WorldWideScience

Sample records for surgery computer simulations

  1. Computer Simulation Surgery for Mandibular Reconstruction Using a Fibular Osteotomy Guide

    Directory of Open Access Journals (Sweden)

    Woo Shik Jeong

    2014-09-01

    Full Text Available In the present study, a fibular osteotomy guide based on a computer simulation was applied to a patient who had undergone mandibular segmental ostectomy due to oncological complications. This patient was a 68-year-old woman who presented to our department with a biopsy-proven squamous cell carcinoma on her left gingival area. This lesion had destroyed the cortical bony structure, and the patient showed attenuation of her soft tissue along the inferior alveolar nerve, indicating perineural spread of the tumor. Prior to surgery, a three-dimensional computed tomography scan of the facial and fibular bones was performed. We then created a virtual computer simulation of the mandibular segmental defect through which we segmented the fibular to reconstruct the proper angulation in the original mandible. Approximately 2-cm segments were created on the basis of this simulation and applied to the virtually simulated mandibular segmental defect. Thus, we obtained a virtual model of the ideal mandibular reconstruction for this patient with a fibular free flap. We could then use this computer simulation for the subsequent surgery and minimize the bony gaps between the multiple fibular bony segments.

  2. Clinical application of 3D computer simulation for upper limb surgery

    International Nuclear Information System (INIS)

    Murase, Tsuyoshi; Moritomo, Hisao; Oka, Kunihiro; Arimitsu, Sayuri; Shimada, Kozo

    2008-01-01

    To perform precise orthopaedic surgery, we have been developing a surgical method using a custom-made surgical device designed based on preoperative three-dimensional computer simulation. The purpose of this study was to investigate the preliminary results of its clinical application for corrective osteotomy of the upper extremity. Twenty patients with long bone deformities of the upper extremities (four cubitus varus deformities, nine malunited forearm fractures, six malunited distal radial fractures and one congenital deformity of the forearm) participated in this study. Three-dimensional computer models of the affected bone and the contralateral normal bone were constructed from computed tomography data. By comparing these models, the three-dimensional deformity axis and the accurate amount of deformity around it were quantified. Three-dimensional deformity correction was then simulated. A custom-made osteotomy template was designed and manufactured as a real plastic model aiming to reproduce the preoperative simulation in the actual operation. In the operation, we put the template on the bone surface, cut the bone through a slit on the template, and corrected the deformity as preoperatively simulated, followed by internal fixation. Radiographic and clinical evaluations were made in all cases before surgery and at the most recent follow-up. Corrective osteotomy was achieved as simulated in all cases. All patients had bone fusion within six months. Regarding the cubitus varus deformity, the average carrying angle and tilting angle were 5deg and 28deg after surgery. For malunited forearm fractures, angular deformities on radiographs were nearly nonexistent after surgery. All radiographic parameters in malunited distal radius fractures were normalized. The range of forearm rotation in cases of forearm malunion and that of wrist flexion-extension in cases of malunited distal radius improved after surgery. (author)

  3. Interactive virtual simulation using a 3D computer graphics model for microvascular decompression surgery.

    Science.gov (United States)

    Oishi, Makoto; Fukuda, Masafumi; Hiraishi, Tetsuya; Yajima, Naoki; Sato, Yosuke; Fujii, Yukihiko

    2012-09-01

    The purpose of this paper is to report on the authors' advanced presurgical interactive virtual simulation technique using a 3D computer graphics model for microvascular decompression (MVD) surgery. The authors performed interactive virtual simulation prior to surgery in 26 patients with trigeminal neuralgia or hemifacial spasm. The 3D computer graphics models for interactive virtual simulation were composed of the brainstem, cerebellum, cranial nerves, vessels, and skull individually created by the image analysis, including segmentation, surface rendering, and data fusion for data collected by 3-T MRI and 64-row multidetector CT systems. Interactive virtual simulation was performed by employing novel computer-aided design software with manipulation of a haptic device to imitate the surgical procedures of bone drilling and retraction of the cerebellum. The findings were compared with intraoperative findings. In all patients, interactive virtual simulation provided detailed and realistic surgical perspectives, of sufficient quality, representing the lateral suboccipital route. The causes of trigeminal neuralgia or hemifacial spasm determined by observing 3D computer graphics models were concordant with those identified intraoperatively in 25 (96%) of 26 patients, which was a significantly higher rate than the 73% concordance rate (concordance in 19 of 26 patients) obtained by review of 2D images only (p computer graphics model provided a realistic environment for performing virtual simulations prior to MVD surgery and enabled us to ascertain complex microsurgical anatomy.

  4. Computational surgery and dual training computing, robotics and imaging

    CERN Document Server

    Bass, Barbara; Berceli, Scott; Collet, Christophe; Cerveri, Pietro

    2014-01-01

    This critical volume focuses on the use of medical imaging, medical robotics, simulation, and information technology in surgery. It offers a road map for computational surgery success,  discusses the computer-assisted management of disease and surgery, and provides a rational for image processing and diagnostic. This book also presents some advances on image-driven intervention and robotics, as well as evaluates models and simulations for a broad spectrum of cancers as well as cardiovascular, neurological, and bone diseases. Training and performance analysis in surgery assisted by robotic systems is also covered. This book also: ·         Provides a comprehensive overview of the use of computational surgery and disease management ·         Discusses the design and use of medical robotic tools for orthopedic surgery, endoscopic surgery, and prostate surgery ·         Provides practical examples and case studies in the areas of image processing, virtual surgery, and simulation traini...

  5. A review of computer-aided oral and maxillofacial surgery: planning, simulation and navigation.

    Science.gov (United States)

    Chen, Xiaojun; Xu, Lu; Sun, Yi; Politis, Constantinus

    2016-11-01

    Currently, oral and maxillofacial surgery (OMFS) still poses a significant challenge for surgeons due to the anatomic complexity and limited field of view of the oral cavity. With the great development of computer technologies, he computer-aided surgery has been widely used for minimizing the risks and improving the precision of surgery. Areas covered: The major goal of this paper is to provide a comprehensive reference source of current and future development of computer-aided OMFS including surgical planning, simulation and navigation for relevant researchers. Expert commentary: Compared with the traditional OMFS, computer-aided OMFS overcomes the disadvantage that the treatment on the region of anatomically complex maxillofacial depends almost exclusively on the experience of the surgeon.

  6. Comparison of real and computer-simulated outcomes of LASIK refractive surgery

    Science.gov (United States)

    Cano, Daniel; Barbero, Sergio; Marcos, Susana

    2004-06-01

    Computer simulations of alternative LASIK ablation patterns were performed for corneal elevation maps of 13 real myopic corneas (range of myopia, -2.0 to -11.5 D). The computationally simulated ablation patterns were designed with biconic surfaces (standard Munnerlyn pattern, parabolic pattern, and biconic pattern) or with aberrometry measurements (customized pattern). Simulated results were compared with real postoperative outcomes. Standard LASIK refractive surgery for myopia increased corneal asphericity and spherical aberration. Computations with the theoretical Munnerlyn ablation pattern did not increase the corneal asphericity and spherical aberration. The theoretical parabolic pattern induced a slight increase of asphericity and spherical aberration, explaining only 40% of the clinically found increase. The theoretical biconic pattern controlled corneal spherical aberration. Computations showed that the theoretical customized pattern can correct high-order asymmetric aberrations. Simulations of changes in efficiency due to reflection and nonnormal incidence of the laser light showed a further increase in corneal asphericity. Consideration of these effects with a parabolic pattern accounts for 70% of the clinical increase in asphericity.

  7. Three-Dimensional Liver Surgery Simulation: Computer-Assisted Surgical Planning with Three-Dimensional Simulation Software and Three-Dimensional Printing.

    Science.gov (United States)

    Oshiro, Yukio; Ohkohchi, Nobuhiro

    2017-06-01

    To perform accurate hepatectomy without injury, it is necessary to understand the anatomical relationship among the branches of Glisson's sheath, hepatic veins, and tumor. In Japan, three-dimensional (3D) preoperative simulation for liver surgery is becoming increasingly common, and liver 3D modeling and 3D hepatectomy simulation by 3D analysis software for liver surgery have been covered by universal healthcare insurance since 2012. Herein, we review the history of virtual hepatectomy using computer-assisted surgery (CAS) and our research to date, and we discuss the future prospects of CAS. We have used the SYNAPSE VINCENT medical imaging system (Fujifilm Medical, Tokyo, Japan) for 3D visualization and virtual resection of the liver since 2010. We developed a novel fusion imaging technique combining 3D computed tomography (CT) with magnetic resonance imaging (MRI). The fusion image enables us to easily visualize anatomic relationships among the hepatic arteries, portal veins, bile duct, and tumor in the hepatic hilum. In 2013, we developed an original software, called Liversim, which enables real-time deformation of the liver using physical simulation, and a randomized control trial has recently been conducted to evaluate the use of Liversim and SYNAPSE VINCENT for preoperative simulation and planning. Furthermore, we developed a novel hollow 3D-printed liver model whose surface is covered with frames. This model is useful for safe liver resection, has better visibility, and the production cost is reduced to one-third of a previous model. Preoperative simulation and navigation with CAS in liver resection are expected to help planning and conducting a surgery and surgical education. Thus, a novel CAS system will contribute to not only the performance of reliable hepatectomy but also to surgical education.

  8. CARS 2008: Computer Assisted Radiology and Surgery. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-06-15

    The proceedings contain contributions to the following topics: digital imaging, computed tomography, magnetic resonance, cardiac and vascular imaging, computer assisted radiation therapy, image processing and display, minimal invasive spinal surgery, computer assisted treatment of the prostate, the interventional radiology suite of the future, interventional oncology, computer assisted neurosurgery, computer assisted head and neck and ENT surgery, cardiovascular surgery, computer assisted orthopedic surgery, image processing and visualization, surgical robotics, instrumentation and navigation, surgical modelling, simulation and education, endoscopy and related techniques, workflow and new concepts in surgery, research training group 1126: intelligent surgery, digital operating room, image distribution and integration strategies, regional PACS and telemedicine, PACS - beyond radiology and E-learning, workflow and standardization, breast CAD, thoracic CAD, abdominal CAD, brain CAD, orthodontics, dentofacial orthopedics and airways, imaging and treating temporomandibular joint conditions, maxillofacial cone beam CT, craniomaxillofacial image fusion and CBCT incidental findings, image guided craniomaxillofacial procedures, imaging as a biomarker for therapy response, computer aided diagnosis. The Poster sessions cover the topics computer aided surgery, Euro PACS meeting, computer assisted radiology, computer aided diagnosis and computer assisted radiology and surgery.

  9. CARS 2008: Computer Assisted Radiology and Surgery. Proceedings

    International Nuclear Information System (INIS)

    2008-01-01

    The proceedings contain contributions to the following topics: digital imaging, computed tomography, magnetic resonance, cardiac and vascular imaging, computer assisted radiation therapy, image processing and display, minimal invasive spinal surgery, computer assisted treatment of the prostate, the interventional radiology suite of the future, interventional oncology, computer assisted neurosurgery, computer assisted head and neck and ENT surgery, cardiovascular surgery, computer assisted orthopedic surgery, image processing and visualization, surgical robotics, instrumentation and navigation, surgical modelling, simulation and education, endoscopy and related techniques, workflow and new concepts in surgery, research training group 1126: intelligent surgery, digital operating room, image distribution and integration strategies, regional PACS and telemedicine, PACS - beyond radiology and E-learning, workflow and standardization, breast CAD, thoracic CAD, abdominal CAD, brain CAD, orthodontics, dentofacial orthopedics and airways, imaging and treating temporomandibular joint conditions, maxillofacial cone beam CT, craniomaxillofacial image fusion and CBCT incidental findings, image guided craniomaxillofacial procedures, imaging as a biomarker for therapy response, computer aided diagnosis. The Poster sessions cover the topics computer aided surgery, Euro PACS meeting, computer assisted radiology, computer aided diagnosis and computer assisted radiology and surgery

  10. Computer Simulation and Digital Resources for Plastic Surgery Psychomotor Education.

    Science.gov (United States)

    Diaz-Siso, J Rodrigo; Plana, Natalie M; Stranix, John T; Cutting, Court B; McCarthy, Joseph G; Flores, Roberto L

    2016-10-01

    Contemporary plastic surgery residents are increasingly challenged to learn a greater number of complex surgical techniques within a limited period. Surgical simulation and digital education resources have the potential to address some limitations of the traditional training model, and have been shown to accelerate knowledge and skills acquisition. Although animal, cadaver, and bench models are widely used for skills and procedure-specific training, digital simulation has not been fully embraced within plastic surgery. Digital educational resources may play a future role in a multistage strategy for skills and procedures training. The authors present two virtual surgical simulators addressing procedural cognition for cleft repair and craniofacial surgery. Furthermore, the authors describe how partnerships among surgical educators, industry, and philanthropy can be a successful strategy for the development and maintenance of digital simulators and educational resources relevant to plastic surgery training. It is our responsibility as surgical educators not only to create these resources, but to demonstrate their utility for enhanced trainee knowledge and technical skills development. Currently available digital resources should be evaluated in partnership with plastic surgery educational societies to guide trainees and practitioners toward effective digital content.

  11. Computer assisted radiology and surgery. CARS 2010

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The conference proceedings include contributions to the following topics: (1) CARS Clinical Day: minimally invasive spiral surgery, interventional radiology; (2) CARS - computer assisted radiology and surgery: ophthalmology, stimulation methods, new approaches to diagnosis and therapy; (3) Computer assisted radiology 24th International congress and exhibition: computer tomography and magnetic resonance, digital angiographic imaging, digital radiography, ultrasound, computer assisted radiation therapy, medical workstations, image processing and display; (4) 14th Annual conference of the International Society for computer aided surgery; ENT-CMF head and neck surgery computer-assisted neurosurgery, cardiovascular surgery, image guided liver surgery, abdominal and laparoscopic surgery, computer-assisted orthopedic surgery, image processing and visualization, surgical robotics and instrumentation, surgical modeling, simulation and education; (5) 28th International EuroPACS meeting: image distribution and integration strategies, planning and evaluation, telemedicine and standards, workflow and data flow in radiology; (6) 11th CARS/SPIE/EuroPACS joint workshop on surgical PACS and the digital operating, management and assessment of OR systems and integration; (7) 12th International workshop on computer-aided diagnosis: special session on breast CAD, special session on thoracic CAD, special session on abdominal brain, lumbar spine CAD; (8) 16th computed Maxillofacial imaging congress: computed maxillofacial imaging in dental implantology, orthodontics and dentofacial orthopedics; approaches to 3D maxillofacial imaging; surgical navigation; (9) 2nd EuroNOTES/CARS workshop on NOTES: an interdisciplinary challenge; (10) 2nd EPMA/CARS workshop on personalized medicine and ICT.; (11)poster sessions.

  12. Computer assisted radiology and surgery. CARS 2010

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-06-15

    The conference proceedings include contributions to the following topics: (1) CARS Clinical Day: minimally invasive spiral surgery, interventional radiology; (2) CARS - computer assisted radiology and surgery: ophthalmology, stimulation methods, new approaches to diagnosis and therapy; (3) Computer assisted radiology 24th International congress and exhibition: computer tomography and magnetic resonance, digital angiographic imaging, digital radiography, ultrasound, computer assisted radiation therapy, medical workstations, image processing and display; (4) 14th Annual conference of the International Society for computer aided surgery; ENT-CMF head and neck surgery computer-assisted neurosurgery, cardiovascular surgery, image guided liver surgery, abdominal and laparoscopic surgery, computer-assisted orthopedic surgery, image processing and visualization, surgical robotics and instrumentation, surgical modeling, simulation and education; (5) 28th International EuroPACS meeting: image distribution and integration strategies, planning and evaluation, telemedicine and standards, workflow and data flow in radiology; (6) 11th CARS/SPIE/EuroPACS joint workshop on surgical PACS and the digital operating, management and assessment of OR systems and integration; (7) 12th International workshop on computer-aided diagnosis: special session on breast CAD, special session on thoracic CAD, special session on abdominal brain, lumbar spine CAD; (8) 16th computed Maxillofacial imaging congress: computed maxillofacial imaging in dental implantology, orthodontics and dentofacial orthopedics; approaches to 3D maxillofacial imaging; surgical navigation; (9) 2nd EuroNOTES/CARS workshop on NOTES: an interdisciplinary challenge; (10) 2nd EPMA/CARS workshop on personalized medicine and ICT.; (11)poster sessions.

  13. Application of Simulated Three Dimensional CT Image in Orthognathic Surgery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Don; Park, Chang Seo [Dept. of Dental Radiology, College of Dentistry, Yensei University, Seoul (Korea, Republic of); Yoo, Sun Kook; Lee, Kyoung Sang [Dept. of Medical Engineering, College of Medicine, Yensei University, Seoul (Korea, Republic of)

    1998-08-15

    In orthodontics and orthognathic surgery, cephalogram has been routine practice in diagnosis and treatment evaluation of craniofacial deformity. But its inherent distortion of actual length and angles during projecting three dimensional object to two dimensional plane might cause errors in quantitative analysis of shape and size. Therefore, it is desirable that three dimensional object is diagnosed and evaluated three dimensionally and three dimensional CT image is best for three dimensional analysis. Development of clinic necessitates evaluation of result of treatment and comparison before and after surgery. It is desirable that patient that was diagnosed and planned by three dimensional computed tomography before surgery is evaluated by three dimensional computed tomography after surgery, too. But Because there is no standardized normal values in three dimension now and three dimensional Computed Tomography needs expensive equipment and because of its expenses and amount of exposure to radiation, limitations still remain to be solved in its application to routine practice. If postoperative three dimensional image is constructed by pre and postoperative lateral and postero-anterior cephalograms and preoperative three dimensional computed tomogram, pre and postoperative image will be compared and evaluated three dimensionally without three dimensional computed tomography after surgery and that will contribute to standardize normal values in three dimension. This study introduced new method that computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms, and for validation of new method, in four cases of dry skull that position of mandible was displaced and four patients of orthognathic surgery, computer-simulated three dimensional image and actual postoperative three dimensional image were compared. The results were as follows. 1. In four cases of

  14. Application of Simulated Three Dimensional CT Image in Orthognathic Surgery

    International Nuclear Information System (INIS)

    Kim, Hyun Don; Park, Chang Seo; Yoo, Sun Kook; Lee, Kyoung Sang

    1998-01-01

    In orthodontics and orthognathic surgery, cephalogram has been routine practice in diagnosis and treatment evaluation of craniofacial deformity. But its inherent distortion of actual length and angles during projecting three dimensional object to two dimensional plane might cause errors in quantitative analysis of shape and size. Therefore, it is desirable that three dimensional object is diagnosed and evaluated three dimensionally and three dimensional CT image is best for three dimensional analysis. Development of clinic necessitates evaluation of result of treatment and comparison before and after surgery. It is desirable that patient that was diagnosed and planned by three dimensional computed tomography before surgery is evaluated by three dimensional computed tomography after surgery, too. But Because there is no standardized normal values in three dimension now and three dimensional Computed Tomography needs expensive equipment and because of its expenses and amount of exposure to radiation, limitations still remain to be solved in its application to routine practice. If postoperative three dimensional image is constructed by pre and postoperative lateral and postero-anterior cephalograms and preoperative three dimensional computed tomogram, pre and postoperative image will be compared and evaluated three dimensionally without three dimensional computed tomography after surgery and that will contribute to standardize normal values in three dimension. This study introduced new method that computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms, and for validation of new method, in four cases of dry skull that position of mandible was displaced and four patients of orthognathic surgery, computer-simulated three dimensional image and actual postoperative three dimensional image were compared. The results were as follows. 1. In four cases of

  15. Computer-assisted preoperative simulation for positioning and fixation of plate in 2-stage procedure combining maxillary advancement by distraction technique and mandibular setback surgery.

    Science.gov (United States)

    Suenaga, Hideyuki; Taniguchi, Asako; Yonenaga, Kazumichi; Hoshi, Kazuto; Takato, Tsuyoshi

    2016-01-01

    Computer-assisted preoperative simulation surgery is employed to plan and interact with the 3D images during the orthognathic procedure. It is useful for positioning and fixation of maxilla by a plate. We report a case of maxillary retrusion by a bilateral cleft lip and palate, in which a 2-stage orthognathic procedure (maxillary advancement by distraction technique and mandibular setback surgery) was performed following a computer-assisted preoperative simulation planning to achieve the positioning and fixation of the plate. A high accuracy was achieved in the present case. A 21-year-old male patient presented to our department with a complaint of maxillary retrusion following bilateral cleft lip and palate. Computer-assisted preoperative simulation with 2-stage orthognathic procedure using distraction technique and mandibular setback surgery was planned. The preoperative planning of the procedure resulted in good aesthetic outcomes. The error of the maxillary position was less than 1mm. The implementation of the computer-assisted preoperative simulation for the positioning and fixation of plate in 2-stage orthognathic procedure using distraction technique and mandibular setback surgery yielded good results. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  16. Lung surgery assisted by multidetector-row computed tomographic simulation

    International Nuclear Information System (INIS)

    Oizumi, Hiroyuki; Endoh, Makoto; Ota, Hiroshi; Takeda, Shinichi; Suzuki, Jun; Fukaya, Ken; Chiba, Masato; Sadahiro, Mitsuaki

    2009-01-01

    We describe the benefits of lung resection simulation using multidetector computed tomography (MDCT). Since 2004, the 1.0-mm slice digital imaging and communications in medicine (DICOM) server has been used for storing data obtained using 64-row MDCT. We observed that an abnormality could not be visualized from the pleural surface in 10 nodules of 18 lesions undergoing wedge lung resection. These 10 nodules were resected through simulation using a three-dimensional (3D) volume-rendering method by considering parameters such as the position, depth, or distance from the interlobar abnormalities, etc., without the need for any marking methods. For lung lobectomy, identification of the branching structures, diameter, and length of the arteries is useful in selecting the procedure for blood vessel treatment. However, in the initial 10 patients of this series, the preoperative identification of 2 small arterial branches was unsuccessful when this method was used. Therefore, it is important to carefully examine the original data in all 3 views, id est (i.e.), axial, sagittal, and coronal views. The visualization of venous branches in affected segments and intersegmental veins has facilitated the preoperative determination of the anatomical intersegmental plane. We divided the cases of thoracoscopic lung segmentectomy into 3 groups (level 1: simple, level 2: intermediate, and level 3: complex) on the basis of the technical complexity. Only level 1 segmentectomies were performed without MDCT simulation. Further, level 2 and 3 segmentectomies could be successfully performed because of the introduction of MDCT simulation in 25 of 35 patients. Thus, this simulation technique may be useful during a thoracoscopic procedure for lung surgery. (author)

  17. Does computer-aided surgical simulation improve efficiency in bimaxillary orthognathic surgery?

    Science.gov (United States)

    Schwartz, H C

    2014-05-01

    The purpose of this study was to compare the efficiency of bimaxillary orthognathic surgery using computer-aided surgical simulation (CASS), with cases planned using traditional methods. Total doctor time was used to measure efficiency. While costs vary widely in different localities and in different health schemes, time is a valuable and limited resource everywhere. For this reason, total doctor time is a more useful measure of efficiency than is cost. Even though we use CASS primarily for planning more complex cases at the present time, this study showed an average saving of 60min for each case. In the context of a department that performs 200 bimaxillary cases each year, this would represent a saving of 25 days of doctor time, if applied to every case. It is concluded that CASS offers great potential for improving efficiency when used in the planning of bimaxillary orthognathic surgery. It saves significant doctor time that can be applied to additional surgical work. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  18. Simulation training in video-assisted urologic surgery.

    Science.gov (United States)

    Hoznek, András; Salomon, Laurent; de la Taille, Alexandre; Yiou, René; Vordos, Dimitrios; Larre, Stéphane; Abbou, Clément-Claude

    2006-03-01

    The current system of surgical education is facing many challenges in terms of time efficiency, costs, and patient safety. Training using simulation is an emerging area, mostly based on the experience of other high-risk professions like aviation. The goal of simulation-based training in surgery is to develop not only technical but team skills. This learning environment is stress-free and safe, allows standardization and tailoring of training, and also objectively evaluate performances. The development of simulation training is straightforward in endourology, since these procedures are video-assisted and the low degree of freedom of the instruments is easily replicated. On the other hand, these interventions necessitate a long learning curve, training in the operative room is especially costly and risky. Many models are already in use or under development in all fields of video-assisted urologic surgery: ureteroscopy, percutaneous surgery, transurethral resection of the prostate, and laparoscopy. Although bench models are essential, simulation increasingly benefits from the achievements and development of computer technology. Still in its infancy, virtual reality simulation will certainly belong to tomorrow's teaching tools.

  19. Computer-assisted oral and maxillofacial surgery

    International Nuclear Information System (INIS)

    Hassfeld, S.; Brief, J.; Muehling, J.; Krempien, R.; Mende, U.; Raczkowsky, J.; Muenchenberg, J.; Woern, H.; Giess, H.; Meinzer, H.P.

    2000-01-01

    Background: Methods from the area of virtual reality are used in oral and maxillofacial surgery for the planning and three-dimensional individual simulation of surgeries. Simulation: In order to simulate complex surgeries with the aid of a computer, the diagnostic image data and especially various imaging modalities (CT, MRT, US) must be arranged in relation to each other, thus enabling rapid switching between the various modalities as well as the viewing of mixed images. Segmenting techniques for the reconstruction of three-dimensional representations of soft-tissue and osseous areas are required. We must develop ergonomic and intuitively useable interaction methods for the surgeon, thus allowing for precise and fast entry of the planned surgical intervention in the planning and simulation phase. Surgery: During the surgical phase, instrument navigation tools offer the surgeon interactive support through operation guidance and control of potential dangers. This feature is already available today. Future intraoperative assistance will take the form of such passive tools for the support of intraoperative orientation as well as so-called tracking systems (semi-active systems) which accompany and support the surgeons' work. The final form are robots which execute specific steps completely autonomously. Discussion: The techniques of virtual reality keep gaining in importance for medical applications. Many applications are still being developed or are still in the form of a prototype. However, it is already clear that developments in this area will have a considerable effect on the surgeon's routine work. (orig.) [de

  20. CUDA-based real time surgery simulation.

    Science.gov (United States)

    Liu, Youquan; De, Suvranu

    2008-01-01

    In this paper we present a general software platform that enables real time surgery simulation on the newly available compute unified device architecture (CUDA)from NVIDIA. CUDA-enabled GPUs harness the power of 128 processors which allow data parallel computations. Compared to the previous GPGPU, it is significantly more flexible with a C language interface. We report implementation of both collision detection and consequent deformation computation algorithms. Our test results indicate that the CUDA enables a twenty times speedup for collision detection and about fifteen times speedup for deformation computation on an Intel Core 2 Quad 2.66 GHz machine with GeForce 8800 GTX.

  1. Protocol for concomitant temporomandibular joint custom-fitted total joint reconstruction and orthognathic surgery utilizing computer-assisted surgical simulation.

    Science.gov (United States)

    Movahed, Reza; Teschke, Marcus; Wolford, Larry M

    2013-12-01

    Clinicians who address temporomandibular joint (TMJ) pathology and dentofacial deformities surgically can perform the surgery in 1 stage or 2 separate stages. The 2-stage approach requires the patient to undergo 2 separate operations and anesthesia, significantly prolonging the overall treatment. However, performing concomitant TMJ and orthognathic surgery (CTOS) in these cases requires careful treatment planning and surgical proficiency in the 2 surgical areas. This article presents a new treatment protocol for the application of computer-assisted surgical simulation in CTOS cases requiring reconstruction with patient-fitted total joint prostheses. The traditional and new CTOS protocols are described and compared. The new CTOS protocol helps decrease the preoperative workup time and increase the accuracy of model surgery. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Surgical robot setup simulation with consistent kinematics and haptics for abdominal surgery.

    Science.gov (United States)

    Hayashibe, Mitsuhiro; Suzuki, Naoki; Hattori, Asaki; Suzuki, Shigeyuki; Konishi, Kozo; Kakeji, Yoshihiro; Hashizume, Makoto

    2005-01-01

    Preoperative simulation and planning of surgical robot setup should accompany advanced robotic surgery if their advantages are to be further pursued. Feedback from the planning system will plays an essential role in computer-aided robotic surgery in addition to preoperative detailed geometric information from patient CT/MRI images. Surgical robot setup simulation systems for appropriate trocar site placement have been developed especially for abdominal surgery. The motion of the surgical robot can be simulated and rehearsed with kinematic constraints at the trocar site, and the inverse-kinematics of the robot. Results from simulation using clinical patient data verify the effectiveness of the proposed system.

  3. Computer-assisted preoperative simulation for positioning of plate fixation in Lefort I osteotomy: A case report

    Directory of Open Access Journals (Sweden)

    Hideyuki Suenaga

    2016-06-01

    Full Text Available Computed tomography images are used for three-dimensional planning in orthognathic surgery. This facilitates the actual surgery by simulating the surgical scenario. We performed a computer-assisted virtual orthognathic surgical procedure using optically scanned three-dimensional (3D data and real computed tomography data on a personal computer. It helped maxillary bone movement and positioning and the titanium plate temporary fixation and positioning. This simulated the surgical procedure, which made the procedure easy, and we could perform precise actual surgery and could forecast the postsurgery outcome. This simulation method promises great potential in orthognathic surgery to help surgeons plan and perform operative procedures more precisely.

  4. Mechatronics Interface for Computer Assisted Prostate Surgery Training

    Science.gov (United States)

    Altamirano del Monte, Felipe; Padilla Castañeda, Miguel A.; Arámbula Cosío, Fernando

    2006-09-01

    In this work is presented the development of a mechatronics device to simulate the interaction of the surgeon with the surgical instrument (resectoscope) used during a Transurethral Resection of the Prostate (TURP). Our mechatronics interface is part of a computer assisted system for training in TURP, which is based on a 3D graphics model of the prostate which can be deformed and resected interactively by the user. The mechatronics interface, is the device that the urology residents will manipulate to simulate the movements performed during surgery. Our current prototype has five degrees of freedom, which are enough to have a realistic simulation of the surgery movements. Two of these degrees of freedom are linear, to determinate the linear displacement of the resecting loop and the other three are rotational to determinate three directions and amounts of rotation.

  5. Computer-assisted preoperative simulation for positioning and fixation of plate in 2-stage procedure combining maxillary advancement by distraction technique and mandibular setback surgery

    Directory of Open Access Journals (Sweden)

    Hideyuki Suenaga

    2016-01-01

    Conclusion: The implementation of the computer-assisted preoperative simulation for the positioning and fixation of plate in 2-stage orthognathic procedure using distraction technique and mandibular setback surgery yielded good results.

  6. [Simulation in pediatric surgery].

    Science.gov (United States)

    Becmeur, François; Lacreuse, Isabelle; Soler, Luc

    2011-11-01

    Simulation in paediatric surgery is essential for educational, ethical, medicolegal and economic reasons, and is particularly important for rare procedures. There are three different levels of simulation:--simulation of basic techniques in order to learn or improve surgical skills (dissection, intracorporeal knots, etc.);--preparation for surgery using virtual reality, to perfect and test various procedures on a virtual patient, and to determine the best approaches for individual cases;--behavioral simulation underlines the importance of the preoperative check-list and facilitates crisis management (complications, conversion, etc.).

  7. Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

    Science.gov (United States)

    Uchida, Masafumi

    2014-04-01

    A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  8. Design-Based Comparison of Spine Surgery Simulators: Optimizing Educational Features of Surgical Simulators.

    Science.gov (United States)

    Ryu, Won Hyung A; Mostafa, Ahmed E; Dharampal, Navjit; Sharlin, Ehud; Kopp, Gail; Jacobs, W Bradley; Hurlbert, R John; Chan, Sonny; Sutherland, Garnette R

    2017-10-01

    Simulation-based education has made its entry into surgical residency training, particularly as an adjunct to hands-on clinical experience. However, one of the ongoing challenges to wide adoption is the capacity of simulators to incorporate educational features required for effective learning. The aim of this study was to identify strengths and limitations of spine simulators to characterize design elements that are essential in enhancing resident education. We performed a mixed qualitative and quantitative cohort study with a focused survey and interviews of stakeholders in spine surgery pertaining to their experiences on 3 spine simulators. Ten participants were recruited spanning all levels of training and expertise until qualitative analysis reached saturation of themes. Participants were asked to perform lumbar pedicle screw insertion on 3 simulators. Afterward, a 10-item survey was administrated and a focused interview was conducted to explore topics pertaining to the design features of the simulators. Overall impressions of the simulators were positive with regards to their educational benefit, but our qualitative analysis revealed differing strengths and limitations. Main design strengths of the computer-based simulators were incorporation of procedural guidance and provision of performance feedback. The synthetic model excelled in achieving more realistic haptic feedback and incorporating use of actual surgical tools. Stakeholders from trainees to experts acknowledge the growing role of simulation-based education in spine surgery. However, different simulation modalities have varying design elements that augment learning in distinct ways. Characterization of these design characteristics will allow for standardization of simulation curricula in spinal surgery, optimizing educational benefit. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Computer assisted orthopaedic and trauma surgery. State of the art and future perspectives

    NARCIS (Netherlands)

    Schep, N. W. L.; Broeders, I. A. M. J.; van der Werken, Chr

    2003-01-01

    In recent years computer technologies have become more and more integrated in surgical procedures. The potential advantages of computer assisted surgery (CAS) are: increase of accuracy of surgical interventions, less invasive operations, better planning and simulation and reduction of radiation

  10. Assessment of skills using a virtual reality temporal bone surgery simulator.

    Science.gov (United States)

    Linke, R; Leichtle, A; Sheikh, F; Schmidt, C; Frenzel, H; Graefe, H; Wollenberg, B; Meyer, J E

    2013-08-01

    Surgery on the temporal bone is technically challenging due to its complex anatomy. Precise anatomical dissection of the human temporal bone is essential and is fundamental for middle ear surgery. We assessed the possible application of a virtual reality temporal bone surgery simulator to the education of ear surgeons. Seventeen ENT physicians with different levels of surgical training and 20 medical students performed an antrotomy with a computer-based virtual temporal bone surgery simulator. The ease, accuracy and timing of the simulated temporal bone surgery were assessed using the automatic assessment software provided by the simulator device and additionally with a modified Final Product Analysis Scale. Trained ENT surgeons, physicians without temporal bone surgical training and medical students were all able to perform the antrotomy. However, the highly trained ENT surgeons were able to complete the surgery in approximately half the time, with better handling and accuracy as assessed by the significant reduction in injury to important middle ear structures. Trained ENT surgeons achieved significantly higher scores using both dissection analysis methods. Surprisingly, there were no significant differences in the results between medical students and physicians without experience in ear surgery. The virtual temporal bone training system can stratify users of known levels of experience. This system can be used not only to improve the surgical skills of trained ENT surgeons for more successful and injury-free surgeries, but also to train inexperienced physicians/medical students in developing their surgical skills for the ear.

  11. Computer simulation of orthognathic surgery with video imaging

    Science.gov (United States)

    Sader, Robert; Zeilhofer, Hans-Florian U.; Horch, Hans-Henning

    1994-04-01

    Patients with extreme jaw imbalance must often undergo operative corrections. The goal of therapy is to harmonize the stomatognathic system and an aesthetical correction of the face profile. A new procedure will be presented which supports the maxillo-facial surgeon in planning the operation and which also presents the patient the result of the treatment by video images. Once an x-ray has been digitized it is possible to produce individualized cephalometric analyses. Using a ceph on screen, all current orthognathic operations can be simulated, whereby the bony segments are moved according to given parameters, and a new soft tissue profile can be calculated. The profile of the patient is fed into the computer by way of a video system and correlated to the ceph. Using the simulated operation the computer calculates a new video image of the patient which presents the expected postoperative appearance. In studies of patients treated between 1987-91, 76 out of 121 patients were able to be evaluated. The deviation in profile change varied between .0 and 1.6mm. A side effect of the practical applications was an increase in patient compliance.

  12. Algorithm for planning a double-jaw orthognathic surgery using a computer-aided surgical simulation (CASS) protocol. Part 1: planning sequence

    Science.gov (United States)

    Xia, J. J.; Gateno, J.; Teichgraeber, J. F.; Yuan, P.; Chen, K.-C.; Li, J.; Zhang, X.; Tang, Z.; Alfi, D. M.

    2015-01-01

    The success of craniomaxillofacial (CMF) surgery depends not only on the surgical techniques, but also on an accurate surgical plan. The adoption of computer-aided surgical simulation (CASS) has created a paradigm shift in surgical planning. However, planning an orthognathic operation using CASS differs fundamentally from planning using traditional methods. With this in mind, the Surgical Planning Laboratory of Houston Methodist Research Institute has developed a CASS protocol designed specifically for orthognathic surgery. The purpose of this article is to present an algorithm using virtual tools for planning a double-jaw orthognathic operation. This paper will serve as an operation manual for surgeons wanting to incorporate CASS into their clinical practice. PMID:26573562

  13. Virtual reality applied to hepatic surgery simulation: the next revolution.

    Science.gov (United States)

    Marescaux, J; Clément, J M; Tassetti, V; Koehl, C; Cotin, S; Russier, Y; Mutter, D; Delingette, H; Ayache, N

    1998-11-01

    This article describes a preliminary work on virtual reality applied to liver surgery and discusses the repercussions of assisted surgical strategy and surgical simulation on tomorrow's surgery. Liver surgery is considered difficult because of the complexity and variability of the organ. Common generic tools for presurgical medical image visualization do not fulfill the requirements for the liver, restricting comprehension of a patient's specific liver anatomy. Using data from the National Library of Medicine, a realistic three-dimensional image was created, including the envelope and the four internal arborescences. A computer interface was developed to manipulate the organ and to define surgical resection planes according to internal anatomy. The first step of surgical simulation was implemented, providing the organ with real-time deformation computation. The three-dimensional anatomy of the liver could be clearly visualized. The virtual organ could be manipulated and a resection defined depending on the anatomic relations between the arborescences, the tumor, and the external envelope. The resulting parts could also be visualized and manipulated. The simulation allowed the deformation of a liver model in real time by means of a realistic laparoscopic tool. Three-dimensional visualization of the organ in relation to the pathology is of great help to appreciate the complex anatomy of the liver. Using virtual reality concepts (navigation, interaction, and immersion), surgical planning, training, and teaching for this complex surgical procedure may be possible. The ability to practice a given gesture repeatedly will revolutionize surgical training, and the combination of surgical planning and simulation will improve the efficiency of intervention, leading to optimal care delivery.

  14. COMPUTERS IN SURGERY

    African Journals Online (AJOL)

    BODE

    Key words: Computers, surgery, applications. Introduction ... With improved memory, speed and processing power in an ever more compact ... with picture and voice embedment to wit. With the ... recall the tedium of anatomy, physiology and.

  15. Surgical simulators in cataract surgery training.

    Science.gov (United States)

    Sikder, Shameema; Tuwairqi, Khaled; Al-Kahtani, Eman; Myers, William G; Banerjee, Pat

    2014-02-01

    Virtual simulators have been widely implemented in medical and surgical training, including ophthalmology. The increasing number of published articles in this field mandates a review of the available results to assess current technology and explore future opportunities. A PubMed search was conducted and a total of 10 articles were reviewed. Virtual simulators have shown construct validity in many modules, successfully differentiating user experience levels during simulated phacoemulsification surgery. Simulators have also shown improvements in wet-lab performance. The implementation of simulators in the residency training has been associated with a decrease in cataract surgery complication rates. Virtual reality simulators are an effective tool in measuring performance and differentiating trainee skill level. Additionally, they may be useful in improving surgical skill and patient outcomes in cataract surgery. Future opportunities rely on taking advantage of technical improvements in simulators for education and research.

  16. Computed tomography-controlled stereotactic surgery

    International Nuclear Information System (INIS)

    Matsumoto, Keizo; Shichijo, Fumio; Gyoten, Tetsuya; Tomida, Keisuke; Miyake, Hajime

    1986-01-01

    A single use of coordinate system of computed tomography (CT) scanner is utilized for CT-controlled stereotactic surgery. Depth, direction and readjustment of target trajectory were defined by known values of cursor number in CT images and numbers of the sliding table indicator. We loaded calculation formulas into hand held computer to obtain immediate answers. Stereotactic apparatus consisted two main parts: the patient's head fixation and probe holder. Surgery was performed in cases of hypertensive intracerebral hemorrhage for evacuation of the hematomas successfully. Target accuracy was satisfactory. With further advance of this surgery, automatic stereotactic control with a special robot machine seeing possible. (author)

  17. [Possibilities of computer graphics simulation in orthopedic surgery].

    Science.gov (United States)

    Kessler, P; Wiltfang, J; Teschner, M; Girod, B; Neukam, F W

    2000-11-01

    In addition to standard X-rays, photographic documentation, cephalometric and model analysis, a computer-aided, three-dimensional (3D) simulation system has been developed in close cooperation with the Institute of Communications of the Friedrich-Alexander-Universität Erlangen-Nürnberg. With this simulation system a photorealistic prediction of the expected soft tissue changes can be made. Prerequisites are a 3D reconstruction of the facial skeleton and a 3D laser scan of the face. After data reduction, the two data sets can be matched. Cutting planes enable the transposition of bony segments. The laser scan of the facial surface is combined with the underlying bone via a five-layered soft tissue model to convert bone movements on the soft tissue cover realistically. Further research is necessary to replace the virtual subcutaneous soft tissue model by correct, topographic tissue anatomy.

  18. Predicting Surgery Targets in Temporal Lobe Epilepsy through Structural Connectome Based Simulations.

    Directory of Open Access Journals (Sweden)

    Frances Hutchings

    2015-12-01

    Full Text Available Temporal lobe epilepsy (TLE is a prevalent neurological disorder resulting in disruptive seizures. In the case of drug resistant epilepsy resective surgery is often considered. This is a procedure hampered by unpredictable success rates, with many patients continuing to have seizures even after surgery. In this study we apply a computational model of epilepsy to patient specific structural connectivity derived from diffusion tensor imaging (DTI of 22 individuals with left TLE and 39 healthy controls. We validate the model by examining patient-control differences in simulated seizure onset time and network location. We then investigate the potential of the model for surgery prediction by performing in silico surgical resections, removing nodes from patient networks and comparing seizure likelihood post-surgery to pre-surgery simulations. We find that, first, patients tend to transit from non-epileptic to epileptic states more often than controls in the model. Second, regions in the left hemisphere (particularly within temporal and subcortical regions that are known to be involved in TLE are the most frequent starting points for seizures in patients in the model. In addition, our analysis also implicates regions in the contralateral and frontal locations which may play a role in seizure spreading or surgery resistance. Finally, the model predicts that patient-specific surgery (resection areas chosen on an individual, model-prompted, basis and not following a predefined procedure may lead to better outcomes than the currently used routine clinical procedure. Taken together this work provides a first step towards patient specific computational modelling of epilepsy surgery in order to inform treatment strategies in individuals.

  19. Fluid structure interaction simulations of the upper airway in obstructive sleep apnea patients before and after maxillomandibular advancement surgery.

    Science.gov (United States)

    Chang, Kwang K; Kim, Ki Beom; McQuilling, Mark W; Movahed, Reza

    2018-06-01

    The purpose of this study was to analyze pharyngeal airflow using both computational fluid dynamics (CFD) and fluid structure interactions (FSI) in obstructive sleep apnea patients before and after maxillomandibular advancement (MMA) surgery. The airflow characteristics before and after surgery were compared with both CFD and FSI. In addition, the presurgery and postsurgery deformations of the airway were evaluated using FSI. Digitized pharyngeal airway models of 2 obstructive sleep apnea patients were generated from cone-beam computed tomography scans before and after MMA surgery. CFD and FSI were used to evaluate the pharyngeal airflow at a maximum inspiration rate of 166 ml per second. Standard steady-state numeric formulations were used for airflow simulations. Airway volume increased, pressure drop decreased, maximum airflow velocity decreased, and airway resistance dropped for both patients after the MMA surgery. These findings occurred in both the CFD and FSI simulations. The FSI simulations showed an area of marked airway deformation in both patients before surgery, but this deformation was negligible after surgery for both patients. Both CFD and FSI simulations produced airflow results that indicated less effort was needed to breathe after MMA surgery. The FSI simulations demonstrated a substantial decrease in airway deformation after surgery. These beneficial changes positively correlated with the large improvements in polysomnography outcomes after MMA surgery. Copyright © 2018 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  20. Computational Modeling in Liver Surgery

    Directory of Open Access Journals (Sweden)

    Bruno Christ

    2017-11-01

    Full Text Available The need for extended liver resection is increasing due to the growing incidence of liver tumors in aging societies. Individualized surgical planning is the key for identifying the optimal resection strategy and to minimize the risk of postoperative liver failure and tumor recurrence. Current computational tools provide virtual planning of liver resection by taking into account the spatial relationship between the tumor and the hepatic vascular trees, as well as the size of the future liver remnant. However, size and function of the liver are not necessarily equivalent. Hence, determining the future liver volume might misestimate the future liver function, especially in cases of hepatic comorbidities such as hepatic steatosis. A systems medicine approach could be applied, including biological, medical, and surgical aspects, by integrating all available anatomical and functional information of the individual patient. Such an approach holds promise for better prediction of postoperative liver function and hence improved risk assessment. This review provides an overview of mathematical models related to the liver and its function and explores their potential relevance for computational liver surgery. We first summarize key facts of hepatic anatomy, physiology, and pathology relevant for hepatic surgery, followed by a description of the computational tools currently used in liver surgical planning. Then we present selected state-of-the-art computational liver models potentially useful to support liver surgery. Finally, we discuss the main challenges that will need to be addressed when developing advanced computational planning tools in the context of liver surgery.

  1. Computer assisted surgery in preoperative planning of acetabular fracture surgery: state of the art.

    Science.gov (United States)

    Boudissa, Mehdi; Courvoisier, Aurélien; Chabanas, Matthieu; Tonetti, Jérôme

    2018-01-01

    The development of imaging modalities and computer technology provides a new approach in acetabular surgery. Areas covered: This review describes the role of computer-assisted surgery (CAS) in understanding of the fracture patterns, in the virtual preoperative planning of the surgery and in the use of custom-made plates in acetabular fractures with or without 3D printing technologies. A Pubmed internet research of the English literature of the last 20 years was carried out about studies concerning computer-assisted surgery in acetabular fractures. The several steps for CAS in acetabular fracture surgery are presented and commented by the main author regarding to his personal experience. Expert commentary: Computer-assisted surgery in acetabular fractures is still initial experiences with promising results. Patient-specific biomechanical models considering soft tissues should be developed to allow a more realistic planning.

  2. A 3D virtual reality simulator for training of minimally invasive surgery.

    Science.gov (United States)

    Mi, Shao-Hua; Hou, Zeng-Gunag; Yang, Fan; Xie, Xiao-Liang; Bian, Gui-Bin

    2014-01-01

    For the last decade, remarkable progress has been made in the field of cardiovascular disease treatment. However, these complex medical procedures require a combination of rich experience and technical skills. In this paper, a 3D virtual reality simulator for core skills training in minimally invasive surgery is presented. The system can generate realistic 3D vascular models segmented from patient datasets, including a beating heart, and provide a real-time computation of force and force feedback module for surgical simulation. Instruments, such as a catheter or guide wire, are represented by a multi-body mass-spring model. In addition, a realistic user interface with multiple windows and real-time 3D views are developed. Moreover, the simulator is also provided with a human-machine interaction module that gives doctors the sense of touch during the surgery training, enables them to control the motion of a virtual catheter/guide wire inside a complex vascular model. Experimental results show that the simulator is suitable for minimally invasive surgery training.

  3. Three dimensional computed tomography lung modeling is useful in simulation and navigation of lung cancer surgery.

    Science.gov (United States)

    Ikeda, Norihiko; Yoshimura, Akinobu; Hagiwara, Masaru; Akata, Soichi; Saji, Hisashi

    2013-01-01

    The number of minimally invasive operations, such as video-assisted thoracoscopic surgery (VATS) lobectomy or segmentectomy, has enormously increased in recent years. These operations require extreme knowledge of the anatomy of pulmonary vessels and bronchi in each patient, and surgeons must carefully dissect the branches of pulmonary vessels during operation. Thus, foreknowledge of the anatomy of each patient would greatly contribute to the safety and accuracy of the operation. The development of multi-detector computed tomography (MDCT) has promoted three dimensional (3D) images of lung structures. It is possible to see the vascular and bronchial structures from the view of the operator; therefore, it is employed for preoperative simulation as well as navigation during operation. Due to advances in software, even small vessels can be accurately imaged, which is useful in performing segmentectomy. Surgical simulation and navigation systems based on high quality 3D lung modeling, including vascular and bronchial structures, can be used routinely to enhance the safety operation, education of junior staff, as well as providing a greater sense of security to the operators.

  4. CARS 2009. Computer assisted radiology and surgery. Proceedings

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    The CARS 2009 proceedings include contributions and poster sessions concerning different conferences and workshops: computer assisted radiology, 23rd international congress and exhibition, CARS clinical day, 13th annual conference of the international society for computer aided surgery, 10th CARS/SPIE/EuroPACS joint workshop on surgical PACS and the digital operating, 11th international workshop on computer-aided diagnosis, 15th computed maxillofacial imaging congress, CARS - computer assisted radiology and surgery, 1st EPMA/CARS workshop on personalized medicine and ICT, JICARS - Japanese institutes of CARS, 1st EuroNotes/CTAC/CARS workshop on NOTES: an interdisciplinary challenge, 13th annual conference for computer aided surgery, 27th international EuroPACS meeting.

  5. Surgery simulation using fast finite elements

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten

    1996-01-01

    This paper describes our recent work on real-time surgery simulation using fast finite element models of linear elasticity. In addition, we discuss various improvements in terms of speed and realism......This paper describes our recent work on real-time surgery simulation using fast finite element models of linear elasticity. In addition, we discuss various improvements in terms of speed and realism...

  6. Development of the McGill simulator for endoscopic sinus surgery: a new high-fidelity virtual reality simulator for endoscopic sinus surgery.

    Science.gov (United States)

    Varshney, Rickul; Frenkiel, Saul; Nguyen, Lily H P; Young, Meredith; Del Maestro, Rolando; Zeitouni, Anthony; Tewfik, Marc A

    2014-01-01

    The technical challenges of endoscopic sinus surgery (ESS) and the high risk of complications support the development of alternative modalities to train residents in these procedures. Virtual reality simulation is becoming a useful tool for training the skills necessary for minimally invasive surgery; however, there are currently no ESS virtual reality simulators available with valid evidence supporting their use in resident education. Our aim was to develop a new rhinology simulator, as well as to define potential performance metrics for trainee assessment. The McGill simulator for endoscopic sinus surgery (MSESS), a new sinus surgery virtual reality simulator with haptic feedback, was developed (a collaboration between the McGill University Department of Otolaryngology-Head and Neck Surgery, the Montreal Neurologic Institute Simulation Lab, and the National Research Council of Canada). A panel of experts in education, performance assessment, rhinology, and skull base surgery convened to identify core technical abilities that would need to be taught by the simulator, as well as performance metrics to be developed and captured. The MSESS allows the user to perform basic sinus surgery skills, such as an ethmoidectomy and sphenoidotomy, through the use of endoscopic tools in a virtual nasal model. The performance metrics were developed by an expert panel and include measurements of safety, quality, and efficiency of the procedure. The MSESS incorporates novel technological advancements to create a realistic platform for trainees. To our knowledge, this is the first simulator to combine novel tools such as the endonasal wash and elaborate anatomic deformity with advanced performance metrics for ESS.

  7. Early orthognathic surgery with three-dimensional image simulation during presurgical orthodontics in adults.

    Science.gov (United States)

    Kang, Sang-Hoon; Kim, Moon-Key; Park, Sun-Yeon; Lee, Ji-Yeon; Park, Wonse; Lee, Sang-Hwy

    2011-03-01

    To correct dentofacial deformities, three-dimensional skeletal analysis and computerized orthognathic surgery simulation are used to facilitate accurate diagnoses and surgical plans. Computed tomography imaging of dental occlusion can inform three-dimensional facial analyses and orthognathic surgical simulations. Furthermore, three-dimensional laser scans of a cast model of the predetermined postoperative dental occlusion can be used to increase the accuracy of the preoperative surgical simulation. In this study, we prepared cast models of planned postoperative dental occlusions from 12 patients diagnosed with skeletal class III malocclusions with mandibular prognathism and facial asymmetry that had planned to undergo bimaxillary orthognathic surgery during preoperative orthodontic treatment. The data from three-dimensional laser scans of the cast models were used in three-dimensional surgical simulations. Early orthognathic surgeries were performed based on three-dimensional image simulations using the cast images in several presurgical orthodontic states in which teeth alignment, leveling, and space closure were incomplete. After postoperative orthodontic treatments, intraoral examinations revealed that no patient had a posterior open bite or space. The two-dimensional and three-dimensional skeletal analyses showed that no mandibular deviations occurred between the immediate and final postoperative states of orthodontic treatment. These results showed that early orthognathic surgery with three-dimensional computerized simulations based on cast models of predetermined postoperative dental occlusions could provide early correction of facial deformities and improved efficacy of preoperative orthodontic treatment. This approach can reduce the decompensation treatment period of the presurgical orthodontics and contribute to efficient postoperative orthodontic treatments.

  8. [Computer assisted orthognathic surgery: Condyle repositioning.

    Science.gov (United States)

    Bettega, G; Leitner, F

    2013-07-17

    Computer aided surgery has become a standard in many fields. It is rarely used in orthognathic surgery. Twenty years ago, we developed a navigation system adapted to this surgery, especially for mandibular condyle repositioning. The system has been improved along with technological progress. The authors of several clinical studies have validated this system. It is now routinely used in our department, because of its educational virtues among other assets. Copyright © 2013. Published by Elsevier Masson SAS.

  9. 3D-printed pediatric endoscopic ear surgery simulator for surgical training.

    Science.gov (United States)

    Barber, Samuel R; Kozin, Elliott D; Dedmon, Matthew; Lin, Brian M; Lee, Kyuwon; Sinha, Sumi; Black, Nicole; Remenschneider, Aaron K; Lee, Daniel J

    2016-11-01

    Surgical simulators are designed to improve operative skills and patient safety. Transcanal Endoscopic Ear Surgery (TEES) is a relatively new surgical approach with a slow learning curve due to one-handed dissection. A reusable and customizable 3-dimensional (3D)-printed endoscopic ear surgery simulator may facilitate the development of surgical skills with high fidelity and low cost. Herein, we aim to design, fabricate, and test a low-cost and reusable 3D-printed TEES simulator. The TEES simulator was designed in computer-aided design (CAD) software using anatomic measurements taken from anthropometric studies. Cross sections from external auditory canal samples were traced as vectors and serially combined into a mesh construct. A modified tympanic cavity with a modular testing platform for simulator tasks was incorporated. Components were fabricated using calcium sulfate hemihydrate powder and multiple colored infiltrants via a commercial inkjet 3D-printing service. All components of a left-sided ear were printed to scale. Six right-handed trainees completed three trials each. Mean trial time (n = 3) ranged from 23.03 to 62.77 s using the dominant hand for all dissection. Statistically significant differences between first and last completion time with the dominant hand (p 3D-printed simulator is feasible for TEES simulation. Otolaryngology training programs with access to a 3D printer may readily fabricate a TEES simulator, resulting in inexpensive yet high-fidelity surgical simulation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. [Suture simulator - Cleft palate surgery].

    Science.gov (United States)

    Devinck, F; Riot, S; Qassemyar, A; Belkhou, A; Wolber, A; Martinot Duquennoy, V; Guerreschi, P

    2017-04-01

    Cleft palate requires surgery in the first years of life, furthermore repairing anatomically the soft and hard palate is complex on a surgical level because of the fine tissues and the local intraoral configuration. It is valuable to train first on simulators before going to the operating room. However, there is no material dedicated to learning how to perform intraoral sutures in cleft palate surgery. We made one, in an artisanal manner, in order to practice before the real surgical gesture. The simulator was designed based on precise anatomical data. A steel pipe, fixed on a rigid base represented the oral cavity. An adapted split spoon represented the palate. All pieces could be removed in order to apply a hydrocellular dressing before training for sutures. Our simulator was tested by 3 senior surgeons in our department in close to real-life conditions in order to evaluate its anatomical accuracy. It is valuable to have a simulator to train on cleft palate sutures within teaching university hospitals that manage this pathology. Our simulator has a very low cost, it is easy to make and is anatomically accurate. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Low-Cost Simulation of Robotic Surgery

    DEFF Research Database (Denmark)

    Grande, Kasper; Jensen, Rasmus Steen; Kraus, Martin

    2013-01-01

    The high expenses associated with acquiring and maintaining robotic surgical equipment for minimally invasive surgery entail that training on this equipment is also expensive. Virtual reality (VR) training simulators can reduce this training time; however, the current simulators are also quite...

  12. [Basic concept in computer assisted surgery].

    Science.gov (United States)

    Merloz, Philippe; Wu, Hao

    2006-03-01

    To investigate application of medical digital imaging systems and computer technologies in orthopedics. The main computer-assisted surgery systems comprise the four following subcategories. (1) A collection and recording process for digital data on each patient, including preoperative images (CT scans, MRI, standard X-rays), intraoperative visualization (fluoroscopy, ultrasound), and intraoperative position and orientation of surgical instruments or bone sections (using 3D localises). Data merging based on the matching of preoperative imaging (CT scans, MRI, standard X-rays) and intraoperative visualization (anatomical landmarks, or bone surfaces digitized intraoperatively via 3D localiser; intraoperative ultrasound images processed for delineation of bone contours). (2) In cases where only intraoperative images are used for computer-assisted surgical navigation, the calibration of the intraoperative imaging system replaces the merged data system, which is then no longer necessary. (3) A system that provides aid in decision-making, so that the surgical approach is planned on basis of multimodal information: the interactive positioning of surgical instruments or bone sections transmitted via pre- or intraoperative images, display of elements to guide surgical navigation (direction, axis, orientation, length and diameter of a surgical instrument, impingement, etc. ). And (4) A system that monitors the surgical procedure, thereby ensuring that the optimal strategy defined at the preoperative stage is taken into account. It is possible that computer-assisted orthopedic surgery systems will enable surgeons to better assess the accuracy and reliability of the various operative techniques, an indispensable stage in the optimization of surgery.

  13. Simulation-based certification for cataract surgery

    DEFF Research Database (Denmark)

    Thomsen, Ann Sofia Skou; Kiilgaard, Jens Folke; Kjaerbo, Hadi

    2015-01-01

    PURPOSE: To evaluate the EyeSi(™) simulator in regard to assessing competence in cataract surgery. The primary objective was to explore all simulator metrics to establish a proficiency-based test with solid evidence. The secondary objective was to evaluate whether the skill assessment was specific...

  14. Accuracy of a Computer-Aided Surgical Simulation (CASS) Protocol for Orthognathic Surgery: A Prospective Multicenter Study

    Science.gov (United States)

    Hsu, Sam Sheng-Pin; Gateno, Jaime; Bell, R. Bryan; Hirsch, David L.; Markiewicz, Michael R.; Teichgraeber, John F.; Zhou, Xiaobo; Xia, James J.

    2012-01-01

    Purpose The purpose of this prospective multicenter study was to assess the accuracy of a computer-aided surgical simulation (CASS) protocol for orthognathic surgery. Materials and Methods The accuracy of the CASS protocol was assessed by comparing planned and postoperative outcomes of 65 consecutive patients enrolled from 3 centers. Computer-generated surgical splints were used for all patients. For the genioplasty, one center utilized computer-generated chin templates to reposition the chin segment only for patients with asymmetry. Standard intraoperative measurements were utilized without the chin templates for the remaining patients. The primary outcome measurements were linear and angular differences for the maxilla, mandible and chin when the planned and postoperative models were registered at the cranium. The secondary outcome measurements were: maxillary dental midline difference between the planned and postoperative positions; and linear and angular differences of the chin segment between the groups with and without the use of the template. The latter was measured when the planned and postoperative models were registered at mandibular body. Statistical analyses were performed, and the accuracy was reported using root mean square deviation (RMSD) and Bland and Altman's method for assessing measurement agreement. Results In the primary outcome measurements, there was no statistically significant difference among the 3 centers for the maxilla and mandible. The largest RMSD was 1.0mm and 1.5° for the maxilla, and 1.1mm and 1.8° for the mandible. For the chin, there was a statistically significant difference between the groups with and without the use of the chin template. The chin template group showed excellent accuracy with largest positional RMSD of 1.0mm and the largest orientational RSMD of 2.2°. However, larger variances were observed in the group not using the chin template. This was significant in anteroposterior and superoinferior directions, as in

  15. Computer in surgery | Bode | Nigerian Journal of Surgical Research

    African Journals Online (AJOL)

    How has the advent of the computer impacted the field of surgery? Is it worth embracing for the older practitioners? What does the future portend for our ancient noble profession? This paper reviews current applications of computer technology in the field of surgery and the hopes it hold out to surgeons in developing ...

  16. Virtual reality-based simulators for spine surgery: a systematic review.

    Science.gov (United States)

    Pfandler, Michael; Lazarovici, Marc; Stefan, Philipp; Wucherer, Patrick; Weigl, Matthias

    2017-09-01

    Virtual reality (VR)-based simulators offer numerous benefits and are very useful in assessing and training surgical skills. Virtual reality-based simulators are standard in some surgical subspecialties, but their actual use in spinal surgery remains unclear. Currently, only technical reviews of VR-based simulators are available for spinal surgery. Thus, we performed a systematic review that examined the existing research on VR-based simulators in spinal procedures. We also assessed the quality of current studies evaluating VR-based training in spinal surgery. Moreover, we wanted to provide a guide for future studies evaluating VR-based simulators in this field. This is a systematic review of the current scientific literature regarding VR-based simulation in spinal surgery. Five data sources were systematically searched to identify relevant peer-reviewed articles regarding virtual, mixed, or augmented reality-based simulators in spinal surgery. A qualitative data synthesis was performed with particular attention to evaluation approaches and outcomes. Additionally, all included studies were appraised for their quality using the Medical Education Research Study Quality Instrument (MERSQI) tool. The initial review identified 476 abstracts and 63 full texts were then assessed by two reviewers. Finally, 19 studies that examined simulators for the following procedures were selected: pedicle screw placement, vertebroplasty, posterior cervical laminectomy and foraminotomy, lumbar puncture, facet joint injection, and spinal needle insertion and placement. These studies had a low-to-medium methodological quality with a MERSQI mean score of 11.47 out of 18 (standard deviation=1.81). This review described the current state and applications of VR-based simulator training and assessment approaches in spinal procedures. Limitations, strengths, and future advancements of VR-based simulators for training and assessment in spinal surgery were explored. Higher-quality studies with

  17. 3D printing to simulate laparoscopic choledochal surgery.

    Science.gov (United States)

    Burdall, Oliver C; Makin, Erica; Davenport, Mark; Ade-Ajayi, Niyi

    2016-05-01

    Laparoscopic simulation has transformed skills acquisition for many procedures. However, realistic nonbiological simulators for complex reconstructive surgery are rare. Life-like tactile feedback is particularly difficult to reproduce. Technological innovations may contribute novel solutions to these shortages. We describe a hybrid model, harnessing 3D technology to simulate laparoscopic choledochal surgery for the first time. Digital hepatic anatomy images and standard laparoscopic trainer dimensions were employed to create an entry level laparoscopic choledochal surgery model. The information was fed into a 3D systems project 660pro with visijet pxl core powder to create a free standing liver mold. This included a cuboid portal in which to slot disposable hybrid components representing hepatic and pancreatic ducts and choledochal cyst. The mold was used to create soft silicone replicas with T28 resin and T5 fast catalyst. The model was assessed at a national pediatric surgery training day. The 10 delegates that trialed the simulation felt that the tactile likeness was good (5.6/10±1.71, 10=like the real thing), was not too complex (6.2/10±1.35; where 1=too simple, 10=too complicated), and generally very useful (7.36/10±1.57, 10=invaluable). 100% stated that they felt they could reproduce this in their own centers, and 100% would recommend this simulation to colleagues. Though this first phase choledochal cyst excision simulation requires further development, 3D printing provides a useful means of creating specific and detailed simulations for rare and complex operations with huge potential for development. Copyright © 2016. Published by Elsevier Inc.

  18. Scientific computer simulation review

    International Nuclear Information System (INIS)

    Kaizer, Joshua S.; Heller, A. Kevin; Oberkampf, William L.

    2015-01-01

    Before the results of a scientific computer simulation are used for any purpose, it should be determined if those results can be trusted. Answering that question of trust is the domain of scientific computer simulation review. There is limited literature that focuses on simulation review, and most is specific to the review of a particular type of simulation. This work is intended to provide a foundation for a common understanding of simulation review. This is accomplished through three contributions. First, scientific computer simulation review is formally defined. This definition identifies the scope of simulation review and provides the boundaries of the review process. Second, maturity assessment theory is developed. This development clarifies the concepts of maturity criteria, maturity assessment sets, and maturity assessment frameworks, which are essential for performing simulation review. Finally, simulation review is described as the application of a maturity assessment framework. This is illustrated through evaluating a simulation review performed by the U.S. Nuclear Regulatory Commission. In making these contributions, this work provides a means for a more objective assessment of a simulation’s trustworthiness and takes the next step in establishing scientific computer simulation review as its own field. - Highlights: • We define scientific computer simulation review. • We develop maturity assessment theory. • We formally define a maturity assessment framework. • We describe simulation review as the application of a maturity framework. • We provide an example of a simulation review using a maturity framework

  19. Towards ubiquitous access of computer-assisted surgery systems.

    Science.gov (United States)

    Liu, Hui; Lufei, Hanping; Shi, Weishong; Chaudhary, Vipin

    2006-01-01

    Traditional stand-alone computer-assisted surgery (CAS) systems impede the ubiquitous and simultaneous access by multiple users. With advances in computing and networking technologies, ubiquitous access to CAS systems becomes possible and promising. Based on our preliminary work, CASMIL, a stand-alone CAS server developed at Wayne State University, we propose a novel mobile CAS system, UbiCAS, which allows surgeons to retrieve, review and interpret multimodal medical images, and to perform some critical neurosurgical procedures on heterogeneous devices from anywhere at anytime. Furthermore, various optimization techniques, including caching, prefetching, pseudo-streaming-model, and compression, are used to guarantee the QoS of the UbiCAS system. UbiCAS enables doctors at remote locations to actively participate remote surgeries, share patient information in real time before, during, and after the surgery.

  20. A review of simulation platforms in surgery of the temporal bone.

    Science.gov (United States)

    Bhutta, M F

    2016-10-01

    Surgery of the temporal bone is a high-risk activity in an anatomically complex area. Simulation enables rehearsal of such surgery. The traditional simulation platform is the cadaveric temporal bone, but in recent years other simulation platforms have been created, including plastic and virtual reality platforms. To undertake a review of simulation platforms for temporal bone surgery, specifically assessing their educational value in terms of validity and in enabling transition to surgery. Systematic qualitative review. Search of the Pubmed, CINAHL, BEI and ERIC databases. Assessment of reported outcomes in terms of educational value. A total of 49 articles were included, covering cadaveric, animal, plastic and virtual simulation platforms. Cadaveric simulation is highly rated as an educational tool, but there may be a ceiling effect on educational outcomes after drilling 8-10 temporal bones. Animal models show significant anatomical variation from man. Plastic temporal bone models offer much potential, but at present lack sufficient anatomical or haptic validity. Similarly, virtual reality platforms lack sufficient anatomical or haptic validity, but with technological improvements they are advancing rapidly. At present, cadaveric simulation remains the best platform for training in temporal bone surgery. Technological advances enabling improved materials or modelling mean that in the future plastic or virtual platforms may become comparable to cadaveric platforms, and also offer additional functionality including patient-specific simulation from CT data. © 2015 John Wiley & Sons Ltd.

  1. Neurosurgical simulation by interactive computer graphics on iPad.

    Science.gov (United States)

    Maruyama, Keisuke; Kin, Taichi; Saito, Toki; Suematsu, Shinya; Gomyo, Miho; Noguchi, Akio; Nagane, Motoo; Shiokawa, Yoshiaki

    2014-11-01

    Presurgical simulation before complicated neurosurgery is a state-of-the-art technique, and its usefulness has recently become well known. However, simulation requires complex image processing, which hinders its widespread application. We explored handling the results of interactive computer graphics on the iPad tablet, which can easily be controlled anywhere. Data from preneurosurgical simulations from 12 patients (4 men, 8 women) who underwent complex brain surgery were loaded onto an iPad. First, DICOM data were loaded using Amira visualization software to create interactive computer graphics, and ParaView, another free visualization software package, was used to convert the results of the simulation to be loaded using the free iPad software KiwiViewer. The interactive computer graphics created prior to neurosurgery were successfully displayed and smoothly controlled on the iPad in all patients. The number of elements ranged from 3 to 13 (mean 7). The mean original data size was 233 MB, which was reduced to 10.4 MB (4.4% of original size) after image processing by ParaView. This was increased to 46.6 MB (19.9%) after decompression in KiwiViewer. Controlling the magnification, transfer, rotation, and selection of translucence in 10 levels of each element were smoothly and easily performed using one or two fingers. The requisite skill to smoothly control the iPad software was acquired within 1.8 trials on average in 12 medical students and 6 neurosurgical residents. Using an iPad to handle the result of preneurosurgical simulation was extremely useful because it could easily be handled anywhere.

  2. Computer-assisted surgery simulations and directed practice of total knee arthroplasty: educational benefits to the trainee.

    Science.gov (United States)

    Myden, C A; Anglin, C; Kopp, G D; Hutchison, C R

    2012-01-01

    Orthopaedic residents typically learn to perform total knee arthroplasty (TKA) through an apprenticeship-type model, which is a necessarily slow process. Surgical skills courses, using artificial bones, have been shown to improve technical and cognitive skills significantly within a couple of days. The addition of computer-assisted surgery (CAS) simulations challenges the participants to consider the same task in a different context, promoting cognitive flexibility. We designed a hands-on educational intervention for junior residents with a conventional tibiofemoral TKA station, two different tibiofemoral CAS stations, and a CAS and conventional patellar resection station, including both qualitative and quantitative analyses. Qualitatively, structured interviews before and after the course were analyzed for recurring themes. Quantitatively, subjects were evaluated on their technical skills before and after the course, and on a multiple-choice knowledge test and error detection test after the course, in comparison to senior residents who performed only the testing. Four themes emerged: confidence, awareness, deepening knowledge and changed perspectives. The residents' attitudes to CAS changed from negative before the course to neutral or positive afterwards. The junior resident group completed 23% of tasks in the pre-course skills test and 75% of tasks on the post-test (peducational interventions, promoting cognitive flexibility, would benefit trainees, attending surgeons, the healthcare system and patients.

  3. Current status of validation for robotic surgery simulators - a systematic review.

    Science.gov (United States)

    Abboudi, Hamid; Khan, Mohammed S; Aboumarzouk, Omar; Guru, Khurshid A; Challacombe, Ben; Dasgupta, Prokar; Ahmed, Kamran

    2013-02-01

    To analyse studies validating the effectiveness of robotic surgery simulators. The MEDLINE(®), EMBASE(®) and PsycINFO(®) databases were systematically searched until September 2011. References from retrieved articles were reviewed to broaden the search. The simulator name, training tasks, participant level, training duration and evaluation scoring were extracted from each study. We also extracted data on feasibility, validity, cost-effectiveness, reliability and educational impact. We identified 19 studies investigating simulation options in robotic surgery. There are five different robotic surgery simulation platforms available on the market. In all, 11 studies sought opinion and compared performance between two different groups; 'expert' and 'novice'. Experts ranged in experience from 21-2200 robotic cases. The novice groups consisted of participants with no prior experience on a robotic platform and were often medical students or junior doctors. The Mimic dV-Trainer(®), ProMIS(®), SimSurgery Educational Platform(®) (SEP) and Intuitive systems have shown face, content and construct validity. The Robotic Surgical SimulatorTM system has only been face and content validated. All of the simulators except SEP have shown educational impact. Feasibility and cost-effectiveness of simulation systems was not evaluated in any trial. Virtual reality simulators were shown to be effective training tools for junior trainees. Simulation training holds the greatest potential to be used as an adjunct to traditional training methods to equip the next generation of robotic surgeons with the skills required to operate safely. However, current simulation models have only been validated in small studies. There is no evidence to suggest one type of simulator provides more effective training than any other. More research is needed to validate simulated environments further and investigate the effectiveness of animal and cadaveric training in robotic surgery. © 2012 BJU

  4. Fast finite elements for surgery simulation

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten

    1997-01-01

    This paper discusses volumetric deformable models for modeling human body parts and organs in surgery simulation systems. These models are built using finite element models for linear elastic materials. To achieve real-time response condensation has been applied to the system stiffness matrix...

  5. Incorporating simulation in vascular surgery education.

    Science.gov (United States)

    Bismuth, Jean; Donovan, Michael A; O'Malley, Marcia K; El Sayed, Hosam F; Naoum, Joseph J; Peden, Eric K; Davies, Mark G; Lumsden, Alan B

    2010-10-01

    The traditional apprenticeship model introduced by Halsted of "learning by doing" may just not be valid in the modern practice of vascular surgery. The model is often criticized for being somewhat unstructured because a resident's experience is based on what comes through the "door." In an attempt to promote uniformity of training, multiple national organizations are currently delineating standard curricula for each trainee to govern the knowledge and cases required in a vascular residency. However, the outcomes are anything but uniform. This means that we graduate vascular specialists with a surprisingly wide spectrum of abilities. Use of simulation may benefit trainees in attaining a level of technical expertise that will benefit themselves and their patients. Furthermore, there is likely a need to establish a simulation-based certification process for graduating trainees to further ascertain minimum technical abilities. Copyright © 2010 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  6. 3D Surgical Simulation

    OpenAIRE

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2010-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive ...

  7. Application of advanced virtual reality and 3D computer assisted technologies in tele-3D-computer assisted surgery in rhinology.

    Science.gov (United States)

    Klapan, Ivica; Vranjes, Zeljko; Prgomet, Drago; Lukinović, Juraj

    2008-03-01

    The real-time requirement means that the simulation should be able to follow the actions of the user that may be moving in the virtual environment. The computer system should also store in its memory a three-dimensional (3D) model of the virtual environment. In that case a real-time virtual reality system will update the 3D graphic visualization as the user moves, so that up-to-date visualization is always shown on the computer screen. Upon completion of the tele-operation, the surgeon compares the preoperative and postoperative images and models of the operative field, and studies video records of the procedure itself Using intraoperative records, animated images of the real tele-procedure performed can be designed. Virtual surgery offers the possibility of preoperative planning in rhinology. The intraoperative use of computer in real time requires development of appropriate hardware and software to connect medical instrumentarium with the computer and to operate the computer by thus connected instrumentarium and sophisticated multimedia interfaces.

  8. Atomic-level computer simulation

    International Nuclear Information System (INIS)

    Adams, J.B.; Rockett, Angus; Kieffer, John; Xu Wei; Nomura, Miki; Kilian, K.A.; Richards, D.F.; Ramprasad, R.

    1994-01-01

    This paper provides a broad overview of the methods of atomic-level computer simulation. It discusses methods of modelling atomic bonding, and computer simulation methods such as energy minimization, molecular dynamics, Monte Carlo, and lattice Monte Carlo. ((orig.))

  9. The current status and future prospects of computer-assisted hip surgery.

    Science.gov (United States)

    Inaba, Yutaka; Kobayashi, Naomi; Ike, Hiroyuki; Kubota, So; Saito, Tomoyuki

    2016-03-01

    The advances in computer assistance technology have allowed detailed three-dimensional preoperative planning and simulation of preoperative plans. The use of a navigation system as an intraoperative assistance tool allows more accurate execution of the preoperative plan, compared to manual operation without assistance of the navigation system. In total hip arthroplasty using CT-based navigation, three-dimensional preoperative planning with computer software allows the surgeon to determine the optimal angle of implant placement at which implant impingement is unlikely to occur in the range of hip joint motion necessary for daily activities of living, and to determine the amount of three-dimensional correction for leg length and offset. With the use of computer navigation for intraoperative assistance, the preoperative plan can be precisely executed. In hip osteotomy using CT-based navigation, the navigation allows three-dimensional preoperative planning, intraoperative confirmation of osteotomy sites, safe performance of osteotomy even under poor visual conditions, and a reduction in exposure doses from intraoperative fluoroscopy. Positions of the tips of chisels can be displayed on the computer monitor during surgery in real time, and staff other than the operator can also be aware of the progress of surgery. Thus, computer navigation also has an educational value. On the other hand, its limitations include the need for placement of trackers, increased radiation exposure from preoperative CT scans, and prolonged operative time. Moreover, because the position of a bone fragment cannot be traced after osteotomy, methods to find its precise position after its movement need to be developed. Despite the need to develop methods for the postoperative evaluation of accuracy for osteotomy, further application and development of these systems are expected in the future. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  10. Surgery applications of virtual reality

    Science.gov (United States)

    Rosen, Joseph

    1994-01-01

    Virtual reality is a computer-generated technology which allows information to be displayed in a simulated, bus lifelike, environment. In this simulated 'world', users can move and interact as if they were actually a part of that world. This new technology will be useful in many different fields, including the field of surgery. Virtual reality systems can be used to teach surgical anatomy, diagnose surgical problems, plan operations, simulate and perform surgical procedures (telesurgery), and predict the outcomes of surgery. The authors of this paper describe the basic components of a virtual reality surgical system. These components include: the virtual world, the virtual tools, the anatomical model, the software platform, the host computer, the interface, and the head-coupled display. In the chapter they also review the progress towards using virtual reality for surgical training, planning, telesurgery, and predicting outcomes. Finally, the authors present a training system being developed for the practice of new procedures in abdominal surgery.

  11. Current state of virtual reality simulation in robotic surgery training: a review.

    Science.gov (United States)

    Bric, Justin D; Lumbard, Derek C; Frelich, Matthew J; Gould, Jon C

    2016-06-01

    Worldwide, the annual number of robotic surgical procedures continues to increase. Robotic surgical skills are unique from those used in either open or laparoscopic surgery. The acquisition of a basic robotic surgical skill set may be best accomplished in the simulation laboratory. We sought to review the current literature pertaining to the use of virtual reality (VR) simulation in the acquisition of robotic surgical skills on the da Vinci Surgical System. A PubMed search was conducted between December 2014 and January 2015 utilizing the following keywords: virtual reality, robotic surgery, da Vinci, da Vinci skills simulator, SimSurgery Educational Platform, Mimic dV-Trainer, and Robotic Surgery Simulator. Articles were included if they were published between 2007 and 2015, utilized VR simulation for the da Vinci Surgical System, and utilized a commercially available VR platform. The initial search criteria returned 227 published articles. After all inclusion and exclusion criteria were applied, a total of 47 peer-reviewed manuscripts were included in the final review. There are many benefits to utilizing VR simulation for robotic skills acquisition. Four commercially available simulators have been demonstrated to be capable of assessing robotic skill. Three of the four simulators demonstrate the ability of a VR training curriculum to improve basic robotic skills, with proficiency-based training being the most effective training style. The skills obtained on a VR training curriculum are comparable with those obtained on dry laboratory simulation. The future of VR simulation includes utilization in assessment for re-credentialing purposes, advanced procedural-based training, and as a warm-up tool prior to surgery.

  12. Mixed reality simulation of rasping procedure in artificial cervical disc replacement (ACDR) surgery.

    Science.gov (United States)

    Halic, Tansel; Kockara, Sinan; Bayrak, Coskun; Rowe, Richard

    2010-10-07

    Until quite recently spinal disorder problems in the U.S. have been operated by fusing cervical vertebrae instead of replacement of the cervical disc with an artificial disc. Cervical disc replacement is a recently approved procedure in the U.S. It is one of the most challenging surgical procedures in the medical field due to the deficiencies in available diagnostic tools and insufficient number of surgical practices For physicians and surgical instrument developers, it is critical to understand how to successfully deploy the new artificial disc replacement systems. Without proper understanding and practice of the deployment procedure, it is possible to injure the vertebral body. Mixed reality (MR) and virtual reality (VR) surgical simulators are becoming an indispensable part of physicians' training, since they offer a risk free training environment. In this study, MR simulation framework and intricacies involved in the development of a MR simulator for the rasping procedure in artificial cervical disc replacement (ACDR) surgery are investigated. The major components that make up the MR surgical simulator with motion tracking system are addressed. A mixed reality surgical simulator that targets rasping procedure in the artificial cervical disc replacement surgery with a VICON motion tracking system was developed. There were several challenges in the development of MR surgical simulator. First, the assembly of different hardware components for surgical simulation development that involves knowledge and application of interdisciplinary fields such as signal processing, computer vision and graphics, along with the design and placements of sensors etc . Second challenge was the creation of a physically correct model of the rasping procedure in order to attain critical forces. This challenge was handled with finite element modeling. The third challenge was minimization of error in mapping movements of an actor in real model to a virtual model in a process called

  13. Freeform fabrication of tissue-simulating phantom for potential use of surgical planning in conjoined twins separation surgery.

    Science.gov (United States)

    Shen, Shuwei; Wang, Haili; Xue, Yue; Yuan, Li; Zhou, Ximing; Zhao, Zuhua; Dong, Erbao; Liu, Bin; Liu, Wendong; Cromeens, Barrett; Adler, Brent; Besner, Gail; Xu, Ronald X

    2017-09-08

    Preoperative assessment of tissue anatomy and accurate surgical planning is crucial in conjoined twin separation surgery. We developed a new method that combines three-dimensional (3D) printing, assembling, and casting to produce anatomic models of high fidelity for surgical planning. The related anatomic features of the conjoined twins were captured by computed tomography (CT), classified as five organ groups, and reconstructed as five computer models. Among these organ groups, the skeleton was produced by fused deposition modeling (FDM) using acrylonitrile-butadiene-styrene. For the other four organ groups, shell molds were prepared by FDM and cast with silica gel to simulate soft tissues, with contrast enhancement pigments added to simulate different CT and visual contrasts. The produced models were assembled, positioned firmly within a 3D printed shell mold simulating the skin boundary, and cast with transparent silica gel. The produced phantom was subject to further CT scan in comparison with that of the patient data for fidelity evaluation. Further data analysis showed that the produced model reassembled the geometric features of the original CT data with an overall mean deviation of less than 2 mm, indicating the clinical potential to use this method for surgical planning in conjoined twin separation surgery.

  14. Computer-Assisted Orthognathic Surgery for Patients with Cleft Lip/Palate: From Traditional Planning to Three-Dimensional Surgical Simulation.

    Directory of Open Access Journals (Sweden)

    Daniel Lonic

    Full Text Available Although conventional two-dimensional (2D methods for orthognathic surgery planning are still popular, the use of three-dimensional (3D simulation is steadily increasing. In facial asymmetry cases such as in cleft lip/palate patients, the additional information can dramatically improve planning accuracy and outcome. The purpose of this study is to investigate which parameters are changed most frequently in transferring a traditional 2D plan to 3D simulation, and what planning parameters can be better adjusted by this method.This prospective study enrolled 30 consecutive patients with cleft lip and/or cleft palate (mean age 18.6±2.9 years, range 15 to 32 years. All patients received two-jaw single-splint orthognathic surgery. 2D orthodontic surgery plans were transferred into a 3D setting. Severe bony collisions in the ramus area after 2D plan transfer were noted. The position of the maxillo-mandibular complex was evaluated and eventually adjusted. Position changes of roll, midline, pitch, yaw, genioplasty and their frequency within the patient group were recorded as an alternation of the initial 2D plan. Patients were divided in groups of no change from the original 2D plan and changes in one, two, three and four of the aforementioned parameters as well as subgroups of unilateral, bilateral cleft lip/palate and isolated cleft palate cases. Postoperative OQLQ scores were obtained for 20 patients who finished orthodontic treatment.83.3% of 2D plans were modified, mostly concerning yaw (63.3% and midline (36.7% adjustments. Yaw adjustments had the highest mean values in total and in all subgroups. Severe bony collisions as a result of 2D planning were seen in 46.7% of patients. Possible asymmetry was regularly foreseen and corrected in the 3D simulation.Based on our findings, 3D simulation renders important information for accurate planning in complex cleft lip/palate cases involving facial asymmetry that is regularly missed in conventional 2D

  15. Computer-Assisted Orthognathic Surgery for Patients with Cleft Lip/Palate: From Traditional Planning to Three-Dimensional Surgical Simulation

    Science.gov (United States)

    Lonic, Daniel; Pai, Betty Chien-Jung; Yamaguchi, Kazuaki; Chortrakarnkij, Peerasak; Lin, Hsiu-Hsia; Lo, Lun-Jou

    2016-01-01

    Background Although conventional two-dimensional (2D) methods for orthognathic surgery planning are still popular, the use of three-dimensional (3D) simulation is steadily increasing. In facial asymmetry cases such as in cleft lip/palate patients, the additional information can dramatically improve planning accuracy and outcome. The purpose of this study is to investigate which parameters are changed most frequently in transferring a traditional 2D plan to 3D simulation, and what planning parameters can be better adjusted by this method. Patients and Methods This prospective study enrolled 30 consecutive patients with cleft lip and/or cleft palate (mean age 18.6±2.9 years, range 15 to 32 years). All patients received two-jaw single-splint orthognathic surgery. 2D orthodontic surgery plans were transferred into a 3D setting. Severe bony collisions in the ramus area after 2D plan transfer were noted. The position of the maxillo-mandibular complex was evaluated and eventually adjusted. Position changes of roll, midline, pitch, yaw, genioplasty and their frequency within the patient group were recorded as an alternation of the initial 2D plan. Patients were divided in groups of no change from the original 2D plan and changes in one, two, three and four of the aforementioned parameters as well as subgroups of unilateral, bilateral cleft lip/palate and isolated cleft palate cases. Postoperative OQLQ scores were obtained for 20 patients who finished orthodontic treatment. Results 83.3% of 2D plans were modified, mostly concerning yaw (63.3%) and midline (36.7%) adjustments. Yaw adjustments had the highest mean values in total and in all subgroups. Severe bony collisions as a result of 2D planning were seen in 46.7% of patients. Possible asymmetry was regularly foreseen and corrected in the 3D simulation. Conclusion Based on our findings, 3D simulation renders important information for accurate planning in complex cleft lip/palate cases involving facial asymmetry that is

  16. Validation of a Novel Virtual Reality Simulator for Robotic Surgery

    Directory of Open Access Journals (Sweden)

    Henk W. R. Schreuder

    2014-01-01

    Full Text Available Objective. With the increase in robotic-assisted laparoscopic surgery there is a concomitant rising demand for training methods. The objective was to establish face and construct validity of a novel virtual reality simulator (dV-Trainer, Mimic Technologies, Seattle, WA for the use in training of robot-assisted surgery. Methods. A comparative cohort study was performed. Participants (n=42 were divided into three groups according to their robotic experience. To determine construct validity, participants performed three different exercises twice. Performance parameters were measured. To determine face validity, participants filled in a questionnaire after completion of the exercises. Results. Experts outperformed novices in most of the measured parameters. The most discriminative parameters were “time to complete” and “economy of motion” (P<0.001. The training capacity of the simulator was rated 4.6 ± 0.5 SD on a 5-point Likert scale. The realism of the simulator in general, visual graphics, movements of instruments, interaction with objects, and the depth perception were all rated as being realistic. The simulator is considered to be a very useful training tool for residents and medical specialist starting with robotic surgery. Conclusions. Face and construct validity for the dV-Trainer could be established. The virtual reality simulator is a useful tool for training robotic surgery.

  17. [Computer-assisted navigation in orthognathic surgery. Application to Le Fort I osteotomy.

    Science.gov (United States)

    Benassarou, M; Benassarou, A; Meyer, C

    2013-08-05

    Computer-assisted navigation is a tool that allows the surgeon to reach intraoperatively a previously defined target. This technique can be applied to the positioning of bone fragments in orthognathic surgery. It is not used routinely yet because there are no specifically dedicated systems available on the market for this kind of surgery. The goal of our study was to describe the various systems that could be used in orthognathic surgery and to report our experience of computer-assisted surgery in the positioning of the maxilla during maxillomandibular osteotomies. Copyright © 2013. Published by Elsevier Masson SAS.

  18. A Systematic Review of Virtual Reality Simulators for Robot-assisted Surgery.

    Science.gov (United States)

    Moglia, Andrea; Ferrari, Vincenzo; Morelli, Luca; Ferrari, Mauro; Mosca, Franco; Cuschieri, Alfred

    2016-06-01

    No single large published randomized controlled trial (RCT) has confirmed the efficacy of virtual simulators in the acquisition of skills to the standard required for safe clinical robotic surgery. This remains the main obstacle for the adoption of these virtual simulators in surgical residency curricula. To evaluate the level of evidence in published studies on the efficacy of training on virtual simulators for robotic surgery. In April 2015 a literature search was conducted on PubMed, Web of Science, Scopus, Cochrane Library, the Clinical Trials Database (US) and the Meta Register of Controlled Trials. All publications were scrutinized for relevance to the review and for assessment of the levels of evidence provided using the classification developed by the Oxford Centre for Evidence-Based Medicine. The publications included in the review consisted of one RCT and 28 cohort studies on validity, and seven RCTs and two cohort studies on skills transfer from virtual simulators to robot-assisted surgery. Simulators were rated good for realism (face validity) and for usefulness as a training tool (content validity). However, the studies included used various simulation training methodologies, limiting the assessment of construct validity. The review confirms the absence of any consensus on which tasks and metrics are the most effective for the da Vinci Skills Simulator and dV-Trainer, the most widely investigated systems. Although there is consensus for the RoSS simulator, this is based on only two studies on construct validity involving four exercises. One study on initial evaluation of an augmented reality module for partial nephrectomy using the dV-Trainer reported high correlation (r=0.8) between in vivo porcine nephrectomy and a virtual renorrhaphy task according to the overall Global Evaluation Assessment of Robotic Surgery (GEARS) score. In one RCT on skills transfer, the experimental group outperformed the control group, with a significant difference in overall

  19. Simulation of quantum computers

    NARCIS (Netherlands)

    De Raedt, H; Michielsen, K; Hams, AH; Miyashita, S; Saito, K; Landau, DP; Lewis, SP; Schuttler, HB

    2001-01-01

    We describe a simulation approach to study the functioning of Quantum Computer hardware. The latter is modeled by a collection of interacting spin-1/2 objects. The time evolution of this spin system maps one-to-one to a quantum program carried out by the Quantum Computer. Our simulation software

  20. Simulation of quantum computers

    NARCIS (Netherlands)

    Raedt, H. De; Michielsen, K.; Hams, A.H.; Miyashita, S.; Saito, K.

    2000-01-01

    We describe a simulation approach to study the functioning of Quantum Computer hardware. The latter is modeled by a collection of interacting spin-1/2 objects. The time evolution of this spin system maps one-to-one to a quantum program carried out by the Quantum Computer. Our simulation software

  1. [Guided maxillofacial surgery: Simulation and surgery aided by stereolithographic guides and custom-made miniplates.

    Science.gov (United States)

    Philippe, B

    2013-08-05

    We present a new model of guided surgery, exclusively using computer assistance, from the preoperative planning of osteotomies to the actual surgery with the aid of stereolithographic cutting guides and osteosynthetic miniplates designed and made preoperatively, using custom-made titanium miniplates thanks to direct metal laser sintering. We describe the principles that guide the designing and industrial manufacturing of this new type of osteosynthesis miniplates. The surgical procedure is described step-by-step using several representative cases of dento-maxillofacial dysmorphosis. The encouraging short-term results demonstrate the wide range of application of this new technology for cranio-maxillofacial surgery, whatever the type of osteotomy performed, and for plastic reconstructive surgery. Copyright © 2013. Published by Elsevier Masson SAS.

  2. Prevailing Trends in Haptic Feedback Simulation for Minimally Invasive Surgery.

    Science.gov (United States)

    Pinzon, David; Byrns, Simon; Zheng, Bin

    2016-08-01

    Background The amount of direct hand-tool-tissue interaction and feedback in minimally invasive surgery varies from being attenuated in laparoscopy to being completely absent in robotic minimally invasive surgery. The role of haptic feedback during surgical skill acquisition and its emphasis in training have been a constant source of controversy. This review discusses the major developments in haptic simulation as they relate to surgical performance and the current research questions that remain unanswered. Search Strategy An in-depth review of the literature was performed using PubMed. Results A total of 198 abstracts were returned based on our search criteria. Three major areas of research were identified, including advancements in 1 of the 4 components of haptic systems, evaluating the effectiveness of haptic integration in simulators, and improvements to haptic feedback in robotic surgery. Conclusions Force feedback is the best method for tissue identification in minimally invasive surgery and haptic feedback provides the greatest benefit to surgical novices in the early stages of their training. New technology has improved our ability to capture, playback and enhance to utility of haptic cues in simulated surgery. Future research should focus on deciphering how haptic training in surgical education can increase performance, safety, and improve training efficiency. © The Author(s) 2016.

  3. [Clinical analysis of 12 cases of orthognathic surgery with digital computer-assisted technique].

    Science.gov (United States)

    Tan, Xin-ying; Hu, Min; Liu, Chang-kui; Liu, Hua-wei; Liu, San-xia; Tao, Ye

    2014-06-01

    This study was to investigate the effect of the digital computer-assisted technique in orthognathic surgery. Twelve patients from January 2008 to December 2011 with jaw malformation were treated in our department. With the help of CT and three-dimensional reconstruction technique, 12 patients underwent surgical treatment and the results were evaluated after surgery. Digital computer-assisted technique could clearly show the status of the jaw deformity and assist virtual surgery. After surgery all patients were satisfied with the results. Digital orthognathic surgery can improve the predictability of the surgical procedure, and to facilitate patients' communication, shorten operative time, and reduce patients' pain.

  4. Step-based cognitive virtual surgery simulation: an innovative approach to surgical education.

    Science.gov (United States)

    Oliker, Aaron; Napier, Zachary; Deluccia, Nicolette; Qualter, John; Sculli, Frank; Smith, Brandon; Stern, Carrie; Flores, Roberto; Hazen, Alexes; McCarthy, Joseph

    2012-01-01

    BioDigital Systems, LLC in collaboration with New York University Langone Medical Center Department of Reconstructive Plastic Surgery has created a complex, real-time, step-based simulation platform for plastic surgery education. These simulators combine live surgical footage, interactive 3D visualization, text labels, and voiceover as well as a high-yield, expert-approved testing mode to create a comprehensive virtual educational environment for the plastic surgery resident or physician.

  5. FPGA-accelerated simulation of computer systems

    CERN Document Server

    Angepat, Hari; Chung, Eric S; Hoe, James C; Chung, Eric S

    2014-01-01

    To date, the most common form of simulators of computer systems are software-based running on standard computers. One promising approach to improve simulation performance is to apply hardware, specifically reconfigurable hardware in the form of field programmable gate arrays (FPGAs). This manuscript describes various approaches of using FPGAs to accelerate software-implemented simulation of computer systems and selected simulators that incorporate those techniques. More precisely, we describe a simulation architecture taxonomy that incorporates a simulation architecture specifically designed f

  6. 76 FR 71980 - SEDASYS Computer-Assisted Personalized Sedation System; Ethicon Endo-Surgery, Incorporated's...

    Science.gov (United States)

    2011-11-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-P-0176] SEDASYS Computer-Assisted Personalized Sedation System; Ethicon Endo-Surgery, Incorporated's Petition for... SEDASYS computer-assisted personalized sedation system (SEDASYS) submitted by Ethicon Endo-Surgery Inc...

  7. Massively parallel quantum computer simulator

    NARCIS (Netherlands)

    De Raedt, K.; Michielsen, K.; De Raedt, H.; Trieu, B.; Arnold, G.; Richter, M.; Lippert, Th.; Watanabe, H.; Ito, N.

    2007-01-01

    We describe portable software to simulate universal quantum computers on massive parallel Computers. We illustrate the use of the simulation software by running various quantum algorithms on different computer architectures, such as a IBM BlueGene/L, a IBM Regatta p690+, a Hitachi SR11000/J1, a Cray

  8. Oral and maxillofacial surgery with computer-assisted navigation system.

    Science.gov (United States)

    Kawachi, Homare; Kawachi, Yasuyuki; Ikeda, Chihaya; Takagi, Ryo; Katakura, Akira; Shibahara, Takahiko

    2010-01-01

    Intraoperative computer-assisted navigation has gained acceptance in maxillofacial surgery with applications in an increasing number of indications. We adapted a commercially available wireless passive marker system which allows calibration and tracking of virtually every instrument in maxillofacial surgery. Virtual computer-generated anatomical structures are displayed intraoperatively in a semi-immersive head-up display. Continuous observation of the operating field facilitated by computer assistance enables surgical navigation in accordance with the physician's preoperative plans. This case report documents the potential for augmented visualization concepts in surgical resection of tumors in the oral and maxillofacial region. We report a case of T3N2bM0 carcinoma of the maxillary gingival which was surgically resected with the assistance of the Stryker Navigation Cart System. This system was found to be useful in assisting preoperative planning and intraoperative monitoring.

  9. Flow and air conditioning simulations of computer turbinectomized nose models.

    Science.gov (United States)

    Pérez-Mota, J; Solorio-Ordaz, F; Cervantes-de Gortari, J

    2018-04-16

    Air conditioning for the human respiratory system is the most important function of the nose. When obstruction occurs in the nasal airway, turbinectomy is used to correct such pathology. However, mucosal atrophy may occur sometime after this surgery when it is overdone. There is not enough information about long-term recovery of nasal air conditioning performance after partial or total surgery. The purpose of this research was to assess if, based on the flow and temperature/humidity characteristics of the air intake to the choana, partial resection of turbinates is better than total resection. A normal nasal cavity geometry was digitized from tomographic scans and a model was printed in 3D. Dynamic (sinusoidal) laboratory tests and computer simulations of airflow were conducted with full agreement between numerical and experimental results. Computational adaptations were subsequently performed to represent six turbinectomy variations and a swollen nasal cavity case. Streamlines along the nasal cavity and temperature and humidity distributions at the choana indicated that the middle turbinate partial resection is the best alternative. These findings may facilitate the diagnosis of nasal obstruction and can be useful both to plan a turbinectomy and to reduce postoperative discomfort. Graphical Abstract ᅟ.

  10. A review of virtual reality based training simulators for orthopaedic surgery.

    Science.gov (United States)

    Vaughan, Neil; Dubey, Venketesh N; Wainwright, Thomas W; Middleton, Robert G

    2016-02-01

    This review presents current virtual reality based training simulators for hip, knee and other orthopaedic surgery, including elective and trauma surgical procedures. There have not been any reviews focussing on hip and knee orthopaedic simulators. A comparison of existing simulator features is provided to identify what is missing and what is required to improve upon current simulators. In total 11 hip replacements pre-operative planning tools were analysed, plus 9 hip trauma fracture training simulators. Additionally 9 knee arthroscopy simulators and 8 other orthopaedic simulators were included for comparison. The findings are that for orthopaedic surgery simulators in general, there is increasing use of patient-specific virtual models which reduce the learning curve. Modelling is also being used for patient-specific implant design and manufacture. Simulators are being increasingly validated for assessment as well as training. There are very few training simulators available for hip replacement, yet more advanced virtual reality is being used for other procedures such as hip trauma and drilling. Training simulators for hip replacement and orthopaedic surgery in general lag behind other surgical procedures for which virtual reality has become more common. Further developments are required to bring hip replacement training simulation up to date with other procedures. This suggests there is a gap in the market for a new high fidelity hip replacement and resurfacing training simulator. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Blended learning in surgery using the Inmedea Simulator.

    Science.gov (United States)

    Funke, Katrin; Bonrath, Esther; Mardin, Wolf Arif; Becker, Jan Carl; Haier, Joerg; Senninger, Norbert; Vowinkel, Thorsten; Hoelzen, Jens Peter; Mees, Soeren Torge

    2013-02-01

    Recently, medical education in surgery has experienced several modifications. We have implemented a blended learning module in our teaching curriculum to evaluate its effectiveness, applicability, and acceptance in surgical education. In this prospective study, the traditional face-to-face learning of our teaching curriculum for fourth-year medical students (n = 116) was augmented by the Inmedea Simulator, a web-based E-learning system, with six virtual patient cases. Student results were documented by the system and learning success was determined by comparing patient cases with comparable diseases (second and sixth case). The acceptance among the students was evaluated with a questionnaire. After using the Inmedea Simulator, correct diagnoses were found significantly (P blended learning (score 2.5 ± 1.2) to conventional teaching. The blended learning approach using the Inmedea Simulator was highly appreciated by our medical students and resulted in a significant learning success. Blended learning appears to be a suitable tool to complement traditional teaching in surgery.

  12. Automated outcome scoring in a virtual reality simulator for endodontic surgery.

    Science.gov (United States)

    Yin, Myat Su; Haddawy, Peter; Suebnukarn, Siriwan; Rhienmora, Phattanapon

    2018-01-01

    We address the problem of automated outcome assessment in a virtual reality (VR) simulator for endodontic surgery. Outcome assessment is an essential component of any system that provides formative feedback, which requires assessing the outcome, relating it to the procedure, and communicating in a language natural to dental students. This study takes a first step toward automated generation of such comprehensive feedback. Virtual reference templates are computed based on tooth anatomy and the outcome is assessed with a 3D score cube volume which consists of voxel-level non-linear weighted scores based on the templates. The detailed scores are transformed into standard scoring language used by dental schools. The system was evaluated on fifteen outcome samples that contained optimal results and those with errors including perforation of the walls, floor, and both, as well as various combinations of major and minor over and under drilling errors. Five endodontists who had professional training and varying levels of experiences in root canal treatment participated as raters in the experiment. Results from evaluation of our system with expert endodontists show a high degree of agreement with expert scores (information based measure of disagreement 0.04-0.21). At the same time they show some disagreement among human expert scores, reflecting the subjective nature of human outcome scoring. The discriminatory power of the AOS scores analyzed with three grade tiers (A, B, C) using the area under the receiver operating characteristic curve (AUC). The AUC values are generally highest for the {AB: C} cutoff which is cutoff at the boundary between clinically acceptable (B) and clinically unacceptable (C) grades. The objective consistency of computed scores and high degree of agreement with experts make the proposed system a promising addition to existing VR simulators. The translation of detailed level scores into terminology commonly used in dental surgery supports natural

  13. Biomass Gasifier for Computer Simulation; Biomassa foergasare foer Computer Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Jens; Leveau, Andreas; Hulteberg, Christian [Nordlight AB, Limhamn (Sweden)

    2011-08-15

    This report is an effort to summarize the existing data on biomass gasifiers as the authors have taken part in various projects aiming at computer simulations of systems that include biomass gasification. Reliable input data is paramount for any computer simulation, but so far there is no easy-accessible biomass gasifier database available for this purpose. This study aims at benchmarking current and past gasifier systems in order to create a comprehensive database for computer simulation purposes. The result of the investigation is presented in a Microsoft Excel sheet, so that the user easily can implement the data in their specific model. In addition to provide simulation data, the technology is described briefly for every studied gasifier system. The primary pieces of information that are sought for are temperatures, pressures, stream compositions and energy consumption. At present the resulting database contains 17 gasifiers, with one or more gasifier within the different gasification technology types normally discussed in this context: 1. Fixed bed 2. Fluidised bed 3. Entrained flow. It also contains gasifiers in the range from 100 kW to 120 MW, with several gasifiers in between these two values. Finally, there are gasifiers representing both direct and indirect heating. This allows for a more qualified and better available choice of starting data sets for simulations. In addition to this, with multiple data sets available for several of the operating modes, sensitivity analysis of various inputs will improve simulations performed. However, there have been fewer answers to the survey than expected/hoped for, which could have improved the database further. However, the use of online sources and other public information has to some extent counterbalanced the low response frequency of the survey. In addition to that, the database is preferred to be a living document, continuously updated with new gasifiers and improved information on existing gasifiers.

  14. Virtual reality simulator for vitreoretinal surgery using integrated OCT data

    Directory of Open Access Journals (Sweden)

    Kozak I

    2014-03-01

    Full Text Available Igor Kozak,1 Pat Banerjee,2 Jia Luo,2 Cristian Luciano21King Khaled Eye Specialist Hospital, Vitreoretinal Division, Riyadh, Kingdom of Saudi Arabia; 2College of Engineering, University of Illinois at Chicago, Chicago, IL, USAAbstract: Operative practice using surgical simulators has become a part of training in many surgical specialties, including ophthalmology. We introduce a virtual reality retina surgery simulator capable of integrating optical coherence tomography (OCT scans from real patients for practicing vitreoretinal surgery using different pathologic scenarios.Keywords: optical coherence tomography

  15. Computer control versus manual control of systemic hypertension during cardiac surgery

    NARCIS (Netherlands)

    Hoeksel, S.A.A.P.; Blom, J.A.; Jansen, J.R.C.; Maessen, J.G.; Schreuder, J.J.

    2001-01-01

    Keywords:Cardiac surgery;hypertension;closed-loop controlBackground: We recently demonstrated the feasibility of computer controlled infusion of vasoactive drugs for the control of systemic hypertension during cardiac surgery. The objective of the current study was to investigate the effects of

  16. [Three-dimensional display simulation of lung surgery using "active shutter glasses"].

    Science.gov (United States)

    Onuki, Takamasa; Kanzaki, Masato; Sakamoto, Kei; Kikkawa, Takuma; Isaka, Tamami; Shimizu, Toshihide; Oyama, Kunihiro; Murasugi, Masahide

    2011-08-01

    We have reported preoperative 3-dimensional (3D) simulation of thoracoscopic lung surgery using self-made software and internet shareware of 3D-modeler. Using "active shutter glasses", we have tried the "3D display simulation" of lung surgery. 3D display was more effective to grasp clear 3D interrelation between the bronchii and pulmonary vascular system than those in images of currently in use with the same information volume.

  17. Student perception of two different simulation techniques in oral and maxillofacial surgery undergraduate training.

    Science.gov (United States)

    Lund, Bodil; Fors, Uno; Sejersen, Ronny; Sallnäs, Eva-Lotta; Rosén, Annika

    2011-10-12

    Yearly surveys among the undergraduate students in oral and maxillofacial surgery at Karolinska Institutet have conveyed a wish for increased clinical training, and in particular, in surgical removal of mandibular third molars. Due to lack of resources, this kind of clinical supervision has so far not been possible to implement. One possible solution to this problem might be to introduce simulation into the curriculum. The purpose of this study was to investigate undergraduate students' perception of two different simulation methods for practicing clinical reasoning skills and technical skills in oral and maxillofacial surgery. Forty-seven students participating in the oral and maxillofacial surgery course at Karolinska Institutet during their final year were included. Three different oral surgery patient cases were created in a Virtual Patient (VP) Simulation system (Web-SP) and used for training clinical reasoning. A mandibular third molar surgery simulator with tactile feedback, providing hands on training in the bone removal and tooth sectioning in third molar surgery, was also tested. A seminar was performed using the combination of these two simulators where students' perception of the two different simulation methods was assessed by means of a questionnaire. The response rate was 91.5% (43/47). The students were positive to the VP cases, although they rated their possible improvement of clinical reasoning skills as moderate. The students' perception of improved technical skills after training in the mandibular third molar surgery simulator was rated high. The majority of the students agreed that both simulation techniques should be included in the curriculum and strongly agreed that it was a good idea to use the two simulators in concert. The importance of feedback from the senior experts during simulator training was emphasised. The two tested simulation methods were well accepted and most students agreed that the future curriculum would benefit from

  18. Computer-assisted navigational surgery enhances safety in dental implantology.

    Science.gov (United States)

    Ng, F C; Ho, K H; Wexler, A

    2005-06-01

    Dental implants are increasingly used to restore missing dentition. These titanium implants are surgically installed in the edentulous alveolar ridge and allowed to osteointegrate with the bone during the healing phase. After osseo-integration, the implant is loaded with a prosthesis to replace the missing tooth. Conventional implant treatment planning uses study models, wax-ups and panoramic x-rays to prefabricate surgical stent to guide the preparation of the implant site. The drilling into the alveolar ridge is invariably a "blind" procedure as the part of the drill in bone is not visible. Stereotactic systems were first introduced into neurosurgery in 1986. Since then, computer-assisted navigational technology has brought major advances to neuro-, midface and orthopaedic surgeries, and more recently, to implant placement. This paper illustrates the use of real-time computer-guided navigational technology in enhancing safety in implant surgical procedures. Real-time computer-guided navigational technology enhances accuracy and precision of the surgical procedure, minimises complications and facilitates surgery in challenging anatomical locations.

  19. Development of customized positioning guides using computer-aided design and manufacturing technology for orthognathic surgery.

    Science.gov (United States)

    Lin, Hsiu-Hsia; Chang, Hsin-Wen; Lo, Lun-Jou

    2015-12-01

    The purpose of this study was to devise a method for producing customized positioning guides for translating virtual plans to actual orthognathic surgery, and evaluation of the feasibility and validity of the devised method. Patients requiring two-jaw orthognathic surgery were enrolled and consented before operation. Two types of positioning guides were designed and fabricated using computer-aided design and manufacturing technology: One of the guides was used for the LeFort I osteotomy, and the other guide was used for positioning the maxillomandibular complex. The guides were fixed to the medial side of maxilla. For validation, the simulation images and postoperative cone beam computed tomography images were superimposed using surface registration to quantify the difference between the images. The data were presented in root-mean-square difference (RMSD) values. Both sets of guides were experienced to provide ideal fit and maximal contact to the maxillary surface to facilitate their accurate management in clinical applications. The validation results indicated that RMSD values between the images ranged from 0.18 to 0.33 mm in the maxilla and from 0.99 to 1.56 mm in the mandible. The patients were followed up for 6 months or more, and all of them were satisfied with the results. The proposed customized positioning guides are practical and reliable for translation of virtual plans to actual surgery. Furthermore, these guides improved the efficiency and outcome of surgery. This approach is uncomplicated in design, cost-effective in fabrication, and particularly convenient to use.

  20. Validation of Robotic Surgery Simulator (RoSS).

    Science.gov (United States)

    Kesavadas, Thenkurussi; Stegemann, Andrew; Sathyaseelan, Gughan; Chowriappa, Ashirwad; Srimathveeravalli, Govindarajan; Seixas-Mikelus, Stéfanie; Chandrasekhar, Rameella; Wilding, Gregory; Guru, Khurshid

    2011-01-01

    Recent growth of daVinci Robotic Surgical System as a minimally invasive surgery tool has led to a call for better training of future surgeons. In this paper, a new virtual reality simulator, called RoSS is presented. Initial results from two studies - face and content validity, are very encouraging. 90% of the cohort of expert robotic surgeons felt that the simulator was excellent or somewhat close to the touch and feel of the daVinci console. Content validity of the simulator received 90% approval in some cases. These studies demonstrate that RoSS has the potential of becoming an important training tool for the daVinci surgical robot.

  1. Surgeon Training in Telerobotic Surgery via a Hardware-in-the-Loop Simulator

    Directory of Open Access Journals (Sweden)

    Xiao Li

    2017-01-01

    Full Text Available This work presents a software and hardware framework for a telerobotic surgery safety and motor skill training simulator. The aims are at providing trainees a comprehensive simulator for acquiring essential skills to perform telerobotic surgery. Existing commercial robotic surgery simulators lack features for safety training and optimal motion planning, which are critical factors in ensuring patient safety and efficiency in operation. In this work, we propose a hardware-in-the-loop simulator directly introducing these two features. The proposed simulator is built upon the Raven-II™ open source surgical robot, integrated with a physics engine and a safety hazard injection engine. Also, a Fast Marching Tree-based motion planning algorithm is used to help trainee learn the optimal instrument motion patterns. The main contributions of this work are (1 reproducing safety hazards events, related to da Vinci™ system, reported to the FDA MAUDE database, with a novel haptic feedback strategy to provide feedback to the operator when the underlying dynamics differ from the real robot’s states so that the operator will be aware and can mitigate the negative impact of the safety-critical events, and (2 using motion planner to generate semioptimal path in an interactive robotic surgery training environment.

  2. Distributed simulation of large computer systems

    International Nuclear Information System (INIS)

    Marzolla, M.

    2001-01-01

    Sequential simulation of large complex physical systems is often regarded as a computationally expensive task. In order to speed-up complex discrete-event simulations, the paradigm of Parallel and Distributed Discrete Event Simulation (PDES) has been introduced since the late 70s. The authors analyze the applicability of PDES to the modeling and analysis of large computer system; such systems are increasingly common in the area of High Energy and Nuclear Physics, because many modern experiments make use of large 'compute farms'. Some feasibility tests have been performed on a prototype distributed simulator

  3. Automatic Model Generation Framework for Computational Simulation of Cochlear Implantation.

    Science.gov (United States)

    Mangado, Nerea; Ceresa, Mario; Duchateau, Nicolas; Kjer, Hans Martin; Vera, Sergio; Dejea Velardo, Hector; Mistrik, Pavel; Paulsen, Rasmus R; Fagertun, Jens; Noailly, Jérôme; Piella, Gemma; González Ballester, Miguel Ángel

    2016-08-01

    Recent developments in computational modeling of cochlear implantation are promising to study in silico the performance of the implant before surgery. However, creating a complete computational model of the patient's anatomy while including an external device geometry remains challenging. To address such a challenge, we propose an automatic framework for the generation of patient-specific meshes for finite element modeling of the implanted cochlea. First, a statistical shape model is constructed from high-resolution anatomical μCT images. Then, by fitting the statistical model to a patient's CT image, an accurate model of the patient-specific cochlea anatomy is obtained. An algorithm based on the parallel transport frame is employed to perform the virtual insertion of the cochlear implant. Our automatic framework also incorporates the surrounding bone and nerve fibers and assigns constitutive parameters to all components of the finite element model. This model can then be used to study in silico the effects of the electrical stimulation of the cochlear implant. Results are shown on a total of 25 models of patients. In all cases, a final mesh suitable for finite element simulations was obtained, in an average time of 94 s. The framework has proven to be fast and robust, and is promising for a detailed prognosis of the cochlear implantation surgery.

  4. Computer-based endoscopic image-processing technology for endourology and laparoscopic surgery

    International Nuclear Information System (INIS)

    Igarashi, Tatsuo; Suzuki, Hiroyoshi; Naya, Yukio

    2009-01-01

    Endourology and laparoscopic surgery are evolving in accordance with developments in instrumentation and progress in surgical technique. Recent advances in computer and image-processing technology have enabled novel images to be created from conventional endoscopic and laparoscopic video images. Such technology harbors the potential to advance endourology and laparoscopic surgery by adding new value and function to the endoscope. The panoramic and three-dimensional images created by computer processing are two outstanding features that can address the shortcomings of conventional endoscopy and laparoscopy, such as narrow field of view, lack of depth cue, and discontinuous information. The wide panoramic images show an anatomical map' of the abdominal cavity and hollow organs with high brightness and resolution, as the images are collected from video images taken in a close-up manner. To assist in laparoscopic surgery, especially in suturing, a three-dimensional movie can be obtained by enhancing movement parallax using a conventional monocular laparoscope. In tubular organs such as the prostatic urethra, reconstruction of three-dimensional structure can be achieved, implying the possibility of a liquid dynamic model for assessing local urethral resistance in urination. Computer-based processing of endoscopic images will establish new tools for endourology and laparoscopic surgery in the near future. (author)

  5. Computer Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Pronskikh, V. S. [Fermilab

    2014-05-09

    Verification and validation of computer codes and models used in simulation are two aspects of the scientific practice of high importance and have recently been discussed by philosophers of science. While verification is predominantly associated with the correctness of the way a model is represented by a computer code or algorithm, validation more often refers to model’s relation to the real world and its intended use. It has been argued that because complex simulations are generally not transparent to a practitioner, the Duhem problem can arise for verification and validation due to their entanglement; such an entanglement makes it impossible to distinguish whether a coding error or model’s general inadequacy to its target should be blamed in the case of the model failure. I argue that in order to disentangle verification and validation, a clear distinction between computer modeling (construction of mathematical computer models of elementary processes) and simulation (construction of models of composite objects and processes by means of numerical experimenting with them) needs to be made. Holding on to that distinction, I propose to relate verification (based on theoretical strategies such as inferences) to modeling and validation, which shares the common epistemology with experimentation, to simulation. To explain reasons of their intermittent entanglement I propose a weberian ideal-typical model of modeling and simulation as roles in practice. I suggest an approach to alleviate the Duhem problem for verification and validation generally applicable in practice and based on differences in epistemic strategies and scopes

  6. 9th Asian Conference on Computer-Aided Surgery

    CERN Document Server

    2016-01-01

    This book presents the latest research advances in the theory, design, control, and application of robot systems intended for a variety of purposes such as manipulation, manufacturing, automation, surgery, locomotion, and biomechanics. Several chapters deal with fundamental kinematics in nature, including synthesis, calibration, redundancy, force control, dexterity, inverse and forward kinematics, kinematic singularities, and over-constrained systems. This book is a compilation of the extended versions of the very best papers selected from the many that were presented at the Asian Conference on Computer-Aided Surgery held September 16–18, 2013, in Tokyo, Japan (ACCAS 2013).

  7. Soft Tissue Biomechanical Modeling for Computer Assisted Surgery

    CERN Document Server

    2012-01-01

      This volume focuses on the biomechanical modeling of biological tissues in the context of Computer Assisted Surgery (CAS). More specifically, deformable soft tissues are addressed since they are the subject of the most recent developments in this field. The pioneering works on this CAS topic date from the 1980's, with applications in orthopaedics and biomechanical models of bones. More recently, however, biomechanical models of soft tissues have been proposed since most of the human body is made of soft organs that can be deformed by the surgical gesture. Such models are much more complicated to handle since the tissues can be subject to large deformations (non-linear geometrical framework) as well as complex stress/strain relationships (non-linear mechanical framework). Part 1 of the volume presents biomechanical models that have been developed in a CAS context and used during surgery. This is particularly new since most of the soft tissues models already proposed concern Computer Assisted Planning, with ...

  8. Cluster computing software for GATE simulations

    International Nuclear Information System (INIS)

    Beenhouwer, Jan de; Staelens, Steven; Kruecker, Dirk; Ferrer, Ludovic; D'Asseler, Yves; Lemahieu, Ignace; Rannou, Fernando R.

    2007-01-01

    Geometry and tracking (GEANT4) is a Monte Carlo package designed for high energy physics experiments. It is used as the basis layer for Monte Carlo simulations of nuclear medicine acquisition systems in GEANT4 Application for Tomographic Emission (GATE). GATE allows the user to realistically model experiments using accurate physics models and time synchronization for detector movement through a script language contained in a macro file. The downside of this high accuracy is long computation time. This paper describes a platform independent computing approach for running GATE simulations on a cluster of computers in order to reduce the overall simulation time. Our software automatically creates fully resolved, nonparametrized macros accompanied with an on-the-fly generated cluster specific submit file used to launch the simulations. The scalability of GATE simulations on a cluster is investigated for two imaging modalities, positron emission tomography (PET) and single photon emission computed tomography (SPECT). Due to a higher sensitivity, PET simulations are characterized by relatively high data output rates that create rather large output files. SPECT simulations, on the other hand, have lower data output rates but require a long collimator setup time. Both of these characteristics hamper scalability as a function of the number of CPUs. The scalability of PET simulations is improved here by the development of a fast output merger. The scalability of SPECT simulations is improved by greatly reducing the collimator setup time. Accordingly, these two new developments result in higher scalability for both PET and SPECT simulations and reduce the computation time to more practical values

  9. Computer-based laparoscopic and robotic surgical simulators: performance characteristics and perceptions of new users.

    Science.gov (United States)

    Lin, David W; Romanelli, John R; Kuhn, Jay N; Thompson, Renee E; Bush, Ron W; Seymour, Neal E

    2009-01-01

    This study aimed to define perceptions of the need and the value of new simulation devices for laparoscopic and robot-assisted surgery. The initial experience of surgeons using both robotic and nonrobotic laparoscopic simulators to perform an advanced laparoscopic skill was evaluated. At the 2006 Society of American Gastroesophageal Surgeons (SAGES) meeting, 63 Learning Center attendees used a new virtual reality robotic surgery simulator (SEP Robot) and either a computer-enhanced laparoscopic simulator (ProMIS) or a virtual reality simulator (SurgicalSIM). Demographic and training data were collected by an intake survey. Subjects then were assessed during one iteration of laparoscopic suturing and knot-tying on the SEP Robot and either the ProMIS or the SurgicalSIM. A posttask survey determined users' impressions of task realism, interface quality, and educational value. Performance data were collected and comparisons made between user-defined groups, different simulation platforms, and posttask survey responses. The task completion rate was significantly greater for experts than for nonexperts on the virtual reality platforms (SurgicalSIM: 100% vs 36%; SEP Robot: 93% vs 63%; p platforms, whereas simulator metrics best discriminated expertise for the videoscopic platform. Similar comparisons for the virtual reality platforms were not feasible because of the low task completion rate for nonexperts. The added degrees of freedom associated with the robotic surgical simulator instruments facilitated completion of the task by nonexperts. All platforms were perceived as effective training tools.

  10. Parallel reservoir simulator computations

    International Nuclear Information System (INIS)

    Hemanth-Kumar, K.; Young, L.C.

    1995-01-01

    The adaptation of a reservoir simulator for parallel computations is described. The simulator was originally designed for vector processors. It performs approximately 99% of its calculations in vector/parallel mode and relative to scalar calculations it achieves speedups of 65 and 81 for black oil and EOS simulations, respectively on the CRAY C-90

  11. Computer simulation of ductile fracture

    International Nuclear Information System (INIS)

    Wilkins, M.L.; Streit, R.D.

    1979-01-01

    Finite difference computer simulation programs are capable of very accurate solutions to problems in plasticity with large deformations and rotation. This opens the possibility of developing models of ductile fracture by correlating experiments with equivalent computer simulations. Selected experiments were done to emphasize different aspects of the model. A difficult problem is the establishment of a fracture-size effect. This paper is a study of the strain field around notched tensile specimens of aluminum 6061-T651. A series of geometrically scaled specimens are tested to fracture. The scaled experiments are conducted for different notch radius-to-diameter ratios. The strains at fracture are determined from computer simulations. An estimate is made of the fracture-size effect

  12. Simulating chemistry using quantum computers.

    Science.gov (United States)

    Kassal, Ivan; Whitfield, James D; Perdomo-Ortiz, Alejandro; Yung, Man-Hong; Aspuru-Guzik, Alán

    2011-01-01

    The difficulty of simulating quantum systems, well known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.

  13. HTTR plant dynamic simulation using a hybrid computer

    International Nuclear Information System (INIS)

    Shimazaki, Junya; Suzuki, Katsuo; Nabeshima, Kunihiko; Watanabe, Koichi; Shinohara, Yoshikuni; Nakagawa, Shigeaki.

    1990-01-01

    A plant dynamic simulation of High-Temperature Engineering Test Reactor has been made using a new-type hybrid computer. This report describes a dynamic simulation model of HTTR, a hybrid simulation method for SIMSTAR and some results obtained from dynamics analysis of HTTR simulation. It concludes that the hybrid plant simulation is useful for on-line simulation on account of its capability of computation at high speed, compared with that of all digital computer simulation. With sufficient accuracy, 40 times faster computation than real time was reached only by changing an analog time scale for HTTR simulation. (author)

  14. GPU-accelerated micromagnetic simulations using cloud computing

    Energy Technology Data Exchange (ETDEWEB)

    Jermain, C.L., E-mail: clj72@cornell.edu [Cornell University, Ithaca, NY 14853 (United States); Rowlands, G.E.; Buhrman, R.A. [Cornell University, Ithaca, NY 14853 (United States); Ralph, D.C. [Cornell University, Ithaca, NY 14853 (United States); Kavli Institute at Cornell, Ithaca, NY 14853 (United States)

    2016-03-01

    Highly parallel graphics processing units (GPUs) can improve the speed of micromagnetic simulations significantly as compared to conventional computing using central processing units (CPUs). We present a strategy for performing GPU-accelerated micromagnetic simulations by utilizing cost-effective GPU access offered by cloud computing services with an open-source Python-based program for running the MuMax3 micromagnetics code remotely. We analyze the scaling and cost benefits of using cloud computing for micromagnetics. - Highlights: • The benefits of cloud computing for GPU-accelerated micromagnetics are examined. • We present the MuCloud software for running simulations on cloud computing. • Simulation run times are measured to benchmark cloud computing performance. • Comparison benchmarks are analyzed between CPU and GPU based solvers.

  15. GPU-accelerated micromagnetic simulations using cloud computing

    International Nuclear Information System (INIS)

    Jermain, C.L.; Rowlands, G.E.; Buhrman, R.A.; Ralph, D.C.

    2016-01-01

    Highly parallel graphics processing units (GPUs) can improve the speed of micromagnetic simulations significantly as compared to conventional computing using central processing units (CPUs). We present a strategy for performing GPU-accelerated micromagnetic simulations by utilizing cost-effective GPU access offered by cloud computing services with an open-source Python-based program for running the MuMax3 micromagnetics code remotely. We analyze the scaling and cost benefits of using cloud computing for micromagnetics. - Highlights: • The benefits of cloud computing for GPU-accelerated micromagnetics are examined. • We present the MuCloud software for running simulations on cloud computing. • Simulation run times are measured to benchmark cloud computing performance. • Comparison benchmarks are analyzed between CPU and GPU based solvers.

  16. High-fidelity haptic and visual rendering for patient-specific simulation of temporal bone surgery.

    Science.gov (United States)

    Chan, Sonny; Li, Peter; Locketz, Garrett; Salisbury, Kenneth; Blevins, Nikolas H

    2016-12-01

    Medical imaging techniques provide a wealth of information for surgical preparation, but it is still often the case that surgeons are examining three-dimensional pre-operative image data as a series of two-dimensional images. With recent advances in visual computing and interactive technologies, there is much opportunity to provide surgeons an ability to actively manipulate and interpret digital image data in a surgically meaningful way. This article describes the design and initial evaluation of a virtual surgical environment that supports patient-specific simulation of temporal bone surgery using pre-operative medical image data. Computational methods are presented that enable six degree-of-freedom haptic feedback during manipulation, and that simulate virtual dissection according to the mechanical principles of orthogonal cutting and abrasive wear. A highly efficient direct volume renderer simultaneously provides high-fidelity visual feedback during surgical manipulation of the virtual anatomy. The resulting virtual surgical environment was assessed by evaluating its ability to replicate findings in the operating room, using pre-operative imaging of the same patient. Correspondences between surgical exposure, anatomical features, and the locations of pathology were readily observed when comparing intra-operative video with the simulation, indicating the predictive ability of the virtual surgical environment.

  17. Computer Simulation Western

    International Nuclear Information System (INIS)

    Rasmussen, H.

    1992-01-01

    Computer Simulation Western is a unit within the Department of Applied Mathematics at the University of Western Ontario. Its purpose is the development of computational and mathematical methods for practical problems in industry and engineering and the application and marketing of such methods. We describe the unit and our efforts at obtaining research and development grants. Some representative projects will be presented and future plans discussed. (author)

  18. Computed tomographic evaluation of realignment surgery for patellar subluxation

    International Nuclear Information System (INIS)

    Inoue, Masahiro; Shino, Konsei; Maeda, Akira; Nakata, Ken; Ono, Hiroo.

    1994-01-01

    Forty-two patients with patellar subluxation underwent realignment surgery of the knee extensor mechanism. The surgery included, lateral release, advancement and reefing of the vastus medialis and the medial capsule and tibial tubercle transfer (Elmslie-Trillat procedure). The effect of surgery was evaluated using computed tomograms of the pre- and post-operative knees at 0, 15, 30 and 45 degrees of knee flexion. The degree of patellofemoral incongruence on CT was expressed using two parameters of patellar tilt and patellar shift. Thirty-three volunteers without any patello-femoral symptoms served as controls. Postoperatively both the patellar tilt and the patellar shift improved significantly. The average patellar tilt and the patellar shift of the patient group at 45 degrees were comparable with those of controls. However, it was found by CT that the realignment surgery was less effective between 0 and 30 degrees of knee flexion. (author)

  19. Computed tomographic evaluation of realignment surgery for patellar subluxation

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Masahiro (Kansai Rosai Hospital, Amagasaki (Japan)); Shino, Konsei; Maeda, Akira; Nakata, Ken; Ono, Hiroo

    1994-01-01

    Forty-two patients with patellar subluxation underwent realignment surgery of the knee extensor mechanism. The surgery included, lateral release, advancement and reefing of the vastus medialis and the medial capsule and tibial tubercle transfer (Elmslie-Trillat procedure). The effect of surgery was evaluated using computed tomograms of the pre- and post-operative knees at 0, 15, 30 and 45 degrees of knee flexion. The degree of patellofemoral incongruence on CT was expressed using two parameters of patellar tilt and patellar shift. Thirty-three volunteers without any patello-femoral symptoms served as controls. Postoperatively both the patellar tilt and the patellar shift improved significantly. The average patellar tilt and the patellar shift of the patient group at 45 degrees were comparable with those of controls. However, it was found by CT that the realignment surgery was less effective between 0 and 30 degrees of knee flexion. (author).

  20. Energy consumption during simulated minimal access surgery with and without using an armrest.

    Science.gov (United States)

    Jafri, Mansoor; Brown, Stuart; Arnold, Graham; Abboud, Rami; Wang, Weijie

    2013-03-01

    Minimal access surgery (MAS) can be a lengthy procedure when compared to open surgery and therefore surgeon fatigue becomes an important issue and surgeons may expose themselves to chronic injuries and making errors. There have been few studies on this topic and they have used only questionnaires and electromyography rather than direct measurement of energy expenditure (EE). The aim of this study was to investigate whether the use of an armrest could reduce the EE of surgeons during MAS. Sixteen surgeons performed simulated MAS with and without using an armrest. They were required to perform the time-consuming task of using scissors to cut a rubber glove through its top layer in a triangular fashion with the help of a laparoscopic camera. Energy consumptions were measured using the Oxycon Mobile system during all the procedures. Error rate and duration time for simulated surgery were recorded. After performing the simulated surgery, subjects scored how comfortable they felt using the armrest. It was found that O(2) uptake (VO(2)) was 5 % less when surgeons used the armrest. The error rate when performing the procedure with the armrest was 35 % compared with 42.29 % without the armrest. Additionally, comfort levels with the armrest were higher than without the armrest. 75 % of surgeons indicated a preference for using the armrest during the simulated surgery. The armrest provides support for surgeons and cuts energy consumption during simulated MAS.

  1. General-purpose parallel simulator for quantum computing

    International Nuclear Information System (INIS)

    Niwa, Jumpei; Matsumoto, Keiji; Imai, Hiroshi

    2002-01-01

    With current technologies, it seems to be very difficult to implement quantum computers with many qubits. It is therefore of importance to simulate quantum algorithms and circuits on the existing computers. However, for a large-size problem, the simulation often requires more computational power than is available from sequential processing. Therefore, simulation methods for parallel processors are required. We have developed a general-purpose simulator for quantum algorithms/circuits on the parallel computer (Sun Enterprise4500). It can simulate algorithms/circuits with up to 30 qubits. In order to test efficiency of our proposed methods, we have simulated Shor's factorization algorithm and Grover's database search, and we have analyzed robustness of the corresponding quantum circuits in the presence of both decoherence and operational errors. The corresponding results, statistics, and analyses are presented in this paper

  2. Computer Assisted Orthopaedic Surgery – CAOS

    Directory of Open Access Journals (Sweden)

    Enes M. Kanlić

    2006-02-01

    Full Text Available The use of computer navigation in orthopedic surgery allows for real time intraoperative feedback resulting in higher precision of bone cuts, better alignment of implants and extremities, easier fracture reductions, less radiation and better documentation than what is possible in classical orthopaedic procedures. There is no need for direct and repeated visualization of many anatomical landmarks (classical method in order to have good intraoperative orientation. Navigation technology depicts anatomy and position of "smart tools" on the screen allowing for high surgical precision (smaller number of outliers from desired goal and with less soft tissue dissection (minimally invasive surgery - MIS. As a result, there are more happy patients with less pain, faster recovery, better functional outcome and well positioned, long lasting implants. In general, navigation cases are longer on the average 10 to 20 minutes, special training is required and equipment is relatively expensive. CAOS applications in knee and hip joint replacement are discussed.

  3. The role of computer-aided 3D surgery and stereolithographic modelling for vector orientation in premaxillary and trans-sinusoidal maxillary distraction osteogenesis.

    Science.gov (United States)

    Varol, Altan; Basa, Selçuk

    2009-06-01

    Maxillary distraction osteogenesis is a challenging procedure when it is performed with internal submerged distractors due to obligation of setting accurate distraction vectors. Five patients with severe maxillary retrognathy were planned with Mimics 10.01 CMF and Simplant 10.01 software. Distraction vectors and rods of distractors were arranged in 3D environment and on STL models. All patients were operated under general anaesthesia and complete Le Fort I downfracture was performed. All distractions were performed according to orientated vectors. All patients achieved stable occlusion and satisfactory aesthetic outcome at the end of the treatment period. Preoperative bending of internal maxillary distractors prevents significant loss of operation time. 3D computer-aided surgical simulation and model surgery provide accurate orientation of distraction vectors for premaxillary and internal trans-sinusoidal maxillary distraction. Combination of virtual surgical simulation and stereolithographic models surgery can be validated as an effective method of preoperative planning for complicated maxillofacial surgery cases.

  4. Advanced computers and simulation

    International Nuclear Information System (INIS)

    Ryne, R.D.

    1993-01-01

    Accelerator physicists today have access to computers that are far more powerful than those available just 10 years ago. In the early 1980's, desktop workstations performed less one million floating point operations per second (Mflops), and the realized performance of vector supercomputers was at best a few hundred Mflops. Today vector processing is available on the desktop, providing researchers with performance approaching 100 Mflops at a price that is measured in thousands of dollars. Furthermore, advances in Massively Parallel Processors (MPP) have made performance of over 10 gigaflops a reality, and around mid-decade MPPs are expected to be capable of teraflops performance. Along with advances in MPP hardware, researchers have also made significant progress in developing algorithms and software for MPPS. These changes have had, and will continue to have, a significant impact on the work of computational accelerator physicists. Now, instead of running particle simulations with just a few thousand particles, we can perform desktop simulations with tens of thousands of simulation particles, and calculations with well over 1 million particles are being performed on MPPs. In the area of computational electromagnetics, simulations that used to be performed only on vector supercomputers now run in several hours on desktop workstations, and researchers are hoping to perform simulations with over one billion mesh points on future MPPs. In this paper we will discuss the latest advances, and what can be expected in the near future, in hardware, software and applications codes for advanced simulation of particle accelerators

  5. VIRGY: a virtual reality and force feedback based endoscopic surgery simulator.

    Science.gov (United States)

    Baur, C; Guzzoni, D; Georg, O

    1998-01-01

    This paper describes the VIRGY project at the VRAI Group (Virtual Reality and Active Interface), Swiss Federal Institute of Technology (Lausanne, Switzerland). Since 1994, we have been investigating a variety of virtual-reality based methods for simulating laparoscopic surgery procedures. Our goal is to develop an endoscopic surgical training tool which realistically simulates the interactions between one or more surgical instruments and gastrointestinal organs. To support real-time interaction and manipulation between instruments and organs, we have developed several novel graphic simulation techniques. In particular, we are using live video texturing to achieve dynamic effects such as bleeding or vaporization of fatty tissues. Special texture manipulations allows us to generate pulsing objects while minimizing processor load. Additionally, we have created a new surface deformation algorithm which enables real-time deformations under external constraints. Lastly, we have developed a new 3D object definition which allows us to perform operations such as total or partial object cuttings, as well as to selectively render objects with different levels of detail. To provide realistic physical simulation of the forces and torques on surgical instruments encountered during an operation, we have also designed a new haptic device dedicated to endososcopic surgery constraints. We are using special interpolation and extrapolation techniques to integrate our 25 Hz visual simulation with the 300 Hz feedback required for realistic tactile interaction. The fully VIRGY simulator has been tested by surgeons and the quality of both our visual and haptic simulation has been judged sufficient for training basic surgery gestures.

  6. Computer simulations of collisionless shock waves

    International Nuclear Information System (INIS)

    Leroy, M.M.

    1984-01-01

    A review of the contributions of particle computer simulations to the understanding of the physics of magnetic shock waves in collisionless plasmas is presented. The emphasis is on the relation between the computer simulation results, spacecraft observations of shocks in space, and related theories, rather than on technical aspects of the numerics. It is shown that much has been learned from the comparison of ISEE spacecraft observations of the terrestrial bow shock and particle computer simulations concerning the quasi-perpendicular, supercritical shock (ion scale structure, ion reflection mechanism and ultimate dissipation processes). Particle computer simulations have also had an appreciable prospective role in the investigation of the physics of quasi-parallel shocks, about which still little is known observationally. Moreover, these numerical techniques have helped to clarify the process of suprathermal ion rejection by the shock into the foreshock, and the subsequent evolution of the ions in the foreshock. 95 references

  7. Computer algebra simulation - what can it do?; Was leistet Computer-Algebra-Simulation?

    Energy Technology Data Exchange (ETDEWEB)

    Braun, S. [Visual Analysis AG, Muenchen (Germany)

    2001-07-01

    Shortened development times require new and improved calculation methods. Numeric methods have long become state of the art. However, although numeric simulations provide a better understanding of process parameters, they do not give a feast overview of the interdependences between parameters. Numeric simulations are effective only if all physical parameters are sufficiently known; otherwise, the efficiency will decrease due to the large number of variant calculations required. Computer algebra simulation closes this gap and provides a deeper understanding of the physical fundamentals of technical processes. [German] Neue und verbesserte Berechnungsmethoden sind notwendig, um die staendige Verkuerzung der Entwicklungszyklen zu ermoeglichen. Herkoemmliche Methoden, die auf einem rein numerischen Ansatz basieren, haben sich in vielen Anwendungsbereichen laengst zum Standard entwickelt. Aber nicht nur die staendig kuerzer werdenden Entwicklungszyklen, sondern auch die weiterwachsende Komplexitaet machen es notwendig, ein besseres Verstaendnis der beteiligten Prozessparameter zu gewinnen. Die numerische Simulation besticht zwar durch Detailloesungen, selbst bei komplexen Strukturen und Prozessen, allerdings liefert sie keine schnelle Abschaetzung ueber die Zusammenhaenge zwischen den einzelnen Parametern. Die numerische Simulation ist nur dann effektiv, wenn alle physikalischen Parameter hinreichend bekannt sind; andernfalls sinkt die Effizienz durch die notwendige Anzahl von notwendigen Variantenrechnungen sehr stark. Die Computer-Algebra-Simulation schliesst diese Luecke in dem sie es erlaubt, sich einen tieferen Einblick in die physikalische Funktionsweise technischer Prozesse zu verschaffen. (orig.)

  8. Use of computer-based clinical examination to assess medical students in surgery.

    Science.gov (United States)

    El Shallaly, Gamal E H A; Mekki, Abdelrahman M

    2012-01-01

    To improve the viewing of the video-projected structured clinical examination (ViPSCE), we developed a computerized version; the computer-based clinical examination (CCE). This was used to assess medical students' higher knowledge and problem solving skills in surgery. We present how we did this, test score descriptive statistics, and the students' evaluation of the CCE. A CCE in surgery was administered to assess a class of 43 final year medical students at the end of their surgical clerkship. Like the ViPSCE, the exam was delivered as a slide show, using a PowerPoint computer program. However, instead of projecting it onto a screen, each student used a computer. There were 20 slides containing either still photos or short video clips of clinical situations in surgery. The students answered by hand writing on the exam papers. At the end, they completed evaluation forms. The exam papers were corrected manually. Test score descriptive statistics were calculated and correlated with the students' scores in other exams in surgery. Administration of the CCE was straightforward. The test scores were normally distributed (mean = median = 4.9). They correlated significantly with the total scores obtained by the students in surgery (r = 0.68), and with each of the other exam modalities in surgery, such as the multiple choice and structured essay questions. Acceptability of the CCE to the students was high and they recommended the use of the CCE in other departments. CCE is feasible and popular with students. It inherits the validity and reliability of the ViPSCE with the added advantage of improving the viewing of the slides.

  9. Developing effective automated feedback in temporal bone surgery simulation.

    Science.gov (United States)

    Wijewickrema, Sudanthi; Piromchai, Patorn; Zhou, Yun; Ioannou, Ioanna; Bailey, James; Kennedy, Gregor; O'Leary, Stephen

    2015-06-01

    We aim to test the effectiveness, accuracy, and usefulness of an automated feedback system in facilitating skill acquisition in virtual reality surgery. We evaluate the performance of the feedback system through a randomized controlled trial of 24 students allocated to feedback and nonfeedback groups. The feedback system was based on the Melbourne University temporal bone surgery simulator. The study was conducted at the simulation laboratory of the Royal Victorian Eye and Ear Hospital, Melbourne. The study participants were medical students from the University of Melbourne, who were asked to perform virtual cortical mastoidectomy on the simulator. The extent to which the drilling behavior of the feedback and nonfeedback groups differed was used to evaluate the effectiveness of the system. Its accuracy was determined through a postexperiment observational assessment of recordings made during the experiment by an expert surgeon. Its usability was evaluated using students' self-reports of their impressions of the system. A Friedman's test showed that there was a significant improvement in the drilling performance of the feedback group, χ(2)(1) = 14.450, P feedback (when trainee behavior was detected) 88.6% of the time and appropriate feedback (accurate advice) 84.2% of the time. Participants' opinions about the usefulness of the system were highly positive. The automated feedback system was observed to be effective in improving surgical technique, and the provided feedback was found to be accurate and useful. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  10. Framework for utilizing computational devices within simulation

    Directory of Open Access Journals (Sweden)

    Miroslav Mintál

    2013-12-01

    Full Text Available Nowadays there exist several frameworks to utilize a computation power of graphics cards and other computational devices such as FPGA, ARM and multi-core processors. The best known are either low-level and need a lot of controlling code or are bounded only to special graphic cards. Furthermore there exist more specialized frameworks, mainly aimed to the mathematic field. Described framework is adjusted to use in a multi-agent simulations. Here it provides an option to accelerate computations when preparing simulation and mainly to accelerate a computation of simulation itself.

  11. Understanding Emergency Care Delivery Through Computer Simulation Modeling.

    Science.gov (United States)

    Laker, Lauren F; Torabi, Elham; France, Daniel J; Froehle, Craig M; Goldlust, Eric J; Hoot, Nathan R; Kasaie, Parastu; Lyons, Michael S; Barg-Walkow, Laura H; Ward, Michael J; Wears, Robert L

    2018-02-01

    In 2017, Academic Emergency Medicine convened a consensus conference entitled, "Catalyzing System Change through Health Care Simulation: Systems, Competency, and Outcomes." This article, a product of the breakout session on "understanding complex interactions through systems modeling," explores the role that computer simulation modeling can and should play in research and development of emergency care delivery systems. This article discusses areas central to the use of computer simulation modeling in emergency care research. The four central approaches to computer simulation modeling are described (Monte Carlo simulation, system dynamics modeling, discrete-event simulation, and agent-based simulation), along with problems amenable to their use and relevant examples to emergency care. Also discussed is an introduction to available software modeling platforms and how to explore their use for research, along with a research agenda for computer simulation modeling. Through this article, our goal is to enhance adoption of computer simulation, a set of methods that hold great promise in addressing emergency care organization and design challenges. © 2017 by the Society for Academic Emergency Medicine.

  12. [Economic benefits of overlapping induction: investigation using a computer simulation model].

    Science.gov (United States)

    Hunziker, S; Baumgart, A; Denz, C; Schüpfer, G

    2009-06-01

    The aim of this study was to investigate the potential economic benefit of overlapping anaesthesia induction given that all patient diagnosis-related groups (AP DRG) are used as the model for hospital reimbursement. A computer simulation model was used for this purpose. Due to the resource-intensive production process, the operating room (OR) environment is the most expensive part of the supply chain for surgical disciplines. The economical benefit of a parallel production process (additional personnel, adaptation of the process) as compared to a conventional serial layout was assessed. A computer-based simulation method was used with commercially available simulation software. Assumptions for revenues were made by reimbursement based on AP DRG. Based on a system analysis a model for the computer simulation was designed on a step-by-step abstraction process. In the model two operating rooms were used for parallel processing and two operating rooms for a serial production process. Six different types of surgical procedures based on historical case durations were investigated. The contribution margin was calculated based on the increased revenues minus the cost for the additional anaesthesia personnel. Over a period of 5 weeks 41 additional surgical cases were operated under the assumption of duration of surgery of 89+/-4 min (mean+/-SD). The additional contribution margin was CHF 104,588. In the case of longer surgical procedures with 103+/-25 min duration (mean+/-SD), an increase of 36 cases was possible in the same time period and the contribution margin was increased by CHF 384,836. When surgical cases with a mean procedural time of 243+/-55 min were simulated, 15 additional cases were possible. Therefore, the additional contribution margin was CHF 321,278. Although costs increased in this simulation when a serial production process was changed to a parallel system layout due to more personnel, an increase of the contribution margin was possible, especially with

  13. Numerical characteristics of quantum computer simulation

    Science.gov (United States)

    Chernyavskiy, A.; Khamitov, K.; Teplov, A.; Voevodin, V.; Voevodin, Vl.

    2016-12-01

    The simulation of quantum circuits is significantly important for the implementation of quantum information technologies. The main difficulty of such modeling is the exponential growth of dimensionality, thus the usage of modern high-performance parallel computations is relevant. As it is well known, arbitrary quantum computation in circuit model can be done by only single- and two-qubit gates, and we analyze the computational structure and properties of the simulation of such gates. We investigate the fact that the unique properties of quantum nature lead to the computational properties of the considered algorithms: the quantum parallelism make the simulation of quantum gates highly parallel, and on the other hand, quantum entanglement leads to the problem of computational locality during simulation. We use the methodology of the AlgoWiki project (algowiki-project.org) to analyze the algorithm. This methodology consists of theoretical (sequential and parallel complexity, macro structure, and visual informational graph) and experimental (locality and memory access, scalability and more specific dynamic characteristics) parts. Experimental part was made by using the petascale Lomonosov supercomputer (Moscow State University, Russia). We show that the simulation of quantum gates is a good base for the research and testing of the development methods for data intense parallel software, and considered methodology of the analysis can be successfully used for the improvement of the algorithms in quantum information science.

  14. Development and implementation of a clinical pathway approach to simulation-based training for foregut surgery.

    Science.gov (United States)

    Miyasaka, Kiyoyuki W; Buchholz, Joseph; LaMarra, Denise; Karakousis, Giorgos C; Aggarwal, Rajesh

    2015-01-01

    Contemporary demands on resident education call for integration of simulation. We designed and implemented a simulation-based curriculum for Post Graduate Year 1 surgery residents to teach technical and nontechnical skills within a clinical pathway approach for a foregut surgery patient, from outpatient visit through surgery and postoperative follow-up. The 3-day curriculum for groups of 6 residents comprises a combination of standardized patient encounters, didactic sessions, and hands-on training. The curriculum is underpinned by a summative simulation "pathway" repeated on days 1 and 3. The "pathway" is a series of simulated preoperative, intraoperative, and postoperative encounters in following up a single patient through a disease process. The resident sees a standardized patient in the clinic presenting with distal gastric cancer and then enters an operating room to perform a gastrojejunostomy on a porcine tissue model. Finally, the resident engages in a simulated postoperative visit. All encounters are rated by faculty members and the residents themselves, using standardized assessment forms endorsed by the American Board of Surgery. A total of 18 first-year residents underwent this curriculum. Faculty ratings of overall operative performance significantly improved following the 3-day module. Ratings of preoperative and postoperative performance were not significantly changed in 3 days. Resident self-ratings significantly improved for all encounters assessed, as did reported confidence in meeting the defined learning objectives. Conventional surgical simulation training focuses on technical skills in isolation. Our novel "pathway" curriculum targets an important gap in training methodologies by placing both technical and nontechnical skills in their clinical context as part of managing a surgical patient. Results indicate consistent improvements in assessments of performance as well as confidence and support its continued usage to educate surgery residents

  15. [Simulation of lung lobe resection with personal computer].

    Science.gov (United States)

    Onuki, T; Murasugi, M; Mae, M; Koyama, K; Ikeda, T; Shimizu, T

    2005-09-01

    Various patterns of branching are seen for pulmonary arteries and veins in the lung hilum. However, thoracic surgeons usually cannot expect to discern much anatomical detail preoperatively. If the surgeon can gain an understanding of individual patterns preoperatively, the risks inherent in exposing the pulmonary vessels in the hilum can be avoided, reducing invasiveness. This software will meet the increasing needs of them in video-assisted thoracoscopic surgery (VATS) which prefer lesser dissections of the vessels and bronchus of hilum. We have produced free application software, where we can mark on pulmonary arteries, vein, bronchus and tumor of the successive images of computed tomography (CT). After receiving a compact disk containing 60 images of 2 mm CT slices, from tumor to hilum, in DICOM format, we required only 1 hour to obtain 3-dimensional images for a patient with other free software (Metasequoia LE). Furthermore, with Metasequoia LE, we can simulate cut the vessels and change the figure of them 3-dimensionally. Although the picture image leaves much room for improvement, we believe it is very attractive for residents because they can simulate operations.

  16. Analyzing Robotic Kinematics Via Computed Simulations

    Science.gov (United States)

    Carnahan, Timothy M.

    1992-01-01

    Computing system assists in evaluation of kinematics of conceptual robot. Displays positions and motions of robotic manipulator within work cell. Also displays interactions between robotic manipulator and other objects. Results of simulation displayed on graphical computer workstation. System includes both off-the-shelf software originally developed for automotive industry and specially developed software. Simulation system also used to design human-equivalent hand, to model optical train in infrared system, and to develop graphical interface for teleoperator simulation system.

  17. Computer Simulations, Disclosure and Duty of Care

    Directory of Open Access Journals (Sweden)

    John Barlow

    2006-05-01

    Full Text Available Computer simulations provide cost effective methods for manipulating and modeling 'reality'. However they are not real. They are imitations of a system or event, real or fabricated, and as such mimic, duplicate or represent that system or event. The degree to which a computer simulation aligns with and reproduces the ‘reality’ of the system or event it attempts to mimic or duplicate depends upon many factors including the efficiency of the simulation algorithm, the processing power of the computer hardware used to run the simulation model, and the expertise, assumptions and prejudices of those concerned with designing, implementing and interpreting the simulation output. Computer simulations in particular are increasingly replacing physical experimentation in many disciplines, and as a consequence, are used to underpin quite significant decision-making which may impact on ‘innocent’ third parties. In this context, this paper examines two interrelated issues: Firstly, how much and what kind of information should a simulation builder be required to disclose to potential users of the simulation? Secondly, what are the implications for a decision-maker who acts on the basis of their interpretation of a simulation output without any reference to its veracity, which may in turn comprise the safety of other parties?

  18. Virtual reality based surgery simulation for endoscopic gynaecology.

    Science.gov (United States)

    Székely, G; Bajka, M; Brechbühler, C; Dual, J; Enzler, R; Haller, U; Hug, J; Hutter, R; Ironmonger, N; Kauer, M; Meier, V; Niederer, P; Rhomberg, A; Schmid, P; Schweitzer, G; Thaler, M; Vuskovic, V; Tröster, G

    1999-01-01

    Virtual reality (VR) based surgical simulator systems offer very elegant possibilities to both enrich and enhance traditional education in endoscopic surgery. However, while a wide range of VR simulator systems have been proposed and realized in the past few years, most of these systems are far from able to provide a reasonably realistic surgical environment. We explore the basic approaches to the current limits of realism and ultimately seek to extend these based on our description and analysis of the most important components of a VR-based endoscopic simulator. The feasibility of the proposed techniques is demonstrated on a first modular prototype system implementing the basic algorithms for VR-training in gynaecologic laparoscopy.

  19. Growing skin: A computational model for skin expansion in reconstructive surgery

    Science.gov (United States)

    Buganza Tepole, Adrián; Joseph Ploch, Christopher; Wong, Jonathan; Gosain, Arun K.; Kuhl, Ellen

    2011-10-01

    The goal of this manuscript is to establish a novel computational model for stretch-induced skin growth during tissue expansion. Tissue expansion is a common surgical procedure to grow extra skin for reconstructing birth defects, burn injuries, or cancerous breasts. To model skin growth within the framework of nonlinear continuum mechanics, we adopt the multiplicative decomposition of the deformation gradient into an elastic and a growth part. Within this concept, we characterize growth as an irreversible, stretch-driven, transversely isotropic process parameterized in terms of a single scalar-valued growth multiplier, the in-plane area growth. To discretize its evolution in time, we apply an unconditionally stable, implicit Euler backward scheme. To discretize it in space, we utilize the finite element method. For maximum algorithmic efficiency and optimal convergence, we suggest an inner Newton iteration to locally update the growth multiplier at each integration point. This iteration is embedded within an outer Newton iteration to globally update the deformation at each finite element node. To demonstrate the characteristic features of skin growth, we simulate the process of gradual tissue expander inflation. To visualize growth-induced residual stresses, we simulate a subsequent tissue expander deflation. In particular, we compare the spatio-temporal evolution of area growth, elastic strains, and residual stresses for four commonly available tissue expander geometries. We believe that predictive computational modeling can open new avenues in reconstructive surgery to rationalize and standardize clinical process parameters such as expander geometry, expander size, expander placement, and inflation timing.

  20. Creating science simulations through Computational Thinking Patterns

    Science.gov (United States)

    Basawapatna, Ashok Ram

    Computational thinking aims to outline fundamental skills from computer science that everyone should learn. As currently defined, with help from the National Science Foundation (NSF), these skills include problem formulation, logically organizing data, automating solutions through algorithmic thinking, and representing data through abstraction. One aim of the NSF is to integrate these and other computational thinking concepts into the classroom. End-user programming tools offer a unique opportunity to accomplish this goal. An end-user programming tool that allows students with little or no prior experience the ability to create simulations based on phenomena they see in-class could be a first step towards meeting most, if not all, of the above computational thinking goals. This thesis describes the creation, implementation and initial testing of a programming tool, called the Simulation Creation Toolkit, with which users apply high-level agent interactions called Computational Thinking Patterns (CTPs) to create simulations. Employing Computational Thinking Patterns obviates lower behavior-level programming and allows users to directly create agent interactions in a simulation by making an analogy with real world phenomena they are trying to represent. Data collected from 21 sixth grade students with no prior programming experience and 45 seventh grade students with minimal programming experience indicates that this is an effective first step towards enabling students to create simulations in the classroom environment. Furthermore, an analogical reasoning study that looked at how users might apply patterns to create simulations from high- level descriptions with little guidance shows promising results. These initial results indicate that the high level strategy employed by the Simulation Creation Toolkit is a promising strategy towards incorporating Computational Thinking concepts in the classroom environment.

  1. A review of virtual reality based training simulators for orthopaedic surgery

    OpenAIRE

    Vaughan, Neil; Dubey, Venketesh N.; Wainwright, Tom; Middleton, Robert

    2015-01-01

    This review presents current virtual reality based training simulators for hip, knee and other orthopaedic surgery, including elective and trauma surgical procedures. There have not been any reviews focussing on hip and knee orthopaedic simulators. A comparison of existing simulator features is provided to identify what is missing and what is required to improve upon current simulators. In total 11 total hip replacement pre-operative planning tools were analysed, plus 9 hip trauma fracture tr...

  2. Computer aided surgery. Current status and future directions

    International Nuclear Information System (INIS)

    Sato, Yoshinobu

    2006-01-01

    This review describes topics in the title in the order of 3D model reconstruction and therapeutic planning based on images before surgery; registration of the actual images in virtual physical space of the patient who is under surgical operation, to the preoperative ones with use of 3D-position sensor, ultrasonics, endoscopy and X-diaphanoscopy; and their accuracy analysis. Images before surgery usually obtained with CT and MR are reconstructed in 3D for the purpose of therapeutic planning by segmentation of the target organ/site, surrounding organs, bones and blood vessels. Navigation system at the surgery functions to make the images obtained before and during operation to be integrated for their registration and displaying. Usually, the optical marker and camera both equipped in the endoscope, and position sensor (tracker) are used for integration in the operation coordinate system. For this, the actual pictures at liver operation are given. For accuracy analysis there is a theory of target registration error, which has been established on FDA demands. In future, development of technology concerned in this field like that of robot, bio-dynamics, biomaterials, sensor and high performance computing together with 4D document of surgery for feed-back to technology are desirable for the systematic growing of this surgical technology. (T.I.)

  3. Simulation of a small computer of the TRA-1001 type on the BESM computer

    International Nuclear Information System (INIS)

    Galaktionov, V.V.

    1975-01-01

    Considered are the purpose and probable simulation ways of one computer by the other. The emulator (simulation program) is given for a small computer of TRA-1001 type on BESM-6 computer. The simulated computer basic elements are the following: memory (8 K words), central processor, input-output program channel, interruption circuit, computer panel. The work with the input-output devices, teletypes ASP-33, FS-1500 is also simulated. Under actual operation the emulator has been used for translating the programs prepared on punched cards with the aid of translator SLANG-1 by BESM-6 computer. The translator alignment from language COPLAN has been realized with the aid of the emulator

  4. 76 FR 75887 - SEDASYS Computer-Assisted Personalized Sedation System; Ethicon Endo-Surgery, Incorporated's...

    Science.gov (United States)

    2011-12-05

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-P-0176] SEDASYS Computer-Assisted Personalized Sedation System; Ethicon Endo-Surgery, Incorporated's Petition for... system (SEDASYS) submitted by Ethicon Endo-Surgery Inc. (EES), the sponsor for SEDASYS. This meeting has...

  5. Medical Image Registration and Surgery Simulation

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten

    1996-01-01

    This thesis explores the application of physical models in medical image registration and surgery simulation. The continuum models of elasticity and viscous fluids are described in detail, and this knowledge is used as a basis for most of the methods described here. Real-time deformable models......, and the use of selective matrix vector multiplication. Fluid medical image registration A new and faster algorithm for non-rigid registration using viscous fluid models is presented. This algorithm replaces the core part of the original algorithm with multi-resolution convolution using a new filter, which...... growth is also presented. Using medical knowledge about the growth processes of the mandibular bone, a registration algorithm for time sequence images of the mandible is developed. Since this registration algorithm models the actual development of the mandible, it is possible to simulate the development...

  6. A computer-simulated liver phantom (virtual liver phantom) for multidetector computed tomography evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Funama, Yoshinori [Kumamoto University, Department of Radiological Sciences, School of Health Sciences, Kumamoto (Japan); Awai, Kazuo; Nakayama, Yoshiharu; Liu, Da; Yamashita, Yasuyuki [Kumamoto University, Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto (Japan); Miyazaki, Osamu; Goto, Taiga [Hitachi Medical Corporation, Tokyo (Japan); Hori, Shinichi [Gate Tower Institute of Image Guided Therapy, Osaka (Japan)

    2006-04-15

    The purpose of study was to develop a computer-simulated liver phantom for hepatic CT studies. A computer-simulated liver phantom was mathematically constructed on a computer workstation. The computer-simulated phantom was calibrated using real CT images acquired by an actual four-detector CT. We added an inhomogeneous texture to the simulated liver by referring to CT images of chronically damaged human livers. The mean CT number of the simulated liver was 60 HU and we added numerous 5-to 10-mm structures with 60{+-}10 HU/mm. To mimic liver tumors we added nodules measuring 8, 10, and 12 mm in diameter with CT numbers of 60{+-}10, 60{+-}15, and 60{+-}20 HU. Five radiologists visually evaluated similarity of the texture of the computer-simulated liver phantom and a real human liver to confirm the appropriateness of the virtual liver images using a five-point scale. The total score was 44 in two radiologists, and 42, 41, and 39 in one radiologist each. They evaluated that the textures of virtual liver were comparable to those of human liver. Our computer-simulated liver phantom is a promising tool for the evaluation of the image quality and diagnostic performance of hepatic CT imaging. (orig.)

  7. Computer Simulations of Lipid Bilayers and Proteins

    DEFF Research Database (Denmark)

    Sonne, Jacob

    2006-01-01

    The importance of computer simulations in lipid bilayer research has become more prominent for the last couple of decades and as computers get even faster, simulations will play an increasingly important part of understanding the processes that take place in and across cell membranes. This thesis...... entitled Computer simulations of lipid bilayers and proteins describes two molecular dynamics (MD) simulation studies of pure lipid bilayers as well as a study of a transmembrane protein embedded in a lipid bilayer matrix. Below follows a brief overview of the thesis. Chapter 1. This chapter is a short...... in the succeeding chapters is presented. Details on system setups, simulation parameters and other technicalities can be found in the relevant chapters. Chapter 3, DPPC lipid parameters: The quality of MD simulations is intimately dependent on the empirical potential energy function and its parameters, i...

  8. 76 FR 15321 - SEDASYS Computer-Assisted Personalized Sedation System; Ethicon Endo-Surgery, Inc.'s, Petition...

    Science.gov (United States)

    2011-03-21

    ...] SEDASYS Computer-Assisted Personalized Sedation System; Ethicon Endo-Surgery, Inc.'s, Petition for Review... an advisory committee Ethicon Endo- Surgery Inc.'s (EES's), petition for review of the Agency's... Foreman, FDA, CDRH, to Ken Charak, Ethicon Endo-Surgery, Inc., containing the order denying approval of...

  9. Efficacy of navigation in skull base surgery using composite computer graphics of magnetic resonance and computed tomography images

    International Nuclear Information System (INIS)

    Hayashi, Nakamasa; Kurimoto, Masanori; Hirashima, Yutaka; Ikeda, Hiroaki; Shibata, Takashi; Tomita, Takahiro; Endo, Shunro

    2001-01-01

    The efficacy of a neurosurgical navigation system using three-dimensional composite computer graphics (CGs) of magnetic resonance (MR) and computed tomography (CT) images was evaluated in skull base surgery. Three-point transformation was used for integration of MR and CT images. MR and CT image data were obtained with three skin markers placed on the patient's scalp. Volume-rendering manipulations of the data produced three-dimensional CGs of the scalp, brain, and lesions from the MR images, and the scalp and skull from the CT. Composite CGs of the scalp, skull, brain, and lesion were created by registering the three markers on the three-dimensional rendered scalp images obtained from MR imaging and CT in the system. This system was used for 14 patients with skull base lesions. Three-point transformation using three-dimensional CGs was easily performed for multimodal registration. Simulation of surgical procedures on composite CGs aided in comprehension of the skull base anatomy and selection of the optimal approaches. Intraoperative navigation aided in determination of actual spatial position in the skull base and the optimal trajectory to the tumor during surgical procedures. (author)

  10. Radiotherapy Monte Carlo simulation using cloud computing technology.

    Science.gov (United States)

    Poole, C M; Cornelius, I; Trapp, J V; Langton, C M

    2012-12-01

    Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.

  11. Radiotherapy Monte Carlo simulation using cloud computing technology

    International Nuclear Information System (INIS)

    Poole, C.M.; Cornelius, I.; Trapp, J.V.; Langton, C.M.

    2012-01-01

    Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.

  12. Atomistic computer simulations a practical guide

    CERN Document Server

    Brazdova, Veronika

    2013-01-01

    Many books explain the theory of atomistic computer simulations; this book teaches you how to run them This introductory ""how to"" title enables readers to understand, plan, run, and analyze their own independent atomistic simulations, and decide which method to use and which questions to ask in their research project. It is written in a clear and precise language, focusing on a thorough understanding of the concepts behind the equations and how these are used in the simulations. As a result, readers will learn how to design the computational model and which parameters o

  13. Fel simulations using distributed computing

    NARCIS (Netherlands)

    Einstein, J.; Biedron, S.G.; Freund, H.P.; Milton, S.V.; Van Der Slot, P. J M; Bernabeu, G.

    2016-01-01

    While simulation tools are available and have been used regularly for simulating light sources, including Free-Electron Lasers, the increasing availability and lower cost of accelerated computing opens up new opportunities. This paper highlights a method of how accelerating and parallelizing code

  14. CUBESIM, Hypercube and Denelcor Hep Parallel Computer Simulation

    International Nuclear Information System (INIS)

    Dunigan, T.H.

    1988-01-01

    1 - Description of program or function: CUBESIM is a set of subroutine libraries and programs for the simulation of message-passing parallel computers and shared-memory parallel computers. Subroutines are supplied to simulate the Intel hypercube and the Denelcor HEP parallel computers. The system permits a user to develop and test parallel programs written in C or FORTRAN on a single processor. The user may alter such hypercube parameters as message startup times, packet size, and the computation-to-communication ratio. The simulation generates a trace file that can be used for debugging, performance analysis, or graphical display. 2 - Method of solution: The CUBESIM simulator is linked with the user's parallel application routines to run as a single UNIX process. The simulator library provides a small operating system to perform process and message management. 3 - Restrictions on the complexity of the problem: Up to 128 processors can be simulated with a virtual memory limit of 6 million bytes. Up to 1000 processes can be simulated

  15. Accelerator simulation using computers

    International Nuclear Information System (INIS)

    Lee, M.; Zambre, Y.; Corbett, W.

    1992-01-01

    Every accelerator or storage ring system consists of a charged particle beam propagating through a beam line. Although a number of computer programs exits that simulate the propagation of a beam in a given beam line, only a few provide the capabilities for designing, commissioning and operating the beam line. This paper shows how a ''multi-track'' simulation and analysis code can be used for these applications

  16. Computer Simulation in Information and Communication Engineering

    CERN Multimedia

    Anton Topurov

    2005-01-01

    CSICE'05 Sofia, Bulgaria 20th - 22nd October, 2005 On behalf of the International Scientific Committee, we would like to invite you all to Sofia, the capital city of Bulgaria, to the International Conference in Computer Simulation in Information and Communication Engineering CSICE'05. The Conference is aimed at facilitating the exchange of experience in the field of computer simulation gained not only in traditional fields (Communications, Electronics, Physics...) but also in the areas of biomedical engineering, environment, industrial design, etc. The objective of the Conference is to bring together lectures, researchers and practitioners from different countries, working in the fields of computer simulation in information engineering, in order to exchange information and bring new contribution to this important field of engineering design and education. The Conference will bring you the latest ideas and development of the tools for computer simulation directly from their inventors. Contribution describ...

  17. Face, content and construct validity of a virtual reality simulator for robotic surgery (SEP Robot).

    Science.gov (United States)

    Gavazzi, Andrea; Bahsoun, Ali N; Van Haute, Wim; Ahmed, Kamran; Elhage, Oussama; Jaye, Peter; Khan, M Shamim; Dasgupta, Prokar

    2011-03-01

    This study aims to establish face, content and construct validation of the SEP Robot (SimSurgery, Oslo, Norway) in order to determine its value as a training tool. The tasks used in the validation of this simulator were arrow manipulation and performing a surgeon's knot. Thirty participants (18 novices, 12 experts) completed the procedures. The simulator was able to differentiate between experts and novices in several respects. The novice group required more time to complete the tasks than the expert group, especially suturing. During the surgeon's knot exercise, experts significantly outperformed novices in maximum tightening stretch, instruments dropped, maximum winding stretch and tool collisions in addition to total task time. A trend was found towards the use of less force by the more experienced participants. The SEP robotic simulator has demonstrated face, content and construct validity as a virtual reality simulator for robotic surgery. With steady increase in adoption of robotic surgery world-wide, this simulator may prove to be a valuable adjunct to clinical mentorship.

  18. [Guided and computer-assisted implant surgery and prosthetic: The continuous digital workflow].

    Science.gov (United States)

    Pascual, D; Vaysse, J

    2016-02-01

    New continuous digital workflow protocols of guided and computer-assisted implant surgery improve accuracy of implant positioning. The design of the future prosthesis is based on the available prosthetic space, gingival height and occlusal relationship with the opposing and adjacent teeth. The implant position and length depend on volume, density and bone quality, gingival height, tooth-implant and implant-implant distances, implant parallelism, axis and type of the future prosthesis. The crown modeled on the software will therefore serve as a guide to the future implant axis and not the reverse. The guide is made by 3D printing. The software determines surgical protocol with the drilling sequences. The unitary or plural prosthesis, modeled on the software and built before surgery, is loaded directly after implant placing, if needed. These protocols allow for a full continuity of the digital workflow. The software provides the surgeon and the dental technician a total freedom for the prosthetic-surgery guide design and the position of the implants. The prosthetic project, occlusal and aesthetic, taking the bony and surgical constraints into account, is optimized. The implant surgery is simplified and becomes less "stressful" for the patient and the surgeon. Guided and computer-assisted surgery with continuous digital workflow is becoming the technique of choice to improve the accuracy and quality of implant rehabilitation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  19. Computational simulation of concurrent engineering for aerospace propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Singhal, S. N.

    1992-01-01

    Results are summarized of an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulations methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties - fundamental in developing such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering for propulsion systems and systems in general. Benefits and facets needing early attention in the development are outlined.

  20. Computational simulation for concurrent engineering of aerospace propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.

  1. The benefit of non contrast-enhanced magnetic resonance angiography for predicting vascular access surgery outcome: a computer model perspective.

    Directory of Open Access Journals (Sweden)

    Maarten A G Merkx

    Full Text Available INTRODUCTION: Vascular access (VA surgery, a prerequisite for hemodialysis treatment of end-stage renal-disease (ESRD patients, is hampered by complication rates, which are frequently related to flow enhancement. To assist in VA surgery planning, a patient-specific computer model for postoperative flow enhancement was developed. The purpose of this study is to assess the benefit of non contrast-enhanced magnetic resonance angiography (NCE-MRA data as patient-specific geometrical input for the model-based prediction of surgery outcome. METHODS: 25 ESRD patients were included in this study. All patients received a NCE-MRA examination of the upper extremity blood vessels in addition to routine ultrasound (US. Local arterial radii were assessed from NCE-MRA and converted to model input using a linear fit per artery. Venous radii were determined with US. The effect of radius measurement uncertainty on model predictions was accounted for by performing Monte-Carlo simulations. The resulting flow prediction interval of the computer model was compared with the postoperative flow obtained from US. Patients with no overlap between model-based prediction and postoperative measurement were further analyzed to determine whether an increase in geometrical detail improved computer model prediction. RESULTS: Overlap between postoperative flows and model-based predictions was obtained for 71% of patients. Detailed inspection of non-overlapping cases revealed that the geometrical details that could be assessed from NCE-MRA explained most of the differences, and moreover, upon addition of these details in the computer model the flow predictions improved. CONCLUSIONS: The results demonstrate clearly that NCE-MRA does provide valuable geometrical information for VA surgery planning. Therefore, it is recommended to use this modality, at least for patients at risk for local or global narrowing of the blood vessels as well as for patients for whom an US-based model

  2. Virtual reality for dermatologic surgery: virtually a reality in the 21st century.

    Science.gov (United States)

    Gladstone, H B; Raugi, G J; Berg, D; Berkley, J; Weghorst, S; Ganter, M

    2000-01-01

    In the 20th century, virtual reality has predominantly played a role in training pilots and in the entertainment industry. Despite much publicity, virtual reality did not live up to its perceived potential. During the past decade, it has also been applied for medical uses, particularly as training simulators, for minimally invasive surgery. Because of advances in computer technology, virtual reality is on the cusp of becoming an effective medical educational tool. At the University of Washington, we are developing a virtual reality soft tissue surgery simulator. Based on fast finite element modeling and using a personal computer, this device can simulate three-dimensional human skin deformations with real-time tactile feedback. Although there are many cutaneous biomechanical challenges to solve, it will eventually provide more realistic dermatologic surgery training for medical students and residents than the currently used models.

  3. Computer-Based Simulation Games in Public Administration Education

    OpenAIRE

    Kutergina Evgeniia

    2017-01-01

    Computer simulation, an active learning technique, is now one of the advanced pedagogical technologies. Th e use of simulation games in the educational process allows students to gain a firsthand understanding of the processes of real life. Public- administration, public-policy and political-science courses increasingly adopt simulation games in universities worldwide. Besides person-to-person simulation games, there are computer-based simulations in public-administration education. Currently...

  4. Inversion based on computational simulations

    International Nuclear Information System (INIS)

    Hanson, K.M.; Cunningham, G.S.; Saquib, S.S.

    1998-01-01

    A standard approach to solving inversion problems that involve many parameters uses gradient-based optimization to find the parameters that best match the data. The authors discuss enabling techniques that facilitate application of this approach to large-scale computational simulations, which are the only way to investigate many complex physical phenomena. Such simulations may not seem to lend themselves to calculation of the gradient with respect to numerous parameters. However, adjoint differentiation allows one to efficiently compute the gradient of an objective function with respect to all the variables of a simulation. When combined with advanced gradient-based optimization algorithms, adjoint differentiation permits one to solve very large problems of optimization or parameter estimation. These techniques will be illustrated through the simulation of the time-dependent diffusion of infrared light through tissue, which has been used to perform optical tomography. The techniques discussed have a wide range of applicability to modeling including the optimization of models to achieve a desired design goal

  5. A Review of Endoscopic Simulation: Current Evidence on Simulators and Curricula.

    Science.gov (United States)

    King, Neil; Kunac, Anastasia; Merchant, Aziz M

    2016-01-01

    Upper and lower endoscopy is an important tool that is being utilized more frequently by general surgeons. Training in therapeutic endoscopic techniques has become a mandatory requirement for general surgery residency programs in the United States. The Fundamentals of Endoscopic Surgery has been developed to train and assess competency in these advanced techniques. Simulation has been shown to increase the skill and learning curve of trainees in other surgical disciplines. Several types of endoscopy simulators are commercially available; mechanical trainers, animal based, and virtual reality or computer-based simulators all have their benefits and limitations. However they have all been shown to improve trainee's endoscopic skills. Endoscopic simulators will play a critical role as part of a comprehensive curriculum designed to train the next generation of surgeons. We reviewed recent literature related to the various types of endoscopic simulators and their use in an educational curriculum, and discuss the relevant findings. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  6. Computer-Based Simulation Games in Public Administration Education

    Directory of Open Access Journals (Sweden)

    Kutergina Evgeniia

    2017-12-01

    Full Text Available Computer simulation, an active learning technique, is now one of the advanced pedagogical technologies. Th e use of simulation games in the educational process allows students to gain a firsthand understanding of the processes of real life. Public- administration, public-policy and political-science courses increasingly adopt simulation games in universities worldwide. Besides person-to-person simulation games, there are computer-based simulations in public-administration education. Currently in Russia the use of computer-based simulation games in Master of Public Administration (MPA curricula is quite limited. Th is paper focuses on computer- based simulation games for students of MPA programmes. Our aim was to analyze outcomes of implementing such games in MPA curricula. We have done so by (1 developing three computer-based simulation games about allocating public finances, (2 testing the games in the learning process, and (3 conducting a posttest examination to evaluate the effect of simulation games on students’ knowledge of municipal finances. Th is study was conducted in the National Research University Higher School of Economics (HSE and in the Russian Presidential Academy of National Economy and Public Administration (RANEPA during the period of September to December 2015, in Saint Petersburg, Russia. Two groups of students were randomly selected in each university and then randomly allocated either to the experimental or the control group. In control groups (n=12 in HSE, n=13 in RANEPA students had traditional lectures. In experimental groups (n=12 in HSE, n=13 in RANEPA students played three simulation games apart from traditional lectures. Th is exploratory research shows that the use of computer-based simulation games in MPA curricula can improve students’ outcomes by 38 %. In general, the experimental groups had better performances on the post-test examination (Figure 2. Students in the HSE experimental group had 27.5 % better

  7. Educational program in crisis management for cardiac surgery teams including high realism simulation.

    Science.gov (United States)

    Stevens, Louis-Mathieu; Cooper, Jeffrey B; Raemer, Daniel B; Schneider, Robert C; Frankel, Allan S; Berry, William R; Agnihotri, Arvind K

    2012-07-01

    Cardiac surgery demands effective teamwork for safe, high-quality care. The objective of this pilot study was to develop a comprehensive program to sharpen performance of experienced cardiac surgical teams in acute crisis management. We developed and implemented an educational program for cardiac surgery based on high realism acute crisis simulation scenarios and interactive whole-unit workshop. The impact of these interventions was assessed with postintervention questionnaires, preintervention and 6-month postintervention surveys, and structured interviews. The realism of the acute crisis simulation scenarios gradually improved; most participants rated both the simulation and whole-unit workshop as very good or excellent. Repeat simulation training was recommended every 6 to 12 months by 82% of the participants. Participants of the interactive workshop identified 2 areas of highest priority: encouraging speaking up about critical information and interprofessional information sharing. They also stressed the importance of briefings, early communication of surgical plan, knowing members of the team, and continued simulation for practice. The pre/post survey response rates were 70% (55/79) and 66% (52/79), respectively. The concept of working as a team improved between surveys (P = .028), with a trend for improvement in gaining common understanding of the plan before a procedure (P = .075) and appropriate resolution of disagreements (P = .092). Interviewees reported that the training had a positive effect on their personal behaviors and patient care, including speaking up more readily and communicating more clearly. Comprehensive team training using simulation and a whole-unit interactive workshop can be successfully deployed for experienced cardiac surgery teams with demonstrable benefits in participant's perception of team performance. Copyright © 2012 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  8. Virtual reality simulators and training in laparoscopic surgery.

    Science.gov (United States)

    Yiannakopoulou, Eugenia; Nikiteas, Nikolaos; Perrea, Despina; Tsigris, Christos

    2015-01-01

    Virtual reality simulators provide basic skills training without supervision in a controlled environment, free of pressure of operating on patients. Skills obtained through virtual reality simulation training can be transferred on the operating room. However, relative evidence is limited with data available only for basic surgical skills and for laparoscopic cholecystectomy. No data exist on the effect of virtual reality simulation on performance on advanced surgical procedures. Evidence suggests that performance on virtual reality simulators reliably distinguishes experienced from novice surgeons Limited available data suggest that independent approach on virtual reality simulation training is not different from proctored approach. The effect of virtual reality simulators training on acquisition of basic surgical skills does not seem to be different from the effect the physical simulators. Limited data exist on the effect of virtual reality simulation training on the acquisition of visual spatial perception and stress coping skills. Undoubtedly, virtual reality simulation training provides an alternative means of improving performance in laparoscopic surgery. However, future research efforts should focus on the effect of virtual reality simulation on performance in the context of advanced surgical procedure, on standardization of training, on the possibility of synergistic effect of virtual reality simulation training combined with mental training, on personalized training. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  9. Graphic and haptic simulation system for virtual laparoscopic rectum surgery.

    Science.gov (United States)

    Pan, Jun J; Chang, Jian; Yang, Xiaosong; Zhang, Jian J; Qureshi, Tahseen; Howell, Robert; Hickish, Tamas

    2011-09-01

    Medical simulators with vision and haptic feedback techniques offer a cost-effective and efficient alternative to the traditional medical trainings. They have been used to train doctors in many specialties of medicine, allowing tasks to be practised in a safe and repetitive manner. This paper describes a virtual-reality (VR) system which will help to influence surgeons' learning curves in the technically challenging field of laparoscopic surgery of the rectum. Data from MRI of the rectum and real operation videos are used to construct the virtual models. A haptic force filter based on radial basis functions is designed to offer realistic and smooth force feedback. To handle collision detection efficiently, a hybrid model is presented to compute the deformation of intestines. Finally, a real-time cutting technique based on mesh is employed to represent the incision operation. Despite numerous research efforts, fast and realistic solutions of soft tissues with large deformation, such as intestines, prove extremely challenging. This paper introduces our latest contribution to this endeavour. With this system, the user can haptically operate with the virtual rectum and simultaneously watch the soft tissue deformation. Our system has been tested by colorectal surgeons who believe that the simulated tactile and visual feedbacks are realistic. It could replace the traditional training process and effectively transfer surgical skills to novices. Copyright © 2011 John Wiley & Sons, Ltd.

  10. The Australian Computational Earth Systems Simulator

    Science.gov (United States)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic

  11. Three-dimensional surgical simulation.

    Science.gov (United States)

    Cevidanes, Lucia H C; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2010-09-01

    In this article, we discuss the development of methods for computer-aided jaw surgery, which allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3-dimensional surface models from cone-beam computed tomography, dynamic cephalometry, semiautomatic mirroring, interactive cutting of bone, and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intraoperative guidance. The system provides further intraoperative assistance with a computer display showing jaw positions and 3-dimensional positioning guides updated in real time during the surgical procedure. The computer-aided surgery system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training, and assessing the difficulties of the surgical procedures before the surgery. Computer-aided surgery can make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  12. Software Engineering for Scientific Computer Simulations

    Science.gov (United States)

    Post, Douglass E.; Henderson, Dale B.; Kendall, Richard P.; Whitney, Earl M.

    2004-11-01

    Computer simulation is becoming a very powerful tool for analyzing and predicting the performance of fusion experiments. Simulation efforts are evolving from including only a few effects to many effects, from small teams with a few people to large teams, and from workstations and small processor count parallel computers to massively parallel platforms. Successfully making this transition requires attention to software engineering issues. We report on the conclusions drawn from a number of case studies of large scale scientific computing projects within DOE, academia and the DoD. The major lessons learned include attention to sound project management including setting reasonable and achievable requirements, building a good code team, enforcing customer focus, carrying out verification and validation and selecting the optimum computational mathematics approaches.

  13. Virtual reality simulator for vitreoretinal surgery using integrated OCT data

    OpenAIRE

    Kozak, Igor; Banerjee,Pat; Luo,Jia; Luciano,Cristian

    2014-01-01

    Igor Kozak,1 Pat Banerjee,2 Jia Luo,2 Cristian Luciano21King Khaled Eye Specialist Hospital, Vitreoretinal Division, Riyadh, Kingdom of Saudi Arabia; 2College of Engineering, University of Illinois at Chicago, Chicago, IL, USAAbstract: Operative practice using surgical simulators has become a part of training in many surgical specialties, including ophthalmology. We introduce a virtual reality retina surgery simulator capable of integrating optical coherence tomography (OCT) scans from real p...

  14. Computational aspects in high intensity ultrasonic surgery planning.

    Science.gov (United States)

    Pulkkinen, A; Hynynen, K

    2010-01-01

    Therapeutic ultrasound treatment planning is discussed and computational aspects regarding it are reviewed. Nonlinear ultrasound simulations were solved with a combined frequency domain Rayleigh and KZK model. Ultrasonic simulations were combined with thermal simulations and were used to compute heating of muscle tissue in vivo for four different focused ultrasound transducers. The simulations were compared with measurements and good agreement was found for large F-number transducers. However, at F# 1.9 the simulated rate of temperature rise was approximately a factor of 2 higher than the measured ones. The power levels used with the F# 1 transducer were too low to show any nonlinearity. The simulations were used to investigate the importance of nonlinarities generated in the coupling water, and also the importance of including skin in the simulations. Ignoring either of these in the model would lead to larger errors. Most notably, the nonlinearities generated in the water can enhance the focal temperature by more than 100%. The simulations also demonstrated that pulsed high power sonications may provide an opportunity to significantly (up to a factor of 3) reduce the treatment time. In conclusion, nonlinear propagation can play an important role in shaping the energy distribution during a focused ultrasound treatment and it should not be ignored in planning. However, the current simulation methods are accurate only with relatively large F-numbers and better models need to be developed for sharply focused transducers. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Automatic temperature computation for realistic IR simulation

    Science.gov (United States)

    Le Goff, Alain; Kersaudy, Philippe; Latger, Jean; Cathala, Thierry; Stolte, Nilo; Barillot, Philippe

    2000-07-01

    Polygon temperature computation in 3D virtual scenes is fundamental for IR image simulation. This article describes in detail the temperature calculation software and its current extensions, briefly presented in [1]. This software, called MURET, is used by the simulation workshop CHORALE of the French DGA. MURET is a one-dimensional thermal software, which accurately takes into account the material thermal attributes of three-dimensional scene and the variation of the environment characteristics (atmosphere) as a function of the time. Concerning the environment, absorbed incident fluxes are computed wavelength by wavelength, for each half an hour, druing 24 hours before the time of the simulation. For each polygon, incident fluxes are compsed of: direct solar fluxes, sky illumination (including diffuse solar fluxes). Concerning the materials, classical thermal attributes are associated to several layers, such as conductivity, absorption, spectral emissivity, density, specific heat, thickness and convection coefficients are taken into account. In the future, MURET will be able to simulate permeable natural materials (water influence) and vegetation natural materials (woods). This model of thermal attributes induces a very accurate polygon temperature computation for the complex 3D databases often found in CHORALE simulations. The kernel of MUET consists of an efficient ray tracer allowing to compute the history (over 24 hours) of the shadowed parts of the 3D scene and a library, responsible for the thermal computations. The great originality concerns the way the heating fluxes are computed. Using ray tracing, the flux received in each 3D point of the scene accurately takes into account the masking (hidden surfaces) between objects. By the way, this library supplies other thermal modules such as a thermal shows computation tool.

  16. Discrete Event Simulation Computers can be used to simulate the ...

    Indian Academy of Sciences (India)

    IAS Admin

    people who use computers every moment of their waking lives, others even ... How is discrete event simulation different from other kinds of simulation? ... time, energy consumption .... Schedule the CustomerDeparture event for this customer.

  17. Launch Site Computer Simulation and its Application to Processes

    Science.gov (United States)

    Sham, Michael D.

    1995-01-01

    This paper provides an overview of computer simulation, the Lockheed developed STS Processing Model, and the application of computer simulation to a wide range of processes. The STS Processing Model is an icon driven model that uses commercial off the shelf software and a Macintosh personal computer. While it usually takes one year to process and launch 8 space shuttles, with the STS Processing Model this process is computer simulated in about 5 minutes. Facilities, orbiters, or ground support equipment can be added or deleted and the impact on launch rate, facility utilization, or other factors measured as desired. This same computer simulation technology can be used to simulate manufacturing, engineering, commercial, or business processes. The technology does not require an 'army' of software engineers to develop and operate, but instead can be used by the layman with only a minimal amount of training. Instead of making changes to a process and realizing the results after the fact, with computer simulation, changes can be made and processes perfected before they are implemented.

  18. Quantum chemistry simulation on quantum computers: theories and experiments.

    Science.gov (United States)

    Lu, Dawei; Xu, Boruo; Xu, Nanyang; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng

    2012-07-14

    It has been claimed that quantum computers can mimic quantum systems efficiently in the polynomial scale. Traditionally, those simulations are carried out numerically on classical computers, which are inevitably confronted with the exponential growth of required resources, with the increasing size of quantum systems. Quantum computers avoid this problem, and thus provide a possible solution for large quantum systems. In this paper, we first discuss the ideas of quantum simulation, the background of quantum simulators, their categories, and the development in both theories and experiments. We then present a brief introduction to quantum chemistry evaluated via classical computers followed by typical procedures of quantum simulation towards quantum chemistry. Reviewed are not only theoretical proposals but also proof-of-principle experimental implementations, via a small quantum computer, which include the evaluation of the static molecular eigenenergy and the simulation of chemical reaction dynamics. Although the experimental development is still behind the theory, we give prospects and suggestions for future experiments. We anticipate that in the near future quantum simulation will become a powerful tool for quantum chemistry over classical computations.

  19. The role of computer simulation in nuclear technologies development

    International Nuclear Information System (INIS)

    Tikhonchev, M.Yu.; Shimansky, G.A.; Lebedeva, E.E.; Lichadeev, V. V.; Ryazanov, D.K.; Tellin, A.I.

    2001-01-01

    In the report the role and purposes of computer simulation in nuclear technologies development is discussed. The authors consider such applications of computer simulation as nuclear safety researches, optimization of technical and economic parameters of acting nuclear plant, planning and support of reactor experiments, research and design new devices and technologies, design and development of 'simulators' for operating personnel training. Among marked applications the following aspects of computer simulation are discussed in the report: neutron-physical, thermal and hydrodynamics models, simulation of isotope structure change and damage dose accumulation for materials under irradiation, simulation of reactor control structures. (authors)

  20. Are surgery training programs ready for virtual reality? A survey of program directors in general surgery.

    Science.gov (United States)

    Haluck, R S; Marshall, R L; Krummel, T M; Melkonian, M G

    2001-12-01

    The use of advanced technology, such as virtual environments and computer-based simulators (VR/CBS), in training has been well established by both industry and the military. In contrast the medical profession, including surgery, has been slow to incorporate such technology in its training. In an attempt to identify factors limiting the regular incorporation of this technology into surgical training programs, a survey was developed and distributed to all general surgery program directors in the United States. A 22-question survey was sent to 254 general surgery program directors. The survey was designed to reflect attitudes of the program directors regarding the use of computer-based simulation in surgical training. Questions were scaled from 1 to 5 with 1 = strongly disagree and 5 = strongly agree. A total of 139 responses (55%) were returned. The majority of respondents (58%) had seen VR/CBS, but only 19% had "hands-on" experience with these systems. Respondents strongly agreed that there is a need for learning opportunities outside of the operating room and a role for VR/CBS in surgical training. Respondents believed both staff and residents would support this type of training. Concerns included VR/CBS' lack of validation and potential requirements for frequent system upgrades. Virtual environments and computer-based simulators, although well established training tools in other fields, have not been widely incorporated into surgical education. Our results suggest that program directors believe this type of technology would be beneficial in surgical education, but they lack adequate information regarding VR/CBS. Developers of this technology may need to focus on educating potential users and addressing their concerns.

  1. Computational steering of GEM based detector simulations

    Science.gov (United States)

    Sheharyar, Ali; Bouhali, Othmane

    2017-10-01

    Gas based detector R&D relies heavily on full simulation of detectors and their optimization before final prototypes can be built and tested. These simulations in particular those with complex scenarios such as those involving high detector voltages or gas with larger gains are computationally intensive may take several days or weeks to complete. These long-running simulations usually run on the high-performance computers in batch mode. If the results lead to unexpected behavior, then the simulation might be rerun with different parameters. However, the simulations (or jobs) may have to wait in a queue until they get a chance to run again because the supercomputer is a shared resource that maintains a queue of other user programs as well and executes them as time and priorities permit. It may result in inefficient resource utilization and increase in the turnaround time for the scientific experiment. To overcome this issue, the monitoring of the behavior of a simulation, while it is running (or live), is essential. In this work, we employ the computational steering technique by coupling the detector simulations with a visualization package named VisIt to enable the exploration of the live data as it is produced by the simulation.

  2. Highway traffic simulation on multi-processor computers

    Energy Technology Data Exchange (ETDEWEB)

    Hanebutte, U.R.; Doss, E.; Tentner, A.M.

    1997-04-01

    A computer model has been developed to simulate highway traffic for various degrees of automation with a high level of fidelity in regard to driver control and vehicle characteristics. The model simulates vehicle maneuvering in a multi-lane highway traffic system and allows for the use of Intelligent Transportation System (ITS) technologies such as an Automated Intelligent Cruise Control (AICC). The structure of the computer model facilitates the use of parallel computers for the highway traffic simulation, since domain decomposition techniques can be applied in a straight forward fashion. In this model, the highway system (i.e. a network of road links) is divided into multiple regions; each region is controlled by a separate link manager residing on an individual processor. A graphical user interface augments the computer model kv allowing for real-time interactive simulation control and interaction with each individual vehicle and road side infrastructure element on each link. Average speed and traffic volume data is collected at user-specified loop detector locations. Further, as a measure of safety the so- called Time To Collision (TTC) parameter is being recorded.

  3. Identification of New Tools to Predict Surgical Performance of Novices using a Plastic Surgery Simulator.

    Science.gov (United States)

    Kazan, Roy; Viezel-Mathieu, Alex; Cyr, Shantale; Hemmerling, Thomas M; Lin, Samuel J; Gilardino, Mirko S

    2018-04-09

    To identify new tools capable of predicting surgical performance of novices on an augmentation mammoplasty simulator. The pace of technical skills acquisition varies between residents and may necessitate more time than that allotted by residency training before reaching competence. Identifying applicants with superior innate technical abilities might shorten learning curves and the time to reach competence. The objective of this study is to identify new tools that could predict surgical performance of novices on a mammoplasty simulator. We recruited 14 medical students and recorded their performance in 2 skill-games: Mikado and Perplexus Epic, and in 2 video games: Star War Racer (Sony Playstation 3) and Super Monkey Ball 2 (Nintendo Wii). Then, each participant performed an augmentation mammoplasty procedure on a Mammoplasty Part-task Trainer, which allows the simulation of the essential steps of the procedure. The average age of participants was 25.4 years. Correlation studies showed significant association between Perplexus Epic, Star Wars Racer, Super Monkey Ball scores and the modified OSATS score with r s = 0.8491 (p 41 (p = 0.005), and r s = 0.7309 (p < 0.003), but not with the Mikado score r s = -0.0255 (p = 0.9). Linear regressions were strongest for Perplexus Epic and Super Monkey Ball scores with coefficients of determination of 0.59 and 0.55, respectively. A combined score (Perplexus/Super-Monkey-Ball) was computed and showed a significant correlation with the modified OSATS score having an r s = 0.8107 (p < 0.001) and R 2 = 0.75, respectively. This study identified a combination of skill games that correlated to better performance of novices on a surgical simulator. With refinement, such tools could serve to help screen plastic surgery applicants and identify those with higher surgical performance predictors. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  4. Validation of a novel virtual reality simulator for robotic surgery

    NARCIS (Netherlands)

    Schreuder, Henk W. R.; Persson, Jan E. U.; Wolswijk, Richard G. H.; Ihse, Ingmar; Schijven, Marlies P.; Verheijen, René H. M.

    2014-01-01

    With the increase in robotic-assisted laparoscopic surgery there is a concomitant rising demand for training methods. The objective was to establish face and construct validity of a novel virtual reality simulator (dV-Trainer, Mimic Technologies, Seattle, WA) for the use in training of

  5. Alternative energy technologies an introduction with computer simulations

    CERN Document Server

    Buxton, Gavin

    2014-01-01

    Introduction to Alternative Energy SourcesGlobal WarmingPollutionSolar CellsWind PowerBiofuelsHydrogen Production and Fuel CellsIntroduction to Computer ModelingBrief History of Computer SimulationsMotivation and Applications of Computer ModelsUsing Spreadsheets for SimulationsTyping Equations into SpreadsheetsFunctions Available in SpreadsheetsRandom NumbersPlotting DataMacros and ScriptsInterpolation and ExtrapolationNumerical Integration and Diffe

  6. Development of a Virtual Reality Simulator for Natural Orifice Translumenal Endoscopic Surgery (NOTES) Cholecystectomy Procedure.

    Science.gov (United States)

    Ahn, Woojin; Dargar, Saurabh; Halic, Tansel; Lee, Jason; Li, Baichun; Pan, Junjun; Sankaranarayanan, Ganesh; Roberts, Kurt; De, Suvranu

    2014-01-01

    The first virtual-reality-based simulator for Natural Orifice Translumenal Endoscopic Surgery (NOTES) is developed called the Virtual Translumenal Endoscopic Surgery Trainer (VTESTTM). VTESTTM aims to simulate hybrid NOTES cholecystectomy procedure using a rigid scope inserted through the vaginal port. The hardware interface is designed for accurate motion tracking of the scope and laparoscopic instruments to reproduce the unique hand-eye coordination. The haptic-enabled multimodal interactive simulation includes exposing the Calot's triangle and detaching the gall bladder while performing electrosurgery. The developed VTESTTM was demonstrated and validated at NOSCAR 2013.

  7. Large-scale computing techniques for complex system simulations

    CERN Document Server

    Dubitzky, Werner; Schott, Bernard

    2012-01-01

    Complex systems modeling and simulation approaches are being adopted in a growing number of sectors, including finance, economics, biology, astronomy, and many more. Technologies ranging from distributed computing to specialized hardware are explored and developed to address the computational requirements arising in complex systems simulations. The aim of this book is to present a representative overview of contemporary large-scale computing technologies in the context of complex systems simulations applications. The intention is to identify new research directions in this field and

  8. Optical Head-Mounted Computer Display for Education, Research, and Documentation in Hand Surgery.

    Science.gov (United States)

    Funk, Shawn; Lee, Donald H

    2016-01-01

    Intraoperative photography and capturing videos is important for the hand surgeon. Recently, optical head-mounted computer display has been introduced as a means of capturing photographs and videos. In this article, we discuss this new technology and review its potential use in hand surgery. Copyright © 2016 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  9. A new possibility in thoracoscopic virtual reality simulation training: development and testing of a novel virtual reality simulator for video-assisted thoracoscopic surgery lobectomy.

    Science.gov (United States)

    Jensen, Katrine; Bjerrum, Flemming; Hansen, Henrik Jessen; Petersen, René Horsleben; Pedersen, Jesper Holst; Konge, Lars

    2015-10-01

    The aims of this study were to develop virtual reality simulation software for video-assisted thoracic surgery (VATS) lobectomy, to explore the opinions of thoracic surgeons concerning the VATS lobectomy simulator and to test the validity of the simulator metrics. Experienced VATS surgeons worked with computer specialists to develop a VATS lobectomy software for a virtual reality simulator. Thoracic surgeons with different degrees of experience in VATS were enrolled at the 22nd meeting of the European Society of Thoracic Surgeons (ESTS) held in Copenhagen in June 2014. The surgeons were divided according to the number of performed VATS lobectomies: novices (0 VATS lobectomies), intermediates (1-49 VATS lobectomies) and experienced (>50 VATS lobectomies). The participants all performed a lobectomy of a right upper lobe on the simulator and answered a questionnaire regarding content validity. Metrics were compared between the three groups. We succeeded in developing the first version of a virtual reality VATS lobectomy simulator. A total of 103 thoracic surgeons completed the simulated lobectomy and were distributed as follows: novices n = 32, intermediates n = 45 and experienced n = 26. All groups rated the overall user realism of the VATS lobectomy scenario to a median of 5 on a scale 1-7, with 7 being the best score. The experienced surgeons found the graphics and movements realistic and rated the scenario high in terms of usefulness as a training tool for novice and intermediate experienced thoracic surgeons, but not very useful as a training tool for experienced surgeons. The metric scores were not statistically significant between groups. This is the first study to describe a commercially available virtual reality simulator for a VATS lobectomy. More than 100 thoracic surgeons found the simulator realistic, and hence it showed good content validity. However, none of the built-in simulator metrics could significantly distinguish between novice, intermediate

  10. Real-time simulation of soft tissue deformation and electrocautery procedures in laparoscopic rectal cancer radical surgery.

    Science.gov (United States)

    Sui, Yuan; Pan, Jun J; Qin, Hong; Liu, Hao; Lu, Yun

    2017-12-01

    Laparoscopic surgery (LS), also referred to as minimally invasive surgery, is a modern surgical technique which is widely applied. The fulcrum effect makes LS a non-intuitive motor skill with a steep learning curve. A hybrid model of tetrahedrons and a multi-layer triangular mesh are constructed to simulate the deformable behavior of the rectum and surrounding tissues in the Position-Based Dynamics (PBD) framework. A heat-conduction based electric-burn technique is employed to simulate the electrocautery procedure. The simulator has been applied for laparoscopic rectum cancer surgery training. From the experimental results, trainees can operate in real time with high degrees of stability and fidelity. A preliminary study was performed to evaluate the realism and usefulness. This prototype simulator has been tested and verified by colorectal surgeons through a pilot study. They believed both the visual and the haptic performance of the simulation are realistic and helpful to enhance laparoscopic skills. Copyright © 2017 John Wiley & Sons, Ltd.

  11. The role of computer simulation in nuclear technology development

    International Nuclear Information System (INIS)

    Tikhonchev, M.Yu.; Shimansky, G.A.; Lebedeva, E.E.; Lichadeev, VV.; Ryazanov, D.K.; Tellin, A.I.

    2000-01-01

    In the report, the role and purpose of computer simulation in nuclear technology development is discussed. The authors consider such applications of computer simulation as: (a) Nuclear safety research; (b) Optimization of technical and economic parameters of acting nuclear plant; (c) Planning and support of reactor experiments; (d) Research and design new devices and technologies; (f) Design and development of 'simulators' for operating personnel training. Among marked applications, the following aspects of computer simulation are discussed in the report: (g) Neutron-physical, thermal and hydrodynamics models; (h) Simulation of isotope structure change and dam- age dose accumulation for materials under irradiation; (i) Simulation of reactor control structures. (authors)

  12. Development of computational science in JAEA. R and D of simulation

    International Nuclear Information System (INIS)

    Nakajima, Norihiro; Araya, Fumimasa; Hirayama, Toshio

    2006-01-01

    R and D of computational science in JAEA (Japan Atomic Energy Agency) is described. Environment of computer, R and D system in CCSE (Center for Computational Science and e-Systems), joint computational science researches in Japan and world, development of computer technologies, the some examples of simulation researches, 3-dimensional image vibrational platform system, simulation researches of FBR cycle techniques, simulation of large scale thermal stress for development of steam generator, simulation research of fusion energy techniques, development of grid computing technology, simulation research of quantum beam techniques and biological molecule simulation researches are explained. Organization of JAEA, development of computational science in JAEA, network of JAEA, international collaboration of computational science, and environment of ITBL (Information-Technology Based Laboratory) project are illustrated. (S.Y.)

  13. Polymer Composites Corrosive Degradation: A Computational Simulation

    Science.gov (United States)

    Chamis, Christos C.; Minnetyan, Levon

    2007-01-01

    A computational simulation of polymer composites corrosive durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured pH factor and is represented by voids, temperature and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.

  14. An integrated computational tool for precipitation simulation

    Science.gov (United States)

    Cao, W.; Zhang, F.; Chen, S.-L.; Zhang, C.; Chang, Y. A.

    2011-07-01

    Computer aided materials design is of increasing interest because the conventional approach solely relying on experimentation is no longer viable within the constraint of available resources. Modeling of microstructure and mechanical properties during precipitation plays a critical role in understanding the behavior of materials and thus accelerating the development of materials. Nevertheless, an integrated computational tool coupling reliable thermodynamic calculation, kinetic simulation, and property prediction of multi-component systems for industrial applications is rarely available. In this regard, we are developing a software package, PanPrecipitation, under the framework of integrated computational materials engineering to simulate precipitation kinetics. It is seamlessly integrated with the thermodynamic calculation engine, PanEngine, to obtain accurate thermodynamic properties and atomic mobility data necessary for precipitation simulation.

  15. Outcomes of a virtual-reality simulator-training programme on basic surgical skills in robot-assisted laparoscopic surgery.

    Science.gov (United States)

    Phé, Véronique; Cattarino, Susanna; Parra, Jérôme; Bitker, Marc-Olivier; Ambrogi, Vanina; Vaessen, Christophe; Rouprêt, Morgan

    2017-06-01

    The utility of the virtual-reality robotic simulator in training programmes has not been clearly evaluated. Our aim was to evaluate the impact of a virtual-reality robotic simulator-training programme on basic surgical skills. A simulator-training programme in robotic surgery, using the da Vinci Skills Simulator, was evaluated in a population including junior and seasoned surgeons, and non-physicians. Their performances on robotic dots and suturing-skin pod platforms before and after virtual-simulation training were rated anonymously by surgeons experienced in robotics. 39 participants were enrolled: 14 medical students and residents in surgery, 14 seasoned surgeons, 11 non-physicians. Junior and seasoned surgeons' performances on platforms were not significantly improved after virtual-reality robotic simulation in any of the skill domains, in contrast to non-physicians. The benefits of virtual-reality simulator training on several tasks to basic skills in robotic surgery were not obvious among surgeons in our initial and early experience with the simulator. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Computer Assisted Surgery and Current Trends in Orthopaedics Research and Total Joint Replacements

    Science.gov (United States)

    Amirouche, Farid

    2008-06-01

    Musculoskeletal research has brought about revolutionary changes in our ability to perform high precision surgery in joint replacement procedures. Recent advances in computer assisted surgery as well better materials have lead to reduced wear and greatly enhanced the quality of life of patients. The new surgical techniques to reduce the size of the incision and damage to underlying structures have been the primary advance toward this goal. These new techniques are known as MIS or Minimally Invasive Surgery. Total hip and knee Arthoplasties are at all time high reaching 1.2 million surgeries per year in the USA. Primary joint failures are usually due to osteoarthristis, rheumatoid arthritis, osteocronis and other inflammatory arthritis conditions. The methods for THR and TKA are critical to initial stability and longevity of the prostheses. This research aims at understanding the fundamental mechanics of the joint Arthoplasty and providing an insight into current challenges in patient specific fitting, fixing, and stability. Both experimental and analytical work will be presented. We will examine Cementless total hip arthroplasty success in the last 10 years and how computer assisted navigation is playing in the follow up studies. Cementless total hip arthroplasty attains permanent fixation by the ingrowth of bone into a porous coated surface. Loosening of an ingrown total hip arthroplasty occurs as a result of osteolysis of the periprosthetic bone and degradation of the bone prosthetic interface. The osteolytic process occurs as a result of polyethylene wear particles produced by the metal polyethylene articulation of the prosthesis. The total hip arthroplasty is a congruent joint and the submicron wear particles produced are phagocytized by macrophages initiating an inflammatory cascade. This cascade produces cytokines ultimately implicated in osteolysis. Resulting bone loss both on the acetabular and femoral sides eventually leads to component instability. As

  17. Using virtual reality simulation to assess competence in video-assisted thoracoscopic surgery (VATS) lobectomy.

    Science.gov (United States)

    Jensen, Katrine; Bjerrum, Flemming; Hansen, Henrik Jessen; Petersen, René Horsleben; Pedersen, Jesper Holst; Konge, Lars

    2017-06-01

    The societies of thoracic surgery are working to incorporate simulation and competency-based assessment into specialty training. One challenge is the development of a simulation-based test, which can be used as an assessment tool. The study objective was to establish validity evidence for a virtual reality simulator test of a video-assisted thoracoscopic surgery (VATS) lobectomy of a right upper lobe. Participants with varying experience in VATS lobectomy were included. They were familiarized with a virtual reality simulator (LapSim ® ) and introduced to the steps of the procedure for a VATS right upper lobe lobectomy. The participants performed two VATS lobectomies on the simulator with a 5-min break between attempts. Nineteen pre-defined simulator metrics were recorded. Fifty-three participants from nine different countries were included. High internal consistency was found for the metrics with Cronbach's alpha coefficient for standardized items of 0.91. Significant test-retest reliability was found for 15 of the metrics (p-values 50 VATS lobectomies performed). A pass/fail level defined as approximately one standard deviation from the mean metric scores for experienced surgeons passed none of the novices (0 % false positives) and failed four of the experienced surgeons (29 % false negatives). This study is the first to establish validity evidence for a VATS right upper lobe lobectomy virtual reality simulator test. Several simulator metrics demonstrated significant differences between novices and experienced surgeons and pass/fail criteria for the test were set with acceptable consequences. This test can be used as a first step in assessing thoracic surgery trainees' VATS lobectomy competency.

  18. Real-time volumetric deformable models for surgery simulation using finite elements and condensation

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten; Cotin, S.

    1996-01-01

    This paper discusses the application of SD solid volumetric Finite Element models to surgery simulation. In particular it introduces three new ideas for solving the problem of achieving real-time performance for these models. The simulation system we have developed is described and we demonstrate...

  19. Fluid simulation for computer graphics

    CERN Document Server

    Bridson, Robert

    2008-01-01

    Animating fluids like water, smoke, and fire using physics-based simulation is increasingly important in visual effects, in particular in movies, like The Day After Tomorrow, and in computer games. This book provides a practical introduction to fluid simulation for graphics. The focus is on animating fully three-dimensional incompressible flow, from understanding the math and the algorithms to the actual implementation.

  20. Optimizing patient flow in a large hospital surgical centre by means of discrete-event computer simulation models.

    Science.gov (United States)

    Ferreira, Rodrigo B; Coelli, Fernando C; Pereira, Wagner C A; Almeida, Renan M V R

    2008-12-01

    This study used the discrete-events computer simulation methodology to model a large hospital surgical centre (SC), in order to analyse the impact of increases in the number of post-anaesthetic beds (PABs), of changes in surgical room scheduling strategies and of increases in surgery numbers. The used inputs were: number of surgeries per day, type of surgical room scheduling, anaesthesia and surgery duration, surgical teams' specialty and number of PABs, and the main outputs were: number of surgeries per day, surgical rooms' use rate and blocking rate, surgical teams' use rate, patients' blocking rate, surgery delays (minutes) and the occurrence of postponed surgeries. Two basic strategies were implemented: in the first strategy, the number of PABs was increased under two assumptions: (a) following the scheduling plan actually used by the hospital (the 'rigid' scheduling - surgical rooms were previously assigned and assignments could not be changed) and (b) following a 'flexible' scheduling (surgical rooms, when available, could be freely used by any surgical team). In the second, the same analysis was performed, increasing the number of patients (up to the system 'feasible maximum') but fixing the number of PABs, in order to evaluate the impact of the number of patients over surgery delays. It was observed that the introduction of a flexible scheduling/increase in PABs would lead to a significant improvement in the SC productivity.

  1. [Simulation-based robot-assisted surgical training].

    Science.gov (United States)

    Kolontarev, K B; Govorov, A V; Rasner, P I; Sheptunov, S A; Prilepskaya, E A; Maltsev, E G; Pushkar, D Yu

    2015-12-01

    Since the first use of robotic surgical system in 2000, the robot-assisted technology has gained wide popularity throughout the world. Robot-assisted surgical training is a complex issue that requires significant efforts from students and teacher. During the last two decades, simulation-based training had received active development due to wide-spread occurrence and popularization of laparoscopic and robot-assisted surgical techniques. We performed a systematic review to identify the currently available simulators for robot-assisted surgery. We searched the Medline and Pubmed, English sources of literature data, using the following key words and phrases: "robotics", "robotic surgery", "computer assisted surgery", "simulation", "computer simulation", "virtual reality", "surgical training", and "surgical education". There were identified 565 publications, which meet the key words and phrases; 19 publications were selected for the final analysis. It was established that simulation-based training is the most promising teaching tool that can be used in the training of the next generation robotic surgeons. Today the use of simulators to train surgeons is validated. Price of devices is an obvious barrier for inclusion in the program for training of robotic surgeons, but the lack of this tool will result in a sharp increase in the duration of specialists training.

  2. Accuracy of Three-Dimensional Planning in Surgery-First Orthognathic Surgery: Planning Versus Outcome

    Science.gov (United States)

    Tran, Ngoc Hieu; Tantidhnazet, Syrina; Raocharernporn, Somchart; Kiattavornchareon, Sirichai; Pairuchvej, Verasak; Wongsirichat, Natthamet

    2018-01-01

    Background The benefit of computer-assisted planning in orthognathic surgery (OGS) has been extensively documented over the last decade. This study aimed to evaluate the accuracy of three-dimensional (3D) virtual planning in surgery-first OGS. Methods Fifteen patients with skeletal class III malocclusion who underwent bimaxillary OGS with surgery-first approach were included. A composite skull model was reconstructed using data from cone-beam computed tomography and stereolithography from a scanned dental cast. Surgical procedures were simulated using Simplant O&O software, and the virtual plan was transferred to the operation room using 3D-printed splints. Differences of the 3D measurements between the virtual plan and postoperative results were evaluated, and the accuracy was reported using root mean square deviation (RMSD) and the Bland-Altman method. Results The virtual planning was successfully transferred to surgery. The overall mean linear difference was 0.88 mm (0.79 mm for the maxilla and 1 mm for the mandible), and the overall mean angular difference was 1.16°. The RMSD ranged from 0.86 to 1.46 mm and 1.27° to 1.45°, within the acceptable clinical criteria. Conclusion In this study, virtual surgical planning and 3D-printed surgical splints facilitated the diagnosis and treatment planning, and offered an accurate outcome in surgery-first OGS. PMID:29581806

  3. Accuracy of Three-Dimensional Planning in Surgery-First Orthognathic Surgery: Planning Versus Outcome.

    Science.gov (United States)

    Tran, Ngoc Hieu; Tantidhnazet, Syrina; Raocharernporn, Somchart; Kiattavornchareon, Sirichai; Pairuchvej, Verasak; Wongsirichat, Natthamet

    2018-05-01

    The benefit of computer-assisted planning in orthognathic surgery (OGS) has been extensively documented over the last decade. This study aimed to evaluate the accuracy of three-dimensional (3D) virtual planning in surgery-first OGS. Fifteen patients with skeletal class III malocclusion who underwent bimaxillary OGS with surgery-first approach were included. A composite skull model was reconstructed using data from cone-beam computed tomography and stereolithography from a scanned dental cast. Surgical procedures were simulated using Simplant O&O software, and the virtual plan was transferred to the operation room using 3D-printed splints. Differences of the 3D measurements between the virtual plan and postoperative results were evaluated, and the accuracy was reported using root mean square deviation (RMSD) and the Bland-Altman method. The virtual planning was successfully transferred to surgery. The overall mean linear difference was 0.88 mm (0.79 mm for the maxilla and 1 mm for the mandible), and the overall mean angular difference was 1.16°. The RMSD ranged from 0.86 to 1.46 mm and 1.27° to 1.45°, within the acceptable clinical criteria. In this study, virtual surgical planning and 3D-printed surgical splints facilitated the diagnosis and treatment planning, and offered an accurate outcome in surgery-first OGS.

  4. Large-scale simulations of error-prone quantum computation devices

    International Nuclear Information System (INIS)

    Trieu, Doan Binh

    2009-01-01

    The theoretical concepts of quantum computation in the idealized and undisturbed case are well understood. However, in practice, all quantum computation devices do suffer from decoherence effects as well as from operational imprecisions. This work assesses the power of error-prone quantum computation devices using large-scale numerical simulations on parallel supercomputers. We present the Juelich Massively Parallel Ideal Quantum Computer Simulator (JUMPIQCS), that simulates a generic quantum computer on gate level. It comprises an error model for decoherence and operational errors. The robustness of various algorithms in the presence of noise has been analyzed. The simulation results show that for large system sizes and long computations it is imperative to actively correct errors by means of quantum error correction. We implemented the 5-, 7-, and 9-qubit quantum error correction codes. Our simulations confirm that using error-prone correction circuits with non-fault-tolerant quantum error correction will always fail, because more errors are introduced than being corrected. Fault-tolerant methods can overcome this problem, provided that the single qubit error rate is below a certain threshold. We incorporated fault-tolerant quantum error correction techniques into JUMPIQCS using Steane's 7-qubit code and determined this threshold numerically. Using the depolarizing channel as the source of decoherence, we find a threshold error rate of (5.2±0.2) x 10 -6 . For Gaussian distributed operational over-rotations the threshold lies at a standard deviation of 0.0431±0.0002. We can conclude that quantum error correction is especially well suited for the correction of operational imprecisions and systematic over-rotations. For realistic simulations of specific quantum computation devices we need to extend the generic model to dynamic simulations, i.e. time-dependent Hamiltonian simulations of realistic hardware models. We focus on today's most advanced technology, i

  5. Parallelized computation for computer simulation of electrocardiograms using personal computers with multi-core CPU and general-purpose GPU.

    Science.gov (United States)

    Shen, Wenfeng; Wei, Daming; Xu, Weimin; Zhu, Xin; Yuan, Shizhong

    2010-10-01

    Biological computations like electrocardiological modelling and simulation usually require high-performance computing environments. This paper introduces an implementation of parallel computation for computer simulation of electrocardiograms (ECGs) in a personal computer environment with an Intel CPU of Core (TM) 2 Quad Q6600 and a GPU of Geforce 8800GT, with software support by OpenMP and CUDA. It was tested in three parallelization device setups: (a) a four-core CPU without a general-purpose GPU, (b) a general-purpose GPU plus 1 core of CPU, and (c) a four-core CPU plus a general-purpose GPU. To effectively take advantage of a multi-core CPU and a general-purpose GPU, an algorithm based on load-prediction dynamic scheduling was developed and applied to setting (c). In the simulation with 1600 time steps, the speedup of the parallel computation as compared to the serial computation was 3.9 in setting (a), 16.8 in setting (b), and 20.0 in setting (c). This study demonstrates that a current PC with a multi-core CPU and a general-purpose GPU provides a good environment for parallel computations in biological modelling and simulation studies. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  6. Sophistication of computational science and fundamental physics simulations

    International Nuclear Information System (INIS)

    Ishiguro, Seiji; Ito, Atsushi; Usami, Shunsuke; Ohtani, Hiroaki; Sakagami, Hitoshi; Toida, Mieko; Hasegawa, Hiroki; Horiuchi, Ritoku; Miura, Hideaki

    2016-01-01

    Numerical experimental reactor research project is composed of the following studies: (1) nuclear fusion simulation research with a focus on specific physical phenomena of specific equipment, (2) research on advanced simulation method to increase predictability or expand its application range based on simulation, (3) visualization as the foundation of simulation research, (4) research for advanced computational science such as parallel computing technology, and (5) research aiming at elucidation of fundamental physical phenomena not limited to specific devices. Specifically, a wide range of researches with medium- to long-term perspectives are being developed: (1) virtual reality visualization, (2) upgrading of computational science such as multilayer simulation method, (3) kinetic behavior of plasma blob, (4) extended MHD theory and simulation, (5) basic plasma process such as particle acceleration due to interaction of wave and particle, and (6) research related to laser plasma fusion. This paper reviews the following items: (1) simultaneous visualization in virtual reality space, (2) multilayer simulation of collisionless magnetic reconnection, (3) simulation of microscopic dynamics of plasma coherent structure, (4) Hall MHD simulation of LHD, (5) numerical analysis for extension of MHD equilibrium and stability theory, (6) extended MHD simulation of 2D RT instability, (7) simulation of laser plasma, (8) simulation of shock wave and particle acceleration, and (9) study on simulation of homogeneous isotropic MHD turbulent flow. (A.O.)

  7. Computer Simulation Performed for Columbia Project Cooling System

    Science.gov (United States)

    Ahmad, Jasim

    2005-01-01

    This demo shows a high-fidelity simulation of the air flow in the main computer room housing the Columbia (10,024 intel titanium processors) system. The simulation asseses the performance of the cooling system and identified deficiencies, and recommended modifications to eliminate them. It used two in house software packages on NAS supercomputers: Chimera Grid tools to generate a geometric model of the computer room, OVERFLOW-2 code for fluid and thermal simulation. This state-of-the-art technology can be easily extended to provide a general capability for air flow analyses on any modern computer room. Columbia_CFD_black.tiff

  8. A Review of Freely Available Quantum Computer Simulation Software

    OpenAIRE

    Brandhorst-Satzkorn, Johan

    2012-01-01

    A study has been made of a few different freely available Quantum Computer simulators. All the simulators tested are available online on their respective websites. A number of tests have been performed to compare the different simulators against each other. Some untested simulators of various programming languages are included to show the diversity of the quantum computer simulator applications. The conclusion of the review is that LibQuantum is the best of the simulators tested because of ea...

  9. Computer simulation of liquid crystals

    International Nuclear Information System (INIS)

    McBride, C.

    1999-01-01

    Molecular dynamics simulation performed on modern computer workstations provides a powerful tool for the investigation of the static and dynamic characteristics of liquid crystal phases. In this thesis molecular dynamics computer simulations have been performed for two model systems. Simulations of 4,4'-di-n-pentyl-bibicyclo[2.2.2]octane demonstrate the growth of a structurally ordered phase directly from an isotropic fluid. This is the first time that this has been achieved for an atomistic model. The results demonstrate a strong coupling between orientational ordering and molecular shape, but indicate that the coupling between molecular conformational changes and molecular reorientation is relatively weak. Simulations have also been performed for a hybrid Gay-Berne/Lennard-Jones model resulting in thermodynamically stable nematic and smectic phases. Frank elastic constants have been calculated for the nematic phase formed by the hybrid model through analysis of the fluctuations of the nematic director, giving results comparable with those found experimentally. Work presented in this thesis also describes the parameterization of the torsional potential of a fragment of a dimethyl siloxane polymer chain, disiloxane diol (HOMe 2 Si) 2 O, using ab initio quantum mechanical calculations. (author)

  10. Neurosurgical Virtual Reality Simulation for Brain Tumor Using High-definition Computer Graphics: A Review of the Literature.

    Science.gov (United States)

    Kin, Taichi; Nakatomi, Hirofumi; Shono, Naoyuki; Nomura, Seiji; Saito, Toki; Oyama, Hiroshi; Saito, Nobuhito

    2017-10-15

    Simulation and planning of surgery using a virtual reality model is becoming common with advances in computer technology. In this study, we conducted a literature search to find trends in virtual simulation of surgery for brain tumors. A MEDLINE search for "neurosurgery AND (simulation OR virtual reality)" retrieved a total of 1,298 articles published in the past 10 years. After eliminating studies designed solely for education and training purposes, 28 articles about the clinical application remained. The finding that the vast majority of the articles were about education and training rather than clinical applications suggests that several issues need be addressed for clinical application of surgical simulation. In addition, 10 of the 28 articles were from Japanese groups. In general, the 28 articles demonstrated clinical benefits of virtual surgical simulation. Simulation was particularly useful in better understanding complicated spatial relations of anatomical landmarks and in examining surgical approaches. In some studies, Virtual reality models were used on either surgical navigation system or augmented reality technology, which projects virtual reality images onto the operating field. Reported problems were difficulties in standardized, objective evaluation of surgical simulation systems; inability to respond to tissue deformation caused by surgical maneuvers; absence of the system functionality to reflect features of tissue (e.g., hardness and adhesion); and many problems with image processing. The amount of description about image processing tended to be insufficient, indicating that the level of evidence, risk of bias, precision, and reproducibility need to be addressed for further advances and ultimately for full clinical application.

  11. A Tissue Relevance and Meshing Method for Computing Patient-Specific Anatomical Models in Endoscopic Sinus Surgery Simulation

    Science.gov (United States)

    Audette, M. A.; Hertel, I.; Burgert, O.; Strauss, G.

    This paper presents on-going work on a method for determining which subvolumes of a patient-specific tissue map, extracted from CT data of the head, are relevant to simulating endoscopic sinus surgery of that individual, and for decomposing these relevant tissues into triangles and tetrahedra whose mesh size is well controlled. The overall goal is to limit the complexity of the real-time biomechanical interaction while ensuring the clinical relevance of the simulation. Relevant tissues are determined as the union of the pathology present in the patient, of critical tissues deemed to be near the intended surgical path or pathology, and of bone and soft tissue near the intended path, pathology or critical tissues. The processing of tissues, prior to meshing, is based on the Fast Marching method applied under various guises, in a conditional manner that is related to tissue classes. The meshing is based on an adaptation of a meshing method of ours, which combines the Marching Tetrahedra method and the discrete Simplex mesh surface model to produce a topologically faithful surface mesh with well controlled edge and face size as a first stage, and Almost-regular Tetrahedralization of the same prescribed mesh size as a last stage.

  12. Multiaxial mechanical properties and constitutive modeling of human adipose tissue: a basis for preoperative simulations in plastic and reconstructive surgery.

    Science.gov (United States)

    Sommer, Gerhard; Eder, Maximilian; Kovacs, Laszlo; Pathak, Heramb; Bonitz, Lars; Mueller, Christoph; Regitnig, Peter; Holzapfel, Gerhard A

    2013-11-01

    A preoperative simulation of soft tissue deformations during plastic and reconstructive surgery is desirable to support the surgeon's planning and to improve surgical outcomes. The current development of constitutive adipose tissue models, for the implementation in multilayer computational frameworks for the simulation of human soft tissue deformations, has proved difficult because knowledge of the required mechanical parameters of fat tissue is limited. Therefore, for the first time, human abdominal adipose tissues were mechanically investigated by biaxial tensile and triaxial shear tests. The results of this study suggest that human abdominal adipose tissues under quasi-static and dynamic multiaxial loadings can be characterized as a nonlinear, anisotropic and viscoelastic soft biological material. The nonlinear and anisotropic features are consequences of the material's collagenous microstructure. The aligned collagenous septa observed in histological investigations causes the anisotropy of the tissue. A hyperelastic model used in this study was appropriate to represent the quasi-static multiaxial mechanical behavior of fat tissue. The constitutive parameters are intended to serve as a basis for soft tissue simulations using the finite element method, which is an apparent method for obtaining promising results in the field of plastic and reconstructive surgery. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Biomes computed from simulated climatologies

    Energy Technology Data Exchange (ETDEWEB)

    Claussen, M.; Esch, M. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1994-01-01

    The biome model of Prentice et al. is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fuer Meteorologie. This study undertaken in order to show the advantage of this biome model in diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a difference in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to in simulated rainfall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are for the tropical rain forests. A potential northeast shift of biomes is expected from a simulation with enhanced CO{sub 2} concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting chances in vegetation patterns due to a rapid climate change, the latter simulation to be taken as a prediction of chances in conditions favourable for the existence of certain biomes, not as a reduction of a future distribution of biomes. 15 refs., 8 figs., 2 tabs.

  14. Computer security simulation

    International Nuclear Information System (INIS)

    Schelonka, E.P.

    1979-01-01

    Development and application of a series of simulation codes used for computer security analysis and design are described. Boolean relationships for arrays of barriers within functional modules are used to generate composite effectiveness indices. The general case of multiple layers of protection with any specified barrier survival criteria is given. Generalized reduction algorithms provide numerical security indices in selected subcategories and for the system as a whole. 9 figures, 11 tables

  15. Surgical Engineering in Cranio-Maxillofacial Surgery: A Literature Review

    Directory of Open Access Journals (Sweden)

    Raphael Olszewski

    2012-01-01

    Full Text Available A systematic review of the literature concerning surgical engineering in cranio-maxillofacial surgery was performed. APubMed search yielded 1721 papers published between 1999 and 2011. Based on the inclusion/exclusion criteria, 1428 articles were excluded after review of titles and abstracts. Atotal of 292 articles were finally selected covering the following topics: finite element analysis (n = 18, computer-assisted surgery (n = 111, rapid prototyping models (n = 41, preoperative training simulators (n = 4, surgical guides (n = 23, image-guided navigation (n = 58, augmented reality (n = 2, video tracking (n = 1, distraction osteogenesis (n = 19, robotics (n = 8, and minimal invasive surgery (n = 7. The results show that surgical engineering plays a pivotal role in the development and improvement of cranio-maxillofacial surgery. Some technologies, such as computer-assisted surgery, image-guided navigation, and three-dimensional rapid prototyping models, have reached maturity and allow for multiple clinical applications, while augmented reality, robotics, and endoscopy still need to be improved.

  16. Understanding Islamist political violence through computational social simulation

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Jennifer H [Los Alamos National Laboratory; Mackerrow, Edward P [Los Alamos National Laboratory; Patelli, Paolo G [Los Alamos National Laboratory; Eberhardt, Ariane [Los Alamos National Laboratory; Stradling, Seth G [Los Alamos National Laboratory

    2008-01-01

    Understanding the process that enables political violence is of great value in reducing the future demand for and support of violent opposition groups. Methods are needed that allow alternative scenarios and counterfactuals to be scientifically researched. Computational social simulation shows promise in developing 'computer experiments' that would be unfeasible or unethical in the real world. Additionally, the process of modeling and simulation reveals and challenges assumptions that may not be noted in theories, exposes areas where data is not available, and provides a rigorous, repeatable, and transparent framework for analyzing the complex dynamics of political violence. This paper demonstrates the computational modeling process using two simulation techniques: system dynamics and agent-based modeling. The benefits and drawbacks of both techniques are discussed. In developing these social simulations, we discovered that the social science concepts and theories needed to accurately simulate the associated psychological and social phenomena were lacking.

  17. Overview of Computer Simulation Modeling Approaches and Methods

    Science.gov (United States)

    Robert E. Manning; Robert M. Itami; David N. Cole; Randy Gimblett

    2005-01-01

    The field of simulation modeling has grown greatly with recent advances in computer hardware and software. Much of this work has involved large scientific and industrial applications for which substantial financial resources are available. However, advances in object-oriented programming and simulation methodology, concurrent with dramatic increases in computer...

  18. REACTOR: a computer simulation for schools

    International Nuclear Information System (INIS)

    Squires, D.

    1985-01-01

    The paper concerns computer simulation of the operation of a nuclear reactor, for use in schools. The project was commissioned by UKAEA, and carried out by the Computers in the Curriculum Project, Chelsea College. The program, for an advanced gas cooled reactor, is briefly described. (U.K.)

  19. Learning and instruction with computer simulations

    NARCIS (Netherlands)

    de Jong, Anthonius J.M.

    1991-01-01

    The present volume presents the results of an inventory of elements of such a computer learning environment. This inventory was conducted within a DELTA project called SIMULATE. In the project a learning environment that provides intelligent support to learners and that has a simulation as its

  20. Computer simulation on molten ionic salts

    International Nuclear Information System (INIS)

    Kawamura, K.; Okada, I.

    1978-01-01

    The extensive advances in computer technology have since made it possible to apply computer simulation to the evaluation of the macroscopic and microscopic properties of molten salts. The evaluation of the potential energy in molten salts systems is complicated by the presence of long-range energy, i.e. Coulomb energy, in contrast to simple liquids where the potential energy is easily evaluated. It has been shown, however, that no difficulties are encountered when the Ewald method is applied to the evaluation of Coulomb energy. After a number of attempts had been made to approximate the pair potential, the Huggins-Mayer potential based on ionic crystals became the most often employed. Since it is thought that the only appreciable contribution to many-body potential, not included in Huggins-Mayer potential, arises from the internal electrostatic polarization of ions in molten ionic salts, computer simulation with a provision for ion polarization has been tried recently. The computations, which are employed mainly for molten alkali halides, can provide: (1) thermodynamic data such as internal energy, internal pressure and isothermal compressibility; (2) microscopic configurational data such as radial distribution functions; (3) transport data such as the diffusion coefficient and electrical conductivity; and (4) spectroscopic data such as the intensity of inelastic scattering and the stretching frequency of simple molecules. The computed results seem to agree well with the measured results. Computer simulation can also be used to test the effectiveness of a proposed pair potential and the adequacy of postulated models of molten salts, and to obtain experimentally inaccessible data. A further application of MD computation employing the pair potential based on an ionic model to BeF 2 , ZnCl 2 and SiO 2 shows the possibility of quantitative interpretation of structures and glass transformation phenomena

  1. New Pedagogies on Teaching Science with Computer Simulations

    Science.gov (United States)

    Khan, Samia

    2011-01-01

    Teaching science with computer simulations is a complex undertaking. This case study examines how an experienced science teacher taught chemistry using computer simulations and the impact of his teaching on his students. Classroom observations over 3 semesters, teacher interviews, and student surveys were collected. The data was analyzed for (1)…

  2. Multi-slice computed tomography-assisted endoscopic transsphenoidal surgery for pituitary macroadenoma: a comparison with conventional microscopic transsphenoidal surgery.

    Science.gov (United States)

    Tosaka, Masahiko; Nagaki, Tomohito; Honda, Fumiaki; Takahashi, Katsumasa; Yoshimoto, Yuhei

    2015-11-01

    Intraoperative computed tomography (iCT) is a reliable method for the detection of residual tumour, but previous single-slice low-resolution computed tomography (CT) without coronal or sagittal reconstructions was not of adequate quality for clinical use. The present study evaluated the results of multi-slice iCT-assisted endoscopic transsphenoidal surgery for pituitary macroadenoma. This retrospective study included 30 consecutive patients with newly diagnosed or recurrent pituitary macroadenoma with supradiaphragmatic extension who underwent endoscopic transsphenoidal surgery using iCT (eTSS+iCT group), and control 30 consecutive patients who underwent conventional endoscope-assisted transsphenoidal surgery (cTSS group). The tumour volume was calculated by multiplying the tumour area by the slice thickness. Visual acuity and visual field were estimated by the visual impairment score (VIS). The resection extent, (preoperative tumour volume - postoperative residual tumour volume)/preoperative tumour volume, was 98.9% (median) in the eTSS+iCT group and 91.7% in the cTSS group, and had significant difference between the groups (P = 0.04). Greater than 95 and >90% removal rates were significantly higher in the eTSS+iCT group than in the cTSS group (P = 0.02 and P = 0.001, respectively). However, improvement in VIS showed no significant difference between the groups. The rate of complications also showed no significant difference. Multi-slice iCT-assisted endoscopic transsphenoidal surgery may improve the resection extent of pituitary macroadenoma. Multi-slice iCT may have advantages over intraoperative magnetic resonance imaging in less expensive, short acquisition time, and that special protection against magnetic fields is not needed.

  3. Large-scale simulations of error-prone quantum computation devices

    Energy Technology Data Exchange (ETDEWEB)

    Trieu, Doan Binh

    2009-07-01

    The theoretical concepts of quantum computation in the idealized and undisturbed case are well understood. However, in practice, all quantum computation devices do suffer from decoherence effects as well as from operational imprecisions. This work assesses the power of error-prone quantum computation devices using large-scale numerical simulations on parallel supercomputers. We present the Juelich Massively Parallel Ideal Quantum Computer Simulator (JUMPIQCS), that simulates a generic quantum computer on gate level. It comprises an error model for decoherence and operational errors. The robustness of various algorithms in the presence of noise has been analyzed. The simulation results show that for large system sizes and long computations it is imperative to actively correct errors by means of quantum error correction. We implemented the 5-, 7-, and 9-qubit quantum error correction codes. Our simulations confirm that using error-prone correction circuits with non-fault-tolerant quantum error correction will always fail, because more errors are introduced than being corrected. Fault-tolerant methods can overcome this problem, provided that the single qubit error rate is below a certain threshold. We incorporated fault-tolerant quantum error correction techniques into JUMPIQCS using Steane's 7-qubit code and determined this threshold numerically. Using the depolarizing channel as the source of decoherence, we find a threshold error rate of (5.2{+-}0.2) x 10{sup -6}. For Gaussian distributed operational over-rotations the threshold lies at a standard deviation of 0.0431{+-}0.0002. We can conclude that quantum error correction is especially well suited for the correction of operational imprecisions and systematic over-rotations. For realistic simulations of specific quantum computation devices we need to extend the generic model to dynamic simulations, i.e. time-dependent Hamiltonian simulations of realistic hardware models. We focus on today's most advanced

  4. The McGill simulator for endoscopic sinus surgery (MSESS): a validation study.

    Science.gov (United States)

    Varshney, Rickul; Frenkiel, Saul; Nguyen, Lily H P; Young, Meredith; Del Maestro, Rolando; Zeitouni, Anthony; Saad, Elias; Funnell, W Robert J; Tewfik, Marc A

    2014-10-24

    Endoscopic sinus surgery (ESS) is a technically challenging procedure, associated with a significant risk of complications. Virtual reality simulation has demonstrated benefit in many disciplines as an important educational tool for surgical training. Within the field of rhinology, there is a lack of ESS simulators with appropriate validity evidence supporting their integration into residency education. The objectives of this study are to evaluate the acceptability, perceived realism and benefit of the McGill Simulator for Endoscopic Sinus Surgery (MSESS) among medical students, otolaryngology residents and faculty, and to present evidence supporting its ability to differentiate users based on their level of training through the performance metrics. 10 medical students, 10 junior residents, 10 senior residents and 3 expert sinus surgeons performed anterior ethmoidectomies, posterior ethmoidectomies and wide sphenoidotomies on the MSESS. Performance metrics related to quality (e.g. percentage of tissue removed), efficiency (e.g. time, path length, bimanual dexterity, etc.) and safety (e.g. contact with no-go zones, maximum applied force, etc.) were calculated. All users completed a post-simulation questionnaire related to realism, usefulness and perceived benefits of training on the MSESS. The MSESS was found to be realistic and useful for training surgical skills with scores of 7.97 ± 0.29 and 8.57 ± 0.69, respectively on a 10-point rating scale. Most students and residents (29/30) believed that it should be incorporated into their curriculum. There were significant differences between novice surgeons (10 medical students and 10 junior residents) and senior surgeons (10 senior residents and 3 sinus surgeons) in performance metrics related to quality (p education. This simulator may be a potential resource to help fill the void in endoscopic sinus surgery training.

  5. Procedural virtual reality simulation in minimally invasive surgery.

    Science.gov (United States)

    Våpenstad, Cecilie; Buzink, Sonja N

    2013-02-01

    Simulation of procedural tasks has the potential to bridge the gap between basic skills training outside the operating room (OR) and performance of complex surgical tasks in the OR. This paper provides an overview of procedural virtual reality (VR) simulation currently available on the market and presented in scientific literature for laparoscopy (LS), flexible gastrointestinal endoscopy (FGE), and endovascular surgery (EVS). An online survey was sent to companies and research groups selling or developing procedural VR simulators, and a systematic search was done for scientific publications presenting or applying VR simulators to train or assess procedural skills in the PUBMED and SCOPUS databases. The results of five simulator companies were included in the survey. In the literature review, 116 articles were analyzed (45 on LS, 43 on FGE, 28 on EVS), presenting a total of 23 simulator systems. The companies stated to altogether offer 78 procedural tasks (33 for LS, 12 for FGE, 33 for EVS), of which 17 also were found in the literature review. Although study type and used outcomes vary between the three different fields, approximately 90 % of the studies presented in the retrieved publications for LS found convincing evidence to confirm the validity or added value of procedural VR simulation. This was the case in approximately 75 % for FGE and EVS. Procedural training using VR simulators has been found to improve clinical performance. There is nevertheless a large amount of simulated procedural tasks that have not been validated. Future research should focus on the optimal use of procedural simulators in the most effective training setups and further investigate the benefits of procedural VR simulation to improve clinical outcome.

  6. Interoceanic canal excavation scheduling via computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Baldonado, Orlino C [Holmes and Narver, Inc., Los Angeles, CA (United States)

    1970-05-15

    The computer simulation language GPSS/360 was used to simulate the schedule of several nuclear detonation programs for the interoceanic canal project. The effects of using different weather restriction categories due to air blast and fallout were investigated. The effect of increasing the number of emplacement and stemming crews and the effect of varying the reentry period after detonating a row charge or salvo were also studied. Detonation programs were simulated for the proposed Routes 17A and 25E. The study demonstrates the method of using computer simulation so that a schedule and its associated constraints can be assessed for feasibility. Since many simulation runs can be made for a given set of detonation program constraints, one readily obtains an average schedule for a range of conditions. This provides a method for analyzing time-sensitive operations so that time and cost-effective operational schedules can be established. A comparison of the simulated schedules with those that were published shows them to be similar. (author)

  7. Interoceanic canal excavation scheduling via computer simulation

    International Nuclear Information System (INIS)

    Baldonado, Orlino C.

    1970-01-01

    The computer simulation language GPSS/360 was used to simulate the schedule of several nuclear detonation programs for the interoceanic canal project. The effects of using different weather restriction categories due to air blast and fallout were investigated. The effect of increasing the number of emplacement and stemming crews and the effect of varying the reentry period after detonating a row charge or salvo were also studied. Detonation programs were simulated for the proposed Routes 17A and 25E. The study demonstrates the method of using computer simulation so that a schedule and its associated constraints can be assessed for feasibility. Since many simulation runs can be made for a given set of detonation program constraints, one readily obtains an average schedule for a range of conditions. This provides a method for analyzing time-sensitive operations so that time and cost-effective operational schedules can be established. A comparison of the simulated schedules with those that were published shows them to be similar. (author)

  8. Computed tomography, after abdominal surgery

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, H.; Toedt, H.C.

    1985-09-01

    The CT-examinations of 131 patients were analyzed after abdominal surgery. After nephrectomy, splenectomy, partial hepatectomy and pancreatectomy a displacement of the neighbouring intraabdominal and retroperitoneal organs was seen. Scar-tissue was observed containing fat, which faciltated the differential diagnosis to tumor recurrency. The changes of the roentgenmorphology were not so obvious after gastrointestinal surgery. After vascular surgery the permeability of an anastomosis or an operated artery could be demonstrated by bolus injection. (orig.).

  9. Computed tomography, after abdominal surgery

    International Nuclear Information System (INIS)

    Vogel, H.; Toedt, H.C.; Hamburg Univ.

    1985-01-01

    The CT-examinations of 131 patients were analyzed after abdominal surgery. After nephrectomy, splenectomy, partial hepatectomy and pancreatectomy a displacement of the neighbouring intraabdominal and retroperitoneal organs was seen. Scar-tissue was observed containing fat, which fascilated the differentialdiagnosis to tumorrecurrency. The changes of the roentgenmorphology were not so abvious after gastro-intestinal surgery. After vascular surgery the permeability of an anastomosis or an operated artery could be demonstrated by bolusinjection. (orig.) [de

  10. Biomes computed from simulated climatologies

    Energy Technology Data Exchange (ETDEWEB)

    Claussen, W.; Esch, M.

    1992-09-01

    The biome model of Prentice et al. is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fuer Meteorologie. This study is undertaken in order to show the advantage of this biome model in comprehensively diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a difference in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to failures in simulated rain fall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are seen for the tropical rain forests. A potential North-East shift of biomes is expected from a simulation with enhanced CO{sub 2} concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting changes in vegetation patterns due to a rapid climate change, the latter simulation has to be taken as a prediction of changes in conditions favorable for the existence of certain biomes, not as a prediction of a future distribution of biomes. (orig.).

  11. Computer graphics in heat-transfer simulations

    International Nuclear Information System (INIS)

    Hamlin, G.A. Jr.

    1980-01-01

    Computer graphics can be very useful in the setup of heat transfer simulations and in the display of the results of such simulations. The potential use of recently available low-cost graphics devices in the setup of such simulations has not been fully exploited. Several types of graphics devices and their potential usefulness are discussed, and some configurations of graphics equipment are presented in the low-, medium-, and high-price ranges

  12. Parallel Computing for Brain Simulation.

    Science.gov (United States)

    Pastur-Romay, L A; Porto-Pazos, A B; Cedron, F; Pazos, A

    2017-01-01

    The human brain is the most complex system in the known universe, it is therefore one of the greatest mysteries. It provides human beings with extraordinary abilities. However, until now it has not been understood yet how and why most of these abilities are produced. For decades, researchers have been trying to make computers reproduce these abilities, focusing on both understanding the nervous system and, on processing data in a more efficient way than before. Their aim is to make computers process information similarly to the brain. Important technological developments and vast multidisciplinary projects have allowed creating the first simulation with a number of neurons similar to that of a human brain. This paper presents an up-to-date review about the main research projects that are trying to simulate and/or emulate the human brain. They employ different types of computational models using parallel computing: digital models, analog models and hybrid models. This review includes the current applications of these works, as well as future trends. It is focused on various works that look for advanced progress in Neuroscience and still others which seek new discoveries in Computer Science (neuromorphic hardware, machine learning techniques). Their most outstanding characteristics are summarized and the latest advances and future plans are presented. In addition, this review points out the importance of considering not only neurons: Computational models of the brain should also include glial cells, given the proven importance of astrocytes in information processing. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Computational Dehydration of Crystalline Hydrates Using Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Larsen, Anders Støttrup; Rantanen, Jukka; Johansson, Kristoffer E

    2017-01-01

    Molecular dynamics (MD) simulations have evolved to an increasingly reliable and accessible technique and are today implemented in many areas of biomedical sciences. We present a generally applicable method to study dehydration of hydrates based on MD simulations and apply this approach...... to the dehydration of ampicillin trihydrate. The crystallographic unit cell of the trihydrate is used to construct the simulation cell containing 216 ampicillin and 648 water molecules. This system is dehydrated by removing water molecules during a 2200 ps simulation, and depending on the computational dehydration....... The structural changes could be followed in real time, and in addition, an intermediate amorphous phase was identified. The computationally identified dehydrated structure (anhydrate) was slightly different from the experimentally known anhydrate structure suggesting that the simulated computational structure...

  14. Computer simulation of thermal plant operations

    CERN Document Server

    O'Kelly, Peter

    2012-01-01

    This book describes thermal plant simulation, that is, dynamic simulation of plants which produce, exchange and otherwise utilize heat as their working medium. Directed at chemical, mechanical and control engineers involved with operations, control and optimization and operator training, the book gives the mathematical formulation and use of simulation models of the equipment and systems typically found in these industries. The author has adopted a fundamental approach to the subject. The initial chapters provide an overview of simulation concepts and describe a suitable computer environment.

  15. Validation of ergonomic instructions in robot-assisted surgery simulator training.

    Science.gov (United States)

    Van't Hullenaar, C D P; Mertens, A C; Ruurda, J P; Broeders, I A M J

    2018-05-01

    Training in robot-assisted surgery focusses mainly on technical skills and instrument use. Training in optimal ergonomics during robotic surgery is often lacking, while improved ergonomics can be one of the key advantages of robot-assisted surgery. Therefore, the aim of this study was to assess whether a brief explanation on ergonomics of the console can improve body posture and performance. A comparative study was performed with 26 surgical interns and residents using the da Vinci skills simulator (Intuitive Surgical, Sunnyvale, CA). The intervention group received a compact instruction on ergonomic settings and coaching on clutch usage, while the control group received standard instructions for usage of the system. Participants performed two sets of five exercises. Analysis was performed on ergonomic score (RULA) and performance scores provided by the simulator. Mental and physical load scores (NASA-TLX and LED score) were also registered. The intervention group performed better in the clutch-oriented exercises, displaying less unnecessary movement and smaller deviation from the neutral position of the hands. The intervention group also scored significantly better on the RULA ergonomic score in both the exercises. No differences in overall performance scores and subjective scores were detected. The benefits of a brief instruction on ergonomics for novices are clear in this study. A single session of coaching and instruction leads to better ergonomic scores. The control group showed often inadequate ergonomic scores. No significant differences were found regarding physical discomfort, mental task load and overall performance scores.

  16. A Computer-Based Simulation of an Acid-Base Titration

    Science.gov (United States)

    Boblick, John M.

    1971-01-01

    Reviews the advantages of computer simulated environments for experiments, referring in particular to acid-base titrations. Includes pre-lab instructions and a sample computer printout of a student's use of an acid-base simulation. Ten references. (PR)

  17. Quantum simulations with noisy quantum computers

    Science.gov (United States)

    Gambetta, Jay

    Quantum computing is a new computational paradigm that is expected to lie beyond the standard model of computation. This implies a quantum computer can solve problems that can't be solved by a conventional computer with tractable overhead. To fully harness this power we need a universal fault-tolerant quantum computer. However the overhead in building such a machine is high and a full solution appears to be many years away. Nevertheless, we believe that we can build machines in the near term that cannot be emulated by a conventional computer. It is then interesting to ask what these can be used for. In this talk we will present our advances in simulating complex quantum systems with noisy quantum computers. We will show experimental implementations of this on some small quantum computers.

  18. Salesperson Ethics: An Interactive Computer Simulation

    Science.gov (United States)

    Castleberry, Stephen

    2014-01-01

    A new interactive computer simulation designed to teach sales ethics is described. Simulation learner objectives include gaining a better understanding of legal issues in selling; realizing that ethical dilemmas do arise in selling; realizing the need to be honest when selling; seeing that there are conflicting demands from a salesperson's…

  19. Simulations of Probabilities for Quantum Computing

    Science.gov (United States)

    Zak, M.

    1996-01-01

    It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-LIpschitz dynamics, without utilization of any man-made devices (such as random number generators). Self-organizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed.

  20. NOViSE: a virtual natural orifice transluminal endoscopic surgery simulator.

    Science.gov (United States)

    Korzeniowski, Przemyslaw; Barrow, Alastair; Sodergren, Mikael H; Hald, Niels; Bello, Fernando

    2016-12-01

    Natural orifice transluminal endoscopic surgery (NOTES) is a novel technique in minimally invasive surgery whereby a flexible endoscope is inserted via a natural orifice to gain access to the abdominal cavity, leaving no external scars. This innovative use of flexible endoscopy creates many new challenges and is associated with a steep learning curve for clinicians. We developed NOViSE-the first force-feedback-enabled virtual reality simulator for NOTES training supporting a flexible endoscope. The haptic device is custom-built, and the behaviour of the virtual flexible endoscope is based on an established theoretical framework-the Cosserat theory of elastic rods. We present the application of NOViSE to the simulation of a hybrid trans-gastric cholecystectomy procedure. Preliminary results of face, content and construct validation have previously shown that NOViSE delivers the required level of realism for training of endoscopic manipulation skills specific to NOTES. VR simulation of NOTES procedures can contribute to surgical training and improve the educational experience without putting patients at risk, raising ethical issues or requiring expensive animal or cadaver facilities. In the context of an experimental technique, NOViSE could potentially facilitate NOTES development and contribute to its wider use by keeping practitioners up to date with this novel surgical technique. NOViSE is a first prototype, and the initial results indicate that it provides promising foundations for further development.

  1. High correlation between performance on a virtual-reality simulator and real-life cataract surgery

    DEFF Research Database (Denmark)

    Thomsen, Ann Sofia Skou; Smith, Phillip; Subhi, Yousif

    2017-01-01

    -tracking software of cataract surgical videos with a Pearson correlation coefficient of -0.70 (p = 0.017). CONCLUSION: Performance on the EyeSi simulator is significantly and highly correlated to real-life surgical performance. However, it is recommended that performance assessments are made using multiple data......PURPOSE: To investigate the correlation in performance of cataract surgery between a virtual-reality simulator and real-life surgery using two objective assessment tools with evidence of validity. METHODS: Cataract surgeons with varying levels of experience were included in the study. All...... antitremor training, forceps training, bimanual training, capsulorhexis and phaco divide and conquer. RESULTS: Eleven surgeons were enrolled. After a designated warm-up period, the proficiency-based test on the EyeSi simulator was strongly correlated to real-life performance measured by motion...

  2. Accuracy of computer-assisted orthognathic surgery.

    Science.gov (United States)

    De Riu, Giacomo; Virdis, Paola Ilaria; Meloni, Silvio Mario; Lumbau, Aurea; Vaira, Luigi Angelo

    2018-02-01

    The purpose of this study was to retrospectively evaluate the difference between the planned and the actual movements of the jaws, using three-dimensional (3D) software for PC-assisted orthognathic surgery, to establish the accuracy of the procedure. A retrospective study was performed with 49 patients who had undergone PC-guided bimaxillary surgery. The accuracy of the protocol was determined by comparing planned movements of the jaws with the actual surgical movements, analysing frontal and lateral cephalometries. The overall results were deemed accurate, and differences among 12 of the 15 parameters were considered nonsignificant. Significant differences were reported for SNA (p = 0.008), SNB (p = 0.006), and anterior facial height (p = 0.033). The latter was significantly different in patients who had undergone genioplasty when compared with patients who had not. Virtual surgical planning presented a good degree of accuracy for most of the parameters assessed, with an average error of 1.98 mm for linear measures and 1.19° for angular measures. In general, a tendency towards under-projection in jaws was detected, probably due to imperfect condylar seating. A slight overcorrection of SNA and SNB during virtual planning (approximately 2°) could be beneficial. Further progress is required in the development of 3D simulation of the soft tissue, which currently does not allow an accurate management of the facial height and the chin position. Virtual planning cannot replace the need for constant intraoperative monitoring of the jaws' movements and real-time comparisons between planned and actual outcomes. It is therefore appropriate to leave some margin for correction of inaccuracies in the virtual planning. In this sense, it may be appropriate to use only the intermediate splint, and then use the planned occlusion and clinical measurements to guide repositioning of the second jaw and chin, respectively. Copyright © 2017 European Association for Cranio

  3. Benefits of computer screen-based simulation in learning cardiac arrest procedures.

    Science.gov (United States)

    Bonnetain, Elodie; Boucheix, Jean-Michel; Hamet, Maël; Freysz, Marc

    2010-07-01

    What is the best way to train medical students early so that they acquire basic skills in cardiopulmonary resuscitation as effectively as possible? Studies have shown the benefits of high-fidelity patient simulators, but have also demonstrated their limits. New computer screen-based multimedia simulators have fewer constraints than high-fidelity patient simulators. In this area, as yet, there has been no research on the effectiveness of transfer of learning from a computer screen-based simulator to more realistic situations such as those encountered with high-fidelity patient simulators. We tested the benefits of learning cardiac arrest procedures using a multimedia computer screen-based simulator in 28 Year 2 medical students. Just before the end of the traditional resuscitation course, we compared two groups. An experiment group (EG) was first asked to learn to perform the appropriate procedures in a cardiac arrest scenario (CA1) in the computer screen-based learning environment and was then tested on a high-fidelity patient simulator in another cardiac arrest simulation (CA2). While the EG was learning to perform CA1 procedures in the computer screen-based learning environment, a control group (CG) actively continued to learn cardiac arrest procedures using practical exercises in a traditional class environment. Both groups were given the same amount of practice, exercises and trials. The CG was then also tested on the high-fidelity patient simulator for CA2, after which it was asked to perform CA1 using the computer screen-based simulator. Performances with both simulators were scored on a precise 23-point scale. On the test on a high-fidelity patient simulator, the EG trained with a multimedia computer screen-based simulator performed significantly better than the CG trained with traditional exercises and practice (16.21 versus 11.13 of 23 possible points, respectively; p<0.001). Computer screen-based simulation appears to be effective in preparing learners to

  4. Computer Simulation of Reading.

    Science.gov (United States)

    Leton, Donald A.

    In recent years, coding and decoding have been claimed to be the processes for converting one language form to another. But there has been little effort to locate these processes in the human learner or to identify the nature of the internal codes. Computer simulation of reading is useful because the similarities in the human reception and…

  5. Evaluation of Computer Simulations for Teaching Apparel Merchandising Concepts.

    Science.gov (United States)

    Jolly, Laura D.; Sisler, Grovalynn

    1988-01-01

    The study developed and evaluated computer simulations for teaching apparel merchandising concepts. Evaluation results indicated that teaching method (computer simulation versus case study) does not significantly affect cognitive learning. Student attitudes varied, however, according to topic (profitable merchandising analysis versus retailing…

  6. A Novel Haptic Interactive Approach to Simulation of Surgery Cutting Based on Mesh and Meshless Models

    Science.gov (United States)

    Liu, Peter X.; Lai, Pinhua; Xu, Shaoping; Zou, Yanni

    2018-01-01

    In the present work, the majority of implemented virtual surgery simulation systems have been based on either a mesh or meshless strategy with regard to soft tissue modelling. To take full advantage of the mesh and meshless models, a novel coupled soft tissue cutting model is proposed. Specifically, the reconstructed virtual soft tissue consists of two essential components. One is associated with surface mesh that is convenient for surface rendering and the other with internal meshless point elements that is used to calculate the force feedback during cutting. To combine two components in a seamless way, virtual points are introduced. During the simulation of cutting, the Bezier curve is used to characterize smooth and vivid incision on the surface mesh. At the same time, the deformation of internal soft tissue caused by cutting operation can be treated as displacements of the internal point elements. Furthermore, we discussed and proved the stability and convergence of the proposed approach theoretically. The real biomechanical tests verified the validity of the introduced model. And the simulation experiments show that the proposed approach offers high computational efficiency and good visual effect, enabling cutting of soft tissue with high stability. PMID:29850006

  7. Methodology of modeling and measuring computer architectures for plasma simulations

    Science.gov (United States)

    Wang, L. P. T.

    1977-01-01

    A brief introduction to plasma simulation using computers and the difficulties on currently available computers is given. Through the use of an analyzing and measuring methodology - SARA, the control flow and data flow of a particle simulation model REM2-1/2D are exemplified. After recursive refinements the total execution time may be greatly shortened and a fully parallel data flow can be obtained. From this data flow, a matched computer architecture or organization could be configured to achieve the computation bound of an application problem. A sequential type simulation model, an array/pipeline type simulation model, and a fully parallel simulation model of a code REM2-1/2D are proposed and analyzed. This methodology can be applied to other application problems which have implicitly parallel nature.

  8. Images created in a model eye during simulated cataract surgery can be the basis for images perceived by patients during cataract surgery

    Science.gov (United States)

    Inoue, M; Uchida, A; Shinoda, K; Taira, Y; Noda, T; Ohnuma, K; Bissen-Miyajima, H; Hirakata, A

    2014-01-01

    Purpose To evaluate the images created in a model eye during simulated cataract surgery. Patients and methods This study was conducted as a laboratory investigation and interventional case series. An artificial opaque lens, a clear intraocular lens (IOL), or an irrigation/aspiration (I/A) tip was inserted into the ‘anterior chamber' of a model eye with the frosted posterior surface corresponding to the retina. Video images were recorded of the posterior surface of the model eye from the rear during simulated cataract surgery. The video clips were shown to 20 patients before cataract surgery, and the similarity of their visual perceptions to these images was evaluated postoperatively. Results The images of the moving lens fragments and I/A tip and the insertion of the IOL were seen from the rear. The image through the opaque lens and the IOL without moving objects was the light of the surgical microscope from the rear. However, when the microscope light was turned off after IOL insertion, the images of the microscope and operating room were observed by the room illumination from the rear. Seventy percent of the patients answered that the visual perceptions of moving lens fragments were similar to the video clips and 55% reported similarity with the IOL insertion. Eighty percent of the patients recommended that patients watch the video clip before their scheduled cataract surgery. Conclusions The patients' visual perceptions during cataract surgery can be reproduced in the model eye. Watching the video images preoperatively may help relax the patients during surgery. PMID:24788007

  9. Computer Simulation of a Hardwood Processing Plant

    Science.gov (United States)

    D. Earl Kline; Philip A. Araman

    1990-01-01

    The overall purpose of this paper is to introduce computer simulation as a decision support tool that can be used to provide managers with timely information. A simulation/animation modeling procedure is demonstrated for wood products manufacuring systems. Simulation modeling techniques are used to assist in identifying and solving problems. Animation is used for...

  10. Internet-Based Digital Simulation for Cleft Surgery Education: A 5-Year Assessment of Demographics, Usage, and Global Effect.

    Science.gov (United States)

    Kantar, Rami S; Plana, Natalie M; Cutting, Court B; Diaz-Siso, Jesus Rodrigo; Flores, Roberto L

    2018-01-29

    In October 2012, a freely available, internet-based cleft simulator was created in partnership between academic, nonprofit, and industry sectors. The purpose of this educational resource was to address global disparities in cleft surgery education. This report assesses demographics, usage, and global effect of our simulator, in its fifth year since inception. Evaluate the global effect, usage, and demographics of an internet-based educational digital simulation cleft surgery software. Simulator modules, available in five languages demonstrate surgical anatomy, markings, detailed procedures, and intraoperative footage to supplement digital animation. Available data regarding number of users, sessions, countries reached, and content access were recorded. Surveys evaluating the demographic characteristics of registered users and simulator use were collected by direct e-mail. The total number of simulator new and active users reached 2865 and 4086 in June 2017, respectively. By June 2017, users from 136 countries had accessed the simulator. From 2015 to 2017, the number of sessions was 11,176 with a monthly average of 399.0 ± 190.0. Developing countries accounted for 35% of sessions and the average session duration was 9.0 ± 7.3 minutes. This yields a total simulator screen time of 100,584 minutes (1676 hours). Most survey respondents were surgeons or trainees (87%) specializing in plastic, maxillofacial, or general surgery (89%). Most users found the simulator to be useful (88%), at least equivalent or more useful than other resources (83%), and used it for teaching (58%). Our internet-based interactive cleft surgery platform reaches its intended target audience, is not restricted by socioeconomic barriers to access, and is judged to be useful by surgeons. More than 4000 active users have been reached since inception. The total screen time over approximately 2 years exceeded 1600 hours. This suggests that future surgical simulators of this kind may be sustainable by

  11. Interferences and events on epistemic shifts in physics through computer simulations

    CERN Document Server

    Warnke, Martin

    2017-01-01

    Computer simulations are omnipresent media in today's knowledge production. For scientific endeavors such as the detection of gravitational waves and the exploration of subatomic worlds, simulations are essential; however, the epistemic status of computer simulations is rather controversial as they are neither just theory nor just experiment. Therefore, computer simulations have challenged well-established insights and common scientific practices as well as our very understanding of knowledge. This volume contributes to the ongoing discussion on the epistemic position of computer simulations in a variety of physical disciplines, such as quantum optics, quantum mechanics, and computational physics. Originating from an interdisciplinary event, it shows that accounts of contemporary physics can constructively interfere with media theory, philosophy, and the history of science.

  12. Acute mediastinitis: multidetector computed tomography findings following cardiac surgery

    International Nuclear Information System (INIS)

    Macedo, Clarissa Aguiar de; Baena, Marcos Eduardo da Silva; Uezumi, Kiyomi Kato; Castro, Claudio Campi de; Lucarelli, Claudio Luiz; Cerri, Giovanni Guido

    2008-01-01

    Postoperative mediastinitis is defined as an infection of the organs and tissues in the mediastinal space, with an incidence ranging between 0.4% and 5% of cases. This disease severity varies from infection of superficial tissues in the chest wall to fulminant mediastinitis with sternal involvement. Diagnostic criterion for postoperative detection of acute mediastinitis at computed tomography is the presence of fluid collections and gas in the mediastinal space, which might or might not be associated with peristernal abnormalities such as edema of soft tissues, separation of sternal segments with marginal bone resorption, sclerosis and osteomyelitis. Other associated findings include lymphadenomegaly, pulmonary consolidation and pleural/ pericardial effusion. Some of these findings, such as mediastinal gas and small fluid collections can be typically found in the absence of infection, early in the period following thoracic surgery where the effectiveness of computed tomography is limited. After approximately two weeks, computed tomography achieves almost 100% sensitivity and specificity. Patients with clinical suspicion of mediastinitis should be submitted to computed tomography for investigating the presence of fluid collections to identify the extent and nature of the disease. Multidetector computed tomography allows 3D images reconstruction, contributing particularly to the evaluation of the sternum. (author)

  13. Acute mediastinitis: multidetector computed tomography findings following cardiac surgery

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, Clarissa Aguiar de [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Medicina. Instituto do Coracao (InCor)]. E-mail: clarissaaguiarm@yahoo.com.br; Baena, Marcos Eduardo da Silva [Instituto do Coracao (InCor), Sao Paulo, SP (Brazil). Unit of Ultrasonography; Uezumi, Kiyomi Kato [Instituto do Coracao (InCor), Sao Paulo, SP (Brazil). Unit of Computed Tomography; Castro, Claudio Campi de [Instituto do Coracao (InCor), Sao Paulo, SP (Brazil). Unit of Magnetic Resonance Imaging; Lucarelli, Claudio Luiz [Instituto do Coracao (InCor), Sao Paulo, SP (Brazil). Center of Diagnosis; Cerri, Giovanni Guido [Universidade de Sao Paulo (USP), SP (Brazil). School of Medicine. Dept. of Radiology

    2008-07-15

    Postoperative mediastinitis is defined as an infection of the organs and tissues in the mediastinal space, with an incidence ranging between 0.4% and 5% of cases. This disease severity varies from infection of superficial tissues in the chest wall to fulminant mediastinitis with sternal involvement. Diagnostic criterion for postoperative detection of acute mediastinitis at computed tomography is the presence of fluid collections and gas in the mediastinal space, which might or might not be associated with peristernal abnormalities such as edema of soft tissues, separation of sternal segments with marginal bone resorption, sclerosis and osteomyelitis. Other associated findings include lymphadenomegaly, pulmonary consolidation and pleural/ pericardial effusion. Some of these findings, such as mediastinal gas and small fluid collections can be typically found in the absence of infection, early in the period following thoracic surgery where the effectiveness of computed tomography is limited. After approximately two weeks, computed tomography achieves almost 100% sensitivity and specificity. Patients with clinical suspicion of mediastinitis should be submitted to computed tomography for investigating the presence of fluid collections to identify the extent and nature of the disease. Multidetector computed tomography allows 3D images reconstruction, contributing particularly to the evaluation of the sternum. (author)

  14. Radiologic anatomy of the paranasal sinuses in computed tomography for the need of the endoscopic surgery

    International Nuclear Information System (INIS)

    Boguslawska-Staniaszczyk, R.; Krzeski, A.; Mastalerski, J.

    1994-01-01

    Computed tomography is the most useful method in the endoscopic surgery of the nose and paranasal sinuses. CT examination is necessary for planing and the extent of the surgery. In this publication the method of CT examination and radiological anatomy of the nose and paranasal sinuses is described. (author)

  15. Computed radiography simulation using the Monte Carlo code MCNPX

    International Nuclear Information System (INIS)

    Correa, S.C.A.; Souza, E.M.; Silva, A.X.; Lopes, R.T.

    2009-01-01

    Simulating x-ray images has been of great interest in recent years as it makes possible an analysis of how x-ray images are affected owing to relevant operating parameters. In this paper, a procedure for simulating computed radiographic images using the Monte Carlo code MCNPX is proposed. The sensitivity curve of the BaFBr image plate detector as well as the characteristic noise of a 16-bit computed radiography system were considered during the methodology's development. The results obtained confirm that the proposed procedure for simulating computed radiographic images is satisfactory, as it allows obtaining results comparable with experimental data. (author)

  16. Computed radiography simulation using the Monte Carlo code MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Correa, S.C.A. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Centro Universitario Estadual da Zona Oeste (CCMAT)/UEZO, Av. Manuel Caldeira de Alvarenga, 1203, Campo Grande, 23070-200, Rio de Janeiro, RJ (Brazil); Souza, E.M. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Silva, A.X., E-mail: ademir@con.ufrj.b [PEN/COPPE-DNC/Poli CT, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Cassiano, D.H. [Instituto de Radioprotecao e Dosimetria/CNEN Av. Salvador Allende, s/n, Recreio, 22780-160, Rio de Janeiro, RJ (Brazil); Lopes, R.T. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil)

    2010-09-15

    Simulating X-ray images has been of great interest in recent years as it makes possible an analysis of how X-ray images are affected owing to relevant operating parameters. In this paper, a procedure for simulating computed radiographic images using the Monte Carlo code MCNPX is proposed. The sensitivity curve of the BaFBr image plate detector as well as the characteristic noise of a 16-bit computed radiography system were considered during the methodology's development. The results obtained confirm that the proposed procedure for simulating computed radiographic images is satisfactory, as it allows obtaining results comparable with experimental data.

  17. Proceedings of the meeting on large scale computer simulation research

    International Nuclear Information System (INIS)

    2004-04-01

    The meeting to summarize the collaboration activities for FY2003 on the Large Scale Computer Simulation Research was held January 15-16, 2004 at Theory and Computer Simulation Research Center, National Institute for Fusion Science. Recent simulation results, methodologies and other related topics were presented. (author)

  18. Computational simulation in architectural and environmental acoustics methods and applications of wave-based computation

    CERN Document Server

    Sakamoto, Shinichi; Otsuru, Toru

    2014-01-01

    This book reviews a variety of methods for wave-based acoustic simulation and recent applications to architectural and environmental acoustic problems. Following an introduction providing an overview of computational simulation of sound environment, the book is in two parts: four chapters on methods and four chapters on applications. The first part explains the fundamentals and advanced techniques for three popular methods, namely, the finite-difference time-domain method, the finite element method, and the boundary element method, as well as alternative time-domain methods. The second part demonstrates various applications to room acoustics simulation, noise propagation simulation, acoustic property simulation for building components, and auralization. This book is a valuable reference that covers the state of the art in computational simulation for architectural and environmental acoustics.  

  19. Syringohydromyelia following meningomyelocele surgery - role of metrizamide myelography and computed tomography

    International Nuclear Information System (INIS)

    Stanley, P.; Senac, M.O. Jr.; Segall, H.D.; Park, T.S.

    1984-01-01

    Five children developed symptoms attributable to syringohydromyelia several years following neonatal surgery for lumbosacral meningomyelocele. Metrizamide injection followed by computed tomography (CT) was performed in all five patients. In two patients, there was direct opacification of both the subarachnoid space and the syringohydromyelia. In a further two patients, delayed CT demonstrated late opacification of the central cavity from contrast introduced into the subarachnoid space. In the fifth patient via a suboccipital puncture, there was fortuitous filling of a caudally displaced fourth ventricle communicating with a central cavity within the cord, but there was no visualization of the subarachnoid space. Surgery with decompression and plugging of the obex halted the progression of the disease in all the patients. (orig.)

  20. A computer code to simulate X-ray imaging techniques

    International Nuclear Information System (INIS)

    Duvauchelle, Philippe; Freud, Nicolas; Kaftandjian, Valerie; Babot, Daniel

    2000-01-01

    A computer code was developed to simulate the operation of radiographic, radioscopic or tomographic devices. The simulation is based on ray-tracing techniques and on the X-ray attenuation law. The use of computer-aided drawing (CAD) models enables simulations to be carried out with complex three-dimensional (3D) objects and the geometry of every component of the imaging chain, from the source to the detector, can be defined. Geometric unsharpness, for example, can be easily taken into account, even in complex configurations. Automatic translations or rotations of the object can be performed to simulate radioscopic or tomographic image acquisition. Simulations can be carried out with monochromatic or polychromatic beam spectra. This feature enables, for example, the beam hardening phenomenon to be dealt with or dual energy imaging techniques to be studied. The simulation principle is completely deterministic and consequently the computed images present no photon noise. Nevertheless, the variance of the signal associated with each pixel of the detector can be determined, which enables contrast-to-noise ratio (CNR) maps to be computed, in order to predict quantitatively the detectability of defects in the inspected object. The CNR is a relevant indicator for optimizing the experimental parameters. This paper provides several examples of simulated images that illustrate some of the rich possibilities offered by our software. Depending on the simulation type, the computation time order of magnitude can vary from 0.1 s (simple radiographic projection) up to several hours (3D tomography) on a PC, with a 400 MHz microprocessor. Our simulation tool proves to be useful in developing new specific applications, in choosing the most suitable components when designing a new testing chain, and in saving time by reducing the number of experimental tests

  1. A computer code to simulate X-ray imaging techniques

    Energy Technology Data Exchange (ETDEWEB)

    Duvauchelle, Philippe E-mail: philippe.duvauchelle@insa-lyon.fr; Freud, Nicolas; Kaftandjian, Valerie; Babot, Daniel

    2000-09-01

    A computer code was developed to simulate the operation of radiographic, radioscopic or tomographic devices. The simulation is based on ray-tracing techniques and on the X-ray attenuation law. The use of computer-aided drawing (CAD) models enables simulations to be carried out with complex three-dimensional (3D) objects and the geometry of every component of the imaging chain, from the source to the detector, can be defined. Geometric unsharpness, for example, can be easily taken into account, even in complex configurations. Automatic translations or rotations of the object can be performed to simulate radioscopic or tomographic image acquisition. Simulations can be carried out with monochromatic or polychromatic beam spectra. This feature enables, for example, the beam hardening phenomenon to be dealt with or dual energy imaging techniques to be studied. The simulation principle is completely deterministic and consequently the computed images present no photon noise. Nevertheless, the variance of the signal associated with each pixel of the detector can be determined, which enables contrast-to-noise ratio (CNR) maps to be computed, in order to predict quantitatively the detectability of defects in the inspected object. The CNR is a relevant indicator for optimizing the experimental parameters. This paper provides several examples of simulated images that illustrate some of the rich possibilities offered by our software. Depending on the simulation type, the computation time order of magnitude can vary from 0.1 s (simple radiographic projection) up to several hours (3D tomography) on a PC, with a 400 MHz microprocessor. Our simulation tool proves to be useful in developing new specific applications, in choosing the most suitable components when designing a new testing chain, and in saving time by reducing the number of experimental tests.

  2. Inovation of the computer system for the WWER-440 simulator

    International Nuclear Information System (INIS)

    Schrumpf, L.

    1988-01-01

    The configuration of the WWER-440 simulator computer system consists of four SMEP computers. The basic data processing unit consists of two interlinked SM 52/11.M1 computers with 1 MB of main memory. This part of the computer system of the simulator controls the operation of the entire simulator, processes the programs of technology behavior simulation, of the unit information system and of other special systems, guarantees program support and the operation of the instructor's console. An SM 52/11 computer with 256 kB of main memory is connected to each unit. It is used as a communication unit for data transmission using the DASIO 600 interface. Semigraphic color displays are based on the microprocessor modules of the SM 50/40 and SM 53/10 kit supplemented with a modified TESLA COLOR 110 ST tv receiver. (J.B.). 1 fig

  3. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 3. Computer Based Modelling and Simulation - Modelling Deterministic Systems. N K Srinivasan. General Article Volume 6 Issue 3 March 2001 pp 46-54. Fulltext. Click here to view fulltext PDF. Permanent link:

  4. Towards open-source, low-cost haptics for surgery simulation.

    Science.gov (United States)

    Suwelack, Stefan; Sander, Christian; Schill, Julian; Serf, Manuel; Danz, Marcel; Asfour, Tamim; Burger, Wolfgang; Dillmann, Rüdiger; Speidel, Stefanie

    2014-01-01

    In minimally invasive surgery (MIS), virtual reality (VR) training systems have become a promising education tool. However, the adoption of these systems in research and clinical settings is still limited by the high costs of dedicated haptics hardware for MIS. In this paper, we present ongoing research towards an open-source, low-cost haptic interface for MIS simulation. We demonstrate the basic mechanical design of the device, the sensor setup as well as its software integration.

  5. Computer Simulation (Microcultures): An Effective Model for Multicultural Education.

    Science.gov (United States)

    Nelson, Jorge O.

    This paper presents a rationale for using high-fidelity computer simulation in planning for and implementing effective multicultural education strategies. Using computer simulation, educators can begin to understand and plan for the concept of cultural sensitivity in delivering instruction. The model promises to emphasize teachers' understanding…

  6. 3D Surgical Simulation

    Science.gov (United States)

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  7. Computer simulation in cell radiobiology

    International Nuclear Information System (INIS)

    Yakovlev, A.Y.; Zorin, A.V.

    1988-01-01

    This research monograph demonstrates the possible ways of using stochastic simulation for exploring cell kinetics, emphasizing the effects of cell radiobiology. In vitro kinetics of normal and irradiated cells is the main subject, but some approaches to the simulation of controlled cell systems are considered as well: the epithelium of the small intestine in mice taken as a case in point. Of particular interest is the evaluation of simulation modelling as a tool for gaining insight into biological processes and hence the new inferences from concrete experimental data, concerning regularities in cell population response to irradiation. The book is intended to stimulate interest among computer science specialists in developing new, more efficient means for the simulation of cell systems and to help radiobiologists in interpreting the experimental data

  8. Tutorial: Parallel Computing of Simulation Models for Risk Analysis.

    Science.gov (United States)

    Reilly, Allison C; Staid, Andrea; Gao, Michael; Guikema, Seth D

    2016-10-01

    Simulation models are widely used in risk analysis to study the effects of uncertainties on outcomes of interest in complex problems. Often, these models are computationally complex and time consuming to run. This latter point may be at odds with time-sensitive evaluations or may limit the number of parameters that are considered. In this article, we give an introductory tutorial focused on parallelizing simulation code to better leverage modern computing hardware, enabling risk analysts to better utilize simulation-based methods for quantifying uncertainty in practice. This article is aimed primarily at risk analysts who use simulation methods but do not yet utilize parallelization to decrease the computational burden of these models. The discussion is focused on conceptual aspects of embarrassingly parallel computer code and software considerations. Two complementary examples are shown using the languages MATLAB and R. A brief discussion of hardware considerations is located in the Appendix. © 2016 Society for Risk Analysis.

  9. Computer simulation of human motion in sports biomechanics.

    Science.gov (United States)

    Vaughan, C L

    1984-01-01

    This chapter has covered some important aspects of the computer simulation of human motion in sports biomechanics. First the definition and the advantages and limitations of computer simulation were discussed; second, research on various sporting activities were reviewed. These activities included basic movements, aquatic sports, track and field athletics, winter sports, gymnastics, and striking sports. This list was not exhaustive and certain material has, of necessity, been omitted. However, it was felt that a sufficiently broad and interesting range of activities was chosen to illustrate both the advantages and the pitfalls of simulation. It is almost a decade since Miller [53] wrote a review chapter similar to this one. One might be tempted to say that things have changed radically since then--that computer simulation is now a widely accepted and readily applied research tool in sports biomechanics. This is simply not true, however. Biomechanics researchers still tend to emphasize the descriptive type of study, often unfortunately, when a little theoretical explanation would have been more helpful [29]. What will the next decade bring? Of one thing we can be certain: The power of computers, particularly the readily accessible and portable microcomputer, will expand beyond all recognition. The memory and storage capacities will increase dramatically on the hardware side, and on the software side the trend will be toward "user-friendliness." It is likely that a number of software simulation packages designed specifically for studying human motion [31, 96] will be extensively tested and could gain wide acceptance in the biomechanics research community. Nevertheless, a familiarity with Newtonian and Lagrangian mechanics, optimization theory, and computers in general, as well as practical biomechanical insight, will still be a prerequisite for successful simulation models of human motion. Above all, the biomechanics researcher will still have to bear in mind that

  10. Simulation of biological ion channels with technology computer-aided design.

    Science.gov (United States)

    Pandey, Santosh; Bortei-Doku, Akwete; White, Marvin H

    2007-01-01

    Computer simulations of realistic ion channel structures have always been challenging and a subject of rigorous study. Simulations based on continuum electrostatics have proven to be computationally cheap and reasonably accurate in predicting a channel's behavior. In this paper we discuss the use of a device simulator, SILVACO, to build a solid-state model for KcsA channel and study its steady-state response. SILVACO is a well-established program, typically used by electrical engineers to simulate the process flow and electrical characteristics of solid-state devices. By employing this simulation program, we have presented an alternative computing platform for performing ion channel simulations, besides the known methods of writing codes in programming languages. With the ease of varying the different parameters in the channel's vestibule and the ability of incorporating surface charges, we have shown the wide-ranging possibilities of using a device simulator for ion channel simulations. Our simulated results closely agree with the experimental data, validating our model.

  11. Computational algorithms for simulations in atmospheric optics.

    Science.gov (United States)

    Konyaev, P A; Lukin, V P

    2016-04-20

    A computer simulation technique for atmospheric and adaptive optics based on parallel programing is discussed. A parallel propagation algorithm is designed and a modified spectral-phase method for computer generation of 2D time-variant random fields is developed. Temporal power spectra of Laguerre-Gaussian beam fluctuations are considered as an example to illustrate the applications discussed. Implementation of the proposed algorithms using Intel MKL and IPP libraries and NVIDIA CUDA technology is shown to be very fast and accurate. The hardware system for the computer simulation is an off-the-shelf desktop with an Intel Core i7-4790K CPU operating at a turbo-speed frequency up to 5 GHz and an NVIDIA GeForce GTX-960 graphics accelerator with 1024 1.5 GHz processors.

  12. SiMon: Simulation Monitor for Computational Astrophysics

    Science.gov (United States)

    Xuran Qian, Penny; Cai, Maxwell Xu; Portegies Zwart, Simon; Zhu, Ming

    2017-09-01

    Scientific discovery via numerical simulations is important in modern astrophysics. This relatively new branch of astrophysics has become possible due to the development of reliable numerical algorithms and the high performance of modern computing technologies. These enable the analysis of large collections of observational data and the acquisition of new data via simulations at unprecedented accuracy and resolution. Ideally, simulations run until they reach some pre-determined termination condition, but often other factors cause extensive numerical approaches to break down at an earlier stage. In those cases, processes tend to be interrupted due to unexpected events in the software or the hardware. In those cases, the scientist handles the interrupt manually, which is time-consuming and prone to errors. We present the Simulation Monitor (SiMon) to automatize the farming of large and extensive simulation processes. Our method is light-weight, it fully automates the entire workflow management, operates concurrently across multiple platforms and can be installed in user space. Inspired by the process of crop farming, we perceive each simulation as a crop in the field and running simulation becomes analogous to growing crops. With the development of SiMon we relax the technical aspects of simulation management. The initial package was developed for extensive parameter searchers in numerical simulations, but it turns out to work equally well for automating the computational processing and reduction of observational data reduction.

  13. 3D printing in orthognathic surgery − A literature review

    Directory of Open Access Journals (Sweden)

    Hsiu-Hsia Lin

    2018-07-01

    Full Text Available With the recent advances in three-dimensional (3D imaging, computer-assisted surgical planning and simulation are now regularly used for analysis of craniofacial structures and improved prediction of surgical outcomes in orthognathic surgery. A variety of patient-specific surgical guides and devices have been designed and manufactured using 3D printing technology, which rapidly gained widespread popularity to improve the outcomes. The article presents an overview of 3D printing technology for state-of-the-art application in orthognathic surgery and discusses the impacts on treatment feasibility and patient outcome. The current available literature regarding the use of 3D printing methods in orthognathic surgery including 3D computer-aided design/computer-aided manufacturing, rapid prototyping, additive manufacturing, 3D printing, 3D printed models, surgical occlusal splints, custom-made guides, templates and fixation plates is reviewed. A Medline, PubMed, ProQuest and ScienceDirect search was performed to find relevant articles over the past 10 years. A total of 318 articles were found, out of which 69 were publications addressing the topic of this study. An additional 9 hand-searched articles were added. From the review, we can conclude that the use of 3D printing methods in orthognathic surgery provide the benefit of optimal functional and aesthetic results, patient satisfaction, and precise translation of the treatment plan. Keywords: Orthognathic surgery, 3D printing, Computer-aided design, Computer-aided manufacturing, Rapid prototyping, Additive manufacturing

  14. Residents' response to bleeding during a simulated robotic surgery task.

    Science.gov (United States)

    Walker, Jessica L; Nathwani, Jay N; Mohamadipanah, Hossein; Laufer, Shlomi; Jocewicz, Frank F; Gwillim, Eran; Pugh, Carla M

    2017-12-01

    The aim of this study was to assess performance measurement validity of our newly developed robotic surgery task trainer. We hypothesized that residents would exhibit wide variations in their intercohort performance as well as a measurable difference compared to surgeons in fellowship training. Our laboratory synthesized a model of a pelvic tumor that simulates unexpected bleeding. Surgical residents and fellows of varying specialties completed a demographic survey and were allowed 20 minutes to resect the tumor using the da Vinci robot and achieve hemostasis. At a standardized event in the simulation, venous bleeding began, and participants attempted hemostasis using suture ligation. A motion tracking system, using electromagnetic sensors, recorded participants' hand movements. A postparticipation Likert scale survey evaluated participants' assessment of the model's realism and usefulness. Three of the seven residents (postgraduate year 2-5), and the fellow successfully resected the tumor in the allotted time. Residents showed high variability in performance and blood loss (125-700 mL) both within their cohort and compared to the fellow (150 mL blood). All participants rated the model as having high realism and utility for trainees. The results support that our bleeding pelvic tumor simulator has the ability to discriminate resident performance in robotic surgery. The combination of motion, decision-making, and blood loss metrics offers a multilevel performance assessment, analyzing both technical and decision-making abilities. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Seventh Medical Image Computing and Computer Assisted Intervention Conference (MICCAI 2012)

    CERN Document Server

    Miller, Karol; Nielsen, Poul; Computational Biomechanics for Medicine : Models, Algorithms and Implementation

    2013-01-01

    One of the greatest challenges for mechanical engineers is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, biomedical sciences, and medicine. This book is an opportunity for computational biomechanics specialists to present and exchange opinions on the opportunities of applying their techniques to computer-integrated medicine. Computational Biomechanics for Medicine: Models, Algorithms and Implementation collects the papers from the Seventh Computational Biomechanics for Medicine Workshop held in Nice in conjunction with the Medical Image Computing and Computer Assisted Intervention conference. The topics covered include: medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, injury mechanism analysis, implant and prostheses design, and medical robotics.

  16. Computer Simulation of Diffraction Patterns.

    Science.gov (United States)

    Dodd, N. A.

    1983-01-01

    Describes an Apple computer program (listing available from author) which simulates Fraunhofer and Fresnel diffraction using vector addition techniques (vector chaining) and allows user to experiment with different shaped multiple apertures. Graphics output include vector resultants, phase difference, diffraction patterns, and the Cornu spiral…

  17. A computational fluid dynamics simulation framework for ventricular catheter design optimization.

    Science.gov (United States)

    Weisenberg, Sofy H; TerMaath, Stephanie C; Barbier, Charlotte N; Hill, Judith C; Killeffer, James A

    2017-11-10

    OBJECTIVE Cerebrospinal fluid (CSF) shunts are the primary treatment for patients suffering from hydrocephalus. While proven effective in symptom relief, these shunt systems are plagued by high failure rates and often require repeated revision surgeries to replace malfunctioning components. One of the leading causes of CSF shunt failure is obstruction of the ventricular catheter by aggregations of cells, proteins, blood clots, or fronds of choroid plexus that occlude the catheter's small inlet holes or even the full internal catheter lumen. Such obstructions can disrupt CSF diversion out of the ventricular system or impede it entirely. Previous studies have suggested that altering the catheter's fluid dynamics may help to reduce the likelihood of complete ventricular catheter failure caused by obstruction. However, systematic correlation between a ventricular catheter's design parameters and its performance, specifically its likelihood to become occluded, still remains unknown. Therefore, an automated, open-source computational fluid dynamics (CFD) simulation framework was developed for use in the medical community to determine optimized ventricular catheter designs and to rapidly explore parameter influence for a given flow objective. METHODS The computational framework was developed by coupling a 3D CFD solver and an iterative optimization algorithm and was implemented in a high-performance computing environment. The capabilities of the framework were demonstrated by computing an optimized ventricular catheter design that provides uniform flow rates through the catheter's inlet holes, a common design objective in the literature. The baseline computational model was validated using 3D nuclear imaging to provide flow velocities at the inlet holes and through the catheter. RESULTS The optimized catheter design achieved through use of the automated simulation framework improved significantly on previous attempts to reach a uniform inlet flow rate distribution using

  18. What is going on in augmented reality simulation in laparoscopic surgery?

    Science.gov (United States)

    Botden, Sanne M B I; Jakimowicz, Jack J

    2009-08-01

    To prevent unnecessary errors and adverse results of laparoscopic surgery, proper training is of paramount importance. A safe way to train surgeons for laparoscopic skills is simulation. For this purpose traditional box trainers are often used, however they lack objective assessment of performance. Virtual reality laparoscopic simulators assess performance, but lack realistic haptic feedback. Augmented reality (AR) combines a virtual reality (VR) setting with real physical materials, instruments, and feedback. This article presents the current developments in augmented reality laparoscopic simulation. Pubmed searches were performed to identify articles regarding surgical simulation and augmented reality. Identified companies manufacturing an AR laparoscopic simulator received the same questionnaire referring to the features of the simulator. Seven simulators that fitted the definition of augmented reality were identified during the literature search. Five of the approached manufacturers returned a completed questionnaire, of which one simulator appeared to be VR and was therefore not applicable for this review. Several augmented reality simulators have been developed over the past few years and they are improving rapidly. We recommend the development of AR laparoscopic simulators for component tasks of procedural training. AR simulators should be implemented in current laparoscopic training curricula, in particular for laparoscopic suturing training.

  19. The rationale for combining an online audiovisual curriculum with simulation to better educate general surgery trainees.

    Science.gov (United States)

    AlJamal, Yazan N; Ali, Shahzad M; Ruparel, Raaj K; Brahmbhatt, Rushin D; Yadav, Siddhant; Farley, David R

    2014-09-01

    Surgery interns' training has historically been weighted toward patient care, operative observation, and sleeping when possible. With more protected free time and less clinical time, real educational hours for trainees in 2013 are precious. We created a 20-session (3 hours each) simulation curriculum (with pre- and post-tests) and a 24/7 online audiovisual (AV) curriculum for surgery interns. Friday morning simulation sessions emphasize operative skills and judgment. AV clips (using operating room, whiteboard, and simulation center videos) take learners through 20 different general surgery operations with follow-up quizzes. We report our early experience with this novel setup. Thirty-two surgical interns (2012-2013) attended simulation sessions on 20 separate subjects (hernia, breast, hepatobiliary, endocrine, etc). Post-test scores improved (P 4.5; Likert scale, 1-5). The AV curriculum feedback is similar (mean, >4.3) and usage is available 24/7 preparing learners for both operating room and simulation sessions. Most simulation sessions utilize low-fidelity models to keep costs <$50 per session. Scores on our semiannual Surgical Olympics (mean score of 49.6 in July vs 82.9 in January; P < .05) improved significantly, suggesting that interns are improving their surgical skills and knowledge. Residents enjoy and learn from the step-by-step, in-house, AV curriculum and both appreciate and thrive on the 'hands-on' simulation sessions mimicking operations they see in real operating rooms. The cost of these programs is not prohibitive and the programs offer simulated repetitions for duty-hour-regulated trainees. Copyright © 2014 Mosby, Inc. All rights reserved.

  20. Video-based peer feedback through social networking for robotic surgery simulation: a multicenter randomized controlled trial.

    Science.gov (United States)

    Carter, Stacey C; Chiang, Alexander; Shah, Galaxy; Kwan, Lorna; Montgomery, Jeffrey S; Karam, Amer; Tarnay, Christopher; Guru, Khurshid A; Hu, Jim C

    2015-05-01

    To examine the feasibility and outcomes of video-based peer feedback through social networking to facilitate robotic surgical skill acquisition. The acquisition of surgical skills may be challenging for novel techniques and/or those with prolonged learning curves. Randomized controlled trial involving 41 resident physicians performing the Tubes (Da Vinci Intuitive Surgical, Sunnyvale, CA) simulator exercise with versus without peer feedback of video-recorded performance through a social networking Web page. Data collected included simulator exercise score, time to completion, and comfort and satisfaction with robotic surgery simulation. There were no baseline differences between the intervention group (n = 20) and controls (n = 21). The intervention group showed improvement in mean scores from session 1 to sessions 2 and 3 (60.7 vs 75.5, P feedback subjects were more comfortable with robotic surgery than controls (90% vs 62%, P = 0.021) and expressed greater satisfaction with the learning experience (100% vs 67%, P = 0.014). Of the intervention subjects, 85% found that peer feedback was useful and 100% found it effective. Video-based peer feedback through social networking appears to be an effective paradigm for surgical education and accelerates the robotic surgery learning curve during simulation.

  1. [Animal experimentation, computer simulation and surgical research].

    Science.gov (United States)

    Carpentier, Alain

    2009-11-01

    We live in a digital world In medicine, computers are providing new tools for data collection, imaging, and treatment. During research and development of complex technologies and devices such as artificial hearts, computer simulation can provide more reliable information than experimentation on large animals. In these specific settings, animal experimentation should serve more to validate computer models of complex devices than to demonstrate their reliability.

  2. CPU SIM: A Computer Simulator for Use in an Introductory Computer Organization-Architecture Class.

    Science.gov (United States)

    Skrein, Dale

    1994-01-01

    CPU SIM, an interactive low-level computer simulation package that runs on the Macintosh computer, is described. The program is designed for instructional use in the first or second year of undergraduate computer science, to teach various features of typical computer organization through hands-on exercises. (MSE)

  3. A Computational Framework for Efficient Low Temperature Plasma Simulations

    Science.gov (United States)

    Verma, Abhishek Kumar; Venkattraman, Ayyaswamy

    2016-10-01

    Over the past years, scientific computing has emerged as an essential tool for the investigation and prediction of low temperature plasmas (LTP) applications which includes electronics, nanomaterial synthesis, metamaterials etc. To further explore the LTP behavior with greater fidelity, we present a computational toolbox developed to perform LTP simulations. This framework will allow us to enhance our understanding of multiscale plasma phenomenon using high performance computing tools mainly based on OpenFOAM FVM distribution. Although aimed at microplasma simulations, the modular framework is able to perform multiscale, multiphysics simulations of physical systems comprises of LTP. Some salient introductory features are capability to perform parallel, 3D simulations of LTP applications on unstructured meshes. Performance of the solver is tested based on numerical results assessing accuracy and efficiency of benchmarks for problems in microdischarge devices. Numerical simulation of microplasma reactor at atmospheric pressure with hemispherical dielectric coated electrodes will be discussed and hence, provide an overview of applicability and future scope of this framework.

  4. Use of computer graphics simulation for teaching of flexible sigmoidoscopy.

    Science.gov (United States)

    Baillie, J; Jowell, P; Evangelou, H; Bickel, W; Cotton, P

    1991-05-01

    The concept of simulation training in endoscopy is now well-established. The systems currently under development employ either computer graphics simulation or interactive video technology; each has its strengths and weaknesses. A flexible sigmoidoscopy training device has been designed which uses graphic routines--such as object oriented programming and double buffering--in entirely new ways. These programming techniques compensate for the limitations of currently available desk-top microcomputers. By boosting existing computer 'horsepower' with next generation coprocessors and sophisticated graphics tools such as intensity interpolation (Gouraud shading), the realism of computer simulation of flexible sigmoidoscopy is being greatly enhanced. The computer program has teaching and scoring capabilities, making it a truly interactive system. Use has been made of this ability to record, grade and store each trainee encounter in computer memory as part of a multi-center, prospective trial of simulation training being conducted currently in the USA. A new input device, a dummy endoscope, has been designed that allows application of variable resistance to the insertion tube. This greatly enhances tactile feedback, such as resistance during looping. If carefully designed trials show that computer simulation is an attractive and effective training tool, it is expected that this technology will evolve rapidly and be made widely available to trainee endoscopists.

  5. Effect of computer game playing on baseline laparoscopic simulator skills.

    Science.gov (United States)

    Halvorsen, Fredrik H; Cvancarova, Milada; Fosse, Erik; Mjåland, Odd

    2013-08-01

    Studies examining the possible association between computer game playing and laparoscopic performance in general have yielded conflicting results and neither has a relationship between computer game playing and baseline performance on laparoscopic simulators been established. The aim of this study was to examine the possible association between previous and present computer game playing and baseline performance on a virtual reality laparoscopic performance in a sample of potential future medical students. The participating students completed a questionnaire covering the weekly amount and type of computer game playing activity during the previous year and 3 years ago. They then performed 2 repetitions of 2 tasks ("gallbladder dissection" and "traverse tube") on a virtual reality laparoscopic simulator. Performance on the simulator were then analyzed for association to their computer game experience. Local high school, Norway. Forty-eight students from 2 high school classes volunteered to participate in the study. No association between prior and present computer game playing and baseline performance was found. The results were similar both for prior and present action game playing and prior and present computer game playing in general. Our results indicate that prior and present computer game playing may not affect baseline performance in a virtual reality simulator.

  6. Innovations in surgery simulation: a review of past, current and future techniques.

    Science.gov (United States)

    Badash, Ido; Burtt, Karen; Solorzano, Carlos A; Carey, Joseph N

    2016-12-01

    As a result of recent work-hours limitations and concerns for patient safety, innovations in extraclinical surgical simulation have become a desired part of residency education. Current simulation models, including cadaveric, animal, bench-top, virtual reality (VR) and robotic simulators are increasingly used in surgical training programs. Advances in telesurgery, three-dimensional (3D) printing, and the incorporation of patient-specific anatomy are paving the way for simulators to become integral components of medical training in the future. Evidence from the literature highlights the benefits of including simulations in surgical training; skills acquired through simulations translate into improvements in operating room performance. Moreover, simulations are rapidly incorporating new medical technologies and offer increasingly high-fidelity recreations of procedures. As a result, both novice and expert surgeons are able to benefit from their use. As dedicated, structured curricula are developed that incorporate simulations into daily resident training, simulated surgeries will strengthen the surgeon's skill set, decrease hospital costs, and improve patient outcomes.

  7. Noise simulation in cone beam CT imaging with parallel computing

    International Nuclear Information System (INIS)

    Tu, S.-J.; Shaw, Chris C; Chen, Lingyun

    2006-01-01

    We developed a computer noise simulation model for cone beam computed tomography imaging using a general purpose PC cluster. This model uses a mono-energetic x-ray approximation and allows us to investigate three primary performance components, specifically quantum noise, detector blurring and additive system noise. A parallel random number generator based on the Weyl sequence was implemented in the noise simulation and a visualization technique was accordingly developed to validate the quality of the parallel random number generator. In our computer simulation model, three-dimensional (3D) phantoms were mathematically modelled and used to create 450 analytical projections, which were then sampled into digital image data. Quantum noise was simulated and added to the analytical projection image data, which were then filtered to incorporate flat panel detector blurring. Additive system noise was generated and added to form the final projection images. The Feldkamp algorithm was implemented and used to reconstruct the 3D images of the phantoms. A 24 dual-Xeon PC cluster was used to compute the projections and reconstructed images in parallel with each CPU processing 10 projection views for a total of 450 views. Based on this computer simulation system, simulated cone beam CT images were generated for various phantoms and technique settings. Noise power spectra for the flat panel x-ray detector and reconstructed images were then computed to characterize the noise properties. As an example among the potential applications of our noise simulation model, we showed that images of low contrast objects can be produced and used for image quality evaluation

  8. Student perceptions of a simulation-based flipped classroom for the surgery clerkship: A mixed-methods study.

    Science.gov (United States)

    Liebert, Cara A; Mazer, Laura; Bereknyei Merrell, Sylvia; Lin, Dana T; Lau, James N

    2016-09-01

    The flipped classroom, a blended learning paradigm that uses pre-session online videos reinforced with interactive sessions, has been proposed as an alternative to traditional lectures. This article investigates medical students' perceptions of a simulation-based, flipped classroom for the surgery clerkship and suggests best practices for implementation in this setting. A prospective cohort of students (n = 89), who were enrolled in the surgery clerkship during a 1-year period, was taught via a simulation-based, flipped classroom approach. Students completed an anonymous, end-of-clerkship survey regarding their perceptions of the curriculum. Quantitative analysis of Likert responses and qualitative analysis of narrative responses were performed. Students' perceptions of the curriculum were positive, with 90% rating it excellent or outstanding. The majority reported the curriculum should be continued (95%) and applied to other clerkships (84%). The component received most favorably by the students was the simulation-based skill sessions. Students rated the effectiveness of the Khan Academy-style videos the highest compared with other video formats (P flipped classroom in the surgery clerkship were overwhelmingly positive. The flipped classroom approach can be applied successfully in a surgery clerkship setting and may offer additional benefits compared with traditional lecture-based curricula. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The Simulation and Analysis of the Closed Die Hot Forging Process by A Computer Simulation Method

    Directory of Open Access Journals (Sweden)

    Dipakkumar Gohil

    2012-06-01

    Full Text Available The objective of this research work is to study the variation of various parameters such as stress, strain, temperature, force, etc. during the closed die hot forging process. A computer simulation modeling approach has been adopted to transform the theoretical aspects in to a computer algorithm which would be used to simulate and analyze the closed die hot forging process. For the purpose of process study, the entire deformation process has been divided in to finite number of steps appropriately and then the output values have been computed at each deformation step. The results of simulation have been graphically represented and suitable corrective measures are also recommended, if the simulation results do not agree with the theoretical values. This computer simulation approach would significantly improve the productivity and reduce the energy consumption of the overall process for the components which are manufactured by the closed die forging process and contribute towards the efforts in reducing the global warming.

  10. Prototyping and Simulating Parallel, Distributed Computations with VISA

    National Research Council Canada - National Science Library

    Demeure, Isabelle M; Nutt, Gary J

    1989-01-01

    ...] to support the design, prototyping, and simulation of parallel, distributed computations. In particular, VISA is meant to guide the choice of partitioning and communication strategies for such computations, based on their performance...

  11. Slab cooling system design using computer simulation

    NARCIS (Netherlands)

    Lain, M.; Zmrhal, V.; Drkal, F.; Hensen, J.L.M.

    2007-01-01

    For a new technical library building in Prague computer simulations were carried out to help design of slab cooling system and optimize capacity of chillers. In the paper is presented concept of new technical library HVAC system, the model of the building, results of the energy simulations for

  12. Biocellion: accelerating computer simulation of multicellular biological system models.

    Science.gov (United States)

    Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya

    2014-11-01

    Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. How Many Times Should One Run a Computational Simulation?

    DEFF Research Database (Denmark)

    Seri, Raffaello; Secchi, Davide

    2017-01-01

    This chapter is an attempt to answer the question “how many runs of a computational simulation should one do,” and it gives an answer by means of statistical analysis. After defining the nature of the problem and which types of simulation are mostly affected by it, the article introduces statisti......This chapter is an attempt to answer the question “how many runs of a computational simulation should one do,” and it gives an answer by means of statistical analysis. After defining the nature of the problem and which types of simulation are mostly affected by it, the article introduces...

  14. Computer simulation of gear tooth manufacturing processes

    Science.gov (United States)

    Mavriplis, Dimitri; Huston, Ronald L.

    1990-01-01

    The use of computer graphics to simulate gear tooth manufacturing procedures is discussed. An analytical basis for the simulation is established for spur gears. The simulation itself, however, is developed not only for spur gears, but for straight bevel gears as well. The applications of the developed procedure extend from the development of finite element models of heretofore intractable geometrical forms, to exploring the fabrication of nonstandard tooth forms.

  15. Human cadaver retina model for retinal heating during corneal surgery with a femtosecond laser

    Science.gov (United States)

    Sun, Hui; Fan, Zhongwei; Yun, Jin; Zhao, Tianzhuo; Yan, Ying; Kurtz, Ron M.; Juhasz, Tibor

    2014-02-01

    Femtosecond lasers are widely used in everyday clinical procedures to perform minimally invasive corneal refractive surgery. The intralase femtosecond laser (AMO Corp. Santa Ana, CA) is a common example of such a laser. In the present study a numerical simulation was developed to quantify the temperature rise in the retina during femtosecond intracorneal surgery. Also, ex-vivo retinal heating due to laser irradiation was measured with an infrared thermal camera (Fluke Corp. Everett, WA) as a validation of the simulation. A computer simulation was developed using Comsol Multiphysics to calculate the temperature rise in the cadaver retina during femtosecond laser corneal surgery. The simulation showed a temperature rise of less than 0.3 degrees for realistic pulse energies for the various repetition rates. Human cadaver retinas were irradiated with a 150 kHz Intralase femtosecond laser and the temperature rise was measured withan infrared thermal camera. Thermal camera measurements are in agreement with the simulation. During routine femtosecond laser corneal surgery with normal clinical parameters, the temperature rise is well beneath the threshold for retina damage. The simulation predictions are in agreement with thermal measurements providing a level of experimental validation.

  16. A Fast Synthetic Aperture Radar Raw Data Simulation Using Cloud Computing.

    Science.gov (United States)

    Li, Zhixin; Su, Dandan; Zhu, Haijiang; Li, Wei; Zhang, Fan; Li, Ruirui

    2017-01-08

    Synthetic Aperture Radar (SAR) raw data simulation is a fundamental problem in radar system design and imaging algorithm research. The growth of surveying swath and resolution results in a significant increase in data volume and simulation period, which can be considered to be a comprehensive data intensive and computing intensive issue. Although several high performance computing (HPC) methods have demonstrated their potential for accelerating simulation, the input/output (I/O) bottleneck of huge raw data has not been eased. In this paper, we propose a cloud computing based SAR raw data simulation algorithm, which employs the MapReduce model to accelerate the raw data computing and the Hadoop distributed file system (HDFS) for fast I/O access. The MapReduce model is designed for the irregular parallel accumulation of raw data simulation, which greatly reduces the parallel efficiency of graphics processing unit (GPU) based simulation methods. In addition, three kinds of optimization strategies are put forward from the aspects of programming model, HDFS configuration and scheduling. The experimental results show that the cloud computing based algorithm achieves 4_ speedup over the baseline serial approach in an 8-node cloud environment, and each optimization strategy can improve about 20%. This work proves that the proposed cloud algorithm is capable of solving the computing intensive and data intensive issues in SAR raw data simulation, and is easily extended to large scale computing to achieve higher acceleration.

  17. Realistic soft tissue deformation strategies for real time surgery simulation.

    Science.gov (United States)

    Shen, Yunhe; Zhou, Xiangmin; Zhang, Nan; Tamma, Kumar; Sweet, Robert

    2008-01-01

    A volume-preserving deformation method (VPDM) is developed in complement with the mass-spring method (MSM) to improve the deformation quality of the MSM to model soft tissue in surgical simulation. This method can also be implemented as a stand-alone model. The proposed VPDM satisfies the Newton's laws of motion by obtaining the resultant vectors form an equilibrium condition. The proposed method has been tested in virtual surgery systems with haptic rendering demands.

  18. Using virtual reality simulation to assess competence in video-assisted thoracoscopic surgery (VATS) lobectomy

    DEFF Research Database (Denmark)

    Jensen, Katrine; Bjerrum, Flemming; Hansen, Henrik Jessen

    2017-01-01

    for a virtual reality simulator test of a video-assisted thoracoscopic surgery (VATS) lobectomy of a right upper lobe. METHODS: Participants with varying experience in VATS lobectomy were included. They were familiarized with a virtual reality simulator (LapSim(®)) and introduced to the steps of the procedure...... % false positives) and failed four of the experienced surgeons (29 % false negatives). CONCLUSION: This study is the first to establish validity evidence for a VATS right upper lobe lobectomy virtual reality simulator test. Several simulator metrics demonstrated significant differences between novices...

  19. The visual simulators for architecture and computer organization learning

    OpenAIRE

    Nikolić Boško; Grbanović Nenad; Đorđević Jovan

    2009-01-01

    The paper proposes a method of an effective distance learning of architecture and computer organization. The proposed method is based on a software system that is possible to be applied in any course in this field. Within this system students are enabled to observe simulation of already created computer systems. The system provides creation and simulation of switch systems, too.

  20. Programme for the simulation of the TPA-i 1001 computer on the CDC-1604-A computer

    International Nuclear Information System (INIS)

    Belyaev, A.V.

    1976-01-01

    The basic features and capacities of the program simulating the 1001 TPA-i computer with the help of CDC-1604-A are described. The program is essentially aimed at translation of programs in the SLAHG language for the TPA-type computers. The basic part of the program simulates the work of the central TPA processor. This subprogram consequently performs the actions changing in the necessary manner the registers and memory states of the TPA computer. The simulated TPA computer has subprograms-analogous of external devices, i.e. the ASR-33 teletype, the FS 1501 tape reader, and the FACIT perforator. Work according to the program takes 1.65 - 2 times less time as against the work with TPA with the minimum set of external equipment [ru

  1. Large scale particle simulations in a virtual memory computer

    International Nuclear Information System (INIS)

    Gray, P.C.; Million, R.; Wagner, J.S.; Tajima, T.

    1983-01-01

    Virtual memory computers are capable of executing large-scale particle simulations even when the memory requirements exceeds the computer core size. The required address space is automatically mapped onto slow disc memory the the operating system. When the simulation size is very large, frequent random accesses to slow memory occur during the charge accumulation and particle pushing processes. Assesses to slow memory significantly reduce the excecution rate of the simulation. We demonstrate in this paper that with the proper choice of sorting algorithm, a nominal amount of sorting to keep physically adjacent particles near particles with neighboring array indices can reduce random access to slow memory, increase the efficiency of the I/O system, and hence, reduce the required computing time. (orig.)

  2. Large-scale particle simulations in a virtual-memory computer

    International Nuclear Information System (INIS)

    Gray, P.C.; Wagner, J.S.; Tajima, T.; Million, R.

    1982-08-01

    Virtual memory computers are capable of executing large-scale particle simulations even when the memory requirements exceed the computer core size. The required address space is automatically mapped onto slow disc memory by the operating system. When the simulation size is very large, frequent random accesses to slow memory occur during the charge accumulation and particle pushing processes. Accesses to slow memory significantly reduce the execution rate of the simulation. We demonstrate in this paper that with the proper choice of sorting algorithm, a nominal amount of sorting to keep physically adjacent particles near particles with neighboring array indices can reduce random access to slow memory, increase the efficiency of the I/O system, and hence, reduce the required computing time

  3. Uses of Computer Simulation Models in Ag-Research and Everyday Life

    Science.gov (United States)

    When the news media talks about models they could be talking about role models, fashion models, conceptual models like the auto industry uses, or computer simulation models. A computer simulation model is a computer code that attempts to imitate the processes and functions of certain systems. There ...

  4. Advanced Simulation and Computing FY17 Implementation Plan, Version 0

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Michel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Archer, Bill [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hendrickson, Bruce [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wade, Doug [National Nuclear Security Administration (NNSA), Washington, DC (United States). Office of Advanced Simulation and Computing and Institutional Research and Development; Hoang, Thuc [National Nuclear Security Administration (NNSA), Washington, DC (United States). Computational Systems and Software Environment

    2016-08-29

    The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), and quantifying critical margins and uncertainties. Resolving each issue requires increasingly difficult analyses because the aging process has progressively moved the stockpile further away from the original test base. Where possible, the program also enables the use of high performance computing (HPC) and simulation tools to address broader national security needs, such as foreign nuclear weapon assessments and counter nuclear terrorism.

  5. Using computer simulations to facilitate conceptual understanding of electromagnetic induction

    Science.gov (United States)

    Lee, Yu-Fen

    This study investigated the use of computer simulations to facilitate conceptual understanding in physics. The use of computer simulations in the present study was grounded in a conceptual framework drawn from findings related to the use of computer simulations in physics education. To achieve the goal of effective utilization of computers for physics education, I first reviewed studies pertaining to computer simulations in physics education categorized by three different learning frameworks and studies comparing the effects of different simulation environments. My intent was to identify the learning context and factors for successful use of computer simulations in past studies and to learn from the studies which did not obtain a significant result. Based on the analysis of reviewed literature, I proposed effective approaches to integrate computer simulations in physics education. These approaches are consistent with well established education principles such as those suggested by How People Learn (Bransford, Brown, Cocking, Donovan, & Pellegrino, 2000). The research based approaches to integrated computer simulations in physics education form a learning framework called Concept Learning with Computer Simulations (CLCS) in the current study. The second component of this study was to examine the CLCS learning framework empirically. The participants were recruited from a public high school in Beijing, China. All participating students were randomly assigned to two groups, the experimental (CLCS) group and the control (TRAD) group. Research based computer simulations developed by the physics education research group at University of Colorado at Boulder were used to tackle common conceptual difficulties in learning electromagnetic induction. While interacting with computer simulations, CLCS students were asked to answer reflective questions designed to stimulate qualitative reasoning and explanation. After receiving model reasoning online, students were asked to submit

  6. A Computer Simulation of Community Pharmacy Practice for Educational Use.

    Science.gov (United States)

    Bindoff, Ivan; Ling, Tristan; Bereznicki, Luke; Westbury, Juanita; Chalmers, Leanne; Peterson, Gregory; Ollington, Robert

    2014-11-15

    To provide a computer-based learning method for pharmacy practice that is as effective as paper-based scenarios, but more engaging and less labor-intensive. We developed a flexible and customizable computer simulation of community pharmacy. Using it, the students would be able to work through scenarios which encapsulate the entirety of a patient presentation. We compared the traditional paper-based teaching method to our computer-based approach using equivalent scenarios. The paper-based group had 2 tutors while the computer group had none. Both groups were given a prescenario and postscenario clinical knowledge quiz and survey. Students in the computer-based group had generally greater improvements in their clinical knowledge score, and third-year students using the computer-based method also showed more improvements in history taking and counseling competencies. Third-year students also found the simulation fun and engaging. Our simulation of community pharmacy provided an educational experience as effective as the paper-based alternative, despite the lack of a human tutor.

  7. Seventeenth Workshop on Computer Simulation Studies in Condensed-Matter Physics

    CERN Document Server

    Landau, David P; Schütler, Heinz-Bernd; Computer Simulation Studies in Condensed-Matter Physics XVI

    2006-01-01

    This status report features the most recent developments in the field, spanning a wide range of topical areas in the computer simulation of condensed matter/materials physics. Both established and new topics are included, ranging from the statistical mechanics of classical magnetic spin models to electronic structure calculations, quantum simulations, and simulations of soft condensed matter. The book presents new physical results as well as novel methods of simulation and data analysis. Highlights of this volume include various aspects of non-equilibrium statistical mechanics, studies of properties of real materials using both classical model simulations and electronic structure calculations, and the use of computer simulations in teaching.

  8. Parallel Monte Carlo simulations on an ARC-enabled computing grid

    International Nuclear Information System (INIS)

    Nilsen, Jon K; Samset, Bjørn H

    2011-01-01

    Grid computing opens new possibilities for running heavy Monte Carlo simulations of physical systems in parallel. The presentation gives an overview of GaMPI, a system for running an MPI-based random walker simulation on grid resources. Integrating the ARC middleware and the new storage system Chelonia with the Ganga grid job submission and control system, we show that MPI jobs can be run on a world-wide computing grid with good performance and promising scaling properties. Results for relatively communication-heavy Monte Carlo simulations run on multiple heterogeneous, ARC-enabled computing clusters in several countries are presented.

  9. Computer simulation in nuclear science and engineering

    International Nuclear Information System (INIS)

    Akiyama, Mamoru; Miya, Kenzo; Iwata, Shuichi; Yagawa, Genki; Kondo, Shusuke; Hoshino, Tsutomu; Shimizu, Akinao; Takahashi, Hiroshi; Nakagawa, Masatoshi.

    1992-01-01

    The numerical simulation technology used for the design of nuclear reactors includes the scientific fields of wide range, and is the cultivated technology which grew in the steady efforts to high calculation accuracy through safety examination, reliability verification test, the assessment of operation results and so on. Taking the opportunity of putting numerical simulation to practical use in wide fields, the numerical simulation of five basic equations which describe the natural world and the progress of its related technologies are reviewed. It is expected that numerical simulation technology contributes to not only the means of design study but also the progress of science and technology such as the construction of new innovative concept, the exploration of new mechanisms and substances, of which the models do not exist in the natural world. The development of atomic energy and the progress of computers, Boltzmann's transport equation and its periphery, Navier-Stokes' equation and its periphery, Maxwell's electromagnetic field equation and its periphery, Schroedinger wave equation and its periphery, computational solid mechanics and its periphery, and probabilistic risk assessment and its periphery are described. (K.I.)

  10. Computational fluid dynamics simulations of light water reactor flows

    International Nuclear Information System (INIS)

    Tzanos, C.P.; Weber, D.P.

    1999-01-01

    Advances in computational fluid dynamics (CFD), turbulence simulation, and parallel computing have made feasible the development of three-dimensional (3-D) single-phase and two-phase flow CFD codes that can simulate fluid flow and heat transfer in realistic reactor geometries with significantly reduced reliance, especially in single phase, on empirical correlations. The objective of this work was to assess the predictive power and computational efficiency of a CFD code in the analysis of a challenging single-phase light water reactor problem, as well as to identify areas where further improvements are needed

  11. COMPUTER LEARNING SIMULATOR WITH VIRTUAL REALITY FOR OPHTHALMOLOGY

    Directory of Open Access Journals (Sweden)

    Valeria V. Gribova

    2013-01-01

    Full Text Available A toolset of a medical computer learning simulator for ophthalmology with virtual reality and its implementation are considered in the paper. The simulator is oriented for professional skills training for students of medical universities. 

  12. Simulation in computer forensics teaching: the student experience

    OpenAIRE

    Crellin, Jonathan; Adda, Mo; Duke-Williams, Emma; Chandler, Jane

    2011-01-01

    The use of simulation in teaching computing is well established, with digital forensic investigation being a subject area where the range of simulation required is both wide and varied demanding a corresponding breadth of fidelity. Each type of simulation can be complex and expensive to set up resulting in students having only limited opportunities to participate and learn from the simulation. For example students' participation in mock trials in the University mock courtroom or in simulation...

  13. Molecular dynamics simulations and applications in computational toxicology and nanotoxicology.

    Science.gov (United States)

    Selvaraj, Chandrabose; Sakkiah, Sugunadevi; Tong, Weida; Hong, Huixiao

    2018-02-01

    Nanotoxicology studies toxicity of nanomaterials and has been widely applied in biomedical researches to explore toxicity of various biological systems. Investigating biological systems through in vivo and in vitro methods is expensive and time taking. Therefore, computational toxicology, a multi-discipline field that utilizes computational power and algorithms to examine toxicology of biological systems, has gained attractions to scientists. Molecular dynamics (MD) simulations of biomolecules such as proteins and DNA are popular for understanding of interactions between biological systems and chemicals in computational toxicology. In this paper, we review MD simulation methods, protocol for running MD simulations and their applications in studies of toxicity and nanotechnology. We also briefly summarize some popular software tools for execution of MD simulations. Published by Elsevier Ltd.

  14. "Just-In-Time" Simulation Training Using 3-D Printed Cardiac Models After Congenital Cardiac Surgery.

    Science.gov (United States)

    Olivieri, Laura J; Su, Lillian; Hynes, Conor F; Krieger, Axel; Alfares, Fahad A; Ramakrishnan, Karthik; Zurakowski, David; Marshall, M Blair; Kim, Peter C W; Jonas, Richard A; Nath, Dilip S

    2016-03-01

    High-fidelity simulation using patient-specific three-dimensional (3D) models may be effective in facilitating pediatric cardiac intensive care unit (PCICU) provider training for clinical management of congenital cardiac surgery patients. The 3D-printed heart models were rendered from preoperative cross-sectional cardiac imaging for 10 patients undergoing congenital cardiac surgery. Immediately following surgical repair, a congenital cardiac surgeon and an intensive care physician conducted a simulation training session regarding postoperative care utilizing the patient-specific 3D model for the PCICU team. After the simulation, Likert-type 0 to 10 scale questionnaire assessed participant perception of impact of the training session. Seventy clinicians participated in training sessions, including 22 physicians, 38 nurses, and 10 ancillary care providers. Average response to whether 3D models were more helpful than standard hand off was 8.4 of 10. Questions regarding enhancement of understanding and clinical ability received average responses of 9.0 or greater, and 90% of participants scored 8 of 10 or higher. Nurses scored significantly higher than other clinicians on self-reported familiarity with the surgery (7.1 vs. 5.8; P = .04), clinical management ability (8.6 vs. 7.7; P = .02), and ability enhancement (9.5 vs. 8.7; P = .02). Compared to physicians, nurses and ancillary providers were more likely to consider 3D models more helpful than standard hand off (8.7 vs. 7.7; P = .05). Higher case complexity predicted greater enhancement of understanding of surgery (P = .04). The 3D heart models can be used to enhance congenital cardiac critical care via simulation training of multidisciplinary intensive care teams. Benefit may be dependent on provider type and case complexity. © The Author(s) 2016.

  15. Computer assisted surgery for malunited fractures in upper limb

    International Nuclear Information System (INIS)

    Yoneda, Masahiro; Kazuki, Kenichi; Uemura, Takuya; Okada, Mitsuhiro; Takaoka, Kunio

    2006-01-01

    Our objective was to evaluate the usefulness of computer-assisted preoperative simulation of malunited fractures in the upper limb. Ten patients with malunited fractures underwent multislice computed tomography of both upper limbs with reconstruction of three-dimensional bone models using three-dimensional (3D) software. Preoperative simulation was comprised of four main procedures: performance of virtual corrective osteotomy, matching of reposition with a mirror-image model of the unaffected side, creating new data for the bone defect, and machining of an hydroxyapatite block as bone graft. In addition, we used full-sized three-dimensional virtual reality modeling with a rapid prototyping molding device, and performed preoperative rehearsals of osteotomies using plaster models. All patients tolerated the surgical procedure well. This technique permits the surgeon to recognize and correct three-dimensional deformities of malunited fracture with both accuracy and precision. (author)

  16. Computer simulation as representation of knowledge in education

    International Nuclear Information System (INIS)

    Krekic, Valerija Pinter; Namestovski, Zolt

    2009-01-01

    According to Aebli's operative method (1963) and Bruner's (1974) theory of representation the development of the process of thinking in teaching has the following phases - levels of abstraction: manipulation with specific things (specific phase), iconic representation (figural phase), symbolic representation (symbolic phase). Modern information technology has contributed to the enrichment of teaching and learning processes, especially in the fields of natural sciences and mathematics and those of production and technology. Simulation appears as a new possibility in the representation of knowledge. According to Guetzkow (1972) simulation is an operative representation of reality from a relevant aspect. It is about a model of an objective system, which is dynamic in itself. If that model is material it is a simple simulation, if it is abstract it is a reflective experiment, that is a computer simulation. This present work deals with the systematization and classification of simulation methods in the teaching of natural sciences and mathematics and of production and technology with special retrospective view on computer simulations and exemplar representation of the place and the role of this modern method of cognition. Key words: Representation of knowledge, modeling, simulation, education

  17. Medical image computing and computer-assisted intervention - MICCAI 2005. Proceedings; Pt. 1

    International Nuclear Information System (INIS)

    Duncan, J.S.; Gerig, G.

    2005-01-01

    The two-volume set LNCS 3749 and LNCS 3750 constitutes the refereed proceedings of the 8th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2005, held in Palm Springs, CA, USA, in October 2005. Based on rigorous peer reviews the program committee selected 237 carefully revised full papers from 632 submissions for presentation in two volumes. The first volume includes all the contributions related to image analysis and validation, vascular image segmentation, image registration, diffusion tensor image analysis, image segmentation and analysis, clinical applications - validation, imaging systems - visualization, computer assisted diagnosis, cellular and molecular image analysis, physically-based modeling, robotics and intervention, medical image computing for clinical applications, and biological imaging - simulation and modeling. The second volume collects the papers related to robotics, image-guided surgery and interventions, image registration, medical image computing, structural and functional brain analysis, model-based image analysis, image-guided intervention: simulation, modeling and display, and image segmentation and analysis. (orig.)

  18. Medical image computing and computer science intervention. MICCAI 2005. Pt. 2. Proceedings

    International Nuclear Information System (INIS)

    Duncan, J.S.; Yale Univ., New Haven, CT; Gerig, G.

    2005-01-01

    The two-volume set LNCS 3749 and LNCS 3750 constitutes the refereed proceedings of the 8th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2005, held in Palm Springs, CA, USA, in October 2005. Based on rigorous peer reviews the program committee selected 237 carefully revised full papers from 632 submissions for presentation in two volumes. The first volume includes all the contributions related to image analysis and validation, vascular image segmentation, image registration, diffusion tensor image analysis, image segmentation and analysis, clinical applications - validation, imaging systems - visualization, computer assisted diagnosis, cellular and molecular image analysis, physically-based modeling, robotics and intervention, medical image computing for clinical applications, and biological imaging - simulation and modeling. The second volume collects the papers related to robotics, image-guided surgery and interventions, image registration, medical image computing, structural and functional brain analysis, model-based image analysis, image-guided intervention: simulation, modeling and display, and image segmentation and analysis. (orig.)

  19. Medical image computing and computer-assisted intervention - MICCAI 2005. Proceedings; Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J.S. [Yale Univ., New Haven, CT (United States). Dept. of Biomedical Engineering and Diagnostic Radiology; Gerig, G. (eds.) [North Carolina Univ., Chapel Hill (United States). Dept. of Computer Science

    2005-07-01

    The two-volume set LNCS 3749 and LNCS 3750 constitutes the refereed proceedings of the 8th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2005, held in Palm Springs, CA, USA, in October 2005. Based on rigorous peer reviews the program committee selected 237 carefully revised full papers from 632 submissions for presentation in two volumes. The first volume includes all the contributions related to image analysis and validation, vascular image segmentation, image registration, diffusion tensor image analysis, image segmentation and analysis, clinical applications - validation, imaging systems - visualization, computer assisted diagnosis, cellular and molecular image analysis, physically-based modeling, robotics and intervention, medical image computing for clinical applications, and biological imaging - simulation and modeling. The second volume collects the papers related to robotics, image-guided surgery and interventions, image registration, medical image computing, structural and functional brain analysis, model-based image analysis, image-guided intervention: simulation, modeling and display, and image segmentation and analysis. (orig.)

  20. Medical image computing and computer science intervention. MICCAI 2005. Pt. 2. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J.S. [Yale Univ., New Haven, CT (United States). Dept. of Biomedical Engineering]|[Yale Univ., New Haven, CT (United States). Dept. of Diagnostic Radiology; Gerig, G. (eds.) [North Carolina Univ., Chapel Hill, NC (United States). Dept. of Computer Science

    2005-07-01

    The two-volume set LNCS 3749 and LNCS 3750 constitutes the refereed proceedings of the 8th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2005, held in Palm Springs, CA, USA, in October 2005. Based on rigorous peer reviews the program committee selected 237 carefully revised full papers from 632 submissions for presentation in two volumes. The first volume includes all the contributions related to image analysis and validation, vascular image segmentation, image registration, diffusion tensor image analysis, image segmentation and analysis, clinical applications - validation, imaging systems - visualization, computer assisted diagnosis, cellular and molecular image analysis, physically-based modeling, robotics and intervention, medical image computing for clinical applications, and biological imaging - simulation and modeling. The second volume collects the papers related to robotics, image-guided surgery and interventions, image registration, medical image computing, structural and functional brain analysis, model-based image analysis, image-guided intervention: simulation, modeling and display, and image segmentation and analysis. (orig.)

  1. Computer simulations of shear thickening of concentrated dispersions

    NARCIS (Netherlands)

    Boersma, W.H.; Laven, J.; Stein, H.N.

    1995-01-01

    Stokesian dynamics computer simulations were performed on monolayers of equally sized spheres. The influence of repulsive and attractive forces on the rheological behavior and on the microstructure were studied. Under specific conditions shear thickening could be observed in the simulations, usually

  2. Computational fluid dynamics simulations and validations of results

    CSIR Research Space (South Africa)

    Sitek, MA

    2013-09-01

    Full Text Available Wind flow influence on a high-rise building is analyzed. The research covers full-scale tests, wind-tunnel experiments and numerical simulations. In the present paper computational model used in simulations is described and the results, which were...

  3. Augmented Reality Simulations on Handheld Computers

    Science.gov (United States)

    Squire, Kurt; Klopfer, Eric

    2007-01-01

    Advancements in handheld computing, particularly its portability, social interactivity, context sensitivity, connectivity, and individuality, open new opportunities for immersive learning environments. This article articulates the pedagogical potential of augmented reality simulations in environmental engineering education by immersing students in…

  4. Computer Simulation of the Circulation Subsystem of a Library

    Science.gov (United States)

    Shaw, W. M., Jr.

    1975-01-01

    When circulation data are used as input parameters for a computer simulation of a library's circulation subsystem, the results of the simulation provide information on book availability and delays. The model may be used to simulate alternative loan policies. (Author/LS)

  5. Multimodal Hazard Rate for Relapse in Breast Cancer: Quality of Data and Calibration of Computer Simulation

    Directory of Open Access Journals (Sweden)

    Michael Retsky

    2014-11-01

    Full Text Available Much has occurred since our 2010 report in Cancers. In the past few years we published several extensive reviews of our research so a brief review is all that will be provided here. We proposed in the earlier reports that most relapses in breast cancer occur within 5 years of surgery and seem to be associated with some unspecified manner of surgery-induced metastatic initiation. These events can be identified in relapse data and are correlated with clinical data. In the last few years an unexpected mechanism has become apparent. Retrospective analysis of relapse events by a Brussels anesthesiology group reported that a perioperative NSAID analgesic seems to reduce early relapses five-fold. We then proposed that primary surgery produces a transient period of systemic inflammation. This has now been identified by inflammatory markers in serum post mastectomy. That could explain the early relapses. It is possible that an inexpensive and non-toxic NSAID can reduce breast cancer relapses significantly. We want to take this opportunity to discuss database quality issues and our relapse hazard data in some detail. We also present a demonstration that the computer simulation can be calibrated with Adjuvant-on-line, an often used clinical tool for prognosis in breast cancer.

  6. Using EDUCache Simulator for the Computer Architecture and Organization Course

    Directory of Open Access Journals (Sweden)

    Sasko Ristov

    2013-07-01

    Full Text Available The computer architecture and organization course is essential in all computer science and engineering programs, and the most selected and liked elective course for related engineering disciplines. However, the attractiveness brings a new challenge, it requires a lot of effort by the instructor, to explain rather complicated concepts to beginners or to those who study related disciplines. The usage of visual simulators can improve both the teaching and learning processes. The overall goal is twofold: 1~to enable a visual environment to explain the basic concepts and 2~to increase the student's willingness and ability to learn the material.A lot of visual simulators have been used for the computer architecture and organization course. However, due to the lack of visual simulators for simulation of the cache memory concepts, we have developed a new visual simulator EDUCache simulator. In this paper we present that it can be effectively and efficiently used as a supporting tool in the learning process of modern multi-layer, multi-cache and multi-core multi-processors.EDUCache's features enable an environment for performance evaluation and engineering of software systems, i.e. the students will also understand the importance of computer architecture building parts and hopefully, will increase their curiosity for hardware courses in general.

  7. NeuroManager: A workflow analysis based simulation management engine for computational neuroscience

    Directory of Open Access Journals (Sweden)

    David Bruce Stockton

    2015-10-01

    Full Text Available We developed NeuroManager, an object-oriented simulation management software engine for computational neuroscience. NeuroManager automates the workflow of simulation job submissions when using heterogeneous computational resources, simulators, and simulation tasks. The object-oriented approach 1 provides flexibility to adapt to a variety of neuroscience simulators, 2 simplifies the use of heterogeneous computational resources, from desktops to super computer clusters, and 3 improves tracking of simulator/simulation evolution. We implemented NeuroManager in Matlab, a widely used engineering and scientific language, for its signal and image processing tools, prevalence in electrophysiology analysis, and increasing use in college Biology education. To design and develop NeuroManager we analyzed the workflow of simulation submission for a variety of simulators, operating systems, and computational resources, including the handling of input parameters, data, models, results, and analyses. This resulted in twenty-two stages of simulation submission workflow. The software incorporates progress notification, automatic organization, labeling, and time-stamping of data and results, and integrated access to Matlab's analysis and visualization tools. NeuroManager provides users with the tools to automate daily tasks, and assists principal investigators in tracking and recreating the evolution of research projects performed by multiple people. Overall, NeuroManager provides the infrastructure needed to improve workflow, manage multiple simultaneous simulations, and maintain provenance of the potentially large amounts of data produced during the course of a research project.

  8. A National Needs Assessment to Identify Technical Procedures in Vascular Surgery for Simulation Based Training.

    Science.gov (United States)

    Nayahangan, L J; Konge, L; Schroeder, T V; Paltved, C; Lindorff-Larsen, K G; Nielsen, B U; Eiberg, J P

    2017-04-01

    Practical skills training in vascular surgery is facing challenges because of an increased number of endovascular procedures and fewer open procedures, as well as a move away from the traditional principle of "learning by doing." This change has established simulation as a cornerstone in providing trainees with the necessary skills and competences. However, the development of simulation based programs often evolves based on available resources and equipment, reflecting convenience rather than a systematic educational plan. The objective of the present study was to perform a national needs assessment to identify the technical procedures that should be integrated in a simulation based curriculum. A national needs assessment using a Delphi process was initiated by engaging 33 predefined key persons in vascular surgery. Round 1 was a brainstorming phase to identify technical procedures that vascular surgeons should learn. Round 2 was a survey that used a needs assessment formula to explore the frequency of procedures, the number of surgeons performing each procedure, risk and/or discomfort, and feasibility for simulation based training. Round 3 involved elimination and ranking of procedures. The response rate for round 1 was 70%, with 36 procedures identified. Round 2 had a 76% response rate and resulted in a preliminary prioritised list after exploring the need for simulation based training. Round 3 had an 85% response rate; 17 procedures were eliminated, resulting in a final prioritised list of 19 technical procedures. A national needs assessment using a standardised Delphi method identified a list of procedures that are highly suitable and may provide the basis for future simulation based training programs for vascular surgeons in training. Copyright © 2017 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  9. Prospective randomized study of contrast reaction management curricula: Computer-based interactive simulation versus high-fidelity hands-on simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Carolyn L., E-mail: wangcl@uw.edu [Department of Radiology, University of Washington, Box 357115, 1959 NE Pacific Street, Seattle, WA 98195-7115 (United States); Schopp, Jennifer G.; Kani, Kimia [Department of Radiology, University of Washington, Box 357115, 1959 NE Pacific Street, Seattle, WA 98195-7115 (United States); Petscavage-Thomas, Jonelle M. [Penn State Hershey Medical Center, Department of Radiology, 500 University Drive, Hershey, PA 17033 (United States); Zaidi, Sadaf; Hippe, Dan S.; Paladin, Angelisa M.; Bush, William H. [Department of Radiology, University of Washington, Box 357115, 1959 NE Pacific Street, Seattle, WA 98195-7115 (United States)

    2013-12-01

    Purpose: We developed a computer-based interactive simulation program for teaching contrast reaction management to radiology trainees and compared its effectiveness to high-fidelity hands-on simulation training. Materials and methods: IRB approved HIPAA compliant prospective study of 44 radiology residents, fellows and faculty who were randomized into either the high-fidelity hands-on simulation group or computer-based simulation group. All participants took separate written tests prior to and immediately after their intervention. Four months later participants took a delayed written test and a hands-on high-fidelity severe contrast reaction scenario performance test graded on predefined critical actions. Results: There was no statistically significant difference between the computer and hands-on groups’ written pretest, immediate post-test, or delayed post-test scores (p > 0.6 for all). Both groups’ scores improved immediately following the intervention (p < 0.001). The delayed test scores 4 months later were still significantly higher than the pre-test scores (p ≤ 0.02). The computer group's performance was similar to the hands-on group on the severe contrast reaction simulation scenario test (p = 0.7). There were also no significant differences between the computer and hands-on groups in performance on the individual core competencies of contrast reaction management during the contrast reaction scenario. Conclusion: It is feasible to develop a computer-based interactive simulation program to teach contrast reaction management. Trainees that underwent computer-based simulation training scored similarly on written tests and on a hands-on high-fidelity severe contrast reaction scenario performance test as those trained with hands-on high-fidelity simulation.

  10. Prospective randomized study of contrast reaction management curricula: Computer-based interactive simulation versus high-fidelity hands-on simulation

    International Nuclear Information System (INIS)

    Wang, Carolyn L.; Schopp, Jennifer G.; Kani, Kimia; Petscavage-Thomas, Jonelle M.; Zaidi, Sadaf; Hippe, Dan S.; Paladin, Angelisa M.; Bush, William H.

    2013-01-01

    Purpose: We developed a computer-based interactive simulation program for teaching contrast reaction management to radiology trainees and compared its effectiveness to high-fidelity hands-on simulation training. Materials and methods: IRB approved HIPAA compliant prospective study of 44 radiology residents, fellows and faculty who were randomized into either the high-fidelity hands-on simulation group or computer-based simulation group. All participants took separate written tests prior to and immediately after their intervention. Four months later participants took a delayed written test and a hands-on high-fidelity severe contrast reaction scenario performance test graded on predefined critical actions. Results: There was no statistically significant difference between the computer and hands-on groups’ written pretest, immediate post-test, or delayed post-test scores (p > 0.6 for all). Both groups’ scores improved immediately following the intervention (p < 0.001). The delayed test scores 4 months later were still significantly higher than the pre-test scores (p ≤ 0.02). The computer group's performance was similar to the hands-on group on the severe contrast reaction simulation scenario test (p = 0.7). There were also no significant differences between the computer and hands-on groups in performance on the individual core competencies of contrast reaction management during the contrast reaction scenario. Conclusion: It is feasible to develop a computer-based interactive simulation program to teach contrast reaction management. Trainees that underwent computer-based simulation training scored similarly on written tests and on a hands-on high-fidelity severe contrast reaction scenario performance test as those trained with hands-on high-fidelity simulation

  11. Computational Particle Dynamic Simulations on Multicore Processors (CPDMu) Final Report Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Schmalz, Mark S

    2011-07-24

    Statement of Problem - Department of Energy has many legacy codes for simulation of computational particle dynamics and computational fluid dynamics applications that are designed to run on sequential processors and are not easily parallelized. Emerging high-performance computing architectures employ massively parallel multicore architectures (e.g., graphics processing units) to increase throughput. Parallelization of legacy simulation codes is a high priority, to achieve compatibility, efficiency, accuracy, and extensibility. General Statement of Solution - A legacy simulation application designed for implementation on mainly-sequential processors has been represented as a graph G. Mathematical transformations, applied to G, produce a graph representation {und G} for a high-performance architecture. Key computational and data movement kernels of the application were analyzed/optimized for parallel execution using the mapping G {yields} {und G}, which can be performed semi-automatically. This approach is widely applicable to many types of high-performance computing systems, such as graphics processing units or clusters comprised of nodes that contain one or more such units. Phase I Accomplishments - Phase I research decomposed/profiled computational particle dynamics simulation code for rocket fuel combustion into low and high computational cost regions (respectively, mainly sequential and mainly parallel kernels), with analysis of space and time complexity. Using the research team's expertise in algorithm-to-architecture mappings, the high-cost kernels were transformed, parallelized, and implemented on Nvidia Fermi GPUs. Measured speedups (GPU with respect to single-core CPU) were approximately 20-32X for realistic model parameters, without final optimization. Error analysis showed no loss of computational accuracy. Commercial Applications and Other Benefits - The proposed research will constitute a breakthrough in solution of problems related to efficient

  12. The adaptation method in the Monte Carlo simulation for computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyoung Gun; Yoon, Chang Yeon; Lee, Won Ho [Dept. of Bio-convergence Engineering, Korea University, Seoul (Korea, Republic of); Cho, Seung Ryong [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Sung Ho [Dept. of Neurosurgery, Ulsan University Hospital, Ulsan (Korea, Republic of)

    2015-06-15

    The patient dose incurred from diagnostic procedures during advanced radiotherapy has become an important issue. Many researchers in medical physics are using computational simulations to calculate complex parameters in experiments. However, extended computation times make it difficult for personal computers to run the conventional Monte Carlo method to simulate radiological images with high-flux photons such as images produced by computed tomography (CT). To minimize the computation time without degrading imaging quality, we applied a deterministic adaptation to the Monte Carlo calculation and verified its effectiveness by simulating CT image reconstruction for an image evaluation phantom (Catphan; Phantom Laboratory, New York NY, USA) and a human-like voxel phantom (KTMAN-2) (Los Alamos National Laboratory, Los Alamos, NM, USA). For the deterministic adaptation, the relationship between iteration numbers and the simulations was estimated and the option to simulate scattered radiation was evaluated. The processing times of simulations using the adaptive method were at least 500 times faster than those using a conventional statistical process. In addition, compared with the conventional statistical method, the adaptive method provided images that were more similar to the experimental images, which proved that the adaptive method was highly effective for a simulation that requires a large number of iterations-assuming no radiation scattering in the vicinity of detectors minimized artifacts in the reconstructed image.

  13. A cost effective and high fidelity fluoroscopy simulator using the Image-Guided Surgery Toolkit (IGSTK)

    Science.gov (United States)

    Gong, Ren Hui; Jenkins, Brad; Sze, Raymond W.; Yaniv, Ziv

    2014-03-01

    The skills required for obtaining informative x-ray fluoroscopy images are currently acquired while trainees provide clinical care. As a consequence, trainees and patients are exposed to higher doses of radiation. Use of simulation has the potential to reduce this radiation exposure by enabling trainees to improve their skills in a safe environment prior to treating patients. We describe a low cost, high fidelity, fluoroscopy simulation system. Our system enables operators to practice their skills using the clinical device and simulated x-rays of a virtual patient. The patient is represented using a set of temporal Computed Tomography (CT) images, corresponding to the underlying dynamic processes. Simulated x-ray images, digitally reconstructed radiographs (DRRs), are generated from the CTs using ray-casting with customizable machine specific imaging parameters. To establish the spatial relationship between the CT and the fluoroscopy device, the CT is virtually attached to a patient phantom and a web camera is used to track the phantom's pose. The camera is mounted on the fluoroscope's intensifier and the relationship between it and the x-ray source is obtained via calibration. To control image acquisition the operator moves the fluoroscope as in normal operation mode. Control of zoom, collimation and image save is done using a keypad mounted alongside the device's control panel. Implementation is based on the Image-Guided Surgery Toolkit (IGSTK), and the use of the graphics processing unit (GPU) for accelerated image generation. Our system was evaluated by 11 clinicians and was found to be sufficiently realistic for training purposes.

  14. Computational performance of a smoothed particle hydrodynamics simulation for shared-memory parallel computing

    Science.gov (United States)

    Nishiura, Daisuke; Furuichi, Mikito; Sakaguchi, Hide

    2015-09-01

    The computational performance of a smoothed particle hydrodynamics (SPH) simulation is investigated for three types of current shared-memory parallel computer devices: many integrated core (MIC) processors, graphics processing units (GPUs), and multi-core CPUs. We are especially interested in efficient shared-memory allocation methods for each chipset, because the efficient data access patterns differ between compute unified device architecture (CUDA) programming for GPUs and OpenMP programming for MIC processors and multi-core CPUs. We first introduce several parallel implementation techniques for the SPH code, and then examine these on our target computer architectures to determine the most effective algorithms for each processor unit. In addition, we evaluate the effective computing performance and power efficiency of the SPH simulation on each architecture, as these are critical metrics for overall performance in a multi-device environment. In our benchmark test, the GPU is found to produce the best arithmetic performance as a standalone device unit, and gives the most efficient power consumption. The multi-core CPU obtains the most effective computing performance. The computational speed of the MIC processor on Xeon Phi approached that of two Xeon CPUs. This indicates that using MICs is an attractive choice for existing SPH codes on multi-core CPUs parallelized by OpenMP, as it gains computational acceleration without the need for significant changes to the source code.

  15. Using computer simulations to probe the structure and dynamics of biopolymers

    International Nuclear Information System (INIS)

    Levy, R.M.; Hirata, F.; Kim, K.; Zhang, P.

    1987-01-01

    The use of computer simulations to study internal motions and thermodynamic properties is receiving increased attention. One important use of the method is to provide a more fundamental understanding of the molecular information contained in various kinds of experiments on these complex systems. In the first part of this paper the authors review recent work in their laboratory concerned with the use of computer simulations for the interpretation of experimental probes of molecular structure and dynamics of proteins and nucleic acids. The interplay between computer simulations and three experimental techniques is emphasized: (1) nuclear magnetic resonance relaxation spectroscopy, (2) refinement of macro-molecular x-ray structures, and (3) vibrational spectroscopy. The treatment of solvent effects in biopolymer simulations is a difficult problem. It is not possible to study systematically the effect of solvent conditions, e.g. added salt concentration, on biopolymer properties by means of simulations alone. In the last part of the paper the authors review a more analytical approach they developed to study polyelectrolyte properties of solvated biopolymers. The results are compared with computer simulations

  16. Digital control computer upgrade at the Cernavoda NPP simulator

    International Nuclear Information System (INIS)

    Ionescu, T.

    2006-01-01

    The Plant Process Computer equips some Nuclear Power Plants, like CANDU-600, with Centralized Control performed by an assembly of two computers known as Digital Control Computers (DCC) and working in parallel for safely driving of the plan at steady state and during normal maneuvers but also during abnormal transients when the plant is automatically steered to a safe state. The Centralized Control means both hardware and software with obligatory presence in the frame of the Full Scope Simulator and subject to changing its configuration with specific requirements during the plant and simulator life and covered by this subsection

  17. Digital Workflow for Computer-Guided Implant Surgery in Edentulous Patients: A Case Report.

    Science.gov (United States)

    Oh, Ji-Hyeon; An, Xueyin; Jeong, Seung-Mi; Choi, Byung-Ho

    2017-12-01

    The purpose of this article was to describe a fully digital workflow used to perform computer-guided flapless implant placement in an edentulous patient without the use of conventional impressions, models, or a radiographic guide. Digital data for the workflow were acquired using an intraoral scanner and cone-beam computed tomography (CBCT). The image fusion of the intraoral scan data and CBCT data was performed by matching resin markers placed in the patient's mouth. The definitive digital data were used to design a prosthetically driven implant position, surgical template, and computer-aided design and computer-aided manufacturing fabricated fixed dental prosthesis. The authors believe this is the first published case describing such a technique in computer-guided flapless implant surgery for edentulous patients. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Computer based training simulator for Hunterston Nuclear Power Station

    International Nuclear Information System (INIS)

    Bowden, R.S.M.; Hacking, D.

    1978-01-01

    For reasons which are stated, the Hunterston-B nuclear power station automatic control system includes a manual over-ride facility. It is therefore essential for the station engineers to be trained to recognise and control all feasible modes of plant and logic malfunction. A training simulator has been built which consists of a replica of the shutdown monitoring panel in the Central Control Room and is controlled by a mini-computer. This paper highlights the computer aspects of the simulator and relevant derived experience, under the following headings: engineering background; shutdown sequence equipment; simulator equipment; features; software; testing; maintenance. (U.K.)

  19. Advanced Computational Methods in Bio-Mechanics.

    Science.gov (United States)

    Al Qahtani, Waleed M S; El-Anwar, Mohamed I

    2018-04-15

    A novel partnership between surgeons and machines, made possible by advances in computing and engineering technology, could overcome many of the limitations of traditional surgery. By extending surgeons' ability to plan and carry out surgical interventions more accurately and with fewer traumas, computer-integrated surgery (CIS) systems could help to improve clinical outcomes and the efficiency of healthcare delivery. CIS systems could have a similar impact on surgery to that long since realised in computer-integrated manufacturing. Mathematical modelling and computer simulation have proved tremendously successful in engineering. Computational mechanics has enabled technological developments in virtually every area of our lives. One of the greatest challenges for mechanists is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. Biomechanics has significant potential for applications in orthopaedic industry, and the performance arts since skills needed for these activities are visibly related to the human musculoskeletal and nervous systems. Although biomechanics is widely used nowadays in the orthopaedic industry to design orthopaedic implants for human joints, dental parts, external fixations and other medical purposes, numerous researches funded by billions of dollars are still running to build a new future for sports and human healthcare in what is called biomechanics era.

  20. Image calibration and registration in cone-beam computed tomogram for measuring the accuracy of computer-aided implant surgery

    Science.gov (United States)

    Lam, Walter Y. H.; Ngan, Henry Y. T.; Wat, Peter Y. P.; Luk, Henry W. K.; Goto, Tazuko K.; Pow, Edmond H. N.

    2015-02-01

    Medical radiography is the use of radiation to "see through" a human body without breaching its integrity (surface). With computed tomography (CT)/cone beam computed tomography (CBCT), three-dimensional (3D) imaging can be produced. These imagings not only facilitate disease diagnosis but also enable computer-aided surgical planning/navigation. In dentistry, the common method for transfer of the virtual surgical planning to the patient (reality) is the use of surgical stent either with a preloaded planning (static) like a channel or a real time surgical navigation (dynamic) after registration with fiducial markers (RF). This paper describes using the corner of a cube as a radiopaque fiducial marker on an acrylic (plastic) stent, this RF allows robust calibration and registration of Cartesian (x, y, z)- coordinates for linking up the patient (reality) and the imaging (virtuality) and hence the surgical planning can be transferred in either static or dynamic way. The accuracy of computer-aided implant surgery was measured with reference to coordinates. In our preliminary model surgery, a dental implant was planned virtually and placed with preloaded surgical guide. The deviation of the placed implant apex from the planning was x=+0.56mm [more right], y=- 0.05mm [deeper], z=-0.26mm [more lingual]) which was within clinically 2mm safety range. For comparison with the virtual planning, the physically placed implant was CT/CBCT scanned and errors may be introduced. The difference of the actual implant apex to the virtual apex was x=0.00mm, y=+0.21mm [shallower], z=-1.35mm [more lingual] and this should be brought in mind when interpret the results.

  1. Computer simulation games in population and education.

    Science.gov (United States)

    Moreland, R S

    1988-01-01

    Computer-based simulation games are effective training tools that have several advantages. They enable players to learn in a nonthreatening manner and develop strategies to achieve goals in a dynamic environment. They also provide visual feedback on the effects of players' decisions, encourage players to explore and experiment with options before making final decisions, and develop players' skills in analysis, decision making, and cooperation. 2 games have been developed by the Research Triangle Institute for public-sector planning agencies interested in or dealing with developing countries. The UN Population and Development Game teaches players about the interaction between population variables and the national economy and how population policies complement other national policies, such as education. The BRIDGES Education Planning Game focuses on the effects education has on national policies. In both games, the computer simulates the reactions of a fictional country's socioeconomic system to players' decisions. Players can change decisions after seeing their effects on a computer screen and thus can improve their performance in achieving goals.

  2. Soft-error tolerance and energy consumption evaluation of embedded computer with magnetic random access memory in practical systems using computer simulations

    Science.gov (United States)

    Nebashi, Ryusuke; Sakimura, Noboru; Sugibayashi, Tadahiko

    2017-08-01

    We evaluated the soft-error tolerance and energy consumption of an embedded computer with magnetic random access memory (MRAM) using two computer simulators. One is a central processing unit (CPU) simulator of a typical embedded computer system. We simulated the radiation-induced single-event-upset (SEU) probability in a spin-transfer-torque MRAM cell and also the failure rate of a typical embedded computer due to its main memory SEU error. The other is a delay tolerant network (DTN) system simulator. It simulates the power dissipation of wireless sensor network nodes of the system using a revised CPU simulator and a network simulator. We demonstrated that the SEU effect on the embedded computer with 1 Gbit MRAM-based working memory is less than 1 failure in time (FIT). We also demonstrated that the energy consumption of the DTN sensor node with MRAM-based working memory can be reduced to 1/11. These results indicate that MRAM-based working memory enhances the disaster tolerance of embedded computers.

  3. A note on simulated annealing to computer laboratory scheduling ...

    African Journals Online (AJOL)

    The concepts, principles and implementation of simulated Annealing as a modem heuristic technique is presented. Simulated Annealing algorithm is used in solving real life problem of Computer Laboratory scheduling in order to maximize the use of scarce and insufficient resources. KEY WORDS: Simulated Annealing ...

  4. Time reversibility, computer simulation, algorithms, chaos

    CERN Document Server

    Hoover, William Graham

    2012-01-01

    A small army of physicists, chemists, mathematicians, and engineers has joined forces to attack a classic problem, the "reversibility paradox", with modern tools. This book describes their work from the perspective of computer simulation, emphasizing the author's approach to the problem of understanding the compatibility, and even inevitability, of the irreversible second law of thermodynamics with an underlying time-reversible mechanics. Computer simulation has made it possible to probe reversibility from a variety of directions and "chaos theory" or "nonlinear dynamics" has supplied a useful vocabulary and a set of concepts, which allow a fuller explanation of irreversibility than that available to Boltzmann or to Green, Kubo and Onsager. Clear illustration of concepts is emphasized throughout, and reinforced with a glossary of technical terms from the specialized fields which have been combined here to focus on a common theme. The book begins with a discussion, contrasting the idealized reversibility of ba...

  5. Simulation of Robot Kinematics Using Interactive Computer Graphics.

    Science.gov (United States)

    Leu, M. C.; Mahajan, R.

    1984-01-01

    Development of a robot simulation program based on geometric transformation softwares available in most computer graphics systems and program features are described. The program can be extended to simulate robots coordinating with external devices (such as tools, fixtures, conveyors) using geometric transformations to describe the…

  6. Computer simulations of long-time tails: what's new?

    NARCIS (Netherlands)

    Hoef, van der M.A.; Frenkel, D.

    1995-01-01

    Twenty five years ago Alder and Wainwright discovered, by simulation, the 'long-time tails' in the velocity autocorrelation function of a single particle in fluid [1]. Since then, few qualitatively new results on long-time tails have been obtained by computer simulations. However, within the

  7. Faster quantum chemistry simulation on fault-tolerant quantum computers

    International Nuclear Information System (INIS)

    Cody Jones, N; McMahon, Peter L; Yamamoto, Yoshihisa; Whitfield, James D; Yung, Man-Hong; Aspuru-Guzik, Alán; Van Meter, Rodney

    2012-01-01

    Quantum computers can in principle simulate quantum physics exponentially faster than their classical counterparts, but some technical hurdles remain. We propose methods which substantially improve the performance of a particular form of simulation, ab initio quantum chemistry, on fault-tolerant quantum computers; these methods generalize readily to other quantum simulation problems. Quantum teleportation plays a key role in these improvements and is used extensively as a computing resource. To improve execution time, we examine techniques for constructing arbitrary gates which perform substantially faster than circuits based on the conventional Solovay–Kitaev algorithm (Dawson and Nielsen 2006 Quantum Inform. Comput. 6 81). For a given approximation error ϵ, arbitrary single-qubit gates can be produced fault-tolerantly and using a restricted set of gates in time which is O(log ϵ) or O(log log ϵ); with sufficient parallel preparation of ancillas, constant average depth is possible using a method we call programmable ancilla rotations. Moreover, we construct and analyze efficient implementations of first- and second-quantized simulation algorithms using the fault-tolerant arbitrary gates and other techniques, such as implementing various subroutines in constant time. A specific example we analyze is the ground-state energy calculation for lithium hydride. (paper)

  8. Performance Analysis of Cloud Computing Architectures Using Discrete Event Simulation

    Science.gov (United States)

    Stocker, John C.; Golomb, Andrew M.

    2011-01-01

    Cloud computing offers the economic benefit of on-demand resource allocation to meet changing enterprise computing needs. However, the flexibility of cloud computing is disadvantaged when compared to traditional hosting in providing predictable application and service performance. Cloud computing relies on resource scheduling in a virtualized network-centric server environment, which makes static performance analysis infeasible. We developed a discrete event simulation model to evaluate the overall effectiveness of organizations in executing their workflow in traditional and cloud computing architectures. The two part model framework characterizes both the demand using a probability distribution for each type of service request as well as enterprise computing resource constraints. Our simulations provide quantitative analysis to design and provision computing architectures that maximize overall mission effectiveness. We share our analysis of key resource constraints in cloud computing architectures and findings on the appropriateness of cloud computing in various applications.

  9. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure.

    Science.gov (United States)

    Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei

    2011-09-07

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed.

  10. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure

    International Nuclear Information System (INIS)

    Wang, Henry; Ma Yunzhi; Pratx, Guillem; Xing Lei

    2011-01-01

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47x speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed. (note)

  11. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Henry [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Ma Yunzhi; Pratx, Guillem; Xing Lei, E-mail: hwang41@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305-5847 (United States)

    2011-09-07

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47x speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed. (note)

  12. Validation study of a computer-based open surgical trainer: SimPraxis® simulation platform

    Directory of Open Access Journals (Sweden)

    Tran LN

    2013-03-01

    Full Text Available Linh N Tran,1 Priyanka Gupta,2 Lauren H Poniatowski,2 Shaheen Alanee,3 Marc A Dall’Era,4 Robert M Sweet21Department of Internal Medicine, Loma Linda University, Loma Linda, CA, 2Department of Urology, University of Minnesota, Minneapolis, MN, 3Urology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, 4Department of Urology, University of California, Davis, CA, USABackground: Technological advances have dramatically changed medical education, particularly in the era of work-hour restrictions, which increasingly highlights a need for novel methods to teach surgical skills. The purpose of this study was to evaluate the validity of a novel, computer-based, interactive, cognitive simulator for training surgeons to perform pelvic lymph node dissection (PLND.Methods: Eight prostate cancer experts evaluated the content of the simulator. Contextual aspects of the simulator were rated on a five-point Likert scale. The experts and nine first-year residents completed a simulated PLND. Time and deviations were logged, and the results were compared between experts and novices using the Mann–Whitney test.Results: Before training, 88% of the experts felt that a validated simulator would be useful for PLND training. After testing, 100% of the experts felt that it would be more useful than standard video training. Eighty-eight percent stated that they would like to see the simulator in the curriculum of residency programs and 56% thought it would be useful for accreditation purposes. The experts felt that the simulator aided in overall understanding, training indications, concepts and steps of the procedure, training how to use an assistant, and enhanced the knowledge of anatomy. Median performance times taken by experts and interns to complete a PLND procedure on the simulator were 12.62 and 23.97 minutes, respectively. Median deviation from the incorporated procedure pathway for experts was 24.5 and was 89 for novices

  13. Computer simulation of high energy displacement cascades

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1990-01-01

    A methodology developed for modeling many aspects of high energy displacement cascades with molecular level computer simulations is reviewed. The initial damage state is modeled in the binary collision approximation (using the MARLOWE computer code), and the subsequent disposition of the defects within a cascade is modeled with a Monte Carlo annealing simulation (the ALSOME code). There are few adjustable parameters, and none are set to physically unreasonable values. The basic configurations of the simulated high energy cascades in copper, i.e., the number, size and shape of damage regions, compare well with observations, as do the measured numbers of residual defects and the fractions of freely migrating defects. The success of these simulations is somewhat remarkable, given the relatively simple models of defects and their interactions that are employed. The reason for this success is that the behavior of the defects is very strongly influenced by their initial spatial distributions, which the binary collision approximation adequately models. The MARLOWE/ALSOME system, with input from molecular dynamics and experiments, provides a framework for investigating the influence of high energy cascades on microstructure evolution. (author)

  14. Face and content validity of Xperience™ Team Trainer: bed-side assistant training simulator for robotic surgery.

    Science.gov (United States)

    Sessa, Luca; Perrenot, Cyril; Xu, Song; Hubert, Jacques; Bresler, Laurent; Brunaud, Laurent; Perez, Manuela

    2018-03-01

    In robotic surgery, the coordination between the console-side surgeon and bed-side assistant is crucial, more than in standard surgery or laparoscopy where the surgical team works in close contact. Xperience™ Team Trainer (XTT) is a new optional component for the dv-Trainer ® platform and simulates the patient-side working environment. We present preliminary results for face, content, and the workload imposed regarding the use of the XTT virtual reality platform for the psychomotor and communication skills training of the bed-side assistant in robot-assisted surgery. Participants were categorized into "Beginners" and "Experts". They tested a series of exercises (Pick & Place Laparoscopic Demo, Pick & Place 2 and Team Match Board 1) and completed face validity questionnaires. "Experts" assessed content validity on another questionnaire. All the participants completed a NASA Task Load Index questionnaire to assess the workload imposed by XTT. Twenty-one consenting participants were included (12 "Beginners" and 9 "Experts"). XTT was shown to possess face and content validity, as evidenced by the rankings given on the simulator's ease of use and realism parameters and on the simulator's usefulness for training. Eight out of nine "Experts" judged the visualization of metrics after the exercises useful. However, face validity has shown some weaknesses regarding interactions and instruments. Reasonable workload parameters were registered. XTT demonstrated excellent face and content validity with acceptable workload parameters. XTT could become a useful tool for robotic surgery team training.

  15. Computational Modeling for Enhancing Soft Tissue Image Guided Surgery: An Application in Neurosurgery.

    Science.gov (United States)

    Miga, Michael I

    2016-01-01

    With the recent advances in computing, the opportunities to translate computational models to more integrated roles in patient treatment are expanding at an exciting rate. One area of considerable development has been directed towards correcting soft tissue deformation within image guided neurosurgery applications. This review captures the efforts that have been undertaken towards enhancing neuronavigation by the integration of soft tissue biomechanical models, imaging and sensing technologies, and algorithmic developments. In addition, the review speaks to the evolving role of modeling frameworks within surgery and concludes with some future directions beyond neurosurgical applications.

  16. The advanced computational testing and simulation toolkit (ACTS)

    International Nuclear Information System (INIS)

    Drummond, L.A.; Marques, O.

    2002-01-01

    During the past decades there has been a continuous growth in the number of physical and societal problems that have been successfully studied and solved by means of computational modeling and simulation. Distinctively, a number of these are important scientific problems ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon computer chips; but it was not until 1999 that researchers finally achieved a complete numerical solution to the simplest example of ionization, the collision of a hydrogen atom with an electron. On the opposite scale, cosmologists have long wondered whether the expansion of the Universe, which began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch. In 2000, analysis of new measurements of the cosmic microwave background radiation showed that the geometry of the Universe is flat, and thus the Universe will continue expanding forever. Both of these discoveries depended on high performance computer simulations that utilized computational tools included in the Advanced Computational Testing and Simulation (ACTS) Toolkit. The ACTS Toolkit is an umbrella project that brought together a number of general purpose computational tool development projects funded and supported by the U.S. Department of Energy (DOE). These tools, which have been developed independently, mainly at DOE laboratories, make it easier for scientific code developers to write high performance applications for parallel computers. They tackle a number of computational issues that are common to a large number of scientific applications, mainly implementation of numerical algorithms, and support for code development, execution and optimization. The ACTS Toolkit Project enables the use of these tools by a much wider community of computational scientists, and promotes code portability, reusability, reduction of duplicate efforts

  17. The advanced computational testing and simulation toolkit (ACTS)

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, L.A.; Marques, O.

    2002-05-21

    During the past decades there has been a continuous growth in the number of physical and societal problems that have been successfully studied and solved by means of computational modeling and simulation. Distinctively, a number of these are important scientific problems ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon computer chips; but it was not until 1999 that researchers finally achieved a complete numerical solution to the simplest example of ionization, the collision of a hydrogen atom with an electron. On the opposite scale, cosmologists have long wondered whether the expansion of the Universe, which began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch. In 2000, analysis of new measurements of the cosmic microwave background radiation showed that the geometry of the Universe is flat, and thus the Universe will continue expanding forever. Both of these discoveries depended on high performance computer simulations that utilized computational tools included in the Advanced Computational Testing and Simulation (ACTS) Toolkit. The ACTS Toolkit is an umbrella project that brought together a number of general purpose computational tool development projects funded and supported by the U.S. Department of Energy (DOE). These tools, which have been developed independently, mainly at DOE laboratories, make it easier for scientific code developers to write high performance applications for parallel computers. They tackle a number of computational issues that are common to a large number of scientific applications, mainly implementation of numerical algorithms, and support for code development, execution and optimization. The ACTS Toolkit Project enables the use of these tools by a much wider community of computational scientists, and promotes code portability, reusability, reduction of duplicate efforts

  18. The Use of Computer Simulation Gaming in Teaching Broadcast Economics.

    Science.gov (United States)

    Mancuso, Louis C.

    The purpose of this study was to develop a broadcast economic computer simulation and to ascertain how a lecture-computer simulation game compared as a teaching method with a more traditional lecture and case study instructional methods. In each of three sections of a broadcast economics course, a different teaching methodology was employed: (1)…

  19. SPINET: A Parallel Computing Approach to Spine Simulations

    Directory of Open Access Journals (Sweden)

    Peter G. Kropf

    1996-01-01

    Full Text Available Research in scientitic programming enables us to realize more and more complex applications, and on the other hand, application-driven demands on computing methods and power are continuously growing. Therefore, interdisciplinary approaches become more widely used. The interdisciplinary SPINET project presented in this article applies modern scientific computing tools to biomechanical simulations: parallel computing and symbolic and modern functional programming. The target application is the human spine. Simulations of the spine help us to investigate and better understand the mechanisms of back pain and spinal injury. Two approaches have been used: the first uses the finite element method for high-performance simulations of static biomechanical models, and the second generates a simulation developmenttool for experimenting with different dynamic models. A finite element program for static analysis has been parallelized for the MUSIC machine. To solve the sparse system of linear equations, a conjugate gradient solver (iterative method and a frontal solver (direct method have been implemented. The preprocessor required for the frontal solver is written in the modern functional programming language SML, the solver itself in C, thus exploiting the characteristic advantages of both functional and imperative programming. The speedup analysis of both solvers show very satisfactory results for this irregular problem. A mixed symbolic-numeric environment for rigid body system simulations is presented. It automatically generates C code from a problem specification expressed by the Lagrange formalism using Maple.

  20. Computer simulation of two-phase flow in nuclear reactors

    International Nuclear Information System (INIS)

    Wulff, W.

    1993-01-01

    Two-phase flow models dominate the requirements of economic resources for the development and use of computer codes which serve to analyze thermohydraulic transients in nuclear power plants. An attempt is made to reduce the effort of analyzing reactor transients by combining purpose-oriented modelling with advanced computing techniques. Six principles are presented on mathematical modeling and the selection of numerical methods, along with suggestions on programming and machine selection, all aimed at reducing the cost of analysis. Computer simulation is contrasted with traditional computer calculation. The advantages of run-time interactive access operation in a simulation environment are demonstrated. It is explained that the drift-flux model is better suited than the two-fluid model for the analysis of two-phase flow in nuclear reactors, because of the latter's closure problems. The advantage of analytical over numerical integration is demonstrated. Modeling and programming techniques are presented which minimize the number of needed arithmetical and logical operations and thereby increase the simulation speed, while decreasing the cost. (orig.)

  1. Computer simulation of molecular sorption in zeolites

    International Nuclear Information System (INIS)

    Calmiano, Mark Daniel

    2001-01-01

    The work presented in this thesis encompasses the computer simulation of molecular sorption. In Chapter 1 we outline the aims and objectives of this work. Chapter 2 follows in which an introduction to sorption in zeolites is presented, with discussion of structure and properties of the main zeolites studied. Chapter 2 concludes with a description of the principles and theories of adsorption. In Chapter 3 we describe the methodology behind the work carried out in this thesis. In Chapter 4 we present our first computational study, that of the sorption of krypton in silicalite. We describe work carried out to investigate low energy sorption sites of krypton in silicalite where we observe krypton to preferentially sorb into straight and sinusoidal channels over channel intersections. We simulate single step type I adsorption isotherms and use molecular dynamics to study the diffusion of krypton and obtain division coefficients and the activation energy. We compare our results to previous experimental and computational studies where we show our work to be in good agreement. In Chapter 5 we present a systematic study of the sorption of oxygen and nitrogen in five lithium substituted zeolites using a transferable interatomic potential that we have developed from ab initio calculations. We show increased loading of nitrogen compared to oxygen in all five zeolites studied as expected and simulate adsorption isotherms, which we compare to experimental and simulated data in the literature. In Chapter 6 we present work on the sorption of ferrocene in the zeolite NaY. We show that a simulated, low energy sorption site for ferrocene is correctly located by comparing to X-ray powder diffraction results for this same system. The thesis concludes with some overall conclusions and discussion of opportunities for future work. (author)

  2. Factors cost effectively improved using computer simulations of ...

    African Journals Online (AJOL)

    LPhidza

    effectively managed using computer simulations in semi-arid conditions pertinent to much of sub-Saharan Africa. ... small scale farmers to obtain optimal crop yields thus ensuring their food security and livelihood is ... those that simultaneously incorporate and simulate processes involved throughout the course of crop ...

  3. Computer-assisted surgery for screw insertion into the distal sesamoid bone in horses: an in vitro study.

    Science.gov (United States)

    Gygax, Diego; Lischer, Christoph; Auer, Joerg A

    2006-10-01

    To compare the precision of computer-assisted surgery with a conventional technique (CV) using a special guiding device for screw insertion into the distal sesamoid bone in horses. In vitro experimental study. Cadaveric forelimb specimens. Insertion of a 3.5 mm cortex screw in lag fashion along the longitudinal axis of intact (non-fractured) distal sesamoid bones was evaluated in 2 groups (8 limbs each): CV and computer-assisted surgery (CAS). For CV, the screw was inserted using a special guiding device and fluoroscopy, whereas for CAS, the screw was inserted using computer-assisted navigation. The accuracy of screw placement was verified by radiography, computed tomography, and specimen dissection. Surgical precision was better in CAS compared with CV. CAS improves the accuracy of lateromedial screw insertion, in lag fashion, into the distal sesamoid bone. The CAS technique should be considered for improved accuracy of screw insertion in fractures of the distal sesamoid bone.

  4. Three-dimensional digitizer (neuronavigator): new equipment for computed tomography-guided stereotaxic surgery.

    Science.gov (United States)

    Watanabe, E; Watanabe, T; Manaka, S; Mayanagi, Y; Takakura, K

    1987-06-01

    A new device was invented as an adjunct for computed tomography (CT)-guided stereotaxic or open neurosurgery. It is composed of a multijoint three-dimensional digitizer (sensor arm) and a microcomputer, which indicates the place of the sensor arm tip on preoperative CT images. Computed tomography scan is performed preoperatively with three markers placed on the nasion and ears. At surgery, after fixing the patient's head and the sensor arm, sampling of the standard points was done to translate the position of the tip of the sensor arm onto the CT images displayed on a computer screen. In this way positional data from conventional preoperative CT scan can be directly transferred into the surgical field. This system has the unique feature of introducing CT-guided stereotaxis into conventional open neurosurgery.

  5. CloudMC: a cloud computing application for Monte Carlo simulation

    International Nuclear Information System (INIS)

    Miras, H; Jiménez, R; Miras, C; Gomà, C

    2013-01-01

    This work presents CloudMC, a cloud computing application—developed in Windows Azure®, the platform of the Microsoft® cloud—for the parallelization of Monte Carlo simulations in a dynamic virtual cluster. CloudMC is a web application designed to be independent of the Monte Carlo code in which the simulations are based—the simulations just need to be of the form: input files → executable → output files. To study the performance of CloudMC in Windows Azure®, Monte Carlo simulations with penelope were performed on different instance (virtual machine) sizes, and for different number of instances. The instance size was found to have no effect on the simulation runtime. It was also found that the decrease in time with the number of instances followed Amdahl's law, with a slight deviation due to the increase in the fraction of non-parallelizable time with increasing number of instances. A simulation that would have required 30 h of CPU on a single instance was completed in 48.6 min when executed on 64 instances in parallel (speedup of 37 ×). Furthermore, the use of cloud computing for parallel computing offers some advantages over conventional clusters: high accessibility, scalability and pay per usage. Therefore, it is strongly believed that cloud computing will play an important role in making Monte Carlo dose calculation a reality in future clinical practice. (note)

  6. CloudMC: a cloud computing application for Monte Carlo simulation.

    Science.gov (United States)

    Miras, H; Jiménez, R; Miras, C; Gomà, C

    2013-04-21

    This work presents CloudMC, a cloud computing application-developed in Windows Azure®, the platform of the Microsoft® cloud-for the parallelization of Monte Carlo simulations in a dynamic virtual cluster. CloudMC is a web application designed to be independent of the Monte Carlo code in which the simulations are based-the simulations just need to be of the form: input files → executable → output files. To study the performance of CloudMC in Windows Azure®, Monte Carlo simulations with penelope were performed on different instance (virtual machine) sizes, and for different number of instances. The instance size was found to have no effect on the simulation runtime. It was also found that the decrease in time with the number of instances followed Amdahl's law, with a slight deviation due to the increase in the fraction of non-parallelizable time with increasing number of instances. A simulation that would have required 30 h of CPU on a single instance was completed in 48.6 min when executed on 64 instances in parallel (speedup of 37 ×). Furthermore, the use of cloud computing for parallel computing offers some advantages over conventional clusters: high accessibility, scalability and pay per usage. Therefore, it is strongly believed that cloud computing will play an important role in making Monte Carlo dose calculation a reality in future clinical practice.

  7. A real-time computer simulation of nuclear simulator software using standard PC hardware and linux environments

    International Nuclear Information System (INIS)

    Cha, K. H.; Kweon, K. C.

    2001-01-01

    A feasibility study, which standard PC hardware and Real-Time Linux are applied to real-time computer simulation of software for a nuclear simulator, is presented in this paper. The feasibility prototype was established with the existing software in the Compact Nuclear Simulator (CNS). Throughout the real-time implementation in the feasibility prototype, we has identified that the approach can enable the computer-based predictive simulation to be approached, due to both the remarkable improvement in real-time performance and the less efforts for real-time implementation under standard PC hardware and Real-Time Linux envrionments

  8. Formal Analysis of Dynamics Within Philosophy of Mind by Computer Simulation

    NARCIS (Netherlands)

    Bosse, T.; Schut, M.C.; Treur, J.

    2009-01-01

    Computer simulations can be useful tools to support philosophers in validating their theories, especially when these theories concern phenomena showing nontrivial dynamics. Such theories are usually informal, whilst for computer simulation a formally described model is needed. In this paper, a

  9. Fast Simulation of Large-Scale Floods Based on GPU Parallel Computing

    OpenAIRE

    Qiang Liu; Yi Qin; Guodong Li

    2018-01-01

    Computing speed is a significant issue of large-scale flood simulations for real-time response to disaster prevention and mitigation. Even today, most of the large-scale flood simulations are generally run on supercomputers due to the massive amounts of data and computations necessary. In this work, a two-dimensional shallow water model based on an unstructured Godunov-type finite volume scheme was proposed for flood simulation. To realize a fast simulation of large-scale floods on a personal...

  10. Computer simulation studies in condensed-matter physics 5. Proceedings

    International Nuclear Information System (INIS)

    Landau, D.P.; Mon, K.K.; Schuettler, H.B.

    1993-01-01

    As the role of computer simulations began to increase in importance, we sensed a need for a ''meeting place'' for both experienced simulators and neophytes to discuss new techniques and results in an environment which promotes extended discussion. As a consequence of these concerns, The Center for Simulational Physics established an annual workshop on Recent Developments in Computer Simulation Studies in Condensed-Matter Physics. This year's workshop was the fifth in this series and the interest which the scientific community has shown demonstrates quite clearly the useful purpose which the series has served. The workshop was held at the University of Georgia, February 17-21, 1992, and these proceedings from a record of the workshop which is published with the goal of timely dissemination of the papers to a wider audience. The proceedings are divided into four parts. The first part contains invited papers which deal with simulational studies of classical systems and includes an introduction to some new simulation techniques and special purpose computers as well. A separate section of the proceedings is devoted to invited papers on quantum systems including new results for strongly correlated electron and quantum spin models. The third section is comprised of a single, invited description of a newly developed software shell designed for running parallel programs. The contributed presentations comprise the final chapter. (orig.). 79 figs

  11. A compositional reservoir simulator on distributed memory parallel computers

    International Nuclear Information System (INIS)

    Rame, M.; Delshad, M.

    1995-01-01

    This paper presents the application of distributed memory parallel computes to field scale reservoir simulations using a parallel version of UTCHEM, The University of Texas Chemical Flooding Simulator. The model is a general purpose highly vectorized chemical compositional simulator that can simulate a wide range of displacement processes at both field and laboratory scales. The original simulator was modified to run on both distributed memory parallel machines (Intel iPSC/960 and Delta, Connection Machine 5, Kendall Square 1 and 2, and CRAY T3D) and a cluster of workstations. A domain decomposition approach has been taken towards parallelization of the code. A portion of the discrete reservoir model is assigned to each processor by a set-up routine that attempts a data layout as even as possible from the load-balance standpoint. Each of these subdomains is extended so that data can be shared between adjacent processors for stencil computation. The added routines that make parallel execution possible are written in a modular fashion that makes the porting to new parallel platforms straight forward. Results of the distributed memory computing performance of Parallel simulator are presented for field scale applications such as tracer flood and polymer flood. A comparison of the wall-clock times for same problems on a vector supercomputer is also presented

  12. Computer simulation of ultrasonic waves in solids

    International Nuclear Information System (INIS)

    Thibault, G.A.; Chaplin, K.

    1992-01-01

    A computer model that simulates the propagation of ultrasonic waves has been developed at AECL Research, Chalk River Laboratories. This program is called EWE, short for Elastic Wave Equations, the mathematics governing the propagation of ultrasonic waves. This report contains a brief summary of the use of ultrasonic waves in non-destructive testing techniques, a discussion of the EWE simulation code explaining the implementation of the equations and the types of output received from the model, and an example simulation showing the abilities of the model. (author). 2 refs., 2 figs

  13. COMPUTER MODEL AND SIMULATION OF A GLOVE BOX PROCESS

    International Nuclear Information System (INIS)

    Foster, C.

    2001-01-01

    The development of facilities to deal with the disposition of nuclear materials at an acceptable level of Occupational Radiation Exposure (ORE) is a significant issue facing the nuclear community. One solution is to minimize the worker's exposure though the use of automated systems. However, the adoption of automated systems for these tasks is hampered by the challenging requirements that these systems must meet in order to be cost effective solutions in the hazardous nuclear materials processing environment. Retrofitting current glove box technologies with automation systems represents potential near-term technology that can be applied to reduce worker ORE associated with work in nuclear materials processing facilities. Successful deployment of automation systems for these applications requires the development of testing and deployment strategies to ensure the highest level of safety and effectiveness. Historically, safety tests are conducted with glove box mock-ups around the finished design. This late detection of problems leads to expensive redesigns and costly deployment delays. With wide spread availability of computers and cost effective simulation software it is possible to discover and fix problems early in the design stages. Computer simulators can easily create a complete model of the system allowing a safe medium for testing potential failures and design shortcomings. The majority of design specification is now done on computer and moving that information to a model is relatively straightforward. With a complete model and results from a Failure Mode Effect Analysis (FMEA), redesigns can be worked early. Additional issues such as user accessibility, component replacement, and alignment problems can be tackled early in the virtual environment provided by computer simulation. In this case, a commercial simulation package is used to simulate a lathe process operation at the Los Alamos National Laboratory (LANL). The Lathe process operation is indicative of

  14. Fundamentals of force feedback and application to a surgery simulator.

    Science.gov (United States)

    Maass, Heiko; Chantier, Benjamin B A; Cakmak, Hueseyin K; Trantakis, Christos; Kuehnapfel, Uwe G

    2003-01-01

    Force feedback increases the effectiveness of virtual-reality surgery training systems. An overview of the fundamentals of applying force feedback is presented. An impedance control technique and data processing methods for stability preservation are illustrated. A flexible interface for general force-feedback applications has been developed. This interface is capable of controlling several different force-feedback hardware systems, including the SensAble PHANTOM, the Laparoscopic Impulse Engines from Immersion, and the VS-One virtual endoscopic surgery trainer. The findings are evaluated using the main simulation system, KISMET, and the modeling tools KISMO and VESUV. Within the scope of a cooperative project called HapticIO (funded by the German Ministry of Education and Research [BMBF]), new haptic devices have been designed for virtual neuroendoscopy and laparoscopy. The concept and implementations presented in this paper have been found to be flexible, stable and suitable for universal use. The impedance method, combined with the open-loop feed-forward control technique, is well suited and appropriate for the task.

  15. Thermodynamic and transport properties of nitrogen fluid: Molecular theory and computer simulations

    Science.gov (United States)

    Eskandari Nasrabad, A.; Laghaei, R.

    2018-04-01

    Computer simulations and various theories are applied to compute the thermodynamic and transport properties of nitrogen fluid. To model the nitrogen interaction, an existing potential in the literature is modified to obtain a close agreement between the simulation results and experimental data for the orthobaric densities. We use the Generic van der Waals theory to calculate the mean free volume and apply the results within the modified Cohen-Turnbull relation to obtain the self-diffusion coefficient. Compared to experimental data, excellent results are obtained via computer simulations for the orthobaric densities, the vapor pressure, the equation of state, and the shear viscosity. We analyze the results of the theory and computer simulations for the various thermophysical properties.

  16. Computer simulation for sodium-concrete reactions

    International Nuclear Information System (INIS)

    Zhang Bin; Zhu Jizhou

    2006-01-01

    In the liquid metal cooled fast breeder reactors (LMFBRs), direct contacts between sodium and concrete is unavoidable. Due to sodium's high chemical reactivity, sodium would react with concrete violently. Lots of hydrogen gas and heat would be released then. This would harm the ignorantly of the containment. This paper developed a program to simualte sodium-conrete reactions across-the-board. It could give the reaction zone temperature, pool temperature, penetration depth, penetration rate, hydrogen flux and reaction heat and so on. Concrete was considered to be composed of silica and water only in this paper. The variable, the quitient of sodium hydroxide, was introduced in the continuity equation to simulate the chemical reactions more realistically. The product of the net gas flux and boundary depth was ably transformed to that of penetration rate and boundary depth. The complex chemical kinetics equations was simplified under some hypothesises. All the technique applied above simplified the computer simulation consumedly. In other words, they made the computer simulation feasible. Theoretics models that applied in the program and the calculation procedure were expatiated in detail. Good agreements of an overall transient behavior were obtained in the series of sodium-concrete reaction experiment analysis. The comparison between the analytical and experimental results showed the program presented in this paper was creditable and reasonable for simulating the sodium-concrete reactions. This program could be used for nuclear safety judgement. (authors)

  17. Resident simulation training in endoscopic endonasal surgery utilizing haptic feedback technology.

    Science.gov (United States)

    Thawani, Jayesh P; Ramayya, Ashwin G; Abdullah, Kalil G; Hudgins, Eric; Vaughan, Kerry; Piazza, Matthew; Madsen, Peter J; Buch, Vivek; Sean Grady, M

    2016-12-01

    Simulated practice may improve resident performance in endoscopic endonasal surgery. Using the NeuroTouch haptic simulation platform, we evaluated resident performance and assessed the effect of simulation training on performance in the operating room. First- (N=3) and second- (N=3) year residents were assessed using six measures of proficiency. Using a visual analog scale, the senior author scored subjects. After the first session, subjects with lower scores were provided with simulation training. A second simulation served as a task-learning control. Residents were evaluated in the operating room over six months by the senior author-who was blinded to the trained/untrained identities-using the same parameters. A nonparametric bootstrap testing method was used for the analysis (Matlab v. 2014a). Simulation training was associated with an increase in performance scores in the operating room averaged over all measures (p=0.0045). This is the first study to evaluate the training utility of an endoscopic endonasal surgical task using a virtual reality haptic simulator. The data suggest that haptic simulation training in endoscopic neurosurgery may contribute to improvements in operative performance. Limitations include a small number of subjects and adjudication bias-although the trained/untrained identity of subjects was blinded. Further study using the proposed methods may better describe the relationship between simulated training and operative performance in endoscopic Neurosurgery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A review of computer-based simulators for ultrasound training.

    Science.gov (United States)

    Blum, Tobias; Rieger, Andreas; Navab, Nassir; Friess, Helmut; Martignoni, Marc

    2013-04-01

    Computer-based simulators for ultrasound training are a topic of recent interest. During the last 15 years, many different systems and methods have been proposed. This article provides an overview and classification of systems in this domain and a discussion of their advantages. Systems are classified and discussed according to the image simulation method, user interactions and medical applications. Computer simulation of ultrasound has one key advantage over traditional training. It enables novel training concepts, for example, through advanced visualization, case databases, and automatically generated feedback. Qualitative evaluations have mainly shown positive learning effects. However, few quantitative evaluations have been performed and long-term effects have to be examined.

  19. Cardiovascular Surgery Residency Program: Training Coronary Anastomosis Using the Arroyo Simulator and UNIFESP Models.

    Science.gov (United States)

    Maluf, Miguel Angel; Gomes, Walter José; Bras, Ademir Massarico; Araújo, Thiago Cavalcante Vila Nova de; Mota, André Lupp; Cardoso, Caio Cesar; Coutinho, Rafael Viana dos S

    2015-01-01

    Engage the UNIFESP Cardiovascular Surgery residents in coronary anastomosis, assess their skills and certify results, using the Arroyo Anastomosis Simulator and UNIFESP surgical models. First to 6th year residents attended a weekly program of technical training in coronary anastomosis, using 4 simulation models: 1. Arroyo simulator; 2. Dummy with a plastic heart; 3. Dummy with a bovine heart; and 4. Dummy with a beating pig heart. The assessment test was comprised of 10 items, using a scale from 1 to 5 points in each of them, creating a global score of 50 points maximum. The technical performance of the candidate showed improvement in all items, especially manual skill and technical progress, critical sense of the work performed, confidence in the procedure and reduction of the time needed to perform the anastomosis after 12 weeks practice. In response to the multiplicity of factors that currently influence the cardiovascular surgeon training, there have been combined efforts to reform the practices of surgical medical training. 1 - The four models of simulators offer a considerable contribution to the field of cardiovascular surgery, improving the skill and dexterity of the surgeon in training. 2 - Residents have shown interest in training and cooperate in the development of innovative procedures for surgical medical training in the art.

  20. Computer Graphics Simulations of Sampling Distributions.

    Science.gov (United States)

    Gordon, Florence S.; Gordon, Sheldon P.

    1989-01-01

    Describes the use of computer graphics simulations to enhance student understanding of sampling distributions that arise in introductory statistics. Highlights include the distribution of sample proportions, the distribution of the difference of sample means, the distribution of the difference of sample proportions, and the distribution of sample…

  1. Computer simulation of nonequilibrium processes

    International Nuclear Information System (INIS)

    Wallace, D.C.

    1985-07-01

    The underlying concepts of nonequilibrium statistical mechanics, and of irreversible thermodynamics, will be described. The question at hand is then, how are these concepts to be realize in computer simulations of many-particle systems. The answer will be given for dissipative deformation processes in solids, on three hierarchical levels: heterogeneous plastic flow, dislocation dynamics, an molecular dynamics. Aplication to the shock process will be discussed

  2. Building an adiabatic quantum computer simulation in the classroom

    Science.gov (United States)

    Rodríguez-Laguna, Javier; Santalla, Silvia N.

    2018-05-01

    We present a didactic introduction to adiabatic quantum computation (AQC) via the explicit construction of a classical simulator of quantum computers. This constitutes a suitable route to introduce several important concepts for advanced undergraduates in physics: quantum many-body systems, quantum phase transitions, disordered systems, spin-glasses, and computational complexity theory.

  3. Quantitative computed tomography for the prediction of pulmonary function after lung cancer surgery: a simple method using simulation software.

    Science.gov (United States)

    Ueda, Kazuhiro; Tanaka, Toshiki; Li, Tao-Sheng; Tanaka, Nobuyuki; Hamano, Kimikazu

    2009-03-01

    The prediction of pulmonary functional reserve is mandatory in therapeutic decision-making for patients with resectable lung cancer, especially those with underlying lung disease. Volumetric analysis in combination with densitometric analysis of the affected lung lobe or segment with quantitative computed tomography (CT) helps to identify residual pulmonary function, although the utility of this modality needs investigation. The subjects of this prospective study were 30 patients with resectable lung cancer. A three-dimensional CT lung model was created with voxels representing normal lung attenuation (-600 to -910 Hounsfield units). Residual pulmonary function was predicted by drawing a boundary line between the lung to be preserved and that to be resected, directly on the lung model. The predicted values were correlated with the postoperative measured values. The predicted and measured values corresponded well (r=0.89, plung cancer surgery and helped to identify patients whose functional reserves are likely to be underestimated. Hence, this modality should be utilized for patients with marginal pulmonary function.

  4. Computed tomography evaluation of autogenous graft in sinus lift surgery

    International Nuclear Information System (INIS)

    Ajzen, Sergio Aron; Moscatiello, Rafael Andrade; Lima, Aida Maria Custodio de; Moscatiello, Vitoria Aparecida Muglia; Helio Kiitiro Yamashita; Mosacatiello, Rafael Muglia; Nishiguchi, Celso Itiro; Alves, Maria Teresa de Seixas

    2001-01-01

    The objective was to quantify bone formation within autogenous bone grafts and autogenous bone grafts in combination with platelet-rich plasma obtained either from apheresis or centrifugation using computed tomography. This prospective, double-blind study was conducted in 34 male and female adult patients (mean age of 28 years and 8 months), with either unilateral or bilateral pneumatization of the maxillary sinuses, requiring bone graft for dental implant. All patients were submitted to computed tomography examinations prior and six months after sinus lift surgery. Fifty-three maxillary sinuses were operated and divided into three distinct groups: autogenous bone graft, autogenous bone graft in combination with platelet-rich plasma obtained by centrifugation, and autogenous bone graft in combination with platelet-rich plasma obtained by apheresis. The results showed that computed tomography demonstrated bone growth in height and width between the initial and the follow-up computed tomography scans in all three groups. However, no statistical difference was found either for bone height or width. It was concluded that clinical evidence demonstrates the effectiveness of autogenous bone grafts, particularly when used in combination with bone growth factors such as platelet-rich plasma, which allow prosthetic and functional restoration of maxillofacial structures through fixation of dental implants. (author)

  5. Quantum computer gate simulations | Dada | Journal of the Nigerian ...

    African Journals Online (AJOL)

    A new interactive simulator for Quantum Computation has been developed for simulation of the universal set of quantum gates and for construction of new gates of up to 3 qubits. The simulator also automatically generates an equivalent quantum circuit for any arbitrary unitary transformation on a qubit. Available quantum ...

  6. 3D printing in orthognathic surgery - A literature review.

    Science.gov (United States)

    Lin, Hsiu-Hsia; Lonic, Daniel; Lo, Lun-Jou

    2018-07-01

    With the recent advances in three-dimensional (3D) imaging, computer-assisted surgical planning and simulation are now regularly used for analysis of craniofacial structures and improved prediction of surgical outcomes in orthognathic surgery. A variety of patient-specific surgical guides and devices have been designed and manufactured using 3D printing technology, which rapidly gained widespread popularity to improve the outcomes. The article presents an overview of 3D printing technology for state-of-the-art application in orthognathic surgery and discusses the impacts on treatment feasibility and patient outcome. The current available literature regarding the use of 3D printing methods in orthognathic surgery including 3D computer-aided design/computer-aided manufacturing, rapid prototyping, additive manufacturing, 3D printing, 3D printed models, surgical occlusal splints, custom-made guides, templates and fixation plates is reviewed. A Medline, PubMed, ProQuest and ScienceDirect search was performed to find relevant articles over the past 10 years. A total of 318 articles were found, out of which 69 were publications addressing the topic of this study. An additional 9 hand-searched articles were added. From the review, we can conclude that the use of 3D printing methods in orthognathic surgery provide the benefit of optimal functional and aesthetic results, patient satisfaction, and precise translation of the treatment plan. Copyright © 2018. Published by Elsevier B.V.

  7. Computing Cost Price for Cataract Surgery by Activity Based Costing (ABC Method at Hazrat-E-Zahra Hospital, Isfahan University of Medical Sciences, 2014

    Directory of Open Access Journals (Sweden)

    Masuod Ferdosi

    2016-10-01

    Full Text Available Background: Hospital managers need to have accurate information about actual costs to make efficient and effective decisions. In activity based costing method, first, activities are recognized and then direct and indirect costs are computed based on allocation methods. The aim of this study was to compute the cost price for cataract surgery by Activity Based Costing (ABC method at Hazrat-e-Zahra Hospital, Isfahan University of Medical Sciences. Methods: This was a cross- sectional study for computing the costs of cataract surgery by activity based costing technique in Hazrat-e-Zahra Hospital in Isfahan University of Medical Sciences, 2014. Data were collected through interview and direct observation and analyzed by Excel software. Results: According to the results of this study, total cost in cataract surgery was 8,368,978 Rials. Personnel cost included 62.2% (5,213,574 Rials of total cost of cataract surgery that is the highest share of surgery costs. The cost of consumables was 7.57% (1,992,852 Rials of surgery costs. Conclusion: Based on the results, there was different between cost price of the services and public Tariff which appears as hazards or financial crises to the hospital. Therefore, it is recommended to use the right methods to compute the costs relating to Activity Based Costing. Cost price of cataract surgery can be reduced by strategies such as decreasing the cost of consumables.

  8. Application of parallel computing techniques to a large-scale reservoir simulation

    International Nuclear Information System (INIS)

    Zhang, Keni; Wu, Yu-Shu; Ding, Chris; Pruess, Karsten

    2001-01-01

    Even with the continual advances made in both computational algorithms and computer hardware used in reservoir modeling studies, large-scale simulation of fluid and heat flow in heterogeneous reservoirs remains a challenge. The problem commonly arises from intensive computational requirement for detailed modeling investigations of real-world reservoirs. This paper presents the application of a massive parallel-computing version of the TOUGH2 code developed for performing large-scale field simulations. As an application example, the parallelized TOUGH2 code is applied to develop a three-dimensional unsaturated-zone numerical model simulating flow of moisture, gas, and heat in the unsaturated zone of Yucca Mountain, Nevada, a potential repository for high-level radioactive waste. The modeling approach employs refined spatial discretization to represent the heterogeneous fractured tuffs of the system, using more than a million 3-D gridblocks. The problem of two-phase flow and heat transfer within the model domain leads to a total of 3,226,566 linear equations to be solved per Newton iteration. The simulation is conducted on a Cray T3E-900, a distributed-memory massively parallel computer. Simulation results indicate that the parallel computing technique, as implemented in the TOUGH2 code, is very efficient. The reliability and accuracy of the model results have been demonstrated by comparing them to those of small-scale (coarse-grid) models. These comparisons show that simulation results obtained with the refined grid provide more detailed predictions of the future flow conditions at the site, aiding in the assessment of proposed repository performance

  9. Advanced computational simulations of water waves interacting with wave energy converters

    Science.gov (United States)

    Pathak, Ashish; Freniere, Cole; Raessi, Mehdi

    2017-03-01

    Wave energy converter (WEC) devices harness the renewable ocean wave energy and convert it into useful forms of energy, e.g. mechanical or electrical. This paper presents an advanced 3D computational framework to study the interaction between water waves and WEC devices. The computational tool solves the full Navier-Stokes equations and considers all important effects impacting the device performance. To enable large-scale simulations in fast turnaround times, the computational solver was developed in an MPI parallel framework. A fast multigrid preconditioned solver is introduced to solve the computationally expensive pressure Poisson equation. The computational solver was applied to two surface-piercing WEC geometries: bottom-hinged cylinder and flap. Their numerically simulated response was validated against experimental data. Additional simulations were conducted to investigate the applicability of Froude scaling in predicting full-scale WEC response from the model experiments.

  10. Cluster computing for lattice QCD simulations

    International Nuclear Information System (INIS)

    Coddington, P.D.; Williams, A.G.

    2000-01-01

    Full text: Simulations of lattice quantum chromodynamics (QCD) require enormous amounts of compute power. In the past, this has usually involved sharing time on large, expensive machines at supercomputing centres. Over the past few years, clusters of networked computers have become very popular as a low-cost alternative to traditional supercomputers. The dramatic improvements in performance (and more importantly, the ratio of price/performance) of commodity PCs, workstations, and networks have made clusters of off-the-shelf computers an attractive option for low-cost, high-performance computing. A major advantage of clusters is that since they can have any number of processors, they can be purchased using any sized budget, allowing research groups to install a cluster for their own dedicated use, and to scale up to more processors if additional funds become available. Clusters are now being built for high-energy physics simulations. Wuppertal has recently installed ALiCE, a cluster of 128 Alpha workstations running Linux, with a peak performance of 158 G flops. The Jefferson Laboratory in the US has a 16 node Alpha cluster and plans to upgrade to a 256 processor machine. In Australia, several large clusters have recently been installed. Swinburne University of Technology has a cluster of 64 Compaq Alpha workstations used for astrophysics simulations. Early this year our DHPC group constructed a cluster of 116 dual Pentium PCs (i.e. 232 processors) connected by a Fast Ethernet network, which is used by chemists at Adelaide University and Flinders University to run computational chemistry codes. The Australian National University has recently installed a similar PC cluster with 192 processors. The Centre for the Subatomic Structure of Matter (CSSM) undertakes large-scale high-energy physics calculations, mainly lattice QCD simulations. The choice of the computer and network hardware for a cluster depends on the particular applications to be run on the machine. Our

  11. Computer Networks E-learning Based on Interactive Simulations and SCORM

    Directory of Open Access Journals (Sweden)

    Francisco Andrés Candelas

    2011-05-01

    Full Text Available This paper introduces a new set of compact interactive simulations developed for the constructive learning of computer networks concepts. These simulations, which compose a virtual laboratory implemented as portable Java applets, have been created by combining EJS (Easy Java Simulations with the KivaNS API. Furthermore, in this work, the skills and motivation level acquired by the students are evaluated and measured when these simulations are combined with Moodle and SCORM (Sharable Content Object Reference Model documents. This study has been developed to improve and stimulate the autonomous constructive learning in addition to provide timetable flexibility for a Computer Networks subject.

  12. The use of simulators in the learning for otologic surgery

    Directory of Open Access Journals (Sweden)

    Sousa, Ana Maria Almeida de

    2011-10-01

    Full Text Available Introduction: The teaching method of "learn by doing it'' was created by Halsted e col. In the beginning of 20th century creating the first model of medical residence in the world. This learning develops in three phases: cognitive, associative and autonomous, through an ascending curve. The simulators appeared in the last years as a complement to the cognitive phase, adding efforts to the training, performed before only in animals and cadavers, ever more hampered by medical and legal dilemmas. Objective: Describe and compare the various types of simulators available for the learning of otological surgery. Data synthesis: The model of simulators are divided mainly in real and virtual models, each having its peculiarities with positive and negative points. The main point of each one of them is the sensory feedback granted by each one of them, what we call it haptic reality: coloring of the structure dissected; listening to the corresponding sounds; as the drill or vacuum; presence of a joystick that simulates the pen motor; use of glasses or even a microscope for three dimensional view; use of a real otologic surgical instrument. The cost of the differents types of simulators is also a key point for the implementation of them in the daily reality of the training centers. Is important to mention that some of these simulators allow the training students and can be objectively evaluated by the simulator itself. Conclusion: Simulators are seen as a complementary tool for training and improvement of the otological surgeons.

  13. Virtual reality in laparoscopic surgery.

    Science.gov (United States)

    Uranüs, Selman; Yanik, Mustafa; Bretthauer, Georg

    2004-01-01

    Although the many advantages of laparoscopic surgery have made it an established technique, training in laparoscopic surgery posed problems not encountered in conventional surgical training. Virtual reality simulators open up new perspectives for training in laparoscopic surgery. Under realistic conditions in real time, trainees can tailor their sessions with the VR simulator to suit their needs and goals, and can repeat exercises as often as they wish. VR simulators reduce the number of experimental animals needed for training purposes and are suited to the pursuit of research in laparoscopic surgery.

  14. Computer Simulation of Angle-measuring System of Photoelectric Theodolite

    International Nuclear Information System (INIS)

    Zeng, L; Zhao, Z W; Song, S L; Wang, L T

    2006-01-01

    In this paper, a virtual test platform based on malfunction phenomena is designed, using the methods of computer simulation and numerical mask. It is used in the simulation training of angle-measuring system of photoelectric theodolite. Actual application proves that this platform supplies good condition for technicians making deep simulation training and presents a useful approach for the establishment of other large equipment simulation platforms

  15. Computer-assisted surgery: virtual- and augmented-reality displays for navigation during urological interventions.

    Science.gov (United States)

    van Oosterom, Matthias N; van der Poel, Henk G; Navab, Nassir; van de Velde, Cornelis J H; van Leeuwen, Fijs W B

    2018-03-01

    To provide an overview of the developments made for virtual- and augmented-reality navigation procedures in urological interventions/surgery. Navigation efforts have demonstrated potential in the field of urology by supporting guidance for various disorders. The navigation approaches differ between the individual indications, but seem interchangeable to a certain extent. An increasing number of pre- and intra-operative imaging modalities has been used to create detailed surgical roadmaps, namely: (cone-beam) computed tomography, MRI, ultrasound, and single-photon emission computed tomography. Registration of these surgical roadmaps with the real-life surgical view has occurred in different forms (e.g. electromagnetic, mechanical, vision, or near-infrared optical-based), whereby the combination of approaches was suggested to provide superior outcome. Soft-tissue deformations demand the use of confirmatory interventional (imaging) modalities. This has resulted in the introduction of new intraoperative modalities such as drop-in US, transurethral US, (drop-in) gamma probes and fluorescence cameras. These noninvasive modalities provide an alternative to invasive technologies that expose the patients to X-ray doses. Whereas some reports have indicated navigation setups provide equal or better results than conventional approaches, most trials have been performed in relatively small patient groups and clear follow-up data are missing. The reported computer-assisted surgery research concepts provide a glimpse in to the future application of navigation technologies in the field of urology.

  16. What do we want from computer simulation of SIMS using clusters?

    International Nuclear Information System (INIS)

    Webb, R.P.

    2008-01-01

    Computer simulation of energetic cluster interactions with surfaces has provided much needed insight into some of the complex processes which occur and are responsible for the desirable as well as undesirable effects which make the use of clusters in SIMS both useful and challenging. Simulations have shown how cluster impacts can cause meso-scale motion of the target material which can result in the relatively gentle up-lift of large intact molecules adsorbed on the surface in contrast to the behaviour of single atom impacts which tend to create discrete motion in the surface often ejecting fragments of adsorbed molecules instead. With the insight provided from simulations experimentalists can then improve their equipment to best maximise the desired effects. The past 40 years has seen great progress in simulation techniques and computer equipment. 40 years ago simulations were performed on simple atomic systems of around 300 atoms employing only simple pair-wise interaction potentials to times of several hundred femtoseconds. Currently simulations can be performed on large organic materials employing many body potentials for millions of atoms for times of many picoseconds. These simulations, however, can take several months of computation time. Even with the degree of realism introduced with these long time simulations they are still not perfect are often not capable of being used in a completely predictive way. Computer simulation is reaching a position where by any more effort to increase its realism will make it completely intractable to solution in a reasonable time frame and yet there is an increasing demand from experimentalists for something that can help in a predictive way to help in experiment design and interpretation. This paper will discuss the problems of computer simulation and what might be possible to achieve in the short term, what is unlikely ever to be possible without a major new break through and how we might exploit the meso-scale effects in

  17. Artificial muscles for a novel simulator in minimally invasive spine surgery.

    Science.gov (United States)

    Hollensteiner, Marianne; Fuerst, David; Schrempf, Andreas

    2014-01-01

    Vertebroplasty and kyphoplasty are commonly used minimally invasive methods to treat vertebral compression fractures. Novice surgeons gather surgical skills in different ways, mainly by "learning by doing" or training on models, specimens or simulators. Currently, a new training modality, an augmented reality simulator for minimally invasive spine surgeries, is going to be developed. An important step in investigating this simulator is the accurate establishment of artificial tissues. Especially vertebrae and muscles, reproducing a comparable haptical feedback during tool insertion, are necessary. Two artificial tissues were developed to imitate natural muscle tissue. The axial insertion force was used as validation parameter. It appropriates the mechanical properties of artificial and natural muscles. Validation was performed on insertion measurement data from fifteen artificial muscle tissues compared to human muscles measurement data. Based on the resulting forces during needle insertion into human muscles, a suitable material composition for manufacturing artificial muscles was found.

  18. Validation and computing and performance studies for the ATLAS simulation

    CERN Document Server

    Marshall, Z; The ATLAS collaboration

    2009-01-01

    We present the validation of the ATLAS simulation software pro ject. Software development is controlled by nightly builds and several levels of automatic tests to ensure stability. Computing validation, including CPU time, memory, and disk space required per event, is benchmarked for all software releases. Several different physics processes and event types are checked to thoroughly test all aspects of the detector simulation. The robustness of the simulation software is demonstrated by the production of 500 million events on the World-wide LHC Computing Grid in the last year.

  19. On efficiency of fire simulation realization: parallelization with greater number of computational meshes

    Science.gov (United States)

    Valasek, Lukas; Glasa, Jan

    2017-12-01

    Current fire simulation systems are capable to utilize advantages of high-performance computer (HPC) platforms available and to model fires efficiently in parallel. In this paper, efficiency of a corridor fire simulation on a HPC computer cluster is discussed. The parallel MPI version of Fire Dynamics Simulator is used for testing efficiency of selected strategies of allocation of computational resources of the cluster using a greater number of computational cores. Simulation results indicate that if the number of cores used is not equal to a multiple of the total number of cluster node cores there are allocation strategies which provide more efficient calculations.

  20. Computational simulator of robotic manipulators

    International Nuclear Information System (INIS)

    Leal, Alexandre S.; Campos, Tarcisio P.R.

    1995-01-01

    Robotic application for industrial plants is discussed and a computational model for a mechanical manipulator of three links is presented. A neural network feed-forward type has been used to model the dynamic control of the manipulator. A graphic interface was developed in C programming language as a virtual world in order to visualize and simulate the arm movements handling radioactive waste environment. (author). 7 refs, 5 figs

  1. Computer-assisted Orthopaedic Surgery: Current State and Future Perspective

    Directory of Open Access Journals (Sweden)

    Guoyan eZheng

    2015-12-01

    Full Text Available Introduced about two decades ago, computer-assisted orthopaedic surgery (CAOS has emerged as a new and independent area, due to the importance of treatment of musculoskeletal diseases in orthopaedics and traumatology, increasing availability of different imaging modalities, and advances in analytics and navigation tools. The aim of this paper is to present the basic elements of CAOS devices and to review state-of-the-art examples of different imaging modalities used to create the virtual representations, of different position tracking devices for navigation systems, of different surgical robots, of different methods for registration and referencing, and of CAOS modules that have been realized for different surgical procedures. Future perspectives will also be outlined.

  2. Macromod: Computer Simulation For Introductory Economics

    Science.gov (United States)

    Ross, Thomas

    1977-01-01

    The Macroeconomic model (Macromod) is a computer assisted instruction simulation model designed for introductory economics courses. An evaluation of its utilization at a community college indicates that it yielded a 10 percent to 13 percent greater economic comprehension than lecture classes and that it met with high student approval. (DC)

  3. An Investigation of Computer-based Simulations for School Crises Management.

    Science.gov (United States)

    Degnan, Edward; Bozeman, William

    2001-01-01

    Describes development of a computer-based simulation program for training school personnel in crisis management. Addresses the data collection and analysis involved in developing a simulated event, the systems requirements for simulation, and a case study of application and use of the completed simulation. (Contains 21 references.) (Authors/PKP)

  4. The use of micro-computers in the simulation of ion beam optics

    International Nuclear Information System (INIS)

    Spaedtke, P.; Ivens, D.

    1989-01-01

    With computer simulation codes specific problems of the ion beam optics can be studied, which is useful in the design as in optimization of existing systems. Several such codes have been developed, unfortunately requiring substantial computer resources. Recent advances of mini- and micro-computers have now made it possible to develop simulation codes which can be run on these small computers also. In this paper, some of these codes will be presented and their computing time discussed. (author)

  5. Computer simulation of driven Alfven waves

    International Nuclear Information System (INIS)

    Geary, J.L. Jr.

    1986-01-01

    The first particle simulation study of shear Alfven wave resonance heating is presented. Particle simulation codes self-consistently follow the time evolution of the individual and collective aspects of particle dynamics as well as wave dynamics in a fully nonlinear fashion. Alfven wave heating is a possible means of increasing the temperature of magnetized plasmas. A new particle simulation model was developed for this application that incorporates Darwin's formulation of the electromagnetic fields with a guiding center approximation for electron motion perpendicular to the ambient magnetic field. The implementation of this model and the examination of its theoretical and computational properties are presented. With this model, several cases of Alfven wave heating is examined in both uniform and nonuniform simulation systems in a two dimensional slab. For the inhomogeneous case studies, the kinetic Alfven wave develops in the vicinity of the shear Alfven resonance region

  6. Man-machine interfaces analysis system based on computer simulation

    International Nuclear Information System (INIS)

    Chen Xiaoming; Gao Zuying; Zhou Zhiwei; Zhao Bingquan

    2004-01-01

    The paper depicts a software assessment system, Dynamic Interaction Analysis Support (DIAS), based on computer simulation technology for man-machine interfaces (MMI) of a control room. It employs a computer to simulate the operation procedures of operations on man-machine interfaces in a control room, provides quantified assessment, and at the same time carries out analysis on operational error rate of operators by means of techniques for human error rate prediction. The problems of placing man-machine interfaces in a control room and of arranging instruments can be detected from simulation results. DIAS system can provide good technical supports to the design and improvement of man-machine interfaces of the main control room of a nuclear power plant

  7. Normal postperative computed tomography findings after avariety of pancreatic surgeries

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Ji Won; Hwang, Ho Kyoung; Lee, Min Wook; Kim, Ki Whang; Kang, Chang Moo; Kim, Myeong Jin; Chung, Yong Eun [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2017-04-15

    Pancreatic surgery remains the only curative treatment for pancreatic neoplasms, and plays an important role in the management of medically intractable diseases. Since the original Whipple operation in the 20th century, surgical techniques have advanced, resulting in decreased postoperative complications and better clinical outcomes. Normal postoperative imaging findings vary greatly depending on the surgical technique used. Radiologists are required to be familiar with the normal postoperative imaging findings, in order to distinguish from postoperative complications or tumor recurrence. In this study, we briefly review a variety of surgical techniques for the pancreas, and present the normal postoperative computed tomography findings.

  8. Computational methods for coupling microstructural and micromechanical materials response simulations

    Energy Technology Data Exchange (ETDEWEB)

    HOLM,ELIZABETH A.; BATTAILE,CORBETT C.; BUCHHEIT,THOMAS E.; FANG,HUEI ELIOT; RINTOUL,MARK DANIEL; VEDULA,VENKATA R.; GLASS,S. JILL; KNOROVSKY,GERALD A.; NEILSEN,MICHAEL K.; WELLMAN,GERALD W.; SULSKY,DEBORAH; SHEN,YU-LIN; SCHREYER,H. BUCK

    2000-04-01

    Computational materials simulations have traditionally focused on individual phenomena: grain growth, crack propagation, plastic flow, etc. However, real materials behavior results from a complex interplay between phenomena. In this project, the authors explored methods for coupling mesoscale simulations of microstructural evolution and micromechanical response. In one case, massively parallel (MP) simulations for grain evolution and microcracking in alumina stronglink materials were dynamically coupled. In the other, codes for domain coarsening and plastic deformation in CuSi braze alloys were iteratively linked. this program provided the first comparison of two promising ways to integrate mesoscale computer codes. Coupled microstructural/micromechanical codes were applied to experimentally observed microstructures for the first time. In addition to the coupled codes, this project developed a suite of new computational capabilities (PARGRAIN, GLAD, OOF, MPM, polycrystal plasticity, front tracking). The problem of plasticity length scale in continuum calculations was recognized and a solution strategy was developed. The simulations were experimentally validated on stockpile materials.

  9. Positive Wigner functions render classical simulation of quantum computation efficient.

    Science.gov (United States)

    Mari, A; Eisert, J

    2012-12-07

    We show that quantum circuits where the initial state and all the following quantum operations can be represented by positive Wigner functions can be classically efficiently simulated. This is true both for continuous-variable as well as discrete variable systems in odd prime dimensions, two cases which will be treated on entirely the same footing. Noting the fact that Clifford and Gaussian operations preserve the positivity of the Wigner function, our result generalizes the Gottesman-Knill theorem. Our algorithm provides a way of sampling from the output distribution of a computation or a simulation, including the efficient sampling from an approximate output distribution in the case of sampling imperfections for initial states, gates, or measurements. In this sense, this work highlights the role of the positive Wigner function as separating classically efficiently simulable systems from those that are potentially universal for quantum computing and simulation, and it emphasizes the role of negativity of the Wigner function as a computational resource.

  10. Assessing Practical Skills in Physics Using Computer Simulations

    Science.gov (United States)

    Walsh, Kevin

    2018-01-01

    Computer simulations have been used very effectively for many years in the teaching of science but the focus has been on cognitive development. This study, however, is an investigation into the possibility that a student's experimental skills in the real-world environment can be judged via the undertaking of a suitably chosen computer simulation…

  11. Computer simulation of stair falls to investigate scenarios in child abuse.

    Science.gov (United States)

    Bertocci, G E; Pierce, M C; Deemer, E; Aguel, F

    2001-09-01

    To demonstrate the usefulness of computer simulation techniques in the investigation of pediatric stair falls. Since stair falls are a common falsely reported injury scenario in child abuse, our specific aim was to investigate the influence of stair characteristics on injury biomechanics of pediatric stair falls by using a computer simulation model. Our long-term goal is to use knowledge of biomechanics to aid in distinguishing between accidents and abuse. A computer simulation model of a 3-year-old child falling down stairs was developed using commercially available simulation software. This model was used to investigate the influence that stair characteristics have on biomechanical measures associated with injury risk. Since femur fractures occur in unintentional and abuse scenarios, biomechanical measures were focused on the lower extremities. The number and slope of steps and stair surface friction and elasticity were found to affect biomechanical measures associated with injury risk. Computer simulation techniques are useful for investigating the biomechanics of stair falls. Using our simulation model, we determined that stair characteristics have an effect on potential for lower extremity injuries. Although absolute values of biomechanical measures should not be relied on in an unvalidated model such as this, relationships between accident-environment factors and biomechanical measures can be studied through simulation. Future efforts will focus on model validation.

  12. Evaluation of Rankine cycle air conditioning system hardware by computer simulation

    Science.gov (United States)

    Healey, H. M.; Clark, D.

    1978-01-01

    A computer program for simulating the performance of a variety of solar powered Rankine cycle air conditioning system components (RCACS) has been developed. The computer program models actual equipment by developing performance maps from manufacturers data and is capable of simulating off-design operation of the RCACS components. The program designed to be a subroutine of the Marshall Space Flight Center (MSFC) Solar Energy System Analysis Computer Program 'SOLRAD', is a complete package suitable for use by an occasional computer user in developing performance maps of heating, ventilation and air conditioning components.

  13. The TeraShake Computational Platform for Large-Scale Earthquake Simulations

    Science.gov (United States)

    Cui, Yifeng; Olsen, Kim; Chourasia, Amit; Moore, Reagan; Maechling, Philip; Jordan, Thomas

    Geoscientific and computer science researchers with the Southern California Earthquake Center (SCEC) are conducting a large-scale, physics-based, computationally demanding earthquake system science research program with the goal of developing predictive models of earthquake processes. The computational demands of this program continue to increase rapidly as these researchers seek to perform physics-based numerical simulations of earthquake processes for larger meet the needs of this research program, a multiple-institution team coordinated by SCEC has integrated several scientific codes into a numerical modeling-based research tool we call the TeraShake computational platform (TSCP). A central component in the TSCP is a highly scalable earthquake wave propagation simulation program called the TeraShake anelastic wave propagation (TS-AWP) code. In this chapter, we describe how we extended an existing, stand-alone, wellvalidated, finite-difference, anelastic wave propagation modeling code into the highly scalable and widely used TS-AWP and then integrated this code into the TeraShake computational platform that provides end-to-end (initialization to analysis) research capabilities. We also describe the techniques used to enhance the TS-AWP parallel performance on TeraGrid supercomputers, as well as the TeraShake simulations phases including input preparation, run time, data archive management, and visualization. As a result of our efforts to improve its parallel efficiency, the TS-AWP has now shown highly efficient strong scaling on over 40K processors on IBM’s BlueGene/L Watson computer. In addition, the TSCP has developed into a computational system that is useful to many members of the SCEC community for performing large-scale earthquake simulations.

  14. [Team training and assessment in mixed reality-based simulated operating room : Current state of research in the field of simulation in spine surgery exemplified by the ATMEOS project].

    Science.gov (United States)

    Stefan, P; Pfandler, M; Wucherer, P; Habert, S; Fürmetz, J; Weidert, S; Euler, E; Eck, U; Lazarovici, M; Weigl, M; Navab, N

    2018-04-01

    Surgical simulators are being increasingly used as an attractive alternative to clinical training in addition to conventional animal models and human specimens. Typically, surgical simulation technology is designed for the purpose of teaching technical surgical skills (so-called task trainers). Simulator training in surgery is therefore in general limited to the individual training of the surgeon and disregards the participation of the rest of the surgical team. The objective of the project Assessment and Training of Medical Experts based on Objective Standards (ATMEOS) is to develop an immersive simulated operating room environment that enables the training and assessment of multidisciplinary surgical teams under various conditions. Using a mixed reality approach, a synthetic patient model, real surgical instruments and radiation-free virtual X‑ray imaging are combined into a simulation of spinal surgery. In previous research studies, the concept was evaluated in terms of realism, plausibility and immersiveness. In the current research, assessment measurements for technical and non-technical skills are developed and evaluated. The aim is to observe multidisciplinary surgical teams in the simulated operating room during minimally invasive spinal surgery and objectively assess the performance of the individual team members and the entire team. Moreover, the effectiveness of training methods and surgical techniques or success critical factors, e. g. management of crisis situations, can be captured and objectively assessed in the controlled environment.

  15. Bibliography for Verification and Validation in Computational Simulation

    International Nuclear Information System (INIS)

    Oberkampf, W.L.

    1998-01-01

    A bibliography has been compiled dealing with the verification and validation of computational simulations. The references listed in this bibliography are concentrated in the field of computational fluid dynamics (CFD). However, references from the following fields are also included: operations research, heat transfer, solid dynamics, software quality assurance, software accreditation, military systems, and nuclear reactor safety. This bibliography, containing 221 references, is not meant to be comprehensive. It was compiled during the last ten years in response to the author's interest and research in the methodology for verification and validation. The emphasis in the bibliography is in the following areas: philosophy of science underpinnings, development of terminology and methodology, high accuracy solutions for CFD verification, experimental datasets for CFD validation, and the statistical quantification of model validation. This bibliography should provide a starting point for individual researchers in many fields of computational simulation in science and engineering

  16. Bibliography for Verification and Validation in Computational Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Oberkampf, W.L.

    1998-10-01

    A bibliography has been compiled dealing with the verification and validation of computational simulations. The references listed in this bibliography are concentrated in the field of computational fluid dynamics (CFD). However, references from the following fields are also included: operations research, heat transfer, solid dynamics, software quality assurance, software accreditation, military systems, and nuclear reactor safety. This bibliography, containing 221 references, is not meant to be comprehensive. It was compiled during the last ten years in response to the author's interest and research in the methodology for verification and validation. The emphasis in the bibliography is in the following areas: philosophy of science underpinnings, development of terminology and methodology, high accuracy solutions for CFD verification, experimental datasets for CFD validation, and the statistical quantification of model validation. This bibliography should provide a starting point for individual researchers in many fields of computational simulation in science and engineering.

  17. SNOW: a digital computer program for the simulation of ion beam devices

    International Nuclear Information System (INIS)

    Boers, J.E.

    1980-08-01

    A digital computer program, SNOW, has been developed for the simulation of dense ion beams. The program simulates the plasma expansion cup (but not the plasma source itself), the acceleration region, and a drift space with neutralization if desired. The ion beam is simulated by computing representative trajectories through the device. The potentials are simulated on a large rectangular matrix array which is solved by iterative techniques. Poisson's equation is solved at each point within the configuration using space-charge densities computed from the ion trajectories combined with background electron and/or ion distributions. The simulation methods are described in some detail along with examples of both axially-symmetric and rectangular beams. A detailed description of the input data is presented

  18. Large Atmospheric Computation on the Earth Simulator: The LACES Project

    Directory of Open Access Journals (Sweden)

    Michel Desgagné

    2006-01-01

    Full Text Available The Large Atmospheric Computation on the Earth Simulator (LACES project is a joint initiative between Canadian and Japanese meteorological services and academic institutions that focuses on the high resolution simulation of Hurricane Earl (1998. The unique aspect of this effort is the extent of the computational domain, which covers all of North America and Europe with a grid spacing of 1 km. The Canadian Mesoscale Compressible Community (MC2 model is shown to parallelize effectively on the Japanese Earth Simulator (ES supercomputer; however, even using the extensive computing resources of the ES Center (ESC, the full simulation for the majority of Hurricane Earl's lifecycle takes over eight days to perform and produces over 5.2 TB of raw data. Preliminary diagnostics show that the results of the LACES simulation for the tropical stage of Hurricane Earl's lifecycle compare well with available observations for the storm. Further studies involving advanced diagnostics have commenced, taking advantage of the uniquely large spatial extent of the high resolution LACES simulation to investigate multiscale interactions in the hurricane and its environment. It is hoped that these studies will enhance our understanding of processes occurring within the hurricane and between the hurricane and its planetary-scale environment.

  19. Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers

    Science.gov (United States)

    Jordan, Jakob; Ippen, Tammo; Helias, Moritz; Kitayama, Itaru; Sato, Mitsuhisa; Igarashi, Jun; Diesmann, Markus; Kunkel, Susanne

    2018-01-01

    State-of-the-art software tools for neuronal network simulations scale to the largest computing systems available today and enable investigations of large-scale networks of up to 10 % of the human cortex at a resolution of individual neurons and synapses. Due to an upper limit on the number of incoming connections of a single neuron, network connectivity becomes extremely sparse at this scale. To manage computational costs, simulation software ultimately targeting the brain scale needs to fully exploit this sparsity. Here we present a two-tier connection infrastructure and a framework for directed communication among compute nodes accounting for the sparsity of brain-scale networks. We demonstrate the feasibility of this approach by implementing the technology in the NEST simulation code and we investigate its performance in different scaling scenarios of typical network simulations. Our results show that the new data structures and communication scheme prepare the simulation kernel for post-petascale high-performance computing facilities without sacrificing performance in smaller systems. PMID:29503613

  20. Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers.

    Science.gov (United States)

    Jordan, Jakob; Ippen, Tammo; Helias, Moritz; Kitayama, Itaru; Sato, Mitsuhisa; Igarashi, Jun; Diesmann, Markus; Kunkel, Susanne

    2018-01-01

    State-of-the-art software tools for neuronal network simulations scale to the largest computing systems available today and enable investigations of large-scale networks of up to 10 % of the human cortex at a resolution of individual neurons and synapses. Due to an upper limit on the number of incoming connections of a single neuron, network connectivity becomes extremely sparse at this scale. To manage computational costs, simulation software ultimately targeting the brain scale needs to fully exploit this sparsity. Here we present a two-tier connection infrastructure and a framework for directed communication among compute nodes accounting for the sparsity of brain-scale networks. We demonstrate the feasibility of this approach by implementing the technology in the NEST simulation code and we investigate its performance in different scaling scenarios of typical network simulations. Our results show that the new data structures and communication scheme prepare the simulation kernel for post-petascale high-performance computing facilities without sacrificing performance in smaller systems.

  1. Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers

    Directory of Open Access Journals (Sweden)

    Jakob Jordan

    2018-02-01

    Full Text Available State-of-the-art software tools for neuronal network simulations scale to the largest computing systems available today and enable investigations of large-scale networks of up to 10 % of the human cortex at a resolution of individual neurons and synapses. Due to an upper limit on the number of incoming connections of a single neuron, network connectivity becomes extremely sparse at this scale. To manage computational costs, simulation software ultimately targeting the brain scale needs to fully exploit this sparsity. Here we present a two-tier connection infrastructure and a framework for directed communication among compute nodes accounting for the sparsity of brain-scale networks. We demonstrate the feasibility of this approach by implementing the technology in the NEST simulation code and we investigate its performance in different scaling scenarios of typical network simulations. Our results show that the new data structures and communication scheme prepare the simulation kernel for post-petascale high-performance computing facilities without sacrificing performance in smaller systems.

  2. What Can Computed Tomography Scans of the Thorax Show after Breast Surgery?

    Directory of Open Access Journals (Sweden)

    Afsaneh Alikhassi

    2016-06-01

    Full Text Available Background: Postoperative breast abnormalities after breast conserving surgery or modified radical mastectomy are frequently overlooked and inaccurately assessed or reported using multidetector computed tomography (MDCT. These inaccurate results may have legal ramifications for the clinicians, cause patients avoidable anxiety, and lead to additional unnecessary diagnostic follow-up testing and costs.Methods: The patients with a history of breast cancer who had undergone breast-conserving surgery or modified radical mastectomy up to 6 months prior to undergoing a thoracic MDCT scan consented and enrolled in this study. These patients underwent a thoracic MDCT scan either because of respiratory or cardiac clinical symptoms or as part of breast cancer staging.Results: Forty women were included in this study. Different postoperative breast changes observed on thoracic MDCT scans including fibrous scar tissue, fat necrosis, seroma, abscess, hematoma, and recurrent and residual tumor were described.Conclusions: MDCT scans offer sufficient evidence in many postoperative cases to allow a confident diagnosis. General radiologists who review thoracic MDCT scans should know how to characterize breast lesions incidentally found on MDCT scans after breast surgeries. This information would enhance the value of the radiologist’s report for appropriate case management.

  3. Computer simulation of fatigue under diametrical compression

    OpenAIRE

    Carmona, H. A.; Kun, F.; Andrade Jr., J. S.; Herrmann, H. J.

    2006-01-01

    We study the fatigue fracture of disordered materials by means of computer simulations of a discrete element model. We extend a two-dimensional fracture model to capture the microscopic mechanisms relevant for fatigue, and we simulate the diametric compression of a disc shape specimen under a constant external force. The model allows to follow the development of the fracture process on the macro- and micro-level varying the relative influence of the mechanisms of damage accumulation over the ...

  4. Computer simulations and the changing face of scientific experimentation

    CERN Document Server

    Duran, Juan M

    2013-01-01

    Computer simulations have become a central tool for scientific practice. Their use has replaced, in many cases, standard experimental procedures. This goes without mentioning cases where the target system is empirical but there are no techniques for direct manipulation of the system, such as astronomical observation. To these cases, computer simulations have proved to be of central importance. The question about their use and implementation, therefore, is not only a technical one but represents a challenge for the humanities as well. In this volume, scientists, historians, and philosophers joi

  5. A Computational Framework for Bioimaging Simulation

    Science.gov (United States)

    Watabe, Masaki; Arjunan, Satya N. V.; Fukushima, Seiya; Iwamoto, Kazunari; Kozuka, Jun; Matsuoka, Satomi; Shindo, Yuki; Ueda, Masahiro; Takahashi, Koichi

    2015-01-01

    Using bioimaging technology, biologists have attempted to identify and document analytical interpretations that underlie biological phenomena in biological cells. Theoretical biology aims at distilling those interpretations into knowledge in the mathematical form of biochemical reaction networks and understanding how higher level functions emerge from the combined action of biomolecules. However, there still remain formidable challenges in bridging the gap between bioimaging and mathematical modeling. Generally, measurements using fluorescence microscopy systems are influenced by systematic effects that arise from stochastic nature of biological cells, the imaging apparatus, and optical physics. Such systematic effects are always present in all bioimaging systems and hinder quantitative comparison between the cell model and bioimages. Computational tools for such a comparison are still unavailable. Thus, in this work, we present a computational framework for handling the parameters of the cell models and the optical physics governing bioimaging systems. Simulation using this framework can generate digital images of cell simulation results after accounting for the systematic effects. We then demonstrate that such a framework enables comparison at the level of photon-counting units. PMID:26147508

  6. A Computational Framework for Bioimaging Simulation.

    Science.gov (United States)

    Watabe, Masaki; Arjunan, Satya N V; Fukushima, Seiya; Iwamoto, Kazunari; Kozuka, Jun; Matsuoka, Satomi; Shindo, Yuki; Ueda, Masahiro; Takahashi, Koichi

    2015-01-01

    Using bioimaging technology, biologists have attempted to identify and document analytical interpretations that underlie biological phenomena in biological cells. Theoretical biology aims at distilling those interpretations into knowledge in the mathematical form of biochemical reaction networks and understanding how higher level functions emerge from the combined action of biomolecules. However, there still remain formidable challenges in bridging the gap between bioimaging and mathematical modeling. Generally, measurements using fluorescence microscopy systems are influenced by systematic effects that arise from stochastic nature of biological cells, the imaging apparatus, and optical physics. Such systematic effects are always present in all bioimaging systems and hinder quantitative comparison between the cell model and bioimages. Computational tools for such a comparison are still unavailable. Thus, in this work, we present a computational framework for handling the parameters of the cell models and the optical physics governing bioimaging systems. Simulation using this framework can generate digital images of cell simulation results after accounting for the systematic effects. We then demonstrate that such a framework enables comparison at the level of photon-counting units.

  7. A Computational Framework for Bioimaging Simulation.

    Directory of Open Access Journals (Sweden)

    Masaki Watabe

    Full Text Available Using bioimaging technology, biologists have attempted to identify and document analytical interpretations that underlie biological phenomena in biological cells. Theoretical biology aims at distilling those interpretations into knowledge in the mathematical form of biochemical reaction networks and understanding how higher level functions emerge from the combined action of biomolecules. However, there still remain formidable challenges in bridging the gap between bioimaging and mathematical modeling. Generally, measurements using fluorescence microscopy systems are influenced by systematic effects that arise from stochastic nature of biological cells, the imaging apparatus, and optical physics. Such systematic effects are always present in all bioimaging systems and hinder quantitative comparison between the cell model and bioimages. Computational tools for such a comparison are still unavailable. Thus, in this work, we present a computational framework for handling the parameters of the cell models and the optical physics governing bioimaging systems. Simulation using this framework can generate digital images of cell simulation results after accounting for the systematic effects. We then demonstrate that such a framework enables comparison at the level of photon-counting units.

  8. simulate_CAT: A Computer Program for Post-Hoc Simulation for Computerized Adaptive Testing

    Directory of Open Access Journals (Sweden)

    İlker Kalender

    2015-06-01

    Full Text Available This paper presents a computer software developed by the author. The software conducts post-hoc simulations for computerized adaptive testing based on real responses of examinees to paper and pencil tests under different parameters that can be defined by user. In this paper, short information is given about post-hoc simulations. After that, the working principle of the software is provided and a sample simulation with required input files is shown. And last, output files are described

  9. The challenge of quantum computer simulations of physical phenomena

    International Nuclear Information System (INIS)

    Ortiz, G.; Knill, E.; Gubernatis, J.E.

    2002-01-01

    The goal of physics simulation using controllable quantum systems ('physics imitation') is to exploit quantum laws to advantage, and thus accomplish efficient simulation of physical phenomena. In this Note, we discuss the fundamental concepts behind this paradigm of information processing, such as the connection between models of computation and physical systems. The experimental simulation of a toy quantum many-body problem is described

  10. High performance stream computing for particle beam transport simulations

    International Nuclear Information System (INIS)

    Appleby, R; Bailey, D; Higham, J; Salt, M

    2008-01-01

    Understanding modern particle accelerators requires simulating charged particle transport through the machine elements. These simulations can be very time consuming due to the large number of particles and the need to consider many turns of a circular machine. Stream computing offers an attractive way to dramatically improve the performance of such simulations by calculating the simultaneous transport of many particles using dedicated hardware. Modern Graphics Processing Units (GPUs) are powerful and affordable stream computing devices. The results of simulations of particle transport through the booster-to-storage-ring transfer line of the DIAMOND synchrotron light source using an NVidia GeForce 7900 GPU are compared to the standard transport code MAD. It is found that particle transport calculations are suitable for stream processing and large performance increases are possible. The accuracy and potential speed gains are compared and the prospects for future work in the area are discussed

  11. Computer simulation of variform fuel assemblies using Dragon code

    International Nuclear Information System (INIS)

    Ju Haitao; Wu Hongchun; Yao Dong

    2005-01-01

    The DRAGON is a cell code that developed for the CANDU reactor by the Ecole Polytechnique de Montreal of CANADA. Although, the DRAGON is mainly used to simulate the CANDU super-cell fuel assembly, it has an ability to simulate other geometries of the fuel assembly. However, only NEACRP benchmark problem of the BWR lattice cell was analyzed until now except for the CANDU reactor. We also need to develop the code to simulate the variform fuel assemblies, especially, for design of the advanced reactor. We validated that the cell code DRAGON is useful for simulating various kinds of the fuel assembly by analyzing the rod-shape fuel assembly of the PWR and the MTR plate-shape fuel assembly. Some other kinds of geometry of geometry were computed. Computational results show that the DRAGON is able to analyze variform fuel assembly problems and the precision is high. (authors)

  12. Teaching Computer Organization and Architecture Using Simulation and FPGA Applications

    OpenAIRE

    D. K.M. Al-Aubidy

    2007-01-01

    This paper presents the design concepts and realization of incorporating micro-operation simulation and FPGA implementation into a teaching tool for computer organization and architecture. This teaching tool helps computer engineering and computer science students to be familiarized practically with computer organization and architecture through the development of their own instruction set, computer programming and interfacing experiments. A two-pass assembler has been designed and implemente...

  13. An introduction to computer simulation methods applications to physical systems

    CERN Document Server

    Gould, Harvey; Christian, Wolfgang

    2007-01-01

    Now in its third edition, this book teaches physical concepts using computer simulations. The text incorporates object-oriented programming techniques and encourages readers to develop good programming habits in the context of doing physics. Designed for readers at all levels , An Introduction to Computer Simulation Methods uses Java, currently the most popular programming language. Introduction, Tools for Doing Simulations, Simulating Particle Motion, Oscillatory Systems, Few-Body Problems: The Motion of the Planets, The Chaotic Motion of Dynamical Systems, Random Processes, The Dynamics of Many Particle Systems, Normal Modes and Waves, Electrodynamics, Numerical and Monte Carlo Methods, Percolation, Fractals and Kinetic Growth Models, Complex Systems, Monte Carlo Simulations of Thermal Systems, Quantum Systems, Visualization and Rigid Body Dynamics, Seeing in Special and General Relativity, Epilogue: The Unity of Physics For all readers interested in developing programming habits in the context of doing phy...

  14. Fast Simulation of Large-Scale Floods Based on GPU Parallel Computing

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2018-05-01

    Full Text Available Computing speed is a significant issue of large-scale flood simulations for real-time response to disaster prevention and mitigation. Even today, most of the large-scale flood simulations are generally run on supercomputers due to the massive amounts of data and computations necessary. In this work, a two-dimensional shallow water model based on an unstructured Godunov-type finite volume scheme was proposed for flood simulation. To realize a fast simulation of large-scale floods on a personal computer, a Graphics Processing Unit (GPU-based, high-performance computing method using the OpenACC application was adopted to parallelize the shallow water model. An unstructured data management method was presented to control the data transportation between the GPU and CPU (Central Processing Unit with minimum overhead, and then both computation and data were offloaded from the CPU to the GPU, which exploited the computational capability of the GPU as much as possible. The parallel model was validated using various benchmarks and real-world case studies. The results demonstrate that speed-ups of up to one order of magnitude can be achieved in comparison with the serial model. The proposed parallel model provides a fast and reliable tool with which to quickly assess flood hazards in large-scale areas and, thus, has a bright application prospect for dynamic inundation risk identification and disaster assessment.

  15. Refining Pragmatically-Appropriate Oral Communication via Computer-Simulated Conversations

    Science.gov (United States)

    Sydorenko, Tetyana; Daurio, Phoebe; Thorne, Steven L.

    2018-01-01

    To address the problem of limited opportunities for practicing second language speaking in interaction, especially delicate interactions requiring pragmatic competence, we describe computer simulations designed for the oral practice of extended pragmatic routines and report on the affordances of such simulations for learning pragmatically…

  16. Simulation of quantum computation : A deterministic event-based approach

    NARCIS (Netherlands)

    Michielsen, K; De Raedt, K; De Raedt, H

    We demonstrate that locally connected networks of machines that have primitive learning capabilities can be used to perform a deterministic, event-based simulation of quantum computation. We present simulation results for basic quantum operations such as the Hadamard and the controlled-NOT gate, and

  17. Simulation of Quantum Computation : A Deterministic Event-Based Approach

    NARCIS (Netherlands)

    Michielsen, K.; Raedt, K. De; Raedt, H. De

    2005-01-01

    We demonstrate that locally connected networks of machines that have primitive learning capabilities can be used to perform a deterministic, event-based simulation of quantum computation. We present simulation results for basic quantum operations such as the Hadamard and the controlled-NOT gate, and

  18. Computer Simulation of the Relationship between Selected Properties of PVD Coatings

    Directory of Open Access Journals (Sweden)

    Śliwa A.

    2016-06-01

    Full Text Available The possibility to apply the Finite Element Method to calculate internal stresses which occur in Ti+TiN, Ti+Ti(CxN1-x and Ti+TiC coatings obtained in the magnetron PVD process on the sintered high-speed steel of the PM HS6-5-3-8 type. For the purpose of computer simulation of internal stresses in coatings with the use of MES, the correct model of analyzed specimens was worked out and then it was experimentally verified by comparison of calculation results with the results of computer simulation. Accurate analysis of correlations indicated especially strong dependence between internal stresses and microhardness and between microhardness and erosion resistance what created conditions for establishing the dependence between internal stresses obtained in the result of computer simulation and erosion resistance as basic functional quality of coating. It has essential practical meaning because it allows to estimate predictable erosion resistance of coating exclusively on the base of the results of computer simulation for used parameters in the process of coating manufacturing.

  19. Virtual reality simulators: valuable surgical skills trainers or video games?

    Science.gov (United States)

    Willis, Ross E; Gomez, Pedro Pablo; Ivatury, Srinivas J; Mitra, Hari S; Van Sickle, Kent R

    2014-01-01

    Virtual reality (VR) and physical model (PM) simulators differ in terms of whether the trainee is manipulating actual 3-dimensional objects (PM) or computer-generated 3-dimensional objects (VR). Much like video games (VG), VR simulators utilize computer-generated graphics. These differences may have profound effects on the utility of VR and PM training platforms. In this study, we aimed to determine whether a relationship exists between VR, PM, and VG platforms. VR and PM simulators for laparoscopic camera navigation ([LCN], experiment 1) and flexible endoscopy ([FE] experiment 2) were used in this study. In experiment 1, 20 laparoscopic novices played VG and performed 0° and 30° LCN exercises on VR and PM simulators. In experiment 2, 20 FE novices played VG and performed colonoscopy exercises on VR and PM simulators. In both experiments, VG performance was correlated with VR performance but not with PM performance. Performance on VR simulators did not correlate with performance on respective PM models. VR environments may be more like VG than previously thought. © 2013 Published by Association of Program Directors in Surgery on behalf of Association of Program Directors in Surgery.

  20. Use of computer simulations for the early introduction of nuclear engineering concepts

    International Nuclear Information System (INIS)

    Ougouag, A.M.; Zerguini, T.H.

    1985-01-01

    A sophomore level nuclear engineering (NE) course is being introduced at the University of Illinois. Via computer simulations, this course presents materials covering the most important aspects of the field. It is noted that computer simulations in nuclear engineering are cheaper and safer than experiments yet they provide an effective teaching tool for the early introduction of advanced concepts. The new course material can be used as a tutorial and for remedial learning. The use of computer simulation motivates learning since students associate computer activities with games. Such a course can help in the dissemination of the proper information to students from different fields, including liberal arts, and eventually increase undergraduate student enrollment in nuclear engineering

  1. A virtual reality endoscopic simulator augments general surgery resident cancer education as measured by performance improvement.

    Science.gov (United States)

    White, Ian; Buchberg, Brian; Tsikitis, V Liana; Herzig, Daniel O; Vetto, John T; Lu, Kim C

    2014-06-01

    Colorectal cancer is the second most common cause of death in the USA. The need for screening colonoscopies, and thus adequately trained endoscopists, particularly in rural areas, is on the rise. Recent increases in required endoscopic cases for surgical resident graduation by the Surgery Residency Review Committee (RRC) further emphasize the need for more effective endoscopic training during residency to determine if a virtual reality colonoscopy simulator enhances surgical resident endoscopic education by detecting improvement in colonoscopy skills before and after 6 weeks of formal clinical endoscopic training. We conducted a retrospective review of prospectively collected surgery resident data on an endoscopy simulator. Residents performed four different clinical scenarios on the endoscopic simulator before and after a 6-week endoscopic training course. Data were collected over a 5-year period from 94 different residents performing a total of 795 colonoscopic simulation scenarios. Main outcome measures included time to cecal intubation, "red out" time, and severity of simulated patient discomfort (mild, moderate, severe, extreme) during colonoscopy scenarios. Average time to intubation of the cecum was 6.8 min for those residents who had not undergone endoscopic training versus 4.4 min for those who had undergone endoscopic training (p Virtual reality endoscopic simulation is an effective tool for both augmenting surgical resident endoscopy cancer education and measuring improvement in resident performance after formal clinical endoscopic training.

  2. Comprehensive Simulation Lifecycle Management for High Performance Computing Modeling and Simulation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There are significant logistical barriers to entry-level high performance computing (HPC) modeling and simulation (M IllinoisRocstar) sets up the infrastructure for...

  3. Implementation of Grid-computing Framework for Simulation in Multi-scale Structural Analysis

    Directory of Open Access Journals (Sweden)

    Data Iranata

    2010-05-01

    Full Text Available A new grid-computing framework for simulation in multi-scale structural analysis is presented. Two levels of parallel processing will be involved in this framework: multiple local distributed computing environments connected by local network to form a grid-based cluster-to-cluster distributed computing environment. To successfully perform the simulation, a large-scale structural system task is decomposed into the simulations of a simplified global model and several detailed component models using various scales. These correlated multi-scale structural system tasks are distributed among clusters and connected together in a multi-level hierarchy and then coordinated over the internet. The software framework for supporting the multi-scale structural simulation approach is also presented. The program architecture design allows the integration of several multi-scale models as clients and servers under a single platform. To check its feasibility, a prototype software system has been designed and implemented to perform the proposed concept. The simulation results show that the software framework can increase the speedup performance of the structural analysis. Based on this result, the proposed grid-computing framework is suitable to perform the simulation of the multi-scale structural analysis.

  4. Reconstruction of a Severely Atrophied Alveolar Ridge by Computer-Aided Gingival Simulation and 3D-Printed Surgical Guide: A Case Report.

    Science.gov (United States)

    Song, In-Seok; Lee, Mi-Ran; Ryu, Jae-Jun; Lee, Ui-Lyong

    Dental implants positioned in severely atrophied anterior maxillae require esthetic or functional compromises. This case report describes the rehabilitation of a severely atrophied alveolar ridge with a three-dimensional (3D) computer-aided design/computer-aided manufacture (CAD/CAM) surgical guide. A 50-year-old woman had a severely atrophied anterior maxilla with unfavorably positioned dental implants. Functional and esthetic prosthodontic restoration was difficult to achieve. An anterior segmental osteotomy was planned to reposition the dental implants. A 3D surgical guide was designed for precise relocation of the segment. The surgical guide firmly grasped the impression copings of the dental implants, minimizing surgical errors. Three-dimensional gingival simulation was used preoperatively to estimate the appropriate position of the gingiva. Rigid fixation to the surrounding bone allowed immobilization of the implant-bone segment. Satisfactory esthetic and functional outcomes were attained 6 months after surgery. Finally, a severely atrophied alveolar ridge with unfavorably positioned dental implants was recovered with minimal esthetic and functional deterioration using gingival simulation and a 3D CAD/CAM surgical guide.

  5. Plant Closings and Capital Flight: A Computer-Assisted Simulation.

    Science.gov (United States)

    Warner, Stanley; Breitbart, Myrna M.

    1989-01-01

    A course at Hampshire College was designed to simulate the decision-making environment in which constituencies in a medium-sized city would respond to the closing and relocation of a major corporate plant. The project, constructed as a role simulation with a computer component, is described. (MLW)

  6. [Research progress on real-time deformable models of soft tissues for surgery simulation].

    Science.gov (United States)

    Xu, Shaoping; Liu, Xiaoping; Zhang, Hua; Luo, Jie

    2010-04-01

    Biological tissues generally exhibit nonlinearity, anisotropy, quasi-incompressibility and viscoelasticity about material properties. Simulating the behaviour of elastic objects in real time is one of the current objectives of virtual surgery simulation which is still a challenge for researchers to accurately depict the behaviour of human tissues. In this paper, we present a classification of the different deformable models that have been developed. We present the advantages and disadvantages of each one. Finally, we make a comparison of deformable models and perform an evaluation of the state of the art and the future of deformable models.

  7. Construction of a Urologic Robotic Surgery Training Curriculum: How Many Simulator Sessions Are Required for Residents to Achieve Proficiency?

    Science.gov (United States)

    Wiener, Scott; Haddock, Peter; Shichman, Steven; Dorin, Ryan

    2015-11-01

    To define the time needed by urology residents to attain proficiency in computer-aided robotic surgery to aid in the refinement of a robotic surgery simulation curriculum. We undertook a retrospective review of robotic skills training data acquired during January 2012 to December 2014 from junior (postgraduate year [PGY] 2-3) and senior (PGY4-5) urology residents using the da Vinci Skills Simulator. We determined the number of training sessions attended and the level of proficiency achieved by junior and senior residents in attempting 11 basic or 6 advanced tasks, respectively. Junior residents successfully completed 9.9 ± 1.8 tasks, with 62.5% completing all 11 basic tasks. The maximal cumulative success rate of junior residents completing basic tasks was 89.8%, which was achieved within 7.0 ± 1.5 hours of training. Of senior residents, 75% successfully completed all six advanced tasks. Senior residents attended 6.3 ± 3.5 hours of training during which 5.1 ± 1.6 tasks were completed. The maximal cumulative success rate of senior residents completing advanced tasks was 85.4%. When designing and implementing an effective robotic surgical training curriculum, an allocation of 10 hours of training may be optimal to allow junior and senior residents to achieve an acceptable level of surgical proficiency in basic and advanced robotic surgical skills, respectively. These data help guide the design and scheduling of a residents training curriculum within the time constraints of a resident's workload.

  8. Preoperative planning of thoracic surgery with use of three-dimensional reconstruction, rapid prototyping, simulation and virtual navigation

    Science.gov (United States)

    Heuts, Samuel; Maessen, Jos G.

    2016-01-01

    For the past decades, surgeries have become more complex, due to the increasing age of the patient population referred for thoracic surgery, more complex pathology and the emergence of minimally invasive thoracic surgery. Together with the early detection of thoracic disease as a result of innovations in diagnostic possibilities and the paradigm shift to personalized medicine, preoperative planning is becoming an indispensable and crucial aspect of surgery. Several new techniques facilitating this paradigm shift have emerged. Pre-operative marking and staining of lesions are already a widely accepted method of preoperative planning in thoracic surgery. However, three-dimensional (3D) image reconstructions, virtual simulation and rapid prototyping (RP) are still in development phase. These new techniques are expected to become an important part of the standard work-up of patients undergoing thoracic surgery in the future. This review aims at graphically presenting and summarizing these new diagnostic and therapeutic tools PMID:29078505

  9. SU-E-T-222: Computational Optimization of Monte Carlo Simulation On 4D Treatment Planning Using the Cloud Computing Technology

    International Nuclear Information System (INIS)

    Chow, J

    2015-01-01

    Purpose: This study evaluated the efficiency of 4D lung radiation treatment planning using Monte Carlo simulation on the cloud. The EGSnrc Monte Carlo code was used in dose calculation on the 4D-CT image set. Methods: 4D lung radiation treatment plan was created by the DOSCTP linked to the cloud, based on the Amazon elastic compute cloud platform. Dose calculation was carried out by Monte Carlo simulation on the 4D-CT image set on the cloud, and results were sent to the FFD4D image deformation program for dose reconstruction. The dependence of computing time for treatment plan on the number of compute node was optimized with variations of the number of CT image set in the breathing cycle and dose reconstruction time of the FFD4D. Results: It is found that the dependence of computing time on the number of compute node was affected by the diminishing return of the number of node used in Monte Carlo simulation. Moreover, the performance of the 4D treatment planning could be optimized by using smaller than 10 compute nodes on the cloud. The effects of the number of image set and dose reconstruction time on the dependence of computing time on the number of node were not significant, as more than 15 compute nodes were used in Monte Carlo simulations. Conclusion: The issue of long computing time in 4D treatment plan, requiring Monte Carlo dose calculations in all CT image sets in the breathing cycle, can be solved using the cloud computing technology. It is concluded that the optimized number of compute node selected in simulation should be between 5 and 15, as the dependence of computing time on the number of node is significant

  10. SU-E-T-222: Computational Optimization of Monte Carlo Simulation On 4D Treatment Planning Using the Cloud Computing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Chow, J [Princess Margaret Cancer Center, Toronto, ON (Canada)

    2015-06-15

    Purpose: This study evaluated the efficiency of 4D lung radiation treatment planning using Monte Carlo simulation on the cloud. The EGSnrc Monte Carlo code was used in dose calculation on the 4D-CT image set. Methods: 4D lung radiation treatment plan was created by the DOSCTP linked to the cloud, based on the Amazon elastic compute cloud platform. Dose calculation was carried out by Monte Carlo simulation on the 4D-CT image set on the cloud, and results were sent to the FFD4D image deformation program for dose reconstruction. The dependence of computing time for treatment plan on the number of compute node was optimized with variations of the number of CT image set in the breathing cycle and dose reconstruction time of the FFD4D. Results: It is found that the dependence of computing time on the number of compute node was affected by the diminishing return of the number of node used in Monte Carlo simulation. Moreover, the performance of the 4D treatment planning could be optimized by using smaller than 10 compute nodes on the cloud. The effects of the number of image set and dose reconstruction time on the dependence of computing time on the number of node were not significant, as more than 15 compute nodes were used in Monte Carlo simulations. Conclusion: The issue of long computing time in 4D treatment plan, requiring Monte Carlo dose calculations in all CT image sets in the breathing cycle, can be solved using the cloud computing technology. It is concluded that the optimized number of compute node selected in simulation should be between 5 and 15, as the dependence of computing time on the number of node is significant.

  11. Computational plasticity algorithm for particle dynamics simulations

    Science.gov (United States)

    Krabbenhoft, K.; Lyamin, A. V.; Vignes, C.

    2018-01-01

    The problem of particle dynamics simulation is interpreted in the framework of computational plasticity leading to an algorithm which is mathematically indistinguishable from the common implicit scheme widely used in the finite element analysis of elastoplastic boundary value problems. This algorithm provides somewhat of a unification of two particle methods, the discrete element method and the contact dynamics method, which usually are thought of as being quite disparate. In particular, it is shown that the former appears as the special case where the time stepping is explicit while the use of implicit time stepping leads to the kind of schemes usually labelled contact dynamics methods. The framing of particle dynamics simulation within computational plasticity paves the way for new approaches similar (or identical) to those frequently employed in nonlinear finite element analysis. These include mixed implicit-explicit time stepping, dynamic relaxation and domain decomposition schemes.

  12. Functional requirements for design of the Space Ultrareliable Modular Computer (SUMC) system simulator

    Science.gov (United States)

    Curran, R. T.; Hornfeck, W. A.

    1972-01-01

    The functional requirements for the design of an interpretive simulator for the space ultrareliable modular computer (SUMC) are presented. A review of applicable existing computer simulations is included along with constraints on the SUMC simulator functional design. Input requirements, output requirements, and language requirements for the simulator are discussed in terms of a SUMC configuration which may vary according to the application.

  13. Topics in computer simulations of statistical systems

    International Nuclear Information System (INIS)

    Salvador, R.S.

    1987-01-01

    Several computer simulations studying a variety of topics in statistical mechanics and lattice gauge theories are performed. The first study describes a Monte Carlo simulation performed on Ising systems defined on Sierpinsky carpets of dimensions between one and four. The critical coupling and the exponent γ are measured as a function of dimension. The Ising gauge theory in d = 4 - epsilon, for epsilon → 0 + , is then studied by performing a Monte Carlo simulation for the theory defined on fractals. A high statistics Monte Carlo simulation for the three-dimensional Ising model is presented for lattices of sizes 8 3 to 44 3 . All the data obtained agrees completely, within statistical errors, with the forms predicted by finite-sizing scaling. Finally, a method to estimate numerically the partition function of statistical systems is developed

  14. A computer simulation model to compute the radiation transfer of mountainous regions

    Science.gov (United States)

    Li, Yuguang; Zhao, Feng; Song, Rui

    2011-11-01

    In mountainous regions, the radiometric signal recorded at the sensor depends on a number of factors such as sun angle, atmospheric conditions, surface cover type, and topography. In this paper, a computer simulation model of radiation transfer is designed and evaluated. This model implements the Monte Carlo ray-tracing techniques and is specifically dedicated to the study of light propagation in mountainous regions. The radiative processes between sun light and the objects within the mountainous region are realized by using forward Monte Carlo ray-tracing methods. The performance of the model is evaluated through detailed comparisons with the well-established 3D computer simulation model: RGM (Radiosity-Graphics combined Model) based on the same scenes and identical spectral parameters, which shows good agreements between these two models' results. By using the newly developed computer model, series of typical mountainous scenes are generated to analyze the physical mechanism of mountainous radiation transfer. The results show that the effects of the adjacent slopes are important for deep valleys and they particularly affect shadowed pixels, and the topographic effect needs to be considered in mountainous terrain before accurate inferences from remotely sensed data can be made.

  15. High performance computer code for molecular dynamics simulations

    International Nuclear Information System (INIS)

    Levay, I.; Toekesi, K.

    2007-01-01

    Complete text of publication follows. Molecular Dynamics (MD) simulation is a widely used technique for modeling complicated physical phenomena. Since 2005 we are developing a MD simulations code for PC computers. The computer code is written in C++ object oriented programming language. The aim of our work is twofold: a) to develop a fast computer code for the study of random walk of guest atoms in Be crystal, b) 3 dimensional (3D) visualization of the particles motion. In this case we mimic the motion of the guest atoms in the crystal (diffusion-type motion), and the motion of atoms in the crystallattice (crystal deformation). Nowadays, it is common to use Graphics Devices in intensive computational problems. There are several ways to use this extreme processing performance, but never before was so easy to programming these devices as now. The CUDA (Compute Unified Device) Architecture introduced by nVidia Corporation in 2007 is a very useful for every processor hungry application. A Unified-architecture GPU include 96-128, or more stream processors, so the raw calculation performance is 576(!) GFLOPS. It is ten times faster, than the fastest dual Core CPU [Fig.1]. Our improved MD simulation software uses this new technology, which speed up our software and the code run 10 times faster in the critical calculation code segment. Although the GPU is a very powerful tool, it has a strongly paralleled structure. It means, that we have to create an algorithm, which works on several processors without deadlock. Our code currently uses 256 threads, shared and constant on-chip memory, instead of global memory, which is 100 times slower than others. It is possible to implement the total algorithm on GPU, therefore we do not need to download and upload the data in every iteration. On behalf of maximal throughput, every thread run with the same instructions

  16. Advanced Simulation & Computing FY15 Implementation Plan Volume 2, Rev. 0.5

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Michel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Archer, Bill [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Matzen, M. Keith [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-16

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. As the program approaches the end of its second decade, ASC is intently focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Where possible, the program also enables the use of high-performance simulation and computing tools to address broader national security needs, such as foreign nuclear weapon assessments and counternuclear terrorism.

  17. Computer simulation as an operational and training aid

    International Nuclear Information System (INIS)

    Lee, D.J.; Tottman-Trayner, E.

    1995-01-01

    The paper describes how the rapid development of desktop computing power, the associated fall in prices, and the advancement of computer graphics technology driven by the entertainment industry has enabled the nuclear industry to achieve improvements in operation and training through the use of computer simulation. Applications are focused on the fuel handling operations at Torness Power Station where visualization through computer modelling is being used to enhance operator awareness and to assist in a number of operational scenarios. It is concluded that there are significant benefits to be gained from the introduction of the facility at Torness as well as other locations. (author)

  18. Integration of adaptive process control with computational simulation for spin-forming

    International Nuclear Information System (INIS)

    Raboin, P. J. LLNL

    1998-01-01

    Improvements in spin-forming capabilities through upgrades to a metrology and machine control system and advances in numerical simulation techniques were studied in a two year project funded by Laboratory Directed Research and Development (LDRD) at Lawrence Livermore National Laboratory. Numerical analyses were benchmarked with spin-forming experiments and computational speeds increased sufficiently to now permit actual part forming simulations. Extensive modeling activities examined the simulation speeds and capabilities of several metal forming computer codes for modeling flat plate and cylindrical spin-forming geometries. Shape memory research created the first numerical model to describe this highly unusual deformation behavior in Uranium alloys. A spin-forming metrology assessment led to sensor and data acquisition improvements that will facilitate future process accuracy enhancements, such as a metrology frame. Finally, software improvements (SmartCAM) to the manufacturing process numerically integrate the part models to the spin-forming process and to computational simulations

  19. Surgical resource utilization in urban terrorist bombing: a computer simulation.

    Science.gov (United States)

    Hirshberg, A; Stein, M; Walden, R

    1999-09-01

    The objective of this study was to analyze the utilization of surgical staff and facilities during an urban terrorist bombing incident. A discrete-event computer model of the emergency room and related hospital facilities was constructed and implemented, based on cumulated data from 12 urban terrorist bombing incidents in Israel. The simulation predicts that the admitting capacity of the hospital depends primarily on the number of available surgeons and defines an optimal staff profile for surgeons, residents, and trauma nurses. The major bottlenecks in the flow of critical casualties are the shock rooms and the computed tomographic scanner but not the operating rooms. The simulation also defines the number of reinforcement staff needed to treat noncritical casualties and shows that radiology is the major obstacle to the flow of these patients. Computer simulation is an important new tool for the optimization of surgical service elements for a multiple-casualty situation.

  20. [The research on bidirectional reflectance computer simulation of forest canopy at pixel scale].

    Science.gov (United States)

    Song, Jin-Ling; Wang, Jin-Di; Shuai, Yan-Min; Xiao, Zhi-Qiang

    2009-08-01

    Computer simulation is based on computer graphics to generate the realistic 3D structure scene of vegetation, and to simulate the canopy regime using radiosity method. In the present paper, the authors expand the computer simulation model to simulate forest canopy bidirectional reflectance at pixel scale. But usually, the trees are complex structures, which are tall and have many branches. So there is almost a need for hundreds of thousands or even millions of facets to built up the realistic structure scene for the forest It is difficult for the radiosity method to compute so many facets. In order to make the radiosity method to simulate the forest scene at pixel scale, in the authors' research, the authors proposed one idea to simplify the structure of forest crowns, and abstract the crowns to ellipsoids. And based on the optical characteristics of the tree component and the characteristics of the internal energy transmission of photon in real crown, the authors valued the optical characteristics of ellipsoid surface facets. In the computer simulation of the forest, with the idea of geometrical optics model, the gap model is considered to get the forest canopy bidirectional reflectance at pixel scale. Comparing the computer simulation results with the GOMS model, and Multi-angle Imaging SpectroRadiometer (MISR) multi-angle remote sensing data, the simulation results are in agreement with the GOMS simulation result and MISR BRF. But there are also some problems to be solved. So the authors can conclude that the study has important value for the application of multi-angle remote sensing and the inversion of vegetation canopy structure parameters.

  1. Computed tomography angiogram. Accuracy in renal surgery

    International Nuclear Information System (INIS)

    Rabah, Danny M.; Al-Hathal, Naif; Al-Fuhaid, Turki; Raza, Sayed; Al-Yami, Fahad; Al-Taweel, Waleed; Alomar, Mohamed; Al-Nagshabandi, Nizar

    2009-01-01

    The objective of this study was to determine the sensitivity and specificity of computed tomography angiogram (CTA) in detecting number and location of renal arteries and veins as well as crossing vessels causing uretero-pelvic junction obstruction (UPJO), and to determine if this can be used in decision-making algorithms for treatment of UPJO. A prospective study was carried out in patients undergoing open, laparoscopic and robotic renal surgery from April 2005 until October 2006. All patients were imaged using CTA with 1.25 collimation of arterial and venous phases. Each multi-detector CTA was then read by one radiologist and his results were compared prospectively with the actual intra-operative findings. Overall, 118 patients were included. CTA had 93% sensitivity, 77% specificity and 90% overall accuracy for detecting a single renal artery, and 76% sensitivity, 92% specificity and 90% overall accuracy for detecting two or more renal arteries (Pearson χ 2 =0.001). There was 95% sensitivity, 84% specificity and 85% overall accuracy for detecting the number of renal veins. CTA had 100% overall accuracy in detecting early dividing renal artery (defined as less than 1.5 cm branching from origin), and 83.3% sensitivity, specificity and overall accuracy in detecting crossing vessels at UPJ. The percentage of surgeons stating CTA to be helpful as pre-operative diagnostic tool was 85%. Computed tomography angiogram is simple, quick and can provide an accurate pre-operative renal vascular anatomy in terms of number and location of renal vessels, early dividing renal arteries and crossing vessels at UPJ. (author)

  2. Computer simulations of the random barrier model

    DEFF Research Database (Denmark)

    Schrøder, Thomas; Dyre, Jeppe

    2002-01-01

    A brief review of experimental facts regarding ac electronic and ionic conduction in disordered solids is given followed by a discussion of what is perhaps the simplest realistic model, the random barrier model (symmetric hopping model). Results from large scale computer simulations are presented...

  3. A haptic interface for virtual simulation of endoscopic surgery.

    Science.gov (United States)

    Rosenberg, L B; Stredney, D

    1996-01-01

    Virtual reality can be described as a convincingly realistic and naturally interactive simulation in which the user is given a first person illusion of being immersed within a computer generated environment While virtual reality systems offer great potential to reduce the cost and increase the quality of medical training, many technical challenges must be overcome before such simulation platforms offer effective alternatives to more traditional training means. A primary challenge in developing effective virtual reality systems is designing the human interface hardware which allows rich sensory information to be presented to users in natural ways. When simulating a given manual procedure, task specific human interface requirements dictate task specific human interface hardware. The following paper explores the design of human interface hardware that satisfies the task specific requirements of virtual reality simulation of Endoscopic surgical procedures. Design parameters were derived through direct cadaver studies and interviews with surgeons. Final hardware design is presented.

  4. Virtual Surgery in Congenital Heart Disease

    DEFF Research Database (Denmark)

    Sørensen, Thomas Sangild; Mosegaard, Jesper; Kislinskiy, Stefan

    2014-01-01

    et al., Cardiol Young 13:451–460, 2003). In combination with the availability of virtual models of congenital heart disease (CHD), techniques for computer- based simulation of cardiac interventions have enabled early clinical exploration of the emerging concept of virtual surgery (Sorensen et al...... Teaching, diagnosing, and planning of therapy in patients with complex structural cardiovascular heart disease require profound understanding of the three-dimensional (3D) nature of cardiovascular structures in these patients. To obtain such understanding, modern imaging modalities provide high...

  5. Technology computer aided design simulation for VLSI MOSFET

    CERN Document Server

    Sarkar, Chandan Kumar

    2013-01-01

    Responding to recent developments and a growing VLSI circuit manufacturing market, Technology Computer Aided Design: Simulation for VLSI MOSFET examines advanced MOSFET processes and devices through TCAD numerical simulations. The book provides a balanced summary of TCAD and MOSFET basic concepts, equations, physics, and new technologies related to TCAD and MOSFET. A firm grasp of these concepts allows for the design of better models, thus streamlining the design process, saving time and money. This book places emphasis on the importance of modeling and simulations of VLSI MOS transistors and

  6. Computer simulations of the mechanical properties of metals

    DEFF Research Database (Denmark)

    Schiøtz, Jakob; Vegge, Tejs

    1999-01-01

    Atomic-scale computer simulations can be used to gain a better understanding of the mechanical properties of materials. In this paper we demonstrate how this can be done in the case of nanocrystalline copper, and give a brief overview of how simulations may be extended to larger length scales....... Nanocrystline metals are metals with grain sizes in the nanometre range, they have a number of technologically interesting properties such as much increased hardness and yield strength. Our simulations show that the deformation mechanisms are different in these materials than in coarse-grained materials...

  7. Event Based Simulator for Parallel Computing over the Wide Area Network for Real Time Visualization

    Science.gov (United States)

    Sundararajan, Elankovan; Harwood, Aaron; Kotagiri, Ramamohanarao; Satria Prabuwono, Anton

    As the computational requirement of applications in computational science continues to grow tremendously, the use of computational resources distributed across the Wide Area Network (WAN) becomes advantageous. However, not all applications can be executed over the WAN due to communication overhead that can drastically slowdown the computation. In this paper, we introduce an event based simulator to investigate the performance of parallel algorithms executed over the WAN. The event based simulator known as SIMPAR (SIMulator for PARallel computation), simulates the actual computations and communications involved in parallel computation over the WAN using time stamps. Visualization of real time applications require steady stream of processed data flow for visualization purposes. Hence, SIMPAR may prove to be a valuable tool to investigate types of applications and computing resource requirements to provide uninterrupted flow of processed data for real time visualization purposes. The results obtained from the simulation show concurrence with the expected performance using the L-BSP model.

  8. Optimizing Cognitive Load for Learning from Computer-Based Science Simulations

    Science.gov (United States)

    Lee, Hyunjeong; Plass, Jan L.; Homer, Bruce D.

    2006-01-01

    How can cognitive load in visual displays of computer simulations be optimized? Middle-school chemistry students (N = 257) learned with a simulation of the ideal gas law. Visual complexity was manipulated by separating the display of the simulations in two screens (low complexity) or presenting all information on one screen (high complexity). The…

  9. Sixth Computational Biomechanics for Medicine Workshop

    CERN Document Server

    Nielsen, Poul MF; Miller, Karol; Computational Biomechanics for Medicine : Deformation and Flow

    2012-01-01

    One of the greatest challenges for mechanical engineers is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, biomedical sciences, and medicine. This book is an opportunity for computational biomechanics specialists to present and exchange opinions on the opportunities of applying their techniques to computer-integrated medicine. Computational Biomechanics for Medicine: Deformation and Flow collects the papers from the Sixth Computational Biomechanics for Medicine Workshop held in Toronto in conjunction with the Medical Image Computing and Computer Assisted Intervention conference. The topics covered include: medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, injury mechanism analysis, implant and prostheses design, and medical robotics.

  10. Definition, modeling and simulation of a grid computing system for high throughput computing

    CERN Document Server

    Caron, E; Tsaregorodtsev, A Yu

    2006-01-01

    In this paper, we study and compare grid and global computing systems and outline the benefits of having an hybrid system called dirac. To evaluate the dirac scheduling for high throughput computing, a new model is presented and a simulator was developed for many clusters of heterogeneous nodes belonging to a local network. These clusters are assumed to be connected to each other through a global network and each cluster is managed via a local scheduler which is shared by many users. We validate our simulator by comparing the experimental and analytical results of a M/M/4 queuing system. Next, we do the comparison with a real batch system and we obtain an average error of 10.5% for the response time and 12% for the makespan. We conclude that the simulator is realistic and well describes the behaviour of a large-scale system. Thus we can study the scheduling of our system called dirac in a high throughput context. We justify our decentralized, adaptive and oppor! tunistic approach in comparison to a centralize...

  11. Inspiratory and expiratory computed tomographic volumetry for lung volume reduction surgery.

    Science.gov (United States)

    Morimura, Yuki; Chen, Fengshi; Sonobe, Makoto; Date, Hiroshi

    2013-06-01

    Three-dimensional (3D) computed tomographic (CT) volumetry has been introduced into the field of thoracic surgery, and a combination of inspiratory and expiratory 3D-CT volumetry provides useful data on regional pulmonary function as well as the volume of individual lung lobes. We report herein a case of a 62-year-old man with severe emphysema who had undergone lung volume reduction surgery (LVRS) to assess this technique as a tool for the evaluation of regional lung function and volume before and after LVRS. His postoperative pulmonary function was maintained in good condition despite a gradual slight decrease 2 years after LVRS. This trend was also confirmed by a combination of inspiratory and expiratory 3D-CT volumetry. We confirm that a combination of inspiratory and expiratory 3D-CT volumetry might be effective for the preoperative assessment of LVRS in order to determine the amount of lung tissue to be resected as well as for postoperative evaluation. This novel technique could, therefore, be used more widely to assess local lung function.

  12. Sensitivity Analysis of Personal Exposure Assessment Using a Computer Simulated Person

    DEFF Research Database (Denmark)

    Brohus, Henrik; Jensen, H. K.

    2009-01-01

    The paper considers uncertainties related to personal exposure assessment using a computer simulated person. CFD is used to simulate a uniform flow field around a human being to determine the personal exposure to a contaminant source. For various vertical locations of a point contaminant source...... three additional factors are varied, namely the velocity, details of the computer simulated person, and the CFD model of the wind channel. The personal exposure is found to be highly dependent on the relative source location. Variation in the range of two orders of magnitude is found. The exposure...

  13. Computer simulation of multiple dynamic photorefractive gratings

    DEFF Research Database (Denmark)

    Buchhave, Preben

    1998-01-01

    The benefits of a direct visualization of space-charge grating buildup are described. The visualization is carried out by a simple repetitive computer program, which simulates the basic processes in the band-transport model and displays the result graphically or in the form of numerical data. The...

  14. Ramifications of single-port laparoscopic surgery: measuring differences in task performance using simulation.

    Science.gov (United States)

    Conway, Nathan E; Romanelli, John R; Bush, Ron W; Seymour, Neal E

    2014-02-01

    Single-port laparoscopic surgery imposes unique psychomotor challenges. We used surgical simulation to define performance differences between surgeons with and without single-port clinical experience and examined whether a short course of training resulted in improved performance. Study participants were assigned to 3 groups: resident group (RES), experienced laparoscopic surgeons with (SP) and without (LAP) prior single-port laparoscopic experience. Participants performed the Fundamentals of Laparoscopic Surgery precision cutting task on a ProMIS trainer through conventional ports or with articulating instruments via a SILS Port (Covidien, Inc). Two iterations of each method were performed. Then, 6 residents performed 10 successive single-port iterations to assess the effect of practice on task performance. The SP group had faster task times for both laparoscopic (P = .0486) and single-port (P = .0238) methods. The LAP group had longer path lengths for the single-port task than for the laparoscopic task (P = .03). The RES group was slower (P = .0019), with longer path length (P = .0010) but with greater smoothness (P = .0186) on the single-port task than the conventional laparoscopic task. Resident performance task time (P = .005) and smoothness (P = .045) improved with successive iterations. Our data show that surgeons with clinical single-port surgery experience perform a simulated single-port surgical task better than inexperienced single-port surgeons. Furthermore, this performance is comparable to that achieved with conventional laparoscopic techniques. Performance of residents declined dramatically when confronted with the challenges of the single-port task but improved with practice. These results suggest a role for lab-based single-port training.

  15. Computer Simulations to Support Science Instruction and Learning: A critical review of the literature

    Science.gov (United States)

    Smetana, Lara Kathleen; Bell, Randy L.

    2012-06-01

    Researchers have explored the effectiveness of computer simulations for supporting science teaching and learning during the past four decades. The purpose of this paper is to provide a comprehensive, critical review of the literature on the impact of computer simulations on science teaching and learning, with the goal of summarizing what is currently known and providing guidance for future research. We report on the outcomes of 61 empirical studies dealing with the efficacy of, and implications for, computer simulations in science instruction. The overall findings suggest that simulations can be as effective, and in many ways more effective, than traditional (i.e. lecture-based, textbook-based and/or physical hands-on) instructional practices in promoting science content knowledge, developing process skills, and facilitating conceptual change. As with any other educational tool, the effectiveness of computer simulations is dependent upon the ways in which they are used. Thus, we outline specific research-based guidelines for best practice. Computer simulations are most effective when they (a) are used as supplements; (b) incorporate high-quality support structures; (c) encourage student reflection; and (d) promote cognitive dissonance. Used appropriately, computer simulations involve students in inquiry-based, authentic science explorations. Additionally, as educational technologies continue to evolve, advantages such as flexibility, safety, and efficiency deserve attention.

  16. Adaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine

    International Nuclear Information System (INIS)

    Sharma, Gulshan B.; Robertson, Douglas D.

    2013-01-01

    Shoulder arthroplasty success has been attributed to many factors including, bone quality, soft tissue balancing, surgeon experience, and implant design. Improved long-term success is primarily limited by glenoid implant loosening. Prosthesis design examines materials and shape and determines whether the design should withstand a lifetime of use. Finite element (FE) analyses have been extensively used to study stresses and strains produced in implants and bone. However, these static analyses only measure a moment in time and not the adaptive response to the altered environment produced by the therapeutic intervention. Computational analyses that integrate remodeling rules predict how bone will respond over time. Recent work has shown that subject-specific two- and three dimensional adaptive bone remodeling models are feasible and valid. Feasibility and validation were achieved computationally, simulating bone remodeling using an intact human scapula, initially resetting the scapular bone material properties to be uniform, numerically simulating sequential loading, and comparing the bone remodeling simulation results to the actual scapula’s material properties. Three-dimensional scapula FE bone model was created using volumetric computed tomography images. Muscle and joint load and boundary conditions were applied based on values reported in the literature. Internal bone remodeling was based on element strain-energy density. Initially, all bone elements were assigned a homogeneous density. All loads were applied for 10 iterations. After every iteration, each bone element’s remodeling stimulus was compared to its corresponding reference stimulus and its material properties modified. The simulation achieved convergence. At the end of the simulation the predicted and actual specimen bone apparent density were plotted and compared. Location of high and low predicted bone density was comparable to the actual specimen. High predicted bone density was greater than

  17. Petascale molecular dynamics simulation using the fast multipole method on K computer

    KAUST Repository

    Ohno, Yousuke; Yokota, Rio; Koyama, Hiroshi; Morimoto, Gentaro; Hasegawa, Aki; Masumoto, Gen; Okimoto, Noriaki; Hirano, Yoshinori; Ibeid, Huda; Narumi, Tetsu; Taiji, Makoto

    2014-01-01

    In this paper, we report all-atom simulations of molecular crowding - a result from the full node simulation on the "K computer", which is a 10-PFLOPS supercomputer in Japan. The capability of this machine enables us to perform simulation of crowded cellular environments, which are more realistic compared to conventional MD simulations where proteins are simulated in isolation. Living cells are "crowded" because macromolecules comprise ∼30% of their molecular weight. Recently, the effects of crowded cellular environments on protein stability have been revealed through in-cell NMR spectroscopy. To measure the performance of the "K computer", we performed all-atom classical molecular dynamics simulations of two systems: target proteins in a solvent, and target proteins in an environment of molecular crowders that mimic the conditions of a living cell. Using the full system, we achieved 4.4 PFLOPS during a 520 million-atom simulation with cutoff of 28 Å. Furthermore, we discuss the performance and scaling of fast multipole methods for molecular dynamics simulations on the "K computer", as well as comparisons with Ewald summation methods. © 2014 Elsevier B.V. All rights reserved.

  18. Petascale molecular dynamics simulation using the fast multipole method on K computer

    KAUST Repository

    Ohno, Yousuke

    2014-10-01

    In this paper, we report all-atom simulations of molecular crowding - a result from the full node simulation on the "K computer", which is a 10-PFLOPS supercomputer in Japan. The capability of this machine enables us to perform simulation of crowded cellular environments, which are more realistic compared to conventional MD simulations where proteins are simulated in isolation. Living cells are "crowded" because macromolecules comprise ∼30% of their molecular weight. Recently, the effects of crowded cellular environments on protein stability have been revealed through in-cell NMR spectroscopy. To measure the performance of the "K computer", we performed all-atom classical molecular dynamics simulations of two systems: target proteins in a solvent, and target proteins in an environment of molecular crowders that mimic the conditions of a living cell. Using the full system, we achieved 4.4 PFLOPS during a 520 million-atom simulation with cutoff of 28 Å. Furthermore, we discuss the performance and scaling of fast multipole methods for molecular dynamics simulations on the "K computer", as well as comparisons with Ewald summation methods. © 2014 Elsevier B.V. All rights reserved.

  19. Virtual Reality-Based Simulators for Cranial Tumor Surgery: A Systematic Review.

    Science.gov (United States)

    Mazur, Travis; Mansour, Tarek R; Mugge, Luke; Medhkour, Azedine

    2018-02-01

    Virtual reality (VR) simulators have become useful tools in various fields of medicine. Prominent uses of VR technologies include assessment of physician skills and presurgical planning. VR has shown effectiveness in multiple surgical specialties, yet its use in neurosurgery remains limited. To examine all current literature on VR-based simulation for presurgical planning and training in cranial tumor surgeries and to assess the quality of these studies. PubMed and Embase were systematically searched to identify studies that used VR for presurgical planning and/or studies that investigated the use of VR as a training tool from inception to May 25, 2017. The initial search identified 1662 articles. Thirty-seven full-text articles were assessed for inclusion. Nine studies were included. These studies were subdivided into presurgical planning and training using VR. Prospects for VR are bright when surgical planning and skills training are considered. In terms of surgical planning, VR has noted and documented usefulness in the planning of cranial surgeries. Further, VR has been central to establishing reproducible benchmarks of performance in relation to cranial tumor resection, which are helpful not only in showing face and construct validity but also in enhancing neurosurgical training in a way not previously examined. Although additional studies are needed to better delineate the precise role of VR in each of these capacities, these studies stand to show the usefulness of VR in the neurosurgery and highlight the need for further investigation. Published by Elsevier Inc.

  20. The growth of computer-assisted (robotic surgery in urology 2000–2014: The role of Asian surgeons

    Directory of Open Access Journals (Sweden)

    Deepansh Dalela

    2015-01-01

    Conclusion: The addition of robot to the surgical armamentarium has allowed better patient care and improved disease outcomes. VUI and surgeons of Asian origin have played a pioneering role in dissemination of computer-assisted surgery.

  1. Cloud Computing in Science and Engineering and the “SciShop.ru” Computer Simulation Center

    Directory of Open Access Journals (Sweden)

    E. V. Vorozhtsov

    2011-12-01

    Full Text Available Various aspects of cloud computing applications for scientific research, applied design, and remote education are described in this paper. An analysis of the different aspects is performed based on the experience from the “SciShop.ru” Computer Simulation Center. This analysis shows that cloud computing technology has wide prospects in scientific research applications, applied developments and also remote education of specialists, postgraduates, and students.

  2. SHIPBUILDING PRODUCTION PROCESS DESIGN METHODOLOGY USING COMPUTER SIMULATION

    OpenAIRE

    Marko Hadjina; Nikša Fafandjel; Tin Matulja

    2015-01-01

    In this research a shipbuilding production process design methodology, using computer simulation, is suggested. It is expected from suggested methodology to give better and more efficient tool for complex shipbuilding production processes design procedure. Within the first part of this research existing practice for production process design in shipbuilding was discussed, its shortcomings and problem were emphasized. In continuing, discrete event simulation modelling method, as basis of sugge...

  3. AFFECTIVE COMPUTING AND AUGMENTED REALITY FOR CAR DRIVING SIMULATORS

    Directory of Open Access Journals (Sweden)

    Dragoș Datcu

    2017-12-01

    Full Text Available Car simulators are essential for training and for analyzing the behavior, the responses and the performance of the driver. Augmented Reality (AR is the technology that enables virtual images to be overlaid on views of the real world. Affective Computing (AC is the technology that helps reading emotions by means of computer systems, by analyzing body gestures, facial expressions, speech and physiological signals. The key aspect of the research relies on investigating novel interfaces that help building situational awareness and emotional awareness, to enable affect-driven remote collaboration in AR for car driving simulators. The problem addressed relates to the question about how to build situational awareness (using AR technology and emotional awareness (by AC technology, and how to integrate these two distinct technologies [4], into a unique affective framework for training, in a car driving simulator.

  4. A computational model to generate simulated three-dimensional breast masses

    Energy Technology Data Exchange (ETDEWEB)

    Sisternes, Luis de; Brankov, Jovan G.; Zysk, Adam M.; Wernick, Miles N., E-mail: wernick@iit.edu [Medical Imaging Research Center, Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Schmidt, Robert A. [Kurt Rossmann Laboratories for Radiologic Image Research, Department of Radiology, The University of Chicago, Chicago, Illinois 60637 (United States); Nishikawa, Robert M. [Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 (United States)

    2015-02-15

    Purpose: To develop algorithms for creating realistic three-dimensional (3D) simulated breast masses and embedding them within actual clinical mammograms. The proposed techniques yield high-resolution simulated breast masses having randomized shapes, with user-defined mass type, size, location, and shape characteristics. Methods: The authors describe a method of producing 3D digital simulations of breast masses and a technique for embedding these simulated masses within actual digitized mammograms. Simulated 3D breast masses were generated by using a modified stochastic Gaussian random sphere model to generate a central tumor mass, and an iterative fractal branching algorithm to add complex spicule structures. The simulated masses were embedded within actual digitized mammograms. The authors evaluated the realism of the resulting hybrid phantoms by generating corresponding left- and right-breast image pairs, consisting of one breast image containing a real mass, and the opposite breast image of the same patient containing a similar simulated mass. The authors then used computer-aided diagnosis (CAD) methods and expert radiologist readers to determine whether significant differences can be observed between the real and hybrid images. Results: The authors found no statistically significant difference between the CAD features obtained from the real and simulated images of masses with either spiculated or nonspiculated margins. Likewise, the authors found that expert human readers performed very poorly in discriminating their hybrid images from real mammograms. Conclusions: The authors’ proposed method permits the realistic simulation of 3D breast masses having user-defined characteristics, enabling the creation of a large set of hybrid breast images containing a well-characterized mass, embedded within real breast background. The computational nature of the model makes it suitable for detectability studies, evaluation of computer aided diagnosis algorithms, and

  5. A computational model to generate simulated three-dimensional breast masses

    International Nuclear Information System (INIS)

    Sisternes, Luis de; Brankov, Jovan G.; Zysk, Adam M.; Wernick, Miles N.; Schmidt, Robert A.; Nishikawa, Robert M.

    2015-01-01

    Purpose: To develop algorithms for creating realistic three-dimensional (3D) simulated breast masses and embedding them within actual clinical mammograms. The proposed techniques yield high-resolution simulated breast masses having randomized shapes, with user-defined mass type, size, location, and shape characteristics. Methods: The authors describe a method of producing 3D digital simulations of breast masses and a technique for embedding these simulated masses within actual digitized mammograms. Simulated 3D breast masses were generated by using a modified stochastic Gaussian random sphere model to generate a central tumor mass, and an iterative fractal branching algorithm to add complex spicule structures. The simulated masses were embedded within actual digitized mammograms. The authors evaluated the realism of the resulting hybrid phantoms by generating corresponding left- and right-breast image pairs, consisting of one breast image containing a real mass, and the opposite breast image of the same patient containing a similar simulated mass. The authors then used computer-aided diagnosis (CAD) methods and expert radiologist readers to determine whether significant differences can be observed between the real and hybrid images. Results: The authors found no statistically significant difference between the CAD features obtained from the real and simulated images of masses with either spiculated or nonspiculated margins. Likewise, the authors found that expert human readers performed very poorly in discriminating their hybrid images from real mammograms. Conclusions: The authors’ proposed method permits the realistic simulation of 3D breast masses having user-defined characteristics, enabling the creation of a large set of hybrid breast images containing a well-characterized mass, embedded within real breast background. The computational nature of the model makes it suitable for detectability studies, evaluation of computer aided diagnosis algorithms, and

  6. The null-event method in computer simulation

    International Nuclear Information System (INIS)

    Lin, S.L.

    1978-01-01

    The simulation of collisions of ions moving under the influence of an external field through a neutral gas to non-zero temperatures is discussed as an example of computer models of processes in which a probe particle undergoes a series of interactions with an ensemble of other particles, such that the frequency and outcome of the events depends on internal properties of the second particles. The introduction of null events removes the need for much complicated algebra, leads to a more efficient simulation and reduces the likelihood of logical error. (Auth.)

  7. Computational fluid dynamics for sport simulation

    CERN Document Server

    2009-01-01

    All over the world sport plays a prominent role in society: as a leisure activity for many, as an ingredient of culture, as a business and as a matter of national prestige in such major events as the World Cup in soccer or the Olympic Games. Hence, it is not surprising that science has entered the realm of sports, and, in particular, that computer simulation has become highly relevant in recent years. This is explored in this book by choosing five different sports as examples, demonstrating that computational science and engineering (CSE) can make essential contributions to research on sports topics on both the fundamental level and, eventually, by supporting athletes’ performance.

  8. Computer simulation of spacecraft/environment interaction

    International Nuclear Information System (INIS)

    Krupnikov, K.K.; Makletsov, A.A.; Mileev, V.N.; Novikov, L.S.; Sinolits, V.V.

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language

  9. Computer simulation of spacecraft/environment interaction

    CERN Document Server

    Krupnikov, K K; Mileev, V N; Novikov, L S; Sinolits, V V

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language.

  10. Computational fluid dynamics (CFD) simulation of hot air flow ...

    African Journals Online (AJOL)

    Computational Fluid Dynamics simulation of air flow distribution, air velocity and pressure field pattern as it will affect moisture transient in a cabinet tray dryer is performed using SolidWorks Flow Simulation (SWFS) 2014 SP 4.0 program. The model used for the drying process in this experiment was designed with Solid ...

  11. Investigating the Effectiveness of Computer Simulations for Chemistry Learning

    Science.gov (United States)

    Plass, Jan L.; Milne, Catherine; Homer, Bruce D.; Schwartz, Ruth N.; Hayward, Elizabeth O.; Jordan, Trace; Verkuilen, Jay; Ng, Florrie; Wang, Yan; Barrientos, Juan

    2012-01-01

    Are well-designed computer simulations an effective tool to support student understanding of complex concepts in chemistry when integrated into high school science classrooms? We investigated scaling up the use of a sequence of simulations of kinetic molecular theory and associated topics of diffusion, gas laws, and phase change, which we designed…

  12. Monte Carlo simulation with the Gate software using grid computing

    International Nuclear Information System (INIS)

    Reuillon, R.; Hill, D.R.C.; Gouinaud, C.; El Bitar, Z.; Breton, V.; Buvat, I.

    2009-03-01

    Monte Carlo simulations are widely used in emission tomography, for protocol optimization, design of processing or data analysis methods, tomographic reconstruction, or tomograph design optimization. Monte Carlo simulations needing many replicates to obtain good statistical results can be easily executed in parallel using the 'Multiple Replications In Parallel' approach. However, several precautions have to be taken in the generation of the parallel streams of pseudo-random numbers. In this paper, we present the distribution of Monte Carlo simulations performed with the GATE software using local clusters and grid computing. We obtained very convincing results with this large medical application, thanks to the EGEE Grid (Enabling Grid for E-science), achieving in one week computations that could have taken more than 3 years of processing on a single computer. This work has been achieved thanks to a generic object-oriented toolbox called DistMe which we designed to automate this kind of parallelization for Monte Carlo simulations. This toolbox, written in Java is freely available on SourceForge and helped to ensure a rigorous distribution of pseudo-random number streams. It is based on the use of a documented XML format for random numbers generators statuses. (authors)

  13. Simulation and computation in health physics training

    International Nuclear Information System (INIS)

    Lakey, S.R.A.; Gibbs, D.C.C.; Marchant, C.P.

    1980-01-01

    The Royal Naval College has devised a number of computer aided learning programmes applicable to health physics which include radiation shield design and optimisation, environmental impact of a reactor accident, exposure levels produced by an inert radioactive gas cloud, and the prediction of radiation detector response in various radiation field conditions. Analogue computers are used on reduced or fast time scales because time dependent phenomenon are not always easily assimilated in real time. The build-up and decay of fission products, the dynamics of intake of radioactive material and reactor accident dynamics can be effectively simulated. It is essential to relate these simulations to real time and the College applies a research reactor and analytical phantom to this end. A special feature of the reactor is a chamber which can be supplied with Argon-41 from reactor exhaust gases to create a realistic gaseous contamination environment. Reactor accident situations are also taught by using role playing sequences carried out in real time in the emergency facilities associated with the research reactor. These facilities are outlined and the training technique illustrated with examples of the calculations and simulations. The training needs of the future are discussed, with emphasis on optimisation and cost-benefit analysis. (H.K.)

  14. Computer Simulation of Multidimensional Archaeological Artefacts

    Directory of Open Access Journals (Sweden)

    Vera Moitinho de Almeida

    2012-11-01

    Our project focuses on the Neolithic lakeside site of La Draga (Banyoles, Catalonia. In this presentation we will begin by providing a clear overview of the major guidelines used to capture and process 3D digital data of several wooden artefacts. Then, we shall present the use of semi-automated relevant feature extractions. Finally, we intend to share preliminary computer simulation issues.

  15. GEANT4 simulations for Proton computed tomography applications

    International Nuclear Information System (INIS)

    Yevseyeva, Olga; Assis, Joaquim T. de; Evseev, Ivan; Schelin, Hugo R.; Shtejer Diaz, Katherin; Lopes, Ricardo T.

    2011-01-01

    Proton radiation therapy is a highly precise form of cancer treatment. In existing proton treatment centers, dose calculations are performed based on X-ray computed tomography (CT). Alternatively, one could image the tumor directly with proton CT (pCT). Proton beams in medical applications deal with relatively thick targets like the human head or trunk. Thus, the fidelity of proton computed tomography (pCT) simulations as a tool for proton therapy planning depends in the general case on the accuracy of results obtained for the proton interaction with thick absorbers. GEANT4 simulations of proton energy spectra after passing thick absorbers do not agree well with existing experimental data, as showed previously. The spectra simulated for the Bethe-Bloch domain showed an unexpected sensitivity to the choice of low-energy electromagnetic models during the code execution. These observations were done with the GEANT4 version 8.2 during our simulations for pCT. This work describes in more details the simulations of the proton passage through gold absorbers with varied thickness. The simulations were done by modifying only the geometry in the Hadron therapy Example, and for all available choices of the Electromagnetic Physics Models. As the most probable reasons for these effects is some specific feature in the code or some specific implicit parameters in the GEANT4 manual, we continued our study with version 9.2 of the code. Some improvements in comparison with our previous results were obtained. The simulations were performed considering further applications for pCT development. The authors want to thank CNPq, CAPES and 'Fundacao Araucaria' for financial support of this work. (Author)

  16. Supporting hypothesis generation by learners exploring an interactive computer simulation

    NARCIS (Netherlands)

    van Joolingen, Wouter R.; de Jong, Ton

    1992-01-01

    Computer simulations provide environments enabling exploratory learning. Research has shown that these types of learning environments are promising applications of computer assisted learning but also that they introduce complex learning settings, involving a large number of learning processes. This

  17. Environments for online maritime simulators with cloud computing capabilities

    Science.gov (United States)

    Raicu, Gabriel; Raicu, Alexandra

    2016-12-01

    This paper presents the cloud computing environments, network principles and methods for graphical development in realistic naval simulation, naval robotics and virtual interactions. The aim of this approach is to achieve a good simulation quality in large networked environments using open source solutions designed for educational purposes. Realistic rendering of maritime environments requires near real-time frameworks with enhanced computing capabilities during distance interactions. E-Navigation concepts coupled with the last achievements in virtual and augmented reality will enhance the overall experience leading to new developments and innovations. We have to deal with a multiprocessing situation using advanced technologies and distributed applications using remote ship scenario and automation of ship operations.

  18. Computer simulation of the natural U 238 and U 235 radioactive series decay

    International Nuclear Information System (INIS)

    Barna, A.; Oncescu, M.

    1980-01-01

    The principles of the computer simulation of a radionuclide decay - its decay scheme adoption and codification -, and the adoption principle of a radionuclide chain in a series are applied to the natural U 238 and U 235 series radionuclide decay computer simulation. Using the computer simulation data of these two series adopted chains, the decay characteristic quantities of the series radionuclides, the gamma spectra and the basic characteristics of each of these series are determined and compared with the experimental values given in the literature. (author)

  19. Proceedings of joint meeting of the 6th simulation science symposium and the NIFS collaboration research 'large scale computer simulation'

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    Joint meeting of the 6th Simulation Science Symposium and the NIFS Collaboration Research 'Large Scale Computer Simulation' was held on December 12-13, 2002 at National Institute for Fusion Science, with the aim of promoting interdisciplinary collaborations in various fields of computer simulations. The present meeting attended by more than 40 people consists of the 11 invited and 22 contributed papers, of which topics were extended not only to fusion science but also to related fields such as astrophysics, earth science, fluid dynamics, molecular dynamics, computer science etc. (author)

  20. Advanced Simulation and Computing Fiscal Year 14 Implementation Plan, Rev. 0.5

    Energy Technology Data Exchange (ETDEWEB)

    Meisner, Robert [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McCoy, Michel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Archer, Bill [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Matzen, M. Keith [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-09-11

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Moreover, ASC’s business model is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive