WorldWideScience

Sample records for surge flow irrigation

  1. Surge flow irrigation under short field conditions in Egypt

    NARCIS (Netherlands)

    Ismail, S.M.; Depeweg, H.; Schultz, E.

    2004-01-01

    Several studies carried out in long furrows have shown that surge flow irrigation offers the potential of increasing the efficiency of irrigation. The effects of surge flow in short fields, such as in Egypt, are still not well known, however. To investigate the effect of surge flow irrigation in

  2. Effect of tillage on water advance and distribution under surge and continuous furrow irrigation methods for cotton in Egypt

    NARCIS (Netherlands)

    Ismail, S.M.

    2006-01-01

    A field experiment was carried out to assess the effect of tillage on water advance and water distribution in the root zone area (0.5 m) under continuous and surge flow irrigation in a cotton field. The experiment was conducted at the Agriculture Experimental Station, Assiut University, Assiut,

  3. Flow in sodium loop surge tank

    International Nuclear Information System (INIS)

    Matal, O.; Martoch, J.

    1977-01-01

    The alternate liquid flow, the condition of vortex formation, gas entrainment in the discharge and the liquid level characteristics are studied using the models of the vertical and horizontal surge tanks of a sodium circuit with pump and heat exchangers. The conditions for vortex formation are more favourable in the vertical cylindrical tank than in the horizontal tank. The size of the vortex produced in the tank is affected by the initial speed circulation, due as a rule to an unsuitable inlet design. The proposed design considers an inlet below the sodium level using capped perforated pipes. Vortex formation, gas transport to the discharge pipe and turbulences of the liquid in the tank may be prevented by dividing the tank to the discharge and the inlet areas using perforated partitions, and by inserting the discharge cylinder above the discharge pipe outflow. The liquid level in the tank may be calmed by screens or by perforated plates. The adaptation of the surge tank of the sodium circuit will probably eliminate vortex formation and the entrainment of cover gas into the discharge piping and the sodium circuit under nominal conditions. (J.B.)

  4. Developing models for patient flow and daily surge capacity research.

    Science.gov (United States)

    Asplin, Brent R; Flottemesch, Thomas J; Gordon, Bradley D

    2006-11-01

    Between 1993 and 2003, visits to U.S. emergency departments (EDs) increased by 26%, to a total of 114 million visits annually. At the same time, the number of U.S. EDs decreased by more than 400, and almost 200,000 inpatient hospital beds were taken out of service. In this context, the adequacy of daily surge capacity within the system is clearly an important issue. However, the research agenda on surge capacity thus far has focused primarily on large-scale disasters, such as pandemic influenza or a serious bioterrorism event. The concept of daily surge capacity and its relationship to the broader research agenda on patient flow is a relatively new area of investigation. In this article, the authors begin by describing the overlap between the research agendas on daily surge capacity and patient flow. Next, they propose two models that have potential applications for both daily surge capacity and hospitalwide patient-flow research. Finally, they identify potential research questions that are based on applications of the proposed research models.

  5. Dependence between sea surge, river flow and precipitation in south and west Britain

    Directory of Open Access Journals (Sweden)

    C. Svensson

    2004-01-01

    Full Text Available Estuaries around Great Britain may be at heightened risk of flooding because of the simultaneous occurrence of extreme sea surge and river flow, both of which may be caused by mid-latitude cyclones. A measure especially suited for extremes was employed to estimate dependence between river flow and sea surge. To assist in the interpretation of why flow-surge dependence occurs in some areas and not in others, the dependence between precipitation and surge and between precipitation and river flow was also studied. Case studies of the meteorological situations leading to high surges and/or river flows were also carried out. The present study concerns catchments draining to the south and west coasts of Great Britain. Statistically significant dependence between river flow and daily maximum sea surge may be found at catchments spread along most of this coastline. However, higher dependence is generally found in catchments in hilly areas with a southerly to westerly aspect. Here, precipitation in south-westerly airflow, which is generally the quadrant of prevailing winds, will be enhanced orographically as the first higher ground is encountered. The sloping catchments may respond quickly to the abundant rainfall and the flow peak may arrive in the estuary on the same day as a large sea surge is produced by the winds and low atmospheric pressure associated with the cyclone. There are three regions where flow-surge dependence is strong: the western part of the English south coast, southern Wales and around the Solway Firth. To reduce the influence of tide-surge interaction on the dependence analysis, the dependence between river flow and daily maximum surge occurring at high tide was estimated. The general pattern of areas with higher dependence is similar to that using the daily maximum surge. The dependence between river flow and daily maximum sea surge is often strongest when surge and flow occur on the same day. The west coast from Wales and

  6. Effects of Pulsating Flow on Mass Flow Balance and Surge Margin in Parallel Turbocharged Engines

    OpenAIRE

    Thomasson, Andreas; Eriksson, Lars

    2015-01-01

    The paper extends a mean value model of a parallel turbocharged internal combustion engine with a crank angle resolved cylinder model. The result is a 0D engine model that includes the pulsating flow from the intake and exhaust valves. The model captures variations in turbo speed and pressure, and therefore variations in the compressor operating point, during an engine cycle. The model is used to study the effect of the pulsating flow on mass flow balance and surge margin in parallel turbocha...

  7. Ultrasonic flow measurements for irrigation process monitoring

    Science.gov (United States)

    Ziani, Elmostafa; Bennouna, Mustapha; Boissier, Raymond

    2004-02-01

    This paper presents the state of the art of the general principle of liquid flow measurements by ultrasonic method, and problems of flow measurements. We present an ultrasonic flowmeter designed according to smart sensors concept, for the measurement of irrigation water flowing through pipelines or open channels, using the ultrasonic transit time approach. The new flowmeter works on the principle of measuring time delay differences between sound pulses transmitted upstream and downstream in the flowing liquid. The speed of sound in the flowing medium is eliminated as a variable because the flowrate calculations are based on the reciprocals of the transmission times. The transit time difference is digitally measured by means of a suitable, microprocessor controlled logic. This type of ultrasonic flowmeter will be widely used in industry and water management, it is well studied in this work, followed by some experimental results. For pressurized channels, we use one pair of ultrasonic transducer arranged in proper positions and directions of the pipe, in this case, to determine the liquid velocity, a real time on-line analysis taking account the geometries of the hydraulic system, is applied to the obtained ultrasonic data. In the open channels, we use a single or two pairs of ultrasonic emitter-receiver according to the desired performances. Finally, the goals of this work consist in integrating the smart sensor into irrigation systems monitoring in order to evaluate potential advantages and demonstrate their performance, on the other hand, to understand and use ultrasonic approach for determining flow characteristics and improving flow measurements by reducing errors caused by disturbances of the flow profiles.

  8. Runoff-generated debris flows: observations and modeling of surge initiation, magnitude, and frequency

    Science.gov (United States)

    Kean, Jason W.; McCoy, Scott W.; Tucker, Gregory E.; Staley, Dennis M.; Coe, Jeffrey A.

    2013-01-01

    Runoff during intense rainstorms plays a major role in generating debris flows in many alpine areas and burned steeplands. Yet compared to debris flow initiation from shallow landslides, the mechanics by which runoff generates a debris flow are less understood. To better understand debris flow initiation by surface water runoff, we monitored flow stage and rainfall associated with debris flows in the headwaters of two small catchments: a bedrock-dominated alpine basin in central Colorado (0.06 km2) and a recently burned area in southern California (0.01 km2). We also obtained video footage of debris flow initiation and flow dynamics from three cameras at the Colorado site. Stage observations at both sites display distinct patterns in debris flow surge characteristics relative to rainfall intensity (I). We observe small, quasiperiodic surges at low I; large, quasiperiodic surges at intermediate I; and a single large surge followed by small-amplitude fluctuations about a more steady high flow at high I. Video observations of surge formation lead us to the hypothesis that these flow patterns are controlled by upstream variations in channel slope, in which low-gradient sections act as “sediment capacitors,” temporarily storing incoming bed load transported by water flow and periodically releasing the accumulated sediment as a debris flow surge. To explore this hypothesis, we develop a simple one-dimensional morphodynamic model of a sediment capacitor that consists of a system of coupled equations for water flow, bed load transport, slope stability, and mass flow. This model reproduces the essential patterns in surge magnitude and frequency with rainfall intensity observed at the two field sites and provides a new framework for predicting the runoff threshold for debris flow initiation in a burned or alpine setting.

  9. Countercurrent Air-Water Flow in a Scale-Down Model of a Pressurizer Surge Line

    Directory of Open Access Journals (Sweden)

    Takashi Futatsugi

    2012-01-01

    Full Text Available Steam generated in a reactor core and water condensed in a pressurizer form a countercurrent flow in a surge line between a hot leg and the pressurizer during reflux cooling. Characteristics of countercurrent flow limitation (CCFL in a 1/10-scale model of the surge line were measured using air and water at atmospheric pressure and room temperature. The experimental results show that CCFL takes place at three different locations, that is, at the upper junction, in the surge line, and at the lower junction, and its characteristics are governed by the most dominating flow limitation among the three. Effects of inclination angle and elbows of the surge line on CCFL characteristics were also investigated experimentally. The effects of inclination angle on CCFL depend on the flow direction, that is, the effect is large for the nearly horizontal flow and small for the vertical flow at the upper junction. The presence of elbows increases the flow limitation in the surge line, whereas the flow limitations at the upper and lower junctions do not depend on the presence of elbows.

  10. Numerical simulation of cavitation surge and vortical flows in a diffuser with swirling flow

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Bin; Wang, Jiong; Xiao, L. Z.; Long, X. [Wuhan University, Hubei (China); Luo, X. [Tsinghua University, Beijing (China); Miyagawa, K. [Waseda University, Tokyo (Japan); Tsujimoto, Yoshinobu [Osaka University, Osaka (Japan)

    2016-06-15

    The strong swirling flow at the exit of the runner of a Francis turbine at part load causes flow instabilities and cavitation surges in the draft tube, deteriorating the performance of the hydraulic power system. The unsteady cavitating turbulent flow in the draft tube is simplified and modeled by a diffuser with swirling flow using the Scale-adaptive simulation method. Unsteady characteristics of the vortex rope structure and the underlying mechanisms for the interactions between the cavitation and the vortices are both revealed. The generation and evolution of the vortex rope structures are demonstrated with the help of the iso-surfaces of the vapor volume fraction and the Qcriterion. Analysis based on the vorticity transport equation suggests that the vortex dilatation term is much larger along the cavity interface in the diffuser inlet and modifies the vorticity field in regions with high density and pressure gradients. The present work is validated by comparing two types of cavitation surges observed experimentally in the literature with further interpretations based on simulations.

  11. Modeling Flood Inundation Induced by River Flow and Storm Surges over a River Basin

    Directory of Open Access Journals (Sweden)

    Wei-Bo Chen

    2014-10-01

    Full Text Available Low-lying coastal regions and their populations are at risk during storm surge events and high freshwater discharges from upriver. An integrated storm surge and flood inundation modeling system was used to simulate storm surge and inundation in the Tsengwen River basin and the adjacent coastal area in southern Taiwan. A three-dimensional hydrodynamic model with an unstructured grid was used, which was driven by the tidal elevation at the open boundaries and freshwater discharge at the upriver boundary. The model was validated against the observed water levels for three typhoon events. The simulation results for the model were in reasonable agreement with the observational data. The model was then applied to investigate the effects of a storm surge, freshwater discharge, and a storm surge combined with freshwater discharge during an extreme typhoon event. The super Typhoon Haiyan (2013 was artificially shifted to hit Taiwan: the modeling results showed that the inundation area and depth would cause severe overbank flow and coastal flooding for a 200 year return period flow. A high-resolution grid model is essential for the accurate simulation of storm surges and inundation.

  12. Mobility of pyroclastic flows and surges at the Soufriere Hills Volcano, Montserrat

    Science.gov (United States)

    Calder, E.S.; Cole, P.D.; Dade, W.B.; Druitt, T.H.; Hoblitt, R.P.; Huppert, H.E.; Ritchie, L.; Sparks, R.S.J.; Young, S.R.

    1999-01-01

    The Soufriere Hills Volcano on Montserrat has produced avalanche-like pyroclastic flows formed by collapse of the unstable lava dome or explosive activity. Pyroclastic flows associated with dome collapse generate overlying dilute surges which detach from and travel beyond their parent flows. The largest surges partially transform by rapid sedimentation into dense secondary pyroclastic flows that pose significant hazards to distal areas. Different kinds of pyroclastic density currents display contrasting mobilities indicated by ratios of total height of fall H, run-out distance L, area inundated A and volume transported V. Dome-collapse flow mobilities (characterised by either L/H or A/V 2/3) resemble those of terrestrial and extraterrestrial cold-rockfalls (Dade and Huppert, 1998). In contrast, fountain-fed pumice flows and fine-grained, secondary pyroclastic flows travel slower but, for comparable initial volumes and heights, can inundate greater areas.

  13. Comparison of drip, pipe and surge spring root irrigation for Jujube (Ziziphus jujuba Mill. fruit quality in the Loess plateau of China.

    Directory of Open Access Journals (Sweden)

    Qing-Han Gao

    Full Text Available Loess Plateau is a typical rain-fed farming region, facing the threat of drought. Irrigation method is among the most important factors affecting jujube quality. This study investigated the response of Ziziphus jujuba Mill. cv. Lizao quality to three different irrigation methods (drip-, pipe- and surge spring root irrigation combining two water levels (20 m(3/hm(2 and 120 m(3/hm(2. The effects of the trials were evaluated by taking into account the physical-chemical characteristics of jujubes and the antioxidant activity. Concomitant to this, the concentration of some taste-related (viz. glucose, fructose, TSS and malic acid and health-related compounds/parameters (viz. catechin and epicatechin were generally much greater in jujube fruit treated with drip irrigation (120 m(3/hm(2. Different irrigation treatments had no significant effects on antioxidant capacity, total phenolics and proanthocyanidins (except for pipe irrigation 20 m(3/hm(2. The best compromise between quality and irrigation of jujube fruit was achieved with drip irrigation (120 m(3/hm(2.

  14. An experimental description of the flow in a centrifugal compressor from alternate stall to surge

    Science.gov (United States)

    Moënne-Loccoz, V.; Trébinjac, I.; Benichou, E.; Goguey, S.; Paoletti, B.; Laucher, P.

    2017-08-01

    The present paper gives the experimental results obtained in a centrifugal compressor stage designed and built by SAFRAN Helicopter Engines. The compressor is composed of inlet guide vanes, a backswept splittered unshrouded impeller, a splittered vaned radial diffuser and axial outlet guide vanes. Previous numerical simulations revealed a particular S-shape pressure rise characteristic at partial rotation speed and predicted an alternate flow pattern in the vaned radial diffuser at low mass flow rate. This alternate flow pattern involves two adjacent vane passages. One passage exhibits very low momentum and a low pressure recovery, whereas the adjacent passage has very high momentum in the passage inlet and diffuses efficiently. Experimental measurements confirm the S-shape of the pressure rise characteristic even if the stability limit experimentally occurs at higher mass flow than numerically predicted. At low mass flow the alternate stall pattern is confirmed thanks to the data obtained by high-frequency pressure sensors. As the compressor is throttled the path to instability has been registered and a first scenario of the surge inception is given. The compressor first experiences a steady alternate stall in the diffuser. As the mass flow decreases, the alternate stall amplifies and triggers the mild surge in the vaned diffuser. An unsteady behavior results from the interaction of the alternate stall and the mild surge. Finally, when the pressure gradient becomes too strong, the alternate stall blows away and the compressor enters into deep surge.

  15. On the effect of pulsating flow on surge margin of small centrifugal compressors for automotive engines

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, J.; Climent, H.; Guardiola, C.; Tiseira, A. [CMT-Motores Termicos, Universidad Politecnica de Valencia (Spain); Camino de Vera s/n, E 46022, Valencia (Spain)

    2009-11-15

    Surge is becoming a limiting factor in the design of boosting systems of downsized diesel engines. Although standard compressor flowcharts are used for the selection of those machines for a given application, on-engine conditions widely differ from steady flow conditions, thus affecting compressor behaviour and consequently surge phenomenon. In this paper the effect of pulsating flow is investigated by means of a steady gas-stand that has been modified to produce engine-like pulsating flow. The effect of pressure pulses' amplitude and frequency on the compressor surge line location has been checked. Results show that pulsating flow in the 40-67 Hz range (corresponding to characteristic pulsation when boosting an internal combustion engine) increases surge margin. This increased margin is similar for all the tested frequencies but depends on pulsation amplitude. In a further step, a non-steady compressor model is used for modelling the tests, thus allowing a deeper analysis of the involved phenomena. Model results widely agree with experimental results. (author)

  16. Performance and Adaptive Surge-Preventing Acceleration Prediction of a Turboshaft Engine under Inlet Flow Distortion

    Directory of Open Access Journals (Sweden)

    Cao Dalu

    2017-01-01

    Full Text Available The intention of this paper is to research the inlet flow distortion influence on overall performance of turboshaft engine and put forward a method called Distortion Factor Item (DFI to improve the fuel supply plan for surge-preventing acceleration when turboshaft engine suddenly encounters inlet flow distortion. Based on the parallel compressor theory, steady-state and transition-state numerical simulation model of turboshaft engine with sub-compressor model were established for researching the influence of inlet flow distortion on turboshaft engine. This paper made a detailed analysis on the compressor operation from the aspects of performance and stability, and then analyzed the overall performance and dynamic response of the whole engine under inlet flow distortion. Improved fuel supply plan with DFI method was applied to control the acceleration process adaptively when encountering different inlet flow distortion. Several simulation examples about extreme natural environments were calculated to testify DFI method’s environmental applicability. The result shows that the inlet flow distortion reduces the air inflow and decreases the surge margin of compressor, and increase the engine exhaust loss. Encountering inlet flow distortion has many adverse influences such as sudden rotor acceleration, turbine inlet temperature rise and power output reduction. By using improved fuel supply plan with DFI, turboshaft engine above-idle acceleration can avoid surge effectively under inlet flow distortion with environmental applicability.

  17. PIV investigation of the flow induced by a passive surge control method in a radial compressor

    Energy Technology Data Exchange (ETDEWEB)

    Guillou, Erwann; Gancedo, Matthieu; Gutmark, Ephraim [University of Cincinnati, Department of Aerospace Engineering, Cincinnati, OH (United States); Mohamed, Ashraf [Honeywell Turbo Technologies, Greater Los Angeles, CA (United States)

    2012-09-15

    Due to recent emission regulations, the use of turbochargers for force induction of internal combustion engines has increased. Actually, the trend in diesel engines is to downsize the engine by use of turbochargers that operate at higher pressure ratios. Unfortunately, increasing the impeller rotational speed of turbocharger radial compressors tends to reduce their range of operation, which is limited at low mass flow rate by the occurrence of surge. In order to extend the operability of turbochargers, compressor housings can be equipped with a passive surge control device such as a ''ported shroud.'' This specific casing treatment has been demonstrated to enhance the surge margin with minor negative impact on the compressor efficiency. However, the actual working mechanisms of the system remain not well understood. Hence, in order to optimize the design of the ported shroud, it is crucial to identify the dynamic flow changes induced by the implementation of the device to control instabilities. From the full dynamic survey of the compressor performance characteristics obtained with and without ported shroud, specific points of operation were selected to carry out planar flow visualization. At normal working, both standard and stereoscopic particle imaging velocimetry (PIV) measurements were performed to evaluate instantaneous and mean velocity flow fields at the inlet of the compressor. At incipient and full surge, phase-locked PIV measurements were added. As a result, satisfying characterization of the compressor instabilities was provided at different operational speeds. Combining transient pressure data and PIV measurements, the time evolution of the complex flow patterns occurring at surge was reconstructed and a better insight into the bypass mechanism was achieved. (orig.)

  18. PIV investigation of the flow induced by a passive surge control method in a radial compressor

    Science.gov (United States)

    Guillou, Erwann; Gancedo, Matthieu; Gutmark, Ephraim; Mohamed, Ashraf

    2012-09-01

    Due to recent emission regulations, the use of turbochargers for force induction of internal combustion engines has increased. Actually, the trend in diesel engines is to downsize the engine by use of turbochargers that operate at higher pressure ratios. Unfortunately, increasing the impeller rotational speed of turbocharger radial compressors tends to reduce their range of operation, which is limited at low mass flow rate by the occurrence of surge. In order to extend the operability of turbochargers, compressor housings can be equipped with a passive surge control device such as a "ported shroud." This specific casing treatment has been demonstrated to enhance the surge margin with minor negative impact on the compressor efficiency. However, the actual working mechanisms of the system remain not well understood. Hence, in order to optimize the design of the ported shroud, it is crucial to identify the dynamic flow changes induced by the implementation of the device to control instabilities. From the full dynamic survey of the compressor performance characteristics obtained with and without ported shroud, specific points of operation were selected to carry out planar flow visualization. At normal working, both standard and stereoscopic particle imaging velocimetry (PIV) measurements were performed to evaluate instantaneous and mean velocity flow fields at the inlet of the compressor. At incipient and full surge, phase-locked PIV measurements were added. As a result, satisfying characterization of the compressor instabilities was provided at different operational speeds. Combining transient pressure data and PIV measurements, the time evolution of the complex flow patterns occurring at surge was reconstructed and a better insight into the bypass mechanism was achieved.

  19. International fund flows: surges, sudden stops, and cyclicality

    NARCIS (Netherlands)

    Li, Suxiao

    2017-01-01

    International fund flows are cross-border investments in domestic equity and bond markets by global investment funds. They have increased dramatically since the 1990s and played an increasingly important role in the transmission of shocks. In this thesis, we examine the drivers of large changes in

  20. Centrifugal Compressor Surge Controlled

    Science.gov (United States)

    Skoch, Gary J.

    2003-01-01

    It shows the variation in compressor mass flow with time as the mass flow is throttled to drive the compressor into surge. Surge begins where wide variations in mass flow occur. Air injection is then turned on to bring about a recovery from the initial surge condition and stabilize the compressor. The throttle is closed further until surge is again initiated. Air injection is increased to again recover from the surge condition and stabilize the compressor.

  1. Flow Characterization and Dynamic Analysis of a Radial Compressor with Passive Method of Surge Control

    Science.gov (United States)

    Guillou, Erwann

    Due to recent emission regulations, the use of turbochargers for force induction of internal combustion engines has increased. Actually, the trend in diesel engines is to downsize the engine by use of turbochargers that operate at higher pressure ratio. Unfortunately, increasing the rotational speed tends to reduce the turbocharger radial compressor range of operation which is limited at low mass flow rate by the occurrence of surge. In order to extent the operability of turbochargers, compressor housings can be equipped with a passive surge control device also known as ported shroud. This specific casing treatment has been demonstrated to enhance surge margin with minor negative impact on the compressor efficiency. However, the actual working mechanisms of the bypass system remain not well understood. In order to optimize the design of the ported shroud, it is then crucial to identify the dynamic flow changes induced by the implementation of the device to control instabilities. Experimental methods were used to assess the development of instabilities from stable, stall and eventually surge regimes of a ported shroud centrifugal compressor. Systematic comparison was conducted with the same compressor design without ported shroud. Hence, the full pressure dynamic survey of both compressors' performance characteristics converged toward two different and probably interrelated driving mechanisms to the development and/or propagation of unsteadiness within each compressor. One related the pressure disturbances at the compressor inlet, and notably the more apparent development of perturbations in the non-ported compressor impeller, whereas the other was attributed to the pressure distortions induced by the presence of the tongue in the asymmetric design of the compressor volute. Specific points of operation were selected to carry out planar flow measurements. At normal working, both standard and stereoscopic particle imaging velocimetry (PIV) measurements were performed

  2. The future of irrigated agriculture under environmental flow requirements restrictions

    Science.gov (United States)

    Pastor, Amandine; Palazzo, Amanda; Havlik, Petr; Kabat, Pavel; Obersteiner, Michael; Ludwig, Fulco

    2016-04-01

    Water is not an infinite resource and demand from irrigation, household and industry is constantly increasing. This study focused on including global water availability including environmental flow requirements with water withdrawal from irrigation and other sectors at a monthly time-step in the GLOBIOM model. This model allows re-adjustment of land-use allocation, crop management, consumption and international trade. The GLOBIOM model induces an endogenous change in water price depending on water supply and demand. In this study, the focus was on how the inclusion of water resources affects land-use and, in particular, how global change will influence repartition of irrigated and rainfed lands at global scale. We used the climate change scenario including a radiative forcing of 8.5 W/m2 (RCP8.5), the socio-economic scenario (SSP2: middle-of-road), and the environmental flow method based on monthly flow allocation (the Variable Monthly Flow method) with high and low restrictions. Irrigation withdrawals were adjusted to a monthly time-step to account for biophysical water limitations at finer time resolution. Our results show that irrigated land might decrease up to 40% on average depending on the choice of EFR restrictions. Several areas were identified as future hot-spots of water stress such as the Mediterranean and Middle-East regions. Other countries were identified to be in safe position in terms of water stress such as North-European countries. Re-allocation of rainfed and irrigated land might be useful information for land-use planners and water managers at an international level to decide on appropriate legislations on climate change mitigation/adaptation when exposure and sensitivity to climate change is high and/or on adaptation measures to face increasing water demand. For example, some countries are likely to adopt measures to increase their water use efficiencies (irrigation system, soil and water conservation practices) to face water shortages, while

  3. Brief communication: The Khurdopin glacier surge revisited – extreme flow velocities and formation of a dammed lake in 2017

    Directory of Open Access Journals (Sweden)

    J. F. Steiner

    2018-01-01

    Full Text Available Glacier surges occur regularly in the Karakoram, but the driving mechanisms, their frequency and its relation to a changing climate remain unclear. In this study, we use digital elevation models and Landsat imagery in combination with high-resolution imagery from the Planet satellite constellation to quantify surface elevation changes and flow velocities during a glacier surge of the Khurdopin Glacier in 2017. Results reveal that an accumulation of ice volume above a clearly defined steep section of the glacier tongue since the last surge in 1999 eventually led to a rapid surge in May 2017 peaking with velocities above 5000 m a−1, which were among the fastest rates globally for a mountain glacier. Our data reveal that velocities on the lower tongue increase steadily during a 4-year build-up phase prior to the actual surge only to then rapidly peak and decrease again within a few months, which confirms earlier observations with a higher frequency of available velocity data. The surge return period between the reported surges remains relatively constant at ca. 20 years. We show the potential of a combination of repeat Planet and ASTER imagery to (a capture peak surge velocities that are easily missed by less frequent Landsat imagery, (b observe surface changes that indicate potential drivers of a surge and (c monitor hazards associated with a surge. At Khurdopin specifically, we observe that the surging glacier blocks the river in the valley and causes a lake to form, which may grow in subsequent years and could pose threats to downstream settlements and infrastructure in the case of a sudden breach.

  4. Brief communication: The Khurdopin glacier surge revisited - extreme flow velocities and formation of a dammed lake in 2017

    Science.gov (United States)

    Steiner, Jakob F.; Kraaijenbrink, Philip D. A.; Jiduc, Sergiu G.; Immerzeel, Walter W.

    2018-01-01

    Glacier surges occur regularly in the Karakoram, but the driving mechanisms, their frequency and its relation to a changing climate remain unclear. In this study, we use digital elevation models and Landsat imagery in combination with high-resolution imagery from the Planet satellite constellation to quantify surface elevation changes and flow velocities during a glacier surge of the Khurdopin Glacier in 2017. Results reveal that an accumulation of ice volume above a clearly defined steep section of the glacier tongue since the last surge in 1999 eventually led to a rapid surge in May 2017 peaking with velocities above 5000 m a-1, which were among the fastest rates globally for a mountain glacier. Our data reveal that velocities on the lower tongue increase steadily during a 4-year build-up phase prior to the actual surge only to then rapidly peak and decrease again within a few months, which confirms earlier observations with a higher frequency of available velocity data. The surge return period between the reported surges remains relatively constant at ca. 20 years. We show the potential of a combination of repeat Planet and ASTER imagery to (a) capture peak surge velocities that are easily missed by less frequent Landsat imagery, (b) observe surface changes that indicate potential drivers of a surge and (c) monitor hazards associated with a surge. At Khurdopin specifically, we observe that the surging glacier blocks the river in the valley and causes a lake to form, which may grow in subsequent years and could pose threats to downstream settlements and infrastructure in the case of a sudden breach.

  5. Bidimensional analysis of thermal stratification flow in the surge line of a PWR pressurizer

    International Nuclear Information System (INIS)

    Moreira, M.L.; Botelho, D.A.

    1994-11-01

    A numerical model is developed in order to understand the coolant thermal stratification and to develop a capability of predicting the failure of reactor components caused by this phenomenon. A period of this phenomenon in the surge line of a PWR reactor is simulated in two dimensions using the TURBO computer program. The flow cylindrical geometry is represented in 2 D by the space between two parallel plates, and the separation of the plates is estimated using similarity (the equivalence in the pressure drop). The results are compared to experimental data and to analogous results obtained from the COMMIX-1 C code (3 D). (author). 13 refs, 9 figs, 1 tab

  6. The 15 September 1991 pyroclastic flows at Unzen Volcano (Japan): a flow model for associated ash-cloud surges

    Science.gov (United States)

    Fujii, Toshitsugu; Nakada, Setsuya

    1999-04-01

    Large-scale collapse of a dacite dome in the late afternoon of 15 September 1991 generated a series of pyroclastic-flow events at Unzen Volcano. Pyroclastic flows with a volume of 1×10 6 m 3 (as DRE) descended the northeastern slope of the volcano, changing their courses to the southeast due to topographic control. After they exited a narrow gorge, an ash-cloud surge rushed straight ahead, detaching the main body of the flow that turned and followed the topographic lows to the east. The surge swept the Kita-Kamikoba area, which had been devastated by the previous pyroclastic-flow events, and transported a car as far as 120 m. Following detachment, the surge lost its force after it moved several hundred meters, but maintained a high temperature. The deposits consist of a bottom layer of better-sorted ash (unit 1), a thick layer of block and ash (unit 2), and a thin top layer of fall-out ash (unit 3). Unit 2 overlies unit 1 with an erosional contact. The upper part of unit 2 grades into better-sorted ash. At distal block-and-ash flow deposits, the bottom part of unit 2 also consists of better-sorted ash, and the contact with the unit 1 deposits becomes ambiguous. Video footage of cascading pyroclastic flows during the 1991-1995 eruption, traveling over surfaces without any topographic barriers, revealed that lobes of ash cloud protruded intermittently from the moving head and sides, and that these lobes surged ahead on the ground surface. This fact, together with the inspection by helicopter shortly after the events, suggests that the protruded lobes consisted of better-sorted ash, and resulted in the deposits of unit 1. The highest ash-cloud plume at the Oshigadani valley exit, and the thickest deposition of fall-out ash over Kita-Kamikoba and Ohnokoba, indicate that abundant ash was also produced when the flow passed through a narrow gorge. In the model presented here, the ash clouds from the pyroclastic flows were composed of a basal turbulent current of high

  7. Active Flow Control in a Radial Vaned Diffuser for Surge Margin Improvement: A Multislot Suction Strategy

    Directory of Open Access Journals (Sweden)

    Aurélien Marsan

    2017-01-01

    Full Text Available This work is the final step of a research project that aims at evaluating the possibility of delaying the surge of a centrifugal compressor stage using a boundary-layer suction technique. It is based on Reynolds-Averaged Navier-Stokes numerical simulations. Boundary-layer suction is applied within the radial vaned diffuser. Previous work has shown the necessity to take into account the unsteady behavior of the flow when designing the active flow control technique. In this paper, a multislot strategy is designed according to the characteristics of the unsteady pressure field. Its implementation results in a significant increase of the stable operating range predicted by the unsteady RANS numerical model. A hub-corner separation still exists further downstream in the diffuser passage but does not compromise the stability of the compressor stage.

  8. [The role of patient flow and surge capacity for in-hospital response in mass casualty events].

    Science.gov (United States)

    Sefrin, Peter; Kuhnigk, Herbert

    2008-03-01

    Mass casualty events make demands on emergency services and disaster control. However, optimized in- hospital response defines the quality of definitive care. Therefore, German federal law governs the role of hospitals in mass casualty incidents. In hospital casualty surge is depending on resources that have to be expanded with a practicable alarm plan. Thus, in-hospital mass casualty management planning is recommended to be organized by specialized persons. To minimise inhospital patient overflow casualty surge principles have to be implemented in both, pre-hospital and in-hospital disaster planning. World soccer championship 2006 facilitated the initiation of surge and damage control principles in in-hospital disaster planning strategies for German hospitals. The presented concept of strict control of in-hospital patient flow using surge principles minimises the risk of in-hospital breakdown and increases definitive hospital treatment capacity in mass casualty incidents.

  9. Water temperature in irrigation return flow from the Upper Snake Rock watershed

    Science.gov (United States)

    Water returning to a river from an irrigated watershed could increase the water temperature in the river. The objective of this study was to compare the temperature of irrigation return flow water with the temperature of the diverted irrigation water. Water temperature was measured weekly in the mai...

  10. Objective rapid delineation of areas at risk from block-and-ash pyroclastic flows and surges

    Science.gov (United States)

    Widiwijayanti, C.; Voight, B.; Hidayat, D.; Schilling, S.P.

    2009-01-01

    Assessments of pyroclastic flow (PF) hazards are commonly based on mapping of PF and surge deposits and estimations of inundation limits, and/or computer models of varying degrees of sophistication. In volcanic crises a PF hazard map may be sorely needed, but limited time, exposures, or safety aspects may preclude fieldwork, and insufficient time or baseline data may be available for reliable dynamic simulations. We have developed a statistically constrained simulation model for block-and-ash type PFs to estimate potential areas of inundation by adapting methodology from Iverson et al. (Geol Soc America Bull 110:972-984, (1998) for lahars. The predictive equations for block-and-ash PFs are calibrated with data from several volcanoes and given by A = (0.05 to 0.1) V2/3, B = (35 to 40) V2/3, where A is cross-sectional area of inundation, B is planimetric area and V is deposit volume. The proportionality coefficients were obtained from regression analyses and comparison of simulations to mapped deposits. The method embeds the predictive equations in a GIS program coupled with DEM topography, using the LAHARZ program of Schilling (1998). Although the method is objective and reproducible, any PF hazard zone so computed should be considered as an approximate guide only, due to uncertainties on the coefficients applicable to individual PFs, the authenticity of DEM details, and the volume of future collapses. The statistical uncertainty of the predictive equations, which imply a factor of two or more in predicting A or B for a specified V, is superposed on the uncertainty of forecasting V for the next PF to descend a particular valley. Multiple inundation zones, produced by simulations using a selected range of volumes, partly accommodate these uncertainties. The resulting maps show graphically that PF inundation potentials are highest nearest volcano sources and along valley thalwegs, and diminish with distance from source and lateral distance from thalweg. The model does

  11. Geology of proximal, small-volume trachyte-trachyandesite pyroclastic flows and associated surge deposits, Roccamonfina volcano, Italy

    Science.gov (United States)

    Giannetti, Bernardino

    1998-01-01

    This paper describes the 232 ka B.P. MTTT trachyte-trachyandesite pyroclastic succession of Roccamonfina volcano. This small-volume, proximal sequence crops out along Mulino di Sotto, Paratone, and Pisciariello ravines in the southwest sector of the central caldera, and covers a minimum extent of 3.5 km 2 area. It is made up of seven pyroclastic flows and pyroclastic surge units consisting of trachytic ash matrix containing juvenile trachyandesitic scoria and dense lava fragments, pumice clasts of uncertain trachyandesite, and a foreign trachyandesitic lithic facies. Two stratigraphic markers allow correlation of the units. No paleosoils and Plinian fallout have been observed at the base and within the succession. Some lateral grading of scoria and lithic clasts suggests that MTTT derived from three distinct source vents. The sequence consists of a basal ash flow passing laterally to laminated surge deposits (Unit A). This is overlain by a reversely graded scoria and pumice lapilli flow (Unit B) which is in turn overlain by a thinly cross-stratified scoria lapilli surge (Unit C). Unit C is capped by a prominent ash-and-scoria flow (Unit D). A ground layer (Marker MK1) divides Unit D from a massive ignimbrite which grades upcurrent to sand-wave surge deposits (Unit E). Another ground layer (Marker MK2) separates Unit E from Unit F. This unit consists of a basal ignimbrite passing laterally to bedded surge deposits with convolute structures (subunit Fl), and grading upcurrent to a subhorizontally plane-laminated ash cloud (subunit F2) containing near the top a layer of millimetric lithic clasts embedded in fine ash. The succession is closed by the pyroclastic flow Unit G. Surge Unit C can be interpreted in terms of vertical gradients in turbulence, particle concentration, and velocity during flowage, whereas the bedded surge parts present in the massive deposits of Units A and E-F1 can be related to abrupt changes of velocity down the steep slopes of ravines. Reverse

  12. An in vivo assessment of the influence of needle gauges on endodontic irrigation flow rate.

    Science.gov (United States)

    Gopikrishna, Velayutham; Sibi, Swamy; Archana, Durvasulu; Pradeep Kumar, Angabakkam Rajasekaran; Narayanan, Lakshmi

    2016-01-01

    The aim of this clinical study was to assess the influence of irrigation needle gauge on endodontic irrigation flow rates. In vivo assessment. Five specialist endodontists performed intracanal irrigation procedures on 50 mesiobuccal canal of mandibular first molars using three different irrigation needle gauges. Data of time taken for irrigation was recorded by an irrigation testing system and analyzed using independent sample "T" test and one-way analysis of variance (ANOVA) test. The level of significance was set at P < 0.05. The following tests were used for the statistical analysis: Independent sample "T" test, one-way ANOVA test, and post hoc multiple comparison was carried out using Tukey's honest significant difference (HSD) test using Statistical Package for the Social Sciences (SPSS) version 16 for Windows. The average flow rate of 26 gauge was 0.27 mLs(-1), of 27 gauge was 0.19 mLs(-1), and of 30 gauge was 0.09 mls(-1). There was statistical significance among the gauges (P < 0.001). 26 gauge had highest flow rate when compared with other groups followed by 27 gauge and 30 gauge respectively. The operator variability for flow rate of three endodontic irrigation needle gauges (26 gauge, 27 gauge, and 30 gauge) was found to be not significant. Needle gauge has significant influence on endodontic irrigation flow rate.

  13. Farm level optimal water management : assistant for irrigation under deficit (FLOW-AID)

    NARCIS (Netherlands)

    Balendonck, J.; Stanghellini, C.; Hemming, J.; Kempkes, F.L.K.; Tuijl, van B.A.J.

    2008-01-01

    FLOW-AID is an on-going 6th Framework European project (2006-2009) with the objective to contribute to sustainable irrigated agriculture by developing an irrigation management system that can be used for crop production in cases with limited water supply and marginal water quality. The project

  14. Farm level optimal water management: Assistant for irrigation under Defecit (FLOW-AID)

    NARCIS (Netherlands)

    Balendonck, J.; Stanghellini, C.; Hemming, J.; Kempkes, F.L.K.; Tuijl, van B.A.J.

    2009-01-01

    Flow-aid is an on-going 6th Framework European project (2006-2009) with the objective to contribute to sustainable irrigated agriculture by developing an irrigation management system that can be used for crop production in cases with limited water supply and marginal water quality. The project

  15. Surge-damping vacuum valve

    International Nuclear Information System (INIS)

    Bullock, J.C.; Kelley, B.E.

    1977-01-01

    A valve for damping out flow surges in a vacuum system is described. The surge-damping mechanism consists of a slotted, spring-loaded disk adjacent to the valve's vacuum port (the flow passage to the vacuum roughing pump). Under flow surge conditions, the differential pressure forces the disk into a sealing engagement with the vacuum port, thereby restricting the gas flow path to narrow slots in the disk's periphery. The increased flow damps out the flow surge. When pressure is equalized on both sides of the valve, the spring load moves the disk away from the port to restore full flow conductance through the valve

  16. Interrelations among pyroclastic surge, pyroclastic flow, and lahars in Smith Creek valley during first minutes of 18 May 1980 eruption of Mount St. Helens, USA

    Science.gov (United States)

    Brantley, S.R.; Waitt, R.B.

    1988-01-01

    A devastating pyroclastic surge and resultant lahars at Mount St. Helens on 18 May 1980 produced several catastrophic flowages into tributaries on the northeast volcano flank. The tributaries channeled the flows to Smith Creek valley, which lies within the area devastated by the surge but was unaffected by the great debris avalanche on the north flank. Stratigraphy shows that the pyroclastic surge preceded the lahars; there is no notable "wet" character to the surge deposits. Therefore the lahars must have originated as snowmelt, not as ejected water-saturated debris that segregated from the pyroclastic surge as has been inferred for other flanks of the volcano. In stratigraphic order the Smith Creek valley-floor materials comprise (1) a complex valley-bottom facies of the pyroclastic surge and a related pyroclastic flow, (2) an unusual hummocky diamict caused by complex mixing of lahars with the dry pyroclastic debris, and (3) deposits of secondary pyroclastic flows. These units are capped by silt containing accretionary lapilli, which began falling from a rapidly expanding mushroom-shaped cloud 20 minutes after the eruption's onset. The Smith Creek valley-bottom pyroclastic facies consists of (a) a weakly graded basal bed of fines-poor granular sand, the deposit of a low-concentration lithic pyroclastic surge, and (b) a bed of very poorly sorted pebble to cobble gravel inversely graded near its base, the deposit of a high-concentration lithic pyroclastic flow. The surge apparently segregated while crossing the steep headwater tributaries of Smith Creek; large fragments that settled from the turbulent surge formed a dense pyroclastic flow along the valley floor that lagged behind the front of the overland surge. The unusual hummocky diamict as thick as 15 m contains large lithic clasts supported by a tough, brown muddy sand matrix like that of lahar deposits upvalley. This unit contains irregular friable lenses and pods meters in diameter, blocks incorporated from

  17. Influence of tip clearance on flow behavior and noise generation of centrifugal compressors in near-surge conditions

    International Nuclear Information System (INIS)

    Galindo, J.; Tiseira, A.; Navarro, R.; López, M.A.

    2015-01-01

    Highlights: • Centrifugal compressor aeroacoustics sensitivity to tip clearance is investigated. • 3 different clearance ratios are set in accordance to expected operating values. • Pressure spectra do not depend on tip clearance ratio in near-surge conditions. • DES performs better than URANS in predicting compressor acoustic signature. • Flow field observation reveals that tip clearance is immersed in rotating backflow. - Abstract: CFD has become an essential tool for researchers to analyze centrifugal compressors. Tip leakage flow is usually considered one of the main mechanisms that dictate compressor flow field and stability. However, it is a common practice to rely on CAD tip clearance, even though the gap between blades and shroud changes when compressor is running. In this paper, sensitivity of centrifugal compressor flow field and noise prediction to tip clearance ratio is investigated. 3D CFD simulations are performed with three different tip clearance ratios in accordance to expected operating values, extracted from shaft motion measurements and FEM predictions of temperature and rotational deformation. Near-surge operating conditions are simulated with URANS and DES. DES shows superior performance for acoustic predictions. Cases with reduced tip clearance present higher pressure ratio and isentropic efficiency, but no significant changes in compressor acoustic signature are found when varying clearance. In this working point, tip clearance is immersed in a region of strongly swirling backflow. Therefore, tip leakage cannot establish any coherent noise source mechanism

  18. Mechanistic assessment of hillslope transpiration controls of diel subsurface flow: a steady-state irrigation approach

    Science.gov (United States)

    H.R. Barnard; C.B. Graham; W.J. van Verseveld; J.R. Brooks; B.J. Bond; J.J. McDonnell

    2010-01-01

    Mechanistic assessment of how transpiration influences subsurface flow is necessary to advance understanding of catchment hydrology. We conducted a 24-day, steady-state irrigation experiment to quantify the relationships among soil moisture, transpiration and hillslope subsurface flow. Our objectives were to: (1) examine the time lag between maximum transpiration and...

  19. Effect of irrigation return flow on groundwater recharge in an overexploited aquifer in Bangladesh

    Science.gov (United States)

    Touhidul Mustafa, Syed Md.; Shamsudduha, Mohammad; Huysmans, Marijke

    2016-04-01

    Irrigated agriculture has an important role in the food production to ensure food security of Bangladesh that is home to over 150 million people. However, overexploitation of groundwater for irrigation, particularly during the dry season, causes groundwater-level decline in areas where abstraction is high and surface geology inhibits direct recharge to underlying shallow aquifer. This is causing a number of potential adverse socio-economic, hydrogeological, and environmental problems in Bangladesh. Alluvial aquifers are primarily recharged during monsoon season from rainfall and surface sources. However, return flow from groundwater-fed irrigation can recharge during the dry months. Quantification of the effect of return flow from irrigation in the groundwater system is currently unclear but thought to be important to ensure sustainable management of the overexploited aquifer. The objective of the study is to investigate the effect of irrigation return flow on groundwater recharge in the north-western part of Bangladesh, also known as Barind Tract. A semi-physically based distributed water balance model (WetSpass-M) is used to simulate spatially distributed monthly groundwater recharge. Results show that, groundwater abstraction for irrigation in the study area has increased steadily over the last 29 years. During the monsoon season, local precipitation is the controlling factor of groundwater recharge; however, there is no trend in groundwater recharge during that period. During the dry season, however, irrigation return-flow plays a major role in recharging the aquifer in the irrigated area compared to local precipitation. Therefore, during the dry season, mean seasonal groundwater recharge has increased and almost doubled over the last 29 years as a result of increased abstraction for irrigation. The increase in groundwater recharge during dry season has however no significant effect in the improvement of groundwater levels. The relation between groundwater

  20. Closing the irrigation deficit in Cambodia: Implications for transboundary impacts on groundwater and Mekong River flow

    Science.gov (United States)

    Erban, Laura E.; Gorelick, Steven M.

    2016-04-01

    Rice production in Cambodia, essential to food security and exports, is largely limited to the wet season. The vast majority (96%) of land planted with rice during the wet season remains fallow during the dry season. This is in large part due to lack of irrigation capacity, increases in which would entail significant consequences for Cambodia and Vietnam, located downstream on the Mekong River. Here we quantify the extent of the dry season ;deficit; area in the Cambodian Mekong River catchment, using a recent agricultural survey and our analysis of MODIS satellite data. Irrigation of this land for rice production would require a volume of water up to 31% of dry season Mekong River flow to Vietnam. However, the two countries share an aquifer system in the Mekong Delta, where irrigation demand is increasingly met by groundwater. We estimate expansion rates of groundwater-irrigated land to be >10% per year in the Cambodian Delta using LANDSAT satellite data and simulate the effects of future expansion on groundwater levels over a 25-year period. If groundwater irrigation continues to expand at current rates, the water table will drop below the lift limit of suction pump wells, used for domestic supply by >1.5 million people, throughout much of the area within 15 years. Extensive groundwater irrigation jeopardizes access for shallow domestic water supply wells, raises the costs of pumping for all groundwater users, and may exacerbate arsenic contamination and land subsidence that are already widespread hazards in the region.

  1. Influence of irrigation on the level, salinity and flow of groundwater at ...

    African Journals Online (AJOL)

    2010-03-31

    Mar 31, 2010 ... piezometers had to be measured, all readings were taken within 3 days. Water levels were measured to estab- lish the effect of rainfall, drainage and irrigation on the groundwater level. These levels were also used to gener- ate groundwater contour maps and to determine the groundwater flow directions.

  2. The impact of irrigation return flow on aspects of the water quality of ...

    African Journals Online (AJOL)

    Groundwater quality in the Loerie Flats, and subsurface irrigation return flow to the upper Gamtoos estuary was monitored from November 1992 to April 1994. The nutrient loading of groundwater was highly variable both spatially and temporally, with elevated nitrate-N levels reaching 163 mg·l -1 . The elevated nutrient ...

  3. Estimation of local and regional components of drain - flow from an irrigated field

    International Nuclear Information System (INIS)

    Eching, S.O.; Hopmans, J.W.; Wallender, W.W.; Macyntyre, J.L.; Peters, D.

    1995-01-01

    The contribution of regional ground water and deep percolation from a furrow irrigated field to total drain flow was estimated using salt load analysis. It was found that 64% of the drain flow comes from regional ground water flow. The electrical conductivity of the drain water was highly correlated with the drain flow rate. From the field water balance with deep percolation as estimated from the salt load analysis, using yield function derived evapotranspiration, and measured changes in root zone water storage, it was shown that 14% of the crop evapotranspiration comes from ground water during the study period. 8 figs; 5 tabs; 15 refs ( Author )

  4. Modelling Water Flow through Paddy Soils under Alternate Wetting and Drying Irrigation Practice

    Science.gov (United States)

    Shekhar, S.; Mailapalli, D. R.; Das, B. S.; Raghuwanshi, N. S.

    2017-12-01

    Alternate wetting and drying (AWD) irrigation practice in paddy cultivation requires an optimum soil moisture stress (OSMS) level at which irrigation water savings can be maximized without compromising the yield reduction. Determining OSMS experimentally is challenging and only possible with appropriate modeling tools. In this study, field experiments on paddy were conducted in thirty non-weighing type lysimeters during dry seasons of 2016 and 2017. Ten plots were irrigated using continuous flooding (CF) and the rest were irrigated with AWD practice at 40mb and 75mb soil moisture stress levels. Depth of ponding and soil suction at 10, 40 and 70 cm from the soil surface were measured daily from all lysimeter plots. The measured field data were used in calibration and validation of Hydrus-1D model and simulated the water flow for both AWD and CF plots. The Hydrus-1D is being used to estimate OSMS for AWD practice and compared the seasonal irrigation water input and deep percolation losses with CF practice.

  5. Three-dimensional current flow and particle precipitation in a westward travelling surge (observed during the barium-GEOS rocket experiment)

    International Nuclear Information System (INIS)

    Opgenoorth, H.J.; Pellinen, R.J.; Baumjohann, W.; Nielsen, E.; Marklund, G.; Eliasson, L.

    1983-01-01

    During the Barium-GEOS rocket experiment on September 24, 1979 the passage of a westward travelling surge (WTS) was observed over Scandinavia. Extended instrument networks in that area, viz., the Scandinavian Magnetometer Array, the STARE radars, all-sky cameras, and riometers, allowed simultaneous observation of the two-dimensional character of magnetic and electric field disturbances and particle precipitation associated with the auroral feature. By combination of the different datasets and additional information from particle and electric field measurements aboard the Barium-GEOS rocket it was possible to derive the two-dimensional distribution of ionospheric electric fields and conductivities and to model the three-dimensional current flow in the vicinity of the westward travelling surge. The main feature of the resulting model current system is the presence of a localized upward field-aligned current directed out of the head of the surge and fed by a westward electrojet, which is composed of both Hall and Pedersen currents. Secondary ionospheric currents, e.g. a counterclockwise loop of mainly Hall currents around the leading edge of the surge, are found to be responsible for most of the transient effects observed by ground-based magnetometers as the WTS passed overhead. The most energetic particle precipitation as inferred from cosmic noise absorption measurements and triangulation of auroral arc altitudes is found to be confined to the leading part and central regions of the surge and to travel westward with the visual auroral form

  6. Surge Flow in a Centrifugal Compressor Measured by Digital Particle Image Velocimetry

    Science.gov (United States)

    Wernet, Mark P.

    2000-01-01

    A planar optical velocity measurement technique known as Particle Image Velocimetry (PIV) is being used to study transient events in compressors. In PIV, a pulsed laser light sheet is used to record the positions of particles entrained in a fluid at two instances in time across a planar region of the flow. Determining the recorded particle displacement between exposures yields an instantaneous velocity vector map across the illuminated plane. Detailed flow mappings obtained using PIV in high-speed rotating turbomachinery components are used to improve the accuracy of computational fluid dynamics (CFD) simulations, which in turn, are used to guide advances in state-of-the-art aircraft engine hardware designs.

  7. Heterogeneity of water flow in grassland soil during irrigation experiment

    Czech Academy of Sciences Publication Activity Database

    Lichner, Ľ.; Dušek, J.; Tesař, Miroslav; Czachor, H.; Mészároš, I.

    2014-01-01

    Roč. 69, č. 11 (2014), s. 1555-1561 ISSN 0006-3088 R&D Projects: GA TA ČR(CZ) TA0201451 Grant - others:ERDF ITMS26240120004 Institutional support: RVO:67985874 Keywords : degree of preferential flow * effective cross section * infiltration experiment * radioactive tracer technique * sandy soil Subject RIV: DA - Hydrology ; Limnology Impact factor: 0.827, year: 2014

  8. Surging Versus Continuous Turbidity Currents: Flow Dynamics and Deposits in an Experimental Intraslope Minibasin

    OpenAIRE

    Lamb, Michael P.; Hickson, Thomas; Marr, Jeffrey G.; Sheets, Ben; Paola, Chris; Parker, Gary

    2004-01-01

    Small intraslope basins (~100 km^2), or "minibasins," such as those found on the continental slope of the Gulf of Mexico, have been filled predominantly by turbidity currents. Each minibasin is the result of local subsidence and is partially or completely isolated from neighboring basins by ridges formed from compensational uplift. We undertook a series of experiments to investigate the relationship between the flow dynamics of turbidity currents entering a minibasin and the stratal architect...

  9. Unsaturated flow dynamics during irrigation with wastewater: field and modelling study

    Science.gov (United States)

    Martinez-Hernandez, V.; de Miguel, A.; Meffe, R.; Leal, M.; González-Naranjo, V.; de Bustamante, I.

    2012-04-01

    To deal with water scarcity combined with a growing water demand, the reuse of wastewater effluents of wastewater treatment plants (WWTP) for industrial and agricultural purposes is considered as a technically and economically feasible solution. In agriculture, irrigation with wastewater emerges as a sustainable practice that should be considered in such scenarios. Water infiltration, soil moisture storage and evapotranspiration occurring in the unsaturated zone are fundamental processes that play an important role in soil water balance. An accurate estimation of unsaturated flow dynamics (during and after irrigation) is essential to improve wastewater management (i.e. estimating groundwater recharge or maximizing irrigation efficiency) and to avoid possible soil and groundwater affections (i.e. predicting contaminant transport). The study site is located in the Experimental Plant of Carrión de los Céspedes (Seville, Spain). Here, treated wastewater is irrigated over the soil to enhance plants growth. To obtain physical characteristics of the soil (granulometry, bulk density and water retention curve), soil samples were collected at different depths. A drain gauge passive capillary lysimeter was installed to determine the volume of water draining from the vadose zone. Volumetric water content of the soil was monitored by measuring the dielectric constant using capacitance/frequency domain technology. Three soil moisture probes were located at different depths (20, 50 and 70 cm below the ground surface) to control the variation of the volumetric water content during infiltration. The main aim of this study is to understand water flow dynamics through the unsaturated zone during irrigation by using the finite element model Hydrus-1D. The experimental conditions were simulated by a 90 cm long, one dimensional solution domain. Specific climatic conditions, wastewater irrigation rates and physical properties of the soil were introduced in the model as input parameters

  10. Economic compensation standard for irrigation processes to safeguard environmental flows in the Yellow River Estuary, China

    Science.gov (United States)

    Pang, Aiping; Sun, Tao; Yang, Zhifeng

    2013-03-01

    SummaryAgriculture and ecosystems are increasingly competing for water. We propose an approach to assess the economic compensation standard required to release water from agricultural use to ecosystems while taking into account seasonal variability in river flow. First, we defined agricultural water shortage as the difference in water volume between agricultural demands and actual supply after maintaining environmental flows for ecosystems. Second, we developed a production loss model to establish the relationship between production losses and agricultural water shortages in view of seasonal variation in river discharge. Finally, we estimated the appropriate economic compensation for different irrigation stakeholders based on crop prices and production losses. A case study in the Yellow River Estuary, China, demonstrated that relatively stable economic compensation for irrigation processes can be defined based on the developed model, taking into account seasonal variations in river discharge and different levels of environmental flow. Annual economic compensation is not directly related to annual water shortage because of the temporal variability in river flow rate and environmental flow. Crops that have stable planting areas to guarantee food security should be selected as indicator crops in economic compensation assessments in the important grain production zone. Economic compensation may be implemented by creating funds to update water-saving measures in agricultural facilities.

  11. Measurement of flows for two irrigation districts in the lower Colorado River basin, Texas

    Science.gov (United States)

    Coplin, L.S.; Liscum, Fred; East, J.W.; Goldstein, L.B.

    1996-01-01

    The Lower Colorado River Authority sells and distributes water for irrigation of rice farms in two irrigation districts, the Lakeside district and the Gulf Coast district, in the lower Colorado River Basin of Texas. In 1993, the Lower Colorado River Authority implemented a water-measurement program to account for the water delivered to rice farms and to promote water conservation. During the rice-irrigation season (summer and fall) of 1995, the U.S. Geological Survey measured flows at 30 sites in the Lakeside district and 24 sites in the Gulf Coast district coincident with Lower Colorado River Authority measuring sites. In each district, the Survey made essentially simultaneous flow measurements with different types of meters twice a day once in the morning and once in the afternoon at each site on selected days for comparison with Lower Colorado River Authority measurements. One-hundred pairs of corresponding (same site, same date) Lower Colorado River Authority and U.S. Geological Survey measurements from the Lakeside district and 104 measurement pairs from the Gulf Coast district are compared statistically and graphically. For comparison, the measurement pairs are grouped by irrigation district and further subdivided by the time difference between corresponding measurements less than or equal to 1 hour or more than 1 hour. Wilcoxon signed-rank tests (to indicate whether two groups of paired observations are statistically different) on Lakeside district measurement pairs with 1 hour or less between measurements indicate that the Lower Colorado River Authority and U.S. Geological Survey measurements are not statistically different. The median absolute percent difference between the flow measurements is 5.9 percent; and 33 percent of the flow measurements differ by more than 10 percent. Similar statistical tests on Gulf Coast district measurement pairs with 1 hour or less between measurements indicate that the Lower Colorado River Authority and U.S. Geological

  12. Preferential flow, nitrogen transformations and 15N balance under urine-affected areas of irrigated and non-irrigated clover-based pastures

    Science.gov (United States)

    Pakro, Naser; Dillon, Peter

    1995-12-01

    Urine-affected areas can lead to considerable losses of N by leaching, ammonia volatilisation and denitrification from dairy pastures in the southeast of South Australia. Potable groundwater supplies are considered to have become contaminated by nitrate as a result of leaching from these leguminous pastures. Dairy cow urine, labelled with 15N urea, was applied to micro-plots and mini-lysimeters installed in two adjacent irrigated (white clover-rye grass) and non-irrigated (subterranean clover-annual grasses) paddocks of a dairy farm on four occasions representing different seasonal conditions. These experiments allowed measurement of nitrogen transformations, recovery of 15N in the pasture and soil, and leaching below various depths. Gaseous losses were calculated from the nitrogen balance. The results of the four experiments showed that within a day of urine application up to 40% of the applied urinary-N was leached below a depth of 150 mm as a result of macropore flow in the irrigated paddock, and up to 24% in the non-irrigated one. After application to the irrigated paddock 17% of the urinary-N moved immediately below 300 mm but only 2% below the 450-mm depth. The urinary-N remaining in the soil was converted from urea to ammonium within a day regardless of season. Within the first 7 days of application six times more nitrate was produced in summer than in winter. This has obvious implications for leaching potential. Leaching of 15N from the top 150 mm of soil, following urine applications in all seasons, was between 41% and 62% of the applied 15N in the irrigated paddock and 25-51% in the non-irrigated paddock. However, leaching losses measured at depths of 300 or 450 mm were smaller by a factor of 2-4. The leaching loss of 15N applied in spring in both paddocks was 41% below 150 mm and 12% below 450 mm. Recovery of 15N from the soil-plant system in the 450-nm deep lysimeters was ˜60% of that applied. Estimated ammonia was ˜9% of applied 15N with no paddock

  13. Reconciling irrigated food production with environmental flows for Sustainable Development Goals implementation.

    Science.gov (United States)

    Jägermeyr, Jonas; Pastor, Amandine; Biemans, Hester; Gerten, Dieter

    2017-07-19

    Safeguarding river ecosystems is a precondition for attaining the UN Sustainable Development Goals (SDGs) related to water and the environment, while rigid implementation of such policies may hamper achievement of food security. River ecosystems provide life-supporting functions that depend on maintaining environmental flow requirements (EFRs). Here we establish gridded process-based estimates of EFRs and their violation through human water withdrawals. Results indicate that 41% of current global irrigation water use (997 km 3 per year) occurs at the expense of EFRs. If these volumes were to be reallocated to the ecosystems, half of globally irrigated cropland would face production losses of ≥10%, with losses of ∼20-30% of total country production especially in Central and South Asia. However, we explicitly show that improvement of irrigation practices can widely compensate for such losses on a sustainable basis. Integration with rainwater management can even achieve a 10% global net gain. Such management interventions are highlighted to act as a pivotal target in supporting the implementation of the ambitious and seemingly conflicting SDG agenda.

  14. Reconciling irrigated food production with environmental flows for Sustainable Development Goals implementation

    Science.gov (United States)

    Jägermeyr, Jonas; Pastor, Amandine; Biemans, Hester; Gerten, Dieter

    2017-07-01

    Safeguarding river ecosystems is a precondition for attaining the UN Sustainable Development Goals (SDGs) related to water and the environment, while rigid implementation of such policies may hamper achievement of food security. River ecosystems provide life-supporting functions that depend on maintaining environmental flow requirements (EFRs). Here we establish gridded process-based estimates of EFRs and their violation through human water withdrawals. Results indicate that 41% of current global irrigation water use (997 km3 per year) occurs at the expense of EFRs. If these volumes were to be reallocated to the ecosystems, half of globally irrigated cropland would face production losses of >=10%, with losses of ~20-30% of total country production especially in Central and South Asia. However, we explicitly show that improvement of irrigation practices can widely compensate for such losses on a sustainable basis. Integration with rainwater management can even achieve a 10% global net gain. Such management interventions are highlighted to act as a pivotal target in supporting the implementation of the ambitious and seemingly conflicting SDG agenda.

  15. Brief communication : The Khurdopin glacier surge revisited - Extreme flow velocities and formation of a dammed lake in 2017

    NARCIS (Netherlands)

    Steiner, Jakob F.; Kraaijenbrink, Philip D.A.; Jiduc, Sergiu G.; Immerzeel, Walter W.

    2018-01-01

    Glacier surges occur regularly in the Karakoram, but the driving mechanisms, their frequency and its relation to a changing climate remain unclear. In this study, we use digital elevation models and Landsat imagery in combination with high-resolution imagery from the Planet satellite constellation

  16. Nonlinear control of rotating stall and surge with axisymmetric bleed and air injection on axial flow compressors

    Science.gov (United States)

    Yeung, Chung-Hei (Simon)

    The study of compressor instabilities in gas turbine engines has received much attention in recent years. In particular, rotating stall and surge are major causes of problems ranging from component stress and lifespan reduction to engine explosion. In this thesis, modeling and control of rotating stall and surge using bleed valve and air injection is studied and validated on a low speed, single stage, axial compressor at Caltech. Bleed valve control of stall is achieved only when the compressor characteristic is actuated, due to the fast growth rate of the stall cell compared to the rate limit of the valve. Furthermore, experimental results show that the actuator rate requirement for stall control is reduced by a factor of fourteen via compressor characteristic actuation. Analytical expressions based on low order models (2--3 states) and a high fidelity simulation (37 states) tool are developed to estimate the minimum rate requirement of a bleed valve for control of stall. A comparison of the tools to experiments show a good qualitative agreement, with increasing quantitative accuracy as the complexity of the underlying model increases. Air injection control of stall and surge is also investigated. Simultaneous control of stall and surge is achieved using axisymmetric air injection. Three cases with different injector back pressure are studied. Surge control via binary air injection is achieved in all three cases. Simultaneous stall and surge control is achieved for two of the cases, but is not achieved for the lowest authority case. This is consistent with previous results for control of stall with axisymmetric air injection without a plenum attached. Non-axisymmetric air injection control of stall and surge is also studied. Three existing control algorithms found in literature are modeled and analyzed. A three-state model is obtained for each algorithm. For two cases, conditions for linear stability and bifurcation criticality on control of rotating stall are

  17. Validation of a surge model by full scale testing

    NARCIS (Netherlands)

    Smeulers, J.P.M.; Slot, H.J.; Meulendijks, D.

    2011-01-01

    Surge of turbo compressors can cause large stepwise changes in flow and pressure, which can potentially damage the compressor and any equipment that is in direct connection with the compressor. Surge is usually avoided by an anti surge controller (ASC). However, in spite of the ASC surge cycles may

  18. Validation of a surge model by full scale testing

    NARCIS (Netherlands)

    Slot, H.J.; Meulendijks, D.; Smeulers, J.P.M.

    2009-01-01

    Surge of turbo compressors can cause large stepwise changes in flow and pressure, which can potentially damage the compressor and any equipment that is in direct connection with the compressor. Surge is usually avoided by an anti surge controller (ASC). However, in spite of the ASC surge cycles may

  19. Local flow regulation and irrigation raise global human water consumption and footprint.

    Science.gov (United States)

    Jaramillo, Fernando; Destouni, Georgia

    2015-12-04

    Flow regulation and irrigation alter local freshwater conditions, but their global effects are highly uncertain. We investigated these global effects from 1901 to 2008, using hydroclimatic observations in 100 large hydrological basins. Globally, we find consistent and dominant effects of increasing relative evapotranspiration from both activities, and decreasing temporal runoff variability from flow regulation. The evapotranspiration effect increases the long-term average human consumption of fresh water by 3563 ± 979 km(3)/year from 1901-1954 to 1955-2008. This increase raises a recent estimate of the current global water footprint of humanity by around 18%, to 10,688 ± 979 km(3)/year. The results highlight the global impact of local water-use activities and call for their relevant account in Earth system modeling. Copyright © 2015, American Association for the Advancement of Science.

  20. Applicability of 87Sr/86Sr in examining return flow of irrigation water in highly agricultural watersheds in Japan

    Science.gov (United States)

    Yoshida, T.; Nakano, T.; Shin, K. C.; Tsuchihara, T.; Miyazu, S.; Kubota, T.

    2017-12-01

    Water flows in watersheds containing extensive areas of irrigated paddies are complex because of the substantial volumes involved and the repeated cycles of water diversion from, and return to, streams. For better management of low-flow conditions, numerous studies have attempted to quantify the return flow using the stable isotopes of water; however, the temporal variation in these isotopic compositions due to fractionation during evaporation from water surfaces hinders their application to watersheds with extensive irrigated paddies. In this study, we tested the applicability of the strontium isotopes (87Sr/86Sr, hereafter Sr ratio) for studying hydrological processes in a typical agricultural watershed located on the alluvial fan of the Kinu River, namely the Gogyo River, in central Japan. The Sr ratio of water changes only because of interactions with the porous media it flows through, or because of mixing with water that has different Sr ratios. We sampled water both at a single rice paddy, and on the watershed scale in the irrigated and non-irrigated periods. The soil water under the paddy decreased as sampling depth increased, and the soil water at a depth of 1.5 m showed a similar Sr ratio to the spring. The water sampled in the drainage channel with a concrete lined bottom showed a similar Sr ratio to the irrigation water, whereas that with a soil bottom was plotted between the plots of the irrigation water and shallow aquifer. These results suggest the Sr ratio decreases as it mixes with the soil water through percolation; whereas the Sr ratio will be less likely to change when water drains from paddies via surface pathways. The streamflow samples were plotted linearly on the Sr ratio and 1/Sr plot, indicating that the streamflow was composed of two end-members; the irrigation water and the shallow aquifer. The continuous decline in the Sr ratio along the stream suggests an exfiltration of water from the shallow aquifers. The stream water during the non-irrigated

  1. Maintaining the flow: Maintenance service provision in the Alto Río Lerma Irrigation District, Mexico

    NARCIS (Netherlands)

    Urban, K.; Wester, P.

    2003-01-01

    Through irrigation management transfer inMexico poorly functioning governancemechanisms for maintenance were replaced.New actors, new roles, and newresponsibilities in the maintenance ofMexican irrigation systems wereestablished. This article analyzes themaintenance service delivery mechanisms inthe

  2. Modeling and Controlling Flow Transient in Pipeline Systems: Applied for Reservoir and Pump Systems Combined with Simple Surge Tank

    Directory of Open Access Journals (Sweden)

    Itissam ABUIZIAH

    2014-03-01

    Full Text Available When transient conditions (water hammer exist, the life expectancy of the system can be adversely impacted, resulting in pump and valve failures and catastrophic pipe rupture. Hence, transient control has become an essential requirement for ensuring safe operation of water pipeline systems. To protect the pipeline systems from transient effects, an accurate analysis and suitable protection devices should be used. This paper presents the problem of modeling and simulation of transient phenomena in hydraulic systems based on the characteristics method. Also, it provides the influence of using the protection devices to control the adverse effects due to excessive and low pressure occuring in the transient. We applied this model for two main pipeline systems: Valve and pump combined with a simple surge tank connected to reservoir. The results obtained by using this model indicate that the model is an efficient tool for water hammer analysis. Moreover, using a simple surge tank reduces the unfavorable effects of transients by reducing pressure fluctuations.

  3. Irrigant flow in the root canal: experimental validation of an unsteady Computational Fluid Dynamics model using high-speed imaging.

    Science.gov (United States)

    Boutsioukis, C; Verhaagen, B; Versluis, M; Kastrinakis, E; van der Sluis, L W M

    2010-05-01

    To compare the results of a Computational Fluid Dynamics (CFD) simulation of the irrigant flow within a prepared root canal, during final irrigation with a syringe and a needle, with experimental high-speed visualizations and theoretical calculations of an identical geometry and to evaluate the effect of off-centre positioning of the needle inside the root canal. A CFD model was created to simulate irrigant flow from a side-vented needle inside a prepared root canal. Calculations were carried out for four different positions of the needle inside a prepared root canal. An identical root canal model was made from poly-dimethyl-siloxane (PDMS). High-speed imaging of the flow seeded with particles and Particle Image Velocimetry (PIV) were combined to obtain the velocity field inside the root canal experimentally. Computational, theoretical and experimental results were compared to assess the validity of the computational model. Comparison between CFD computations and experiments revealed good agreement in the velocity magnitude and vortex location and size. Small lateral displacements of the needle inside the canal had a limited effect on the flow field. High-speed imaging experiments together with PIV of the flow inside a simulated root canal showed a good agreement with the CFD model, even though the flow was unsteady. Therefore, the CFD model is able to predict reliably the flow in similar domains.

  4. Development of SCAR markers and PCR assays for single or simultaneous species-specific detection of Phytophthora nicotianae and Pythium helicoides in ebb-and-flow irrigated kalanchoe.

    Science.gov (United States)

    Ahonsi, Monday O; Ling, Yin; Kageyama, Koji

    2010-11-01

    Phytophthora nicotianae and Pythium helicoides are important water-borne oomycete pathogens of irrigated ornamentals particularly ebb-and-flow irrigated kalanchoe in Japan. We developed novel PCR-based sequence characterized amplified region markers and assays for rapid identification and species-specific detection of both pathogens in separate PCR reactions or simultaneously in a duplex PCR.

  5. Appraising options to reduce shallow groundwater tables and enhance flow conditions over regional scales in an irrigated alluvial aquifer system

    Science.gov (United States)

    Morway, Eric D.; Gates, Timothy K.; Niswonger, Richard G.

    2013-01-01

    Some of the world’s key agricultural production systems face big challenges to both water quantity and quality due to shallow groundwater that results from long-term intensive irrigation, namely waterlogging and salinity, water losses, and environmental problems. This paper focuses on water quantity issues, presenting finite-difference groundwater models developed to describe shallow water table levels, non-beneficial groundwater consumptive use, and return flows to streams across two regions within an irrigated alluvial river valley in southeastern Colorado, USA. The models are calibrated and applied to simulate current baseline conditions in the alluvial aquifer system and to examine actions for potentially improving these conditions. The models provide a detailed description of regional-scale subsurface unsaturated and saturated flow processes, thereby enabling detailed spatiotemporal description of groundwater levels, recharge to infiltration ratios, partitioning of ET originating from the unsaturated and saturated zones, and groundwater flows, among other variables. Hybrid automated and manual calibration of the models is achieved using extensive observations of groundwater hydraulic head, groundwater return flow to streams, aquifer stratigraphy, canal seepage, total evapotranspiration, the portion of evapotranspiration supplied by upflux from the shallow water table, and irrigation flows. Baseline results from the two regional-scale models are compared to model predictions under variations of four alternative management schemes: (1) reduced seepage from earthen canals, (2) reduced irrigation applications, (3) rotational lease fallowing (irrigation water leased to municipalities, resulting in temporary dry-up of fields), and (4) combinations of these. The potential for increasing the average water table depth by up to 1.1 and 0.7 m in the two respective modeled regions, thereby reducing the threat of waterlogging and lowering non-beneficial consumptive use

  6. Measurement of the filling height of transient two-phase surge flows in pipelines by means of electronics; Messung der Fuellhoehe von transienten Zweiphasenschwallstroemungen in Rohrleitungen mittels Ultraschall

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, B.; Rockstroh, M. [Technische Univ. Dresden (Germany). Inst. fuer Energiemaschinen und Maschinenlabor

    1997-12-01

    The aim of the ultrasonic measurements was the determination of the time course of the level of a transient surge flow with swirl and waves in partly filled roughly horizontally laid pipelines. The running time of the ultrasonic waves from the test head to the liquid surface and back was measured for this purpose. The course of the stress was recorded digitally and was evaluated with the aid of software. Waves, swirl, turbulence of flow and introduced test bodies in the flow caused typical echoes, which had to be taken into account in the evaluation. As the test head was fitted on the outside of the pipe (clamp-on technique), the pipe wall thickness and the speed of sound in the pipe wall had to be included in the calculation of filling height by means of a correction. [Deutsch] Ziel der Ultraschallmessungen war die Bestimmung des zeitlichen Verlaufes der Fuellhoehe einer transienten, drall- und wellenbehafteten Schwallstroemung in teilgefuellten, etwa horizontal verlegten Rohrleitungen. Hierzu wurde die Laufzeit der Ultraschallwellen vom Pruefkopf zur Fluessigkeitsoberflaeche und zurueck gemessen. Die Laufzeit der Ultraschallwellen wurde auf eine quasi-analog elektrische Spannung abgebildet. Der Spannungsverlauf wurde digital aufgezeichnet und softwaregestuetzt ausgewertet. Wellen, Drall, Stroemungsturbulenzen sowie eingebrachte Pruefkoerper in der Stroemung hatten typische Echoerscheinungen zur Folge, die bei der Auswertung zu beruecksichtigen waren. Da der Pruefkopf aussen am Rohr angebracht war (clamp-on-Technik), musste die Rohrwandstaerke und die Schallgeschwindigkeit in der Rohrwandung mittels eines Korrekturgliedes in die Fuellhoehenberechnung eingezogen werden. (orig.)

  7. Potential of flow pre-whirl at the compressor inlet of automotive engine turbochargers to enlarge surge margin and overcome packaging limitations

    International Nuclear Information System (INIS)

    Galindo, J.; Serrano, J.R.; Margot, X.; Tiseira, A.; Schorn, N.; Kindl, H.

    2007-01-01

    Due to the packaging constraints to which turbocharged engines are submitted in passenger cars, the inlet duct of the centrifugal compressor often requires a 90 o bend. The compressor inlet perpendicular to its axis disturbs the flow and reduces the compressor performance. This paper presents an interesting solution based on a specifically designed inlet swirl-generator device (SGD) that palliates these negative effects. In addition, the SGD can be used to extend the surge margin of the compressor if the position of the SGD blades is modified in function of the reciprocating engine operation conditions. The paper describes how the swirl level and the pressure losses generated by the device have been characterized in a continuous flow test rig. After this the SGD plus a centrifugal compressor from a turbocharger unit have been tested in a specific turbocharger test bench. The results obtained show the influence of the SGD blades position on the compressor performance. In order to better understand the influence of the SGD on the turbocharger behaviour, the flow velocity triangles near the inducer have been reconstructed using an approach based on CFD calculations

  8. Impact of irrigation flow rate and intrapericardial fluid on cooled-tip epicardial radiofrequency ablation.

    Science.gov (United States)

    Aryana, Arash; O'Neill, Padraig Gearoid; Pujara, Deep K; Singh, Steve K; Bowers, Mark R; Allen, Shelley L; d'Avila, André

    2016-08-01

    The optimal irrigation flow rate (IFR) during epicardial radiofrequency (RF) ablation has not been established. This study specifically examined the impact of IFR and intrapericardial fluid (IPF) accumulation during epicardial RF ablation. Altogether, 452 ex vivo RF applications (10 g for 60 seconds) delivered to the epicardial surface of bovine myocardium using 3 open-irrigated ablation catheters (ThermoCool SmartTouch, ThermoCool SmartTouch-SF, and FlexAbility) and 50 in vivo RF applications delivered (ThermoCool SmartTouch-SF) in 4 healthy adult swine in the presence or absence of IPF were examined. Ex vivo, RF was delivered at low (≤3 mL/min), reduced (5-7 mL/min), and high (≥10 mL/min) IFRs using intermediate (25-35 W) and high (35-45 W) power. In vivo, applications were delivered (at 9.3 ± 2.2 g for 60 seconds at 39 W) using reduced (5 mL/min) and high (15 mL/min) IFRs. Ex vivo, surface lesion diameter inversely correlated with IFR, whereas maximum lesion diameter and depth did not differ. While steam pops occurred more frequently at low IFR using high power (ThermoCool SmartTouch and ThermoCool SmartTouch-SF), tissue disruption was rare and did not vary with IFR. In vivo, charring/steam pop was not detected. Although there were no discernible differences in lesion size with IFR, surface lesion diameter, maximum diameter, depth, and volume were all smaller in the presence of IPF at both IFRs. Cooled-tip epicardial RF ablation created using reduced IFRs (5-7 mL/min) yields lesion sizes similar to those created using high IFRs (≥10 mL/min) without an increase in steam pop/tissue disruption, whereas the presence of IPF significantly reduces the lesion size. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  9. Validation of a surge model by full scale testing

    NARCIS (Netherlands)

    Smeulers, J.P.M.; Gonzalez Díez, N.; Slot, H.J.

    2012-01-01

    Surge of turbo compressors can cause large almost step like changes in flow and pressure, which can potentially damage the compressor and any equipment that is in direct connection with the compressor. In spite of an anti-surge controller (ASC), at extreme events surge cycles may occur. In order to

  10. Simulation of Ground-Water Flow and Effects of Ground-Water Irrigation on Base Flow in the Elkhorn and Loup River Basins, Nebraska

    Science.gov (United States)

    Peterson, Steven M.; Stanton, Jennifer S.; Saunders, Amanda T.; Bradley, Jesse R.

    2008-01-01

    Irrigated agriculture is vital to the livelihood of communities in the Elkhorn and Loup River Basins in Nebraska, and ground water is used to irrigate most of the cropland. Concerns about the sustainability of ground-water and surface-water resources have prompted State and regional agencies to evaluate the cumulative effects of ground-water irrigation in this area. To facilitate understanding of the effects of ground-water irrigation, a numerical computer model was developed to simulate ground-water flow and assess the effects of ground-water irrigation (including ground-water withdrawals, hereinafter referred to as pumpage, and enhanced recharge) on stream base flow. The study area covers approximately 30,800 square miles, and includes the Elkhorn River Basin upstream from Norfolk, Nebraska, and the Loup River Basin upstream from Columbus, Nebraska. The water-table aquifer consists of Quaternary-age sands and gravels and Tertiary-age silts, sands, and gravels. The simulation was constructed using one layer with 2-mile by 2-mile cell size. Simulations were constructed to represent the ground-water system before 1940 and from 1940 through 2005, and to simulate hypothetical conditions from 2006 through 2045 or 2055. The first simulation represents steady-state conditions of the system before anthropogenic effects, and then simulates the effects of early surface-water development activities and recharge of water leaking from canals during 1895 to 1940. The first simulation ends at 1940 because before that time, very little pumpage for irrigation occurred, but after that time it became increasingly commonplace. The pre-1940 simulation was calibrated against measured water levels and estimated long-term base flow, and the 1940 through 2005 simulation was calibrated against measured water-level changes and estimated long-term base flow. The calibrated 1940 through 2005 simulation was used as the basis for analyzing hypothetical scenarios to evaluate the effects of

  11. Influence of irrigation on the level, salinity and flow of groundwater at ...

    African Journals Online (AJOL)

    Effective drainage would minimise the salt build-up in the soil, have a positive influence on the sustainability of irrigation farming and improve crop yields and quality in the area. The drained water can be reticulated into an evaporation pond to confine the salt mass, thus preventing it from influencing the environment and ...

  12. Regional application of one-dimensional water flow models for irrigation management

    NARCIS (Netherlands)

    Urso, D' G.; Menenti, M.; Santini, A.

    1999-01-01

    Numerical models for the simulation of soil water processes can be used to evaluate the spatial and temporal variations of crop water requirements; this information can support the irrigation management in a rationale usage of water resources. This latter objective requires the knowledge of

  13. Irrigant flow during photon-induced photoacoustic streaming (PIPS) using Particle Image Velocimetry (PIV).

    Science.gov (United States)

    Koch, Jon D; Jaramillo, David E; DiVito, Enrico; Peters, Ove A

    2016-03-01

    This study aimed to compare fluid movements generated from photon-induced photoacoustic streaming (PIPS) and passive ultrasonic irrigation (PUI). Particle Image Velocimetry (PIV) was performed using 6-μm melamine spheres in water. Measurement areas were 3-mm-long sections of the canal in the coronal, midroot and apical regions for PIPS (erbium/yttrium-aluminium garnet (Er:YAG) laser set at 15 Hz with 20 mJ), or passive ultrasonic irrigation (PUI, non-cutting insert at 30% unit power) was performed in simulated root canals prepared to an apical size #30/0.04 taper. Fluid movement was analysed directly subjacent to the apical ends of ultrasonic insert or fiber optic tips as well as at midroot and apically. During PUI, measured average velocities were around 0.03 m/s in the immediate vicinity of the sides and tip of the ultrasonic file. Speeds decayed to non-measureable values at a distance of about 2 mm from the sides and tip. During PIPS, typical average speeds were about ten times higher than those measured for PUI, and they were measured throughout the length of the canal, at distances up to 20 mm away. PIPS caused higher average fluid speeds when compared to PUI, both close and distant from the instrument. The findings of this study could be relevant to the debriding and disinfecting stage of endodontic therapy. Irrigation enhancement beyond needle irrigation is relevant to more effectively eradicate microorganisms from root canal systems. PIPS may be an alternative approach due to its ability to create high streaming velocities further away from the activation source compared to ultrasonic activation.

  14. Stable isotope and groundwater flow dynamics of agricultural irrigation recharge into groundwater resources of the Central Valley, California

    International Nuclear Information System (INIS)

    Davisson, M.L.; Criss, R.E.

    1995-01-01

    Intensive agricultural irrigation and overdraft of groundwater in the Central Valley of California profoundly affect the regional quality and availability of shallow groundwater resources. In the natural state, the δ 18 O values of groundwater were relatively homogeneous (mostly -7.0 ± 0.5 per-thousand), reflecting local meteoric recharge that slowly (1-3m/yr) flowed toward the valley axis. Today, on the west side of the valley, the isotope distribution is dominated by high 18 O enclosures formed by recharge of evaporated irrigation waters, while the east side has bands of low 18 O groundwater indicating induced recharge from rivers draining the Sierra Nevada mountains. Changes in δ 18 O values caused by the agricultural recharge strongly correlate with elevated nitrate concentrations (5 to >100 mg/L) that form pervasive, non-point source pollutants. Small, west-side cities dependent solely on groundwater resources have experienced increases of >1.0 mg/L per year of nitrate for 10-30 years. The resultant high nitrates threaten the economical use of the groundwater for domestic purposes, and have forced some well shut-downs. Furthermore, since >80% of modern recharge is now derived from agricultural irrigation, and because modern recharge rates are ∼10 times those of the natural state, agricultural land retirement by urbanization will severely curtail the current safe-yields and promote overdraft pumping. Such overdrafting has occurred in the Sacramento metropolitan area for ∼40 years, creating cones of depression ∼25m deep. Today, groundwater withdrawal in Sacramento is approximately matched by infiltration of low 18 O water (-11.0 per-thousand) away from the Sacramento and American Rivers, which is estimated to occur at 100-300m/year from the sharp 18 O gradients in our groundwater isotope map

  15. Storm surge climatology report

    OpenAIRE

    Horsburgh, Kevin; Williams, Joanne; Cussack, Caroline

    2017-01-01

    Any increase in flood frequency or severity due to sea level rise or changes in storminess would adversely impact society. It is crucial to understand the physical drivers of extreme storm surges to have confidence in the datasets used for extreme sea level statistics. We will refine and improve methods to the estimation of extreme sea levels around Europe and more widely. We will do so by developing a comprehensive world picture of storm surge distribution (including extremes) for both tropi...

  16. THEORETICAL FLOW MODEL THROUGH A CENTRIFUGAL PUMP USED FOR WATER SUPPLY IN AGRICULTURE IRRIGATION

    Directory of Open Access Journals (Sweden)

    SCHEAUA Fanel Dorel

    2017-05-01

    motion of the rotor. A theoretical model for calculating the flow of the working fluid through the interior of a centrifugal pump model is presented in this paper as well as the numerical analysis on the virtual model performed with the ANSYS CFX software in order to highlight the flow parameters and flow path-lines that are formed during centrifugal pump operation.

  17. Bidimensional analysis of thermal stratification flow in the surge line of a PWR pressurizer; Analise bidimensional da estratificacao termica do escoamento na linha de surto do pressurizador de um PWR

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, M L; Botelho, D A

    1994-11-01

    A numerical model is developed in order to understand the coolant thermal stratification and to develop a capability of predicting the failure of reactor components caused by this phenomenon. A period of this phenomenon in the surge line of a PWR reactor is simulated in two dimensions using the TURBO computer program. The flow cylindrical geometry is represented in 2 D by the space between two parallel plates, and the separation of the plates is estimated using similarity (the equivalence in the pressure drop). The results are compared to experimental data and to analogous results obtained from the COMMIX-1 C code (3 D). (author). 13 refs, 9 figs, 1 tab.

  18. The dynamics of surge in compression systems

    Indian Academy of Sciences (India)

    is of interest to study compression-system surge to understand its dynamics in order ... Internal problems like compressor going into rotating stall, resulting in loss of ... of water column, was used for mass-flow measurement at the impeller entry.

  19. Positive feedback stabilization of centrifugal compressor surge

    NARCIS (Netherlands)

    Willems, Frank; Heemels, W.P.M.H.; de Jager, Bram; Stoorvogel, Antonie Arij

    Stable operation of axial and centrifugal compressors is limited towards low mass flows due to the occurrence of surge. The stable operating region can be enlarged by active control. In this study, we use a control valve which is fully closed in the desired operating point and only opens to

  20. Positive feedback stabilization of centrifugal compressor surge

    NARCIS (Netherlands)

    Willems, F.P.T.; Heemels, W.P.M.H.; Jager, de A.G.; Stoorvogel, A.A.

    2002-01-01

    Stable operation of axial and centrifugal compressors is limited towards low mass flows due to the occurrence of surge. The stable operating region can be enlarged by active control. In this study, we use a control valve which is fully closed in the desired operating point and only opens to

  1. Design and Season Influence Nitrogen Dynamics in Two Surface Flow Constructed Wetlands Treating Nursery Irrigation Runoff

    Directory of Open Access Journals (Sweden)

    Sarah A. White

    2017-12-01

    Full Text Available Constructed wetlands (CWs are used to remediate runoff from a variety of agricultural, industrial, and urban sources. CW remediation performance is often evaluated at the laboratory scale over durations less than one year. The purpose of this study was to characterize the effect of CW design (cell depth and residence time on nitrogen (N speciation and fate across season and years in two free water surface wetlands receiving runoff from irrigated plant production areas at an ornamental plant nursery. Water quality (mg·L−1 of nitrate, nitrite, and ammonium, dissolved oxygen and oxidation reduction potential was monitored at five sites within each of two CWs each month over four years. Nitrate-N was the dominant form of ionic N present in both CWs. Within CW1, a deep cell to shallow cell design, nitrate comprised 86% of ionic N in effluent. Within CW2, designed with three sequential deep cells, nitrate comprised only 66% of total N and ammonium comprised 27% of total N in CW2 effluent. Differences in ionic N removal efficacies and shifts in N speciation in CW1 and CW2 were controlled by constructed wetland design (depth and hydraulic retention time, the concentration of nutrients entering the CW, and plant species richness.

  2. Simulating the effect of water management decisions on groundwater flow and quality in the Kyzylkum Irrigation Scheme, Kazakhstan

    Science.gov (United States)

    Naudascher, R. M.; Marti, B. S.; Siegfried, T.; Wolfgang, K.; Anselm, K.

    2017-12-01

    The Kyzylkum Irrigation Scheme lies north of the Chardara reservoir on the banks of the river Syr Darya in South Kazakhstan. It was designed as a model Scheme and developed to a size of 74'000 ha during Soviet times for rice and cotton production. However, since the 1990s only very limited funds were available for maintenance and as a result, problems like water logging and salinization of soils and groundwater are now omnipresent in the scheme. The aim of this study was to develop a numerical groundwater flow model for the region in Modflow and to evaluate the effect of various infrastructure investments on phreatic evaporation (a major driver for soil salinization). Decadal groundwater observation data from 2011 to 2015 were used to calibrate the annual model and to validate the monthly model. Scenarios simulated were (partial) lining of main and/or secondary and tertiary canal system, improvement of drainage via horizontal canals or pumps, combinations of these and a joint groundwater-surface-water use scenario. Although the annual average model is sufficient to evaluate the yearly water balance, the transient model is a prerequisite for analysing measures against water logging and salinization, both of which feature strong seasonality. The transient simulation shows that a combination of leakage reduction (lining of canals) and drainage improvement measures is needed to lower the groundwater levels enough to avoid phreatic evaporation. To save water, joint surface water and groundwater irrigation can be applied in areas where groundwater salinity is low enough but without proper lining of canals, it is not sufficient to mitigate the ongoing soil degradation due to salinization and water logging.

  3. Using SWAT-MODFLOW to simulate groundwater flow and groundwater-surface water interactions in an intensively irrigated stream-aquifer system

    Science.gov (United States)

    Wei, X.; Bailey, R. T.

    2017-12-01

    Agricultural irrigated watersheds in semi-arid regions face challenges such as waterlogging, high soil salinity, reduced crop yield, and leaching of chemical species due to extreme shallow water tables resulting from long-term intensive irrigation. Hydrologic models can be used to evaluate the impact of land management practices on water yields and groundwater-surface water interactions in such regions. In this study, the newly developed SWAT-MODFLOW, a coupled surface/subsurface hydrologic model, is applied to a 950 km2 watershed in the Lower Arkansas River Valley (southeastern Colorado). The model accounts for the influence of canal diversions, irrigation applications, groundwater pumping, and earth canal seepage losses. The model provides a detailed description of surface and subsurface flow processes, thereby enabling detailed description of watershed processes such as runoff, infiltration, in-streamflow, three-dimensional groundwater flow in a heterogeneous aquifer system with sources and sinks (e.g. pumping, seepage to subsurface drains), and spatially-variable surface and groundwater exchange. The model was calibrated and tested against stream discharge from 5 stream gauges in the Arkansas River and its tributaries, groundwater levels from 70 observation wells, and evapotranspiration (ET) data estimated from satellite (ReSET) data during the 1999 to 2007 period. Since the water-use patterns within the study area are typical of many other irrigated river valleys in the United States and elsewhere, this modeling approach is transferable to other regions.

  4. Review: Regional groundwater flow modeling in heavily irrigated basins of selected states in the western United States

    Science.gov (United States)

    Rossman, Nathan R.; Zlotnik, Vitaly A.

    2013-09-01

    Water resources in agriculture-dominated basins of the arid western United States are stressed due to long-term impacts from pumping. A review of 88 regional groundwater-flow modeling applications from seven intensively irrigated western states (Arizona, California, Colorado, Idaho, Kansas, Nebraska and Texas) was conducted to provide hydrogeologists, modelers, water managers, and decision makers insight about past modeling studies that will aid future model development. Groundwater models were classified into three types: resource evaluation models (39 %), which quantify water budgets and act as preliminary models intended to be updated later, or constitute re-calibrations of older models; management/planning models (55 %), used to explore and identify management plans based on the response of the groundwater system to water-development or climate scenarios, sometimes under water-use constraints; and water rights models (7 %), used to make water administration decisions based on model output and to quantify water shortages incurred by water users or climate changes. Results for 27 model characteristics are summarized by state and model type, and important comparisons and contrasts are highlighted. Consideration of modeling uncertainty and the management focus toward sustainability, adaptive management and resilience are discussed, and future modeling recommendations, in light of the reviewed models and other published works, are presented.

  5. Modeling of two-phase flow in membranes and porous media in microgravity as applied to plant irrigation in space

    Science.gov (United States)

    Scovazzo, P.; Illangasekare, T. H.; Hoehn, A.; Todd, P.

    2001-01-01

    In traditional applications in soil physics it is convention to scale porous media properties, such as hydraulic conductivity, soil water diffusivity, and capillary head, with the gravitational acceleration. In addition, the Richards equation for water flux in partially saturated porous media also contains a gravity term. With the plans to develop plant habitats in space, such as in the International Space Station, it becomes necessary to evaluate these properties and this equation under conditions of microgravitational acceleration. This article develops models for microgravity steady state two-phase flow, as found in irrigation systems, that addresses critical design issues. Conventional dimensionless groups in two-phase mathematical models are scaled with gravity, which must be assigned a value of zero for microgravity modeling. The use of these conventional solutions in microgravity, therefore, is not possible. This article therefore introduces new dimensionless groups for two-phase models. The microgravity models introduced here determined that in addition to porous media properties, important design factors for microgravity systems include applied water potential and the ratio of inner to outer radii for cylindrical and spherical porous media systems.

  6. The effect of perfusion and irrigation flow rate variations on NaCl efflux from the isolated, perfused head of the marine teleost, Myoxocephalus octodecimspinosus

    International Nuclear Information System (INIS)

    Claiborne, J.B.; Evans, D.H.

    1981-01-01

    In vivo branchial blood pressure and unidirectional efflux values for NaCl were determined in the marine teleost, Myoxocephalus octodecimspinosus. Utilizing an isolated, perfused head preparation, perfused at in vivo pressure levels, NaCl efflux was measured and compared to in vivo values. The effect of variations in perfusion or irrigation rates on the ion efflux across the gills of the isolated head was also studied. The efflux of 22 Na from the isolated, perfused head was found to be similar to in vivo values and dependent on perfusion flow and pressure. In vitro 36 Cl efflux was lower than the efflux from intact animals and was determined to be flow/pressure independent. Irrigation rate changes at all rates tested did not affect the unidirectional efflux of either ion. (Auth.)

  7. Effect of perfusion and irrigation flow rate variations on NaCl efflux from the isolated, perfused head of the marine teleost, Myoxocephalus octodecimspinosus

    Energy Technology Data Exchange (ETDEWEB)

    Claiborne, J.B. (Miami Univ., Coral Gables, FL (USA)); Evans, D.H. (Mt. Desert Island Biological Laboratory, Salsbury Cove, ME, USA)

    1981-06-01

    In vivo branchial blood pressure and unidirectional efflux values for NaCl were determined in the marine teleost, Myoxocephalus octodecimspinosus. Utilizing an isolated, perfused head preparation, perfused at in vivo pressure levels, NaCl efflux was measured and compared to in vivo values. The effect of variations in perfusion or irrigation rates on the ion efflux across the gills of the isolated head was also studied. The efflux of /sup 22/Na from the isolated, perfused head was found to be similar to in vivo values and dependent on perfusion flow and pressure. In vitro /sup 36/Cl efflux was lower than the efflux from intact animals and was determined to be flow/pressure independent. Irrigation rate changes at all rates tested did not affect the unidirectional efflux of either ion.

  8. Surge dynamics on Bering Glacier, Alaska, in 2008–2011

    Directory of Open Access Journals (Sweden)

    M. Braun

    2012-11-01

    Full Text Available A surge cycle of the Bering Glacier system, Alaska, is examined using observations of surface velocity obtained using synthetic aperture radar (SAR offset tracking, and elevation data obtained from the University of Alaska Fairbanks LiDAR altimetry program. After 13 yr of quiescence, the Bering Glacier system began to surge in May 2008 and had two stages of accelerated flow. During the first stage, flow accelerated progressively for at least 10 months and reached peak observed velocities of ~ 7 m d−1. The second stage likely began in 2010. By 2011 velocities exceeded 9 m d−1 or ~ 18 times quiescent velocities. Fast flow continued into July 2011. Surface morphology indicated slowing by fall 2011; however, it is not entirely clear if the surge is yet over. The quiescent phase was characterized by small-scale acceleration events that increased driving stresses up to 70%. When the surge initiated, synchronous acceleration occurred throughout much of the glacier length. Results suggest that downstream propagation of the surge is closely linked to the evolution of the driving stress during the surge, because driving stress appears to be tied to the amount of resistive stress provided by the bed. In contrast, upstream acceleration and upstream surge propagation is not dependent on driving stress evolution.

  9. Adaptive Management of Environmental Flows: Using Irrigation Infrastructure to Deliver Environmental Benefits During a Large Hypoxic Blackwater Event in the Southern Murray-Darling Basin, Australia

    Science.gov (United States)

    Watts, Robyn J.; Kopf, R. Keller; McCasker, Nicole; Howitt, Julia A.; Conallin, John; Wooden, Ian; Baumgartner, Lee

    2018-03-01

    Widespread flooding in south-eastern Australia in 2010 resulted in a hypoxic (low dissolved oxygen, DO) blackwater (high dissolved carbon) event affecting 1800 kilometres of the Murray-Darling Basin. There was concern that prolonged low DO would result in death of aquatic biota. Australian federal and state governments and local stakeholders collaborated to create refuge areas by releasing water with higher DO from irrigation canals via regulating structures (known as `irrigation canal escapes') into rivers in the Edward-Wakool system. To determine if these environmental flows resulted in good environmental outcomes in rivers affected by hypoxic blackwater, we evaluated (1) water chemistry data collected before, during and after the intervention, from river reaches upstream and downstream of the three irrigation canal escapes used to deliver the environmental flows, (2) fish assemblage surveys undertaken before and after the blackwater event, and (3) reports of fish kills from fisheries officers and local citizens. The environmental flows had positive outcomes; mean DO increased by 1-2 mg L-1 for at least 40 km downstream of two escapes, and there were fewer days when DO was below the sub-lethal threshold of 4 mg L-1 and the lethal threshold of 2 mg L-1 at which fish are known to become stressed or die, respectively. There were no fish deaths in reaches receiving environmental flows, whereas fish deaths were reported elsewhere throughout the system. This study demonstrates that adaptive management of environmental flows can occur through collaboration and the timely provision of monitoring results and local knowledge.

  10. Surge of a Complex Glacier System - The Current Surge of the Bering-Bagley Glacier System, Alaska

    Science.gov (United States)

    Herzfeld, U. C.; McDonald, B.; Trantow, T.; Hale, G.; Stachura, M.; Weltman, A.; Sears, T.

    2013-12-01

    Understanding fast glacier flow and glacial accelerations is important for understanding changes in the cryosphere and ultimately in sea level. Surge-type glaciers are one of four types of fast-flowing glaciers --- the other three being continuously fast-flowing glaciers, fjord glaciers and ice streams --- and the one that has seen the least amount of research. The Bering-Bagley Glacier System, Alaska, the largest glacier system in North America, surged in 2011 and 2012. Velocities decreased towards the end of 2011, while the surge kinematics continued to expand. A new surge phase started in summer and fall 2012. In this paper, we report results from airborne observations collected in September 2011, June/July and September/October 2012 and in 2013. Airborne observations include simultaneously collected laser altimeter data, videographic data, GPS data and photographic data and are complemented by satellite data analysis. Methods range from classic interpretation of imagery to analysis and classification of laser altimeter data and connectionist (neural-net) geostatistical classification of concurrent airborne imagery. Results focus on the characteristics of surge progression in a large and complex glacier system (as opposed to a small glacier with relatively simple geometry). We evaluate changes in surface elevations including mass transfer and sudden drawdowns, crevasse types, accelerations and changes in the supra-glacial and englacial hydrologic system. Supraglacial water in Bering Glacier during Surge, July 2012 Airborne laser altimeter profile across major rift in central Bering Glacier, Sept 2011

  11. The relationship between sap flow and commercial soil water sensor readings in irrigated potato (Solanum tuberosum L.) production

    Science.gov (United States)

    Many irrigation scheduling methods utilized in commercial production settings rely on soil water sensors that are normally purchased as off-the-shelf technology or through contracted services that install and monitor readings throughout the season. These systems often assume a direct relationship be...

  12. Electrodynamics properties of auroral surges

    International Nuclear Information System (INIS)

    Robinson, R.M.; Vondrak, R.R.

    1990-01-01

    The incoherent scatter radar technique provides an excellent means to study the ionization and electric fields associated with auroral precipitation events. One of the most intense and dynamic auroral events is the so-called surge or breakup aurora that accompanies auroral substorms. For their purposes they define a surge as a transient intensification of auroral precipitation that occurs simultaneously with a pronounced negative bay in the ground magnetometer data. They present data obtained during five such events in 1980 and 1981. Prior to the surge, auroral forms move equatorward, develop ray structure, and intensify. The surge is identified by an apparent poleward motion of the aurora producing aurorally associated ionization that extends over several hundred kilometers in latitude. The presurge auroral forms are embedded in a region of northward electric field. The auroral forms that comprise the surge span a region within which the meridional electric field is small and at times southward. A westward electric field is often but not always present within the surge. The behavior of the westward electric field is significantly different from the north-south field, in that sharp spatial gradients are absent even in very disturbed conditions. Although the westward Hall currents are mostly responsible for the negative bays that accompany the surge, at times the westward Pedersen current sustained by the westward electric field can be important. Sudden variations in the H component of the ground magnetogram can be caused by motions of the aurora or by temporal variations in the fields or conductivities. They present a model that simulates the observed changes in electric field and precipitation that accompany surges. The perturbation in the electric field produced by the surge is simulated by adding negative potential in regions of intense precipitation

  13. Objective measurement of postocclusion surge during phacoemulsification in human eye-bank eyes.

    Science.gov (United States)

    Georgescu, Dan; Payne, Marielle; Olson, Randall J

    2007-03-01

    To objectively compare the postocclusion vacuum surge among different phacoemulsification machines and devices. Experimental study. Infiniti, Legacy, Millennium, and Sovereign were tested in an eye-bank eye. All the machines were tested with 20-gauge non-ABS tips, 430 mm Hg vacuum pressure, 24 ml/minute aspiration rate, peristaltic pump, and 75 cm bottle height. In addition, Infiniti and Legacy were also tested with 20-gauge bypass tips (ABS), 125 cm bottle height, and 40 ml/minute flow rate. We also tested 19-gauge tips with Infiniti and Sovereign and the venturi pump for Millennium. Significant differences were found between all the machines tested with Millennium peristaltic generating the least and Millennium Venturi the most surge. ABS tips significantly decreased the surge for Legacy but not for Infiniti. Cruise Control (CC) had a significant effect on Sovereign but not on Millennium. Increasing the bottle height decreased surge while increasing the flow increased surge for both Infiniti and Legacy. The 19-gauge tips increased surge for both Infiniti and Sovereign. Surge varied over a range of 40 microm to more than 2 mm. ABS and CC decrease surge, especially when the machine is not functioning near the limits of surge prevention. Certain parameters, such as a 19-gauge tip and high flow, dramatically increased surge, whereas elevating the bottle ameliorates it. Understanding the impact of all these features will help in minimizing the problem.

  14. Present dynamics and future prognosis of a slowly surging glacier

    Directory of Open Access Journals (Sweden)

    G. E. Flowers

    2011-03-01

    Full Text Available Glacier surges are a well-known example of an internal dynamic oscillation whose occurrence is not a direct response to the external climate forcing, but whose character (i.e. period, amplitude, mechanism may depend on the glacier's environmental or climate setting. We examine the dynamics of a small (∼5 km2 valley glacier in Yukon, Canada, where two previous surges have been photographically documented and an unusually slow surge is currently underway. To characterize the dynamics of the present surge, and to speculate on the future of this glacier, we employ a higher-order flowband model of ice dynamics with a regularized Coulomb-friction sliding law in both diagnostic and prognostic simulations. Diagnostic (force balance calculations capture the measured ice-surface velocity profile only when non-zero basal water pressures are prescribed over the central region of the glacier, coincident with where evidence of the surge has been identified. This leads to sliding accounting for 50–100% of the total surface motion in this region. Prognostic simulations, where the glacier geometry evolves in response to a prescribed surface mass balance, reveal a significant role played by a bedrock ridge beneath the current equilibrium line of the glacier. Ice thickening occurs above the ridge in our simulations, until the net mass balance reaches sufficiently negative values. We suggest that the bedrock ridge may contribute to the propensity for surges in this glacier by promoting the development of the reservoir area during quiescence, and may permit surges to occur under more negative balance conditions than would otherwise be possible. Collectively, these results corroborate our interpretation of the current glacier flow regime as indicative of a slow surge that has been ongoing for some time, and support a relationship between surge incidence or character and the net mass balance. Our results also highlight the importance of glacier bed

  15. Active surge control for variable speed axial compressors.

    Science.gov (United States)

    Lin, Shu; Yang, Chunjie; Wu, Ping; Song, Zhihuan

    2014-09-01

    This paper discusses active surge control in variable speed axial compressors. A compression system equipped with a variable area throttle is investigated. Based on a given compressor model, a fuzzy logic controller is designed for surge control and a proportional speed controller is used for speed control. The fuzzy controller uses measurements of the change of pressure rise as well as the change of mass flow to determine the throttle opening. The presented approach does not require the knowledge of system equilibrium or the surge line. Numerical simulations show promising results. The proposed fuzzy logic controller performs better than a backstepping controller and is capable to suppress surge at different operating points. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Impacts of changing cropping pattern on virtual water flows related to crops transfer: a case study for the Hetao irrigation district, China.

    Science.gov (United States)

    Liu, Jing; Wu, Pute; Wang, Yubao; Zhao, Xining; Sun, Shikun; Cao, Xinchun

    2014-11-01

    Analysis of cropping patterns is a prerequisite for their optimisation, and evaluation of virtual water flows could shed new light on water resources management. This study is intended to explore the effects of cropping pattern changes between 1960 and 2008 on virtual water flows related to crops transfer in the Hetao irrigation district, China. (1) The sown area of crops increased at an average rate of 3.57 × 10(3) ha year(-1) while the proportion of sown grain crops decreased from 92.83% in the 1960s to 50.22% in the 2000s. (2) Virtual water content decreased during the study period while net virtual water exports increased since the 1980s. (3) Assuming that the cropping pattern was constant and was equal to the average 1960s value, accumulated net virtual water export in 1980-2008 would have been 4.76 × 10(9) m(3) greater than that in the actual cropping pattern scenario. Cropping pattern changes in the Hetao irrigation district could not only be seen as resulting from the pursuit for higher economic returns, but also as a feedback response to limited water resources. A systematic framework is still needed for future cropping pattern planning by taking food security, continued agricultural expansion and other constraints into consideration. © 2014 Society of Chemical Industry.

  17. Toward an integrated storm surge application: ESA Storm Surge project

    Science.gov (United States)

    Lee, Boram; Donlon, Craig; Arino, Olivier

    2010-05-01

    Storm surges and their associated coastal inundation are major coastal marine hazards, both in tropical and extra-tropical areas. As sea level rises due to climate change, the impact of storm surges and associated extreme flooding may increase in low-lying countries and harbour cities. Of the 33 world cities predicted to have at least 8 million people by 2015, at least 21 of them are coastal including 8 of the 10 largest. They are highly vulnerable to coastal hazards including storm surges. Coastal inundation forecasting and warning systems depend on the crosscutting cooperation of different scientific disciplines and user communities. An integrated approach to storm surge, wave, sea-level and flood forecasting offers an optimal strategy for building improved operational forecasts and warnings capability for coastal inundation. The Earth Observation (EO) information from satellites has demonstrated high potential to enhanced coastal hazard monitoring, analysis, and forecasting; the GOCE geoid data can help calculating accurate positions of tide gauge stations within the GLOSS network. ASAR images has demonstrated usefulness in analysing hydrological situation in coastal zones with timely manner, when hazardous events occur. Wind speed and direction, which is the key parameters for storm surge forecasting and hindcasting, can be derived by using scatterometer data. The current issue is, although great deal of useful EO information and application tools exist, that sufficient user information on EO data availability is missing and that easy access supported by user applications and documentation is highly required. Clear documentation on the user requirements in support of improved storm surge forecasting and risk assessment is also needed at the present. The paper primarily addresses the requirements for data, models/technologies, and operational skills, based on the results from the recent Scientific and Technical Symposium on Storm Surges (www

  18. Are There Infinite Irrigation Trees?

    Science.gov (United States)

    Bernot, M.; Caselles, V.; Morel, J. M.

    2006-08-01

    In many natural or artificial flow systems, a fluid flow network succeeds in irrigating every point of a volume from a source. Examples are the blood vessels, the bronchial tree and many irrigation and draining systems. Such systems have raised recently a lot of interest and some attempts have been made to formalize their description, as a finite tree of tubes, and their scaling laws [25], [26]. In contrast, several mathematical models [5], [22], [10], propose an idealization of these irrigation trees, where a countable set of tubes irrigates any point of a volume with positive Lebesgue measure. There is no geometric obstruction to this infinitesimal model and general existence and structure theorems have been proved. As we show, there may instead be an energetic obstruction. Under Poiseuille law R(s) = s -2 for the resistance of tubes with section s, the dissipated power of a volume irrigating tree cannot be finite. In other terms, infinite irrigation trees seem to be impossible from the fluid mechanics viewpoint. This also implies that the usual principle analysis performed for the biological models needs not to impose a minimal size for the tubes of an irrigating tree; the existence of the minimal size can be proven from the only two obvious conditions for such irrigation trees, namely the Kirchhoff and Poiseuille laws.

  19. Influential aspects of glacial resource for establishing Kuhl system (gravity flow irrigation) in the Hindu Kush, Karakoram and Himalaya ranges.

    Science.gov (United States)

    Ashraf, Arshad; Iqbal, Ayesha

    2018-04-27

    The meltwater components play an important role in the hydrological regime of the Hindu Kush, Karakorum and Himalaya (HKH) region, in terms of high demand of water for food and fiber from snow and glacial resource. The communities of Himalayan mountains are facing challenges of food security owing to lack of the resource information for meeting their water requirements. In this study, suitability index approach was adopted to assess glacier resource potential for establishing kuhl irrigation system in HKH ranges of Pakistan. The basis of indexing is glacier accessibility and water yield potential of the glacial resource for irrigation estimated in terms of number and ice reserve of the glaciers. The suitability index was found good for about 1.4% glaciers constituting about 80% of the total ice reserves of the HKH region. Medium suitability constitutes about 36.1% glaciers with 12.6% of the total ice reserves, while low suitability was assessed for about 60% glaciers containing 1.5% ice reserves only. Maximum unit glacial reserve was estimated for Shigar basin, i.e., 1.44 km 3 , and among HKH ranges, 0.46 km 3 for the Karakoram range. A regular monitoring of the glacial resource would prove helpful in assessing vulnerability of this resource to climate change in the high Himalayan region in future. Copyright © 2018. Published by Elsevier B.V.

  20. Methodology for surge pressure evaluation in a water injection system

    Energy Technology Data Exchange (ETDEWEB)

    Meliande, Patricia; Nascimento, Elson A. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Civil; Mascarenhas, Flavio C.B. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Lab. de Hidraulica Computacional; Dandoulakis, Joao P. [SHELL of Brazil, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Predicting transient effects, known as surge pressures, is of high importance for offshore industry. It involves detailed computer modeling that attempts to simulate the complex interaction between flow line and fluid in order to ensure efficient system integrity. Platform process operators normally raise concerns whether the water injection system is adequately designed or not to be protected against possible surge pressures during sudden valve closure. This report aims to evaluate the surge pressures in Bijupira and Salema water injection systems due to valve closure, through a computer model simulation. Comparisons among the results from empirical formulations are discussed and supplementary analysis for Salema system were performed in order to define the maximum volumetric flow rate for which the design pressure was able to withstand. Maximum surge pressure values of 287.76 bar and 318.58 bar, obtained in Salema and Bijupira respectively, using empirical formulations have surpassed the operating pressure design, while the computer model results have pointed the greatest surge pressure value of 282 bar in Salema system. (author)

  1. Emergency department surge: models and practical implications.

    Science.gov (United States)

    Nager, Alan L; Khanna, Kajal

    2009-08-01

    Emergency Department crowding has long been described. Despite the daily challenges of managing emergency department volume and acuity; a surge response during a disaster entails even greater challenges including collaboration, intervention, and resourcefulness to effectively carry out pediatric disaster management. Understanding surge and how to respond with appropriate planning will lead to success. To achieve this, we sought to analyze models of surge; review regional and national data outlining surge challenges and factors that impact surge; and to outline potential solutions. We conducted a systemic review and included articles and documents that best described the theoretical and practical basis of surge response. We organized the systematic review according to the following questions: What are the elements and models that are delineated by the concept of surge? What is the basis for surge response based on regional and national published sources? What are the broad global solutions? What are the major lessons observed that will impact effective surge capacity? Multiple models of surge are described including public health, facility-based and community-based; a 6-tiered response system; and intrinsic or extrinsic surge capacity. In addition, essential components (4 S's of surge response) are described along with regional and national data outlining surge challenges, impacting factors, global solutions, and lesions observed. There are numerous shortcomings regionally and nationally affecting our ability to provide an effective and coordinated surge response. Planning, education, and training will lead to an effective pediatric disaster management response.

  2. Proposed Strategies for DWPF Melter Off-Gas Surge Control

    International Nuclear Information System (INIS)

    CHOI, ALEXANDERS.

    2004-01-01

    Off-gas surging is inherent to the operation of slurry-fed melters. Although the melter design and the feed chemistry are both known to significantly affect off-gas surging, the frequency and intensity of surges are in essence unpredictable. In typical off-gas surges, both condensable and non condensable flows spike simultaneously. Condensable or steam surges have been observed to occur as the boiling water layer occasionally falls into the crevices of the cold cap or flows over the edges of the cold cap, thereby coming in contact with the melt surface. The resulting steam surges can pressurize the melter considerably and, therefore, are responsible for the bulk of pressure transients that propagate throughout the off-gas system. The non condensable surges occur as the calcine gases that have been accumulating within the cold cap finally build up enough pressure to be released through the temporary openings of the cold cap. The analysis of off-gas data has shown that over 90 of the gas released during a surge is due to steam.1 Therefore, it is essential to have a large inventory of water in the cold cap for any significant pressure spikes to occur. With the Melter 2 vapor space temperature typically running at 720C, the water layer in the cold cap will quickly evaporate once the feeding stops, and the potential for any large pressure spikes should practically cease to exist. The analysis also showed that large pressure spikes well above 2 inches H2O cannot occur under the steam surge scenarios described above. More severe conditions should prevail and one such condition would be that the feed materials form a mound with a growing lake on top, while the melt below remains very fluidic due to its low viscosity, thus resulting in greater movements both in the lateral as well as vertical directions. Once the mound begins to grow, its rate should accelerate, since the heat transfer rate to the upper regions of the cold cap is inversely proportional to the cold cap

  3. Quantification of Sediment Transport During Glacier Surges and its Impact on Landform Architecture

    DEFF Research Database (Denmark)

    Kjær, Kurt H.; Schomacker, Anders; Korsgaard, Niels Jákup

    ) for 1945, prior to the last surge in 1964, and for 2003 in order to assess the effect of the surge on the sediment architecture in the forefield. The pre- and post-surge DEMs allow direct quantification of the sediment volumes that were re-distributed in the forefield by the surging ice mass in 1964...... or glaciofluvial outwash fans. Mapping of the sediment thickness in the glacier forefield shows higher accumulation along ice marginal positions related to wedge formation during extremely rapid ice flow. Fast flow was sustained by overpressurized water causing sediment-bedrock decoupling beneath a thick sediment...... architecture occurs distal to the 1810 ice margin, where the 1890 surge advanced over hitherto undeformed sediments. Proximal to the 1810 ice margin, the landscape have been transgressed by either one or two glaciers (in 1890 and 1964). The most complex landscape architecture is found proximal to the 1964 ice...

  4. Improvement of Performance Range of Centrifugal Compressors Gas by Surge Line Modification Using Active Controller Based on Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Pezhman Mohammadi

    2012-04-01

    Full Text Available In this work, surge of prevention is a critical problem in oil and gas industries, particularly when return gas flow or gas flow reduces in transportation of gas pipelines. This paper is illustrated new results about surge control of centrifugal compressors .surge phenomenon is flow unsteady state in compressors which causes damages seriously in compressor construction. Furthermore, it also demonstrates in comparison with anti surge control ،active surge control expands stability range.Active surge control which based on fuzzy logic،is the main idea that used in this investigation. Using fuzzy controller causes an improvement in compressor's condition and increase performance range of the compressor, in addition to prevention of any instability in compressor. The simulation results is also satisfactory.

  5. Pre-swirl mechanism in front of a centrifugal compressor: effects on surge line and on unsteady phenomena in surge area

    Directory of Open Access Journals (Sweden)

    Danlos Amélie

    2017-01-01

    Full Text Available Using a pre-swirl mechanism upstream an impeller of a compressor allows to modify its characteristics curve, while weakly damaging its efficiency. Another consequence of the pre-swirl is to push back the surge line limit and to increase the operation zone towards the low flow rate limits. A centrifugal compressor has been modified in order to add a swirl generator device upstream the impeller. The incidence values of blades can vary from 0° (no pre-swirl to ±90°. The variation of the stator blades incidence has several main consequences: to allow a flow rate adjustment with a good efficiency conservation, to increase the angular velocity with a constant shaft power, to produce a displacement of the surge line limit. In this paper, the results of experimental studies are presented to analyze the surge line and the intensity of unsteady phenomena when the compressor works in its surge area.

  6. Sediment Transport Model for a Surface Irrigation System

    Directory of Open Access Journals (Sweden)

    Damodhara R. Mailapalli

    2013-01-01

    Full Text Available Controlling irrigation-induced soil erosion is one of the important issues of irrigation management and surface water impairment. Irrigation models are useful in managing the irrigation and the associated ill effects on agricultural environment. In this paper, a physically based surface irrigation model was developed to predict sediment transport in irrigated furrows by integrating an irrigation hydraulic model with a quasi-steady state sediment transport model to predict sediment load in furrow irrigation. The irrigation hydraulic model simulates flow in a furrow irrigation system using the analytically solved zero-inertial overland flow equations and 1D-Green-Ampt, 2D-Fok, and Kostiakov-Lewis infiltration equations. Performance of the sediment transport model was evaluated for bare and cropped furrow fields. The results indicated that the sediment transport model can predict the initial sediment rate adequately, but the simulated sediment rate was less accurate for the later part of the irrigation event. Sensitivity analysis of the parameters of the sediment module showed that the soil erodibility coefficient was the most influential parameter for determining sediment load in furrow irrigation. The developed modeling tool can be used as a water management tool for mitigating sediment loss from the surface irrigated fields.

  7. Irrigation and Autocracy

    DEFF Research Database (Denmark)

    Bentzen, Jeanet Sinding; Kaarsen, Nicolai; Wingender, Asger Moll

    We show that societies with a history of irrigation-based agriculture have been less likely to adopt democracy than societies with a history of rainfed agriculture. Rather than actual irrigation, the empirical analysis is based on how much irrigation potentially can increase yields.Irrigation pot...

  8. Mapping Irrigation Potential in the Upper East Region of Ghana

    Science.gov (United States)

    Akomeah, E.; Odai, S. N.; Annor, F. O.; Adjei, K. A.; Barry, B.

    2009-04-01

    The Upper East Region together with the other two regions in Northern Ghana (Upper West and Northern Region) is seen as the locus of perennial food deficit (GPRS, 2003). Despite, the provision of over 200 small scale dams and various mechanisms aimed at poverty alleviation, the region is still plagued with poverty and yearly food shortages. To achieve food security and alleviate poverty in the region however, modernization of agriculture through irrigation is deemed inevitable. While it is true that considerable potential still exists for future expansion of irrigation, it cannot be refuted that water is becoming scarcer in the regions where the need for irrigation is most important, hence mapping the irrigation potential of the region will be the first step toward ensuring sound planning and sustainability of the irrigation developments. In this study, an attempt has been made to map out the irrigation potential of the Upper East Region. The river basin approach was used in assessing the irrigation potential. The catchments drained by The White Volta river, Red volta river, River Sissili and River Kulpawn were considered in the assessment. The irrigation potential for the sub basins was computed by combining information on gross irrigation water requirements for the selected cash crops, area of soil suitable for irrigation and available water resources. The capacity of 80%, 70%, 60% and 50% time of exceedance flow of the available surface water resources in the respective sub basins was estimated. The area that can be irrigated with this flow was computed with selected cropping pattern. Combining the results of the potential irrigable areas and the land use map of the respective sub basins, an irrigation potential map has been generated showing potential sites in the upper east region that can be brought under irrigation. Keywords: Irrigation potential, irrigation water requirement, land evaluation, dependable flow

  9. Radiological analyses of France Telecom surge arresters. Study performed for the CGT FAPT Cantal

    International Nuclear Information System (INIS)

    2010-02-01

    This document reports the radiological characterization of various versions of surge arresters used in the past to protect telephone lines against over-voltages. These equipment, which use various radioactive materials, were assessed by gamma radiation flow measurements, alpha-beta-gamma count rate measurements, dose rate measurements, gamma spectrometry analyses, tritium emanation test, radon 222 emanation test, smearing. Recommendations are formulated to manage radioactive surge arresters which are still being operated

  10. Reconnaissance level study Mississippi storm surge barrier

    NARCIS (Netherlands)

    Van Ledden, M.; Lansen, A.J.; De Ridder, H.A.J.; Edge, B.

    2012-01-01

    This paper reports a reconnaissance level study of a storm surge barrier in the Mississippi River. Historical hurricanes have shown storm surge of several meters along the Mississippi River levees up to and upstream of New Orleans. Future changes due to sea level rise and subsidence will further

  11. The effects of three techniques that change the wetting patterns over subsurface drip-irrigated potatoes

    Energy Technology Data Exchange (ETDEWEB)

    Elnesr, M.N.; Alazba, A.A.

    2015-07-01

    Wetting pattern enhancement is one of the goals of irrigation designers and researchers. In this study, we addressed three techniques (dual-lateral drip, intermittent flow and physical barrier methods) that change the wetting pattern of subsurface drip irrigation. To study their effect on the yield and water-use efficiency (WUE) of potatoes, field experiments were conducted for four seasons, during which the soil-water balance was continuously monitored using a set of capacitance probes. The results of the soil water patterns showed that both the dual-lateral and intermittent techniques increased lateral water movement and eliminated deep percolation, whereas the physical barrier had a limited effect on the top soil layer. The crop results indicated that the yield and WUE increased significantly in response to the application of the dual-lateral drip (up to 30%); the intermittent application also positively affected the yield (~10%) and the WUE (~14%), but these effects were not statistically significant according to the statistical model. The physical barrier showed a non-significant negative effect on the yield and WUE. These findings suggest the following recommended practices: the use of dual-lateral drip technique due to its beneficial results and its potential for increasing yields and reducing water consumption; the application of intermittent flow with more than three surges; and restricting the use of physical barriers to soils with high permeability. (Author)

  12. Irrigating The Environment

    Science.gov (United States)

    Adamson, D.

    2017-12-01

    Water insecurity and water inequality are international issues that reduce economic growth. Countries are adopting alternative approaches to rebalance the share of water between all users to mitigate economic loss for this and future generations. However, recent reforms have struggled to provide the necessary arguments to obtain political protection of the process. In the absence of proof, rent-seeking arguments have challenged the benefit of restoring environmental flows by arguing that policy design fails to maximise the environmental benefits. This is a problem in Australia's Murray-Darling Basin (MDB), where despite establishing 3,200GL of environmental water, the policy is still under threat. Applied water economic policy advice fails, when it does not deal with uncertainty. The state-contingent analysis approach can map how individual decision makers can adapt to alternative states of water supply (i.e. drought, normal and wet) by reallocating inputs to obtain state-described outputs. By modelling changes to the states, or the frequency of the states occurring, climate change can modelled, and decision management responses explored. By treating the environment as another set of production systems, lessons learnt from managing perennial and annual agricultural production systems during the Millennium Drought in the MDB can be applied to explore the limits of irrigating the environment. The demand for water by a production system is a combination of state-general (must be irrigated every year e.g. perennial crop or permanent wetland) and state specific inputs (irrigate in response to the realise state). In simple terms, the greater the component of state-general water requirements a production system has, the less resilience it has when water supply is highly variable and if water is not available then production systems are irreversibly lost. While production systems that only need state-allocable water can adapt to alternative levels of scarcity without

  13. Fluid-structure interaction analysis for pressurizer surge line subjected to thermal stratification

    International Nuclear Information System (INIS)

    Kang, Dong Gu; Jhung, Myung Jo; Chang, Soon Heung

    2011-01-01

    Research highlights: → Temperature of surge line due to stratified flow is defined using CFD analysis. → Fluid-structure interaction analysis is performed to investigate the response characteristics due to thermal stress. → Fatigue usage factors due to thermal stratification are relatively low. → Simplifying temperature distribution in surge line is not always conservative. - Abstract: Serious mechanical damages such as cracks and plastic deformations due to excessive thermal stress caused by thermal stratification have been experienced in several nuclear power plants. In particular, the thermal stratification in the pressurizer surge line has been addressed as one of the significant safety and technical issues. In this study, a detailed unsteady computational fluid dynamics (CFD) analysis involving conjugate heat transfer analysis is performed to obtain the transient temperature distributions in the wall of the pressurizer surge line subjected to stratified internal flows either during out-surge or in-surge operation. The thermal loads from CFD calculations are transferred to the structural analysis code which is employed for the thermal stress analysis to investigate the response characteristics, and the fatigue analysis is ultimately performed. In addition, the thermal stress and fatigue analysis results obtained by applying the realistic temperature distributions from CFD calculations are compared with those by assuming the simplified temperature distributions to identify some requirements for a realistic and conservative thermal stress analysis from a safety point of view.

  14. MAGNETIC-RECONNECTION GENERATED SHOCK WAVES AS A DRIVER OF SOLAR SURGES

    International Nuclear Information System (INIS)

    Yang, Heesu; Chae, Jongchul; Park, Hyungmin; Song, Dong-uk; Cho, Kyuhyoun; Lim, Eun-Kyung; Lee, Kyoung-sun

    2014-01-01

    We found that a surge consists of multiple shock features. In our high-spatiotemporal spectroscopic observation of the surge, each shock is identified with the sudden appearance of an absorption feature at the blue wings of the Ca II 8542 Å line and Hα line that gradually shifts to the red wings. The shock features overlap with one another with the time interval of 110 s, which is much shorter than the duration of each shock feature, 300-400 s. This finding suggests that the multiple shocks might not have originated from a train of sinusoidal waves generated by oscillations and flows in the photosphere. As we found the signature of the magnetic flux cancelations at the base of the surge, we conclude that the multiple shock waves in charge of the surge were generated by the magnetic reconnection that occurred in the low atmosphere in association with the flux cancelation

  15. Ghana - Agriculture - Irrigation

    Data.gov (United States)

    Millennium Challenge Corporation — The Millennium Development Authority (MiDA) financed the construction of a new irrigation scheme in Kpong and the renovation of two irrigation schemes in Botanga and...

  16. Root canal irrigants

    OpenAIRE

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu

    2010-01-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are...

  17. IRRIGATION USING SOLAR PUMP

    OpenAIRE

    Prof. Nitin P.Choudhary*1 & Ms. Komal Singne2

    2017-01-01

    In this report the described design of a PV and soil moisture sensor based automated irrigation system is introduced. This project aims to provide a human friendly, economical and automated water pumping system which eliminates the problems of over irrigation and helps in irrigation water optimization and manage it in accordance with the availability of water. Our project not only tries to modernize the irrigation practices and ensure the optimum yield by carefully fulfilling the requirements...

  18. Irrigation in endodontic treatment.

    Science.gov (United States)

    Basrani, Bettina

    2011-01-01

    The primary endodontic treatment goal is to optimize root canal disinfection and to prevent reinfection. Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal system. In this review of the literature, various irrigants and the interactions between irrigants are discussed and new delivery systems are introduced.

  19. Evaluation of best management practices under intensive irrigation using SWAT model

    OpenAIRE

    Dechmi, Farida; Skhiri, Ahmed

    2013-01-01

    Land management practices such as conservation tillage and optimum irrigation are routinely used to reduce non-point source pollution and improve water quality. The calibrated and validated SWAT-IRRIG model is the first modified SWAT version that reproduces well the irrigation return flows (IRF) when the irrigation source is outside of the watershed. The application of this SWAT version in intensive irrigated systems permits to better evaluate the best management practices (BMPs) in such syst...

  20. Artificial Neural Network forecasting of storm surge water levels at major estuarine ports to supplement national tide-surge models and improve port resilience planning

    Science.gov (United States)

    French, Jon; Mawdsley, Robert; Fujiyama, Taku; Achuthan, Kamal

    2017-04-01

    Effective prediction of tidal storm surge is of considerable importance for operators of major ports, since much of their infrastructure is necessarily located close to sea level. Storm surge inundation can damage critical elements of this infrastructure and significantly disrupt port operations and downstream supply chains. The risk of surge inundation is typically approached using extreme value analysis, while short-term forecasting generally relies on coastal shelf-scale tide and surge models. However, extreme value analysis does not provide information on the duration of a surge event and can be sensitive to the assumptions made and the historic data available. Also, whilst regional tide and surge models perform well along open coasts, their fairly coarse spatial resolution means that they do not always provide accurate predictions for estuarine ports. As part of a NERC Environmental Risks to Infrastructure Innovation Programme project, we have developed a tool that is specifically designed to forecast the North Sea storm surges on major ports along the east coast of the UK. Of particular interest is the Port of Immingham, Humber estuary, which handles the largest volume of bulk cargo in the UK including major flows of coal and biomass for power generation. A tidal surge in December 2013, with an estimated return period of 760 years, partly flooded the port, damaged infrastructure and disrupted operations for several weeks. This and other recent surge events highlight the need for additional tools to supplement the national UK Storm Tide Warning Service. Port operators are also keen to have access to less computationally expensive forecasting tools for scenario planning and to improve their resilience to actual events. In this paper, we demonstrate the potential of machine learning methods based on Artificial Neural Networks (ANNs) to generate accurate short-term forecasts of extreme water levels at estuarine North Sea ports such as Immingham. An ANN is

  1. Overview of Rotating Cavitation and Cavitation Surge in the Fastrac Engine LOX Turbopump

    Science.gov (United States)

    Zoladz, Thomas; Turner, Jim (Technical Monitor)

    2001-01-01

    Observations regarding rotating cavitation and cavitation surge experienced during the development of the Fastrac 60 Klbf engine turbopump are discussed. Detailed observations from the analysis of both water flow and liquid oxygen test data are offered. Scaling and general comparison of rotating cavitation between water flow and liquid oxygen testing are discussed. Complex data features linking the localized rotating cavitation mechanism of the inducer to system surge components are described in detail. Finally a description of a simple lumped-parameter hydraulic system model developed to better understand observed data is given.

  2. An improved delivery system for bladder irrigation.

    Science.gov (United States)

    Moslemi, Mohammad K; Rajaei, Mojtaba

    2010-10-05

    Occasionally, urologists may see patients requiring temporary bladder irrigation at hospitals without stocks of specialist irrigation apparatus. One option is to transfer the patient to a urology ward, but often there are outstanding medical issues that require continued specialist input. Here, we describe an improved system for delivering temporary bladder irrigation by utilizing readily available components and the novel modification of a sphygmomanometer blub. This option is good for bladder irrigation in patients with moderate or severe gross hematuria due to various causes. In this prospective study from March 2007 to April 2009, we used our new system in eligible cases. In this system, an irrigant bag with 1 L of normal saline was suspended 80 cm above the indwelled 3-way Foley catheter, and its drainage tube was inserted into the irrigant port of the catheter. To increase the flow rate of the irrigant system, we inserted a traditional sphygmomanometer bulb at the top of the irrigant bag. This closed system was used for continuous bladder irrigation (CBI) in patients who underwent open prostatectomy, transurethral resection of the prostate (TURP), or transurethral resection of the bladder (TURB). This high-pressure system is also used for irrigation during cystourethroscopy, internal urethrotomy, and transurethral lithotripsy. Our 831 eligible cases were divided into two groups: group 1 were endourologic cases and group 2 were open prostatectomy, TURP, and TURB cases. The maximum and average flow rates were evaluated. The efficacy of our new system was compared prospectively with the previous traditional system used in 545 cases. In group 1, we had clear vision at the time of endourologic procedures. The success rate of this system was 99.5%. In group 2, the incidence of clot retention decreased two fold in comparison to traditional gravity-dependent bladder flow system. These changes were statistically significant (P = 0.001). We did not observe any adverse

  3. Centrifugal Compressor Surge Margin Improved With Diffuser Hub Surface Air Injection

    Science.gov (United States)

    Skoch, Gary J.

    2002-01-01

    Aerodynamic stability is an important parameter in the design of compressors for aircraft gas turbine engines. Compression system instabilities can cause compressor surge, which may lead to the loss of an aircraft. As a result, engine designers include a margin of safety between the operating line of the engine and the stability limit line of the compressor. The margin of safety is typically referred to as "surge margin." Achieving the highest possible level of surge margin while meeting design point performance objectives is the goal of the compressor designer. However, performance goals often must be compromised in order to achieve adequate levels of surge margin. Techniques to improve surge margin will permit more aggressive compressor designs. Centrifugal compressor surge margin improvement was demonstrated at the NASA Glenn Research Center by injecting air into the vaned diffuser of a 4:1-pressure-ratio centrifugal compressor. Tests were performed using injector nozzles located on the diffuser hub surface of a vane-island diffuser in the vaneless region between the impeller trailing edge and the diffuser-vane leading edge. The nozzle flow path and discharge shape were designed to produce an air stream that remained tangent to the hub surface as it traveled into the diffuser passage. Injector nozzles were located near the leading edge of 23 of the 24 diffuser vanes. One passage did not contain an injector so that instrumentation located in that passage would be preserved. Several orientations of the injected stream relative to the diffuser vane leading edge were tested over a range of injected flow rates. Only steady flow (nonpulsed) air injection was tested. At 100 percent of the design speed, a 15-percent improvement in the baseline surge margin was achieved with a nozzle orientation that produced a jet that was bisected by the diffuser vane leading edge. Other orientations also improved the baseline surge margin. Tests were conducted at speeds below the

  4. An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV

    Science.gov (United States)

    Wernet, Mark P.; Bright, Michelle M.; Skoch, Gary J.

    2002-01-01

    Compressor stall is a catastrophic breakdown of the flow in a compressor, which can lead to a loss of engine power, large pressure transients in the inlet/nacelle and engine flameout. The implementation of active or passive strategies for controlling rotating stall and surge can significantly extend the stable operating range of a compressor without substantially sacrificing performance. It is crucial to identify the dynamic changes occurring in the flow field prior to rotating stall and surge in order to successfully control these events. Generally, pressure transducer measurements are made to capture the transient response of a compressor prior to rotating stall. In this investigation, Digital Particle Imaging Velocimetry (DPIV) is used in conjunction with dynamic pressure transducers to simultaneously capture transient velocity and pressure measurements in the non-stationary flow field during compressor surge. DPIV is an instantaneous, planar measurement technique which is ideally suited for studying transient flow phenomena in high speed turbomachinery and has been used previously to successfully map the stable operating point flow field in the diffuser of a high speed centrifugal compressor. Through the acquisition of both DPIV images and transient pressure data, the time evolution of the unsteady flow during surge is revealed.

  5. Analysis of Storm Surge in Hong Kong

    Science.gov (United States)

    Kao, W. H.

    2017-12-01

    A storm surge is a type of coastal flood that is caused by low-pressure systems such as tropical cyclones. Storm surges caused by tropical cyclones can be very powerful and damaging, as they can flood coastal areas, and even destroy infrastructure in serious cases. Some serious cases of storm surges leading to more than thousands of deaths include Hurricane Katrina (2005) in New Orleans and Typhoon Haiyan (2013) in Philippines. Hong Kong is a coastal city that is prone to tropical cyclones, having an average of 5-6 tropical cyclones entering 500km range of Hong Kong per year. Storm surges have seriously damaged Hong Kong in the past, causing more than 100 deaths by Typhoon Wanda (1962), and leading to serious damage to Tai O and Cheung Chau by Typhoon Hagupit (2008). To prevent economic damage and casualties from storm surges, accurately predicting the height of storm surges and giving timely warnings to citizens is very important. In this project, I will be analyzing how different factors affect the height of storm surge, mainly using data from Hong Kong. These factors include the windspeed in Hong Kong, the atmospheric pressure in Hong Kong, the moon phase, the wind direction, the intensity of the tropical cyclone, distance between the tropical cyclone and Hong Kong, the direction of the tropical cyclone relative to Hong Kong, the speed of movement of the tropical cyclone and more. My findings will also be compared with cases from other places, to see if my findings also apply for other places.

  6. Volume-based characterization of postocclusion surge.

    Science.gov (United States)

    Zacharias, Jaime; Zacharias, Sergio

    2005-10-01

    To propose an alternative method to characterize postocclusion surge using a collapsible artificial anterior chamber to replace the currently used rigid anterior chamber model. Fundación Oftamológica Los Andes, Santiago, Chile. The distal end of a phacoemulsification handpiece was placed inside a compliant artificial anterior chamber. Digital recordings of chamber pressure, chamber volume, inflow, and outflow were performed during occlusion break of the phacoemulsification tip. The occlusion break profile of 2 different consoles was compared. Occlusion break while using a rigid anterior chamber model produced a simultaneous increase of chamber inflow and outflow. In the rigid chamber model, pressure decreased sharply, reaching negative pressure values. Alternatively, with the collapsible chamber model, a delay was observed in the inflow that occurs to compensate the outflow surge. Also, the chamber pressure drop was smaller in magnitude, never undershooting below atmospheric pressure into negative values. Using 500 mm Hg as vacuum limit, the Infiniti System (Alcon) performed better that the Legacy (Alcon), showing an 18% reduction in peak volume variation. The collapsible anterior chamber model provides a more realistic representation of the postocclusion surge events that occur in the real eye during cataract surgery. Peak volume fluctuation (mL), half volume recovery time(s), and volume fluctuation integral value (mL x s) are proposed as realistic indicators to characterize the postocclusion surge performance. These indicators show that the Infiniti System has a better postocclusion surge behavior than the Legacy System.

  7. The Regularity of Optimal Irrigation Patterns

    Science.gov (United States)

    Morel, Jean-Michel; Santambrogio, Filippo

    2010-02-01

    A branched structure is observable in draining and irrigation systems, in electric power supply systems, and in natural objects like blood vessels, the river basins or the trees. Recent approaches of these networks derive their branched structure from an energy functional whose essential feature is to favor wide routes. Given a flow s in a river, a road, a tube or a wire, the transportation cost per unit length is supposed in these models to be proportional to s α with 0 measure is the Lebesgue density on a smooth open set and the irrigating measure is a single source. In that case we prove that all branches of optimal irrigation trees satisfy an elliptic equation and that their curvature is a bounded measure. In consequence all branching points in the network have a tangent cone made of a finite number of segments, and all other points have a tangent. An explicit counterexample disproves these regularity properties for non-Lebesgue irrigated measures.

  8. Occurrence, distribution, and transport of pesticides in agricultural irrigation-return flow from four drainage basins in the Columbia Basin Project, Washington, 2002-04, and comparison with historical data

    Science.gov (United States)

    Wagner, Richard J.; Frans, Lonna M.; Huffman, Raegan L.

    2006-01-01

    Water-quality samples were collected from sites in four irrigation return-flow drainage basins in the Columbia Basin Project from July 2002 through October 2004. Ten samples were collected throughout the irrigation season (generally April through October) and two samples were collected during the non-irrigation season. Samples were analyzed for temperature, pH, specific conductance, dissolved oxygen, major ions, trace elements, nutrients, and a suite of 107 pesticides and pesticide metabolites (pesticide transformation products) and to document the occurrence, distribution, and pesticides transport and pesticide metabolites. The four drainage basins vary in size from 19 to 710 square miles. Percentage of agricultural cropland ranges from about 35 percent in Crab Creek drainage basin to a maximum of 75 percent in Lind Coulee drainage basin. More than 95 percent of cropland in Red Rock Coulee, Crab Creek, and Sand Hollow drainage basins is irrigated, whereas only 30 percent of cropland in Lind Coulee is irrigated. Forty-two pesticides and five metabolites were detected in samples from the four irrigation return-flow drainage basins. The most compounds detected were in samples from Sand Hollow with 37, followed by Lind Coulee with 33, Red Rock Coulee with 30, and Crab Creek with 28. Herbicides were the most frequently detected pesticides, followed by insecticides, metabolites, and fungicides. Atrazine, bentazon, diuron, and 2,4-D were the most frequently detected herbicides and chlorpyrifos and azinphos-methyl were the most frequently detected insecticides. A statistical comparison of pesticide concentrations in surface-water samples collected in the mid-1990s at Crab Creek and Sand Hollow with those collected in this study showed a statistically significant increase in concentrations for diuron and a statistically significant decrease for ethoprophos and atrazine in Crab Creek. Statistically significant increases were in concentrations of bromacil, diuron, and

  9. Armenia - Irrigation Infrastructure

    Data.gov (United States)

    Millennium Challenge Corporation — This study evaluates irrigation infrastructure rehabilitation in Armenia. The study separately examines the impacts of tertiary canals and other large infrastructure...

  10. Adaptive mesh refinement for storm surge

    KAUST Repository

    Mandli, Kyle T.; Dawson, Clint N.

    2014-01-01

    An approach to utilizing adaptive mesh refinement algorithms for storm surge modeling is proposed. Currently numerical models exist that can resolve the details of coastal regions but are often too costly to be run in an ensemble forecasting framework without significant computing resources. The application of adaptive mesh refinement algorithms substantially lowers the computational cost of a storm surge model run while retaining much of the desired coastal resolution. The approach presented is implemented in the GeoClaw framework and compared to ADCIRC for Hurricane Ike along with observed tide gauge data and the computational cost of each model run. © 2014 Elsevier Ltd.

  11. Adaptive mesh refinement for storm surge

    KAUST Repository

    Mandli, Kyle T.

    2014-03-01

    An approach to utilizing adaptive mesh refinement algorithms for storm surge modeling is proposed. Currently numerical models exist that can resolve the details of coastal regions but are often too costly to be run in an ensemble forecasting framework without significant computing resources. The application of adaptive mesh refinement algorithms substantially lowers the computational cost of a storm surge model run while retaining much of the desired coastal resolution. The approach presented is implemented in the GeoClaw framework and compared to ADCIRC for Hurricane Ike along with observed tide gauge data and the computational cost of each model run. © 2014 Elsevier Ltd.

  12. Ebb-tidal delta morphology in response to a storm surge barrier

    NARCIS (Netherlands)

    Eelkema, M.; Wang, Z.B.; Hibma, A.

    2012-01-01

    The Eastern Scheldt ebb-tidal delta morphology has been adapting for the past 25 years in response to the construction of the Eastern Scheldt storm-surge barrier in 1986. As a result of the barrier, there has been a decrease in tidal amplitudes, volumes, and average flow velocities, and there is

  13. Carbon and water footprints of irrigated corn and non-irrigated wheat in Northeast Spain.

    Science.gov (United States)

    Abrahão, Raphael; Carvalho, Monica; Causapé, Jesús

    2017-02-01

    Irrigation increases yields and allows several crops to be produced in regions where it would be naturally impossible due to limited rainfall. However, irrigation can cause several negative environmental impacts, and it is important to understand these in depth for the correct application of mitigation measures. The life cycle assessment methodology was applied herein to compare the main irrigated and non-irrigated crops in Northeast Spain (corn and wheat, respectively), identifying those processes with greater contribution to environmental impacts (carbon and water footprint categories) and providing scientifically-sound information to facilitate government decisions. Due to concerns about climate change and water availability, the methods selected for evaluation of environmental impacts were IPCC 2013 GWP (carbon footprint) and water scarcity indicator (water footprint). The area studied, a 7.38-km 2 basin, was monitored for 12 years, including the period before, during, and after the implementation of irrigation. The functional unit, to which all material and energy flows were associated with, was the cultivation of 1 ha, throughout 1 year. The overall carbon footprint for irrigated corn was higher, but when considering the higher productivity achieved with irrigation, the emissions per kilogram of corn decrease and finally favor this irrigated crop. When considering the water footprint, the volumes of irrigation water applied were so high that productivity could not compensate for the negative impacts associated with water use in the case of corn. Nevertheless, consideration of productivities and gross incomes brings the results closer. Fertilizer use (carbon footprint) and irrigation water (water footprint) were the main contributors to the negative impacts detected.

  14. Exercising Tactically for Taming Postmeal Glucose Surges.

    Science.gov (United States)

    Chacko, Elsamma

    2016-01-01

    This review seeks to synthesize data on the timing, intensity, and duration of exercise found scattered over some 39 studies spanning 3+ decades into optimal exercise conditions for controlling postmeal glucose surges. The results show that a light aerobic exercise for 60 min or moderate activity for 20-30 min starting 30 min after meal can efficiently blunt the glucose surge, with minimal risk of hypoglycemia. Exercising at other times could lead to glucose elevation caused by counterregulation. Adding a short bout of resistance exercise of moderate intensity (60%-80%  VO2max) to the aerobic activity, 2 or 3 times a week as recommended by the current guidelines, may also help with the lowering of glucose surges. On the other hand, high-intensity exercise (>80%  VO2max) causes wide glucose fluctuations and its feasibility and efficacy for glucose regulation remain to be ascertained. Promoting the kind of physical activity that best counters postmeal hyperglycemia is crucial because hundreds of millions of diabetes patients living in developing countries and in the pockets of poverty in the West must do without medicines, supplies, and special diets. Physical activity is the one tool they may readily utilize to tame postmeal glucose surges. Exercising in this manner does not violate any of the current guidelines, which encourage exercise any time.

  15. Exercising Tactically for Taming Postmeal Glucose Surges

    Directory of Open Access Journals (Sweden)

    Elsamma Chacko

    2016-01-01

    Full Text Available This review seeks to synthesize data on the timing, intensity, and duration of exercise found scattered over some 39 studies spanning 3+ decades into optimal exercise conditions for controlling postmeal glucose surges. The results show that a light aerobic exercise for 60 min or moderate activity for 20–30 min starting 30 min after meal can efficiently blunt the glucose surge, with minimal risk of hypoglycemia. Exercising at other times could lead to glucose elevation caused by counterregulation. Adding a short bout of resistance exercise of moderate intensity (60%–80%  VO2max to the aerobic activity, 2 or 3 times a week as recommended by the current guidelines, may also help with the lowering of glucose surges. On the other hand, high-intensity exercise (>80%  VO2max causes wide glucose fluctuations and its feasibility and efficacy for glucose regulation remain to be ascertained. Promoting the kind of physical activity that best counters postmeal hyperglycemia is crucial because hundreds of millions of diabetes patients living in developing countries and in the pockets of poverty in the West must do without medicines, supplies, and special diets. Physical activity is the one tool they may readily utilize to tame postmeal glucose surges. Exercising in this manner does not violate any of the current guidelines, which encourage exercise any time.

  16. Irrigation and Autocracy

    DEFF Research Database (Denmark)

    Bentzen, Jeanet Sinding; Kaarsen, Nicolai; Wingender, Asger Moll

    2017-01-01

    . We argue that the effect has historical origins: irrigation allowed landed elites in arid areas to monopolize water and arable land. This made elites more powerful and better able to oppose democratization. Consistent with this conjecture, we show that irrigation dependence predicts land inequality...

  17. Effective colostomy irrigation.

    Science.gov (United States)

    Mazier, W P; Dignan, R D; Capehart, R J; Smith, B G

    1976-06-01

    The ultimate goal of the cone method of colostomy irrigation is to return patients with colostomies to their former role in society with confidence in themselves to the extent that having a colostomy is not considered a handicap. The results have generally been excellent. We believe all patients with stomas should be afforded the opportunity to attempt colostomy irrigation.

  18. Effect of piping systems on surge in centrifugal compressors

    International Nuclear Information System (INIS)

    Tamaki, Hideaki

    2008-01-01

    There is a possibility that the exchange of the piping system may change the surge characteristic of a compressor. The piping system of a plant is not always the same as that of a test site. Then it is important to evaluate the effect of piping systems on surge characteristics in centrifugal compressors. Several turbochargers combined with different piping systems were tested. The lumped parameter model which was simplified to be solved easily was applied for the prediction of surge point. Surge lines were calculated with the linearlized lumped parameter model. The difference between the test and calculated results was within 10 %. Trajectory of surge cycle was also examined by solving the lumped parameter model. Mild surge and deep surge were successfully predicted. This study confirmed that the lumped parameter model was a very useful tool to predict the effect of piping systems on surge characteristics in centrifugal compressors, even though that was a simple model

  19. A new on-line leakage current monitoring system of ZnO surge arresters

    International Nuclear Information System (INIS)

    Lee, Bok-Hee; Kang, Sung-Man

    2005-01-01

    This paper presents a new on-line leakage current monitoring system of zinc oxide (ZnO) surge arresters. To effectively diagnose the deterioration of ZnO surge arresters, a new algorithm and on-line leakage current detection device, which uses the time-delay addition method, for discriminating the resistive and capacitive currents was developed to use in the aging test and durability evaluation for ZnO arrester blocks. A computer-based measurement system of the resistive leakage current, the on-line monitoring device can detect accurately the leakage currents flowing through ZnO surge arresters for power frequency ac applied voltages. The proposed on-line leakage current monitoring device of ZnO surge arresters is more highly sensitive and gives more linear response than the existing devices using the detection method of the third harmonic leakage currents. Therefore, the proposed leakage current monitoring device can be useful for predicting the defects and performance deterioration of ZnO surge arresters in power system applications

  20. Catastrophe loss modelling of storm-surge flood risk in eastern England.

    Science.gov (United States)

    Muir Wood, Robert; Drayton, Michael; Berger, Agnete; Burgess, Paul; Wright, Tom

    2005-06-15

    Probabilistic catastrophe loss modelling techniques, comprising a large stochastic set of potential storm-surge flood events, each assigned an annual rate of occurrence, have been employed for quantifying risk in the coastal flood plain of eastern England. Based on the tracks of the causative extratropical cyclones, historical storm-surge events are categorized into three classes, with distinct windfields and surge geographies. Extreme combinations of "tide with surge" are then generated for an extreme value distribution developed for each class. Fragility curves are used to determine the probability and magnitude of breaching relative to water levels and wave action for each section of sea defence. Based on the time-history of water levels in the surge, and the simulated configuration of breaching, flow is time-stepped through the defences and propagated into the flood plain using a 50 m horizontal-resolution digital elevation model. Based on the values and locations of the building stock in the flood plain, losses are calculated using vulnerability functions linking flood depth and flood velocity to measures of property loss. The outputs from this model for a UK insurance industry portfolio include "loss exceedence probabilities" as well as "average annualized losses", which can be employed for calculating coastal flood risk premiums in each postcode.

  1. 48 CFR 252.217-7001 - Surge option.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Surge option. 252.217-7001... Clauses 252.217-7001 Surge option. As prescribed in 217.208-70(b), use the following clause: Surge Option (AUG 1992) (a) General. The Government has the option to— (1) Increase the quantity of supplies or...

  2. Numerical Evaluation of Storm Surge Indices for Public Advisory Purposes

    Science.gov (United States)

    Bass, B.; Bedient, P. B.; Dawson, C.; Proft, J.

    2016-12-01

    After the devastating hurricane season of 2005, shortcomings with the Saffir-Simpson Hurricane Scale's (SSHS) ability to characterize a tropical cyclones potential to generate storm surge became widely apparent. As a result, several alternative surge indices were proposed to replace the SSHS, including Powell and Reinhold's Integrated Kinetic Energy (IKE) factor, Kantha's Hurricane Surge Index (HSI), and Irish and Resio's Surge Scale (SS). Of the previous, the IKE factor is the only surge index to-date that truly captures a tropical cyclones integrated intensity, size, and wind field distribution. However, since the IKE factor was proposed in 2007, an accurate assessment of this surge index has not been performed. This study provides the first quantitative evaluation of the IKEs ability to serve as a predictor of a tropical cyclones potential surge impacts as compared to other alternative surge indices. Using the tightly coupled ADvanced CIRCulation and Simulating WAves Nearshore models, the surge and wave responses of Hurricane Ike (2008) and 78 synthetic tropical cyclones were evaluated against the SSHS, IKE, HSI and SS. Results along the upper TX coast of the Gulf of Mexico demonstrate that the HSI performs best in capturing the peak surge response of a tropical cyclone, while the IKE accounting for winds greater than tropical storm intensity (IKETS) provides the most accurate estimate of a tropical cyclones regional surge impacts. These results demonstrate that the appropriate selection of a surge index ultimately depends on what information is of interest to be conveyed to the public and/or scientific community.

  3. Evolution of Corn Transpiration and Leaf Water Potential During Sprinkler Irrigation

    OpenAIRE

    Martínez-Cob, Antonio; Fernández-Navajas, Julián; Durán, Víctor; Cavero Campo, José

    2009-01-01

    Corn (Zea mays L.) transpiration during daytime solid-set sprinkler irrigation was analyzed on two neighbouring subplots to determine the effect of the transpiration reduction on water application efficiency. During each irrigation event, one subplot was irrigated (moist treatment) while the other was not (dry treatment). Transpiration rates were determined at each subplot by the heat balance method (Dynamax Flow4 System) before, during and after the irrigations. During irri...

  4. Effects of shallow groundwater management on the spatial and temporal variability of boron and salinity in an irrigated field

    NARCIS (Netherlands)

    Shouse, P.J.; Goldberg, S.; Skaggs, T.H.; Soppe, R.W.O.; Ayars, J.E.

    2006-01-01

    In some irrigated regions, the disposal of agricultural drainage waters poses significant environmental challenges. Efforts are underway to develop irrigation water management practices that reduce the volume of drainage generated. One such management strategy involves restricting flow in subsurface

  5. Model-data comparisons of crevasses in accelerating glaciers exemplified for the 2011-2013 surge of Bering Glacier, Alaska

    Science.gov (United States)

    Trantow, T.; Herzfeld, U. C.

    2017-12-01

    Glacier acceleration, ubiquitous along the periphery of the major icesheets, presents one of the main uncertainties in modeling future global sea-level rise according to the IPCC 5th Assessment Report (2013). The surge phenomenon is one type of glacial acceleration and is the least understood. During a surge, large-scale elevation change and significant crevassing occurs throughout the entire ice system. Crevasses are the most obvious manifestations of the surge dynamics and provide a source of geophysical information that allows reconstruction of deformation processes. The recent surge of the Bering-Bagley Glacier System (BBGS), Alaska, in 2011-2013 provides an excellent test case to study surging through airborne and satellite observations together with numerical modeling. A 3D full-Stokes finite element model of the BBGS has been created using the Elmer/Ice software for structural and dynamical investigations of the surge. A von Mises condition is applied to modeled surface stresses to predict where crevassing would occur during the surge. The model uses CryoSat-2 derived surface topography (Baseline-C), bedrock topography, Glen's flow law with an isothermal assumption and a uniform linear friction law at the ice/bedrock boundary to represent the surge state in early 2011 when peak velocities were observed. Additionally, geostatistical characterization applied to optical satellite imagery provides an observational data set for model-data comparisons. Observed and modeled crevasse characteristics are compared with respect to their location, magnitude and orientation. Similarity mapping applied to the modeled von Mises stress and observed surface roughness values indicates that the two quantities are correlated. Results indicate that large-scale surface crevasses resulting from a surge are connected to the bedrock topography of the glacier system. The model-data comparisons used in this analysis serve to validate the numerical model and provide insight into the

  6. Nonlinear chaotic model for predicting storm surges

    Directory of Open Access Journals (Sweden)

    M. Siek

    2010-09-01

    Full Text Available This paper addresses the use of the methods of nonlinear dynamics and chaos theory for building a predictive chaotic model from time series. The chaotic model predictions are made by the adaptive local models based on the dynamical neighbors found in the reconstructed phase space of the observables. We implemented the univariate and multivariate chaotic models with direct and multi-steps prediction techniques and optimized these models using an exhaustive search method. The built models were tested for predicting storm surge dynamics for different stormy conditions in the North Sea, and are compared to neural network models. The results show that the chaotic models can generally provide reliable and accurate short-term storm surge predictions.

  7. Influence of Surge on Extreme Roll Amplitudes

    DEFF Research Database (Denmark)

    Vidic-Perunovic, Jelena; Rognebakke, Olav; Pedersen, Preben Terndrup

    2008-01-01

    Interference of the wave-induced ship surge motion with roll dynamics has been studied. The surge motion has been included in a previously derived hydrodynamic roll prediction model in order to account for the ship speed variation due to the longitudinal incident wave pressure force. Depending...... balanced in order to determine the added thrust term that would represent actions to maintain speed The resulting forward speed variation affects the frequency of encounter and the parametric roll resonant condition is directly influenced by this speed variation. The analysis procedure is demonstrated...... for an example containership sailing mainly in head sea condition and higher sea states. Sensitivity of the results to the added thrust model and vertical motion calculation is discussed....

  8. Runout distance and dynamic pressure of pyroclastic density currents: Evidence from 18 May 1980 blast surge of Mount St. Helens

    Science.gov (United States)

    Gardner, J. E.; Andrews, B. J.

    2016-12-01

    Pyroclastic density currents (flows and surges) are one of the most deadly hazards associated with volcanic eruptions. Understanding what controls how far such currents will travel, and how their dynamic pressure evolves, could help mitigate their hazards. The distance a ground hugging, pyroclastic density current travels is partly limited by when it reverses buoyancy and lifts off into the atmosphere. The 1980 blast surge of Mount St. Helens offers an example of a current seen to lift off. Before lofting, it had traveled up to 20 km and leveled more than 600 km3 of thick forest (the blowdown zone). The outer edge of the devastated area - where burned trees that were left standing (the singe zone) - is where the surge is thought to have lifted off. We recently examined deposits in the outer parts of the blowdown and in the singe zone at 32 sites. The important finding is that the laterally moving surge travelled into the singe zone, and hence the change in tree damage does not mark the run out distance of the ground hugging surge. Eyewitness accounts and impacts on trees and vehicles reveal that the surge consisted of a fast, dilute "overcurrent" and a slower "undercurrent", where most of the mass (and heat) was retained. Reasonable estimates for flow density and velocity show that dynamic pressure of the surge (i.e., its ability to topple trees) peaked near the base of the overcurrent. We propose that when the overcurrent began to lift off, the height of peak dynamic pressure rose above the trees and stopped toppling them. The slower undercurrent continued forward, burning trees but it lacked the dynamic pressure needed to topple them. Grain-size variations argue that it slowed from 30 m/s when it entered the singe zone to 3 m/s at the far end. Buoyancy reversal and liftoff are thus not preserved in the deposits where the surge lofted upwards.

  9. Liftoff of the 18 May 1980 surge of Mount St. Helens (USA) and the deposits left behind

    Science.gov (United States)

    Gardner, James E.; Andrews, Benjamin J.; Dennen, Robert

    2017-01-01

    The distance that ground-hugging pyroclastic density currents travel is limited partly by when they reverse buoyancy and liftoff into the atmosphere. It is not clear, however, what deposits are left behind by lofting flows. One current that was seen to liftoff was the surge erupted from Mount St. Helens on the morning of 18 May 1980. Before lofting, it had leveled a large area of thick forest (the blowdown zone). The outer edge of the devastated area—where trees were scorched but left standing (the scorched zone)—is where the surge is thought to have lifted off. Deposits in the outer parts of the blowdown and in the scorched zone were examined at 32 sites. The important finding is that the laterally moving surge traveled through the scorched zone, and hence, the change in tree damage does not mark the runout distance of the surge. Buoyancy reversal and liftoff are thus not preserved in the deposits where the surge lofted upwards. We propose, based on interpretation of eyewitness accounts and the impacts of the surge on trees and vehicles, that the surge consisted of a faster, dilute "overcurrent" and a slower "undercurrent," where most of the mass (and heat) was retained. Reasonable estimates for flow density and velocity show that dynamic pressure of the surge (i.e., its ability to topple trees) peaked near the base of the overcurrent. We propose that where the overcurrent began to liftoff, the height of peak dynamic pressure rose above the trees and stopped toppling them. The slower undercurrent continued forward, however, scorching trees, but lacked the dynamic pressure needed to topple them. Grain-size variations argue that it slowed from ˜30 m s-1 when it entered the scorched zone to ˜3 m s-1 at the far end.

  10. Streamflow Prediction in Ungauged, Irrigated Basins

    Science.gov (United States)

    Zhang, M.; Thompson, S. E.

    2016-12-01

    The international "predictions in ungauged basins" or "PUB" effort has broadened and improved the tools available to support water resources management in sparsely observed regions. These tools have, however, been primarily focused on regions with limited diversion of surface or shallow groundwater resources. Incorporating anthropogenic activity into PUB methods is essential given the high level of development of many basins. We extended an existing stochastic framework used to predict the flow duration curve to explore the effects of irrigation on streamflow dynamics. Four canonical scenarios were considered in which irrigation water was (i) primarily sourced from water imports, (ii) primarily sourced from direct in-channel diversions, (iii) sourced from shallow groundwater with direct connectivity to stream channels, or (iv) sourced from deep groundwater that is indirectly connected to surface flow via a shallow aquifer. By comparing the predicted flow duration curves to those predicted by accounting for climate and geomorphic factors in isolation, specific "fingerprints" of human water withdrawals could be identified for the different irrigation scenarios, and shown to be sensitive to irrigation volumes and scheduling. The results provide a first insight into PUB methodologies that could be employed in heavily managed basins.

  11. Trash-polluted irrigation: characteristics and impact on agriculture

    Science.gov (United States)

    Sulaeman, D.; Arif, SS; Sudarmadji

    2018-04-01

    Trash pollution has been a problem in sustainable water resources management. Trash pollutes not only rivers, lakes and seas, but also irrigation canals and rice fields. This study aimed to identify the characteristics of solid waste (type, time of occurrence and sources of trash) and its impact on agriculture. The study was conducted in four irrigation areas, namely Gamping, Merdiko, Nglaren and Karangploso in Bantul District, Yogyakarta Special Region. We applied the Irrigation Rapid Trash Assessment (IRTA) as our field survey instrument. The results showed that trash was found throughout irrigation canals and rice fields, and the occurrence was influenced by water flow, time and farmer activities. The irrigation was dominantly polluted by plastic trash (52.2%), biodegradable waste (17.91%) and miscellaneous trash (12.3%). The IRTA score showed that Gamping Irrigation Area was at marginal condition, bearing a high risk of disturbing the operation and maintenance of the irrigation canals as well as farmers’ health. Trash in irrigation also generated technical impact of the irrigation operation and maintenance, environmental quality, and social life. This research also offered environmental policy integration approach and water-garbage governance approach as an alternative solution to manage water resources and agriculture in a sustainable manner, under the pressure of increasing amount of trash.

  12. A new concept for glacial geological investigations of surges, based on High-Arctic examples (Svalbard)

    Science.gov (United States)

    Lønne, Ida

    2016-01-01

    Svalbard is a key area for the investigation of glacial surges, and almost two centuries worth of field observations exists from this region. Studies have shown that the course of a surge and the associated formation of landforms are strongly influenced by basinal factors, and that the broad range of variables involved can hamper interpretations and comparisons. Based on a review of surges in Svalbard, a new concept for glacial geological investigations has been developed that combines ice-flows, ice-front movements, and morphostratigraphy. The concept is comprised of the following four elements: 1) classification based on the configuration and characteristics of the receiving basin, 2) division of the surge cycle into six stages, 3) guidelines for morphological mapping, and 4) use of an allostratigraphic approach for interpreting ice-front movements. In this context, delineation of the active phase is critical, which include the history of terminus movements, and four main categories of receiving basins are recognized. These are (A) terrestrial basins with deformable substrates, (B) terrestrial basins with poorly deformable substrates, (C) shallow water basins, and (D) deep water basins. The ice-front movement history is reconstructed by coupling information from the proglacial moraines (syn-surge), the supraglacial moraines (post-surge), and the associated traces of meltwater to the surge stages (I-VI). This approach has revealed a critical relationship between the termination of the active phase and three morphological elements, namely, the maximum ice-front position, the maximum moraine extent and the youngest proglacial moraine, which are unique for each of the basins A-D. The concept is thus a novel and more precise approach for mapping the active phase and the active phase duration, as shown by the ∼12-year long surge of Fridtjovbreen, where stage I was 30 months (inception), stage II was 54 months (ice-front advance), stage III was 12 months (stillstand

  13. ASPECTS OF DRIP IRRIGATION ON SLOPES

    Directory of Open Access Journals (Sweden)

    Oprea Radu

    2010-01-01

    Full Text Available Nowadays, water and its supply raise problems of strategic importance, of great complexity, being considered one of the keys to sustainable human development. Drip irrigation consists in the slow and controlled administration of water in the area of the root system of the plants for the purposes of fulfilling their physiological needs and is considered to be one of the variants of localized irrigation. Water is distributed in a uniform and slow manner, drop by drop, in a quantity and with a frequency that depend on the needs of the plant, thanks to the exact regulation of the water flow rate and pressure, as well as to the activation of the irrigation based on the information recorded by the tensiometer with regard to soil humidity. This method enables the exact dosage of the water quantity necessary in the various evolution stages of the plant, thus eliminating losses. By applying the irrigation with 5 liters of water per linear meter, at a 7 days interval, in the month of august, for a vine cultivated on a slope, in layers covered with black film and irrigated via dropping, soil humidity immediately after irrigation reaches its highest level, but within the limits of active humidity, on the line of the irrigation band. Three days later, the water content of the soil in the layer is relatively uniform, and, after this interval, it is higher in the points situated at the basis of the film. This technology of cultivation on slopes favors the accumulation, in the soil, of the water resulted from heavy rains and reduces soil losses as a result of erosion.

  14. Coastal emergency managers' preferences for storm surge forecast communication.

    Science.gov (United States)

    Morrow, Betty Hearn; Lazo, Jeffrey K

    2014-01-01

    Storm surge, the most deadly hazard associated with tropical and extratropical cyclones, is the basis for most evacuation decisions by authorities. One factor believed to be associated with evacuation noncompliance is a lack of understanding of storm surge. To address this problem, federal agencies responsible for cyclone forecasts are seeking more effective ways of communicating storm surge threat. To inform this process, they are engaging various partners in the forecast and warning process.This project focuses on emergency managers. Fifty-three emergency managers (EMs) from the Gulf and lower Atlantic coasts were surveyed to elicit their experience with, sources of, and preferences for storm surge information. The emergency managers-who are well seasoned in hurricane response and generally rate the surge risk in their coastal areas above average or extremely high-listed storm surge as their major concern with respect to hurricanes. They reported a general lack of public awareness about surge. Overall they support new ways to convey the potential danger to the public, including the issuance of separate storm surge watches and warnings, and the expression of surge heights using feet above ground level. These EMs would like more maps, graphics, and visual materials for use in communicating with the public. An important concern is the timing of surge forecasts-whether they receive them early enough to be useful in their evacuation decisions.

  15. Controls of evaporative irrigation return flows in comparison to seawater intrusion in coastal karstic aquifers in northern Sri Lanka: Evidence from solutes and stable isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Chandrajith, Rohana, E-mail: rohanac@pdn.ac.lk [Department of Geology, Faculty of Science, University of Peradeniya (Sri Lanka); Diyabalanage, Saranga [Department of Geology, Faculty of Science, University of Peradeniya (Sri Lanka); Premathilake, K.M. [Water Supply and Drainage Board, Telewala Road, Ratmalana (Sri Lanka); Hanke, Christian; Geldern, Robert van; Barth, Johannes A.C. [Friedrich-Alexander University Erlangen-Nuremberg (FAU), Department of Geography and Geosciences, GeoZentrum Nordbayern, Schlossgarten 5, 91054 Erlangen (Germany)

    2016-04-01

    Groundwater in Miocene karstic aquifers in the Jaffna Peninsula of Sri Lanka is an important resource since no other fresh water sources are available in the region. The subsurface is characterized by highly productive limestone aquifers that are used for drinking and agriculture purposes. A comprehensive hydrogeochemical study was carried out to reveal the processes affecting the groundwater quality in this region. Major and trace element composition and environmental isotope ratios of oxygen and hydrogen (δ{sup 18}O{sub H2O} and δ{sup 2}H{sub H2O}) were determined in 35 groundwater samples for this investigation. The ion abundance of groundwater in the region was characterized by an anion sequence order with HCO{sub 3}¯ > Cl¯ > SO{sub 4}¯ > NO{sub 3}¯. For cations, average Na{sup +}+K{sup +} contents in groundwater exceeded those of Ca{sup 2+} + Mg{sup 2+} in most cases. Ionic relationships of major solutes indicated open system calcite dissolution while seawater intrusions are also evident but only close to the coast. The solute contents are enriched by agricultural irrigation returns and associated evaporation. This was confirmed by the stable isotope composition of groundwater that deviated from the local meteoric water line (LMWL) and formed its own regression line denoted as the local evaporation line (LEL). The latter can be described by δ{sup 2}H{sub H2O} = 5.8 × δ{sup 18}O{sub H2O-–} 2.9. Increased contents of nitrate-N (up to 5 mg/L), sulfate (up to 430 mg/L) and fluoride (up to 1.5 mg/L) provided evidences for anthropogenic inputs of solutes, most likely from agriculture activities. Among trace elements Ba, Sr, As and Se levels in the Jaffna groundwater were higher compared to that of the dry zone metamorphic aquifers in Sri Lanka. Solute geochemistry and stable isotope evidences from the region indicates that groundwater in the area is mainly derived from local modern precipitation but modified heavily by progressive evaporative

  16. Effect of bottle height and aspiration rate on postocclusion surge in Infiniti and Millennium peristaltic phacoemulsification machines.

    Science.gov (United States)

    Ward, Matthew S; Georgescu, Dan; Olson, Randall J

    2008-08-01

    To assess how flow and bottle height affect postocclusion surge in the Infiniti (Alcon, Inc.) and Millennium (Bausch & Lomb) peristaltic machines. John A. Moran Eye Center Clinical Laboratories, University of Utah, Salt Lake City, Utah. Postocclusion anterior chamber depth changes were measured in human eye-bank eyes using A-scan. Surge was simulated by clamping the aspiration tubing and releasing it at maximum vacuum. In both machines, surge was measured (1) with aspiration held constant at 12 mL/min and bottle heights at 60, 120, and 180 cm and (2) with bottle height held constant at 60 cm and aspiration rates at 12, 24, and 36 mL/min. Surge decreased approximately 40% with each 60 cm increase in bottle height in the Infiniti. It was constant at all bottle heights in the Millennium. At 12 and 24 mL/min aspiration rates, surge in the Millennium was less than half that in the Infiniti (PInfiniti system and was relatively constant with increasing bottle height in the Millennium system. The Millennium may offer a more stable phacoemulsification platform with respect to surge at a higher aspiration rate.

  17. From cyclic ice streaming to Heinrich-like events: the grow-and-surge instability in the Parallel Ice Sheet Model

    Directory of Open Access Journals (Sweden)

    J. Feldmann

    2017-08-01

    Full Text Available >Here we report on a cyclic, physical ice-discharge instability in the Parallel Ice Sheet Model, simulating the flow of a three-dimensional, inherently buttressed ice-sheet-shelf system which periodically surges on a millennial timescale. The thermomechanically coupled model on 1 km horizontal resolution includes an enthalpy-based formulation of the thermodynamics, a nonlinear stress-balance-based sliding law and a very simple subglacial hydrology. The simulated unforced surging is characterized by rapid ice streaming through a bed trough, resulting in abrupt discharge of ice across the grounding line which is eventually calved into the ocean. We visualize the central feedbacks that dominate the subsequent phases of ice buildup, surge and stabilization which emerge from the interaction between ice dynamics, thermodynamics and the subglacial till layer. Results from the variation of surface mass balance and basal roughness suggest that ice sheets of medium thickness may be more susceptible to surging than relatively thin or thick ones for which the surge feedback loop is damped. We also investigate the influence of different basal sliding laws (ranging from purely plastic to nonlinear to linear on possible surging. The presented mechanisms underlying our simulations of self-maintained, periodic ice growth and destabilization may play a role in large-scale ice-sheet surging, such as the surging of the Laurentide Ice Sheet, which is associated with Heinrich events, and ice-stream shutdown and reactivation, such as observed in the Siple Coast region of West Antarctica.

  18. Drip irrigation using a PLC based adaptive irrigation system

    OpenAIRE

    Shahidian, S.; Serralheiro, R. P.; Teixeira, J. L.; Santos, F. L.; Oliveira, M. R. G.; Costa, J. L.; Toureiro, C.; Haie, Naim; Machado, R. M.

    2009-01-01

    Most of the water used by man goes to irrigation. A major part of this water is used to irrigate small plots where it is not feasible to implement full-scale Evapotranspiration based irrigation controllers. During the growth season crop water needs do not remain constant and varies depending on the canopy, growth stage and climate conditions such as temperature, wind, relative humidity and solar radiation. Thus, it is necessary to find an economic irrigation controller that can adapt the dail...

  19. Coastal Storm Surge Analysis: Storm Surge Results. Report 5: Intermediate Submission No. 3

    Science.gov (United States)

    2013-11-01

    Vickery, P., D. Wadhera, A. Cox, V. Cardone , J. Hanson, and B. Blanton. 2012. Coastal storm surge analysis: Storm forcing (Intermediate Submission No...CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jeffrey L. Hanson, Michael F. Forte, Brian Blanton

  20. Compressor Surge Control Design Using Linear Matrix Inequality Approach

    OpenAIRE

    Uddin, Nur; Gravdahl, Jan Tommy

    2017-01-01

    A novel design for active compressor surge control system (ASCS) using linear matrix inequality (LMI) approach is presented and including a case study on piston-actuated active compressor surge control system (PAASCS). The non-linear system dynamics of the PAASCS is transformed into linear parameter varying (LPV) system dynamics. The system parameters are varying as a function of the compressor performance curve slope. A compressor surge stabilization problem is then formulated as a LMI probl...

  1. [Endodontics in motion: new concepts, materials and techniques 3. The role of irrigants during root canal treatment].

    Science.gov (United States)

    van der Sluis, L W M

    2015-10-01

    The aims of root canal irrigation are the chemical dissolution or disruption and the mechanical detachment of pulp tissue, dentin debris and smear layer (instrumentation products), microorganisms (planktonic or biofilm) and their products from the root canal wall, their removal out of the root canal system and their chemical dissolution or disruption. Each of the endodontic irrigation systems has its own irrigant flow characteristics, which should fulfill these aims. Without flow (convection), the irrigant would have to be distributed through diffusion. This process is slow and depends on temperature and concentration gradients. On the other hand, convection is a faster and more efficient transport mechanism. During irrigant flow, frictional forces will occur, for example between the irrigant and the root canal wall (wall shear stress). These frictional forces have a mechanical cleaning effect on the root canal wall. These frictional forces are the result of the flow characteristics related to the different irrigation systems.

  2. An Investigation of the Basic Physics of Irrigation in Urology and the Role of Automated Pump Irrigation in Cystoscopy

    Directory of Open Access Journals (Sweden)

    Dwayne Chang

    2012-01-01

    Full Text Available Objective. To investigate the effects of height, external pressure, and bladder fullness on the flow rate in continuous, non-continuous cystoscopy and the automated irrigation fluid pumping system (AIFPS. Materials. Each experiment had two 2-litre 0.9% saline bags connected to a continuous, non-continuous cystoscope or AIFPS via irrigation tubing. Other equipment included height-adjustable drip poles, uroflowmetry devices, and model bladders. Methods. In Experiment 1, saline bags were elevated to measure the increment in flow rate. In Experiment 2, saline bags were placed under external pressures to evaluate the effect on flow rate. In Experiment 3, flow rate changes in response to variable bladder fullness were measured. Results. Elevating saline bags caused an increase in flow rates, however the increment slowed down beyond a height of 80 cm. Increase in external pressure on saline bags elevated flow rates, but inconsistently. A fuller bladder led to a decrease in flow rates. In all experiments, the AIFPS posted consistent flow rates. Conclusions. Traditional irrigation systems were susceptible to changes in height of irrigation solution, external pressure application, and bladder fullness thus creating inconsistent flow rates. The AIFPS produced consistent flow rates and was not affected by any of the factors investigated in the study.

  3. Investigating changes in basal conditions of Variegated Glacier prior to and during its 1982–1983 surge

    Directory of Open Access Journals (Sweden)

    M. Jay-Allemand

    2011-08-01

    Full Text Available Variegated Glacier (Alaska is known to surge periodically after a sufficient amount of cumulative mass balance is reached, but this observation is difficult to link with changes in the basal conditions. Here, using a 10-yr dataset, consisting of surface topography and surface velocity observations along a flow line for 25 dates, we have reconstructed the evolution of the basal conditions prior to and during the 1982–1983 surge. The model solves the full-Stokes problem along the central flow line using the finite element method. For the 25 dates of the dataset, the basal friction parameter distribution is inferred using the inverse method proposed by Arthern and Gudmundsson (2010. This method is here slightly modified by incorporating a regularisation term in the cost function to avoid short wavelength changes in the friction parameter. Our results indicate that dramatic changes in the basal conditions occurred between 1973 to 1983. Prior to the surge, periodic changes can be observed between winter and summer, with a regular increase of the sliding from 1973 to 1982. During the surge, the basal friction decreased dramatically and an area of very low friction moved from the upper part of the glacier to its terminus. Using a more complex friction law, these changes in basal sliding are then interpreted in terms of basal water pressure. Our results support that dramatic changes took place in the subglacial drainage system of Variegated Glacier, moving from a relatively efficient drainage system prior to the surge to an inefficient one during the surge. By reconstructing the water pressure evolution at the base of the glacier it is possible to propose a scenario for the hydrological history leading to the occurrence of a surge.

  4. An assessment of colostomy irrigation.

    Science.gov (United States)

    Laucks, S S; Mazier, W P; Milsom, J W; Buffin, S E; Anderson, J M; Warwick, M K; Surrell, J A

    1988-04-01

    One hundred patients with permanent sigmoid colostomies were surveyed to determine their satisfaction and success with the "irrigation" technique of colostomy management. Most patients who irrigate their colostomies achieve continence. Odors and skin irritation are minimized. The irrigation method is economical, time efficient, and allows a reasonably liberal diet. It avoids bulky appliances and is safe. In appropriately selected patients, the irrigation technique is the method of choice for management of an end-sigmoid colostomy.

  5. Control system design for concrete irrigation channels

    OpenAIRE

    Strecker, Timm; Aamo, Ole Morten; Cantoni, Michael

    2017-01-01

    Concrete channels find use at the periphery of irrigation networks, for expansion and to replace small earthen channels given the relative ease of maintenance and elimination of seepage losses. In design, it is important to account for control system performance when dimensioning the channel infrastructure. In this paper, the design of a distributed controller is investigated in terms managing water-levels, and thereby the depth profile (i.e., amount of concrete) needed to support peak flow l...

  6. Evaluating two irrigation controllers under subsurface drip irrigated tomato crop

    International Nuclear Information System (INIS)

    Al-Ghobari, H.M.; Mohammad, F.S.; El Marazky, M.S.A.

    2016-01-01

    Smart systems could be used to improve irrigation scheduling and save water under Saudi Arabia’s present water crisis scenario. This study investigated two types of evapotranspiration-based smart irrigation controllers, SmartLine and Hunter Pro-C2, as promising tools for scheduling irrigation and quantifying plants’ water requirements to achieve water savings. The effectiveness of these technologies in reducing the amount of irrigation water was compared with the conventional irrigation scheduling method as a control treatment. The two smart irrigation sensors were used for subsurface irrigation of a tomato crop (cv. Nema) in an arid region. The results showed that the smart controllers significantly reduced the amount of applied water and increased the crop yield. In general, the Hunter Pro-C2 system saved the highest amount of water and produced the highest crop yield, resulting in the highest water irrigation efficiency compared with the SmartLine controller and the traditional irrigation schedule. It can be concluded that the application of advanced scheduling irrigation techniques such as the Hunter controller under arid conditions can realise economic benefits by saving large amounts of irrigation water.

  7. Evaluating two irrigation controllers under subsurface drip irrigated tomato crop

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghobari, H.M.; Mohammad, F.S.; El Marazky, M.S.A.

    2016-07-01

    Smart systems could be used to improve irrigation scheduling and save water under Saudi Arabia’s present water crisis scenario. This study investigated two types of evapotranspiration-based smart irrigation controllers, SmartLine and Hunter Pro-C2, as promising tools for scheduling irrigation and quantifying plants’ water requirements to achieve water savings. The effectiveness of these technologies in reducing the amount of irrigation water was compared with the conventional irrigation scheduling method as a control treatment. The two smart irrigation sensors were used for subsurface irrigation of a tomato crop (cv. Nema) in an arid region. The results showed that the smart controllers significantly reduced the amount of applied water and increased the crop yield. In general, the Hunter Pro-C2 system saved the highest amount of water and produced the highest crop yield, resulting in the highest water irrigation efficiency compared with the SmartLine controller and the traditional irrigation schedule. It can be concluded that the application of advanced scheduling irrigation techniques such as the Hunter controller under arid conditions can realise economic benefits by saving large amounts of irrigation water.

  8. Tide-surge interaction in the English Channel

    Directory of Open Access Journals (Sweden)

    D. Idier

    2012-12-01

    Full Text Available The English Channel is characterised by strong tidal currents and a wide tidal range, such that their influence on surges is expected to be non-negligible. In order to better assess storm surges in this zone, tide-surge interactions are investigated. A preliminary data analysis on hourly surges indicates some preferential times of occurrence of large storm surges at rising tide, especially in Dunkerque. To examine this further, a numerical modelling approach is chosen, based on the 2DH shallow-water model (MARS. The surges are computed both with and without tide interaction. For the two selected events (the November 2007 North Sea and March 2008 Atlantic storms, it appears that the instantaneous tide-surge interaction is seen to be non-negligible in the eastern half of the English Channel, reaching values of 74 cm (i.e. 50% of the same event maximal storm surge in the Dover Strait for the studied cases. This interaction decreases in westerly direction. In the risk-analysis community in France, extreme water levels have been determined assuming skew surges and tide as independent. The same hydrodynamic model is used to investigate this dependence in the English Channel. Simple computations are performed with the same meteorological forcing, while varying the tidal amplitude, and the skew surge differences DSS are analysed. Skew surges appear to be tide-dependent, with negligible values of DSS (<0.05 m over a large portion of the English Channel, although reaching several tens of centimetres in some locations (e.g. the Isle of Wight and Dover Strait.

  9. Will oscillating wave surge converters survive tsunamis?

    Directory of Open Access Journals (Sweden)

    L. O’Brien

    2015-07-01

    Full Text Available With an increasing emphasis on renewable energy resources, wave power technology is becoming one of the realistic solutions. However, the 2011 tsunami in Japan was a harsh reminder of the ferocity of the ocean. It is known that tsunamis are nearly undetectable in the open ocean but as the wave approaches the shore its energy is compressed, creating large destructive waves. The question posed here is whether an oscillating wave surge converter (OWSC could withstand the force of an incoming tsunami. Several tools are used to provide an answer: an analytical 3D model developed within the framework of linear theory, a numerical model based on the non-linear shallow water equations and empirical formulas. Numerical results show that run-up and draw-down can be amplified under some circumstances, leading to an OWSC lying on dry ground!

  10. Simulating storm surge inundation and damage potential within complex port facilities

    Science.gov (United States)

    Mawdsley, Robert; French, Jon; Fujiyama, Taku; Achutan, Kamalasudhan

    2017-04-01

    Storm surge inundation of port facilities can cause damage to critical elements of infrastructure, significantly disrupt port operations and cause downstream impacts on vital supply chains. A tidal surge in December 2013 in the North Sea partly flooded the Port of Immingham, which handles the largest volume of bulk cargo in the UK including major flows of coal and biomass for power generation. This flooding caused damage to port and rail transport infrastructure and disrupted operations for several weeks. This research aims to improve resilience to storm surges using hydrodynamic modelling coupled to an agent-based model of port operations. Using the December 2013 event to validate flood extent, depth and duration, we ran a high resolution hydrodynamic simulation using the open source Telemac 2D finite element code. The underlying Digital Elevation Model (DEM) was derived from Environment Agency LiDAR data, with ground truthing of the flood defences along the port frontage. Major infrastructure and buildings are explicitly resolved with varying degrees of permeability. Telemac2D simulations are run in parallel and take only minutes on a single 16 cpu compute node. Inundation characteristics predicted using Telemac 2D differ from a simple Geographical Information System 'bath-tub' analysis of the DEM based upon horizontal application of the maximum water level across the port topography. The hydrodynamic simulation predicts less extensive flooding and more closely matches observed flood extent. It also provides more precise depth and duration curves. Detailed spatial flood depth and duration maps were generated for a range of tide and surge scenarios coupled to mean sea-level rise projections. These inundation scenarios can then be integrated with critical asset databases and an agent-based model of port operation (MARS) that is capable of simulating storm surge disruption along wider supply chains. Port operators are able to act on information from a particular

  11. Overview and Design Considerations of Storm Surge Barriers

    NARCIS (Netherlands)

    Mooyaart, L.F.; Jonkman, S.N.

    2017-01-01

    The risk of flooding in coastal zones is expected to increase due to sea level rise and economic development. In larger bays, estuaries, and coastal waterways, storm surge barriers can be constructed to temporarily close off these systems during storm surges to provide coastal flood protection.

  12. Using satellite altimetry and tide gauges for storm surge warning

    DEFF Research Database (Denmark)

    Andersen, O. B.; Cheng, Yongcun; Deng, X.

    2014-01-01

    of Australia. For both locations we have tried to investigate the possibilities and limitations of the use of satellite altimetry to capture high frequency signals (surges) using data from the past 20 years. The two regions are chosen to represent extra-tropical and tropical storm surge conditions. We have...

  13. Study of storm surge trends in typhoon-prone coastal areas based on observations and surge-wave coupled simulations

    Science.gov (United States)

    Feng, Xingru; Li, Mingjie; Yin, Baoshu; Yang, Dezhou; Yang, Hongwei

    2018-06-01

    This is a study of the storm surge trends in some of the typhoon-prone coastal areas of China. An unstructured-grid, storm surge-wave-tide coupled model was established for the coastal areas of Zhejiang, Fujian and Guangdong provinces. The coupled model has a high resolution in coastal areas, and the simulated results compared well with the in situ observations and satellite altimeter data. The typhoon-induced storm surges along the coast of the study areas were simulated based on the established coupled model for the past 20 years (1997-2016). The simulated results were used to analyze the trends of the storm surges in the study area. The extreme storm surge trends along the central coast of Fujian Province reached up to 0.06 m/y, significant at the 90% confidence level. The duration of the storm surges greater than 1.0 and 0.7 m had an increasing trend along the coastal area of northern Fujian Province, significant at confidence levels of 70%-91%. The simulated trends of the extreme storm surges were also validated by observations from two tide gauge stations. Further studies show that the correlation coefficient (RTE) between the duration of the storm surge greater than 1 m and the annual ENSO index can reach as high as 0.62, significant at the 99% confidence level. This occurred in a location where the storm surge trend was not significant. For the areas with significant increasing storm surge trends, RTE was small and not significant. This study identified the storm surge trends for the full complex coastline of the study area. These results are useful both for coastal management by the government and for coastal engineering design.

  14. Harmful effects of lightning surge discharge on communications terminal equipments

    International Nuclear Information System (INIS)

    Liang, Sisi; Xu, Xiaoying; Tao, Zhigang; Dai, Yanling

    2013-01-01

    The interference problem of lightning surges on electronic and telecommunication products were examined, and a series of experiments were conducted to analyze the failure situations to find out the mechanisms of failures caused by the lightning surge. In addition, the ways in which lightning surges damaged equipment were deduced. It was found that failure positions were scattered and appeared in groups, and most of them were ground discharge. Internet access transformer had high withstand-voltage under the lightning pulse, and the lightning surge seldom passed through the internet access transformer. The lightning current can release to the ground via the computer network adapter of the terminal user. The study will help to improve the performance of lightning surge protection circuit and protection level.

  15. Optimized Subsurface Irrigation System: The Future of Sugarcane Irrigation

    Directory of Open Access Journals (Sweden)

    M. H. J. P. Gunarathna

    2018-03-01

    Full Text Available Climate change may harm the growth and yield of sugarcane (Saccharum officinarum L. without the introduction of appropriate irrigation facilities. Therefore, new irrigation methods should be developed to maximize water use efficiency and reduce operational costs. OPSIS (optimized subsurface irrigation system is a new solar-powered automatic subsurface irrigation system that creates a phreatic zone below crop roots and relies on capillarity to supply water to the root zone. It is designed for upland crops such as sugarcane. We investigated the performance of OPSIS for irrigating sugarcane and evaluated its performance against sprinkler irrigation under subtropical conditions. We conducted field experiments in Okinawa, Japan, over the period from 2013 to 2016 and took measurements during spring- and summer-planted main crops and two ratoon crops of the spring-planted crop. Compared with sprinkler irrigation, OPSIS produced a significantly higher fresh cane yield, consumed less irrigation water and provided a higher irrigation water use efficiency. We conclude that OPSIS could be adopted as a sustainable solution to sugarcane irrigation in Okinawa and similar environments.

  16. Portable photovoltaic irrigation pumps

    Energy Technology Data Exchange (ETDEWEB)

    Furber, J. D.

    1980-07-01

    Experiences in developing a solar-powered irrigation pump to meet the needs of poor farmers in developing nations are summarized. The design which evolved is small and portable, employing a high-efficiency electric pump, powered by photovoltaic panels. Particular emphasis is placed on how the system works, and on early field problems experienced with the first prototypes. The resolution of these problems and the performance of actual systems in various countries is presented and user responses are noted.

  17. Irrigation Depletions 1928-1989 : 1990 Level of Irrigation, Snake Yakima and Deschutes River Basins.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administation; A.G. Crook Company

    1993-07-01

    The vast amount of irrigation in relation to the available water and extensive system of reservoirs located in the Snake River Basin above Brownlee reservoir precludes this area from using methods such as Blaney-Criddle for estimating irrigation depletions. Also the hydrology, irrigation growth patterns, and water supply problems are unique and complex. Therefore regulation studies were utilized to reflect the net effect on streamflow of the changes in irrigated acreage in terms of corresponding changes in storage regulation and in the amount of water depleted and diverted from and returned to the river system. The regulation study for 1990 conditions was conducted by the Idaho Department of Water Resources. The end product of the basin simulation is 61 years of regulated flows at various points in the river system that are based on 1990 conditions. Data used by the Idaho Department of Water Resources is presented in this section and includes natural gains to the river system and diversions from the river system based on a 1990 level of development and operation criteria. Additional information can be obtained for an Idaho Department of Water Resources Open-File Report ``Stream Flows in the Snake River Basin 1989 Conditions of Use and Management`` dated June 1991. Similar considerations apply to the Yakima and Deschutes river basins.

  18. [Irrigation in colostomies].

    Science.gov (United States)

    Campo, Juana; Lecona, Ana; Caparrós, M Rosario; Barbero, M Antonia; Javier Cerdán, F

    2002-01-01

    The degree of acceptation of irrigation from a colostomy varies ostensibly from some cases to others, therefore, we study what occurs in our medium, separating those patients which have previously undergone other procedures (Group A) from those patients who have been informed and trained about the immediate postoperative period (Group B). 48 patients, 22 or 46% of these patients were considered not apt for irrigation. Of the 26 to whom this procedure was proposed, 14 or 54% accepted. Of these, 5 or 36% abandoned its use while 9 continued its use; this is 64% of those who accepted this procedure, 35% of those to whom it was proposed and 19% of the total study group. 189 patients. This procedure was not recommended to 95 patients, 50%. Of the 94 patients to whom this procedure was proposed, 65 or 69% accepted. Of these, 22 or 34% abandoned its use while 43 continued its use; this is 66% of those; who accepted this procedure, 46% of those to whom it was proposed and 23% of the total study group. In our medium, the practice of irrigation oscillates between 19 and 23% of patients who have undergone a colostomy, without any significant difference referring to the moment when a patient started this procedure. A first report on this study was submitted in the III National Congress for Nursing in Colostomies.

  19. Storm Surge and Tide Interaction: A Complete Paradigm

    Science.gov (United States)

    Horsburgh, K.

    2014-12-01

    Estimates show that in 2005, in the largest 136 coastal cities, there were 40 million people and 3,000 billion of assets exposed to 1 in 100 year coastal flood events. Mean sea level rise will increase this exposure to 150 million people and 35,000 billion of assets by 2070. Any further change in the statistics of flood frequency or severity would impact severely on economic and social systems. It is therefore crucial to understand the physical drivers of extreme storm surges, and to have confidence in datasets used for extreme sea level statistics. Much previous research has focussed on the process of tide-surge interaction, and it is now widely accepted that the physical basis of tide-surge interaction is that a phase shift of the tidal signal represents the effect of the surge on the tide. The second aspect of interaction is that shallow water momentum considerations imply that differing tidal states should modulate surge generation: wind stress should have greater surge-generating potential on lower tides. We present results from a storm surge model of the European shelf that demonstrate that tidal range does have an effect on the surges generated. The cycle-integrated effects of wind stress (i.e. the skew surge) are greater when tidal range is low. Our results contradict the absence of any such correlation in tide gauge records. This suggests that whilst the modulating effect of the tide on the skew surge (the time-independent difference between peak prediction and observations) is significant, the difference between individual storms is dominant. This implies that forecasting systems must predict salient detail of the most intense storms. A further implication is that flood forecasting models need to simulate tides with acceptable accuracy at all coastal locations. We extend our model analysis to show that the same modulation of storm surges (by tidal conditions) applies to tropical cyclones. We conduct simulations using a mature operational storm surge model

  20. ROOT CANAL IRRIGANTS AND IRRIGATION TECHNIQUES: A REVIEW

    OpenAIRE

    Aniketh; Mohamed; Geeta; Nandakishore; Gourav Kumar; Patrick Timothy; Jayson Mathew; Sahle Abdul

    2015-01-01

    Root canal irrigation is not much emphasised in endodontic therapy. Most articles discussed are on root canal shaping and obturation not much emphasis is given for irrigation. There are many irrigation solutions which are introduced into market. The primary objective of root canal therapy is the ret ention of the pulpless or pulpally involved tooth with its associated periapical tissues in a healthy state. Achievement of this objective requires that the pulpal spaces and con...

  1. Neurosteroids, trigger of the LH surge

    Science.gov (United States)

    Kuo, John; Micevych, Paul

    2012-01-01

    Recent experiments from our laboratory are consistent with the idea that hypothalamic astrocytes are critical components of the central nervous system (CNS) mediated estrogen positive feedback mechanism. The “astrocrine hypothesis” maintains that ovarian estradiol rapidly increases free cytoplasmic calcium concentrations ([Ca2+]i) that facilitate progesterone synthesis in astrocytes. This hypothalamic neuroprogesterone along with the elevated estrogen from the ovaries allows for the surge release of gonadotropin-releasing hormone (GnRH) that triggers the pituitary luteinizing hormone (LH) surge. A narrow range of estradiol stimulated progesterone production supports an “off-on-off” mechanism regulating the transition from estrogen negative feedback to estrogen positive feedback, and back again. The rapidity of the [Ca2+]i response and progesterone synthesis support a non-genomic, membrane-initiated signaling mechanism. In hypothalamic astrocytes, membrane-associated estrogen receptors (mERs) signal through transactivation of the metabotropic glutamate receptor type 1a (mGluR1a), implying that astrocytic function is influenced by surrounding glutamatergic nerve terminals. Although other putative mERs, such as mERβ, STX-activated mER-Gαq, and G protein-coupled receptor 30 (GPR30), are present and participate in membrane-mediated signaling, their influence in reproduction is still obscure since female reproduction be it estrogen positive feedback or lordosis behavior requires mERα. The astrocrine hypothesis is also consistent with the well-known sexual dimorphism of estrogen positive feedback. In rodents, only post-pubertal females exhibit this positive feedback. Hypothalamic astrocytes cultured from females, but not males, responded to estradiol by increasing progesterone synthesis. Estrogen autoregulates its own signaling by regulating levels of mERα in the plasma membrane of female astrocytes. In male astrocytes, the estradiol-induced increase in m

  2. Gain-P: A new strategy to increase furrow irrigation efficiency

    International Nuclear Information System (INIS)

    Schmitz, G.H.; Wohling, T.; Paly, M. D.; Schutze, N.

    2007-01-01

    The new methodology GAIN-P combines Genetic Algorithms, Artificial Intelligence techniques and rigorous Process modeling for substantially improving irrigation efficiency. The new strategy simultaneously identifies optimal values of both scheduling and irrigation parameters for an entire growing season and can be applied to irrigation systems with adequate or deficit water supply. In this contribution, GAIN-P is applied to furrow irrigation tackling the more difficult subject of the more effective deficit irrigation. A physically -based hydrodynamic irrigation model is iteratively coupled with a 2D subsurface flow model for generating a database containing all realistically feasible scenarios of water application in furrow irrigation. It is used for training a problem-adapted artificial neural network based on self-organized maps, which in turn portrays the inverse solution of the hydrodynamic furrow irrigation model and thus enormously speeds up the overall performance of the complete optimization tool. Global optimization with genetic algorithm finds the schedule with maximum crop yield for the given water volume. The impact of different irrigation schedules on crop yield is calculated by the coupled furrow irrigation model which also simulates soil evaporation, precipitation and root water uptake by the plants over the whole growing seasons, as well as crop growth and yield. First results with the new optimization strategy show that GAIN-P has a high potential to increase irrigation efficiency. (author)

  3. Making the user visible: analysing irrigation practices and farmers’ logic to explain actual drip irrigation performance

    NARCIS (Netherlands)

    Benouniche, M.; Kuper, M.; Hammani, A.; Boesveld, H.

    2014-01-01

    The actual performance of drip irrigation (irrigation efficiency, distribution uniformity) in the field is often quite different from that obtained in experimental stations. We developed an approach to explain the actual irrigation performance of drip irrigation systems by linking measured

  4. China's electric car surge

    International Nuclear Information System (INIS)

    Wang, Yunshi; Sperling, Daniel; Tal, Gil; Fang, Haifeng

    2017-01-01

    China's plug-in electric vehicle (PEV) sales, comprising both battery electric and plug-in hybrid vehicles, surged 343% in 2015, and are expected to reach 2 million by 2020. Two factors are crucial to this sudden transformation: 1) massive central and local government subsidies, and 2) huge non-monetary incentives via exemptions from restrictions on vehicle ownership in Beijing, Shanghai, and elsewhere. Innovative business models and greatly expanded vehicle offerings, especially by local Chinese manufacturers, also helped accelerate PEV sales and infrastructure deployment. However, continued sales growth is threatened by persistent regional protectionism, the unsustainability of these large subsidies, and widely reported cheating by some automakers. We suggest some innovative policies that China might pioneer and transfer elsewhere. - Highlights: • The rapid growth was a result of massive central and local government subsidies. • Exemptions from restrictions on vehicle ownership play even more important role. • A comparative case study of Beijing and Shanghai. • Persistent regional protectionism impedes the development of China's PEV industry. • Focusing on the use of PEVs is a better way to achieve eVMT.

  5. Irrigation water management: Basic principles and applications

    OpenAIRE

    Ella, Victor B.

    2007-01-01

    This presentation defines the term, irrigation, as well as explains the common methods of irrigation in attempt to define the fundamental principles needed to wisely design an irrigation system. It outlines a typical drip irrigation set-up, and discusses management of an irrigation system, including water volume application suggestions. LTRA-5 (Agroforestry and Sustainable Vegetable Production)

  6. A simulation method for lightning surge response of switching power

    International Nuclear Information System (INIS)

    Wei, Ming; Chen, Xiang

    2013-01-01

    In order to meet the need of protection design for lighting surge, a prediction method of lightning electromagnetic pulse (LEMP) response which is based on system identification is presented. Experiments of switching power's surge injection were conducted, and the input and output data were sampled, de-noised and de-trended. In addition, the model of energy coupling transfer function was obtained by system identification method. Simulation results show that the system identification method can predict the surge response of linear circuit well. The method proposed in the paper provided a convenient and effective technology for simulation of lightning effect.

  7. Pressure-surge mitigation methods in fluid-conveying piping

    International Nuclear Information System (INIS)

    Shin, Y.W.; Youngdahl, C.K.; Wiedermann, A.H.

    1991-01-01

    Pressure surges in the heat transport system of nuclear reactor plants can affect the safety and reliability of the plants. Hence the pressure surges must be considered in the design, operation, and maintenance of the plants in order to minimize their occurrence and impacts. The objectives of this paper are to review various methods to control or mitigate the pressure surges, to analyze these methods to gain understanding of the mitigation mechanisms, and examine applicability of the methods to nuclear power plants. 6 refs., 13 figs

  8. Agriculture Irrigation and Water Use

    OpenAIRE

    Bajwa, Rajinder S.; Crosswhite, William M.; Hostetler, John E.; Wright, Olivia W.; United States Department of Agriculture, Economic Research Service

    1992-01-01

    The 17 Western States, plus Arkansas, Florida, and Louisiana, account for 91 percent of all U.S. irrigated acreage, with the Western States alone contributing over 85 percent. This report integrates data on the distribution, characteristics, uses, and management of water resources from a wide variety of data sources. The report includes charts and tables on water use in irrigation; farm data comparing selected characteristics of irrigated and nonirrigated farms; and data on water applicatio...

  9. Irrigation management of sigmoid colostomy.

    Science.gov (United States)

    Jao, S W; Beart, R W; Wendorf, L J; Ilstrup, D M

    1985-08-01

    Questionnaires were sent to 270 patients who had undergone abdominoperineal resection and sigmoid colostomy at the Mayo Clinic, Rochester, Minn, during the ten years from 1972 to 1982; 223 patients returned their questionnaires with evaluable data. Sixty percent of the patients were continent with irrigation, and 22% were incontinent with irrigation. Eighteen percent had discontinued irrigation for various reasons. The proportion continent was higher in women, younger patients, and previously constipated patients. A poorly constructed colostomy may cause acute angle, parastoma hernia, stomal prolapse, or stenosis and thus be the cause of failure of irrigation.

  10. Nitrate leaching beneath a containerized nursery crop receiving trickle or overhead irrigation.

    Science.gov (United States)

    Colangelo, D J; Brand, M H

    2001-01-01

    Container production of nursery crops is intensive and a potential source of nitrogen release to the environment. This study was conducted to determine if trickle irrigation could be used by container nursery producers as an alternative to standard overhead irrigation to reduce nitrogen release into the environment. The effect of overhead irrigation and trickle irrigation on leachate nitrate N concentration, flow-weighted nitrate N concentration, leachate volume, and plant growth was investigated using containerized rhododendron (Rhododendron catawbiense Michx. 'Album') supplied with a controlled-release fertilizer and grown outdoors on top of soil-monolith lysimeters. Leachate was collected over two growing seasons and overwinter periods, and natural precipitation was allowed as a component of the system. Precipitation accounted for 69% of the water entering the overhead-irrigated system and 80% of the water entering the trickle-irrigated system. Leachate from fertilized plants exceeded the USEPA limit of 10 mg L(-1) at several times and reached a maximum of 26 mg L(-1) with trickle irrigation. Average annual loss of nitrate N in leachate for fertilized treatments was 51.8 and 60.5 kg ha(-1) for the overhead and trickle treatments, respectively. Average annual flow-weighted concentration of nitrate N in leachate of fertilized plants was 7.2 mg L(-1) for overhead irrigation and 12.7 mg L(-1) for trickle irrigation. Trickle irrigation did not reduce the amount of nitrate N leached from nursery containers when compared with overhead irrigation because precipitation nullified the potential benefits of reduced leaching fractions and irrigation inputs provided under trickle irrigation.

  11. Mud aprons in front of Svalbard surge moraines: Evidence of subglacial deforming layers or proglacial glaciotectonics?

    Science.gov (United States)

    Kristensen, Lene; Benn, Douglas I.; Hormes, Anne; Ottesen, Dag

    2009-10-01

    Large debris-flow units commonly occur on the distal sides of subaqueous end moraines deposited by surges of Svalbard tidewater glaciers, but have rarely been described in terrestrial settings. Some researchers have argued that these kinds of debris flows reflect processes unique to the subaqueous environment, such as the extrusion of subglacial deforming layers or extensive failure of oversteepened moraine fronts. In this paper, we describe terrestrial and subaqueous parts of a single late Holocene moraine system deposited by a major surge of the tidewater glacier Paulabreen in west Spitsbergen. The ice-marginal landforms on land closely resemble the corresponding landforms on the seabed as evidenced by geomorphic mapping and geophysical profiles from both environments. Both onland and offshore, extensive areas of hummocky moraine occur on the proximal side of the maximum glacier position, and large mud aprons (interpreted as debris flows) occur on the distal side. We show that the debris-flow sediments were pushed in front of the advancing glacier as a continuously failing, mobile push moraine. We propose that the mud aprons are end members of a proglacial landforms continuum that has thrust-block moraines as the opposite end member. Two clusters of dates (~ 8000 YBP and ~ 700 YBP) have previously been interpreted to indicate two separate surges responsible for the moraine formation. New dates suggest that the early cluster indicates a local extinction of the abounded species Chlamys islandica. Other changes corresponding to the widespread 8.2 ka event within the fjord, may suggest that the extinction of the C. islandica corresponds to that time.

  12. Assessment of Irrigation Water Quality and Suitability for Irrigation in ...

    African Journals Online (AJOL)

    A number of factors like geology, soil, effluents, sewage disposal and other environmental conditions in which the water stays or moves and interacts are among the factors that affect the quality of irrigation water. This study was conducted to determine the quality and suitability of different water sources for irrigation purpose ...

  13. Effect of irrigation on heavy metals content of wastewater irrigated ...

    African Journals Online (AJOL)

    There is an urgent need to educate farmers on the dangers of the presence of heavy metals in soils as well as the quality of irrigation water especially if it comes from tanning industries for increased crop production. Accordingly, soil and irrigation wastewater study was conducted to assess the concentrations of heavy ...

  14. Understanding water delivery performance in a large-scale irrigation system in Peru

    NARCIS (Netherlands)

    Vos, J.M.C.

    2005-01-01

    During a two-year field study the performance of the water delivery was evaluated in a large-scale irrigation system on the north coast of Peru. Flow measurements were carried out along the main canals, along two secondary canals, and in two tertiary blocks in the Chancay-Lambayeque irrigation

  15. Control of Surge in Centrifugal Compressor by Using a Nozzle Injection System: Universality in Optimal Position of Injection Nozzle

    Directory of Open Access Journals (Sweden)

    Toshiyuki Hirano

    2012-01-01

    Full Text Available The passive control method for surge and rotating stall in centrifugal compressors by using a nozzle injection system was proposed to extend the stable operating range to the low flow rate. A part of the flow at the scroll outlet of a compressor was recirculated to an injection nozzle installed on the inner wall of the suction pipe of the compressor through the bypass pipe and injected to the impeller inlet. Two types of compressors were tested at the rotational speeds of 50,000 rpm and 60,000 rpm with the parameter of the circumferential position of the injection nozzle. The present experimental results revealed that the optimum circumferential position, which most effectively reduced the flow rate for the surge inception, existed at the opposite side of the tongue of the scroll against the rotational axis and did not depend on the compressor system and the rotational speeds.

  16. Evolutionary Optimization for the Number and Capacity of Surge Tanks and Pipeline Diameters in a Transmission Line

    Directory of Open Access Journals (Sweden)

    Gholam Reza Talebzadeh Sarvestani

    2006-09-01

    Full Text Available Controlling the unsteady effects of fluid flow (water hammer is one of the most important monitoring factors for structural protection of transmission pipelines. These effects are controlled by surge tanks, air chambers, pressure relief valves, and check valves. Generally, the critical points are detected by simulating the unsteady flow of the fluid, and accordingly, optimum positioning of the control devices is decided. Among the search methods, Genetic Algorithm (GA is an effective and robust method to solve highly complex optimization problems. Here, for the first time, GA coupled with an unsteady flow simulator is used to optimize the number and capacity of surge tanks in a pipeline system. In addition, the pipeline diameters are optimized for their best performance.

  17. Assessment of storm surge disaster potential for the Andaman Islands

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, V.S.; RameshBabu, V.; Babu, M.T.; Dhinakaran, G.; Rajamanickam, G.V.

    . Supporting volume 1: math- ematical modelling of cyclone surge and related flooding. In: Cy- clone Damage in Bangladesh. United Nations Centre for Regional Development, pp. 9–37. DHI (Danish Hydraulic Institute), 2002. MIKE 21 Coastal Hydrau- lics...

  18. Storm surge model based on variational data assimilation method

    Directory of Open Access Journals (Sweden)

    Shi-li Huang

    2010-06-01

    Full Text Available By combining computation and observation information, the variational data assimilation method has the ability to eliminate errors caused by the uncertainty of parameters in practical forecasting. It was applied to a storm surge model based on unstructured grids with high spatial resolution meant for improving the forecasting accuracy of the storm surge. By controlling the wind stress drag coefficient, the variation-based model was developed and validated through data assimilation tests in an actual storm surge induced by a typhoon. In the data assimilation tests, the model accurately identified the wind stress drag coefficient and obtained results close to the true state. Then, the actual storm surge induced by Typhoon 0515 was forecast by the developed model, and the results demonstrate its efficiency in practical application.

  19. Planning for partnerships: Maximizing surge capacity resources through service learning.

    Science.gov (United States)

    Adams, Lavonne M; Reams, Paula K; Canclini, Sharon B

    2015-01-01

    Infectious disease outbreaks and natural or human-caused disasters can strain the community's surge capacity through sudden demand on healthcare activities. Collaborative partnerships between communities and schools of nursing have the potential to maximize resource availability to meet community needs following a disaster. This article explores how communities can work with schools of nursing to enhance surge capacity through systems thinking, integrated planning, and cooperative efforts.

  20. Experimental Study on Noise Characteristic of Centrifugal Compressor Surge

    OpenAIRE

    Yang, Qichao; Zhao, Yuanyang; SHU, Yue; LI, Xiaosa; LI, Liansheng

    2016-01-01

    The centrifugal air compressor test rig is was designed and established. The experimental study was carried out on the surge characteristics of centrifugal compressor including the pressure in the pipe and the noise characteristics under different rotation speed. The tested results showed that both the suction pressure and discharge pressure fluctuation increase under surge condition and the amplitude of discharge pressure fluctuation is significantly higher than that of suction pressure. In ...

  1. Roles of the combined irrigation, drainage, and storage of the canal network in improving water reuse in the irrigation districts along the lower Yellow River, China

    Science.gov (United States)

    Liu, Lei; Luo, Yi; He, Chansheng; Lai, Jianbin; Li, Xiubin

    2010-09-01

    SummaryThe commonly used irrigation system in the irrigation districts (with a combined irrigation area of 3.334 × 10 6 ha) along the lower Yellow River of China is canal network. It delivers water from the Yellow River to the fields, collects surface runoff and drainage from cropland, and stores both of them for subsequent irrigation uses. This paper developed a new combined irrigation, drainage, and storage (CIDS) module for the SWAT2000 model, simulated the multiple roles of the CIDS canal system, and estimated its performance in improving water reuse in the irrigation districts under different irrigation and water diversion scenarios. The simulation results show that the annual evapotranspiration (ET) of the double-cropping winter wheat and summer maize was the highest under the full irrigation scenario (automatic irrigation), and the lowest under the no irrigation scenario. It varied between these two values when different irrigation schedules were adopted. Precipitation could only meet the water requirement of the double-cropping system by 62-96% on an annual basis; that of the winter wheat by 32-36%, summer maize by 92-123%, and cotton by 87-98% on a seasonal basis. Hence, effective irrigation management for winter wheat is critical to ensure high wheat yield in the study area. Runoff generation was closely related to precipitation and influenced by irrigation. The highest and lowest annual runoff accounted for 19% and 11% of the annual precipitation under the full irrigation and no irrigation scenarios, respectively. Nearly 70% of the annual runoff occurred during months of July and August due to the concentrated precipitation in these 2 months. The CIDS canals play an important role in delivering the diversion water from the Yellow River, intercepting the surface runoff and drainage from cropland (inflow of the CIDS canal) and recharging the shallow aquifer for later use. Roughly 14-26% of the simulated total flow in the CIDS canal system recharged

  2. Modelling the effects of tides and storm surges on coastal aquifers using a coupled surface-subsurface approach.

    Science.gov (United States)

    Yang, Jie; Graf, Thomas; Herold, Maria; Ptak, Thomas

    2013-06-01

    Coastal aquifers are complex hydrologic systems because many physical processes interact: (i) variably saturated flow, (ii) spatial-temporal fluid density variations, (iii) tidal fluctuations, (iv) storm surges overtopping dykes, and (v) surface runoff of storm water. The HydroGeoSphere model is used to numerically simulate coastal flow dynamics, assuming a fully coupled surface-subsurface approach, accounting for all processes listed above. The diffusive wave approximation of the St. Venant equation is used to describe surface flow. Surface flow and salt transport are fully coupled with subsurficial variably saturated, variable-density flow and salt transport through mathematical terms that represent exchange of fluid mass and solute mass, respectively. Tides and storm surges induce a time-variant head that is applied to nodes of the surface domain. The approach is applied to real cases of tide and storm surge events. Tide simulation results confirm the existence of a recirculating zone, forming beneath the upper part of the intertidal zone. By monitoring the exchange fluid flux rates through the beach, it was found that the major inflow to the aquifer takes place at the upper part of the intertidal zone, which explains the formation of the recirculating zone. The recirculating zone is forming particularly during rising tide. Results from a storm surge simulation show that plume fingers develop below the flooded land surface. Natural remediation by seaward flowing freshwater is relatively slow, such that reducing the salt concentration in the aquifer down to drinking water standards takes up to 10 years. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Performance of Surge Arrester Installation to Enhance Protection

    Directory of Open Access Journals (Sweden)

    Mbunwe Muncho Josephine

    2017-01-01

    Full Text Available The effects of abnormal voltages on power system equipment and appliances in the home have raise concern as most of the equipments are very expensive. Each piece of electrical equipment in an electrical system needs to be protected from surges. To prevent damage to electrical equipment, surge protection considerations are paramount to a well designed electrical system. Lightning discharges are able to damage electric and electronic devices that usually have a low protection level and these are influenced by current or voltage pulses with a relatively low energy, which are induced by lightning currents. This calls for proper designed and configuration of surge arresters for protection on the particular appliances. A more efficient non-linear surge arrester, metal oxide varistor (MOV, should be introduced to handle these surges. This paper shows the selection of arresters laying more emphasis on the arresters for residential areas. In addition, application and installation of the arrester will be determined by the selected arrester. This paper selects the lowest rated surge arrester as it provides insulation when the system is under stress. It also selected station class and distribution class of arresters as they act as an open circuit under normal system operation and to bring the system back to its normal operation mode as the transient voltage is suppressed. Thus, reduces the risk of damage, which the protection measures can be characterized, by the reduction value of the economic loss to an acceptable level.

  4. How Patients Experience Antral Irrigation

    Directory of Open Access Journals (Sweden)

    Karin Blomgren

    2015-01-01

    Full Text Available Background Antral irrigation earlier had an important role in the diagnosis and treatment of rhinosinusitis. Nowadays, it is often considered too unpleasant. However, the experience of patients of this procedure has been very seldom evaluated. Nor has the effect on pain in rhinosinusitis been evaluated. The aim of this study was to evaluate patients’ experience of discomfort and pain during antral irrigation. We also assessed facial pain caused by rhinosinusitis before the procedure and pain soon after the procedure. Methods Doctors and 121 patients completed their questionnaires independently after antral irrigation in a university clinic, in a private hospital, and at a communal health center. Results Patients experienced mild pain during antral irrigation (mean and median visual analog scale score: <3. Their experience of pain during antral irrigation was closely comparable to pain during dental calculus scaling. Facial pain assessed before antral irrigation decreased quickly after the procedure. Conclusions Antral irrigation was well tolerated as an outpatient procedure. The procedure seems to relieve facial pain caused by the disease quickly. The role of antral irrigation in the treatment of acute rhinosinusitis will need further investigation.

  5. Irrigation management in organic greenhouse

    NARCIS (Netherlands)

    Voogt, W.; Balendonck, J.; Berkelmans, R.; Enthoven, N.

    2017-01-01

    Irrigation in protected cultivation is essential due to the absence of natural precipitation. High evapotranspiration, due to higher temperature and prolonged cropping period, requires ample an adequate supply of water. The water supply in a greenhouse is solely carried out by irrigation and thus

  6. Scintigraphic assessment of colostomy irrigation.

    Science.gov (United States)

    Christensen, P.; Olsen, N.; Krogh, K.; Laurberg, S.

    2002-09-01

    OBJECTIVE: This study aims to evaluate colonic transport following colostomy irrigation with a new scintigraphic technique. MATERIALS AND METHODS: To label the bowel contents 19 patients (11 uncomplicated colostomy irrigation, 8 complicated colostomy irrigation) took 111In-labelled polystyrene pellets one and two days before investigation. 99mTc-DTPA was mixed with the irrigation fluid to assess its extent within the bowel. Scintigraphy was performed before and after a standardized washout procedure. The colon was divided into three segments 1: the caecum andascending colon; 2: the transverse colon; 3: the descending and sigmoid colon. Assuming ordered evacuation of the colon, the contribution of each colonic segment to the total evacuation was expressed as a percentage of the original segmental counts. These were added to reach a total defaecation score (range: 0-300). RESULTS: In uncomplicated colostomy irrigation, the median defaecation score was 235 (range: 145-289) corresponding to complete evacuation of the descending and transverse colon and 35% evacuation of the caecum/ascending colon. In complicated colostomy irrigation it was possible to distinguish specific emptying patterns. The retained irrigation fluid reached the caecum in all but one patient. CONCLUSION: Scintigraphy can be used to evaluate colonic emptying following colostomy irrigation.

  7. Reuse of reclaimed wastewater for golf course irrigation in Tunisia.

    Science.gov (United States)

    Bahri, A; Basset, C; Oueslati, F; Brissaud, F

    2001-01-01

    In Tunisia, golf courses are irrigated with secondary treated effluent stored in landscape impoundments. The impact of the conveyance and storage steps on the physical-chemical and biological quality of irrigation water was evaluated on three golf courses over two years. It was found that the water quality varies all along the water route, from the wastewater treatment plant up to the irrigation site: nutrient and bacteria contents decreased along the route in the three cases. This variation depends on the wastewater quality, the length of the pipes conveying water, the number of regulation reservoirs and ponds, the water residence time in pipes, reservoirs and ponds, and the operation of the ponds. The bacteriological quality of irrigation water deteriorates during the irrigation period in the three golf courses as the ponds are operated as continuous flow reactors. The results obtained in this study indicate the inability of golf water supplies, as currently managed, to properly sanitize reclaimed wastewater and meet target quality criteria recommended by WHO (1989) for water intended for recreational use. For a safe reuse of reclaimed wastewater for golf course irrigation, changes in the design and operation of the ponds should be planned or additional treatment steps provided.

  8. Improved PV system reliability results from surge evaluations at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Russell H. Bonn; Sigifredo Gonzalez

    2000-01-01

    Electrical surges on ac and dc inverter power wiring and diagnostic cables have the potential to shorten the lifetime of power electronics. These surges may be caused by either nearby lightning or capacitor switching transients. This paper contains a description of ongoing surge evaluations of PV power electronics and surge mitigation hardware at Sandia

  9. Glacier surge mechanism based on linked cavity configuration of the basal water conduit system

    Science.gov (United States)

    Kamb, Barclay

    1987-08-01

    Based on observations of the 1982-1983 surge of Variegated Glacier, Alaska, a model of the surge mechanism is developed in terms of a transition from the normal tunnel configuration of the basal water conduit system to a linked cavity configuration that tends to restrict the flow of water, resulting in increased basal water pressures that cause rapid basal sliding. The linked cavity system consists of basal cavities formed by ice-bedrock separation (cavitation), ˜1 m high and ˜10 m in horizontal dimensions, widely scattered over the glacier bed, and hydraulically linked by narrow connections where separation is minimal (separation gap ≲ 0.1 m). The narrow connections, called orifices, control the water flow through the conduit system; by throttling the flow through the large cavities, the orifices keep the water flux transmitted by the basal water system at normal levels even though the total cavity cross-sectional area (˜200 m2) is much larger than that of a tunnel system (˜10 m2). A physical model of the linked cavity system is formulated in terms of the dimensions of the "typical" cavity and orifice and the numbers of these across the glacier width. The model concentrates on the detailed configuration of the typical orifice and its response to basal water pressure and basal sliding, which determines the water flux carried by the system under given conditions. Configurations are worked out for two idealized orifice types, step orifices that form in the lee of downglacier-facing bedrock steps, and wave orifices that form on the lee slopes of quasisinusoidal bedrock waves and are similar to transverse "N channels." The orifice configurations are obtained from the results of solutions of the basal-sliding-with-separation problem for an ice mass constituting of linear half-space of linear rheology, with nonlinearity introduced by making the viscosity stress-dependent on an intuitive basis. Modification of the orifice shapes by melting of the ice roof due to

  10. Experimental and Numerical Investigations of Surge Extension on a Centrifugal Compressor with Vaned Diffuser Using Steam Injection

    Directory of Open Access Journals (Sweden)

    Chuang Gao

    2017-01-01

    Full Text Available This paper presents the first report on surge extension with steam injection through both experimental and numerical simulation. The experimental section covers the test facility, instrumentation, and prestall modes comparison with and without steam injection. It is found that surge extension is not in proportion to injected steam. There exists an upper bound above which deteriorates the margin. Injection of less than 1% of the designed mass flow can bring about over 10% margin improvement. Test results also indicated that steam injection not only damps out prestall waves, but also changes prestall modes and traveling direction. At 90% speed, injection changed the prestall mode from spike to modal, while at 80% speed line, it made the forward traveling wave become backward. Through numerical simulation, location and number of injectors, molecular weight, and temperature of injected gas are modified to explore their influences on surge margin. Similar to the test results, there exists an upper bound for the amount of steam injected. The flow field investigation indicates that this bound is caused by the early trigger of flow collapse due to the injected steam which is similar to the tip leakage flow spillage caused spike stall in axial compressors.

  11. Observing Storm Surges from Space: A New Opportunity

    Science.gov (United States)

    Han, Guoqi; Ma, Zhimin; Chen, Dake; de Young, Brad; Chen, Nancy

    2013-04-01

    Coastal tide gauges can be used to monitor variations of a storm surge along the coast, but not in the cross-shelf direction. As a result, the cross-shelf structure of a storm surge has rarely been observed. In this study we focus on Hurricane Igor-induced storm surge off Newfoundland, Canada. Altimetric observations at about 2:30, September 22, 2010 UTC (hours after the passage of Hurricane Igor) reveal prominent cross-shelf variation of sea surface height during the storm passage, including a large nearshore slope and a mid-shelf depression. A significant coastal surge of 1 m derived from satellite altimetry is found to be consistent with tide-gauge measurements at nearby St. John's station. The post-storm sea level variations at St. John's and Argentia are argued to be associated with free equatorward-propagating continental shelf waves (with phase speeds of 11-13 m/s), generated along the northeast Newfoundland coast hours after the storm moved away from St. John's. The cross-shelf e-folding scale of the shelf wave was estimated to be ~100 km. We further show approximate agreement of altimetric and tide-gauge observations in the Gulf of Mexico during Hurricane Katrina (2005) and Isaac (2012). The study for the first time in the literature shows the robustness of satellite altimetry to observe storm surges, complementing tide-gauge observations for the analysis of storm surge characteristics and for the validation and improvement of storm surge models.

  12. Study of a Novel Oscillating Surge Wave Energy Converter: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Choiniere, Michael [University of Maine; Thiagarajan, Krish P. [University of Maine

    2017-08-01

    This study investigates the performance of an oscillating surge wave energy converter (OSWEC) that utilizes adjustable geometry as a means of controlling the hydrodynamic coefficients, a concept originally proposed by [1]. The body of the device consists of a bottom-hinged solid rectangular frame with five horizontal flaps spanning the interior of the frame. The flaps can rotate independently about their center of rotation within the frame like a large window shutter. Changing the orientation of the flaps alters the hydrodynamic coefficients and natural frequency of the device as well as the ability to shed or absorb structural loads accordingly. This ability may allow the device to operate in a wider range of sea states than other current wave energy converter designs. This paper presents and compares the results of numerical simulations and experimental testing of the OSWEC's response to regular waves with all five of the horizontal fin configurations sharing the same orientation of 0 degrees (fully closed interior) and 90 degrees (fully open). The numerical simulations were performed using WAMIT, which calculates hydrodynamic coefficients using a boundary element method code to solve the linear potential flow problem, and WEC-Sim, a MATLAB-based tool that simulates multibody devices in the time domain by solving the governing equations of motion. A 1:14 scale model of the device was built for experimental evaluation in an 8-m-long, 1-m wide wave tank, which supports a water depth of 0.7 m. The OSWEC motion in different wave conditions was measured with displacement sensors while nonlinear wave-structure interaction effects like slamming and overtopping were captured using a high-speed camera and used to understand differences between the simulation and experiments.

  13. Employing high resolution satellite imagery to document a rapid glacier surge in the Karakoram - risks and opportunities for hazard assessment

    Science.gov (United States)

    Steiner, J. F.; Kraaijenbrink, P. D. A.; Jiduc, S. G.; Immerzeel, W. W.

    2017-12-01

    Glacier surges occur regularly in the Karakoram but their driving mechanisms, recurrence and its relation to climatic change remain unclear. Since many glacier tongues in the region reach to very low elevations, local populations are often exposed to glacial hazards. While the scientific interpretation of hazard is one challenge, adequately communicating results to possibly affected stakeholders poses a different set of hurdles. Using DEMs as well as Landsat imagery in combination with high-resolution Planet imagery we quantify surface elevation changes and flow velocities to document a glacier surge of the Khurdopin glacier, located in a remote valley in Pakistan, in the first half of 2017. Results reveal that an accumulation of ice mass leads to a rapid surge in peaking with velocities above 5000 m a-1 or 0.5 m h-1 during a few days. Velocities increase steadily during a four-year build-up phase prior to the actual surge, while the remaining 15 years of the recurring cycle the glacier is quiescent. It is hypothesized that the surge is mainly initiated as a result of increased pressure melting caused by ice accumulation. However, surface observations show increased crevassing and disappearance of supra glacial ponds, which could have led to increased lubrication of the glacier bed. As a consequence of the surging tongue blocking the main valley a lake has formed and grown continuously in size over two months at a rate of up to 3000 m2 per day. Using satellite imagery with a frequent overpass rate we are able to (a) characterize the nature of glacier surges in the region with greater detail and (b) monitor the surge as well as the formation of the lake as it develops. Having developed a connection to local stakeholders we were able to provide rapid hazard assessments to affected communities, which can be employed to define possible actions. We show the potential of satellite imagery - freely available Landsat in combination with commercial Planet imagery -, which

  14. Tropical cyclone induced asymmetry of sea level surge and fall and its presentation in a storm surge model with parametric wind fields

    Science.gov (United States)

    Peng, Machuan; Xie, Lian; Pietrafesa, Leonard J.

    The asymmetry of tropical cyclone induced maximum coastal sea level rise (positive surge) and fall (negative surge) is studied using a three-dimensional storm surge model. It is found that the negative surge induced by offshore winds is more sensitive to wind speed and direction changes than the positive surge by onshore winds. As a result, negative surge is inherently more difficult to forecast than positive surge since there is uncertainty in tropical storm wind forecasts. The asymmetry of negative and positive surge under parametric wind forcing is more apparent in shallow water regions. For tropical cyclones with fixed central pressure, the surge asymmetry increases with decreasing storm translation speed. For those with the same translation speed, a weaker tropical cyclone is expected to gain a higher AI (asymmetry index) value though its induced maximum surge and fall are smaller. With fixed RMW (radius of maximum wind), the relationship between central pressure and AI is heterogeneous and depends on the value of RMW. Tropical cyclone's wind inflow angle can also affect surge asymmetry. A set of idealized cases as well as two historic tropical cyclones are used to illustrate the surge asymmetry.

  15. Sensing technologies for precision irrigation

    CERN Document Server

    Ćulibrk, Dubravko; Minic, Vladan; Alonso Fernandez, Marta; Alvarez Osuna, Javier; Crnojevic, Vladimir

    2014-01-01

    This brief provides an overview of state-of-the-art sensing technologies relevant to the problem of precision irrigation, an emerging field within the domain of precision agriculture. Applications of wireless sensor networks, satellite data and geographic information systems in the domain are covered. This brief presents the basic concepts of the technologies and emphasizes the practical aspects that enable the implementation of intelligent irrigation systems. The authors target a broad audience interested in this theme and organize the content in five chapters, each concerned with a specific technology needed to address the problem of optimal crop irrigation. Professionals and researchers will find the text a thorough survey with practical applications.

  16. Surge recovery techniques for the Tevatron cold compressors

    International Nuclear Information System (INIS)

    Martinez, A.; Klebaner, A.L.; Makara, J.N.; Theilacker, J.C.; Fermilab

    2006-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, made by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations [1]. The compressor is designed to pump 60 g/s of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/s and operating speeds between 40 and 95 krpm. Since initial commissioning in 1993, Tevatron transient conditions such as quench recovery have led to multiple-location machine trips as a result of the cold compressors entering the surge regime. Historically, compressors operating at lower inlet pressures and higher speeds have been especially susceptible to these machine trips and it was not uncommon to have multiple compressor trips during large multiple-house quenches. In order to cope with these events and limit accelerator down time, surge recovery techniques have been implemented in an attempt to prevent the compressors from tripping once the machine entered this surge regime. This paper discusses the different methods of surge recovery that have been employed. Data from tests performed at the Cryogenic Test Facility at Fermilab as well as actual Tevatron operational data were utilized. In order to aid in the determination of the surge region, a full mapping study was undertaken to characterize the entire pressure field of the cold compressor. These techniques were then implemented and tested at several locations in the Tevatron with some success

  17. Combined effect of upstream surge chamber and sloping ceiling tailrace tunnel on dynamic performance of turbine regulating system of hydroelectric power plant

    International Nuclear Information System (INIS)

    Guo, Wencheng; Yang, Jiandong

    2017-01-01

    Highlights: • Nonlinear mathematical model and Hopf bifurcation analysis of turbine regulating system are presented. • Dynamic performance of turbine regulating system under 0.5 times Thoma sectional area is analyzed and a novel dynamic performance is revealed. • Relationship between two bifurcation lines and wave superposition is studied. • Combined effect mechanisms of upstream surge chamber and sloping ceiling tailrace tunnel on stability are revealed and optimization methods are proposed. - Abstract: Based on the nonlinear mathematical model of the turbine regulating system of hydroelectric power plant with upstream surge chamber and sloping ceiling tailrace tunnel and the Hopf bifurcation theory, this paper firstly studies the dynamic performance of the turbine regulating system under 0.5 times Thoma sectional area of surge chamber, and reveals a novel dynamic performance. Then, the relationship between the two bifurcation lines and the wave superposition of upstream surge chamber and sloping ceiling tailrace tunnel is analyzed. Finally, the effect mechanisms of the wave superposition on the system stability are investigated, and the methods to improve the system stability are proposed. The results indicate that: Under the combined effect of upstream surge chamber and sloping ceiling tailrace tunnel, the dynamic performance of the turbine regulating system of hydroelectric power plant shows an obvious difference on the two sides of the critical sectional area of surge chamber. There are two bifurcation lines for the condition of 0.5 times Thoma sectional area, i.e. Bifurcation line 1 and Bifurcation line 2, which represent the stability characteristics of the flow oscillation of “penstock-sloping ceiling tailrace tunnel” and the water-level fluctuation in upstream surge chamber, respectively. The stable domain of the system is determined by Bifurcation line 2. The effect of upstream surge chamber mainly depends on its sectional area, while the

  18. Numerical experiments of dynamical processes during the 2011-2013 surge of the Bering-Bagley Glacier System, using a full-Stokes finite element model

    Science.gov (United States)

    Trantow, Thomas

    The Bering-Bagley Glacial System (BBGS) is the largest glacier system outside of the Greenland and Antarctic ice sheets, and is the Earth's largest surge-type glacier. Surging is one of three types of glacial acceleration and the least understood one. Understanding glacial acceleration is paramount when trying to explain ice discharge to the oceans and the glacial contribution to sea-level rise, yet there are currently no numerical glacial models that account for surging. The recent 2011-2013 surge of the BBGS provides a rare opportunity to study the surge process through observations and the subsequent data analysis and numerical modeling. Using radar, altimeter, and image data collected from airborne and satellite missions, various descriptions of ice geometry are created at different times throughout the surge. Using geostatistical estimation techniques including variography and ordinary kriging, surface and bedrock Digital Elevation Maps (DEMs) are derived. A time series analysis of elevation change during the current surge is then conducted and validated using a complete error analysis along with airborne observations. The derived DEMs are then used as inputs to a computer simulated model of glacier dynamics in the BBGS. Using the Finite Element software Elmer/Ice, a full-Stokes simulation, with Glen's flow law for temperate ice, is created for numerical experiments. With consideration of free surface evolution, glacial hydrology and surface mass balance, the model is able to predict a variety of field variables including velocity, stress, strain-rate, pressure and surface elevation change at any point forward in time. These outputs are compared and validated using observational data such as CryoSat-2 altimetry, airborne field data, imagery and previous detailed analysis of the BBGS. Preliminary results reveal that certain surge phenomena such as surface elevation changes, surge progression and locations at which the surge starts, can be recreated using the

  19. Interaction of Shallow Cold Surges with Topography on Scales of 100-1000 Kilometers.

    Science.gov (United States)

    Toth, James John

    1987-09-01

    A shallow cold air mass is defined as one not extending to the top of the mountain ridge with which it interacts. The structure of such an airmass is examined using both observational data and a hydrostatic version of the Colorado State University Regional Atmospheric Modeling System. The prime constraint on a shallow cold surge is that the flow must ultimately be parallel to the mountain ridge. It is found that the effects of this constraint are altered significantly by surface sensible heat flux. Cold surges are slowed during the daylight hours, a result consistent with previous observational studies in Colorado east of the Continental Divide. Two case studies are described in detail, and several other events are cited. Since observations alone do not provide a complete description of diversion of the cold air by the mountain range, numerical model simulations provide additional insight into important mechanisms. A case study on 14 June 1985 is described using observational and model data. The model development of a deep boundary layer within the frontal baroclinic zone is consistent with the observations for this and other cases. This development is due to strong surface heating. Turning off the model shortwave radiation is seen to produce a rapid southward acceleration of the surface front, with very shallow cold air behind the front. Model simulations with specified surface temperature differences confirm the importance of upward heat flux from the surface in slowing the southward movement of the cold surge. It is concluded that the slowing is not due simply to the thermal wind developing in response to the heating of higher terrain to the west. Since surface heating is distributed over a deeper layer on the warm side of the temperature discontinuity, there is frontolysis at the surface. But this modification would develop even over flat terrain. Sloping terrain introduces additional effects. Heating at the western, upslope side of the cold surge inhibits the

  20. Colostomy irrigation: are we offering it enough?

    Science.gov (United States)

    Woodhouse, Fran

    This article discusses the use of irrigation for suitable colostomists and reasons why it can have a very positive effect on lifestyle. While it is evidence-based it also includes anecdotal tips from patients who irrigate. The suitability of patients to irrigate and ways to 'get started' with irrigation are discussed.

  1. Evaluation model development for sprinkler irrigation uniformity ...

    African Journals Online (AJOL)

    use

    Sprinkle and trickle irrigation. The. Blackburn Press, New Jersey, USA. Li JS, Rao MJ (1999). Evaluation method of sprinkler irrigation nonuniformity. Trans. CSAE. 15(4): 78-82. Lin Z, Merkley GP (2011). Relationships between common irrigation application uniformity indicators. Irrig Sci. Online First™, 27 January. 2011.

  2. Wireless sensor networks for irrigation management

    Science.gov (United States)

    Sustaining an adequate food supply for the world's population will require advancements in irrigation technology and improved irrigation management. Site-specific irrigation and automatic irrigation scheduling are examples of strategies to deal with declining arable land and limited fresh water reso...

  3. Condensation irrigation a system for desalination and irrigation

    International Nuclear Information System (INIS)

    Lindblom, J.; Nordell, B

    2006-01-01

    condensation irrigation is a system for both desalination and irrigation. The principles is that humidified air is let into an underground horizontal pipe system, where the air is cooled by the ground and humidity falls out as fresh water. The humidification could e.g. be achieved by evaporation of seawater in solar stills or any other heat source. By using drainage pipes for underground air transportation the water percolates into the soil, thereby irrigating the land. This study focuses on drinking water production, which means that humid air is led into plan pipes where the condensed water is collected at the pipe endings. Numerical simulations gave a study-state diurnal mean water production of 1.8 kg per meter of pipe over a 50 m pipe. Shorter pipes result in a greater mean production rate. Since the heat transfer of drainage pipes would be greater, current study indicates that condensation irrigation is a promising method for desalination and irrigation. Performed studies in condensation irrigation started at LTU in 2003. Current paper reports the initial theoretical work on the system.(Author)

  4. Irrigation as an Adaptation Strategy to Climate Change: The Relative Influence of Groundwater and Canal Irrigation on Winter Crop Production and its Sensitivity to Weather Variability in India

    Science.gov (United States)

    Jain, M.; Fishman, R.; Mondal, P.; Galford, G. L.; Naeem, S.; Modi, V.; DeFries, R. S.

    2014-12-01

    India is a hotspot for food security issues over the upcoming decades, due to increasing population pressures, groundwater depletion, and climate change. Investing in additional irrigation infrastructure may bolster food security, however, the relative influence of different types of irrigation (e.g. groundwater versus canal) on agricultural production remains unclear. One reason that the relative impact of different irrigation strategies on agricultural production has not been analyzed across India is because national-scale data on crop production and the types of irrigation technologies used are typically available at too coarse of spatial and temporal resolutions to answer this question adequately. Thus, we develop a novel algorithm to map cropped area across India at a 1 x 1 km scale using MODIS satellite data, and link these high-resolution cropped area maps with village-level data (n = 600,000) on irrigation. This allowed us to assess the relative impact of groundwater (i.e. dug, shallow, and deep wells) and canal irrigation (i.e. surface lift and flow canals) on winter cropped area and its sensitivity to rainfall across India at the village-scale from 2000 to 2006. We find that deep well irrigation is both associated with the greatest amount of winter cropped area, and is also the least sensitive to monsoon and winter rainfall variability. However, the effectiveness of deep well irrigation varies across India, with the greatest benefits seen in the regions that are most at risk for losing groundwater as a possible source of irrigation over the upcoming decades (e.g. Northwest India). This work highlights the need to develop ways to use remaining groundwater more efficiently (e.g. drip irrigation, less water-intensive crops) given that canal irrigation is not an adequate substitute, particularly in the regions that are facing the greatest levels of groundwater depletion.

  5. Performances du goutte à goutte enterré pour l’irrigation de jeunes palmiers dattiers

    Directory of Open Access Journals (Sweden)

    R. BOURZIZA

    2017-03-01

    Full Text Available In oasis areas, surface water resources are becoming increasingly scarce. Groundwater resources are often overexploited, and are of poor quality for their high salinity degree. Water conservation and economy have therefore become imperative for better oases durability. If localized irrigation is currently recommended in Morocco for saving water, its use in the sub-desert areas does not keep water safe from high evaporation rates. An alternative to this system would be the use of subsurface drip irrigation. This technique is defined as an application of water under soil surface through drippers, which discharge water at generally similar rates as the surface drip irrigation. As subsurface drip irrigation is a newly introduced technique in Morocco, a better understanding in local conditions of the infiltration process around a buried source, and its impact on plant growth is necessarily required. This study aims to contribute to improving the efficiency of water use by testing the performance of subsurface drip irrigation system, especially in areas where water is a limited resource. The objectives of this research are performance evaluation in arid conditions of the subsurface drip irrigation system for young date palms compared to the surface drip, as well as determining the appropriate method of flow measurement for a buried dripper. In this context, an experimental plot was installed on a farm in the region of Erfoud (Errachidia Province, Southeast Morocco to characterize the respective performances of surface and subsurface drip irrigation on young date palm. Flow measurement to calculate the uniformity of the application of water was done through two methods: a flow measurement of drippers above the surface and another one underground. The latter method has also helped us to estimate losses through evaporation for both irrigation techniques. In addition, in order to compare the effect of two irrigation modes, plants were identified at random

  6. Survey the Effects of Partial Root Zone Deficit Irrigation and Deficit Irrigation on Quantitative, Qualitative and Water Use Efficiency of Pomegranate

    Directory of Open Access Journals (Sweden)

    mohammad saeed tadaion

    2017-12-01

    Full Text Available Introduction: One of the latest efficient methods on increment of water use efficiency that confirmed by many scientists all over the world is deficit and alternative partial root zone deficit irrigation. In this experiment the effect of deficit and alternative partial root zone deficit irrigation on fruit yield, quality and water use efficiency of pomegranate (Punicagranatum (L. cv. Zarde-anar were investigatedin Arsenjan semi-arid region. Materials and Methods: The experiment was carried out in a constant plots and randomized complete block design (RCBD with four replicationsin five years.Treatmentswere 1- full flood irrigation (100 percent crop water requirement (T1 2- flood irrigation with 100 percent crop water requirement as alternate partial root-zone irrigation(every irrigation conducted on one side of tree (T2 3- flood irrigation with 50 percent crop water requirement as regular deficit irrigation (T3 4- full two-side drip irrigation(with regard to crop water requirement (eight drippers with twolit/hour flow by two different individual networks (T4 5- alternate partial root-zone drip irrigation with 100 percent crop water requirement (T5 6- regular deficit drip irrigation with 50 percent crop water requirement (T6 in every irrigation period. Each experimental treatment includes four trees and 96 similar twelve years old trees overall. Cultivation practice was conducted similarly on all of the trees. Results and Discussion: Results showed that the highest yield and water use efficiency based on statistical analysis belong to both PRD treatments i.e. alternate partial root-zone drip irrigation with 100 percent crop water requirement and alternate partial root-zone flood irrigation with 100 percent crop water requirement, respectively, that both of them decreased water requirement for irrigation up to 35 and 50 percent in comparison tocontrol. Application of partial root drying irrigation on both traditional flood irrigation and drip

  7. [Effects of different irrigations on the water physiological characteristics of Haloxylon ammodendron in Taklimakan Desert hinterland].

    Science.gov (United States)

    Xie, Ting-ting; Zhang, Xi-ming; Liang, Shao-min; Shan, Li-shan; Yang, Xiao-lin; Hua, Yong-hui

    2008-04-01

    By using heat-balance stem flow gauge and press chamber, the water physiological characteristics of Haloxylon ammodendron under different irrigations in Taklimakan Desert hinterland were measured and analyzed. The results indicated that the diurnal variation curve of H. ammodendron stem sap flow varied with irrigations. When irrigated 35 and 24.5 kg x plant(-1) once time, the diurnal variation of stem sap flow changed in single peak curve and the variation extent was higher; while irrigated 14 kg x plant(-1) once time, the diurnal variation changed in two-peak curve and the variation extent was small. With the decrease of irrigations, the average daily sap flow rate and the daily water consumption of H. ammodendron decreased gradually, the dawn and postmeridian water potential also had a gradual decrease, and the correlations of stem sap flow with total radiation, air temperature, relative humidity, and wind speed enhanced. Under different irrigations, the correlation between stem sap flow rate and total radiation was always the best.

  8. Modified Streamflows 1990 Level of Irrigation : Columbia River and Coastal Basins, 1928-1989.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration; A.G. Crook Company

    1993-04-01

    The annual operation plans described in the following sections require detailed system regulation computer model studies. These system regulation studies are necessary to evaluate potential new projects and to develop operational rule curves for the existing system of projects. The objective is to provide a basis for evaluating alternative system regulation scenarios. This provides essential input for optimizing the management of existing projects and planning future projects for the most beneficial use of the water supply and resources in the entire region. Historical streamflows per se are inadequate for system regulation studies because the pattern of observed flow has continually changed with each successive stage of irrigation and e development. The problem, therefore, is to adjust for past operation of storage projects and to determine the necessary adjustments that should be made to recorded flows to reflect current stages of irrigation development. Historical flows which have been adjusted to a common level of irrigation development by correcting for the effects of diversion demand, return flow, and change-of-contents and evaporation in upstream reservoirs and lakes are referred to as modified flows. This report describes the development of irrigation depletion adjustments and modified flows for the 1990 level of development for the 61-year period 1928--1989. incremental depletion adjustments were computed in this report for each month of the 61-year period to adjust the effects of actual irrigation in each year up to that which would have been experienced with the irrigation as practiced in 1990.

  9. A numerical storm surge forecast model with Kalman filter

    Institute of Scientific and Technical Information of China (English)

    Yu Fujiang; Zhang Zhanhai; Lin Yihua

    2001-01-01

    Kalman filter data assimilation technique is incorporated into a standard two-dimensional linear storm surge model. Imperfect model equation and imperfect meteorological forcimg are accounted for by adding noise terms to the momentum equations. The deterministic model output is corrected by using the available tidal gauge station data. The stationary Kalman filter algorithm for the model domain is calculated by an iterative procedure using specified information on the inaccuracies in the momentum equations and specified error information for the observations. An application to a real storm surge that occurred in the summer of 1956 in the East China Sea is performed by means of this data assimilation technique. The result shows that Kalman filter is useful for storm surge forecast and hindcast.

  10. Electromagnetic computation methods for lightning surge protection studies

    CERN Document Server

    Baba, Yoshihiro

    2016-01-01

    This book is the first to consolidate current research and to examine the theories of electromagnetic computation methods in relation to lightning surge protection. The authors introduce and compare existing electromagnetic computation methods such as the method of moments (MOM), the partial element equivalent circuit (PEEC), the finite element method (FEM), the transmission-line modeling (TLM) method, and the finite-difference time-domain (FDTD) method. The application of FDTD method to lightning protection studies is a topic that has matured through many practical applications in the past decade, and the authors explain the derivation of Maxwell's equations required by the FDTD, and modeling of various electrical components needed in computing lightning electromagnetic fields and surges with the FDTD method. The book describes the application of FDTD method to current and emerging problems of lightning surge protection of continuously more complex installations, particularly in critical infrastructures of e...

  11. Crevasses as indicators of surge dynamics in the Bering Bagley Glacier System, Alaska: Numerical experiments and comparison to image data analysis

    Science.gov (United States)

    Trantow, T.; Herzfeld, U. C.

    2016-12-01

    During a surge, sections of a glacier will accelerate 10-100 times their normal flow velocity resulting in sudden changes in the local stress regime. A glacier surface can fracture when a critical stress threshold is exceeded resulting in surface deformation, i.e. crevassing. During a recent field campaign to Bering Glacier, Alaska, in 2011 (and later in 2012, 2013), large scale deformation of the glacier surface was observed, indicating a major surge phase had recently occurred (Herzfeld et al. 2013). In the current study, geostatistical analysis is applied to satellite imagery to characterize the surge-induced crevasses that were present during the surge phase that began in early 2011. Results are compared to a three-dimensional, isothermal, full-Stokes model of Bering Glacier implemented in the open-source finite element software Elmer/Ice, which predicts locations and orientations of crevassing based on a failure criterion involving the magnitude(s) of the principal stress(es). Since most of the movement during a surge is due to basal sliding from decreased friction at the ice-bedrock interface, a relatively accurate representation of the the basal conditions is required to accurately model the ice dynamics and hence its stress regime. To achieve this, we invert velocity data derived from image correlation to attain estimations of the basal friction coefficient that governs basal sliding in the model. The methods employed here provide a procedure to identify discrepancies between observations and models of ice-flow during acceleration events.

  12. Community health facility preparedness for a cholera surge in Haiti.

    Science.gov (United States)

    Mobula, Linda Meta; Jacquet, Gabrielle A; Weinhauer, Kristin; Alcidas, Gladys; Thomas, Hans-Muller; Burnham, Gilbert

    2013-01-01

    With increasing population displacement and worsening water insecurity after the 2010 earthquake, Haiti experienced a large cholera outbreak. Our goal was to evaluate the strengths and weaknesses of seven community health facilities' ability to respond to a surge in cholera cases. Since 2010, Catholic Relief Services (CRS) with a number of public and private donors has been working with seven health facilities in an effort to reduce morbidity and mortality from cholera infection. In November 2012, CRS through the Centers for Disease Control and Prevention (CDC)'s support, asked the Johns Hopkins Center for Refugee and Disaster Response to conduct a cholera surge simulation tabletop exercise at these health facilities to improve each facility's response in the event of a cholera surge. Using simulation development guidelines from the Pan American Health Organization and others, a simulation scenario script was produced that included situations of differing severity, supply chain, as well as a surge of patients. A total of 119 hospital staff from seven sites participated in the simulation exercise including community health workers, clinicians, managers, pharmacists, cleaners, and security guards. Clinics that had challenges during the simulated clinical care of patients were those that did not appropriately treat all cholera patients according to protocol, particularly those that were vulnerable, those that would need additional staff to properly treat patients during a surge of cholera, and those that required a better inventory of supplies. Simulation-based activities have the potential to identify healthcare delivery system vulnerabilities that are amenable to intervention prior to a cholera surge.

  13. Effect of switching surges on ehv system design

    Energy Technology Data Exchange (ETDEWEB)

    Baril, G A; McGillis, D

    1966-01-01

    The presence of switching surges imposes certain conditions on the design of ehv system and certain resulting requirements in the basic components of these systems. At extra high voltage, it becomes both a practical as well as an economic necessity to limit the magnitude of switching surge overvoltages. This can be accomplished by the installation of suitable terminal equipment, and for the 735 kV system it was found necessary to install permanently connected shunt reactors on the transmission lines and to provide for the installation of closing resistors on the circuit breakers.

  14. Investigation of surge protective devices operation of a wind generator

    International Nuclear Information System (INIS)

    Dimitrov, D.; Vasileva, M.

    2008-01-01

    The interest to the investments in a wind energetics increases in the last years. The wind energetics is the fastest developing direction in the energetics in global scale. The wind energy is more attractive because its prices are lower in comparison of the other technologies for generating energy. The right choice of the surge protective devices has the important meaning on building and exploitation of the wind generators. The aim of this paper is investigation of the surge protective devices operation when they are installation to a wind generator. (authors)

  15. New technologies for modernization and management of irrigation piping

    Directory of Open Access Journals (Sweden)

    Alessandro Santini

    2006-07-01

    Full Text Available Improving the efficiency of irrigation piping-systems represents a fundamental prerequisite to achieve a sustainable irrigation under both the environmental the economic point of view. Such an issue is important not only in areas with limited water-budget, but even in those areas where the increasing reduction of the water availability has become a worrying perspective. In the last twenty years, the reduction in water-availability and the increasing costs of system-management have highly limited the cultivated areas which are irrigated by means of water-distribution nets. In the recent years, most of the Italian investments in the irrigation-field have been oriented toward upgrading the open-channels irrigation nets, which were built starting from 50’, by substituting these latter with pipes. The modernization of the piping-systems has been achieved via innovative design solutions, such as back and loading water tanks or towers, which have lead to an improvement into the flexibility of the net management. Nearby the employment of such technologies, nowadays it is also possible to use the knowledge of the physical processes involved in the management of an irrigation system, starting from energy as well as mass exchange in the continuum soil-plant-atmosphere till to a detailed hydraulic description of a water distribution net under different flow regimes. Such a type of knowledge may be used to improve as well as buildup mathematical models for a decisions-support toward the management of complex irrigation districts. The acquirement of the data needed to implement such models has been deeply improved thanks to Geographical Information Systems (GIS, and techniques to analyze satellite-data coming from the Earth observation, which enable to characterize and monitor vegetation at different spatial, spectral and radiometric resolutions.

  16. Surge Protection in Low-Voltage AC Power Circuits: An Anthology

    Science.gov (United States)

    Martzloff, F. D.

    2002-10-01

    The papers included in this part of the Anthology provide basic information on the propagation of surges in low-voltage AC power circuits. The subject was approached by a combination of experiments and theoretical considerations. One important distinction is made between voltage surges and current surges. Historically, voltage surges were the initial concern. After the introduction and widespread use of current-diverting surge-protective devices at the point-of-use, the propagation of current surges became a significant factor. The papers included in this part reflect this dual dichotomy of voltage versus current and impedance mismatch effects versus simple circuit theory.

  17. Stall/surge dynamics of a multi-stage air compressor in response to a load transient of a hybrid solid oxide fuel cell-gas turbine system

    Science.gov (United States)

    Azizi, Mohammad Ali; Brouwer, Jacob

    2017-10-01

    A better understanding of turbulent unsteady flows in gas turbine systems is necessary to design and control compressors for hybrid fuel cell-gas turbine systems. Compressor stall/surge analysis for a 4 MW hybrid solid oxide fuel cell-gas turbine system for locomotive applications is performed based upon a 1.7 MW multi-stage air compressor. Control strategies are applied to prevent operation of the hybrid SOFC-GT beyond the stall/surge lines of the compressor. Computational fluid dynamics tools are used to simulate the flow distribution and instabilities near the stall/surge line. The results show that a 1.7 MW system compressor like that of a Kawasaki gas turbine is an appropriate choice among the industrial compressors to be used in a 4 MW locomotive SOFC-GT with topping cycle design. The multi-stage radial design of the compressor enhances the ability of the compressor to maintain air flow rate during transient step-load changes. These transient step-load changes are exhibited in many potential applications for SOFC/GT systems. The compressor provides sustained air flow rate during the mild stall/surge event that occurs due to the transient step-load change that is applied, indicating that this type of compressor is well-suited for this hybrid application.

  18. Multiple-use Management of Irrigation Systems: Technical Constraints and Challenges

    Science.gov (United States)

    Gowing, J.; Li, Q.; Mayilswami, C.; Gunawardhana, K.

    selected distributary commands combined with longitudinal studies based on available long- term data from the full command. The reliability and duration of flows and/or storages represent a constraint to effective integration of aquaculture within the case-study sys- tems. Although fish production is non-consumptive and can be seen as a complemen- tary use of irrigation water, the challenge is to devise operating procedures that will 1 guarantee reliability and duration of flows and/or storages for fish production without increasing total water-use within the system. This is a particular problem during the rainy season when irrigation demand fluctuates widely and rapidly. The problem is ex- acerbated by deficient information systems, which constrain the scope for responsive management in these extensive canal systems. 2

  19. performance evaluation of sprinkler irrigation system at mambilla

    African Journals Online (AJOL)

    HOD

    ratio (DPR), irrigation productivity (IP), labour requirements and water quality. Standard procedure was ... The exchangeable cations analysis of Kakara irrigation ... Keywords: Tea, irrigation System, Performance Evaluation. 1. INTRODUCTION.

  20. Hospital-Based Coalition to Improve Regional Surge Capacity

    Directory of Open Access Journals (Sweden)

    James M. Learning

    2012-12-01

    Full Text Available Introduction: Surge capacity for optimization of access to hospital beds is a limiting factor in response to catastrophic events. Medical facilities, communication tools, manpower, and resource reserves exist to respond to these events. However, these factors may not be optimally functioning to generate an effective and efficient surge response. The objective was to improve the function of these factors.Methods: Regional healthcare facilities and supporting local emergency response agencies developed a coalition (the Healthcare Facilities Partnership of South Central Pennsylvania; HCFP¬SCPA to increase regional surge capacity and emergency preparedness for healthcare facilities. The coalition focused on 6 objectives: (1 increase awareness of capabilities and assets, (2 develop and pilot test advanced planning and exercising of plans in the region, (3 augment written medical mutual aid agreements, (4 develop and strengthen partnership relationships, (5 ensure National Incident Management System compliance, and (6 develop and test a plan for effective utilization of volunteer healthcare professionals.Results: In comparison to baseline measurements, the coalition improved existing areas covered under all 6 objectives documented during a 24-month evaluation period. Enhanced communications between the hospital coalition, and real-time exercises, were used to provide evidence of improved preparedness for putative mass casualty incidents.Conclusion: The HCFP-SCPA successfully increased preparedness and surge capacity through a partnership of regional healthcare facilities and emergency response agencies.

  1. Surge and selection: power in the refugee resettlement regime

    OpenAIRE

    Annelisa Lindsay

    2017-01-01

    There is an imbalance of power – and a resulting lack of agency for refugees – in the structure of the current resettlement regime. The top-down process of selection also poses ethical dilemmas, as recent surges in resettlement operations show.

  2. Model simulation of storm surge potential for Andaman islands

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, V.S.; RameshBabu, V.; Babu, M.T.; Dhinakaran, G.; Rajamanickam, G.V.

    Hydraulics and Oceanography, the Hydrodynamics Module Reference Manual. DHI Water and Environment, Horsholm, Denmark, 58 p. Dube, S.K., Sinha, P C , Rao, A.D., and Rao, G.S., 1985. Numerical modeling of storm surges in the Arabian Sea, Appl. Math Modelling, 9...

  3. Multidimensional Numerical Modeling of Surges Over Initially Dry Land

    National Research Council Canada - National Science Library

    Berger, R

    2004-01-01

    .... The first test case is for a straight flume and the second contains a reservoir and a horseshoe channel section. It is important that the model match the timing of the surge as well as the height In both cases the ADH compared closely with the flume results.

  4. Into the Surge of Network-driven Innovation

    DEFF Research Database (Denmark)

    Østergaard, Claus Møller; Rosenstand, Claus Andreas Foss; Gertsen, Frank

    2013-01-01

    this is examined from the 1880’s up until today. The contribution of the paper is a societal perspective on innovation, where the difference between industrial society and knowledge society leads into the surge of network-driven innovation. Network-driven innovation is unfolded on top of the known cost- driven...

  5. Surge of plasma waves in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Benhassine, Mohammed

    1985-01-01

    The first part of this research thesis addresses the propagation of waves in a plasma. It presents the equation of propagation of an electromagnetic wave in a plasma without magnetic field, and analyses the propagation in an inhomogeneous medium. The second part addresses the wave-particle interaction: interaction between electrons and an electromagnetic wave, between electrons and an electrostatic wave (trapping), and between electrons and a localised electric field. The third chapter presents the analytic theory of oscillations of a cold plasma (macroscopic equations in Lagrangian coordinates, analytic solution before surge). The next chapter discusses physical interpretations before the wave surge, after the wave surge, and about energy exchange (within or outside of resonance). Numerical simulations and their results are then reported and discussed. The sixth chapter addresses the case of an electrostatic wave surge in a hot plasma. It notably addresses the following aspects: equivalence between the description of moments and the Waterbag model, interaction between non linearity and thermal effects, variation of electric field amplitude with temperature. Results of numerical simulations are presented, and the last part addresses experimental predictions for microwaves-plasma interaction and laser-matter interaction [fr

  6. On the Response of Interleaved Transformer Windings to Surge Voltages

    DEFF Research Database (Denmark)

    Pedersen, A.

    1963-01-01

    The high series capacitance theory for the response of interleaved transformer windings to surge voltages is criticized from the point of view that an increased series capacitance as a result of interleaving is incompatible with the concept of a pure capacitive initial voltage distribution. A new...

  7. Surge ammonium uptake in macroalgae from a coral atoll

    Digital Repository Service at National Institute of Oceanography (India)

    Raikar, V.; Wafar, M.V.M.

    of Phycology 36, 680?685. Crossland, C.J., Hatcher, B.G., Smith, S.V., 1991. Role of coral reefs in global ocean production. Coral Reefs 10, 55-64. Danilo, Dy. T., Yap, H.T., 2001. Surge ammonium uptake of the cultured seaweed, Kappaphycus alvarezii (Doty...

  8. Monitoring Inland Storm Surge and Flooding from Hurricane Rita

    Science.gov (United States)

    McGee, Benton D.; Tollett, Roland W.; Mason, Jr., Robert R.

    2006-01-01

    Pressure transducers (sensors) and high-water marks were used to document the inland water levels related to storm surge generated by Hurricane Rita in southwestern Louisiana and southeastern Texas. On September 22-23, 2005, an experimental monitoring network of sensors was deployed at 33 sites over an area of about 4,000 square miles to record the timing, extent, and magnitude of inland hurricane storm surge and coastal flooding. Sensors were programmed to record date and time, temperature, and barometric or water pressure. Water pressure was corrected for changes in barometric pressure and salinity. Elevation surveys using global-positioning systems and differential levels were used to relate all storm-surge water-level data, reference marks, benchmarks, sensor measuring points, and high-water marks to the North American Vertical Datum of 1988 (NAVD 88). The resulting data indicated that storm-surge water levels over 14 feet above NAVD 88 occurred at three locations, and rates of water-level rise greater than 5 feet per hour occurred at three locations near the Louisiana coast.

  9. Evaluation of surge transferred overvoltages in distribution transformers

    NARCIS (Netherlands)

    Popov, M.; Sluis, van der L.; Smeets, R.P.P.

    2008-01-01

    The paper presents an analysis of very fast-transient overvoltages that occur because of the capacitive surge transfer from the high-voltage (HV) transformer winding to the low-voltage (LV) transformer winding. The study is done on a 6.6 kV single-phase test transformer. By applying a pulse with a

  10. Tide-surge Interaction Intensified by the Taiwan Strait

    Science.gov (United States)

    Zhang, Wen-Zhou; Shi, Fengyan; Hong, Hua-Sheng; Shang, Shao-Ping; Kirby, James T.

    2010-06-01

    The Taiwan Strait is a long and wide shelf-channel where the hydrodynamics is extremely complex, being characterized by strong tides, and where storm surges frequently occur during the typhoon season. Obvious oscillations due to tide-surge interaction were observed by tide gauges along the northern Fujian coast, the west bank of the Taiwan Strait, during Typhoon Dan (1999). Numerical experiments indicate that nonlinear bottom friction (described by the quadratic formula) is a major factor to predict these oscillations while the nonlinear advective terms and the shallow water effect have little contribution. It is found that the tide-surge interaction in the northern portion of the Taiwan Strait is intensified by the strait. Simulations based on simplified topographies with and without the island of Taiwan show that, in the presence of the island, the channel effect strengthens tidal currents and tends to align the major axes of tidal ellipses along the channel direction. Storm-induced currents are also strengthened by the channel. The pattern of strong tidal currents and storm-induced currents along the channel direction enhances tide-surge interaction via the nonlinear bottom friction, resulting in the obvious oscillations along the northern Fujian coast.

  11. 14 CFR 33.65 - Surge and stall characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Surge and stall characteristics. 33.65 Section 33.65 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... stall characteristics. When the engine is operated in accordance with operating instructions required by...

  12. 30 CFR 77.209 - Surge and storage piles.

    Science.gov (United States)

    2010-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface... a reclaiming area or in any other area at or near a surge or storage pile where the reclaiming...

  13. Surge control of the electrically driven centrifugal compressor

    NARCIS (Netherlands)

    Boinov, K.O.; Lomonova, E.A.; Vandenput, A.J.A.; Tyagounov, A.

    2006-01-01

    This paper presents a method of the energy efficiency and the operational performance improvement of the electrically driven air compression system. The key innovation of the proposed method-the active surge suppression of the centrifugal compressor by means of the speed control of the electrical

  14. Aging assessment of surge protective devices in nuclear power plants

    International Nuclear Information System (INIS)

    Davis, J.F.; Subudhi, M.; Carroll, D.P.

    1996-01-01

    An assessment was performed to determine the effects of aging on the performance and availability of surge protective devices (SPDs), used in electrical power and control systems in nuclear power plants. Although SPDs have not been classified as safety-related, they are risk-important because they can minimize the initiating event frequencies associated with loss of offsite power and reactor trips. Conversely, their failure due to age might cause some of those initiating events, e.g., through short circuit failure modes, or by allowing deterioration of the safety-related component(s) they are protecting from overvoltages, perhaps preventing a reactor trip, from an open circuit failure mode. From the data evaluated during 1980--1994, it was found that failures of surge arresters and suppressers by short circuits were neither a significant risk nor safety concern, and there were no failures of surge suppressers preventing a reactor trip. Simulations, using the ElectroMagnetic Transients Program (EMTP) were performed to determine the adequacy of high voltage surge arresters

  15. Electromotive force analysis of current transformer during lightning surge inflow using Fourier series expansion

    Directory of Open Access Journals (Sweden)

    Youngsun Kim

    2017-05-01

    Full Text Available The most common structure used for current transformers (CTs consists of secondary windings around a ferromagnetic core past the primary current being measured. A CT used as a surge protection device (SPD may experience large inrushes of current, like surges. However, when a large current flows into the primary winding, measuring the magnitude of the current is difficult because the ferromagnetic core becomes magnetically saturated. Several approaches to reduce the saturation effect are described in the literature. A Rogowski coil is representative of several devices that measure large currents. It is an electrical device that measures alternating current (AC or high-frequency current. However, such devices are very expensive in application. In addition, the volume of a CT must be increased to measure sufficiently large currents, but for installation spaces that are too small, other methods must be used. To solve this problem, it is necessary to analyze the magnetic field and electromotive force (EMF characteristics when designing a CT. Thus, we proposed an analysis method for the CT under an inrush current using the time-domain finite element method (TDFEM. The input source current of a surge waveform is expanded by a Fourier series to obtain an instantaneous value. An FEM model of the device is derived in a two-dimensional system and coupled with EMF circuits. The time-derivative term in the differential equation is solved in each time step by the finite difference method. It is concluded that the proposed algorithm is useful for analyzing CT characteristics, including the field distribution. Consequently, the proposed algorithm yields a reference for obtaining the effects of design parameters and magnetic materials for special shapes and sizes before the CT is designed and manufactured.

  16. Electromotive force analysis of current transformer during lightning surge inflow using Fourier series expansion

    Science.gov (United States)

    Kim, Youngsun

    2017-05-01

    The most common structure used for current transformers (CTs) consists of secondary windings around a ferromagnetic core past the primary current being measured. A CT used as a surge protection device (SPD) may experience large inrushes of current, like surges. However, when a large current flows into the primary winding, measuring the magnitude of the current is difficult because the ferromagnetic core becomes magnetically saturated. Several approaches to reduce the saturation effect are described in the literature. A Rogowski coil is representative of several devices that measure large currents. It is an electrical device that measures alternating current (AC) or high-frequency current. However, such devices are very expensive in application. In addition, the volume of a CT must be increased to measure sufficiently large currents, but for installation spaces that are too small, other methods must be used. To solve this problem, it is necessary to analyze the magnetic field and electromotive force (EMF) characteristics when designing a CT. Thus, we proposed an analysis method for the CT under an inrush current using the time-domain finite element method (TDFEM). The input source current of a surge waveform is expanded by a Fourier series to obtain an instantaneous value. An FEM model of the device is derived in a two-dimensional system and coupled with EMF circuits. The time-derivative term in the differential equation is solved in each time step by the finite difference method. It is concluded that the proposed algorithm is useful for analyzing CT characteristics, including the field distribution. Consequently, the proposed algorithm yields a reference for obtaining the effects of design parameters and magnetic materials for special shapes and sizes before the CT is designed and manufactured.

  17. Irrigation in dose assessments models

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla; Barkefors, Catarina [Studsvik RadWaste AB, Nykoeping (Sweden)

    2004-05-01

    SKB has carried out several safety analyses for repositories for radioactive waste, one of which was SR 97, a multi-site study concerned with a future deep bedrock repository for high-level waste. In case of future releases due to unforeseen failure of the protective multiple barrier system, radionuclides may be transported with groundwater and may reach the biosphere. Assessments of doses have to be carried out with a long-term perspective. Specific models are therefore employed to estimate consequences to man. It has been determined that the main pathway for nuclides from groundwater or surface water to soil is via irrigation. Irrigation may cause contamination of crops directly by e.g. interception or rain-splash, and indirectly via root-uptake from contaminated soil. The exposed people are in many safety assessments assumed to be self-sufficient, i.e. their food is produced locally where the concentration of radionuclides may be the highest. Irrigation therefore plays an important role when estimating consequences. The present study is therefore concerned with a more extensive analysis of the role of irrigation for possible future doses to people living in the area surrounding a repository. Current irrigation practices in Sweden are summarised, showing that vegetables and potatoes are the most common crops for irrigation. In general, however, irrigation is not so common in Sweden. The irrigation model used in the latest assessments is described. A sensitivity analysis is performed showing that, as expected, interception of irrigation water and retention on vegetation surfaces are important parameters. The parameters used to describe this are discussed. A summary is also given how irrigation is proposed to be handled in the international BIOMASS (BIOsphere Modelling and ASSessment) project and in models like TAME and BIOTRAC. Similarities and differences are pointed out. Some numerical results are presented showing that surface contamination in general gives the

  18. Irrigation in dose assessments models

    International Nuclear Information System (INIS)

    Bergstroem, Ulla; Barkefors, Catarina

    2004-05-01

    SKB has carried out several safety analyses for repositories for radioactive waste, one of which was SR 97, a multi-site study concerned with a future deep bedrock repository for high-level waste. In case of future releases due to unforeseen failure of the protective multiple barrier system, radionuclides may be transported with groundwater and may reach the biosphere. Assessments of doses have to be carried out with a long-term perspective. Specific models are therefore employed to estimate consequences to man. It has been determined that the main pathway for nuclides from groundwater or surface water to soil is via irrigation. Irrigation may cause contamination of crops directly by e.g. interception or rain-splash, and indirectly via root-uptake from contaminated soil. The exposed people are in many safety assessments assumed to be self-sufficient, i.e. their food is produced locally where the concentration of radionuclides may be the highest. Irrigation therefore plays an important role when estimating consequences. The present study is therefore concerned with a more extensive analysis of the role of irrigation for possible future doses to people living in the area surrounding a repository. Current irrigation practices in Sweden are summarised, showing that vegetables and potatoes are the most common crops for irrigation. In general, however, irrigation is not so common in Sweden. The irrigation model used in the latest assessments is described. A sensitivity analysis is performed showing that, as expected, interception of irrigation water and retention on vegetation surfaces are important parameters. The parameters used to describe this are discussed. A summary is also given how irrigation is proposed to be handled in the international BIOMASS (BIOsphere Modelling and ASSessment) project and in models like TAME and BIOTRAC. Similarities and differences are pointed out. Some numerical results are presented showing that surface contamination in general gives the

  19. Distribution of auroral surges in the evening sector

    International Nuclear Information System (INIS)

    Kidd, S.R.; Rostoker, G.

    1991-01-01

    Over the past dacades a large statistical data base has been gathered consisting of both ground-based magnetometer and all-sky camera records from which researchers have inferred the distribution of substorm expansive phase events across the nighttime sector. Almost without exception, the activity distribution has been based on single station data acquired over periods of years. However, to truly establish the occurrence frequency of substorm expansive phase events, it is necessary to view the entire nighttime sector instantaneously in the light of evidence which shows that more than one expansive phase disturbance can be in progress across the broad expanse of the evening sector. In this paper, the authors study the distribution of regions of localized auroral luminosity in the poleward portion of the evening sectorauroral oval using images in the ultraviolet portion of the auroral spectrum acquired by the Viking satellite over 9 months in 1986. They find that auroral surge activity peaks in the hour before local magnetic midnight, with the probability of detecting a surge steadily decreasing to 10% of the probability of finding a surge in the hour prior to midnight as one moves westward towards 1,900 MLT. They show that their conclusion is not dependent on the threshold chosen for surge identification over a reasonable portion of the intensity range covered by the Viking imager. They further show that for the interval of several months near sunspot minimum in 1986 there is better than a 90% chance that no surge will be detected in a 1-hour range of magnetic local time if one were to sample that segment of the auroral oval at any arbitrary time

  20. Assessment of water pipes durability under pressure surge

    Science.gov (United States)

    Pham Ha, Hai; Minh, Lanh Pham Thi; Tang Van, Lam; Bulgakov, Boris; Bazhenova, Soafia

    2017-10-01

    Surge phenomenon occurs on the pipeline by the closing valve or pump suddenly lost power. Due to the complexity of the water hammer simulation, previous researches have only considered water hammer on the single pipe or calculation of some positions on water pipe network, it have not been analysis for all of pipe on the water distribution systems. Simulation of water hammer due to closing valve on water distribution system and the influence level of pressure surge is evaluated at the defects on pipe. Water hammer on water supply pipe network are simulated by Water HAMMER software academic version and the capacity of defects are calculated by SINTAP. SINTAP developed from Brite-Euram projects in Brussels-Belgium with the aim to develop a process for assessing the integrity of the structure for the European industry. Based on the principle of mechanical fault, indicating the size of defects in materials affect the load capacity of the product in the course of work, the process has proposed setting up the diagram to fatigue assessment defect (FAD). The methods are applied for water pipe networks of Lien Chieu district, Da Nang city, Viet Nam, the results show the affected area of wave pressure by closing the valve and thereby assess the greatest pressure surge effect to corroded pipe. The SINTAP standard and finite element mesh analysis at the defect during the occurrence of pressure surge which will accurately assess the bearing capacity of the old pipes. This is one of the bases to predict the leakage locations on the water distribution systems. Amount of water hammer when identified on the water supply networks are decreasing due to local losses at the nodes as well as the friction with pipe wall, so this paper adequately simulate water hammer phenomena applying for actual water distribution systems. The research verified that pipe wall with defect is damaged under the pressure surge value.

  1. Observations of the Growth and Decay of Stall Cells during Stall and Surge in an Axial Compressor

    Directory of Open Access Journals (Sweden)

    Adam R. Hickman

    2017-01-01

    Full Text Available This research investigated unsteady events such as stall inception, stall-cell development, and surge. Stall is characterized by a decrease in overall pressure rise and nonaxisymmetric throughflow. Compressor stall can lead to surge which is characterized by quasi-axisymmetric fluctuations in mass flow and pressure. Unsteady measurements of the flow field around the compressor rotor are examined. During the stall inception process, initial disturbances were found within the rotor passage near the tip region. As the stall cell develops, blade lift and pressure ratio decrease within the stall cell and increase ahead of the stall cell. The stall inception event, stall-cell development, and stall recovery event were found to be nearly identical for stable rotating stall and surge cases. As the stall cell grows, the leading edge of the cell will rotate at a higher rate than the trailing edge in the rotor frame. The opposite occurs during stall recovery. The trailing edge of the stall cell will rotate at the approximate speed as the fully developed stall cell, while the leading edge decreases in rotational speed in the rotor frame.

  2. Phosphorus losses from an irrigated watershed in the Northwestern U.S.: Case study of the Upper Snake Rock Watershed

    Science.gov (United States)

    Watersheds utilizing surface water for irrigation often return a portion of the water to a water body. This irrigation return flow often includes sediment and nutrients that reduce the quality of the receiving water body. Research in the 82,000 ha Upper Snake Rock (USR) watershed from 2005 to 2008 s...

  3. Sustainable irrigation in fruit trees

    Directory of Open Access Journals (Sweden)

    Cristos Xiloyannis

    2010-09-01

    Full Text Available Water management in fruit growing, particularly in areas with high water deficit, low rainfall and limited availability of water for irrigation should aid to save water by: i the choice of high efficiency irrigation methods and their correct management; ii the proper choice of the specie, cultivar and rootstock to optimise plant water use; iii the proper choice of the architecture of the canopy and it’s correct management in order to improve water use efficiency; iv the application of regulated deficit irrigation at growth stages less sensitive to water deficit; v strengthening the role of technical assistance for a rapid transfer of knowledge to the growers on the sustainable use of water in fruit growing.

  4. Sustainable irrigation in fruit trees

    Directory of Open Access Journals (Sweden)

    Cristos Xiloyannis

    Full Text Available Water management in fruit growing, particularly in areas with high water deficit, low rainfall and limited availability of water for irrigation should aid to save water by: i the choice of high efficiency irrigation methods and their correct management; ii the proper choice of the specie, cultivar and rootstock to optimise plant water use; iii the proper choice of the architecture of the canopy and it’s correct management in order to improve water use efficiency; iv the application of regulated deficit irrigation at growth stages less sensitive to water deficit; v strengthening the role of technical assistance for a rapid transfer of knowledge to the growers on the sustainable use of water in fruit growing.

  5. [Continent colostomy and colon irrigation].

    Science.gov (United States)

    Kostov, D; Temelkov, T; Kiriazov, E; Ivanov, K; Ignatov, V; Kobakov, G

    2000-01-01

    The authors have studied a functional activity of a continent colostomy at 20 patients, undergone an abdomeno-perineal extirpation of rectum and carried out periodic colonirrigations, during a period of 6 months. A conus type, closed irrigating system has been used. The degree of an incontinency at patients has been compared before and after the beginning of the colonirrigations. The irrigating procedures have reduced spontaneous defications at patients during a week 28 times and have improved the quality of life significantly. The application of colostomy bags has been restricted in 8 (40%) patients. An intraluminal ultrasonographic investigation has been done at 12 (60%) patients at the end of 6 month irrigating period. No changes of the ultrasonographic image of the precolostomic segment of colon has been observed.

  6. Evaluation of Loss Due to Storm Surge Disasters in China Based on Econometric Model Groups

    OpenAIRE

    Xue Jin; Xiaoxia Shi; Jintian Gao; Tongbin Xu; Kedong Yin

    2018-01-01

    Storm surge has become an important factor restricting the economic and social development of China’s coastal regions. In order to improve the scientific judgment of future storm surge damage, a method of model groups is proposed to refine the evaluation of the loss due to storm surges. Due to the relative dispersion and poor regularity of the natural property data (login center air pressure, maximum wind speed, maximum storm water, super warning water level, etc.), storm surge disaster is di...

  7. A Numerical Simulation of Extratropical Storm Surge and Hydrodynamic Response in the Bohai Sea

    OpenAIRE

    Ding, Yumei; Ding, Lei

    2014-01-01

    A hindcast of typical extratropical storm surge occurring in the Bohai Sea in October 2003 is performed using a three-dimensional (3D) Finite Volume Coastal Ocean Model (FVCOM). The storm surge model is forced by 10 m winds obtained from the Weather Research Forecasting (WRF) model simulation. It is shown that the simulated storm surge and tides agree well with the observations. The nonlinear interaction between the surge and astronomical tides, the spatial distribution of the max...

  8. Groundwater irrigation and its implications for water policy in semiarid countries: the Spanish experience

    Science.gov (United States)

    Garrido, Alberto; Martínez-Santos, Pedro; Llamas, M. Ramón

    2006-03-01

    Over the last decades, groundwater irrigation has become commonplace in many arid and semiarid regions worldwide, including Spain. This is largely a consequence of the advances in drilling and pumping technologies, and of the development of Hydrogeology. Compared with traditional surface water irrigation systems, groundwater irrigation offers more reliable supplies, lesser vulnerability to droughts, and ready accessibility for individual users. Economic forces influence the groundwater irrigation sector and its development. In Spain's Mediterranean regions, abstraction costs often amount to a very small fraction of the value of crops. In the inner areas, groundwater irrigation supports a more stable flow of farm income than rainfed agriculture. The social (jobs/m3) and economic (€/m3) value of groundwater irrigation generally exceeds that of surface water irrigation systems. However, poor groundwater management and legal controversies are currently at the base of Spain's social disputes over water. A thorough and transparent assessment of the relative socio-economic value of groundwater in relation to surface water irrigation might contribute to mitigate or avoid potential future conflicts. Enforcement of the European Union's Water Framework Directive may deliver better groundwater governance and a more sustainable use.

  9. Developing a Mass Casualty Surge Capacity Protocol for Emergency Medical Services to Use for Patient Distribution.

    Science.gov (United States)

    Shartar, Samuel E; Moore, Brooks L; Wood, Lori M

    2017-12-01

    Metropolitan areas must be prepared to manage large numbers of casualties related to a major incident. Most US cities do not have adequate trauma center capacity to manage large-scale mass casualty incidents (MCIs). Creating surge capacity requires the distribution of casualties to hospitals that are not designated as trauma centers. Our objectives were to extrapolate MCI response research into operational objectives for MCI distribution plan development; formulate a patient distribution model based on research, hospital capacities, and resource availability; and design and disseminate a casualty distribution tool for use by emergency medical services (EMS) personnel to distribute patients to the appropriate level of care. Working with hospitals within the region, we refined emergency department surge capacity for MCIs and developed a prepopulated tool for EMS providers to use to distribute higher-acuity casualties to trauma centers and lower-acuity casualties to nontrauma hospitals. A mechanism to remove a hospital from the list of available resources, if it is overwhelmed with patients who self-transport to the location, also was put into place. The number of critically injured survivors from an MCI has proven to be consistent, averaging 7% to 10%. Moving critically injured patients to level 1 trauma centers can result in a 25% reduction in mortality, when compared with care at nontrauma hospitals. US cities face major gaps in the surge capacity needed to manage an MCI. Sixty percent of "walking wounded" casualties self-transport to the closest hospital(s) to the incident. Directing critically ill patients to designated trauma centers has the potential to reduce mortality associated with the event. When applied to MCI responses, damage-control principles reduce resource utilization and optimize surge capacity. A universal system for mass casualty triage was identified and incorporated into the region's EMS. Flagship regional coordinating hospitals were designated

  10. Tsunami vs Infragravity Surge: Statistics and Physical Character of Extreme Runup

    Science.gov (United States)

    Lynett, P. J.; Montoya, L. H.

    2017-12-01

    Motivated by recent observations of energetic and impulsive infragravity (IG) flooding events - also known as sneaker waves - we will present recent work on the relative probabilities and dynamics of extreme flooding events from tsunamis and long period wind wave events. The discussion will be founded on videos and records of coastal flooding by both recent tsunamis and IG, such as those in the Philippines during Typhoon Haiyan. From these observations, it is evident that IG surges may approach the coast as breaking bores with periods of minutes; a very tsunami-like character. Numerical simulations will be used to estimate flow elevations and speeds from potential IG surges, and these will be compared with similar values from tsunamis, over a range of different beach profiles. We will examine the relative rareness of each type of flooding event, which for large values of IG runup is a particularly challenging topic. For example, for a given runup elevation or flooding speed, the related tsunami return period may be longer than that associated with IG, implying that deposit information associated with such elevations or speeds are more likely to be caused by IG. Our purpose is to provide a statistical and physical discriminant between tsunami and IG, such that in areas exposed to both, a proper interpretation of overland transport, deposition, and damage is possible.

  11. Effect of Deficit Irrigation Treatments on Vegetative Characteristics and Quantity and Quality of Golden Delicious Apple

    Directory of Open Access Journals (Sweden)

    I. Arji

    2016-07-01

    Full Text Available Introduction: Since Iran is located in arid and semi-arid region of the world, so consumption and saving of water must be taking into account. Water is often a valuable natural resource, thus proper application methods - for increase water efficiency can be very important. Regulated deficit irrigation (RDI is one of the most important methods to increase water use efficiency and fruit quality. Apple is one of the most important fruit trees from economical point of view. Studies showed that regulated deficit irrigation led to growth reduction in apple trees and sometimes fruit quality increased. The aim of this study was to evaluate the effect deficit irrigation on vegetative growth and fruit quantity and quality of Golden delicious apple trees in Gahvareh region of Kermanshah province. Materials and Methods: This experiment was conducted on 10 years old Golden delicious apple trees in a randomized complete block design with 5 irrigation treatments and three replications during 2006. Three apple trees assigned to each experimental unit. Irrigation treatments were: T1= early deficit irrigation (40% water requirement, T2= early deficit irrigation (60% water requirement, T3= late deficit irrigation (40% water requirement, T4=late deficit irrigation (60% water requirement, T5=control (C (100% water requirement. Early deficit irrigation starts 55 days after full bloom (15th Jun and continued 60 days (16th Aug, while late deficit irrigation starts 115 days after from full bloom (16th Aug and continued 40 days near to harvesting time (23th Sept. Control trees were full irrigated based on water requirement, which calculated based on national water document of Iran and irrigation amount was calculated based on the following formulas: Q=0.0184.L.H3/2 Where Q is volumetric flow rate (liter/Second, L is parshall flume crown length (cm and H is water height (cm. Irrigation time was calculated based on national water document of Iran and volumetric flow rate

  12. The comparison between two irrigation regimens on the dentine wettability for an epoxy resin based sealer by measuring its contact angle formed to the irrigated dentine.

    Science.gov (United States)

    Mohan, Rayapudi Phani; Pai, Annappa Raghavendra Vivekananda

    2015-01-01

    The aim was to assess the influence of two irrigation regimens having ethylenediaminetetraacetic acid (EDTA) and ethylenediaminetetraacetic acid with cetrimide (EDTAC) as final irrigants, respectively, on the dentine wettability for AH Plus sealer by comparing its contact angle formed to the irrigated dentine. Study samples were divided into two groups (n = 10). The groups were irrigated with 3% sodium hypochlorite (NaOCl) solution followed by either 17% EDTA or 17% EDTAC solution. AH Plus was mixed, and controlled volume droplet (0.1 mL) of the sealer was placed on the dried samples. The contact angle was measured using a Dynamic Contact Angle Analyzer and results were analyzed using SPSS 21.0 and 2 sample t-test. There was a significant difference in the contact angle of AH Plus formed to the dentine irrigated with the above two regimens. AH Plus showed significantly lower contact angle with the regimen having EDTAC as a final irrigant than the one with EDTA (P contact angle of a sealer. EDTAC as a final irrigant facilitates better dentin wettability than EDTA for AH Plus to promote its better flow and adhesion.

  13. AGROCLIMATIC DETERMINANTS OF IRRIGATION NEEDS

    Directory of Open Access Journals (Sweden)

    Leszek Łabędzki

    2016-05-01

    Full Text Available The paper is a review of the so far used in Poland methods and criteria for assessing the needs of irrigation for planning purposes, the assessment because of the agroclimatic conditions and taking into account the soil water retention. Irrigation needs of the most are determined taking into account crop water deficits. This is the factor that is characterized by a shortage of precipitation in relation to the water requirements of crops. Some methods use only the meteorological parameters that determine the state of the atmosphere-soil-plant system, and some also take into account soil water retention and its availability for plants.

  14. Determining Storm Surge Return Periods: The Use of Evidence of Historic Events

    DEFF Research Database (Denmark)

    Madsen, Kristine S.; Sørensen, Carlo Sass; Schmith, Torben

    Storm surges are a major concern for many coastal communities, and rising levels of surges is a key concern in relation to climate change. The sea level of a statistical 100-year or 1000-year storm surge event and similar statistical measures are used for spatial planning and emergency preparedness...

  15. 30 CFR 56.16002 - Bins, hoppers, silos, tanks, and surge piles.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bins, hoppers, silos, tanks, and surge piles... MINES Materials Storage and Handling § 56.16002 Bins, hoppers, silos, tanks, and surge piles. (a) Bins, hoppers, silos, tanks, and surge piles, where loose unconsolidated materials are stored, handled or...

  16. 30 CFR 57.16002 - Bins, hoppers, silos, tanks, and surge piles.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bins, hoppers, silos, tanks, and surge piles... NONMETAL MINES Materials Storage and Handling § 57.16002 Bins, hoppers, silos, tanks, and surge piles. (a) Bins, hoppers, silos, tanks, and surge piles, where loose unconsolidated materials are stored, handled...

  17. Coastal Storm Surge Analysis: Storm Forcing. Report 3. Intermediate Submission No. 1.3

    Science.gov (United States)

    2013-07-01

    The storm surge study considers both tropical storms and extratropical cyclones for determination of return period storm surge elevations. The...Appendix B: Extratropical Cyclone Selection in Support of FEMA Region III Storm Surge Modeling...stations applied in the storm selection process. ............................................. 56  Table B2. Extratropical cyclones selected from the

  18. Soil Suitability Classification of Tomas Irrigation Scheme for Irrigated ...

    African Journals Online (AJOL)

    The need for sustainable rice production in Nigeria cannot be over-emphasized. Since rice can be grown both under rain-fed and irrigated conditions, the need for soil suitability evaluation becomes very necessary in order for supply to meet up with demand. Six land qualities viz; climate, soil physical properties, drainage, ...

  19. Improvements in irrigation system modelling when using remotely sensed ET for calibration

    Science.gov (United States)

    van Opstal, J. D.; Neale, C. M. U.; Lecina, S.

    2014-10-01

    Irrigation system modelling is often used to aid decision-makers in the agricultural sector. It gives insight on the consequences of potential management and infrastructure changes. However, simulating an irrigation district requires a considerable amount of input data to properly represent the system, which is not easily acquired or available. During the simulation process, several assumptions have to be made and the calibration is usually performed only with flow measurements. The advancement of estimating evapotranspiration (ET) using remote sensing is a welcome asset for irrigation system modelling. Remotely-sensed ET can be used to improve the model accuracy in simulating the water balance and the crop production. This study makes use of the Ador-Simulation irrigation system model, which simulates water flows in irrigation districts in both the canal infrastructure and on-field. ET is estimated using an energy balance model, namely SEBAL, which has been proven to function well for agricultural areas. The seasonal ET by the Ador model and the ET from SEBAL are compared. These results determine sub-command areas, which perform well under current assumptions or, conversely, areas that need re-evaluation of assumptions and a re-run of the model. Using a combined approach of the Ador irrigation system model and remote sensing outputs from SEBAL, gives great insights during the modelling process and can accelerate the process. Additionally cost-savings and time-savings are apparent due to the decrease in input data required for simulating large-scale irrigation areas.

  20. Coupled Crop/Hydrology Model to Estimate Expanded Irrigation Impact on Water Resources

    Science.gov (United States)

    Handyside, C. T.; Cruise, J.

    2017-12-01

    , statistics such as the number of times certain WASSI thresholds are exceeded are calculated to show the impact of expanded irrigation during times of hydrologic drought and the coincident use of water by other sectors. Also, integrated downstream impacts of irrigation are also calculated through changes in flows through the whole river systems.

  1. Adaptive management of irrigation and crops' biodiversity: a case study on tomato

    Science.gov (United States)

    De Lorenzi, Francesca; Alfieri, Silvia Maria; Basile, Angelo; Bonfante, Antonello; Monaco, Eugenia; Riccardi, Maria; Menenti, Massimo

    2013-04-01

    We have assessed the impacts of climate change and evaluated options to adapt irrigation management in the face of predicted changes of agricultural water demand. We have evaluated irrigation scheduling and its effectiveness (versus crop transpiration), and cultivars' adaptability. The spatial and temporal variations of effectiveness and adaptability were studied in an irrigated district of Southern Italy. Two climate scenarios were considered: reference (1961-90) and future (2021-2050) climate, the former from climatic statistics, and the latter from statistical downscaling of general circulation models (AOGCM). Climatic data consist of daily time series of maximum and minimum temperature, and daily rainfall on a grid with a spatial resolution of 35 km. The work was carried out in the Destra Sele irrigation scheme (18.000 ha. Twenty-five soil units were identified and their hydrological properties were determined (measured or estimated from texture through pedo-transfer functions). A tomato crop, in a rotation typical of the area, was considered. A mechanistic model of water flow in the soil-plant-atmosphere system (SWAP) was used to study crop water requirements and water consumption. The model was calibrated and validated in the same area for many different crops. Tomato crop input data and model parameters were estimated on the basis of scientific literature and assumed to be generically representative of the species. Simulations were performed for reference and future climate, and for different irrigation scheduling options. In all soil units, six levels of irrigation volumes were applied: full irrigation (100%), deficit irrigation (80%, 60%, 40%, 20%), no irrigation. From simulation runs, indicators of soil water availability were calculated, moreover the marginal increases of transpiration per unit of irrigation volume, i.e. the effectiveness of irrigation (ΔT/I), were computed, in both climate scenarios. Indicators and marginal increases were used to

  2. Numerical model for surge and swab pressures on wells with cross-section variation

    Energy Technology Data Exchange (ETDEWEB)

    Fedevjcyk, Joao Victor; Junqueira, Silvio Luiz de Mello; Negrao, Cezar Otaviano Ribeiro [UTFPR - Federal University of Technology - Parana - Curitiba, PR (Brazil)], e-mails: silvio@utfpr.edu.br, negrao@utfpr.edu.br

    2010-07-01

    Drilling is one of the most complex steps in petroleum exploration. The process is accomplished by rotating a drill bit to compress the rock formation. During drilling, a fluid is pumped into the well to lubricate and cool down the drill bit, to clean up the well, to avoid the formation fluid influx to the well and also to stabilize the borehole walls. Fluid circulation, however, can be interrupted for maintenance reasons and the drill pipe can be moved to remove the drill bit. The downward or upward movement of the drill pipe displaces the fluid within the well causing either under pressure (swab) or over pressure (surge), respectively. If the pressure at the well bore overcomes the formation fracture pressure, a loss of circulation can take place. On the other way round, the upward movement may reduce the pressure below the pore pressure and an inflow of fluid to the well (kick) can occur. An uncontrolled kick may cause a blowout with serious damages. The transient flow induced by the axial movement of the drill pipe is responsible for the pressure changes at the well bore. Nevertheless, the well bore cross section variation may modify the pressure change within the pipe. In this paper, the effects of diameter variation of the drilling well on the surge and swab pressures are investigated. The equations that represent the phenomenon (mass and momentum conservation) are discretized by the finite volume method. Despite its non-Newtonian properties, the fluid is considered Newtonian in this first work. The drill pipe is considered closed and the flow is assumed as single-phased, one-dimensional, isothermal, laminar, compressible and transient. A sensitivity analysis of the flow parameters is carried out. The cross-section changes cause the reflection of the pressure wave, and consequently pressure oscillations. (author)

  3. Modernisation Strategy for National Irrigation Systems in the Philippines: Balanac and Sta. Maria River Irrigation Systems

    NARCIS (Netherlands)

    Delos Reyes, M.L.F.

    2017-01-01

    This book examines the nature and impact of irrigation system rehabilitation on increasing the actual area irrigated by the publicly funded canal irrigation systems of the Philippines. It proposes a system diagnosis approach for the development of a more appropriate and climate-smart irrigation

  4. Sustainable management after irrigation system transfer : experiences in Colombia - the RUT irrigation district

    NARCIS (Netherlands)

    Urrutia Cobo, N.

    2006-01-01

    Colombiais a tropical country located in South America. It has a total area of 114 million ha. In Colombia two irrigation sectors are distinguished: the small-scale irrigation and the large-scale irrigation sector. The small-scale irrigation sector is developed on lands

  5. Bedform reconstruction using Terrestrial Laser Scanning at Hunt's Hole, New Mexico: implications for sediment transport in pyroclastic surge deposits and criteria for their identification on Mars

    Science.gov (United States)

    Edgar, L.; Grotzinger, J. P.; Ewing, R. C.; Southard, J. B.; Lamb, M. P.

    2011-12-01

    Pyroclastic surges are dilute flows of gas and rock fragments, typically generated by the interaction of magma and water. Due to their hazardous nature, very little is known about sediment transport during these eruptions. However, the cross-stratified deposits that they leave behind provide an important record of flow conditions, if properly interpreted. In the absence of geologic context (and volcanic indicators such as bombs and lapilli), it may be difficult to distinguish bedforms in pyroclastic surge deposits from those in eolian or fluvial deposits. There has been some debate about the identification of pyroclastic surge deposits on Mars, suggesting a need to establish better criteria for recognizing these deposits in remote sensing applications. The goals of this study are to use physical characteristics to better understand bedform kinematics and gain insight into the flow dynamics of pyroclastic surges, and to establish criteria to distinguish pyroclastic surges from other depositional environments on Mars. Two examples of pyroclastic surge deposits are exposed in Hunt's Hole (HH) and Kilbourne Hole in southern NM. These volcanic craters expose up to 13 m of stratigraphy, dominated by dm-to-m-scale bedforms. The geomorphic pattern around the rim of HH provides 3D exposures at the scale of the bedforms, which enables observations of bedform geometries. We identify several facies, and measure bedform characteristics in the cross-stratified facies. Bedforms range in height from 25-80 cm, and wavelength from 190-460 cm. Stoss slope angles range from 4-11°, and lee slope from 2-18°. Geometries indicate possible bedform merging, as smaller bedforms overtake others to build larger features. Bedform interactions have been described in modern eolian systems, typically in plan-view, but these surge deposits may provide an opportunity to observe them in outcrop in cross-section. We propose that bedforms in pyroclastic surges can be identified by a unique style of

  6. GSM BASED IRRIGATION CONTROL AND MONITORING SYSTEM

    OpenAIRE

    GODFREY A. MILLS; STEPHEN K. ARMOO; AGYEMAN K. ROCKSON; ROBERT A. SOWAH; MOSES A. ACQUAH

    2013-01-01

    Irrigated agriculture is one of the primary water consumers in most parts of the world. With developments in technology, efforts are being channeled into automation of irrigation systems to facilitate remote control of the irrigation system and optimize crop production and cost effectiveness. This paper describes an on-going work on GSM based irrigation monitoring and control systems. The objective of the work is to provide an approach that helps farmers to easily access, manage and regulate ...

  7. Measuring Transpiration to Regulate Winter Irrigation Rates

    Energy Technology Data Exchange (ETDEWEB)

    Samuelson, Lisa [Auburn University

    2006-11-08

    Periodic transpiration (monthly sums) in a young loblolly pine plantation between ages 3 and 6 was measured using thermal dissipation probes. Fertilization and fertilization with irrigation were better than irrigation alone in increasing transpiration of young loblolly pines during winter months, apparently because of increased leaf area in fertilized trees. Irrigation alone did not significantly increase transpiration compared with the non-fertilized and non-irrigated control plots.

  8. Comparative efficiency of trickle and furrow irrigation

    International Nuclear Information System (INIS)

    Hanif, M.; Qureshi, R.H.; Sandhu, G.R.

    1976-01-01

    Comparison of furrow and trickle methods of irrigation to know their relative efficiency with respect to water applied and fertilizer used on tomatoes, cauliflower and lettuce as test crops using canal water, showed a significant saving of about 44 and 41 per cent respectively for irrigation water and fertilizer applied with trickle as compared to furrow irrigation. Trickle irrigated crops also showed a better response as regards the rate of survival, crop growth and time of maturity

  9. Newer Root Canal Irrigants in Horizon: A Review

    Directory of Open Access Journals (Sweden)

    Sushma Jaju

    2011-01-01

    Full Text Available Sodium hypochloride is the most commonly used endodontic irrigant, despite limitations. None of the presently available root canal irrigants satisfy the requirements of ideal root canal irrigant. Newer root canal irrigants are studied for potential replacement of sodium hypochloride. This article reviews the potential irrigants with their advantages and limitations with their future in endodontic irrigation.

  10. 21 CFR 876.5895 - Ostomy irrigator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ostomy irrigator. 876.5895 Section 876.5895 Food... DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5895 Ostomy irrigator. (a) Identification. An ostomy irrigator is a device that consists of a container for fluid, tubing with a cone-shaped...

  11. Computer-Aided Design System Development of Fixed Water Distribution of Pipe Irrigation System

    OpenAIRE

    Zhou , Mingyao; Wang , Susheng; Zhang , Zhen; Chen , Lidong

    2010-01-01

    International audience; It is necessary to research a cheap and simple fixed water distribution device according to the current situation of the technology of low-pressure pipe irrigation. This article proposed a fixed water distribution device with round table based on the analysis of the hydraulic characteristics of low-pressure pipe irrigation systems. The simulation of FLUENT and GAMBIT software conducted that the flow of this structure was steady with a low head loss comparing to other t...

  12. Effect of layout on surge line thermal stratification

    International Nuclear Information System (INIS)

    Lai Jianyong; Huang Wei

    2011-01-01

    In order to analyze and evaluate the effect of layout on the thermal stratification for PWR Pressurizer surge line, numerical simulation by Computational Fluid Dynamics (CFD) method is taken on 6 kinds of layout improvement with 2 improvement schemes, i.e., increasing the obliquity of quasi horizontal section and adding a vertical pipe between the quasi horizontal section and next elbow, and the maximum temperature differences of quasi horizontal section of surge line of various layouts under different flowrate are obtained. The comparison shows that, the increasing of the obliquity of quasi horizontal section can mitigate the thermal stratification phenomena but can not eliminate this phenomena, while the adding of a vertical pipe between the quasi horizontal section and next elbow can effectively mitigate and eliminate the thermal stratification phenomena. (authors)

  13. Thermal stratification and fatigue stress analysis for pressurizer surge line

    International Nuclear Information System (INIS)

    Yu Xiaofei; Zhang Yixiong

    2011-01-01

    Thermal stratification of pressurizer surge line induced by the inside fluid results in the global bending moments, local thermal stresses, unexpected displacements and support loadings of the pipe system. In order to avoid a costly three-dimensional computation, a combined 1D/2D technique has been developed and implemented to analyze the thermal stratification and fatigue stress of pressurize surge line of QINSHAN Phase II Extension Nuclear Power Project in this paper, using the computer codes SYSTUS and ROCOCO. According to the mechanical analysis results of stratification, the maximum stress and cumulative usage factor are obtained. The results indicate that the stress and fatigue intensity considering thermal stratification satisfies RCC-M criterion. (authors)

  14. Use of historical information in extreme storm surges frequency analysis

    Science.gov (United States)

    Hamdi, Yasser; Duluc, Claire-Marie; Deville, Yves; Bardet, Lise; Rebour, Vincent

    2013-04-01

    The prevention of storm surge flood risks is critical for protection and design of coastal facilities to very low probabilities of failure. The effective protection requires the use of a statistical analysis approach having a solid theoretical motivation. Relating extreme storm surges to their frequency of occurrence using probability distributions has been a common issue since 1950s. The engineer needs to determine the storm surge of a given return period, i.e., the storm surge quantile or design storm surge. Traditional methods for determining such a quantile have been generally based on data from the systematic record alone. However, the statistical extrapolation, to estimate storm surges corresponding to high return periods, is seriously contaminated by sampling and model uncertainty if data are available for a relatively limited period. This has motivated the development of approaches to enlarge the sample extreme values beyond the systematic period. The nonsystematic data occurred before the systematic period is called historical information. During the last three decades, the value of using historical information as a nonsystematic data in frequency analysis has been recognized by several authors. The basic hypothesis in statistical modeling of historical information is that a perception threshold exists and that during a giving historical period preceding the period of tide gauging, all exceedances of this threshold have been recorded. Historical information prior to the systematic records may arise from high-sea water marks left by extreme surges on the coastal areas. It can also be retrieved from archives, old books, earliest newspapers, damage reports, unpublished written records and interviews with local residents. A plotting position formula, to compute empirical probabilities based on systematic and historical data, is used in this communication paper. The objective of the present work is to examine the potential gain in estimation accuracy with the

  15. Speed control variable rate irrigation

    Science.gov (United States)

    Speed control variable rate irrigation (VRI) is used to address within field variability by controlling a moving sprinkler’s travel speed to vary the application depth. Changes in speed are commonly practiced over areas that slope, pond or where soil texture is predominantly different. Dynamic presc...

  16. Position paper : Whole bowel irrigation

    NARCIS (Netherlands)

    2004-01-01

    Whole bowel irrigation (WBI) should not be used routinely in the management of the poisoned patient. Although some volunteer studies have shown substantial decreases in the bioavailability of ingested drugs, no controlled clinical trials have been performed and there is no conclusive evidence that

  17. The destruction influence of pulse and surge currents on overvoltage protection

    International Nuclear Information System (INIS)

    Glasa, M.; Huettner, L.

    2012-01-01

    This article deals about the influences caused during the active operation process of the surge arrester against the pulse and surge currents. It also refers about a lightning, the characteristic of lightning and about the lightning (surge) currents caused its influence. One parts of the article is focused on a total elimination of surge current energy, and on an ineffective operation, which leads to partially or totally destruction of a protection element. There is a comparison with two basic types of surge arresters (spark gap and varistor based arresters), and theirs re-effectiveness on prescribed level. (Authors)

  18. How to expand irrigated land in a sustainable way ?

    Science.gov (United States)

    Pastor, Amandine V.; Ludwig, Fulco; Palazzo, Amanda; Havlik, Petr; Kabat, Pavel

    2015-04-01

    Allocation of agriculture commodities and water resources is subject to changes due to climate change, population increase and changes in dietary patterns. This study focused on including global water availability including environmental flow requirements with water withdrawal from irrigation and other sectors (industry, household and hydropower) at a monthly time-step in the GLOBIOM model. This model allows re-adjustment of land-use allocation, crop management, consumption and international trade. The GLOBIOM model induces an endogenous change in water price depending on water supply and demand. In this study, the focus was on how the inclusion of water resources affects land-use and, in particular, how global change will influence repartition of irrigated and rainfed lands at global scale. We used the climate change scenario including a radiative forcing of 2.6 W/m2 (RCP2.6), the socio-economic scenario (SSP2: middle-of-road), and the environmental flow method based on monthly flow allocation (the Variable Monthly Flow method) with high and low restrictions. Irrigation withdrawals were adjusted to a monthly time-step to account for biophysical water limitations at finer time resolution. Our results show that irrigated land might decrease up to 37% on average depending on the choice of EFR restrictions. Several areas were identified as future hot-spots of water stress such as the Mediterranean and Middle-East regions and parts of South-East Asia where the Water Stress Indicator (WSI) ranges from 0.4 to 1 by 2050. Other countries were identified to be in safe position in terms of water stress such as North-European countries. Some countries such as India expect a significant increase in water demand which might be compensated by an increase in water supply with climate change scenario. Re-allocation of rainfed and irrigated land might be useful information for land-use planners and water managers at an international level to decide on appropriate legislations on

  19. Hospitals Capability in Response to Disasters Considering Surge Capacity Approach

    Directory of Open Access Journals (Sweden)

    Gholamreza Khademipour

    2016-01-01

    Full Text Available Background: The man-made and natural disasters have adverse effects with sound, apparent, and unknown consequences. Among various components of disaster management in health sector, the most important role is performed by health-treatment systems, especially hospitals. Therefore, the present study aimed to evaluate the surge capacity of hospitals of Kerman Province in disaster in 2015. Materials and Methods: This is a quantitative study, conducted on private, military, and medical sciences hospitals of Kerman Province. The sampling method was total count and data collection for the research was done by questionnaire. The first section of the questionnaire included demographic information of the studied hospitals and second part examined the hospital capacity in response to disasters in 4 fields of equipment, physical space, human resources, and applied programs. The extracted data were analyzed by descriptive statistics. Results: The mean capability of implementing the surge capacity programs by hospitals of Kerman Province in disasters and in 4 fields of equipment, physical space, human resources, and applied programs was evaluated as 7.33% (weak. The surge capacity capability of state hospitals in disasters was computed as 8% and compared to private hospitals (6.07% had a more suitable condition. Conclusion: Based on the results of study and significance of preparedness of hospitals in response to disasters, it is proposed that managers of studied hospitals take measures to promote the hospital response capacity to disasters based on 4 components of increasing hospital capacity.

  20. Modernized Irrigation Technologies in West Africa

    Directory of Open Access Journals (Sweden)

    Hakan Büyükcangaz

    2017-12-01

    Full Text Available Crop production in West Africa is mostly dependent upon rainfed agriculture. Irrigation is a vital need due to uneven distribution of rainfall and seasonality of water resources. However, management and sustainability of irrigation are under risk due to notably weak database, excessive cost, unappropriate soil or land use, environmental problems and extreme pessimism in some quarters since rainfed agriculture is seen as potentially able to support the present population. This paper focuses on modernized irrigation technologies and systems that utilize less water. Information about irrigation systems in Ghana and Liberia were gathered through: 1 Irrigation development authorities in both countries, by reviewing past literatures, online publications, reports and files about irrigation in West Africa, specifically Ghana and Liberia; 2 International Food Policy Research Institute (IFPRI; 3 Collation of information, reports and data from Ghana Irrigation Development Authority (GIDA and 4 International Water Management Institute (IWMI. The result shows that both countries have higher irrigation potential. However, the areas developed for irrigation is still a small portion as compare to the total land available for irrigation. On the other hand, as seen in the result, Liberia as compare to Ghana has even low level of irrigation development.

  1. Modeling irrigation behavior in groundwater systems

    Science.gov (United States)

    Foster, Timothy; Brozović, Nicholas; Butler, Adrian P.

    2014-08-01

    Integrated hydro-economic models have been widely applied to water management problems in regions of intensive groundwater-fed irrigation. However, policy interpretations may be limited as most existing models do not explicitly consider two important aspects of observed irrigation decision making, namely the limits on instantaneous irrigation rates imposed by well yield and the intraseasonal structure of irrigation planning. We develop a new modeling approach for determining irrigation demand that is based on observed farmer behavior and captures the impacts on production and water use of both well yield and climate. Through a case study of irrigated corn production in the Texas High Plains region of the United States we predict optimal irrigation strategies under variable levels of groundwater supply, and assess the limits of existing models for predicting land and groundwater use decisions by farmers. Our results show that irrigation behavior exhibits complex nonlinear responses to changes in groundwater availability. Declining well yields induce large reductions in the optimal size of irrigated area and irrigation use as constraints on instantaneous application rates limit the ability to maintain sufficient soil moisture to avoid negative impacts on crop yield. We demonstrate that this important behavioral response to limited groundwater availability is not captured by existing modeling approaches, which therefore may be unreliable predictors of irrigation demand, agricultural profitability, and resilience to climate change and aquifer depletion.

  2. Monitoring of surge tanks in hydroelectric power plants using fuzzy control; Ueberwachung von Wasserschloessern in Wasserkraftwerken mit Fuzzy-Control

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J.C.

    2000-07-01

    Surge tanks are used to reduce pressure variations caused by fluid transients in high-head hydroelectric power plants. Occasionally load increases have to be limited to prevent the surge tank from draining due to excessive demands of flow. A control concept based on fuzzy logic was developed for governing the load changes of hydroelectric power plants. In order to achieve an optimal control behaviour and simultaneously to avoid the draining of surge tanks, the speed of load increases is automatically adjusted by a fuzzy conclusion depending on the height and the gradient of the water level in the surge tank, the reservoir level and the sum of load increases. The hydroelectric power plant Achensee of Tiroler Wasserkraftwerke AG in Austria is taken as an example to demonstrate the characteristics of the control concept. In comparison with a conventional control concept, the operation of load increases using the fuzzy concept proves to be more flexible and unrestricted. (orig.) [German] Ein Wasserschloss dient zur Verminderung von Druckschwankungen im Wasserfuehrungssystem von Hochdruckanlagen. Gelegentlich muss man die Lastaufnahme so beschraenken, dass das Wasserschloss nicht durch uebermaessige Wasserentnahme leerlaeuft. Fuer die Leistungsregelung eines Wasserkraftwerks wurde ein Konzept entwickelt, das auf der Fuzzy-Control in Verbindung mit der klassischen Regelung beruht. Um ein optimales Regelverhalten zu erhalten und gleichzeitig das Leerlaufen des Wasserschlosses zu vermeiden, wird die Geschwindigkeit der Lastaufnahme in Abhaengigkeit von der Hoehenkote und dem Gradienten des Wasserschlosspegels, dem Pegel des Oberwassers und der Groesse der geforderten Lasterhoehung automatisch eingestellt. Die Untersuchung erfolgt am Beispiel des Achenseekraftwerkes der Tiroler Wasserkraftwerke AG, Oesterreich. Im Vergleich mit einer konventionellen Regelung ergibt sich mit dem Fuzzy-Konzept eine flexiblere und freizuegigere Lastaufnahme. (orig.)

  3. Arsenic transport in irrigation water across rice-field soils in Bangladesh

    International Nuclear Information System (INIS)

    Polizzotto, Matthew L.; Lineberger, Ethan M.; Matteson, Audrey R.; Neumann, Rebecca B.; Badruzzaman, A. Borhan M.; Ashraf Ali, M.

    2013-01-01

    Experiments were conducted to analyze processes impacting arsenic transport in irrigation water flowing over bare rice-field soils in Bangladesh. Dissolved concentrations of As, Fe, P, and Si varied over space and time, according to whether irrigation water was flowing or static. Initially, under flowing conditions, arsenic concentrations in irrigation water were below well-water levels and showed little spatial variability across fields. As flowing-water levels rose, arsenic concentrations were elevated at field inlets and decreased with distance across fields, but under subsequent static conditions, concentrations dropped and were less variable. Laboratory experiments revealed that over half of the initial well-water arsenic was removed from solution by oxidative interaction with other water-column components. Introduction of small quantities of soil further decreased arsenic concentrations in solution. At higher soil-solution ratios, however, soil contributed arsenic to solution via abiotic and biotic desorption. Collectively, these results suggest careful design is required for land-based arsenic-removal schemes. -- Highlights: •We analyzed the processes impacting arsenic transport in flowing irrigation water. •Arsenic in Bangladesh rice-field irrigation water varied over space and time. •Arsenic was correlated with Fe, P, and Si in flowing and static water. •Oxidation, adsorption and desorption reactions controlled arsenic concentrations. •Land-based arsenic removal from water will be impacted by hydraulic conditions. -- Arsenic concentrations in flowing and static irrigation water in Bangladesh varied over space and time, suggesting careful design is required for land-based pre-treatment schemes that aim to remove As from solution

  4. On the physical mechanisms governing self-excited pressure surge in Francis turbines

    International Nuclear Information System (INIS)

    Müller, A; Favrel, A; Landry, C; Yamamoto, K; Avellan, F

    2014-01-01

    The required operating range for hydraulic machines is continually extended in an effort to integrate renewable energy sources with unsteady power outputs into the existing electrical grid. The off-design operation however brings forth unfavorable flow patterns in the machine, causing dynamic problems involving cavitation, which may represent a limiting factor to the energy production. In Francis turbines it is observed that the self-excited oscillation of a vortex rope in the draft tube cone prevents the delivery of maximum power when required. This phenomenon is referred to as full load pressure surge and has been the object of extensive research during the past decades. Several contributions deepened its understanding through measurement and simulation of the local flow properties and the global stability parameters. The draft tube pressure level and the runner outlet swirl are identified as key variables in the modelling of the vortex rope dynamics. Recently, a cyclic appearance of blade cavitation has been observed at overload conditions in a multiphase numerical simulation coupling the runner and the draft tube. From the analysis of the simulation it becomes obvious that the cyclic appearance of blade cavitation has a direct effect on the runner outlet swirl, thus introducing an additional interaction mechanism that is not accounted for in formerly published models. For the presented work, the results of this numerical study are confirmed experimentally on a reduced scale model of a Francis turbine. Several wall pressure measurements in the draft tube cone are performed, together with high speed visualizations of the vortex rope and the blade cavitation. The flow swirl is calculated based on Laser Doppler Velocimetry measurements. A possible mechanism explaining the coupling between the self-excited pressure and vortex rope oscillation and the cyclic appearance of the blade cavitation is proposed. Furthermore, the streamwise propagation speed of the flow

  5. Quantification of hydrological fluxes in irrigated lands using isotopes for improved water use efficiency

    International Nuclear Information System (INIS)

    Iqbal, N.; Rafiq, M.; Iqbal, T.; Fazal, M.

    2012-01-01

    For the study of water percolation using stable and radioactive isotopes, two experimental plots each measuring 5m X 5m were prepared at NIAB Agriculture Farm, Faisalabad. One plot was given normal irrigation and the other was irrigated with almost double quantity of water than the first one. Study was carried out on wheat and maize crops during 2007-2010. Infiltration rates were calculated from the solute transport by advection. The infiltration rates were also calculated by the water balance approach using moisture content data obtained by neutron moisture probe and flow simulation approach using software 'HYDRUS 1D'. The moisture in the field with normal irrigation percolated up to 90 cm depth. It percolated up to 160 cm in the field with excess irrigation. Infiltration rates determined by different techniques are given. The infiltration rates varied during whole of the experiment period. The rates were highest right after irrigation and then decreased with increase in time. The maximum and minimum infiltration rates determined by different techniques are given, which shows that average infiltration rates calculated by the four methods in case of excess irrigation range between 0.4 and 0.51 cm/day and are in good agreement. Infiltration rates in case of normal irrigation were determined only by tritium and water balance approach and range between 0.21 and 0.34 cm/day. (orig./A.B.)

  6. Distribution of the root system of peach palm under drip irrigation

    Directory of Open Access Journals (Sweden)

    Adriano da Silva Lopes

    2014-07-01

    Full Text Available The incorporation of technologies has resulted in increased productivity and the more rational management of peach palm, with irrigation being an important tool for certain regions. Thus, studies leading to proper crop management are extremely important, such as the estimate of the effective depth of the root system, which is indispensable for proper irrigation management. The objective of this study was to evaluate the effects of different irrigation depths, as applied by drip irrigation, on the distribution of the root system of peach palm. This experiment was conducted in Ilha Solteira, São Paulo State, Brazil, with drip irrigation, with the two systems (flow of 0.0023 m3 h-1 consisting of four irrigation treatments corresponding to 0, 50, 100 and 150% of Class ‘A’ pan evaporation. After five years, an analysis of the Bactris gasipaes root system was performed at a distance of 0.0, 0.5 and 1.0 meters from the trunk, collecting sampling at two depths (0.0 to 0.3 m and 0.3 to 0.6 m via the auger method (volumetric analysis. We concluded that the effective depth of the root system used for irrigation management should be a maximum of 0.3 meters.

  7. Irrigation efficiency and water-policy implications for river basin resilience

    Science.gov (United States)

    Scott, C. A.; Vicuña, S.; Blanco-Gutiérrez, I.; Meza, F.; Varela-Ortega, C.

    2014-04-01

    Rising demand for food, fiber, and biofuels drives expanding irrigation withdrawals from surface water and groundwater. Irrigation efficiency and water savings have become watchwords in response to climate-induced hydrological variability, increasing freshwater demand for other uses including ecosystem water needs, and low economic productivity of irrigation compared to most other uses. We identify three classes of unintended consequences, presented here as paradoxes. Ever-tighter cycling of water has been shown to increase resource use, an example of the efficiency paradox. In the absence of effective policy to constrain irrigated-area expansion using "saved water", efficiency can aggravate scarcity, deteriorate resource quality, and impair river basin resilience through loss of flexibility and redundancy. Water scarcity and salinity effects in the lower reaches of basins (symptomatic of the scale paradox) may partly be offset over the short-term through groundwater pumping or increasing surface water storage capacity. However, declining ecological flows and increasing salinity have important implications for riparian and estuarine ecosystems and for non-irrigation human uses of water including urban supply and energy generation, examples of the sectoral paradox. This paper briefly considers three regional contexts with broadly similar climatic and water-resource conditions - central Chile, southwestern US, and south-central Spain - where irrigation efficiency directly influences basin resilience. The comparison leads to more generic insights on water policy in relation to irrigation efficiency and emerging or overdue needs for environmental protection.

  8. Irrigation efficiency and water-policy implications for river-basin resilience

    Science.gov (United States)

    Scott, C. A.; Vicuña, S.; Blanco-Gutiérrez, I.; Meza, F.; Varela-Ortega, C.

    2013-07-01

    Rising demand for food, fiber, and biofuels drives expanding irrigation withdrawals from surface- and groundwater. Irrigation efficiency and water savings have become watchwords in response to climate-induced hydrological variability, increasing freshwater demand for other uses including ecosystem water needs, and low economic productivity of irrigation compared to most other uses. We identify three classes of unintended consequences, presented here as paradoxes. Ever-tighter cycling of water has been shown to increase resource use, an example of the efficiency paradox. In the absence of effective policy to constrain irrigated-area expansion using "saved water", efficiency can aggravate scarcity, deteriorate resource quality, and impair river-basin resilience through loss of flexibility and redundancy. Water scarcity and salinity effects in the lower reaches of basins (symptomatic of the scale paradox) may partly be offset over the short-term through groundwater pumping or increasing surface water storage capacity. However, declining ecological flows and increasing salinity have important implications for riparian and estuarine ecosystems and for non-irrigation human uses of water including urban supply and energy generation, examples of the sectoral paradox. This paper briefly examines policy frameworks in three regional contexts with broadly similar climatic and water-resource conditions - central Chile, southwestern US, and south-central Spain - where irrigation efficiency directly influences basin resilience. The comparison leads to more generic insights on water policy in relation to irrigation efficiency and emerging or overdue needs for environmental protection.

  9. Phosphorus absorption in drip irrigation

    International Nuclear Information System (INIS)

    Guennelon, R.; Habib, R.

    1979-01-01

    Introducing the use of solute phosphate with drip irrigation may be an unsatisfying practice on account of the very weak mobility of PO 4 anion. Nevertheless P can move down to 30-40 cm depth by following the saturated flux along earth-worms holes or crakes, or by displacement in very narrow structural porosity, even in heavy soils. In this case roots cannot easily absorb PO 4 from soil solution, as soon as the soil is quite saturated. On the other hand, it seems that P absorption occurs very quickly and easily when the implantation of 32 P tagged solution is carried out at the border of zone which is concerned by the irrigation effects [fr

  10. Managing Water Resources for Environmentally Sustainable Irrigated Agriculture in Pakistan

    OpenAIRE

    Muhammad Afzal

    1996-01-01

    Pakistan’s agriculture is almost wholly dependent on irrigation and irrigated land supplies more than 90 percent of agricultural production. Irrigation is central to Pakistan’s economy. Massive investments in irrigation contributed to the development of one of the largest Indus Basin Irrigation System. Despite heavy budgetary inputs in irrigation system, it is facing shortage of resources and suffering from operational problems. The sustainability of irrigated agriculture is threatened due to...

  11. Risk assessment of storm surge disaster based on numerical models and remote sensing

    Science.gov (United States)

    Liu, Qingrong; Ruan, Chengqing; Zhong, Shan; Li, Jian; Yin, Zhonghui; Lian, Xihu

    2018-06-01

    Storm surge is one of the most serious ocean disasters in the world. Risk assessment of storm surge disaster for coastal areas has important implications for planning economic development and reducing disaster losses. Based on risk assessment theory, this paper uses coastal hydrological observations, a numerical storm surge model and multi-source remote sensing data, proposes methods for valuing hazard and vulnerability for storm surge and builds a storm surge risk assessment model. Storm surges in different recurrence periods are simulated in numerical models and the flooding areas and depth are calculated, which are used for assessing the hazard of storm surge; remote sensing data and GIS technology are used for extraction of coastal key objects and classification of coastal land use are identified, which is used for vulnerability assessment of storm surge disaster. The storm surge risk assessment model is applied for a typical coastal city, and the result shows the reliability and validity of the risk assessment model. The building and application of storm surge risk assessment model provides some basis reference for the city development plan and strengthens disaster prevention and mitigation.

  12. Technical Evaluation of Sprinkler Irrigation Systems which were Implemented in Tea Fields of the Guilan Province

    Directory of Open Access Journals (Sweden)

    kourosh majdsalimi

    2016-02-01

    measuring pressure fluctuations which were applied to the entire system. Using irrigated area and irrigation water depth, adequacy of irrigation curve, deep percolation losses and spray losses were determined on the basis of existing relationships. Results and Discussion: Average values of CU, DU, PELQ and AELQ for 6 tea fields were 65, 52, 44 and 44 percent, respectively. Application efficiency in all irrigation systems, Christiansen’s uniformity coefficient and distribution uniformity were lower than recommended values in the references. Merriam and Keller (11 reported the allowable range for potential application efficiency of low-quarter between 65 to 85 percent. With respect to irrigation less than the actual water requirement of the plant in tea fields, AELQ was equal with PELQ. Untechnical design and implementation of irrigation systems, particularly poor operating pressure and economic problems were detected as the main reasons for the low PELQ. Simultaneous use of sprinklers with different specifications and models, old irrigation systems, water leakage from valves and other equipment, practically change the pressure and flow rate, which were the main reasons for the decrease in uniformity of water distribution and application efficiency of low-quarter. According to Cobban (4 uniformity coefficient of sprinkler irrigation systems were reported between 31 to 55 percent in Tanzania tea fields and in other reports were between 58 to 72 percent (7, which was due to poor design, long spacing of sprinklers and high speed wind. Christiansen’s uniformity coefficient and distribution uniformity of low-quarter in ED, WB & EP systems were lower than recommended values by Merriam and Keller (%81≥CU≥87% & %67≥DU≥80%(10. In spite of the little losses in deep percolation, irrigation adequacy of these systems was relatively low and unacceptable. In such circumstances, only about 20 to 38% of irrigated area in WA and CK systems, respectively received the required water

  13. Surge currents and voltages at the low voltage power mains during lightning strike to a GSM tower

    Energy Technology Data Exchange (ETDEWEB)

    Markowska, Renata [Bialystok Technical University (Poland)], E-mail: remark@pb.edu.pl

    2007-07-01

    The paper presents the results of numerical calculations of lightning surge currents and voltages in the low voltage power mains system connected to a free standing GSM base station. Direct lightning strike to GSM tower was studied. The analysis concerned the current that flows to the transformer station through AC power mains, the potential difference between the grounding systems of the GSM and the transformer stations and the voltage differences between phase and PE conductors of the power mains underground cable at both the GSM and the transformer sides. The calculations were performed using a numerical program based on the electromagnetic field theory and the method of moments. (author)

  14. IRRIGATION OF ORNAMENTAL PLANT NURSERY

    Directory of Open Access Journals (Sweden)

    Eduardo de Aguiar do Couto

    2013-01-01

    Full Text Available Airports consume significant amounts of water which can be compared to the volume consumed by mid-size cities, thus practices aimed at reducing water consumption are important and necessar y. The objective of this study was to assess the reuse potential of sewage effluent produced at a mid-size international airport for nursery irri gation. The sewage treatment system consisted of a facultative pond followed by a constructed wetland, which were monitored during one hydrological year a nd the parameters COD, pH, solids, nitrogen, phosphorus and Escherichia coli we re analyzed. Removal efficiencies of 85% and 91% were achieved for C OD and solids, respectively. Removal efficiencies for ammonia nitrogen a nd total phosphorus were 77% and 59%, respectively. In terms of E. coli concen tration, the treated effluent met the recommendations by the World Health Organization for reuse in irrigation with the advantage of providing high levels of residual nutrient. The ornamental species Impatiens walleriana was irrigated with treated sewage effluent and plant growth characteristics were evalua ted. The experiment showed that reuse can enhance plant growth without signi ficantly affecting leaf tissue and soil characteristics. This study highlighted th e importance of simple technologies for sewage treatment especially in count ries which still do not present great investment in sanitation and proved that effluent reuse for landscape irrigation can provide great savings of water and financial resources for airport environments.

  15. Simulated optimization of crop yield through irrigation system design and operation based on the spatial variability of soil hydrodynamic properties

    International Nuclear Information System (INIS)

    Gurovich, L.; Stern, J.; Ramos, R.

    1983-01-01

    Spatial autocorrelation and kriging techniques were applied to soil infiltrability data from a 20 hectare field, to separate homogeneous irrigation units. Border irrigation systems were designed for each unit and combinations of units by using DESIGN, a computer model based on soil infiltrability and hydraulics of surface water flow, which enables optimal irrigation systems to be designed. Water depths effectively infiltrated at different points along the irrigation run were determined, and the agronomic irrigation efficiency of the unit evaluated. A modification of Hanks' evapotranspiration model, PLANTGRO, was used to evaluate plant growth, relative crop yield and soil-water economy throughout the growing season, at several points along each irrigation unit. The effect of different irrigation designs on total field yield and total water used for irrigation was evaluated by integrating yield values corresponding to each point, volume and inflow time during each irrigation. For relevant data from winter wheat grown in the central area of Chile during 1981, simulation by an interactive and sequentially recurrent use of DESIGN and PLANTGRO models, was carried out. The results obtained indicate that, when a field is separated into homogeneous irrigation units on the basis of the spatial variability of soil infiltrability and the border irrigation systems are designed according to soil characteristics, both a significant yield increase and less water use can be obtained by comparison with other criteria of field zonification for irrigation management. The use of neutrometric determinations to assess soil-water content during the growing season, as a validation of the results obtained in this work, is discussed. (author)

  16. Hybrid vs Adaptive Ensemble Kalman Filtering for Storm Surge Forecasting

    Science.gov (United States)

    Altaf, M. U.; Raboudi, N.; Gharamti, M. E.; Dawson, C.; McCabe, M. F.; Hoteit, I.

    2014-12-01

    Recent storm surge events due to Hurricanes in the Gulf of Mexico have motivated the efforts to accurately forecast water levels. Toward this goal, a parallel architecture has been implemented based on a high resolution storm surge model, ADCIRC. However the accuracy of the model notably depends on the quality and the recentness of the input data (mainly winds and bathymetry), model parameters (e.g. wind and bottom drag coefficients), and the resolution of the model grid. Given all these uncertainties in the system, the challenge is to build an efficient prediction system capable of providing accurate forecasts enough ahead of time for the authorities to evacuate the areas at risk. We have developed an ensemble-based data assimilation system to frequently assimilate available data into the ADCIRC model in order to improve the accuracy of the model. In this contribution we study and analyze the performances of different ensemble Kalman filter methodologies for efficient short-range storm surge forecasting, the aim being to produce the most accurate forecasts at the lowest possible computing time. Using Hurricane Ike meteorological data to force the ADCIRC model over a domain including the Gulf of Mexico coastline, we implement and compare the forecasts of the standard EnKF, the hybrid EnKF and an adaptive EnKF. The last two schemes have been introduced as efficient tools for enhancing the behavior of the EnKF when implemented with small ensembles by exploiting information from a static background covariance matrix. Covariance inflation and localization are implemented in all these filters. Our results suggest that both the hybrid and the adaptive approach provide significantly better forecasts than those resulting from the standard EnKF, even when implemented with much smaller ensembles.

  17. High Resolution Hurricane Storm Surge and Inundation Modeling (Invited)

    Science.gov (United States)

    Luettich, R.; Westerink, J. J.

    2010-12-01

    Coastal counties are home to nearly 60% of the U.S. population and industry that accounts for over 16 million jobs and 10% of the U.S. annual gross domestic product. However, these areas are susceptible to some of the most destructive forces in nature, including tsunamis, floods, and severe storm-related hazards. Since 1900, tropical cyclones making landfall on the US Gulf of Mexico Coast have caused more than 9,000 deaths; nearly 2,000 deaths have occurred during the past half century. Tropical cyclone-related adjusted, annualized losses in the US have risen from 1.3 billion from 1949-1989, to 10.1 billion from 1990-1995, and $35.8 billion per year for the period 2001-2005. The risk associated with living and doing business in the coastal areas that are most susceptible to tropical cyclones is exacerbated by rising sea level and changes in the characteristics of severe storms associated with global climate change. In the five years since hurricane Katrina devastated the northern Gulf of Mexico Coast, considerable progress has been made in the development and utilization of high resolution coupled storm surge and wave models. Recent progress will be presented with the ADCIRC + SWAN storm surge and wave models. These tightly coupled models use a common unstructured grid in the horizontal that is capable of covering large areas while also providing high resolution (i.e., base resolution down to 20m plus smaller subgrid scale features such as sea walls and levees) in areas that are subject to surge and inundation. Hydrodynamic friction and overland winds are adjusted to account for local land cover. The models scale extremely well on modern high performance computers allowing rapid turnaround on large numbers of compute cores. The models have been adopted for FEMA National Flood Insurance Program studies, hurricane protection system design and risk analysis, and quasi-operational forecast systems for several regions of the country. They are also being evaluated as

  18. Coastal Flooding Hazards due to storm surges and subsidence

    DEFF Research Database (Denmark)

    Sørensen, Carlo; Knudsen, Per; Andersen, Ole B.

    Flooding hazard and risk mapping are major topics in low-lying coastal areas before even considering the adverse effects of sea level rise (SLR) due to climate change. While permanent inundation may be a prevalent issue, more often floods related to extreme events (storm surges) have the largest...... damage potential.Challenges are amplified in some areas due to subsidence from natural and/or anthropogenic causes. Subsidence of even a few mm/y may over time greatly impair the safety against flooding of coastal communities and must be accounted for in order to accomplish the economically most viable...

  19. Vulnerability of Coastal Communities from Storm Surge and Flood Disasters

    Science.gov (United States)

    Bathi, Jejal Reddy; Das, Himangshu S.

    2016-01-01

    Disasters in the form of coastal storms and hurricanes can be very destructive. Preparing for anticipated effects of such disasters can help reduce the public health and economic burden. Identifying vulnerable population groups can help prioritize resources for the most needed communities. This paper presents a quantitative framework for vulnerability measurement that incorporates both socioeconomic and flood inundation vulnerability. The approach is demonstrated for three coastal communities in Mississippi with census tracts being the study unit. The vulnerability results are illustrated as thematic maps for easy usage by planners and emergency responders to assist in prioritizing their actions to vulnerable populations during storm surge and flood disasters. PMID:26907313

  20. Pressure surge free fire water systems increase safety on offshore oil- and gas drilling platforms

    International Nuclear Information System (INIS)

    Carlsen, Randi

    2001-01-01

    The article describes a new fire water system for use on the oil- and gas drilling platforms that is characterized by improved start-up time and reduced energy consumption. Deluge valves are commonly used in fast large-flow fire water systems all over the world. During the test of a new fire water system on a platform a few years ago, a pipe near the living quarter suddenly ruptured due to an unexpected pressure surge thought to be impossible. It was caused by a weakness of the deluge valve. A better valve was needed and the 'UniqValve' was designed and manufactured. The UniqValve operates in cooperation with the fire pumps during start-up as it 'reads' the pressure variations of the water flow and corrects the water flow to the fire areas in less than a tenth of a second. The valve is now integrated in a modular system. The fire water unit is mounted in a container, which reduces cost and simplifies the placement of the fire water installation

  1. Experimental Hydro-Mechanical Characterization of Full Load Pressure Surge in Francis Turbines

    Science.gov (United States)

    Müller, A.; Favrel, A.; Landry, C.; Yamamoto, K.; Avellan, F.

    2017-04-01

    Full load pressure surge limits the operating range of hydro-electric generating units by causing significant power output swings and by compromising the safety of the plant. It appears during the off-design operation of hydraulic machines, which is increasingly required to regulate the broad integration of volatile renewable energy sources into the existing power network. The underlying causes and governing physical mechanisms of this instability were investigated in the frame of a large European research project and this paper documents the main findings from two experimental campaigns on a reduced scale model of a Francis turbine. The multi-phase flow in the draft tube is characterized by Particle Image Velocimetry, Laser Doppler Velocimetry and high-speed visualizations, along with synchronized measurements of the relevant hydro-mechanical quantities. The final result is a comprehensive overview of how the unsteady draft tube flow and the mechanical torque on the runner shaft behave during one mean period of the pressure oscillation, thus defining the unstable fluid-structure interaction responsible for the power swings. A discussion of the root cause is initiated, based on the state of the art. Finally, the latest results will enable a validation of recent RANS flow simulations used for determining the key parameters of hydro-acoustic stability models.

  2. Water sensors with cellular system eliminate tail water drainage in alfalfa irrigation

    Directory of Open Access Journals (Sweden)

    Rajat Saha

    2011-10-01

    Full Text Available Alfalfa is the largest consumer of water among all crops in California. It is generally flood-irrigated, so any system that decreases runoff can improve irrigation efficiency and conserve water. To more accurately manage the water flow at the tail (bottom end of the field in surface-irrigated alfalfa crops, we developed a system that consists of wetting-front sensors, a cellular communication system and a water advance model. This system detects the wetting front, determines its advance rate and generates a cell-phone alert to the irrigator when the water supply needs to be cut off, so that tail water drainage is minimized. To test its feasibility, we conducted field tests during the 2008 and 2009 alfalfa growing seasons. The field experiments successfully validated the methodology, producing zero tail water drainage.

  3. Optimal Design and Operation of Permanent Irrigation Systems

    Science.gov (United States)

    Oron, Gideon; Walker, Wynn R.

    1981-01-01

    Solid-set pressurized irrigation system design and operation are studied with optimization techniques to determine the minimum cost distribution system. The principle of the analysis is to divide the irrigation system into subunits in such a manner that the trade-offs among energy, piping, and equipment costs are selected at the minimum cost point. The optimization procedure involves a nonlinear, mixed integer approach capable of achieving a variety of optimal solutions leading to significant conclusions with regard to the design and operation of the system. Factors investigated include field geometry, the effect of the pressure head, consumptive use rates, a smaller flow rate in the pipe system, and outlet (sprinkler or emitter) discharge.

  4. Multidecadal Scale Detection Time for Potentially Increasing Atlantic Storm Surges in a Warming Climate

    Science.gov (United States)

    Lee, Benjamin Seiyon; Haran, Murali; Keller, Klaus

    2017-10-01

    Storm surges are key drivers of coastal flooding, which generate considerable risks. Strategies to manage these risks can hinge on the ability to (i) project the return periods of extreme storm surges and (ii) detect potential changes in their statistical properties. There are several lines of evidence linking rising global average temperatures and increasingly frequent extreme storm surges. This conclusion is, however, subject to considerable structural uncertainty. This leads to two main questions: What are projections under various plausible statistical models? How long would it take to distinguish among these plausible statistical models? We address these questions by analyzing observed and simulated storm surge data. We find that (1) there is a positive correlation between global mean temperature rise and increasing frequencies of extreme storm surges; (2) there is considerable uncertainty underlying the strength of this relationship; and (3) if the frequency of storm surges is increasing, this increase can be detected within a multidecadal timescale (≈20 years from now).

  5. Climate change reduces water availability for agriculture by decreasing non-evaporative irrigation losses

    Science.gov (United States)

    Malek, Keyvan; Adam, Jennifer C.; Stöckle, Claudio O.; Peters, R. Troy

    2018-06-01

    Irrigation efficiency plays an important role in agricultural productivity; it affects farm-scale water demand, and the partitioning of irrigation losses into evaporative and non-evaporative components. This partitioning determines return flow generation and thus affects water availability. Over the last two decades, hydrologic and agricultural research communities have significantly improved our understanding of the impacts of climate change on water availability and food productivity. However, the impacts of climate change on the efficiency of irrigation systems, particularly on the partitioning between evaporative and non-evaporative losses, have received little attention. In this study, we incorporated a process-based irrigation module into a coupled hydrologic/agricultural modeling framework (VIC-CropSyst). To understand how climate change may impact irrigation losses, we applied VIC-CropSyst over the Yakima River basin, an important agricultural region in Washington State, U.S. We compared the historical period of 1980-2010 to an ensemble of ten projections of climate for two future periods: 2030-2060 and 2060-2090. Results averaged over the watershed showed that a 9% increase in evaporative losses will be compensated by a reduction of non-evaporative losses. Therefore, overall changes in future efficiency are negligible (-0.4%) while the Evaporative Loss Ratio (ELR) (defined as the ratio of evaporative to non-evaporative irrigation losses) is enhanced by 10%. This higher ELR is associated with a reduction in return flows, thus negatively impacting downstream water availability. Results also indicate that the impact of climate change on irrigation losses depend on irrigation type and climate scenarios.

  6. Future irrigation expansion outweigh groundwater recharge gains from climate change in semi-arid India.

    Science.gov (United States)

    Sishodia, Rajendra P; Shukla, Sanjay; Wani, Suhas P; Graham, Wendy D; Jones, James W

    2018-09-01

    Simultaneous effects of future climate and irrigation intensification on surface and groundwater systems are not well understood. Efforts are needed to understand the future groundwater availability and associated surface flows under business-as-usual management to formulate policy changes to improve water sustainability. We combine measurements with integrated modeling (MIKE SHE/MIKE11) to evaluate the effects of future climate (2040-2069), with and without irrigation expansion, on water levels and flows in an agricultural watershed in low-storage crystalline aquifer region of south India. Demand and supply management changes, including improved efficiency of irrigation water as well as energy uses, were evaluated. Increased future rainfall (7-43%, from 5 Global Climate Models) with no further expansion of irrigation wells increased the groundwater recharge (10-55%); however, most of the recharge moved out of watershed as increased baseflow (17-154%) with a small increase in net recharge (+0.2mm/year). When increased rainfall was considered with projected increase in irrigation withdrawals, both hydrologic extremes of well drying and flooding were predicted. A 100-year flow event was predicted to be a 5-year event in the future. If irrigation expansion follows the historical trends, earlier and more frequent well drying, a source of farmers' distress in India, was predicted to worsen in the future despite the recharge gains from increased rainfall. Storage and use of excess flows, improved irrigation efficiency with flood to drip conversion in 25% of irrigated area, and reduced energy subsidy (free electricity for 3.5h compared to 7h/day; $1 billion savings) provided sufficient water savings to support future expansion in irrigated areas while mitigating well drying as well as flooding. Reductions in energy subsidy to fund the implementation of economically desirable (high benefit-cost ratio) demand (drip irrigation) and supply (water capture and storage

  7. 75 FR 43958 - Turlock Irrigation District and Modesto Irrigation District; Notice of Application for Amendment...

    Science.gov (United States)

    2010-07-27

    ... to the Turlock Irrigation District's Tuolumne Substation; (2) 23-mile-long, 69-kV Don Pedro-Hawkins Line extending from the Don Pedro switchyard to the Turlock Irrigation District's Hawkins Substation...

  8. Effect of low-cost irrigation methods on microbial contamination of lettuce irrigated with untreated wastewater

    DEFF Research Database (Denmark)

    Keraita, Bernard; Konradsen, Flemming; Drechsel, P.

    2007-01-01

    OBJECTIVE: To assess the effectiveness of simple irrigation methods such as drip irrigation kits, furrow irrigation and use of watering cans in reducing contamination of lettuce irrigated with polluted water in urban farming in Ghana. METHODS: Trials on drip kits, furrow irrigation and watering...... cans were conducted with urban vegetable farmers. Trials were arranged in a completely randomised block design with each plot having all three irrigation methods tested. This was conducted in both dry and wet seasons. Three hundred and ninety-six lettuce, 72 soil, 15 poultry manure and 32 water samples...... were analysed for thermotolerant coliforms and helminth eggs. RESULTS: Lettuce irrigated with drip kits had the lowest levels of contamination, with, on average, 4 log units per 100 g, fewer thermotolerant coliforms than that irrigated with watering cans. However, drip kits often got clogged, required...

  9. Introduction: Panda or Hydra? The untold stories of drip irrigation

    NARCIS (Netherlands)

    Kuper, M.; Venot, J.P.; Zwarteveen, M.; Venot, J.P.; Kuper, M.; Zwarteveen, M.

    2017-01-01

    Irrigated areas in the world are witnessing a transformation from open canal systems to more ‘modern’ irrigation methods such as drip irrigation that convey water through closed pipe systems. Initially associated with hi-tech irrigated agriculture, drip irrigation is now being used by a wide range

  10. Saline water irrigation for crop production

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Singh, S S; Singh, S R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India)

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation.

  11. Saline water irrigation for crop production

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Singh, S.R.

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation

  12. The Use of a Statistical Model of Storm Surge as a Bias Correction for Dynamical Surge Models and its Applicability along the U.S. East Coast

    Directory of Open Access Journals (Sweden)

    Haydee Salmun

    2015-02-01

    Full Text Available The present study extends the applicability of a statistical model for prediction of storm surge originally developed for The Battery, NY in two ways: I. the statistical model is used as a biascorrection for operationally produced dynamical surge forecasts, and II. the statistical model is applied to the region of the east coast of the U.S. susceptible to winter extratropical storms. The statistical prediction is based on a regression relation between the “storm maximum” storm surge and the storm composite significant wave height predicted ata nearby location. The use of the statistical surge prediction as an alternative bias correction for the National Oceanic and Atmospheric Administration (NOAA operational storm surge forecasts is shownhere to be statistically equivalent to the existing bias correctiontechnique and potentially applicable for much longer forecast lead times as well as for storm surge climate prediction. Applying the statistical model to locations along the east coast shows that the regression relation can be “trained” with data from tide gauge measurements and near-shore buoys along the coast from North Carolina to Maine, and that it provides accurate estimates of storm surge.

  13. The Genesis of Tropical Cyclone Bilis (2000) Associated with Cross-equatorial Surges

    Institute of Scientific and Technical Information of China (English)

    XU Yamei

    2011-01-01

    The purpose of this paper is to explore how a tropical cyclone forms from a pre-existing large-scale depression which has been observed and associated with cross-equatorial surges in the western North Pacific. Tropical cyclone Bilis (2000) was selected as the case to study. The research data used are from the results of the non-hydrostatic mesoscale model (MM5), which has successfully simulated the transformation of a pre-existing weak large-scale tropical depression into a strong tropical storm. The scale separation technique is used to separate the synoptic-scale and sub-synoptic-scale fields from the model output fields. The scale-separated fields show that the pre-existing synoptic-scale tropical depression and the subsynoptic scale tropical cyclone formed later were different scale systems from beginning to end. It is also shown that the pre-existing synoptic-scale tropical depression did not contract to become the tropical cyclone. A series of weak, sub-synoptic-scale low and high pressure systems appeared and disappeared in the synopticscale depression, with one of the low systems near the center of the synoptic-scale depression having deepened to become the tropical cyclone. The roles of the synoptic-scale flow and the sub-synoptic scale disturbances in the formation of the tropical cyclone are investigated by diagnoses of the scale-separated vertical vorticity equation. The results show that the early development of the sub-synoptic scale vortex was fundamentally dependent on the strengthening synoptic-scale environmental depression. The depression was strengthened by cross-equatorial surges, which increased the convergence of the synoptic-scale depression at low levels and triggered the formation of the tropical cyclone.

  14. Tide-surge interaction along the east coast of the Leizhou Peninsula, South China Sea

    Science.gov (United States)

    Zhang, Heng; Cheng, Weicong; Qiu, Xixi; Feng, Xiangbo; Gong, Wenping

    2017-06-01

    A triply-nested two-dimensional (2D) ocean circulation model along with observed sea level records are used to study tide-surge interaction along the east coast of the Leizhou Peninsula (LP) which is characterized by extensive mudflats, large tidal ranges and a complex coastline. The dependency of surge maxima on the water level and the phase of tide are respectively investigated using two statistical approaches. Results show that tide-surge interaction along the east coast of the LP is significant, where surges peak 3-6 h before or after the nearest high water. The triply-nested 2D ocean circulation model is used to quantify tide-surge interaction in this region and to investigate its physical cause. The largest amplitudes of tide-surge interaction are found in the shallow water region of the Leizhou Bay, with values up to 1 m during typhoon events. Numerical experiments reveal that nonlinear bottom friction is the main contributor to tide-surge interaction, while the contribution of the nonlinear advective effect can be neglected. The shallow water effect enhances the role of nonlinear bottom friction in determining tide-surge modulation, leaving the surge peaks usually occur on the rising or falling tide. It is also found that the relative contribution of local wind and remote wind is different depending on the storm track and storm intensity, which would finally affect the temporal and spatial distribution of tide-surge interaction during typhoon events. These findings confirm the importance of coupling storm surges and tides for the prediction of storm surge events in regions which are characterized by shallow water depths and large tidal ranges.

  15. Characteristics and possibilities of software tool for metal-oxide surge arresters selection

    Directory of Open Access Journals (Sweden)

    Đorđević Dragan

    2012-01-01

    Full Text Available This paper presents a procedure for the selection of metal-oxide surge arresters based on the instructions given in the Siemens and ABB catalogues, respecting their differences and the characteristics and possibilities of the software tool. The software tool was developed during the preparation of a Master's thesis titled, 'Automation of Metal-Oxide Surge Arresters Selection'. An example is presented of the selection of metal-oxide surge arresters using the developed software tool.

  16. Mapping and Visualization of Storm-Surge Dynamics for Hurricane Katrina and Hurricane Rita

    Science.gov (United States)

    Gesch, Dean B.

    2009-01-01

    The damages caused by the storm surges from Hurricane Katrina and Hurricane Rita were significant and occurred over broad areas. Storm-surge maps are among the most useful geospatial datasets for hurricane recovery, impact assessments, and mitigation planning for future storms. Surveyed high-water marks were used to generate a maximum storm-surge surface for Hurricane Katrina extending from eastern Louisiana to Mobile Bay, Alabama. The interpolated surface was intersected with high-resolution lidar elevation data covering the study area to produce a highly detailed digital storm-surge inundation map. The storm-surge dataset and related data are available for display and query in a Web-based viewer application. A unique water-level dataset from a network of portable pressure sensors deployed in the days just prior to Hurricane Rita's landfall captured the hurricane's storm surge. The recorded sensor data provided water-level measurements with a very high temporal resolution at surveyed point locations. The resulting dataset was used to generate a time series of storm-surge surfaces that documents the surge dynamics in a new, spatially explicit way. The temporal information contained in the multiple storm-surge surfaces can be visualized in a number of ways to portray how the surge interacted with and was affected by land surface features. Spatially explicit storm-surge products can be useful for a variety of hurricane impact assessments, especially studies of wetland and land changes where knowledge of the extent and magnitude of storm-surge flooding is critical.

  17. A Comparison of Ensemble Kalman Filters for Storm Surge Assimilation

    KAUST Repository

    Altaf, Muhammad

    2014-08-01

    This study evaluates and compares the performances of several variants of the popular ensembleKalman filter for the assimilation of storm surge data with the advanced circulation (ADCIRC) model. Using meteorological data from Hurricane Ike to force the ADCIRC model on a domain including the Gulf ofMexico coastline, the authors implement and compare the standard stochastic ensembleKalman filter (EnKF) and three deterministic square root EnKFs: the singular evolutive interpolated Kalman (SEIK) filter, the ensemble transform Kalman filter (ETKF), and the ensemble adjustment Kalman filter (EAKF). Covariance inflation and localization are implemented in all of these filters. The results from twin experiments suggest that the square root ensemble filters could lead to very comparable performances with appropriate tuning of inflation and localization, suggesting that practical implementation details are at least as important as the choice of the square root ensemble filter itself. These filters also perform reasonably well with a relatively small ensemble size, whereas the stochastic EnKF requires larger ensemble sizes to provide similar accuracy for forecasts of storm surge.

  18. A Comparison of Ensemble Kalman Filters for Storm Surge Assimilation

    KAUST Repository

    Altaf, Muhammad; Butler, T.; Mayo, T.; Luo, X.; Dawson, C.; Heemink, A. W.; Hoteit, Ibrahim

    2014-01-01

    This study evaluates and compares the performances of several variants of the popular ensembleKalman filter for the assimilation of storm surge data with the advanced circulation (ADCIRC) model. Using meteorological data from Hurricane Ike to force the ADCIRC model on a domain including the Gulf ofMexico coastline, the authors implement and compare the standard stochastic ensembleKalman filter (EnKF) and three deterministic square root EnKFs: the singular evolutive interpolated Kalman (SEIK) filter, the ensemble transform Kalman filter (ETKF), and the ensemble adjustment Kalman filter (EAKF). Covariance inflation and localization are implemented in all of these filters. The results from twin experiments suggest that the square root ensemble filters could lead to very comparable performances with appropriate tuning of inflation and localization, suggesting that practical implementation details are at least as important as the choice of the square root ensemble filter itself. These filters also perform reasonably well with a relatively small ensemble size, whereas the stochastic EnKF requires larger ensemble sizes to provide similar accuracy for forecasts of storm surge.

  19. New technology and tool prepared for communication against storm surges.

    Science.gov (United States)

    Letkiewicz, Beata

    2010-05-01

    The aim of the presentation is description of the new technology and tool prepared for communication, information and issue of warnings against storm surges. The Maritime Branch of the Institute of Meteorology and Water Management is responsible for preparing the forecast as warning, where the end users are Government Officials and Public. The Maritime Branch carry out the project "Strengthening the administrative capacity in order to improve the management of Polish coastal zone environment" (supported by a grant from Norway through the Norwegian Financial Mechanism). The expected final result of the project is web site www.baltyk.pogodynka.pl. One of the activities of the project is - set up of information website www.baltyk.pogodynka.pl, giving public access to the complied data. Information on web site: - meta data - marine data (on-line measurement: sea level, water temperature, salinity, oxygen concentration); - data bases of mathematical model outputs - forecast data (sea level, currents); - ice conditions of the Baltic Sea, - instructions, information materials with information of polish coastal zone. The aim of set up of the portal is development of communication between users of the system, exchange of the knowledge of marine environment and natural hazards such as storm surges, improving the ability of the region in the scope of the data management about the sea environment and the coastal zone.

  20. Senegal - Irrigation and Water Resource Management

    Data.gov (United States)

    Millennium Challenge Corporation — IMPAQ: This evaluation report presents findings from the baseline data collected for the Irrigation and Water Resources Management (IWRM) project, which serves as...

  1. SURGTANK, Steam Pressure, Saturation Temperature or Reactor Surge Tank

    International Nuclear Information System (INIS)

    Gorman, D.J.; Gupta, R.K.

    2001-01-01

    1 - Description of problem or function: SURGTANK generates the steam pressure, saturation temperature, and ambient temperature history for a nuclear reactor steam surge tank (pressurizer) in a state of thermodynamic equilibrium subjected to a liquid insurge described by a specified time history of liquid levels. It is capable also of providing the pressure and saturation temperature history, starting from thermodynamic equilibrium conditions, for the same tank subjected to an out-surge described by a time history of liquid levels. Both operations are available for light- or heavy- water nuclear reactor systems. The tank is assumed to have perfect thermal insulation on its outer wall surfaces. 2 - Method of solution: Surge tank geometry and initial liquid level and saturation pressure are provided as input for the out-surge problem, along with the prescribed time-sequence level history. SURGTANK assumes a reduced pressure for the end of the first change in liquid level and determines the associated change of entropy for the closed system. The assumed pressure is adjusted and the associated change in entropy recalculated until a pressure is attained for which no change occurs. This pressure is recorded and used as the beginning pressure for the next level increment. The system is then re-defined to exclude the small amount of liquid which has left the tank, and a solution for the pressure at the end of the second level increment is obtained. The procedure is terminated when the pressure at the end of the final increment has been determined. Surge tank geometry, thermal conductivity, specific heat, and density of tank walls, initial liquid level, and saturation pressure are provided as input for the insurge problem, along with the prescribed time-sequence level history. SURGTANK assumes a slightly in- creased pressure for the end of the first level, the inner tank sur- face is assumed to follow saturation temperature, linearly with time, throughout the interval, and

  2. Evaluation of Loss Due to Storm Surge Disasters in China Based on Econometric Model Groups

    Science.gov (United States)

    Shi, Xiaoxia; Xu, Tongbin; Yin, Kedong

    2018-01-01

    Storm surge has become an important factor restricting the economic and social development of China’s coastal regions. In order to improve the scientific judgment of future storm surge damage, a method of model groups is proposed to refine the evaluation of the loss due to storm surges. Due to the relative dispersion and poor regularity of the natural property data (login center air pressure, maximum wind speed, maximum storm water, super warning water level, etc.), storm surge disaster is divided based on eight kinds of storm surge disaster grade division methods combined with storm surge water, hypervigilance tide level, and disaster loss. The storm surge disaster loss measurement model groups consist of eight equations, and six major modules are constructed: storm surge disaster in agricultural loss, fishery loss, human resource loss, engineering facility loss, living facility loss, and direct economic loss. Finally, the support vector machine (SVM) model is used to evaluate the loss and the intra-sample prediction. It is indicated that the equations of the model groups can reflect in detail the relationship between the damage of storm surges and other related variables. Based on a comparison of the original value and the predicted value error, the model groups pass the test, providing scientific support and a decision basis for the early layout of disaster prevention and mitigation. PMID:29584628

  3. Evaluation of Loss Due to Storm Surge Disasters in China Based on Econometric Model Groups.

    Science.gov (United States)

    Jin, Xue; Shi, Xiaoxia; Gao, Jintian; Xu, Tongbin; Yin, Kedong

    2018-03-27

    Storm surge has become an important factor restricting the economic and social development of China's coastal regions. In order to improve the scientific judgment of future storm surge damage, a method of model groups is proposed to refine the evaluation of the loss due to storm surges. Due to the relative dispersion and poor regularity of the natural property data (login center air pressure, maximum wind speed, maximum storm water, super warning water level, etc.), storm surge disaster is divided based on eight kinds of storm surge disaster grade division methods combined with storm surge water, hypervigilance tide level, and disaster loss. The storm surge disaster loss measurement model groups consist of eight equations, and six major modules are constructed: storm surge disaster in agricultural loss, fishery loss, human resource loss, engineering facility loss, living facility loss, and direct economic loss. Finally, the support vector machine (SVM) model is used to evaluate the loss and the intra-sample prediction. It is indicated that the equations of the model groups can reflect in detail the relationship between the damage of storm surges and other related variables. Based on a comparison of the original value and the predicted value error, the model groups pass the test, providing scientific support and a decision basis for the early layout of disaster prevention and mitigation.

  4. Using Satellite Altimetry to Calibrate the Simulation of Typhoon Seth Storm Surge off Southeast China

    Directory of Open Access Journals (Sweden)

    Xiaohui Li

    2018-04-01

    Full Text Available Satellite altimeters can capture storm surges generated by typhoons and tropical storms, if the satellite flies over at the right time. In this study, we show TOPEX/Poseidon altimeter-observed storm surge features off Southeast China on 10 October 1994 during Typhoon Seth. We then use a three-dimensional, barotropic, finite-volume community ocean model (FVCOM to simulate storm surges. An innovative aspect is that satellite data are used to calibrate the storm surge model to improve model performance, by adjusting model wind forcing fields (the National Center for Environment Prediction (NCEP reanalysis product in reference to the typhoon best-track data. The calibration reduces the along-track root-mean-square (RMS difference between model and altimetric data from 0.15 to 0.10 m. It also reduces the RMS temporal difference from 0.21 to 0.18 m between the model results and independent tide-gauge data at Xiamen. In particular, the calibrated model produces a peak storm surge of 1.01 m at 6:00 10 October 1994 at Xiamen, agreeing with tide-gauge data; while the peak storm surge with the NCEP forcing is 0.71 m only. We further show that the interaction between storm surges and astronomical tides contributes to the peak storm surge by 34% and that the storm surge propagates southwestward as a coastally-trapped Kelvin wave.

  5. Evaluation of Loss Due to Storm Surge Disasters in China Based on Econometric Model Groups

    Directory of Open Access Journals (Sweden)

    Xue Jin

    2018-03-01

    Full Text Available Storm surge has become an important factor restricting the economic and social development of China’s coastal regions. In order to improve the scientific judgment of future storm surge damage, a method of model groups is proposed to refine the evaluation of the loss due to storm surges. Due to the relative dispersion and poor regularity of the natural property data (login center air pressure, maximum wind speed, maximum storm water, super warning water level, etc., storm surge disaster is divided based on eight kinds of storm surge disaster grade division methods combined with storm surge water, hypervigilance tide level, and disaster loss. The storm surge disaster loss measurement model groups consist of eight equations, and six major modules are constructed: storm surge disaster in agricultural loss, fishery loss, human resource loss, engineering facility loss, living facility loss, and direct economic loss. Finally, the support vector machine (SVM model is used to evaluate the loss and the intra-sample prediction. It is indicated that the equations of the model groups can reflect in detail the relationship between the damage of storm surges and other related variables. Based on a comparison of the original value and the predicted value error, the model groups pass the test, providing scientific support and a decision basis for the early layout of disaster prevention and mitigation.

  6. Vulnerability assessment of storm surges in the coastal area of Guangdong Province

    Directory of Open Access Journals (Sweden)

    K. Li

    2011-07-01

    Full Text Available Being bordered by the South China Sea and with long coastline, the coastal zone of Guangdong Province is often under severe risk of storm surges, as one of a few regions in China which is seriously threatened by storm surges. This article systematically analyzes the vulnerability factors of storm surges in the coastal area of Guangdong (from Yangjing to Shanwei. Five vulnerability assessment indicators of hazard-bearing bodies are proposed, which are social economic index, land use index, eco-environmental index, coastal construction index, and disaster-bearing capability index. Then storm surge vulnerability assessment index system in the coastal area of Guangdong is established. Additionally, the international general mode about coastal vulnerability assessment is improved, and the vulnerability evolution model of storm surges in the coastal area of Guangdong is constructed. Using ArcGIS, the vulnerability zoning map of storm surges in the study region is drawn. Results show that there is the highest degree of storm surge vulnerability in Zhuhai, Panyu, and Taishan; second in Zhongshan, Dongguan, Huiyang, and Haifeng; third in Jiangmen, Shanwei, Yangjiang, and Yangdong; fourth in Baoan, Kaiping, and Enping; and lowest in Guangzhou, Shunde, Shenzhen, and Longgang. This study on the risk of storm surges in these coastal cities can guide the land use of coastal cities in the future, and provide scientific advice for the government to prevent and mitigate the storm surge disasters. It has important theoretical and practical significance.

  7. Structure design of water discharge surge tank of nuclear power plant

    International Nuclear Information System (INIS)

    Wang Fang; Hou Shuqiang

    2015-01-01

    Drainage is an important function of water discharge surge tank in nuclear power plant. There is little wall and beam inside the water discharge surge tank due to the requirement of major work, which is different from the general structure. Taking water discharge surge tank of nuclear power plant for example, concerned problems are expatiated in the structure scheme of water discharge surge tank, and important structural components are analyzed. Structural analysis model is established by ANSYS finite element analysis. A comprehensive and numerical analysis is performed for different combinations of structural model, and the internal force of structure is extracted. Finally, suggestions for design of similar structure are proposed. (authors)

  8. The Development of Storm Surge Ensemble Prediction System and Case Study of Typhoon Meranti in 2016

    Science.gov (United States)

    Tsai, Y. L.; Wu, T. R.; Terng, C. T.; Chu, C. H.

    2017-12-01

    Taiwan is under the threat of storm surge and associated inundation, which is located at a potentially severe storm generation zone. The use of ensemble prediction can help forecasters to know the characteristic of storm surge under the uncertainty of track and intensity. In addition, it can help the deterministic forecasting. In this study, the kernel of ensemble prediction system is based on COMCOT-SURGE (COrnell Multi-grid COupled Tsunami Model - Storm Surge). COMCOT-SURGE solves nonlinear shallow water equations in Open Ocean and coastal regions with the nested-grid scheme and adopts wet-dry-cell treatment to calculate potential inundation area. In order to consider tide-surge interaction, the global TPXO 7.1 tide model provides the tidal boundary conditions. After a series of validations and case studies, COMCOT-SURGE has become an official operating system of Central Weather Bureau (CWB) in Taiwan. In this study, the strongest typhoon in 2016, Typhoon Meranti, is chosen as a case study. We adopt twenty ensemble members from CWB WRF Ensemble Prediction System (CWB WEPS), which differs from parameters of microphysics, boundary layer, cumulus, and surface. From box-and-whisker results, maximum observed storm surges were located in the interval of the first and third quartile at more than 70 % gauge locations, e.g. Toucheng, Chengkung, and Jiangjyun. In conclusion, the ensemble prediction can effectively help forecasters to predict storm surge especially under the uncertainty of storm track and intensity

  9. Surge protective device response to steep front transient in low voltage circuit

    Energy Technology Data Exchange (ETDEWEB)

    Marcuz, J.; Binczak, S.; Bilbault, J.M. [Universite de Bourgogne, Dijon (France)], Emails: jerome.marcuz@ laposte.net, stbinc@u-bourgogne.fr, bilbault@u-bourgogne.fr; Girard, F. [ADEE Electronic, Pont de Pany (France)

    2007-07-01

    Surge propagation on cables of electrical or data lines leads to a major protection problem as the number of equipment based on solid-state circuits or microprocessors increases. Sub-microsecond components of real surge waveform has to be taken into account for a proper protection even in the case of surges caused by indirect lightning effects. The response of a model of transient voltage suppressor diode based surge protection device (SPD) to fast front transient is analytically studied, then compared to simulations, including the lines connected to the SPD and to the protected equipment. (author)

  10. Role of sediment in the design and management of irrigation canals : Sunsari Morang Irrigation Scheme, Nepal

    NARCIS (Netherlands)

    Paudel, K.

    2010-01-01

    Sediment transport in irrigation canals The sediment transport aspect is a major factor in irrigation development as it determines to a large extent the sustainability of an irrigation scheme, particularly in case of unlined canals in alluvial soils. Investigations in this respect started since

  11. Automation of irrigation systems to control irrigation applications and crop water use efficiency

    Science.gov (United States)

    Agricultural irrigation management to slow water withdrawals from non-replenishing quality water resources is a global endeavor and vital to sustaining irrigated agriculture and dependent rural economies. Research in site-specific irrigation management has shown that water use efficiency, and crop p...

  12. Factors affecting irrigant extrusion during root canal irrigation: a systematic review

    NARCIS (Netherlands)

    Boutsioukis, C.; Psimma, Z.; van der Sluis, L.W.M.

    2013-01-01

    The aim of the present study was to conduct a systematic review and critical analysis of published data on irrigant extrusion to identify factors causing, affecting or predisposing to irrigant extrusion during root canal irrigation of human mature permanent teeth. An electronic search was conducted

  13. Sediment control - an appropriate solution for small irrigation channels

    International Nuclear Information System (INIS)

    Shoag, M.A.

    2002-01-01

    Sediment control is one of the key factors considered prior to the design of an irrigation channel. When the channel takes off from its headworks, its slope is usually smaller than that of the parent stream to obtain required head. If the sediment load is heavy then the channel can not maintain equilibrium since the high influx can not be transported fully due to its small gradient. This results in the deposition of part incoming sediment in the channel itself. A typical irrigation intake suitable for small schemes, which consists of a simple settling basin with double orifice: one at the inlet from the river and the other at the outlet to the canal. The basin is provided with a side spill weir near its downstream end, to discharge flows in excess of the maximum canal capacity. This paper deals with the experimental study of such an arrangement. Different flows were run covering a range of levels in the river, from minimum to flood flows to check the hydraulic performance of the layout and in particular to study its effectiveness in settling sediment at low flows and avoiding excessive sediment input to the canal during flood. (author)

  14. Effects of climate change on water abstraction restrictions for irrigation during droughts - The UK case

    Science.gov (United States)

    Rey Vicario, D.; Holman, I.

    2016-12-01

    The use of water for irrigation and on-farm reservoir filling is globally important for agricultural production. In humid climates, like the UK, supplemental irrigation can be critical to buffer the effects of rainfall variability and to achieve high quality crops. Given regulatory efforts to secure sufficient environmental river flows and meet rising water demands due to population growth and climate change, increasing water scarcity is likely to compound the drought challenges faced by irrigated agriculture in this region. Currently, water abstraction from surface waters for agricultural irrigation can be restricted by the Environment Agency during droughts under Section 57 of the Water Resources Act (1991), based on abnormally low river flow levels and rainfall forecast, causing significant economic impacts on irrigated agricultural production. The aim of this study is to assess the impact that climate change may have on agricultural abstraction in the UK within the context of the abstraction restriction triggers currently in place. These triggers have been applied to the `Future Flows hydrology' database to assess the likelihood of increasing restrictions on agricultural abstraction in the future by comparing the probability of voluntary and compulsory restrictions in the baseline (1961-1990) and future period (2071-2098) for 282 catchments throughout the whole of the UK. The results of this study show a general increase in the probability of future agricultural irrigation abstraction restrictions in the UK in the summer, particularly in the South West, although there is significant variability between the 11 ensemble members. The results also indicate that UK winters are likely to become wetter in the future, although in some catchments the probability of abstraction restriction in the reservoir refilling winter months (November-February) could increase slightly. An increasing frequency of drought events due to climate change is therefore likely to lead to

  15. Decision-making in irrigation networks: Selecting appropriate canal structures using multi-attribute decision analysis.

    Science.gov (United States)

    Hosseinzade, Zeinab; Pagsuyoin, Sheree A; Ponnambalam, Kumaraswamy; Monem, Mohammad J

    2017-12-01

    The stiff competition for water between agriculture and non-agricultural production sectors makes it necessary to have effective management of irrigation networks in farms. However, the process of selecting flow control structures in irrigation networks is highly complex and involves different levels of decision makers. In this paper, we apply multi-attribute decision making (MADM) methodology to develop a decision analysis (DA) framework for evaluating, ranking and selecting check and intake structures for irrigation canals. The DA framework consists of identifying relevant attributes for canal structures, developing a robust scoring system for alternatives, identifying a procedure for data quality control, and identifying a MADM model for the decision analysis. An application is illustrated through an analysis for automation purposes of the Qazvin irrigation network, one of the oldest and most complex irrigation networks in Iran. A survey questionnaire designed based on the decision framework was distributed to experts, managers, and operators of the Qazvin network and to experts from the Ministry of Power in Iran. Five check structures and four intake structures were evaluated. A decision matrix was generated from the average scores collected from the survey, and was subsequently solved using TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) method. To identify the most critical structure attributes for the selection process, optimal attribute weights were calculated using Entropy method. For check structures, results show that the duckbill weir is the preferred structure while the pivot weir is the least preferred. Use of the duckbill weir can potentially address the problem with existing Amil gates where manual intervention is required to regulate water levels during periods of flow extremes. For intake structures, the Neyrpic® gate and constant head orifice are the most and least preferred alternatives, respectively. Some advantages

  16. Farm-Level Optimal Water Management : assistent for irrigation under deficit, second Executive summery report for FP6-European project nr. 036958

    NARCIS (Netherlands)

    Balendonck, J.

    2008-01-01

    FLOW-AID is a 6th Framework European project which started in autumn 2006. Its objective is to contribute to sustainability of irrigated agriculture by developing, testing in relevant conditions, and then optimizing an irrigation management system that can be used at farm level. The system will be

  17. Near-surface distributions of soil water and water repellency under three effluent irrigation scemes in a blue gum (Eucalyptus globulus) plantation

    NARCIS (Netherlands)

    Thwaites, L.A.; Rooij, de G.H.; Salzman, S.; Allinson, G.; Stagnitti, F.; Carr, R.; Versace, V.; Struck, S.; March, T.

    2006-01-01

    Water repellent soils are difficult to irrigate and susceptible to preferential flow, which enhances the potential for accelerated leaching to groundwater of hazardous substances. Over 5 Mha of Australian soil is water repellent, while treated municipal sewage is increasingly used for irrigation.

  18. Bacterial lipopolysaccharide-induced systemic inflammation alters perfusion of white matter-rich regions without altering flow in brain-irrigating arteries: Relationship to blood-brain barrier breakdown?

    Science.gov (United States)

    Dhaya, Ibtihel; Griton, Marion; Raffard, Gérard; Amri, Mohamed; Hiba, Bassem; Konsman, Jan Pieter

    2018-01-15

    To better understand brain dysfunction during sepsis, cerebral arterial blood flow was assessed with Phase Contrast Magnetic Resonance Imaging, perfusion with Arterial Spin Labeling and structure with diffusion-weighted Magnetic Resonance Imaging in rats after intraperitoneal administration of bacterial lipopolysaccharides. Although cerebral arterial flow was not altered, perfusion of the corpus callosum region and diffusion parallel to its fibers were higher after lipopolysaccharide administration as compared to saline injection. In parallel, lipopolysaccharide induced perivascular immunoglobulin-immunoreactivity in white matter. These findings indicate that systemic inflammation can result in increased perfusion, blood-brain barrier breakdown and altered water diffusion in white matter. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Irrigation as an Historical Climate Forcing

    Science.gov (United States)

    Cook, Benjamin I.; Shukla, Sonali P.; Puma, Michael J.; Nazarenko, Larissa S.

    2014-01-01

    Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols

  20. improving of irrigation management: a learning based approach

    African Journals Online (AJOL)

    p2333147

    Irrigation farms are small businesses and like any other business, the managers or ... human factors and constraints that impact on the adoption of irrigation ... Informal interaction with other irrigation farmers and social networks played a ...

  1. Stability Analysis of a Run-of-River Diversion Hydropower Plant with Surge Tank and Spillway in the Head Pond

    Directory of Open Access Journals (Sweden)

    José Ignacio Sarasúa

    2014-01-01

    Full Text Available Run-of-river hydropower plants usually lack significant storage capacity; therefore, the more adequate control strategy would consist of keeping a constant water level at the intake pond in order to harness the maximum amount of energy from the river flow or to reduce the surface flooded in the head pond. In this paper, a standard PI control system of a run-of-river diversion hydropower plant with surge tank and a spillway in the head pond that evacuates part of the river flow plant is studied. A stability analysis based on the Routh-Hurwitz criterion is carried out and a practical criterion for tuning the gains of the PI controller is proposed. Conclusions about the head pond and surge tank areas are drawn from the stability analysis. Finally, this criterion is applied to a real hydropower plant in design state; the importance of considering the spillway dimensions and turbine characteristic curves for adequate tuning of the controller gains is highlighted.

  2. Comparison of two recent storm surge events based on results of field surveys

    Science.gov (United States)

    Nakamura, Ryota; Shibayama, Tomoya; Mikami, Takahito; Esteban, Miguel; Takagi, Hiroshi; Maell, Martin; Iwamoto, Takumu

    2017-10-01

    This paper compares two different types of storm surge disaster based on field surveys. Two cases: a severe storm surge flood with its height of over 5 m due to Typhoon Haiyan (2013) in Philippine, and inundation of storm surge around Nemuro city in Hokkaido of Japan with its maximum surge height of 2.8 m caused by extra-tropical cyclone are taken as examples. For the case of the Typhoon Haiyan, buildings located in coastal region were severely affected due to a rapidly increase in ocean surface. The non-engineering buildings were partially or completely destroyed due to their debris transported to an inner bay region. In fact, several previous reports indicated two unique features, bore-like wave and remarkably high speed currents. These characteristics of the storm surge may contribute to a wide-spread corruption for the buildings around the affected region. Furthermore, in the region where the surge height was nearly 3 m, the wooden houses were completely or partially destroyed. On the other hand, in Nemuro city, a degree of suffering in human and facility caused by the storm surge is minor. There was almost no partially destroyed residential houses even though the height of storm surge reached nearly 2.8 m. An observation in the tide station in Nemuro indicated that this was a usual type of storm surge, which showed a gradual increase of sea level height in several hours without possessing the unique characteristics like Typhoon Haiyan. As a result, not only the height of storm surge but also the robustness of the buildings and characteristics of storm surge, such as bore like wave and strong currents, determined the existent of devastation in coastal regions.

  3. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    Science.gov (United States)

    Chukalla, A. D.; Krol, M. S.; Hoekstra, A. Y.

    2015-12-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and thus the consumptive WF of crops (ET / Y). The management practices are four irrigation techniques (furrow, sprinkler, drip and subsurface drip (SSD)), four irrigation strategies (full (FI), deficit (DI), supplementary (SI) and no irrigation), and three mulching practices (no mulching, organic (OML) and synthetic (SML) mulching). Various cases were considered: arid, semi-arid, sub-humid and humid environments in Israel, Spain, Italy and the UK, respectively; wet, normal and dry years; three soil types (sand, sandy loam and silty clay loam); and three crops (maize, potato and tomato). The AquaCrop model and the global WF accounting standard were used to relate the management practices to effects on ET, Y and WF. For each management practice, the associated green, blue and total consumptive WF were compared to the reference case (furrow irrigation, full irrigation, no mulching). The average reduction in the consumptive WF is 8-10 % if we change from the reference to drip or SSD, 13 % when changing to OML, 17-18 % when moving to drip or SSD in combination with OML, and 28 % for drip or SSD in combination with SML. All before-mentioned reductions increase by one or a few per cent when moving from full to deficit irrigation. Reduction in overall consumptive WF always goes together with an increasing ratio of green to blue WF. The WF of growing a crop for a particular environment is smallest under DI, followed by FI, SI and rain-fed. Growing crops with sprinkler irrigation has the largest consumptive WF, followed by furrow, drip and SSD. Furrow irrigation has a smaller consumptive WF compared with sprinkler, even though the classical measure of "irrigation efficiency" for furrow

  4. Surge of Bering Glacier and Bagley Ice Field: Parameterization of surge characteristics based on automated analysis of crevasse image data and laser altimeter data

    Science.gov (United States)

    Stachura, M.; Herzfeld, U. C.; McDonald, B.; Weltman, A.; Hale, G.; Trantow, T.

    2012-12-01

    The dynamical processes that occur during the surge of a large, complex glacier system are far from being understood. The aim of this paper is to derive a parameterization of surge characteristics that captures the principle processes and can serve as the basis for a dynamic surge model. Innovative mathematical methods are introduced that facilitate derivation of such a parameterization from remote-sensing observations. Methods include automated geostatistical characterization and connectionist-geostatistical classification of dynamic provinces and deformation states, using the vehicle of crevasse patterns. These methods are applied to analyze satellite and airborne image and laser altimeter data collected during the current surge of Bering Glacier and Bagley Ice Field, Alaska.

  5. Modelling human agency in ancient irrigation

    NARCIS (Netherlands)

    Ertsen, M.W.

    2011-01-01

    Human activity is key in understanding ancient irrigation systems. Results of short term actions build up over time, affecting civilizations on larger temporal and spatial scales. Irrigation systems, with their many entities, social and physical, their many interactions within a changing environment

  6. Technical efficiency of irrigated vegetable production among ...

    African Journals Online (AJOL)

    This study was carried out to analyse the technical efficiency of irrigated vegetable production among smallholder farmers in the guinea savannah, Nigeria, and determine the cost and returns on irrigated vegetable production. Two-stage sampling technique was used, purposive selection of two states and three Local ...

  7. Prospects and Constraints of Household Irrigation Practices ...

    African Journals Online (AJOL)

    Constraints and prospects of hand dug wells related to household irrigation were assessed in Hayelom watershed (~1045 ha), by evaluating groundwater suitability for irrigation, soil quality and impact of intervention. 181 hand dug wells have come into existence in the watershed due to intervention and benefiting about ...

  8. Using Automation to Improve Surface Irrigation Management

    Science.gov (United States)

    In the Lower Mississippi Water Resource Area (WRA 08), also called the Mid-South, 2 million ha of cropland (80% of the irrigated farmland) employ surface irrigation, almost equally divided between furrow (52%) and controlled flooding (48%). Because Mid-South farmers experience less-than-optimal surf...

  9. Syringe irrigation: blending endodontics and fluid dynamics

    NARCIS (Netherlands)

    Boutsioukis, C.; van der Sluis, L.W.M.; Basrani, B.

    2015-01-01

    Syringe irrigation remains a widely used irrigant delivery method during root canal treatment. An interdisciplinary approach involving well-established methods from the field of fluid dynamics can provide new insights into the mechanisms involved in cleaning and disinfection of the root canal system

  10. Syringe irrigation: blending endodontics and fluid dynamics

    NARCIS (Netherlands)

    Boutsioukis, Christos; van der Sluis, Lucas; Basrani, Bettina

    2015-01-01

    This book reviews the available information on bacterial disinfection in endodontics, with emphasis on the chemical treatment of root canals based on current understanding of the process of irrigation. It describes recent advances in knowledge of the chemistry associated with irrigants and delivery

  11. A scintigraphic study of colostomy irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Shinji; Fujii, Hisao; Nakano, Hiroshige (Nara Medical Univ., Kashihara (Japan))

    1991-09-01

    Colostomy irrigation was investigated by colonoscintigraphy. Twelve rectal cancer and one sigmoid colon cancer patients were examined. The tepid water whose volume was determined by barium enema was mixed with {sup 99m}Tc-DTPA. Dynamic scanning was started on commencement of colostomy irrigation. The sampling time was 3 seconds and scanning was performed for 30 minutes. The mean volume of remnant colon as measured by barium enema was 650 ml. The mean number of mass movements was 4.3. The mean evacuation time was 11 minutes 56 seconds and the mean half emptying time was calculated to be 9.5 minutes. The evacuation time in the patients who underwent colostomy irrigation for more than 2 years was greater than that in the patients who underwent irrigation for less than 2 years. Colonic motility was thought to have weakened. The half emptying time and the number of mass movements in the patients whose irrigation water went into the terminal ileum was more than that in the patients whose irrigation water was within the colon and cecum. Irrigation water which went into the terminal ileum was caused evacuation after the contents of the remnant colon were washed out. In conclusion, patients should have their colostomy irrigated with the tepid water, volume is determined by barium enema. Furthermore single infusion of the water is recommended. (author).

  12. A scintigraphic study of colostomy irrigation

    International Nuclear Information System (INIS)

    Yasuda, Shinji; Fujii, Hisao; Nakano, Hiroshige

    1991-01-01

    Colostomy irrigation was investigated by colonoscintigraphy. Twelve rectal cancer and one sigmoid colon cancer patients were examined. The tepid water whose volume was determined by barium enema was mixed with 99m Tc-DTPA. Dynamic scanning was started on commencement of colostomy irrigation. The sampling time was 3 seconds and scanning was performed for 30 minutes. The mean volume of remnant colon as measured by barium enema was 650 ml. The mean number of mass movements was 4.3. The mean evacuation time was 11 minutes 56 seconds and the mean half emptying time was calculated to be 9.5 minutes. The evacuation time in the patients who underwent colostomy irrigation for more than 2 years was greater than that in the patients who underwent irrigation for less than 2 years. Colonic motility was thought to have weakened. The half emptying time and the number of mass movements in the patients whose irrigation water went into the terminal ileum was more than that in the patients whose irrigation water was within the colon and cecum. Irrigation water which went into the terminal ileum was caused evacuation after the contents of the remnant colon were washed out. In conclusion, patients should have their colostomy irrigated with the tepid water, volume is determined by barium enema. Furthermore single infusion of the water is recommended. (author)

  13. Irrigation scheduling with the neutron probe

    International Nuclear Information System (INIS)

    Travers, P.

    1987-01-01

    The operational theory of the neutron probe is briefly outlined and its application and uses discussed in relation to determination of soil compaction and irrigation scheduling. Graphic examples are given of alluvial soil moisture profiles and how this information can be used to improve trickle irrigation in vineyards. 3 refs., 7 figs

  14. Smallholder Led Irrigation Development in the Humid Ethiopian highlands

    Science.gov (United States)

    Tilahun, S. A.; Schmitter, P.; Alemie, T. C.; Yilak, D. L.; Yimer, A.; Mamo, A.; Langan, S.; Baronn, J.; Steenhuis, T. S.

    2017-12-01

    More than 70% of the population of in sub-Saharan Africa are living in rural areas that depend on the rainfed agriculture for their livelihood on the rainfed agriculture. With the rapidly increasing population, competition for land and water is growing is intensifying. This, together with future landscape and climate change, the rainfed agriculture is unlikely to meet the future food demands. Many donors see irrigation a rational way to solve the future food crises. In Ethiopia, less than 10% of the irrigatable area has been developed. The main limitation of increasing the irrigatable areas is a severe lack of surface water during an extended dry phase of almost seven months. Flow in most rivers currently have dried up before the rain phase begins middle of the dry periods. In response, the Ethiopian government is installing large reservoirs at great cost to store water from the wet monsoon phase. At the same time, small scale household have started using irrigation using wells on sloping lands that have sprung up with minimal governmental intervention. It could be one of the strategies to increase the irrigated acreage without large investments. Donors and governmental planners are eager to follow the farmer's initiatives and intensify irrigation on these hillside areas. However, it is not yet known to the extent that it is sustainable. For this reason, shallow ground water levels and river discharge were measured over a three-year period in the Robit Bata and Dangishta watersheds in Northern Ethiopian highlands for assessing recharge and use of shallow groundwater irrigation during dry period. The theoretical results show that the ground water availability depends on the slope of the land and the depth of the soil. In sloping Robit Bata watershed the groundwater runs out under gravity to the stream channel in 3-4 months after the rainfall stops. The only wells that remain productive are those associated with fractures in the bedrock. For the less sloping

  15. Review of ultrasonic irrigation in endodontics: increasing action of irrigating solutions

    Science.gov (United States)

    Mozo, Sandra; Llena, Carmen

    2012-01-01

    Introduction: Effective irrigant delivery and agitation are prerequisites for successful endodontic treatment. Ultrasonic irrigation can be performed with or without simultaneous ultrasonic instrumentation. Existing literature reveals that ultrasonic irrigation may have a very positive effect on chemical, biological and physical debridement of the root canal system as investigated in many in vitro studies. Objective: The purpose of this review article was to summarize and discuss the available information concerning ultrasonic irrigation in endodontics. Methods: This article presents an overview of ultrasonic irrigation methods and their debridement efficacy. In this paper the relevant literature on passive ultrasonic irrigation is reviewed. Information from original scientific papers or reviews listed in MEDLINE and Cochrane were included in the review. Results: The use of ultrasound in the irrigation procedure results in improved canal cleanliness, better irrigant transfer to the canal system, soft tissue debridement, and removal of smear layer and bacteria. There are many in vitro studies, but there is a need to standardize protocols, and correlate the clinical efficacy of ultrasonic devices with improved treatment outcomes. Understanding the basis of ultrasonic irrigation is fundamental for clinicians and researchers to improve the design and use of ultrasonic irrigation. Key words:Ultrasonic irrigation, ultrasound, smear layer, endodontics. PMID:22143738

  16. An optimization model to design and manage subsurface drip irrigation system for alfalfa

    Science.gov (United States)

    Kandelous, M.; Kamai, T.; Vrugt, J. A.; Simunek, J.; Hanson, B.; Hopmans, J. W.

    2010-12-01

    Subsurface drip irrigation (SDI) is one of the most efficient and cost-effective methods for watering alfalfa plants. Lateral installation depth and distance, emitter discharge, and irrigation time and frequency of SDI, in addition to soil and climatic conditions affect alfalfa’s root water uptake and yield. Here we use a multi-objective optimization approach to find optimal SDI strategies. Our approach uses the AMALGAM evolutionary search method, in combination with the HYDRUS-2D unsaturated flow model to maximize water uptake by alfalfa’s plant roots, and minimize loss of irrigation and drainage water to the atmosphere or groundwater. We use a variety of different objective functions to analyze SDI. These criteria include the lateral installation depth and distance, the lateral discharge, irrigation duration, and irrigation frequency. Our framework includes explicit recognition of the soil moisture status during the simulation period to make sure that the top soil is dry for harvesting during the growing season. Initial results show a wide spectrum of optimized SDI strategies for different root distributions, soil textures and climate conditions. The developed tool should be useful in helping farmers optimize their irrigation strategy and design.

  17. A coupled agronomic-economic model to consider allocation of brackish irrigation water

    Science.gov (United States)

    Ben-Gal, Alon; Weikard, Hans-Peter; Shah, Syed Hamid Hussain; van der Zee, Sjoerd E. A. T. M.

    2013-05-01

    In arid and semiarid regions, irrigation water is scarce and often contains high concentrations of salts. To reduce negative effects on crop yields, the irrigated amounts must include water for leaching and therefore exceed evapotranspiration. The leachate (drainage) water returns to water sources such as rivers or groundwater aquifers and increases their level of salinity and the leaching requirement for irrigation water of any sequential user. We develop a conceptual sequential (upstream-downstream) model of irrigation that predicts crop yields and water consumption and tracks the water flow and level of salinity along a river dependent on irrigation management decisions. The model incorporates an agro-physical model of plant response to environmental conditions including feedbacks. For a system with limited water resources, the model examines the impacts of water scarcity, salinity and technically inefficient application on yields for specific crop, soil, and climate conditions. Moving beyond the formulation of a conceptual frame, we apply the model to the irrigation of Capsicum annum on Arava Sandy Loam soil. We show for this case how water application could be distributed between upstream and downstream plots or farms. We identify those situations where it is beneficial to trade water from upstream to downstream farms (assuming that the upstream farm holds the water rights). We find that water trade will improve efficiency except when loss levels are low. We compute the marginal value of water, i.e., the price water would command on a market, for different levels of water scarcity, salinity and levels of water loss.

  18. Movement of Irrigation Water in Soil from a Surface Emitter

    Directory of Open Access Journals (Sweden)

    Ibrahim Abbas Dawood

    2016-09-01

    Full Text Available rickle irrigation is one of the most conservative irrigation techniques since it implies supplying water directly on the soil through emitters. Emitters dissipate energy of water at the end of the trickle irrigation system and provide water at emission points. The area wetted by an emitter depends upon the discharge of emitter, soil texture, initial soil water content, and soil permeability. The objectives of this research were to predict water distribution profiles through different soils for different conditions and quantify the distribution profiles in terms of main characteristics of soil and emitter. The wetting patterns were simulated at the end of each hour for a total time of application of 12 hrs, emitter discharges of 0.5, 0.75, 1, 2, 3, 4, and 5 lph, and five initial volumetric soil water contents. Simulation of water flow from a single surface emitter was carried out by using the numerically-based software Hydrus-2D/3D, Version 2.04. Two approaches were used in developing formulas to predict the domains of the wetted pattern. In order to verify the results obtained by implementing the software Hydrus-2D/3D a field experiment was conducted to measure the wetted diameter and compare measured values with simulated ones. The results of the research showed that the developed formulas to express the wetted diameter and depth in terms of emitter discharge, time of application, and initial soil water content are very general and can be used with very good accuracy.

  19. Using remote sensing to characterize and compare evapotranspiration from different irrigation regimes in the Smith River Watershed of central Montana

    Science.gov (United States)

    Sando, Thomas R.; Caldwell, Rodney R.; Blasch, Kyle W.

    2017-01-01

    According to the 2005 U.S. Geological Survey national water use compilation, irrigation is the second largest use of fresh water in the United States, accounting for 37%, or 484.48 million cubic meters per day, of total freshwater withdrawal. Accurately estimating the amount of water withdrawals and actual consumptive water use (the difference between water withdrawals and return flow) for irrigation at a regional scale is difficult. Remote sensing methods make it possible to compare actual ET (ETa) rates which can serve as a proxy for consumptive water use from different irrigation regimes at a regional scale in a systematic manner. This study investigates crucial components of water use from irrigation such as the difference of ETa rates from flood- and sprinkler-irrigated fields, spatial variability of ETa within a watershed, and the effect of sprinkler irrigation on the water budget of the study area. The mean accumulated ETa depth for the 1,051 square kilometer study area within the upper Smith River watershed was about 467 mm 30-meter per pixel for the 2007 growing season (April through mid-October). The total accumulated volume of ETa for the study area was about 474.705 million cubic meters. The mean accumulated ETa depth from sprinkler-irrigated land was about 687 mm and from flood-irrigated land was about 621 mm from flood-irrigated land. On average, the ETa rate from sprinkler-irrigated fields was 0.25 mm per day higher than flood-irrigated fields over the growing season. Spatial analysis showed that ETa rates within individual fields of a single crop type that are irrigated with a single method (sprinkler or flood) can vary up to about 8 mm per day. It was estimated that the amount of sprinkler irrigation in 2007 accounted for approximately 3% of the total volume of ETa in the study area. When compared to non-irrigated dryland, sprinkler irrigation increases ETa by about 59 to 82% per unit area.

  20. Simulating the roles of crevasse routing of surface water and basal friction on the surge evolution of Basin 3, Austfonna ice cap

    Science.gov (United States)

    Gong, Yongmei; Zwinger, Thomas; Åström, Jan; Altena, Bas; Schellenberger, Thomas; Gladstone, Rupert; Moore, John C.

    2018-05-01

    The marine-terminating outlet in Basin 3, Austfonna ice cap, has been accelerating since the mid-1990s. Stepwise multi-annual acceleration associated with seasonal summer speed-up events was observed before the outlet entered the basin-wide surge in autumn 2012. We used multiple numerical models to explore hydrologic activation mechanisms for the surge behaviour. A continuum ice dynamic model was used to invert basal friction coefficient distributions using the control method and observed surface velocity data between April 2012 and July 2014. This has provided input to a discrete element model capable of simulating individual crevasses, with the aim of finding locations where meltwater entered the glacier during the summer and reached the bed. The possible flow paths of surface meltwater reaching the glacier bed as well as those of meltwater produced at the bed were calculated according to the gradient of the hydraulic potential. The inverted friction coefficients show the unplugging of the stagnant ice front and expansion of low-friction regions before the surge reached its peak velocity in January 2013. Crevasse distribution reflects the basal friction pattern to a high degree. The meltwater reaches the bed through the crevasses located above the margins of the subglacial valley and the basal melt that is generated mainly by frictional heating flows either to the fast-flowing units or potentially accumulates in an overdeepened region. Based on these results, the mechanisms facilitated by basal meltwater production, crevasse opening and the routing of meltwater to the bed are discussed for the surge in Basin 3.

  1. Simulating the roles of crevasse routing of surface water and basal friction on the surge evolution of Basin 3, Austfonna ice cap

    Directory of Open Access Journals (Sweden)

    Y. Gong

    2018-05-01

    Full Text Available The marine-terminating outlet in Basin 3, Austfonna ice cap, has been accelerating since the mid-1990s. Stepwise multi-annual acceleration associated with seasonal summer speed-up events was observed before the outlet entered the basin-wide surge in autumn 2012. We used multiple numerical models to explore hydrologic activation mechanisms for the surge behaviour. A continuum ice dynamic model was used to invert basal friction coefficient distributions using the control method and observed surface velocity data between April 2012 and July 2014. This has provided input to a discrete element model capable of simulating individual crevasses, with the aim of finding locations where meltwater entered the glacier during the summer and reached the bed. The possible flow paths of surface meltwater reaching the glacier bed as well as those of meltwater produced at the bed were calculated according to the gradient of the hydraulic potential.The inverted friction coefficients show the unplugging of the stagnant ice front and expansion of low-friction regions before the surge reached its peak velocity in January 2013. Crevasse distribution reflects the basal friction pattern to a high degree. The meltwater reaches the bed through the crevasses located above the margins of the subglacial valley and the basal melt that is generated mainly by frictional heating flows either to the fast-flowing units or potentially accumulates in an overdeepened region. Based on these results, the mechanisms facilitated by basal meltwater production, crevasse opening and the routing of meltwater to the bed are discussed for the surge in Basin 3.

  2. Vital signs : all gauges register a lasting surge in activity

    International Nuclear Information System (INIS)

    Lunan, D.

    2000-01-01

    The petroleum and natural gas industry is currently in the midst of a surge in activity with respect to land sales and metres drilled just to meet the demand, particularly for natural gas. Land sale activity is considered to be a key indicator for forecasting drilling activity. Drilling activity is also up since producers are trying to find new reserves to meet future years of forecasted strong demand growth, particularly from the United States. In one year, since June 1999, the average price paid for oil and gas rights rose nearly 80 per cent to just under $300 per hectare. Lease and licence bonus payments were also up from $27 million to $72.1 million. The surge in drilling activity has resulted in all basins reporting at least modest improvements. In the Western Canadian Sedimentary Basin, completions in Alberta for the first half of year 2000 were up 10 per cent with gas wells ahead of oil completions by a two-to-one margin. Exploration drilling is down compared to development drilling because of immediate demand expectations. Overall, industry drilled about 1.6 million metres of hole through the first half of year 2000, up from just over 5 million metres last year. More attention is being given to deeper gas plays. Total expenditures are forecasted to exceed the $30 billion mark, up from $26.3 billion last year and surpassing the $28 billion spent during Canada's big drilling boom in 1997. With crude oil prices holding up and gas prices running to record levels due to strong demand and low storage reserves, revenues this year will jump to nearly $42 billion from about $32.5 billion in 1999. The following industry charts for the first half of year 2000 were included: (1) well depths, (2) success ratios of well completions, (3) Canadian petroleum production, (4) Canadian exploration and production revenues and expenditures, and (5) land sale summaries. 5 tabs., 1 fig

  3. [Irrigants and intracanal medicaments in endodontics].

    Science.gov (United States)

    Zehnder, Matthias; Lehnert, Birgit; Schönenberger, Kathrin; Waltimo, Tuomas

    2003-01-01

    Modern, biologic root canal therapy should be performed with suitable irrigating solutions and intracanal medicaments. The goal of endodontic treatment is to free the treated tooth from infection and prevent reinfection as thoroughly as possible by means which do not put the organism at risk. In this review of the literature, an evidence-based concept for irrigation and medication of root canal systems is presented. Irrigants and medicaments are discussed with respect to their antimicrobial, tissue-dissolving and endotoxin-decontaminating capacity in relation to their systemic toxicity. Recent findings pertaining to interactions of root canal medicaments and irrigating solutions and their impact on a sound irrigating and medicating concept are discussed.

  4. Role of cold surge and MJO on rainfall enhancement over indonesia during east asian winter monsoon

    Science.gov (United States)

    Fauzi, R. R.; Hidayat, R.

    2018-05-01

    Intensity of precipitation in Indonesia is influenced by convection and propagation of southwest wind. Objective of this study is to analyze the relationship between cold surge and the phenomenon of intra-seasonal climate variability Madden-julian Oscillation (MJO) for affecting precipitation in Indonesia. The data used for identifying the occurrence of cold surge are meridional wind speed data from the ERA-Interim. In addition, this study also used RMM1 and RMM2 index data from Bureau of Meteorology (BOM) for identifying MJO events. The results showed that during East Asian Winter Monsoon (EAWM) in 15 years (2000-2015), there are 362 cold surge events, 186 MJO events, and 113 cold surge events were associated with MJO events. The spread of cold surge can penetrate to equator and brought mass of water vapor that causes dominant precipitation in the Indonesian Sea up to 50-75% from climatological precipitation during EAWM. The MJO convection activity that moves from west to east also increases precipitation, but the distribution of rainfall is wider than cold surge, especially in Eastern Indonesia. MJO and cold surge simultaneously can increase rainfall over 100-150% in any Indonesian region that affected by MJO and cold surge events. The mechanism of heavy rainfall is illustrated by high activity of moisture transport in areas such as Java Sea and coastal areas of Indonesia.

  5. Role of exogenous estrogen in initiation of estrus and induction of an LH surge

    Science.gov (United States)

    Among cattle the LH surge that causes ovulation occurs shortly after the onset of a spontaneous estrus. In addition an injection of 100 'g of GnRH can induce an LH surge capable of inducing ovulation. We hypothesized that different preovulatory estradiol profiles would result in different ovulator...

  6. Storm surge in the Bay of Bengal and Arabian Sea: The problem and its prediction

    Digital Repository Service at National Institute of Oceanography (India)

    Dube, S.K.; Rao, A.D.; Sinha, P.C.; Murty, T.S.; Bahulayan, N.

    to annual economic losses in these countries. Thus, the real time monitoring and warning of storm surge is of great concern for this region. The goal of this paper is to provide an overview of major aspects of the storm surge problem in the Bay of Bengal...

  7. Numerical modelling of tides and storm surges in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sindhu, B.

    were done. A storm surge model was developed to simulate total water levels and derived surges caused by low pressure systems identified during the past 27 years (1974-2000) in the Bay of Bengal. Study also estimated the return levels of extreme sea...

  8. Data Assimilation within the Advanced Circulation (ADCIRC) Modeling Framework for Hurricane Storm Surge Forecasting

    KAUST Repository

    Butler, T.; Altaf, Muhammad; Dawson, C.; Hoteit, Ibrahim; Luo, X.; Mayo, T.

    2012-01-01

    levels, and wave heights—during these extreme events. This type of data, if available in real time, could be used in a data assimilation framework to improve hurricane storm surge forecasts. In this paper a data assimilation methodology for storm surge

  9. Effect of Tide Elevation on Extratropical Storm Surge in Northwest Europe

    Science.gov (United States)

    Keshtpoor, M.; Carnacina, I.; Yablonsky, R. M.

    2016-12-01

    Extratropical cyclones (ETCs) are the major storm surge-generating meteorological events in northwest Europe. The total water level increase induced by these ETCs is significantly influenced by the local tidal range, which exceeds 8 meters along the southwestern UK coastline. In particular, a surge-generating ETC during high tide may put coastal assets and infrastructure in risk. Also, during low tide, the risk of surge induced by extreme ETC events is diminished. Here, the effect of tidal elevation on storm surge is investigated at 196 tide gauges in northwest Europe. A numerical, hydrodynamic model was developed using Delft3D-FM framework to simulate the coastal hydrodynamics during ETCs. Then, 1750 historical events were simulated to investigate the pattern of coastal inundation. Results suggest that in areas with a large tidal range ( 8 meters) and during the time period surrounding high or low tide, the pattern of coastal hydrodynamics is governed by tide and not storm surge. This result is most evident near the English Channel and Bristol Channel, where low frequency maximum water levels are observed when storm surge is combined with high tide. In contrast, near the tidal phase reversal, coastal hydrodynamics responds primarily to the storm surge, and low frequency maximum water elevation largely depends on the surge. In the areas with a small tidal range, ETC strength determines the pattern of coastal inundation.

  10. Converting Surface Irrigation to Pressurized Irrigation Systems and its Effecton Yield of OrangeTrees (Case Study:North of Khouzestan

    Directory of Open Access Journals (Sweden)

    M. Khorramian

    2017-01-01

    pan coefficient of 0.8. During the growth season, soil moisture content was measured before irrigation in root zone depth using weighing method at two points of the beginning and the end of the garden to obtain an average showing changes of the field moisture content. Applied water were measured with flow meter for OHSI, UTSI,TI, MI and BI methods and WSC flume for SI treatment. In middle January after fruit ripening, fruit yield was determined by harvesting all the fruits from six trees located in the center of each plot. Weight of fruits from every tree was recorded. Then, 3kilogram fruits per tree were randomly separated and peel thickness, diameter, weight, juice solid percent, total dissolved solids(TSS and Citric acid were measured. Results Discussion: The annual precipitation was 385,345, and 336 mm for 2004, 2005, and 2006 years, respectively. The mean temperature of June, July and August (the warmest months for 2004, 2005, and 2006 was 45.6, 45.2 and 45.8°C. Higher temperature in third year caused to increase heat stress, so fruit yield decreased. Irrigation water consumption in OHSI and UTSI were among 15000 to 17000 m3ha-1. Continues contact of irrigation water contacting with leaves in OHSI causes the accumulation of salts on the leaf surface and leaf drop in harvest season. Consumed water in BI, MI and TI compared with SI method reduced by as much as 48.6%, 57.2%, and 58.4%, respectively. Because soil wetted area in BI, MI and TI methods were low and about 30 to 50 percent of soil area. There were significant differences in citrus yield, water use efficiency (WUE and quality in 1% and 5%, so that comparison of means in Mars variety showed that the yield of trees in TI and SI methods were significantly higher than UTSI method. On the other hand, fruit yield was similar in OHSI, MI, TI and SI methods. Valencia variety fruit yield was similar for in BI, MI, TI and SI methods in all 3 years, and significantly more than OHSI and UTSI although BI, MI, TI used

  11. Innovative technology for colostomy irrigation: assessing the impact on patients.

    Science.gov (United States)

    Pace, S; Manuini, F; Maculotti, D

    2015-10-01

    The main purpose of the trial was to evaluate the opinions expressed by a sample of subjects with permanent colostomy, as a result of the use of a new device designed for the execution of transtomal intestinal irrigation; their feedback was analyzed in relation to the concept of Quality of Life. The device was tested on a sample of 14 colostomized patients (10 men and 4 women, aged between 42 and 77 years) who were used to perform intestinal irrigation procedures independently and routinely, with standard technique. After testing the new device, the patients included in the study were asked to fill out a questionnaire built ad hoc for their situation. The analysis of the data collected led to the following conclusions: 93% of the patients described the new irrigation method as simpler than the standard procedure; the majority of the patients assessed bowel emptying as good; 64% of patients reported excellent comfort experienced during the procedure; the presence of a regulator to adjust the instillation speed of water into the intestinal lumen was considered useful to control the flow of the incoming fluid The use of the device guaranteed: psychological tranquility, minimum manual intervention, full achievement of the expected results and decrease in the issues normally encountered with the standard irrigation method. The practical features of the new device ensure easy and straightforward carrying out of the procedure; this ease of use affects the stomized patient's everyday life by reducing the time of procedure completion, thus positively influencing the perception of the patients' Quality of Life.

  12. Progression of the 2011-2012 Surge of Bering Glacier and Bagley Ice Field, Alaska

    Science.gov (United States)

    Herzfeld, U. C.; McDonald, B.; Stachura, M.; Hale, R.; Trantow, T.; Weltman, A.; Chen, P.

    2012-12-01

    Bering Glacier, Alaska, started a surge in late spring 2011. The surge reached the ice front in May 2011 and extended into Bagley Ice Field by summer 2011. New surge-related crevassing was observed in July 2012. We collected aerial observations, including systematic videographic and photographic imagery, GPS data and laser altimeter data in September 2011 and in July 2012. In this talk, an analysis of surge progression and comparison to the early, mature and late stages of the 1993-1995 surge of Bering Glacier and Bagley Ice Field will be presented. A suite of approaches will be used to this end: Analysis of elevation changes based on CryoSat data, 2009 and 2010 IceBridge data and 2011 and 2012 laser altimeter data collected by our group, geostatistical classification of crevasse types based on imagery, classification of laser altimeter data and analysis of high-resolution satellite imagery (Worldview and GEOS).

  13. Hurricane storm surge and amphibian communities in coastal wetlands of northwestern Florida

    Science.gov (United States)

    Gunzburger, M.S.; Hughes, W.B.; Barichivich, W.J.; Staiger, J.S.

    2010-01-01

    Isolated wetlands in the Southeastern United States are dynamic habitats subject to fluctuating environmental conditions. Wetlands located near marine environments are subject to alterations in water chemistry due to storm surge during hurricanes. The objective of our study was to evaluate the effect of storm surge overwash on wetland amphibian communities. Thirty-two wetlands in northwestern Florida were sampled over a 45-month period to assess amphibian species richness and water chemistry. During this study, seven wetlands were overwashed by storm surge from Hurricane Dennis which made landfall 10 July 2005 in the Florida panhandle. This event allowed us to evaluate the effect of storm surge overwash on water chemistry and amphibian communities of the wetlands. Specific conductance across all wetlands was low pre-storm (marine habitats are resistant to the effects of storm surge overwash. ?? 2010 Springer Science+Business Media B.V.

  14. Condition Assessment of Metal Oxide Surge Arrester Based on Multi-Layer SVM Classifier

    Directory of Open Access Journals (Sweden)

    M Khodsuz

    2015-12-01

    Full Text Available This paper introduces the indicators for surge arrester condition assessment based on the leakage current analysis. Maximum amplitude of fundamental harmonic of the resistive leakage current, maximum amplitude of third harmonic of the resistive leakage current and maximum amplitude of fundamental harmonic of the capacitive leakage current were used as indicators for surge arrester condition monitoring. Also, the effects of operating voltage fluctuation, third harmonic of voltage, overvoltage and surge arrester aging on these indicators were studied. Then, obtained data are applied to the multi-layer support vector machine for recognizing of surge arrester conditions. Obtained results show that introduced indicators have the high ability for evaluation of surge arrester conditions.

  15. Design of a high-performance centrifugal compressor with new surge margin improvement technique for high speed turbomachinery

    Directory of Open Access Journals (Sweden)

    Sagar Pakle

    2018-03-01

    Full Text Available This paper presents the design of a centrifugal compressor for high-speed turbomachinery. The main focus of the research is to develop a centrifugal compressor with improved aerodynamic performance. As a meridional frame has a significant effect on overall performance of the compressor, special attention has been paid to the end wall contours. The shroud profile is design with bezier curve and hub profile with circular arc contour. The blade angle distribution has been arranged in a manner that it merges with single value at impeller exit. The rake angle is positive at leading edge and negative at trailing edge with identical magnitude. Furthermore, three-dimensional straight line element approach has been used for this design for better manufacturability. The verification of the aerodynamic performance has been carried out using CFD software with consideration of a single blade passage and vaneless diffuser. The result has been compared with matching size aftermarket compressor stage gas stand data. The compressor stage with Trim 55 provides 34% increase in choke flow at 210000 RPM as compared to gas stand data with 87% peak stage efficiency at 110000 RPM. In addition, new surge margin improvement technique has been proposed by means of diffuser enhancement. This technique provides an average of 16% improvement in surge margin compared to standard diffuser stage with 55 trim compressor impeller. The mechanical integrity has been validated at maximum RPM with the aluminum alloy 2014-T6 as a fabrication material. Keywords: Centrifugal compressor, Aerodynamic performance, Surge margin, Blade angles, Stress analysis, Computational fluid dynamics

  16. Transport of oxytetracycline, chlortetracycline, and ivermectin in surface runoff from irrigated pasture.

    Science.gov (United States)

    Bair, Daniel A; Popova, Ina E; Tate, Kenneth W; Parikh, Sanjai J

    2017-09-02

    The transport of oxytetracycline, chlortetracycline, and ivermectin from manure was assessed via surface runoff on irrigated pasture. Surface runoff plots in the Sierra Foothills of Northern California were used to evaluate the effects of irrigation water application rates, pharmaceutical application conditions, vegetative cover, and vegetative filter strip length on the pharmaceutical discharge in surface runoff. Experiments were designed to permit the maximum potential transport of pharmaceuticals to surface runoff water, which included pre-irrigation to saturate soil, trimming grass where manure was applied, and laying a continuous manure strip perpendicular to the flow of water. However, due to high sorption of the pharmaceuticals to manure and soil, less than 0.1% of applied pharmaceuticals were detected in runoff water. Results demonstrated an increase of pharmaceutical transport in surface runoff with increased pharmaceutical concentration in manure, the concentration of pharmaceuticals in runoff water remained constant with increased irrigation flow rate, and no appreciable decrease in pharmaceutical runoff was produced with the vegetative filter strip length increased from 30.5 to 91.5 cm. Most of the applied pharmaceuticals were retained in the manure or within the upper 5 cm of soil directly beneath the manure application sites. As this study evaluated conditions for high transport potential, the data suggest that the risk for significant chlortetracycline, oxytetracycline, and ivermectin transport to surface water from cattle manure on irrigated pasture is low.

  17. Scheduling of Irrigation and Leaching Requirements

    Directory of Open Access Journals (Sweden)

    Amer Hassan Al-haddad

    2015-03-01

    Full Text Available Iraq depends mainly on Tigris and Euphrates Rivers to provide high percentage of agricultural water use for thousands years. At last years, Iraq is suffering from shortage in water resources due to global climate changes and unfair water politics of the neighboring countries, which affected the future of agriculture plans for irrigation, added to that the lack of developed systems of water management in the irrigation projects and improper allocation of irrigation water, which reduces water use efficiency and lead to losing irrigation water and decreasing in agricultural yield. This study aims at studying the usability of irrigation and leaching scheduling within the irrigating projects and putting a complete annual or seasonal irrigation program as a solution for the scarcity of irrigation water, the increase of irrigation efficiency, lessening the salinity in the projects and preparing an integral irrigation calendar through field measurements of soil physical properties and chemical for project selected and compared to the results of the irrigation scheduling and leaching with what is proposed by the designers. The process is accomplished by using a computer program which was designed by Water Resources Department at the University of Baghdad, with some modification to generalize it and made it applicable to various climatic zone and different soil types. Study area represented by large project located at the Tigris River, and this project was (Al-Amara irrigation project. Sufficient samples of project's soil were collected so as to identify soil physical and chemical properties and the salinity of soil and water as well as identifying the agrarian cycles virtually applied to this project. Finally, a comparison was conducted between the calculated water quantities and the suggested ones by the designers. The research results showed that using this kind of scheduling (previously prepared irrigation and leaching scheduling with its properties

  18. Optimization of modern irrigation for biosaline agriculture

    International Nuclear Information System (INIS)

    Shahid, S.A.; Hasbini, B.

    2007-01-01

    Supplementation water is a must to offset the water requirement to produce profitable crops in most arid and semiarid zones, where fresh water resources are insufficient to meet the pressure of irrigated agriculture. This necessitates the use of poor quality water resources. These waters if not properly managed and used can cause serious soil related problems (salinity, sodicity, destruction of soil structure) in addition to decline in crop yields. Biosaline agriculture (using saline water on saline soils to grow salt-tolerant crops) becomes the only option for the farmer when both soil and water resources are saline and the water resource is scarce. In this regards key design considerations must be taken into account when irrigating with salty waters to optimize water uses and to reduce subsequent soil salinity development. Sprinkler irrigation systems are commonly used in irrigation of large-scale irrigational production systems. However they tend to concentrate salts on the leaves of plants. For this reason discharge and degree of overlap between consecutive sprinkler heads, are key design parameters when applying salty waters. Trickle irrigation is the most efficient system and is gaining importance in the GCC countries in the agriculture and landscape irrigation. The objective of this study was to optimize modern irrigation systems through development of design standards for drip (emitters spacing) and sprinkler irrigation systems (single head jet and overlapping) by applying saline water. The effect of emitter spacing (drip) and overlapping (sprinkler) were tested for the formation of salt contours in soil. The leaching ratio (LR) is the overall soil sanity within rhizosphere divided by the average irrigation water salinity. In this study LR is used to evaluate the effectiveness of irrigation systems in developing soil sanity. From the present investigations it is concluded that when using saline water for irrigation, the soil sanity development can be

  19. Modelling the forest and woodland-irrigation nexus in tropical Africa

    NARCIS (Netherlands)

    Duku, Confidence; Zwart, Sander J.; Hein, Lars

    2016-01-01

    Major increases in food production are needed to feed the rapidly growing population of sub-Saharan Africa. Increased application of irrigation has often been identified as one of the main pathways to agricultural intensification. However, water flows, in particular during the dry season, often

  20. Institutional aspects of integrating irrigation into urban wastewater management: the case of Hanoi, Vietnam

    NARCIS (Netherlands)

    Evers, J.G.; Huibers, F.P.; Vliet, van B.J.M.

    2010-01-01

    Wastewater flows of metropolitan cities and their downstream use for irrigation are often associated with technical systems. However, an engineering approach on its own will leave questions unanswered at the socio-technical and institutional level. Research was carried out in Hanoi, Vietnam, on the

  1. Institutional aspects of integrating irrigation into urban wastewater management: the case of Hanoi, Vietnam

    NARCIS (Netherlands)

    Evers, J.G.; Huibers, Frans P.; van Vliet, Bas J.M.

    2008-01-01

    Wastewater flows of metropolitan cities and their downstream use for irrigation are often associated with technical systems. However, an engineering approach on its own will leave questions unanswered at the socio-technical and institutional level. Research was carried out in Hanoi, Vietnam, on the

  2. Prospects for Improving Gravity-Fed Surface Irrigation Systems in Mediterranean European Contexts

    Directory of Open Access Journals (Sweden)

    Daniele Masseroni

    2017-01-01

    . A continuous knowledge exchange is thus necessary for the interaction of all irrigation water managers and farmers to improve their eco-efficiency and to preserve and promote their cultural heritage across the entire water supply and delivery chains. We argue that the best way forward will require precisely targeted rehabilitation measures of gravity-fed surface irrigation systems based on the integrated use of decision support services, gate automation, remote and feedback controls and real-time flow optimization.

  3. Storm surge and wave simulations in the Gulf of Mexico using a consistent drag relation for atmospheric and storm surge models

    Directory of Open Access Journals (Sweden)

    D. Vatvani

    2012-07-01

    Full Text Available To simulate winds and water levels, numerical weather prediction (NWP and storm surge models generally use the traditional bulk relation for wind stress, which is characterized by a wind drag coefficient. A still commonly used drag coefficient in those models, some of them were developed in the past, is based on a relation, according to which the magnitude of the coefficient is either constant or increases monotonically with increasing surface wind speed (Bender, 2007; Kim et al., 2008; Kohno and Higaki, 2006. The NWP and surge models are often tuned independently from each other in order to obtain good results. Observations have indicated that the magnitude of the drag coefficient levels off at a wind speed of about 30 m s−1, and then decreases with further increase of the wind speed. Above a wind speed of approximately 30 m s−1, the stress above the air-sea interface starts to saturate. To represent the reducing and levelling off of the drag coefficient, the original Charnock drag formulation has been extended with a correction term.

    In line with the above, the Delft3D storm surge model is tested using both Charnock's and improved Makin's wind drag parameterization to evaluate the improvements on the storm surge model results, with and without inclusion of the wave effects. The effect of waves on storm surge is included by simultaneously simulating waves with the SWAN model on identical model grids in a coupled mode. However, the results presented here will focus on the storm surge results that include the wave effects.

    The runs were carried out in the Gulf of Mexico for Katrina and Ivan hurricane events. The storm surge model was initially forced with H*wind data (Powell et al., 2010 to test the effect of the Makin's wind drag parameterization on the storm surge model separately. The computed wind, water levels and waves are subsequently compared with observation data. Based on the good

  4. Nucleus management with irrigating vectis

    Directory of Open Access Journals (Sweden)

    Srinivasan Aravind

    2009-01-01

    Full Text Available The main objective in modern cataract surgery is to achieve a better unaided visual acuity with rapid post-surgical recovery and minimal surgery-related complications. Early visual rehabilitation and better unaided vision can be achieved only by reducing the incision size. In manual small incision cataract surgery (MSICS, incision is between 5.5 to 7 mm. Once the nucleus is prolapsed into the anterior chamber, it can be extracted through the tunnel. Nucleus extraction with an irrigating vectis is a very simple technique, which combines mechanical and hydrostatic forces to express out the nucleus. This technique is time-tested with good results and more than 95% of nuclei in MSICS are extracted in this way offering all the merits of phacoemulsification with the added benefits of having wider applicability, better safety, shorter learning curve and lower cost.

  5. The Temporal Variation of Leaf Water Potential in Pistachio under Irrigated and Non-Irrigated Conditions

    Directory of Open Access Journals (Sweden)

    Yusuf AYDIN

    2014-09-01

    Full Text Available The present study was carried out in the experimental field of Pistachio Research Institute on pistachio trees which has uzun variety that was 30 years old. The aim of this research was to determine the Leaf Water Potential (LWP of Pistacia vera L. under irrigated and non-irrigated conditions. In the study, the leaf water potential of pistachio was investigated under fully irrigated and non irrigated conditions. The leaf water potential values were measured one day before and after irrigation by using pressure chamber technique at the beginning, mid and end of irrigation season. According to the results obtained from measurements, the LWP value at the beginning of the irrigation season was -3.7 MPa at noon time due to relatively high temperature for both treatments. At the time of pre-dawn and sunset, this value increased and reached to - 1.6 MPa due to relatively low temperature. In general, the LWP values during the mid of irrigation season, in the irrigated treatments, reached to almost -2.5 MPa in the non-irrigated treatment and the value was measured as -3.68 MPa.

  6. Distribution Of 15N Fertilizer Added To Sandy Soil Under Drip Irrigation System As Affected By Irrigation Frequencies

    International Nuclear Information System (INIS)

    GADALLA, A.M.; GALAL, Y.G.M.; EL-GENDY, R.W.; ISMAIL, M.M.; EL-DEGWY, S.M.; KASSAB, M.F.

    2009-01-01

    Neutron moisture meter and stable nitrogen isotope ( 15 N) were used to follow horizontal and vertical water movement and N-fertilizer added to soil before and after irrigation. The data indicated that soil moisture distribution and values of total hydraulic potential depend on soil moisture content. Characterization of nitrogen in soil for all sites around the emitter indicated spatial variability with different soil depths due to leaching and volatilization processes. Moreover, water movement and flow direction greatly were characterized by active evaporation depth which was 30 cm.

  7. Fluxo de seiva xilemática em mamoeiro 'Golden' cultivado por microaspersão sobre copa: relações com as variáveis ambientais Relationship between sap flow and environmental variables in a microspray irrigation upon papaya tree canopy

    Directory of Open Access Journals (Sweden)

    Fabrício de Oliveira Reis

    2009-01-01

    generally caused by the deficit of water in the soil, in the atmosphere or in both. The environmental variables control the plant water loss. However, high values of leaf to air vapor pressure deficit (VPDleaf-to-air can cause the stomatal closure and can reduce the transpiration process, mainly in large trees. In this experiment, it was used the heat dissipation method developed by GRANIER (1985 to sap flow measurements. The aim of this study was to determine the relationship between xylem sap flow and reference evapotranspiration (ET0 in papaya plants cultivated with and without microspray irrigation over canopy and under field conditions. It was also investigated the relationship between xylem sap flow, photosynthetic photons flux density (PPFD and air vapor pressure deficit (VPDair values. There was a delay between the loss of water through the leaves and the movement of water through the trunk (lag phase. From January to March, there was a better relation between xylem sap flow and VPDair, which was not observed from June to August, probably because of this lag phase. From January to March, plants cultivated with microaspersion showed an increase in xylem sap flow, in relation to plants cultivated without microaspersion when, at this stage, the ET0 was higher.

  8. Potential Hydrodynamic Loads on Coastal Bridges in the Greater New York Area due to Extreme Storm Surge and Wave

    Science.gov (United States)

    2018-04-18

    This project makes a computer modeling study on vulnerability of coastal bridges in New York City (NYC) metropolitan region to storm surges and waves. Prediction is made for potential surges and waves in the region and consequent hydrodynamic load an...

  9. Biological degradation of chernozems under irrigation

    Directory of Open Access Journals (Sweden)

    Oksana Naydyonova

    2014-12-01

    Full Text Available We studied the changes in the state of microbial cenosis of Ukraine’s chernozems under irrigation. Considerable part of Ukraine’s chernozems is located in the areas where humidification is insufficient and unstable. Irrigation is a soil-reclamation measure for chernozems of Ukrainian Forest-steppe and Steppe which enables getting the assured yield, especially vegetable and fodder crops. At the same time, irrigation is a powerful anthropogenic factor that affects the soil, causes a significant transformation of many of its properties and regimes including biological ones. Often these changes are negative. The purpose of our investigation was to identify changes in the state of microbial cenoses of chernozem soils under irrigation which depend on such factors as the quality of irrigation water, the duration and intensity of irrigation, the initial properties of soil, the structure of crop rotation, usage of fertilizing systems and agroameliorative techniques. We identified direction and evaluated a degree of changes in biological properties of chernozems under influence of irrigation in different agro-irrigational and soil-climatic conditions. In the long-term stationary field experiments we identified the following biological indices of irrigated soils and their non-irrigated analogues: a number of microorganisms which belong to main ecological-trophic groups, activity of soil enzymes (dehydrogenase, invertase, phenol oxidase, soil phytotoxic activity, cellulose destroying capacity of soil, indices of oligotrophy and mineralization, summary biological index (SBI and index of biological degradation (BDI. Results of researches showed that irrigation unbalanced the soil ecosystem and stipulated the forming of microbial cenosis with new parameters. Long-term intensive irrigation of typical chernozem (Kharkiv Region with fresh water under condition of 4-fields vegetable crop rotation led to the degradation changes of its microbial cenosis such as

  10. Irrigation Water Management in Latin America

    Directory of Open Access Journals (Sweden)

    Aureo S de Oliveira

    2009-12-01

    Full Text Available Latin American countries show a great potential for expanding their irrigated areas. Irrigation is important for strengthening local and regional economy and for enhancing food security. The present paper aimed at providing a brief review on key aspects of irrigation management in Latin America. Poor irrigation management can have great impact on crop production and on environment while good management reduces the waste of soil and water and help farmers maximizing their profits. It was found that additional research is needed to allow a better understanding of crop water requirements under Latin American conditions as well as to provide farmers with local derived information for irrigation scheduling. The advantages of deficit irrigation practices and the present and future opportunities with the application of remote sensing tools for water management were also considered. It is clear that due to the importance of irrigated agriculture, collaborative work among Latin American researchers and institutions is of paramount importance to face the challenges imposed by a growing population, environment degradation, and competition in the global market.

  11. Identification of flow paths and quantification of return flow volumes and timing at field scale

    Science.gov (United States)

    Claes, N.; Paige, G. B.; Parsekian, A.

    2017-12-01

    Flood irrigation, which constitutes a large part of agricultural water use, accounts for a significant amount of the water that is diverted from western streams. Return flow, the portion of the water applied to irrigated areas that returns to the stream, is important for maintaining base flows in streams and ecological function of riparian zones and wetlands hydrologically linked with streams. Prediction of timing and volumes of return flow during and after flood irrigation pose a challenge due to the heterogeneity of pedogenic and soil physical factors that influence vadose zone processes. In this study, we quantify volumes of return flow and potential pathways in the subsurface through a vadose zone flow model that is informed by both hydrological and geophysical observations in a Bayesian setting. We couple a two-dimensional vadose zone flow model through a Bayesian Markov Chain Monte Carlo approach with time lapse ERT, borehole NMR datasets that are collected during and after flood irrigation experiments, and soil physical lab analysis. The combination of both synthetic models and field observations leads to flow path identification and allows for quantification of volumes and timing and associated uncertainties of subsurface return that stems from flood irrigation. The quantification of the impact of soil heterogeneity enables us to translate these results to other sites and predict return flow under different soil physical settings. This is key when managing irrigation water resources and predictions of outcomes of different scenarios have to be evaluated.

  12. Ancestral irrigation method by kanis in Bolivia

    Science.gov (United States)

    Roldán-Cañas, José; Chipana, René; Fátima Moreno-Pérez, María

    2015-04-01

    Irrigation in the Andean region is an ancient practice. For centuries, farmers were able to use the waters of rivers, lakes and springs to complement or supplement the scarce rainfall regime. The inter-Andean valleys of the Department of La Paz are the best areas for the study of traditional irrigation systems. This work has been carried out in the community of Jatichulaya located in te town of Charazani, 300 km from the city of La Paz, which lies 3250 meters above sea level. The annual rainfall ranges around 450 mm distributed mainly between the months of December to March. Therefore, water is needed to achieve adequate crop yields. The traditional irrigation system is done by the method of Kanis, consisting of a surface irrigation already developed by traditional Andean cultures of the country, in harmony with the ecological and productive characteristics of the area. Water enters the irrigation plot through a main channel (mama kani) from which the secondary channels (juchuy kanis) are derived. The fundamental characteristic of this irrigation is that these channels are open at the same time the water enters into the plot. The system works properly, adapting to the topography of the area. The irrigation method practiced in this community does not cause water erosion of soils because water management within the plot is based on the ancient knowledge of farmers following the contour lines. This practice allows good irrigation development and soil protection without causing any problems. However, it was evident a high use of labor in irrigation practice. Irrigation scheduling is done according to requests made by the irrigators in a given period. Delivering of water to the farmers is made by the so-called Water Agent (Agente de Aguas) or person in charge of the distribution of water. The Water Agent is elected annually and its functions include the maintenance and care of all system waterworks. The period between August and January is the highest water demand and

  13. Irrigation water sources and irrigation application methods used by U.S. plant nursery producers

    Science.gov (United States)

    Paudel, Krishna P.; Pandit, Mahesh; Hinson, Roger

    2016-02-01

    We examine irrigation water sources and irrigation methods used by U.S. nursery plant producers using nested multinomial fractional regression models. We use data collected from the National Nursery Survey (2009) to identify effects of different firm and sales characteristics on the fraction of water sources and irrigation methods used. We find that regions, sales of plants types, farm income, and farm age have significant roles in what water source is used. Given the fraction of alternative water sources used, results indicated that use of computer, annual sales, region, and the number of IPM practices adopted play an important role in the choice of irrigation method. Based on the findings from this study, government can provide subsidies to nursery producers in water deficit regions to adopt drip irrigation method or use recycled water or combination of both. Additionally, encouraging farmers to adopt IPM may enhance the use of drip irrigation and recycled water in nursery plant production.

  14. The Effect of Initial Irrigation Conditions on Heap Leaching Efficiency

    Science.gov (United States)

    Briseño Arellano, A. D.; Milczarek, M.; Yao, M.; Brusseau, M. L. L.

    2017-12-01

    Heap leaching is an unsaturated flow metal recovery process, in which mined ore is irrigated with a lixiviant to dissolve metal contained in the ore. The metal is then extracted from solution. Large scale operations involve stacking ore to depths of 6 to 18 meters on pads that may be hundreds of hectares in area. Heterogeneities within the stacked ore can lead to uneven wetting and the formation of preferential flow pathways, which reduces solution contact and lowers metal recovery. Furthermore, mineral dissolution can cause alteration of the porous media structure and loss of ore permeability. Many mine operators believe that slow initial irrigation rates help minimize permeability loss and increase metal recovery rates. However, this phenomenon has not been studied in detail. Experiments were conducted to investigate the effect of varying initial irrigation rates on leach ore stability. These were conducted with large columns (1.5 m high, 0.5 m in diameter) packed with crushed ore samples that are known to have permeability constraints. The columns were highly instrumented to assess potential changes in material properties both spatially and temporally. Water content was measured with three different methods: capacitance soil moisture sensors placed at 20-cm intervals; a neutron probe to periodically log every 30 cm from four different directions; and electrical resistivity sensors to create a 2-dimensional tomography profile of water content over time. Tensiometers were paired with the soil moisture sensors to measure matric suction and characterize moisture retention characteristics. A non-reactive tracer was used to characterize advective-dispersive transport under unsaturated conditions. A dye solution was introduced at the end of each experiment to map preferential pathways. Continuous monitoring of settling at the surface assisted in measuring consolidation and loss in permeability.

  15. effect of deficit irrigation on growth and yield of okro

    African Journals Online (AJOL)

    User

    reduce the demand for irrigation water (Boland et al., 1993). Deficit irrigation is another way in which water use efficiency can be maximized for higher yields per unit of irrigation water. Stegman (1982) reported that the yield of maize, sprinkler irrigated to induce a 30 - 40 percent depletion of available water between.

  16. Using container weights to determine irrigation needs: A simple method

    Science.gov (United States)

    R. Kasten Dumroese; Mark E. Montville; Jeremiah R. Pinto

    2015-01-01

    Proper irrigation can reduce water use, water waste, and incidence of disease. Knowing when to irrigate plants in container nurseries can be determined by weighing containers. This simple method is quantifiable, which is a benefit when more than one worker is responsible for irrigation. Irrigation is necessary when the container weighs some target as a proportion of...

  17. Observed characteristics of tide-surge interaction along the east coast of India and the head of Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Antony, C.; Unnikrishnan, A.S.

    before the high tide. Application of a simple model shows the observed surge peak distribution at Hiron Point can be explained in terms of phase alteration of tide due to surge and surge modulation by tide. The degree of interaction tends to increase...

  18. Predicting Typhoon Induced Storm Surges Using the Operational Ocean Forecast System

    Directory of Open Access Journals (Sweden)

    Sung Hyup You

    2010-01-01

    Full Text Available This study was performed to compare storm surges simulated by the operational storm surges/tide forecast system (STORM : Storm surges/Tide Operational Model of the Korea Meteorological Administration (KMA with observations from 30 coastal tidal stations during nine typhoons that occurred between 2005 and 2007. The results (bias showed that for cases of overestimation (or underestimation, storm surges tended to be overestimated (as well as underestimated at all coastal stations. The maximum positive bias was approximately 6.92 cm for Typhoon Ewiniar (2006, while the maximum negative bias was approximately -12.06 cm for Typhoon Khanun (2005. The maximum and minimum root mean square errors (RMSEs were 14.61 and 6.78 cm, which occurred for Typhoons Khanun (2005 and Usagi (2007, respectively. For all nine typhoons, total averaged RMSE was approximately 10.2 cm. Large differences between modeled and observed storm surges occurred in two cases. In the first, a very weak typhoon, such as Typhoon Khanun (2005, caused low storm surges. In the other, exemplified by Typhoon Nari (2007, there were errors in the predicted typhoon strength used as input data for the storm surge model.

  19. Simulating Storm Surge Impacts with a Coupled Atmosphere-Inundation Model with Varying Meteorological Forcing

    Directory of Open Access Journals (Sweden)

    Alexandra N. Ramos Valle

    2018-04-01

    Full Text Available Storm surge events have the potential to cause devastating damage to coastal communities. The magnitude of their impacts highlights the need for increased accuracy and real-time forecasting and predictability of storm surge. In this study, we assess two meteorological forcing configurations to hindcast the storm surge of Hurricane Sandy, and ultimately support the improvement of storm surge forecasts. The Weather Research and Forecasting (WRF model is coupled to the ADvanced CIRCulation Model (ADCIRC to determine water elevations. We perform four coupled simulations and compare storm surge estimates resulting from the use of a parametric vortex model and a full-physics atmospheric model. One simulation is forced with track-based meteorological data calculated from WRF, while three simulations are forced with the full wind and pressure field outputs from WRF simulations of varying resolutions. Experiments were compared to an ADCIRC simulation forced by National Hurricane Center best track data, as well as to station observations. Our results indicated that given accurate meteorological best track data, a parametric vortex model can accurately forecast maximum water elevations, improving upon the use of a full-physics coupled atmospheric-surge model. In the absence of a best track, atmospheric forcing in the form of full wind and pressure field from a high-resolution atmospheric model simulation prove reliable for storm surge forecasting.

  20. CFD simulation of pressure and discharge surge in Francis turbine at off-design conditions

    International Nuclear Information System (INIS)

    Chirkov, D; Avdyushenko, A; Panov, L; Bannikov, D; Cherny, S; Skorospelov, V; Pylev, I

    2012-01-01

    A hybrid 1D-3D CFD model is developed for the numerical simulation of pressure and discharge surge in hydraulic power plants. The most essential part – the turbine itself – is simulated directly using 3D unsteady equations of turbulent motion of fluid-vapor mixture, while the rest of the hydraulic system is simulated in frames of 1D hydro-acoustic model. Thus the model accounts for the main factors responsible for excitation and propagation of pressure and discharge waves in hydraulic power plant. Boundary conditions at penstock inlet and draft tube outlet are discussed in detail. Then simulations of dynamic behavior at part load and full load operating points are performed. It is shown that the numerical model is able to capture self-excited oscillations in full load conditions. The influence of penstock length and flow structure behind the runner are investigated. The presented approach seems to be a promising tool for prediction and investigation the dynamic behavior in hydraulic power plants.

  1. Surge analysis of the MAGLEV coil for propulsion and guidance; Jiki fujoshiki tetsudo ni okeru suitei annaiyo coil no surge kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Ema, S [Numazu College of Technology, Shizuoka (Japan)

    1995-11-20

    The MAGLEV (magnetically levitated train) is now well along in development testing in Japan. MAGLEV is unlike conventional railways, so various problems lie in the technology of MAGLEV. One of them is surge analysis of the MAGLEV coil for propulsion and guidance (`coil for propulsion` for short). The coil for propulsion is installed on each side of the outdoor guideway. Thus, the power system of MAGLEV is always exposed to lightning and circuit switching. Accordingly, it is very important to do a rational insulation plan to prevent damage when surges enter the coils. In view of this situation I performed experiments using the mini model coils and clarified impulse voltage distribution at the end of each coil and simulated the surge characteristics by giving the inverted L equivalent circuit to the coil for propulsion. As a result, the measured values and calculated values were almost equal in the surge characteristics. Further, the surge characteristics of the Miyazaki test track and the future MAGLEV were examined. 10 refs., 17 figs., 1 tab.

  2. Developing an early warning system for storm surge inundation in the Philippines

    Science.gov (United States)

    Tablazon, J.; Caro, C. V.; Lagmay, A. M. F.; Briones, J. B. L.; Dasallas, L.; Lapidez, J. P.; Santiago, J.; Suarez, J. K.; Ladiero, C.; Gonzalo, L. A.; Mungcal, M. T. F.; Malano, V.

    2014-10-01

    A storm surge is the sudden rise of sea water generated by an approaching storm, over and above the astronomical tides. This event imposes a major threat in the Philippine coastal areas, as manifested by Typhoon Haiyan on 8 November 2013 where more than 6000 people lost their lives. It has become evident that the need to develop an early warning system for storm surges is of utmost importance. To provide forecasts of the possible storm surge heights of an approaching typhoon, the Nationwide Operational Assessment of Hazards under the Department of Science and Technology (DOST-Project NOAH) simulated historical tropical cyclones that entered the Philippine Area of Responsibility. Bathymetric data, storm track, central atmospheric pressure, and maximum wind speed were used as parameters for the Japan Meteorological Agency Storm Surge Model. The researchers calculated the frequency distribution of maximum storm surge heights of all typhoons under a specific Public Storm Warning Signal (PSWS) that passed through a particular coastal area. This determines the storm surge height corresponding to a given probability of occurrence. The storm surge heights from the model were added to the maximum astronomical tide data from WXTide software. The team then created maps of probable area inundation and flood levels of storm surges along coastal areas for a specific PSWS using the results of the frequency distribution. These maps were developed from the time series data of the storm tide at 10 min intervals of all observation points in the Philippines. This information will be beneficial in developing early warnings systems, static maps, disaster mitigation and preparedness plans, vulnerability assessments, risk-sensitive land use plans, shoreline defense efforts, and coastal protection measures. Moreover, these will support the local government units' mandate to raise public awareness, disseminate information about storm surge hazards, and implement appropriate counter

  3. Local land-atmosphere feedbacks limit irrigation demand

    Science.gov (United States)

    Decker, Mark; Ma, Shaoxiu; Pitman, Andy

    2017-05-01

    Irrigation is known to influence regional climate but most studies forecast and simulate irrigation with offline (i.e. land only) models. Using south eastern Australia as a test bed, we demonstrate that irrigation demand is fundamentally different between land only and land-atmosphere simulations. While irrigation only has a small impact on maximum temperature, the semi-arid environment experiences near surface moistening in coupled simulations over the irrigated regions, a feedback that is prevented in offline simulations. In land only simulations that neglect the local feedbacks, the simulated irrigation demand is 25% higher and the standard deviation of the mean irrigation rate is 60% smaller. These local-scale irrigation-driven feedbacks are not resolved in coarse-resolution climate models implying that use of these tools will overestimate irrigation demand. Future studies of irrigation demand must therefore account for the local land-atmosphere interactions by using coupled frameworks, at a spatial resolution that captures the key feedbacks.

  4. The third oil price surge. What's different this time?

    International Nuclear Information System (INIS)

    Kesicki, Fabian

    2010-01-01

    The period from 2003 to 2008 was marked by an oil price increase comparable to the two oil price crises in the 1970s. This paper looks in detail at the situation of the oil price crises 30 years ago and compares them along various aspects on the demand and supply side with the recent price increase to identify similarities and differences. While both oil price crises in 1973 and 1979/1980 were ultimately caused by supply actions of members of the Organisation of Petroleum Exporting Countries (OPEC), all three oil price crises were preceded by high demand growth. Other aspects that favoured a high oil price in all three cases were low investments in new oil fields, as a consequence low spare capacity, and a weak US dollar. In addition, the recent oil price surge has been characterised by a high global refinery utilisation and refineries that did not adapt fast enough to the rising demand for lighter oil products. Moreover, broader geopolitical uncertainties, combined with risks associated with the oil trade helped push the oil price into a triple-digit zone. Speculation played only a limited and temporary role in accelerating price movements during the recent price increase. (author)

  5. Smart Ultrasound Remote Guidance Experiment (SURGE) Preliminary Findings

    Science.gov (United States)

    Hurst, Victor; Dulchavsky, Scott; Garcia, Kathleen; Sargsyan, Ashot; Ebert, Doug

    2009-01-01

    To date, diagnostic quality ultrasound images were obtained aboard the International Space Station (ISS) using the ultrasound of the Human Research Facility (HRF) rack in the Laboratory module. Through the Advanced Diagnostic Ultrasound in Microgravity (ADUM) and the Braslet-M Occlusion Cuffs (BRASLET SDTO) studies, non-expert ultrasound operators aboard the ISS have performed cardiac, thoracic, abdominal, vascular, ocular, and musculoskeletal ultrasound assessments using remote guidance from ground-based ultrasound experts. With exploration class missions to the lunar and Martian surfaces on the horizon, crew medical officers will necessarily need to operate with greater autonomy given communication delays (round trip times of up to 5 seconds for the Moon and 90 minutes for Mars) and longer periods of communication blackouts (due to orbital constraints of communication assets). The SURGE project explored the feasibility and training requirements of having non-expert ultrasound operators perform autonomous ultrasound assessments in a simulated exploration mission outpost. The project aimed to identify experience, training, and human factors requirements for crew medical officers to perform autonomous ultrasonography. All of these aims pertained to the following risks from the NASA Bioastronautics Road Map: 1) Risk 18: Major Illness and Trauna; 2) Risk 20) Ambulatory Care; 3) Risk 22: Medical Informatics, Technologies, and Support Systems; and 4) Risk 23: Medical Skill Training and Maintenance.

  6. Lightning and surge protection of large ground facilities

    Science.gov (United States)

    Stringfellow, Michael F.

    1988-04-01

    The vulnerability of large ground facilities to direct lightning strikes and to lightning-induced overvoltages on the power distribution, telephone and data communication lines are discussed. Advanced electrogeometric modeling is used for the calculation of direct strikes to overhead power lines, buildings, vehicles and objects within the facility. Possible modes of damage, injury and loss are discussed. Some appropriate protection methods for overhead power lines, structures, vehicles and aircraft are suggested. Methods to mitigate the effects of transients on overhead and underground power systems as well as within buildings and other structures are recommended. The specification and location of low-voltage surge suppressors for the protection of vulnerable hardware such as computers, telecommunication equipment and radar installations are considered. The advantages and disadvantages of commonly used grounding techniques, such as single point, multiple and isolated grounds are compared. An example is given of the expected distribution of lightning flashes to a large airport, its buildings, structures and facilities, as well as to vehicles on the ground.

  7. Analysis of Irrigation Water Quality at Kadawa Irrigation Project for Improved Productivity

    Directory of Open Access Journals (Sweden)

    AR Sanda

    2014-09-01

    Full Text Available In the face of water scarcity and the several negative consequences, such as water wastage, flooding, water logging, soil losses and production losses, conserving the finite amount of fresh water is a must. The quality of irrigation water must therefore be ascertained. The chemical quality of three sources of irrigation water from canal and drainage water, namely drainage water, fresh irrigation water from canal, and drainage/irrigation water mixture, were analyzed from Kadawa irrigation Project for year 2013 and 2014 cropping seasons, with the view to evaluating the potential risks associated with their use in irrigation and hence their suitability or otherwise for irrigation purposes. The analysis revealed that the use of drainage water alone for irrigation may result in problems associated with salinity, while a blend of drainage/irrigation water in the ratio of 1:1 is a viable means of water conservation and a good means of crop production. DOI: http://dx.doi.org/10.3126/ije.v3i3.11082 International Journal of Environment Vol.3(3 2014: 235-240

  8. 16. PRE-OPERATIVE BLADDER IRRIGATION

    African Journals Online (AJOL)

    Esem

    effectiveness of using preoperative bladder irrigation with 1% povidone iodine in reducing ... consenting patient who presented to the department of surgery for open ..... infections in a tertiary care center in south-western. Nigeria. International ...

  9. Deciphering groundwater quality for irrigation and domestic

    Indian Academy of Sciences (India)

    Groundwater quality; irrigation and domestic suitability; ionic balance, Suri I and II ... is important for groundwater planning and management in the study area. ... total hardness (TH), Piper's trilinear diagram and water quality index study.

  10. Parasitological Contamination of Wastewater Irrigated and Raw ...

    African Journals Online (AJOL)

    Tadesse

    Occurrence of infective stages of intestinal parasites on wastewater- irrigated vegetables ..... reported the health hazards of agricultural reuse of untreated wastewater through detection of .... State of knowledge in land treatment of wastewater.

  11. The Danger of Deja Vu: Why the Iraq Surge is Not a Lesson for Afghanistan

    Science.gov (United States)

    2010-01-01

    JAN 2010 2. REPORT TYPE 3. DATES COVERED 00-12-2009 to 00-01-2010 4. TITLE AND SUBTITLE The danger of deja vu . Why the Iraq surge is not a lesson...of five brigade combat teams — eerily mim- icked the surge number for Iraq. And there was more déjà vu when our senior civilian and military leaders...Department. PERSPECTIVES The danger of déjà vu Why the Iraq surge is not a lesson for Afghanistan BY COL. CHARLES D. ALLEN (RET.) The thing we take hold of

  12. A Basis Function Approach to Simulate Storm Surge Events for Coastal Flood Risk Assessment

    Science.gov (United States)

    Wu, Wenyan; Westra, Seth; Leonard, Michael

    2017-04-01

    Storm surge is a significant contributor to flooding in coastal and estuarine regions, especially when it coincides with other flood producing mechanisms, such as extreme rainfall. Therefore, storm surge has always been a research focus in coastal flood risk assessment. Often numerical models have been developed to understand storm surge events for risk assessment (Kumagai et al. 2016; Li et al. 2016; Zhang et al. 2016) (Bastidas et al. 2016; Bilskie et al. 2016; Dalledonne and Mayerle 2016; Haigh et al. 2014; Kodaira et al. 2016; Lapetina and Sheng 2015), and assess how these events may change or evolve in the future (Izuru et al. 2015; Oey and Chou 2016). However, numeric models often require a lot of input information and difficulties arise when there are not sufficient data available (Madsen et al. 2015). Alternative, statistical methods have been used to forecast storm surge based on historical data (Hashemi et al. 2016; Kim et al. 2016) or to examine the long term trend in the change of storm surge events, especially under climate change (Balaguru et al. 2016; Oh et al. 2016; Rueda et al. 2016). In these studies, often the peak of surge events is used, which result in the loss of dynamic information within a tidal cycle or surge event (i.e. a time series of storm surge values). In this study, we propose an alternative basis function (BF) based approach to examine the different attributes (e.g. peak and durations) of storm surge events using historical data. Two simple two-parameter BFs were used: the exponential function and the triangular function. High quality hourly storm surge record from 15 tide gauges around Australia were examined. It was found that there are significantly location and seasonal variability in the peak and duration of storm surge events, which provides additional insights in coastal flood risk. In addition, the simple form of these BFs allows fast simulation of storm surge events and minimises the complexity of joint probability

  13. Stakeholder Views, Financing and Policy Implications for Reuse of Wastewater for Irrigation: A Case from Hyderabad, India

    Directory of Open Access Journals (Sweden)

    Markus Starkl

    2015-01-01

    Full Text Available When flowing through Hyderabad, the capital of Telangana, India, the Musi River picks up (partially treated and untreated sewage from the city. Downstream of the city, farmers use this water for the irrigation of rice and vegetables. Treatment of the river water before it is used for irrigation would address the resulting risks for health and the environment. To keep the costs and operational efforts low for the farmers, the use of constructed wetlands is viewed as a suitable option. Towards this end, the paper investigates the interests and perceptions of government stakeholders and famers on the treatment of wastewater for irrigation and further explores the consumer willingness to pay a higher price for cleaner produced vegetables. Full cost recovery from farmers and consumers cannot be expected, if mass scale treatment of irrigation water is implemented. Instead, both consumers and farmers would expect that the government supports treatment of irrigation water. Most stakeholders associated with the government weigh health and environment so high, that these criteria outweigh cost concerns. They also support the banning of irrigation with polluted water. However, fining farmers for using untreated river water would penalize them for pollution caused by others. Therefore public funding of irrigation water treatment is recommended.

  14. Towards a smart automated surface irrigation management in rice-growing areas in Italy

    Directory of Open Access Journals (Sweden)

    Daniele Masseroni

    2017-02-01

    Full Text Available Italy is the leading rice producer in Europe, accounting for more than half of the total high-quality production of this crop. Rice is traditionally grown in fields that remain flooded starting with crop establishment until close to harvest, and this traditional irrigation technique (i.e., continuous submergence is recognised as an important water resource sink (almost 40% of the irrigation water available worldwide is used for paddy areas. Meanwhile, the water management in rice areas requires a high level of labour because it is based on maintaining a predetermined water height in paddy fields and because the regulation of input and output flow is typically operated manually by the farmer. This study reveals the hardware and software characteristics of an automated and remote controlled technology tested for the first time in a rice farm near Pavia (Italy, during the 2016 growing season, aiming at a more efficient and less burdensome irrigation management system for rice fields. A water level sensor in the field provides the data required to govern the inflow regulation gate in real-time, according to the precise time to cut off the flow rate. Using a dedicated web page, the farmer can control flows, volumes and water levels in the fields by operating directly on the gate if necessary or setting the irrigation program according to his agronomic practices.

  15. Evaluation of Modern Irrigation Techniques with Brackish Water

    OpenAIRE

    Aboulila, Tarek Selim

    2012-01-01

    Modern irrigation techniques are becoming increasingly important in water-scarce countries especially in arid and semiarid regions. Higher crop production and better water use efficiency are usually achieved by drip irrigation as compared to other irrigation methods. Furthermore, by using drip irrigation simultaneously with brackish irrigation water, some of the water stress due to shortage of fresh water resources can be managed. The objective of the current study was to investigate the infl...

  16. Decision support system for surface irrigation design

    OpenAIRE

    Gonçalves, José M.; Pereira, L.S.

    2009-01-01

    The SADREG decision support system was developed to help decision makers in the process of design and selection of farm surface irrigation systems to respond to requirements of modernization of surface irrigation—furrow, basin, and border irrigation. It includes a database, simulation models, user-friendly interfaces, and multicriteria analysis models. SADREG is comprised of two components: design and selection. The first component applies database information, and through several si...

  17. System contemplations for precision irrigation in agriculture

    Science.gov (United States)

    Schubert, Martin J. W.

    2017-04-01

    This communication contemplates political, biological and technical aspects for efficient and profitable irrigation in sustainable agriculture. A standard for irrigation components is proposed. The need for many, and three-dimensionally distributed, soil measurement points is explained, thus enabling the control of humidity in selected layers of earth. Combined wireless and wired data transmission is proposed. Energy harvesting and storage together with mechanical sensor construction are discussed.

  18. Management of poor quality irrigation water

    International Nuclear Information System (INIS)

    Change, M.H.; Leghari, A.M.; Sipio, Q.A.

    2000-01-01

    The effect of poor quality drainage effluent on moderately saline sodic, medium textured soil at different growth stages of wheat and cotton is reported. The irrigation treatments were: I) All canal irrigations, II) one irrigation of 75 mm with saline drainage effluent (EC = 3 dS m1) after four weeks sowing of the crop, III) one irrigation of 75 mm with saline drainage effluent after seven weeks sowing of the crop, and IV) one irrigation of 75 mm with saline drainage effluent after ten weeks sowing of the crop. The treatments receiving saline water gave significant decrease in crop yields as compared to canal irrigation treatment. The higher yield of wheat and seed cotton was recorded T1 followed by T2, T3 and T4. The trend of produce was T1< T2< T3< T4 respectively. Electrical conductivity of the soil (Ece) in T1 was decreased and in other three treatments was increased, whereas, pH decreased in T1 and T2. The SAR of soil decreased in all the treatments as compared with initial values. Treatment receiving an irrigation with saline water after four weeks of sowing (T2) was better in reducing soil salinity as compared to treatments receiving such water after 7 or 10 weeks os sowing. Poor quality water (EC = 3 d Sm/sup -1/) can be managed for irrigation after four weeks of swing of crops provided certain soil and water management practices like good seed bed preparation and proper drainage measures are adopted. (author)

  19. Grower demand for sensor-controlled irrigation

    Science.gov (United States)

    Lichtenberg, Erik; Majsztrik, John; Saavoss, Monica

    2015-01-01

    Water scarcity is likely to increase in the coming years, making improvements in irrigation efficiency increasingly important. An emerging technology that promises to increase irrigation efficiency substantially is a wireless irrigation sensor network that uploads sensor data into irrigation management software, creating an integrated system that allows real-time monitoring and control of moisture status that has been shown in experimental settings to reduce irrigation costs, lower plant loss rates, shorten production times, decrease pesticide application, and increase yield, quality, and profit. We use an original survey to investigate likely initial acceptance, ceiling adoption rates, and profitability of this new sensor network technology in the nursery and greenhouse industry. We find that adoption rates for a base system and demand for expansion components are decreasing in price, as expected. The price elasticity of the probability of adoption suggests that sensor networks are likely to diffuse at a rate somewhat greater than that of drip irrigation. Adoption rates for a base system and demand for expansion components are increasing in specialization in ornamental production: growers earning greater shares of revenue from greenhouse and nursery operations are willing to pay more for a base system and are willing to purchase larger numbers of expansion components at any given price. We estimate that growers who are willing to purchase a sensor network expect investment in this technology to generate significant profit, consistent with findings from experimental studies.

  20. Use of plant woody species electrical potential for irrigation scheduling.

    Science.gov (United States)

    Ríos-Rojas, Liliana; Morales-Moraga, David; Alcalde, José A; Gurovich, Luis A

    2015-01-01

    The electrical response of plants to environmental stimuli can be measured and quantitatively related to the intensity of several stimulating sources, like temperature, solar radiation, soil water content, evapotranspiration rates, sap flow and dendrometric cycles. These relations can be used to assess the influence of different environmental situations on soil water availability to plants, defined as a steady state condition between leaf transpirative flow and soil water flow to plant roots. A restricted soil water flow due to soil dryness can trigger water stress in plants, if the atmospheric evaporative demand is high, causing partial stomata closure as a physiological response to avoid plant dehydration; water stressed and unstressed plants manifest a differential electrical response. Real time plant electrical response measurements can anticipate actions that prevent the plant reaching actual stress conditions, optimizing stomata gas exchange and photosynthetic rates. An electrophysiological sensor developed in this work, allows remote real-time recording information on plant electrical potential (EP) in the field, which is highly related to EP measurements obtained with a laboratory Keithley voltmeter sensor used in an highly controlled experimental setup. Our electrophysiological sensor is a wireless, autonomous devise, which transmits EP information via Internet to a data server. Using both types of sensors (EP electrodes with a Keithley voltmeter and the electrophysiological sensor), we measured in real time the electrical responses of Persea americana and Prunus domestica plants, to induced water deficits. The differential response for 2 scenarios: irrigation and water restriction is identified by a progressive change in slope on the daily maximal and minimal electric signal values in stressed plants, and a zero-slope for similar signals for well-watered plants. Results show a correspondence between measured signals obtained by our electrophysiological

  1. Evaluating the impact of irrigation on surface water - groundwater interaction and stream temperature in an agricultural watershed.

    Science.gov (United States)

    Essaid, Hedeff I; Caldwell, Rodney R

    2017-12-01

    Changes in groundwater discharge to streams caused by irrigation practices can influence stream temperature. Observations along two currently flood-irrigated reaches in the 640-square-kilometer upper Smith River watershed, an important agricultural and recreational fishing area in west-central Montana, showed a downstream temperature decrease resulting from groundwater discharge to the stream. A watershed-scale coupled surface water and groundwater flow model was used to examine changes in streamflow, groundwater discharge to the stream and stream temperature resulting from irrigation practices. The upper Smith River watershed was used to develop the model framework including watershed climate, topography, hydrography, vegetation, soil properties and current irrigation practices. Model results were used to compare watershed streamflow, groundwater recharge, and groundwater discharge to the stream for three scenarios: natural, pre-irrigation conditions (PreIrr); current irrigation practices involving mainly stream diversion for flood and sprinkler irrigation (IrrCurrent); and a hypothetical scenario with only groundwater supplying sprinkler irrigation (IrrGW). Irrigation increased groundwater recharge relative to natural PreIrr conditions because not all applied water was removed by crop evapotranspiration. Groundwater storage and groundwater discharge to the stream increased relative to natural PreIrr conditions when the source of irrigation water was mainly stream diversion as in the IrrCurrent scenario. The hypothetical IrrGW scenario, in which groundwater withdrawals were the sole source of irrigation water, resulted in widespread lowering of the water table and associated decreases in groundwater storage and groundwater discharge to the stream. A mixing analysis using model predicted groundwater discharge along the reaches suggests that stream diversion and flood irrigation, represented in the IrrCurrent scenario, has led to cooling of stream temperatures

  2. Investigação de variável adequada ao controle automático de vazão sem uso de sensores em campos irrigados por meio de análise multivariada Investigation of variable appropriately to the automatic flow control without the use of sensors in fields irrigated by means of multivariate analysis

    Directory of Open Access Journals (Sweden)

    Francisco José Firmino Canafístula

    2010-11-01

    Full Text Available Utilizar inversores no controle de vazão de sistemas de bombeamento por meio da variação de sua velocidade pode ter uma maior viabilidade, caso o custo de sensores seja minimizado. Este trabalho investiga, por intermédio de análise multivariada, uma variável adequada ao pseudocontrole da vazão de um sistema de irrigação que economize o uso de sensores e simplifique o sistema de controle. Uma bancada de ensaio para coleta dados foi montada no laboratório e os dados foram processados no Statistical Package for the Social Sciences (SPSS. A análise de agrupamento hierárquico utilizando o método de Ward com base na distância euclidiana quadrática mostrou um grupo composto de quatro variáveis, estando presente nesse grupo a vazão, voltas no registro, altura do nível de água da calha parshall e a corrente elétrica, indicativo de que a corrente elétrica pode ser usada para o pseudocontrole, pois o inversor mede essa variável. A análise fatorial também indicou uma forte correlação da corrente elétrica com a vazão do sistema. A pressão foi o parâmetro da primeira componente da análise fatorial que apresentou a maior correlação com a vazão, no entanto o uso dessa variável para o controle automático demanda o uso de sensores.Using inverters to control flow of pumping systems by means of changes in speed may be more viable if the cost of sensors is minimized. This work investigates through multivariate analysis an adequate variable for the pseudo control of the flow of an irrigation system that saves the use of sensors and simplifies the control system. A bench test to collect data was mounted in the laboratory and the data were processed using Statistical Package for the Social Sciences (SPSS. The hierarchical cluster analysis using the Ward method based on the squared Euclidean distance showed a group composed of four variables, being present in that group flow, turns on the register, water level of the Parshall weir and

  3. Effect of irrigation regimes on mobilization of nonreactive tracers and dissolved and particulate phosphorus in slurry-injected soils

    DEFF Research Database (Denmark)

    Glæsner, Nadia; Kjærgaard, Charlotte; Rubæk, Gitte Holton

    2011-01-01

    affected by the irrigation regime. These results highlight that nonequilibrium exchange dynamics are important when evaluating processes affecting mobilization and transport in structured soils. Leaching experiments, including cycles of irrigation interruptions and gravitational drainage, thus, adds......Understanding the mobilization processes of phosphorus (P) in the plow layer are essential to quantify potential P losses and suggest management strategies to reduce P losses. This study is aimed at examining nonequilibrium exchange dynamics on the mobilization of slurry-amended Br−, and dissolved...... and particulate P in slurry-injected soils. We compared leaching from intact soil columns (20 cm diam., 20 cm high) under unsaturated flow (suction at the lower boundary of 5 hPa) subjected to continuous irrigation at 2 mm hr−1, and intermittent irrigation at 2 mm hr−1 and 10 mm hr−1 to with interruptions of 10 h...

  4. Identification of Storm Surge Vulnerable Areas in the Philippines Through Simulations of Typhoon Haiyan-Induced Storm Surge Using Tracks of Historical Tropical Cyclones

    Science.gov (United States)

    Lapidez, John Phillip; Suarez, John Kenneth; Tablazon, Judd; Dasallas, Lea; Gonzalo, Lia Anne; Santiago, Joy; Cabacaba, Krichi May; Ramos, Michael Marie Angelo; Mahar Francisco Lagmay, Alfredo; Malano, Vicente

    2014-05-01

    Super Typhoon Haiyan entered the Philippine Area of Responsibility (PAR) 07 November 2013, causing tremendous damage to infrastructure and loss of lives mainly due to the typhoon's storm surge and strong winds. Storm surges up to a height of 7 meters were reported in the hardest hit areas. The threat imposed by this kind of natural calamity compelled researchers of the Nationwide Operational Assessment of Hazards, the flagship disaster mitigation program of the Department of Science and Technology, Government of the Philippines, to undertake a study to determine the vulnerability of all Philippine coastal communities to storm surges of the same magnitude as those generated by Haiyan. This study calculates the maximum probable storm surge height for every coastal locality by running simulations of Haiyan-type conditions but with tracks of tropical cyclones that entered PAR from 1948-2013. DOST-Project NOAH used the Japan Meteorological Agency (JMA) Storm Surge Model, a numerical code that simulates and predicts storm surges spawned by tropical cyclones. Input parameters for the storm surge model include bathymetric data, storm track, central atmospheric pressure, and maximum wind speed. The simulations were made using Haiyan's pressure and wind speed as the forcing parameters. The simulated storm surge height values were added to the maximum tide level obtained from WXTide, software that contains a catalogue of worldwide astronomical tides, to come up with storm tide levels. The resulting water level was used as input to FLO-2D to generate the storm tide inundation maps. One product of this study is a list of the most vulnerable coastal areas that can be used as basis for choosing priority sites for further studies to implement appropriate site-specific solutions. Another product is the storm tide inundation maps that the local government units can use to develop a Risk-Sensitive Land Use Plan for identifying appropriate areas to build residential buildings

  5. Criteria for the Identification of Pyroclastic Surge Deposits on Mars: Insight from Hunt's Hole, New Mexico

    Science.gov (United States)

    Edgar, L. A.; Grotzinger, J. P.; Southard, J. B.; Ewing, R. C.; Lamb, M. P.

    2012-03-01

    We combine field observations, Terrestrial Laser Scanning (TLS), and hydrodynamic considerations to understand pyroclastic surge deposits at Hunt’s Hole, New Mexico, and provide criteria for their identification on Mars.

  6. Three-Dimensional Numerical Analysis of Compound Lining in Complex Underground Surge-Shaft Structure

    Directory of Open Access Journals (Sweden)

    Juntao Chen

    2015-01-01

    Full Text Available The mechanical behavior of lining structure of deep-embedded cylinder surge shaft with multifork tunnel is analyzed using three-dimensional nonlinear FEM. With the elastic-plastic constitutive relations of rock mass imported and the implicit bolt element and distributed concrete cracking model adopted, a computing method of complex surge shaft is presented for the simulation of underground excavations and concrete lining cracks. In order to reflect the interaction and initial gap between rock mass and concrete lining, a three-dimensional nonlinear interface element is adopted, which can take into account both the normal and tangential characteristics. By an actual engineering computation, the distortion characteristics and stress distribution rules of the dimensional multifork surge-shaft lining structure under different behavior are revealed. The results verify the rationality and feasibility of this computation model and method and provide a new idea and reference for the complex surge-shaft design and construction.

  7. ISSN 2073 ISSN 2073-9990 East Cent. Afr. J. surg. (Online) 9990 ...

    African Journals Online (AJOL)

    Prof Kakande

    Afr. J. surg. ..... September/October 2003. 3. Hardin R, Stevenson M, Downie W, Wilson G. Assessment of clinical competence using objective ... Michael J. Griesser, Matthew C. Beran, David C. Flanigan, Michael Quackenbush, DO, Corey Van ...

  8. Evaluation of Ferrite Chip Beads as Surge Current Limiters in Circuits with Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2014-01-01

    Limiting resistors are currently required to be connected in series with tantalum capacitors to reduce the risk of surge current failures. However, application of limiting resistors decreases substantially the efficiency of the power supply systems. An ideal surge current limiting device should have a negligible resistance for DC currents and high resistance at frequencies corresponding to transients in tantalum capacitors. This work evaluates the possibility of using chip ferrite beads (FB) as such devices. Twelve types of small size FBs from three manufacturers were used to evaluate their robustness under soldering stresses and at high surge current spikes associated with transients in tantalum capacitors. Results show that FBs are capable to withstand current pulses that are substantially greater than the specified current limits. However, due to a sharp decrease of impedance with current, FBs do not reduce surge currents to the required level that can be achieved with regular resistors.

  9. Sea, Lake, and Overland Surge from Hurricanes (SLOSH) Inundation for Categories 2 and 4

    Data.gov (United States)

    U.S. Environmental Protection Agency — The file geodatabase (fgdb) contains the Sea, Lake, and Overland Surge from Hurricanes (SLOSH) Maximum of Maximums (MOM) model for hurricane categories 2 and 4. The...

  10. Control of Surge in Centrifugal Compressors by Active Magnetic Bearings Theory and Implementation

    CERN Document Server

    Yoon, Se Young; Allaire, Paul E

    2013-01-01

    Control of Surge in Centrifugal Compressors by Active Magnetic Bearings sets out the fundamentals of integrating the active magnetic bearing (AMB) rotor suspension technology in compressor systems, and describes how this relatively new bearing technology can be employed in the active control of compressor surge. The authors provide a self-contained and comprehensive review of rotordynamics and the fundamentals of the AMB technology. The active stabilization of compressor surge employing AMBs in a machine is fully explored, from the modeling of the instability and the design of feedback controllers, to the implementation and experimental testing of the control algorithms in a specially-constructed, industrial-size centrifugal compression system. The results of these tests demonstrate the great potential of the new surge control method developed in this text. This book will be useful for engineers in industries that involve turbocompressors and magnetic bearings, as well as for researchers and graduate students...

  11. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L

    2005-01-01

    The long-term goal of this partnership is to establish an operational forecasting system of the wind field and resulting waves and surge impacting the coastline during the approach and landfall of tropical cyclones...

  12. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L

    2004-01-01

    The long-term goal of this partnership is to establish an operational forecasting system of the wind field and resulting waves and surge impacting the coastline during the approach and landfall of tropical cyclones...

  13. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L; Cardone, Vincent J; Cox, Andrew T; Augustus, Ellsworth H; Colonnese, Christopher P

    2003-01-01

    The long-term goal of this partnership is to establish an operational forecasting system of the wind field and resulting waves and surge impacting the coastline during the approach and landfall of tropical cyclones...

  14. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Y. H. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenne, D. S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thresher, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Copping, A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geerlofs, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, L. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is $1.44/kilowatt-hour (kWh), and the value drops to approximately $0.69/kWh for an array of 100 units.

  15. Storm Surge Modeling of Typhoon Haiyan at the Naval Oceanographic Office Using Delft3D

    Science.gov (United States)

    Gilligan, M. J.; Lovering, J. L.

    2016-02-01

    The Naval Oceanographic Office provides estimates of the rise in sea level along the coast due to storm surge associated with tropical cyclones, typhoons, and hurricanes. Storm surge modeling and prediction helps the US Navy by providing a threat assessment tool to help protect Navy assets and provide support for humanitarian assistance/disaster relief efforts. Recent advancements in our modeling capabilities include the use of the Delft3D modeling suite as part of a Naval Research Laboratory (NRL) developed Coastal Surge Inundation Prediction System (CSIPS). Model simulations were performed on Typhoon Haiyan, which made landfall in the Philippines in November 2013. Comparisons of model simulations using forecast and hindcast track data highlight the importance of accurate storm track information for storm surge predictions. Model runs using the forecast track prediction and hindcast track information give maximum storm surge elevations of 4 meters and 6.1 meters, respectively. Model results for the hindcast simulation were compared with data published by the JSCE-PICE Joint survey for locations in San Pedro Bay (SPB) and on the Eastern Samar Peninsula (ESP). In SPB, where wind-induced set-up predominates, the model run using the forecast track predicted surge within 2 meters in 38% of survey locations and within 3 meters in 59% of the locations. When the hindcast track was used, the model predicted within 2 meters in 77% of the locations and within 3 meters in 95% of the locations. The model was unable to predict the high surge reported along the ESP produced by infragravity wave-induced set-up, which is not simulated in the model. Additional modeling capabilities incorporating infragravity waves are required to predict storm surge accurately along open coasts with steep bathymetric slopes, such as those seen in island arcs.

  16. Data Assimilation within the Advanced Circulation (ADCIRC) Modeling Framework for Hurricane Storm Surge Forecasting

    KAUST Repository

    Butler, T.

    2012-07-01

    Accurate, real-time forecasting of coastal inundation due to hurricanes and tropical storms is a challenging computational problem requiring high-fidelity forward models of currents and water levels driven by hurricane-force winds. Despite best efforts in computational modeling there will always be uncertainty in storm surge forecasts. In recent years, there has been significant instrumentation located along the coastal United States for the purpose of collecting data—specifically wind, water levels, and wave heights—during these extreme events. This type of data, if available in real time, could be used in a data assimilation framework to improve hurricane storm surge forecasts. In this paper a data assimilation methodology for storm surge forecasting based on the use of ensemble Kalman filters and the advanced circulation (ADCIRC) storm surge model is described. The singular evolutive interpolated Kalman (SEIK) filter has been shown to be effective at producing accurate results for ocean models using small ensemble sizes initialized by an empirical orthogonal function analysis. The SEIK filter is applied to the ADCIRC model to improve storm surge forecasting, particularly in capturing maximum water levels (high water marks) and the timing of the surge. Two test cases of data obtained from hindcast studies of Hurricanes Ike and Katrina are presented. It is shown that a modified SEIK filter with an inflation factor improves the accuracy of coarse-resolution forecasts of storm surge resulting from hurricanes. Furthermore, the SEIK filter requires only modest computational resources to obtain more accurate forecasts of storm surge in a constrained time window where forecasters must interact with emergency responders.

  17. Alternate Care Sites for the Management of Medical Surge in Disasters

    Science.gov (United States)

    2013-12-01

    care facilities are in place  Plan for community based surge hospital bed surge capacity is in place  A 50-bed nursing subunit—per 50,000...attempt to assess the preparedness of the hospital system, HHS/ASPR commissioned The Center for Biosecurity of UPMC to examine various responses to...catastrophic health efforts. The 11 report The Next Challenge in Healthcare Preparedness: Catastrophic Health Events (Center for Biosecurity of UPMC

  18. The Effect of Coastal Development on Storm Surge Flooding in Biscayne Bay, Florida, USA (Invited)

    Science.gov (United States)

    Zhang, K.; Liu, H.; Li, Y.

    2013-12-01

    Barrier islands and associated bays along the Atlantic and Gulf Coasts are a favorite place for both living and visiting. Many of them are vulnerable to storm surge flooding because of low elevations and constantly being subjected to the impacts of storms. The population increase and urban development along the barrier coast have altered the shoreline configuration, resulting in a dramatic change in the coastal flooding pattern in some areas. Here we present such a case based on numerical simulations of storm surge flooding caused by the1926 hurricane in the densely populated area surrounding Biscayne Bay in Miami, Florida. The construction of harbor and navigation channels, and the development of real estate and the roads connecting islands along Biscayne Bay have changed the geometry of Biscayne Bay since 1910s. Storm surge simulations show that the Port of Miami and Dodge Island constructed by human after 1950 play an important role in changing storm surge inundation pattern along Biscayne Bay. Dodge Island enhances storm surge and increases inundation in the area south of the island, especially at the mouth of Miami River (Downtown of Miami), and reduces storm surge flooding in the area north of the island, especially in Miami Beach. If the Hurricane Miami of 1926 happened today, the flooding area would be reduced by 55% and 20% in the Miami Beach and North Miami areas, respectively. Consequently, it would prevent 400 million of property and 10 thousand people from surge flooding according to 2010 U.S census and 2007 property tax data. Meanwhile, storm water would penetrate further inland south of Dodge Island and increase the flooding area by 25% in the Miami River and Downtown Miami areas. As a result, 200 million of property and five thousand people would be impacted by storm surge.

  19. Performing drip irrigation by the farmer managed Seguia Khrichfa irrigation system, Morocco

    NARCIS (Netherlands)

    Kooij, van der S.

    2016-01-01

    Drip irrigation is represented in literature and agricultural policies as a modern and water saving technology. Because this technology is often associated with ‘modern’ agriculture and development, it seems out-of-place in ‘traditional’ farmer managed irrigation systems (FMIS). Thinking along

  20. Irrigation Requirement Estimation Using Vegetation Indices and Inverse Biophysical Modeling

    Science.gov (United States)

    Bounoua, Lahouari; Imhoff, Marc L.; Franks, Shannon

    2010-01-01

    We explore an inverse biophysical modeling process forced by satellite and climatological data to quantify irrigation requirements in semi-arid agricultural areas. We constrain the carbon and water cycles modeled under both equilibrium, balance between vegetation and climate, and non-equilibrium, water added through irrigation. We postulate that the degree to which irrigated dry lands vary from equilibrium climate conditions is related to the amount of irrigation. The amount of water required over and above precipitation is considered as an irrigation requirement. For July, results show that spray irrigation resulted in an additional amount of water of 1.3 mm per occurrence with a frequency of 24.6 hours. In contrast, the drip irrigation required only 0.6 mm every 45.6 hours or 46% of that simulated by the spray irrigation. The modeled estimates account for 87% of the total reported irrigation water use, when soil salinity is not important and 66% in saline lands.

  1. Chemical colostomy irrigation with glyceryl trinitrate solution.

    Science.gov (United States)

    O'Bichere, A; Bossom, C; Gangoli, S; Green, C; Phillips, R K

    2001-09-01

    Colostomy irrigation may improve patient quality of life, but is time consuming. This study tests the hypothesis that irrigation with glyceryl trinitrate solution, by inducing gastrointestinal smooth muscle relaxation, may accelerate expulsion of stool by passive emptying, thereby reducing irrigation time. Fifteen colostomy irrigators(with more than 3 years' experience) performed washout with tap water compared with water containing 0.025 mg/kg glyceryl trinitrate. Fluid inflow time, total washout time, and hemodynamic changes occurring during glyceryl trinitrate irrigation were documented by an independent observer. Subjects recorded episodes of fecal leakage and overall satisfaction on a visual analog scale. Cramps, headaches, and whether or not a stoma bag was used were expressed as a percentage of number of irrigations. Comparison of fluid inflow time, total washout time, leakage, and satisfaction was by Wilcoxon's signed-rank test and headaches, cramps, and stoma bag use was by McNemar's test. Pulse rate (paired t-test), systolic and diastolic blood pressures (Wilcoxon's test) at 20 and 240 minutes after washout with glyceryl trinitrate solution were compared with baseline. Fifteen patients (9 female), with a mean age of 53 (31-73) years, provided 30 sessions (15 with water and 15 with glyceryl trinitrate). Medians (interquartile ranges) for water vs. glyceryl trinitrate were fluid inflow time 7 (4-10) vs. 4, (3-5; P = 0.001); total washout time 40 (30-55) vs. 21, (15-24; P colostomy irrigation time compared with the generally recommended tap water. Patients suffer fewer leakages and are highly satisfied, but side effects are potential drawbacks. Other colonoplegic agent solutions should now be evaluated.

  2. Storm surge evolution and its relationship to climate oscillations at Duck, NC

    Science.gov (United States)

    Munroe, Robert; Curtis, Scott

    2017-07-01

    Coastal communities experience increased vulnerability during storm surge events through the risk of damage to coastal infrastructure, erosion/deposition, and the endangerment of human life. Policy and planning measures attempt to avoid or mitigate storm surge consequences through building codes and setbacks, beach stabilization, insurance rates, and coastal zoning. The coastal emergency management community and public react and respond on shorter time scales, through temporary protection, emergency stockpiling, and evacuation. This study utilizes time series analysis, the Kolmogorov-Smirnov (K-S) test, Pearson's correlation, and the generalized extreme value (GEV) theorem to make the connection between climate oscillation indices and storm surge characteristics intra-seasonally to inter-annually. Results indicate that an El Niño (+ENSO), negative phase of the NAO, and positive phase of the PNA pattern all support longer duration and hence more powerful surge events, especially in winter. Increased surge duration increases the likelihood of extensive erosion, inland inundation, among other undesirable effects of the surge hazard.

  3. The value of wetlands in protecting southeast louisiana from hurricane storm surges.

    Science.gov (United States)

    Barbier, Edward B; Georgiou, Ioannis Y; Enchelmeyer, Brian; Reed, Denise J

    2013-01-01

    The Indian Ocean tsunami in 2004 and Hurricanes Katrina and Rita in 2005 have spurred global interest in the role of coastal wetlands and vegetation in reducing storm surge and flood damages. Evidence that coastal wetlands reduce storm surge and attenuate waves is often cited in support of restoring Gulf Coast wetlands to protect coastal communities and property from hurricane damage. Yet interdisciplinary studies combining hydrodynamic and economic analysis to explore this relationship for temperate marshes in the Gulf are lacking. By combining hydrodynamic analysis of simulated hurricane storm surges and economic valuation of expected property damages, we show that the presence of coastal marshes and their vegetation has a demonstrable effect on reducing storm surge levels, thus generating significant values in terms of protecting property in southeast Louisiana. Simulations for four storms along a sea to land transect show that surge levels decline with wetland continuity and vegetation roughness. Regressions confirm that wetland continuity and vegetation along the transect are effective in reducing storm surge levels. A 0.1 increase in wetland continuity per meter reduces property damages for the average affected area analyzed in southeast Louisiana, which includes New Orleans, by $99-$133, and a 0.001 increase in vegetation roughness decreases damages by $24-$43. These reduced damages are equivalent to saving 3 to 5 and 1 to 2 properties per storm for the average area, respectively.

  4. Cortisol Interferes with the Estradiol-Induced Surge of Luteinizing Hormone in the Ewe1

    Science.gov (United States)

    Wagenmaker, Elizabeth R.; Breen, Kellie M.; Oakley, Amy E.; Pierce, Bree N.; Tilbrook, Alan J.; Turner, Anne I.; Karsch, Fred J.

    2008-01-01

    Two experiments were conducted to test the hypothesis that cortisol interferes with the positive feedback action of estradiol that induces the luteinizing hormone (LH) surge. Ovariectomized sheep were treated sequentially with progesterone and estradiol to create artificial estrous cycles. Cortisol or vehicle (saline) was infused from 2 h before the estradiol stimulus through the time of the anticipated LH surge in the artificial follicular phase of two successive cycles. The plasma cortisol increment produced by infusion was ∼1.5 times greater than maximal concentrations seen during infusion of endotoxin, which is a model of immune/inflammatory stress. In experiment 1, half of the ewes received vehicle in the first cycle and cortisol in the second; the others were treated in reverse order. All ewes responded with an LH surge. Cortisol delayed the LH surge and reduced its amplitude, but both effects were observed only in the second cycle. Experiment 2 was modified to provide better control for a cycle effect. Four treatment sequences were tested (cycle 1-cycle 2): vehicle-vehicle, cortisol-cortisol, vehicle-cortisol, cortisol-vehicle. Again, cortisol delayed but did not block the LH surge, and this delay occurred in both cycles. Thus, an elevation in plasma cortisol can interfere with the positive feedback action of estradiol by delaying and attenuating the LH surge. PMID:19056703

  5. Probabilistic hurricane-induced storm surge hazard assessment in Guadeloupe, Lesser Antilles

    Science.gov (United States)

    Krien, Y.; Dudon, B.; Roger, J.; Zahibo, N.

    2015-08-01

    Current storm surge hazard maps in the French West Indies are essentially based on simple statistical methods using limited historical data and early low-resolution models which do not take the effect of waves into account. In this paper, we infer new 100-year and 1000-year surge levels in Guadeloupe from the numerical modelling of storm surges induced by a large set of synthetic events that are in statistical agreement with features of historical hurricanes in the North Atlantic Basin between 1980 and 2011. Computations are performed using the wave-current coupled model ADCIRC-SWAN with high grid resolutions (up to 40-60 m) in the coastal and wave dissipation areas. This model is validated against observations during past events such as hurricane HUGO (1989). Results are generally found to be in reasonable agreement with past studies in areas where surge is essentially wind-driven, but found to differ significantly in coastal regions where the transfer of momentum from waves to the water column constitutes a non-negligible part of the total surge. The methodology, which can be applied to other islands in the Lesser Antilles, allows storm surge level maps to be obtained that can be of major interest for coastal planners and decision makers in terms of risk management.

  6. The insulation coordination and surge arrester design for HTS cable system in Icheon substation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hansang, E-mail: Hansang80@korea.ac.kr [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Yoon, Dong-Hee [Department of New and Renewable Energy, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Lee, Seung-Ryul [Korea Electrotechnology Research Institute, Naeson-dong, Uiwang-si, Gyeonggi-do 437-080 (Korea, Republic of); Yang, Byeong-Mo [Korea Electric Power Research Institute, Munji-dong, Yuseong-gu, Daejeon 305-760 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713 (Korea, Republic of)

    2013-01-15

    Highlights: ► It is necessary to study lightning response of the HTS cable. ► The analytic model has been developed for the HTS cable in the Icheon substation. ► Well-designed surge arrester has been verified through PSCAD/EMTDC simulations. -- Abstract: This paper proposes an insulation coordination and surge arrester design for HTS (High-Temperature Superconducting) cable system in Icheon substation in Korea. In the aspect of the economic analysis, since the HTS cable is very expensive, the insulation coordination to prevent the dielectric breakdown caused by the lightning surge should be considered carefully. Also, in the aspect of the power system reliability, since the HTS cable has much more capacity compared than conventional power cables and the ripple effect from the HTS cable failure may lead to the wide area blackout, an intensive study for insulation coordination from lightning surge is one of the most important considerations. In this paper, the insulation coordination for lightning surge is verified using HTS cable and power equipment models and the design of the proper surge arrester is proposed.

  7. Effect of Hydraulic Accumulator on Pressure Surge of a Hydrostatic Transmission System

    Science.gov (United States)

    Kumar, Ajit; Das, Jayanta; Dasgupta, Kabir; Barnwal, Manish Kumar

    2018-04-01

    Hydraulic power system is generally used in off-road vehicles for power transmission such as Heavy Earth Moving Machineries (HEMM). Their energy efficiency and unsubstantial failure becomes an extensive subject of analysis. Various arrangements in the system are compassed along with the utilization of some appropriate components. Application of a hydraulic accumulator is one among them. Benefits of accumulator is its multi-purpose usages like energy saving and pressure surge damping. This paper deals with the control of pressure surges in the hydraulic system and energy saving from the surges by using accumulator. For this purpose, the simulation of the hydraulic system is done in MATLAB/SimulinkR environment and an external disturbance is introduced to generate the pressure surge. The surge absorptivity of the accumulator is studied for different sizes at different pre-charged conditions of the accumulator. The discharge characteristics of different sized accumulators are also analyzed in this paper. It is observed that the ability to absorb the surge and stabilize the system is high in the smaller capacity accumulator. However the energy delivery time of larger sized accumulator is high.

  8. Modeling and simulation of storm surge on Staten Island to understand inundation mitigation strategies

    Science.gov (United States)

    Kress, Michael E.; Benimoff, Alan I.; Fritz, William J.; Thatcher, Cindy A.; Blanton, Brian O.; Dzedzits, Eugene

    2016-01-01

    Hurricane Sandy made landfall on October 29, 2012, near Brigantine, New Jersey, and had a transformative impact on Staten Island and the New York Metropolitan area. Of the 43 New York City fatalities, 23 occurred on Staten Island. The borough, with a population of approximately 500,000, experienced some of the most devastating impacts of the storm. Since Hurricane Sandy, protective dunes have been constructed on the southeast shore of Staten Island. ADCIRC+SWAN model simulations run on The City University of New York's Cray XE6M, housed at the College of Staten Island, using updated topographic data show that the coast of Staten Island is still susceptible to tidal surge similar to those generated by Hurricane Sandy. Sandy hindcast simulations of storm surges focusing on Staten Island are in good agreement with observed storm tide measurements. Model results calculated from fine-scaled and coarse-scaled computational grids demonstrate that finer grids better resolve small differences in the topography of critical hydraulic control structures, which affect storm surge inundation levels. The storm surge simulations, based on post-storm topography obtained from high-resolution lidar, provide much-needed information to understand Staten Island's changing vulnerability to storm surge inundation. The results of fine-scale storm surge simulations can be used to inform efforts to improve resiliency to future storms. For example, protective barriers contain planned gaps in the dunes to provide for beach access that may inadvertently increase the vulnerability of the area.

  9. Irrigation Analysis Based on Long-Term Weather Data

    Directory of Open Access Journals (Sweden)

    James R. Mahan

    2016-08-01

    Full Text Available Irrigation management is based upon delivery of water to a crop in the correct amount and time, and the crop’s water need is determined by calculating evapotranspiration (ET using weather data. In 1994, an ET-network was established in the Texas High Plains to manage irrigation on a regional scale. Though producers used the ET-network, by 2010 public access was discontinued. Why did producers allow a valuable irrigation-management tool to be eliminated? Our objective was to analyze the effect of declining well capacities on the usefulness of cotton ET (ETc for irrigation. Thirty years (1975–2004 of daily ETc data were used to compare irrigation demand vs. irrigation responses at four locations, analyzed for multiple years and range of well capacities for three irrigation-intervals. Results indicated that when well capacities declined to the point that over-irrigation was not possible, the lower well capacities reduced the value of ETc in terms of the number of irrigations and total amount of water applied. At well capacities <1514 L·min−1 the fraction of irrigations for which ETc information was used to determine the irrigation amount was <35% across years and irrigation intervals. The value of an ETc-based irrigation may fall into disuse when irrigation-water supplies decline.

  10. Transient Pressure Surges Due to Pipe Movement in an Oil Well Surpressions transitoires dues au mouvement des colonnes de tubes dans les puits.

    Directory of Open Access Journals (Sweden)

    Lubinski A.

    2006-11-01

    Full Text Available A pressure surge which could cause lost circulation, results from running a stand of drill pipe or a joint of casing into a hole. Similarly, a negative pressure surge, which could cause a blowout, results from pulling pipe from a hole. In past investigations, pressure surges were calculated on the basis of steady state flow. It is shown in this paper that this led to erroneous results. In thls investigation, pressure surges are calculated on the basis of transient wave propagation phenomena. A computer program was developed to that effect. Results are presented in :the first part of the paper, and the mathematics in the second. La descente d'une longueur de tiges ou d'un tube de casing dans le trou provoque une surpression pouvant entraîner des pertes de circulation. De même, la remontée des tiges provoque une surpression négative pouvant entraîner une éruption. Au cours des précédentes recherches, les surpressions étaient calculées pour des débits en régime permanent. Il est montré dans cet étude que les résultats ainsi obtenus ne sont pas exacts. Dans cette recherche, les calculs des surpressions sont basés sur le phénomène de propagation transitoire des ondes. Un programme de calcul sur ordinateur a été développé à cet effet. Les résultats sont présentés dans la première partie de cet article et les calculs font l'objet de la deuxième partie.

  11. Irrigation Training Manual. Planning, Design, Operation, and Management of Small-Scale Irrigation Systems [and] Irrigation Reference Manual. A Technical Reference to Be Used with the Peace Corps Irrigation Training Manual T0076 in the Selection, Planning, Design, Operation, and Management of Small-Scale Irrigation Systems.

    Science.gov (United States)

    Salazar, LeRoy; And Others

    This resource for trainers involved in irrigated agriculture training for Peace Corps volunteers consists of two parts: irrigation training manual and irrigation reference manual. The complete course should fully prepare volunteers serving as irrigation, specialists to plan, implement, evaluate and manage small-scale irrigation projects in arid,…

  12. The effect of irrigation time and type of irrigation fluid on cartilage surface friction.

    Science.gov (United States)

    Stärke, F; Awiszus, F; Lohmann, C H; Stärke, C

    2018-01-01

    It is known that fluid irrigation used during arthroscopic procedures causes a wash-out of lubricating substances from the articular cartilage surface and leads to increased friction. It was the goal of this study to investigate whether this effect depends on the time of irrigation and type of fluid used. Rabbit hind legs were used for the tests. The knees were dissected and the friction coefficient of the femoral cartilage measured against glass in a boundary lubrication state. To determine the influence of irrigation time and fluid, groups of 12 knees received either no irrigation (control), 15, 60 or 120min of irrigation with lactated Ringer's solution or 60min of irrigation with normal saline or a sorbitol/mannitol solution. The time of irrigation had a significant effect on the static and kinetic coefficient of friction (CoF), as had the type of fluid. Longer irrigation time with Ringer's solution was associated with increased friction coefficients (relative increase of the kinetic CoF compared to the control after 15, 60 and 120min: 16%, 76% and 88% respectively). The sorbitol/mannitol solution affected the static and kinetic CoF significantly less than either Ringer's or normal saline. The washout of lubricating glycoproteins from the cartilage surface and the associated increase of friction can be effectively influenced by controlling the time of irrigation and type of fluid used. The time of exposure to the irrigation fluid should be as short as possible and monosaccharide solutions might offer a benefit compared to salt solutions in terms of the resultant friction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Identification of storm surge vulnerable areas in the Philippines through the simulation of Typhoon Haiyan-induced storm surge levels over historical storm tracks

    Science.gov (United States)

    Lapidez, J. P.; Tablazon, J.; Dasallas, L.; Gonzalo, L. A.; Cabacaba, K. M.; Ramos, M. M. A.; Suarez, J. K.; Santiago, J.; Lagmay, A. M. F.; Malano, V.

    2015-07-01

    Super Typhoon Haiyan entered the Philippine Area of Responsibility (PAR) on 7 November 2013, causing tremendous damage to infrastructure and loss of lives mainly due to the storm surge and strong winds. Storm surges up to a height of 7 m were reported in the hardest hit areas. The threat imposed by this kind of natural calamity compelled researchers of the Nationwide Operational Assessment of Hazards (Project NOAH) which is the flagship disaster mitigation program of the Department of Science and Technology (DOST) of the Philippine government to undertake a study to determine the vulnerability of all Philippine coastal communities to storm surges of the same magnitude as those generated by Haiyan. This study calculates the maximum probable storm surge height for every coastal locality by running simulations of Haiyan-type conditions but with tracks of tropical cyclones that entered PAR from 1948-2013. One product of this study is a list of the 30 most vulnerable coastal areas that can be used as a basis for choosing priority sites for further studies to implement appropriate site-specific solutions for flood risk management. Another product is the storm tide inundation maps that the local government units can use to develop a risk-sensitive land use plan for identifying appropriate areas to build residential buildings, evacuation sites, and other critical facilities and lifelines. The maps can also be used to develop a disaster response plan and evacuation scheme.

  14. Identification of storm surge vulnerable areas in the Philippines through the simulation of Typhoon Haiyan-induced storm surge levels over historical storm tracks

    Directory of Open Access Journals (Sweden)

    J. P. Lapidez

    2015-07-01

    Full Text Available Super Typhoon Haiyan entered the Philippine Area of Responsibility (PAR on 7 November 2013, causing tremendous damage to infrastructure and loss of lives mainly due to the storm surge and strong winds. Storm surges up to a height of 7 m were reported in the hardest hit areas. The threat imposed by this kind of natural calamity compelled researchers of the Nationwide Operational Assessment of Hazards (Project NOAH which is the flagship disaster mitigation program of the Department of Science and Technology (DOST of the Philippine government to undertake a study to determine the vulnerability of all Philippine coastal communities to storm surges of the same magnitude as those generated by Haiyan. This study calculates the maximum probable storm surge height for every coastal locality by running simulations of Haiyan-type conditions but with tracks of tropical cyclones that entered PAR from 1948–2013. One product of this study is a list of the 30 most vulnerable coastal areas that can be used as a basis for choosing priority sites for further studies to implement appropriate site-specific solutions for flood risk management. Another product is the storm tide inundation maps that the local government units can use to develop a risk-sensitive land use plan for identifying appropriate areas to build residential buildings, evacuation sites, and other critical facilities and lifelines. The maps can also be used to develop a disaster response plan and evacuation scheme.

  15. Municipal Treated Wastewater Irrigation: Microbiological Risk Evaluation

    Directory of Open Access Journals (Sweden)

    Antonio Lonigro

    2008-06-01

    Full Text Available Municipal wastewater for irrigation, though treated, can contain substances and pathogens toxic for humans and animals. Pathogens, although not harmful from an agronomical aspect, undoubtedly represent a major concern with regards to sanitary and hygienic profile. In fact, vegetable crops irrigated with treated wastewater exalt the risk of infection since these products can also be eaten raw, as well as transformed or cooked. Practically, the evaluation of the microbiological risk is important to verify if the microbial limits imposed by law for treated municipal wastewater for irrigation, are valid, thus justifying the treatments costs, or if they are too low and, therefore, they don’ t justify them. Different probabilistic models have been studied to assess the microbiological risk; among these, the Beta-Poisson model resulted the most reliable. Thus, the Dipartimento di Scienze delle Produzioni Vegetali of the University of Bari, which has been carrying out researches on irrigation with municipal filtered wastewater for several years, considered interesting to verify if the microbial limits imposed by the italian law n.185/03 are too severe, estimating the biological risk by the probabilistic Beta-Poisson model. Results of field trials on vegetable crops irrigated by municipal filtered wastewater, processed by the Beta-Poisson model, show that the probability to get infection and/or illness is extremely low, and that the actual italian microbial limits are excessively restrictive.

  16. Automated Irrigation System for Greenhouse Monitoring

    Science.gov (United States)

    Sivagami, A.; Hareeshvare, U.; Maheshwar, S.; Venkatachalapathy, V. S. K.

    2018-06-01

    The continuous requirement for the food needs the rapid improvement in food production technology. The economy of food production is mainly dependent on agriculture and the weather conditions, which are isotropic and thus we are not able to utilize the whole agricultural resources. The main reason is the deficiency of rainfall and paucity in land reservoir water. The continuous withdrawal water from the ground reduces the water level resulting in most of the land to come under the arid. In the field of cultivation, use of appropriate method of irrigation plays a vital role. Drip irrigation is a renowned methodology which is very economical and proficient. When the conventional drip irrigation system is followed, the farmer has to tag along the irrigation timetable, which is different for diverse crops. The current work makes the drip irrigation system an automated one, thereby the farmer doesn't want to follow any timetable since the sensor senses the soil moisture content and based on it supplies the water. Moreover the practice of economical sensors and the simple circuitry makes this project as an inexpensive product, which can be bought even by an underprivileged farmer. The current project is best suited for places where water is limited and has to be used in limited quantity.

  17. Automated Irrigation System for Greenhouse Monitoring

    Science.gov (United States)

    Sivagami, A.; Hareeshvare, U.; Maheshwar, S.; Venkatachalapathy, V. S. K.

    2018-03-01

    The continuous requirement for the food needs the rapid improvement in food production technology. The economy of food production is mainly dependent on agriculture and the weather conditions, which are isotropic and thus we are not able to utilize the whole agricultural resources. The main reason is the deficiency of rainfall and paucity in land reservoir water. The continuous withdrawal water from the ground reduces the water level resulting in most of the land to come under the arid. In the field of cultivation, use of appropriate method of irrigation plays a vital role. Drip irrigation is a renowned methodology which is very economical and proficient. When the conventional drip irrigation system is followed, the farmer has to tag along the irrigation timetable, which is different for diverse crops. The current work makes the drip irrigation system an automated one, thereby the farmer doesn't want to follow any timetable since the sensor senses the soil moisture content and based on it supplies the water. Moreover the practice of economical sensors and the simple circuitry makes this project as an inexpensive product, which can be bought even by an underprivileged farmer. The current project is best suited for places where water is limited and has to be used in limited quantity.

  18. When should irrigators invest in more water-efficient technologies as an adaptation to climate change?

    Science.gov (United States)

    Malek, K.; Adam, J. C.; Stockle, C.; Brady, M.; Yoder, J.

    2015-12-01

    The western US is expected to experience more frequent droughts with higher magnitudes and persistence due to the climate change, with potentially large impacts on agricultural productivity and the economy. Irrigated farmers have many options for minimizing drought impacts including changing crops, engaging in water markets, and switching irrigation technologies. Switching to more efficient irrigation technologies, which increase water availability in the crop root zone through reduction of irrigation losses, receives significant attention because of the promise of maintaining current production with less. However, more efficient irrigation systems are almost always more capital-intensive adaptation strategy particularly compared to changing crops or trading water. A farmer's decision to switch will depend on how much money they project to save from reducing drought damages. The objective of this study is to explore when (and under what climate change scenarios) it makes sense economically for farmers to invest in a new irrigation system. This study was performed over the Yakima River Basin (YRB) in Washington State, although the tools and information gained from this study are transferable to other watersheds in the western US. We used VIC-CropSyst, a large-scale grid-based modeling framework that simulates hydrological processes while mechanistically capturing crop water use, growth and development. The water flows simulated by VIC-CropSyst were used to run the RiverWare river system and water management model (YAK-RW), which simulates river processes and calculates regional water availability for agricultural use each day (i.e., the prorationing ratio). An automated computational platform has been developed and programed to perform the economic analysis for each grid cell, crop types and future climate projections separately, which allows us to explore whether or not implementing a new irrigation system is economically viable. Results of this study indicate that

  19. The effect of inlet distorted flow on steady and unsteady performance of a centrifugal compressor

    International Nuclear Information System (INIS)

    Park, Jae Hyoung; Kang, Shin Hyoung

    2005-01-01

    Effects of inlet distorted flow on performance, stall and surge are experimentally investigated for a high-speed centrifugal compressor. Tested results for the distorted inlet flow cases are compared with the result of the undistorted one. The performance of compressor is slightly deteriorated due to the inlet distortion. The inlet distortion does not affect the number of stall cell and the propagation velocity. It also does not change stall inception flow rate. However, as the distortion increases, stall starts at the higher flow rate for low speed at the lower flow rate for high speed. For 50,000 rpm stall occurs as the flow rate decreases, however disappears for the smaller flow rate. This is due to the interaction of surge and stall. After the stall and surge interact, the number of stall cell decreases

  20. Measurement and numerical simulation of a small centrifugal compressor characteristics at small or negative flow rate

    Science.gov (United States)

    Tsukamoto, Kaname; Okada, Mizuki; Inokuchi, Yuzo; Yamasaki, Nobuhiko; Yamagata, Akihiro

    2017-04-01

    For centrifugal compressors used in automotive turbochargers, the extension of the surge margin is demanded because of lower engine speed. In order to estimate the surge line exactly, it is required to acquire the compressor characteristics at small or negative flow rate. In this paper, measurement and numerical simulation of the characteristics at small or negative flow rate are carried out. In the measurement, an experimental facility with a valve immediately downstream of the compressor is used to suppress the surge. In the numerical work, a new boundary condition that specifies mass flow rate at the outlet boundary is used to simulate the characteristics around the zero flow rate region. Furthermore, flow field analyses at small or negative flow rate are performed with the numerical results. The separated and re-circulated flow fields are investigated by visualization to identify the origin of losses.

  1. Selection of gonadotrophin surge attenuating factor phage antibodies by bioassay.

    Science.gov (United States)

    Sorsa-Leslie, Tarja; Mason, Helen D; Harris, William J; Fowler, Paul A

    2005-09-26

    We aimed to combine the generation of "artificial" antibodies with a rat pituitary bioassay as a new strategy to overcome 20 years of difficulties in the purification of gonadotrophin surge-attenuating factor (GnSAF). A synthetic single-chain antibody (Tomlinson J) phage display library was bio-panned with partially purified GnSAF produced by cultured human granulosa/luteal cells. The initial screening with a simple binding immunoassay resulted in 8 clones that were further screened using our in-vitro rat monolayer bioassay for GnSAF. Initially the antibodies were screened as pooled phage forms and subsequently as individual, soluble, single-chain antibody (scAbs) forms. Then, in order to improve the stability of the scAbs for immunopurification purposes, and to widen the range of labelled secondary antibodies available, these were engineered into full-length human immunoglobulins. The immunoglobulin with the highest affinity for GnSAF and a previously described rat anti-GnSAF polyclonal antiserum was then used to immunopurify bioactive GnSAF protein. The two purified preparations were electrophoresed on 1-D gels and on 7 cm 2-D gels (pH 4-7). The candidate GnSAF protein bands and spots were then excised for peptide mass mapping. Three of the scAbs recognised GnSAF bioactivity and subsequently one clone of the purified scAb-derived immunoglobulin demonstrated high affinity for GnSAF bioactivity, also binding the molecule in such as way as to block its bioactivity. When used for repeated immunopurification cycles and then Western blot, this antibody enabled the isolation of a GnSAF-bioactive protein band at around 66 kDa. Similar results were achieved using the rat anti-GnSAF polyclonal antiserum. The main candidate molecules identified from the immunopurified material by excision of 2-D gel protein spots was human serum albumin precursor and variants. This study demonstrates that the combination of bioassay and phage display technologies is a powerful tool in the

  2. Development of Low Surge Vacuum Contact with Te

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B. S.; Lee, H. W.; Woo, B. C.; Kim, B. G. [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    1996-12-01

    The purpose of this study is to develop of low surge Te contact for vacuum circuit breaker. The vacuum circuit breaker have various advantages such that it is free from maintenance, does not bring about public pollution, is excellent in its current breaking property, and so forth, on account of which the extent of its application has become broadened rapidly. For the characteristics of the contact material for the vacuum circuit breaker to satisfy, there may be enumerated: (1)large current breaking capacity; (2)high voltage withstand; (3)small contact resistance; (4)small melt-adhesive force; (5)low chopping current value; (6)good workability; (7)sufficient mechanical strength; and so forth. In this study we used cobalt for based refractory material having high melting temperature and intermetallic material between tellurium and silver to reduce chopping current. The contact materials were produced in accordance with the powder metallurgy using the method of infiltration. Production of the contact material was carried out in such a method that cobalt powder having average particle size of 50{mu}m, pre sintered in H{sub 2} atmosphere, 900 degree C , 2 hour. Ag ingot and Te(Se) were alloyed using high frequency furnaced in vacuum. And then Ag-Te(Se) alloy was infiltrated to Co skeleton in H{sub 2} atmosphere, 1000 degree C , 1 hour. The melting of the alloy to be infiltrated was carried out in a vacuum sealed quartz tube and be analysed by X-ray diffraction, scanning electron microscope, optical microscope and energy dispersive energy spectrometer. In the alloying of silver and tellurium, tellurium does not exist in single element but Ag{sub 2}Te intermetallic compound. And In Ag and Se, Se does not exist in single element but Ag{sub 2}Se intermetallic compound. We also produced the test vacuum interruptor to evaluate the electrode properties in vacuum atmosphere. The electrical properties of Co-(Ag-Se) electrode have better value than that of Co-(Ag-Te) electrode

  3. Water rights of the head reach farmers in view of a water supply scenario at the extension area of the Babai Irrigation Project, Nepal

    Science.gov (United States)

    Adhikari, B.; Verhoeven, R.; Troch, P.

    The farmer managed irrigation systems (FMIS) represent those systems which are constructed and operated solely by the farmers applying their indigenous technology. The FMIS generally outperform the modern irrigation systems constructed and operated by the government agencies with regard to the water delivery effectiveness, agricultural productivity etc., and the presence of a sound organization responsible to run the FMIS, often referred to as the ‘social capital’, is the key to this success. This paper studies another important aspect residing in the FMIS: potentials to expand the irrigation area by means of their proper rehabilitation and modernization. Taking the case study of the Babai Irrigation Project in Nepal, it is demonstrated that the flow, which in the past was used to irrigate the 5400 ha area covered by three FMIS, can provide irrigation to an additional 8100 ha in the summer, 4180 ha vegetables in the winter and 1100 ha maize in the spring season after the FMIS rehabilitation. The “priority water rights” of the FMIS part have been evaluated based on relevant crop water requirement calculations and is found to be equal to 85.4 million m 3 per year. Consequently, the dry season irrigation strategy at the extension area could be worked out based on the remaining flow. By storing the surplus discharge of the monsoon and autumn in local ponds, and by consuming them in dry period combined with nominal partial irrigation practice, wheat and mustard can be cultivated over about 4000 ha of the extension area. Furthermore, storage and surface irrigation both contribute to the groundwater recharge. The conjunctive use of ground, surface and harvested water might be the mainstream in the future for a sustainable irrigation water management in the region.

  4. Effects of changing irrigation practices on the ground-water hydrology of the Santa Isabel-Juana Diaz area, south central Puerto Rico

    Science.gov (United States)

    Ramos-Gines, Orlando

    1994-01-01

    Prior to 1930, the principal source of water for irrigation in the Santa Isabel-Juana Diaz area was surface water from outside the study area, which was delivered by a complex channel-pond system. Recharge from water applied to the fields, estimated to be 18.7 million of gallons per day, and discharge by ground-water flow to sea, estimated to be 17 million of gallons per day, were the major water- budget components prior to intensive development of the ground-water resources. Development of the ground-water resources after 1930 resulted in a substantial increase in irrigation, primarily furrow irrigation. The surface water supplied by the complex channel-pond system continued to be used and ground-water withdrawals increased sub- stantially. By 1966-68, ground-water recharge from irrigation water applied to the fields, estimated to be 37 million of gallons per day, and discharge by pumpage for irrigation, estimated to be 77 million of gallons per day, were the two major components of the ground-water budget. By 1987, drip irrigation had become the principal method of irrigation in the study area, and surface-water irrigation had, for the most part, been discontinued. The estimated aquifer recharge from irrigation water in 1987 was about 6.6 million of gallons per day, which occurred primarily in the remaining fields where furrow irrigation was still practiced. Although aquifer recharge had been reduced as a result of the conversion from furrow to drip irrigation, water levels in the aquifer were higher in 1987 than in 1968 because of the large reduction in ground-water withdrawals and subsequent recovery of ground-water levels.

  5. Automatic aeroponic irrigation system based on Arduino’s platform

    Science.gov (United States)

    Montoya, A. P.; Obando, F. A.; Morales, J. G.; Vargas, G.

    2017-06-01

    The recirculating hydroponic culture techniques, as aeroponics, has several advantages over traditional agriculture, aimed to improve the efficiently and environmental impact of agriculture. These techniques require continuous monitoring and automation for proper operation. In this work was developed an automatic monitored aeroponic-irrigation system based on the Arduino’s free software platform. Analog and digital sensors for measuring the temperature, flow and level of a nutrient solution in a real greenhouse were implemented. In addition, the pH and electric conductivity of nutritive solutions are monitored using the Arduino’s differential configuration. The sensor network, the acquisition and automation system are managed by two Arduinos modules in master-slave configuration, which communicate one each other wireless by Wi-Fi. Further, data are stored in micro SD memories and the information is loaded on a web page in real time. The developed device brings important agronomic information when is tested with an arugula culture (Eruca sativa Mill). The system also could be employ as an early warning system to prevent irrigation malfunctions.

  6. Projected energy and water consumption of Pacific Northwest irrigation systems

    Energy Technology Data Exchange (ETDEWEB)

    King, L. D.; Hellickson, M. L.; Schmisseur, W. E.; Shearer, M. N.

    1978-10-01

    A computer model has been developed to predict present and future regional water, energy, labor, and capital requirements of irrigated agricultural production in Idaho, Oregon, and Washington. The energy requirements calculated were on-farm pumping, and total energies. Total energies are the combined energies of on-farm pumping, manufacture, and installation. Irrigation system selections and modifications were based on an economic analysis utilizing the following input parameters: water, energy, labor, and capital costs and requirements; groundwater and surface water pumping lifts; improved application efficiencies; and pumping plant efficiencies. Major conclusions and implications of this analysis indicate that: as water application efficiencies increases additional quantities of water will not become available to other users; an overall increase in water application efficiencies resulted in decreases in gross water applications and increases in overall on-farm pumping and total energy consumptions; more energy will be consumed as pumping and total energies than will be conserved through decreased diversion pumping energy requirements; pump-back and similar technologies have the potential of both increasing application efficiencies and energy conservation; and the interrelationships understood between applying water in quantities greater than required for crop consumptive use and leaching, and late season in-steam flow augmentation and/or aquifer recharge are not well understood, and sound policy decisions concerning agricultural use of water and energy cannot be made until these interrelationships are better understood.

  7. Potato yield and yield structure depending on irrigation

    Directory of Open Access Journals (Sweden)

    Milić Stanko

    2010-01-01

    Full Text Available In the agroclimatic conditions of the Vojvodina Province, the application of an economic water regime and modern technology is necessary for stable and intensive potato production. A two-year experiment on calcareous chernozem was carried out to determine how irrigation and different pre-irrigation soil moisture affect potato yield and distribution of tuber fraction in the potato yield. The block-design trial had four replicates and was adapted for sprinkler irrigation conditions. It included four treatments: irrigation with pre-irrigation moisture levels of 60 % of field water capacity (FC, irrigation with pre-irrigation moisture levels of 70 % (FC, irrigation with pre-irrigation moisture levels of 80% (FC, and a non-irrigated control treatment. Irrigation significantly increased the yield of potato, which increased from 37.27 % to 75.86 %. Under irrigation, the percentage of small fractions decreased in favour of the 55 mm one, or fractions above the 45-55 mm range. On average, irrigated treatments produced significantly more tubers than the conditions of natural water supply. .

  8. Coil irrigation in sugar cane (Saccharum officinarum

    Directory of Open Access Journals (Sweden)

    Jesús Sánchez Gutiérrez

    2016-01-01

    Full Text Available This study was made at the Basic Seed Bank of the Local Sugar Cane Research Station for the Mideastern Cuba, based in Camaguey, on brown carbonate soil, between 2013 and 12014. Coil irrigation was applied to meet the water requirements for the crop, according to the edafoclimatic conditions and the different phenological phases it has. The Savo method was used to determine useful rain water. Adjustment and complementation of the irrigation program was based on indicators that characterize the exploitation scheme. The machine´s working parameters were determined to meet the water needs, and increase crop´s overall yields. The evaluations and results achieved have contributed to new proposals for management and operation of coil irrigation, and they are important to increase its efficiency.

  9. Optimal dynamic water allocation: Irrigation extractions and environmental tradeoffs in the Murray River, Australia

    Science.gov (United States)

    Grafton, R. Quentin; Chu, Hoang Long; Stewardson, Michael; Kompas, Tom

    2011-12-01

    A key challenge in managing semiarid basins, such as in the Murray-Darling in Australia, is to balance the trade-offs between the net benefits of allocating water for irrigated agriculture, and other uses, versus the costs of reduced surface flows for the environment. Typically, water planners do not have the tools to optimally and dynamically allocate water among competing uses. We address this problem by developing a general stochastic, dynamic programming model with four state variables (the drought status, the current weather, weather correlation, and current storage) and two controls (environmental release and irrigation allocation) to optimally allocate water between extractions and in situ uses. The model is calibrated to Australia's Murray River that generates: (1) a robust qualitative result that "pulse" or artificial flood events are an optimal way to deliver environmental flows over and above conveyance of base flows; (2) from 2001 to 2009 a water reallocation that would have given less to irrigated agriculture and more to environmental flows would have generated between half a billion and over 3 billion U.S. dollars in overall economic benefits; and (3) water markets increase optimal environmental releases by reducing the losses associated with reduced water diversions.

  10. Dwarf cashew growth irrigated with saline waters

    Directory of Open Access Journals (Sweden)

    Hugo Orlando Carvallo Guerra

    2009-12-01

    Full Text Available The cashew production is one of the most important agricultural activities from the social-economical viewpoint for the North East of Brazil; besides to produce a great deal of hand labor, it is very important as an exporting commodity. The inadequate use of irrigation in the semi arid regions of the North East of Brazil has induced soil salinization and consequently problems for the irrigated agriculture. In spite of this, few works have been conducted to study the effect of saline stress on the growth and development of the cashew. Because of the lack of information for this crop, an experiment was conducted to study the effect of salinity stress on the phytomass production and nutrient accumulation on the different organs of the precocious dwarf cashew (Anacardium occidentale L. clone CCP76. The study was conducted under controlled conditions using as statistical scheme a randomized block design factorial with six replicates. Five salinity treatments were considered for the irrigation water (electrical conductivities of 0.8, 1.6, 2.4, 3.2 and 4.0 dS m-1 at 25oC. The increasing in salinity of the irrigation water reduced the phytomass at different organs of the studied plant. The nitrogen, phosphorus, potassium, chloride and sodium in the plant varied with the salinity of the irrigation water according with the part of the plant analyzed; in some parts increased, in others decreased, in others increased initially and decreased afterwards, and finally, in other part of the plant the salinity of the irrigation water did not affect the nutrient concentration.

  11. Contribution to the improvement of irrigation management practices through water - deficit irrigation

    International Nuclear Information System (INIS)

    Bazza, M.

    1995-01-01

    The study aimed at identifying irrigation management practices which could result in water savings through -water deficit irrigation. Two field experiments, one on wheat and the other on sugar beet, were conducted and consisted of refraining from supplying water during specific stages of the cycle so as to identy the period(s) during which water deficit would have a limited effect on crop production. In the case of wheat, high water deficit occurred during the early and during these stages was the most beneficial for the crop. However, one water application during the tillering stage allowed the yield to be lower only to that of the treatement with three irrigations. Irrigation during the stage of grain filling caused the kernel weight to be as high as under three irrigations. The lowest value corresponded to the treatement with one irrigation during grain filling and that under rainfed conditions. For sugar beet, when water stress was was applied early in the crop cycle, its effect could be almost entirely recovered with adequate watering during the rest of the growing season. On the opposite, good watering early in cycle, followed by a stress, resulted in the second lowest yield. Water deficit during the maturity stage had also a limited effect on yield. The most crucial periods for adequate watering were which correspond to late filiar development and root growth which coincided with the highest water requirements period. For the same amount of water savings through deficit irrigation, it was better to partition the stress throughout the cycle than during the critical stages of the crop. However, at the national level, it would have been more important to practice deficit irrigation and the irrigated area. For both crops, high yields as high as water - use efficiency values could have been obtained. 8 tabs; 5 refs ( Author )

  12. Evaluation of mulched drip irrigation for cotton in arid Northwest China

    NARCIS (Netherlands)

    Wang, Z.; Jin, M.; Simunek, J.; van Genuchten, M.T.

    2014-01-01

    Field experiments were conducted in arid Southern Xinjiang, Northwest China, for 3 years to evaluate sustainable irrigation regimes for cotton. The experiments involved mulched drip irrigation during the growing season and flood irrigation afterward. The drip irrigation experiments included control

  13. Measurement of flow in supercritical flow regime using cutthroat flumes

    Indian Academy of Sciences (India)

    flumes are used to measure flow rates in irrigation chan- nels and water treatment ... and ha can be expressed in unit system, the values of C and N in Eq. (1) will ... presented in a design chart for determining discharge in throat-less flume ...

  14. Laboratory Research of the Two-Layer Liquid Dynamics at the Wind Surge in a Strait Canal

    Directory of Open Access Journals (Sweden)

    S.F. Dotsenko

    2017-06-01

    Full Text Available The results of laboratory experiments in a straight aerohydrocanal of the rectangular cross-section filled with the two-layer (fresh-salty liquid are represented. The disturbance generator is the air flow directed to the area above the canal. The cases of the two-layer liquid dynamics in the canal with the horizontal flat bottom and in the presence of the bottom obstacle of finite width are considered. It is shown that during the surge in the straight canal, one of the possible exchange mechanisms on the boundary of fresh and salty layers may consist in the salt water emissions (resulted from the Kelvin-Helmholtz instability to the upper freshwater layer. The subsequent eviction can possibly be accompanied by occurrence of undulations at the interface. Besides, the evictions can be followed by formation of the oscillating layer, i.e. the layer with maximum density gradient the oscillations of which propagate to the overlying layers. Presence of the bottom obstacle complicates the structure of the two-layer liquid motions. In particular, it results in emergence of the mixed layers and transformation of the flow behind the obstacle into a turbulent one, formation of the wave-like disturbances over the obstacle, sharp change of the interface position and occurrence of large-scale vortices with the horizontal axes. It is revealed that the maximum peak of the flow velocity horizontal component is shifted upstream from the obstacle.

  15. Strategy of Irrigation Branch in Russia

    Science.gov (United States)

    Zeyliger, A.; Ermolaeva, O.

    2012-04-01

    At this moment, at the starting time of the program on restoration of a large irrigation in Russia till 2020, the scientific and technical community of irrigation branch does not have clear vision on how to promote a development of irrigated agriculture and without repeating of mistakes having a place in the past. In many respects absence of a vision is connected to serious backlog of a scientific and technical and informational and technological level of development of domestic irrigation branch from advanced one. Namely such level of development is necessary for the resolving of new problems in new conditions of managing, and also for adequate answers to new challenges from climate and degradation of ground & water resources, as well as a rigorous requirement from an environment. In such important situation for irrigation branch when it is necessary quickly generate a scientific and technical politics for the current decade for maintenance of translation of irrigated agriculture in the Russian Federation on a new highly effective level of development, in our opinion, it is required to carry out open discussion of needs and requirements as well as a research for a adequate solutions. From political point of view a framework organized in FP6 DESIRE 037046 project is an example of good practice that can serve as methodical approach how to organize and develop such processes. From technical point of view a technology of operational management of irrigation at large scale presents a prospective alternative to the current type of management based on planning. From point of view ICT operational management demands creation of a new platform for the professional environment of activity. This platform should allow to perceive processes in real time, at their partial predictability on signals of a straight line and a feedback, within the framework of variability of decision making scenarious, at high resolution and the big ex-awning of sensor controls and the gauges

  16. Deep subsurface drip irrigation using coal-bed sodic water: part I. water and solute movement

    Science.gov (United States)

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard

    2013-01-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300-480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  17. Simulating Water Allocation and Cropping Decisions in Yemen’s Abyan Delta Spate Irrigation System

    Directory of Open Access Journals (Sweden)

    Derek Jin-Uk Marchant

    2018-01-01

    Full Text Available Agriculture employs more Yemenis than any other sector and spate irrigation is the largest source of irrigation water. Spate irrigation however is growing increasingly difficult to sustain in many areas due to water scarcity and unclear sharing of water amongst users. In some areas of Yemen, there are no institutionalised water allocation rules which can lead to water related disputes. Here, we propose a proof-of-concept model to evaluate the impacts of different water allocation patterns to assist in devising allocation rules. The integrated model links simple wadi flow, diversion, and soil moisture-yield simulators to a crop decision model to evaluate impacts of different water allocation rules and their possible implications on local agriculture using preliminary literature data. The crop choice model is an agricultural production model of irrigation command areas where the timing, irrigated area and crop mix is decided each month based on current conditions and expected allocations. The model is applied to Yemen’s Abyan Delta, which has the potential to be the most agriculturally productive region in the country. The water allocation scenarios analysed include upstream priority, downstream priority, equal priority (equal sharing of water shortages, and a user-defined mixed priority that gives precedence to different locations based on the season. Once water is distributed according to one of these allocation patterns, the model determines the profit-maximising plant date and crop selection for 18 irrigated command areas. This aims to estimate the impacts different water allocation strategies could have on livelihoods. Initial results show an equal priority allocation is the most equitable and efficient, with 8% more net benefits than an upstream scenario, 10% more net benefits than a downstream scenario, and 25% more net benefits than a mixed priority.

  18. to Irrigation Intervals and Plant Density in Zuru, Northern Guinea

    African Journals Online (AJOL)

    ISSN 0794-5698. Response of Onion (Allium cepa L.) to Irrigation Intervals and Plant Density in ... The treatments were laid out in a split plot design with three replications. Irrigation ..... System and Agronomic Practice in. Tropical Climates.

  19. Low Cost Constant – Head Drip Irrigation Emitter for Climate ...

    African Journals Online (AJOL)

    Low Cost Constant – Head Drip Irrigation Emitter for Climate Change Adaptation in Nigeria: Engineering Design and Calibration. ... The drip system comprises of abarrel, sub-main line, lateral lines, tubes and emitters, it can irrigate140 crop ...

  20. Influence of local topography on precision irrigation management

    Science.gov (United States)

    Precision irrigation management is currently accomplished using spatial information about soil properties through soil series maps or electrical conductivity (EC measurements. Crop yield, however, is consistently influenced by local topography, both in rain-fed and irrigated environments. Utilizing ...