces. Initially, hydrophilic titanium surfaces (modA and modSLA) showed lower cell numbers than hydrophobic surfaces (A and SLA). After 7 days smoother surfaces (A and modA) showed increased cell numbers compared to rougher surfaces (SLA and modSLA). Cell morphology of A, modA, and control surfaces was characterized by a multitude of pseudopodia and planar cell soma architecture. SLA and modSLA promoted small and plump cell soma with little quantity of pseudopodia. The lowest VEGF level was measured on A, the highest on modSLA. The highest eNOS and iNOS expressions were found on modA surfaces. The results of this study demonstrate that biological behaviors of EPCs can be influenced by different surfaces. The modSLA surface promotes an undifferentiated phenotype of EPCs that has the ability to secrete growth factors in great quantities. In

  2. Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections

    DEFF Research Database (Denmark)

    Kazemzadeh-Narbat, Mehdi; Kindrachuk, Jason; Duan, Ke

    2010-01-01

    of this study was to develop a technique that enables the loading and local delivery of a unique group of cationic antimicrobial peptides (AMP) through implant surfaces. A thin layer of micro-porous calcium phosphate (CaP) coating was processed by electrolytic deposition onto the surface of titanium as the drug......Prevention of implant-associated infections has been one of the main challenges in orthopaedic surgery. This challenge is further complicated by the concern over the development of antibiotic resistance as a result of using traditional antibiotics for infection prophylaxis. The objective......) bacteria with 106-fold reductions of both bacterial strains within 30 min as assessed by measuring colony-forming units (CFU). Repeated CFU assays on the same CaP-Tet213 specimen demonstrated retention of antimicrobial activity by the CaP-Tet213 surfaces through four test cycles. The susceptibility...

  3. Bacteremia following dental implant surgery: preliminary results.

    Science.gov (United States)

    Bölükbaşı, Nilüfer; Özdemir, Tayfun; Öksüz, Lütfiye; Gürler, Nezahat

    2012-01-01

    The aims of this study were to investigate the incidence of bacteremia, bacteriology and antibiotic susceptibility against to causative bacteria associated with dental implant installation. 30 generally healthy patients were enrolled in this study. Blood samples were collected at baseline and at 30 minutes after dental implant installation and 24 hours after dental implant surgery. Blood samples were cultured in a BACTEC system. The isolated bacteria were identified using conventional methods. Antimicrobial sensitivity tests were performed by disc diffusion. No bacteria were isolated at the baseline and 24 hours after surgery, whereas the prevalence of bacteremia at 30 minutes after dental implant installation was 23%. The isolated bacteria species were Staphylococcus epidermidis, Eubacterium spp., Corynebacterium spp. and Streptococcus viridans. The Staphylococcus epidermidis, which was isolated in three patients, was found to be resistant to penicillin which is first choice of many clinicians. Our findings suggest that installation of dental implants can produce bacteremia. Within the limitations of this study, it can be speculated that the resistance of antibiotics may compromise the routine prophylaxis against infective endocarditis. Therefore use of blood cultures and antibiograms may be suggested in risky patients. The outcome of the present study should be verified using a larger patient group with varying conditions.

  4. In-vitro evaluation of corrosion resistance of nitrogen ion implanted titanium simulated body fluid

    International Nuclear Information System (INIS)

    Subbaiyan, M.; Sundararajian, T.; Rajeswari, S.; Kamachi Mudali, U.; Nair, K.G.M.; Thampi, N.S.

    1997-01-01

    Titanium and its alloy Ti6Al4V enjoy widespread use in various biomedical applications because of favourable local tissue response, higher corrosion resistance and fatigue strength than the stainless steels and cobalt-chromium alloy previously used. The study reported in this paper aims to optimize the conditions of nitrogen ion implantation on commercially pure titanium and to correlate the implantation parameters to the corrosion resistance. X-ray photoelectron spectroscopy was used to analyse surface concentration and the implantation processes. An improvement in the electrochemical behaviour of the passive film was shown to occur with nitrogen ion implantation on titanium, in simulated body fluids. (UK)

  5. Postoperative spinal infection mimicking systemic vasculitis with titanium-spinal implants

    Directory of Open Access Journals (Sweden)

    Stathopoulos Konstantinos

    2011-09-01

    Full Text Available Abstract Background Secondary systemic vasculitis after posterior spinal fusion surgery is rare. It is usually related to over-reaction of immune-system, to genetic factors, toxicity, infection or metal allergies. Case Description A 14 year-old girl with a history of extended posterior spinal fusion due to idiopathic scoliosis presented to our department with diffuse erythema and nephritis (macroscopic hemuresis and proteinuria 5 months post surgery. The surgical trauma had no signs of inflammation or infection. The blood markers ESR and CRP were increased. Skin tests were positive for nickel allergy, which is a content of titanium alloy. The patient received corticosteroids systematically (hydrocortisone 10 mg for 6 months, leading to total recess of skin and systemic reaction. However, a palpable mass close to the surgical wound raised the suspicion of a late infection. The patient had a second surgery consisting of surgical debridement and one stage revision of posterior spinal instrumentation. Intraoperative cultures were positive to Staphylococcus aureus. Intravenous antibiotics were administered. The patient is now free of symptoms 24 months post revision surgery without any signs of recurrence of either vasculitis or infection. Literature Review Systemic vasculitis after spinal surgery is exceptionally rare. Causative factors are broad and sometimes controversial. In general, it is associated with allergy to metal ions. This is usually addressed with metal on metal total hip bearings. In spinal surgery, titanium implants are considered to be inert and only few reports have presented cases with systemic vasculitides. Therefore, other etiologies of immune over-reaction should always be considered, such as drug toxicity, infection, or genetic predisposition. Purposes and Clinical Relevance Our purpose was to highlight the difficulties during the diagnostic work-up for systemic vasculitis and management in cases of posterior spinal surgery.

  6. Prognostic trend in advanced implant surgery.

    Science.gov (United States)

    Demitri, V; Polini, F; Robiony, M; Politi, M

    2002-03-01

    Implant surgery in association with bone grafting is generally considered less predictive than primary implant surgery. Many reports have been published about implant rehabilitation with bone grafts in atrophic patients. Most of these papers showed a lower implant success rate than primary implantology. The aim of this study is to verify if it's possible to warrant similar results between the two types of implantology, if such procedures are performed following effective protocols and criteria. From 1995 to 1999, 43 severely atrophic edentulous patients were treated in our Clinic with 63 autologous bone grafts and delayed implantology; 45 patients were treated with traditional implantology. 284 fixtures were positioned. The success rate in grafted implantology versus traditional implantology was compared for every maxillary and mandibular region. Furthermore, success rate in implantology of the anterior maxilla versus the poster maxilla in grafted patients was compared. The statistical considerations were performed with c2 test (p<0.05). The statistical analysis evidenced not significative difference in the implant success rate between grafted and not grafted patients in the anterior (p=0.23) and in the posterior maxilla (p=0.35). There was not significative difference in the implant success rate between grafted and not grafted patients in the anterior mandible (p=0.54) and in the posterior mandible (p=0.54). There was not significative difference in the implant success rate between the anterior and posterior grafted maxilla (p=0.21). The results obtained show that if close surgical protocol is performed it is possible to obtain no prognostic difference between the two METHODS.

  7. The "shadow sign": a radiographic differentiation of stainless steel versus titanium spinal instrumentation in spine surgery.

    Science.gov (United States)

    Jones-Quaidoo, Sean M; Novicoff, Wendy; Park, Andrew; Arlet, Vincent

    2011-12-01

    Stainless steel spinal instrumentation has been supplanted in recent years by titanium instrumentation. Knowing whether stainless steel or titanium was used in a previous surgery can guide clinical decision making processes, but frequently the clinician has no way to know what type of metal was used. We describe the radiographic "shadow sign," in which superimposed titanium rods and screws remain radiolucent enough that the contour of the underlying components can be seen on a lateral radiograph, whereas superimposed stainless steel rods and screws are completely radiopaque. This technique was evaluated using a retrospective, randomized, and blinded radiographic comparison of titanium and stainless steel spinal instrumentation. The objective was to determine whether the "shadow sign" can reliably differentiate titanium from stainless steel spinal instrumentation. Lateral radiographs from 16 cases of posterior spinal instrumentation (6 titanium, 6 stainless steel, and 2 replicates of each to assess intraobserver reliability) were randomly selected from a database of cases performed for pediatric scoliosis in a university setting from 2005 to 2009. The cases were randomized then shown to 19 orthopaedic surgery residents, 1 spine fellow, and 2 spine attendings. After the "shadow sign" was described, the surgeons were asked to determine what type of metal each implant was made of. The κ value for both stainless steel and titanium versus the gold standard was 0.83 [standard error (SE) = 0.053], indicating excellent agreement. The κ value for agreement between raters was 0.71 (SE = 0.016) and the κ value for agreement within raters was 0.70 (SE = 0.016), both of which indicated substantial agreement. The "shadow sign" can help a clinician differentiate titanium from stainless steel spinal instrumentation based on radiographic appearance alone. Furthermore, our study reveals that the level of experience in diagnosing spinal lateral radiographs also enhances the use of

  8. [Complex skull defects reconstruction with САD/САМ titanium and polyetheretherketone (PEEK) implants].

    Science.gov (United States)

    Eolchiyan, S A

    2014-01-01

    Predictable and stable functional and aesthetic result is the aim of priority for the neurosurgeon dealing with the reconstruction of large cranial bone defects and complex-formed skull defects involving cranio-orbital region. the paper presents the experience with САD/САМ titanium and polyetheretherketone (PEEK) implants for complex-formed and large skull bone defects reconstruction. Between 2005 and 2013 nine patients (5 females and 4 males) underwent cranioplasty and cranio-facial reconstruction with insertion of the customized САD/САМ titanium and PEEK implants. Computer-assisted preoperative planning was undertaken by the surgeon and the engineer together in 3 cases to provide accurate implant design. Eight patients had complex-formed and large posttraumatic defects of fronto-orbital (7 cases) and parietal (one case) regions. In two of these cases one-step reconstruction surgery for posttraumatic fronto-orbital defects combined with adjacent orbital roof (one case) and orbito-zygomatic (one case) deformities was performed. One patient underwent one-step primary cranioplasty after cranio-orbital fibrous dysplasia focus resection. Titanium implants were used in 4 cases while PEEK implants - in 5 ones. The follow-up period ranged from 6 months till 8,5 years (median 4,4 years). The accuracy of the implant intraoperative fit was perfect in all cases. Postoperative wounds healed primary and there were no any complications in the series presented. Post-op clinical assessment and CT data testified to high implants precision, good functional and aesthetic outcomes in all patients. САD/САМ titanium and PEEK implants application should allow for optimal reconstruction in the challenging patients with complex-formed and large skull bone defects providing predictable good functional and aesthetic result together with surgery morbidity and duration reduction. Computer-assisted preoperative planning should be undertaken for САD/САМ implants creation in

  9. Histomorphometric and histologic evaluation of titanium-zirconium (aTiZr) implants with anodized surfaces.

    Science.gov (United States)

    Sharma, Ajay; McQuillan, A James; Shibata, Yo; Sharma, Lavanya A; Waddell, John Neil; Duncan, Warwick John

    2016-05-01

    The choice of implant surface has a significant influence on osseointegration. Modification of TiZr surface by anodization is reported to have the potential to modulate the osteoblast cell behaviour favouring more rapid bone formation. The aim of this study is to investigate the effect of anodizing the surface of TiZr discs with respect to osseointegration after four weeks implantation in sheep femurs. Titanium (Ti) and TiZr discs were anodized in an electrolyte containing DL-α-glycerophosphate and calcium acetate at 300 V. The surface characteristics were analyzed by scanning electron microscopy, electron dispersive spectroscopy, atomic force microscopy and goniometry. Forty implant discs with thickness of 1.5 and 10 mm diameter (10 of each-titanium, titanium-zirconium, anodized titanium and anodized titanium-zirconium) were placed in the femoral condyles of 10 sheep. Histomorphometric and histologic analysis were performed 4 weeks after implantation. The anodized implants displayed hydrophilic, porous, nano-to-micrometer scale roughened surfaces. Energy dispersive spectroscopy analysis revealed calcium and phosphorous incorporation into the surface of both titanium and titanium-zirconium after anodization. Histologically there was new bone apposition on all implanted discs, slightly more pronounced on anodised discs. The percentage bone-to-implant contact measurements of anodized implants were higher than machined/unmodified implants but there was no significant difference between the two groups with anodized surfaces (P > 0.05, n = 10). The present histomorphometric and histological findings confirm that surface modification of titanium-zirconium by anodization is similar to anodised titanium enhances early osseointegration compared to machined implant surfaces.

  10. In vivo response of laser processed porous titanium implants for load-bearing implants

    Science.gov (United States)

    Bandyopadhyay, Amit; Shivaram, Anish; Tarafder, Solaiman; Sahasrabudhe, Himanshu; Banerjee, Dishary; Bose, Susmita

    2016-01-01

    Applications of porous metallic implants to enhance osseointegration of load-bearing implants are increasing. In this work, porous titanium implants, with 25 volume% porosity, were manufactured using Laser Engineered Net Shaping (LENS™) to measure the influence of porosity towards bone tissue integration in vivo. Surfaces of the LENS™ processed porous Ti implants were further modified with TiO2 nanotubes to improve cytocompatibility of these implants. We hypothesized that interconnected porosity created via additive manufacturing will enhance bone tissue integration in vivo. To test our hypothesis, in vivo experiments using a distal femur model of male Sprague-Dawley rats were performed for a period of 4 and 10 weeks. In vivo samples were characterized via micro-computed tomography (CT), histological imaging, scanning electron microscopy, and mechanical push-out tests. Our results indicate that porosity played an important role to establish early stage osseointegration forming strong interfacial bonding between the porous implants and the surrounding tissue, with or without surface modification, compared to dense Ti implants used as a control. PMID:27307009

  11. In Vivo Response of Laser Processed Porous Titanium Implants for Load-Bearing Implants.

    Science.gov (United States)

    Bandyopadhyay, Amit; Shivaram, Anish; Tarafder, Solaiman; Sahasrabudhe, Himanshu; Banerjee, Dishary; Bose, Susmita

    2017-01-01

    Applications of porous metallic implants to enhance osseointegration of load-bearing implants are increasing. In this work, porous titanium implants, with 25 vol.% porosity, were manufactured using Laser Engineered Net Shaping (LENS™) to measure the influence of porosity towards bone tissue integration in vivo. Surfaces of the LENS™ processed porous Ti implants were further modified with TiO 2 nanotubes to improve cytocompatibility of these implants. We hypothesized that interconnected porosity created via additive manufacturing will enhance bone tissue integration in vivo. To test our hypothesis, in vivo experiments using a distal femur model of male Sprague-Dawley rats were performed for a period of 4 and 10 weeks. In vivo samples were characterized via micro-computed tomography (CT), histological imaging, scanning electron microscopy, and mechanical push-out tests. Our results indicate that porosity played an important role to establish early stage osseointegration forming strong interfacial bonding between the porous implants and the surrounding tissue, with or without surface modification, compared to dense Ti implants used as a control.

  12. Gelatin functionalised porous titanium alloy implants for orthopaedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Vanderleyden, E. [Polymer Chemistry and Biomaterials Research Group, Department of Organic Chemistry, University of Ghent, Krijgslaan 281 S4, 9000 Ghent (Belgium); Van Bael, S. [Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, Box 813, 3000 Leuven (Belgium); Department of Mechanical Engineering, Division of Production Engineering, Machine Design and Automation, Katholieke Universiteit Leuven, Celestijnenlaan 300b, 3001 Leuven (Belgium); Department of Mechanical Engineering, Division of Biomechanics and Engineering Design, Katholieke Universiteit Leuven, Celestijnenlaan 300c, Box 2419, 3001 Heverlee (Belgium); Chai, Y.C. [Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, Box 813, 3000 Leuven (Belgium); Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, Box 813, 3000 Leuven (Belgium); Kruth, J.-P. [Department of Mechanical Engineering, Division of Production Engineering, Machine Design and Automation, Katholieke Universiteit Leuven, Celestijnenlaan 300b, 3001 Leuven (Belgium); Schrooten, J. [Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, Box 813, 3000 Leuven (Belgium); Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, Bus 2450, 3001 Leuven (Belgium); Dubruel, P., E-mail: pbmugent@gmail.com [Polymer Chemistry and Biomaterials Research Group, Department of Organic Chemistry, University of Ghent, Krijgslaan 281 S4, 9000 Ghent (Belgium)

    2014-09-01

    In the present work, we studied the immobilisation of the biopolymer gelatin onto the surface of three dimensional (3D) regular Ti6Al4V porous implants to improve their surface bio-activity. The successful immobilisation of the gelatin coating was made possible by a polydopamine interlayer, a polymer coating inspired by the adhesive nature of mussels. The presence of both coatings was first optimised on two dimensional titanium (2D Ti) substrates and confirmed by different techniques including X-ray photelectron spectroscopy, contact angle measurements, atomic force microscopy and fluorescence microscopy. Results showed homogeneous coatings that are stable for at least 24 h in phosphate buffer at 37 °C. In a next step, the coating procedure was successfully transferred to 3D Ti6Al4V porous implants, which indicates the versatility of the applied coating procedure with regard to complex surface morphologies. Furthermore, the bio-activity of these stable gelatin coatings was enhanced by applying a third and final coating using the cell-attractive protein fibronectin. The reproducible immobilisation process allowed for a controlled biomolecule presentation to the surrounding tissue. This newly developed coating procedure outperformed the previously reported silanisation procedure for immobilising gelatin. In vitro cell adhesion and culture studies with human periosteum-derived cells showed that the investigated coatings did not compromise the biocompatible nature of Ti6Al4V porous implants, but no distinct biological differences between the coatings were found. - Highlights: • Ti6Al4V porous implants were produced by selective laser melting. • A procedure to obtain a stable gelatin coating was developed. • Successful transfer of the coating procedure from 2D to 3D Ti6Al4V porous implants. • In vitro cell studies showed that the developed coatings supported cell growth.

  13. Electrochemical removal of biofilms from titanium dental implant surfaces.

    Science.gov (United States)

    Schneider, Sebastian; Rudolph, Michael; Bause, Vanessa; Terfort, Andreas

    2018-06-01

    The infection of dental implants may cause severe inflammation of tissue and even bone degradation if not treated. For titanium implants, a new, minimally invasive approach is the electrochemical removal of the biofilms including the disinfection of the metal surface. In this project, several parameters, such as electrode potentials and electrolyte compositions, were varied to understand the underlying mechanisms. Optimal electrolytes contained iodide as well as lactic acid. Electrochemical experiments, such as cyclic voltammetry or measurements of open circuit potentials, were performed in different cell set-ups to distinguish between different possible reactions. At the applied potentials of E species are formed at the anode, such as triiodide and hydrogen peroxide. Ex situ tests with model biofilms of E. coli clearly demonstrated the effectiveness of the respective anolytes in killing the bacteria, as determined by the LIVE/DEAD™ assay. Using optimized electrolysis parameters of 30 s at 7.0 V and 300 mA, a 14-day old wildtype biofilm could be completely removed from dental implants in vitro. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Non-Destructive Analysis of Basic Surface Characteristics of Titanium Dental Implants Made by Miniature Machining

    Science.gov (United States)

    Babík, Ondrej; Czán, Andrej; Holubják, Jozef; Kameník, Roman; Pilc, Jozef

    2016-12-01

    One of the most best-known characteristic and important requirement of dental implant is made of biomaterials ability to create correct interaction between implant and human body. The most implemented material in manufacturing of dental implants is titanium of different grades of pureness. Since most of the implant surface is in direct contact with bone tissue, shape and integrity of said surface has great influence on the successful osseointegration. Among other characteristics of titanium that predetermine ideal biomaterial, it shows a high mechanical strength making precise machining miniature Increasingly difficult. The article is focused on evaluation of the resulting quality, integrity and characteristics of dental implants surface after machining.

  15. Molteno3 Implantation as Primary Glaucoma Surgery

    Directory of Open Access Journals (Sweden)

    Juha O. Välimäki

    2014-01-01

    Full Text Available Purpose. To determine the outcome of Molteno3 implantation as primary glaucoma surgery and to analyze the factors influencing the surgical outcome. Methods. This is a retrospective clinical study of 106 consecutive eyes (97 patients with no previous glaucoma surgery. Surgical failure was defined as an IOP > 21 mmHg or less than a 20% reduction below baseline, or IOP ≤ 5 mmHg, on two consecutive visits after 3 months follow-up, or reoperation for glaucoma or loss of light perception. Results. At the end of the follow-up (mean, 35 months; range, 12–71 months, the mean postoperative IOP (14.2 ± 4.4 mmHg was statistically significantly lower than the preoperative IOP (35.2 ± 9.7 mmHg (P<0.001. Life-table success rates were 97%, 94%, and 91% after follow-up of 12, 24, and 36 months, respectively. Success rate for an IOP ≤ 18 mmHg was 77% at the last visit. Success was not influenced by previous cataract surgery, sex, age, laser trabeculoplasty (LTP, preoperative IOP, or number of antiglaucoma medications. Forty-seven eyes had 66 postoperative complications. Conclusions. The primary Molteno3 implant provided significant IOP lowering with minimal and manageable complications in uncontrolled glaucoma. Neither previous cataract surgery nor LTP had any detrimental effect on surgical success.

  16. Acid etching and plasma sterilization fail to improve osseointegration of grit blasted titanium implants

    DEFF Research Database (Denmark)

    Mortensen, Mikkel Saksø; Jakobsen, Stig Storgaard; Saksø, Henrik

    2012-01-01

    Interaction between implant surface and surrounding bone influences implant fixation. We attempted to improve the bone-implant interaction by 1) adding surface micro scale topography by acid etching, and 2) removing surface-adherent pro-inflammatory agents by plasma cleaning. Implant fixation...... was evaluated by implant osseointegration and biomechanical fixation.The study consisted of two paired animal sub-studies where 10 skeletally mature Labrador dogs were used. Grit blasted titanium alloy implants were inserted press fit in each proximal tibia. In the first study grit blasted implants were...... compared with acid etched grit blasted implants. In the second study grit blasted implants were compared with acid etched grit blasted implants that were further treated with plasma sterilization. Implant performance was evaluated by histomorphometrical investigation (tissue-to-implant contact, peri-implant...

  17. Strength of titanium intramedullary implant versus miniplate fixation of mandibular condyle fractures.

    Science.gov (United States)

    Frake, Paul C; Howell, Rebecca J; Joshi, Arjun S

    2012-07-01

    To test the strength of internal fixation of mandibular condyle fractures repaired with titanium miniplates versus titanium intramedullary implants. Prospective laboratory experimentation in urethane mandible models and human cadaveric mandibles. Materials testing laboratory at an academic medical center. Osteotomies of the mandibular condyle were created in 40 urethane hemimandible models and 24 human cadaveric specimens. Half of the samples in each group were repaired with traditional miniplates, and the other half were repaired with intramedullary titanium implants. Anteroposterior and mediolateral loads were applied to the samples, and the displacement was measured with reference to the applied force. Titanium intramedullary implants demonstrated statistically significant improved strength and stiffness versus miniplates in the urethane model experimental groups. Despite frequent plastic deformation and mechanical failures of the miniplates, a 1.6-mm-diameter titanium intramedullary pin did not mechanically fail in any of the cases. Intramedullary implantation failures were due to secondary fracture of the adjacent cortical bone or experimental design limitations including rotation of the smooth pin implant. Mechanical implant failures that were encountered with miniplate fixation were not seen with titanium intramedullary implants. These intramedullary implants provide stronger and more rigid fixation of mandibular condyle fractures than miniplates in this in vitro model.

  18. Osseointegration improvement by shot peening in titanium dental implants

    International Nuclear Information System (INIS)

    Aparicio, C.; Gil, F.J.; Planell, J.A.; Padros, A.; Peraire, C.

    1998-01-01

    In order to optimize the implant-bone fixation, different shot peening treatments with different shot particles (TiO 2 , Al 2 O 3 ; SiC) have been made. The influence that each type of shot particle has in the bone colonization on the different treatment surfaces has been determined by means of osteoblast-like cells culture. Commercially pure titanium discs have been shot peened. Their qualitative and quantitative surface roughness have been characterized; as well as their surface contamination caused by the shot particles. Particle size has also been determined, before and after the treatment, in order to evaluate their breaking averages. Finally, a TiO 2 shot particles manufacture process by sintering has been developed. The manufacture has been necessary since this type of shot particles are not available in the market with the adequate size. (Author) 10 refs

  19. Comparison of surface modified zirconia implants with commercially available zirconium and titanium implants: a histological study in pigs.

    Science.gov (United States)

    Gredes, Tomasz; Kubasiewicz-Ross, Pawel; Gedrange, Tomasz; Dominiak, Marzena; Kunert-Keil, Christiane

    2014-08-01

    New biomaterials and their various surface modifications should undergo in vitro and in vivo evaluation before clinical trials. The objective of our in vivo study was to evaluate the biocompatibility of newly created zirconium implant surfaces after implantation in the lower jaw of pigs and compare the osseointegration of these dental implants with commercially available zirconium and titanium implants. After a healing period of 12 weeks, a histological analysis of the soft and hard tissues and a histomorphometric analysis of the bone-implant contact (BIC) were performed. The implant surfaces showed an intimate connection to the adjacent bone for all tested implants. The 3 newly created zirconium implant surfaces achieved a BIC of 45% on average in comparison with a BIC of 56% from the reference zirconium implants and 35% from titanium implants. Furthermore, the new zirconium implants had a better attachment to gingival and bone tissues in the range of implant necks as compared with the reference implants. The results suggest that the new implants comparably osseointegrate within the healing period, and they have a good in vivo biocompatibility.

  20. Effects of pore size, implantation time, and nano-surface properties on rat skin ingrowth into percutaneous porous titanium implants.

    Science.gov (United States)

    Farrell, Brad J; Prilutsky, Boris I; Ritter, Jana M; Kelley, Sean; Popat, Ketul; Pitkin, Mark

    2014-05-01

    The main problem of percutaneous osseointegrated implants is poor skin-implant integration, which may cause infection. This study investigated the effects of pore size (Small, 40-100 μm and Large, 100-160 μm), nanotubular surface treatment (Nano), and duration of implantation (3 and 6 weeks) on skin ingrowth into porous titanium. Each implant type was percutaneously inserted in the back of 35 rats randomly assigned to seven groups. Implant extrusion rate was measured weekly and skin ingrowth into implants was determined histologically after harvesting implants. It was found that all three types of implants demonstrated skin tissue ingrowth of over 30% (at week 3) and 50% (at weeks 4-6) of total implant porous area under the skin; longer implantation resulted in greater skin ingrowth (p skin integration with the potential for a safe seal. Copyright © 2013 Wiley Periodicals, Inc.

  1. Interruption of Electrical Conductivity of Titanium Dental Implants Suggests a Path Towards Elimination Of Corrosion.

    Science.gov (United States)

    Pozhitkov, Alex E; Daubert, Diane; Brochwicz Donimirski, Ashley; Goodgion, Douglas; Vagin, Mikhail Y; Leroux, Brian G; Hunter, Colby M; Flemmig, Thomas F; Noble, Peter A; Bryers, James D

    2015-01-01

    Peri-implantitis is an inflammatory disease that results in the destruction of soft tissue and bone around the implant. Titanium implant corrosion has been attributed to the implant failure and cytotoxic effects to the alveolar bone. We have documented the extent of titanium release into surrounding plaque in patients with and without peri-implantitis. An in vitro model was designed to represent the actual environment of an implant in a patient's mouth. The model uses actual oral microbiota from a volunteer, allows monitoring electrochemical processes generated by biofilms growing on implants and permits control of biocorrosion electrical current. As determined by next generation DNA sequencing, microbial compositions in experiments with the in vitro model were comparable with the compositions found in patients with implants. It was determined that the electrical conductivity of titanium implants was the key factor responsible for the biocorrosion process. The interruption of the biocorrosion current resulted in a 4-5 fold reduction of corrosion. We propose a new design of dental implant that combines titanium in zero oxidation state for osseointegration and strength, interlaid with a nonconductive ceramic. In addition, we propose electrotherapy for manipulation of microbial biofilms and to induce bone healing in peri-implantitis patients.

  2. Interruption of Electrical Conductivity of Titanium Dental Implants Suggests a Path Towards Elimination Of Corrosion.

    Directory of Open Access Journals (Sweden)

    Alex E Pozhitkov

    Full Text Available Peri-implantitis is an inflammatory disease that results in the destruction of soft tissue and bone around the implant. Titanium implant corrosion has been attributed to the implant failure and cytotoxic effects to the alveolar bone. We have documented the extent of titanium release into surrounding plaque in patients with and without peri-implantitis. An in vitro model was designed to represent the actual environment of an implant in a patient's mouth. The model uses actual oral microbiota from a volunteer, allows monitoring electrochemical processes generated by biofilms growing on implants and permits control of biocorrosion electrical current. As determined by next generation DNA sequencing, microbial compositions in experiments with the in vitro model were comparable with the compositions found in patients with implants. It was determined that the electrical conductivity of titanium implants was the key factor responsible for the biocorrosion process. The interruption of the biocorrosion current resulted in a 4-5 fold reduction of corrosion. We propose a new design of dental implant that combines titanium in zero oxidation state for osseointegration and strength, interlaid with a nonconductive ceramic. In addition, we propose electrotherapy for manipulation of microbial biofilms and to induce bone healing in peri-implantitis patients.

  3. Decontamination of titanium implant surface and re-osseointegration to treat peri-implantitis: a literature review

    NARCIS (Netherlands)

    Subramani, K.; Wismeijer, D.

    2012-01-01

    PURPOSE: To review the literature on decontamination of titanium implant surfaces following peri-implantitis and the effect of various cleaning methods on re-osseointegration. MATERIALS AND METHODS: An electronic search of the literature at PubMed was conducted on the studies published between 1966

  4. Osseointegration of layer-by-layer polyelectrolyte multilayers loaded with IGF1 and coated on titanium implant under osteoporotic condition

    Directory of Open Access Journals (Sweden)

    Xing H

    2017-10-01

    Full Text Available Helin Xing,1,* Xing Wang,2,* Saisong Xiao,3,* Guilan Zhang,1 Meng Li,1 Peihuan Wang,1 Quan Shi,1 Pengyan Qiao,1 Lingling E,1 Hongchen Liu1 1Institute of Stomatology, Chinese PLA General Hospital, Beijing, 2Hospital of Stomatology, Shanxi Medical University, Taiyuan, 3Department of Anesthesia, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China *These authors contributed equally to this work Purpose: Titanium implant is a widely used method for dental prosthesis restoration. Nevertheless, in patients with systemic diseases, including osteoporosis, diabetes, and cancer, the success rate of the implant is greatly reduced. This study investigates a new implant material loaded with insulin-like growth factor 1 (IGF1, which could potentially improve the implant success rate, accelerate the occurrence of osseointegration, and provide a new strategy for implant treatment in osteoporotic patients. Materials and methods: Biofunctionalized polyelectrolyte multilayers (PEMs with polyethylenimine as the excitation layer and gelatin/chitosan loaded with IGF1 were prepared on the surface of titanium implant by layer-by-layer self-assembly technique. The physical and chemical properties of the biofunctionalized PEMs, the biological characteristics of bone marrow mesenchymal stem cells (BMMSCs, and bone implant contact correlation test indexes were detected and analyzed in vitro and in vivo using osteoporosis rat model. Results: PEMs coatings loaded with IGF1 (TNS-PEM-IGF1-100 implant promoted the early stage of BMMSCs adhesion. Under the action of body fluids, the active coating showed sustained release of growth factors, which in turn promoted the proliferation and differentiation of BMMSCs and the extracellular matrix. At 8 weeks from implant surgery, the new bone around the implants was examined using micro-CT and acid fuchsin/methylene blue staining. The new bone formation increased with time in each group, while the TNS-PEM-IGF1

  5. One-year results of maxillary overdentures supported by 2 titanium-zirconium implants - implant survival rates and radiographic outcomes.

    Science.gov (United States)

    Zembic, Anja; Tahmaseb, Ali; Jung, Ronald E; Wismeijer, Daniel

    2017-07-01

    To assess implant survival rates and peri-implant bone loss of 2 titanium-zirconium implants supporting maxillary overdentures at 1 year of loading. Twenty maxillary edentulous patients (5 women and 15 men) being dissatisfied with their complete dentures were included. In total, 40 diameter-reduced titanium-zirconium implants were placed in the anterior maxilla. Local guided bone regeneration (GBR) was allowed if the treatment did not compromise implant stability. Following 3 to 5 months of healing, implant-supported overdentures were inserted on two ball anchors. Implants and overdentures were assessed at 1, 2, 4, and 8 weeks after implant insertion and 2, 4, and 12 months after insertion of overdentures (baseline). Standardized radiographs were taken at implant loading and 1 year. Implant survival rates and bone loss were the primary outcomes. Nineteen patients (1 dropout) with 38 implants were evaluated at a mean follow-up of 1.1 years (range 1.0-1.7 years). One implant failed resulting in an implant survival rate of 97.3%. There was a significant peri-implant bone loss of the implants at 1 year of function (mean, 0.7 mm, SD = 1.1 mm; median: 0.48 mm, IQR = 0.56 mm). There was a high 1-year implant survival rate for edentulous patients receiving 2 maxillary implants and ball anchors as overdenture support. However, several implants exhibited an increased amount of bone loss of more than 2 mm. Overdentures supported by 2 maxillary implants should thus be used with caution as minimally invasive treatment for specific patients encountering problems with their upper dentures until more long-term data is available. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. A comparison of fit of CNC-milled titanium and zirconia frameworks to implants.

    Science.gov (United States)

    Abduo, Jaafar; Lyons, Karl; Waddell, Neil; Bennani, Vincent; Swain, Michael

    2012-05-01

    Computer numeric controlled (CNC) milling was proven to be predictable method to fabricate accurately fitting implant titanium frameworks. However, no data are available regarding the fit of CNC-milled implant zirconia frameworks. To compare the precision of fit of implant frameworks milled from titanium and zirconia and relate it to peri-implant strain development after framework fixation. A partially edentulous epoxy resin models received two Branemark implants in the areas of the lower left second premolar and second molar. From this model, 10 identical frameworks were fabricated by mean of CNC milling. Half of them were made from titanium and the other half from zirconia. Strain gauges were mounted close to the implants to qualitatively and quantitatively assess strain development as a result of framework fitting. In addition, the fit of the framework implant interface was measured using an optical microscope, when only one screw was tightened (passive fit) and when all screws were tightened (vertical fit). The data was statistically analyzed using the Mann-Whitney test. All frameworks produced measurable amounts of peri-implant strain. The zirconia frameworks produced significantly less strain than titanium. Combining the qualitative and quantitative information indicates that the implants were under vertical displacement rather than horizontal. The vertical fit was similar for zirconia (3.7 µm) and titanium (3.6 µm) frameworks; however, the zirconia frameworks exhibited a significantly finer passive fit (5.5 µm) than titanium frameworks (13.6 µm). CNC milling produced zirconia and titanium frameworks with high accuracy. The difference between the two materials in terms of fit is expected to be of minimal clinical significance. The strain developed around the implants was more related to the framework fit rather than framework material. © 2011 Wiley Periodicals, Inc.

  7. Periodontal ligament formation around different types of dental titanium implants. I. The self-tapping screw type implant system

    DEFF Research Database (Denmark)

    Warrer, K; Karring, T; Gotfredsen, K

    1993-01-01

    The aim of this study was to determine if a periodontal ligament can form around self-tapping, screw type titanium dental implants. Implants were inserted in contact with the periodontal ligament of root tips retained in the mandibular jaws of 7 monkeys. In each side of the mandible, 1 premolar......, a periodontal ligament can form on self-tapping, screw type titanium dental implants in areas where a void is present between the surrounding bone and the implant at the time of insertion....... and 2 molars were removed in such a manner that in approximately half the cases, the root tips were retained. Following healing, the experimental areas were examined on radiographs, and sites were selected for the insertion of the implants, so that every second implant would have a close contact...

  8. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy

    NARCIS (Netherlands)

    Stigter, M.; Bezemer, J.M.; de Groot, K.; Layrolle, P.

    2004-01-01

    Carbonated hydroxyapatite (CHA) coatings were applied onto titanium implants by using a biomimetic precipitation method. Different antibiotics were incorporated into the CHA coatings and their release and efficacy against bacteria growth were studied in vitro. The following antibiotics were used

  9. [Effect of low dose aspirin on osseointegration around titanium implants in osteoporotic rats].

    Science.gov (United States)

    Yang, Q; Li, F L

    2018-02-09

    Objective: To investigate the effect of aspirin on osseointegration around titanium implants in ostoeporotic rats and to provide evidence for future researches and clinical application. Methods: A total of 60 female SD rats, aged 3-4 months, were divided into ovariectomy group (Ovx group, n= 48) and sham-ovariectomy group (Sham group, n= 12). The rats in Ovx group received ovariectomy and those in Sham group underwent sham-ovariectomy. Twelve weeks later, six rats in each group were randomly selected to confirm the osteoporosis models. The Ovx group was divided into 4 subgroups with 12 rats in each group, namely the osteoporosis group (OP group), and Aspirin groups (A1, A2, A3 group). Pure screw titanium implants were placed in the right tibia near metaphysis of all rats. Three days after implant surgery, aspirin groups were intragastrically administered aspirin at a dose of 2.06, 4.11, 8.21 mg·kg(-1)·d(-1) (A1, A2, A3), and OP group and Sham group were fed the same amount of normal saline. Four and 12 weeks following implantations surgery, half of the rats in each group were randomly chosen and sacrificed. Implant bone contact rate (IBCR), combined bone lamella width (CBLW) and trabercular width (TW) were observed and calculated using histomorphometric measurement. Results: Four weeks after implantations surgery, the TW and CBLW of rats in A1 group [(39.60±2.77) and (27.56±4.14) μm] and the IBCR, TW and CBLW of rats in A2 group and A3 group [A2: (47.21±4.19)%, (48.74±3.20) and (35.91±3.79) μm; A3: (47.35±6.07)%, (50.27±5.25) and (40.66±2.11) μm] were much higher than those in OP group [(33.89±7.17)%, (32.20±6.10) and (19.77±6.80) μm]( P 0.05). Twelve weeks after implantations surgery, the IBCR and CBLW of rats in A1 group [ (85.86±3.64) %, (53.12±8.68) μm], and the IBCR, TW and CBLW of rats in A2 group and A3 group [A2: (85.64±3.97)%, (69.42±6.78) and (54.19±3.12) μm; A3: (86.22±3.48)%, (75.43±3.50) and (55.79±5.60) μm] were much higher

  10. Influence of homeopathic treatment with comfrey on bone density around titanium implants: a digital subtraction radiography study in rats.

    Science.gov (United States)

    Sakakura, Celso Eduardo; Neto, Rubens Spin; Bellucci, Marina; Wenzel, Ann; Scaf, Gulnara; Marcantonio, Elcio

    2008-06-01

    The objective of this study was to evaluate the influence of homeopathic treatment with comfrey (Shymphytum officinalis 6CH) on radiographic bone density and area around titanium implants. Forty-eight rats were divided into two groups of 24 animals each: a control group (C) and a test group (SO). Each animal received one titanium micro-implant placed in the tibia. The animals in Group SO were subjected to 10 drops of comfrey 6CH per day mixed into their drinking water until the day of sacrifice. Eight animals of each group were sacrificed at 7, 14 and 28 days post-surgery, respectively. Standardized digital radiographs were obtained on the day of implant installation (baseline images) and on the day of sacrifice (final images). Digital subtraction of the two corresponding images was performed to evaluate changes in bone density and the area related to change around the implant between baseline and final images. Subtraction images demonstrated that a significant difference existed in mean shade of gray at 14 days post-surgery between Group SO (mean 175.3+/-14.4) and Group C (mean 146.2+/-5.2). Regarding the area in pixels corresponding to the bone gain in Group SO, the differences observed between the sacrifice periods and groups were only significant at 7 days sacrifice between Group SO (mean 171.2+/-21.9) and Group C (mean 64.5+/-60.4). Within the limits of this study, comfrey administration promotes an increase in radiographic bone density around titanium implants in the initial period of bone healing.

  11. Soft tissue response to zirconia and titanium implant abutments : an in vivo within-subject comparison

    NARCIS (Netherlands)

    van Brakel, Ralph; Meijer, Gert J.; Verhoeven, Jan Willem; Jansen, John; de Putter, Cornelis; Cune, Marco S.

    2012-01-01

    Aim To compare the health of the soft tissues towards zirconia and titanium abutments in man, as observed using histological data. Material and Methods Twenty patients received two mandibular implants with either a zirconia or titanium abutment (split mouth study design, left-right randomization).

  12. Soft tissue response to zirconia and titanium implant abutments: an in vivo within-subject comparison.

    NARCIS (Netherlands)

    Brakel, R. van; Meijer, G.J.; Verhoeven, J.W.; Jansen, J.A.; Putter, C. de; Cune, M.S.

    2012-01-01

    AIM: To compare the health of the soft tissues towards zirconia and titanium abutments in man, as observed using histological data. MATERIAL AND METHODS: Twenty patients received two mandibular implants with either a zirconia or titanium abutment (split mouth study design, left-right randomization).

  13. Modular titanium alloy neck adapter failures in hip replacement - failure mode analysis and influence of implant material

    Directory of Open Access Journals (Sweden)

    Bloemer Wilhelm

    2010-01-01

    Full Text Available Abstract Background Modular neck adapters for hip arthroplasty stems allow the surgeon to modify CCD angle, offset and femoral anteversion intraoperatively. Fretting or crevice corrosion may lead to failure of such a modular device due to high loads or surface contamination inside the modular coupling. Unfortunately we have experienced such a failure of implants and now report our clinical experience with the failures in order to advance orthopaedic material research and joint replacement surgery. The failed neck adapters were implanted between August 2004 and November 2006 a total of about 5000 devices. After this period, the titanium neck adapters were replaced by adapters out of cobalt-chromium. Until the end of 2008 in total 1.4% (n = 68 of the implanted titanium alloy neck adapters failed with an average time of 2.0 years (0.7 to 4.0 years postoperatively. All, but one, patients were male, their average age being 57.4 years (36 to 75 years and the average weight 102.3 kg (75 to 130 kg. The failures of neck adapters were divided into 66% with small CCD of 130° and 60% with head lengths of L or larger. Assuming an average time to failure of 2.8 years, the cumulative failure rate was calculated with 2.4%. Methods A series of adapter failures of titanium alloy modular neck adapters in combination with a titanium alloy modular short hip stem was investigated. For patients having received this particular implant combination risk factors were identified which were associated with the occurence of implant failure. A Kaplan-Meier survival-failure-analysis was conducted. The retrieved implants were analysed using microscopic and chemical methods. Modes of failure were simulated in biomechanical tests. Comparative tests included modular neck adapters made of titanium alloy and cobalt chrome alloy material. Results Retrieval examinations and biomechanical simulation revealed that primary micromotions initiated fretting within the modular tapered neck

  14. Evaluation of the effect of low intensity laser radiation on the osseointegration of titanium implants inserted in rabbits' tibia

    International Nuclear Information System (INIS)

    Castilho Filho, Thyrso

    2003-01-01

    The purpose of this study was to evaluate the influence of low intensity laser irradiation on bone repair process after titanium implant surgeries performed in rabbits' tibia. Thirty three Norfolk rabbits were divided into three different groups according to the implant removal period (14, 21 and 42 days). Two titanium-pure implants were inserted one in each tibia and one side was randomly chosen to be irradiated. Irradiations were performed employing a GaAlAs laser (λ=780 nm) during 10 seconds, with an energy density of 7.5 J/cm 2 on 4 spots: above, bellow, on the right and on the left side of the implants with an interval between irradiations of 48 hours during 14 days. Animals were sacrificed according to the observation times, tibias were removed and the strength removal values recorded. Results showed that, for the 21 and 42 days sacrifices periods, the irradiated side presented a statistically higher implant strength removal values when compared to the non-irradiated side. (author)

  15. Iso-surface volume rendering for implant surgery

    NARCIS (Netherlands)

    van Foreest-Timp, Sheila; Lemke, H.U.; Inamura, K.; Doi, K.; Vannier, M.W.; Farman, A.G.

    2001-01-01

    Many clinical situations ask for the simultaneous visualization of anatomical surfaces and synthetic meshes. Common examples include hip replacement surgery, intra-operative visualization of surgical instruments or probes, visualization of planning information, or implant surgery. To be useful for

  16. Plasma-sprayed titanium coating to polyetheretherketone improves the bone-implant interface.

    Science.gov (United States)

    Walsh, William R; Bertollo, Nicky; Christou, Chrisopher; Schaffner, Dominik; Mobbs, Ralph J

    2015-05-01

    Rapid and stable fixation at the bone-implant interface would be regarded as one of the primary goals to achieve clinical efficacy, regardless of the surgical site. Although mechanical and physical properties of polyetheretherketone (PEEK) provide advantages for implant devices, the hydrophobic nature and the lack of direct bone contact remains a limitation. To examine the effects of a plasma-sprayed titanium coated PEEK on the mechanical and histologic properties at the bone-implant interface. A preclinical laboratory study. Polyetheretherketone and plasma-sprayed titanium coated PEEK implants (Ti-bond; Spinal Elements, Carlsbad, CA, USA) were placed in a line-to-line manner in cortical bone and in a press-fit manner in cancellous bone of adult sheep using an established ovine model. Shear strength was assessed in the cortical sites at 4 and 12 weeks, whereas histology was performed in cortical and cancellous sites at both time points. The titanium coating dramatically improved the shear strength at the bone-implant interface at 4 weeks and continued to improve with time compared with PEEK. Direct bone ongrowth in cancellous and cortical sites can be achieved using a plasma-sprayed titanium coating on PEEK. Direct bone to implant bonding can be achieved on PEEK in spite of its hydrophobic nature using a plasma-sprayed titanium coating. The plasma-sprayed titanium coating improved mechanical properties in the cortical sites and the histology in cortical and cancellous sites. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. SLM Produced Porous Titanium Implant Improvements for Enhanced Vascularization and Osteoblast Seeding

    Science.gov (United States)

    Matena, Julia; Petersen, Svea; Gieseke, Matthias; Kampmann, Andreas; Teske, Michael; Beyerbach, Martin; Murua Escobar, Hugo; Haferkamp, Heinz; Gellrich, Nils-Claudius; Nolte, Ingo

    2015-01-01

    To improve well-known titanium implants, pores can be used for increasing bone formation and close bone-implant interface. Selective Laser Melting (SLM) enables the production of any geometry and was used for implant production with 250-µm pore size. The used pore size supports vessel ingrowth, as bone formation is strongly dependent on fast vascularization. Additionally, proangiogenic factors promote implant vascularization. To functionalize the titanium with proangiogenic factors, polycaprolactone (PCL) coating can be used. The following proangiogenic factors were examined: vascular endothelial growth factor (VEGF), high mobility group box 1 (HMGB1) and chemokine (C-X-C motif) ligand 12 (CXCL12). As different surfaces lead to different cell reactions, titanium and PCL coating were compared. The growing into the porous titanium structure of primary osteoblasts was examined by cross sections. Primary osteoblasts seeded on the different surfaces were compared using Live Cell Imaging (LCI). Cross sections showed cells had proliferated, but not migrated after seven days. Although the cell count was lower on titanium PCL implants in LCI, the cell count and cell spreading area development showed promising results for titanium PCL implants. HMGB1 showed the highest migration capacity for stimulating the endothelial cell line. Future perspective would be the incorporation of HMGB1 into PCL polymer for the realization of a slow factor release. PMID:25849656

  18. SLM Produced Porous Titanium Implant Improvements for Enhanced Vascularization and Osteoblast Seeding

    Directory of Open Access Journals (Sweden)

    Julia Matena

    2015-04-01

    Full Text Available To improve well-known titanium implants, pores can be used for increasing bone formation and close bone-implant interface. Selective Laser Melting (SLM enables the production of any geometry and was used for implant production with 250-µm pore size. The used pore size supports vessel ingrowth, as bone formation is strongly dependent on fast vascularization. Additionally, proangiogenic factors promote implant vascularization. To functionalize the titanium with proangiogenic factors, polycaprolactone (PCL coating can be used. The following proangiogenic factors were examined: vascular endothelial growth factor (VEGF, high mobility group box 1 (HMGB1 and chemokine (C-X-C motif ligand 12 (CXCL12. As different surfaces lead to different cell reactions, titanium and PCL coating were compared. The growing into the porous titanium structure of primary osteoblasts was examined by cross sections. Primary osteoblasts seeded on the different surfaces were compared using Live Cell Imaging (LCI. Cross sections showed cells had proliferated, but not migrated after seven days. Although the cell count was lower on titanium PCL implants in LCI, the cell count and cell spreading area development showed promising results for titanium PCL implants. HMGB1 showed the highest migration capacity for stimulating the endothelial cell line. Future perspective would be the incorporation of HMGB1 into PCL polymer for the realization of a slow factor release.

  19. Determining the Young's modulus of a cellular titanium implant by FEM simulation

    Science.gov (United States)

    Loginov, Yu. N.; Golodnov, A. I.; Stepanov, S. I.; Kovalev, E. Yu.

    2017-12-01

    The role of additive manufacturing is noted for the construction of titanium medical implants. The purpose of the study is to determine the Young's modulus of cellular titanium implants, which is based on calculations performed by finite element analysis. A honeycomb structure from intersecting cylinder surfaces is offered for the implant made of the Ti-6Al-4V alloy. Boundary conditions are stated for the loading of the implant structure. It is demonstrated that the Young's modulus can be reduced more than three times comparing to a solid titanium alloy. Zones of strain and stress localization located near the abutment of the cylindrical surfaces. Recommendations for the further improvement of the implant architecture are generated.

  20. Clinical Outcomes of Penile Prosthesis Implantation Surgery

    Directory of Open Access Journals (Sweden)

    Onur Dede

    2016-06-01

    Full Text Available Objective: We aimed to evaluating the outcomes of in­flatable penile prosthesis implantations and partner sat­isfaction. Methods: Data of 52 patients who underwent penile prosthesis implantation in single center between May 2010 and December 2015 were retrospectively analyzed. Types of prosthesis, complication and satisfaction rates of patients were recorded by EDITS (Erectile Dysfunction Inventory of Treatment Satisfaction questionnaire was used. Results: The mean age was 49.2±14.7 years for patients. The mean follow-up durations for 34.3±12.5 months. The mean hospital stay was 3.84±1.52 days. Evaluating of the couples satisfaction revealed that 44 (84% of the patient were very satisfied. There was not any complication and no patient need to underwent revision surgery. Conclusion: Inflatable penile prosthesis implants, with high levels of treatment success, patient and partner sat­isfaction, are effective and safe options for treatment of organic erectile dysfunction with acceptable complication and revision rates.

  1. Hearing Preservation in Cochlear Implant Surgery

    Directory of Open Access Journals (Sweden)

    Priscila Carvalho Miranda

    2014-01-01

    Full Text Available In the past, it was thought that hearing loss patients with residual low-frequency hearing would not be good candidates for cochlear implantation since insertion was expected to induce inner ear trauma. Recent advances in electrode design and surgical techniques have made the preservation of residual low-frequency hearing achievable and desirable. The importance of preserving residual low-frequency hearing cannot be underestimated in light of the added benefit of hearing in noisy atmospheres and in music quality. The concept of electrical and acoustic stimulation involves electrically stimulating the nonfunctional, high-frequency region of the cochlea with a cochlear implant and applying a hearing aid in the low-frequency range. The principle of preserving low-frequency hearing by a “soft surgery” cochlear implantation could also be useful to the population of children who might profit from regenerative hair cell therapy in the future. Main aspects of low-frequency hearing preservation surgery are discussed in this review: its brief history, electrode design, principles and advantages of electric-acoustic stimulation, surgical technique, and further implications of this new treatment possibility for hearing impaired patients.

  2. Cranioplasty Enhanced by Three-Dimensional Printing: Custom-Made Three-Dimensional-Printed Titanium Implants for Skull Defects.

    Science.gov (United States)

    Park, Eun-Kyung; Lim, Jun-Young; Yun, In-Sik; Kim, Ju-Seong; Woo, Su-Heon; Kim, Dong-Seok; Shim, Kyu-Won

    2016-06-01

    The authors studied to demonstrate the efficacy of custom-made three-dimensional (3D)-printed titanium implants for reconstructing skull defects. From 2013 to 2015, 21 patients (8-62 years old, mean = 28.6-year old; 11 females and 10 males) with skull defects were treated. Total disease duration ranged from 6 to 168 months (mean = 33.6 months). The size of skull defects ranged from 84 × 104 to 154 × 193 mm. Custom-made implants were manufactured by Medyssey Co, Ltd (Jecheon, South Korea) using 3D computed tomography data, Mimics software, and an electron beam melting machine. The team reviewed several different designs and simulated surgery using a 3D skull model. During the operation, the implant was fit to the defect without dead space. Operation times ranged from 85 to 180 minutes (mean = 115.7 minutes). Operative sites healed without any complications except for 1 patient who had red swelling with exudation at the skin defect, which was a skin infection and defect at the center of the scalp flap reoccurring since the initial head injury. This patient underwent reoperation for skin defect revision and replacement of the implant. Twenty-one patients were followed for 6 to 24 months (mean = 14.1 months). The patients were satisfied and had no recurrent wound problems. Head computed tomography after operation showed good fixation of titanium implants and satisfactory skull-shape symmetry. For the reconstruction of skull defects, the use of autologous bone grafts has been the treatment of choice. However, bone use depends on availability, defect size, and donor morbidity. As 3D printing techniques are further advanced, it is becoming possible to manufacture custom-made 3D titanium implants for skull reconstruction.

  3. A comparative study of zirconium and titanium implants in rat: osseointegration and bone material quality.

    Science.gov (United States)

    Hoerth, Rebecca M; Katunar, María R; Gomez Sanchez, Andrea; Orellano, Juan C; Ceré, Silvia M; Wagermaier, Wolfgang; Ballarre, Josefina

    2014-02-01

    Permanent metal implants are widely used in human medical treatments and orthopedics, for example as hip joint replacements. They are commonly made of titanium alloys and beyond the optimization of this established material, it is also essential to explore alternative implant materials in view of improved osseointegration. The aim of our study was to characterize the implant performance of zirconium in comparison to titanium implants. Zirconium implants have been characterized in a previous study concerning material properties and surface characteristics in vitro, such as oxide layer thickness and surface roughness. In the present study, we compare bone material quality around zirconium and titanium implants in terms of osseointegration and therefore characterized bone material properties in a rat model using a multi-method approach. We used light and electron microscopy, micro Raman spectroscopy, micro X-ray fluorescence and X-ray scattering techniques to investigate the osseointegration in terms of compositional and structural properties of the newly formed bone. Regarding the mineralization level, the mineral composition, and the alignment and order of the mineral particles, our results show that the maturity of the newly formed bone after 8 weeks of implantation is already very high. In conclusion, the bone material quality obtained for zirconium implants is at least as good as for titanium. It seems that the zirconium implants can be a good candidate for using as permanent metal prosthesis for orthopedic treatments.

  4. In vitro biological outcome of laser application for modification or processing of titanium dental implants.

    Science.gov (United States)

    Hindy, Ahmed; Farahmand, Farzam; Tabatabaei, Fahimeh Sadat

    2017-07-01

    There are numerous functions for laser in modern implant dentistry including surface treatment, surface coating, and implant manufacturing. As laser application may potentially improve osseointegration of dental implants, we systematically reviewed the literature for in vitro biological responses to laser-modified or processed titanium dental implants. The literature was searched in PubMed, ISI Web, and Scopus, using keywords "titanium dental implants," "laser," "biocompatibility," and their synonyms. After screening the 136 references obtained, 28 articles met the inclusion criteria. We found that Nd:YAG laser was the most commonly used lasers in the treatment or processing of titanium dental implants. Most of the experiments used cell attachment and cell proliferation to investigate bioresponses of the implants. The most commonly used cells in these assays were osteoblast-like cells. Only one study was conducted in stem cells. These in vitro studies reported higher biocompatibility in laser-modified titanium implants. It seems that laser radiation plays a vital role in cell response to dental implants; however, it is necessary to accomplish more studies using different laser types and parameters on various cells to offer a more conclusive result.

  5. Comparison of stainless steel and titanium alloy orthodontic miniscrew implants: a mechanical and histologic analysis.

    Science.gov (United States)

    Brown, Ryan N; Sexton, Brent E; Gabriel Chu, Tien-Min; Katona, Thomas R; Stewart, Kelton T; Kyung, Hee-Moon; Liu, Sean Shih-Yao

    2014-04-01

    The detailed mechanical and histologic properties of stainless steel miniscrew implants used for temporary orthodontic anchorage have not been assessed. Thus, the purpose of this study was to compare them with identically sized titanium alloy miniscrew implants. Forty-eight stainless steel and 48 titanium alloy miniscrew implants were inserted into the tibias of 12 rabbits. Insertion torque and primary stability were recorded. One hundred grams of tensile force was applied between half of the implants in each group, resulting in 4 subgroups of 24 specimens each. Fluorochrome labeling was administered at weeks 4 and 5. When the rabbits were euthanized at 6 weeks, stability and removal torque were measured in half (ie, 12 specimens) of each of the 4 subgroups. Microdamage burden and bone-to-implant contact ratio were quantified in the other 12 specimens in each subgroup. Mixed model analysis of variance was used for statistical analysis. All implants were stable at insertion and after 6 weeks. The only significant difference was the higher (9%) insertion torque for stainless steel. No significant differences were found between stainless steel and titanium alloy miniscrew implants in microdamage burden and bone-to-implant contact regardless of loading status. Stainless steel and titanium alloy miniscrew implants provide the same mechanical stability and similar histologic responses, suggesting that both are suitable for immediate orthodontic clinical loads. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  6. Evaluation of Functionalized Porous Titanium Implants for Enhancing Angiogenesis in Vitro

    Directory of Open Access Journals (Sweden)

    Laura Roland

    2016-04-01

    Full Text Available Implant constructs supporting angiogenesis are favorable for treating critically-sized bone defects, as ingrowth of capillaries towards the center of large defects is often insufficient. Consequently, the insufficient nutritional supply of these regions leads to impaired bone healing. Implants with specially designed angiogenic supporting geometry and functionalized with proangiogenic cytokines can enhance angiogenesis. In this study, Vascular Endothelial Growth Factor (VEGF and High Mobility Group Box 1 (HMGB1 were used for incorporation into poly-ε-caprolactone (PCL-coated porous titanium implants. Bioactivity of released factors and influence on angiogenesis of functionalized implants were evaluated using a migration assay and angiogenesis assays. Both implants released angiogenic factors, inducing migration of endothelial cells. Also, VEGF-functionalized PCL-coated titanium implants enhanced angiogenesis in vitro. Both factors were rapidly released in high doses from the implant coating during the first 72 h.

  7. Evaluation of Osseointegration of Titanium Alloyed Implants Modified by Plasma Polymerization

    Directory of Open Access Journals (Sweden)

    Carolin Gabler

    2014-02-01

    Full Text Available By means of plasma polymerization, positively charged, nanometre-thin coatings can be applied to implant surfaces. The aim of the present study was to quantify the adhesion of human bone cells in vitro and to evaluate the bone ongrowth in vivo, on titanium surfaces modified by plasma polymer coatings. Different implant surface configurations were examined: titanium alloy (Ti6Al4V coated with plasma-polymerized allylamine (PPAAm and plasma-polymerized ethylenediamine (PPEDA versus uncoated. Shear stress on human osteoblast-like MG-63 cells was investigated in vitro using a spinning disc device. Furthermore, bone-to-implant contact (BIC was evaluated in vivo. Custom-made conical titanium implants were inserted at the medial tibia of female Sprague-Dawley rats. After a follow-up of six weeks, the BIC was determined by means of histomorphometry. The quantification of cell adhesion showed a significantly higher shear stress for MG-63 cells on PPAAm and PPEDA compared to uncoated Ti6Al4V. Uncoated titanium alloyed implants showed the lowest BIC (40.4%. Implants with PPAAm coating revealed a clear but not significant increase of the BIC (58.5% and implants with PPEDA a significantly increased BIC (63.7%. In conclusion, plasma polymer coatings demonstrate enhanced cell adhesion and bone ongrowth compared to uncoated titanium surfaces.

  8. Application of nitrogen plasma immersion ion implantation to titanium nasal implants with nanonetwork surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ying-Sui; Yang, Wei-En [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Zhang, Lan [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Zhu, Hongqin [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Lan, Ming-Ying [Division of Rhinology, Department of Otolaryngology Head and Neck Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan and School of Medicine, National Yang-Ming University, Taipei 112, Taiwan (China); Lee, Sheng-Wei [Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan (China); Huang, Her-Hsiung, E-mail: hhhuang@ym.edu.tw [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan (China); Department of Medical Research, China Medical University Hospital, Taichung 407, Taiwan (China); Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413, Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan (China)

    2016-07-15

    In nasal reconstruction, the response of cells to titanium (Ti) implants is mainly determined by surface features of the implant. In a pilot study, the authors applied electrochemical anodization to Ti surfaces in an alkaline solution to create a network of nanoscale surface structures. This nanonetwork was intended to enhance the responses of primary human nasal epithelial cell (HNEpC) to the Ti surface. In this study, the authors then treated the anodized, nanonetwork-structured Ti surface using nitrogen plasma immersion ion implantation (NPIII) in order to further improve the HNEpC response to the Ti surface. Subsequently, surface characterization was performed to elucidate morphology, roughness, wettability, and chemistry of specimens. Cytotoxicity, blood, and HNEpC responses were also evaluated. Our results demonstrate that NPIII treatment led to the formation of a noncytotoxic TiN-containing thin film (thickness <100 nm) on the electrochemically anodized Ti surface with a nanonetwork-structure. NPIII treatment was shown to improve blood clotting and the adhesion of platelets to the anodized Ti surface as well as the adhesion and proliferation of hNEpC. This research spreads our understanding of the fact that a TiN-containing thin film, produced using NPIII treatment, could be used to improve blood and HNEpC responses to anodized, nanonetwork-structured Ti surfaces in nasal implant applications.

  9. Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants

    Directory of Open Access Journals (Sweden)

    Suzuki T

    2012-02-01

    Full Text Available Masahiro Yamada*, Takeshi Ueno*, Naoki Tsukimura, Takayuki Ikeda, Kaori Nakagawa, Norio Hori, Takeo Suzuki, Takahiro OgawaLaboratory of Bone and Implant Sciences, The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA *These authors contributed equally to this workAbstract: The mechanism by which hydroxyapatite (HA-coated titanium promotes bone–implant integration is largely unknown. Furthermore, refining the fabrication of nanostructured HA to the level applicable to the mass production process for titanium implants is challenging. This study reports successful creation of nanopolymorphic crystalline HA on microroughened titanium surfaces using a combination of flame spray and low-temperature calcination and tests its biological capability to enhance bone–implant integration. Sandblasted microroughened titanium implants and sandblasted + HA-coated titanium implants were subjected to biomechanical and histomorphometric analyses in a rat model. The HA was 55% crystallized and consisted of nanoscale needle-like architectures developed in various diameters, lengths, and orientations, which resulted in a 70% increase in surface area compared to noncoated microroughened surfaces. The HA was free from impurity contaminants, with a calcium/phosphorus ratio of 1.66 being equivalent to that of stoichiometric HA. As compared to microroughened implants, HA-coated implants increased the strength of bone–implant integration consistently at both early and late stages of healing. HA-coated implants showed an increased percentage of bone–implant contact and bone volume within 50 µm proximity of the implant surface, as well as a remarkably reduced percentage of soft tissue intervention between bone and the implant surface. In contrast, bone volume outside the 50 µm border was lower around HA-coated implants. Thus, this study

  10. Micro CT and human histological analysis of a peri-implant osseous defect grafted with porous titanium granules: a case report.

    Science.gov (United States)

    Wohlfahrt, Johan Caspar; Aass, Anne Merete; Ronold, Hans Jacob; Lyngstadaas, Stale Petter

    2011-01-01

    Treatment of peri-implant osseous defects represents a significant challenge for clinicians, and the need to evolve within predictable surgical procedures is important. This case report describes the surgical treatment and grafting with porous titanium granules (PTG) of one patient with a peri-implant osseous defect. The suggested thrombogenic properties of titanium are intriguing from the perspective of osseous reconstructive surgery. In an ongoing randomized clinical trial using PTG for treatment of peri-implant osseous defects, one patient with one test implant was excluded and scheduled for implant removal. The surgical therapy included open flap debridement with surface decontamination with 24% EDTA gel, grafting with PTG, and resubmersion of the implant. After 12 months of healing, the implant with surrounding tissues was excised en bloc and micro CT and histological analyses were performed. Analyses showed PTG in close contact with new bone and with bone growing both into the porosities of the graft material and onto the adjacent implant surface. Element analysis demonstrated calcium and phosphorus in the new tissue embedding the PTG and the implant. Int J Oral Maxillofac Implants 2011;26:e9-e14.

  11. Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone

    Directory of Open Access Journals (Sweden)

    M. Niinomi

    2011-01-01

    Full Text Available β-type titanium alloys with low Young's modulus are required to inhibit bone atrophy and enhance bone remodeling for implants used to substitute failed hard tissue. At the same time, these titanium alloys are required to have high static and dynamic strength. On the other hand, metallic biomaterials with variable Young's modulus are required to satisfy the needs of both patients and surgeons, namely, low and high Young's moduli, respectively. In this paper, we have discussed effective methods to improve the static and dynamic strength while maintaining low Young's modulus for β-type titanium alloys used in biomedical applications. Then, the advantage of low Young's modulus of β-type titanium alloys in biomedical applications has been discussed from the perspective of inhibiting bone atrophy and enhancing bone remodeling. Further, we have discussed the development of β-type titanium alloys with a self-adjusting Young's modulus for use in removable implants.

  12. [Implants for genital prolapse : Contra mesh surgery].

    Science.gov (United States)

    Hampel, C

    2017-12-01

    Alloplastic transvaginal meshes have become very popular in the surgery of pelvic organ prolapse (POP) as did alloplastic suburethral slings in female stress incontinence surgery, but without adequate supporting data. The simplicity of the mesh procedure facilitates its propagation with acceptance of higher revision and complication rates. Since attending physicians do more and more prolapse surgeries without practicing or teaching alternative techniques, expertise in these alternatives, which might be very useful in cases of recurrence, persistence or complications, is permanently lost. It is doubtful that proper and detailed information about alternatives, risks, and benefits of transvaginal alloplastic meshes is provided to every single prolapse patient according to the recommendations of the German POP guidelines, since the number of implanted meshes exceeds the number of properly indicated mesh candidates by far. Although there is no dissent internationally about the available mesh data, thousands of lawsuits in the USA, insolvency of companies due to claims for compensation and unambiguous warnings from foreign urological societies leave German urogynecologists still unimpressed. The existing literature in pelvic organ prolapse exclusively focusses on POP stage and improvement of that stage with surgical therapy. Instead, typical prolapse symptoms should trigger therapy and improvement of these symptoms should be the utmost treatment goal. It is strongly recommended for liability reasons to obtain specific written informed consent.

  13. No positive effect of Acid etching or plasma cleaning on osseointegration of titanium implants in a canine femoral condyle press-fit model

    DEFF Research Database (Denmark)

    Saksø, Henrik; Jakobsen, Thomas Vestergaard; Mortensen, Mikkel Saksø

    2013-01-01

    Implant surface treatments that improve early osseointegration may prove useful in long-term survival of uncemented implants. We investigated Acid Etching and Plasma Cleaning on titanium implants.......Implant surface treatments that improve early osseointegration may prove useful in long-term survival of uncemented implants. We investigated Acid Etching and Plasma Cleaning on titanium implants....

  14. Electrical characteristic of the titanium mesh electrode for transcutaneous intrabody communication to monitor implantable artificial organs.

    Science.gov (United States)

    Okamoto, Eiji; Kikuchi, Sakiko; Mitamura, Yoshinori

    2016-09-01

    We have developed a tissue-inducing electrode using titanium mesh to obtain mechanically and electrically stable contact with the tissue for a new transcutaneous communication system using the human body as a conductive medium. In this study, we investigated the electrical properties of the titanium mesh electrode by measuring electrode-tissue interface resistance in vivo. The titanium mesh electrode (Hi-Lex Co., Zellez, Hyogo, Japan) consisted of titanium fibers (diameter of 50 μm), and it has an average pore size of 200 μm and 87 % porosity. The titanium mesh electrode has a diameter of 5 mm and thickness of 1.5 mm. Three titanium mesh electrodes were implanted separately into the dorsal region of the rat. We measured the electrode-electrode impedance using an LCR meter for 12 weeks, and we calculated the tissue resistivity and electrode-tissue interface resistance. The electrode-tissue interface resistance of the titanium mesh electrode decreased slightly until the third POD and then continuously increased to 75 Ω. The electrode-tissue interface resistance of the titanium mesh electrode is stable and it has lower electrode-tissue interface resistance than that of a titanium disk electrode. The extracted titanium mesh electrode after 12 weeks implantation was fixed in 10 % buffered formalin solution and stained with hematoxylin-eosin. Light microscopic observation showed that the titanium mesh electrode was filled with connective tissue, inflammatory cells and fibroblasts with some capillaries in the pores of the titanium mesh. The results indicate that the titanium mesh electrode is a promising electrode for the new transcutaneous communication system.

  15. Nanostructured titanium-based materials for medical implants: Modeling and development

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Levashov, Evgeny; Valiev, Ruslan Z.

    2014-01-01

    Nanostructuring of titanium-based implantable devices can provide them with superior mechanical properties and enhanced biocompatibity. An overview of advanced fabrication technologies of nanostructured, high strength, biocompatible Ti and shape memory Ni-Ti alloy for medical implants is given. C...

  16. Titanium implants with modified surfaces: Meta-analysis of in vivo osteointegration

    Energy Technology Data Exchange (ETDEWEB)

    Gasik, Michael, E-mail: michael.gasik@aalto.fi [Aalto University Foundation, School of Chemical Technology, P.O. Box 16200, FIN-00076 AALTO (Finland); Braem, Annabel [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee (Belgium); Chaudhari, Amol; Duyck, Joke [Department of Prosthetic Dentistry, BIOMAT Research Cluster, KU Leuven, Kapucijnenvoer 7a, B-3000 Leuven (Belgium); Vleugels, Jozef [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee (Belgium)

    2015-04-01

    Titanium-based implants are widely used in modern clinical practice, but their “optimal” properties in terms of porosity and topology, roughness and hydrophilic parameters are being a subject of intensive discussions. Recent in vitro results have shown a possibility to optimize the surface of an implant with maximal repelling of bacteria (Staphylococcus aureus, Staphylococcus epidermidis) and improvement in human osteogenic and endothelial cell adhesion, proliferation and differentiation. In this work, these different grades titanium implants were tested in vivo using the same analytical methodology. In addition to material parameters, key histomorphometrical parameters such a regeneration area, bone adaptation area and bone-to-implant contact were determined after 2 and 4 weeks of implantation in rabbit animal model. Porous implants have more clear differences than non-porous ones, with the best optimum values obtained on hydrothermally treated electrophoretically deposited titanium. These in vivo data correlate well with the optimal prediction made by in vitro tests. - Highlights: • Various titanium specimens were studied in vivo on osteointegration vs their properties. • Non-porous implants had a better performance when coated with bioactive glass. • Porous implants have shown the best results for hydrothermally treated specimens. • Good correlation was found with the previous in vitro tests. • New analysis of the in vivo data has shown benefits to assess biomaterials performance.

  17. Histological assessment of titanium and polypropylene fiber mesh implantation with and without fibrin tissue glue.

    NARCIS (Netherlands)

    Hallers, E.J.O. ten; Jansen, J.A.; Marres, H.A.M.; Rakhorst, G.; Verkerke, G.J.

    2007-01-01

    Polypropylene (PP) and titanium (Ti) meshes are well-known surgical implants that provoke a relative low foreign body reaction. Firm stabilization of the implant is important to prevent migration and subsequent failure of the operation. Fibrin tissue glues are commercially available adhesives and

  18. Histological assessment of titanium and polypropylene fiber mesh implantation with and without fibrin tissue glue

    NARCIS (Netherlands)

    ten Hallers, E.J. Olivier; Jansen, John A.; Marres, Henri A.M.; Rakhorst, Gerhard; Verkerke, Gijsbertus Jacob

    2007-01-01

    Polypropylene (PP) and titanium (Ti) meshes are well-known surgical implants that provoke a relative low foreign body reaction. Firm stabilization of the implant is important to prevent migration and subsequent failure of the operation. Fibrin tissue glues are commercially available adhesives and

  19. Histological assessment of titanium and polypropylene fiber mesh implantation with and without fibrin tissue glue

    NARCIS (Netherlands)

    ten Hallers, E. J. Olivier; Jansen, John A.; Marres, Henri A. M.; Rakhorst, Gerhard; Verkerke, Gijsbertus J.

    Polypropylene (PP) and titanium (Ti) meshes are well-known surgical implants that provoke a relative low foreign body reaction. Firm stabilization of the implant is important to prevent migration and subsequent failure of the operation. Fibrin tissue glues are commercially available adhesives and

  20. Titanium implants with modified surfaces: Meta-analysis of in vivo osteointegration

    International Nuclear Information System (INIS)

    Gasik, Michael; Braem, Annabel; Chaudhari, Amol; Duyck, Joke; Vleugels, Jozef

    2015-01-01

    Titanium-based implants are widely used in modern clinical practice, but their “optimal” properties in terms of porosity and topology, roughness and hydrophilic parameters are being a subject of intensive discussions. Recent in vitro results have shown a possibility to optimize the surface of an implant with maximal repelling of bacteria (Staphylococcus aureus, Staphylococcus epidermidis) and improvement in human osteogenic and endothelial cell adhesion, proliferation and differentiation. In this work, these different grades titanium implants were tested in vivo using the same analytical methodology. In addition to material parameters, key histomorphometrical parameters such a regeneration area, bone adaptation area and bone-to-implant contact were determined after 2 and 4 weeks of implantation in rabbit animal model. Porous implants have more clear differences than non-porous ones, with the best optimum values obtained on hydrothermally treated electrophoretically deposited titanium. These in vivo data correlate well with the optimal prediction made by in vitro tests. - Highlights: • Various titanium specimens were studied in vivo on osteointegration vs their properties. • Non-porous implants had a better performance when coated with bioactive glass. • Porous implants have shown the best results for hydrothermally treated specimens. • Good correlation was found with the previous in vitro tests. • New analysis of the in vivo data has shown benefits to assess biomaterials performance

  1. Histomorphometric and removal torque analysis for TiO2-blasted titanium implants. An experimental study on dogs

    DEFF Research Database (Denmark)

    Gotfredsen, K; Nimb, L; Hjörting-Hansen, E

    1992-01-01

    The aim of the present study was to compare the anchorage of TiO2-blasted screw and cylindrical implants with conventionally used machine-produced screw and cylindrical implants inserted immediately in extraction sockets on dogs. 6 adult mongrel dogs had 3rd and 4th mandibular premolars extracted...... bilaterally and 24 commercial pure titanium implants were placed immediately in extraction sockets and covered with mucoperiosteum. Each dog had inserted 4 implants: 1 screw implant and 1 cylindrical implant blasted with titanium-dioxide-particles; 1 screw implant and 1 cylindrical implant with machine...

  2. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing.

    Science.gov (United States)

    Wauthle, Ruben; Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Mulier, Michiel; Zadpoor, Amir Abbas; Weinans, Harrie; Van Humbeeck, Jan; Kruth, Jean-Pierre; Schrooten, Jan

    2015-09-01

    Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous implants, and none or little interest goes to pure titanium for use in orthopedic or load-bearing implants. Given the special mechanical behavior of cellular structures and the material properties inherent to the additive manufacturing of metals, the aim of this study is to investigate the properties of selective laser melted pure unalloyed titanium porous structures. Therefore, the static and dynamic compressive properties of pure titanium structures are determined and compared to previously reported results for identical structures made from Ti6Al4V ELI and tantalum. The results show that porous Ti6Al4V ELI still remains the strongest material for statically loaded applications, whereas pure titanium has a mechanical behavior similar to tantalum and is the material of choice for cyclically loaded porous implants. These findings are considered to be important for future implant developments since it announces a potential revival of the use of pure titanium for additively manufactured porous implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Structure and properties of Titanium for dental implants

    Directory of Open Access Journals (Sweden)

    M. Greger

    2009-10-01

    Full Text Available This paper describes manufacture of nano-structural titanium, its structure and properties. Nano-titanium has higher specific strength properties than ordinary (coarse-grained titanium. Nano-titanium was produced by the equal-channel angular pressing (ETAP process. The research it self was focused on physical base of strengthening and softening processes and developments occurring at the grain boundaries during the ECAP process at half-hot temperature. Strength of nano-titanium varies around 960 MPa, grain size around 300 nm.

  4. 10-year survival rate and the incidence of peri-implant disease of 374 titanium dental implants with a SLA surface: a prospective cohort study in 177 fully and partially edentulous patients.

    Science.gov (United States)

    van Velzen, Frank J J; Ofec, Ronen; Schulten, Engelbert A J M; Ten Bruggenkate, Christiaan M

    2015-10-01

    This prospective cohort study evaluates the 10-year survival and incidence of peri-implant disease at implant and patient level of sandblasted, large grid, and acid-etched titanium dental implants (Straumann, soft tissue level, SLA surface) in fully and partially edentulous patients. Patients who had dental implant surgery in the period between November 1997 and June 2001, with a follow-up of at least 10 years, were investigated for clinical and radiological examination. Among the 506 inserted dental implants in 250 patients, 10-year data regarding the outcome of implants were available for 374 dental implants in 177 patients. In the current study, peri-implantitis was defined as advanced bone loss (≧1.5 mm. postloading) in combination with bleeding on probing. At 10-year follow-up, only one implant was lost (0.3%) 2 months after implant surgery due to insufficient osseointegration. The average bone loss at 10 year postloading was 0.52 mm. Advanced bone loss at 10-year follow-up was present in 35 dental implants (9.8%). Seven percent of the observed dental implants showed bleeding on probing in combination with advanced bone loss and 4.2% when setting the threshold for advanced bone loss at 2.0 mm. Advanced bone loss without bleeding on probing was present in 2.8% of all implants. In this prospective study, the 10-year survival rate at implant and patient level was 99.7% and 99.4%, respectively. Peri-implantitis was present in 7% of the observed dental implants according to the above-mentioned definition of peri-implantitis. This study shows that SLA implants offer predictable long-term results as support in the treatment of fully and partially edentulous patients. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Mathematical filtering minimizes metallic halation of titanium implants in MicroCT images.

    Science.gov (United States)

    Ha, Jee; Osher, Stanley J; Nishimura, Ichiro

    2013-01-01

    Microcomputed tomography (MicroCT) images containing titanium implant suffer from x-rays scattering, artifact and the implant surface is critically affected by metallic halation. To improve the metallic halation artifact, a nonlinear Total Variation denoising algorithm such as Split Bregman algorithm was applied to the digital data set of MicroCT images. This study demonstrated that the use of a mathematical filter could successfully reduce metallic halation, facilitating the osseointegration evaluation at the bone implant interface in the reconstructed images.

  6. Comparison of mechanical and biological properties of zirconia and titanium alloy orthodontic micro-implants.

    Science.gov (United States)

    Choi, Hae Won; Park, Young Seok; Chung, Shin Hye; Jung, Min Ho; Moon, Won; Rhee, Sang Hoon

    2017-07-01

    The aim of this study was to compare the initial stability as insertion and removal torque and the clinical applicability of novel orthodontic zirconia micro-implants made using a powder injection molding (PIM) technique with those parameters in conventional titanium micro-implants. Sixty zirconia and 60 titanium micro-implants of similar design (diameter, 1.6 mm; length, 8.0 mm) were inserted perpendicularly in solid polyurethane foam with varying densities of 20 pounds per cubic foot (pcf), 30 pcf, and 40 pcf. Primary stability was measured as maximum insertion torque (MIT) and maximum removal torque (MRT). To investigate clinical applicability, compressive and tensile forces were recorded at 0.01, 0.02, and 0.03 mm displacement of the implants at angles of 0°, 10°, 20°, 30°, and 40°. The biocompatibility of zirconia micro-implants was assessed via an experimental animal study. There were no statistically significant differences between zirconia micro-implants and titanium alloy implants with regard to MIT, MRT, or the amount of movement in the angulated lateral displacement test. As angulation increased, the mean compressive and tensile forces required to displace both types of micro-implants increased substantially at all distances. The average bone-to-implant contact ratio of prototype zirconia micro-implants was 56.88 ± 6.72%. Zirconia micro-implants showed initial stability and clinical applicability for diverse orthodontic treatments comparable to that of titanium micro-implants under compressive and tensile forces.

  7. Titanium Implant Osseointegration Problems with Alternate Solutions Using Epoxy/Carbon-Fiber-Reinforced Composite

    Directory of Open Access Journals (Sweden)

    Richard C. Petersen

    2014-12-01

    Full Text Available The aim of the article is to present recent developments in material research with bisphenyl-polymer/carbon-fiber-reinforced composite that have produced highly influential results toward improving upon current titanium bone implant clinical osseointegration success. Titanium is now the standard intra-oral tooth root/bone implant material with biocompatible interface relationships that confer potential osseointegration. Titanium produces a TiO2 oxide surface layer reactively that can provide chemical bonding through various electron interactions as a possible explanation for biocompatibility. Nevertheless, titanium alloy implants produce corrosion particles and fail by mechanisms generally related to surface interaction on bone to promote an inflammation with fibrous aseptic loosening or infection that can require implant removal. Further, lowered oxygen concentrations from poor vasculature at a foreign metal surface interface promote a build-up of host-cell-related electrons as free radicals and proton acid that can encourage infection and inflammation to greatly influence implant failure. To provide improved osseointegration many different coating processes and alternate polymer matrix composite (PMC solutions have been considered that supply new designing potential to possibly overcome problems with titanium bone implants. Now for important consideration, PMCs have decisive biofunctional fabrication possibilities while maintaining mechanical properties from addition of high-strengthening varied fiber-reinforcement and complex fillers/additives to include hydroxyapatite or antimicrobial incorporation through thermoset polymers that cure at low temperatures. Topics/issues reviewed in this manuscript include titanium corrosion, implant infection, coatings and the new epoxy/carbon-fiber implant results discussing osseointegration with biocompatibility related to nonpolar molecular attractions with secondary bonding, carbon fiber in vivo

  8. The mutual influence of krypton implantation and pre-existing stress states in polycrystalline alpha titanium

    Energy Technology Data Exchange (ETDEWEB)

    Nsengiyumva, S. [Department of Physics, University of Cape Town, Rondebosch 7701 (South Africa); Department of Physics, Kigali Institute of Education, P.O. Box 5039 Kigali (Rwanda)], E-mail: schadrack.nsengiyumva@uct.ac.za; Ntsoane, T.P. [Nuclear Energy Corporation of South Africa (NECSA), P.O. Box 582 (South Africa); Raji, A.T. [Department of Physics, University of Cape Town, Rondebosch 7701 (South Africa); Topic, M. [iThemba LABS, Somerset West 7129 (South Africa); Kellermann, G. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas (Brazil); Riviere, J.P. [Laboratoire de Physique des Materiaux UMR6630-CNRS, 86960 (France); Britton, D.T.; Haerting, M. [Department of Physics, University of Cape Town, Rondebosch 7701 (South Africa)

    2009-08-15

    The stress profile in polycrystalline titanium implanted with krypton ions at different fluences has been determined using synchrotron radiation diffraction. For each fluence, the krypton profile has been measured using Rutherford backscattering geometry. The results were compared to model calculations obtained from the SRIM 2008 computer code. A strong stress relaxation was found for high fluence implantation, whereas for low fluence implantation an additional source of tensile stress was introduced in the near surface region. The projected range of the implanted krypton was significantly reduced compared to the expected range. A possible cause of this discrepancy is the drift of implanted ions under the influence of the pre-existing stress gradient.

  9. The mutual influence of krypton implantation and pre-existing stress states in polycrystalline alpha titanium

    International Nuclear Information System (INIS)

    Nsengiyumva, S.; Ntsoane, T.P.; Raji, A.T.; Topic, M.; Kellermann, G.; Riviere, J.P.; Britton, D.T.; Haerting, M.

    2009-01-01

    The stress profile in polycrystalline titanium implanted with krypton ions at different fluences has been determined using synchrotron radiation diffraction. For each fluence, the krypton profile has been measured using Rutherford backscattering geometry. The results were compared to model calculations obtained from the SRIM 2008 computer code. A strong stress relaxation was found for high fluence implantation, whereas for low fluence implantation an additional source of tensile stress was introduced in the near surface region. The projected range of the implanted krypton was significantly reduced compared to the expected range. A possible cause of this discrepancy is the drift of implanted ions under the influence of the pre-existing stress gradient.

  10. Direct Metal Laser Sintering Titanium Dental Implants: A Review of the Current Literature

    Science.gov (United States)

    Mangano, F.; Chambrone, L.; van Noort, R.; Miller, C.; Hatton, P.; Mangano, C.

    2014-01-01

    Statement of Problem. Direct metal laser sintering (DMLS) is a technology that allows fabrication of complex-shaped objects from powder-based materials, according to a three-dimensional (3D) computer model. With DMLS, it is possible to fabricate titanium dental implants with an inherently porous surface, a key property required of implantation devices. Objective. The aim of this review was to evaluate the evidence for the reliability of DMLS titanium dental implants and their clinical and histologic/histomorphometric outcomes, as well as their mechanical properties. Materials and Methods. Electronic database searches were performed. Inclusion criteria were clinical and radiographic studies, histologic/histomorphometric studies in humans and animals, mechanical evaluations, and in vitro cell culture studies on DMLS titanium implants. Meta-analysis could be performed only for randomized controlled trials (RCTs); to evaluate the methodological quality of observational human studies, the Newcastle-Ottawa scale (NOS) was used. Results. Twenty-seven studies were included in this review. No RCTs were found, and meta-analysis could not be performed. The outcomes of observational human studies were assessed using the NOS: these studies showed medium methodological quality. Conclusions. Several studies have demonstrated the potential for the use of DMLS titanium implants. However, further studies that demonstrate the benefits of DMLS implants over conventional implants are needed. PMID:25525434

  11. [Susceptibility to infections and behavior of stainless steel : Comparison with titanium implants in traumatology].

    Science.gov (United States)

    Haubruck, Patrick; Schmidmaier, Gerhard

    2017-02-01

    Despite modern treatment options, implant-associated infections (IAI) remain a severe and challenging complication in the treatment of trauma patients. Almost 30 years after the introduction of implants made of titanium alloy into the treatment of trauma patients, there is still no uniform consensus regarding the clinical benefit of titanium alloy in the context of patients with IAI. We sought to determine if implants made of titanium alloy have been proven to be less susceptible regarding IAI in contrast to implants made of stainless steel. A review of the current literature on IAI in association with the utilized implant material was conducted. Relevant articles from the years 1995 to 2016 were searched in the PubMed database. A total of 183 articles were identified and all abstracts were reviewed for relevance. A total of 14 articles met the inclusion criteria and were stratified according to the level of evidence and furthermore evaluated regarding the influence of the implant material on IAI. Considerable debate remains concerning the influence of the implant material on the susceptibility to IAI; however, the available literature shows that despite slight tendencies, there is no proof of titanium alloy being favorable in the susceptibility to IAI. Furthermore, the literature shows that the design of plates for osteosynthesis might influence IAI. In particular, plates that cause less soft tissue damage and preserve perfusion of the periosteum proved to be beneficial regarding IAI.

  12. Direct metal laser sintering titanium dental implants: a review of the current literature.

    Science.gov (United States)

    Mangano, F; Chambrone, L; van Noort, R; Miller, C; Hatton, P; Mangano, C

    2014-01-01

    Statement of Problem. Direct metal laser sintering (DMLS) is a technology that allows fabrication of complex-shaped objects from powder-based materials, according to a three-dimensional (3D) computer model. With DMLS, it is possible to fabricate titanium dental implants with an inherently porous surface, a key property required of implantation devices. Objective. The aim of this review was to evaluate the evidence for the reliability of DMLS titanium dental implants and their clinical and histologic/histomorphometric outcomes, as well as their mechanical properties. Materials and Methods. Electronic database searches were performed. Inclusion criteria were clinical and radiographic studies, histologic/histomorphometric studies in humans and animals, mechanical evaluations, and in vitro cell culture studies on DMLS titanium implants. Meta-analysis could be performed only for randomized controlled trials (RCTs); to evaluate the methodological quality of observational human studies, the Newcastle-Ottawa scale (NOS) was used. Results. Twenty-seven studies were included in this review. No RCTs were found, and meta-analysis could not be performed. The outcomes of observational human studies were assessed using the NOS: these studies showed medium methodological quality. Conclusions. Several studies have demonstrated the potential for the use of DMLS titanium implants. However, further studies that demonstrate the benefits of DMLS implants over conventional implants are needed.

  13. Direct Metal Laser Sintering Titanium Dental Implants: A Review of the Current Literature

    Directory of Open Access Journals (Sweden)

    F. Mangano

    2014-01-01

    Full Text Available Statement of Problem. Direct metal laser sintering (DMLS is a technology that allows fabrication of complex-shaped objects from powder-based materials, according to a three-dimensional (3D computer model. With DMLS, it is possible to fabricate titanium dental implants with an inherently porous surface, a key property required of implantation devices. Objective. The aim of this review was to evaluate the evidence for the reliability of DMLS titanium dental implants and their clinical and histologic/histomorphometric outcomes, as well as their mechanical properties. Materials and Methods. Electronic database searches were performed. Inclusion criteria were clinical and radiographic studies, histologic/histomorphometric studies in humans and animals, mechanical evaluations, and in vitro cell culture studies on DMLS titanium implants. Meta-analysis could be performed only for randomized controlled trials (RCTs; to evaluate the methodological quality of observational human studies, the Newcastle-Ottawa scale (NOS was used. Results. Twenty-seven studies were included in this review. No RCTs were found, and meta-analysis could not be performed. The outcomes of observational human studies were assessed using the NOS: these studies showed medium methodological quality. Conclusions. Several studies have demonstrated the potential for the use of DMLS titanium implants. However, further studies that demonstrate the benefits of DMLS implants over conventional implants are needed.

  14. Titanium

    DEFF Research Database (Denmark)

    Fage, Simon W; Muris, Joris; Jakobsen, Stig S

    2016-01-01

    Exposure to titanium (Ti) from implants and from personal care products as nanoparticles (NPs) is common. This article reviews exposure sources, ion release, skin penetration, allergenic effects, and diagnostic possibilities. We conclude that human exposure to Ti mainly derives from dental...... and medical implants, personal care products, and foods. Despite being considered to be highly biocompatible relative to other metals, Ti is released in the presence of biological fluids and tissue, especially under certain circumstances, which seem to be more likely with regard to dental implants. Although...... most of the studies reviewed have important limitations, Ti seems not to penetrate a competent skin barrier, either as pure Ti, alloy, or as Ti oxide NPs. However, there are some indications of Ti penetration through the oral mucosa. We conclude that patch testing with the available Ti preparations...

  15. Albumin coatings by alternating current electrophoretic deposition for improving corrosion resistance and bioactivity of titanium implants.

    Science.gov (United States)

    Höhn, Sarah; Braem, Annabel; Neirinck, Bram; Virtanen, Sannakaisa

    2017-04-01

    Although Ti alloys are generally regarded to be highly corrosion resistant, inflammatory conditions following surgery can instigate breakdown of the TiO 2 passivation layer leading to an increased metal ion release. Furthermore proteins present in the surrounding tissue will readily adsorb on a titanium surface after implantation. In this paper alternating current electrophoretic deposition (AC-EPD) of bovine serum albumin (BSA) on Ti6Al4V was investigated in order to increase the corrosion resistance and control the protein adsorption capability of the implant surface. The Ti6Al4V surface was characterized with SEM, XPS and ToF-SIMS after long-term immersion tests under physiological conditions and simulated inflammatory conditions either in Dulbecco's Modified Eagle Medium (DMEM) or DMEM supplemented with fetal calf serum (FCS). The analysis showed an increased adsorption of amino acids and proteins from the different immersion solutions. The BSA coating was shown to prevent selective dissolution of the vanadium (V) rich β-phase, thus effectively limiting metal ion release to the environment. Electrochemical impedance spectroscopy measurements confirmed an increase of the corrosion resistance for BSA coated surfaces as a function of immersion time due to the time-dependent adsorption of the different amino acids (from DMEM) and proteins (from FCS) as observed by ToF-SIMS analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Titanium versus zirconia implants supporting maxillary overdentures: three-dimensional finite element analysis.

    Science.gov (United States)

    Osman, Reham B; Elkhadem, Amr H; Ma, Sunyoung; Swain, Michael V

    2013-01-01

    The purpose of this study was to compare the stress and strain occurring in peri-implant bone and implants used to support maxillary overdentures. Three-dimensional finite element analysis (3D FEA) was used to compare one-piece zirconia and titanium implants. Two types of implants were simulated using a 3D FEA model: one-piece zirconia and titanium implants (diameter, 3.8 × 11.5 mm) with 2.25-mm diameter ball abutments. In each simulation four implants were placed bilaterally in the canine/premolar region of an edentulous maxillary model. Static loads were applied axially and 20 degrees buccolingually on the buccal slope of the lingual cusps of posterior teeth of the first quadrant. Von Mises stresses and equivalent strains generated in peri-implant bone and first principal stresses in the implants were calculated. Comparable stress and strain values were shown in the peri-implant bone for both types of implants. The maximum equivalent strain produced in the peri-implant region was mostly within the range for bone augmentation. Under oblique loading, maximum von Mises stresses and equivalent strain were more evident at the neck of the most distal implant on the loaded side. Under axial load, the stress and strain were transferred to the peri-implant bone around the apex of the implant. Maximum tensile stresses that developed for either material were well below their fracture strength. The highest stresses were mainly located at the distobuccal region of the neck for the two implant materials under both loading conditions. From a biomechanical point of view, ceramic implants made from yttrium-stabilized tetragonal polycrystalline zirconia may be a potential alternative to conventional titanium implants for the support of overdentures. This is particularly relevant for a select group of patients with a proven allergy to titanium. Prospective clinical studies are still required to confirm these in vitro results. Different simulations presenting various cortical bone

  17. A Wrapping Method for Inserting Titanium Micro-Mesh Implants in the Reconstruction of Blowout Fractures

    Directory of Open Access Journals (Sweden)

    Tae Joon Choi

    2016-01-01

    Full Text Available Titanium micro-mesh implants are widely used in orbital wall reconstructions because they have several advantageous characteristics. However, the rough and irregular marginal spurs of the cut edges of the titanium mesh sheet impede the efficacious and minimally traumatic insertion of the implant, because these spurs may catch or hook the orbital soft tissue, skin, or conjunctiva during the insertion procedure. In order to prevent this problem, we developed an easy method of inserting a titanium micro-mesh, in which it is wrapped with the aseptic transparent plastic film that is used to pack surgical instruments or is attached to one side of the inner suture package. Fifty-four patients underwent orbital wall reconstruction using a transconjunctival or transcutaneous approach. The wrapped implant was easily inserted without catching or injuring the orbital soft tissue, skin, or conjunctiva. In most cases, the implant was inserted in one attempt. Postoperative computed tomographic scans showed excellent placement of the titanium micro-mesh and adequate anatomic reconstruction of the orbital walls. This wrapping insertion method may be useful for making the insertion of titanium micro-mesh implants in the reconstruction of orbital wall fractures easier and less traumatic.

  18. The effect of hierarchical micro/nanosurface titanium implant on osseointegration in ovariectomized sheep.

    Science.gov (United States)

    Xiao, J; Zhou, H; Zhao, L; Sun, Y; Guan, S; Liu, B; Kong, L

    2011-06-01

    Hydrofluoric etching and anodized hierarchical micro/nanotextured surface titanium implant was placed in mandibles of ovariectomized sheep for 12 weeks, and it showed improved osseointegration by resonance frequency analysis (RFA), microcomputed tomography (micro-CT) evaluation, histomorphometry, and biomechanical test. This study aimed to investigate the effects of micro/nanotextured titanium implant on osseointegration in ovariectomized (OVX) sheep. The hierarchical micro/nanotextured surface of titanium implant was fabricated by acid in 0.5% (w/v) hydrofluoric (HF) and anodized in HF acid electrolytes with a DC power of 20 V, and the machined surface implants with no treatment served as control group. The implants were placed in mandibles of OVX sheep, respectively. Twelve weeks after implantation, RFA, microcomputed tomography, histomorphometry, and biomechanical tests were applied to detect the osseointegration of the two groups. The implant stability quotient (ISQ) values, the maximum pull-out forces, and the bone-implant contact (BIC) were 65.5 ± 6.3, 490.6 ± 72.7 N, and 58.31 ± 5.79% in the micro/nanogroup and 58.3 ± 8.9, 394.5 ± 54.5 N, and 46.85 ± 5.04% in the control group, respectively. There was no significant difference between the two groups in ISQ values (p > 0.05), but in the micro/nanogroup, the maximal pull-out force and the BIC were increased significantly (p Micro-CT analysis showed that the bone volume ratio and the trabecular number increased significantly (p micro/nanogroup. Implant modification by HF acid etching and anodization to form a hierarchical micro/nanotextured surface could improve titanium implant osseointegration in OVX sheep 12 weeks after implantation.

  19. Osseointegration of three-dimensional designed titanium implants manufactured by selective laser melting.

    Science.gov (United States)

    Shaoki, Algabri; Xu, Jia-Yun; Sun, Haipeng; Chen, Xian-Shuai; Ouyang, Jianglin; Zhuang, Xiu-Mei; Deng, Fei-Long

    2016-10-27

    The selective laser melting (SLM) technique is a recent additive manufacturing (AM) technique. Several studies have reported success in the SLM-based production of biocompatible orthopaedic implants and three-dimensional bone defect constructs. In this study, we evaluated the surface properties and biocompatibility of an SLM titanium implant in vitro and compared them with those of a machined (MA) titanium control surface. In addition, we evaluated the osseointegration capability of the SLM implants in vivo and compared it with those of MA and Nobel-speedy (Nobel-S) implants. SLM microtopographical surface analysis revealed porous and high roughness with varied geometry compared with a smooth surface in MA Ti samples but with similar favourable wettability. Osteoblast proliferation and alkaline phosphatase activity were significantly enhanced on the SLM surface. Histological analysis of the bone-implant contact ratio revealed no significant difference among SLM, MA, and Nobel-S implants. Micro-CT assessment indicated that there was no significant difference in bone volume fraction around the implant among SLM implants and other types of surface modification implants. The removal torque value measurement of SLM implants was significantly lower that of than Nobel-S implants P manufacturing technique.

  20. Immediate loading of titanium hexed screw-type implants in the edentulous patient: case report.

    Science.gov (United States)

    Calvo, M P; Muller, E; Garg, A K

    2000-01-01

    Histologic and histomorphometric studies in both animals and humans have shown that more rapid and greater bone-to-implant contact can be achieved with implants that incorporate certain surface characteristics compared with the original machined-surface implants. Such findings are significant because various implant designs may allow the fixtures to sufficiently resist functional loading sooner than originally thought. The case report presented here indicates that immediate loading of hexed titanium screw-type implants in the anterior mandible can lead to successful osseointegration and clinical outcome. The number of implants placed, their distribution, and the type of rigid connection are critical considerations for immediate loading. A bone height that can accommodate dental implants > or = 10 mm long is recommended. Biomechanically, the implants to be immediately loaded must be stable and resistant to macromovement to ensure good osseointegration.

  1. Pectin nanocoating of titanium implant surfaces - an experimental study in rabbits

    DEFF Research Database (Denmark)

    Gurzawska, Katarzyna Aleksandra; Dirscherl, Kai; Jørgensen, Bodil

    2017-01-01

    that may increase adhesion of bone proteins, and bone cells at the implant surface. Nanocoating with pectins, plant cell wall-derived polysaccharides, is frequently done using rhamnogalacturonan-I (RG-I). AIM: The aim of the study was to evaluate the effect of nanocoating titanium implants with plant cell...... wall-derived rhamnogalacturonan-I, on bone healing and osseointegration. MATERIAL AND METHODS: Machined titanium implants were coated with three modifications of rhamnogalacturonan-I (RG-I). Chemical and physical surface properties were examined before insertion of nanocoated implants (n = 96....... The bone response to the nanocoated implants was analyzed qualitatively and quantitatively after 2, 4, 6, and 8 weeks of healing using light microscopy and histomorphometric methods. RESULTS: The RG-I coating influenced the surface chemical composition; wettability and roughness, making the surface more...

  2. Gentamicin coating of nanotubular anodized titanium implant reduces implant-related osteomyelitis and enhances bone biocompatibility in rabbits

    Directory of Open Access Journals (Sweden)

    Liu D

    2017-07-01

    Full Text Available Denghui Liu,1,* Chongru He,2,* Zhongtang Liu,2 Weidong Xu2 1Department of Orthopedics, the 113 Military Hospital, Ningbo, 2Department of Orthopedics, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Titanium and titanium alloy are widely used as orthopedic implants for their favorable mechanical properties and satisfactory biocompatibility. The aim of the present study was to investigate the antibacterial effect and bone cell biocompatibility of a novel implant made with nanotubular anodized titanium coated with gentamicin (NTATi-G through in vivo study in ­rabbits. The animals were divided into four groups, each receiving different kinds of implants, that is, NTATi-G, titanium coated with gentamicin (Ti-G, nanotubular anodized titanium uncoated with gentamicin (NTATi and titanium uncoated with gentamicin (Ti. The results showed that NTATi-G implant prevented implant-related osteomyelitis and enhanced bone biocompatibility in vivo. Moreover, the body temperature of rabbits in NTATi-G and Ti-G groups was lower than those in Ti groups, while the weight of rabbits in NTATi-G and Ti-G groups was heavier than those in NTATi and Ti groups, respectively. White blood cell counts in NTATi-G group were lower than NTATi and Ti groups. Features of myelitis were observed by X-ray films in the NTATi and Ti groups, but not in the NTATi-G and Ti-G groups. The radiographic scores, which assessed pathology and histopathology in bone tissues, were significantly lower in the NTATi-G and Ti-G groups than those in the NTATi and Ti groups, respectively (P<0.05. Meanwhile, explants and bone tissue culture demonstrated significantly less bacterial growth in the NTATi-G and Ti-G groups than in the NTATi and Ti groups, respectively (P<0.01. The bone volume in NTATi-G group was greater than Ti-G group, and little bone formation was seen in NTATi and Ti

  3. Artefacts in multimodal imaging of titanium, zirconium and binary titanium–zirconium alloy dental implants: an in vitro study

    Science.gov (United States)

    Schöllchen, Maximilian; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-01-01

    Objectives: To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium–zirconium alloy dental implants. Methods: Zirconium, titanium and titanium–zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line–distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. Results: While titanium and titanium–zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium–zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium–zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium–zirconium alloy induced more severe artefacts than zirconium and titanium. Conclusions: MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium–zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting. PMID:27910719

  4. Peen treatment on a titanium implant: effect of roughness, osteoblast cell functions, and bonding with bone cement

    Directory of Open Access Journals (Sweden)

    Khandaker M

    2016-02-01

    Full Text Available Morshed Khandaker,1,4 Shahram Riahinezhad,1 Fariha Sultana,1 Melville B Vaughan,2,4 Joshua Knight,2 Tracy L Morris3,4 1Department of Engineering & Physics, 2Department of Biology, 3Department of Mathematics and Statistics, 4Center for Interdisciplinary Biomedical Education and Research, University of Central Oklahoma, Edmond, OK, USA Abstract: Implant failure due to poor integration of the implant with the surrounding biomaterial is a common problem in various orthopedic and orthodontic surgeries. Implant fixation mostly depends upon the implant surface topography. Micron to nanosize circular-shaped groove architecture with adequate surface roughness can enhance the mechanical interlock and osseointegration of an implant with the host tissue and solve its poor fixation problem. Such groove architecture can be created on a titanium (Ti alloy implant by laser peening treatment. Laser peening produces deep, residual compressive stresses in the surfaces of metal parts, delivering increased fatigue life and damage tolerance. The scientific novelty of this study is the controlled deposition of circular-shaped rough spot groove using laser peening technique and understanding the effect of the treatment techniques for improving the implant surface properties. The hypothesis of this study was that implant surface grooves created by controlled laser peen treatment can improve the mechanical and biological responses of the implant with the adjoining biomaterial. The objective of this study was to measure how the controlled laser-peened groove architecture on Ti influences its osteoblast cell functions and bonding strength with bone cement. This study determined the surface roughness and morphology of the peen-treated Ti. In addition, this study compared the osteoblast cell functions (adhesion, proliferation, and differentiation between control and peen-treated Ti samples. Finally, this study measured the fracture strength between each kind of Ti samples

  5. Fracture Resistance and Mode of Failure of Ceramic versus Titanium Implant Abutments and Single Implant-Supported Restorations.

    Science.gov (United States)

    Sghaireen, Mohd G

    2015-06-01

    The material of choice for implant-supported restorations is affected by esthetic requirements and type of abutment. This study compares the fracture resistance of different types of implant abutments and implant-supported restorations and their mode of failure. Forty-five Oraltronics Pitt-Easy implants (Oraltronics Dental Implant Technology GmbH, Bremen, Germany) (4 mm diameter, 10 mm length) were embedded in clear autopolymerizing acrylic resin. The implants were randomly divided into three groups, A, B and C, of 15 implants each. In group A, titanium abutments and metal-ceramic crowns were used. In group B, zirconia ceramic abutments and In-Ceram Alumina crowns were used. In group C, zirconia ceramic abutments and IPS Empress Esthetic crowns were used. Specimens were tested to failure by applying load at 130° from horizontal plane using an Instron Universal Testing Machine. Subsequently, the mode of failure of each specimen was identified. Fracture resistance was significantly different between groups (p Empress crowns supported by zirconia abutments had the lowest fracture loads (p = .000). Fracture modes of metal-ceramic crowns supported by titanium abutments included screw fracture and screw bending. Fracture of both crown and abutment was the dominant mode of failure of In-Ceram/IPS Empress crowns supported by zirconia abutments. Metal-ceramic crowns supported by titanium abutments were more resistant to fracture than In-Ceram crowns supported by zirconia abutments, which in turn were more resistant to fracture than IPS Empress crowns supported by zirconia abutments. In addition, failure modes of restorations supported by zirconia abutments were more catastrophic than those for restorations supported by titanium abutments. © 2013 Wiley Periodicals, Inc.

  6. Adding functionality with additive manufacturing: Fabrication of titanium-based antibiotic eluting implants

    International Nuclear Information System (INIS)

    Cox, Sophie C.; Jamshidi, Parastoo; Eisenstein, Neil M.; Webber, Mark A.; Hassanin, Hany; Attallah, Moataz M.; Shepherd, Duncan E.T.; Addison, Owen; Grover, Liam M.

    2016-01-01

    Additive manufacturing technologies have been utilised in healthcare to create patient-specific implants. This study demonstrates the potential to add new implant functionality by further exploiting the design flexibility of these technologies. Selective laser melting was used to manufacture titanium-based (Ti-6Al-4V) implants containing a reservoir. Pore channels, connecting the implant surface to the reservoir, were incorporated to facilitate antibiotic delivery. An injectable brushite, calcium phosphate cement, was formulated as a carrier vehicle for gentamicin. Incorporation of the antibiotic significantly (p = 0.01) improved the compressive strength (5.8 ± 0.7 MPa) of the cement compared to non-antibiotic samples. The controlled release of gentamicin sulphate from the calcium phosphate cement injected into the implant reservoir was demonstrated in short term elution studies using ultraviolet-visible spectroscopy. Orientation of the implant pore channels were shown, using micro-computed tomography, to impact design reproducibility and the back-pressure generated during cement injection which ultimately altered porosity. The amount of antibiotic released from all implant designs over a 6 hour period (< 28% of the total amount) were found to exceed the minimum inhibitory concentrations of Staphylococcus aureus (16 μg/mL) and Staphylococcus epidermidis (1 μg/mL); two bacterial species commonly associated with periprosthetic infections. Antibacterial efficacy was confirmed against both bacterial cultures using an agar diffusion assay. Interestingly, pore channel orientation was shown to influence the directionality of inhibition zones. Promisingly, this work demonstrates the potential to additively manufacture a titanium-based antibiotic eluting implant, which is an attractive alternative to current treatment strategies of periprosthetic infections. - Highlights: • Titanium implants were additively manufactured with surface connected reservoirs. • Implants

  7. Femtosecond laser-assisted cataract surgery and implantable miniature telescope

    Directory of Open Access Journals (Sweden)

    Randal Pham

    2017-09-01

    Conclusions and importance: To our knowledge and confirmed by the manufacturer of the implantable miniature telescope this is the first case ever reported of a patient who has undergone femtosecond laser cataract surgery with corneal astigmatism correction and implantation of the implantable miniature telescope. This is also the first case report of the preoperative use of microperimetry and visual electrophysiology to evaluate a patient's postoperative potential visual acuity. The success of the procedure illustrated the importance of meticulous preoperative planning, the combined use of state-of-the-art technologies and the seamless teamwork in order to achieve the best clinical outcome for patients who undergo implantation of the implantable miniature telescope.

  8. Anodization: a promising nano-modification technique of titanium implants for orthopedic applications.

    Science.gov (United States)

    Yao, Chang; Webster, Thomas J

    2006-01-01

    Anodization is a well-established surface modification technique that produces protective oxide layers on valve metals such as titanium. Many studies have used anodization to produce micro-porous titanium oxide films on implant surfaces for orthopedic applications. An additional hydrothermal treatment has also been used in conjunction with anodization to deposit hydroxyapatite on titanium surfaces; this is in contrast to using traditional plasma spray deposition techniques. Recently, the ability to create nanometer surface structures (e.g., nano-tubular) via anodization of titanium implants in fluorine solutions have intrigued investigators to fabricate nano-scale surface features that mimic the natural bone environment. This paper will present an overview of anodization techniques used to produce micro-porous titanium oxide structures and nano-tubular oxide structures, subsequent properties of these anodized titanium surfaces, and ultimately their in vitro as well as in vivo biological responses pertinent for orthopedic applications. Lastly, this review will emphasize why anodized titanium structures that have nanometer surface features enhance bone forming cell functions.

  9. Clinical evidence on titanium-zirconium dental implants: a systematic review and meta-analysis.

    Science.gov (United States)

    Altuna, P; Lucas-Taulé, E; Gargallo-Albiol, J; Figueras-Álvarez, O; Hernández-Alfaro, F; Nart, J

    2016-07-01

    The use of titanium implants is well documented and they have high survival and success rates. However, when used as reduced-diameter implants, the risk of fracture is increased. Narrow diameter implants (NDIs) of titanium-zirconium (Ti-Zr) alloy have recently been developed (Roxolid; Institut Straumann AG). Ti-Zr alloys (two highly biocompatible materials) demonstrate higher tensile strength than commercially pure titanium. The aim of this systematic review was to summarize the existing clinical evidence on dental NDIs made from Ti-Zr. A systematic literature search was performed using the Medline database to find relevant articles on clinical studies published in the English language up to December 2014. Nine clinical studies using Ti-Zr implants were identified. Overall, 607 patients received 922 implants. The mean marginal bone loss was 0.36±0.06mm after 1 year and 0.41±0.09mm after 2 years. The follow-up period ranged from 3 to 36 months. Mean survival and success rates were 98.4% and 97.8% at 1 year after implant placement and 97.7% and 97.3% at 2 years. Narrow diameter Ti-Zr dental implants show survival and success rates comparable to regular diameter titanium implants (>95%) in the short term. Long-term follow-up clinical data are needed to confirm the excellent clinical performance of these implants. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. In vitro assessment of artifacts induced by titanium, titanium-zirconium and zirconium dioxide implants in cone-beam computed tomography.

    Science.gov (United States)

    Sancho-Puchades, Manuel; Hämmerle, Christoph H F; Benic, Goran I

    2015-10-01

    The aim of this study was to test whether or not the intensity of artifacts around implants in cone-beam computed tomography (CBCT) differs between titanium, titanium-zirconium and zirconium dioxide implants. Twenty models of a human mandible, each containing one implant in the single-tooth gap position 45, were cast in dental stone. Five test models were produced for each of the following implant types: titanium 4.1 mm diameter (Ti4.1 ), titanium 3.3 mm diameter (Ti3.3 ), titanium-zirconium 3.3 mm diameter (TiZr3.3 ) and zirconium dioxide 3.5-4.5 mm diameter (ZrO3.5-4.5 ) implants. For control purposes, three models without implants were produced. Each model was scanned using a CBCT device. Gray values (GV) were recorded at eight circumferential positions around the implants at 0.5 mm, 1 mm and 2 mm from the implant surface (GVT est ). GV were assessed in the corresponding volumes of interest (VOI) in the control models without implants (GVC ontrol ). Differences of gray values (ΔGV) between GVT est and GVC ontrol were calculated as percentages. One-way ANOVA and post hoc tests were applied to detect differences between implant types. Mean ΔGV for ZrO3.5-4.5 presented the highest absolute values, generally followed by TiZr3.3 , Ti4.1 and Ti3.3 implants. The differences of ΔGV between ZrO3.5-4.5 and the remaining groups were statistically significant in the majority of the VOI (P ≤ 0.0167). ΔGV for TiZr3.3 , Ti4.1 and Ti3.3 implants did not differ significantly in the most VOI. For all implant types, ΔGV showed positive values buccally, mesio-buccally, lingually and disto-lingually, whereas negative values were detected mesially and distally. Zirconium dioxide implants generate significantly more artifacts as compared to titanium and titanium-zirconium implants. The intensity of artifacts around zirconium dioxide implants exhibited in average the threefold in comparison with titanium implants. © 2014 John Wiley & Sons A/S. Published by John Wiley

  11. IOL Implants: Lens Replacement and Cataract Surgery (Intraocular Lenses)

    Science.gov (United States)

    ... Oncology Oculoplastics/Orbit Refractive Management/Intervention Retina/Vitreous Uveitis Focus On Pediatric Ophthalmology ... Are Cataracts? Pediatric Cataracts Cataract Diagnosis and Treatment Cataract Surgery IOL Implants: Lens Replacement After Cataracts ...

  12. Cannabis sativa smoke inhalation decreases bone filling around titanium implants: a histomorphometric study in rats.

    Science.gov (United States)

    Nogueira-Filho, Getulio da R; Cadide, Tiago; Rosa, Bruno T; Neiva, Tiago G; Tunes, Roberto; Peruzzo, Daiane; Nociti, Francisco Humberto; César-Neto, João B

    2008-12-01

    Although the harmful effect of tobacco smoking on titanium implants has been documented, no studies have investigated the effects of cannabis sativa (marijuana) smoking. Thus, this study investigated whether marijuana smoke influences bone healing around titanium implants. Thirty Wistar rats were used. After anesthesia, the tibiae surface was exposed and 1 screw-shaped titanium implant was placed bilaterally. The animals were randomly assigned to one of the following groups: control (n = 15) and marijuana smoke inhalation (MSI) 8 min/d (n = 15). Urine samples were obtained to detect the presence of tetra-hidro-cannabinoid. After 60 days, the animals were killed. The degree of bone-to-implant contact and the bone area within the limits of the threads of the implant were measured in the cortical (zone A) and cancellous bone (zone B). Tetra-hidro-cannabinoid in urine was positive only for the rats of MSI group. Intergroup analysis did not indicate differences in zone A-cortical bone (P > 0.01), however, a negative effect of marijuana smoke (MSI group) was observed in zone B-cancellous bone for bone-to-implant contact and bone area (Student's t test, P smoke on bone healing may represent a new concern for implant success/failure.

  13. Efficacy of Octacalcium Phosphate Collagen Composite for Titanium Dental Implants in Dogs

    Directory of Open Access Journals (Sweden)

    Tadashi Kawai

    2018-02-01

    Full Text Available Background: Previous studies showed that octacalcium (OCP collagen composite (OCP/Col can be used to repair human jaw bone defects without any associated abnormalities. The present study investigated whether OCP/Col could be applied to dental implant treatment using a dog tooth extraction socket model. Methods: The premolars of dogs were extracted; each extraction socket was extended, and titanium dental implants were placed in each socket. OCP/Col was inserted in the space around a titanium dental implant. Autologous bone was used to fill the other sockets, while the untreated socket (i.e., no bone substitute material served as a control. Three months after the operation, these specimens were analyzed for the osseointegration of each bone substitute material with the surface of the titanium dental implant. Results: In histomorphometric analyses, the peri-implant bone areas (BA% and bone-implant contact (BIC% were measured. There was no difference in BA% or BIC% between OCP/Col and autologous bone. Conclusion: These results suggested that OCP/Col could be used for implant treatment as a bone substitute.

  14. Dental implant surgery: planning and guidance

    International Nuclear Information System (INIS)

    Lobregt, S.; Schillings, J.J.; Vuurberg, E.

    2001-01-01

    A prototype application has been developed for interactive planning of dental implants on the EasyVision workstation. The user is led step by step via virtual positioning of the implant to the design of a customized drill guide. (orig.)

  15. Effect of ion-implantation on surface characteristics of nickel titanium and titanium molybdenum alloy arch wires

    Directory of Open Access Journals (Sweden)

    Manu Krishnan

    2013-01-01

    Full Text Available Aim: To evaluate the changes in surface roughness and frictional features of ′ion-implanted nickel titanium (NiTi and titanium molybdenum alloy (TMA arch wires′ from its conventional types in an in-vitro laboratory set up. Materials and Methods: ′Ion-implanted NiTi and low friction TMA arch wires′ were assessed for surface roughness with scanning electron microscopy (SEM and 3 dimensional (3D optical profilometry. Frictional forces were studied in a universal testing machine. Surface roughness of arch wires were determined as Root Mean Square (RMS values in nanometers and Frictional Forces (FF in grams. Statistical Analysis Used: Mean values of RMS and FF were compared by Student′s ′t′ test and one way analysis of variance (ANOVA. Results: SEM images showed a smooth topography for ion-implanted versions. 3D optical profilometry demonstrated reduction of RMS values by 58.43% for ion-implanted NiTi (795.95 to 330.87 nm and 48.90% for TMA groups (463.28 to 236.35 nm from controls. Nonetheless, the corresponding decrease in FF was only 29.18% for NiTi and 22.04% for TMA, suggesting partial correction of surface roughness and disproportionate reduction in frictional forces with ion-implantation. Though the reductions were highly significant at P < 0.001, relations between surface roughness and frictional forces remained non conclusive even after ion-implantation. Conclusion: The study proved that ion-implantation can significantly reduce the surface roughness of NiTi and TMA wires but could not make a similar reduction in frictional forces. This can be attributed to the inherent differences in stiffness and surface reactivity of NiTi and TMA wires when used in combination with stainless steel brackets, which needs further investigations.

  16. Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants.

    Science.gov (United States)

    Yu, Yiqiang; Jin, Guodong; Xue, Yang; Wang, Donghui; Liu, Xuanyong; Sun, Jiao

    2017-02-01

    In order to improve the osseointegration and long-term survival of dental implants, it is urgent to develop a multifunctional titanium surface which would simultaneously have osteogeneic, angiogeneic and antibacterial properties. In this study, a potential dental implant material-dual Zn/Mg ion co-implanted titanium (Zn/Mg-PIII) was developed via plasma immersion ion implantation (PIII). The Zn/Mg-PIII surfaces were found to promote initial adhesion and spreading of rat bone marrow mesenchymal stem cells (rBMSCs) via the upregulation of the gene expression of integrin α1 and integrin β1. More importantly, it was revealed that Zn/Mg-PIII could increase Zn 2+ and Mg 2+ concentrations in rBMSCs by promoting the influx of Zn 2+ and Mg 2+ and inhibiting the outflow of Zn 2+ , and then could enhance the transcription of Runx2 and the expression of ALP and OCN. Meanwhile, Mg 2+ ions from Zn/Mg-PIII increased Mg 2+ influx by upregulating the expression of MagT1 transporter in human umbilical vein endothelial cells (HUVECs), and then stimulated the transcription of VEGF and KDR via activation of hypoxia inducing factor (HIF)-1α, thus inducing angiogenesis. In addition to this, it was discovered that zinc in Zn/Mg-PIII had certain inhibitory effects on oral anaerobic bacteria (Pg, Fn and Sm). Finally, the Zn/Mg-PIII implants were implanted in rabbit femurs for 4 and 12weeks with Zn-PIII, Mg-PIII and pure titanium as controls. Micro-CT evaluation, sequential fluorescent labeling, histological analysis and push-out test consistently demonstrated that Zn/Mg-PIII implants exhibit superior capacities for enhancing bone formation, angiogenesis and osseointegration, while consequently increasing the bonding strength at bone-implant interfaces. All these results suggest that due to the multiple functions co-produced by zinc and magnesium, rapid osseointegration and sustained biomechanical stability are enhanced by the novel Zn/Mg-PIII implants, which have the potential

  17. Shallow nitrogen ion implantation: Evolution of chemical state and defect structure in titanium

    Energy Technology Data Exchange (ETDEWEB)

    Manojkumar, P.A., E-mail: manoj@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Chirayath, V.A.; Balamurugan, A.K.; Krishna, Nanda Gopala; Ilango, S.; Kamruddin, M.; Amarendra, G.; Tyagi, A.K. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Raj, Baldev [National Institute of Advanced Studies, Bangalore 560 012 (India)

    2016-09-15

    Highlights: • Low energy nitrogen ion implantation in titanium was studied. • Chemical and defect states were analyzed using SIMS, XPS and PAS. • SIMS and depth resolved XPS data showed good agreement. • Depth resolved defect and chemical states information were revealed. • Formation of 3 layers of defect states proposed to fit PAS results. - Abstract: Evolution of chemical states and defect structure in titanium during low energy nitrogen ion implantation by Plasma Immersion Ion Implantation (PIII) process is studied. The underlying process of chemical state evolution is investigated using secondary ion mass spectrometry and X-ray photoelectron spectroscopy. The implantation induced defect structure evolution as a function of dose is elucidated using variable energy positron annihilation Doppler broadening spectroscopy (PAS) and the results were corroborated with chemical state. Formation of 3 layers of defect state was modeled to fit PAS results.

  18. Nanocoating of titanium implant surfaces with organic molecules. Polysaccharides including glycosaminoglycans

    DEFF Research Database (Denmark)

    Gurzawska, Katarzyna Aleksandra; Svava, Rikke; Jørgensen, Niklas Rye

    2012-01-01

    Long-term stability of titanium implants are dependent on a variety of factors. Nanocoating with organic molecules is one of the method used to improve osseointegration. Nanoscale modification of titanium implants affects surface properties, such as hydrophilicity, biochemical bonding capacity...... and roughness. This influences cell behaviour on the surface such as adhesion, proliferation and differentiation of cells as well as the mineralization of the extracellular matrix at the implant surfaces. The aim of the present systematic review was to describe organic molecules used for surface nanocoating...... nanocoatings. The included in vivo studies, showed improvement of bone interface reactions measured as increased Bone-to-Implant Contact length and Bone Mineral Density adjacent to the polysaccharide coated surfaces. Based on existing literature, surface modification with polysaccharide and glycosaminoglycans...

  19. Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants

    OpenAIRE

    Ogawa, Takahiro; Yamada,Masahiro; Ueno,; Tsukimura,Naoki; Ikeda,; Nakagawa,; Hori,; Suzuki,

    2012-01-01

    Masahiro Yamada*, Takeshi Ueno*, Naoki Tsukimura, Takayuki Ikeda, Kaori Nakagawa, Norio Hori, Takeo Suzuki, Takahiro OgawaLaboratory of Bone and Implant Sciences, The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA *These authors contributed equally to this workAbstract: The mechanism by which hydroxyapatite (HA)-coated titanium promotes bone–implant integratio...

  20. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing

    International Nuclear Information System (INIS)

    Wauthle, Ruben; Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Mulier, Michiel; Zadpoor, Amir Abbas; Weinans, Harrie; Van Humbeeck, Jan; Kruth, Jean-Pierre; Schrooten, Jan

    2015-01-01

    Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous implants, and none or little interest goes to pure titanium for use in orthopedic or load-bearing implants. Given the special mechanical behavior of cellular structures and the material properties inherent to the additive manufacturing of metals, the aim of this study is to investigate the properties of selective laser melted pure unalloyed titanium porous structures. Therefore, the static and dynamic compressive properties of pure titanium structures are determined and compared to previously reported results for identical structures made from Ti6Al4V ELI and tantalum. The results show that porous Ti6Al4V ELI still remains the strongest material for statically loaded applications, whereas pure titanium has a mechanical behavior similar to tantalum and is the material of choice for cyclically loaded porous implants. These findings are considered to be important for future implant developments since it announces a potential revival of the use of pure titanium for additively manufactured porous implants. - Highlights: • The mechanical properties of CP Ti grade 1 porous structures are studied. • The results are compared with identical structures in Ti6Al4V ELI and tantalum. • Ti6Al4V ELI structures are about two times stronger under a static compressive load. • CP Ti structures deform continuously without fracture while loaded statically. • CP Ti structures have a higher fatigue life compared to Ti6Al4V ELI structures

  1. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Wauthle, Ruben, E-mail: ruben.wauthle@3dsystems.com [KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven (Belgium); 3D Systems - LayerWise NV, Grauwmeer 14, 3001 Leuven (Belgium); Ahmadi, Seyed Mohammad; Amin Yavari, Saber [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft (Netherlands); Mulier, Michiel [KU Leuven, Department of Orthopaedics, Weligerveld 1, 3212 Pellenberg (Belgium); Zadpoor, Amir Abbas [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft (Netherlands); Weinans, Harrie [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft (Netherlands); Department of Orthopedics & department of Rheumatology, UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht (Netherlands); Van Humbeeck, Jan [KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, PB 2450, 3001 Leuven (Belgium); Kruth, Jean-Pierre [KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven (Belgium); Schrooten, Jan [KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, PB 2450, 3001 Leuven (Belgium); KU Leuven, Prometheus, Division of Skeletal Tissue Engineering, PB 813, O& N1, Herestraat 49, 3000 Leuven (Belgium)

    2015-09-01

    Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous implants, and none or little interest goes to pure titanium for use in orthopedic or load-bearing implants. Given the special mechanical behavior of cellular structures and the material properties inherent to the additive manufacturing of metals, the aim of this study is to investigate the properties of selective laser melted pure unalloyed titanium porous structures. Therefore, the static and dynamic compressive properties of pure titanium structures are determined and compared to previously reported results for identical structures made from Ti6Al4V ELI and tantalum. The results show that porous Ti6Al4V ELI still remains the strongest material for statically loaded applications, whereas pure titanium has a mechanical behavior similar to tantalum and is the material of choice for cyclically loaded porous implants. These findings are considered to be important for future implant developments since it announces a potential revival of the use of pure titanium for additively manufactured porous implants. - Highlights: • The mechanical properties of CP Ti grade 1 porous structures are studied. • The results are compared with identical structures in Ti6Al4V ELI and tantalum. • Ti6Al4V ELI structures are about two times stronger under a static compressive load. • CP Ti structures deform continuously without fracture while loaded statically. • CP Ti structures have a higher fatigue life compared to Ti6Al4V ELI structures.

  2. Histological Evaluation of Nano-Micro Titanium Implant Surface Treatment in Beagle Humerus.

    Science.gov (United States)

    Yun, Kwidug; Kang, Seongsoo; Oh, Gyejeong; Lim, Hyunpil; Lee, Kwangmin; Yang, Hongso; Vang, Mongsook; Park, Sangwon

    2016-02-01

    The objective of this study was to investigate the effects of nano-micro titanium implant surface using histology in beagle dogs. A total of 48 screw-shaped implants (Megagen, Daegu, Korea) which dimensions were 4 mm in diameter and 8.5 mm in length, were used. The implants were classified into 4 groups (n = 12): machined surface (M group), RBM (Resorbable Blasting Media) surface (R group), nano surface which is nanotube formation on the machined surface (MA group) and nano-micro surface which is nanotube formation on the RBM surface (RA group). Anodic oxidation was performed at a constant voltage of 20 V for 10 min using a DC power supply (Fine Power F-3005; SG EMD, Anyang, Korea). The bone blocks were investigated using histology. There was no inflammation around implants, and new bone formation was shown along with the nano-micro titanium implant surfaces. The amount of bone formation was increased depending on time comparing 4 weeks and 12 weeks. At 12 weeks, lamellar bone was more formed along with the nano-micro titanium implant surfaces than 4 weeks. It indicated that nano-micro surface showed good result in terms of osseointegration.

  3. Surface treatment of a titanium implant using low temperature atmospheric pressure plasmas

    Science.gov (United States)

    Lee, Hyun-Young; Tang, Tianyu; Ok, Jung-Woo; Kim, Dong-Hyun; Lee, Ho-Jun; Lee, Hae June

    2015-09-01

    During the last two decades, atmospheric pressure plasmas(APP) are widely used in diverse fields of biomedical applications, reduction of pollutants, and surface treatment of materials. Applications of APP to titanium surface of dental implants is steadily increasing as it renders surfaces wettability and modifies the oxide layer of titanium that hinders the interaction with cells and proteins. In this study, we have treated the titanium surfaces of screw-shaped implant samples using a plasma jet which is composed of a ceramic coaxial tube of dielectrics, a stainless steel inner electrode, and a coper tube outer electrode. The plasma ignition occurred with Ar gas flow between two coaxial metal electrodes and a sinusoidal bias voltage of 3 kV with a frequency of 20 kHz. Titanium materials used in this study are screw-shaped implants of which diameter and length are 5 mm and 13 mm, respectively. Samples were mounted at a distance of 5 mm below the plasma source, and the plasma treatment time was set to 3 min. The wettability of titanium surface was measured by the moving speed of water on its surface, which is enhanced by plasma treatment. The surface roughness was also measured by atomic force microscopy. The optimal condition for wettability change is discussed.

  4. Fracture strength of zirconia implant abutments on narrow diameter implants with internal and external implant abutment connections: A study on the titanium resin base concept.

    Science.gov (United States)

    Sailer, Irena; Asgeirsson, Asgeir G; Thoma, Daniel S; Fehmer, Vincent; Aspelund, Thor; Özcan, Mutlu; Pjetursson, Bjarni E

    2018-04-01

    There is limited knowledge regarding the strength of zirconia abutments with internal and external implant abutment connections and zirconia abutments supported by a titanium resin base (Variobase, Straumann) for narrow diameter implants. To compare the fracture strength of narrow diameter abutments with different types of implant abutment connections after chewing simulation. Hundred and twenty identical customized abutments with different materials and implant abutment connections were fabricated for five groups: 1-piece zirconia abutment with internal connection (T1, Cares-abutment-Straumann BL-NC implant, Straumann Switzerland), 1-piece zirconia abutment with external hex connection (T2, Procera abutment-Branemark NP implant, Nobel Biocare, Sweden), 2-piece zirconia abutments with metallic insert for internal connection (T3, Procera abutment-Replace NP implant, Nobel Biocare), 2-piece zirconia abutment on titanium resin base (T4, LavaPlus abutment-VarioBase-Straumann BL-NC implant, 3M ESPE, Germany) and 1-piece titanium abutment with internal connection (C, Cares-abutment-Straumann BL-NC implant, Straumann, Switzerland). All implants had a narrow diameter ranging from 3.3 to 3.5 mm. Sixty un-restored abutments and 60 abutments restored with glass-ceramic crowns were tested. Mean bending moments were compared using ANOVA with p-values adjusted for multiple comparisons using Tukey's procedure. The mean bending moments were 521 ± 33 Ncm (T4), 404 ± 36 Ncm (C), 311 ± 106 Ncm (T1) 265 ± 22 Ncm (T3) and 225 ± 29 (T2) for un-restored abutments and 278 ± 84 Ncm (T4), 302 ± 170 Ncm (C), 190 ± 55 Ncm (T1) 80 ± 102 Ncm (T3) and 125 ± 57 (T2) for restored abutments. For un-restored abutments, C and T4 had similar mean bending moments, significantly higher than those of the three other groups (p internal connection had higher bending moments than zirconia abutments with external connection (T2) (p internal connected zirconia

  5. Risk Factors For Wound Infections After Implant Surgery | Onche ...

    African Journals Online (AJOL)

    OBJECTIVE: Post-operative wound infection (POWI) rates for implant surgery are in the range of 0.08 to 13% in spite of the many advances in surgery in the past decades. It is therefore imperative that we develop a system of predicting the occurrence of POWI as a key to effective prevention. One approach is for each ...

  6. High-intensity low energy titanium ion implantation into zirconium alloy

    Science.gov (United States)

    Ryabchikov, A. I.; Kashkarov, E. B.; Pushilina, N. S.; Syrtanov, M. S.; Shevelev, A. E.; Korneva, O. S.; Sutygina, A. N.; Lider, A. M.

    2018-05-01

    This research describes the possibility of ultra-high dose deep titanium ion implantation for surface modification of zirconium alloy Zr-1Nb. The developed method based on repetitively pulsed high intensity low energy titanium ion implantation was used to modify the surface layer. The DC vacuum arc source was used to produce metal plasma. Plasma immersion titanium ions extraction and their ballistic focusing in equipotential space of biased electrode were used to produce high intensity titanium ion beam with the amplitude of 0.5 A at the ion current density 120 and 170 mA/cm2. The solar eclipse effect was used to prevent vacuum arc titanium macroparticles from appearing in the implantation area of Zr sample. Titanium low energy (mean ion energy E = 3 keV) ions were implanted into zirconium alloy with the dose in the range of (5.4-9.56) × 1020 ion/cm2. The effect of ion current density, implantation dose on the phase composition, microstructure and distribution of elements was studied by X-ray diffraction, scanning electron microscopy and glow-discharge optical emission spectroscopy, respectively. The results show the appearance of Zr-Ti intermetallic phases of different stoichiometry after Ti implantation. The intermetallic phases are transformed from both Zr0.7Ti0.3 and Zr0.5Ti0.5 to single Zr0.6Ti0.4 phase with the increase in the implantation dose. The changes in phase composition are attributed to Ti dissolution in zirconium lattice accompanied by the lattice distortions and appearance of macrostrains in intermetallic phases. The depth of Ti penetration into the bulk of Zr increases from 6 to 13 μm with the implantation dose. The hardness and wear resistance of the Ti-implanted zirconium alloy were increased by 1.5 and 1.4 times, respectively. The higher current density (170 mA/cm2) leads to the increase in the grain size and surface roughness negatively affecting the tribological properties of the alloy.

  7. Adding functionality with additive manufacturing: Fabrication of titanium-based antibiotic eluting implants.

    Science.gov (United States)

    Cox, Sophie C; Jamshidi, Parastoo; Eisenstein, Neil M; Webber, Mark A; Hassanin, Hany; Attallah, Moataz M; Shepherd, Duncan E T; Addison, Owen; Grover, Liam M

    2016-07-01

    Additive manufacturing technologies have been utilised in healthcare to create patient-specific implants. This study demonstrates the potential to add new implant functionality by further exploiting the design flexibility of these technologies. Selective laser melting was used to manufacture titanium-based (Ti-6Al-4V) implants containing a reservoir. Pore channels, connecting the implant surface to the reservoir, were incorporated to facilitate antibiotic delivery. An injectable brushite, calcium phosphate cement, was formulated as a carrier vehicle for gentamicin. Incorporation of the antibiotic significantly (p=0.01) improved the compressive strength (5.8±0.7MPa) of the cement compared to non-antibiotic samples. The controlled release of gentamicin sulphate from the calcium phosphate cement injected into the implant reservoir was demonstrated in short term elution studies using ultraviolet-visible spectroscopy. Orientation of the implant pore channels were shown, using micro-computed tomography, to impact design reproducibility and the back-pressure generated during cement injection which ultimately altered porosity. The amount of antibiotic released from all implant designs over a 6hour period (additively manufacture a titanium-based antibiotic eluting implant, which is an attractive alternative to current treatment strategies of periprosthetic infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Bone response to a titanium aluminium nitride coating on metallic implants.

    Science.gov (United States)

    Freeman, C O; Brook, I M

    2006-05-01

    The design, surface characteristics and strength of metallic implants are dependant on their intended use and clinical application. Surface modifications of materials may enable reduction of the time taken for osseointegration and improve the biological response of bio-mechanically favourable metals and alloys. The influence of a titanium aluminium nitride (TAN) coating on the response of bone to commercially pure titanium and austenitic 18/8 stainless steel wire is reported. TAN coated and plain rods of stainless steel and commercially pure titanium were implanted into the mid-shaft of the femur of Wistar rats. The femurs were harvested at four weeks and processed for scanning electron and light microscopy. All implants exhibited a favourable response in bone with no evidence of fibrous encapsulation. There was no significant difference in the amount of new bone formed around the different rods (osseoconduction), however, there was a greater degree of shrinkage separation of bone from the coated rods than from the plain rods (p = 0.017 stainless steel and p = 0.0085 titanium). TAN coating may result in reduced osseointegration between bone and implant.

  9. Titanium implant insertion into dog alveolar ridges augmented by allogenic material

    DEFF Research Database (Denmark)

    Pinholt, E M; Haanaes, H R; Donath, K

    1994-01-01

    The purpose of this investigation was to evaluate whether titanium endosseous implants would osseointegrate in dog alveolar ridges augmented by allogenic material. In 8 dogs en bloc resection, including 2 pre-molars, was performed bilaterally in the maxilla and the mandible. After a healing period...

  10. Plasma Electrolytic Oxidation of Titanium Implant Surfaces: Microgroove-Structures Improve Cellular Adhesion and Viability.

    Science.gov (United States)

    Hartjen, Philip; Hoffmann, Alexia; Henningsen, Anders; Barbeck, Mike; Kopp, Alexander; Kluwe, Lan; Precht, Clarissa; Quatela, Olivia; Gaudin, Robert; Heiland, Max; Friedrich, Reinhard E; Knipfer, Christian; Grubeanu, Daniel; Smeets, Ralf; Jung, Ole

    2018-01-01

    Plasma electrolytic oxidation (PEO) is an established electrochemical treatment technique that can be used for surface modifications of metal implants. In this study we to treated titanium implants with PEO, to examine the resulting microstructure and to characterize adhesion and viability of cells on the treated surfaces. Our aim was to identify an optimal surface-modification for titanium implants in order to improve soft-tissue integration. Three surface-variants were generated on titanium alloy Ti6Al4V by PEO-treatment. The elemental composition and the microstructures of the surfaces were characterized using energy dispersive X-ray spectroscopy, scanning electron microscopy and profilometry. In vitro cytocompatibility of the surfaces was assessed by seeding L929 fibroblasts onto them and measuring the adhesion, viability and cytotoxicity of cells by means of live/dead staining, XTT assay and LDH assay. Electron microscopy and profilometry revealed that the PEO-surface variants differed largely in microstructure/topography, porosity and roughness from the untreated control material as well as from one another. Roughness was generally increased after PEO-treatment. In vitro, PEO-treatment led to improved cellular adhesion and viability of cells accompanied by decreased cytotoxicity. PEO-treatment provides a promising strategy to improve the integration of titanium implants with surrounding tissues. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  11. Comparison of biological characteristics of mesenchymal stem cells grown on two different titanium implant surfaces

    International Nuclear Information System (INIS)

    Wang Chengyue; Zhao Baohong; Ai Hongjun; Wang Yiwei

    2008-01-01

    This study examined the biological characteristics of mesenchymal stem cells (MSCs) grown on sand-blasted, large-grit, acid-etched (SLA) surface and hydroxyapatite (HA) coating on the SLA (HA/SLA) surface of titanium dental implants. The HA/SLA surfaces of titanium dental implants were formed by the ion beam assisted deposition (IBAD) method. Rabbit bone marrow derived mesenchymal stem cells cultured in vitro were seeded onto the surface of SLA and HA/SLA; the growth states of MSCs on the two samples were observed by a scanning electron microscope; the proliferation index, alkaline phosphatase (ALP) activity, osteocalcin (OCN) content of MSCs and mRNA relative expression level of osteopontin (opn) were compared between two groups. MSCs were found to be easier to adhere to the HA/SLA surface compared to the SLA surface. At the same time, the ALP activity and the OCN content of MSCs grown on the HA/SLA surface were obviously higher, and the relative expression level of opn mRNA was 4.78 times higher than that on the SLA surface. The HA coating formed by the IBAD method on the SLA surface of titanium dental implants significantly improves proliferation and well-differentiated osteoblastic phenotype of MSCs, which indicates a promising method for the surface modification of titanium dental implants

  12. Preoperative Saline Implant Deflation in Revisional Aesthetic Breast Surgery.

    Science.gov (United States)

    Wu, Cindy; Grotting, James C

    2015-09-01

    Preoperative saline deflation is a clinically useful intervention in revisional breast surgery. It allows suspensory ligament recovery, reveals true glandular volume, and simplifies mastopexy markings. Presently unknown are the volumetric changes that occur after deflation. The authors report the three-dimensional (3D) changes that occur with preoperative deflation prior to revisional breast surgery. We reviewed available charts of revisional breast surgery patients who underwent preliminary saline implant deflation. Our protocol is deflation 4 weeks prior to revision. Three weeks following deflation, the patient is evaluated to finalize the operative plan, including the need for implants, mastopexy, and adjunctive procedures. A subset underwent 3D imaging to quantify the volumetric changes over the 3-week deflation period. Between 2002 and 2014, 55 patients underwent saline implant deflation prior to 57 revisional surgeries. Seventeen were revised without implants and 40 with implants. The 3D subset of 10 patients showed a mean 15.2% volume increase and 0.18 cm notch-to-nipple distance decrease over the 3 weeks following deflation and prior to definitive surgical correction. Breast volume increases and the notch-to-nipple distance decreases during the 3-week interval prior to reoperation. This "elastic breast recoil" occurs after the mass effect of the implant is removed, resulting in recovery of stretched suspensory ligaments and gland reexpansion. We believe 4 weeks is optimal for gland normalization. Ideal candidates include patients requiring secondary mastopexy without implants, implant downsizing in the same pocket, and secondary augmentation mastopexy. Preoperative saline deflation and 3D analyses are useful for preoperative planning in reoperative breast surgery. © 2015 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  13. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern?

    Science.gov (United States)

    Serhan, Hassan; Slivka, Michael; Albert, Todd; Kwak, S Daniel

    2004-01-01

    Surgeons are hesitant to mix components made of differing metal classes for fear of galvanic corrosion complications. However, in vitro studies have failed to show a significant potential for galvanic corrosion between titanium and stainless steel, the two primary metallic alloys used for spinal implants. Galvanic corrosion resulting from metal mixing has not been described in the literature for spinal implant systems. To determine whether galvanic potential significantly affects in vitro corrosion of titanium and stainless steel spinal implant components during cyclical compression bending. Bilateral spinal implant constructs consisting of pedicle screws, slotted connectors, 6.35-mm diameter rods and a transverse rod connector assembled in polyethylene test blocks were tested in vitro. Two constructs had stainless steel rods with mixed stainless steel (SS-SS) and titanium (SS-Ti) components, and two constructs had titanium rods with mixed stainless steel (Ti-SS) and titanium (Ti-Ti) components. Each construct was immersed in phosphate-buffered saline (pH 7.4) at 37 C and tested in cyclic compression bending using a sinusoidal load-controlling function with a peak load of 300 N and a frequency of 5 Hz until a level of 5 million cycles was reached. The samples were then removed and analyzed visually for evidence of corrosion. In addition, scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) were used to evaluate the extent of corrosion at the interconnections. None of the constructs failed during testing. Gross observation of the implant components after disassembly revealed that no corrosion had occurred on the surface of the implants that had not been in contact with another component. The Ti-Ti interfaces showed some minor signs of corrosion only detectable using SEM and EDS. The greatest amount of corrosion occurred at the SS-SS interfaces and was qualitatively less at the SS-Ti and Ti-SS interfaces. The results from this study indicate

  14. Bloodcompatibility improvement of titanium oxide film modified by phosphorus ion implantation

    International Nuclear Information System (INIS)

    Yang, P.; Leng, Y.X.; Zhao, A.S.; Zhou, H.F.; Xu, L.X.; Hong, S.; Huang, N.

    2006-01-01

    Our recent investigation suggested that Ti-O thin film could be a newly developed antithrombotic material and its thromboresistance could be related to its physical properties of wide gap semiconductor. In this work, titanium oxide film was modified by phosphorus ion implantation and succeeding vacuum annealing. RBS were used to investigate phosphorus distribution profile. Contact angle test results show that phosphorus-doped titanium oxide film becomes more hydrophilic after higher temperature annealing, while its electric conductivity increases. Antithrombotic property of phosphorus-doped titanium oxide thin films was examined by clotting time and platelet adhesion tests. The results suggest that phosphorus doping is an effective way to improve the bloodcompatibility of titanium oxide film, and it is related to the changes of electron structure and surface properties caused by phosphorus doping

  15. Albumin coatings by alternating current electrophoretic deposition for improving corrosion resistance and bioactivity of titanium implants

    International Nuclear Information System (INIS)

    Höhn, Sarah; Braem, Annabel; Neirinck, Bram; Virtanen, Sannakaisa

    2017-01-01

    Although Ti alloys are generally regarded to be highly corrosion resistant, inflammatory conditions following surgery can instigate breakdown of the TiO 2 passivation layer leading to an increased metal ion release. Furthermore proteins present in the surrounding tissue will readily adsorb on a titanium surface after implantation. In this paper alternating current electrophoretic deposition (AC-EPD) of bovine serum albumin (BSA) on Ti6Al4V was investigated in order to increase the corrosion resistance and control the protein adsorption capability of the implant surface. The Ti6Al4V surface was characterized with SEM, XPS and ToF-SIMS after long-term immersion tests under physiological conditions and simulated inflammatory conditions either in Dulbecco's Modified Eagle Medium (DMEM) or DMEM supplemented with fetal calf serum (FCS). The analysis showed an increased adsorption of amino acids and proteins from the different immersion solutions. The BSA coating was shown to prevent selective dissolution of the vanadium (V) rich β-phase, thus effectively limiting metal ion release to the environment. Electrochemical impedance spectroscopy measurements confirmed an increase of the corrosion resistance for BSA coated surfaces as a function of immersion time due to the time-dependent adsorption of the different amino acids (from DMEM) and proteins (from FCS) as observed by ToF-SIMS analysis. - Highlights: • Alternating current electrophoretic deposition (AC-EPD) of bovine serum albumin was investigated on Ti6Al4V. • The surface was characterized with SEM, XPS and ToF-SIMS after long-term immersion tests at pH 7 and pH 5. • The analysis showed an increased adsorption of amino acids (DMEM) and proteins (DMEM + FCS). • BSA was shown to prevent dissolution of the β-phase, limiting metal ion release and increase of corrosion resistance. • Ratios calculated by means of ToF-SIMS show that the protein will have different orientations during adsorption.

  16. Albumin coatings by alternating current electrophoretic deposition for improving corrosion resistance and bioactivity of titanium implants

    Energy Technology Data Exchange (ETDEWEB)

    Höhn, Sarah, E-mail: sarah.hoehn@fau.de [Institute for Surface Science and Corrosion, Dept. of Mat. Science, University of Erlangen-Nürnberg, 91058 Erlangen, Germany. (Germany); Braem, Annabel, E-mail: annabel.braem@kuleuven.be [KU Leuven Department of Materials Engineering, Kasteelpark Arenberg 44, Box 2450, 3001 Leuven (Belgium); Neirinck, Bram, E-mail: bram.neirinck@3DSystems.com [KU Leuven Department of Materials Engineering, Kasteelpark Arenberg 44, Box 2450, 3001 Leuven (Belgium); Virtanen, Sannakaisa, E-mail: virtanen@ww.uni-erlangen.de [Institute for Surface Science and Corrosion, Dept. of Mat. Science, University of Erlangen-Nürnberg, 91058 Erlangen, Germany. (Germany)

    2017-04-01

    Although Ti alloys are generally regarded to be highly corrosion resistant, inflammatory conditions following surgery can instigate breakdown of the TiO{sub 2} passivation layer leading to an increased metal ion release. Furthermore proteins present in the surrounding tissue will readily adsorb on a titanium surface after implantation. In this paper alternating current electrophoretic deposition (AC-EPD) of bovine serum albumin (BSA) on Ti6Al4V was investigated in order to increase the corrosion resistance and control the protein adsorption capability of the implant surface. The Ti6Al4V surface was characterized with SEM, XPS and ToF-SIMS after long-term immersion tests under physiological conditions and simulated inflammatory conditions either in Dulbecco's Modified Eagle Medium (DMEM) or DMEM supplemented with fetal calf serum (FCS). The analysis showed an increased adsorption of amino acids and proteins from the different immersion solutions. The BSA coating was shown to prevent selective dissolution of the vanadium (V) rich β-phase, thus effectively limiting metal ion release to the environment. Electrochemical impedance spectroscopy measurements confirmed an increase of the corrosion resistance for BSA coated surfaces as a function of immersion time due to the time-dependent adsorption of the different amino acids (from DMEM) and proteins (from FCS) as observed by ToF-SIMS analysis. - Highlights: • Alternating current electrophoretic deposition (AC-EPD) of bovine serum albumin was investigated on Ti6Al4V. • The surface was characterized with SEM, XPS and ToF-SIMS after long-term immersion tests at pH 7 and pH 5. • The analysis showed an increased adsorption of amino acids (DMEM) and proteins (DMEM + FCS). • BSA was shown to prevent dissolution of the β-phase, limiting metal ion release and increase of corrosion resistance. • Ratios calculated by means of ToF-SIMS show that the protein will have different orientations during adsorption.

  17. Osseointegration of a 3D Printed Stemmed Titanium Dental Implant: A Pilot Study

    OpenAIRE

    James Tedesco; Bryan E. J. Lee; Alex Y. W. Lin; Dakota M. Binkley; Kathleen H. Delaney; Jacek M. Kwiecien; Kathryn Grandfield

    2017-01-01

    In this pilot study, a 3D printed Grade V titanium dental implant with a novel dual-stemmed design was investigated for its biocompatibility in vivo. Both dual-stemmed (n = 12) and conventional stainless steel conical (n = 4) implants were inserted into the tibial metaphysis of New Zealand white rabbits for 3 and 12 weeks and then retrieved with the surrounding bone, fixed, dehydrated, and embedded into epoxy resin. The implants were analyzed using correlative histology, microcomputed tomogra...

  18. Covalent Immobilization of Enoxacin onto Titanium Implant Surfaces for Inhibiting Multiple Bacterial Species Infection and In Vivo Methicillin-Resistant Staphylococcus aureus Infection Prophylaxis.

    Science.gov (United States)

    Nie, Bin'en; Long, Teng; Ao, Haiyong; Zhou, Jianliang; Tang, Tingting; Yue, Bing

    2017-01-01

    Infection is one of the most important causes of titanium implant failure in vivo A developing prophylactic method involves the immobilization of antibiotics, especially vancomycin, onto the surface of the titanium implant. However, these methods have a limited effect in curbing multiple bacterial infections due to antibiotic specificity. In the current study, enoxacin was covalently bound to an amine-functionalized Ti surface by use of a polyethylene glycol (PEG) spacer, and the bactericidal effectiveness was investigated in vitro and in vivo The titanium surface was amine functionalized with 3-aminopropyltriethoxysilane (APTES), through which PEG spacer molecules were covalently immobilized onto the titanium, and then the enoxacin was covalently bound to the PEG, which was confirmed by X-ray photoelectron spectrometry (XPS). A spread plate assay, confocal laser scanning microscopy (CLSM), and scanning electron microscopy (SEM) were used to characterize the antimicrobial activity. For the in vivo study, Ti implants were inoculated with methicillin-resistant Staphylococcus aureus (MRSA) and implanted into the femoral medullary cavity of rats. The degree of infection was assessed by radiography, micro-computed tomography, and determination of the counts of adherent bacteria 3 weeks after surgery. Our data demonstrate that the enoxacin-modified PEGylated Ti surface effectively prevented bacterial colonization without compromising cell viability, adhesion, or proliferation in vitro Furthermore, it prevented MRSA infection of the Ti implants in vivo Taken together, our results demonstrate that the use of enoxacin-modified Ti is a potential approach to the alleviation of infections of Ti implants by multiple bacterial species. Copyright © 2016 American Society for Microbiology.

  19. Displacement comparison of CAD-CAM titanium and zirconia abutments to implants with different conical connections.

    Science.gov (United States)

    Yilmaz, Burak; Hashemzadeh, Shervin; Seidt, Jeremy D; Clelland, Nancy L

    2018-04-01

    To compare the displacements of CAD-CAM zirconia and titanium abutments into different internal connection systems after torquing. OsseoSpeed EV and OsseoSpeed TX implants (n=10) were placed in resin blocks. Zirconia and titanium abutments (n=5) were first hand tightened and then tightened to the recommended torque (20Ncm for TX and 25Ncm for EV). Displacements of abutments between screw tightening by hand and torque driver was measured using three-dimensional digital image correlation (3D DIC) technique. Displacements were measured in U (front/back), V (into/outward), W (right/left) directions and 3-dimensionally (3D). ANOVA with restricted maximum likelihood estimation method was used to analyze the data. Bonferroni-corrected t tests was used to determine the statistical differences (α=0.05). 3D displacement of zirconia and titanium abutments was significantly greater in OsseoSpeed EV implant (PDisplacement of zirconia and titanium abutments was not significantly different within implant systems, 3D (P≥0.386) and in each direction (P≥0.382). In U and V directions, zirconia and titanium abutments displaced significantly more towards negative in OsseoSpeed EV implant (Pdisplaced significantly more in V direction compared to the U and W (P≤0.005), and within the Osseospeed EV system, abutment displacements were significantly different amongst directions and displacements in V were the greatest (Pdisplaced more in the implant that required higher torque values to tighten the abutment. The amount of displacement in both systems was clinically small. Abutment material did not affect the magnitude of displacement. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  20. Plasma-deposited fluorocarbon polymer films on titanium for preventing cell adhesion: a surface finishing for temporarily used orthopaedic implants

    Science.gov (United States)

    Finke, B.; Testrich, H.; Rebl, H.; Walschus, U.; Schlosser, M.; Zietz, C.; Staehlke, S.; Nebe, J. B.; Weltmann, K. D.; Meichsner, J.; Polak, M.

    2016-06-01

    The design of a titanium implant surface should ideally support its later application in clinical use. Temporarily used implants have to fulfil requirements different from permanent implants: they should ensure the mechanical stabilization of the bone stock but in trauma surgery they should not be integrated into the bone because they will be removed after fracture healing. Finishing of the implant surface by a plasma-fluorocarbon-polymer (PFP) coating is a possible approach for preventing cell adhesion of osteoblasts. Two different low pressure gas-discharge plasma processes, microwave (MW 2.45 GHz) and capacitively coupled radio frequency (RF 13.56 MHz) plasma, were applied for the deposition of the PFP film using a mixture of the precursor octafluoropropane (C3F8) and hydrogen (H2). The thin films were characterized by x-ray photoelectron spectroscopy, Fourier transform infrared reflection absorption spectroscopy, and water contact angle measurements. Cell culture experiments show that cell adhesion and spreading of MG-63 osteoblasts were clearly reduced or nonexistent on these surfaces, also after 24 h of storage in the cell culture medium. In vivo data demonstrated that the local inflammatory tissue response for the PFP films deposited in MW and RF plasma were comparable to uncoated controls.

  1. Biological response to titanium implants coated with nanocrystals calcium phosphate or type 1 collagen in a dog model

    NARCIS (Netherlands)

    Alghamdi, H.S.A.; Oirschot, B.A. van; Bosco, R.; Beucken, J.J. van den; Aldosari, A.A.; Anil, S.; Jansen, J.A.

    2013-01-01

    OBJECTIVE: The current study aimed to evaluate the osteogenic potential of electrosprayed organic and non-organic surface coatings in a gap-implant model over 4 and 12 weeks of implantation into the dog mandible. MATERIAL AND METHODS: Sixteen Beagle dogs received experimental titanium implants in

  2. Nanoporous hydroxyapatite/sodium titanate bilayer on titanium implants for improved osteointegration.

    Science.gov (United States)

    Carradò, A; Perrin-Schmitt, F; Le, Q V; Giraudel, M; Fischer, C; Koenig, G; Jacomine, L; Behr, L; Chalom, A; Fiette, L; Morlet, A; Pourroy, G

    2017-03-01

    The aim of this study was to improve the strength and quality of the titanium-hydroxyapatite interface in order to prevent long-term failure of the implanted devices originating from coating delamination and to test it in an in-vivo model. Ti disks and dental commercial implants were etched in Kroll solution. Thermochemical treatments of the acid-etched titanium were combined with sol-gel hydroxyapatite (HA) coating processes to obtain a nanoporous hydroxyapatite/sodium titanate bilayer. The sodium titanate layer was created by incorporating sodium ions onto the Ti surface during a NaOH alkaline treatment and stabilized using a heat treatment. HA layer was added by dip-coating in a sol-gel solution. The bioactivity was assessed in vitro with murine MC3T3-E1 and human SaOs-2 cells. Functional and histopathological evaluations of the coated Ti implants were performed at 22, 34 and 60days of implantation in a dog lower mandible model. Nanoporous hydroxyapatite/sodium titanate bilayer on titanium implants was sensitive neither to crack propagation nor to layer delamination. The in vitro results on murine MC3T3-E1 and human SaOs-2 cells confirm the advantage of this coating regarding the capacity of cell growth and differentiation. Signs of progressive bone incorporation, such as cancellous bone formed in contact with the implant over the existing compact bone, were notable as early as day 22. Overall, osteoconduction and osteointegration mean scores were higher for test implants compared to the controls at 22 and 34 days. Nanoporous hydroxyapatite/sodium titanate bilayer improves the in-vivo osteoconduction and osteointegration. It prevents the delamination during the screwing and it could increase HA-coated dental implant stability without adhesive failures. The combination of thermochemical treatments with dip coating is a low-cost strategy. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Gentamicin coating of plasma chemical oxidized titanium alloy prevents implant-related osteomyelitis in rats.

    Science.gov (United States)

    Diefenbeck, M; Schrader, C; Gras, F; Mückley, T; Schmidt, J; Zankovych, S; Bossert, J; Jandt, K D; Völpel, A; Sigusch, B W; Schubert, H; Bischoff, S; Pfister, W; Edel, B; Faucon, M; Finger, U

    2016-09-01

    Implant related infection is one of the most feared and devastating complication associated with the use of orthopaedic implant devices. Development of anti-infective surfaces is the main strategy to prevent implant contamination, biofilm formation and implant related osteomyelitis. A second concern in orthopaedics is insufficient osseointegration of uncemented implant devices. Recently, we reported on a macroporous titanium-oxide surface (bioactive TiOB) which increases osseointegration and implant fixation. To combine enhanced osseointegration and antibacterial function, the TiOB surfaces were, in addition, modified with a gentamicin coating. A rat osteomyelitis model with bilateral placement of titanium alloy implants was employed to analyse the prophylactic effect of gentamicin-sodiumdodecylsulfate (SDS) and gentamicin-tannic acid coatings in vivo. 20 rats were randomly assigned to four groups: (A) titanium alloy; PBS inoculum (negative control), (B) titanium alloy, Staphylococcus aureus inoculum (positive control), (C) bioactive TiOB with gentamicin-SDS and (D) bioactive TiOB plus gentamicin-tannic acid coating. Contamination of implants, bacterial load of bone powder and radiographic as well as histological signs of implant-related osteomyelitis were evaluated after four weeks. Gentamicin-SDS coating prevented implant contamination in 10 of 10 tibiae and gentamicin-tannic acid coating in 9 of 10 tibiae (infection prophylaxis rate 100% and 90% of cases, respectively). In Group (D) one implant showed colonisation of bacteria (swab of entry point and roll-out test positive for S. aureus). The interobserver reliability showed no difference in the histologic and radiographic osteomyelitis scores. In both gentamicin coated groups, a significant reduction of the histological osteomyelitis score (geometric mean values: C = 0.111 ± 0.023; D = 0.056 ± 0.006) compared to the positive control group (B: 0.244 ± 0.015; p < 0.05) was observed. The

  4. Osseointegration of a 3D Printed Stemmed Titanium Dental Implant: A Pilot Study

    Directory of Open Access Journals (Sweden)

    James Tedesco

    2017-01-01

    Full Text Available In this pilot study, a 3D printed Grade V titanium dental implant with a novel dual-stemmed design was investigated for its biocompatibility in vivo. Both dual-stemmed (n = 12 and conventional stainless steel conical (n = 4 implants were inserted into the tibial metaphysis of New Zealand white rabbits for 3 and 12 weeks and then retrieved with the surrounding bone, fixed, dehydrated, and embedded into epoxy resin. The implants were analyzed using correlative histology, microcomputed tomography, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. The histological presence of multinucleated osteoclasts and cuboidal osteoblasts revealed active bone remodeling in the stemmed implant starting at 3 weeks and by 12 weeks in the conventional implant. Bone-implant contact values indicated that the stemmed implants supported bone growth along the implant from the coronal crest at both 3- and 12-week time periods and showed bone growth into microporosities of the 3D printed surface after 12 weeks. In some cases, new bone formation was noted in between the stems of the device. Conventional implants showed mechanical interlocking but did have indications of stress cracking and bone debris. This study demonstrates the comparable biocompatibility of these 3D printed stemmed implants in rabbits up to 12 weeks.

  5. Osseointegration of a 3D Printed Stemmed Titanium Dental Implant: A Pilot Study.

    Science.gov (United States)

    Tedesco, James; Lee, Bryan E J; Lin, Alex Y W; Binkley, Dakota M; Delaney, Kathleen H; Kwiecien, Jacek M; Grandfield, Kathryn

    2017-01-01

    In this pilot study, a 3D printed Grade V titanium dental implant with a novel dual-stemmed design was investigated for its biocompatibility in vivo. Both dual-stemmed ( n  = 12) and conventional stainless steel conical ( n  = 4) implants were inserted into the tibial metaphysis of New Zealand white rabbits for 3 and 12 weeks and then retrieved with the surrounding bone, fixed, dehydrated, and embedded into epoxy resin. The implants were analyzed using correlative histology, microcomputed tomography, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The histological presence of multinucleated osteoclasts and cuboidal osteoblasts revealed active bone remodeling in the stemmed implant starting at 3 weeks and by 12 weeks in the conventional implant. Bone-implant contact values indicated that the stemmed implants supported bone growth along the implant from the coronal crest at both 3- and 12-week time periods and showed bone growth into microporosities of the 3D printed surface after 12 weeks. In some cases, new bone formation was noted in between the stems of the device. Conventional implants showed mechanical interlocking but did have indications of stress cracking and bone debris. This study demonstrates the comparable biocompatibility of these 3D printed stemmed implants in rabbits up to 12 weeks.

  6. Surface modification of austenitic stainless steel by titanium ion implantation

    International Nuclear Information System (INIS)

    Evans, P.J.; Hyvarinen, J.; Samandi, M.

    1995-01-01

    The wear properties of AISI 316 austenitic stainless steel implanted with Ti were investigated for ion doses in the range (2.3-5.4)x10 16 ionscm -2 and average ion energies of 60 and 90keV. The implanted layer was examined by Rutherford backscattering, from which the retained doses were determined, and glow discharge optical emission spectroscopy. Following implantation, the surface microhardness was observed to increase with the greatest change occurring at higher ion energy. Pin-on-disc wear tests and associated friction measurements were also performed under both dry and lubricated conditions using applied loads of 2N and 10N. In the absence of lubrication, breakthrough of the implanted layer occurred after a short sliding time; only for a dose of 5.1x10 16 ionscm -2 implanted at an average energy of 90keV was the onset of breakthrough appreciably delayed. In contrast, the results of tests with lubrication showed a more gradual variation, with the extent of wear decreasing with implant dose at both 2N and 10N loads. Finally, the influence of Ti implantation on possible wear mechanisms is discussed in the light of information provided by several surface characterization techniques. ((orig.))

  7. Hierarchical tailoring of strut architecture to control permeability of additive manufactured titanium implants.

    Science.gov (United States)

    Zhang, Z; Jones, D; Yue, S; Lee, P D; Jones, J R; Sutcliffe, C J; Jones, E

    2013-10-01

    Porous titanium implants are a common choice for bone augmentation. Implants for spinal fusion and repair of non-union fractures must encourage blood flow after implantation so that there is sufficient cell migration, nutrient and growth factor transport to stimulate bone ingrowth. Additive manufacturing techniques allow a large number of pore network designs. This study investigates how the design factors offered by selective laser melting technique can be used to alter the implant architecture on multiple length scales to control and even tailor the flow. Permeability is a convenient parameter that characterises flow, correlating to structure openness (interconnectivity and pore window size), tortuosity and hence flow shear rates. Using experimentally validated computational simulations, we demonstrate how additive manufacturing can be used to tailor implant properties by controlling surface roughness at a microstructual level (microns), and by altering the strut ordering and density at a mesoscopic level (millimetre). Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  8. The synergistic effect of TiO2 nanoporous modification and platelet-rich plasma treatment on titanium-implant stability in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Jiang N

    2016-09-01

    Full Text Available Nan Jiang,1,2 Pinggong Du,2 Weidong Qu,2 Lin Li,2 Zhonghao Liu,2 Songsong Zhu1 1State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 2Yantai City Stomatological Hospital, Yantai, People’s Republic of China Abstract: For several decades, titanium and its alloys have been commonly utilized for endosseous implantable materials, because of their good mechanical properties, chemical resistance, and biocompatibility. But associated low bone mass, wear and loss characteristics, and high coefficients of friction have limited their long-term stable performance, especially in certain abnormal bone-metabolism conditions, such as postmenopausal osteoporosis. In this study, we investigated the effects of platelet-rich plasma (PRP treatment and TiO2 nanoporous modification on the stability of titanium implants in osteoporotic bone. After surface morphology, topographical structure, and chemical changes of implant surface had been detected by scanning electron microscopy (SEM, atomic force microscopy, contact-angle measurement, and X-ray diffraction, we firstly assessed in vivo the effect of PRP treatment on osseointegration of TiO2-modified implants in ovariectomized rats by microcomputed tomography examinations, histology, biomechanical testing, and SEM observation. Meanwhile, the potential molecular mechanism involved in peri-implant osseous enhancement was also determined by quantitative real-time polymerase chain reaction. The results showed that this TiO2-modified surface was able to lead to improve bone implant contact, while PRP treatment was able to increase the implant surrounding bone mass. The synergistic effect of both was able to enhance the terminal force of implants drastically in biomechanical testing. Compared with surface modification, PRP treatment promoted earlier osteogenesis with increased expression of the RUNX2 and COL1 genes and

  9. The combined action of UV irradiation and chemical treatment on the titanium surface of dental implants

    Energy Technology Data Exchange (ETDEWEB)

    Spriano, Silvia [Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi, 24-10129 Torino (Italy); Ferraris, Sara, E-mail: sara.ferraris@polito.it [Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi, 24-10129 Torino (Italy); Bollati, Daniele; Morra, Marco; Cassinelli, Clara [Nobil Bio Ricerche, Portacomaro (Italy); Lorenzon, Giorgio [Centro Chirurgico, Via Mallonetto, 47, 10032, Brandizzo Torino (Italy)

    2015-09-15

    Highlights: • A combined UV irradiation and H{sub 2}O{sub 2} treatment was applied to titanium surfaces. • A thin, homogeneous, not porous, crack-free and bioactive oxide layer was obtained. • The process significantly improves the biological response of titanium surfaces. • A clinical case demonstrates the effectiveness of the proposed treatment. - Abstract: The purpose of this paper is to describe an innovative treatment for titanium dental implants, aimed at faster and more effective osteointegration. The treatment has been performed with the use of hydrogen peroxide, whose action was enhanced by concomitant exposure to a source of ultraviolet light. The developed surface oxide layer was characterized from the physical and chemical points of view. Moreover osteoblast-like SaOS2 cells were cultured on treated and control titanium surfaces and cell behavior investigated by scanning electron microscope observation and gene expression measurements. The described process produces, in only 6 min, a thin, homogeneous, not porous, free of cracks and bioactive (in vitro apatite precipitation) oxide layer. High cell density, peculiar morphology and overexpression of several genes involved with osteogenesis have been observed on modified surfaces. The proposed process significantly improves the biological response of titanium surfaces, and is an interesting solution for the improvement of bone integration of dental implants. A clinical application of the described surfaces, with a 5 years follow-up, is reported in the paper, as an example of the effectiveness of the proposed treatment.

  10. Macrophage proinflammatory response to the titanium alloy equipment in dental implantation.

    Science.gov (United States)

    Chen, X; Li, H S; Yin, Y; Feng, Y; Tan, X W

    2015-08-07

    Titanium alloy and stainless steel (SS) had been widely used as dental implant materials because of their affinity with epithelial tissue and connective tissue, and good physical, chemical, biological, mechanical properties and processability. We compared the effects of titanium alloy and SS on macrophage cytokine expression as well as their biocompatibility. Mouse macrophage RAW264.7 cells were cultured on titanium alloy and SS surfaces. Cells were counted by scanning electron microscopy. A nitride oxide kit was used to detect released nitric oxide by macrophages on the different materials. An enzyme linked immunosorbent assay was used to detect monocyte chemoattractant protein-1 levels. Scanning electron microscopy revealed fewer macrophages on the surface of titanium alloy (48.2 ± 6.4 x 10(3) cells/cm(2)) than on SS (135 ± 7.3 x 10(3) cells/cm(2)). The nitric oxide content stimulated by titanium alloy was 22.5 mM, which was lower than that stimulated by SS (26.8 mM), but the difference was not statistically significant (P = 0.07). The level of monocyte chemoattractant protein-1 released was significantly higher in the SS group (OD value = 0.128) than in the titanium alloy group (OD value = 0.081) (P = 0.024). The transforming growth factor-b1 mRNA expression levels in macrophages after stimulation by titanium alloy for 12 and 36 h were significantly higher than that after stimulation by SS (P = 0.31 and 0.25, respectively). Macrophages participate in the inflammatory response by regulating cytokines such as nitric oxide, monocyte chemoattractant protein-1, and transforming growth factor-b1. There were fewer macrophages and lower inflammation on the titanium alloy surface than on the SS surface. Titanium alloy materials exhibited better biological compatibility than did SS.

  11. Effectiveness of transfixation and length of instrumentation on titanium and stainless steel transpedicular spine implants.

    Science.gov (United States)

    Korovessis, P; Baikousis, A; Deligianni, D; Mysirlis, Y; Soucacos, P

    2001-04-01

    This study compares the effectiveness of transfixation on the stiffness of two pedicle screw-rod constructs of different manufacture, implant design, and alloy, applied in one-and two-level instability. Four screws composed of either stainless steel or Titanium were assembled in pairs to two polymethylmethacrylate blocks to resemble one-and two-level corpectomy models and the construct underwent nondestructive torsional, extension, and flexion loading. In every loading test, each construct was tested using stainless steel or titanium rods of 4.9-mm diameter in two different lengths (short, 10 cm; long, 15 cm), not augmented or augmented with different transfixation devices or a pair of devices. The authors compared the stiffness of stainless steel and titanium constructs without cross-link with the stiffness of that reinforced with single or double Texas Scottish Rite Hospital (TSRH) cross-link, closed new-type cross-link (closed NTC), or open new-type cross-link (open NTC). The results showed that augmentation or no augmentation of short rods conferred significantly more stiffness than that of long rods of the same material in all three loading modes. The closed NTC provided the greatest increase of torsional, extension, and flexion stiffness, and single TSRH provided the least amount of stiffness. Torsional stiffness of short stainless steel rods augmented or not augmented was significantly greater than that of their titanium counterparts. Torsional stiffness of long titanium rods was always greater than that of their stainless steel counterparts. Extension stiffness of short nonaugmented titanium rods was superior to that of long titanium rods, whereas extension stiffness of nonaugmented short and long stainless steel rods was similar. Nonaugmented short titanium rods showed greater flexion stiffness than that of long titanium rods. Long stainless steel rods displayed significantly greater flexion stiffness than did their titanium counterparts. This

  12. Poly-ε-caprolactone Coated and Functionalized Porous Titanium and Magnesium Implants for Enhancing Angiogenesis in Critically Sized Bone Defects.

    Science.gov (United States)

    Roland, Laura; Grau, Michael; Matena, Julia; Teske, Michael; Gieseke, Matthias; Kampmann, Andreas; Beyerbach, Martin; Murua Escobar, Hugo; Haferkamp, Heinz; Gellrich, Nils-Claudius; Nolte, Ingo

    2015-12-22

    For healing of critically sized bone defects, biocompatible and angiogenesis supporting implants are favorable. Murine osteoblasts showed equal proliferation behavior on the polymers poly-ε-caprolactone (PCL) and poly-(3-hydroxybutyrate)/poly-(4-hydroxybutyrate) (P(3HB)/P(4HB)). As vitality was significantly better for PCL, it was chosen as a suitable coating material for further experiments. Titanium implants with 600 µm pore size were evaluated and found to be a good implant material for bone, as primary osteoblasts showed a vitality and proliferation onto the implants comparable to well bottom (WB). Pure porous titanium implants and PCL coated porous titanium implants were compared using Live Cell Imaging (LCI) with Green fluorescent protein (GFP)-osteoblasts. Cell count and cell covered area did not differ between the implants after seven days. To improve ingrowth of blood vessels into porous implants, proangiogenic factors like Vascular Endothelial Growth Factor (VEGF) and High Mobility Group Box 1 (HMGB1) were incorporated into PCL coated, porous titanium and magnesium implants. An angiogenesis assay was performed to establish an in vitro method for evaluating the impact of metallic implants on angiogenesis to reduce and refine animal experiments in future. Incorporated concentrations of proangiogenic factors were probably too low, as they did not lead to any effect. Magnesium implants did not yield evaluable results, as they led to pH increase and subsequent cell death.

  13. Poly-ε-caprolactone Coated and Functionalized Porous Titanium and Magnesium Implants for Enhancing Angiogenesis in Critically Sized Bone Defects

    Directory of Open Access Journals (Sweden)

    Laura Roland

    2015-12-01

    Full Text Available For healing of critically sized bone defects, biocompatible and angiogenesis supporting implants are favorable. Murine osteoblasts showed equal proliferation behavior on the polymers poly-ε-caprolactone (PCL and poly-(3-hydroxybutyrate/poly-(4-hydroxybutyrate (P(3HB/P(4HB. As vitality was significantly better for PCL, it was chosen as a suitable coating material for further experiments. Titanium implants with 600 µm pore size were evaluated and found to be a good implant material for bone, as primary osteoblasts showed a vitality and proliferation onto the implants comparable to well bottom (WB. Pure porous titanium implants and PCL coated porous titanium implants were compared using Live Cell Imaging (LCI with Green fluorescent protein (GFP-osteoblasts. Cell count and cell covered area did not differ between the implants after seven days. To improve ingrowth of blood vessels into porous implants, proangiogenic factors like Vascular Endothelial Growth Factor (VEGF and High Mobility Group Box 1 (HMGB1 were incorporated into PCL coated, porous titanium and magnesium implants. An angiogenesis assay was performed to establish an in vitro method for evaluating the impact of metallic implants on angiogenesis to reduce and refine animal experiments in future. Incorporated concentrations of proangiogenic factors were probably too low, as they did not lead to any effect. Magnesium implants did not yield evaluable results, as they led to pH increase and subsequent cell death.

  14. Custom-made titanium devices as membranes for bone augmentation in implant treatment: Clinical application and the comparison with conventional titanium mesh.

    Science.gov (United States)

    Sumida, Tomoki; Otawa, Naruto; Kamata, Y U; Kamakura, Satoshi; Mtsushita, Tomiharu; Kitagaki, Hisashi; Mori, Shigeo; Sasaki, Kiyoyuki; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Yamaguchi, Atsushi; Sohmura, Taiji; Nakamura, Takashi; Mori, Yoshihide

    2015-12-01

    Development of new custom-made devices to reconstruct alveolar bone for implantation, and comparison with conventional methods were the goals of this study. Using a computer-aided design technique, three-dimensional images were constructed. From these data, custom-made devices were produced by a selective laser melting method with pure titanium. Clinical trials also have been conducted with 26 participants who needed bone reconstruction before implantation; they were divided into 2 groups with 13 patients each. The first group uses custom-made devices; the other uses commercial titanium meshes that need to bend during operation. Some clinical aspects are evaluated after the trial. The custom-made devices can be produced closely by following the data precisely. Devices are fit for bone defect site. Moreover, the operation time of the custom-made group (75.4 ± 11.6 min) was significantly shorter than that of the conventional group (111.9 ± 17.8 min) (p < 0.01). Mucosal rupture occurs, without significant difference (p = 0.27), in a patient in the custom-made without severe infection (7.7%), and 3 in conventional (23.1%), respectively. The retaining screw is significantly fewer in the custom-made group than commercial mesh group (p < 0.01). These results indicate that our novel protocol could be simple and safe for providing powerful support for guided bone regeneration. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  15. Biodegradable radioactive implants for glaucoma filtering surgery produced by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Assmann, W. [Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, 85748 Garching (Germany)]. E-mail: walter.assmann@lmu.de; Schubert, M. [Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, 85748 Garching (Germany); Held, A. [Augenklinik, Technische Universitaet Muenchen, 81675 Munich (Germany); Pichler, A. [Augenklinik, Technische Universitaet Muenchen, 81675 Muenchen (Germany); Chill, A. [Zentralinstitut fuer Medizintechnik, Technische Universitaet Muenchen, 85748 Garching (Germany); Kiermaier, S. [Zentralinstitut fuer Medizintechnik, Technische Universitaet Muenchen, 85748 Garching (Germany); Schloesser, K. [Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Busch, H. [NTTF GmbH, 53619 Rheinbreitbach (Germany); Schenk, K. [NTTF GmbH, 53619 Rheinbreitbach (Germany); Streufert, D. [Acri.Tec GmbH, 16761 Hennigsdorf (Germany); Lanzl, I. [Augenklinik, Technische Universitaet Muenchen, 81675 Munich (Germany)

    2007-04-15

    A biodegradable, {beta}-emitting implant has been developed and successfully tested which prevents fresh intraocular pressure increase after glaucoma filtering surgery. Ion implantation has been used to load the polymeric implants with the {beta}-emitter {sup 32}P. The influence of ion implantation and gamma sterilisation on degradation and {sup 32}P-fixation behavior has been studied by ion beam and chemical analysis. Irradiation effects due to the applied ion fluence (10{sup 15} ions/cm{sup 2}) and gamma dose (25 kGy) are found to be tolerable.

  16. Micro-morphologic changes around biophysically-stimulated titanium implants in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Chang Ting-Ling

    2007-07-01

    Full Text Available Abstract Background Osteoporosis may present a risk factor in achievement of osseointegration because of its impact on bone remodeling properties of skeletal phsiology. The purpose of this study was to evaluate micro-morphological changes in bone around titanium implants exposed to mechanical and electrical-energy in osteoporotic rats. Methods Fifteen 12-week old sprague-dowley rats were ovariectomized to develop osteoporosis. After 8 weeks of healing period, two titanium implants were bilaterally placed in the proximal metaphyses of tibia. The animals were randomly divided into a control group and biophysically-stimulated two test groups with five animals in each group. In the first test group, a pulsed electromagnetic field (PEMF stimulation was administrated at a 0.2 mT 4 h/day, whereas the second group received low-magnitude high-frequency mechanical vibration (MECHVIB at 50 Hz 14 min/day. Following completion of two week treatment period, all animals were sacrificed. Bone sites including implants were sectioned, removed en bloc and analyzed using a microCT unit. Relative bone volume and bone micro-structural parameters were evaluated for 144 μm wide peri-implant volume of interest (VOI. Results Mean relative bone volume in the peri-implant VOI around implants PEMF and MECHVIB was significantly higher than of those in control (P P > .05 while the difference in trabecular-number among test and control groups was significant in all VOIs (P Conclusion Biophysical stimulation remarkably enhances bone volume around titanium implants placed in osteoporotic rats. Low-magnitude high-frequency MECHVIB is more effective than PEMF on bone healing in terms of relative bone volume.

  17. Electropolished Titanium Implants with a Mirror-Like Surface Support Osseointegration and Bone Remodelling

    Directory of Open Access Journals (Sweden)

    Cecilia Larsson Wexell

    2016-01-01

    Full Text Available This work characterises the ultrastructural composition of the interfacial tissue adjacent to electropolished, commercially pure titanium implants with and without subsequent anodisation, and it investigates whether a smooth electropolished surface can support bone formation in a manner similar to surfaces with a considerably thicker surface oxide layer. Screw-shaped implants were electropolished to remove all topographical remnants of the machining process, resulting in a thin spontaneously formed surface oxide layer and a smooth surface. Half of the implants were subsequently anodically oxidised to develop a thickened surface oxide layer and increased surface roughness. Despite substantial differences in the surface physicochemical properties, the microarchitecture and the composition of the newly formed bone were similar for both implant surfaces after 12 weeks of healing in rabbit tibia. A close spatial relationship was observed between osteocyte canaliculi and both implant surfaces. On the ultrastructural level, the merely electropolished surface showed the various stages of bone formation, for example, matrix deposition and mineralisation, entrapment of osteoblasts within the mineralised matrix, and their morphological transformation into osteocytes. The results demonstrate that titanium implants with a mirror-like surface and a thin, spontaneously formed oxide layer are able to support bone formation and remodelling.

  18. Improved surface corrosion resistance of WE43 magnesium alloy by dual titanium and oxygen ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ying [Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Wu, Guosong; Lu, Qiuyuan [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Wu, Jun [Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong (China); Xu, Ruizhen [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Yeung, Kelvin W.K., E-mail: wkkyeung@hku.hk [Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong (China); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2013-02-01

    Magnesium alloys are potential biodegradable materials and have attracted much attention due to their outstanding biological performance and mechanical properties. However, their rapid degradation inside the human body cannot meet clinical needs. In order to improve the corrosion resistance, dual titanium and oxygen ion implantation is performed to modify the surface of the WE43 magnesium alloy. X-ray photoelectron spectroscopy is used to characterize the microstructures in the near surface layer and electrochemical impedance spectroscopy, potentiodynamic polarization, and immersion tests are employed to investigate the corrosion resistance of the implanted alloys in simulated body fluids. The results indicate that dual titanium and oxygen ion implantation produces a TiO{sub 2}-containing surface film which significantly enhances the corrosion resistance of WE43 magnesium alloy. Our data suggest a simple and practical means to improve the corrosion resistance of degradable magnesium alloys. - Highlights: ► Surface modification of WE43 magnesium alloy using dual ion implantation ► Dual Ti and O ion implantation produces a homogeneous TiO{sub 2}-containing surface film ► Significant improvement of the alloy corrosion resistance after the dual ion implantation.

  19. X-ray photoelectron spectroscopy characterization of high dose carbon-implanted steel and titanium alloys

    Science.gov (United States)

    Viviente, J. L.; García, A.; Alonso, F.; Braceras, I.; Oñate, J. I.

    1999-04-01

    A study has been made of the depth dependence of the atomic fraction and chemical bonding states of AISI 440C martensitic stainless steel and Ti-6Al-4V alloy implanted with 75 keV C + at very high doses (above 10 18 ions cm -2), by means of X-ray photoelectron spectroscopy combined with an Ar + sputtering. A Gaussian-like carbon distribution was observed on both materials at the lowest implanted dose. More trapezoidal carbon depth-profiles were found with increasing implanted doses, and a pure carbon layer was observed only on the titanium alloy implanted at the highest dose. The implanted carbon was combined with both base metal and carbon itself to form metallic carbides and graphitic carbon. Furthermore, carbon-enriched carbides were also found by curve fitting the C 1s spectra. The titanium alloy showed a higher carbidic contribution than the steel implanted at the same C + doses. A critical carbon concentrations of about 33 at.% and 23 at.% were measured for the formation of C-C bonds in Ti-6Al-4V and steel samples, respectively. The carbon atoms were bound with metal to form carbidic compounds until these critical concentrations were reached; when this C concentration was exceeded the proportion of C-C bonds increased and resulted in the growth of carbonaceous layers.

  20. Mechanical verification of soft-tissue attachment on bioactive glasses and titanium implants.

    Science.gov (United States)

    Zhao, Desheng; Moritz, Niko; Vedel, Erik; Hupa, Leena; Aro, Hannu T

    2008-07-01

    Soft-tissue attachment is a desired feature of many clinical biomaterials. The aim of the current study was to design a suitable experimental method for tensile testing of implant incorporation with soft-tissues. Conical implants were made of three compositions of bioactive glass (SiO(2)-P(2)O(5)-B(2)O(3)-Na(2)O-K(2)O-CaO-MgO) or titanium fiber mesh (porosity 84.7%). The implants were surgically inserted into the dorsal subcutaneous soft-tissue or back muscles in the rat. Soft-tissue attachment was evaluated by pull-out testing using a custom-made jig 8 weeks after implantation. Titanium fiber mesh implants had developed a relatively high pull-out force in subcutaneous tissue (12.33+/-5.29 N, mean+/-SD) and also measurable attachment with muscle tissue (2.46+/-1.33 N). The bioactive glass implants failed to show mechanically relevant soft-tissue bonding. The experimental set-up of mechanical testing seems to be feasible for verification studies of soft-tissue attachment. The inexpensive small animal model is beneficial for large-scale in vivo screening of new biomaterials.

  1. Adding functionality with additive manufacturing: Fabrication of titanium-based antibiotic eluting implants

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Sophie C. [School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Jamshidi, Parastoo [School of Materials and Metallurgy, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Eisenstein, Neil M. [School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Royal Centre for Defence Medicine, Birmingham Research Park, Vincent Drive, Edgbaston B15 2SQ (United Kingdom); Webber, Mark A. [School of Biosciences, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Hassanin, Hany [School of Materials and Metallurgy, University of Birmingham, Edgbaston B15 2TT (United Kingdom); School of Mechanical and Automotive Engineering, Kingston University, London SW15 3DW (United Kingdom); Attallah, Moataz M. [School of Materials and Metallurgy, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Shepherd, Duncan E.T. [Department of Mechanical Engineering, School of Engineering, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Addison, Owen [School of Dentistry, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Grover, Liam M. [School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT (United Kingdom)

    2016-07-01

    Additive manufacturing technologies have been utilised in healthcare to create patient-specific implants. This study demonstrates the potential to add new implant functionality by further exploiting the design flexibility of these technologies. Selective laser melting was used to manufacture titanium-based (Ti-6Al-4V) implants containing a reservoir. Pore channels, connecting the implant surface to the reservoir, were incorporated to facilitate antibiotic delivery. An injectable brushite, calcium phosphate cement, was formulated as a carrier vehicle for gentamicin. Incorporation of the antibiotic significantly (p = 0.01) improved the compressive strength (5.8 ± 0.7 MPa) of the cement compared to non-antibiotic samples. The controlled release of gentamicin sulphate from the calcium phosphate cement injected into the implant reservoir was demonstrated in short term elution studies using ultraviolet-visible spectroscopy. Orientation of the implant pore channels were shown, using micro-computed tomography, to impact design reproducibility and the back-pressure generated during cement injection which ultimately altered porosity. The amount of antibiotic released from all implant designs over a 6 hour period (< 28% of the total amount) were found to exceed the minimum inhibitory concentrations of Staphylococcus aureus (16 μg/mL) and Staphylococcus epidermidis (1 μg/mL); two bacterial species commonly associated with periprosthetic infections. Antibacterial efficacy was confirmed against both bacterial cultures using an agar diffusion assay. Interestingly, pore channel orientation was shown to influence the directionality of inhibition zones. Promisingly, this work demonstrates the potential to additively manufacture a titanium-based antibiotic eluting implant, which is an attractive alternative to current treatment strategies of periprosthetic infections. - Highlights: • Titanium implants were additively manufactured with surface connected reservoirs. • Implants

  2. Reconstruction with a patient-specific titanium implant after a wide anterior chest wall resection

    Science.gov (United States)

    Turna, Akif; Kavakli, Kuthan; Sapmaz, Ersin; Arslan, Hakan; Caylak, Hasan; Gokce, Hasan Suat; Demirkaya, Ahmet

    2014-01-01

    The reconstruction of full-thickness chest wall defects is a challenging problem for thoracic surgeons, particularly after a wide resection of the chest wall that includes the sternum. The location and the size of the defect play a major role when selecting the method of reconstruction, while acceptable cosmetic and functional results remain the primary goal. Improvements in preoperative imaging techniques and reconstruction materials have an important role when planning and performing a wide chest wall resection with a low morbidity rate. In this report, we describe the reconstruction of a wide anterior chest wall defect with a patient-specific custom-made titanium implant. An infected mammary tumour recurrence in a 62-year old female, located at the anterior chest wall including the sternum, was resected, followed by a large custom-made titanium implant. Latissimus dorsi flap and split-thickness graft were also used for covering the implant successfully. A titanium custom-made chest wall implant could be a viable alternative for patients who had large chest wall tumours. PMID:24227881

  3. A comparative study of gold UCLA-type and CAD/CAM titanium implant abutments

    Science.gov (United States)

    Park, Ji-Man; Lee, Jai-Bong; Heo, Seong-Joo

    2014-01-01

    PURPOSE The aim of this study was to evaluate the interface accuracy of computer-assisted designed and manufactured (CAD/CAM) titanium abutments and implant fixture compared to gold-cast UCLA abutments. MATERIALS AND METHODS An external connection implant system (Mark III, n=10) and an internal connection implant system (Replace Select, n=10) were used, 5 of each group were connected to milled titanium abutment and the rest were connected to the gold-cast UCLA abutments. The implant fixture and abutment were tightened to torque of 35 Ncm using a digital torque gauge, and initial detorque values were measured 10 minutes after tightening. To mimic the mastication, a cyclic loading was applied at 14 Hz for one million cycles, with the stress amplitude range being within 0 N to 100 N. After the cyclic loading, detorque values were measured again. The fixture-abutment gaps were measured under a microscope and recorded with an accuracy of ±0.1 µm at 50 points. RESULTS Initial detorque values of milled abutment were significantly higher than those of cast abutment (P.05). After cyclic loading, detorque values of cast abutment increased, but those of milled abutment decreased (Pabutment group and the cast abutment group after cyclic loading. CONCLUSION In conclusion, CAD/CAM milled titanium abutment can be fabricated with sufficient accuracy to permit screw joint stability between abutment and fixture comparable to that of the traditional gold cast UCLA abutment. PMID:24605206

  4. Ion enhanced deposition by dual titanium and acetylene plasma immersion ion implantation

    Science.gov (United States)

    Zeng, Z. M.; Tian, X. B.; Chu, P. K.

    2003-01-01

    Plasma immersion ion implantation and deposition (PIII-D) offers a non-line-of-sight fabrication method for various types of thin films on steels to improve the surface properties. In this work, titanium films were first deposited on 9Cr18 (AISI440) stainless bearing steel by metal plasma immersion ion implantation and deposition (MePIII-D) using a titanium vacuum arc plasma source. Afterwards, carbon implantation and carbon film deposition were performed by acetylene (C2H2) plasma immersion ion implantation. Multiple-layered structures with superior properties were produced by conducting Ti MePIII-D + C2H2 PIII successively. The composition and structure of the films were investigated employing Auger electron spectroscopy and Raman spectroscopy. It is shown that the mixing for Ti and C atoms is much better when the target bias is higher during Ti MePIII-D. A top diamond-like carbon layer and a titanium oxycarbide layer are formed on the 9Cr18 steel surface. The wear test results indicate that this dual PIII-D method can significantly enhance the wear properties and decrease the surface friction coefficient of 9Cr18 steel.

  5. Ion enhanced deposition by dual titanium and acetylene plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Zeng, Z.M.; Tian, X.B.; Chu, P.K.

    2003-01-01

    Plasma immersion ion implantation and deposition (PIII-D) offers a non-line-of-sight fabrication method for various types of thin films on steels to improve the surface properties. In this work, titanium films were first deposited on 9Cr18 (AISI440) stainless bearing steel by metal plasma immersion ion implantation and deposition (MePIII-D) using a titanium vacuum arc plasma source. Afterwards, carbon implantation and carbon film deposition were performed by acetylene (C 2 H 2 ) plasma immersion ion implantation. Multiple-layered structures with superior properties were produced by conducting Ti MePIII-D + C 2 H 2 PIII successively. The composition and structure of the films were investigated employing Auger electron spectroscopy and Raman spectroscopy. It is shown that the mixing for Ti and C atoms is much better when the target bias is higher during Ti MePIII-D. A top diamond-like carbon layer and a titanium oxycarbide layer are formed on the 9Cr18 steel surface. The wear test results indicate that this dual PIII-D method can significantly enhance the wear properties and decrease the surface friction coefficient of 9Cr18 steel

  6. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment.

    Science.gov (United States)

    Taniguchi, Naoya; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Sasaki, Kiyoyuki; Otsuki, Bungo; Nakamura, Takashi; Matsushita, Tomiharu; Kokubo, Tadashi; Matsuda, Shuichi

    2016-02-01

    Selective laser melting (SLM) is an additive manufacturing technique with the ability to produce metallic scaffolds with accurately controlled pore size, porosity, and interconnectivity for orthopedic applications. However, the optimal pore structure of porous titanium manufactured by SLM remains unclear. In this study, we evaluated the effect of pore size with constant porosity on in vivo bone ingrowth in rabbits into porous titanium implants manufactured by SLM. Three porous titanium implants (with an intended porosity of 65% and pore sizes of 300, 600, and 900μm, designated the P300, P600, and P900 implants, respectively) were manufactured by SLM. A diamond lattice was adapted as the basic structure. Their porous structures were evaluated and verified using microfocus X-ray computed tomography. Their bone-implant fixation ability was evaluated by their implantation as porous-surfaced titanium plates into the cortical bone of the rabbit tibia. Bone ingrowth was evaluated by their implantation as cylindrical porous titanium implants into the cancellous bone of the rabbit femur for 2, 4, and 8weeks. The average pore sizes of the P300, P600, and P900 implants were 309, 632, and 956μm, respectively. The P600 implant demonstrated a significantly higher fixation ability at 2weeks than the other implants. After 4weeks, all models had sufficiently high fixation ability in a detaching test. Bone ingrowth into the P300 implant was lower than into the other implants at 4weeks. Because of its appropriate mechanical strength, high fixation ability, and rapid bone ingrowth, our results indicate that the pore structure of the P600 implant is a suitable porous structure for orthopedic implants manufactured by SLM. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Development of titanium alloys and surface treatments to increase the implants lifetime

    Directory of Open Access Journals (Sweden)

    Joan Lario-Femenía

    2016-12-01

    Full Text Available The population aging together with increase of life expectancy forces the development of new prosthesis which may present a higher useful life. The clinical success of implants is based on the osseointegration achievement. Therefore, metal implants must have a mechanical compatibility with the substituted bone, which is achieved through a combination of low elastic modulus, high flexural and fatigue strength. The improvement, in the short and long term, of the osseointegration depends on several factors, where the macroscopic design and dimensional, material and implant surface topography are of great importance. This article is focused on summarizing the advantages that present the titanium and its alloys to be used as biomaterials, and the development that they have suffered in recent decades to improve their biocompatibility. Consequently, the implants evolution has been recapitulated and summarized through three generations. In the recent years the interest on the surface treatments for metallic prostheses has been increased, the main objective is achieve a lasting integration between implant and bone tissue, in the shortest time possible. On this article various surface treatments currently used to modify the surface roughness or to obtain coatings are described it; it is worthy to mention the electrochemical oxidation with post-heat treated to modify the titanium oxide crystalline structure. After the literature review conducted for prepare this article, the ? titanium alloys, with a nanotubes surface of obtained by electrochemical oxidation and a subsequent step of heat treatment to obtain a crystalline structure are the future option to improve long term biocompatibility of titanium prostheses.

  8. Superior biocompatibility and osteogenic efficacy of micro-arc oxidation-treated titanium implants in the canine mandible

    International Nuclear Information System (INIS)

    Ran Wei; Guo Bing; Shu Dalong; Tian Zhihui; Nan Kaihui; Wang Yingjun

    2009-01-01

    The aim of this paper is to test implantation outcomes and osteogenic efficacy of plasma micro-arc oxidation (MAO)-treated titanium implants in dogs. Thirty-six pure titanium implants (18 MAO-treated, 18 untreated) were inserted into the mandibles of nine adult beagles and allowed to heal under non-weight-bearing conditions. Implant stability and interface characteristics were evaluated at 4, 8 and 12 weeks post-implantation. Methods included scanning electron microscopy, mechanical testing, histological analysis and computer-quantified tissue morphology. Osseointegration was achieved in both groups, but occurred earlier and more extensively in the MAO group. Areas of direct bone/implant contact were approximately nine times higher in the MAO group than in the control group at 12 weeks (65.85% versus 7.37%, respectively; p < 0.01). Bone-implant shear strength in the MAO group (71.4, 147.2 and 266.3 MPa at weeks 4, 8 and 12, respectively) was higher than in the control group (4.3, 7.1, and 11.8 MPa at weeks 4, 8 and 12, respectively), at all assessments (all, p < 0.01). MAO treatment of titanium implants promotes more rapid formation of new bone, and increases bone-implant shear strength compared to untreated titanium implants.

  9. Bone regeneration by the osteoconductivity of porous titanium implants manufactured by selective laser melting: a histological and micro computed tomography study in the rabbit.

    Science.gov (United States)

    de Wild, Michael; Schumacher, Ralf; Mayer, Kyrill; Schkommodau, Erik; Thoma, Daniel; Bredell, Marius; Kruse Gujer, Astrid; Grätz, Klaus W; Weber, Franz E

    2013-12-01

    The treatment of large bone defects still poses a major challenge in orthopaedic and cranio-maxillofacial surgery. One possible solution could be the development of personalized porous titanium-based implants that are designed to meet all mechanical needs with a minimum amount of titanium and maximum osteopromotive properties so that it could be combined with growth factor-loaded hydrogels or cell constructs to realize advanced bone tissue engineering strategies. Such implants could prove useful for mandibular reconstruction, spinal fusion, the treatment of extended long bone defects, or to fill in gaps created on autograft harvesting. The aim of this study was to determine the mechanical properties and potential of bone formation of light weight implants generated by selective laser melting (SLM). We mainly focused on osteoconduction, as this is a key feature in bone healing and could serve as a back-up for osteoinduction and cell transplantation strategies. To that end, defined implants were produced by SLM, and their surfaces were left untreated, sandblasted, or sandblasted/acid etched. In vivo bone formation with the different implants was tested throughout calvarial defects in rabbits and compared with untreated defects. Analysis by micro computed tomography (μCT) and histomorphometry revealed that all generatively produced porous Ti structures were well osseointegrated into the surrounding bone. The histomorphometric analysis revealed that bone formation was significantly increased in all implant-treated groups compared with untreated defects and significantly increased in sand blasted implants compared with untreated ones. Bone bridging was significantly increased in sand blasted acid-etched scaffolds. Therefore, scaffolds manufactured by SLM should be surface treated. Bone augmentation beyond the original bone margins was only seen in implant-treated defects, indicating an osteoconductive potential of the implants that could be utilized clinically for bone

  10. Bone reactions adjacent to titanium implants with different surface characteristics subjected to static load. A study in the dog (II)

    DEFF Research Database (Denmark)

    Gotfredsen, K; Berglundh, T; Lindhe, J

    2001-01-01

    The purpose of the present study was to compare bone reactions adjacent to titanium implants with either a titanium plasma-sprayed (TPS) or a machined surface subjected to lateral static loading induced by an expansion force. In 3 labrador dogs, the 2nd, 3rd and 4th mandibular premolars were...

  11. The effect of titanium implant surface modification on the dynamic process of initial microbial adhesion and biofilm formation

    NARCIS (Netherlands)

    Han, A.; Li, X.; Huang, B.; Tsoi, J.K.-H.; Matinlinna, J.P.; Chen, Z.; Deng, D.M.

    2016-01-01

    Purpose: The aim of the study was to investigate the dynamic process of biofilm adhesion on titanium implant with two surface treatments, either pickled (PT) or moderately roughened by sandblasting with large grits and acid-etched (SLA). Materials and methods: Two types of titanium disks with

  12. Usage of demineralized bone powder in dental implant surgery

    International Nuclear Information System (INIS)

    Chang Joon Yim

    1999-01-01

    While there is much concern in the dental community about the risk of disease transfer with processed bone a] iografts, there has never been a case of disease transfer with DFDB. Exclusionary techniques and chemical processing of the allogeneic bone has rendered these grafts safe for human implantation. The literature indicates that there has been considerable interest in the biology and applied science of osteoinduction. The accumulated evidence supports the concept of cartilage and bone cell differentiation induced by a unique bone motphogenetic protein (BMP). Currently clinical usage has been focused on the alveolar bone defects associated with the dental implant surgery, which has become one of the most important areas in dental outpatient clinic. Increased application of the endosseous dental implant system results in a lot of demands to regenerate the alveolar bone defects around the dental implants. Anderegg et al.(1991) reported the excellent results from the combination of DFDB powder and expanded PTFE (polytetrafluorethylene) membranes. Since 1980 the author experienced the human DFDB powders for the oral and maxillofacial surgery and the dental implant surgery. Yim and Kim(1993) evaluated 93 surgical sites where DFDB was used and found 96.7% of success rates at re-entry surgery. Mellonig and Triplett (1993) reported 97% of success rates, and Gelb (1993) obtained 98% of success rates. Fugazzotto (1994) placed 59 dental implants at the time of sinus lifts with the composite graft of DFDB and resorbable tricalcium phosphate and none of implants was lost on uncovering and only one was lost while functioning. Yim (1994) placed 44 dental implants at the time of sinus lifts with DFDB, and none of implants was lost on uncovering. Zinner and Small (1996) placed 215 dental implants at the time of sinus lifts (52 sinuses) with the composite graft of DFDB, and other materials, 3 implants of which were failed on uncovering. To date, maxillary sinus lift graft with

  13. Surface modification of the titanium implant using TEA CO2 laser pulses in controllable gas atmospheres - Comparative study

    International Nuclear Information System (INIS)

    Ciganovic, J.; Stasic, J.; Gakovic, B.; Momcilovic, M.; Milovanovic, D.; Bokorov, M.; Trtica, M.

    2012-01-01

    Interaction of a TEA CO 2 laser, operating at 10.6 μm wavelength and pulse duration of 100 ns (FWHM), with a titanium implant in various gas atmospheres was studied. The Ti implant surface modification was typically studied at the moderate laser beam energy density/fluence of 28 J/cm 2 in the surrounding of air, N 2 , O 2 or He. The energy absorbed from the TEA CO 2 laser beam is partially converted to thermal energy, which generates a series of effects, such as melting, vaporization of the molten material, shock waves, etc. The following titanium implant surface changes and phenomena were observed, depending on the gas used: (i) creation of cone-like surface structures in the atmospheres of air, N 2 and O 2 , and dominant micro-holes/pores in He ambient; (ii) hydrodynamic features, most prominent in air; (iii) formation of titanium nitride and titanium oxide layers, and (iv) occurrence of plasma in front of the implant. It can be concluded from this study that the reported laser fluence and gas ambiences can effectively be applied for enhancing the titanium implant roughness and creation of titanium oxides and nitrides on the strictly localized surface area. The appearance of plasma in front of the implants indicates relatively high temperatures created above the surface. This offers a sterilizing effect, facilitating contaminant-free conditions.

  14. Surface modification of the titanium implant using TEA CO{sub 2} laser pulses in controllable gas atmospheres - Comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Ciganovic, J.; Stasic, J.; Gakovic, B.; Momcilovic, M.; Milovanovic, D. [VINCA Institute of Nuclear Sciences, University of Belgrade, P.O. BOX 522, 11001 Belgrade (Serbia); Bokorov, M. [Faculty of Sciences, Department of Biology and Ecology, University of Novi Sad, Trg Dositeja Obradovica 3, 21000 Novi Sad (Serbia); Trtica, M., E-mail: etrtica@vinca.rs [VINCA Institute of Nuclear Sciences, University of Belgrade, P.O. BOX 522, 11001 Belgrade (Serbia)

    2012-01-15

    Interaction of a TEA CO{sub 2} laser, operating at 10.6 {mu}m wavelength and pulse duration of 100 ns (FWHM), with a titanium implant in various gas atmospheres was studied. The Ti implant surface modification was typically studied at the moderate laser beam energy density/fluence of 28 J/cm{sup 2} in the surrounding of air, N{sub 2}, O{sub 2} or He. The energy absorbed from the TEA CO{sub 2} laser beam is partially converted to thermal energy, which generates a series of effects, such as melting, vaporization of the molten material, shock waves, etc. The following titanium implant surface changes and phenomena were observed, depending on the gas used: (i) creation of cone-like surface structures in the atmospheres of air, N{sub 2} and O{sub 2}, and dominant micro-holes/pores in He ambient; (ii) hydrodynamic features, most prominent in air; (iii) formation of titanium nitride and titanium oxide layers, and (iv) occurrence of plasma in front of the implant. It can be concluded from this study that the reported laser fluence and gas ambiences can effectively be applied for enhancing the titanium implant roughness and creation of titanium oxides and nitrides on the strictly localized surface area. The appearance of plasma in front of the implants indicates relatively high temperatures created above the surface. This offers a sterilizing effect, facilitating contaminant-free conditions.

  15. The effects of bone marrow aspirate, bone graft, and collagen composites on fixation of titanium implants

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Sandri, Monica

    2012-01-01

    Replacement of extensive local bone loss especially in revision joint arthroplasty and spine fusion is a significant clinical challenge. Allograft and autograft have been considered as gold standards for bone replacement. However, there are several disadvantages such as donor site pain, bacterial...... contamination, and non union as well as the potential risk of disease transmission. Hydroxyapatite and collagen composites (HA/Collagen) have the potential in mimicking and replacing skeletal bones. This study attempted to determine the effects of newly developed HA/Collagen-composites with and without bone...... marrow aspirate (BMA) on enhancement of bone implant fixation. Method: Titanium alloy implants were inserted into bilateral femoral condyles of eight skeletally mature sheep, four implants per sheep. The implant had a circumferential gap of 2 mm. The gap was filled with: HA/Collagen; HA...

  16. Surface and corrosion characteristics of carbon plasma implanted and deposited nickel-titanium alloy

    International Nuclear Information System (INIS)

    Poon, R.W.Y.; Liu, X.Y.; Chung, C.Y.; Chu, P.K.; Yeung, K.W.K.; Lu, W.W.; Cheung, K.M.C.

    2005-01-01

    Nickel-titanium shape memory alloys (NiTi) are potentially useful in orthopedic implants on account of their super-elastic and shape memory properties. However, the materials are prone to surface corrosion and the most common problem is out-diffusion of harmful Ni ions from the substrate into body tissues and fluids. In order to improve the corrosion resistance and related surface properties, we used the technique of plasma immersion ion implantation and deposition to deposit an amorphous hydrogenated carbon coating onto NiTi and implant carbon into NiTi. Both the deposited amorphous carbon film and carbon plasma implanted samples exhibit much improved corrosion resistances and surface mechanical properties and possible mechanisms are suggested

  17. Micro-computerised tomography optimisation for the measurement of bone mineral density around titanium dental implants

    International Nuclear Information System (INIS)

    Park, C.; Swain, M.; Duncan, W.

    2010-01-01

    Titanium dental implants (screws) are commonly used to replace missing teeth by forming a biological union with bone ('osseointegration'). Micro-computerised tomography (μCT) may be useful for measuring bone mineral density around dental implants. Major issues arise because of various artefacts that occur with polychromatic X-rays associated bench type instruments that may compromise interpretation of the observations. In this study various approaches to minimise artefacts such as; beam hardening, filtering and edge effects are explored with a homogeneous polymeric material, Teflon, with and without an implant present. The implications of the limitations of using such polychromatic μCT systems to quantify bone mineral density adjacent to the implant are discussed. (author)

  18. One-Piece Zirconia Ceramic versus Titanium Implants in the Jaw and Femur of a Sheep Model: A Pilot Study.

    Science.gov (United States)

    Siddiqi, A; Duncan, W J; De Silva, R K; Zafar, S

    2016-01-01

    Reports have documented titanium (Ti) hypersensitivity after dental implant treatment. Alternative materials have been suggested including zirconia (Zr) ceramics, which have shown predictable osseointegration in animal studies and appear free of immune responses. The aim of the research was to investigate the bone-to-implant contact (BIC) of one-piece Zr, compared with one-piece Ti implants, placed in the jaws and femurs of domestic sheep. Ten New Zealand mixed breed sheep were used. A One-piece prototype Ti (control) and one Zr (test) implant were placed in the mandible, and one of each implant (Ti and Zr) was placed into the femoral epicondyle of each animal. The femur implants were submerged and unloaded; the mandibular implants were placed using a one-stage transgingival protocol and were nonsubmerged. After a healing period of 12 weeks, %BIC was measured. The overall survival rate for mandibular and femur implants combined was 87.5%. %BIC was higher for Zr implants versus Ti implants in the femur (85.5%, versus 78.9%) ( p = 0.002). Zirconia implants in the mandible showed comparable %BIC to titanium implants (72.2%, versus 60.3%) ( p = 0.087). High failure rate of both Zr and Ti one-piece implants in the jaw could be attributed to the one-piece design and surface characteristics of the implant that could have influenced osseointegration. Further clinical trials are recommended to evaluate the performance of zirconia implants under loading conditions.

  19. Effects of different titanium zirconium implant surfaces on initial supragingival plaque formation.

    Science.gov (United States)

    John, Gordon; Becker, Jürgen; Schwarz, Frank

    2017-07-01

    The aim of the current study was the evaluation of biofilm development on different implant surfaces. Initial biofilm formation was investigated on five different implant surfaces, machined titanium (MTi), modified machined acid-etched titanium (modMATi), machined titanium zirconium (MTiZr), modified machined and acid-etched titanium zirconium (modMATiZr) and sandblasted large grid and acid-etched titanium zirconium surface (SLATiZr) for 24 and 48 h. Biocompatibility was tested after tooth brushing of the samples via cell viability testing with human gingival fibroblasts. After 24 h of biofilm collection, mean plaque surface was detected in the following descending order: After 24 h: MTiZr > MTi > SLATiZr > modMATiZr > modMATi. Both M surfaces showed significant higher biofilm formation than the other groups. After 48 h: MTiZr > MTi > SLATiZr > modMATiZr > modMATi. After tooth brushing: SLATiZr > modMATi > modMATiZr > MTi > MTiZr. All native samples depicted significant higher cell viability than their corresponding surfaces after biofilm removal procedure. The TiZr groups especially the modMATiZr group showed slower and less biofilm formation. In combination with the good biocompatibility, both modMA surfaces seem to be interesting candidates for surfaces in transgingival implant design. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. The Otto Aufranc Award: Enhanced Biocompatibility of Stainless Steel Implants by Titanium Coating and Microarc Oxidation

    Science.gov (United States)

    Lim, Young Wook; Kwon, Soon Yong; Sun, Doo Hoon

    2010-01-01

    Background Stainless steel is one of the most widely used biomaterials for internal fixation devices, but is not used in cementless arthroplasty implants because a stable oxide layer essential for biocompatibility cannot be formed on the surface. We applied a Ti electron beam coating, to form oxide layer on the stainless steel surface. To form a thicker oxide layer, we used a microarc oxidation process on the surface of Ti coated stainless steel. Modification of the surface using Ti electron beam coating and microarc oxidation could improve the ability of stainless steel implants to osseointegrate. Questions/purposes The ability of cells to adhere to grit-blasted, titanium-coated, microarc-oxidated stainless steel in vitro was compared with that of two different types of surface modifications, machined and titanium-coated, and microarc-oxidated. Methods We performed energy-dispersive x-ray spectroscopy and scanning electron microscopy investigations to assess the chemical composition and structure of the stainless steel surfaces and cell morphology. The biologic responses of an osteoblastlike cell line (SaOS-2) were examined by measuring proliferation (cell proliferation assay), differentiation (alkaline phosphatase activity), and attraction ability (cell migration assay). Results Cell proliferation, alkaline phosphatase activity, migration, and adhesion were increased in the grit-blasted, titanium-coated, microarc-oxidated group compared to the two other groups. Osteoblastlike cells on the grit-blasted, titanium-coated, microarc-oxidated surface were strongly adhered, and proliferated well compared to those on the other surfaces. Conclusions The surface modifications we used (grit blasting, titanium coating, microarc oxidation) enhanced the biocompatibility (proliferation and migration of osteoblastlike cells) of stainless steel. Clinical Relevance This process is not unique to stainless steel; it can be applied to many metals to improve their biocompatibility

  1. Doxycycline-loaded coaxial nanofiber coating of titanium implants enhances osseointegration and inhibits Staphylococcus aureus infection.

    Science.gov (United States)

    Song, Wei; Seta, Joseph; Chen, Liang; Bergum, Christopher; Zhou, Zhubin; Kanneganti, Praveen; Kast, Rachel E; Auner, Gregory W; Shen, Ming; Markel, David C; Ren, Weiping; Yu, Xiaowei

    2017-07-05

    Few studies have been reported that focus on developing implant surface nanofiber (NF) coating to prevent infection and enhance osseointegration by local drug release. In this study, coaxial doxycycline (Doxy)-doped polycaprolactone/polyvinyl alcohol (PCL/PVA) NFs were directly deposited on a titanium (Ti) implant surface during electrospinning. The interaction of loaded Doxy with both PVA and PCL NFs was characterized by Raman spectroscopy. The bonding strength of Doxy-doped NF coating on Ti implants was confirmed by a stand single-pass scratch test. The improved implant osseointegration by PCL/PVA NF coatings in vivo was confirmed by scanning electron microscopy, histomorphometry and micro computed tomography (μCT) at 2, 4 and 8 weeks after implantation. The bone contact surface (%) changes of the NF coating group (80%) is significantly higher than that of the no NF group (coating effectively inhibited bacterial infection and enhanced osseointegration in an infected (Staphylococcus aureus) tibia implantation rat model. Doxy released from NF coating inhibited bacterial growth up to 8 weeks in vivo. The maximal push-in force of the Doxy-NF coating (38 N) is much higher than that of the NF coating group (6.5 N) 8 weeks after implantation (p coating doped with Doxy and/or other drugs have great potential in enhancing implant osseointegration and preventing infection.

  2. Corrosion behavior of ion implanted nickel-titanium orthodontic wire in fluoride mouth rinse solutions.

    Science.gov (United States)

    Iijima, Masahiro; Yuasa, Toshihiro; Endo, Kazuhiko; Muguruma, Takeshi; Ohno, Hiroki; Mizoguchi, Itaru

    2010-01-01

    This study investigated the corrosion properties of ion implanted nickel-titanium wire (Neo Sentalloy Ionguard) in artificial saliva and fluoride mouth rinse solutions (Butler F Mouthrinse, Ora-Bliss). Non ion implanted nickel-titanium wire (Neo Sentalloy) was used as control. The anodic corrosion behavior was examined by potentiodynamic polarization measurement. The surfaces of the specimens were examined with SEM. The elemental depth profiles were characterized by XPS. Neo Sentalloy Ionguard in artificial saliva and Butler F Mouthrinse (500 ppm) had a lower current density than Neo Sentalloy. In addition, breakdown potential of Neo Sentalloy Ionguard in Ora-Bliss (900 ppm) was much higher than that of Neo Sentalloy although both wires had similar corrosion potential in Ora-Bliss (450 and 900 ppm). The XPS results for Neo Sentalloy Ionguard suggested that the layers consisted of TiO(2) and TiN were present on the surface and the layers may improve the corrosion properties.

  3. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant.

    Science.gov (United States)

    Petersen, Richard C

    2011-05-03

    Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats revealed far-reaching significant osseoconductivity increases from bisphenyl-polymer/carbon-fiber composites when compared to state-of-the-art titanium-6-4 alloy controls. Midtibial percent bone area measured from the implant surface increased when comparing the titanium alloy to the polymer composite from 10.5% to 41.6% at 0.8 mm, P engineering potential.

  4. MicroCT Analysis of Micro-Nano Titanium Implant Surface on the Osseointegration.

    Science.gov (United States)

    Ban, Jaesam; Kang, Seongsoo; Kim, Jihyun; Lee, Kwangmin; Hyunpil, Lim; Vang, Mongsook; Yang, Hongso; Oh, Gyejeong; Kim, Hyunseung; Hwang, Gabwoon; Jung, Yongho; Lee, Kyungku; Park, Sangwon; Yunl, Kwidug

    2015-01-01

    This study was to investigate the effects of micro-nano titanium implant surface on the osseointegration. A total of 36 screw-shaped implants were used. The implant surfaces were classified into 3 groups (n = 12): machined surface (M group), nanosurface which is nanotube formation on the machined surface (MA group) and nano-micro surface which is nanotube formation on the RBM surface (RA group). Anodic oxidation was performed at a 20 V for 10 min with 1 M H3PO4 and 1.5 wt% HF solutions. The implants were installed on the humerus on 6 beagles. After 4 and 12 weeks, the morphometric analysis with micro CT (skyscan 1172, SKYSCAN, Antwerpen, Belgium) was done. The data were statistically analyzed with two-way ANOVA. Bone mineral density and bone volume were significantly increased depending on time. RA group showed the highest bone mineral density and bone volume at 4 weeks and 12 weeks significantly. It indicated that nano-micro titanium implant surface showed faster and more mature osseointegration.

  5. Triangular Titanium Implants for Minimally Invasive Sacroiliac Joint Fusion: A Prospective Study.

    Science.gov (United States)

    Duhon, Bradley S; Cher, Daniel J; Wine, Kathryn D; Kovalsky, Don A; Lockstadt, Harry

    2016-05-01

    Study Design Prospective multicenter single-arm interventional clinical trial. Objective To determine the degree of improvement in sacroiliac (SI) joint pain, disability related to SI joint pain, and quality of life in patients with SI joint dysfunction who undergo minimally invasive SI joint fusion using triangular-shaped titanium implants. Methods Subjects (n = 172) underwent minimally invasive SI joint fusion between August 2012 and January 2014 and completed structured assessments preoperatively and at 1, 3, 6, and 12 months postoperatively, including a 100-mm SI joint and back pain visual analog scale (VAS), Oswestry Disability Index (ODI), Short Form-36 (SF-36), and EuroQOL-5D. Patient satisfaction with surgery was assessed at 6 and 12 months. Results Mean SI joint pain improved from 79.8 at baseline to 30.0 and 30.4 at 6 and 12 months, respectively (mean improvements of 49.9 and 49.1 points, p < 0.0001 each). Mean ODI improved from 55.2 at baseline to 32.5 and 31.4 at 6 and 12 months (improvements of 22.7 and 23.9 points, p < 0.0001 each). SF-36 physical component summary improved from 31.7 at baseline to 40.2 and 40.3 at 6 and 12 months (p < 0.0001). At 6 and 12 months, 93 and 87% of subjects, respectively, were somewhat or very satisfied and 92 and 91%, respectively, would have the procedure again. Conclusions Minimally invasive SI joint fusion resulted in improvement of pain, disability, and quality of life in patients with SI joint dysfunction due to degenerative sacroiliitis and SI joint disruption.

  6. Cell-laden hydrogel/titanium microhybrids: Site-specific cell delivery to metallic implants for improved integration.

    Science.gov (United States)

    Koenig, Geraldine; Ozcelik, Hayriye; Haesler, Lisa; Cihova, Martina; Ciftci, Sait; Dupret-Bories, Agnes; Debry, Christian; Stelzle, Martin; Lavalle, Philippe; Vrana, Nihal Engin

    2016-03-01

    Porous titanium implants are widely used in dental, orthopaedic and otorhinolaryngology fields to improve implant integration to host tissue. A possible step further to improve the integration with the host is the incorporation of autologous cells in porous titanium structures via cell-laden hydrogels. Fast gelling hydrogels have advantageous properties for in situ applications such as localisation of specific cells and growth factors at a target area without dispersion. The ability to control the cell types in different regions of an implant is important in applications where the target tissue (i) has structural heterogeneity (multiple cell types with a defined spatial configuration with respect to each other); (ii) has physical property gradients essential for its function (such as in the case of osteochondral tissue transition). Due to their near immediate gelation, such gels can also be used for site-specific modification of porous titanium structures, particularly for implants which would face different tissues at different locations. Herein, we describe a step by step design of a model system: the model cell-laden gel-containing porous titanium implants in the form of titanium microbead/hydrogel (maleimide-dextran or maleimide-PVA based) microhybrids. These systems enable the determination of the effect of titanium presence on gel properties and encapsulated cell behaviour as a miniaturized version of full-scale implants, providing a system compatible with conventional analysis methods. We used a fibroblast/vascular endothelial cell co-cultures as our model system and by utilising single microbeads we have quantified the effect of gel microenvironment (degradability, presence of RGD peptides within gel formulation) on cell behaviour and the effect of the titanium presence on cell behaviour and gel formation. Titanium presence slightly changed gel properties without hindering gel formation or affecting cell viability. Cells showed a preference to move towards

  7. Pulsed Laser Deposition Processing of Improved Titanium Nitride Coatings for Implant Applications

    Science.gov (United States)

    Haywood, Talisha M.

    Recently surface coating technology has attracted considerable attention of researchers to develop novel coatings with enhanced functional properties such as hardness, biocompatibility, wear and corrosion resistance for medical devices and surgical tools. The materials currently being used for surgical implants include predominantly stainless steel (316L), cobalt chromium (Co-Cr), titanium and its alloys. Some of the limitations of these implants include improper mechanical properties, corrosion resistance, cytotoxicity and bonding with bone. One of the ways to improve the performance and biocompatibility of these implants is to coat their surfaces with biocompatible materials. Among the various coating materials, titanium nitride (TiN) shows excellent mechanical properties, corrosion resistance and low cytotoxicity. In the present work, a systematic study of pulsed laser ablation processing of TiN coatings was conducted. TiN thin film coatings were grown on commercially pure titanium (Ti) and stainless steel (316L) substrates at different substrate temperatures and different nitrogen partial pressures using the pulsed laser deposition (PLD) technique. Microstructural, surface, mechanical, chemical, corrosion and biological analysis techniques were applied to characterize the TiN thin film coatings. The PLD processed TiN thin film coatings showed improvements in mechanical strength, corrosion resistance and biocompatibility when compared to the bare substrates. The enhanced performance properties of the TiN thin film coatings were a result of the changing and varying of the deposition parameters.

  8. In vitro cytotoxicity and surface topography evaluation of additive manufacturing titanium implant materials.

    Science.gov (United States)

    Tuomi, Jukka T; Björkstrand, Roy V; Pernu, Mikael L; Salmi, Mika V J; Huotilainen, Eero I; Wolff, Jan E H; Vallittu, Pekka K; Mäkitie, Antti A

    2017-03-01

    Custom-designed patient-specific implants and reconstruction plates are to date commonly manufactured using two different additive manufacturing (AM) technologies: direct metal laser sintering (DMLS) and electron beam melting (EBM). The purpose of this investigation was to characterize the surface structure and to assess the cytotoxicity of titanium alloys processed using DMLS and EBM technologies as the existing information on these issues is scarce. "Processed" and "polished" DMLS and EBM disks were assessed. Microscopic examination revealed titanium alloy particles and surface flaws on the processed materials. These surface flaws were subsequently removed by polishing. Surface roughness of EBM processed titanium was higher than that of DMLS processed. The cytotoxicity results of the DMLS and EBM discs were compared with a "gold standard" commercially available titanium mandible reconstruction plate. The mean cell viability for all discs was 82.6% (range, 77.4 to 89.7) and 83.3% for the control reconstruction plate. The DMLS and EBM manufactured titanium plates were non-cytotoxic both in "processed" and in "polished" forms.

  9. Natural teeth-retained splint based on a patient-specific 3D-printed mandible used for implant surgery and vestibuloplasty: A case report.

    Science.gov (United States)

    Xing, Helin; Wu, Jinshuang; Zhou, Lei; Yang, Sefei

    2017-12-01

    With respect to improving the quality of oral rehabilitation, the management of keratinized mucosa is as important as bone condition for implant success. To enhance this management, a natural teeth-retained splint based on a patient-specific 3-dimensional (3D) printed mandible was used in vestibuloplasty to provide sufficient keratinized mucosa around dental implants to support long-term implant maintenance. A 28-year-old male patient had a fracture of the anterior andible 1 year ago, and the fracture was treated with titanium. The patient had lost mandibular incisors on both the sides and had a shallow vestibule and little keratinized mucosa. In the first-stage implant surgery, 2 implants were inserted and the titanium fracture fixation plates and screws were removed at the same time. During second-stage implant surgery, vestibuloplasty was performed, and the natural teeth-retained splint was applied. The splint was made based upon a patient-specific 3D-printed mandible. At 30-day follow-up, the splint was modified and reset. The modified splint was removed after an additional 60 days, and the patient received prosthetic treatment. After prosthetic treatment, successful oral rehabilitation was achieved. Within 1 year and 3 years after implant prosthesis finished, the patient exhibited a good quantity of keratinized gingiva. The proposed splint is a simple and time-effective technique for correcting soft tissue defects in implant dentistry that ensures a good quantity of keratinized mucosa.

  10. Open magnetic resonance imaging using titanium-zirconium needles: improved accuracy for interstitial brachytherapy implants?

    International Nuclear Information System (INIS)

    Popowski, Youri; Hiltbrand, Emile; Joliat, Dominique; Rouzaud, Michel

    2000-01-01

    Purpose: To evaluate the benefit of using an open magnetic resonance (MR) machine and new MR-compatible needles to improve the accuracy of brachytherapy implants in pelvic tumors. Methods and Materials: The open MR machine, foreseen for interventional procedures, allows direct visualization of the pelvic structures that are to be implanted. For that purpose, we have developed MR- and CT-compatible titanium-zirconium (Ti-Zr) brachytherapy needles that allow implantations to be carried out under the magnetic field. In order to test the technical feasibility of this new approach, stainless steel (SS) and Ti-Zr needles were first compared in a tissue-equivalent phantom. In a second step, two patients implanted with Ti-Zr needles in the brachytherapy operating room were scanned in the open MR machine. In a third phase, four patients were implanted directly under open MR control. Results: The artifacts induced by both materials were significantly different, strongly favoring the Ti-Zr needles. The implantation in both first patients confirmed the excellent quality of the pictures obtained with the needles in vivo and showed suboptimal implant geometry in both patients. In the next 4 patients, the tumor could be punctured with excellent accuracy, and the adjacent structures could be easily avoided. Conclusion: We conclude that open MR using MR-compatible needles is a very promising tool in brachytherapy, especially for pelvic tumors

  11. Osseointegration of dental implants in extraction sockets preserved with porous titanium granules - an experimental study.

    Science.gov (United States)

    Verket, Anders; Lyngstadaas, Ståle P; Rønold, Hans J; Wohlfahrt, Johan C

    2014-02-01

    This study investigated osseointegration of dental implants inserted in healed extraction sockets preserved with porous titanium granules (PTG). Three adult female minipigs (Gøttingen minipig; Ellegaard A/S, Dalmose, Denmark) had the mandibular teeth P2, P3 and P4 extracted. The extraction sockets were preserved with metallic PTG (Tigran PTG; Tigran Technologies AB, Malmö, Sweden) n = 12, heat oxidized white porous titanium granules (WPTG) (Tigran PTG White) n = 12 or left empty (sham) n = 6. All sites were covered with collagen membranes (Bio-Gide; Geistlich Pharma, Wolhausen, Switzerland) and allowed 11 weeks of healing before implants (Straumann Bone Level; Straumann, Basel, Switzerland) were inserted. The temperature was measured during preparation of the osteotomies. Resonance frequency analysis (RFA, Osstell; Osstell AB, Gothenburg, Sweden) was performed at implant insertion and at termination. After 6 weeks of submerged implant healing, the pigs were euthanized and jaw segments were excised for microCT and histological analyses. In the temperature and RFA analyses no significant differences were recorded between the test groups. The microCT analysis demonstrated an average bone volume of 61.7% for the PTG group compared to 50.3% for the WPTG group (P = 0.03) and 57.1% for the sham group. Histomorphometry demonstrated an average bone-to-implant contact of 68.2% for the PTG group compared to 36.6% for the WPTG group and 60.9% for the sham group (n.s). Eight out of ten implants demonstrated apical osseous defects in the WPTG group, but similar defects were observed in all groups. PTG preserved extraction sockets demonstrate a similar outcome as the sham control group for all analyses suggesting that this material potentially can be used for extraction socket preservation prior to implant installment. Apical osseous defects were however observed in all groups including the sham group, and a single cause could not be determined. © 2012 John Wiley & Sons A/S.

  12. Segmental stability in orthognathic surgery: hydroxyapatite/Poly-l-lactide osteoconductive composite versus titanium miniplate osteosyntheses.

    Science.gov (United States)

    Landes, Constantin A; Ballon, Alexander; Tran, Andreas; Ghanaati, Shahram; Sader, Robert

    2014-09-01

    Hydroxyapatite was included into F-u-HA/PLLA (unsintered hydroxyapatite - Poly l-lactide) composite osteosynthesis material for its documented osteoconductive capacity. This study investigates segmental retention capacities and outcome stability using F-u-HA/PLLA composite osteosyntheses in orthognathic surgery. Of fifty patients in total, 25 patients were osteofixated with F-u-HA/PLLA osteoconductive bioabsorbable osteosyntheses and compared to a group of 25 patients treated with titanium miniplates. The F-u-HA/PLLA group included 14 maxillary advancements, 4 setbacks, 13 impactions, 5 elongations at A-point; the titanium group included 20 maxillary advancements, 2 setbacks, 11 impactions and 11 elongations. In the mandible the F-u-HA/PLLA group included 13 advancements at B-point, 11 setbacks, 16 clockwise rotations and 8 counterclockwise rotations at the Gonial angle (Ar-Go-Gn); the titanium group included 9 mandibular advancements, 5 setbacks, 8 clockwise rotations and 6 counterclockwise rotations at Ar-Go-Gn. Segmental stability and relapse were assessed comparing preoperative, postoperative and follow-up roentgen cephalometrics at 22 ± 11 months on average in F-u-HA/PLLA cases, 24 ± 22 months on average in the titanium group. All absolute operative movements were nonsignificant in the F-u-HA/PLLA cases compared to the titanium osteosynthesis cases. Relapses were nonsignificant but there was greater vertical relapse in maxillary impactions with titanium osteosyntheses. Throughout this study, F-u-HA/PLLA composite osteosyntheses appeared as stable as titanium miniplates. It can therefore be concluded, although from a limited number of patients, that the investigated osteoconductive osteosynthesis can be used in a similar way to titanium miniplates in orthognathic surgery. Compared to earlier studies using other bioabsorbable polymers in the literature, F-u-HA/PLLA proved to be more stable in segmental retention. Copyright © 2014 European Association for

  13. Torque Analysis of a Triple Acid-Etched Titanium Implant Surface

    Directory of Open Access Journals (Sweden)

    Ana Emília Farias Pontes

    2015-01-01

    Full Text Available The present study aimed to evaluate the removal torque of titanium implants treated with triple acid etching. Twenty-one rats were used in this study. For all animals, the tibia was prepared with a 2 mm drill, and a titanium implant (2 × 4 mm was inserted after treatment using the subtraction method of triple acid etching. The flaps were sutured. Seven animals were killed 14, 28, and 63 days after implant installation, and the load necessary for removing the implant from the bone was evaluated by using a torque meter. The torque values were as follows: 3.3 ± 1.7 Ncm (14 days, 2.2 ± 1.3 Ncm (28 days, and 6.7 ± 1.4 Ncm (63 days. The torque value at the final healing period (63 days was statistically significantly different from that at other time points tested (ANOVA, p=0.0002. This preliminary study revealed that treatment with triple acid etching can create a promising and efficient surface for the process of osseointegration.

  14. In vivo bioactivity of titanium and fluorinated apatite coatings for orthopaedic implants: a vibrational study

    Science.gov (United States)

    Taddei, Paola; Tinti, Anna; Reggiani, Matteo; Monti, Patrizia; Fagnano, Concezio

    2003-06-01

    The bone integration of implants is a complex process which depends on chemical composition and surface morphology. To accelerate osteointegration, metal implants are coated with porous metal or apatites which have been reported to increase mineralisation, improving prosthesis fixation. To study the influence of composition and morphology on the in vivo bioactivity, titanium screws coated by Plasma Flame Spraying (PFS) with titanium or fluorinated apatite (K690) were implanted in sheep tibia and femur for 10 weeks and studied by micro-Raman and IR spectroscopy. The same techniques, together with thermogravimetry, were used for characterising the pre-coating K690 powder. Contrary to the manufacturer report, the K690 pre-coating revealed to be composed of a partially fluorinated apatite containing impurities of Ca(OH) 2 and CaCO 3. By effect of PFS, the impurities were decomposed and the crystallinity degree of the coating was found to decrease. The vibrational spectra recorded on the implanted screws revealed the presence of newly formed bone; for the K690-coated screws at least, a high level of osteointegration was evidenced.

  15. Bone Morphogenetic Protein Coating on Titanium Implant Surface: a Systematic Review

    Directory of Open Access Journals (Sweden)

    Haim Haimov

    2017-06-01

    Full Text Available Objectives: The purpose of the study is to systematically review the osseointegration process improvement by bone morphogenetic protein coating on titanium implant surface. Material and Methods: An electronic literature search was conducted through the MEDLINE (PubMed and EMBASE databases. The search was restricted for articles published during the last 10 years from October 2006 to September 2016 and articles were limited to English language. Results: A total of 41 articles were reviewed, and 8 of the most relevant articles that are suitable to the criteria were selected. Articles were analysed regarding concentration of bone morphogenetic protein (BMP, delivery systems, adverse reactions and the influence of the BMP on the bone and peri-implant surface in vivo. Finally, the present data included 340 implants and 236 models. Conclusions: It’s clearly shown from most of the examined studies that bone morphogenetic protein increases bone regeneration. Further studies should be done in order to induce and sustain bone formation activity. Osteogenic agent should be gradually liberated and not rapidly released with priority to three-dimension reservoir (incorporated titanium implant surface in order to avoid following severe side effects: inflammation, bleeding, haematoma, oedema, erythema, and graft failure.

  16. Titanium nitride deposition in titanium implant alloys produced by powder metallurgy

    International Nuclear Information System (INIS)

    Henriques, V.A.R.; Cairo, C.A.A.; Faria, J.; Lemos, T.G.; Galvani, E.T.

    2009-01-01

    Titanium nitride (TiN) is an extremely hard material, often used as a coating on titanium alloy, steel, carbide, and aluminum components to improve wear resistance. Electron Beam Physical Vapor Deposition (EB-PVD) is a form of deposition in which a target anode is bombarded with an electron beam given off by a charged tungsten filament under high vacuum, producing a thin film in a substrate. In this work are presented results of TiN deposition in targets and substrates of Ti (C.P.) and Ti- 13 Nb- 13 Zr obtained by powder metallurgy. Samples were produced by mixing of hydride metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by sintering between 900°C up to 1400 °C, in vacuum. The deposition was carried out under nitrogen atmosphere. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. It was shown that the samples were sintered to high densities and presented homogeneous microstructure, with ideal characteristics for an adequate deposition and adherence. The film layer presented a continuous structure with 15μm. (author)

  17. Early versus late traumatic cataract surgery and intraocular lens implantation.

    Science.gov (United States)

    Tabatabaei, S A; Rajabi, M B; Tabatabaei, S M; Soleimani, M; Rahimi, F; Yaseri, M

    2017-08-01

    PurposeTo determine the proper time for traumatic cataract surgery after open globe injuries.SettingFarabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.DesignRandomized clinical trial.Patients and methodsIn a randomized clinical trial, 30 eyes with traumatic cataract after open globe injury with IOL implantation underwent early (in the first week after the trauma) and 30 eyes underwent late cataract surgery (from the first to second month after the trauma). We excluded patients who were under 12-year-old. All patients were visited at 1 week, 4 weeks, 12 weeks, and 6 months after surgery. In each visit, patients were examined regarding visual acuity, intraocular pressure (IOP), anterior chamber inflammation, IOL position, and posterior synechiae. In addition, posterior segment evaluation and fundoscopy were performed. Intraoperative complication including posterior capsular rupture, anterior vitrectomy, and zonulysis as well as the site of IOL implantation were documented and post-operative complications including raised IOP, anterior chamber inflammation, visual axis opacity, posterior synechiae, subluxation of IOL, and IOL pigment deposition were listed.ResultsBest-corrected visual acuity 6 months after surgery was not different between the two groups. Also in early cataract surgery group, the rate of posterior capsular rupture was not significantly higher than the late surgery group (P=0.069). On the other hand, zonulysis was significantly higher in the late procedure group (P=0.039). Other complications including anterior vitrectomy, raised IOP, anterior chamber inflammation, visual axis opacity, posterior synechiae, subluxation of IOL, and IOL pigment deposition were not different in the two groups.ConclusionsEarly and late traumatic cataract surgery and IOL implantation after open globe injuries, have no significant difference regarding the post-surgical BCVA and prominent intraoperative and post-operative complications.

  18. Anchorage of titanium implants with different surface characteristics: an experimental study in rabbits

    DEFF Research Database (Denmark)

    Gotfredsen, K; Berglundh, T; Lindhe, J

    2000-01-01

    ) TiO2-blasted with particles of grain size 10 to 53 microns; (3) TiO2-blasted, grain size 63 to 90 microns; (4) TiO2-blasted, grain size 90 to 125 microns; (5) titanium plasma-sprayed (TPS). The surface topography was determined by the use of an optical instrument. Twelve rabbits, divided into two...... groups, had a total of 120 implants inserted in the tibiae. One implant from each of the five surface categories was placed within the left tibia of each rabbit. By a second operation, implants were installed in the right tibia, after 2 weeks in group A and after 3 weeks in group B. Fluorochrome labeling...

  19. Microstructural characterization of titanium dental implants by electron microscopy and mechanical tests

    International Nuclear Information System (INIS)

    Helfenstein, B.; Muniz, N.O.; Dedavid, B.A.; Gehrke, S.A.; Vargas, A.L.M.

    2010-01-01

    Mini screw types for titanium implants, with differentiated design, were tested for traction and torsion for behavior analysis of the shape relative to the requirements of ASTM F136. All implants showed mechanical tensile strength above by the standard requirement, being that 83.3% of them broke above the doughnut, in support of the prosthesis. Distinct morphologies in ruptured by mechanical tests, were obtained. However, both fracture surfaces showed fragile comportments. Metallographic tests, x-ray diffraction (XRD) and microhardness were used for microstructural characterization of material, before and after heat treatment. The presences of β phase in screw surface after quenching treatment proves that the thermal treatment can contribute for mechanical resistance in surface implants. (author)

  20. Characterization of Heat Treated Titanium-Based Implants by Nondestructive Eddy Current and Ultrasonic Tests

    Science.gov (United States)

    Mutlu, Ilven; Ekinci, Sinasi; Oktay, Enver

    2014-06-01

    This study presents nondestructive characterization of microstructure and mechanical properties of heat treated Ti, Ti-Cu, and Ti-6Al-4V titanium-based alloys and 17-4 PH stainless steel alloy for biomedical implant applications. Ti, Ti-Cu, and 17-4 PH stainless steel based implants were produced by powder metallurgy. Ti-6Al-4V alloy was investigated as bulk wrought specimens. Effects of sintering temperature, aging, and grain size on mechanical properties were investigated by nondestructive and destructive tests comparatively. Ultrasonic velocity in specimens was measured by using pulse-echo and transmission methods. Electrical conductivity of specimens was determined by eddy current tests. Determination of Young's modulus and strength is important in biomedical implants. Young's modulus of specimens was calculated by using ultrasonic velocities. Calculated Young's modulus values were compared and correlated with experimental values.

  1. Study of the plasma immersion implantation of titanium in stainless steel

    International Nuclear Information System (INIS)

    Nikitenkov, N N; Sutygina, A N; Shulepov, I A; Sivin, D O; Kashkarov, E B

    2015-01-01

    The results of the study of the pulsed plasma-immersion ion implantation of titanium in steel Cr18Ni10Ti depending on the time (dose) implantation are presented. It is shown that the change of the element and the phase composition of the surface layers and their microscopic characteristics and mechanical properties (hardness, wear resistance) depending on the implantation time is not monotonic, but follows to a certain rule. The possibility of interpretation of the obtained results in the thermal spike concept of the generation on the surface by the stable (magic) clusters is discussed. This concept follows logically from the recent studies on the plasma arc composition and from a polyatomic clusters-surface interaction. (paper)

  2. Study of the plasma immersion implantation of titanium in stainless steel

    Science.gov (United States)

    Nikitenkov, N. N.; Sutygina, A. N.; Shulepov, I. A.; Sivin, D. O.; Kashkarov, E. B.

    2015-04-01

    The results of the study of the pulsed plasma-immersion ion implantation of titanium in steel Cr18Ni10Ti depending on the time (dose) implantation are presented. It is shown that the change of the element and the phase composition of the surface layers and their microscopic characteristics and mechanical properties (hardness, wear resistance) depending on the implantation time is not monotonic, but follows to a certain rule. The possibility of interpretation of the obtained results in the thermal spike concept of the generation on the surface by the stable (magic) clusters is discussed. This concept follows logically from the recent studies on the plasma arc composition and from a polyatomic clusters-surface interaction.

  3. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... here to find out more. Dental Implant Surgery Dental Implant Surgery Dental implant surgery is, of course, surgery, ... here to find out more. Dental Implant Surgery Dental Implant Surgery Dental implant surgery is, of course, surgery, ...

  4. Marginal bone-level alterations of loaded zirconia and titanium dental implants: an experimental study in the dog mandible.

    Science.gov (United States)

    Thoma, Daniel S; Benic, Goran I; Muñoz, Fernando; Kohal, Ralf; Sanz Martin, Ignacio; Cantalapiedra, Antonio G; Hämmerle, Christoph H F; Jung, Ronald E

    2016-04-01

    The aim was to test whether or not the marginal bone-level alterations of loaded zirconia implants are similar to the bone-level alterations of a grade 4 titanium one-piece dental implant. In six dogs, all premolars and the first molars were extracted in the mandible. Four months later, three zirconia implants (BPI, VC, ZD) and a control titanium one-piece (STM) implant were randomly placed in each hemimandible and left for transmucosal healing (baseline). Six months later, CAD/CAM crowns were cemented. Sacrifice was scheduled at 6-month postloading. Digital X-rays were taken at implant placement, crowns insertion, and sacrifice. Marginal bone-level alterations were calculated, and intra- and intergroup comparisons performed adjusted by confounding factors. Implants were successfully placed. Until crown insertion, two implants were fractured (one VC, one ZD). At sacrifice, 5 more implants were (partly) fractured (one BPI, four ZD), and one lost osseointegration (VC). No decementation of crowns occurred. All implant systems demonstrated a statistically significant (except VC) loss of marginal bone between baseline and crown insertion ranging from 0.29 mm (VC; P = 0.116) to 0.80 mm (ZD; P = 0.013). The estimated marginal bone loss between baseline and 6 months of loading ranged between 0.19 mm (BPI) and 1.11 mm (VC), being statistically significant for STM and VC only (P implants and control implants (STM vs. BPI P = 0.007; vs. VC P = 0.001; vs. ZD P = 0.011). Zirconia implants were more prone to fracture prior to and after loading with implant-supported crowns compared to titanium implants. Individual differences and variability in the extent of the bone-level changes during the 12-month study period were found between the different implant types and materials. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Morphological Changes in Blood Cells After Implantation of Titanium and Plastic Clips in the Neurocranium - Experimental Study on Dogs.

    Science.gov (United States)

    Katica, Muhamed; Celebicic, Mirza; Gradascevic, Nedzad; Obhodzas, Muamer; Suljić, Enra; Ocuz, Muhamed; Delibegovic, Samir

    2017-04-01

    Various studies confirm the biocompatibility and efficacy of clips for certain target tissues, but without any comparative analysis of hematological parameters. Therefore, we conducted a study to assess the possible association of the implantation of titanium and plastic clips in the neurocranium with possible morphological changes in the blood cells of experimental animals. As a control, the peripheral blood smears were taken before surgery from 12 adult dogs that were divided into two experimental groups. After placing titanium and plastic clips in the neurocranium, the peripheral blood of the first group was analyzed on the seventh postoperative day, while the peripheral blood of the second group was analyzed on the sixtieth day. By microscopy of the blood smears, the following parameters were analyzed: the presence of poikilocytosis of the red blood cells, degenerative changes in the leukocytes and leukogram. There were no statistically significant differences between the mean values of the groups. Monocytosis was detected (first group 22.83 % and second 16.30 %), as well as neutropenia (46.80 %, in the second group). Degenerative changes to neutrophils and the occurrence of atypical lymphocytes were observed in the second experimental group (60 th postoperative day). A mild adverse effect from the biomaterials present in the neurocranium of dogs was detected, affecting the majority of leukocytic cells. A chronic recurrent inflammatory process was caused by the presence of the plastic and titanium clips in the brain tissue. No adverse effect of biomaterials on erythrocytes in the neurocranium was detected in the dogs studied. Further studies are necessary to explain the occurrence of degenerative changes in the neutrophils and lymphocytes.

  6. Different types of implants for reconstructive breast surgery.

    Science.gov (United States)

    Rocco, Nicola; Rispoli, Corrado; Moja, Lorenzo; Amato, Bruno; Iannone, Loredana; Testa, Serena; Spano, Andrea; Catanuto, Giuseppe; Accurso, Antonello; Nava, Maurizio B

    2016-05-16

    Breast cancer is the most common cancer in women worldwide, and is a leading cause of cancer death among women. Prophylactic or curative mastectomy is often followed by breast reconstruction for which there are several surgical approaches that use breast implants with which surgeons can restore the natural feel, size and shape of the breast. To assess the effects of different types of breast implants on capsular contracture, surgical short- and long-term complications, postoperative satisfaction level and quality of life in women who have undergone reconstructive breast surgery after mastectomy. We searched the Cochrane Breast Cancer Group's Specialised Register on 20 July 2015, MEDLINE (1985 to 20 July 2015), EMBASE (1985 to 20 July 2015) and the Cochrane Central Register of Controlled Trials (CENTRAL; Issue 8, 2015). We also searched the World Health Organization's International Clinical Trials Registry Platform (WHO ICTRP) and ClinicalTrials.gov on 16 July 2015. We included randomised controlled trials (RCTs) and quasi-RCTs that compared different types of breast implants for reconstructive surgery. We considered the following types of intervention: implant envelope surfaces - texturised versus smooth; implant filler material - silicone versus saline, PVP-Hydrogel versus saline; implant shape - anatomical versus round; implant volume - variable versus fixed; brands - different implant manufacturing companies and implant generation (fifth versus previous generations). Two review authors independently assessed methodological quality and extracted data. We used standard Cochrane methodological procedures. The quality of the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. Five RCTs with 202 participants met the inclusion criteria. The women participants were typically in their 50s, and the majority of them (about 82%) received reconstructive surgery following breast cancer, while the others had

  7. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Naoya, E-mail: tani110@kuhp.kyoto-u.ac.jp [Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507 (Japan); Fujibayashi, Shunsuke, E-mail: shfuji@kuhp.kyoto-u.ac.jp [Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507 (Japan); Takemoto, Mitsuru, E-mail: m.take@kuhp.kyoto-u.ac.jp [Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507 (Japan); Sasaki, Kiyoyuki, E-mail: kiy-sasaki@spcom.co.jp [Sagawa Printing Co., Ltd., 5-3, Inui, Morimoto-Cho, Mukou-Shi, Kyoto 617-8588 (Japan); Otsuki, Bungo, E-mail: bungo@kuhp.kyoto-u.ac.jp [Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507 (Japan); Nakamura, Takashi, E-mail: ntaka@kuhp.kyoto-u.ac.jp [National Hospital Organization Kyoto Medical Center, 1-1, Mukaihatacho, Hukakusa, Hushimi, Kyoto 612-8555 (Japan); Matsushita, Tomiharu, E-mail: matsushi@isc.chubu.ac.jp [Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 (Japan); Kokubo, Tadashi, E-mail: kokubo@isc.chubu.ac.jp [Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 (Japan); Matsuda, Shuichi, E-mail: smat522@kuhp.kyoto-u.ac.jp [Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507 (Japan)

    2016-02-01

    Selective laser melting (SLM) is an additive manufacturing technique with the ability to produce metallic scaffolds with accurately controlled pore size, porosity, and interconnectivity for orthopedic applications. However, the optimal pore structure of porous titanium manufactured by SLM remains unclear. In this study, we evaluated the effect of pore size with constant porosity on in vivo bone ingrowth in rabbits into porous titanium implants manufactured by SLM. Three porous titanium implants (with an intended porosity of 65% and pore sizes of 300, 600, and 900 μm, designated the P300, P600, and P900 implants, respectively) were manufactured by SLM. A diamond lattice was adapted as the basic structure. Their porous structures were evaluated and verified using microfocus X-ray computed tomography. Their bone–implant fixation ability was evaluated by their implantation as porous-surfaced titanium plates into the cortical bone of the rabbit tibia. Bone ingrowth was evaluated by their implantation as cylindrical porous titanium implants into the cancellous bone of the rabbit femur for 2, 4, and 8 weeks. The average pore sizes of the P300, P600, and P900 implants were 309, 632, and 956 μm, respectively. The P600 implant demonstrated a significantly higher fixation ability at 2 weeks than the other implants. After 4 weeks, all models had sufficiently high fixation ability in a detaching test. Bone ingrowth into the P300 implant was lower than into the other implants at 4 weeks. Because of its appropriate mechanical strength, high fixation ability, and rapid bone ingrowth, our results indicate that the pore structure of the P600 implant is a suitable porous structure for orthopedic implants manufactured by SLM. - Highlights: • We studied the effect of pore size on bone tissue in-growth in a rabbit in vivo model. • Titanium samples with 300/600/900 μm pore size in three-dimensionally controlled shapes were fabricated by additive manufacturing. • Samples were

  8. Perturbation of cobalt 60 radiation doses by metal objects implanted during oral and maxillofacial surgery

    International Nuclear Information System (INIS)

    Tatcher, M.; Kuten, A.; Helman, J.; Laufer, D.

    1984-01-01

    The influence on cobalt 60 dose distributions of typical metal parts used in oral and maxillofacial surgery was studied. Relative doses were determined by exposing x-ray films in a polystyrene phantom set-up containing samples of vitallium, titanium, and stainless steel. Optical densities were converted to doses with the aid of sensitometric curves. The results show that for normal incidence there is a 25% to 40% increase in dose at the entrance side of the metal and a 20% to 25% decrease in dose at the exit side. The enhancement effect falls off rapidly and becomes negligible at about 1 mm from the interface. The reduction effect decreases more gradually and is still evident at distances of a few centimeters. These dose perturbations should be taken into account in the planning of radiation therapy for patients in whom metal objects have been implanted

  9. Hierarchical tailoring of strut architecture to control permeability of additive manufactured titanium implants

    International Nuclear Information System (INIS)

    Zhang, Z.; Jones, D.; Yue, S.; Lee, P.D.; Jones, J.R.; Sutcliffe, C.J.; Jones, E.

    2013-01-01

    Porous titanium implants are a common choice for bone augmentation. Implants for spinal fusion and repair of non-union fractures must encourage blood flow after implantation so that there is sufficient cell migration, nutrient and growth factor transport to stimulate bone ingrowth. Additive manufacturing techniques allow a large number of pore network designs. This study investigates how the design factors offered by selective laser melting technique can be used to alter the implant architecture on multiple length scales to control and even tailor the flow. Permeability is a convenient parameter that characterises flow, correlating to structure openness (interconnectivity and pore window size), tortuosity and hence flow shear rates. Using experimentally validated computational simulations, we demonstrate how additive manufacturing can be used to tailor implant properties by controlling surface roughness at a microstructual level (microns), and by altering the strut ordering and density at a mesoscopic level (millimetre). Highlights: • Experimentally validated permeability prediction tools for hierarchical implants. • Randomised structures form preferential flow channels with stronger shear flows. • Hierarchical strut structures allow independent tailoring of flow and pore size

  10. Hierarchical tailoring of strut architecture to control permeability of additive manufactured titanium implants

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. [Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ (United Kingdom); Jones, D. [School of Engineering, University of Liverpool, Brownlow Hill, Liverpool, L69 3GH (United Kingdom); Yue, S. [Manchester X-ray Imaging Facility, School of Materials, The University of Manchester, Oxford Road, M13 9PL (United Kingdom); Lee, P.D., E-mail: peter.lee@manchester.ac.uk [Manchester X-ray Imaging Facility, School of Materials, The University of Manchester, Oxford Road, M13 9PL (United Kingdom); Jones, J.R. [Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ (United Kingdom); Sutcliffe, C.J. [School of Engineering, University of Liverpool, Brownlow Hill, Liverpool, L69 3GH (United Kingdom); Jones, E. [Department of Advanced Technology, Stryker Orthopaedics, Raheen Business Park, Limerick (Ireland)

    2013-10-15

    Porous titanium implants are a common choice for bone augmentation. Implants for spinal fusion and repair of non-union fractures must encourage blood flow after implantation so that there is sufficient cell migration, nutrient and growth factor transport to stimulate bone ingrowth. Additive manufacturing techniques allow a large number of pore network designs. This study investigates how the design factors offered by selective laser melting technique can be used to alter the implant architecture on multiple length scales to control and even tailor the flow. Permeability is a convenient parameter that characterises flow, correlating to structure openness (interconnectivity and pore window size), tortuosity and hence flow shear rates. Using experimentally validated computational simulations, we demonstrate how additive manufacturing can be used to tailor implant properties by controlling surface roughness at a microstructual level (microns), and by altering the strut ordering and density at a mesoscopic level (millimetre). Highlights: • Experimentally validated permeability prediction tools for hierarchical implants. • Randomised structures form preferential flow channels with stronger shear flows. • Hierarchical strut structures allow independent tailoring of flow and pore size.

  11. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    Science.gov (United States)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H.

    2015-12-01

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO2 implanted AISI 304 - examined for different implantation and annealing parameters - is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 1016 cm-2 (Ti+) and 1 × 1017 cm-2 (O+) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 1015 cm-2 (Ti+) and 1 × 1016 cm-2 (O+). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO2 inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  12. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    International Nuclear Information System (INIS)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H.

    2015-01-01

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO 2 implanted AISI 304 – examined for different implantation and annealing parameters – is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 10 16 cm −2 (Ti + ) and 1 × 10 17 cm −2 (O + ) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 10 15 cm −2 (Ti + ) and 1 × 10 16 cm −2 (O + ). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO 2 inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  13. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H., E-mail: helmut.karl@physik.uni-augsburg.de

    2015-12-15

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO{sub 2} implanted AISI 304 – examined for different implantation and annealing parameters – is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 10{sup 16} cm{sup −2} (Ti{sup +}) and 1 × 10{sup 17} cm{sup −2} (O{sup +}) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 10{sup 15} cm{sup −2} (Ti{sup +}) and 1 × 10{sup 16} cm{sup −2} (O{sup +}). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO{sub 2} inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  14. Cell Attachment Following Instrumentation with Titanium and Plastic Instruments, Diode Laser, and Titanium Brush on Titanium, Titanium-Zirconium, and Zirconia Surfaces.

    Science.gov (United States)

    Lang, Melissa S; Cerutis, D Roselyn; Miyamoto, Takanari; Nunn, Martha E

    2016-01-01

    The aim of this study was to evaluate the surface characteristics and gingival fibroblast adhesion of disks composed of implant and abutment materials following brief and repeated instrumentation with instruments commonly used in procedures for implant maintenance, stage-two implant surgery, and periimplantitis treatment. One hundred twenty disks (40 titanium, 40 titaniumzirconium, 40 zirconia) were grouped into treatment categories of instrumentation by plastic curette, titanium curette, diode microlaser, rotary titanium brush, and no treatment. Twenty strokes were applied to half of the disks in the plastic and titanium curette treatment categories, while half of the disks received 100 strokes each to simulate implant maintenance occurring on a repetitive basis. Following analysis of the disks by optical laser profilometry, disks were cultured with human gingival fibroblasts. Cell counts were conducted from scanning electron microscopy (SEM) images. Differences in surface roughness across all instruments tested for zirconia disks were negligible, while both titanium disks and titaniumzirconium disks showed large differences in surface roughness across the spectrum of instruments tested. The rotary titanium brush and the titanium curette yielded the greatest overall mean surface roughness, while the plastic curette yielded the lowest mean surface roughness. The greatest mean cell counts for each disk type were as follows: titanium disks with plastic curettes, titanium-zirconium disks with titanium curettes, and zirconia disks with the diode microlaser. Repeated instrumentation did not result in cumulative changes in surface roughness of implant materials made of titanium, titanium-zirconium, or zirconia. Instrumentation with plastic implant curettes on titanium and zirconia surfaces appeared to be more favorable than titanium implant curettes in terms of gingival fibroblast attachment on these surfaces.

  15. A Novel Technique for the Connection of Ceramic and Titanium Implant Components Using Glass Solder Bonding

    Directory of Open Access Journals (Sweden)

    Enrico Mick

    2015-07-01

    Full Text Available Both titanium and ceramic materials provide specific advantages in dental implant technology. However, some problems, like hypersensitivity reactions, corrosion and mechanical failure, have been reported. Therefore, the combining of both materials to take advantage of their pros, while eliminating their respective cons, would be desirable. Hence, we introduced a new technique to bond titanium and ceramic materials by means of a silica-based glass ceramic solder. Cylindrical compound samples (Ø10 mm × 56 mm made of alumina toughened zirconia (ATZ, as well as titanium grade 5, were bonded by glass solder on their end faces. As a control, a two-component adhesive glue was utilized. The samples were investigated without further treatment, after 30 and 90 days of storage in distilled water at room temperature, and after aging. All samples were subjected to quasi-static four-point-bending tests. We found that the glass solder bonding provided significantly higher bending strength than adhesive glue bonding. In contrast to the glued samples, the bending strength of the soldered samples remained unaltered by the storage and aging treatments. Scanning electron microscopy (SEM and energy-dispersive X-ray (EDX analyses confirmed the presence of a stable solder-ceramic interface. Therefore, the glass solder technique represents a promising method for optimizing dental and orthopedic implant bondings.

  16. Preservation and release dose of helium implanted in nanocrystal titanium film

    International Nuclear Information System (INIS)

    Long Xinggui; Luo Shunzhong; Peng Shuming; Zheng Sixiao; Liu Zhongyang; Wang Peilu; Liao Xiaodong; Liu Ning

    2003-01-01

    Helium concentration profile, preservation dose and release rate from a nanocrystal titanium film implanted with helium at an energy of 100 keV and dose of 2.2 x 10 18 cm -2 are measured by proton Rutherford backscattering technique in a range from room temperature to 400 degree C. The implanted helium may be stably preserved up to the 68 percent after keeping a long time of 210 d in the nanocrystal titanium film at the room temperature environment, and the He-Ti atomic ratio reaches to 52.6%. When the temperature of specimen increases to 100 degree C, the helium concentration can be preserved to 89.6% of the keeping helium dose at room temperature and He-Ti atomic ratio reaches 44%. Even if the specimen temperature up to 400 degree C, the helium concentration still can be preserved to 32.6% of the keeping helium dose at room temperature and the He-Ti atomic ratio is 17.1%. Possible mechanism of helium effectively preserved in the nanocrystal titanium film is discussed based on the energy stability viewpoint

  17. Repositioning Titanium: An In Vitro Evaluation of Laser-Generated Microporous, Microrough Titanium Templates As a Potential Bridging Interface for Enhanced Osseointegration and Durability of Implants

    Directory of Open Access Journals (Sweden)

    Daniel Tang

    2017-12-01

    Full Text Available Although titanium alloys remain the preferred biomaterials for the manufacture of biomedical implants today, such devices can fail within 15 years of implantation due to inadequate osseointegration. Furthermore, wear debris toxicity due to alloy metal ion release has been found to cause side-effects including neurotoxicity and chronic inflammation. Titanium, with its known biocompatibility, corrosion resistance, and high elastic modulus, could if harnessed in the form of a superficial scaffold or bridging device, resolve such issues. A novel three-dimensional culture approach was used to investigate the potential osteoinductive and osseointegrative capabilities of a laser-generated microporous, microrough medical grade IV titanium template on human skeletal stem cells (SSCs. Human SSCs seeded on a rough 90-µm pore surface of ethylene oxide-sterilized templates were observed to be strongly adherent, and to display early osteogenic differentiation, despite their inverted culture in basal conditions over 21 days. Limited cellular migration across the template surface highlighted the importance of high surface wettability in maximizing cell adhesion, spreading and cell-biomaterial interaction, while restricted cell ingrowth within the conical-shaped pores underlined the crucial role of pore geometry and size in determining the extent of osseointegration of an implant device. The overall findings indicate that titanium only devices, with appropriate optimizations to porosity and surface wettability, could yet play a major role in improving the long-term efficacy, durability, and safety of future implant technology.

  18. Local and systemic changes associated with long-term, percutaneous, static implantation with titanium alloys in rhesus macaques (Macaca mulatta)

    Energy Technology Data Exchange (ETDEWEB)

    Frydman, Galit F.; Marini, Robert P.; Bakthavatchalu, Vasudevan; Biddle, Kathleen; Muthupalani, Sureshkumar; Vanderburg, Charles R.; Lai, Barry; Bendapudi, Pavan K.; Tompkins, Ronald G.; Fox, James G.

    2017-04-01

    Metal alloys are frequently used as implant materials in veterinary medicine. Recent studies suggest that many types of metal alloys may induce both local and systemic inflammatory responses. In this study, 37 rhesus macaques with long-term skull-anchored percutaneous titanium alloy implants (0-14 years duration) were evaluated for changes in their hematology, coagulation and serum chemistry profiles. Negative controls (n=28) did not have implants. All of the implanted animals were on IACUC-approved protocols and were not implanted for the purpose of this study. Animals with implants had significantly higher plasma D-dimer and lower antithrombin III concentrations compared with nonimplanted animals (p-values < 0.05). Additionally, animals with implants had significantly higher globulin, and lower albumin and calcium concentrations compared with nonimplanted animals (p-values < 0.05). Many of these changes were positively correlated with duration of implantation as well as the number of implants. Chronic bacterial infection was observed on the skin around many of the implant sites, and within deeper tissues. Representative histopathology around the implant site of two implanted animals revealed chronic suppurative to pyogranulomatous inflammation extending from the skin to the dura mater. X-ray fluorescence microscopy of tissue biopsies from the implant site of the same two animals revealed significant increases in free metal ions within the tissue, including titanium and iron. Free metal ions persisted in the tissues up to 6 months postexplant. These results suggest that long-term skull-anchored percutaneous titanium alloy implants results in localized inflammation, chronic infection, and leaching of metal ions into local tissues.

  19. Custom-made titanium devices as membranes for bone augmentation in implant treatment: Modeling accuracy of titanium products constructed with selective laser melting.

    Science.gov (United States)

    Otawa, Naruto; Sumida, Tomoki; Kitagaki, Hisashi; Sasaki, Kiyoyuki; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Nakamura, Takashi; Yamada, Tomohiro; Mori, Yoshihide; Matsushita, Tomiharu

    2015-09-01

    The purpose of this study was to verify the modeling accuracy of various products, and to produce custom-made devices for bone augmentation in individual patients requiring implantation. Two-(2D) and three-dimensional (3D) specimens and custom-made devices that were designed as membranes for guided bone regeneration (GBR) were produced using a computer-aided design (CAD) and rapid prototyping (RP) method. The CAD design was produced using a 3D printing machine and selective laser melting (SLM) with pure titanium (Ti) powder. The modeling accuracy was evaluated with regard to: the dimensional accuracy of the 2D and 3D specimens; the accuracy of pore structure of the 2D specimens; the accuracy of porosity of the 3D specimens; and the error between CAD design and the scanned real product by overlapped images. The accuracy of the 2D and 3D specimens indicated precise results in various parameters, which were tolerant in ISO 2768-1. The error of overlapped images between the CAD and scanned data indicated that accuracy was sufficient for GBR. In integrating area of all devices, the maximum and average error were 292 and 139 μm, respectively. High modeling accuracy can be achieved in various products using the CAD/RP-SLM method. These results suggest the possibility of clinical applications. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  20. UV-activated 7-dehydrocholesterol-coated titanium implants promote differentiation of human umbilical cord mesenchymal stem cells into osteoblasts.

    Science.gov (United States)

    Satué, María; Ramis, Joana M; Monjo, Marta

    2016-01-01

    Vitamin D metabolites are essential for bone regeneration and mineral homeostasis. The vitamin D precursor 7-dehydrocholesterol can be used after UV irradiation to locally produce active vitamin D by osteoblastic cells. Furthermore, UV-irradiated 7-dehydrocholesterol is a biocompatible coating for titanium implants with positive effects on osteoblast differentiation. In this study, we examined the impact of titanium implants surfaces coated with UV-irradiated 7-dehydrocholesterol on the osteogenic differentiation of human umbilical cord mesenchymal stem cells. First, the synthesis of cholecalciferol (D3) was achieved through the incubation of the UV-activated 7-dehydrocholesterol coating for 48 h at 23℃. Further, we investigated in vitro the biocompatibility of this coating in human umbilical cord mesenchymal stem cells and its potential to enhance their differentiation towards the osteogenic lineage. Human umbilical cord mesenchymal stem cells cultured onto UV-irradiated 7-dehydrocholesterol-coated titanium implants surfaces, combined with osteogenic supplements, upregulated the gene expression of several osteogenic markers and showed higher alkaline phosphatase activity and calcein blue staining, suggesting increased mineralization. Thus, our results show that the use of UV irradiation on 7-dehydrocholesterol -treated titanium implants surfaces generates a bioactive coating that promotes the osteogenic differentiation of human umbilical cord mesenchymal stem cells, with regenerative potential for improving osseointegration in titanium-based bone anchored implants. © The Author(s) 2015.

  1. Evaluation in vitro and in vivo of biomimetic hydroxyapatite coated on titanium dental implants

    International Nuclear Information System (INIS)

    Rigo, E.C.S.; Boschi, A.O.; Yoshimoto, M.; Allegrini, S.; Konig, B.; Carbonari, M.J.

    2004-01-01

    Among several materials used as dental implants, metals present relatively high tensile strengths. Although metals are biotolerable, they do not adhere to bone tissues. On the other hand, bioactive ceramics are known to chemically bind to bone tissues, but they are not enough mechanically resistant to tension stresses. To overcome this drawback, biotolerable metals can be coated with bioactive ceramics. Various methods can be employed for coating ceramic layers on metal substrates, among them ion sputtering, plasma spray, sol-gel, electrodeposition and a biomimetic process [E.C.S. Rigo, L.C. Oliveira, L.A. Santos, A.O. Boschi, R.G. Carrodeguas. Implantes metalicos recobertos com hidroxiapatita. Revista de Engenharia Biomedica, vol. 15 (1999), numeros 1-2, 21-29. Rio de Janeiro]. The aim of this work was to study the effect of the substitution of G glass, employed in the conventional biomimetic method during the nucleation stage, by a solution of sodium silicate (SS) on the chemical and morphological characteristics, and the adhesion of biomimetic coatings deposited on Ti implants. The obtained coatings were analyzed by diffuse reflectance FTIR spectroscopy (DRIFT) and scanning electron microscopy (SEM). Titanium implants were immersed in synthetic body fluid (SBF) and SS. All implants were left inside an incubator at 37 deg. C for 7 days, followed by immersion in 1.5 SBF and taken back to the incubator for additional 6 days at 37 deg. C. The 1.5 SBF were refreshed every 2 days. At the end of the treatment, the implants were washed in distilled and deionized water and dried at room temperature. To check the osseointegration, titanium implants coated with biomimetic method were inserted in rabbit's tibia, remaining there for 8 weeks. During the healing period, polyfluorochrome sequential labeling was inoculated in the rabbits to determine the period of bone remodeling. Results from DRIFT and SEM showed that, for all processing variants employed, a HA coating was

  2. Design and health care: a study of virtual design and direct metal lasersintering of titanium alloy for the production of customized facial implants

    Directory of Open Access Journals (Sweden)

    Wilson Kindlein Junior

    2009-11-01

    Full Text Available The increase in life expectancy and a great number ofaccidents lead to higher demand for medical products,including corrective implants. Patients with tumors or traumas need to replace injured areas in order to restore their aesthetic and structural function. Currently, the available craniofacial implants present a standard geometry and seldom generate satisfactory results. Customized implants, on theother hand, are designed to conform exactly to individual patient’s anatomy. This way, the use of customized implantscan show beneficial effects to the patient and the surgicalteam. In this study, the design and manufacturing of customized implant prior to surgery were described. Implant shape and functional requirements were established by digitaldata based on CT-scans and mirroring operations. The designprocess of customized mandible prosthesis is illustrated as well as its manufacturing process (direct metal laser sinteringand quality control. Laser sintering process and its constraints for the production of customized implants in titanium alloy(Ti-6Al-4V with complex geometry and internal structures are reported.

  3. Imaging, virtual planning, design, and production of patient-specific implants and clinical validation in craniomaxillofacial surgery.

    Science.gov (United States)

    Dérand, Per; Rännar, Lars-Erik; Hirsch, Jan-M

    2012-09-01

    The purpose of this article was to describe the workflow from imaging, via virtual design, to manufacturing of patient-specific titanium reconstruction plates, cutting guide and mesh, and its utility in connection with surgical treatment of acquired bone defects in the mandible using additive manufacturing by electron beam melting (EBM). Based on computed tomography scans, polygon skulls were created. Following that virtual treatment plans entailing free microvascular transfer of fibula flaps using patient-specific reconstruction plates, mesh, and cutting guides were designed. The design was based on the specification of a Compact UniLOCK 2.4 Large (Synthes(®), Switzerland). The obtained polygon plates were bent virtually round the reconstructed mandibles. Next, the resections of the mandibles were planned virtually. A cutting guide was outlined to facilitate resection, as well as plates and titanium mesh for insertion of bone or bone substitutes. Polygon plates and meshes were converted to stereolithography format and used in the software Magics for preparation of input files for the successive step, additive manufacturing. EBM was used to manufacture the customized implants in a biocompatible titanium grade, Ti6Al4V ELI. The implants and the cutting guide were cleaned and sterilized, then transferred to the operating theater, and applied during surgery. Commercially available software programs are sufficient in order to virtually plan for production of patient-specific implants. Furthermore, EBM-produced implants are fully usable under clinical conditions in reconstruction of acquired defects in the mandible. A good compliance between the treatment plan and the fit was demonstrated during operation. Within the constraints of this article, the authors describe a workflow for production of patient-specific implants, using EBM manufacturing. Titanium cutting guides, reconstruction plates for fixation of microvascular transfer of osteomyocutaneous bone grafts, and

  4. Comparison of Selective Laser Melted Titanium and Magnesium Implants Coated with PCL

    Science.gov (United States)

    Matena, Julia; Petersen, Svea; Gieseke, Matthias; Teske, Michael; Beyerbach, Martin; Kampmann, Andreas; Escobar, Hugo Murua; Gellrich, Nils-Claudius; Haferkamp, Heinz; Nolte, Ingo

    2015-01-01

    Degradable implant material for bone remodeling that corresponds to the physiological stability of bone has still not been developed. Promising degradable materials with good mechanical properties are magnesium and magnesium alloys. However, excessive gas production due to corrosion can lower the biocompatibility. In the present study we used the polymer coating polycaprolactone (PCL), intended to lower the corrosion rate of magnesium. Additionally, improvement of implant geometry can increase bone remodeling. Porous structures are known to support vessel ingrowth and thus increase osseointegration. With the selective laser melting (SLM) process, defined open porous structures can be created. Recently, highly reactive magnesium has also been processed by SLM. We performed studies with a flat magnesium layer and with porous magnesium implants coated with polymers. The SLM produced magnesium was compared with the titanium alloy TiAl6V4, as titanium is already established for the SLM-process. For testing the biocompatibility, we used primary murine osteoblasts. Results showed a reduced corrosion rate and good biocompatibility of the SLM produced magnesium with PCL coating. PMID:26068455

  5. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant

    Directory of Open Access Journals (Sweden)

    Richard C. Petersen

    2011-01-01

    Full Text Available Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats revealed far-reaching significant osseoconductivity increases from bisphenyl-polymer/carbon-fiber composites when compared to state-of-the-art titanium-6-4 alloy controls. Midtibial percent bone area measured from the implant surface increased when comparing the titanium alloy to the polymer composite from 10.5% to 41.6% at 0.8 mm, P<10−4, and 19.3% to 77.7% at 0.1 mm, P<10−8. Carbon-fiber fragments planned to occur in the test designs, instead of producing an inflammation, stimulated bone formation and increased bone integration to the implant. In addition, low-thermal polymer processing allows incorporation of minerals and pharmaceuticals for future major tissue-engineering potential.

  6. Cyclosporine-a and bone density around titanium implants: a histometric study in rabbits

    Directory of Open Access Journals (Sweden)

    Celso Eduardo Sakakura

    2011-06-01

    Full Text Available Aim: Cyclosporine A (CsA is an immunosuppressive agent commonly used to prevent organ transplantation rejection. It has been demonstrated that CsA may negatively affect osseointegration around dental implants. Therefore, the aim of this study was to evaluate the effect of CsA administration on bone density around titanium dental implants. Materials and Methods: Fourteen New Zealand rabbits were randomly divided into 2 groups with seven animals each. The test group (CsA received daily subcutaneous injection of CsA (10mg/kg body weight and the control group (CTL received saline solution by the same route of administration. Three days after the beginning of immunosuppressive therapy, one machined dental implant (7.00 mm in lenght and 3.75 mm in diameter was inserted bilaterally at the region of the tibial methaphysis. After 4 and 8 weeks the animals were sacrificed and the histometrical procedures were performed to analyse the bone density around the first four threads of the coronal part of the implant. Results: A significant increase in the bone density was observed from the 4- to the 8 week-period in the control group (37.41% + 14.85 versus 58.23% + 16.38 – p < 0.01. In contrast, bone density consistently decreased in the test group overtime (46.31% + 17.38 versus 16.28 + 5.08 – p <0.05. In the 8-week period, there was a significant difference in bone density between the control and the test groups (58.23 + 16.38 eand16.28 + 5.08 – p= 0.001. Conclusion: Within the limits of this study, long-term CsA administration may reduce bone density around titanium dental implants during the osseointegration process.

  7. Demineralized bone matrix and human cancellous bone enhance fixation of porous-coated titanium implants in sheep

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    2016-01-01

    matrix (DBM), alone or in combination with allograft or commercially available human cancellous bone (CB), may replace allografts, as they have the capability of inducing new bone and improving implant fixation through enhancing bone ongrowth. The purpose of this study was to investigate the effect...... of DBM alone, DBM with CB, or allograft on the fixation of porous-coated titanium implants. DBM100 and CB produced from human tissue were included. Both materials are commercially available. DBM granules are placed in pure DBM and do not contain any other carrier. Titanium alloy implants, 10 mm long × 10...... mm diameter, were inserted bilaterally into the femoral condyles of eight skeletally mature sheep. Thus, four implants with a concentric gap of 2 mm were implanted in each sheep. The gap was filled with: (a) DBM; (b) DBM:CB at a ratio of 1:3; (c) DBM:allograft at a ratio of 1:3; or (d) allograft...

  8. Residual stress in ion implanted titanium nitride studied by parallel beam glancing incidence x-ray diffraction

    International Nuclear Information System (INIS)

    Geist, D.E.; Perry, A.J.; Treglio, J.R.; Valvoda, V.; Rafaja, D.

    1995-01-01

    Ion implantation is known to increase the lifetime of cutting tools. Current theories are the increase in lifetime is caused by an increase in the residual stress, or by work hardening of the surface associated with the implantation. In this work the effect of ion implantation on the residual stress in titanium nitride coatings made by the standard industrial methods of chemical and physical vapor deposition (CVD and PVD) is studied. It is found in the as-received condition (unimplanted), the residual stress levels are near zero for CVD materials and highly compressive, of the order of 6 GPa, for PVD materials. Ion implantation has no effect on the residual stress in the coatings made by CVD. Nitrogen does increase the compressive residual stress by some 10% in the near surface regions of PVD coatings, while nickel-titanium dual metal ion implantation does not have any effect. It appears that the lifetime increase is not associated with residual stress effects

  9. Discrete deposition of hydroxyapatite nanoparticles on a titanium implant with predisposing substrate microtopography accelerated osseointegration

    International Nuclear Information System (INIS)

    Nishimura, Ichiro; Huang Yuhong; Butz, Frank; Ogawa, Takahiro; Lin, Audrey; Wang, Chiachien Jake

    2007-01-01

    We report here a new versatile method to deposit discrete hydroxyapatite (HA) nanoparticles on a titanium (Ti) implant with predisposing substrate microtopography, which exhibited an unexpectedly robust biological effect. Commercially pure Ti substrates were treated with 3-aminopropyltriethoxysilane, on which HA nanoparticles (20 nm) were deposited and chemically bonded to TiO 2 . The HA deposition rate was linearly related to the treatment time and HA nanoparticles were deposited on up to 50% of the substrate surface. As a result, the discrete deposition of HA nanoparticles generated novel 20-40 nm nanotopography on the Ti substrate with microtopography that was smooth (turned) or roughened by double acid etching (DAE). The experimental implants with or without HA nanoparticles were surgically placed in rat femur and an implant push-in test was performed after two weeks of healing. The deposition of HA nanoparticles on the DAE surface increased the mechanical withstanding load by 129% and 782% as compared to the control DAE and turned implants, respectively. Micro-computed tomography-based 3D bone morphometry revealed equivalent bone volumes around the DAE implant with or without HA nanoparticles. These data suggest that the discrete deposition of HA nanoparticles accelerates the early osseointegration process, likely through increased shear bonding strengths

  10. Influence of Piezosurgery on Bone Healing around Titanium Implants: A Histological Study in Rats.

    Science.gov (United States)

    Sirolli, Marcelo; Mafra, Carlos Eduardo Secco; Santos, Rodrigo Albuquerque Basílio Dos; Saraiva, Luciana; Holzhausen, Marinella; César, João Batista

    2016-01-01

    The aim of this study was to evaluate histomorphometrically the influence of two techniques of dental implant site preparation on bone healing around titanium implants. Fifteen male Wistar rats (±300 g) were used in the study. Each tibia was randomly assigned to receive the implant site preparation either with a conventional drilling technique (control - DRILL group) or with a piezoelectric device (PIEZO group). The animals were sacrificed after 30 days and then the following histomorphometric parameters were evaluated (percentage) separately for cortical and cancellous regions: proportion of mineralized tissue (PMT) adjacent to implant threads (500 μm adjacent); bone area within the threads (BA) and bone-implant contact (BIC). The results demonstrated that there were no statistically significant differences between both groups for cancellous BIC (p>0.05) and cortical PMT (p>0.05). On the other hand, a higher percentage of BA was observed in the PIEZO group in the cortical (71.50±6.91 and 78.28±4.38 for DRILL and PIEZO groups, respectively; ppiezosurgery also showed higher PMT values in the cancellous zone (9.35±5.54 and 18.72±13.21 for DRILL and PIEZO groups, respectively; ppiezosurgery was beneficial to bone healing rates in the cancellous bone region, while the drill technique produced better results in the cortical bone.

  11. Grain size effect on yield strength of titanium alloy implanted with aluminum ions

    Energy Technology Data Exchange (ETDEWEB)

    Popova, Natalya, E-mail: natalya-popova-44@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk (Russian Federation); Nikonenko, Elena, E-mail: vilatomsk@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30, Lenin Str., 634050, Tomsk (Russian Federation); Yurev, Ivan, E-mail: yiywork@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Kalashnikov, Mark, E-mail: kmp1980@mail.ru [Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk (Russian Federation); Kurzina, Irina, E-mail: kurzina99@mail.ru [National Research Tomsk State University, 36, Lenin Str., 634050, Tomsk (Russian Federation)

    2016-01-15

    The paper presents a transmission electron microscopy (TEM) study of the microstructure and phase state of commercially pure titanium VT1-0 implanted by aluminum ions. This study has been carried out before and after the ion implantation for different grain size, i.e. 0.3 µm (ultra-fine grain condition), 1.5 µm (fine grain condition), and 17 µm (polycrystalline condition). This paper presents details of calculations and analysis of strength components of the yield stress. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a different effect on the yield stress. So, both before and after the ion implantation, the increase of the grain size leads to the decrease of the alloy hardening. Thus, hardening in ultra-fine and fine grain alloys increased by four times, while in polycrystalline alloy it increased by over six times.

  12. Discrete deposition of hydroxyapatite nanoparticles on a titanium implant with predisposing substrate microtopography accelerated osseointegration

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Ichiro [UCLA School of Dentistry, Weintraub Center for Reconstructive Biotechnology and Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, Los Angeles, CA (United States); Huang Yuhong [Chemat Technology, Incorporated, Northridge, CA (United States); Butz, Frank [UCLA School of Dentistry, Weintraub Center for Reconstructive Biotechnology and Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, Los Angeles, CA (United States); Ogawa, Takahiro [UCLA School of Dentistry, Weintraub Center for Reconstructive Biotechnology and Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, Los Angeles, CA (United States); Lin, Audrey [UCLA School of Dentistry, Weintraub Center for Reconstructive Biotechnology and Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, Los Angeles, CA (United States); Wang, Chiachien Jake [UCLA School of Dentistry, Weintraub Center for Reconstructive Biotechnology and Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, Los Angeles, CA (United States)

    2007-06-20

    We report here a new versatile method to deposit discrete hydroxyapatite (HA) nanoparticles on a titanium (Ti) implant with predisposing substrate microtopography, which exhibited an unexpectedly robust biological effect. Commercially pure Ti substrates were treated with 3-aminopropyltriethoxysilane, on which HA nanoparticles (20 nm) were deposited and chemically bonded to TiO{sub 2}. The HA deposition rate was linearly related to the treatment time and HA nanoparticles were deposited on up to 50% of the substrate surface. As a result, the discrete deposition of HA nanoparticles generated novel 20-40 nm nanotopography on the Ti substrate with microtopography that was smooth (turned) or roughened by double acid etching (DAE). The experimental implants with or without HA nanoparticles were surgically placed in rat femur and an implant push-in test was performed after two weeks of healing. The deposition of HA nanoparticles on the DAE surface increased the mechanical withstanding load by 129% and 782% as compared to the control DAE and turned implants, respectively. Micro-computed tomography-based 3D bone morphometry revealed equivalent bone volumes around the DAE implant with or without HA nanoparticles. These data suggest that the discrete deposition of HA nanoparticles accelerates the early osseointegration process, likely through increased shear bonding strengths.

  13. Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell

    International Nuclear Information System (INIS)

    Kim, Beom-Su; Kim, Jin Seong; Park, Young Min; Choi, Bo-Young; Lee, Jun

    2013-01-01

    Magnesium (Mg) is one of the most important ions associated with bone osseointegration. The aim of this study was to evaluate the cellular effects of Mg implantation in titanium (Ti) surfaces treated with sand blast using large grit and acid etching (SLA). Mg ions were implanted into the surface via vacuum arc source ion implantation. The surface morphology, chemical properties, and the amount of Mg ion release were evaluated by scanning electron microscopy (SEM), Auger electron spectroscopy (AES), Rutherford backscattering spectroscopy (RBS), and inductively coupled plasma-optical emission spectrometer (ICP-OES). Human mesenchymal stem cells (hMSCs) were used to evaluate cellular parameters such as proliferation, cytotoxicity, and adhesion morphology by MTS assay, live/dead assay, and SEM. Furthermore, osteoblast differentiation was determined on the basis of alkaline phosphatase (ALP) activity and the degree of calcium accumulation. In the Mg ion-implanted disk, 2.3 × 10 16 ions/cm 2 was retained. However, after Mg ion implantation, the surface morphology did not change. Implanted Mg ions were rapidly released during the first 7 days in vitro. The MTS assay, live/dead assay, and SEM demonstrated increased cell attachment and growth on the Mg ion-implanted surface. In particular, Mg ion implantation increased the initial cell adhesion, and in an osteoblast differentiation assay, ALP activity and calcium accumulation. These findings suggest that Mg ion implantation using the plasma source ion implantation (PSII) technique may be useful for SLA-treated Ti dental implants to improve their osseointegration capacity. - Highlights: ► Mg ion was coated onto surface of SLA treated titanium via vacuum arc source ion implantation method. ► The morphological characteristics did not change after Mg ion implantation. ► Mg ion implanted SLA Ti is highly cytocompatible. ► Initial cell adhesion of MSCs is improved by Mg ion implantation. ► Mg ion implantation improved

  14. Electrochemical Behaviour and Galvanic Effects of Titanium Implants Coupled to Metallic Suprastructures in Artificial Saliva

    Science.gov (United States)

    Mellado-Valero, Ana; Igual Muñoz, Anna; Guiñón Pina, Virginia

    2018-01-01

    The aim of the present study is to analyze the electrochemical behavior of five different dental alloys: two cobalt-chromium alloys (CoCr and CoCr-c), one nickel-chromium-titanium alloy (NiCrTi), one gold-palladium alloy (Au), and one titanium alloy (Ti6Al4V), and the galvanic effect when they are coupled to titanium implants (TiG2). It was carried out by electrochemical techniques (open circuit measurements, potentiodynamic curves and Zero-Resistance Ammetry) in artificial saliva (AS), with and without fluorides in different acidic conditions. The studied alloys are spontaneously passivated, but NiCrTi alloy has a very narrow passive domain and losses its passivity in presence of fluorides, so is not considered as a good option for implant superstructures. Variations of pH from 6.5 to 3 in artificial saliva do not change the electrochemical behavior of Ti, Ti6Al4V, and CoCr alloys, and couples, but when the pH of the artificial saliva is below 3.5 and the fluoride content is 1000 ppm Ti and Ti6Al4V starts actively dissolving, and CoCr-c superstructures coupled to Ti show acceleration of corrosion due to galvanic effects. Thus, NiCrTi is not recommended for implant superstructures because of risk of Ni ion release to the body, and fluorides should be avoided in acidic media because Ti, Ti6Al4V, and CoCr-c superstructures show galvanic corrosion. The best combinations are Ti/Ti6Al4V and Ti/CoCr as alternative of noble gold alloys. PMID:29361767

  15. Imaging and dosimetric considerations for titanium prosthesis implanted within the irradiated region by high photon beams

    International Nuclear Information System (INIS)

    Indogo, V.

    2014-07-01

    The aim of this research was to observe dose distributions in the vicinity of titanium prosthetic implants during radiotherapy procedures. Data were obtained using a locally fabricated tissue equivalent phantom CT images, and in blue water phantom with titanium prosthesis which was irradiated with 60 Co gamma radiation and Elekta Platform photon beams. Images obtained were loaded into Prowess Panther and Oncentra treatment planning systems (TPSs) for dose simulations. Prowess TPS (1.25 MeV) estimated lesser errors whilst Oncentra (6 and 15 MV) dose simulations yielded large variations. Proximal ends of the metal recorded slight increase in doses as a rcsult of backscatter with dose increment below acceptable tolerance of ±3%. Doses measured decreases on the distal side of the prosthesis at a distance less than d max from the plate on each beam energy. Beyond certain depth along the axis, depth doses increased slightly mainly due to increase in electron fluence by portions receiving unperturbed dose. An increase in the plate thickness showed a corresponding decrease on percentage depth dose. A reduction in the above trend was also noticed with an increase in beam energy primarily because scattered photons are more forwardly directed. Prowess TPS (convolution superposition algorithm) was found to be better at reducing dose variation than OMP (collapse cone algorithm) when correction for artifact. Manual calculations on blue phantom data agree with results from Prowess. Oncentra is not capable of simulating dose around titanium prosthesis as its range of densities, 0.00121 to 2.83, excludes titanium density (rED for titanium is 3.74). (au)

  16. A decomposable silica-based antibacterial coating for percutaneous titanium implant

    Directory of Open Access Journals (Sweden)

    Wang J

    2017-01-01

    Full Text Available Jia Wang,1,* Guofeng Wu,2,* Xiangwei Liu,3,* Guanyang Sun,1 Dehua Li,3 Hongbo Wei3 1State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 2Department of Prosthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 3State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, People’s Republic of China *These authors contributed equally to this work Abstract: Although percutaneous titanium implants have become one of the best choices as retainers in the facial defects, peri-implantitis still occurs at a significant rate. This unwanted complication occurs due to adhesion of bacteria and subsequent biofilm formation. To solve this problem, we have developed a novel antibiotic nanodelivery system based on self-decomposable silica nanoparticles. In this study, silica-gentamycin (SG nanoparticles were successfully fabricated using an innovative one-pot solution. The nanoparticles were incorporated within a gelatin matrix and cross-linked on microarc-oxidized titanium. To characterize the SG nanoparticles, their particle size, zeta potential, surface morphology, in vitro drug release, and decomposition process were sequentially evaluated. The antibacterial properties against the gram-positive Staphylococcus aureus, including bacterial viability, antibacterial rate, and bacteria morphology, were analyzed using SG-loaded titanium specimens. Any possible influence of released gentamycin on the viability of human fibroblasts, which are the main component of soft tissues, was investigated. SG nanoparticles from the

  17. Distortion of CAD-CAM-fabricated implant-fixed titanium and zirconia complete dental prosthesis frameworks.

    Science.gov (United States)

    Al-Meraikhi, Hadi; Yilmaz, Burak; McGlumphy, Edwin; Brantley, William A; Johnston, William M

    2018-01-01

    Computer-aided design and computer-aided manufacturing (CAD-CAM)-fabricated titanium and zirconia implant-supported fixed dental prostheses have become increasingly popular for restoring patients with complete edentulism. However, the distortion level of these frameworks is not well known. The purpose of this in vitro study was to compare the 3-dimensional (3D) distortion of CAD-CAM zirconia and titanium implant-fixed screw-retained complete dental prostheses. A master edentulous model with 4 implants at the positions of the maxillary first molars and canines was used. Multiunit abutments (Nobel Biocare) secured to the model were digitally scanned using scan bodies and a laboratory scanner (S600 ARTI; Zirkonzahn). Titanium (n=5) and zirconia (n=5) frameworks were milled using a CAD-CAM system (Zirkonzahn M1; Zirkonzahn). All frameworks were scanned using an industrial computed tomography (CT) scanner (Nikon/X-Tek XT H 225kV MCT Micro-Focus). The direct CT scans were reconstructed to generate standard tessellation language (STL) files. To calculate the 3D distortion of the frameworks, STL files of the CT scans were aligned to the CAD model using a sum of the least squares best-fit algorithm. Surface comparison points were placed on the CAD model on the midfacial aspect of all teeth. The 3D distortion of each direct scan to the CAD model was calculated. In addition, color maps of the scan-to-CAD comparison were constructed using a ±0.500 mm color scale range. Both materials exhibited distortion; however, no significant difference was found in the amount of distortion from the CAD model between the materials (P=.747). Absolute values of deviations from the CAD model were evident in the x and y plane and less so in the z direction. Zirconia and titanium frameworks showed similar 3D distortion compared with the CAD model for the tested CAD-CAM and implant systems. The distortion was more pronounced in the horizontal and sagittal plane than in the vertical plane

  18. Unrecoverable bi-products of drilling titanium alloy and tantalum metal implants: a pilot study.

    Science.gov (United States)

    Skowronek, Paweł; Olszewski, Paweł; Święszkowski, Wojciech; Synder, Marek; Sibiński, Marcin; Mazek, Jacek

    2018-05-01

    Trabecular metal implants with a porous architecture that allows for the incorporation of bone into the implant during healing are gaining popularity in alloplastic revision procedures. The bi-products of drilling titanium alloy (Ti) and tantalum (Ta) implants have not been previously assessed. Four holes were drilled in each of two spatially porous trabecular implants, one Ta and the other Ti alloy (Ti-6Al-7Nb), for this pilot in vitro study. The particles were flushed out with a continuous flow of saline. The particles' weight and the volume were then measured using a Radwag XA 110/2X (USA) laboratory balance. The total volume of the obtained metal fines was measured by titration using a 10 mm 3 measurement system. A cobalt carbide bit was used since the holes could not be made with a standard bone drill. Each Ti and Ta implant lost 1.26 g and 2.48 g of mass, respectively. The volume of free particles recovered after each stage was 280 mm 3 and 149 mm 3 , respectively. Approximately 0.6% of the total implant mass was not recovered after drilling (roughly 2% of the mass of the particles created by drilling), despite the use of 5 µm filters. It is technically difficult to drill holes in Ti and Ta implants using standard surgical tools. The drilling process creates a considerable amount of metal particles, which cannot be recovered despite intensive flushing. This may have an adverse influence on the bio-functionality (survival) of the endoprosthesis and present deleterious systemic consequences.

  19. Comparison of the impact of scaler material composition on polished titanium implant abutment surfaces.

    Science.gov (United States)

    Hasturk, Hatice; Nguyen, Daniel Huy; Sherzai, Homa; Song, Xiaoping; Soukos, Nikos; Bidlack, Felicitas B; Van Dyke, Thomas E

    2013-08-01

    The purpose of this study was to compare the impact of the removal of biofilm with hand scalers of different material composition on the surface of implant abutments by assessing the surface topography and residual plaque after scaling using scanning electron microscopy (SEM). Titanium implant analogs from 3 manufacturers (Straumann USA LLC, Andover, Maine, Nobel BioCare USA LLC, Yorba Linda, Cali, Astra Tech Implant Systems, Dentsply, Mölndal, Sweden) were mounted in stone in plastic vials individually with authentic prosthetic abutments. Plaque samples were collected from a healthy volunteer, inoculated into growth medium and incubated with the abutments anaerobically for 1 week. A blinded, calibrated hygienist performed scaling to remove the biofilm using 6 implant scalers (in triplicate), 1 scaler for 1 abutment. The abutments were mounted on an imaging stand and processed for SEM. Images were captured in 3 randomly designated areas of interest on each abutment. Analysis of the implant polished abutment surface and plaque area measurements were performed using ImageJ image analysis software. Surface alterations were characterized by the number, length, depth and the width of the scratches observed. Glass filled resin scalers resulted in significantly more and longer scratches on all 3 abutment types compared to other scalers, while unfilled resin scalers resulted in the least surface change (p abutments with regard to plaque removal. The impact of scalers on implant abutment surfaces varies between abutment types presumably due to different surface characteristics with no apparent advantage of one abutment type over the other with regard to resistance to surface damage. Unfilled resin was found consistently to be the least damaging to abutment surfaces, although all scalers of all compositions caused detectable surface changes to polished surfaces of implant abutments.

  20. Update on Minimally Invasive Glaucoma Surgery (MIGS and New Implants

    Directory of Open Access Journals (Sweden)

    Lívia M. Brandão

    2013-01-01

    Full Text Available Traditional glaucoma surgery has been challenged by the advent of innovative techniques and new implants in the past few years. There is an increasing demand for safer glaucoma surgery offering patients a timely surgical solution in reducing intraocular pressure (IOP and improving their quality of life. The new procedures and devices aim to lower IOP with a higher safety profile than fistulating surgery (trabeculectomy/drainage tubes and are collectively termed “minimally invasive glaucoma surgery (MIGS.” The main advantage of MIGS is that they are nonpenetrating and/or bleb-independent procedures, thus avoiding the major complications of fistulating surgery related to blebs and hypotony. In this review, the clinical results of the latest techniques and devices are presented by their approach, ab interno (trabeculotomy, excimer laser trabeculotomy, trabecular microbypass, suprachoroidal shunt, and intracanalicular scaffold and ab externo (canaloplasty, Stegmann Canal Expander, suprachoroidal Gold microshunt. The drawback of MIGS is that some of these procedures produce a limited IOP reduction compared to trabeculectomy. Currently, MIGS is performed in glaucoma patients with early to moderate disease and preferably in combination with cataract surgery.

  1. Hierarchical micro/nanostructured titanium with balanced actions to bacterial and mammalian cells for dental implants

    Directory of Open Access Journals (Sweden)

    Zhu Y

    2015-10-01

    Full Text Available Yu Zhu,1,* Huiliang Cao,2,* Shichong Qiao,1,* Manle Wang,2,3 Yingxin Gu,1 Huiwen Luo,1 Fanhao Meng,2 Xuanyong Liu,2 Hongchang Lai1 1Department of Oral and Maxillofacial Implantology, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, 2State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 3School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: A versatile strategy to endow dental implants with long-term antibacterial ability without compromising the cytocompatibility is highly desirable to combat implant-related infection. Silver nanoparticles (Ag NPs have been utilized as a highly effective and broad-spectrum antibacterial agent for surface modification of biomedical devices. However, the high mobility and subsequent hazardous effects of the particles on mammalian cells may limit its practical applications. Thus, Ag NPs were immobilized on the surface of sand-blasted, large grit, and acid-etched (SLA titanium by manipulating the atomic-scale heating effect of silver plasma immersion ion implantation. The silver plasma immersion ion implantation-treated SLA surface gave rise to both good antibacterial activity and excellent compatibility with mammalian cells. The antibacterial activity rendered by the immobilized Ag NPs was assessed using Fusobacterium nucleatum and Staphylococcus aureus, commonly suspected pathogens for peri-implant disease. The immobilized Ag NPs offered a good defense against multiple cycles of bacteria attack in both F. nucleatum and S. aureus, and the mechanism was independent of silver release. F. nucleatum showed a higher susceptibility to Ag NPs than S. aureus, which might be explained by the presence of different wall structures. Moreover, the

  2. Nanostructured titanate with different metal ions on the surface of metallic titanium: a facile approach for regulation of rBMSCs fate on titanium implants.

    Science.gov (United States)

    Ren, Na; Li, Jianhua; Qiu, Jichuan; Sang, Yuanhua; Jiang, Huaidong; Boughton, Robert I; Huang, Ling; Huang, Wei; Liu, Hong

    2014-08-13

    Titanium (Ti) is widely used for load-bearing bio-implants, however, it is bio-inert and exhibits poor osteo-inductive properties. Calcium and magnesium ions are considered to be involved in bone metabolism and play a physiological role in the angiogenesis, growth, and mineralization of bone tissue. In this study, a facile synthesis approach to the in situ construction of a nanostructure enriched with Ca(2+) and Mg(2+) on the surface of titanium foil is proposed by inserting Ca(2+) and Mg(2+) into the interlayers of sodium titanate nanostructures through an ion-substitution process. The characteriz 0.67, and 0.73 nm ation results validate that cations can be inserted into the interlayer regions of the layered nanostructure without any obvious change of morphology. The cation content is positively correlated to the concentration of the solutions employed. The biological assessments indicate that the type and the amount of cations in the titanate nanostructure can alter the bioactivity of titanium implants. Compared with a Na(+) filled titanate nanostructure, the incorporation of divalent ions (Mg(2+) , Ca(2+) ) can effectively enhance protein adsorption, and thus also enhance the adhesion and differentiation ability of rat bone-marrow stem cells (rBMSCs). The Mg(2+) /Ca(2+) -titanate nanostructure is a promising implantable material that will be widely applicable in artificial bones, joints, and dental implants. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Evaluation on the movement of endosseous titanium implants under continuous orthodontic forces: an experimental study in the dog.

    Science.gov (United States)

    Hsieh, Yao-Dung; Su, Ching-Ming; Yang, Yi-Hsin; Fu, Earl; Chen, Hui-Lin; Kung, Suefang

    2008-06-01

    The purpose of this study was to evaluate the movement of pure titanium implants under different continuous forces in the edentulous alveolar ridge. Four pairs of titanium implants were inserted into the right maxillary and mandibular post-extraction edentulous ridge of the experimental dog. Three different levels of continuous force (100, 200, and 500 g) were loaded onto three pairs of adjacent implant abutments using a memory Ni-Ti coil spring for up to 6 months and the remaining two implant abutments as the control group received no force. The positions of implant abutments were observed and the distances between the implants abutment at the top, middle and base levels were measured at the 0th, 2nd, 3rd, 6th and 8th month of the follow-up period. There was no significant change in the distances between adjacent abutments loaded with 100 or 200 g continuous forces throughout the entire study period. However, significantly more movement of implant abutments was noted in the 500 g pair after the 3rd month of loading when compared with the 200 or the 100 g pair (both P < 0.001). This change further increased at the 6th month (P < 0.001, 0.01, respectively). Moreover, the difference in the measurements at the top, middle and base level indicated that the two adjacent implants moved in a tipping manner in the 500 g pair after 3 and 6 months of loading. The osseointegrated implants remained stable and rigid with a pulling force of 100 and 200 g after 6 months of loading. However, when the force reached 500 g, the implants moved in an inward-tipping pattern. The results suggested that endosseous titanium implants might not necessarily be rigid anchorages under all circumstances.

  4. Influence of Electropolishing and Magnetoelectropolishing on Corrosion and Biocompatibility of Titanium Implants

    Science.gov (United States)

    Rahman, Zia ur; Pompa, Luis; Haider, Waseem

    2014-11-01

    Titanium alloys are playing a vital role in the field of biomaterials due to their excellent corrosion resistance and biocompatibility. These alloys enhance the quality and longevity of human life by replacing or treating various parts of the body. However, as these materials are in constant contact with the aggressive body fluids, corrosion of these alloys leads to metal ions release. These ions leach to the adjacent tissues and result in adverse biological reactions and mechanical failure of implant. Surface modifications are used to improve corrosion resistance and biological activity without changing their bulk properties. In this investigation, electropolishing and magnetoelectropolishing were carried out on commercially pure titanium, Ti6Al4V, and Ti6Al4V-ELI. These surface modifications are known to effect surface charge, chemistry, morphology; wettability, corrosion resistance, and biocompatibility of these materials. In vitro cyclic potentiodynamic polarization tests were conducted in phosphate buffer saline in compliance with ASTM standard F-2129-12. The surface morphology, roughness, and wettability of these alloys were studied using scanning electron microscope, atomic force microscope, and contact angle meter, respectively. Moreover, biocompatibility of titanium alloys was assessed by growing MC3T3 pre-osteoblast cells on them.

  5. A strontium-incorporated nanoporous titanium implant surface for rapid osseointegration

    Science.gov (United States)

    Zhang, Wenjie; Cao, Huiliang; Zhang, Xiaochen; Li, Guanglong; Chang, Qing; Zhao, Jun; Qiao, Yuqin; Ding, Xun; Yang, Guangzheng; Liu, Xuanyong; Jiang, Xinquan

    2016-02-01

    Rapid osseointegration of dental implants will shorten the period of treatment and enhance the comfort of patients. Due to the vital role of angiogenesis played during bone development and regeneration, it might be feasible to promote rapid osseointegration by modifying the implant surface to gain a combined angiogenesis/osteogenesis inducing capacity. In this study, a novel coating (MAO-Sr) with strontium-incorporated nanoporous structures on titanium implants was generated via a new micro-arc oxidation, in an attempt to induce angiogenesis and osteogenesis to enhance rapid osseointegration. In vitro, the nanoporous structure significantly enhanced the initial adhesion of canine BMSCs. More importantly, sustained release of strontium ions also displayed a stronger effect on the BMSCs in facilitating their osteogenic differentiation and promoting the angiogenic growth factor secretion to recruit endothelial cells and promote blood vessel formation. Advanced mechanism analyses indicated that MAPK/Erk and PI3K/Akt signaling pathways were involved in these effects of the MAO-Sr coating. Finally, in the canine dental implantation study, the MAO-Sr coating induced faster bone formation within the initial six weeks and the osseointegration effect was comparable to that of the commercially available ITI implants. These results suggest that the MAO-Sr coating has the potential for future use in dental implants.Rapid osseointegration of dental implants will shorten the period of treatment and enhance the comfort of patients. Due to the vital role of angiogenesis played during bone development and regeneration, it might be feasible to promote rapid osseointegration by modifying the implant surface to gain a combined angiogenesis/osteogenesis inducing capacity. In this study, a novel coating (MAO-Sr) with strontium-incorporated nanoporous structures on titanium implants was generated via a new micro-arc oxidation, in an attempt to induce angiogenesis and osteogenesis to

  6. Laser and Electron Beam Additive Manufacturing Methods of Fabricating Titanium Bone Implants

    Directory of Open Access Journals (Sweden)

    Bartłomiej Wysocki

    2017-06-01

    Full Text Available Additive Manufacturing (AM methods are generally used to produce an early sample or near net-shape elements based on three-dimensional geometrical modules. To date, publications on AM of metal implants have mainly focused on knee and hip replacements or bone scaffolds for tissue engineering. The direct fabrication of metallic implants can be achieved by methods, such as Selective Laser Melting (SLM or Electron Beam Melting (EBM. This work compares the SLM and EBM methods used in the fabrication of titanium bone implants by analyzing the microstructure, mechanical properties and cytotoxicity. The SLM process was conducted in an environmental chamber using 0.4–0.6 vol % of oxygen to enhance the mechanical properties of a Ti-6Al-4V alloy. SLM processed material had high anisotropy of mechanical properties and superior UTS (1246–1421 MPa when compared to the EBM (972–976 MPa and the wrought material (933–942 MPa. The microstructure and phase composition depended on the used fabrication method. The AM methods caused the formation of long epitaxial grains of the prior β phase. The equilibrium phases (α + β and non-equilibrium α’ martensite was obtained after EBM and SLM, respectively. Although it was found that the heat transfer that occurs during the layer by layer generation of the component caused aluminum content deviations, neither methods generated any cytotoxic effects. Furthermore, in contrast to SLM, the EBM fabricated material met the ASTMF136 standard for surgical implant applications.

  7. Zinc-ion implanted and deposited titanium surfaces reduce adhesion of Streptococccus mutans

    International Nuclear Information System (INIS)

    Xu Juan; Ding Gang; Li Jinlu; Yang Shenhui; Fang Bisong; Sun Hongchen; Zhou Yanmin

    2010-01-01

    While titanium (Ti) is a commonly used dental implant material with advantageous biocompatible and mechanical properties, native Ti surfaces do not have the ability to prevent bacterial colonization. The objective of this study was to evaluate the chemical composition and bacterial adhesive properties of zinc (Zn) ion implanted and deposited Ti surfaces (Zn-PIIID-Ti) as potential dental implant materials. Surfaces of pure Ti (cp-Ti) were modified with increasing concentrations of Zn using plasma immersion ion implantation and deposition (PIIID), and elemental surface compositions were characterized by X-ray photoelectron spectrometry (XPS). To evaluate bacterial responses, Streptococcus mutans were seeded onto the modifiedTi surfaces for 48 h and subsequently observed by scanning electron microscopy. Relative numbers of bacteria on each surface were assessed by collecting the adhered bacteria, reculturing and counting colony forming units after 48 h on bacterial grade plates. Ti, oxygen and carbon elements were detected on all surfaces by XPS. Increased Zn signals were detected on Zn-PIIID-Ti surfaces, correlating with an increase of Zn-deposition time. Substantial numbers of S. mutans adhered to cp-Ti samples, whereas bacterial adhesion on Zn-PIIID-Ti surfaces signficantly decreased as the Zn concentration increased (p < 0.01). In conclusion, PIIID can successfully introduce Zn onto a Ti surface, forming a modified surface layer bearing Zn ions that consequently deter adhesion of S. mutans, a common bacterium in the oral environment.

  8. Zinc-ion implanted and deposited titanium surfaces reduce adhesion of Streptococccus mutans

    Energy Technology Data Exchange (ETDEWEB)

    Xu Juan, E-mail: doctorxue@126.com [Implant Center, School of Stomatology Jilin University, Changchun, Jilin (China) and Stomatological Hospital, Urumqi, Xinjiang (China); Ding Gang [Department of Stomatology, Yidu Central Hospital, Weifang, Shandong (China); Capital Medical University School of Stomatology, Beijing (China); Li Jinlu; Yang Shenhui; Fang Bisong [Capital Medical University School of Stomatology, Beijing (China); Sun Hongchen, E-mail: hcsun@jlu.edu.cn [Implant Center, School of Stomatology Jilin University, Changchun, Jilin (China); Zhou Yanmin, E-mail: zhouym62@126.com [Implant Center, School of Stomatology Jilin University, Changchun, Jilin (China)

    2010-10-01

    While titanium (Ti) is a commonly used dental implant material with advantageous biocompatible and mechanical properties, native Ti surfaces do not have the ability to prevent bacterial colonization. The objective of this study was to evaluate the chemical composition and bacterial adhesive properties of zinc (Zn) ion implanted and deposited Ti surfaces (Zn-PIIID-Ti) as potential dental implant materials. Surfaces of pure Ti (cp-Ti) were modified with increasing concentrations of Zn using plasma immersion ion implantation and deposition (PIIID), and elemental surface compositions were characterized by X-ray photoelectron spectrometry (XPS). To evaluate bacterial responses, Streptococcus mutans were seeded onto the modifiedTi surfaces for 48 h and subsequently observed by scanning electron microscopy. Relative numbers of bacteria on each surface were assessed by collecting the adhered bacteria, reculturing and counting colony forming units after 48 h on bacterial grade plates. Ti, oxygen and carbon elements were detected on all surfaces by XPS. Increased Zn signals were detected on Zn-PIIID-Ti surfaces, correlating with an increase of Zn-deposition time. Substantial numbers of S. mutans adhered to cp-Ti samples, whereas bacterial adhesion on Zn-PIIID-Ti surfaces signficantly decreased as the Zn concentration increased (p < 0.01). In conclusion, PIIID can successfully introduce Zn onto a Ti surface, forming a modified surface layer bearing Zn ions that consequently deter adhesion of S. mutans, a common bacterium in the oral environment.

  9. [Apatite-forming ability of pure titanium implant after micro-arc oxidation treatment].

    Science.gov (United States)

    Tian, Zhihui; Zhang, Yu; Wang, Lichao; Nan, Kaihui

    2013-10-01

    To investigate the apatite forming ability of pure titanium implant after micro-arc oxidation treatment in simulated body fluid (SBF) and obtain implants with calcium phosphate (Ca-P) layers. The implants were immersed in (SBF) after micro-arc oxidation treatment for different time lengths, and their apatite forming ability and the morphology and constituents of the Ca-P layers formed on the sample surface were analyzed using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive electron probe. After immersion in SBF, large quantities of Ca-P layers were induced on the surface of the samples. The Ca-P layers were composed of octacalcium phosphate and carbonated hydroxyapatite, and the crystals showed a plate-like morphology with an oriented growth. The implants with micro-arc oxidation treatment show good apatite forming ability on the surface with rich calcium and phosphorus elements. The formed layers are composed of bone-like apatite including octacalcium phosphate and carbonated hydroxyapatite.

  10. Graphitic carbon in a nanostructured titanium oxycarbide thin film to improve implant osseointegration

    International Nuclear Information System (INIS)

    Zanoni, R.; Ioannidu, C.A.; Mazzola, L.; Politi, L.; Misiano, C.; Longo, G.; Falconieri, M.; Scandurra, R.

    2015-01-01

    A nanostructured coating layer on titanium implants, able to improve their integration into bones and to protect against the harsh conditions of body fluids, was obtained by Ion Plating Plasma Assisted, a method suitable for industrial applications. A titanium carbide target was attached under vacuum to a magnetron sputtering source powered with a direct current in the 500–1100 W range, and a 100 W radio frequency was applied to the sample holder. The samples produced at 900 W gave the best biological response in terms of overexpression of some genes of proteins involved in bone turnover. We report the characterization of a reference and of an implant sample, both obtained at 900 W. Different micro/nanoscopic techniques evidenced the morphology of the substrates, and X-ray Photoelectron Spectroscopy was used to disclose the surface composition. The layer is a 500 nm thick hard nanostructure, composed of 60% graphitic carbon clustered with 15% TiC and 25% Ti oxides. - Highlights: • Nanostructured TiC protective layers were produced on Ti samples for prostheses. • Ion Plating Plasma-Assisted Deposition from TiC targets was used on Ti samples. • A model of the surface layer has been drawn from XPS, Raman, AFM, FIB/SEM, TEM. • The layer is mainly composed of graphitic carbon in addition to TiC and Ti oxides

  11. Graphitic carbon in a nanostructured titanium oxycarbide thin film to improve implant osseointegration

    Energy Technology Data Exchange (ETDEWEB)

    Zanoni, R., E-mail: robertino.zanoni@uniroma1.it [Dipartimento di Chimica, Università di Roma ‘La Sapienza’ p.le Aldo Moro 5, 00185 Rome (Italy); Ioannidu, C.A.; Mazzola, L.; Politi, L. [Dipartimento di Scienze Biochimiche, Università di Roma ‘La Sapienza’, p.le Aldo Moro 5, 00185 Rome (Italy); Misiano, C. [Romana Film Sottili, Anzio, Rome (Italy); Longo, G. [Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome (Italy); Ecole Polytechnique Fédérale de Lausanne, SB IPSB LPMV, BSP 409 (Cubotron UNIL), R.te de la Sorge, CH-1015 Lausanne (Switzerland); Falconieri, M. [ENEA, Unità Tecnica Applicazioni delle Radiazioni, via Anguillarese 301, 00123 Rome (Italy); Scandurra, R. [Dipartimento di Scienze Biochimiche, Università di Roma ‘La Sapienza’, p.le Aldo Moro 5, 00185 Rome (Italy)

    2015-01-01

    A nanostructured coating layer on titanium implants, able to improve their integration into bones and to protect against the harsh conditions of body fluids, was obtained by Ion Plating Plasma Assisted, a method suitable for industrial applications. A titanium carbide target was attached under vacuum to a magnetron sputtering source powered with a direct current in the 500–1100 W range, and a 100 W radio frequency was applied to the sample holder. The samples produced at 900 W gave the best biological response in terms of overexpression of some genes of proteins involved in bone turnover. We report the characterization of a reference and of an implant sample, both obtained at 900 W. Different micro/nanoscopic techniques evidenced the morphology of the substrates, and X-ray Photoelectron Spectroscopy was used to disclose the surface composition. The layer is a 500 nm thick hard nanostructure, composed of 60% graphitic carbon clustered with 15% TiC and 25% Ti oxides. - Highlights: • Nanostructured TiC protective layers were produced on Ti samples for prostheses. • Ion Plating Plasma-Assisted Deposition from TiC targets was used on Ti samples. • A model of the surface layer has been drawn from XPS, Raman, AFM, FIB/SEM, TEM. • The layer is mainly composed of graphitic carbon in addition to TiC and Ti oxides.

  12. The fate of titanium miniplates and screws used in maxillofacial surgery: a 10 year retrospective study.

    LENUS (Irish Health Repository)

    O'Connell, J

    2012-01-31

    The objective of this 10 year, retrospective study is to evaluate the indications for the removal of titanium miniplates following osteosynthesis in maxillofacial trauma and orthognathic surgery. All patients who had miniplates placed in a Regional Oral and Maxillofacial Department between January 1998 and October 2007 were included. The following variables were recorded: patient gender and age, number of plates inserted, indications for plate placement, location of plates, number and location of plates removed, indications for plate removal, time between insertion and removal, medical co-morbidities, and the follow-up period. During the 10 years of the study, 1247 titanium miniplates were placed in 535 patients. A total of 32 (3%) plates were removed from 30 patients. Superficial infection accounted for 41% of all plates removed. All complications were minor and most plates were removed within the first year of insertion. A low removal rate of 3% suggests that the routine removal of asymptomatic titanium miniplates is not indicated.

  13. Surgery without papilla incision: tunneling flap procedures in plastic periodontal and implant surgery.

    Science.gov (United States)

    Zuhr, Otto; Rebele, Stephan F; Cheung, Stefani L; Hürzeler, Markus B

    2018-06-01

    Diverse clinical advancements, together with some relevant technical innovations, have led to an increase in popularity of tunneling flap procedures in plastic periodontal and implant surgery in the recent past. This trend is further promoted by the fact that these techniques have lately been introduced to a considerably expanded range of indications. While originally described for the treatment of gingival recession-type defects, tunneling flap procedures may now be applied successfully in a variety of clinical situations in which augmentation of the soft tissues is indicated in the esthetic zone. Potential clinical scenarios include surgical thickening of thin buccal gingiva or peri-implant mucosa, alveolar ridge/socket preservation and implant second-stage surgery, as well as soft-tissue ridge augmentation or pontic site development. In this way, tunneling flap procedures developed from a technique, originally merely intended for surgical root coverage, into a capacious surgical conception in plastic periodontal and implant surgery. The purpose of this article is to provide a comprehensive overview on tunneling flap procedures, to introduce the successive development of the approach along with underlying ideas on surgical wound healing and to present contemporary clinical scenarios in step-by-step photograph-illustrated sequences, which aim to provide clinicians with guidance to help them integrate tunneling flap procedures into their daily clinical routine. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces

    International Nuclear Information System (INIS)

    Lee, Chung-Ho; Kim, Youn-Jeong; Jang, Je-Hee; Park, Jin-Woo

    2016-01-01

    Nanoscale topographical modification and surface chemistry alteration using bioactive ions are centrally important processes in the current design of the surface of titanium (Ti) bone implants with enhanced bone healing capacity. Macrophages play a central role in the early tissue healing stage and their activity in response to the implant surface is known to affect the subsequent healing outcome. Thus, the positive modulation of macrophage phenotype polarization (i.e. towards the regenerative M2 rather than the inflammatory M1 phenotype) with a modified surface is essential for the osteogenesis funtion of Ti bone implants. However, relatively few advances have been made in terms of modulating the macrophage-centered early healing capacity in the surface design of Ti bone implants for the two important surface properties of nanotopography and and bioactive ion chemistry. We investigated whether surface bioactive ion modification exerts a definite beneficial effect on inducing regenerative M2 macrophage polarization when combined with the surface nanotopography of Ti. Our results indicate that nanoscale topographical modification and surface bioactive ion chemistry can positively modulate the macrophage phenotype in a Ti implant surface. To the best of our knowledge, this is the first demonstration that chemical surface modification using divalent cations (Ca and Sr) dramatically induces the regenerative M2 macrophage phenotype of J774.A1 cells in nanostructured Ti surfaces. In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface. These results provide insight into the surface engineering of future Ti bone implants that are harmonized between the macrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function. (paper)

  15. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces

    Science.gov (United States)

    Lee, Chung-Ho; Kim, Youn-Jeong; Jang, Je-Hee; Park, Jin-Woo

    2016-02-01

    Nanoscale topographical modification and surface chemistry alteration using bioactive ions are centrally important processes in the current design of the surface of titanium (Ti) bone implants with enhanced bone healing capacity. Macrophages play a central role in the early tissue healing stage and their activity in response to the implant surface is known to affect the subsequent healing outcome. Thus, the positive modulation of macrophage phenotype polarization (i.e. towards the regenerative M2 rather than the inflammatory M1 phenotype) with a modified surface is essential for the osteogenesis funtion of Ti bone implants. However, relatively few advances have been made in terms of modulating the macrophage-centered early healing capacity in the surface design of Ti bone implants for the two important surface properties of nanotopography and and bioactive ion chemistry. We investigated whether surface bioactive ion modification exerts a definite beneficial effect on inducing regenerative M2 macrophage polarization when combined with the surface nanotopography of Ti. Our results indicate that nanoscale topographical modification and surface bioactive ion chemistry can positively modulate the macrophage phenotype in a Ti implant surface. To the best of our knowledge, this is the first demonstration that chemical surface modification using divalent cations (Ca and Sr) dramatically induces the regenerative M2 macrophage phenotype of J774.A1 cells in nanostructured Ti surfaces. In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface. These results provide insight into the surface engineering of future Ti bone implants that are harmonized between the macrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function.

  16. Delivery of antagomiR204-conjugated gold nanoparticles from PLGA sheets and its implication in promoting osseointegration of titanium implant in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Liu X

    2017-09-01

    Full Text Available Xiangwei Liu,1,* Naiwen Tan,1,* Yuchao Zhou,1 Hongbo Wei,1,* Shuai Ren,1 Fan Yu,2 Hui Chen,3 Chengming Jia,4 Guodong Yang,5 Yingliang Song1 1State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Implant Dentistry, 2Department of Prosthodontics, School of Stomatology, 3Department of Plastic Surgery, Tangdu Hospital, 4Department of Traditional Chinese Medicine, Xijing Hospital, 5Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China *These authors contributed equally to this work Abstract: Impaired osseointegration of the implant remains the big hurdle for dental implant therapy in diabetic patients. In this study, the authors first identified that miR204 was strikingly highly expressed in the bone mesenchymal stem cells (BMSCs of diabetic rats. Forced expression of miR204 repressed the osteogenic potential of BMSCs, while inhibition of miR204 significantly increased the osteogenic capacity. Moreover, the miR204 inhibitor was conjugated with gold nanoparticles (AuNP-antagomiR204 and dispersed them in the poly(lactic-co-glycolic acid (PLGA solution. The AuNP-antagomiR204 containing PLGA solution was applied for coating the surface of titanium implant. Electron microscope revealed that an ultrathin sheet was formed on the surface of the implant, and the AuNPs were evenly dispersed in the coated PLGA sheet. Cellular experiments revealed that these encapsulated AuNP-antagomiR204 were able to be released from the PLGA sheet and uptaken by adherent BMSCs. In vivo animal study further confirmed that the AuNP-antagomiR204 released from PLGA sheet promoted osseointegration, as revealed by microcomputerized tomography (microCT reconstruction and histological assay. Taken together, this study established that miR204 misexpression accounted for the deficient

  17. Enhanced bonding of chitosan to implant quality titanium via four treatment combinations

    International Nuclear Information System (INIS)

    Martin, Holly J.; Schulz, Kirk H.; Bumgardner, Joel D.; Schneider, Judith A.

    2008-01-01

    Bioactive coatings have been investigated to enhance the integration of orthopaedic and dental-craniofacial implants in the surrounding bone tissue. Chitosan has been shown to possess many properties desirable in implant coatings, such as cell attachment and growth, and encouraging ordered bone tissue formation. Previous studies have produced methods to deposit chitosan onto a titanium surface using both two-step and three-step reaction schemes. In the current study, two different titanium surface treatments were evaluated for determining the strength of chitosan coatings bonded to titanium via two reaction processes. The chitosan coatings produced from the four treatment combinations were examined using X-ray Photoelectron Spectroscopy, which demonstrated that the final coatings were similar in composition to the previously reported coatings. Coatings examined by nano-indentation, exhibited hardness (0.19 ± 0.08 GPa) and elastic modulus (4.90 ± 1.82 GPa) values similar to the hardness and elastic modulus values previously reported. Scanning Electron Microscopy examination of the nano-indentation marks revealed cracks only at sites of applied stress, demonstrating that the chitosan coatings were able to absorb the applied stress. Bulk adhesion of the chitosan coatings demonstrated significant increases in bond strength (19.50 ± 1.63 MPa) over previously reported data (1.5-1.8 MPa), but no significant differences were seen between the four treatment combinations. Contact angle testing demonstrated that the chitosan coatings were more hydrophobic (98.0 ± 3.6 deg.) than published values (76.4 ± 5.1 deg.). Overall, mechanical testing demonstrated that, while the bulk properties of the chitosan coating were unaffected by the four treatment combinations, the bulk adhesion of the chitosan coating was greatly increased and high quality coatings were produced

  18. Enhanced bonding of chitosan to implant quality titanium via four treatment combinations

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Holly J. [Dave C. Swalm School of Chemical Engineering, James Worth Bagley College of Engineering, Mississippi State University, Box 9595, Mississippi State, Mississippi 39762 (United States)], E-mail: hjp2@msstate.edu; Schulz, Kirk H. [Dave C. Swalm School of Chemical Engineering, James Worth Bagley College of Engineering, Mississippi State University, Box 9595, Mississippi State, Mississippi 39762 (United States); Bumgardner, Joel D. [Department of Biomedical Engineering, Herff College of Engineering, University of Memphis, 330 Engineering Technology Building, Memphis, Tennessee 38152 (United States); Schneider, Judith A. [Department of Mechanical Engineering, James Worth Bagley College of Engineering, Mississippi State University, Box 9552, Mississippi State, Mississippi 39762 (United States)

    2008-07-31

    Bioactive coatings have been investigated to enhance the integration of orthopaedic and dental-craniofacial implants in the surrounding bone tissue. Chitosan has been shown to possess many properties desirable in implant coatings, such as cell attachment and growth, and encouraging ordered bone tissue formation. Previous studies have produced methods to deposit chitosan onto a titanium surface using both two-step and three-step reaction schemes. In the current study, two different titanium surface treatments were evaluated for determining the strength of chitosan coatings bonded to titanium via two reaction processes. The chitosan coatings produced from the four treatment combinations were examined using X-ray Photoelectron Spectroscopy, which demonstrated that the final coatings were similar in composition to the previously reported coatings. Coatings examined by nano-indentation, exhibited hardness (0.19 {+-} 0.08 GPa) and elastic modulus (4.90 {+-} 1.82 GPa) values similar to the hardness and elastic modulus values previously reported. Scanning Electron Microscopy examination of the nano-indentation marks revealed cracks only at sites of applied stress, demonstrating that the chitosan coatings were able to absorb the applied stress. Bulk adhesion of the chitosan coatings demonstrated significant increases in bond strength (19.50 {+-} 1.63 MPa) over previously reported data (1.5-1.8 MPa), but no significant differences were seen between the four treatment combinations. Contact angle testing demonstrated that the chitosan coatings were more hydrophobic (98.0 {+-} 3.6 deg.) than published values (76.4 {+-} 5.1 deg.). Overall, mechanical testing demonstrated that, while the bulk properties of the chitosan coating were unaffected by the four treatment combinations, the bulk adhesion of the chitosan coating was greatly increased and high quality coatings were produced.

  19. Bio-activated titanium surface utilizable for mimetic bone implantation in dentistry – Part III: Surface characteristics an bone-implant contact formation

    Czech Academy of Sciences Publication Activity Database

    Strnad, J.; Strnad, Z.; Šesták, Jaroslav; Urban, K.; Povýšil, C.

    2007-01-01

    Roč. 68, - (2007), s. 841-843 ISSN 0022-3697 R&D Projects: GA AV ČR IAA100100639 Grant - others:GAMPO(CZ) FT-TA/087 Program:FT Institutional research plan: CEZ:AV0Z10100521 Keywords : implants * surface * titanium * bioactivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.899, year: 2007

  20. Additively Manufactured Titanium and Cobalt-Chromium Implant Frameworks: Fit and Effect of Ceramic Veneering.

    Science.gov (United States)

    Svanborg, Per; Eliasson, Alf; Stenport, Victoria

    The purpose of this study was to evaluate the fit of additively manufactured cobalt-chromium and titanium and CNC-milled titanium frameworks before and after ceramic veneering. Ten stone casts simulating an edentulous maxilla provided with six abutment analogs were produced. For each stone cast, one additively manufactured cobalt-chromium framework (AM CoCr) and one titanium framework (AM Ti) were fabricated. The fit was analyzed with a coordinate measuring machine in three dimensions (x, y, and z axes) using best-fit virtual matching of center point coordinates, before and after ceramic veneering. CNC-milled titanium frameworks (CNC Ti) and earlier results from CNC-milled cobalt-chromium frameworks (CNC CoCr) were used for comparison. All frameworks presented minor misfit before and after veneering in the horizontal plane (x- and y-axes) between 2.9 and 13.5 μm and in the vertical plane (z-axis) between 1.6 and 5.4 μm. Ceramic veneering affected the fit of all groups of frameworks. Both AM Ti and AM CoCr presented significantly smaller distortion in the vertical plane compared with the CNC-milled frameworks. Implant-supported frameworks can be produced in either Ti or CoCr using either CNC milling or additive manufacturing with a fit well within the range of 20 μm in the horizontal plane and 10 μm in the vertical plane. The fit of frameworks of both materials and production techniques are affected by the ceramic veneering procedure to a small extent.

  1. Three-dimensional plotting and printing of an implant drilling guide: simplifying guided implant surgery.

    Science.gov (United States)

    Flügge, Tabea Viktoria; Nelson, Katja; Schmelzeisen, Rainer; Metzger, Marc Christian

    2013-08-01

    To present an efficient workflow for the production of implant drilling guides using virtual planning tools. For this purpose, laser surface scanning, cone beam computed tomography, computer-aided design and manufacturing, and 3-dimensional (3D) printing were combined. Intraoral optical impressions (iTero, Align Technologies, Santa Clara, CA) and digital 3D radiographs (cone beam computed tomography) were performed at the first consultation of 1 exemplary patient. With image processing techniques, the intraoral surface data, acquired using an intraoral scanner, and radiologic 3D data were fused. The virtual implant planning process (using virtual library teeth) and the in-office production of the implant drilling guide was performed after only 1 clinical consultation of the patient. Implant surgery with a computer-aided design and manufacturing produced implant drilling guide was performed during the second consultation. The production of a scan prosthesis and multiple preoperative consultations of the patient were unnecessary. The presented procedure offers another step in facilitating the production of drilling guides in dental implantology. Four main advantages are realized with this procedure. First, no additional scan prosthesis is needed. Second, data acquisition can be performed during the first consultation. Third, the virtual planning is directly transferred to the drilling guide without a loss of accuracy. Finally, the treatment cost and time required are reduced with this facilitated production process. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Covarrubias, Cristian, E-mail: ccovarrubias@odontologia.uchile.cl [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Mattmann, Matías [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Von Marttens, Alfredo [Department of Prosthesis, Faculty of Dentistry, University of Chile, Santiago (Chile); Caviedes, Pablo; Arriagada, Cristián [Laboratory of Cell Therapy, ICBM, Faculty of Medicine, University of Chile (Chile); Valenzuela, Francisco [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Rodríguez, Juan Pablo [Laboratory of Cell Biology, INTA, University of Chile, Santiago (Chile); Corral, Camila [Department of Restorative Dentistry, Faculty of Dentistry, University of Chile, Santiago (Chile)

    2016-02-15

    Graphical abstract: - Highlights: • The fabrication of a coating for osseointegration of titanium implant is presented. • The coating consists of nanoporous silica loaded with bioactive glass nanoparticles. • Coating accelerates the in vitro formation of apatite in simulated body fluid. • Coating promotes the osteogenic differentiation of stem cells. • Coating accelerates the formation of bone tissue in the periphery of the implant. - Abstract: The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol–gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  3. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    International Nuclear Information System (INIS)

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-01-01

    Graphical abstract: - Highlights: • The fabrication of a coating for osseointegration of titanium implant is presented. • The coating consists of nanoporous silica loaded with bioactive glass nanoparticles. • Coating accelerates the in vitro formation of apatite in simulated body fluid. • Coating promotes the osteogenic differentiation of stem cells. • Coating accelerates the formation of bone tissue in the periphery of the implant. - Abstract: The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol–gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  4. [Management of surgery patients with implanted cardiac pacemakers].

    Science.gov (United States)

    Ugljen, R; Dadić, D; Ferek-Petrić, B; Jelić, I; Letica, D; Anić, D; Husar, J

    1995-01-01

    Patients having cardiac pacemaker implanted may be subjected to various general surgery procedures. Application of electrosurgery for the purpose of resection and coagulation, provides a high frequency electric field which produces electric voltage on the electrodes of the pacing system. This voltage may be detected within the pacing system, and various arrhythmias can be provoked in correlation with underlying rhythm and mode of pacing. Preoperative patient control and proper pacemaker programming can prevent the pacing malfunctions due to the electrosurgery application. Appropriate positioning of the neutral electrode in relation to the pacing system avoids the electric fields intersection and decreases their interference.

  5. Alkalescent nanotube films on a titanium-based implant: A novel approach to enhance biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanxian [Corrosion and Protection Center, Key Laboratory for Corrosion and Protection (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Dong, Chaofang, E-mail: cfdong@ustb.edu.cn [Corrosion and Protection Center, Key Laboratory for Corrosion and Protection (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Yang, Sefei [Department of Stomatology, The PLA General Hospital, Beijing 100853 (China); Wu, Junsheng; Xiao, Kui; Huang, Yunhua; Li, Xiaogang [Corrosion and Protection Center, Key Laboratory for Corrosion and Protection (MOE), University of Science and Technology Beijing, Beijing 100083 (China)

    2017-03-01

    The interfacial pH value has a marked effect on cell viability because the pro-mineralization activity of osteoblasts increases at alkaline extracellular pH, whereas the pro-resorptive activity of osteoclasts increases under more acidic conditions. To obtain the more favorable alkaline interface, we developed a novel nanotube layer that was incorporated with magnesium oxide on a titanium implant substrate (MgO/NT/Ti) via ethylenediamine tetraacetic acid (EDTA) chelation. This facile immersion-annealing process successfully created a homogeneous magnesium oxide layer with sustained release kinetics and superior hydrophilicity according to the surface characterization and microenvironment measurement. The titania nanotubes on the substrate with an anatase phase exhibited a lower passivation current and a more positive corrosion potential compared with pure titanium, which guaranteed a reasonable corrosion resistance, even when it was wrapped with a magnesium oxide layer. In vitro cell cultures showed that MgO/NT/Ti significantly increased cell proliferation and alkaline phosphatase (ALP) activity. The resulting alkalescent microenvironment created by the MgO layer encouraged the cells to spread into polygonal shapes, accelerated the differentiation stage to osteoblast and induced a higher expression of vinculin. In summary, the incorporated alkalescent microenvironment of MgO/NT/Ti provided a viable approach to stimulate cell proliferation, adhesion, and differentiation and to improve the implant osseointegration. - Highlights: • We developed a novel nanotube layer incorporated with magnesium oxide to obtain a favorable alkaline interface. • The homogeneous magnesium oxide layer exhibited sustained release kinetics. • The resulting alkalescent microenvironment provided a viable approach to improve the implant osseointegration.

  6. Reverse engineering of mandible and prosthetic framework: Effect of titanium implants in conjunction with titanium milled full arch bridge prostheses on the biomechanics of the mandible.

    Science.gov (United States)

    De Santis, Roberto; Gloria, Antonio; Russo, Teresa; D'Amora, Ugo; Varriale, Angelo; Veltri, Mario; Balleri, Piero; Mollica, Francesco; Riccitiello, Francesco; Ambrosio, Luigi

    2014-12-18

    This study aimed at investigating the effects of titanium implants and different configurations of full-arch prostheses on the biomechanics of edentulous mandibles. Reverse engineered, composite, anisotropic, edentulous mandibles made of a poly(methylmethacrylate) core and a glass fibre reinforced outer shell were rapid prototyped and instrumented with strain gauges. Brånemark implants RP platforms in conjunction with titanium Procera one-piece or two-piece bridges were used to simulate oral rehabilitations. A lateral load through the gonion regions was used to test the biomechanical effects of the rehabilitations. In addition, strains due to misfit of the one-piece titanium bridge were compared to those produced by one-piece cast gold bridges. Milled titanium bridges had a better fit than cast gold bridges. The stress distribution in mandibular bone rehabilitated with a one-piece bridge was more perturbed than that observed with a two-piece bridge. In particular the former induced a stress concentration and stress shielding in the molar and symphysis regions, while for the latter design these stresses were strongly reduced. In conclusion, prosthetic frameworks changed the biomechanics of the mandible as a result of both their design and manufacturing technology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. [Long-term follow-up study of titanium implant impact on pediatric mandibular growth and development].

    Science.gov (United States)

    Hu, Yun; Li, Wei; Chen, Qi; Song, Fumin; Tang, Wei; Wang, Hang

    2015-08-01

    To explore the impact of titanium implant on the growth and development of pediatric mandible after suffering from mandibular fracture and undergoing open reduction and internal fixation (ORIF) compared with those that underwent titanium plate removal postoperatively. Fifteen pediatric patients with mandibular fracture who underwent ORIF were included in this study. Eight patients did not undergo titanium implant removal postoperatively, whereas the other seven patients underwent the routine. The postoperative data of the pediatrics were collected for comparative analysis by taking the patients' frontal and lateral photos, recording the inter-incisor distance, and measuring the height of mandibular ramus, length of the mandibular body, and combined length of the mandible in three-dimensional reconstruction image. All patients had acceptable facial contour, mouth opening, and occlusion, without obvious abnormalities. The radiography showed no significant difference between the bilateral mandibular lengths in the two groups of patients (P>0.05). The titanium plants have no significant impact on the growth and development of pediatric mandible postoperatively; hence, the question on whether the titanium plates should be removed or not may be neglected. The removal operation may lead to secondary trauma; thus, performing titanium plate removal routinely is not recommended.

  8. Systemic assessment of patients undergoing dental implant surgeries: A trans- and post-operative analysis

    OpenAIRE

    Sanjay Byakodi; Sachin Kumar; Rajesh Kumar Reddy; Vipin Kumar; Shipra Sepolia; Shivangi Gupta; Harkanwal Preet Singh

    2017-01-01

    Background: Procedure-related and patient-related factors influence the prognosis of dental implants to a major extent. Hence, we aimed to evaluate and analyze various systemic factors in patients receiving dental implants. Materials and Methods: Fifty-one patients were included in the study, in which a total of 110 dental implants were placed. Complete examination of the subjects was done before and after placement of dental implants. Implant surgery was planned, and osseointegrated dental i...

  9. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    Science.gov (United States)

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-02-01

    The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol-gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  10. Histatin 1 Enhances Cell Adhesion to Titanium in an Implant Integration Model.

    Science.gov (United States)

    van Dijk, I A; Beker, A F; Jellema, W; Nazmi, K; Wu, G; Wismeijer, D; Krawczyk, P M; Bolscher, J G M; Veerman, E C I; Stap, J

    2017-04-01

    Cellular adhesion is essential for successful integration of dental implants. Rapid soft tissue integration is important to create a seal around the implant and prevent infections, which commonly cause implant failure and can result in bone loss. In addition, soft tissue management is important to obtain good dental aesthetics. We previously demonstrated that the salivary peptide histatin 1 (Hst1) causes a more than 2-fold increase in the ability of human adherent cells to attach and spread on a glass surface. Cells treated with Hst1 attached more rapidly and firmly to the substrate and to each other. In the current study, we examine the potential application of Hst1 for promotion of dental implant integration. Our results show that Hst1 enhances the attachment and spreading of soft tissue cell types (oral epithelial cells and fibroblasts) to titanium (Ti) and hydroxyapatite (HAP), biomaterials that have found wide applications as implant material in dentistry and orthopedics. For improved visualization of cell adhesion to Ti, we developed a novel technique that uses sputtering to deposit a thin, transparent layer of Ti onto glass slides. This approach allows detailed, high-resolution analysis of cell adherence to Ti in real time. Furthermore, our results suggest that Hst1 has no negative effects on cell survival. Given its natural occurrence in the oral cavity, Hst1 could be an attractive agent for clinical application. Importantly, even though Hst1 is specific for saliva of humans and higher primates, it stimulated the attachment and spreading of canine cells, paving the way for preclinical studies in canine models.

  11. Effect of membranes and porous hydroxyapatite on healing in bone defects around titanium dental implants. An experimental study in monkeys

    DEFF Research Database (Denmark)

    Gotfredsen, K; Warrer, K; Hjørting-Hansen

    1991-01-01

    The purpose of the present study was to examine the effect of treating bony craters around titanium dental implant with polytetrafluoroethylene membranes (PTFE), with and without grafting of hydroxyapatite (HA), and with HA alone. 4 standardized bone defects were prepared in the alveolar ridge...

  12. LET spectra behind high-density titanium and stainless steel hip implants irradiated with a therapeutic proton beam

    Czech Academy of Sciences Publication Activity Database

    Oancea, Cristina; Ambrožová, Iva; Popescu, A. I.; Mytsin, G. V.; Vondráček, V.; Davídková, Marie

    2018-01-01

    Roč. 110, č. 3 (2018), s. 7-13 ISSN 1350-4487 R&D Projects: GA MŠk EF16_013/0001677 Institutional support: RVO:61389005 Keywords : proton therapy * metallic hip implant * titanium * stainless steel * track etched detectors Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.442, year: 2016

  13. [Guided and computer-assisted implant surgery and prosthetic: The continuous digital workflow].

    Science.gov (United States)

    Pascual, D; Vaysse, J

    2016-02-01

    New continuous digital workflow protocols of guided and computer-assisted implant surgery improve accuracy of implant positioning. The design of the future prosthesis is based on the available prosthetic space, gingival height and occlusal relationship with the opposing and adjacent teeth. The implant position and length depend on volume, density and bone quality, gingival height, tooth-implant and implant-implant distances, implant parallelism, axis and type of the future prosthesis. The crown modeled on the software will therefore serve as a guide to the future implant axis and not the reverse. The guide is made by 3D printing. The software determines surgical protocol with the drilling sequences. The unitary or plural prosthesis, modeled on the software and built before surgery, is loaded directly after implant placing, if needed. These protocols allow for a full continuity of the digital workflow. The software provides the surgeon and the dental technician a total freedom for the prosthetic-surgery guide design and the position of the implants. The prosthetic project, occlusal and aesthetic, taking the bony and surgical constraints into account, is optimized. The implant surgery is simplified and becomes less "stressful" for the patient and the surgeon. Guided and computer-assisted surgery with continuous digital workflow is becoming the technique of choice to improve the accuracy and quality of implant rehabilitation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  14. Mechanism of mechanical property enhancement in nitrogen and titanium implanted 321 stainless steel

    International Nuclear Information System (INIS)

    Xu Ming; Li Liuhe; Liu Youming; Cai Xun; Chen Qiulong; Chu, Paul K.

    2006-01-01

    Ion implantation is a well-known method to modify surface mechanical properties. The improvement of the mechanical properties can usually be attributed to the formation of new strengthening phases, solution strengthening, dislocation strengthening, or grain refinement. However, in many cases, the roles of individual factors are not clear. In this study, we implanted nitrogen and titanium into 321 stainless steel samples to investigate the enhancement mechanism of the mechanical properties. Nano-indentation experiments were conducted to measure the hardness under various loadings. The N and Ti implanted 321 stainless steel samples were found to behave differently in the hardness (GPa) versus depth (nm) diagram. The effects of the radiation damage, solution strengthening, and dispersion strengthening phase were analyzed. Characterization of the modified layers was performed using techniques such as Auger electron spectroscopy (AES) and grazing incidence X-ray diffraction (GIXRD). Transmission electron microscopy (TEM) and X-ray diffraction were also applied to reveal the structure of the untreated 321 stainless steel

  15. [Observation of topography and analysis of surface contamination of titanium implant after roughness treatment].

    Science.gov (United States)

    Cao, Hongdan; Yang, Xiaodong; Wu, Dayi; Zhang, Xingdong

    2007-04-01

    The roughness treatment of dental implant surface could improve the bone bonding and increase the success rate of implant, but the difference of diverse treatments is still unknown. In this study using scanning electron microscopy (SEM), energy disperse spectrometer (EDS) and the test of contact angle, we studied the microstructure, surface contamination and surface energy, and hence conducted a comparative analysis of the following surface roughness treatments: Polished Treatment (PT), Sandblasting with Alumina(SA), Sandblasting with Aluminia and Acid-etched (SAA), Sandblasting with Titanium Acid-etched (STA), Electro-erosion Treatment(ET). The result of SEM showed that the surface displayed irregularities after roughness treatments and that the surface properties of different roughness treatments had some distinctions. SAA and SA had some sharp edges and protrutions; the STA showed a regular pattern like honeycomb, but the ET sample treated by electric erosion exhibited the deeper pores of different sizes and the pores with a perforated secondary structure. The EDS indicated that the surface was contaminated after the treatment with foreign materials; the SA surface had some embedded contaminations even after acid etching. The measurement of water contact angle indicated that the morphology correlated with the surface treatments. These findings suggest that the distinction of surface structure and composition caused by different treatments may result in the disparity in biological behavior of dental implant.

  16. Alkaline phosphatase binds tenaciously to titanium; implications for biological surface evaluation following bone implant retrieval.

    Science.gov (United States)

    Mansell, J P; Shiel, A I; Harwood, C; Stephens, D

    2017-07-01

    Enhancing the performance and longevity of titanium (Ti) implants continues to be a significant developmental theme in contemporary biomaterials design. Our specific focus pertains to the surface functionalisation of Ti using the bioactive lipid, lysophosphatidic acid (LPA) and certain phosphatase-resistant analogues of LPA. Coating survivorship to a plethora of testing regimens is required to align with due regulatory process before novel biomaterials can enter clinical trials. One of the key acceptance criteria is coating retention to the physical stresses experienced during implantation. In assessing coating stability to insertion into porcine bone we found that a subsequent in vitro assessment to confirm coating persistence was masked by abundant alkaline phosphatase (ALP) contamination adsorbed to the metal surface. Herein we report that ALP can bind to Ti in a matter of minutes by simply immersing Ti samples in aqueous solutions of the enzyme. We strongly discourage the in vitro monitoring of osteoblast and stromal cell ALP expression when assessing bioactive coating survivorship following Ti implant retrieval form native bone tissue. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, W.P.S.L.; Mantilaka, M.M.M.G.P.G.; Chathuranga Senarathna, K.G. [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Herath, H.M.T.U. [Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Premachandra, T.N. [Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Ranasinghe, C.S.K. [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Rajapakse, R.P.V.J. [Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Rajapakse, R.M.G., E-mail: rmgr@pdn.ac.lk [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Edirisinghe, Mohan; Mahalingam, S. [Department of Mechanical Engineering, University College London, London WC1E 7JE (United Kingdom); Bandara, I.M.C.C.D. [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane 4001, QLD (Australia); Singh, Sanjleena [Central Analytical Research Facility, Institute of Future Environments, Queensland University of Technology, 2 George Street, Brisbane 4001, QLD (Australia)

    2016-06-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO{sub 2} thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. - Highlights: • Colloidal hydroxyapatite nanorods are prepared by a novel method. • Surfaces of titanium metal plates are modified by self-forming TiO{sub 2} thin-films. • Prostheses are prepared by coating hydroxyapatite on surface modified Ti metal. • Bioactivity and noncytotoxicity are increased with surface modifications.

  18. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces

    International Nuclear Information System (INIS)

    Wijesinghe, W.P.S.L.; Mantilaka, M.M.M.G.P.G.; Chathuranga Senarathna, K.G.; Herath, H.M.T.U.; Premachandra, T.N.; Ranasinghe, C.S.K.; Rajapakse, R.P.V.J.; Rajapakse, R.M.G.; Edirisinghe, Mohan; Mahalingam, S.; Bandara, I.M.C.C.D.; Singh, Sanjleena

    2016-01-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO_2 thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. - Highlights: • Colloidal hydroxyapatite nanorods are prepared by a novel method. • Surfaces of titanium metal plates are modified by self-forming TiO_2 thin-films. • Prostheses are prepared by coating hydroxyapatite on surface modified Ti metal. • Bioactivity and noncytotoxicity are increased with surface modifications.

  19. Capsular Outcomes After Pediatric Cataract Surgery Without Intraocular Lens Implantation

    Science.gov (United States)

    Tan, Xuhua; Lin, Haotian; Lin, Zhuoling; Chen, Jingjing; Tang, Xiangchen; Luo, Lixia; Chen, Weirong; Liu, Yizhi

    2016-01-01

    Abstract The objective of this study was to investigate capsular outcomes 12 months after pediatric cataract surgery without intraocular lens implantation via qualitative classification and quantitative measurement. This study is a cross-sectional study that was approved by the institutional review board of Zhongshan Ophthalmic Center of Sun Yat-sen University in Guangzhou, China. Digital coaxial retro-illumination photographs of 329 aphakic pediatric eyes were obtained 12 months after pediatric cataract surgery without intraocular lens implantation. Capsule digital coaxial retro-illumination photographs were divided as follows: anterior capsule opening area (ACOA), posterior capsule opening area (PCOA), and posterior capsule opening opacity (PCOO). Capsular outcomes were qualitatively classified into 3 types based on the PCOO: Type I—capsule with mild opacification but no invasion into the capsule opening; Type II—capsule with moderate opacification accompanied by contraction of the ACOA and invasion to the occluding part of the PCOA; and Type III—capsule with severe opacification accompanied by total occlusion of the PCOA. Software was developed to quantitatively measure the ACOA, PCOA, and PCOO using standardized DCRPs. The relationships between the accurate intraoperative anterior and posterior capsulorhexis sizes and the qualitative capsular types were statistically analyzed. The DCRPs of 315 aphakic eyes (95.8%) of 191 children were included. Capsular outcomes were classified into 3 types: Type I—120 eyes (38.1%); Type II—157 eyes (49.8%); Type III—38 eyes (12.1%). The scores of the capsular outcomes were negatively correlated with intraoperative anterior capsulorhexis size (R = −0.572, P PCOA increased in size from Type I to Type II, and the PCOO increased from Type II to Type III (all P < 0.05). Capsular outcomes after pediatric cataract surgery can be qualitatively classified and quantitatively measured by acquisition, division

  20. The effects of PRGF on bone regeneration and on titanium implant osseointegration in goats: a histologic and histomorphometric study.

    Science.gov (United States)

    Anitua, Eduardo; Orive, Gorka; Pla, Rafael; Roman, Pedro; Serrano, Victoriano; Andía, Isabel

    2009-10-01

    The effect of local application of scaffold-like preparation rich in growth factors (PRGF) on bone regeneration in artificial defects and the potential effect of humidifying titanium dental implants with liquid PRGF on their osseointegration were investigated. The PRGF formulations were obtained from venous blood of three goats and applied either as a 3D fibrin scaffold (scaffold-like PRGF) in the regeneration of artificial defects or as liquid PRGF via humidifying the implants before their insertion. Initially, 12 defects were filled with scaffold-like PRGF and another 12 were used as controls. The histological analysis at 8 weeks revealed mature bone trabeculae when PRGF was used, whereas the control samples showed mainly connective tissue with incipient signs of bone formation. For the second set of experiments, 26 implants (13 humidified with liquid PRGF) were placed in the tibiae of goats. Histological and histomorphometric results demonstrated that application of liquid PRGF increased the percentage of bone-implant contact in 84.7%. The whole surface of the PRGF-treated implants was covered by newly formed bone, whereas only the upper half was surrounded in control implants. In summary, PRGF can accelerate bone regeneration in artificial defects and improve the osseointegration of titanium dental implants.

  1. Osseoconductivity of a Specific Streptavidin-Biotin-Fibronectin Surface Coating of Biotinylated Titanium Implants - A Rabbit Animal Study.

    Science.gov (United States)

    Kämmerer, Peer W; Lehnert, Michael; Al-Nawas, Bilal; Kumar, Vinay V; Hagmann, Sebastien; Alshihri, Abdulmonem; Frerich, Bernhard; Veith, Michael

    2015-10-01

    Biofunctionalized implant surfaces may accelerate bony integration and increase long-term stability. The aim of the study was to evaluate the osseous reaction toward biomimetic titanium implants surfaces coated with quasicovalent immobilized fibronectin in an in vivo animal model. A total of 84 implants (uncoated [control 1, n = 36], streptavidin-biotin coated [test 1, n = 24], streptavidin-biotin-fibronectin coated [test 2, n = 24]) were inserted 1 mm supracortically in the proximal tibia of 12 rabbits. The samples were examined after 3 and 6 weeks. Total bone-implant contact (tBIC; %), bone-implant contact in the cortical (cBIC; %) and in the spongious bone (sBIC; %) as well as the percentage of linear bone fill (PLF; %) were evaluated. After 3 weeks, streptavidin-biotin-fibronectin implants had a significant higher sBIC (p = .043) and PLF (p = .007) compared with the uncoated samples. After 6 weeks, this difference was significant for tBIC (p = .016) and cBIC (p biotin-coated implants showed less bone growth at both time points of all examined parameters when compared with their counterparts (all p biotin-fibronectin system on smooth surface titanium shows a beneficial faster osseous healing in vivo. Besides, an antifouling effect of the streptavidin-biotin coating was proven. © 2015 Wiley Periodicals, Inc.

  2. Electrophoretic deposition of magnesium silicates on titanium implants: Ion migration and silicide interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Afshar-Mohajer, M. [Center for Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Yaghoubi, A., E-mail: yaghoubi@siswa.um.edu.my [Center for High Impact Research, University of Malaya, Kuala Lumpur 50603 (Malaysia); Ramesh, S., E-mail: ramesh79@um.edu.my [Center for Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Bushroa, A.R.; Chin, K.M.C.; Tin, C.C. [Center for Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Chiu, W.S. [Low Dimensional Materials Research Center, Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2014-07-01

    Magnesium silicates (Mg{sub x}SiO{sub y}) and in particular forsterite (Mg{sub 2}SiO{sub 4}) owing to their low thermal expansion mismatch with metals are promising materials for bioactive coating of implants. Here, we report the electrophoretic deposition (EPD) of forsterite onto titanium substrates using different precursors. Unlike bulk samples which achieve full stoichiometry only beyond 1400 °C, non-stoichiometric magnesium silicate rapidly decomposes into magnesium oxide nanowires during sintering. Elemental mapping and X-ray diffraction suggest that oxygen diffusion followed by ion exchange near the substrate leads to formation of an interfacial Ti{sub 5}Si{sub 3} layer. Pre-annealed forsterite powder on the other hand shows a comparatively lower diffusion rate. Overall, magnesium silicate coatings do not exhibit thermally induced microcracks upon sintering as opposed to calcium phosphate bioceramics which are currently in use.

  3. The Austrian breast implant register: recent trends in implant-based breast surgery.

    Science.gov (United States)

    Wurzer, Paul; Rappl, Thomas; Friedl, Herwig; Kamolz, Lars-Peter; Spendel, Stephan; Hoflehner, Helmut; Parvizi, Daryousch

    2014-12-01

    Due to the fact that the number of breast implant surgeries for cosmetic and medical purposes is rising yearly, a discussion about the quality of service for both patients and physicians is more important than ever. To this end, we reviewed the Austrian Breast Implant Register with one specific question in mind: What are the trends? In the statistical analysis of the Austrian Breast Implant Register, we were able to identify 13,112 registered breast implants between 2004 and 2012. The whole dataset was then divided into medical and cosmetic groups. We focused on device size, surface characteristics, filling material, device placement and incision site. All factors were considered for all examined years. In summary, the most used device had a textured surface (97 %) and silicone gel as the filling material (93 %). The mean size of implants for the cosmetic group was 240 cc, placement was submuscular (58 %) and the incision site was inframammary (67 %). In the medical group, the mean size was 250 cc. Yearly registrations had their peak in 2008 (1,898 registered devices); from this year on, registrations decreased annually. A slight trend away from subglandular placement in the cosmetic group was noted. Also, the usage of implants with polyurethane surface characteristics has increased since 2008. The smooth surface implants had a peak usage in 2006 and their usage decreased steadily from then on whereas the textured surface was steady over the years. Keeping the problems related to the quality of breast implants in mind, we could recommend an obligatory national register. Organisations of surgeons and governments should develop and establish these registers. Furthermore, an all-encompassing international register should be established by the European Union and the American FDA (Food and Drug Administration); this might be useful in comparing the individual country registers and also would help in delivering "evidence based" medicine in cosmetic and medical procedures

  4. Tantalum, Niobium and Titanium Coatings for Biocompatibility Improvement of Dental Implants

    Directory of Open Access Journals (Sweden)

    Vajihesadat Mortazavi

    2007-01-01

    Full Text Available Introduction: Metals have a wide range of applications in implant and prosthetic materials in dentistry.Corrosion resistance and biocompatibility of metals should be improved in order to utilizethem as biomaterials. The aim of this work was to prepare metallic coatings on 316L stainless steel dental implants, to evaluate the corrosion characteristics of the uncoated and metallic coated dentalimplants as an indication of biocompatibility and, to compare the effect of the type of the coatings on biocompatibility.Materials and Methods: In this in vitro evaluation, three types of metallic coatings including tantalum, niobium and titanium coatings were compared using a physical vapor deposition process on 316L stainless steel dental implants. Structural characterization techniques including X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis were utilized to investigatethe microstructure and morphology of the coatings. Electrochemical potentiodynamic tests were performed in two types of physiological solutions at 37±1°C in order to determine and compare the corrosioncurrent density and corrosion potential characteristics. The mean values were statistically compared by ANOVA at a 95% level of confidence.Results: the findings showed that all of the three types of metallic coatings had a positive effect on improvement of the corrosion behavior. The coatings could increase the corrosion resistance of 316L stainless steel and this trend was independent of the type of physiological environment.Conclusion: The biocompatible metallic coatings could decrease the corrosion current density and is a distinct advantage for prevention of ion release. Decreasing ion release can improve the biocompatibility of the dental implant, and consequently can prevent tissue damage, tissue inflammation and irritation, and can also lead to obtaining a desirable histopathological response.

  5. CNC-milled titanium frameworks supported by implants in the edentulous jaw: a 10-year comparative clinical study.

    Science.gov (United States)

    Örtorp, Anders; Jemt, Torsten

    2012-03-01

    No long-term clinical studies covering more than 5 years are available on Computer Numeric Controlled (CNC) milled titanium frameworks. To evaluate and compare the clinical and radiographic performance of implant-supported prostheses provided with CNC titanium frameworks in the edentulous jaw with prostheses with cast gold-alloy frameworks during the first 10 years of function. Altogether, 126 edentulous patients were by random provided with 67 prostheses with titanium frameworks (test) in 23 maxillas and 44 mandibles, and with 62 prostheses with gold-alloy castings (control) in 31 maxillas and 31 mandibles. Clinical and radiographic 10-year data were collected for the groups and statistically compared on patient level. The 10-year prosthesis and implant cumulative survival rate was 95.6% compared with 98.3%, and 95.0% compared with 97.9% for test and control groups, respectively (p > .05). No implants were lost after 5 years of follow-up. Smokers lost more implants than nonsmokers after 5 years of follow-up (p .05), respectively. One prosthesis was lost in each group due to loss of implants, and one prosthesis failed due to framework fracture in the test group. Two metal fractures were registered in each group. More appointments of maintenance were needed for the prostheses in the maxilla compared with those in the mandible (p CNC-milled titanium frameworks are a viable alternative to gold-alloy castings for restoring patients with implant-supported prostheses in the edentulous jaw. © 2009 Wiley Periodicals, Inc.

  6. A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Zhou-Shan [Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027 (China); Zhou, Wan-Shu [Endocrine & Metabolic Diseases Unit, Affiliated Hospital of Guizhou Medical University, Guizhou 550001 (China); He, Xing-Wen [Department of Orthopaedic Surgery, Hangzhou Bay Hospital of Ningbo, 315000 (China); Liu, Wei [Department of Orthopaedic Surgery, Jingmen No. 1 People' s Hospital, Jingmen 44800, Hubei (China); Bai, Bing-Li; Zhou, Qiang; Huang, Zheng-Liang; Tu, Kai-kai; Li, Hang; Sun, Tao [Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027 (China); Lv, Yang-Xun [Department of Orthopaedic Surgery, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000 (China); Cui, Wei [Sichuan Provincial Orthopedics Hospital, No. 132 West First Section First Ring Road, Chengdu, Sichuan 610000 (China); Yang, Lei, E-mail: tzs19900327@163.com [Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027 (China)

    2016-05-01

    Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for the implants in cementless arthroplasty. However, its effect is not sufficient for osteoporotic bone. Zinc (Zn), magnesium (Mg), and strontium (Sr) present a beneficial effect on bone growth, and positively affect bone regeneration. The aim of this study was to confirm the different effects of the fixation strength of Zn, Mg, Sr-substituted hydroxyapatite-coated (Zn-HA-coated, Mg-HA-coated, Sr-HA-coated) titanium implants via electrochemical deposition in the osteoporotic condition. Female Sprague–Dawley rats were used for this study. Twelve weeks after bilateral ovariectomy, all animals were randomly divided into four groups: group HA; group Zn-HA; group Mg-HA and group Sr-HA. Afterwards, all rats from groups HA, Zn-HA, Mg-HA and Sr-HA received implants with hydroxyapatite containing 0%, 10% Zn ions, 10% Mg ions, and 10% Sr ions. Implants were inserted bilaterally in all animals until death at 12 weeks. The bilateral femurs of rats were harvested for evaluation. All treatment groups increased new bone formation around the surface of titanium rods and push-out force; group Sr-HA showed the strongest effects on new bone formation and biomechanical strength. Additionally, there are significant differences in bone formation and push-out force was observed between groups Zn-HA and Mg-HA. This finding suggests that Zn, Mg, Sr-substituted hydroxyapatite coatings can improve implant osseointegration, and the 10% Sr coating exhibited the best properties for implant osseointegration among the tested coatings in osteoporosis rats. - Highlights: • Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for the implants in cementless arthroplasty. • However, its effect is not sufficient for osteoporotic bone. Zinc (Zn), Magnesium(Mg), Strontium (Sr) present a benificial effect on bone

  7. Oxygen-implanted induced formation of oxide layer enhances blood compatibility on titanium for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Wei-Chiang [School of Oral Hygiene, Taipei Medical University, Taipei 110, Taiwan (China); Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan (China); Chang, Fang-Mo [School of Dentistry, Taipei Medical University, Taipei 110, Taiwan (China); Yang, Tzu-Sen [Master Program in Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110, Taiwan (China); Ou, Keng-Liang [School of Dentistry, Taipei Medical University, Taipei 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan (China); Department of Dentistry, Taipei Medical University-Shuang-Ho Hospital, Taipei 235, Taiwan (China); Lin, Che-Tong [School of Dentistry, Taipei Medical University, Taipei 110, Taiwan (China); Peng, Pei-Wen, E-mail: apon@tmu.edu.tw [School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan (China)

    2016-11-01

    Titanium dioxide (TiO{sub 2}) layers were prepared on a Ti substrate by using oxygen plasma immersion ion implantation (oxygen PIII). The surface chemical states, structure, and morphology of the layers were studied using X-ray photoelectron spectroscopy, X-ray diffraction, Raman microscopy, atomic force microscopy and scanning electron microscope. The mechanical properties, such as the Young's modulus and hardness, of the layers were investigated using nanoindentation testing. The Ti{sup 4+} chemical state was determined to be present on oxygen-PIII-treated surfaces, which consisted of nanocrystalline TiO{sub 2} with a rutile structure. Compared with Ti substrates, the oxygen-PIII-treated surfaces exhibited decreased Young's moduli and hardness. Parameters indicating the blood compatibility of the oxygen-PIII-treated surfaces, including the clotting time and platelet adhesion and activation, were studied in vitro. Clotting time assays indicated that the clotting time of oxygen-PIII-treated surfaces was longer than that of the Ti substrate, which was associated with decreased fibrinogen adsorption. In conclusion, the surface characteristics and the blood compatibility of Ti implants can be modified and improved using oxygen PIII. - Highlights: • The Ti{sup 4+} chemical state was determined to be present on oxygen-PIII-treated surfaces. • The nanocrystalline TiO{sub 2} with a rutile structure was formed on titanium surfaces. • A nanoporous TiO{sub 2} layer in the rutile phase prepared using oxygen PIII treatment can be used to prolong blood clot formation.

  8. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants.

    Science.gov (United States)

    Han, Changjun; Li, Yan; Wang, Qian; Wen, Shifeng; Wei, Qingsong; Yan, Chunze; Hao, Liang; Liu, Jie; Shi, Yusheng

    2018-04-01

    A significant requirement for a bone implant is to replicate the functional gradient across the bone to mimic the localization change in stiffness. In this work, continuous functionally graded porous scaffolds (FGPSs) based on the Schwartz diamond unit cell with a wide range of graded volume fraction were manufactured by selective laser melting (SLM). The micro-topology, strut dimension characterization and effect of graded volume fraction on the mechanical properties of SLM-processed FGPSs were systematically investigated. The micro-topology observations indicate that diamond FGPSs with a wide range of graded volume fraction from 7.97% to 19.99% were fabricated without any defects, showing a good geometric reproduction of the original designs. The dimensional characterization demonstrates the capability of SLM in manufacturing titanium diamond FGPSs with the strut size of 483-905µm. The elastic modulus and yield strength of the titanium diamond FGPSs can be tailored in the range of 0.28-0.59GPa and 3.79-17.75MPa respectively by adjusting the graded volume fraction, which are comparable to those of the cancellous bone. The mathematical relationship between the graded porosity and compression properties of a FGPS was revealed. Furthermore, two equations based on the Gibson and Ashby model have been established to predict the modulus and yield strength of SLM-processed diamond FGPSs. Compared to homogeneous diamond porous scaffolds, FGPSs provide a wide range of mutative pore size and porosity, which are potential to be tailored to optimize the pore space for bone tissue growth. The findings provide a basis of new methodologies to design and manufacture superior graded scaffolds for bone implant applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Non-destructive study of the ion-implantation-affected zone (the long-range effect) in titanium nitride

    International Nuclear Information System (INIS)

    Perry, A.J.; Treglio, J.R.; Schaffer, J.P.; Brunner, J.; Valvoda, V.; Rafaja, D.

    1994-01-01

    The depth to which metal ion implantation can change the structure of titanium nitride coatings is studied using two techniques - positron annihilation spectroscopy (PAS) and glancing-angle X-ray diffraction (GA-XRD) -which are normally applied to the study of bulk materials. The PAS results indicate that the depth to which vacancies are found greatly exceeds the depth at which the implanted material resides. In addition, the concentration of vacancies continues to increase with the dose of implanted ions. The GA-XRD data show that the implantation does not change the residual stress - it remains slightly tensile. Furthermore, there is an increase in the diffraction peak broadening, which is attributed to an increase in the local strain distribution resulting from the generation of a dislocation network at depths of up to several tenths of a micrometer below the implanted zone. The data support the view of a long-range effect, where metal ion implantation causes lattice defect generation within an implantation-affected zone (IAZ) to depths well beyond the implanted zone. The defective nature of the IAZ depends on the implanted dose and the acceleration voltage, as well as on the nature of the ions implanted. In the present work, there is no residual stress in the samples, so this cannot induce the IAZ. ((orig.))

  10. Bone reactions adjacent to titanium implants subjected to static load of different duration. A study in the dog (III)

    DEFF Research Database (Denmark)

    Gotfredsen, K; Berglundh, T; Lindhe, J

    2001-01-01

    The aim of the present experiment was to study the effect of a long-standing lateral static load on the peri-implant bone. Three beagle dogs were used. The mandibular premolars were extracted and 12 weeks later 3 titanium implants (ITI(R) Dental Implant System) were installed in each quadrant....... Crowns were fitted to all implants 12 weeks after the installation procedure. The anterior and central crowns were fused and connected to the posterior crown by an expansion screw. In the right side of the mandible, the expansion screws were activated every 2 weeks during a 46-week period. During...... the last 10 weeks of this period, an expansion force similar to that of the right side was applied in the left. The animals were sacrificed and block biopsies of each implant site harvested and prepared for histological analysis. Sites subjected to 10 weeks or 46 weeks of lateral load had a similar (i...

  11. Patients' perceptions of implant placement surgery, the post-surgical healing and the transitional implant prostheses: a qualitative study.

    Science.gov (United States)

    Kashbour, Wafa A; Rousseau, Nikki; Thomason, J Mark; Ellis, Janice S

    2017-07-01

    This study aimed to explore patients' thoughts, feelings about, and experiences of, implant placement surgery (IPS), the post-surgical healing stage and the immediate post-surgical transitional implant prosthesis (TIP) (fixed and removable). A qualitative study design was chosen and 38 semi-structured telephone and face-to-face interviews were conducted with 34 patients at different stages of implant treatment. The interviews were transcribed verbatim; the data collection and coding process followed the principles of thematic analysis, which was facilitated through the use of NVivo10. Patients anticipated that surgery would be painful and unpleasant but were prepared to accept this temporary discomfort for the expected benefits of implant treatment. However, a key finding was that patients felt they had overestimated the trauma of surgery but underestimated the discomfort and difficulties of the healing phase. A number of difficulties were also identified with the TIP phase following implant surgery. Existing research has tended to focus on the longer term benefits of dental implant treatment. This qualitative study has investigated in-depth patients' perceptions of dental implant surgery, including their experiences related to sedation, and of transitional implant restoration. While patients felt their concerns were overestimated in relation to the implant surgery, they experienced greater morbidity than they expected in the healing phase. Recommendations are made for relatively small changes in care provision which might improve the overall patient experience. Partial dentate patients treated with a fixed transitional prosthesis experienced advantages more quickly than patients with an overdenture. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. 10-year survival rate and the incidence of peri-implant disease of 374 titanium dental implants with a SLA surface: a prospective cohort study in 177 fully and partially edentulous patients

    NARCIS (Netherlands)

    van Velzen, F.J.J.; Ofec, R.; Schulten, E.A.J.M.; ten Bruggenkate, C.M.

    2015-01-01

    Purpose This prospective cohort study evaluates the 10-year survival and incidence of peri-implant disease at implant and patient level of sandblasted, large grid, and acid-etched titanium dental implants (Straumann, soft tissue level, SLA surface) in fully and partially edentulous patients.

  13. Laser-Modified Surface Enhances Osseointegration and Biomechanical Anchorage of Commercially Pure Titanium Implants for Bone-Anchored Hearing Systems

    Science.gov (United States)

    Omar, Omar; Simonsson, Hanna; Palmquist, Anders; Thomsen, Peter

    2016-01-01

    Osseointegrated implants inserted in the temporal bone are a vital component of bone-anchored hearing systems (BAHS). Despite low implant failure levels, early loading protocols and simplified procedures necessitate the application of implants which promote bone formation, bone bonding and biomechanical stability. Here, screw-shaped, commercially pure titanium implants were selectively laser ablated within the thread valley using an Nd:YAG laser to produce a microtopography with a superimposed nanotexture and a thickened surface oxide layer. State-of-the-art machined implants served as controls. After eight weeks’ implantation in rabbit tibiae, resonance frequency analysis (RFA) values increased from insertion to retrieval for both implant types, while removal torque (RTQ) measurements showed 153% higher biomechanical anchorage of the laser-modified implants. Comparably high bone area (BA) and bone-implant contact (BIC) were recorded for both implant types but with distinctly different failure patterns following biomechanical testing. Fracture lines appeared within the bone ~30–50 μm from the laser-modified surface, while separation occurred at the bone-implant interface for the machined surface. Strong correlations were found between RTQ and BIC and between RFA at retrieval and BA. In the endosteal threads, where all the bone had formed de novo, the extracellular matrix composition, the mineralised bone area and osteocyte densities were comparable for the two types of implant. Using resin cast etching, osteocyte canaliculi were observed directly approaching the laser-modified implant surface. Transmission electron microscopy showed canaliculi in close proximity to the laser-modified surface, in addition to a highly ordered arrangement of collagen fibrils aligned parallel to the implant surface contour. It is concluded that the physico-chemical surface properties of laser-modified surfaces (thicker oxide, micro- and nanoscale texture) promote bone bonding

  14. Titanium and aluminium ions implanted by plasma on polyethylene; lones de titanio y aluminio implantados por plasma sobre polietileno

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, G.J.; Olayo, M.G.; Lopez, R.; Granda, E.; Munoz, A.; Valencia, R. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico); Morales, J. [UAM-I, Apdo. Postal 5534, Iztapalapa, D.F. (Mexico)]. e-mail: gcc@nuclear.inin.mx

    2007-07-01

    The ion implantation by plasma of titanium and aluminum on polyethylene thin films (PE) is presented. The results indicate that the polymers reacted firstly with the oxygen and/or nitrogen carrying gases, and later its received the metallic particles that formed thin films. The stainless steel and the titanium formed a single phase. The metallic layers grew in the interval of 1 to 2 nm/min, its are thin, but enough to change the hardness of the polymer that it is increased in more of 20 times. (Author)

  15. Intraoperative implant rod three-dimensional geometry measured by dual camera system during scoliosis surgery.

    Science.gov (United States)

    Salmingo, Remel Alingalan; Tadano, Shigeru; Abe, Yuichiro; Ito, Manabu

    2016-05-12

    Treatment for severe scoliosis is usually attained when the scoliotic spine is deformed and fixed by implant rods. Investigation of the intraoperative changes of implant rod shape in three-dimensions is necessary to understand the biomechanics of scoliosis correction, establish consensus of the treatment, and achieve the optimal outcome. The objective of this study was to measure the intraoperative three-dimensional geometry and deformation of implant rod during scoliosis corrective surgery.A pair of images was obtained intraoperatively by the dual camera system before rotation and after rotation of rods during scoliosis surgery. The three-dimensional implant rod geometry before implantation was measured directly by the surgeon and after surgery using a CT scanner. The images of rods were reconstructed in three-dimensions using quintic polynomial functions. The implant rod deformation was evaluated using the angle between the two three-dimensional tangent vectors measured at the ends of the implant rod.The implant rods at the concave side were significantly deformed during surgery. The highest rod deformation was found after the rotation of rods. The implant curvature regained after the surgical treatment.Careful intraoperative rod maneuver is important to achieve a safe clinical outcome because the intraoperative forces could be higher than the postoperative forces. Continuous scoliosis correction was observed as indicated by the regain of the implant rod curvature after surgery.

  16. In vitro dermal and epidermal cellular response to titanium alloy implants fabricated with electron beam melting.

    Science.gov (United States)

    Springer, Jessica Collins; Harrysson, Ola L A; Marcellin-Little, Denis J; Bernacki, Susan H

    2014-10-01

    Transdermal osseointegrated prostheses (TOPs) are emerging as an alternative to socket prostheses. Electron beam melting (EBM) is a promising additive manufacturing technology for manufacture of custom, freeform titanium alloy (Ti6Al4V) implants. Skin ongrowth for infection resistance and mechanical stability are critically important to the success of TOP, which can be influenced by material composition and surface characteristics. We assessed viability and proliferation of normal human epidermal keratinocytes (NHEK) and normal human dermal fibroblasts (NHDF) on several Ti6Al4V surfaces: solid polished commercial, solid polished EBM, solid unpolished EBM and porous unpolished EBM. Cell proliferation was evaluated at days 2 and 7 using alamarBlue(®) and cell viability was analyzed with a fluorescence-based live-dead assay after 1 week. NHDF and NHEK were viable and proliferated on all Ti6Al4V surfaces. NHDF proliferation was highest on commercial and EBM polished surfaces. NHEK was highest on commercial polished surfaces. All EBM Ti6Al4V discs exhibited an acceptable biocompatibility profile compared to solid Ti6Al4V discs from a commercial source for dermal and epidermal cells. EBM may be considered as an option for fabrication of custom transdermal implants. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Electrochemical assessment of some titanium and stainless steel implant dental alloys

    Directory of Open Access Journals (Sweden)

    Echevarría, A.

    2003-12-01

    Full Text Available Commercially pure titanium alloy, Ti-6Al-4V alloy and stainless steel screw implants were evaluated in both Ringer and synthetic saliva physiological solutions at body temperature by EIS (Electrochemical Impedance Spectroscopy with immersion times of 30 d. Results were simulated as a "sandwich system" composed by four capacitors-resistances connected in series with the solution resistance. A model explaining the results in terms of the porosity and thickness of four different layers, was proposed.

    Se utilizó la técnica de la Espectroscopia de Impedancia Electroquímica para evaluar en soluciones fisiológicas artificiales (Ringer y saliva sintética muestras extraídas de tornillos de implantes dentales certificados de titanio comercialmente puro, aleación Ti-6Al-W y acero inoxidable a temperatura corporal, con tiempos de inmersión hasta de 30 d. Los resultados se simularon mediante un modelo del tipo sandwich de cuatro elementos RC, conectados en serie con una resistencia de la solución. A partir de de esta simulación, se propone un modelo que explica los resultados obtenidos en términos de la evolución de la porosidad y el espesor de cuatro diferentes capas que se desarrollan en la superficie de los materiales evaluados.

  18. An integrated approach of topology optimized design and selective laser melting process for titanium implants materials.

    Science.gov (United States)

    Xiao, Dongming; Yang, Yongqiang; Su, Xubin; Wang, Di; Sun, Jianfeng

    2013-01-01

    The load-bearing bone implants materials should have sufficient stiffness and large porosity, which are interacted since larger porosity causes lower mechanical properties. This paper is to seek the maximum stiffness architecture with the constraint of specific volume fraction by topology optimization approach, that is, maximum porosity can be achieved with predefine stiffness properties. The effective elastic modulus of conventional cubic and topology optimized scaffolds were calculated using finite element analysis (FEA) method; also, some specimens with different porosities of 41.1%, 50.3%, 60.2% and 70.7% respectively were fabricated by Selective Laser Melting (SLM) process and were tested by compression test. Results showed that the computational effective elastic modulus of optimized scaffolds was approximately 13% higher than cubic scaffolds, the experimental stiffness values were reduced by 76% than the computational ones. The combination of topology optimization approach and SLM process would be available for development of titanium implants materials in consideration of both porosity and mechanical stiffness.

  19. Early Healing Events around Titanium Implant Devices with Different Surface Microtopography: A Pilot Study in an In Vivo Rabbit Model

    Directory of Open Access Journals (Sweden)

    Ester Orsini

    2012-01-01

    Full Text Available In the present pilot study, the authors morphologically investigated sandblasted, acid-etched surfaces (SLA at very early experimental times. The tested devices were titanium plate-like implants with flattened wide lateral sides and jagged narrow sides. Because of these implant shape and placement site, the device gained a firm mechanical stability but the largest portion of the implant surface lacked direct contact with host bone and faced a wide peri-implant space rich in marrow tissue, intentionally created in order to study the interfacial interaction between metal surface and biological microenvironment. The insertion of titanium devices into the proximal tibia elicited a sequence of healing events. Newly formed bone proceeded through an early distance osteogenesis, common to both surfaces, and a delayed contact osteogenesis which seemed to follow different patterns at the two surfaces. In fact, SLA devices showed a more osteoconductive behavior retaining a less dense blood clot, which might be earlier and more easily replaced, and leading to a surface-conditioning layer which promotes osteogenic cell differentiation and appositional new bone deposition at the titanium surface. This model system is expected to provide a starting point for further investigations which clarify the early cellular and biomolecular events occurring at the metal surface.

  20. Systemic Assessment of Patients Undergoing Dental Implant Surgeries: A Trans- and Post-operative Analysis.

    Science.gov (United States)

    Byakodi, Sanjay; Kumar, Sachin; Reddy, Rajesh Kumar; Kumar, Vipin; Sepolia, Shipra; Gupta, Shivangi; Singh, Harkanwal Preet

    2017-01-01

    Procedure-related and patient-related factors influence the prognosis of dental implants to a major extent. Hence, we aimed to evaluate and analyze various systemic factors in patients receiving dental implants. Fifty-one patients were included in the study, in which a total of 110 dental implants were placed. Complete examination of the subjects was done before and after placement of dental implants. Implant surgery was planned, and osseointegrated dental implants were placed in the subjects. Postoperative evaluation of the dental implant patients was done after 3 weeks. Anxiety levels were determined using State-Trait Anxiety Inventory (STAI) questionnaire on the surgery day and after 1 week of surgery. The participant describes how they feel at the moment by responding to twenty items as follows: (1) absolutely not, (2) slightly, (3) somewhat, or (4) very much. All the results were recorded and statistical analyzed by SPSS software. Out of 51, 29 patients were males while 22 were females, with ratio of 1.32:1. Female patients' mean age was 50.18 years while male patients' mean age was 52.71 years, with statistically nonsignificant difference between them. Functional rehabilitation was the main purpose of choosing dental implants in more than 90% of the subjects. Diameter of 3.75 mm was the shortest implants to be placed in the present study, whereas in terms of length, 8.5 mm was the shortest length of dental implant used in the present study. Tooth area in which maximum implants were placed in our study was 36 tooth region. Maximum implants were placed in Type II bone quality ( n = 38). Implants installed in the mandible were clamped more efficiently than implants placed in the maxilla ( P < 0.001). The difference of average STAI-State subscore before and after the surgery was statistically significant ( P < 0.05; significant). Mandibular dental implants show more clamping (torque) than maxillary dental implants.

  1. Hybrid micro/nanostructural surface offering improved stress distribution and enhanced osseointegration properties of the biomedical titanium implant.

    Science.gov (United States)

    Hou, Ping-Jen; Ou, Keng-Liang; Wang, Chin-Chieh; Huang, Chiung-Fang; Ruslin, Muhammad; Sugiatno, Erwan; Yang, Tzu-Sen; Chou, Hsin-Hua

    2018-03-01

    The aim of the present study was to investigate the surface characteristic, biomechanical behavior, hemocompatibility, bone tissue response and osseointegration of the optimal micro-arc oxidation surface-treated titanium (MST-Ti) dental implant. The surface characteristic, biomechanical behavior and hemocompatibility of the MST-Ti dental implant were performed using scanning electron microscope, finite element method, blood dripping and immersion tests. The mini-pig model was utilized to evaluate the bone tissue response and osseointegration of the MST-Ti dental implant in vivo. Data were analyzed by analysis of variance using the Student's t-test (P ≤ 0.05). The hybrid volcano-like micro/nanoporous structure was formed on the surface of the MST-Ti dental implant. The hybrid volcano-like micro/nanoporous surface played an important role to improve the stress transfer between fixture, cortical bone and cancellous bone for the MST-Ti dental implant. Moreover, the MST-Ti implant was considered to have the outstanding hemocompatibility. In vivo testing results showed that the bone-to-implant contact (BIC) ratio significantly altered as the implant with micro/nanoporous surface. After 12 weeks of implantation, the MST-Ti dental implant group exhibited significantly higher BIC ratio than the untreated dental implant group. In addition, the MST-Ti dental implant group also presented an enhancing osseointegration, particularly in the early stages of bone healing. It can be concluded that the micro-arc oxidation approach induced the formation of micro/nanoporous surface is a promising and reliable alternative surface modification for Ti dental implant applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Stability of prototype two-piece zirconia and titanium implants after artificial aging: an in vitro pilot study.

    Science.gov (United States)

    Kohal, Ralf-Joachim; Finke, Hans Christian; Klaus, Gerold

    2009-12-01

    Zirconia oral implants are a new topic in implant dentistry. So far, no data are available on the biomechanical behavior of two-piece zirconia implants. Therefore, the purpose of this pilot investigation was to test in vitro the fracture strength of two-piece cylindrical zirconia implants after aging in a chewing simulator. This laboratory in vitro investigation comprised three different treatment groups. Each group consisted of 16 specimens. In group 1, two-piece zirconia implants were restored with zirconia crowns (zirconia copings veneered with Triceram; Esprident, Ispringen, Germany), and in group 2 zirconia implants received Empress 2 single crowns (Ivoclar Vivadent AG, Schaan, Liechtenstein). The implants, including the abutments, in the two zirconia groups were identical. In group 3, similar titanium implants were reconstructed with porcelain-fused-to-metal crowns. Eight samples of each group were submitted to artificial aging with a long-term load test in the artificial mouth (chewing simulator). Subsequently, all not artificially aged samples and all artificially aged samples that survived the long-term loading of each group were submitted to a fracture strength test in a universal testing machine. For the pairwise comparisons in the different test groups with or without artificial loading and between the different groups at a given artificial loading condition, the Wilcoxon rank-sum test for independent samples was used. The significance level was set at 5%. One sample of group 1 (veneer fracture), none of group 2, and six samples of group 3 (implant abutment screw fractures) failed while exposed to the artificial mouth. The values for the fracture strength after artificial loading with 1.2 million cycles for group 1 were between 45 and 377 N (mean: 275.7 N), in group 2 between 240 and 314 N (mean: 280.7 N), and in the titanium group between 45 and 582 N (mean: 165.7 N). The fracture strength results without artificial load for group 1 amounted to between

  3. In Vitro and In Vivo Osteogenic Activity of Titanium Implants Coated by Pulsed Laser Deposition with a Thin Film of Fluoridated Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Luyuan Chen

    2018-04-01

    Full Text Available To enhance biocompatibility, osteogenesis, and osseointegration, we coated titanium implants, by krypton fluoride (KrF pulsed laser deposition, with a thin film of fluoridated hydroxyapatite (FHA. Coating was confirmed by scanning electron microscopy (SEM and scanning probe microscopy (SPM, while physicochemical properties were evaluated by attenuated reflectance Fourier transform infrared spectroscopy (ATR-FTIR. Calcium deposition, osteocalcin production, and expression of osteoblast genes were significantly higher in rat bone marrow mesenchymal stem cells seeded on FHA-coated titanium than in cells seeded on uncoated titanium. Implantation into rat femurs also showed that the FHA-coated material had superior osteoinductive and osseointegration activity in comparison with that of traditional implants, as assessed by microcomputed tomography and histology. Thus, titanium coated with FHA holds promise as a dental implant material.

  4. Immobilization of calcium and phosphate ions improves the osteoconductivity of titanium implants

    International Nuclear Information System (INIS)

    Sunarso; Toita, Riki; Tsuru, Kanji; Ishikawa, Kunio

    2016-01-01

    In this work, to elevate weak osteoconductivity of titanium (Ti) implant, we prepared a Ti implant having both calcium and phosphate ions on its surface. To modify calcium and phosphate ions onto Ti, phosphate ions were first immobilized by treating the Ti with a NaH 2 PO 4 solution, followed by CaCl 2 treatment to immobilize calcium ions, which created the calcium and phosphate ions-modified Ti (Ca-P-Ti). X-ray photoelectron spectroscopy and thin-layer X-ray diffraction measurement confirmed that both phosphate and calcium ions were co-immobilized onto the Ti surface on the molecular level. Three-hour after seeding MC3T3-E1 murine pre-osteoblast cells on substrates, cell number on Ca-P-Ti was much larger than that of Ti and phosphate-modified Ti (P-Ti), but was similar to that of calcium-modified Ti (Ca-Ti). Also, MC3T3-E1 cells on Ca-P-Ti expressed larger amount of vinculin, a focal adhesion protein, than those on other substrates, probably resulting in larger cell size as well as greater cell proliferation on Ca-P-Ti than those on other substrates. Alkaline phosphatase activity of cells on Ca-P-Ti was greater than those on Ti and P-Ti, but was almost comparable to that of Ca-Ti. Moreover, the largest amount of bone-like nodule formation was observed on Ca-P-Ti. These results provide evidence that calcium and phosphate ions-co-immobilization onto Ti increased the osteoconductivity of Ti by stimulating the responses of pre-osteoblast cells. This simple modification would be promising technique for bone tissue implant including dental and orthopedic implants. - Highlights: • Phosphate and calcium ions have been successfully co-immobilize on Ti surface. • Co-immobilization of Ca and phosphate ions (Ca-P-Ti) did not alter the original surface morphology. • Ca-P-Ti significantly improved initial MC3T3-E1 cell adhesion. • Ca-P-Ti demonstrated remarkable cell proliferation, differentiation and mineralization. • Overall, Ca-P-Ti would be a promising bone

  5. Comparison of fit accuracy and torque maintenance of zirconia and titanium abutments for internal tri-channel and external-hex implant connections

    OpenAIRE

    Siadat, Hakimeh; Beyabanaki, Elaheh; Mousavi, Niloufar; Alikhasi, Marzieh

    2017-01-01

    PURPOSE This in vitro study aimed to evaluate the effect of implant connection design (external vs. internal) on the fit discrepancy and torque loss of zirconia and titanium abutments. MATERIALS AND METHODS Two regular platform dental implants, one with external connection (Br?nemark, Nobel Biocare AB) and the other with internal connection (Noble Replace, Nobel Biocare AB), were selected. Seven titanium and seven customized zirconia abutments were used for each connection design. Measurement...

  6. The Effect of Hierarchical Micro/Nanotextured Titanium Implants on Osseointegration Immediately After Tooth Extraction in Beagle Dogs.

    Science.gov (United States)

    Fu, Qian; Bellare, Anuj; Cui, Yajun; Cheng, Bingkun; Xu, Shanshan; Kong, Liang

    2017-06-01

    Owing to simplify the operation and shorten the overall duration of treatment, immediate implantation earned much satisfactory from patients and dentists. The results of immediate implantation determined by osseointegration, we fabricated a micro/nanotextured titanium implants to improve osseointegration immediately after tooth extraction. The aim of this study was to investigate the effect of hierarchical micro/nanotextured titanium implant on osseointegration immediately after tooth extraction. The micro/nanotextured titanium implants were fabricated by etching with 0.5 wt% hydrofluoric (HF) acid followed by anodization in HF electrolytes. Implants with a machined surface as well as implants a microtextured surface prepared by 0.5 wt% HF etching served as control groups. The machined, microtextured, and micro/nanotextured implants were inserted into fresh sockets immediately after tooth extraction in beagle dogs. Twelve weeks after implantation, the animals were sacrificed for micro-CT scanning, histological analysis and biomechanical test. The micro-CT imaging revealed that the bone volume/total volume (BV/TV) and trabecular thickness (Tb.Th) in the micro/nanotextured group was significantly higher than that in the machined group and microtextured group, and the trabecular separation (Tb.Sp) in the micro/nanotextured group was significantly lower than that in the other groups. For the histological analysis, the bone-to-implant contact in the machined, micro and micro/nanotextured groups were 47.13 ± 6.2%, 54.29 ± 4.18%, and 63.38 ± 7.63%, respectively, and the differences significant. The maximum pull-out force in the machined, micro, and micro/nanotextured groups were 216.58 ± 38.71 N, 259.42 ± 28.93 N, and 284.73 ± 47.09 N, respectively. The results indicated that implants with a hierarchical micro/nanotextured can promote osseointegration immediately after tooth extraction. © 2016 Wiley Periodicals, Inc.

  7. 3D Printing/Additive Manufacturing Single Titanium Dental Implants: A Prospective Multicenter Study with 3 Years of Follow-Up.

    Science.gov (United States)

    Tunchel, Samy; Blay, Alberto; Kolerman, Roni; Mijiritsky, Eitan; Shibli, Jamil Awad

    2016-01-01

    This prospective 3-year follow-up clinical study evaluated the survival and success rates of 3DP/AM titanium dental implants to support single implant-supported restorations. After 3 years of loading, clinical, radiographic, and prosthetic parameters were assessed; the implant survival and the implant-crown success were evaluated. Eighty-two patients (44 males, 38 females; age range 26-67 years) were enrolled in the present study. A total of 110 3DP/AM titanium dental implants (65 maxilla, 45 mandible) were installed: 75 in healed alveolar ridges and 35 in postextraction sockets. The prosthetic restorations included 110 single crowns (SCs). After 3 years of loading, six implants failed, for an overall implant survival rate of 94.5%; among the 104 surviving implant-supported restorations, 6 showed complications and were therefore considered unsuccessful, for an implant-crown success of 94.3%. The mean distance between the implant shoulder and the first visible bone-implant contact was 0.75 mm (±0.32) and 0.89 (±0.45) after 1 and 3 years of loading, respectively. 3DP/AM titanium dental implants seem to represent a successful clinical option for the rehabilitation of single-tooth gaps in both jaws, at least until 3-year period. Further, long-term clinical studies are needed to confirm the present results.

  8. 3D Printing/Additive Manufacturing Single Titanium Dental Implants: A Prospective Multicenter Study with 3 Years of Follow-Up

    Directory of Open Access Journals (Sweden)

    Samy Tunchel

    2016-01-01

    Full Text Available This prospective 3-year follow-up clinical study evaluated the survival and success rates of 3DP/AM titanium dental implants to support single implant-supported restorations. After 3 years of loading, clinical, radiographic, and prosthetic parameters were assessed; the implant survival and the implant-crown success were evaluated. Eighty-two patients (44 males, 38 females; age range 26–67 years were enrolled in the present study. A total of 110 3DP/AM titanium dental implants (65 maxilla, 45 mandible were installed: 75 in healed alveolar ridges and 35 in postextraction sockets. The prosthetic restorations included 110 single crowns (SCs. After 3 years of loading, six implants failed, for an overall implant survival rate of 94.5%; among the 104 surviving implant-supported restorations, 6 showed complications and were therefore considered unsuccessful, for an implant-crown success of 94.3%. The mean distance between the implant shoulder and the first visible bone-implant contact was 0.75 mm (±0.32 and 0.89 (±0.45 after 1 and 3 years of loading, respectively. 3DP/AM titanium dental implants seem to represent a successful clinical option for the rehabilitation of single-tooth gaps in both jaws, at least until 3-year period. Further, long-term clinical studies are needed to confirm the present results.

  9. Preservation of auditory brainstem response thresholds after cochleostomy and titanium microactuator implantation in the lateral wall of cat scala tympani.

    Science.gov (United States)

    Lesinski, S George; Prewitt, Jessica; Bray, Victor; Aravamudhan, Radhika; Bermeo Blanco, Oscar A; Farmer-Fedor, Brenda L; Ward, Jonette A

    2014-04-01

    The safety of implanting a titanium microactuator into the lateral wall of cat scala tympani was assessed by comparing preoperative and postoperative auditory brainstem response (ABR) thresholds for 1 to 3 months. The safety of directly stimulating cochlear perilymph with an implantable hearing system requires maintaining preoperative hearing levels. This cat study is an essential step in the development of the next generation of fully implantable hearing devices for humans. Following GLP surgical standards, a 1-mm cochleostomy was drilled into the lateral wall of the scala tympani, and a nonfunctioning titanium anchor/microactuator assembly was inserted in 8 cats. The scala media was damaged in the 1 cat. ABR thresholds with click and 4- and 8-kHz stimuli were measured preoperatively and compared with postoperative thresholds at 1, 2, and 3 months. Nonimplanted ear thresholds were also measured to establish statistical significance for threshold shifts (>28.4 dB). Two audiologists independently interpreted thresholds. Postoperatively, 7 cats implanted in the scala tympani demonstrated no significant ABR threshold shift for click stimulus; one shifted ABR thresholds to 4- and 8-kHz stimuli. The eighth cat, with surgical damage to the scala media, maintained stable click threshold but had a significant shift to 4- and 8-kHz stimuli. This cat study provides no evidence of worsening hearing thresholds after fenestration of the scala tympani and insertion of a titanium anchor/microactuator, provided there is no surgical trauma to the scala media and the implanted device is securely anchored in the cochleostomy. These 2 issues have been resolved in the development of a fully implantable hearing system for humans. The long-term hearing stability (combined with histologic studies) reaffirm that the microactuator is well tolerated by the cat cochlea.

  10. Clinical experiences of implant-supported prostheses with laser-welded titanium frameworks in the partially edentulous jaw: a 5-year follow-up study.

    Science.gov (United States)

    Ortorp, A; Jemt, T

    1999-01-01

    Titanium frameworks have been used in the endentulous implant patient for the last 10 years. However, knowledge of titanium frameworks for the partially dentate patient is limited. To report the 5-year clinical performance of implant-supported prostheses with laser-welded titanium frameworks in the partially edentulous jaw. A consecutive group of 383 partially edentulous patients were, on a routine basis, provided with fixed partial prostheses supported by Brånemark implants in the mandible or maxilla. Besides conventional frameworks in cast gold alloy, 58 patients were provided with titanium frameworks with three different veneering techniques, and clinical and radiographic 5-year data were collected for this group. The overall cumulative survival rate was 95.6% for titanium-framework prostheses and 93.6% for implants. Average bone loss during the follow-up period was 0.4 mm. The most common complications were minor veneering fractures. Loose and fractured implant screw components were fewer than 2%. An observation was that patients on medications for cardiovascular problems may lose more implants than others (p laser-welded titanium frameworks was similar to that reported for conventional cast frames in partially edentulous jaws. Low-fusing porcelain veneers also showed clinical performance comparable to that reported for conventional porcelain-fused-to-metal techniques.

  11. Titanium Implant Impairment and Surrounding Muscle Cell Death Following High-Salt Diet: An In Vivo Study.

    Directory of Open Access Journals (Sweden)

    Mathieu Lecocq

    Full Text Available High-salt consumption has been widely described as a risk factor for cardiovascular, renal and bone functions. In the present study, the extent to which high-salt diet could influence Ti6Al4V implant surface characteristic, its adhesion to rat tibial crest, and could modify muscle cell viability of two surrounding muscles, was investigated in vivo. These parameters have also been assessed following a NMES (neuro-myoelectrostimulation program similar to that currently used in human care following arthroplasty.After a three-week diet, a harmful effect on titanium implant surface and muscle cell viability was noted. This is probably due to salt corrosive effect on metal and then release of toxic substance around biologic tissue. Moreover, if the use of NMES with high-salt diet induced muscles damages, the latter were higher when implant was added. Unexpectedly, higher implant-to-bone adhesion was found for implanted animals receiving salt supplementation.Our in vivo study highlights the potential dangerous effect of high-salt diet in arthroplasty based on titanium prosthesis. This effect appears to be more important when high-salt diet is combined with NMES.

  12. Design of a nitrogen-implanted titanium-based superelastic alloy with optimized properties for biomedical applications

    International Nuclear Information System (INIS)

    Gordin, D.M.; Busardo, D.; Cimpean, A.; Vasilescu, C.; Höche, D.; Drob, S.I.; Mitran, V.; Cornen, M.; Gloriant, T.

    2013-01-01

    In this study, a superelastic Ni-free Ti-based biomedical alloy was treated in surface by the implantation of nitrogen ions for the first time. The N-implanted surface was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and secondary ion mass spectroscopy, and the superficial mechanical properties were evaluated by nano-indentation and by ball-on-disk tribological tests. To investigate the biocompatibility, the corrosion resistance of the N-implanted Ti alloy was evaluated in simulated body fluids (SBF) complemented by in-vitro cytocompatibility tests on human fetal osteoblasts. After implantation, surface analysis methods revealed the formation of a titanium-based nitride on the substrate surface. Consequently, an increase in superficial hardness and a significant reduction of friction coefficient were observed compared to the non-implanted sample. Also, a better corrosion resistance and a significant decrease in ion release rates have been obtained. Cell culture experiments indicated that the cytocompatibility of the N-implanted Ti alloy was superior to that of the corresponding non-treated sample. Thus, this new functional N-implanted titanium-based superelastic alloy presents the optimized properties that are required for various medical devices: superelasticity, high superficial mechanical properties, high corrosion resistance and excellent cytocompatibility. - Highlights: • A superelastic Ni-free Ti-based biomedical alloy was treated in surface by implantation of nitrogen ions. • Much higher superficial hardness and wear resistance were obtained. • A clear enhancement of the corrosion resistance in SBF was observed. • In-vitro tests performed on human fetal osteoblasts indicated an excellent level of cytocompatibility

  13. Design of a nitrogen-implanted titanium-based superelastic alloy with optimized properties for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Gordin, D.M. [INSA de Rennes, Laboratoire Chimie-Métallurgie, UMR CNRS 6226 Institut des Sciences Chimiques de Rennes, 20 avenue des Buttes de Coësmes, 35708 Rennes Cedex 7 (France); Busardo, D. [Quertech Ingénierie, 9 rue de la Girafe, 14000 Caen (France); Cimpean, A. [University of Bucharest, Department of Biochemistry and Molecular Biology, Spl. Independentei 91-95, 050095 Bucharest (Romania); Vasilescu, C. [Institute of Physical Chemistry «Ilie Murgulescu» of Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Höche, D. [Institute of Materials Research, Helmholtz-Zentrum Geesthacht -Zentrum für Material- und Küstenforschung GmbH Max-Planck-Straße 1, D-21502 Geesthacht (Germany); Drob, S.I. [Institute of Physical Chemistry «Ilie Murgulescu» of Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Mitran, V. [University of Bucharest, Department of Biochemistry and Molecular Biology, Spl. Independentei 91-95, 050095 Bucharest (Romania); Cornen, M. [INSA de Rennes, Laboratoire Chimie-Métallurgie, UMR CNRS 6226 Institut des Sciences Chimiques de Rennes, 20 avenue des Buttes de Coësmes, 35708 Rennes Cedex 7 (France); Gloriant, T., E-mail: Thierry.Gloriant@insa-rennes.fr [INSA de Rennes, Laboratoire Chimie-Métallurgie, UMR CNRS 6226 Institut des Sciences Chimiques de Rennes, 20 avenue des Buttes de Coësmes, 35708 Rennes Cedex 7 (France)

    2013-10-15

    In this study, a superelastic Ni-free Ti-based biomedical alloy was treated in surface by the implantation of nitrogen ions for the first time. The N-implanted surface was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and secondary ion mass spectroscopy, and the superficial mechanical properties were evaluated by nano-indentation and by ball-on-disk tribological tests. To investigate the biocompatibility, the corrosion resistance of the N-implanted Ti alloy was evaluated in simulated body fluids (SBF) complemented by in-vitro cytocompatibility tests on human fetal osteoblasts. After implantation, surface analysis methods revealed the formation of a titanium-based nitride on the substrate surface. Consequently, an increase in superficial hardness and a significant reduction of friction coefficient were observed compared to the non-implanted sample. Also, a better corrosion resistance and a significant decrease in ion release rates have been obtained. Cell culture experiments indicated that the cytocompatibility of the N-implanted Ti alloy was superior to that of the corresponding non-treated sample. Thus, this new functional N-implanted titanium-based superelastic alloy presents the optimized properties that are required for various medical devices: superelasticity, high superficial mechanical properties, high corrosion resistance and excellent cytocompatibility. - Highlights: • A superelastic Ni-free Ti-based biomedical alloy was treated in surface by implantation of nitrogen ions. • Much higher superficial hardness and wear resistance were obtained. • A clear enhancement of the corrosion resistance in SBF was observed. • In-vitro tests performed on human fetal osteoblasts indicated an excellent level of cytocompatibility.

  14. A histologic analysis of the effects of stainless steel and titanium implants adjacent to tendons: an experimental rabbit study.

    Science.gov (United States)

    Nazzal, Adam; Lozano-Calderón, Santiago; Jupiter, Jesse B; Rosenzweig, Jaime S; Randolph, Mark A; Lee, Sang Gil P

    2006-09-01

    The current trend is to treat distal radius fractures with open reduction and internal fixation with either titanium or stainless steel plates. Both provide stable fixation; however, there is minimal evidence concerning the soft-tissue response to these materials. Our objective was to evaluate the response of adjacent extensor tendons to titanium and stainless steel in a rabbit in vivo model and to evaluate the influence of time. Forty rabbits were divided into 5 groups of 8 rabbits each. Groups I and II had unilateral osteotomy of the distal radius followed by dorsal fixation with titanium and stainless steel plates, respectively. Groups III and IV had fixation with titanium and stainless steel, respectively, but without osteotomy. Group V had surgical dissection without osteotomy or plates. Two animals per group were killed at 1, 4, 12, and 24 weeks. The specimens (distal radius, plate, overlying soft tissue, and extensor tendon) were harvested en bloc for histologic analysis. For interface preservation between implant and tissues the specimens were embedded in methylmethacrylate, sectioned, and stained with hematoxylin-eosin. Histologic analysis showed a fibrous tissue layer formed over both implants between the plate and the overlying extensor tendons in the groups treated with plating independently of the material and the presence or absence of osteotomy. This fibrous layer contained the majority of debris. Metallic particles were not observed in the tendon or muscle substance of any animals; however, they were visualized in the tenosynovium. Hematoxylin-eosin-stained sections of groups I through IV showed proliferative fibroblasts and metallic particles; however, this layer was not observed in group V. Statistical analysis did not show differences between the groups regarding the number of cells or metallic particles. Our results indicate that both implants generated adjacent reactive inflammatory tissue and particulate debris. There was no difference in cell

  15. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces.

    Science.gov (United States)

    Wijesinghe, W P S L; Mantilaka, M M M G P G; Chathuranga Senarathna, K G; Herath, H M T U; Premachandra, T N; Ranasinghe, C S K; Rajapakse, R P V J; Rajapakse, R M G; Edirisinghe, Mohan; Mahalingam, S; Bandara, I M C C D; Singh, Sanjleena

    2016-06-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO2 thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Ionic implantation by plasma in titanium and stainless steels used in prosthesis and medical instruments

    International Nuclear Information System (INIS)

    Munoz C, A. E.

    2008-01-01

    A study of a process known as plasma immersion ion implantation (PIII) of nitrogen at low voltages (< 4 kV) into three kind of samples: 1) austenitic stainless AISI 316-L steel plates, 2) ferritic stainless AISI 434 steel-based dentistry drills and 3) commercially pure titanium (CPTi) disks. On the case of CPTi the study was conducted in nitrogen- oxygen calibrated mixtures: 90% N-10% O, 80% N-20% O, 70% N-30% O and in 99.5% pure oxygen and 99.9% pure nitrogen. The PIII process was carried out by using a direct current plasma source controlled both in voltage and current, a negative voltage pulse modulator, a stainless AISI 304 steel vacuum chamber and a rod of the same material, horizontally located in the upper region of the chamber, which plays the role of anode in the plasma discharge. The purpose of the nitriding is forming a relatively thick layer on the surface of the steel specimens in order to enhance their both microhardness and general corrosion performances, desirable in medical applications. This layer contains interstitial nitrogen atoms (∼24% at.) which gives place to a deformed lattice (expanded phase) of the steel. Vickers microhardness and potentiodynamic tests (the latter in agreement to the norm ASTM G-61-89) confirm an increase of microhardness up to three times and a decrease of general corrosion rate in one order of magnitude. The nitriding of de dentistry drills is aimed at inhibiting the pitting corrosion produced by the asepsis process which results in pit nucleations, their propagation and consequent fractures when being under cyclic stress (fatigue). Scanning electron microscope micrographs reveal the risks involved in surpassing the critical treatment simple temperature of 450 C as the PIII process itself induces pitting. On its part, cyclic (ASTM G-61) potentiodynamic tests indicate an excellent pitting corrosion resistance of the samples treated under 450 C. In turn, the treatment of CPTi was meant to develop oxidized and

  17. Relevant insight of surface characterization techniques to study covalent grafting of a biopolymer to titanium implant and its acidic resistance

    Science.gov (United States)

    D'Almeida, Mélanie; Amalric, Julien; Brunon, Céline; Grosgogeat, Brigitte; Toury, Bérangère

    2015-02-01

    Peri-implant bacterial infections are the main cause of complications in dentistry. Our group has previously proposed the attachment of chitosan on titanium implants via a covalent bond to improve its antibacterial properties while maintaining its biocompatibility. A better knowledge of the coating preparation process allows a better understanding of the bioactive coating in biological conditions. In this work, several relevant characterization techniques were used to assess an implant device during its production phase and its resistance in natural media at different pH. The titanium surface was functionalized with 3-aminopropyltriethoxysilane (APTES) followed by grafting of an organic coupling agent; succinic anhydride, able to form two covalent links, with the substrate through a Ti-O-Si bond and the biopolymer through a peptide bond. Each step of the coating synthesis as well as the presence confirmation of the biopolymer on titanium after saliva immersion was followed by FTIR-ATR, SEM, EDS, 3D profilometry, XPS and ToF-SIMS analyses. Results allowed to highlight the efficiency of each step of the process, and to propose a mechanism occurring during the chitosan coating degradation in saliva media at pH 5 and at pH 3.

  18. Ag-plasma modification enhances bone apposition around titanium dental implants: an animal study in Labrador dogs

    Directory of Open Access Journals (Sweden)

    Qiao SC

    2015-01-01

    Full Text Available Shichong Qiao,1,* Huiliang Cao,2,* Xu Zhao,1,* Hueiwen Lo,1 Longfei Zhuang,1 Yingxin Gu,1 Junyu Shi,1 Xuanyong Liu,2 Hongchang Lai1 1Department of Oral and Maxillofacial Implantology, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, 2State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Dental implants with proper antibacterial ability as well as ideal osseointegration are being actively pursued. The antimicrobial ability of titanium implants can be significantly enhanced via modification with silver nanoparticles (Ag NPs. However, the high mobility of Ag NPs results in their potential cytotoxicity. The silver plasma immersion ion-implantation (Ag-PIII technique may remedy the defect. Accordingly, Ag-PIII technique was employed in this study in an attempt to reduce the mobility of Ag NPs and enhance osseointegration of sandblasted and acid-etched (SLA dental implants. Briefly, 48 dental implants, divided equally into one control and three test groups (further treated by Ag-PIII technique with three different implantation parameters, were inserted in the mandibles of six Labrador dogs. Scanning electron microscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma optical emission spectrometry were used to investigate the surface topography, chemical states, and silver release of SLA- and Ag-PIII-treated titanium dental implants. The implant stability quotient examination, Microcomputed tomography evaluation, histological observations, and histomorphometric analysis were performed to assess the osseointegration effect in vivo. The results demonstrated that normal soft tissue healing around dental implants was observed in all the groups, whereas the implant stability

  19. Microstructural characterization of titanium dental implants by electron microscopy and mechanical tests; Caracterizacao microestrutural de implantes dentarios de titanio por microscopia eletronica e ensaios mecanicos

    Energy Technology Data Exchange (ETDEWEB)

    Helfenstein, B.; Muniz, N.O.; Dedavid, B.A., E-mail: bruhelfenstein@hotmail.co [Pontificia Univ. Catolica do Rio Grande do Sul (FE/PUC/RS), Porto Alegre, RS (Brazil). Fac. de Engenharia; Gehrke, S.A. [Universidade Federal de Santa Maria (FE/UFSM), RS (Brazil). Fac. de Engenharia; Vargas, A.L.M. [Parque Tecnologico da PUCRS (TECNOPUC/GEPSI), Porto Alegre, RS (Brazil). Grupo de Estudos de Propriedades de Superficies e Interfaces

    2010-07-01

    Mini screw types for titanium implants, with differentiated design, were tested for traction and torsion for behavior analysis of the shape relative to the requirements of ASTM F136. All implants showed mechanical tensile strength above by the standard requirement, being that 83.3% of them broke above the doughnut, in support of the prosthesis. Distinct morphologies in ruptured by mechanical tests, were obtained. However, both fracture surfaces showed fragile comportments. Metallographic tests, x-ray diffraction (XRD) and microhardness were used for microstructural characterization of material, before and after heat treatment. The presences of {beta} phase in screw surface after quenching treatment proves that the thermal treatment can contribute for mechanical resistance in surface implants. (author)

  20. Characterization of cellular solids in Ti6Al4V for orthopaedic implant applications: Trabecular titanium.

    Science.gov (United States)

    Marin, E; Fusi, S; Pressacco, M; Paussa, L; Fedrizzi, L

    2010-07-01

    EBM (Electron Beam Melting) technology can be used successfully to obtain cellular solids in metallic biomaterials that can greatly increase osseointegration in arthroprothesis and at the same time maintain good mechanical properties. The investigated structures, called Trabecular Titanium, usually cannot be obtained by traditional machining. Two samples: (A) with a smaller single cell area and, (B) with a bigger single cell area, were produced and studied in this project. They have been completely characterized and compared with the results in similar literature pertinent to Ti6Al4V EBM structures. Relative density was evaluated using different methods, the mean diameter of the open porosities was calculated by Scanning Electron Microscope images; the composition was evaluated using Energy-Dispersive X-Ray Spectroscopy; the microstructure (alpha-beta) was investigated using chemical etching and, the mechanical proprieties were investigated using UMTS. The mean porosity values resulted comparable with spongy bone (63% for A and 72% for B). The mean diameter of the single porosity (650 mum for A and 1400 mum for B) resulted compatible with the osseointegration data from the literature, in particular for sample A. The Vickers micro-hardness tests and the chemical etching demonstrated that the structure is fine, uniform and well distributed. The mechanical test proved that sample (A) was more resistant than sample (B), but sample (B) showed an elastic modulus almost equal to the value of spongy bone. The results of this study suggest that the two Ti6Al4V cellular solids can be used in biomedical applications to promote osseointegration demonstrating that they maybe successfully used in prosthetic implants. Additional implant results will be published in the near future. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Clinical evaluation of immediate loading of electroeroded screw-retained titanium fixed prostheses supported by tilted implant: a multicenter retrospective study.

    Science.gov (United States)

    Acocella, Alessandro; Ercoli, Carlo; Geminiani, Alessandro; Feng, Changyong; Billi, Mauro; Acocella, Gabriele; Giannini, Domenico; Sacco, Roberto

    2012-05-01

    Immediate occlusal loading of dental implants in the edentulous mandible has proven to be an effective, reliable, and predictable treatment protocol. However, there is limited long-term data available in the literature, when an electroeroded definitive cast-titanium fixed prosthesis is used for this treatment protocol. The aim of this study was to evaluate the clinical effectiveness of dental implants (Astra Tech Dental, Mölndal, Sweden) in the edentulous mandible immediately loaded with an electroeroded cast-titanium screw-retained fixed prosthesis. Forty-five patients received five implants each in the interforaminal area. All the implants were inserted with torque up to 40 Ncm and the distal implants were distally tilted approximately 20 to 30 degrees to minimize the length of posterior cantilevers. Implants were loaded within 48 hours of placement with an acrylic resin-titanium screw-retained prosthesis fabricated by electroerosion. Two of the 225 inserted implants failed after 3 and 16 months of healing, respectively, with a cumulative survival rate of 99.1% and a prosthetic survival rate of 97.8%. Immediate loading of tilted dental implants inserted in the edentulous mandible with a screw-retained titanium definitive prosthesis fabricated with electrical discharge machining provide reliable and predictable results. © 2011 Wiley Periodicals, Inc.

  2. Titanium addition influences antibacterial activity of bioactive glass coatings on metallic implants.

    Science.gov (United States)

    Rodriguez, Omar; Stone, Wendy; Schemitsch, Emil H; Zalzal, Paul; Waldman, Stephen; Papini, Marcello; Towler, Mark R

    2017-10-01

    In an attempt to combat the possibility of bacterial infection and insufficient bone growth around metallic, surgical implants, bioactive glasses may be employed as coatings. In this work, silica-based and borate-based glass series were synthesized for this purpose and subsequently characterized in terms of antibacterial behavior, solubility and cytotoxicity. Borate-based glasses were found to exhibit significantly superior antibacterial properties and increased solubility compared to their silica-based counterparts, with BRT0 and BRT3 (borate-based glasses with 0 and 15 mol% of titanium dioxide incorporated, respectively) outperforming the remainder of the glasses, both borate and silicate based, in these respects. Atomic Absorption Spectroscopy confirmed the release of zinc ions (Zn 2+ ), which has been linked to the antibacterial abilities of glasses SRT0, BRT0 and BRT3, with inhibition effectively achieved at concentrations lower than 0.7 ppm. In vitro cytotoxicity studies using MC3T3-E1 osteoblasts confirmed that cell proliferation was affected by all glasses in this study, with decreased proliferation attributed to a faster release of sodium ions over calcium ions in both glass series, factor known to slow cell proliferation in vitro .

  3. Nano- and Micro-Scale Oxidative Patterning of Titanium Implant Surfaces for Improved Surface Wettability.

    Science.gov (United States)

    Kim, In-hye; Son, Jun Sik; Choi, Seok Hwa; Kim, Kyo-han; Kwon, Tae-yub

    2016-02-01

    A simple and scalable surface modification treatment is demonstrated, in which nano- and microscale features are introduced into the surface of titanium (Ti) substrates by means of a novel and eco-friendly oxidative aqueous solution composed of hydrogen peroxide (H202) and sodium bicarbonate (NaHCO3). By immersing mirror-polished Ti discs in an aqueous mixture of 30 wt% H2O2/5 wt% NaHCO3 at 23 +/- 3 degrees C for 4 h, it was confirmed that this mixture is capable of generating microscale topographies on Ti surfaces. It also simultaneously formed nanochannels that were regularly arranged in a comb-like pattern on the Ti surface, thus forming a hierarchical surface structure. Further, these nano/micro-textured Ti surfaces showed great surface roughness and excellent wettability when compared with control Ti surfaces. This study demonstrates that a H2O2/NaHCO3 mixture can be effectively utilized to create reproducible nano/microscale topographies on Ti implant surfaces, thus providing an economical new oxidative solution that may be used effectively and safely as a Ti surface modification treatment.

  4. A noninterventional study documenting use and success of implants with a new chemically modified titanium surface in daily dental practice.

    Science.gov (United States)

    Luongo, Giuseppe; Oteri, Giacomo

    2010-01-01

    A new chemically modified titanium surface, SLActive, has recently been developed. The results obtained in controlled clinical trials indicate that this implant can be safely used and that it offers predictable results. The goal of this noninterventional study was to verify that the success rates of implants used in daily dental practice are comparable to those reported in controlled clinical trials. This study was a prospective, noninterventional study using implants with a chemically modified surface according to the daily dental practice procedures applied by private practitioners. The choice of the implantation procedure and the loading protocol were the responsibility of the investigator and were chosen according to the patient's needs. Thirty clinical centers actively participated in this study, and 226 patients were treated, of which, 8 patients were lost to follow-up. Because of the noninterventional design of the study, the patients were not selected according to strictly defined inclusion/exclusion criteria. Thus, the study included individuals with risk factors such as smoking (24%), untreated gingivitis or periodontitis (9%), and bruxism (6%). The implants were equally distributed between mandible (46%) and maxilla (54%). A bone augmentation procedure was done in 31% of the cases. Early loading (functional loading between 48 hours and 3 months after implant insertion) was applied most frequently (48%), followed by the conventional loading protocol (3 to 6 months after implant placement, 34%). Immediate restoration and immediate loading were rare (7% and 2%, respectively). Of 276 implants inserted and documented, 5 implants failures were reported, all of which were associated with a sinus floor augmentation procedure. The survival rate was 98.2% at the 1-year follow-up visit. The results showed that implants with a chemically modified surface can be successfully restored with success rates similar to those reported in formal clinical trials under more

  5. Titanium levels in the organs and blood of rats with a titanium implant, in the absence of wear, as determined by double-focusing ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento-Gonzalez, Alejandro; Encinar, Jorge Ruiz; Marchante-Gayon, Juan M.; Sanz-Medel, Alfredo [University of Oviedo, Department of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo (Spain)

    2009-01-15

    Titanium (Ti) has long been regarded as an inert and biocompatible metal, ideal for biomedical applications such as dental implants or joint replacements. However, concerns about the biocompatibility of Ti have lately arisen. Unfortunately, information on reliable Ti baseline physiological levels in blood and organ tissues is still pending and the real effects of physiological corrosion as opposed to wear processes of Ti or Ti alloys implants is controversial so far. In this work a previously developed and validated methodology, based on using double-focusing inductively coupled plasma mass spectrometry (DF-ICP-MS) has been used to establish Ti basal levels in blood and organs (heart, liver, spleen, kidneys, and lungs) of Wistar rats. These data were compared with the levels found in three Wistar rats implanted with a Ti wire embedded in their femur for 18 months, in order to assign possible Ti released purely due to non-wear physiological mechanisms. Results showed that Ti content in all the selected organ tissues and blood was higher than previously determined Ti basal levels, clearly showing both corrosion of the Ti implant and systemic Ti accumulation in target tissues. These results indicate that Ti metal corrosion occurs. This seems to be the only mechanism responsible in the long term for the observed passive dissolution of Ti of the implant in the absence of wear. A comparative study of the systemic distribution of the soluble and particulate Ti potentially released from Ti implants was also carried out by intraperitoneally injection of soluble Ti(citrate){sub 3} and insoluble TiO{sub 2} particles, respectively. Different systemic Ti storage was observed. Whereas soluble Ti was rapidly transported to all distal organs under study, TiO{sub 2} particles were only accumulated in lung tissue. (orig.)

  6. The Story of : Pathologic Risk Factors in Breast Implant Surgery

    Directory of Open Access Journals (Sweden)

    Caroline A Yao

    2014-07-01

    Full Text Available Serratia marcescens (S. marcescens emerged as an opportunist in the setting of immunodeficiency in the 1970s, when serious infections occurred in San Francisco hospitals after USA. Navy experiments had aerosolized the bacteria to study biologic warfare. We investigate the risks of S. marcescens in San Franciscans who undergo mastectomy with implant reconstruction. From 2007 to 2011, the senior author took breast capsule cultures for all patients at the time of tissue expander exchange/explant. Of the 142 women who had reconstruction, 23 had positive cultures. Only the two patients who were positive for S. marcescens developed clinical infections that required explantation. Both had postoperative chemotherapy with transient neutropenia, and both had close ties to San Francisco. Clinical signs of infection emerged for both patients months after initial surgery, despite having previously well healed incisions. Other patients were culture positive for Pseudomonas, Proteus, Enterococcus and MRSA and did not develop require explant. While the link between San Francisco and S. marcescens is controversial, a patient's geography is a simple screening tool when considering postoperative risks, especially in the immunocompromised. Closer monitoring for neutropenia during chemotherapy, and a lower threshold to administer S. marcescens targeted antibiotics may be warranted in these patients.

  7. Implantation of titanium, chromium, yttrium, molybdenum, silver, hafnium, tantalum, tungsten and platinum ions generated by a metal vapor vacuum ion source into 440C stainless steel

    International Nuclear Information System (INIS)

    Sasaki, Jun; Hayashi, Kazunori; Sugiyama, Kenji; Ichiko, Osami; Hashiguchi, Yoshihiro

    1992-01-01

    Titanium, yttrium, molybdenum, silver, chromium, hafnium, tantalum, tungsten and platinum ions generated by a metal vapor vacuum arc (MEVVA) ion source were implanted into 440C stainless steel in the dose region 10 17 ions cm -2 with extraction voltages of up to 70 kV. Glow discharge spectroscopy (GDS), friction coefficient, and Vickers microhardness of the specimens were studied. Grooves made by friction tests were investigated by electron probe microanalysis (EPMA). GDS showed incorporation of carbon in the yttrium, hafnium, tantalum, tungsten and platinum implanted specimens, as well as titanium implanted samples. A large amount of oxygen was observed in the yttrium implanted specimen. The friction coefficient was measured by reciprocating sliding of an unimplanted 440C ball without lubricant at a load of 0.245 N. The friction decreased and achieved a stable state after implantation of titanium, hafnium and tantalum. The friction coefficient of the platinum implanted specimen showed a gradual decrease after several cycles of sliding at high friction coefficient. The yttrium implanted sample exhibited a decreased but slightly unstable friction coefficient. Results from EPMA showed that the implanted elements, which gave decreased friction, remained even after sliding of 200 cycles. Implantation of chromium, molybdenum, silver and tungsten did not provide a decrease in friction and the implants were gone from the wear grooves after the sliding tests. (orig.)

  8. Synthesis of polycaprolactone-titanium oxide multilayer films by nanosecond laser pulses and electrospinning technique for better implant fabrication

    Science.gov (United States)

    Naghshine, Babak B.; Cosman, James A.; Kiani, Amirkianoosh

    2016-08-01

    In this study, a combination of electrospinning and laser texturing is introduced as a novel method for increasing the biocompatibility of metal implants. Besides having a rough laser treated surface, the implant benefits from the high porosity and better wettability of an electrospun fibrous structure, which is a more favorable environment for cell proliferation. Titanium samples were patterned using a nanosecond laser beam and were placed as collectors in an electrospinning machine. They were then soaked in simulated body fluid for four weeks. Energy Dispersive X-ray and X-Ray Diffraction results indicate significantly more hydroxyapatite formation on laser treated samples with nanoscale fibers deposited on their surface. This shows that having a laser treated surface underneath the fibrous layer can improve short-term biocompatibility even before degradation of fibers. The thermal conductivity of the electrospun layer, measured using a Hot Disk Transient Plane Source instrument and computer code, was shown to be considerably lower than that of titanium and very close to bone. The presence of this layer can therefore be beneficial in making the implant more compatible to a biological medium. In case of dental implants, it was shown that this layer can act as a thermal barrier while a hot beverage is consumed and it can decrease the temperature rise by about 60%, which avoids any possible damage to newly formed cells during the healing period.

  9. Friction and wear of stainless steel, titanium and aluminium with various surface treatments, ion implantation and overlay hard coatings

    International Nuclear Information System (INIS)

    Bunshah, R.F.

    1979-01-01

    This paper deals with the evaluation of the wear properties of 304 stainless steel, commercial grade titanium and commercial grade aluminium without and with different surface treatments, i.e., ion implantation of boron and nitrogen, and overlay coating of superhard materials, titanium carbide and nitride by the Biased Activated Reactive Evaporation (BARE) process. Wear properties were evaluated in adhesive, erosive and abrasive modes of wear. In the case of adhesive wear, ion implantation resulted in an improved wear behaviour in lubricated conditions but had no beneficial effect in dry wear conditions. Overlay coatings on the other hand resulted in improved wear behaviour for both the dry and lubricating conditions. In the case of erosive wear with SiC particles at high velocities, overlay coatings showed higher erosion rates (typical of brittle materials in normal impingement) whereas ion implanted materials behaved similarly as untreated materials; i.e., a lower wear rate than the specimens with overlay coatings. In the case of abrasive wear, it was again observed that the wear rates of overlay coatings is far lower than the wear rates of untreated or ion implanted materials. (author)

  10. Synthesis of polycaprolactone-titanium oxide multilayer films by nanosecond laser pulses and electrospinning technique for better implant fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Naghshine, Babak B.; Cosman, James A.; Kiani, Amirkianoosh, E-mail: a.kiani@unb.ca [Silicon Hall: Laser Micro/Nano Fabrication Laboratory, Department of Mechanical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3 (Canada)

    2016-08-28

    In this study, a combination of electrospinning and laser texturing is introduced as a novel method for increasing the biocompatibility of metal implants. Besides having a rough laser treated surface, the implant benefits from the high porosity and better wettability of an electrospun fibrous structure, which is a more favorable environment for cell proliferation. Titanium samples were patterned using a nanosecond laser beam and were placed as collectors in an electrospinning machine. They were then soaked in simulated body fluid for four weeks. Energy Dispersive X-ray and X-Ray Diffraction results indicate significantly more hydroxyapatite formation on laser treated samples with nanoscale fibers deposited on their surface. This shows that having a laser treated surface underneath the fibrous layer can improve short-term biocompatibility even before degradation of fibers. The thermal conductivity of the electrospun layer, measured using a Hot Disk Transient Plane Source instrument and computer code, was shown to be considerably lower than that of titanium and very close to bone. The presence of this layer can therefore be beneficial in making the implant more compatible to a biological medium. In case of dental implants, it was shown that this layer can act as a thermal barrier while a hot beverage is consumed and it can decrease the temperature rise by about 60%, which avoids any possible damage to newly formed cells during the healing period.

  11. Chemical changes in DMP1-null murine bone & silica based pecvd coatings for titanium implant osseoapplications

    Science.gov (United States)

    Maginot, Megen

    In order to improve clinical outcomes in bone-implant systems, a thorough understanding of both local bone chemistry and implant surface chemistry is necessary. This study consists, therefore, of two main parts: one focused on determining the nature of the changes in bone chemistry in a DMP1-null transgenic disease model and the other on the development of amorphous silica-based coatings for potential use as titanium bone implant coatings. For the study of bone mineral in the DMP1 transgenic model, which is known to have low serum phosphate levels, transgenic DMP1-null and wild type mice were fed a high phosphate diet, sacrificed, and had their long bone harvested. This bone was characterized using SEM, FTIR, microCT and XANES and compared to DMP1-null and wild type control groups to assess the therapeutic effect of high Pi levels on the phenotype and the role of DMP1 in mineralization in vivo. Findings suggest that though the high phosphate diet results in restoring serum phosphate levels, it does not completely rescue the bone mineral phenotype at an ultrastructural level and implicates DMP1 in phosphate nucleation. Since plasma enhanced chemical vapor deposition (PECVD) silica like coatings have not previously been fabricated for use in oessoapplications, the second part of this study initially focused on the characterization of novel SiOx chemistries fabricated via a chemical vapor deposition process that were designed specifically to act as bioactive coatings with a loose, hydrogenated structure. These coatings were then investigated for their potential initial stage response to bone tissue through immersion in a simulated body fluid and through the culture of MC3T3 cells on the coating surfaces. Coating surfaces were characterized by SEM, FTIR, contact angle measurements, and XANES. Coating dissolution and ionic release were also investigated by ICP-OES. Findings suggest that some SiOx chemistries may form a bioactive coating while more highly substituted

  12. In Vitro Evaluation of PCL and P(3HB) as Coating Materials for Selective Laser Melted Porous Titanium Implants.

    Science.gov (United States)

    Grau, Michael; Matena, Julia; Teske, Michael; Petersen, Svea; Aliuos, Pooyan; Roland, Laura; Grabow, Niels; Murua Escobar, Hugo; Gellrich, Nils-Claudius; Haferkamp, Heinz; Nolte, Ingo

    2017-11-23

    Titanium is widely used as a bone implant material due to its biocompatibility and high resilience. Since its Young's modulus differs from bone tissue, the resulting "stress shielding" could lead to scaffold loosening. However, by using a scaffold-shaped geometry, the Young's modulus can be adjusted. Also, a porous geometry enables vascularisation and bone ingrowth inside the implant itself. Additionally, growth factors can improve these effects. In order to create a deposit and release system for these factors, the titanium scaffolds could be coated with degradable polymers. Therefore, in the present study, synthetic poly-ε-caprolactone (PCL) and the biopolymer poly(3-hydroxybutyrate) (P(3HB)) were tested for coating efficiency, cell adhesion, and biocompatibility to find a suitable coating material. The underlying scaffold was created from titanium by Selective Laser Melting (SLM) and coated with PCL or P(3HB) via dip coating. To test the biocompatibility, Live Cell Imaging (LCI) as well as vitality and proliferation assays were performed. In addition, cell adhesion forces were detected via Single Cell Force Spectroscopy, while the coating efficiency was observed using environmental scanning electron microscopy (ESEM) and energy-dispersive X-ray (EDX) analyses. Regarding the coating efficiency, PCL showed higher values in comparison to P(3HB). Vitality assays revealed decent vitality values for both polymers, while values for PCL were significantly lower than those for blank titanium. No significant differences could be observed between PCL and P(3HB) in proliferation and cell adhesion studies. Although LCI observations revealed decreasing values in cell number and populated area over time on both polymer-coated scaffolds, these outcomes could be explained by the possibility of coating diluent residues accumulating in the culture medium. Overall, both polymers fulfill the requirements regarding biocompatibility. Nonetheless, since only PCL coating ensured the

  13. Concentration- and time-dependent response of human gingival fibroblasts to fibroblast growth factor 2 immobilized on titanium dental implants

    Directory of Open Access Journals (Sweden)

    Ma Q

    2012-04-01

    Full Text Available Qianli Ma1*, Wei Wang1*, Paul K Chu2, Shenglin Mei1,2, Kun Ji3, Lei Jin4, Yumei Zhang11Department of Prosthetic Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China; 2Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong, People's Republic of China; 3Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China; 4Stomatology Department, Jinling Hospital, School of Medicine, Southern Medical University, Nanjing, People's Republic of China*These authors contributed equally to this workBackground: Titanium (Ti implants are widely used clinically, but peri-implantitis remains one of the most common and serious complications. Healthy integration between gingival tissue and the implant surface is critical to long-term success in dental implant therapy. The objective of this study was to investigate how different concentrations of immobilized fibroblast growth factor 2 (FGF2 on the titania nanotubular surface influence the response of human gingival fibroblasts (HGFs.Methods: Pure Ti metal was anodized at 20 V to form a vertically organized titanium dioxide nanotube array on which three concentrations of FGF2 (250 ng/mL, 500 ng/mL, or 1000 ng/mL were immobilized by repeated lyophilization. Surface topography was observed and FGF2 elution was detected using enzyme-linked immunosorbent assay. The bioactivity changes of dissolvable immobilized FGF2 were measured by methyl-thiazolyl-tetrazolium assay. Behavior of HGFs was evaluated using adhesion and methyl-thiazolyl-tetrazolium bromide assays.Results: The FGF2 remained for several days on the modified surface on which HGFs were cultured. Over 90% of the dissolvable immobilized FGF2 had been eluted by Day 9, whereas the FGF2 activity was found to diminish gradually from Day 1 to Day 9. The titania nanotubular surface with an optimal preparing

  14. Evaluation of Heat Transfer to the Implant-Bone Interface During Removal of Metal Copings Cemented onto Titanium Abutments.

    Science.gov (United States)

    Cakan, Umut; Cakan, Murat; Delilbasi, Cagri

    2016-01-01

    The aim of this investigation was to measure the temperature increase due to heat transferred to the implant-bone interface when the abutment screw channel is accessed or a metal-ceramic crown is sectioned buccally with diamond or tungsten carbide bur using an air rotor, with or without irrigation. Cobalt-chromium copings were cemented onto straight titanium abutments. The temperature changes during removal of the copings were recorded over a period of 1 minute. The sectioning of coping with diamond bur and without water irrigation generated the highest temperature change at the cervical part of the implant. Both crown removal methods resulted in an increase in temperature at the implant-bone interface. However, this temperature change did not exceed 47°C, the potentially damaging threshold for bone reported in the literature.

  15. Efficacy and safety of a diode laser in second-stage implant surgery: a comparative study.

    Science.gov (United States)

    El-Kholey, K E

    2014-05-01

    For more than a decade, peri-implant tissues have been treated with soft tissue lasers to create a bloodless flap for implant placement and to uncover implants with minimal bleeding, trauma, and anaesthesia. This study was designed to assess if dental implant uncovering is possible with a diode laser without anaesthesia, and to compare its performance with traditional cold scalpel surgery. Thirty patients with a total of 45 completely osseointegrated implants participated in this study. Patients were divided into two groups. For the study group, second-stage implant surgery was done with a 970nm diode laser. For the control group, the implants were exposed with a surgical blade. Certain parameters were used for evaluation of the two techniques. The use of the diode laser obviated the need for local anaesthesia; there was a significant difference between the two groups regarding the need for anaesthesia (Pdiode laser can be used effectively for second-stage implant surgery, providing both the dentist and the patient with additional advantages over the conventional methods used for implant exposure. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Comparison of the long-term clinical performance of a biodegradable and a titanium fixation system in maxillofacial surgery : A multicenter randomized controlled trial

    NARCIS (Netherlands)

    Gareb, B.; van Bakelen, N. B.; Buijs, G. J.; Jansma, J.; de Visscher, J. G. A. M.; Hoppenreijs, Th. J. M.; Bergsma, J. E.; van Minnen, B.; Stegenga, B.; Bos, R. R. M.

    2017-01-01

    Background Biodegradable fixation systems could reduce or eliminate problems associated with titanium removal of implants in a second operation. Aim The aim of this study was to compare the long-term (i.e. >5 years postoperatively) clinical performance of a titanium and a biodegradable system in

  17. Triangular Titanium Implants for Minimally Invasive Sacroiliac Joint Fusion: 2-Year Follow-Up from a Prospective Multicenter Trial.

    Science.gov (United States)

    Duhon, Bradley S; Bitan, Fabien; Lockstadt, Harry; Kovalsky, Don; Cher, Daniel; Hillen, Travis

    2016-01-01

    Sacroiliac joint (SIJ) dysfunction is an underdiagnosed condition. Several published cohorts have reported favorable mid-term outcomes after SIJ fusion using titanium implants placed across the SIJ. Herein we report long-term (24-month) results from a prospective multicenter clinical trial. One hundred and seventy-two subjects at 26 US sites with SI joint dysfunction were enrolled and underwent minimally invasive SI joint fusion with triangular titanium implants. Subjects underwent structured assessments preoperatively and at 1, 3, 6, 12, 18 and 24 months postoperatively, including SIJ pain ratings (0-100 visual analog scale), Oswestry Disability Index (ODI), Short Form-36 (SF-36), EuroQOL-5D (EQ-5D), and patient satisfaction. Adverse events were collected throughout follow-up. All participating patients underwent a high-resolution pelvic CT scan at 1 year. Mean subject age was 50.9 years and 69.8% were women. SIJ pain was present for an average of 5.1 years prior to surgical treatment. SIJ pain decreased from 79.8 at baseline to 30.4 at 12 months and remained low at 26.0 at 24 months (pdysfunction, minimally invasive SI joint fusion using triangular titanium implants showed marked improvements in pain, disability and quality of life at 2 years. Imaging showed that bone apposition to implants was common but radiographic evidence of intraarticular fusion within the joint may take more than 1 year in many patients. This prospective multicenter clinical trial was approved by local or regional IRBs at each center prior to first patient enrollment. Informed consent with IRB-approved study-specific consent forms was obtained from all patients prior to participation.

  18. Evaluation of the effect of low intensity laser radiation on the osseointegration of titanium implants inserted in rabbits' tibia; Avaliacao biomecanica da acao da radiacao laser em baixa intensidade no processo de osseointegracao de implantes de titanio inseridos em tibia de coelhos

    Energy Technology Data Exchange (ETDEWEB)

    Castilho Filho, Thyrso

    2003-07-01

    The purpose of this study was to evaluate the influence of low intensity laser irradiation on bone repair process after titanium implant surgeries performed in rabbits' tibia. Thirty three Norfolk rabbits were divided into three different groups according to the implant removal period (14, 21 and 42 days). Two titanium-pure implants were inserted one in each tibia and one side was randomly chosen to be irradiated. Irradiations were performed employing a GaAlAs laser ({lambda}=780 nm) during 10 seconds, with an energy density of 7.5 J/cm{sup 2} on 4 spots: above, bellow, on the right and on the left side of the implants with an interval between irradiations of 48 hours during 14 days. Animals were sacrificed according to the observation times, tibias were removed and the strength removal values recorded. Results showed that, for the 21 and 42 days sacrifices periods, the irradiated side presented a statistically higher implant strength removal values when compared to the non-irradiated side. (author)

  19. Evaluation of the effect of low intensity laser radiation on the osseointegration of titanium implants inserted in rabbits' tibia; Avaliacao biomecanica da acao da radiacao laser em baixa intensidade no processo de osseointegracao de implantes de titanio inseridos em tibia de coelhos

    Energy Technology Data Exchange (ETDEWEB)

    Castilho Filho, Thyrso

    2003-07-01

    The purpose of this study was to evaluate the influence of low intensity laser irradiation on bone repair process after titanium implant surgeries performed in rabbits' tibia. Thirty three Norfolk rabbits were divided into three different groups according to the implant removal period (14, 21 and 42 days). Two titanium-pure implants were inserted one in each tibia and one side was randomly chosen to be irradiated. Irradiations were performed employing a GaAlAs laser ({lambda}=780 nm) during 10 seconds, with an energy density of 7.5 J/cm{sup 2} on 4 spots: above, bellow, on the right and on the left side of the implants with an interval between irradiations of 48 hours during 14 days. Animals were sacrificed according to the observation times, tibias were removed and the strength removal values recorded. Results showed that, for the 21 and 42 days sacrifices periods, the irradiated side presented a statistically higher implant strength removal values when compared to the non-irradiated side. (author)

  20. Osseointegration of zirconia implants: an SEM observation of the bone-implant interface.

    Science.gov (United States)

    Depprich, Rita; Zipprich, Holger; Ommerborn, Michelle; Mahn, Eduardo; Lammers, Lydia; Handschel, Jörg; Naujoks, Christian; Wiesmann, Hans-Peter; Kübler, Norbert R; Meyer, Ulrich

    2008-11-06

    The successful use of zirconia ceramics in orthopedic surgery led to a demand for dental zirconium-based implant systems. Because of its excellent biomechanical characteristics, biocompatibility, and bright tooth-like color, zirconia (zirconium dioxide, ZrO2) has the potential to become a substitute for titanium as dental implant material. The present study aimed at investigating the osseointegration of zirconia implants with modified ablative surface at an ultrastructural level. A total of 24 zirconia implants with modified ablative surfaces and 24 titanium implants all of similar shape and surface structure were inserted into the tibia of 12 Göttinger minipigs. Block biopsies were harvested 1 week, 4 weeks or 12 weeks (four animals each) after surgery. Scanning electron microscopy (SEM) analysis was performed at the bone implant interface. Remarkable bone attachment was already seen after 1 week which increased further to intimate bone contact after 4 weeks, observed on both zirconia and titanium implant surfaces. After 12 weeks, osseointegration without interposition of an interfacial layer was detected. At the ultrastructural level, there was no obvious difference between the osseointegration of zirconia implants with modified ablative surfaces and titanium implants with a similar surface topography. The results of this study indicate similar osseointegration of zirconia and titanium implants at the ultrastructural level.

  1. Investigating the structure and biocompatibility of niobium and titanium oxides as coatings for orthopedic metallic implants

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, D.; Wren, A.W.; Misture, S.T.; Mellott, N.P., E-mail: mellott@alfred.edu

    2016-01-01

    Applying sol gel based coatings to orthopedic metallic implant materials can significantly improve their properties and lifespan in vivo. For this work, niobium (Nb{sub 2}O{sub 5}) and titanium (TiO{sub 2}) oxides were prepared via solution processing in order to determine the effect of atomic arrangement (amorphous/crystalline) on bioactivity. Thermal evaluation on the synthesized materials identified an endotherm for Nb{sub 2}O{sub 5} at 75 °C with 40% weight loss below 400 °C, and minimal weight loss between 400 and 850 °C. Regarding TiO{sub 2} an endotherm was present at 92 °C with 25% weight loss below 400 °C, and 4% between 400 and 850 °C. Phase evolution was determined using High Temperature X-ray Diffraction (HT-XRD) where amorphous-Nb{sub 2}O{sub 5} (450 °C), hexagonal-Nb{sub 2}O{sub 5} (525 °C), orthorhombic-Nb{sub 2}O{sub 5} (650 °C), amorphous-TiO{sub 2} (275 °C) and tetragonal TiO{sub 2} (500 °C) structures were produced. Simulated body fluid (SBF) testing was conducted over 1, 7 and 30 days and resulted in positive chemical and morphological changes for crystalline Nb{sub 2}O{sub 5} (525 °C) and TiO{sub 2} (500 °C) after 30 days of incubation. Rod-like CaP deposits were observed on the surfaces using Scanning Electron Microscopy (FE-SEM) and Grazing Incidence-X-ray Diffraction (GI-XRD) shows that the deposits were X-ray amorphous. Cell viability was higher with the TiO{sub 2} (122%) samples when compared to the growing cell population while Nb{sub 2}O{sub 5} samples exhibited a range of viability (64–105%), partially dependent on materials atomic structure. - Highlights: • Niobium and titanium oxides were prepared to determine the effect of structure on bioactivity. • Simulated body fluid testing resulted in positive surface chemical and morphological changes. • Amorphous, rod-like CaP deposits were observed on the surfaces. • Niobium oxide exhibited a range of viability partially dependent on materials atomic structure.

  2. The maintenance of inserted titanium implants: in-vitro evaluation of exposed surfaces cleaned with three different instruments.

    Science.gov (United States)

    Bertoldi, Carlo; Lusuardi, Donatella; Battarra, Francesca; Sassatelli, Paolo; Spinato, Sergio; Zaffe, Davide

    2017-01-01

    Changes to titanium implants smooth-surfaces after instrumentation were comparatively analyzed using low-vacuum scanning electron microscopy (LV-SEM) and white-light confocal (WLC) profilometry, to accurately evaluate curved surfaces. Sixty titanium implants screwed to their abutments were randomly split into three groups for cleaning treatment with (S) stainless-steel Gracey-curettes, (T) titanium Langer-curettes, and (P) an ultrasonic-device with the probe covered with a plastic-tip. One sector of each implant was left unprocessed (U). The other sectors were cleaned for either 60 s, to simulate a single cleaning session, or 180 s to simulate a series of sessions. Surface morphology was analyzed by LV-SEM, without metal sputtering. Quantitative evaluations of the roughness of surfaces were performed using a WLC-profilometer. The Wilcoxon and the Mann-Whitney tests were used in statistical comparisons. U-surfaces showed that thin transverse ridges and grooves, i.e. a polarized surface roughness was substantially compromised after S-instrumentation. Small surface alterations, increasing with time, were also recorded after T-·and·P-instrumentation, although to a lesser degree. The gap of the fixture-abutment connection appeared almost completely clean after T-, clotted with titanium debris after S-, and clotted with plastic debris after P-treatment. The mean roughness (Ra) was unchanged after P-, significantly increased after S- and decreased after T-treatment, when compared with U. The Rz roughness-parameter, calculated along the fixture Y-axis, of S, T, and P resulted similar and significantly lower than that of U. Rz (X-axis) resulted unchanged after P-, slightly increased (+40%) after T-, and greatly increased (+260%) after S-treatment, this latter being statistically significant when compared with U. The careful use of titanium-curettes could produce only minimal smooth surface alteration particularly over prolonged treatments, and avoid debris production

  3. Clinical experiences with laser-welded titanium frameworks supported by implants in the edentulous mandible: a 5-year follow-up study.

    Science.gov (United States)

    Ortorp, A; Linden, B; Jemt, T

    1999-01-01

    The purpose of this study was to report the 5-year clinical performance of implant-supported prostheses with laser-welded titanium frameworks and to compare their performance with that of prostheses provided with conventional cast frameworks. On a routine basis, a consecutive group of 824 edentulous patients were provided with fixed prostheses supported by implants in the edentulous mandible. In addition to conventional gold-alloy castings, patients were at random provided with 2 kinds of laser-welded titanium frameworks. In all, 155 patients were included in the 2 titanium framework groups. A control group of 53 randomly selected patients with conventional gold-alloy castings was used for comparison. Clinical and radiographic 5-year data was collected for the 3 groups. All followed patients still had fixed prostheses in the mandible after 5 years. The overall cumulative success rates were 95.9% and 99.7% for titanium-framework prostheses and implants, respectively. The corresponding success rates for the control group were 100% and 99.6%, respectively. Bone loss was 0.5 mm on average during the 5-year follow-up period. The most common complications for titanium frameworks were resin or tooth fractures, gingival inflammation, and fractures of the metal frames (10%). One of the cast frameworks fractured and was resoldered. Loose and fractured implant screw components were few (laser-welded titanium frameworks seem to be a viable alternative to conventional castings in the edentulous mandible.

  4. Using titanium LPW-TI64-GD23-TYPE5 in the individual contour grafting of bone defects with 3D implants

    Science.gov (United States)

    Bazlov, V. A.; Mamuladze, T. Z.; Pavlov, V. V.; Prohorenko, V. M.; Sadovoy, M. A.; Fomichev, N. G.; Efimenko, M. V.; Mamonova, E. V.; Aronov, A. M.

    2017-09-01

    The paper proposed a method of replacement of bone defects of a basin with individual 3D-printed implants of medical titanium LPW-TI64-GD23-TYPE5 ASTM F136. The design of the implant was carried out in view of determining the density of the surrounding bone tissue by Hounsfield's scale. We used the method of volume printing by type multiselecting laser sintering. A clinical example of using the method of individual contouring of the defect of bones of a basin with the assessment of bone density by Hounsfield's scale was given. The method of individual contouring of the defect of the basin bones with the assessment of bone density by Hounsfield's scale enables the surgeon to more accurately determine the tactics of surgical intervention: opting for bone grafting or the use of augmented. In the case of manufacturing an individual 3D augment, this method gives the possibility to adjust its geometry taking into account the density of the bone tissue, thereby giving it additional stability. If there is a need for screws—we can preadjust the length and direction of stroke so that the main part of the screw might pass in the support ability area of the bone tissue. We believe that the software and the approach to preoperative planning we have used can make surgery more convenient for the surgeon and personnel of the medical institution.

  5. Immobilization of chitosan film containing semaphorin 3A onto a microarc oxidized titanium implant surface via silane reaction to improve MG63 osteogenic differentiation

    Directory of Open Access Journals (Sweden)

    Fang K

    2014-10-01

    Full Text Available Kaixiu Fang,1,* Wen Song,2,* Lifeng Wang,1 Sen Jia,3 Hongbo Wei,1 Shuai Ren,1 Xiaoru Xu,1 Yingliang Song1 1State Key Laboratory of Military Stomatology, Department of Implant Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, People’s Republic of China; 2State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, People’s Republic of China; 3State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi’an, People’s Republic of China *These authors contributed equally to this work Abstract: Improving osseointegration of extensively used titanium (Ti implants still remains a main theme in implantology. Recently, grafting biomolecules onto a Ti surface has attracted more attention due to their direct participation in the osseointegration process around the implant. Semaphorin 3A (Sema3A is a new proven osteoprotection molecule and is considered to be a promising therapeutic agent in bone diseases, but how to immobilize the protein onto a Ti surface to acquire a long-term effect is poorly defined. In our study, we tried to use chitosan to wrap Sema3A (CS/Sema and connect to the microarc oxidized Ti surface via silane glutaraldehyde coupling. The microarc oxidization could formulate porous topography on a Ti surface, and the covalently bonded coating was homogeneously covered on the ridges between the pores without significant influence on the original topography. A burst release of Sema3A was observed in the first few days in phosphate-buffered saline and could be maintained for >2 weeks. Coating in phosphate-buffered saline containing lysozyme was similar, but the release rate was much more rapid. The coating did not significantly affect cellular adhesion, viability, or cytoskeleton arrangement, but the osteogenic-related gene

  6. Local complications after cosmetic breast implant surgery in Finland

    DEFF Research Database (Denmark)

    Kulmala, Ilona; McLaughlin, Joseph K; Pakkanen, Matti

    2004-01-01

    Concerns regarding potential health effects of silicone breast implants have recently shifted from long-term illnesses to postoperative local complications. In this study, occurrence of local complications and treatment procedures were evaluated in a population of 685 Finnish women who received...... implantation. Most of the women were satisfied with the implantation, but only 40% considered the preoperative information on possible risks related to implantation as sufficient. With respect to the occurrence of local complications following cosmetic breast implantation, the findings of this study...... cosmetic silicone breast implants between 1968 and 2002. Patient records were abstracted, and additional information was gathered using a structured questionnaire that was mailed to 470 of the women in the cohort. Overall, 36% of the women had 1 or more diagnoses of postoperative complications...

  7. Which antibiotic regimen prevents implant failure or infection after dental implant surgery? A systematic review and meta-analysis.

    Science.gov (United States)

    Rodríguez Sánchez, Fabio; Rodríguez Andrés, Carlos; Arteagoitia, Iciar

    2018-04-01

    To assess which antibiotic regimen prevents dental implant failures or postoperative infections following dental implant placement. Systematic review and meta-analysis. Pubmed, Cochrane, Science Direct, and EMBASE via OVID were searched up to August 2017. Only randomized controlled clinical trials (RCT) using antibiotics were included. Outcome measures were set on dental implant failures or postoperative infection incidence after dental implant surgery. Three reviewers independently undertook risk of bias assessment and data extraction. Stratified meta-analyses of binary data using fixed-effects models were performed using Stata 14.0. The risk ratio (RR) and 95% confidence interval (CI) were estimated. Nine articles were included corresponding to 15 RCTs. All RCTs tested only oral amoxicillin. Implant-failure analysis: overall RR = 0.53 (P = .005, 95% CI: 0.34-0.82) and overall NNT = 55 (95% CI, 33-167). Single-dose oral amoxicillin preoperatively (SDOAP) is beneficial (RR = 0.50, CI: 0.29-0.86. P = .012), when compared to postoperative oral amoxicillin (POA): RR = 0.60, CI: 0.28-1.30. P = .197. Postoperative-infection analysis: overall RR = 0.76 (P = 0.250, 95% CI: 0.47-1.22). Neither SDOAP (RR = 0.82, CI = 0.46-1.45, P = .488) nor POA (RR = 0.64, CI = 0.27-1.51, P = .309) are beneficial. I 2  = 0.0%, chi-squared tests P ≈ 1. Only SDOAP is effective and efficacious at preventing implant failures, but it was not significant for postoperative infections following dental implant surgeries. Copyright © 2018 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  8. The Construct Validity and Reliability of an Assessment Tool for Competency in Cochlear Implant Surgery

    Directory of Open Access Journals (Sweden)

    Patorn Piromchai

    2014-01-01

    Full Text Available Introduction. We introduce a rating tool that objectively evaluates the skills of surgical trainees performing cochlear implant surgery. Methods. Seven residents and seven experts performed cochlear implant surgery sessions from mastoidectomy to cochleostomy on a standardized virtual reality temporal bone. A total of twenty-eight assessment videos were recorded and two consultant otolaryngologists evaluated the performance of each participant using these videos. Results. Interrater reliability was calculated using the intraclass correlation coefficient for both the global and checklist components of the assessment instrument. The overall agreement was high. The construct validity of this instrument was strongly supported by the significantly higher scores in the expert group for both components. Conclusion. Our results indicate that the proposed assessment tool for cochlear implant surgery is reliable, accurate, and easy to use. This instrument can thus be used to provide objective feedback on overall and task-specific competency in cochlear implantation.

  9. Weak effect of metal type and ica genes on staphylococcal infection of titanium and stainless steel implants.

    Science.gov (United States)

    Hudetz, D; Ursic Hudetz, S; Harris, L G; Luginbühl, R; Friederich, N F; Landmann, R

    2008-12-01

    Currently, ica is considered to be the major operon responsible for staphylococcal biofilm. The effect of biofilm on susceptibility to staphylococcal infection of different implant materials in vivo is unclear. The interaction of ica-positive (wild-type (WT)) and ica-negative (ica(-)) Staphylococcus aureus and Staphylococcus epidermidis strains with titanium and both smooth and rough stainless steel surfaces was studied by scanning electron microscopy in vitro and in a mouse tissue cage model during 2 weeks following perioperative or postoperative inoculation in vivo. In vitro, WT S. epidermidis adhered equally and more strongly than did WT S. aureus to all materials. Both WT strains, but not ica(-) strains, showed multilayered biofilm. In vivo, 300 CFUs of WT and ica(-)S. aureus led, in all metal cages, to an infection with a high level of planktonic CFUs and only 0.89% adherent CFUs after 8 days. In contrast, 10(6) CFUs of the WT and ica(-) strains were required for postoperative infection with S. epidermidis. In all metal types, planktonic numbers of S. epidermidis dropped to titanium cages adherent WT bacteria survived in higher numbers than ica(-) bacteria. In conclusion, the metal played a minor role in susceptibility to and persistence of staphylococcal infection; the presence of ica genes had a strong effect on biofilm in vitro and a weak effect in vivo; and S. epidermidis was more pathogenic when introduced during implantation than after implantation.

  10. The microstructure of type 304 stainless steel implanted with titanium and carbon and its relation to friction and wear tests

    International Nuclear Information System (INIS)

    Follstaedt, D.M.; Pope, L.E.; Knapp, J.A.; Picraux, S.T.; Yost, F.G.

    1983-01-01

    The authors have used transmission electron microscopy to examine the microstructure of type 304 stainless steel which was ion implanted with high doses (2 X 10 17 atoms cm -2 ) of titanium and carbon. It is found that the resulting surface alloy is an amorphous phase similar to that observed when pure iron is identically implanted. This result is important for identifying the mechanisms by which the coefficient of friction and the wear depth are reduced in unlubricated pin-on-disc tests of type 304 stainless steel implanted with titanium and carbon. The effect of temperature on the amorphous alloy during annealing in the microscope has also been examined. It is found that devitrification begins after 15 min at 500 0 C and that the alloy fully crystallizes into f.c.c., b.c.c. and TiC phases after 15 min at 650 0 C. A comparison of mechanical test results from devitrified specimens with results from amorphous specimens demonstrates that the reduction in the coefficient of friction correlates with the presence of the amorphous layer, whereas the reduction in the wear depth is obtained for both amorphous and crystalline alloys. (Auth.)

  11. Investigating the structure and biocompatibility of niobium and titanium oxides as coatings for orthopedic metallic implants.

    Science.gov (United States)

    Pradhan, D; Wren, A W; Misture, S T; Mellott, N P

    2016-01-01

    Applying sol gel based coatings to orthopedic metallic implant materials can significantly improve their properties and lifespan in vivo. For this work, niobium (Nb2O5) and titanium (TiO2) oxides were prepared via solution processing in order to determine the effect of atomic arrangement (amorphous/crystalline) on bioactivity. Thermal evaluation on the synthesized materials identified an endotherm for Nb2O5 at 75 °C with 40% weight loss below 400 °C, and minimal weight loss between 400 and 850 °C. Regarding TiO2 an endotherm was present at 92 °C with 25% weight loss below 400 °C, and 4% between 400 and 850 °C. Phase evolution was determined using High Temperature X-ray Diffraction (HT-XRD) where amorphous-Nb2O5 (450 °C), hexagonal-Nb2O5 (525 °C), orthorhombic-Nb2O5 (650 °C), amorphous-TiO2 (275 °C) and tetragonal TiO2 (500 °C) structures were produced. Simulated body fluid (SBF) testing was conducted over 1, 7 and 30 days and resulted in positive chemical and morphological changes for crystalline Nb2O5 (525 °C) and TiO2 (500 °C) after 30 days of incubation. Rod-like CaP deposits were observed on the surfaces using Scanning Electron Microscopy (FE-SEM) and Grazing Incidence-X-ray Diffraction (GI-XRD) shows that the deposits were X-ray amorphous. Cell viability was higher with the TiO2 (122%) samples when compared to the growing cell population while Nb2O5 samples exhibited a range of viability (64-105%), partially dependent on materials atomic structure. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Influence of titanium implant surface characteristics on bone regeneration in dehiscence-type defects: an experimental study in dogs.

    Science.gov (United States)

    Schwarz, Frank; Sager, Martin; Kadelka, Ines; Ferrari, Daniel; Becker, Jürgen

    2010-05-01

    The aim of the present study was to compare bone regeneration in dehiscence-type defects at titanium implants with chemically modified sandblasted/acid-etched (modSLA) or dual acid-etched surfaces with a calcium phosphate nanometre particle modification (DCD/CaP). Buccal dehiscence-type defects were surgically created following implant site preparation in both the upper and the lower jaws of 12 fox hounds. Both types of implants were randomly allocated in a split-mouth design and left to heal in a submerged position for 2 and 8 weeks. Dissected blocks were processed for histomorphometrical analysis [e.g. new bone height (NBH), percentage of bone-to-implant contact (BIC), area of new bone fill (BF), and area of mineralized tissue (MT) within BF]. At 2 and 8 weeks, both groups revealed comparable mean BF (2.3+/-0.6 to 2.5+/-0.6 mm(2)versus 2.0+/-0.6 to 1.4+/-0.5 mm(2)) and MT (31.1+/-14.3-83.2+/-8.2%versus 38.9+/-15.9-84.4+/-6.3%) values. However, modSLA implants revealed significantly higher mean NBH (2.4+/-0.8 to 3.6+/-0.3 mm versus 0.9+/-0.8 to 1.8+/-1.4 mm) and BIC (53.3+/-11.3-79.5+/-6.6%versus 19.3+/-16.4-47.2+/-30.7%) values than DCD/CaP implants. ModSLA implants may have a higher potential to support osseointegration in dehiscence-type defects than DCD/CaP implants.

  13. Effect of titanium dental implants on proton therapy delivered for head tumors: experimental validation using an anthropomorphic head phantom

    Science.gov (United States)

    Oancea, C.; Shipulin, K.; Mytsin, G.; Molokanov, A.; Niculae, D.; Ambrožová, I.; Davídková, M.

    2017-03-01

    A dosimetric experiment was performed at the Medico-Technical Complex in the Joint Institute for Nuclear Research, Dubna, to investigate the effects of metallic dental implants in the treatment of head and neck tumours with proton therapy. The goal of the study was to evaluate the 2D dose distributions of different clinical treatment plans measured in an anthropomorphic phantom, and compare them to predictions from a treatment planning system. The anthropomorphic phantom was sliced into horizontal segments. Two grade 4 Titanium implants were inserted between 2 slices, corresponding to a maxillary area. GafChromic EBT2 films were placed between the segments containing the implants to measure the 2D delivered dose. Two different targets were designed: the first target includes the dental implants in the isocentre, and in the second target, the proton beam is delivered through the implants, which are located at the entrance region of the Bragg curve. The experimental results were compared to the treatment plans made using our custom 3D Treatment Planning System, named RayTreat. To quantitatively determine differences in the isodose distributions (measured and calculated), the gamma index (3 mm, 3%) was calculated for each target for the matrix value in the region of high isodose (> 90%): for the experimental setup, which includes the implants in the SOBP region, the result obtained was 84.3%. When the implants were localised in the entrance region of the Bragg curve, the result obtained was 86.4%. In conclusion, the uncertainties introduced by the clinically planned dose distribution are beyond reasonable limits. The linear energy transfer spectra in close proximity to the implants were investigated using solid state nuclear track detectors (TED). Scattered particles outside the target were detected.

  14. Effect of titanium dental implants on proton therapy delivered for head tumors: experimental validation using an anthropomorphic head phantom

    International Nuclear Information System (INIS)

    Oancea, C.; Shipulin, K.; Mytsin, G.; Molokanov, A.; Niculae, D.; Ambrožová, I.; Davídková, M.

    2017-01-01

    A dosimetric experiment was performed at the Medico-Technical Complex in the Joint Institute for Nuclear Research, Dubna, to investigate the effects of metallic dental implants in the treatment of head and neck tumours with proton therapy. The goal of the study was to evaluate the 2D dose distributions of different clinical treatment plans measured in an anthropomorphic phantom, and compare them to predictions from a treatment planning system. The anthropomorphic phantom was sliced into horizontal segments. Two grade 4 Titanium implants were inserted between 2 slices, corresponding to a maxillary area. GafChromic EBT2 films were placed between the segments containing the implants to measure the 2D delivered dose. Two different targets were designed: the first target includes the dental implants in the isocentre, and in the second target, the proton beam is delivered through the implants, which are located at the entrance region of the Bragg curve. The experimental results were compared to the treatment plans made using our custom 3D Treatment Planning System, named RayTreat. To quantitatively determine differences in the isodose distributions (measured and calculated), the gamma index (3 mm, 3%) was calculated for each target for the matrix value in the region of high isodose (> 90%): for the experimental setup, which includes the implants in the SOBP region, the result obtained was 84.3%. When the implants were localised in the entrance region of the Bragg curve, the result obtained was 86.4%. In conclusion, the uncertainties introduced by the clinically planned dose distribution are beyond reasonable limits. The linear energy transfer spectra in close proximity to the implants were investigated using solid state nuclear track detectors (TED). Scattered particles outside the target were detected.

  15. Release of titanium ions from an implant surface and their effect on cytokine production related to alveolar bone resorption

    International Nuclear Information System (INIS)

    Wachi, Takanori; Shuto, Takahiro; Shinohara, Yoshinori; Matono, Yoshinari; Makihira, Seicho

    2015-01-01

    Although interest in peri-implant mucositis and peri-implantitis has recently been increasing, the mechanisms driving these diseases remain unknown. Here, the effects of titanium ions on the inflammation and bone resorption around an implant were investigated. First, the accumulated amount of Ti ions released into gingival and bone tissues from an implant exposed to sodium fluoride solution was measured using inductively coupled plasma mass spectrometry. Next, the cellular responses in gingival and bone tissues to Ti ions and/or Porphyromonas gingivalis-lipopolysaccharide (P. gingivalis-LPS) were assessed using a rat model. More Ti ions were detected in the gingival tissues around an implant after treatment with sodium fluoride (pH 4.2) than in its absence, which suggests that the fluoride corroded the implant surface under salivary buffering capacity. The injection of Ti ions (9 ppm) significantly increased the mRNA expression and protein accumulation of chemokine (C–C motif) ligand 2, as well as the ratio of receptor activator of nuclear factor-κB ligand to osteoprotegerin, in rat gingival tissues exposed to P. gingivalis-LPS in a synergistic manner. In addition, the enhanced localization of toll-like receptor 4, which is an LPS receptor, was observed in gingival epithelium loaded with Ti ions (9 ppm). These data suggest that Ti ions may be partly responsible for the infiltration of monocytes and osteoclast differentiation by increasing the sensitivity of gingival epithelial cells to microorganisms in the oral cavity. Therefore, Ti ions may be involved in the deteriorating effects of peri-implant mucositis, which can develop into peri-implantitis accompanied by alveolar bone resorption

  16. Systemic assessment of patients undergoing dental implant surgeries: A trans- and post-operative analysis

    Directory of Open Access Journals (Sweden)

    Sanjay Byakodi

    2017-01-01

    Full Text Available Background: Procedure-related and patient-related factors influence the prognosis of dental implants to a major extent. Hence, we aimed to evaluate and analyze various systemic factors in patients receiving dental implants. Materials and Methods: Fifty-one patients were included in the study, in which a total of 110 dental implants were placed. Complete examination of the subjects was done before and after placement of dental implants. Implant surgery was planned, and osseointegrated dental implants were placed in the subjects. Postoperative evaluation of the dental implant patients was done after 3 weeks. Anxiety levels were determined using State-Trait Anxiety Inventory (STAI questionnaire on the surgery day and after 1 week of surgery. The participant describes how they feel at the moment by responding to twenty items as follows: (1 absolutely not, (2 slightly, (3 somewhat, or (4 very much. All the results were recorded and statistical analyzed by SPSS software. Results: Out of 51, 29 patients were males while 22 were females, with ratio of 1.32:1. Female patients' mean age was 50.18 years while male patients' mean age was 52.71 years, with statistically nonsignificant difference between them. Functional rehabilitation was the main purpose of choosing dental implants in more than 90% of the subjects. Diameter of 3.75 mm was the shortest implants to be placed in the present study, whereas in terms of length, 8.5 mm was the shortest length of dental implant used in the present study. Tooth area in which maximum implants were placed in our study was 36 tooth region. Maximum implants were placed in Type II bone quality (n = 38. Implants installed in the mandible were clamped more efficiently than implants placed in the maxilla (P < 0.001. The difference of average STAI-State subscore before and after the surgery was statistically significant (P < 0.05; significant. Conclusion: Mandibular dental implants show more clamping (torque than maxillary

  17. Influence of surgical and prosthetic techniques on marginal bone loss around titanium implants. Part I: immediate loading in fresh extraction sockets.

    Science.gov (United States)

    Berberi, Antoine N; Tehini, Georges E; Noujeim, Ziad F; Khairallah, Alexandre A; Abousehlib, Moustafa N; Salameh, Ziad A

    2014-10-01

    Delayed placement of implant abutments has been associated with peri-implant marginal bone loss; however, long-term results obtained by modifying surgical and prosthetic techniques after implant placement are still lacking. This study aimed to evaluate the marginal bone loss around titanium implants placed in fresh extraction sockets using two loading protocols after a 5-year follow-up period. A total of 36 patients received 40 titanium implants (Astra Tech) intended for single-tooth replacement. Implants were immediately placed into fresh extraction sockets using either a one-stage (immediate loading by placing an interim prosthesis into functional occlusion) or a two-stage prosthetic loading protocol (insertion of abutments after 8 weeks of healing time). Marginal bone levels relative to the implant reference point were evaluated at four time intervals using intraoral radiographs: at time of implant placement, and 1, 3, and 5 years after implant placement. Measurements were obtained from mesial and distal surfaces of each implant (α = 0.05). One-stage immediate implant placement into fresh extraction sockets resulted in a significant reduction in marginal bone loss (p sockets reduced marginal bone loss and did not compromise the success rate of the restorations. © 2014 by the American College of Prosthodontists.

  18. Current Trend of Antimicrobial Prescription for Oral Implant Surgery Among Dentists in India.

    Science.gov (United States)

    Datta, Rahul; Grewal, Yasmin; Batth, J S; Singh, Amandeep

    2014-12-01

    The aim of our study was to evaluate antimicrobial prescription behaviour amongst dentists performing oral implant surgery in India. Dentists performing oral implant surgery from different parts of India were personally approached during various national events such as conferences and academic meetings and information regarding their prescription habits for antimicrobial agents in routine oral implant surgery was collected using a structured questionnaire. Out of a total sample of 332 dentists, 85.5 % prescribed 17 different groups or combinations of antibiotics routinely for oral implant surgery in the normal healthy patient. Majority preferred the peri-operative protocol of drug therapy (72.2 %) with variable and prolonged duration of therapy after surgery, ranging from 3 to 10 days. An antimicrobial mouthwash was routinely prescribed by all the doctors (14.5 %) not in favour of prescribing antimicrobials in a normal healthy patient. Our findings suggest that there is a trend of antimicrobial agent misuse by dentists performing oral implant surgery in India, both in terms of drugs used and the protocols prescribed. The majority of these dentists prescribed a variety of antimicrobial agents for prolonged durations routinely even in the normal, healthy patients.

  19. Titanium and polyether ether ketone (PEEK) patient-specific sub-periosteal implants: two novel approaches for rehabilitation of the severely atrophic anterior maxillary ridge.

    Science.gov (United States)

    Mounir, M; Atef, M; Abou-Elfetouh, A; Hakam, M M

    2018-05-01

    The aim of this study was to assess two new protocols for single-stage rehabilitation of the severely atrophic maxillary ridge using customized porous titanium or polyether ether ketone (PEEK) sub-periosteal implants. Ten patients with a severely atrophic anterior maxillary alveolar ridge were divided randomly into two groups (five patients in each) to receive customized sub-periosteal implants fabricated via CAD/CAM technology: group 1, porous titanium implants; group 2, PEEK implants. Prosthetic loading with fixed acrylic bridges was performed 1 month postoperative. The implants were followed-up for 12 months and evaluated for the presence of any sign of radiographic bone resorption, mobility, infection, prosthetic fracture, or implant exposure. The immediate postoperative period was uneventful except for one case complicated by wound dehiscence in group 1. At 12 months, all implants were functionally stable and the patients were comfortable with the prostheses. No signs of radiographic bone resorption, mobility, infection, or prosthetic fracture were observed. Within the limitations of this study, the application of customized porous titanium and PEEK sub-periosteal implants produced through CAD/CAM technology appears to be an acceptable method for single-stage prosthetic rehabilitation of the severely atrophic edentulous anterior maxilla. This study was awarded the best case study at the academy of osseintegration annual meeting 2017, Orlando, Florida. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  20. Bacterial recovery using sonication versus swabbing of titanium and stainless steel implants inoculated with Staphylococcus pseudintermedius or Pseudomonas aeruginosa.

    Science.gov (United States)

    Keeshen, Thomas; Case, J Brad; Wellehan, James F; Dujowich, Mauricio

    2017-09-12

    To evaluate the use of sonication to improve recovery of bacteria from metal discs infected with bacteria commonly associated with implant infections in veterinary medicine. In vitro study in which sterile titanium (Ti6Al4V) and stainless steel (AIS1316-L) discs were incubated with either Staphylococcus pseudintermedius or Pseudomonas aeruginosa for 24 hours. The following three groups were compared: 1) the sonication group involved immersing the discs in sterile saline and sonicating for five minutes; 2) the sham group was considered a negative control in which the discs were immersed in saline for five minutes without sonication; and 3) the swab group involved systematically swabbing the implant with a sterile culturette. All samples were plated on blood agar and incubated for 24 hours. Colonies were then counted and compared. For both species of bacteria, there was a significant increase in bacterial colonies isolated using sonication compared to the other two study groups (p = 0.0001). No differences in bacterial growth were found between the two types of metal implants. There was a significant increase in bacterial colony counts for S. pseudintermedius when comparing the swab group versus the sham group, but this was not significant for P. aeruginosa. Sonication significantly improves recovery of bacteria commonly associated with veterinary implant-associated surgical site infections compared to swabbing of implants in vitro. A prospective clinical evaluation is indicated to determine the in vivo efficacy of sonication in veterinary patients.