WorldWideScience

Sample records for surfactant uv-vis absorption

  1. UV-VIS absorption spectroscopy: Lambert-Beer reloaded

    Science.gov (United States)

    Mäntele, Werner; Deniz, Erhan

    2017-02-01

    UV-VIS absorption spectroscopy is used in almost every spectroscopy laboratory for routine analysis or research. All spectroscopists rely on the Lambert-Beer Law but many of them are less aware of its limitations. This tutorial discusses typical problems in routine spectroscopy that come along with technical limitations or careless selection of experimental parameters. Simple rules are provided to avoid these problems.

  2. UV-VIS absorption spectroscopy: Lambert-Beer reloaded.

    Science.gov (United States)

    Mäntele, Werner; Deniz, Erhan

    2017-02-15

    UV-VIS absorption spectroscopy is used in almost every spectroscopy laboratory for routine analysis or research. All spectroscopists rely on the Lambert-Beer Law but many of them are less aware of its limitations. This tutorial discusses typical problems in routine spectroscopy that come along with technical limitations or careless selection of experimental parameters. Simple rules are provided to avoid these problems. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Optical absorption of sodium copper chlorophyllin thin films in UV-vis-NIR region.

    Science.gov (United States)

    Farag, A A M

    2006-11-01

    The optical absorption studies of sodium copper chlorophyllin thin films (SCC), prepared by spray pyrolysis, in the UV-vis-NIR region was reported for the first time. Several new discrete transitions are observed in the UV-vis region of the spectra in addition to a strong continuum component in the IR region. The spectra of the infrared absorption allow characterization of vibration modes for the powder and thin films of SCC. The absorption spectrum recorded in the UV-vis region showed different absorption bands, namely the Soret (B) in the region 340-450 nm and Q-band in the region 600-700 nm and other band labeled N in the 240-320 region. Some important spectral parameters namely optical absorption coefficient (alpha), molar extinction coefficient (epsilon(molar)), oscillator strength (f), electric dipole strength (q(2)) and absorption half bandwidth (Deltalambda) of the principle optical transitions were evaluated. The analysis of the absorption coefficient in the absorption region revealed direct transitions and the energy gap was estimated as 1.63 eV. Discussion of the obtained results and their comparison with the previous published data are also given.

  4. Synthesis of rare earth sulfides and their UV-vis absorption spectra

    Institute of Scientific and Technical Information of China (English)

    YUAN Haibin; ZHANG Jianhui; YU Ruijin; SU Qiang

    2009-01-01

    Rare earth sulfides were systematically synthesized via the sulfurization of their commercial oxide powders using CS2 gas to shorten sulfurization time, and their UV-vis absorption spectra were investigated. The appropriate sulfurization conditions were studied. For the rare earth sulfides with the same crystal structure, the sulfurization temperature showed increasing tendency with the decrease of rare earth element atomic radii. The UV-vis absorption spectra of rare earth sulfides did not depend on the crystal structure of rare earth sulfides, but on the 4f electronic structure of rare earth element. The data showed that the optical band gaps of rare earth sulfides were irregular, and the values ranged from 1.65 to 3.75 eV.

  5. A quality control technique based on UV-VIS absorption spectroscopy for tequila distillery factories

    Science.gov (United States)

    Barbosa Garcia, O.; Ramos Ortiz, G.; Maldonado, J. L.; Pichardo Molina, J.; Meneses Nava, M. A.; Landgrave, Enrique; Cervantes, M. J.

    2006-02-01

    A low cost technique based on the UV-VIS absorption spectroscopy is presented for the quality control of the spirit drink known as tequila. It is shown that such spectra offer enough information to discriminate a given spirit drink from a group of bottled commercial tequilas. The technique was applied to white tequilas. Contrary to the reference analytic methods, such as chromatography, for this technique neither special personal training nor sophisticated instrumentations is required. By using hand-held instrumentation this technique can be applied in situ during the production process.

  6. UV-vis absorption spectroscopy and multivariate analysis as a method to discriminate tequila

    Science.gov (United States)

    Barbosa-García, O.; Ramos-Ortíz, G.; Maldonado, J. L.; Pichardo-Molina, J. L.; Meneses-Nava, M. A.; Landgrave, J. E. A.; Cervantes-Martínez, J.

    2007-01-01

    Based on the UV-vis absorption spectra of commercially bottled tequilas, and with the aid of multivariate analysis, it is proved that different brands of white tequila can be identified from such spectra, and that 100% agave and mixed tequilas can be discriminated as well. Our study was done with 60 tequilas, 58 of them purchased at liquor stores in various Mexican cities, and two directly acquired from a distillery. All the tequilas were of the "white" type, that is, no aged spirits were considered. For the purposes of discrimination and quality control of tequilas, the spectroscopic method that we present here offers an attractive alternative to the traditional methods, like gas chromatography, which is expensive and time-consuming.

  7. The Lowest Triplet of Tetracyanoquinodimethane via UV-vis Absorption Spectroscopy with Br-Containing Solvents.

    Science.gov (United States)

    Khvostenko, Olga G; Kinzyabulatov, Renat R; Khatymova, Laysan Z; Tseplin, Evgeniy E

    2017-10-05

    This study was undertaken to find the previously unknown lowest triplet of the isolated molecule of tetracyanoquinodimethane (TCNQ), which is a widely used organic semiconductor. The problem is topical because the triplet excitation of this compound is involved in some processes which occur in electronic devices incorporating TCNQ and its derivatives, and information on the TCNQ triplet is needed for better understanding of these processes. The lowest triplet of TCNQ was obtained at 1.96 eV using UV-vis absorption spectroscopy with Br-containing solvents. Production of the triplet band with sufficient intensity in the spectra was provided by the capacity of the Br atom to augment the triplet excitation and through using a 100 mm cuvette. The assignment of the corresponding spectral band to the triplet transition was made by observation that this band appeared only in the spectra recorded in Br-containing solvents but not in spectra recorded in other solvents. Additional support for the triplet assignment came from the overall UV-vis absorption spectra of TCNQ recorded in various solvents, using a 10 mm cuvette, in the 1.38-6.5 eV energy range. Singlet transitions of the neutral TCNQ(o) molecule and doublet transitions of the TCNQ(¯) negative ion were identified in these overall spectra and were assigned with TD B3LYP/6-31G calculations. Determination of the lowest triplet of TCNQ attained in this work may be useful for theoretical studies and practical applications of this important compound.

  8. The potential of UV-VIS-NIR absorption spectroscopy in glass studies

    Science.gov (United States)

    Meulebroeck, Wendy; Baert, Kitty; Ceglia, Andrea; Cosyns, Peter; Wouters, Hilde; Nys, Karin; Terryn, Herman; Thienpont, Hugo

    Absorption spectroscopy is the technique that measures the absorption of radiation as a function of wavelength, due to its interaction with the material. During a research project funded by our home university, we were able to investigate the possibilities of this technique to study ancient glasses. One of our main conclusions is that UV-VIS-NIR absorption spectroscopy is especially suited to characterize colored artifacts in terms of composition and furnace conditions. Moreover, for naturally colored window glasses, we have shown that this technique allows us to classify fragments based on differences in iron impurity levels. It is a semi-quantitative analysis tool that can be applied for a first-line analysis of (large) glass collections. Thanks to the commercial available portable instruments, these measurements can be performed at relative high speed and this in-situ if necessary. To illustrate the possibilities of this technique, we describe in this paper two case-studies. In a first test-case we analyze 63 naturally colored window glasses and demonstrate how groups with different iron concentrations can be identified by calculating the absorption edge position from the measured optical spectrum. In a second case-study 8 modern naturally colored and 31 intentionally colored Roman glass fragments are the point of focus. For these samples we first estimate which samples are potentially fabricated under the same furnace conditions. This is done based on the calculated color values. Finally we identify the type of applied colorants.

  9. Combined characterization of bovine polyhemoglobin microcapsules by UV-Vis absorption spectroscopy and cyclic voltammetry.

    Science.gov (United States)

    Knirsch, Marcos Camargo; Dell'Anno, Filippo; Salerno, Marco; Larosa, Claudio; Polakiewicz, Bronislaw; Eggenhöffner, Roberto; Converti, Attilio

    2017-03-01

    Polyhemoglobin produced from pure bovine hemoglobin by reaction with PEG bis(N-succynimidil succinate) as a cross-linking agent was encapsulated in gelatin and dehydrated by freeze-drying. Free carboxyhemoglobin and polyhemoglobin microcapsules were characterized by UV-Vis spectroscopy in the absorption range 450-650 nm and cyclic voltammetry in the voltage range from -0.8 to 0.6 mV to evaluate the ability to break the bond with carbon monoxide and to study the carrier's affinity for oxygen, respectively. SEM used to observe the shape of cross-linked gelatin-polyhemoglobin microparticles showed a regular distribution of globular shapes, with mean size of ~750 nm, which was ascribed to gelatin. Atomic absorption spectroscopy was also performed to detect iron presence in microparticles. Cyclic voltammetry using an Ag-AgCl electrode highlighted characteristic peaks at around -0.6 mV that were attributed to reversible oxygen bonding with iron in oxy-polyhemoglobin structure. These results suggest this technique as a powerful, direct and alternative method to evaluate the extent of hemoglobin oxygenation.

  10. A study of structural differences between TBM patients' and non-TBM persons' CSF using UV-Vis absorption spectroscopy

    Science.gov (United States)

    Xu, Fangcheng; Wang, Xin; Xu, Huajia; Wang, Kai

    2016-01-01

    Tuberculous meningitis (TBM) is a very common infectious disease in the central nervous system. The delay of diagnosing and treating TBM will lead to high disability and mortality of TBM. Hence, it is very important to promptly diagnose TBM early. In this work, we proposed a new method for diagnosing TBM with CSF samples by using UV-Vis absorption spectroscopy. CSF samples from TBM patients and non-TBM persons were compared, and the sensitivity, specificity, accuracy, positive predictive value reached 83.6%, 69.8%, 77.2%, 76.1% respectively. Our work indicated investigation of CSF using UV-Vis absorption spectroscopy might become a potentially useful method for TBM diagnosis.

  11. Coordination of the uranyl ion in solution and ionic liquids : a combined UV-Vis absorption and EXAFS study

    OpenAIRE

    Servaes, Kelly

    2007-01-01

    The uranyl ion (UO22+) has been extensively studied for decades and nowadays it is still a hot topic in a number of contemporary issues like nuclear waste treatment and the Balkan syndrome. Therefore, besides our fundamental interest in this complex system, the aim of this study was to provide a convenient and straightforward approach to identify the structure of various uranyl complexes formed in solution. To achieve this goal, spectroscopic techniques like UV-Vis absorption spectroscopy, ...

  12. Evaluation of the release characteristics of covalently attached or electrostatically bound biocidal polymers utilizing SERS and UV-Vis absorption

    Directory of Open Access Journals (Sweden)

    G. N. Mathioudakis

    2016-09-01

    Full Text Available In this work, biocidal polymers with antimicrobial quaternized ammonium groups introduced in the polymer biocidal chains either through covalent attachment or electrostatic interaction have been separately incorporated in a poly (methyl methacrylate polymer matrix. The objective of present study was to highlight the release characteristics of biocidal polymers, primarily in saline but also in water ethanol solutions, utilizing UV-Vis absorption and Surface Enhanced Raman Scattering (SERS. It is shown that through the combination of UV-Vis and SERS techniques, upon the release process, it is possible the discrimination of the polymeric backbone and the electrostatically bound biocidal species. Moreover, it is found that electrostatically bound and covalently attached biocidal species show different SERS patterns. The long term aim is the development of antimicrobial polymeric materials containing both ionically bound and covalently attached quaternary ammonium thus achieving a dual functionality in a single component polymeric design.

  13. Chemical composition and surfactant characteristics of marine foams investigated by means of UV-vis, FTIR and FTNIR spectroscopy.

    Science.gov (United States)

    Mecozzi, Mauro; Pietroletti, Marco

    2016-11-01

    In this study, we collected the ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) and Fourier transform near-infrared (FTNIR) spectra of marine foams from different sites and foams produced by marine living organisms (i.e. algae and molluscs) to retrieve information about their molecular and structural composition. UV-vis spectra gave information concerning the lipid and pigment contents of foams. FTIR spectroscopy gave a more detailed qualitative information regarding carbohydrates, lipids and proteins in addition with information about the mineral contents of foams. FTNIR spectra confirmed the presence of carbohydrates, lipids and proteins in foams. Then, due to the higher content of structural information of FTIR spectroscopy with respect to FTNIR and UV-vis, we join the FTIR spectra of marine foams to those of humic substance from marine sediments and to the spectra of foams obtained by living organisms. We submitted this resulting FTIR spectral dataset to statistical multivariate methods to investigate specific aspects of foams such as structural similarity among foams and in addition, contributions from the organic matter of living organisms. Cluster analysis (CA) evidenced several cases (i.e. clusters) of marine foams having high structural similarity with foams from vegetal and animal samples and with humic substance extracted from sediments. These results suggested that all the living organisms of the marine environment can give contributions to the chemical composition of foams. Moreover, as CA also evidenced cases of structural differences within foam samples, we applied two-dimensional correlation analysis (2DCORR) to the FTIR spectra of marine foams to investigate the molecular characteristics which caused these structural differences. Asynchronous spectra of two-dimensional correlation analysis showed that the structural heterogeneity among foam samples depended reasonably on the presence and on the qualitative difference of

  14. The characterization of the concentration of the single-walled carbon nanotubes in aqueous dispersion by UV-Vis-NIR absorption spectroscopy.

    Science.gov (United States)

    Yang, Bing; Ren, Lingling; Li, Luming; Tao, Xingfu; Shi, Yunhua; Zheng, Yudong

    2013-11-07

    Current and future applications of single-wall carbon nanotubes (SWCNTs) depend on the dispersion of the SWCNTs in aqueous solution and their quantitation. The concentration of SWCNTs is an important indicator to evaluate the dispersibility of the surfactant-dispersed SWCNTs suspension. Due to the complexity of the SWCNTs suspension, it is necessary to determine both the total concentration of the dispersed SWCNTs and the concentration of individually dispersed SWCNTs in aqueous suspensions, and these were evaluated through the absorbance and the resonance ratios of UV-Vis-NIR absorption spectra, respectively. However, there is no specific and reliable position assigned for either calculation of the absorbance or the resonance ratio of the UV-Vis-NIR absorption spectrum. In this paper, different ranges of wavelengths for these two parameters were studied. From this, we concluded that the wavelength range between 300 nm and 600 nm should be the most suitable for evaluation of the total concentration of dispersed SWCNTs in the suspension; also, wavelengths below 800 nm should be most suitable for evaluation of the concentration of individually dispersed SWCNTs in the suspension. Moreover, these wavelength ranges are verified by accurate dilution experiments.

  15. Probing the Behaviors of Gold Nanorods in Metastatic Breast Cancer Cells Based on UV-vis-NIR Absorption Spectroscopy

    OpenAIRE

    Weiqi Zhang; Yinglu Ji; Jie Meng; Xiaochun Wu; Haiyan Xu

    2012-01-01

    In this work, behaviors of positively-charged AuNRs in a highly metastatic tumor cell line MDA-MB-231 are examined based on UV-vis-NIR absorption spectroscopy in combination with inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy (TEM) and dark-field microscopic observation. It is found that characteristic surface plasmon resonance (SPR) peaks of AuNRs can be detected using spectroscopic method within living cells that have taken up AuNRs. The peak area of...

  16. Using resonance light scattering and UV/vis absorption spectroscopy to study the interaction between gliclazide and bovine serum albumin.

    Science.gov (United States)

    Zhang, Qiu-Ju; Liu, Bao-Sheng; Li, Gai-Xia; Han, Rong

    2016-08-01

    At different temperatures (298, 310 and 318 K), the interaction between gliclazide and bovine serum albumin (BSA) was investigated using fluorescence quenching spectroscopy, resonance light scattering spectroscopy and UV/vis absorption spectroscopy. The first method studied changes in the fluorescence of BSA on addition of gliclazide, and the latter two methods studied the spectral change in gliclazide while BSA was being added. The results indicated that the quenching mechanism between BSA and gliclazide was static. The binding constant (Ka ), number of binding sites (n), thermodynamic parameters, binding forces and Hill's coefficient were calculated at three temperatures. Values for the binding constant obtained using resonance light scattering and UV/vis absorption spectroscopy were much greater than those obtained from fluorescence quenching spectroscopy, indicating that methods monitoring gliclazide were more accurate and reasonable. In addition, the results suggest that other residues are involved in the reaction and the mode 'point to surface' existed in the interaction between BSA and gliclazide. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Interaction of 4-aminosalieylic Acid and Surfactants in Aqueous Solutions Using UV-Vis Spectra and Steady-state Fluorescence Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    XU Dongying; REN Jiaoyan; LIAO Zhengfu; WANG Hui; ZHAO Mouming; LI Guangji

    2011-01-01

    The interactions of 4-aminosalicylic acid (4-ASA) and surfactants in aqueous solutions were investigated by using UV-Vis spectra and steady-state fluorescence spectroscopy.The results showed that the strongest peak at UV-vis spectra of 4-ASA aqueous solution in the presence of cationic surfactant and cetyltrimethyl ammonium bromide (CTAB) appeared at 206 nm and took.a red shift from 206 nm to 221 nm with the increase of 4-ASA concentrations from 0.8× 10-5 to 4.4× 10-4 mol/L.Similarly,the strongest peak at UV-vis spectra of 4-ASA aqueous solution in the presence of nonionic surfactant and polyvinylpyrrolidone (PVP)appeared at 206 nm and took a red shift from 206 nm to 219 nm with the increase of 4-ASA concentrations from 0.8× 10-5 to 4.4x 10-4 mol/L.However,the similar phenomena did not appeared in the presence of anion surfactant,sodium dodecyl sulfate (SDS),the UV-vis spectra of 4-ASA aqueous solution remained the same peak position and the peak value increased with the 4-ASA concentration increase.The results could be attributed to the electrostatic attraction between 4-ASA and CTAB or PVP,as well as the electrostatic repulsion between 4-ASA and SDS.Furthermore,the value of critical micelle concentration (CMC) of surfactants in the presence of 4-ASA was determined with Fluorescence method.The first and second CMC of CTAB was 1.2×10-4 M and 2.4x10-4 M,respectively.The first and second CMC of PVP was 1.2×10 4 M and 2.8x 10 4 M.SDS realized the multiple micellizations to form multiple CMC.

  18. Probing the Behaviors of Gold Nanorods in Metastatic Breast Cancer Cells Based on UV-vis-NIR Absorption Spectroscopy

    Science.gov (United States)

    Zhang, Weiqi; Ji, Yinglu; Meng, Jie; Wu, Xiaochun; Xu, Haiyan

    2012-01-01

    In this work, behaviors of positively-charged AuNRs in a highly metastatic tumor cell line MDA-MB-231 are examined based on UV-vis-NIR absorption spectroscopy in combination with inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy (TEM) and dark-field microscopic observation. It is found that characteristic surface plasmon resonance (SPR) peaks of AuNRs can be detected using spectroscopic method within living cells that have taken up AuNRs. The peak area of transverse SPR band is shown to be proportionally related to the amount of AuNRs in the cells determined with ICP-MS, which suggests a facile and real time quantification method for AuNRs in living cells. The shape of longitudinal SPR band in UV-vis-NIR spectrum reflects the aggregation state of AuNRs in the cells during the incubation period, which is proved by TEM and microscopic observations. Experimental results reveal that AuNRs are internalized by the cells rapidly; the accumulation, distribution and aggregation of AuNRs in the cells compartments are time and dose dependent. The established spectroscopic analysis method can not only monitor the behaviors of AuNRs in living cells but may also be helpful in choosing the optimum laser stimulation wavelength for anti-tumor thermotherapy. PMID:22384113

  19. Probing the behaviors of gold nanorods in metastatic breast cancer cells based on UV-vis-NIR absorption spectroscopy.

    Science.gov (United States)

    Zhang, Weiqi; Ji, Yinglu; Meng, Jie; Wu, Xiaochun; Xu, Haiyan

    2012-01-01

    In this work, behaviors of positively-charged AuNRs in a highly metastatic tumor cell line MDA-MB-231 are examined based on UV-vis-NIR absorption spectroscopy in combination with inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy (TEM) and dark-field microscopic observation. It is found that characteristic surface plasmon resonance (SPR) peaks of AuNRs can be detected using spectroscopic method within living cells that have taken up AuNRs. The peak area of transverse SPR band is shown to be proportionally related to the amount of AuNRs in the cells determined with ICP-MS, which suggests a facile and real time quantification method for AuNRs in living cells. The shape of longitudinal SPR band in UV-vis-NIR spectrum reflects the aggregation state of AuNRs in the cells during the incubation period, which is proved by TEM and microscopic observations. Experimental results reveal that AuNRs are internalized by the cells rapidly; the accumulation, distribution and aggregation of AuNRs in the cells compartments are time and dose dependent. The established spectroscopic analysis method can not only monitor the behaviors of AuNRs in living cells but may also be helpful in choosing the optimum laser stimulation wavelength for anti-tumor thermotherapy.

  20. Probing the behaviors of gold nanorods in metastatic breast cancer cells based on UV-vis-NIR absorption spectroscopy.

    Directory of Open Access Journals (Sweden)

    Weiqi Zhang

    Full Text Available In this work, behaviors of positively-charged AuNRs in a highly metastatic tumor cell line MDA-MB-231 are examined based on UV-vis-NIR absorption spectroscopy in combination with inductively coupled plasma mass spectrometry (ICP-MS, transmission electron microscopy (TEM and dark-field microscopic observation. It is found that characteristic surface plasmon resonance (SPR peaks of AuNRs can be detected using spectroscopic method within living cells that have taken up AuNRs. The peak area of transverse SPR band is shown to be proportionally related to the amount of AuNRs in the cells determined with ICP-MS, which suggests a facile and real time quantification method for AuNRs in living cells. The shape of longitudinal SPR band in UV-vis-NIR spectrum reflects the aggregation state of AuNRs in the cells during the incubation period, which is proved by TEM and microscopic observations. Experimental results reveal that AuNRs are internalized by the cells rapidly; the accumulation, distribution and aggregation of AuNRs in the cells compartments are time and dose dependent. The established spectroscopic analysis method can not only monitor the behaviors of AuNRs in living cells but may also be helpful in choosing the optimum laser stimulation wavelength for anti-tumor thermotherapy.

  1. Comparative theoretical study of the UV/Vis absorption spectra of styrylpyridine compounds using TD-DFT calculations.

    Science.gov (United States)

    Castro, Maria Eugenia; Percino, M Judith; Chapela, Victor M; Soriano-Moro, Guillermo; Ceron, Margarita; Melendez, Francisco J

    2013-05-01

    This study examined absorption properties of 2-styrylpyridine, trans-2-(m-cyanostyryl)pyridine, trans-2-[3-methyl-(m-cyanostyryl)]pyridine, and trans-4-(m-cyanostyryl)pyridine compounds based on theoretical UV/Vis spectra, with comparisons between time-dependent density functional theory (TD-DFT) using B3LYP, PBE0, and LC-ωPBE functionals. Basis sets 6-31G(d), 6-31G(d,p), 6-31+G(d,p), and 6-311+G(d,p) were tested to compare molecular orbital energy values, gap energies, and maxima absorption wavelengths. UV/Vis spectra were calculated from fully optimized geometry in B3LYP/6-311+G(d,p) in gas phase and using the IEFPCM model. B3LYP/6-311+G(d,p) provided the most stable form, a planar structure with parameters close to 2-styrylpyridine X-ray data. Isomeric structures were evaluated by full geometry optimization using the same theory level. Similar energetic values were found: ~4.5 kJ mol(-1) for 2-styrylpyridine and ~1 kJ mol(-1) for derivative compound isomers. The 2-styrylpyridine isomeric structure differed at the pyridine group N-atom position; structures considered for the other compounds had the cyano group attached to the phenyl ring m-position equivalent. The energy difference was almost negligible between m-cyano-substituted molecules, but high energy barriers existed for cyano-substituted phenyl ring torsion. TD-DFT appeared to be robust and accurate approach. The B3LYP functional with the 6-31G(d) basis set produced the most reliable λmax values, with mean errors of 0.5 and 12 nm respect to experimental values, in gas and solution, respectively. The present data describes effects on the λmax changes in the UV/Vis absorption spectra of the electron acceptor cyano substituent on the phenyl ring, the electron donor methyl substituent, and the N-atom position on the electron acceptor pyridine ring, causing slight changes respect to the 2-styrylpyridine title compound.

  2. Reactions of cytotoxic metallodrugs with lysozyme in pure DMSO explored through UV-Vis absorption spectroscopy and ESI MS.

    Science.gov (United States)

    Marzo, Tiziano; Savić, Aleksandar; Massai, Lara; Michelucci, Elena; Sabo, Tibor J; Grguric-Šipka, Sanja; Messori, Luigi

    2015-04-01

    The reactions of four representative metallodrugs with the model protein HEWL were investigated within a non-aqueous environment-i.e. in pure DMSO- through UV-Vis absorption spectroscopy and ESI MS analysis. Notably, formation of a variety of metallodrug-protein adducts was clearly documented. This is the first example for this kind of protein metalation reactions carried out within a pure organic solvent. It is shown that the applied solution conditions greatly affect the nature of the formed adducts, this being well accounted for by the fact that the overall protein conformation is greatly perturbed within pure DMSO; in addition, the activation profiles of the studied metallodrugs are also highly dependent on the nature of the solvent. The implications of these results are discussed.

  3. [Determination of enthalpy change of coordinating color reaction by UV-Vis absorption spectrum method].

    Science.gov (United States)

    Yang, D; An, L; Chen, L

    2001-08-01

    In this paper, a simple experimental method for the determination of enthalpy change of coordinating color reaction has been proposed and a relation formula between absorption and temperature has been deduced. Using coordinating color reaction of cobalt(II) thiocyanate in Tween-80 medium, the linear relation of this formula has been validated: r = 0.9957 and delta H = -44.7 kJ.mol-1, which is accordant with the result obtained from Van't Hoff equation.

  4. UV-Vis Reflection-Absorption Spectroscopy at air-liquid interfaces.

    Science.gov (United States)

    Rubia-Payá, Carlos; de Miguel, Gustavo; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis

    2015-11-01

    UV-Visible Reflection-Absorption Spectroscopy (UVRAS) technique is reviewed with a general perspective on fundamental and applications. UVRAS is formally identical to IR Reflection-Absorption Spectroscopy (IRRAS), and therefore, the methodology developed for this IR technique can be applied in the UV-visible region. UVRAS can be applied to air-solid, air-liquid or liquid-liquid interfaces. This review focuses on the use of UVRAS for studying Langmuir monolayers. We introduce the theoretical framework for a successful understanding of the UVRAS data, and we illustrate the usage of this data treatment to a previous study from our group comprising an amphiphilic porphyrin. For ultrathin films with a thickness of few nm, UVRAS produces positive or negative bands when p-polarized radiation is used, depending on the incidence angle and the orientation of dipole absorption. UVRAS technique provides highly valuable information on tilt of chromophores at the air-liquid interface, and moreover allows the determination of optical parameters. We propose UVRAS as a powerful technique to investigate the in situ optical properties of Langmuir monolayers. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Multi-State Extrapolation of Uv/vis Absorption Spectra with Qm/qm Hybrid Methods

    Science.gov (United States)

    Ren, Sijin; Caricato, Marco

    2017-06-01

    In this work, we present a simple approach to obtain absorption spectra from hybrid QM/QM calculations. The goal is to obtain reliable spectra for compounds that are too large to be treated entirely at a high level of theory. The approach is based on the extrapolation of the entire absorption spectrum obtained by individual subcalculations. Our program locates the main spectral features in each subcalculation, e.g. band peaks and shoulders, and fits them to Gaussian functions. Each Gaussian is then extrapolated with a formula similar to that of ONIOM (Our own N-layered Integrated molecular Orbital molecular Mechanics). However, information about individual excitations is not necessary so that difficult state-matching across subcalculations is avoided. This multi-state extrapolation thus requires relatively low implementation effort while affording maximum flexibility in the choice of methods to be combined in the hybrid approach. The test calculations show the efficacy and robustness of this methodology in reproducing the spectrum computed for the entire molecule at a high level of theory.

  6. Two-photon absorption, nonlinear optical and UV-vis spectral properties of 2-furanylmethyleneaminoantipyrine, benzylideneaminoantipyrine and cinnamilideneaminoantipyrine

    Energy Technology Data Exchange (ETDEWEB)

    Sun Yuxi, E-mail: yuxisun@163.com [Key Laboratory for Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094 (China) and Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165 (China); Hao Qingli; Tang Weihua; Wang Yufeng [Key Laboratory for Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094 (China); Yang Xujie, E-mail: yangx@mail.njust.edu.cn [Key Laboratory for Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094 (China); Lu Lude; Wang Xin [Key Laboratory for Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2011-09-15

    Highlights: {yields} Three imine-bridged aromatic antipyrine derivatives as photo-responsive materials. {yields} The compounds exhibit two-photon absorption and first-hyperpolarization properties {yields} The compounds have long-range electron transfer characteristics. - Abstract: Organic compounds as functional materials have attracted much keen interest in the past three decades owing to their potential applications in science and technology. Currently, great efforts have been made in looking for suitable photo-responsive materials among the multifarious organic compounds. Herein we reported the photophysical properties of 2-furanylmethylene-aminoantipyrine (FMAAP), benzylideneaminoantipyrine (BIAAP) and cinnamilideneamino-antipyrine (CIAAP) studied by a combined experimental and theoretical investigation. Two-photon absorption measurements give the cross-section values of 1.350 x 10{sup -50} cm{sup 4} s/photon for FMAAP, 1.046 x 10{sup -50} cm{sup 4} s/photon for BIAAP and 2.047 x 10{sup -50} cm{sup 4} s/photon for CIAAP. The calculated first-hyperpolarization values are of 2.303 x 10{sup -30}, 1.257 x 10{sup -29}, 2.889 x 10{sup -29} cm{sup 5}/esu for FMAAP, BIAAP and CIAAP, respectively. UV-vis spectroscopy technique further reveals that the studied compounds display long-range electron transfer characteristics by absorbing light of specific wavelengths of 294.5 nm for FMAAP, 293.2 nm for BIAAP and 303.1 nm for CIAAP. All the results indicate that the studied compounds are promising candidates of functionally photo-responsive materials.

  7. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source.

    Science.gov (United States)

    Pompidor, Guillaume; Dworkowski, Florian S N; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R

    2013-09-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years.

  8. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent [Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Schulze-Briese, Clemens [DECTRIS Ltd, CH-5400 Baden (Switzerland); Fuchs, Martin R., E-mail: mfuchs@bnl.gov [Paul Scherrer Institut, CH-5232 Villigen (Switzerland)

    2013-09-01

    The new version MS2 of the in situ on-axis micro-spectrophotometer at the macromolecular crystallography beamline X10SA of the Swiss Light Source supports the concurrent acquisition of Raman, resonance Raman, fluorescence and UV/Vis absorption spectra along with diffraction data. The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years.

  9. Multiconfigurational and DFT analyses of the electromeric formulation and UV-vis absorption spectra of the superoxide adduct of ferrous superoxide reductase.

    Science.gov (United States)

    Attia, Amr A A; Cioloboc, Daniela; Lupan, Alexandru; Silaghi-Dumitrescu, Radu

    2016-12-01

    The putative initial adduct of ferrous superoxide reductase (SOR) with superoxide has been alternatively formulated as ferric-peroxo or ferrous-superoxo. The ~600-nm UV-vis absorption band proposed to be assigned to this adduct (either as sole intermediate in the SOR catalytic cycle, or as one of the two intermediates) has recently been interpreted as due to a ligand-to-metal charge transfer, involving thiolate and superoxide in a ferrous complex, contrary to an alternative assignment as a predominantly cysteine thiolate-to-ferric charge transfer in a ferric-peroxo electromer. In an attempt to clarify the electromeric formulation of this adduct, we report a computational study using a multiconfigurational complete active space self-consistent field (MC-CASSCF) wave function approach as well as modelling the UV-vis absorption spectra with time-dependent density functional theory (TD-DFT). The MC-CASSCF calculations disclose a weak interaction between iron and the dioxygenic ligand and a dominant configuration with an essentially ferrous-superoxo character. The computed UV-vis absorption spectra reveal a marked dependence on the choice of density functional - both in terms of location of bands and in terms of orbital contributors. For the main band in the visible region, besides the recently reported thiolate-to-superoxide charge transfer, a more salient, and less functional-dependent, feature is a thiolate-to-ferric iron charge transfer, consistent with a ferric-peroxo electromer. By contrast, the computed UV-vis spectra of a ferric-hydroperoxo SOR model match distinctly better (and with no qualitative dependence on the DFT methodology) the 600-nm band as due to a mainly thiolate-to-ferric character - supporting the assignment of the SOR "600-nm intermediate" as a S=5/2 ferric-hydroperoxo species. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Improved analysis of Monascus pigments based on their pH-sensitive UV-Vis absorption and reactivity properties.

    Science.gov (United States)

    Shi, Kan; Chen, Gong; Pistolozzi, Marco; Xia, Fenggeng; Wu, Zhenqiang

    2016-09-01

    Monascus pigments, a mixture of azaphilones mainly composed of red, orange and yellow pigments, are usually prepared in aqueous ethanol and analysed by ultraviolet-visible (UV-Vis) spectroscopy. The pH of aqueous ethanol used during sample preparation and analysis has never been considered a key parameter to control; however, this study shows that the UV-Vis spectra and colour characteristics of the six major pigments are strongly influenced by the pH of the solvent employed. In addition, the increase of solvent pH results in a remarkable increase of the amination reaction of orange pigments with amino compounds, and at higher pH (≥ 6.0) a significant amount of orange pigment derivatives rapidly form. The consequent impact of these pH-sensitive properties on pigment analysis is further discussed. Based on the presented results, we propose that the sample preparation and analysis of Monascus pigments should be uniformly performed at low pH (≤ 2.5) to avoid variations of UV-Vis spectra and the creation of artefacts due to the occurrence of amination reactions, and ensure an accurate analysis that truly reflects pigment characteristics in the samples.

  11. UV-VIS absorption spectra of molten AgCl and AgBr and of their mixtures with group I and II halide salts

    Energy Technology Data Exchange (ETDEWEB)

    Greening, Giorgio G.W. [Technische Universitaet Darmstadt (Germany). Eduard-Zintl-Institut fuer Anorganische und Physikalische Chemie

    2015-07-01

    The UV-VIS absorption spectra of (Ag{sub 1-X}[Li-Cs, Ba]{sub X})Cl and of (Ag{sub 1-X}[Na, K, Cs]{sub X})Br at 823 K at the concentrations X=0.0, 0.1, 0.2 have been measured. The findings show that on adding the respective halides to molten silver chloride and silver bromide, shifts of the fundamental absorption edge to shorter wavelengths result. A correlation between the observed shifts and the expansion of the silver sub-lattice is found, which is valid for both silver halide systems studied in this work.

  12. [Study of pH measuring based on i-motif DNA conformation switch and UV-Vis absorption spectroscopy of gold nanoparticles].

    Science.gov (United States)

    Zhong, Jian-hai; Guo, Liang-qia; Wu, Jin-mei; Chen, Jin-feng; Chen, Zhang-jie

    2012-04-01

    A fast, sensitive, colorimetric method for the detection of pH based on the differentiate effect of gold nanoparticles to the configuration of DNA was developed in this study. The UV-Vis absorption spectroscopy of the i-motif DNA-Au NPs system has been investigated, and the effect of the concentration of salt and i-motif DNA, reaction time and DNA sequence on the pH response of the system have been also optimized. Under the optimum conditions, the UV-Vis absorption spectroscopy of the Au NPs is changed regularly with pH in the range of 5.3 - 7.0, the absorbance at 520 nm is increased gradually while at 700 nm decreased. Correspondingly, the color of the Au NPs is varied from violet to red. The pH sensor is no need to modification, low cost, fast and can be carried out by naked eyes. It is promising to use in monitoring some life process which associated with pH variation.

  13. Robust and economical multi-sample, multi-wavelength UV/vis absorption and fluorescence detector for biological and chemical contamination

    CERN Document Server

    Lu, Peter J; Macarthur, James B; Sims, Peter A; Ma, Hongshen; Slocum, Alexander H

    2012-01-01

    We present a portable multi-channel, multi-sample UV/vis absorption and fluorescence detection device, which has no moving parts, can operate wirelessly and on batteries, interfaces with smart mobile phones or tablets, and has the sensitivity of commercial instruments costing an order of magnitude more. We use UV absorption to measure the concentration of ethylene glycol in water solutions at all levels above those deemed unsafe by the United States Food and Drug Administration; in addition we use fluorescence to measure the concentration of d-glucose. Both wavelengths can be used concurrently to increase measurement robustness and increase detection sensitivity. Our small robust economical device can be deployed in the absence of laboratory infrastructure, and therefore may find applications immediately following natural disasters, and in more general deployment for much broader-based testing of food, agricultural and household products to prevent outbreaks of poisoning and disease.

  14. Hydrogen-Mediated Electron Doping of Gold Clusters As Revealed by In Situ X-ray and UV-vis Absorption Spectroscopy.

    Science.gov (United States)

    Ishida, Ryo; Hayashi, Shun; Yamazoe, Seiji; Kato, Kazuo; Tsukuda, Tatsuya

    2017-06-01

    We previously reported that small (∼1.2 nm) gold clusters stabilized by poly(N-vinyl-2-pyrrolidone) (Au:PVP) exhibited a localized surface plasmon resonance (LSPR) band at ∼520 nm in the presence of NaBH4. To reveal the mechanism of this phenomenon, the electronic structure of Au:PVP during the reaction with NaBH4 in air was examined by means of in situ X-ray absorption spectroscopy at Au L3-edge and UV-vis spectroscopy. These measurements indicated that the appearance of the LSPR band is not associated with the growth in size but is ascribed to electron doping to the Au sp band by the adsorbed H atoms.

  15. Impurity profiling of liothyronine sodium by means of reversed phase HPLC, high resolution mass spectrometry, on-line H/D exchange and UV/Vis absorption.

    Science.gov (United States)

    Ruggenthaler, M; Grass, J; Schuh, W; Huber, C G; Reischl, R J

    2017-09-05

    For the first time, a comprehensive investigation of the impurity profile of the synthetic thyroid API (active pharmaceutical ingredient) liothyronine sodium (LT3Na) was performed by using reversed phase HPLC and advanced structural elucidation techniques including high resolution tandem mass spectrometry (HRMS/MS) and on-line hydrogen-deuterium (H/D) exchange. Overall, 39 compounds were characterized and 25 of these related substances were previously unknown to literature. The impurity classification system recently developed for the closely related API levothyroxine sodium (LT4Na) could be applied to the newly characterized liothyronine sodium impurities resulting in a wholistic thyroid API impurity classification system. Furthermore, the mass-spectrometric CID-fragmentation of specific related substances was discussed and rationalized by detailed fragmentation pathways. Moreover, the UV/Vis absorption characteristics of the API and selected impurities were investigated to corroborate chemical structure assignments derived from MS data. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Studies on best dose of X-ray for Hep-2 cells by using FTIR, UV-vis absorption spectroscopy and flow cytometry.

    Science.gov (United States)

    Liu, Renming; Tang, Weiyue; Kang, Yipu; Si, Minzhen

    2009-08-15

    We report here the use of Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible (UV-vis) absorption spectroscopy, and flow cytometry (FCM) to analysis the best dose of X-ray for human laryngeal squamous cell carcinoma cell lines (Hep-2). Our analysis indicates specific FTIR and UV-vis spectral differences between X-irradiated and normal Hep-2 cells. In addition, striking spectral differences are seen in FTIR spectra in the ratios at 2925/2958 and 1654/1542 cm(-1). These two ratios of the X-irradiated cells for 8 Gy dose group with value of 1.07+/-0.025 and 1.184+/-0.013, respectively, were more notable (mean+/-S.D., n=5, PUV-vis absorption spectra analysis shows X-ray irradiation disturbed the metabolism of phenylalanine and tyrosine intracellular, maybe, which was caused by cell cycle arrest. Spectroscopy analysis suggests 8 Gy is a better dose of X-ray for lowering the canceration degree of Hep-2 cells. Moreover, FCM analysis shows the apoptosis of X-irradiated cells depended on the radiation dose to some extent, but it was not linear. The total apoptosis ratio with value of (20.793+/-1.133)% (P<0.01, n=5) for the 12 Gy dose group was the maximum, however, the maximum apoptosis ratio per Gray (total apoptosis ratio/radiation dose) was the cells of the 2 Gy dose group with value of (4.887+/-0.211)% (P<0.05, n=5). Our data suggest that Hep-2 cells are given 2 Gy radiation of X-ray once a time, 8 Gy per week (accumulatively), the effect for lowering the canceration degree and restraining the proliferation of Hep-2 cells will be better.

  17. Studies on best dose of X-ray for Hep-2 cells by using FTIR, UV-vis absorption spectroscopy and flow cytometry

    Science.gov (United States)

    Liu, Renming; Tang, Weiyue; Kang, Yipu; Si, Minzhen

    2009-08-01

    We report here the use of Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible (UV-vis) absorption spectroscopy, and flow cytometry (FCM) to analysis the best dose of X-ray for human laryngeal squamous cell carcinoma cell lines (Hep-2). Our analysis indicates specific FTIR and UV-vis spectral differences between X-irradiated and normal Hep-2 cells. In addition, striking spectral differences are seen in FTIR spectra in the ratios at 2925/2958 and 1654/1542 cm -1. These two ratios of the X-irradiated cells for 8 Gy dose group with value of 1.07 ± 0.025 and 1.184 ± 0.013, respectively, were more notable (mean ± S.D., n = 5, P phenylalanine and tyrosine intracellular, maybe, which was caused by cell cycle arrest. Spectroscopy analysis suggests 8 Gy is a better dose of X-ray for lowering the canceration degree of Hep-2 cells. Moreover, FCM analysis shows the apoptosis of X-irradiated cells depended on the radiation dose to some extent, but it was not linear. The total apoptosis ratio with value of (20.793 ± 1.133)% ( P < 0.01, n = 5) for the 12 Gy dose group was the maximum, however, the maximum apoptosis ratio per Gray (total apoptosis ratio/radiation dose) was the cells of the 2 Gy dose group with value of (4.887 ± 0.211)% ( P < 0.05, n = 5). Our data suggest that Hep-2 cells are given 2 Gy radiation of X-ray once a time, 8 Gy per week (accumulatively), the effect for lowering the canceration degree and restraining the proliferation of Hep-2 cells will be better.

  18. UV/VIS SPECTROMETER DETERMINATION OF CAFFEINE IN GREEN COFFEE BEANS FROM HARARGHE, ETHIOPIA, USING BEER-LAMBERT’S LAW AND INTEGRATED ABSORPTION COEFFICIENT TECHNIQUES

    Directory of Open Access Journals (Sweden)

    EPHREM G. DEMISSIE

    2016-07-01

    Full Text Available A total of fifteen samples of green coffee (Coffea arabica L. beans from the major producing region of Hararghe Ethiopia were studied using UV-Vis spectrometer measurement caffeine quantitative analysis from coffee beans. The number density of caffeine in green coffee beans has been reported using Beer-Lambert’s law and integrating absorption coefficient technique. Our results obtained using integrated absorption and Beer-Lambert’s law has a good agreement and we observed a maximum difference of 10.4 %. Based on their low caffeine concentrations among the samples collected were found in Jarso coffee. Coffee beans from the Harar Aboker were characterized by higher concentrations of caffeine. The determined concentration for caffeine in coffee beans (% w/w ranged 0.601 % to 0.903 %. The concentrations of the caffeine varied significantly, depending on the geographical origin of the beans. The concentrations of caffeine in coffee collected from in Hararghe region were noticeably lower than their counterpart (1.0 - 1.2 % grows in the other parts of Ethiopia.

  19. The manifestation of optical centers in UV-Vis absorption and luminescence spectra of white blood human cells

    Science.gov (United States)

    Terent'yeva, Yu G.; Yashchuk, V. M.; Zaika, L. A.; Snitserova, O. M.; Losytsky, M. Yu

    2016-12-01

    A white blood human cells spectral investigation is presented. The aim of this series of experiments was to obtain and analyze the absorption and luminescence (fluorescence and phosphorescence) spectra at room temperature and at 78 K of newly isolated white blood human cells and their organelles. As a result the optical centers and possible biochemical components that form the studied spectra where identified. Also the differences between the spectra of abnormal cells (B-cell chronic lymphocytic leukemia BCLL) and normal ones were studied for the whole cells and individual organelles.

  20. Exploring in vivo violacein biosynthesis by application of multivariate curve resolution on fused UV-VIS absorption, fluorescence, and liquid chromatography-mass spectrometry data.

    Science.gov (United States)

    Dantas, Clecio; Tauler, Romà; Ferreira, Márcia Miguel Castro

    2013-02-01

    In this work, the application of multivariate curve resolution-alternating least squares (MCR-ALS) is proposed for extracting information from multitechnique fused multivariate data (UV-VIS absorption, fluorescence, and liquid chromatography-mass spectrometry) gathered during the biosynthesis of violacein pigment. Experimental data sets were pretreated and arranged in a row-wise augmented data matrix before their chemometric investigation. Five different chemical components were resolved. Kinetic and spectral information about these components were obtained and their relationship with violacein biosynthesis was established. Three new chemical compounds with molar masses of 453, 465, and 479 u, until now not reported in the literature, were identified and proposed as intermediates in the biosynthesis of other indolocarbazoles. The precursor (tryptophan), one intermediate (deoxyviolacein), and the final product (violacein) of violacein biosynthesis were identified and characterized using the proposed approach. The chemometric procedure based on the MCR-ALS method has proved to be a powerful tool to investigate violacein biosynthesis and its application can be easily extended to the study of other bioprocesses.

  1. Investigation of the Electronic and pH-Sensing properties of Hydroxyl-Functionalized Imine-Linked Polymers via the UV-vis Absorption Spectra and the Density Functional Theory (DFT Calculations

    Directory of Open Access Journals (Sweden)

    Ibtesam Y. Aljaafreh

    2017-01-01

    Full Text Available In this report, a synergetic computational and experimental studies were demonstrated on examples of poly-imine polymers; P(PI-IPI and P(PIOH-IPI to explore the role of hydroxyl substituent on their sensing and electronic properties. The polymer P(PIOH-IPI bearing the OH-group on the ortho-position to the imine-bond, while the structure of the polymer P(PI-IPI reveal the imine-bond only. The sensing property of the polymers was investigated via the UV-vis absorption in different solvents, acidic and basic solutions. Both polymers have shown significant sensing behavior in the acidic medium, while unpronounced behavior was noticed in the case of the polymer P(PI-IPI in basic medium. Upon the incorporation of the OH-group, the polymer P(PIOH-IPI has indistinguishable sensing behavior, a similar blue-shift in the acidic and basic medium, which can be attributed to the presence and the position of OH-group. The optical band gap of the polymers was determined experimentally and theoretically from the UV-vis absorption spectra and DFT calculations in the DMSO solvent. Other factors that affect the band gap values such as the structural conformation and length of conjugation were explored theoretically. In general, as the length of the optimized chain increased, the spectrum is red-shifted and the band gap decreased, which is attributed to the possible loss of chain planarity and conjugation beyond the monomer structure. Interestingly, the UV-vis spectra of the monomer-optimized structures were in a good match with the experimental UV-vis spectra. However, the band gap difference can be attributed to the method of band gap determination.

  2. Four-Component Damped Density Functional Response Theory Study of UV/Vis Absorption Spectra and Phosphorescence Parameters of Group 12 Metal-Substituted Porphyrins.

    Science.gov (United States)

    Fransson, Thomas; Saue, Trond; Norman, Patrick

    2016-05-10

    The influences of group 12 (Zn, Cd, Hg) metal-substitution on the valence spectra and phosphorescence parameters of porphyrins (P) have been investigated in a relativistic setting. In order to obtain valence spectra, this study reports the first application of the damped linear response function, or complex polarization propagator, in the four-component density functional theory framework [as formulated in Villaume et al. J. Chem. Phys. 2010 , 133 , 064105 ]. It is shown that the steep increase in the density of states as due to the inclusion of spin-orbit coupling yields only minor changes in overall computational costs involved with the solution of the set of linear response equations. Comparing single-frequency to multifrequency spectral calculations, it is noted that the number of iterations in the iterative linear equation solver per frequency grid-point decreases monotonously from 30 to 0.74 as the number of frequency points goes from one to 19. The main heavy-atom effect on the UV/vis-absorption spectra is indirect and attributed to the change of point group symmetry due to metal-substitution, and it is noted that substitutions using heavier atoms yield small red-shifts of the intense Soret-band. Concerning phosphorescence parameters, the adoption of a four-component relativistic setting enables the calculation of such properties at a linear order of response theory, and any higher-order response functions do not need to be considered-a real, conventional, form of linear response theory has been used for the calculation of these parameters. For the substituted porphyrins, electronic coupling between the lowest triplet states is strong and results in theoretical estimates of lifetimes that are sensitive to the wave function and electron density parametrization. With this in mind, we report our best estimates of the phosphorescence lifetimes to be 460, 13.8, 11.2, and 0.00155 s for H2P, ZnP, CdP, and HgP, respectively, with the corresponding transition

  3. Characterization and dating of blue ballpoint pen inks using principal component analysis of UV-Vis absorption spectra, IR spectroscopy, and HPTLC.

    Science.gov (United States)

    Senior, Samir; Hamed, Ezzat; Masoud, Mamdouh; Shehata, Eman

    2012-07-01

    The ink of pens and ink extracted from lines on white photocopier paper of 10 blue ballpoint pens were subjected to ultraviolet-visible (UV-Vis) spectroscopy, infrared (IR), and high-performance thin-layer liquid chromatography (HPTLC). The R(f) values and color tones of the bands separated by thin-layer chromatography (TLC) analysis used to classify the writing inks into three groups. The principal component analysis (PCA) investigates the pen responsible for a piece of writing, and how time affects spectroscopy of written ink. PCA can differentiate between pen ink and ink line indicates the influence of solvent extraction process on the results. The PCA loadings are useful in individualization of a questioned ink from a database. The PCA of ink lines extracted at different times can be used to estimate the time at which a questioned document was written. The results proved that the UV-Vis spectra are effective tool to separate blue ballpoint pen ink in most cases rather than IR and HPTLC.

  4. Thermodynamic Modeling of Poorly Complexing Metals in Concentrated Electrolyte Solutions: An X-Ray Absorption and UV-Vis Spectroscopic Study of Ni(II) in the NiCl2-MgCl2-H2O System

    Science.gov (United States)

    Zhang, Ning; Brugger, Joël; Etschmann, Barbara; Ngothai, Yung; Zeng, Dewen

    2015-01-01

    Knowledge of the structure and speciation of aqueous Ni(II)-chloride complexes is important for understanding Ni behavior in hydrometallurgical extraction. The effect of concentration on the first-shell structure of Ni(II) in aqueous NiCl2 and NiCl2-MgCl2 solutions was investigated by Ni K edge X-ray absorption (XAS) and UV-Vis spectroscopy at ambient conditions. Both techniques show that no large structural change (e.g., transition from octahedral to tetrahedral-like configuration) occurs. Both methods confirm that the Ni(II) aqua ion (with six coordinated water molecules at RNi-O = 2.07(2) Å) is the dominant species over the whole NiCl2 concentration range. However, XANES, EXAFS and UV-Vis data show subtle changes at high salinity (> 2 mol∙kg-1 NiCl2), which are consistent with the formation of small amounts of the NiCl+ complex (up to 0.44(23) Cl at a Ni-Cl distance of 2.35(2) Å in 5.05 mol∙kg-1 NiCl2) in the pure NiCl2 solutions. At high Cl:Ni ratio in the NiCl2-MgCl2-H2O solutions, small amounts of [NiCl2]0 are also present. We developed a speciation-based mixed-solvent electrolyte (MSE) model to describe activity-composition relationships in NiCl2-MgCl2-H2O solutions, and at the same time predict Ni(II) speciation that is consistent with our XAS and UV-Vis data and with existing literature data up to the solubility limit, resolving a long-standing uncertainty about the role of chloride complexing in this system. PMID:25885410

  5. Determination of the electronic structure and UV-Vis absorption properties of (Na2-xCux)Ta4O11 from first-principle calculations

    KAUST Repository

    Harb, Moussab

    2013-08-29

    Density functional theory (DFT) and density functional perturbation theory (DFPT) were applied to study the structural, electronic, and optical properties of a (Na2-xCux)Ta4O11 solid solution to accurately calculate the band gap and to predict the optical transitions in these materials using the screened coulomb hybrid (HSE06) exchange-correlation formalism. The calculated density of states showed excellent agreement with UV-vis diffuse reflectance spectra predicting a significant red-shift of the band gap from 4.58 eV (calculated 4.94 eV) to 2.76 eV (calculated 2.60 eV) as copper content increased from 0 to 83.3%. The band gap narrowing in these materials, compared to Na2Ta4O11, results from the incorporation of new occupied electronic states, which are strongly localized on the Cu 3d orbitals, and is located within 2.16-2.34 eV just above the valence band of Na2Ta4O11. These new occupied states, however, possess an electronic character localized on Cu, which makes hole mobility limited in the semiconductor. © 2013 American Chemical Society.

  6. Application of excitation and emission matrix fluorescence (EEM) and UV-vis absorption to monitor the characteristics of Alizarin Red S (ARS) during electro-Fenton degradation process.

    Science.gov (United States)

    Lai, Bo; Zhou, Yuexi; Wang, Juling; Yang, Zhishan; Chen, Zhiqiang

    2013-11-01

    Oxidative degradation of Alizarin Red S (ARS) in aqueous solutions by using electro-Fenton was studied. At first, effect of operating parameters such as current density, aeration rate and initial pH on the degradation of ARS were studied by using UV-vis spectrum, respectively. Then, under the optimal operating conditions (current density: 10.0mAcm(-2), aeration rate: 1000mLmin(-1), initial pH: 2.8), the identification of degradation products of ARS was carried out by using GC-MS and HPLC, meanwhile its degradation pathway was proposed according to the intermediates. Considering the location, intensity and intensity ratio of fluorescence center peak of the ARS in aqueous solution, a convenient and quick monitoring method by using excitation-emission matrix fluorescence spectrum technology was developed to monitor the degradation degree of ARS through electro-Fenton process. Furthermore, it is suggested that the developed method would be promising for the quick analysis and evaluation of the degradation degree of the pollutants with π-conjugated system.

  7. Online Monitoring of Water-Quality Anomaly in Water Distribution Systems Based on Probabilistic Principal Component Analysis by UV-Vis Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Dibo Hou

    2014-01-01

    Full Text Available This study proposes a probabilistic principal component analysis- (PPCA- based method for online monitoring of water-quality contaminant events by UV-Vis (ultraviolet-visible spectroscopy. The purpose of this method is to achieve fast and sound protection against accidental and intentional contaminate injection into the water distribution system. The method is achieved first by properly imposing a sliding window onto simultaneously updated online monitoring data collected by the automated spectrometer. The PPCA algorithm is then executed to simplify the large amount of spectrum data while maintaining the necessary spectral information to the largest extent. Finally, a monitoring chart extensively employed in fault diagnosis field methods is used here to search for potential anomaly events and to determine whether the current water-quality is normal or abnormal. A small-scale water-pipe distribution network is tested to detect water contamination events. The tests demonstrate that the PPCA-based online monitoring model can achieve satisfactory results under the ROC curve, which denotes a low false alarm rate and high probability of detecting water contamination events.

  8. Application of excitation-emission fluorescence matrices and UV/Vis absorption to monitoring the photocatalytic degradation of commercial humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Valencia, Sergio, E-mail: hvalens@gmail.com [Procesos Fisicoquimicos Aplicados, Universidad de Antioquia, Carrera 53 61-30, Medellin (Colombia); Marin, Juan M.; Restrepo, Gloria [Procesos Fisicoquimicos Aplicados, Universidad de Antioquia, Carrera 53 61-30, Medellin (Colombia); Frimmel, Fritz H., E-mail: fritz.frimmel@kit.edu [BereichWasserchemie, Engler-Bunte-Institut, Karlsruher Institut fuer Technology (KIT), 7631, Karlsruhe (Germany)

    2013-01-01

    This study reports the use of excitation-emission matrix (EEM) fluorescence and UV/Vis spectroscopy to monitor the changes in the composition and reactivity of Aldrich humic acids (Aldrich HA) as a model compound for natural organic matter (NOM) during photocatalytic degradation. Degussa P-25 titanium dioxide (TiO{sub 2}) and a solar UV-light simulator (a batch reactor) were used. The photocatalysis shifted the fluorescence maxima of EEMs of Aldrich HA toward shorter wavelengths, which implied that the photocatalytic degradation of commercial Aldrich HA caused the breakdown of high molecular weight components and the formation of lower molecular weight fractions. In addition, the fluorescence intensity of fulvic- and humic-like Aldrich HA presented a strong correlation with dissolved organic carbon (DOC), specific UV absorbance (SUVA) parameters, trihalomethane formation potential (THMFP), and organically bound halogens absorbable on activated carbon formation potential (AOXFP). Fluorescence spectroscopy was shown to be a powerful tool for monitoring of the photocatalytic degradation of HA. Highlights: Black-Right-Pointing-Pointer There is a strong correlation between the fluorescence intensity of humic acids and DOC. Black-Right-Pointing-Pointer HA-like and FA-like fluorescence intensity and SUVA show strong linear correlation. Black-Right-Pointing-Pointer Humic acids with high fluorescence intensity imply high formation of DBPs. Black-Right-Pointing-Pointer Humic acid photocatalysis lead to a decrease in the fluorescence intensity of EEMs. Black-Right-Pointing-Pointer Fluorescence spectroscopy is a powerful tool to monitor HA photocatalytic removal.

  9. Characterization by time-resolved UV/Vis and infrared absorption spectroscopy of an intramolecular charge-transfer state in an organic electron-donor-bridge-acceptor system

    NARCIS (Netherlands)

    Hviid, L.; Verhoeven, J.W.; Brouwer, A.M.; Paddon-Row, M.N.; Yang, J.

    2004-01-01

    A long-lived intramolecular charge-separated state in an electron-donor-acceptor molecule is characterized by time-resolved visible and infrared absorption spectroscopy. Bands that can be assigned to the negatively charged acceptor chromophore can be clearly observed in the time-resolved IR

  10. Filter-based measurements of UV-vis mass absorption cross sections of organic carbon aerosol from residential biomass combustion: Preliminary findings and sources of uncertainty

    Science.gov (United States)

    Pandey, Apoorva; Pervez, Shamsh; Chakrabarty, Rajan K.

    2016-10-01

    Combustion of solid biomass fuels is a major source of household energy in developing nations. Black (BC) and organic carbon (OC) aerosols are the major PM2.5 (particulate matter with aerodynamic diameter smaller than 2.5 μm) pollutants co-emitted during burning of these fuels. While the optical nature of BC is well characterized, very little is known about the properties of light-absorbing OC (LAOC). Here, we report our preliminary findings on the mass-based optical properties of LAOC emitted from the combustion of four commonly used solid biomass fuels - fuel-wood, agricultural residue, dung-cake, and mixed - in traditional Indian cookstoves. As part of a pilot field study conducted in central India, PM2.5 samples were collected on Teflon filters and analyzed for their absorbance spectra in the 300-900 nm wavelengths at 1 nm resolution using a UV-Visible spectrophotometer equipped with an integrating sphere. The mean mass absorption cross-sections (MAC) of the emitted PM2.5 and OC, at 550 nm, were 0.8 and 0.2 m2 g-1, respectively, each with a factor of ~2.3 uncertainty. The mean absorption Ångström exponent (AǺE) values for PM2.5 were 3±1 between 350 and 550 nm, and 1.2±0.1 between 550 and 880 nm. In the 350-550 nm range, OC had an AǺE of 6.3±1.8. The emitted OC mass, which was on average 25 times of the BC mass, contributed over 50% of the aerosol absorbance at wavelengths smaller than 450 nm. The overall OC contribution to visible solar light (300-900 nm) absorption by the emitted particles was 26-45%. Our results highlight the need to comprehensively and accurately address: (i) the climatic impacts of light absorption by OC from cookstove emissions, and (ii) the uncertainties and biases associated with variability in biomass fuel types and combustion conditions, and filter-based measurement artifacts during determination of MAC values.

  11. Determination of individual proton affinities of ofloxacin from its UV-Vis absorption, fluorescence and charge-transfer spectra: effect of inclusion in beta-cyclodextrin on the proton affinities.

    Science.gov (United States)

    Ghosh, Bankim Chandra; Deb, Nipamanjari; Mukherjee, Asok K

    2010-08-01

    Individual proton affinities of the four dissociable functional groups of (+/-)-9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl-1-piperazinyl)-7-oxo-7H-pyrido[1,2,3-de]-1,4-benzoxazine-6-carboxylic acid (commonly called "ofloxacin" and to be denoted henceforth as OflH), have been determined from the pH-dependent variation of the UV-vis absorption and fluorescence spectra of the compound itself and of its charge transfer complexes (CT) with p-bromanil and p-chloranil (in aqueous medium containing 0.1% ethanol, v/v). To utilize the CT spectra for determination of the proton affinity of the anilinic N, the CT absorption band of the ofloxacin-p-bromanil complex has been studied by changing the pH of the medium. Further, the effect of inclusion on the proton affinities of the four dissociable groups of OflH has been studied in presence of beta-cyclodextrin (beta-CD). Two pK(a) values corresponding to anilinic and tertiary N atoms change, whereas those corresponding to phenolic -OH and aromatic -COOH groups remain unchanged by the addition of beta-CD, a fact that indicates partial inclusion of the ofloxacin molecule in beta-CD. Formation constant and related thermodynamic parameters for the OflH(2)(+).beta-CD inclusion complex in aqueous solution have been determined from absorption intensities. A general relation between pK(a) values of guests having proton-releasing functional groups and formation constants of the inclusion complexes of the protonated and deprotonated forms with a host molecule has been utilized for determination of the formation constant of the OflH(3)(+2).beta-CD complex from the pK(a) values of OflH(3)(+2) in the presence and absence of beta-CD, along with the formation constant of the OflH(2)(+).beta-CD complex. Results of the present study reveal that the N-methylpiperazinyl moiety of ofloxacin is included in beta-CD, and the remaining part of the guest molecule remains outside. Also, in molecular interaction with quinone-type electron acceptors

  12. Research on Preparation and UV-vis Absorption Spectrum of Au Colloids under the Ultrasonic Field%超声场下金胶体的制备及其紫外-可见吸收光谱研究

    Institute of Scientific and Technical Information of China (English)

    程敬泉; 姚素薇

    2012-01-01

    Well-dispersed Au colloids were prepared from A11CI3 and KBH4 under the protection of polyvinylpyrrolidone (PVP) in the ultrasonic field. The Au colloids were characterized by means of transmission electron microscope (TEM), X-ray diffraction (XRD) and spectrophotometer. The results indicate that Au nanoparticles are spherical or axiolitic and the grain diameter is about 25 nm. The reductant dosage has a great effect on the UV-vis absorption spectrum of Au colloids. When the dosage of KBH4 is lower than 1 mL, the maximum absorption peak is in 530 nm and the peak is low and broad. When the dosage of KBH4 is over 2 mL, the maximum absorption peak has a large blue shift to 512 -514 nm. The peak is strong and broad. When the dosage of KBH4 is over 5 mL, the absorbency graphs are alike. When the dosage of KBH4 is over 8 mL the maximum absorption peaks are in 510 nm around. The peak is strong, sharp and narrow, so the Au colloids are well-dispersed. The ultrasonic field distribution, power and temperature have a great effect on the absorbency graphs of Au colloids. The peaks are weak and the maximum peaks are in 510 nm around.%在超声场作用下,以氯金酸为前驱物,PVP为保护剂,经KBH4还原,制备了分散均匀的金胶体.利用X射线衍射、透射电子显微镜和分光光度技术等对制备的金胶体进行了表征.结果表明:金纳米粒子为25 nm左右的球形或椭球形.还原剂用量对金胶体的最大吸收峰位影响较大,当KBH4用量小于1 mL时,最大吸收波长为530 nm,吸收峰较低而宽;KBH4加入量超过2 mL时,最大吸收峰明显蓝移,在512~514 nm,最大吸收峰增强,但峰变宽.继续增加KBH4用量超过5 mL,吸光度曲线基本不变,KBH4用量超过8 mL后最大吸收峰在510 nm左右,但吸光度较高,且峰形尖而窄,单分散性好.超声场分布、超声功率和温度使金胶体的最大吸收峰变小,最大吸收峰位在510 nm左右.

  13. UV-Vis diagnostics of the pmma-c 60 composite system and the kinetics of its thermal decomposition

    OpenAIRE

    Bogdanov, A. A.; VOZNYAKOVSKII A.P.; POZDNYAKOV A.O.

    2014-01-01

    The influence of polymer-fullerene interactions and fullerene aggregation on the thermal stability of polymethyl-methacrylate-fullerene C 60 nanocomposite has been studied by means of thermal desorption mass-spectrometry and the UV-Vis absorption spectroscopy.

  14. UV-VIS DIAGNOSTICS OF THE PMMA-C 60 COMPOSITE SYSTEM AND THE KINETICS OF ITS THERMAL DECOMPOSITION

    OpenAIRE

    Bogdanov, A A; VOZNYAKOVSKII A.P.; POZDNYAKOV A.O.

    2014-01-01

    The influence of polymer-fullerene interactions and fullerene aggregation on the thermal stability of polymethyl-methacrylate-fullerene C 60 nanocomposite has been studied by means of thermal desorption mass-spectrometry and the UV-Vis absorption spectroscopy.

  15. Calibration curves for quantifying praseodymium by UV-VIS; Curvas de calibracion para cuantificar praseodimio por UV-VIS

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez M, R.; Lopez G, H.; Rojas H, A. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: robertssd1199@yahoo.com.mx

    2007-07-01

    The UV-Vis spectroscopic technique was used to determine the absorption bands depending on the concentration from the praseodymium solutions at pH3. Those more appropriate were in the wavelength of 215 nm, for concentrations of 0.0001-0.026 M, of 481nm, 468 nm and 443 nm, for concentrations of 0.026-0.325 M, and of 589 nm, for concentrations of 0.026-0.65 M of the praseodymium. To these wavelengths the calibration curves were determined, which presented correlation coefficients between 0.9976 and 0.9999 except of the absorption of 589 nm that gave R{sup 2} = 0.9014. (Author)

  16. UV/Vis and NIR Light-Responsive Spiropyran Self-Assembled Monolayers

    NARCIS (Netherlands)

    Ivashenko, Oleksii; Herpt, Jochem T. van; Feringa, Ben L.; Rudolf, Petra; Browne, Wesley R.

    2013-01-01

    Self-assembled monolayers of a 6-nitro BIPS spiropyran (SP) modified with a disulfide-terminated aliphatic chain were prepared on polycrystalline gold surfaces and characterized by UV/vis absorption, surface-enhanced Raman scattering (SEAS), and X-ray photoelectron spectroscopies (XPS). The SAMs

  17. UV/Vis and NIR Light-Responsive Spiropyran Self-Assembled Monolayers

    NARCIS (Netherlands)

    Ivashenko, Oleksii; Herpt, Jochem T. van; Feringa, Ben L.; Rudolf, Petra; Browne, Wesley R.

    2013-01-01

    Self-assembled monolayers of a 6-nitro BIPS spiropyran (SP) modified with a disulfide-terminated aliphatic chain were prepared on polycrystalline gold surfaces and characterized by UV/vis absorption, surface-enhanced Raman scattering (SEAS), and X-ray photoelectron spectroscopies (XPS). The SAMs obt

  18. UV-Vis and Surface Photovoltage Spectra of Fe2O3/Polystyrene Composite Microspheres

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Fe2O3 sol with the particle diameter of 3-5 nm was flocculated by the addition of SDS, and the flocculate formed was redispersed by the further addition of that surfactant. Thus the surfactant bilayer was formed on the surface of Fe2O3. The emulsion polymerization of styrene(St) adsolubilized on the surfactant adsorbed bilayer was carried out by initiator potassium persulfate(KPS). The UV-Vis and surface photovoltage spectra(SPS) indicate that the Fe2O3 particles were encapsulated in polystyrene(PSt) successfully.

  19. The synthesis and UV-VIS-NIR spectrophotometry of Dmit complexes%Dmit配合物的合成及其UV-VIS-NIR光谱

    Institute of Scientific and Technical Information of China (English)

    许文

    2012-01-01

    选用二硫烯类配体Dmit首次合成了新配合物(MePyMe)2[Ni (dmit)2]和(MePyMe)[Ni( dmit)2],测定了二者在乙腈溶剂中的UV-VIS-NIR吸收光谱;并在I-3存在时测定了(MePyMe)2[Ni(dmit)2]在乙腈溶剂中的动态UV-VIS-NIR吸收光谱,对某些光谱峰做了指认.结果表明:阴离子的不同氧化态对吸收光谱影响较大,[Ni(dmit)2]2-无NIR吸收,而[Ni(dmit)2] -有强烈的NIR吸收,因此,后者[Ni(dmit)2] -可作为NIR激光染料.其NIR吸收应源自[Ni (dmit)2] -的小的LUMO与HOMO的π→π*跃迁.%Two new Dmit complexes, ( MePyMe ) 2 [ Ni ( dmit) 2 ] and ( MePyMe ) [ Ni ( drait) 2 ], have been prepared and their UV-VIS-NIR spectrophotometry in CH3CN have also been measured. During the course of oxidation of ( MePyMe ) 2 [ Ni ( dmit) 2 ] , by using I3- , UV-VIS-NIR spectrophotometry have been monitored online. Different valence states of anion have shown great influence on spectrum absorption. [Ni(dmit)2]2- has no NIR absorption, while [Ni(dmit)2] ~ exhibits a strong NIR absorption. So, [Ni(dmit)2] - can be to applied as NIR laser dyes. The NIR absorption is assigned to be Π->π* transition between LUMO and HOMO of [Ni(dmit)2] -.

  20. New insight in the template decomposition process of large zeolite ZSM-5 crystals: an in situ UV-Vis/fluorescence micro-spectroscopy study

    NARCIS (Netherlands)

    Karwacki, L.; Weckhuysen, B.M.

    2011-01-01

    A combination of in situ UV-Vis and confocal fluorescence micro-spectroscopy was used to study the template decomposition process in large zeolite ZSM-5 crystals. Correlation of polarized light dependent UV-Vis absorption spectra with confocal fluorescence emission spectra in the 400–750 nm region

  1. New insight in the template decomposition process of large zeolite ZSM-5 crystals: an in situ UV-Vis/fluorescence micro-spectroscopy study

    NARCIS (Netherlands)

    Karwacki, L.; Weckhuysen, B.M.

    2011-01-01

    A combination of in situ UV-Vis and confocal fluorescence micro-spectroscopy was used to study the template decomposition process in large zeolite ZSM-5 crystals. Correlation of polarized light dependent UV-Vis absorption spectra with confocal fluorescence emission spectra in the 400–750 nm region a

  2. Influence of organic acids on UV-Vis spectra of pyrrolidino- [60]fullerene derivatives

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A pyrrolidino[60]fullerene 1 with pyrrolidine group was synthesized and characterized. The UV-Vis spectra showed that the blue shift of absorption peaks was first observed when strong organic acids such as p-toluene sulfonic or trifluoroacetic acid were added to the solution of pyrrolidino[60]fullerene 1 in dichloromethane. The results indicated that the pyrrolidino[60]fullerene derivatives without pyrrolidine group also possess the same phenomenon. Experiments and computation with the MOPAC 7.0 semi-em- pirical PM3 method demonstrated the reason that some energy gaps on [60]fullerene skeleton were increased because electronic charges on [60]fullerene framework transferred to pyrrolidine ring when strong organic acids were added into pyrrolidino[60]fullerene derivatives' solution; as the result, the complexes could be formed and some absorption wave-lengths blue shifted in the UV-Vis spectrum.

  3. UV/Vis, MCD and EPR Spectra of Mononuclear Manganese and Molybdenum Complexes

    OpenAIRE

    Westphal, Anne

    2012-01-01

    This PhD thesis deals with the spectroscopic characterization of the electronic structures of mononuclear manganese and molybdenum complexes. At this, in addition to UV/Vis absorption spectroscopy, electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectroscopy were applied in this work. Additionally, new procedures for the general analysis of MCD C-term intensities were developed within the scope of this thesis. It is divided into four parts. Following a general p...

  4. UV-VIS-NIR spectroscopy and microscopy of heterogeneous catalysts.

    Science.gov (United States)

    Schoonheydt, Robert A

    2010-12-01

    This critical review article discusses the characterization of heterogeneous catalysts by UV-VIS-NIR spectroscopy and microscopy with special emphasis on transition metal ion containing catalysts. A review is given of the transitions, that can be observed in the UV-VIS-NIR region and the peculiarities of catalytic solids that have to be taken into account. This is followed by a short discussion of the techniques that have been developed over the years: diffuse reflectance spectroscopy, UV-VIS microscopy, in situ or operando spectroscopy, the combination of UV-VIS spectroscopy with other spectroscopic techniques, with chemometrics and with quantum chemistry. In the third part of this paper four successes of UV-VIS-NIR spectroscopy and microscopy are discussed; (1) coordination of transition metal ions to surface oxygens; (2) quantitative determination of the oxidation states of transition metal ions; (3) characterization of active sites and (4) study of the distribution of transition metal ions and carbocations in catalytic bodies, particles and crystals (104 references).

  5. UV-Vis Action Spectroscopy Reveals a Conformational Collapse in Hydrogen-Rich Dinucleotide Cation Radicals.

    Science.gov (United States)

    Korn, Joseph A; Urban, Jan; Dang, Andy; Nguyen, Huong T H; Tureček, František

    2017-09-07

    We report the generation of deoxyriboadenosine dinucleotide cation radicals by gas-phase electron transfer to dinucleotide dications and their noncovalent complexes with crown ether ligands. Stable dinucleotide cation radicals of a novel hydrogen-rich type were generated and characterized by tandem mass spectrometry and UV-vis photodissociation (UVPD) action spectroscopy. Electron structure theory analysis indicated that upon electron attachment the dinucleotide dications underwent a conformational collapse followed by intramolecular proton migrations between the nucleobases to give species whose calculated UV-vis absorption spectra matched the UVPD action spectra. Hydrogen-rich cation radicals generated from chimeric riboadenosine 5'-diesters gave UVPD action spectra that pointed to novel zwitterionic structures consisting of aromatic π-electron anion radicals intercalated between stacked positively charged adenine rings. Analogies with DNA ionization are discussed.

  6. UV-Vis Ratiometric Resonance Synchronous Spectroscopy for Determination of Nanoparticle and Molecular Optical Cross Sections.

    Science.gov (United States)

    Nettles, Charles B; Zhou, Yadong; Zou, Shengli; Zhang, Dongmao

    2016-03-01

    Demonstrated herein is a UV-vis Ratiometric Resonance Synchronous Spectroscopic (R2S2, pronounced as "R-two-S-two" for simplicity) technique where the R2S2 spectrum is obtained by dividing the resonance synchronous spectrum of a NP-containing solution by the solvent resonance synchronous spectrum. Combined with conventional UV-vis measurements, this R2S2 method enables experimental quantification of the absolute optical cross sections for a wide range of molecular and nanoparticle (NP) materials that range optically from pure photon absorbers or scatterers to simultaneous photon absorbers and scatterers, simultaneous photon absorbers and emitters, and all the way to simultaneous photon absorbers, scatterers, and emitters in the UV-vis wavelength region. Example applications of this R2S2 method were demonstrated for quantifying the Rayleigh scattering cross sections of solvents including water and toluene, absorption and resonance light scattering cross sections for plasmonic gold nanoparticles, and absorption, scattering, and on-resonance fluorescence cross sections for semiconductor quantum dots (Qdots). On-resonance fluorescence quantum yields were quantified for the model molecular fluorophore Eosin Y and fluorescent Qdots CdSe and CdSe/ZnS. The insights and methodology presented in this work should be of broad significance in physical and biological science research that involves photon/matter interactions.

  7. Coating of gold nanoparticles for medical application: UV-VIS

    Science.gov (United States)

    Martínez Espinosa, Juan Carlos; Ramírez, Nayem Amtanus Chequer; Funes Oliva, Luis Enrique; Córdova Fraga, Teodoro; Bernal Alvarado, Jesús; Reyes Pablo, Aldelmo; Núñez, Anita Rosa Elvira

    2014-11-01

    The use of nanostructured materials has gained strength in recent years in the biomedical area; new applications such as the detection of components in living cells have been used in pharmaceutical area, specifically to study the interaction of various antitumor drugs in living tissues, the detection of genes that are closely related to some type of cancer, as well as the detections of protein biomarkers for diseases also have been studied in various research laboratories around of the world. In this work, we characterize the variation of the absorbance of gold nanoparticles (GNPs) coated with different concentration of Bovine Serum Albumin (BSA) protein. We use GNPS of 60 nm of the trademark-TED PELLA, the BSA protein trademark of Sigma Aldrich and based on that proposed protocol by Chithrani et al., 2009 with purposes to obtain an alternative model to determine the optimal stability of the nanoparticles coated with the protein. The colloidal solutions were prepared with BSA at different concentrations (0.25, 0.5, 0.75 and 1% M/V), and were centrifuged at 15,000 rpm for 90 minutes (centrifuge Model Z383K) and a constant temperature of 25 °C. All the spectra sets were obtained within the range from 400 to 700 nm using an UV-VIS spectrophotometer (Thermo Scientific Model 51118650). The results showed a R2 of 0.99 for an exponential curve correlation between the concentration of BSA, and the absorbance measured. We found at higher concentrations of BSA, there is a decrease in the intensity of the absorption spectra in the plasmon resonance. This preliminary model obtained can be used in the stabilization of gold nanoparticles with different proteins of biomedical interest in future experiments and support for functionalization of GNPs with specific membrane markers.

  8. TROPOMI and TROPI: UV/VIS/NIR/SWIR instruments

    NARCIS (Netherlands)

    Levelt, P.F.; Oord, G.H.J. van den; Dobber, M.; Eskes, H.; Weele, M. van; Veefkind, P.; Oss, R. van; Aben, I.; Jongma, R.T.; Landgraf, J.; Vries, J. de; Visser, H.

    2006-01-01

    TROPOMI (Tropospheric Ozone-Monitoring Instrument) is a five-channel UV-VIS-NIR-SWIR non-scanning nadir viewing imaging spectrometer that combines a wide swath (114°) with high spatial resolution (10 × 10 km 2). The instrument heritage consists of GOME on ERS-2, SCIAMACHY on Envisat and, especially,

  9. TROPOMI and TROPI: UV/VIS/NIR/SWIR instruments

    NARCIS (Netherlands)

    Levelt, P.F.; Oord, G.H.J. van den; Dobber, M.; Eskes, H.; Weele, M. van; Veefkind, P.; Oss, R. van; Aben, I.; Jongma, R.T.; Landgraf, J.; Vries, J. de; Visser, H.

    2006-01-01

    TROPOMI (Tropospheric Ozone-Monitoring Instrument) is a five-channel UV-VIS-NIR-SWIR non-scanning nadir viewing imaging spectrometer that combines a wide swath (114°) with high spatial resolution (10 × 10 km 2). The instrument heritage consists of GOME on ERS-2, SCIAMACHY on Envisat and, especially,

  10. Effect of varying nonwoven cotton substrate and the properties of the surfactant solution upon the adsorption of aqueous solutions of alkyl-dimethyl-benzyl-ammonium chloride

    Science.gov (United States)

    The adsorption of alkyl-dimethyl-benzyl-ammonium chloride (ADBAC), a cationic surfactant commonly employed as an antimicrobial agent, on greige, alkaline scoured, and bleached nonwoven cotton fabrics was investigated at varying surfactant concentrations and liquor ratios using UV-vis absorption spec...

  11. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications.

    Science.gov (United States)

    Antosiewicz, Jan M; Shugar, David

    2016-06-01

    In Part 2 we discuss application of several different types of UV-Vis spectroscopy, such as normal, difference, and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, of the side-chain of tyrosine residues in different molecular environments. We review the ways these spectroscopies can be used to probe complex protein structures.

  12. Cofactor and substrate binding to vanadium chloroperoxidase determined by UV-VIS spectroscopy and evidence for high affinity for pervanadate

    NARCIS (Netherlands)

    Renirie, R.; Hemrika, W.; Piersma, S.R.; Wever, R.

    2000-01-01

    The vanadate cofactor in vanadium chloroperoxidase has been studied using UV-VIS absorption spectroscopy. A band is present in the near-UV that is red-shifted as compared to free vanadate and shifts in both position and intensity upon change in pH. Mutation of vanadate binding residues has a clear e

  13. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications.

    Science.gov (United States)

    Antosiewicz, Jan M; Shugar, David

    In Part 2 we discuss application of several different types of UV-Vis spectroscopy, such as normal, difference, and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, of the side-chain of tyrosine residues in different molecular environments. We review the ways these spectroscopies can be used to probe complex protein structures.

  14. Green biochemistry approach for synthesis of silver and gold nanoparticles using Ficus racemosa latex and their pH-dependent binding study with different amino acids using UV/Vis absorption spectroscopy.

    Science.gov (United States)

    Tetgure, Sandesh R; Borse, Amulrao U; Sankapal, Babasaheb R; Garole, Vaman J; Garole, Dipak J

    2015-04-01

    Simple and eco-friendly biosynthesis approach was developed to synthesize silver nanoparticles (SNPs) and gold nanoparticles (GNPs) using Ficus racemosa latex as reducing agent. The presence of sunlight is utilized with latex and achieved the nanoparticles whose average size was in the range of 50-120 nm for SNPs and 20-50 nm for GNPs. The synthesized nanoparticles were characterized by UV/Visible absorption spectroscopy, X-ray diffraction, and field emission-scanning electron microscopy techniques toget understand the obtained nanoparticles. The pH-dependent binding studies of SNPs and GNPs with four amino acids, namely L-lysine, L-arginine, L-glutamine and glycin have been reported.

  15. Development and validation of a FIA/UV-vis method for pK(a) determination of oxime based acetylcholinesterase reactivators.

    Science.gov (United States)

    Musil, Karel; Florianova, Veronika; Bucek, Pavel; Dohnal, Vlastimil; Kuca, Kamil; Musilek, Kamil

    2016-01-05

    Acetylcholinesterase reactivators (oximes) are compounds used for antidotal treatment in case of organophosphorus poisoning. The dissociation constants (pK(a1)) of ten standard or promising acetylcholinesterase reactivators were determined by ultraviolet absorption spectrometry. Two methods of spectra measurement (UV-vis spectrometry, FIA/UV-vis) were applied and compared. The soft and hard models for calculation of pK(a1) values were performed. The pK(a1) values were recommended in the range 7.00-8.35, where at least 10% of oximate anion is available for organophosphate reactivation. All tested oximes were found to have pK(a1) in this range. The FIA/UV-vis method provided rapid sample throughput, low sample consumption, high sensitivity and precision compared to standard UV-vis method. The hard calculation model was proposed as more accurate for pK(a1) calculation. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. UV- VIS Spectroscopic and HPLC Studies on Dictyota bartayresiana Lamour

    Institute of Scientific and Technical Information of China (English)

    Johnson Marimuthu Antonisamy; Krishnaveni Eahamban

    2012-01-01

    Objective: The present study was aimed to explore phytochemical constituents present in Dictyota bartayresiana Lamour and produce the UV-VIS and HPLC spectrum profile for Dictyotabartayresiana. Methods: Phytochemical screening of the extracts was carried out according to the standard methods. For the HPLC analysis, the methanol: water (45:55) was used as mobile phase. Results: The phytochemical results showed the presence of alkaloids, steroids, phenolic groups, saponins, tannins, glycosides and sugars. The UV- VIS profile of methanolic, petroleum ether, chloroform, isopropanol of D. bartayresiana extract showed various peaks with different functional groups. The HPLC profile of D. bartayresiana petroleum ether, chloroform and benzene extracts showed some prominent and moderate peaks with different retention time. Conclusions:The results of the present study showed that Dictyota bartayresiana Lamour may be rich sources of phytoconstituents which can be isolated and further screened for different kinds of biological activities, depending on their reported therapeutic uses.

  17. A Novel Acetate Selective UV-Vis Chemosensor Containing a Tripodal Benzaldehydic-phenylhydrazone

    Institute of Scientific and Technical Information of China (English)

    QIAO Yan-Hong; LIN Hai; SHAO Jie; LIN Hua-Kuan

    2008-01-01

    A new colorimetric chemosensor 1 based on a tripodal benzaldehydic-phenylhydrazone selectively sensing acetate ion has been synthesized. The highly selective binding ability of receptor I to acetate ion over other studied anions was demonstrated by UV-Vis absorption spectroscopy in DMSO. Compared with other anions studied, its sorption spectrum change has occurred when receptor 1 was treated with other different guest anions (F-, Cl-, Br-,I-, H2PO4- and OH-). The Kass of receptor 1 binding with acetate ion is 1.69×104.

  18. Atmospheric trace gases monitoring by UV-vis spectroscopic techniques

    Science.gov (United States)

    Xie, Pinhua; Li, Ang; Wu, Fengcheng; Qin, Min; Hu, Rezhi; Xu, Jin; Si, Fuqi; Liu, Jianguo; Liu, Wenqing

    2016-04-01

    Due to rapidly economic development, air pollution has become an important issue in China. Phenomena such as regional haze in winter and high O3 concentration in summer are strongly related to increasing trace species. For better understanding the air pollution formation, it is necessary to know spatial and temporal distribution of trace species in the atmosphere. UV-vis spectroscopic techniques are of great advantages for trace species monitoring to meet several requirements, e.g. versatility, high sensitivity, good temporal resolution and field applicability. We have studied and developed various trace gases monitoring techniques and instruments based on UV-vis spectroscopic technique for in-situ measurements and remote sensing, e.g. LP-DOAS, IBBCEAS, CRDS, MAX-DOAS and mobile DOAS for NO2, SO2, HCHO, HONO, NO3, and N2O5 etc. The principle, instrumentation and inversion algorithm are presented. As typical applications of these techniques, investigation of the evolution of HONO and NO3 radicals over Beijing area, measurements of regional pollution in NCP and YRD are discussed in the aspects of HONO and nocturnal NO3 radical characteristics, trace gases (NO2, SO2 etc.) temporal and spatial distribution, pollution transport pathway, emission sources.

  19. Ultraviolet-Visible (UV-Vis) Microspectroscopic System Designed for the In Situ Characterization of the Dehydrogenation Reaction Over Platinum Supported Catalytic Microchannel Reactor.

    Science.gov (United States)

    Suarnaba, Emee Grace Tabares; Lee, Yi Fuan; Yamada, Hiroshi; Tagawa, Tomohiko

    2016-11-01

    An ultraviolet visible (UV-Vis) microspectroscopic system was designed for the in situ characterization of the activity of the silica supported platinum (Pt) catalyst toward the dehydrogenation of 1-methyl-1,4-cyclohexadiene carried out in a custom-designed catalytic microreactor cell. The in situ catalytic microreactor cell (ICMC) with inlet/outlet ports was prepared using quartz cover as the optical window to facilitate UV-Vis observation. A fabricated thermometric stage was adapted to the UV-Vis microspectrophotometer to control the reaction temperature inside the ICMC. The spectra were collected by focusing the UV-Vis beam on a 30 × 30 µm area at the center of ICMC. At 393 K, the sequential measurement of the spectra recorded during the reaction exhibited a broad absorption peak with maximum absorbance at 260 nm that is characteristic for gaseous toluene. This result indicates that the silica supported Pt catalyst is active towards the dehydrogenation of 1-methyl-1,4-cyclohexadiene at the given experimental conditions. The onset of coke formation was also detected based on the appearance of absorption bands at 300 nm. The UV-Vis microspectroscopic system developed can be used further in studying the mechanism of the dehydrogenation reaction. © The Author(s) 2016.

  20. Precipitação seletiva de tamanhos em nanopartículas semicondutoras coloidais de CdTe e CdSe: um estudo por espectroscopia UV-VIS

    National Research Council Canada - National Science Library

    Lívia Cristina de Souza Viol; Fernanda Oliveira Silva; Diego Lourençoni Ferreira; José Luiz Aarestrup Alves; Marco Antônio Schiavon

    2011-01-01

    .... The synthesis of CdTe and CdSe nanoparticles and the effect of the post-preparative size-selective precipitation have been characterized mainly by mean of ultraviolet and visible absorption spectroscopy (UV-Vis...

  1. Hemoglobin Biocatalyst Polymerization of Aniline by UV- vis Spectraphotometry

    Institute of Scientific and Technical Information of China (English)

    HU Xing; CHEN Dong-ming; ZOU Guo-lin

    2005-01-01

    A biocatalytic route for the synthesis of a water soluble and conducting complex of polyaniline (PANI)/sodium dodecylsulfate (SDS) is presented. Hemoglobin is used in SDS anion surfactant . The polymerization proceeded quickly to result in a homogeneous emeraldine-colored dispersion of PANI. Absorption spectra of PANI/SDS in the aqueous dis persions at various pH values confirms that the reversibility of dedoping and redoping process of PANI/SDS and shows that the transition from emeraldine salt to emeraldine base form occurred at about pH 10. 0-11.0 in this anionic micellar system. PANI/SDS in the organic solutions dedoped initially and redoped after 24 h.

  2. Fabricating a UV-Vis and Raman Spectroscopy Immunoassay Platform.

    Science.gov (United States)

    Hanson, Cynthia; Israelsen, Nathan D; Sieverts, Michael; Vargis, Elizabeth

    2016-11-10

    Immunoassays are used to detect proteins based on the presence of associated antibodies. Because of their extensive use in research and clinical settings, a large infrastructure of immunoassay instruments and materials can be found. For example, 96- and 384-well polystyrene plates are available commercially and have a standard design to accommodate ultraviolet-visible (UV-Vis) spectroscopy machines from various manufacturers. In addition, a wide variety of immunoglobulins, detection tags, and blocking agents for customized immunoassay designs such as enzyme-linked immunosorbent assays (ELISA) are available. Despite the existing infrastructure, standard ELISA kits do not meet all research needs, requiring individualized immunoassay development, which can be expensive and time-consuming. For example, ELISA kits have low multiplexing (detection of more than one analyte at a time) capabilities as they usually depend on fluorescence or colorimetric methods for detection. Colorimetric and fluorescent-based analyses have limited multiplexing capabilities due to broad spectral peaks. In contrast, Raman spectroscopy-based methods have a much greater capability for multiplexing due to narrow emission peaks. Another advantage of Raman spectroscopy is that Raman reporters experience significantly less photobleaching than fluorescent tags(1). Despite the advantages that Raman reporters have over fluorescent and colorimetric tags, protocols to fabricate Raman-based immunoassays are limited. The purpose of this paper is to provide a protocol to prepare functionalized probes to use in conjunction with polystyrene plates for direct detection of analytes by UV-Vis analysis and Raman spectroscopy. This protocol will allow researchers to take a do-it-yourself approach for future multi-analyte detection while capitalizing on pre-established infrastructure.

  3. UV-Vis, infrared, and mass spectroscopy of electron irradiated frozen oxygen and carbon dioxide mixtures with water

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Brant M.; Kaiser, Ralf I. [W. M. Keck Research Laboratory in Astrochemistry, Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Strazzulla, Giovanni [INAF-Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy)

    2014-02-01

    Ozone has been detected on the surface of Ganymede via observation of the Hartley band through the use of ultraviolet spectroscopy and is largely agreed upon to be formed by radiolytic processing via interaction of magnetospheric energetic ions and/or electrons with oxygen-bearing ices on Ganymede's surface. Interestingly, a clearly distinct band near 300 nm within the shoulder of the UV-Vis spectrum of Ganymede was also observed, but currently lacks an acceptable physical or chemical explanation. Consequently, the primary motivation behind this work was the collection of UV-Vis absorption spectroscopy of ozone formation by energetic electron bombardment of a variety of oxygen-bearing ices (oxygen, carbon dioxide, water) relevant to this moon as well as other solar system. Ozone was indeed synthesized in pure ices of molecular oxygen, carbon dioxide and a mixture of water and oxygen, in agreement with previous studies. The Hartley band of the ozone synthesized in these ice mixtures was observed in the UV-Vis spectra and compared with the spectrum of Ganymede. In addition, a solid state ozone absorption cross section of 6.0 ± 0.6 × 10{sup –17} cm{sup 2} molecule{sup –1} was obtained from the UV-Vis spectral data. Ozone was not produced in the irradiated carbon dioxide-water mixtures; however, a spectrally 'red' UV continuum is observed and appears to reproduce well what is observed in a large number of icy moons such as Europa.

  4. Optical properties (uv-vis and ftir) of gamma irradiated polymethyl methacrylate (pmma)

    CERN Document Server

    Rai, V N; Jain, Beena

    2016-01-01

    The effect of gamma irradiation on the UV-Vis and FTIR spectroscopy of polymethyl methacrylate (PMMA) foils has been studied. A new absorption band is observed in the visible spectral range due to color centers induced in the gamma irradiated PMMA. This band shows maximum absorption (low transmission) for 10 kGy irradiation, which decreases and saturates after 50 kGy followed by a further increase at 500 kGy. The FTIR peaks show an increased absorption up to ~100 kGy irradiation, which reverses for higher doses. Broad band absorption is observed in FTIR spectra around 1600 and 3600 cm-1 due to absorption of moisture in the irradiated samples. The reduction in the absorption intensity at 1718 cm-1 in the irradiated PMMA (> 100 kGy) is found associated with the demerization of the carbonyl groups. An initial increase in the absorption of FTIR peaks with increase in the doses of irradiation is due to increased cross linking in the PMMA structure that is induced by the absorption of moisture. The demerization of ...

  5. Correlation between UV-VIS spectra and the structure of Cu(II complexes with hydrogenated dextran in alkaline solutions

    Directory of Open Access Journals (Sweden)

    Nikolić Goran S.

    2005-01-01

    Full Text Available UV-VIS spectrophotometric investigations of Cu(II complexes with hydroge-nated dextran showed that the complexation of Cu(II-ions began at pH > 7. The formation of Cu(II complexes with dextran monomer units was observed at pH 7-12. With further increase in solution pH > 12, the Cu(II-dextran complex decomposed to Cu(OH42~-ions and dextran. With increasing solution pH the absorption maximum of complex solutions increased and shifted to shorter wavelength (hypsochromic shift compared with uncomplexed Cu(II. The UV spectra displayed bathochromic shifts. The changes of UV-VIS spectra with increasing in solution pH confirmed the formation of different kinds of complex species. The correlation between the results of UV-VIS spectrophotometry and the central metal ionligand coordination predicted that the copper binding within the complex depended on the pH and participation H2O molecules. Dextran complexes with Cu(II were formed by the displacement of water molecules from the coordination sphere of copper by OH groups. The analysis indicated that the Cu(II center was coordinated to two glucopyranose units of dextran. The spectrophotometric parameters of the investigated complexes were characteristic of a Cu(II-ion in a square-planar or tetragon ally distorted octahedral coordination.

  6. Roles of manganese oxides in degradation of phenol under UV-Vis irradiation: adsorption, oxidation, and photocatalysis.

    Science.gov (United States)

    Zhang, Qin; Cheng, Xiaodi; Zheng, Chen; Feng, Xionghan; Qiu, Guohong; Tan, Wenfeng; Liu, Fan

    2011-01-01

    Manganese oxides are known as one type of semiconductors, but their photocatalysis characteristics have not been deeply explored. In this study, photocatalytic degradation of phenol using several synthesized manganese oxides, i.e, acidic birnessite (BIR-H), alkaline birnessite (BIR-OH), cryptomelane (CRY) and todorokite (TOD), were comparatively investigated. To elucidate phenol degradation mechanisms, X-ray diffraction (XRD), ICP-AES (inductively coupled plasma-atomic emission spectroscopy), TEM (transmission electronic microscope), N2 physisorption at 77 K and UV-visible diffuse reflectance spectroscopy (UV-Vis DRS) were employed to characterize the structural, compositional, morphological, specific surface area and optical absorption properties of the manganese oxides. After 12 hr of UV-Vis irradiation, the total organic carbon (TOC) removal rate reached 62.1%, 43.1%, 25.4%, and 22.5% for cryptomelane, acidic birnessite, todorokite and alkaline birnessite, respectively. Compared to the reactions in the dark condition, UV-Vis exposure improved the TOC removal rates by 55.8%, 31.9%, 23.4% and 17.9%. This suggests a weak ability of manganese oxides to degrade phenol in the dark condition, while UV-Vis light irradiation could significantly enhance phenol degradation. The manganese minerals exhibited photocatalytic activities in the order of: CRY > BIR-H > TOD > BIR-OH. There may be three possible mechanisms for photochemical degradation: (1) direct photolysis of phenol; (2) direct oxidation of phenol by manganese oxides; (3) photocatalytic oxidation of phenol by manganese oxides. Photocatalytic oxidation of phenol appeared to be the dominant mechanism.

  7. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 1: basic principles and properties of tyrosine chromophore.

    Science.gov (United States)

    Antosiewicz, Jan M; Shugar, David

    2016-06-01

    Spectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV-Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.

  8. LC-MS of Metmyoglobin at pH = 2: Separation and Characterization of Apomyoglobin and Heme by ESI-MS and UV-Vis

    Science.gov (United States)

    Stynes, Helen Cleary; Layo, Araceli; Smith, Richard W.

    2004-01-01

    The protein species of apomyoglobin (apoMb) and heme are freed and segregated from the aqueous protein solution of metmyoglobin by liquid chromatography, and are distinguished by UV-Vis absorption or electrospray ionization mass spectrometry (ESI-MS). This is an ingenious and effective approach to characterize apomyoglobin and heme, while students…

  9. Identification of Intermediates in Zeolite-Catalyzed Reactions Using In-situ UV/Vis Micro- Spectroscopy and a Complementary Set of Molecular Simulations

    NARCIS (Netherlands)

    Hemelsoet, K.L.J.; Qian, Q.; De Meyer, T.; De Wispelaere, K.; De Sterck, B.; Weckhuysen, B.M.; Waroquier, M.; Van Speybroeck, V.

    2013-01-01

    The optical absorption properties of (poly)aromatic hydrocarbons occluded in a nanoporous environment were investigated by theoretical and experimental methods. The carbonaceous species are an essential part of a working catalyst for the methanol-toolefins (MTO) process. In situ UV/Vis microscopy me

  10. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 1: basic principles and properties of tyrosine chromophore.

    Science.gov (United States)

    Antosiewicz, Jan M; Shugar, David

    Spectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV-Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.

  11. Quantitative characterization of the colloidal stability of metallic nanoparticles using UV-vis absorbance spectroscopy.

    Science.gov (United States)

    Ray, Tyler R; Lettiere, Bethany; de Rutte, Joseph; Pennathur, Sumita

    2015-03-31

    Plasmonic nanoparticles are used in a wide variety of applications over a broad array of fields including medicine, energy, and environmental chemistry. The continued successful development of this material class requires the accurate characterization of nanoparticle stability for a variety of solution-based conditions. Although many characterization methods exists, there is an absence of a unified, quantitative means for assessing the colloidal stability of plasmonic nanoparticles. We present the particle instability parameter (PIP) as a robust, quantitative, and generalizable characterization technique based on UV-vis absorbance spectroscopy to characterize colloidal instability. We validate PIP performance with both traditional and alternative characterization methods by measuring gold nanorod instability in response to different salt (NaCl) concentrations. We further measure gold nanorod stability as a function of solution pH, salt, and buffer (type and concentration), nanoparticle concentration, and concentration of free surfactant. Finally, these results are contextualized within the literature on gold nanorod stability to establish a standardized methodology for colloidal instability assessment.

  12. UV-Vis optoelectronic properties of α-SnWO4: A comparative experimental and density functional theory based study

    KAUST Repository

    Ziani, Ahmed

    2015-09-03

    We report a combined experimental and theoretical study on the optoelectronic properties of α-SnWO4 for UV-Vis excitation. The experimentally measured values for thin films were systematically compared with high-accuracy density functional theory and density functional perturbation theory using the HSE06 functional. The α-SnWO4 material shows an indirect bandgap of 1.52 eV with high absorption coefficient in the visible-light range (>2 × 105 cm−1). The results show relatively high dielectric constant (>30) and weak diffusion properties (large effective masses) of excited carriers.

  13. Correlation between UV-VIS spectra and the structure of Cu(II) complexes with hydrogenated dextran in alkaline solutions

    OpenAIRE

    Nikolić Goran S.; Cakić Milorad D.; Mitić Žarko J.; Nikolić Ružica S.; Ilić Ljubomir A.

    2005-01-01

    UV-VIS spectrophotometric investigations of Cu(II) complexes with hydroge-nated dextran showed that the complexation of Cu(II)-ions began at pH > 7. The formation of Cu(II) complexes with dextran monomer units was observed at pH 7-12. With further increase in solution pH > 12, the Cu(II)-dextran complex decomposed to Cu(OH)42~-ions and dextran. With increasing solution pH the absorption maximum of complex solutions increased and shifted to shorter wavelength (hypsochromic shift) compare...

  14. UV-vis spectroscopic studies of CaF2 photo-thermo-refractive glass

    Science.gov (United States)

    Stoica, Martina; Herrmann, Andreas; Hein, Joachim; Rüssel, Christian

    2016-12-01

    A photo-thermo-refractive glass based on the system Na2O/K2O/CaO/CaF2/Al2O3/ZnO/SiO2 doped with Ag2O, CeO2, SnO2, Sb2O3 and KBr was investigated. This glass undergoes a permanent refractive index change after UV irradiation and subsequent two step heat treatment at temperatures above Tg. This is due to the formation of Ag metal clusters which act as nucleation centers for CaF2 crystallization. Oxidation of Ce3+ by UV light is the initial reaction and acts as photosensitizer in the glass. The UV-vis absorption spectra during this photo-induced crystallization process were measured. The spectral components that form the absorption spectra of cerium were studied in detail by a band separation with Gaussian functions. Deconvolution of the cerium absorption bands shows an envelope of five spectral components for the trivalent cerium due to the 4f-5d transitions and two spectral components for the tetravalent cerium caused by charge transfer transitions. The effect of different dopants and melting conditions on the photo-thermal process were studied to investigate the influence of glass technology on the photoprocess.

  15. UV-Vis spectroscopy and solvatochromism of the tyrosine kinase inhibitor AG-1478.

    Science.gov (United States)

    Khattab, Muhammad; Wang, Feng; Clayton, Andrew H A

    2016-07-05

    The effect of twenty-one solvents on the UV-Vis spectrum of the tyrosine kinase inhibitor AG-1478 was investigated. The absorption spectrum in the range 300-360nm consisted of two partially overlapping bands at approximately 340nm and 330nm. The higher energy absorption band was more sensitive to solvent and exhibited a peak position that varied from 327nm to 336nm, while the lower energy absorption band demonstrated a change in peak position from 340nm to 346nm in non-chlorinated solvents. The fluorescence spectrum of AG-1478 was particularly sensitive to solvent. The wavelength of peak intensity varied from 409nm to 495nm with the corresponding Stokes shift in the range of 64nm to 155nm (4536cm(-1) to 9210cm(-1)). We used a number of methods to assess the relationship between spectroscopic properties and solvent properties. The detailed analysis revealed that for aprotic solvents, the peak position of the emission spectrum in wavenumber scale correlated with the polarity (dielectric constant or ET(30)) of the solvent. In protic solvents, a better correlation was observed between the hydrogen bonding power of the solvent and the position of the emission spectrum. Moreover, the fluorescence quantum yields were larger in aprotic solvents as compared to protic solvents. This analysis underscores the importance of polarity and hydrogen-bonding environment on the spectroscopic properties of AG-1478. These studies will assume relevance in understanding the interaction of AG-1478 in vitro and in vivo.

  16. Mathematical calculations of iron complex stoichiometry by direct UV-Vis spectrophotometry.

    Science.gov (United States)

    Filipský, Tomáš; Říha, Michal; Hrdina, Radomír; Vávrová, Kateřina; Mladěnka, Přemysl

    2013-08-01

    The effects of iron-chelating agents on miscellaneous pathologies are currently largely tested. Due to various indications, different properties for chelators are required. A stoichiometry of the complex in relation to pH is one of the crucial factors. Moreover, the published data on the stoichiometry, especially concerning flavonoids, are equivocal. In this study, a new complementary approach was employed for the determination of stoichiometry in 10 iron-chelating agents, including clinically used drugs, by UV-Vis spectrophotometry at relevant pH conditions and compared with the standard Job's method. This study showed that the simple approach based on absorbance at the wavelength of complex absorption maximum was sufficient when the difference between absorption maximum of substance and complex was high. However, in majority of substances this difference was much lower (9-73 nm). The novel complementary approach was able to determine the stoichiometry in all tested cases. The major benefit of this method compared to the standard Job's approach seems to be its capability to reveal a reaction stoichiometry in chelators with moderate affinity to iron. In conclusion, using this complementary method may explain several previous contradictory data and lead to a better understanding of the underlying mechanisms of chelator's action.

  17. Identification of intermediates in zeolite-catalyzed reactions by in situ UV/Vis microspectroscopy and a complementary set of molecular simulations.

    Science.gov (United States)

    Hemelsoet, Karen; Qian, Qingyun; De Meyer, Thierry; De Wispelaere, Kristof; De Sterck, Bart; Weckhuysen, Bert M; Waroquier, Michel; Van Speybroeck, Veronique

    2013-12-02

    The optical absorption properties of (poly)aromatic hydrocarbons occluded in a nanoporous environment were investigated by theoretical and experimental methods. The carbonaceous species are an essential part of a working catalyst for the methanol-to-olefins (MTO) process. In situ UV/Vis microscopy measurements on methanol conversion over the acidic solid catalysts H-SAPO-34 and H-SSZ-13 revealed the growth of various broad absorption bands around 400, 480, and 580 nm. The cationic nature of the involved species was determined by interaction of ammonia with the methanol-treated samples. To determine which organic species contribute to the various bands, a systematic series of aromatics was analyzed by means of time-dependent density functional theory (TDDFT) calculations. Static gas-phase simulations revealed the influence of structurally different hydrocarbons on the absorption spectra, whereas the influence of the zeolitic framework was examined by using supramolecular models within a quantum mechanics/molecular mechanics framework. To fully understand the origin of the main absorption peaks, a molecular dynamics (MD) study on the organic species trapped in the inorganic host was essential. During such simulation the flexibility is fully taken into account and the effect on the UV/Vis spectra is determined by performing TDDFT calculations on various snapshots of the MD run. This procedure allows an energy absorption scale to be provided and the various absorption bands determined from in situ UV/Vis spectra to be assigned to structurally different species.

  18. DETERMINATION OF FATTY ACIDS IN MAIZE OIL USING UV-VIS SPECTROSCOPY AND CHEMOMETRIC TECHNIQUES

    OpenAIRE

    Kahrıman, Fatih

    2017-01-01

    Inthis study, it was aimed to investigate the effect of chemometric techniques onthe detection of some fatty acids in crude maize oil by UV-Vis spectroscopy. Inthe study, oleic acid, linoleic acid, total polyunsaturated fatty acids andtotal polyunsaturated fatty acids were determined on the oil samples of 50different maize genotypes. The absorbance values ​​(190-320 nm) of the same oilsamples were recorded using a UV-Vis spectrophotometer. Prediction models wereconstructed according to Partia...

  19. The effect of different propolis harvest methods on its lead contents determined by ET AAS and UV-visS.

    Science.gov (United States)

    Sales, A; Alvarez, A; Areal, M Rodriguez; Maldonado, L; Marchisio, P; Rodríguez, M; Bedascarrasbure, E

    2006-10-11

    Argentinean propolis is exported to different countries, specially Japan. The market demands propolis quality control according to international standards. The analytical determination of some metals, as lead in food, is very important for their high toxicity even in low concentrations and because of their harmful effects on health. Flavonoids, the main bioactive compounds of propolis, tend to chelate metals as lead, which becomes one of the main polluting agents of propolis. The lead found in propolis may come from the atmosphere or it may be incorporated in the harvest, extraction and processing methods. The aim of this work is to evaluate lead level on Argentinean propolis determined by electrothermal atomic absorption spectrometry (ET AAS) and UV-vis spectrophotometry (UV-visS) methods, as well as the effect of harvest methods on those contents. A randomized test with three different treatments of collection was made to evaluate the effect of harvest methods. These procedures were: separating wedges (traditional), netting plastic meshes and stamping out plastic meshes. By means of the analysis of variance technique for multiple comparisons (ANOVA) it was possible to conclude that there are significant differences between scraped and mesh methods (stamped out and mosquito netting meshes). The results obtained in the present test would allow us to conclude that mesh methods are more advisable than scraped ones in order to obtain innocuous and safe propolis with minor lead contents. A statistical comparison of lead determination by both, ET AAS and UV-visS methods, demonstrated that there is not a significant difference in the results achieved with the two analytical techniques employed.

  20. The effect of different propolis harvest methods on its lead contents determined by ET AAS and UV-visS

    Energy Technology Data Exchange (ETDEWEB)

    Sales, A. [Department of Analytical Chemistry, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, Ayacucho 471, 4000 Tucuman (Argentina)]. E-mail: amsales@fbqf.unt.edu.ar; Alvarez, A. [National Institute of Agricultural Technology (INTA), Experimental Station Famailla, Ruta 301, Km 32, Famailla, Tucuman (Argentina); Areal, M. Rodriguez [Department of Analytical Chemistry, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, Ayacucho 471, 4000 Tucuman (Argentina); Maldonado, L. [National Institute of Agricultural Technology (INTA), Experimental Station Famailla, Ruta 301, Km 32, Famailla, Tucuman (Argentina); Marchisio, P. [Department of Analytical Chemistry, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, Ayacucho 471, 4000 Tucuman (Argentina); Rodriguez, M. [Department of Analytical Chemistry, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, Ayacucho 471, 4000 Tucuman (Argentina); Bedascarrasbure, E. [National Institute of Agricultural Technology (INTA), Experimental Station Famailla, Ruta 301, Km 32, Famailla, Tucuman (Argentina)

    2006-10-11

    Argentinean propolis is exported to different countries, specially Japan. The market demands propolis quality control according to international standards. The analytical determination of some metals, as lead in food, is very important for their high toxicity even in low concentrations and because of their harmful effects on health. Flavonoids, the main bioactive compounds of propolis, tend to chelate metals as lead, which becomes one of the main polluting agents of propolis. The lead found in propolis may come from the atmosphere or it may be incorporated in the harvest, extraction and processing methods. The aim of this work is to evaluate lead level on Argentinean propolis determined by electrothermal atomic absorption spectrometry (ET AAS) and UV-vis spectrophotometry (UV-visS) methods, as well as the effect of harvest methods on those contents. A randomized test with three different treatments of collection was made to evaluate the effect of harvest methods. These procedures were: separating wedges (traditional), netting plastic meshes and stamping out plastic meshes. By means of the analysis of variance technique for multiple comparisons (ANOVA) it was possible to conclude that there are significant differences between scraped and mesh methods (stamped out and mosquito netting meshes). The results obtained in the present test would allow us to conclude that mesh methods are more advisable than scraped ones in order to obtain innocuous and safe propolis with minor lead contents. A statistical comparison of lead determination by both, ET AAS and UV-visS methods, demonstrated that there is not a significant difference in the results achieved with the two analytical techniques employed.

  1. Roles of manganese oxides in degradation of phenol under UV-Vis irradiation: Adsorption, oxidation, and photocatalysis

    Institute of Scientific and Technical Information of China (English)

    Qin Zhang; Xiaodi Cheng; Chen Zheng; Xionghan Feng; Guohong Qiu; Wenfeng Tan; Fan Liu

    2011-01-01

    Manganese oxides are known as one type of semiconductors,but their photocatalysis characteristics have not teen deeply explored.In this study,photocatalytic degradation of phenol using several synthesized manganese oxides,i.e,acidic birnessite (BIR-H),alkaline birnessite (BIR-OH),cryptomelane (CRY) and todorokite (TOD),were comparatively investigated.To elucidate phenol degradation mechanisms,X-ray diffraction (XRD),ICP-AES (inductively coupled plasma-atomic emission spectroscopy),TEM (transmission electronic microscope),N2 physisorption at 77 K and UV-visible diffuse reflectance spectroscopy (UV-Vis DRS) were employed to characterize the structural,compositional,morphological,specific surface area and optical absorption properties of the manganese oxides.After 12 hr of UV-Vis irradiation,the total organic carbon (TOC) removal rate reached 62.1%,43.1%,25.4%,and 22.5% for cryptomelane,acidic birnessite,todorokite and alkaline birnessite,respectively.Compared to the reactions in the dark condition,UVVis exposure improved the TOC removal rates by 55.8%,31.9%,23.4% and 17.9%.This suggests a weak ability of manganese oxides to degrade phenol in the dark condition,while UV-Vis light irradiation could significantly enhance phenol degradation.The manganese minerals exhibited photocatalytic activities in the order of:CRY > BIR-H > TOD > BIR-OH.There may be three possible mechanisms for photochemical degradation:(1) direct photolysis of phenol; (2) direct oxidation of phenol by manganese oxides; (3) photocatalytic oxidation of phenol by manganese oxides.Photocatalytic oxidation of phenol appeared to be the dominant mechanism.

  2. Interaction between a cationic porphyrin and ctDNA investigated by SPR, CV and UV-vis spectroscopy.

    Science.gov (United States)

    Xu, Zi-Qiang; Zhou, Bo; Jiang, Feng-Lei; Dai, Jie; Liu, Yi

    2013-10-01

    The interaction between ctDNA and a cationic porphyrin was studied in this work. The binding process was monitored by surface plasmon resonance (SPR) spectroscopy in detail. The association, dissociation rate constants and the binding constants calculated by global analysis were 2.4×10(2)±26.4M(-1)s(-1), 0.011±0.0000056s(-1) and 2.18×10(4)M(-1), respectively. And the results were confirmed by cyclic voltammetry and UV-vis absorption spectroscopy. The binding constants obtained from cyclic voltammetry and UV-vis absorption spectroscopy were 8.28×10(4)M(-1) and 6.73×10(4)M(-1) at 298K, respectively. The covalent immobilization methodology of ctDNA onto gold surface modified with three different compounds was also investigated by SPR. These compounds all contain sulfydryl but with different terminated functional groups. The results indicated that the 11-MUA (HS(CH2)10COOH)-modified gold film is more suitable for studying the DNA-drug interaction.

  3. Measurement of Heme Ruffling Changes in MhuD Using UV-vis Spectroscopy.

    Science.gov (United States)

    Graves, Amanda B; Graves, Max T; Liptak, Matthew D

    2016-04-28

    For decades it has been known that an out-of-plane ruffling distortion of heme perturbs its UV-vis absorption (Abs) spectrum, but whether increased ruffling induces a red or blue shift of the Soret band has remained a topic of debate. This debate has been resolved by the spectroscopic and computational characterization of Mycobacterium tuberculosis MhuD presented here, an enzyme that converts heme, oxygen, and reducing equivalents to nonheme iron and mycobilin. W66F and W66A MhuD have been characterized using (1)H nuclear magnetic resonance, Abs, and magnetic circular dichroism spectroscopies, and the data have been used to develop an experimentally validated theoretical model of ruffled, ferric heme. The PBE density functional theory (DFT) model that has been developed accurately reproduces the observed spectral changes from wild type enzyme, and the underlying quantum mechanical origins of these ruffling-induced changes were revealed by analyzing the PBE DFT description of the electronic structure. Small amounts of heme ruffling have no influence on the energy of the Q-band and blue-shift the Soret band due to symmetry-allowed mixing of the Fe 3dxy and porphyrin a2u orbitals. Larger amounts of ruffling red-shift both the Q and Soret bands due to disruption of π-bonding within the porphyrin ring.

  4. Broadband UV-Vis vibrational coherence spectrometer based on a hollow fiber compressor

    Science.gov (United States)

    Gueye, Moussa; Nillon, Julien; Crégut, Olivier; Léonard, Jérémie

    2016-09-01

    We describe a broadband transient absorption (TA) spectrometer devised to excite and probe, in the blue to UV range, vibrational coherence dynamics in organic molecules in condensed phase. A 800-nm Ti:Sa amplifier and a hollow fiber compressor are used to generate a 6-fs short pulse at 1 kHz. Broadband sum frequency generation with the fundamental pulse is implemented to produce a 400-nm, 8-fs Fourier limited short pulse. A UV-Vis white-light supercontinuum is implemented as a probe with intensity self-referencing to achieve a shot-noise-limited sensitivity. Rapid scanning of the pump-probe delay is shown very efficient in suppressing the noise resulting from low-frequency pump intensity fluctuations. Using either of the 800-nm or 400-nm broadband pulses as the pump for TA spectroscopy of organic molecules in solution, we resolve oscillatory signals down to the 320 nm probing wavelength with a 3200 cm-1 FWHM bandwidth. Their Fourier transformation reveals the corresponding molecular vibrational spectra. Finally, we demonstrate the use of this setup as a vibrational coherence spectrometer for the investigation of the vibrational dynamics accompanying the sub-ps C=C photoisomerization of a retinal-like molecular switch through a conical intersection.

  5. Analysis of organophosphate-Zn metalloporphyrin interactions via UV-vis spectroscopy and molecular modeling.

    Science.gov (United States)

    Rompoti, A; Dalal, N; Athanasopoulos, D; Rutan, S; Helburn, R

    2015-01-25

    UV-vis absorption spectra of zinc tetraphenylporphine (ZnTPP) on interaction with six organophosphorus (OP) compounds in cyclohexane were compared using ab initio methods and the molecular and solvation ligand descriptors π(*), Vx, and σ. OPs with polarizable hydrocarbon substituents in the homologous series tri-ethyl, -pentyl, -octyl, and -phenyl phosphates and the toxicologically relevant methyl paraoxon (1a-e) each gave a red shift in the Soret band (λsor) of ZnTPP in the range of 8-10 nm. Sensitivity as ΔAsor-b/Δug OP for the spectral band of the ligand bound ZnTPP (λsor-b) decreased with increasing extent of alkyl and aromatic substitution. Calculated and combined energies for OP and ZnTPP examined as a function of distance (Å) between ligand and porphyrin center suggest increased steric crowding with increasing Vx, and aromatic content of the OP. Spectrally fitted K1:1 and ΔAsor-b/ug OP each vary exponentially with Vx/σ. Lack of a red shift in λsor-b where ZnTPP was titrated with the toxic diethyl chlorophosphate (1g) is consistent with a model in which the magnitude of ΔEsor is proportional to the donor capacity of the phosphoryl-O ligand.

  6. UV-VIS Spectroscopy Applied to Stratospheric Chemistry, Methods and Results

    Energy Technology Data Exchange (ETDEWEB)

    Karlsen, K.

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. Numerous observations and modeling have shown with a very high degree of certainty that the man-made emissions of chlorofluorocarbons (CFC) and halons are responsible for the Antarctica ozone hole. It is also evident that the ozone layer of the Northern Hemisphere has suffered a certain decline over the last 10-15 years, possibly because of CFC and halons. 20-30% of the observed reduction is ascribed to coupled chlorine and bromine chemistry via a catalytic cycle resulting in the net conversion of 2O{sub 3} to 3O{sub 2}. But the details are not fully understood. The author plans to assemble a UV-VIS spectrometer for measuring the species OClO and BrO and to compare and discuss measured diurnal variations of OClO and BrO with model calculations. The use of Differential Optical Absorption Spectroscopy (DOAS) is discussed and some results from late 1995 presented. 6 refs., 2 figs.

  7. UV-Vis reflection spectroscopy under variable angle incidence at the air-liquid interface.

    Science.gov (United States)

    Roldán-Carmona, Cristina; Rubia-Payá, Carlos; Pérez-Morales, Marta; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis

    2014-03-07

    The UV-Vis reflection spectroscopy (UV-Vis-RS) in situ at the air-liquid interface provides information about tilt and aggregation of chromophores in Langmuir monolayers. This information is particularly important given in most cases the chromophore is located at the polar region of the Langmuir monolayer. This region of the Langmuir monolayers has been hardly accessible by other experimental techniques. In spite of its enormous potential, the application of UV-Vis-RS has been limited mainly to reflection measurements under light normal incidence or at lower incidence angles than the Brewster angle. Remarkably, this technique is quite sensitive to the tilt of the chromophores at values of incidence angles close to or larger than the Brewster angle. Therefore, a novel method to obtain the order parameter of the chromophores at the air-liquid interface by using s- and p-polarized radiation at different incidence angles is proposed. This method allowed for the first time the experimental observation of the two components with different polarization properties of a single UV-Vis band at the air-liquid interface. The method of UV-Vis spectroscopy under variable angle incidence is presented as a new tool for obtaining rich detailed information on Langmuir monolayers.

  8. Compositional and surface characterization of HULIS by UV-Vis, FTIR, NMR and XPS: Wintertime study in Northern India

    Science.gov (United States)

    Kumar, Varun; Goel, Anubha; Rajput, Prashant

    2017-09-01

    This study (first attempt) characterizes HULIS (Humic Like Substances) in wintertime aerosols (n = 12 during day and nighttime each) from Indo-Gangetic Plain (IGP, at Kanpur) by using various state-of-the art techniques such as UV-VIS, FTIR, 1H NMR and XPS. Based on UV-Vis analysis the absorption coefficient at 365 nm (babs-365) of HULIS was found to average at 13.6 and 28.8 Mm-1 during day and nighttime, respectively. Relatively high babs-365 of HULIS during the nighttime is attributed to influence of fog-processing. However, the power fit of UV-Vis spectrum provided near similar AAE (absorption Angstrom exponent) value of HULIS centering at 4.9 ± 1.4 and 5.1 ± 1.3 during daytime and nighttime, respectively. FTIR spectra and its double derivative revealed the presence of various functional groups viz. alcohols, ketones aldehydes, carboxylic acids as well as unsaturated and saturated carbon bonds. 1H NMR spectroscopy was applied to quantify relative percentage of various types of hydrogen atoms contained in HULIS, whereas XPS technique provided information on surface composition and oxidation states of various elements present. A significantly high abundance of H‒C‒O group has been observed in HULIS (based on 1H NMR); 41.4± 2.7% and 30.9± 2.4% in day and nighttime, respectively. However, aromatic protons (Ar-H) were higher in nighttime samples (19.3± 1.8%) as compared to that in daytime samples (7.5 ± 1.9). XPS studies revealed presence of various species on the surface of HULIS samples. Carbon existed in 7 different chemical states while total nitrogen and sulfur exhibited 3 and 2 different oxidation states (respectively) on the surface of HULIS. This study reports structural information and absorption properties of HULIS which has implications to their role as cloud condensation nuclei and atmospheric direct radiative forcing.

  9. Interference-Blind Microfluidic Sensor for Ascorbic Acid Determination by UV/vis Spectroscopy

    DEFF Research Database (Denmark)

    Bi, Hongyan; Oliveira Fernandes, Ana Carolina; Cardoso, Susana

    2016-01-01

    the microfluidic channel, enzyme-catalyzed reaction occurs and only converts the target molecules to its products. The whole process is monitored by an end-channel UV/vis spectroscopic detection. Ascorbate oxidase and L-ascorbic acid (AA) are taken as enzyme-substrate model in this study to investigate...... microfluidic biosensor exhibits good reproducibility, stability, and anti-interference property. Technically, it is easy to realize, depends on low investment in chip fabrication, and simple instrumental procedure, where only UV/vis spectrophotometer is required. To sum up, the developed strategy is economical...

  10. Vibrationally resolved UV/Vis spectroscopy with time-dependent density functional based tight binding

    CERN Document Server

    Rüger, Robert; van Lenthe, Erik; Heine, Thomas; Visscher, Lucas

    2016-01-01

    We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the harmonic approximation. The theory of vibrationally resolved UV/Vis spectroscopy is first summarized from the viewpoint of TD-DFTB. The method is benchmarked against time-dependent density functional theory (TD-DFT) calculations for strongly dipole allowed excitations in various aromatic and polar molecules. Using the recent 3ob:freq parameter set of Elstner's group, excellent agreement with TD-DFT calculations using local functionals was achieved.

  11. Vibrationally resolved UV/Vis spectroscopy with time-dependent density functional based tight binding

    OpenAIRE

    Rüger, Robert; Niehaus, Thomas; van Lenthe, Erik; Heine, Thomas; Visscher, Lucas

    2016-01-01

    We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the adiabatic Hessian Franck-Condon (AH|FC) method with a harmonic approximation for the nuclear wavefunction. The theory of vibrationally resolved UV/Vis spectroscopy is first summarized from the viewpoint of TD-DFTB. The method is benchmarked against time-dependent density functional theory (TD-DFT) ...

  12. Detection of ibuprofen and ciprofloxacin by solid-phase extraction and UV/Vis spectroscopy

    Science.gov (United States)

    Zhou, Zhengwei; Jiang, Jia Qian

    2012-07-01

    A simple and economic solid-phase extraction coupled with UV/Vis spectrophotometric method is described for the analysis of ibuprofen and ciprofloxacin. Following solid-phase extraction from model wastewater samples containing standard ibuprofen or ciprofloxacin, elutes were analyzed by a UV/Vis spectrophotometer at 225 nm for ibuprofen and 280 nm for ciprofloxacin. The assay was linear for both compounds with good coefficients of correlation. This method shows good recoveries for both compounds with 101.0 ± 9.8% for ibuprofen and 99.4 ± 11.8% ciprofloxacin.

  13. Reaction pathways of proton transfer in hydrogen-bonded phenol-carboxylate complexes explored by combined UV-vis and NMR spectroscopy.

    Science.gov (United States)

    Koeppe, Benjamin; Tolstoy, Peter M; Limbach, Hans-Heinrich

    2011-05-25

    Combined low-temperature NMR/UV-vis spectroscopy (UVNMR), where optical and NMR spectra are measured in the NMR spectrometer under the same conditions, has been set up and applied to the study of H-bonded anions A··H··X(-) (AH = 1-(13)C-2-chloro-4-nitrophenol, X(-) = 15 carboxylic acid anions, 5 phenolates, Cl(-), Br(-), I(-), and BF(4)(-)). In this series, H is shifted from A to X, modeling the proton-transfer pathway. The (1)H and (13)C chemical shifts and the H/D isotope effects on the latter provide information about averaged H-bond geometries. At the same time, red shifts of the π-π* UV-vis absorption bands are observed which correlate with the averaged H-bond geometries. However, on the UV-vis time scale, different tautomeric states and solvent configurations are in slow exchange. The combined data sets indicate that the proton transfer starts with a H-bond compression and a displacement of the proton toward the H-bond center, involving single-well configurations A-H···X(-). In the strong H-bond regime, coexisting tautomers A··H···X(-) and A(-)···H··X are observed by UV. Their geometries and statistical weights change continuously when the basicity of X(-) is increased. Finally, again a series of single-well structures of the type A(-)···H-X is observed. Interestingly, the UV-vis absorption bands are broadened inhomogeneously because of a distribution of H-bond geometries arising from different solvent configurations.

  14. Space weathering of asteroidal surfaces. Influence on the UV-Vis spectra

    Science.gov (United States)

    Kaňuchová, Z.; Baratta, G. A.; Garozzo, M.; Strazzulla, G.

    2010-07-01

    Context. The surfaces of airless bodies in the Solar System are continuously altered by the bombardment of micrometeoroids and irradiation by solar wind, flares, and cosmic particles. Major effects of this process - space weathering - are darkening and “reddening” of the spectra of surface materials, as well as a “degrading” of absorption features. Aims: We studied the changes induced by energetic ion irradiation in the ultraviolet-visual-near-infrared (UV-Vis-NIR) (0.2-0.98 μm) reflectance spectra of targets selected to mimic the surfaces of airless bodies in the inner Solar System. Our chosen targets are olivine pellets, pure or covered by an organic polymer (polystyrene), which is transparent before irradiation. Polystyrene is used as a template for organic matter of low volatility that can be present on asteroidal surfaces. Moreover we measured the changes induced by ion irradiation in the absorption coefficient of the polymer. The purpose was to have a tool to better compare laboratory with observed spectra and distinguish between planetary objects with pure silicate surfaces and those whose surface is covered by organic matter exposed to cosmic ion bombardment. Methods: The samples were irradiated in vacuum, at room temperature, with 200 keV protons or 200-400 keV argon ions. Before, during, and after irradiation diffuse reflectance spectra were acquired. Polystyrene films were also deposited on quartz substrates and irradiated while transmittance spectra were recorded. Results: We measured the variations of the absorption coefficient of polystyrene as a function of ion fluence. We showed that after ion irradiation the diffuse reflectance spectra of the samples covered by organics exhibit a much more significant variation than those of pure silicates. The spectra of targets made of olivine plus polystyrene can be fitted by using the measured absorption coefficient of polystyrene. Conclusions: The results obtained for pure olivine extend to the UV the

  15. Spec UV-Vis: An Ultraviolet-Visible Spectrophotometer Simulation

    Science.gov (United States)

    Papadopoulos, N.; Limniou, Maria; Koklamanis, Giannis; Tsarouxas, Apostolos; Roilidis, Mpampis; Bigger, Stephen W.

    2001-11-01

    The software and its accompanying manual can be used to illustrate the recording of an absorption spectrum and the Beer-Lambert law (5-7) as well as various aspects of acid-base indicators such as the spectrophotometric determination of pKa (8), the isosbestic point (6, 9), and distribution diagrams (10, 11). Literature Cited Shiowatana, J. J. Chem. Educ. 1997, 74, 730. Altemose, I. R. J. Chem. Educ. 1986, 63, A216, A262. Piepmeier, E. H. J. Chem. Educ. 1973, 50, 640. Lott, P. F. J. Chem. Educ. 1968, 45, A89, A169, A182, A273. Skoog, D. A.; West, D. M.; Holler, F. J. Fundamentals of Analytical Chemistry, 7th ed.; Saunders College Publishing: Fort Worth, TX, 1996, Chapters 22-24. Christian, G. D. Analytical Chemistry, 5th ed.; Wiley: New York, 1994; Chapter 14. Kennedy, J. H. Analytical Chemistry--Principles, 2nd ed.; Saunders College Publishing: New York, 1990; Chapters 11,12. Patterson, G. S. J. Chem. Educ. 1999, 76, 395. Harris, D. C. Quantitative Chemical Analysis, 5th ed.; Freeman: New York, 1997; Chapters 19, 20. Butler, J. N. Ionic Equilibrium--A Mathematical Approach; Addison-Wesley: Reading, MA, 1964; Chapter 5. Sawyer, C. A.; McCarty, P. L.; Parkin, G. F. Chemistry for Environmental Engineering, 4th ed.; McGraw-Hill: Singapore, 1994; Chapter 4.

  16. A Flexible UV-Vis-NIR Photodetector based on a Perovskite/Conjugated-Polymer Composite.

    Science.gov (United States)

    Chen, Shan; Teng, Changjiu; Zhang, Miao; Li, Yingru; Xie, Dan; Shi, Gaoquan

    2016-07-01

    A lateral photodetector based on the bilayer composite film of a perovskite and a conjugated polymer is reported. It exhibits significantly enhanced responsivity in the UV-vis region and sensitive photoresponse in the near-IR (NIR) region at a low applied voltage. This broadband photodetector also shows excellent mechanical flexibility and improved environmental stability.

  17. Principal component analysis of UV-VIS-NIR transmission spectra of Moldavian matured wine distillates

    Science.gov (United States)

    Khodasevich, Mikhail A.; Trofimova, Darya V.; Nezalzova, Elena I.

    2011-02-01

    Principal component analysis of UV-VIS-NIR transmission spectra of matured wine distillates (1-40 years aged) produced by three Moldavian manufacturers allows to characterize with sufficient certainty the eleven chemical parameters of considered alcoholic beverages: contents of acetaldehyde, ethyl acetate, furfural, vanillin, syringic aldehyde and acid, etc.

  18. Instrumentation: Photodiode Array Detectors in UV-VIS Spectroscopy. Part II.

    Science.gov (United States)

    Jones, Dianna G.

    1985-01-01

    A previous part (Analytical Chemistry; v57 n9 p1057A) discussed the theoretical aspects of diode ultraviolet-visual (UV-VIS) spectroscopy. This part describes the applications of diode arrays in analytical chemistry, also considering spectroelectrochemistry, high performance liquid chromatography (HPLC), HPLC data processing, stopped flow, and…

  19. Application of in operando UV/Vis spectroscopy in lithium-sulfur batteries.

    Science.gov (United States)

    Patel, Manu U M; Dominko, Robert

    2014-08-01

    Application of UV/Vis spectroscopy for the qualitative and quantitative determination of differences in the mechanism of lithium-sulfur battery behavior is presented. With the help of catholytes prepared from chemically synthesized stoichiometric mixtures of lithium and sulfur, calibration curves for two different types of electrolyte can be constructed. First-order derivatives of UV/Vis spectra show five typical derivative peak positions in both electrolytes. In operando measurements show a smooth change in the UV/Vis spectra in the wavelength region between λ=650 and 400 nm. Derivatives are in agreement with derivative peak positions observed with catholytes. Recalculation of normalized reflections of UV/Vis spectra obtained in operando mode enable the formation of polysulfides and their concentrations to be followed. In such a way, it is possible to distinguish differences in the mechanism of polysulfide shuttling between two electrolytes and to correlate differences in capacity fading. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Oligophenylenevinylenes in spatially confined nanochannels: Monitoring intermolecular interactions by UV/Vis and Raman spectroscopy

    DEFF Research Database (Denmark)

    Aloshyna, Mariya; Medina, Begona Milian; Poulsen, Lars

    2008-01-01

    -guest interactions are elucidated by UV/Vis and Raman spectroscopy. The impact of the local environment of the chromophore on the optical and photophysical properties is discussed in light of quantum-chemical calculations. In stark contrast to thin films where preferential side-by-side orientation leads to quenching...

  1. Instrumental Analysis in the High School Classroom: UV-Vis Spectroscopy

    Science.gov (United States)

    Erhardt, Walt

    2007-01-01

    Note is presented on the standard lab from a second year chemistry course. The lab "Determining which of the Seven FD&C Food-Approved Dyes are Used in Making Green Skittles", familiarizes students with the operation of the CHEM2000 UV-Vis spectrophorometer.

  2. Instrumental Analysis in the High School Classroom: UV-Vis Spectroscopy

    Science.gov (United States)

    Erhardt, Walt

    2007-01-01

    Note is presented on the standard lab from a second year chemistry course. The lab "Determining which of the Seven FD&C Food-Approved Dyes are Used in Making Green Skittles", familiarizes students with the operation of the CHEM2000 UV-Vis spectrophorometer.

  3. Instrumentation: Photodiode Array Detectors in UV-VIS Spectroscopy. Part II.

    Science.gov (United States)

    Jones, Dianna G.

    1985-01-01

    A previous part (Analytical Chemistry; v57 n9 p1057A) discussed the theoretical aspects of diode ultraviolet-visual (UV-VIS) spectroscopy. This part describes the applications of diode arrays in analytical chemistry, also considering spectroelectrochemistry, high performance liquid chromatography (HPLC), HPLC data processing, stopped flow, and…

  4. The color of complexes and UV-vis spectroscopy as an analytical tool of Alfred Werner's group at the University of Zurich.

    Science.gov (United States)

    Fox, Thomas; Berke, Heinz

    2014-01-01

    Two PhD theses (Alexander Gordienko, 1912; Johannes Angerstein, 1914) and a dissertation in partial fulfillment of a PhD thesis (H. S. French, Zurich, 1914) are reviewed that deal with hitherto unpublished UV-vis spectroscopy work of coordination compounds in the group of Alfred Werner. The method of measurement of UV-vis spectra at Alfred Werner's time is described in detail. Examples of spectra of complexes are given, which were partly interpreted in terms of structure (cis ↔ trans configuration, counting number of bands for structural relationships, and shift of general spectral features by consecutive replacement of ligands). A more complete interpretation of spectra was hampered at Alfred Werner's time by the lack of a light absorption theory and a correct theory of electron excitation, and the lack of a ligand field theory for coordination compounds. The experimentally difficult data acquisitions and the difficult spectral interpretations might have been reasons why this method did not experience a breakthrough in Alfred Werner's group to play a more prominent role as an important analytical method. Nevertheless the application of UV-vis spectroscopy on coordination compounds was unique and novel, and witnesses Alfred Werner's great aptitude and keenness to always try and go beyond conventional practice.

  5. Assessing pearl quality using reflectance UV-Vis spectroscopy: does the same donor produce consistent pearl quality?

    Science.gov (United States)

    Mamangkey, Noldy Gustaf F; Agatonovic, Snezana; Southgate, Paul C

    2010-09-20

    Two groups of commercial quality ("acceptable") pearls produced using two donors, and a group of "acceptable" pearls from other donors were analyzed using reflectance UV-Vis spectrophotometry. Three pearls with different colors produced by the same donor showed different absorption spectra. Cream and gold colored pearls showed a wide absorption from 320 to about 460 nm, while there was just slight reflectance around 400 nm by the white pearl with a pink overtone. Cream and gold pearls reached a reflectance peak at 560 to 590 nm, while the white pearl with pink overtone showed slightly wider absorption in this region. Both cream and gold pearls showed an absorption peak after the reflectance peak, at about 700 nm for the cream pearl and 750 nm for the gold pearl. Two other pearls produced by the same donor (white with cream overtone and cream with various overtones) showed similar spectra, which differed in their intensity. One of these pearls had very high lustre and its spectrum showed a much higher percentage reflectance than the second pearl with inferior lustre. This result may indicate that reflectance is a useful quantitative indicator of pearl lustre. The spectra of two white pearls resulting from different donors with the same color nacre (silver) showed a reflectance at 260 nm, followed by absorption at 280 nm and another reflectance peak at 340 nm. After this peak the spectra for these pearls remained flat until a slight absorption peak around 700 nm. Throughout the visible region, all white pearls used in this study showed similar reflectance spectra although there were differences in reflectance intensity. Unlike the spectral results from white pearls, the results from yellow and gold pearls varied according to color saturation of the pearl. The results of this study show that similarities between absorption and reflectance spectra of cultured pearls resulting from the same saibo donor are negligible and could not be detected with UV-Vis

  6. Assessing Pearl Quality Using Reflectance UV-Vis Spectroscopy: Does the Same Donor Produce Consistent Pearl Quality?

    Directory of Open Access Journals (Sweden)

    Paul C. Southgate

    2010-09-01

    Full Text Available Two groups of commercial quality (“acceptable” pearls produced using two donors, and a group of “acceptable” pearls from other donors were analyzed using reflectance UV-Vis spectrophotometry. Three pearls with different colors produced by the same donor showed different absorption spectra. Cream and gold colored pearls showed a wide absorption from 320 to about 460 nm, while there was just slight reflectance around 400 nm by the white pearl with a pink overtone. Cream and gold pearls reached a reflectance peak at 560 to 590 nm, while the white pearl with pink overtone showed slightly wider absorption in this region. Both cream and gold pearls showed an absorption peak after the reflectance peak, at about 700 nm for the cream pearl and 750 nm for the gold pearl. Two other pearls produced by the same donor (white with cream overtone and cream with various overtones showed similar spectra, which differed in their intensity. One of these pearls had very high lustre and its spectrum showed a much higher percentage reflectance than the second pearl with inferior lustre. This result may indicate that reflectance is a useful quantitative indicator of pearl lustre. The spectra of two white pearls resulting from different donors with the same color nacre (silver showed a reflectance at 260 nm, followed by absorption at 280 nm and another reflectance peak at 340 nm. After this peak the spectra for these pearls remained flat until a slight absorption peak around 700 nm. Throughout the visible region, all white pearls used in this study showed similar reflectance spectra although there were differences in reflectance intensity. Unlike the spectral results from white pearls, the results from yellow and gold pearls varied according to color saturation of the pearl. The results of this study show that similarities between absorption and reflectance spectra of cultured pearls resulting from the same saibo donor are negligible and could not be detected

  7. DFT calculations and experimental FT-IR, FT-Raman, NMR, UV-Vis spectral studies of 3-fluorophenylboronic acid.

    Science.gov (United States)

    Karabacak, M; Kose, E; Sas, E B; Kurt, M; Asiri, A M; Atac, A

    2015-02-05

    The spectroscopic (FT-IR, FT-Raman, (1)H and (13)C NMR, UV-Vis), structural, electronic and thermodynamical properties of 3-fluorophenylboronic acid (C6H4FB(OH)2), 3FPBA) were submitted by using both experimental techniques and theoretical methods (quantum chemical calculations) in this work. The experimental infrared and Raman spectra were obtained in the region 4000-400 cm(-1) and 3500-10 cm(-1), respectively. The equilibrium geometry and vibrational spectra were calculated by using DFT (B3LYP) with 6-311++G(d,p) basis set. The vibrational wavenumbers were also corrected with scale factor to take better results for the calculated data. The total energy distributions (TED) of the vibrational modes were performed for the assignments of the title molecule by using scaled quantum mechanics (SQM) method. The NMR chemical shifts ((1)H and (13)C) were recorded in DMSO solution. The (1)H and (13)C NMR spectra were computed by using the gauge-invariant atomic orbital (GIAO) method, showing a good agreement with the experimental ones. The last one UV-Vis absorption spectra were analyzed in two solvents (ethanol and water), saved in the range of 200-400 nm. In addition these, HOMO and LUMO energies, the excitation energies, density of states (DOS) diagrams, thermodynamical properties and molecular electrostatic potential surface (MEPs) were presented. Nonlinear optical (NLO) properties and thermodynamic features were performed. The experimental results are combined with the theoretical calculations using DFT calculations to fortification of the paper. At the end of this work, the results were proved our paper had been indispensable for the literature backing.

  8. Classification of the botanical origin for Malaysian honey using UV-Vis spectroscopy

    Science.gov (United States)

    Almaleeh, Abd Alazeez; Adom, Abdul Hamid; Fathinul-Syahir, A. S.

    2017-03-01

    The aim of this study is to perform the classification of three brands of Malaysian honeys according to their botanical origin using UV-Vis Spectroscopy. The ability to classify honey according to their botanical origin is important to ensure the quality of the product. A total of nine samples from three commercial brands of honey produces were measured by a Lambda 35 UV-Vis Spectrometer. The wavelength range recorded was from 200 nm to 400 nm and used for model calibration. The (PCs) were extracted from principal components analysis (PCA), the first three (PCs) which accounted 98.03% of disparity of the spectra were combined separately with support vector machine (SVM) for the development of (PC-SVM) model, and achieved 100% discrimination accuracy. The results can be utilized in the development of device for the classification of honey accurately and rapid as well as safe guarantee to ordinary consumers.

  9. Vibrationally resolved UV/Vis spectroscopy with time-dependent density functional based tight binding

    Science.gov (United States)

    Rüger, Robert; Niehaus, Thomas; van Lenthe, Erik; Heine, Thomas; Visscher, Lucas

    2016-11-01

    We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the adiabatic Hessian Franck-Condon method with a harmonic approximation for the nuclear wavefunction. The theory of vibrationally resolved UV/Vis spectroscopy is first summarized from the viewpoint of TD-DFTB. The method is benchmarked against time-dependent density functional theory (TD-DFT) calculations for strongly dipole allowed excitations in various aromatic and polar molecules. Using the recent 3ob:freq parameter set of Elstner's group, very good agreement with TD-DFT calculations using local functionals was achieved.

  10. Spectroscopic (vibrational, NMR and UV-vis.) and quantum chemical investigations on 4-hexyloxy-3-methoxybenzaldehyde

    Science.gov (United States)

    Abbas, Ashgar; Gökce, Halil; Bahçeli, Semiha

    2016-01-01

    In this study, the 4-hexyloxy-3-methoxybenzaldehyde compound as one of the derivatives of vanillin which is a well known flavoring agent, C14H20O3, has been investigated by experimentally and extensively utilizing density functional theory (DFT) at the B3LYP/6-311++G(d,p) level. In this context, the optimized geometry, vibrational frequencies, 1H and 13C NMR chemical shifts, UV-vis. (in gas phase and in methanol solvent) spectra, HOMO-LUMO analysis, molecular electrostatic potential (MEP), thermodynamic parameters and atomic charges of 4-hexyloxy-3-methoxybenzaldehyde have been calculated. In addition, theoretically predicted IR, Raman and UV-vis. (in gas phase and in methanol solvent) spectra of the mentioned molecule have been constructed. The results calculated were compared with the experimental data.

  11. Vibrationally resolved UV/Vis spectroscopy with time-dependent density functional based tight binding.

    Science.gov (United States)

    Rüger, Robert; Niehaus, Thomas; van Lenthe, Erik; Heine, Thomas; Visscher, Lucas

    2016-11-14

    We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the adiabatic Hessian Franck-Condon method with a harmonic approximation for the nuclear wavefunction. The theory of vibrationally resolved UV/Vis spectroscopy is first summarized from the viewpoint of TD-DFTB. The method is benchmarked against time-dependent density functional theory (TD-DFT) calculations for strongly dipole allowed excitations in various aromatic and polar molecules. Using the recent 3ob:freq parameter set of Elstner's group, very good agreement with TD-DFT calculations using local functionals was achieved.

  12. Oxidation of municipal wastewater by free radicals mechanism. A UV/Vis spectroscopy study.

    Science.gov (United States)

    Giannakopoulos, E; Isari, E; Bourikas, K; Karapanagioti, H K; Psarras, G; Oron, G; Kalavrouziotis, I K

    2017-06-15

    This study investigates the oxidation of municipal wastewater (WW) by complexation with natural polyphenols having radical scavenging activity, such as (3,4,5 tri-hydroxy-benzoic acid) gallic acid (GA) in alkaline pH (>7), under ambient O2 and temperature. Physicochemical and structural characteristics of GA-WW complex-forming are evaluated by UV/Vis spectroscopy. The comparative analysis among UV/Vis spectra of GA monomer, GA-GA polymer, WW compounds, and GA-WW complex reveals significant differences within 350-450 and 500-900 nm. According to attenuated total reflectance (ATR) spectroscopy and thermogravimetric analysis (TGA), these spectra differences correspond to distinct complexes formed. This study suggests a novel role of natural polyphenols on the degradation and humification of wastes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. [Photochemical reaction types of the azole fungicide fluconazole under UV-vis irradiation].

    Science.gov (United States)

    Ge, Lin-Ke; Li, Kai; Yang, Kai; Na, Guang-Shui; Yu, Chun-Yan; Zhang, Peng; Yao, Zi-Wei

    2013-08-01

    This study selected the azole fungicide fluconazole as a model compound, and investigated its photodegradation kinetics and photoreaction types in pure water. It was found that under UV-vis irradiation (lambda > 200 nm), the fluconazole photodegraded fast and followed the pseudo-first-order kinetics, whereas under simulated sunlight (lambda > 290 nm), photodegradation did not occur. The ROS scavenging experiments and competition kinetic examination indicated that the compound underwent both direct photolysis and self-sensitized photooxidation via *OH other than 1O2. The bimolecular rate constant for the reaction between fluconazole and *OH was (5.95 +/- 0.58) x 10(9) L x (mol x s)(-1), and the corresponding environmental half-life was calculated to be (32.41 +/- 3.16) h in surface waters. Furthermore, it was deduced from the photodegradation product identification that the UV-vis degradation pathways involved photoinduced defluorination, hydrolysis and photooxidation.

  14. X-ray diffraction, FTIR, UV-VIS and SEM studies on chromium (III) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Ashutosh; Dwivedi, Jagrati, E-mail: hemu.dwi@gmail.com; Shukla, Kritika [School of Physics, Devi Ahilya University, Khandwa Road, Indore-452001 (India)

    2015-06-24

    Five Chromium (III) complexes have been prepared using Schiff base ligands which derived from benzoin and five different amino acids (H{sub 2}N-R). Samples were characterized by XRD, FTIR, UV-VIS and SEM method. X-Ray diffraction pattern analyzed that all chromium (III) complexes have hexagonal structure and crystalline, in nature, using Bruker D8 Advance instrument. Using VERTAX 70, FTIR spectroscopy reveals that Samples have (C=N), (C-O), (M-N) and (M-O) bonds in the range of 4000-400cm{sup −1}. UV-VIS spectroscopy give information that samples absorb the visible light which is in the range of 380-780nm. For this, Lambda 960 spectrometer used. SEM is designed for studying of the solid objects, using JEOL JSM 5600 instrument.

  15. Synthesis, FTIR, UV-Vis and Photoluminescence characterizations of triethanolamine passivated CdO nanostructures.

    Science.gov (United States)

    Anandhan, K; Thilak Kumar, R

    2015-10-05

    In this study, triethanolamine (TEOA) capped CdO nanostructures had been synthesized by wet chemical method annealed at 648K were reported. The structural, morphological and optical properties of the samples were studied by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) with energy dispersive spectra (EDS) analysis, Fourier transform infrared (FTIR) spectroscopy, UV-Vis spectroscopy and Photoluminescence (PL) techniques. The XRD spectrum showed that all the samples were cubic in structure. The presence of functional groups and chemical bonding had been confirmed by FTIR. UV-Vis measurements showed decreased band gap energy for TEOA capped CdO, when compared with uncapped CdO. The PL spectra of the CdO systems showed the red emission. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. EPR and UV-vis studies of biomimetic complexes of molybdoenzyme and tungstoenzyme

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The Mo(Ⅴ) and W(Ⅵ) complexes of (NH3CH2- CH2NH2)3[Mo(Ⅴ)O2(OC6H4O)2] (1), (NH3CH2CH2NH2)2.5 [Mo(Ⅴ) 0.5W(Ⅵ)0.5O2(OC6H4O)2] (2) and (NH3CH2CH2NH2)2- [W(Ⅵ)O2(OC6H4O)2] (3) were synthesized by choosing catechol ligand which shows a good reductive property and taking advantage of EMo > EW. Their EPR and UV-vis spectra were compared with the oxidized UV-vis spectra of xanthine dehydrogenase from chicken liver and xanthine oxidase from milk and the EPR spectrum of flavoenzyme from milk.

  17. UV-VIS spectroscopic study of one pot synthesized strontium oxide quantum dots

    Science.gov (United States)

    Nemade, K. R.; Waghuley, S. A.

    The properties of drastically change when matter makes transition from 1D, 2D, 3D, to 0D. The quantum dots (QDs) of strontium oxide (SrO) were synthesized by one pot chemical precipitation method using hexamethylenetetramine (HMT). The radius of SrO QDs was calculated from hyperbolic band model (HBM). The direct and indirect band gaps of SrO QDs were estimated from UV-VIS analysis. The particle size was found to be 2.48 nm. The quantum confinement effect in SrO QDs is discussed through exciton Bohr radius. The particle size from UV-VIS analysis is in excellent agreement with fluorescence and TEM.

  18. Determination of polyphenolic compounds of red wines by UV-VIS-NIR spectroscopy and chemometrics tools.

    Science.gov (United States)

    Martelo-Vidal, M J; Vázquez, M

    2014-09-01

    Spectral analysis is a quick and non-destructive method to analyse wine. In this work, trans-resveratrol, oenin, malvin, catechin, epicatechin, quercetin and syringic acid were determined in commercial red wines from DO Rías Baixas and DO Ribeira Sacra (Spain) by UV-VIS-NIR spectroscopy. Calibration models were developed using principal component regression (PCR) or partial least squares (PLS) regression. HPLC was used as reference method. The results showed that reliable PLS models were obtained to quantify all polyphenols for Rías Baixas wines. For Ribeira Sacra, feasible models were obtained to determine quercetin, epicatechin, oenin and syringic acid. PCR calibration models showed worst reliable of prediction than PLS models. For red wines from mencía grapes, feasible models were obtained for catechin and oenin, regardless the geographical origin. The results obtained demonstrate that UV-VIS-NIR spectroscopy can be used to determine individual polyphenolic compounds in red wines.

  19. Spectroscopic (vibrational, NMR and UV-vis.) and quantum chemical investigations on 4-hexyloxy-3-methoxybenzaldehyde.

    Science.gov (United States)

    Abbas, Ashgar; Gökce, Halil; Bahçeli, Semiha

    2016-01-05

    In this study, the 4-hexyloxy-3-methoxybenzaldehyde compound as one of the derivatives of vanillin which is a well known flavoring agent, C14H20O3, has been investigated by experimentally and extensively utilizing density functional theory (DFT) at the B3LYP/6-311++G(d,p) level. In this context, the optimized geometry, vibrational frequencies, (1)H and (13)C NMR chemical shifts, UV-vis. (in gas phase and in methanol solvent) spectra, HOMO-LUMO analysis, molecular electrostatic potential (MEP), thermodynamic parameters and atomic charges of 4-hexyloxy-3-methoxybenzaldehyde have been calculated. In addition, theoretically predicted IR, Raman and UV-vis. (in gas phase and in methanol solvent) spectra of the mentioned molecule have been constructed. The results calculated were compared with the experimental data.

  20. Spectral modeling for the Chelyabinsk meteorite at UV-Vis-NIR wavelengths

    Science.gov (United States)

    Martikainen, Julia; Penttilä, Antti; Kohout, Tomas; Suhonen, Heikki; Huotari, Simo; Muinonen, Karri

    2016-10-01

    Asteroids provide us information on the evolution of the Solar System. Meteorites and asteroids can be linked by matching their respective reflectance spectra. However, this is difficult because the spectral features depend strongly on the surface properties. To better interpret the spectra, we need to gain more knowledge of the light-scattering physics involved.We develop a new light-scattering code based on SIRIS-code (Muinonen et al., JQSRT 110, 2009), which simulates light scattering by Gaussian-random-sphere particles that are large compared to the wavelength of the incident light. SIRIS is able to simulate ray optics, diffraction, and geometric ray optics, which utilizes ray optics that accounts for diffuse scattering. The diffuse scatterers can be uniformly distributed inside or cover the surface of the particle. The new code uses inhomogeneous waves to simulate light scattering by absorbing particles.The University of Helsinki integrating-sphere spectrometer has been utilized to measure the reflectance spectra of three lithologies of the Chelyabinsk meteorite (light-colored, dark-colored, and impact-melt) at UV-Vis-NIR wavelengths (0.25-3.2 microns). Microtomography images of the light-colored and the dark-colored lithologies have also been taken. The light-colored lithology has the highest reflectance and shows broad absorption bands of olivine and pyroxene near 1.0 and 2.0 microns. The dark-colored lithology has a flat spectrum with diminished intensity. The impact-melt lithology is somewhere between the light-colored and dark-colored lithologies in terms of its spectrum (Kohout et al., Icarus 228, 2013). The differences in the spectra are caused by different patterns of iron and iron sulfides in the samples that can be seen in the microtomography and scanning electron microscope images. We utilize the new light-scattering code to model the effects of iron and iron sulfides in the spectra of the three lithologies of the Chelyabinsk meteorite by entering

  1. In situ EPR and UV-vis spectroelectrochemistry of hole-transporting organic substrates

    Science.gov (United States)

    Rapta, Peter; Fáber, René; Dunsch, Lothar; Neudeck, Andreas; Nuyken, Oskar

    2000-02-01

    A newly developed in situ electron paramagnetic resonance (EPR)/ultraviolet-visible (UV-vis) spectroelectrochemical cell equipped with a laminated indium-tin oxide (ITO) working electrode was used in the investigation of various organic substrates which are potential hole-transporting materials. The experiment demonstrated the possibility of using such a technique for examining redox behavior of conducting polymers (polypyrrole, PPy), oligomers (thiophene dimmer and quarterthiophene) and bis-anilines (N,N,N',N'-tetraphenylbenzidine, TPB). All investigated structures formed stable paramagnetic intermediates in the first oxidation step characterised with UV-vis spectra in the region 400-600 nm. In the second oxidation step EPR-silent di-cationic structures are formed with broad vis bands in the region 600-1000 nm. The measurement of the reference UV-vis spectra direct in the EPR cavity was possible using a specially-constructed non-contacted ITO plate in the spectroelectrochemical cell in the case of polypyrrole.

  2. Examples of UV-Vis profiles use as tool for evidence of the metallophthalocyanines transformation

    Science.gov (United States)

    Kubiak, Ryszard; Dyrda, Gabriela; Ejsmont, Krzysztof

    2017-02-01

    The UV-Vis spectra for a set of MPcs (Mmetal, Pc = phthalocyanine ligand), i.e.: In(III)PcI (1), Hf(IV)PcI2Pht (Pht = phthalonitrile) (2), Sn(II)Pc (3), Sn(IV)PcI2(4), and Ge(IV)PcI2(5) have been examined in two solvents, O-donative acetylacetone, and non-coordinative benzene. The UV-Vis spectra in Hacac solution of 1,2 and 4,5 shows that the axially ligated iodine atoms are replaced by (acac)- anions of the solvent, whereas in 3 the oxygen donors of the solvent causing the auto-oxidation of Sn(II) to Sn(IV) ions and as a result the Sn(II)Pc is transformed into the Sn(IV)Pc(acac)2. The chloride complexes of the 1-5 compounds are formed at Hacac solution after acidification by hydrochloric acid, however each compound solution behaviors specifically. The UV-Vis spectra collected for the studied compounds at benzene solvent both before and after the solution acidization clearly indicate that the respective Q band character (besides 3) remains practically unchanged. The presence of the Cl- ions at the Sn(II)Pc solution in benzene results in the formation of Sn(IV)PcCl2.

  3. The Advantages of the Use of Ion- Selective Potentiometry in Relation to UV/VIS Spectroscopy

    Directory of Open Access Journals (Sweden)

    Amra Bratovčić

    2009-12-01

    Full Text Available Electro analytical methods have a long history of development. Ion-selective potentiometry is one of the electro analytical methods. There are some advantages of the use of Ion selective potentiometry (ISP which is accurate, fast, economic and sensitive in relation to the standard method, UV/VIS spectroscopy. The development of potentiometric ion-selective electrodes is a very interesting field because it has a wide range of applications in determining ions in water and other mediums. The use of ion-selective electrodes enables the determination of ion species in a trace. Ion-selective electrodes are suitable for analysis in industry, for control processes, for physiological measurements and environmental monitoring. In recent years it was used for the determination of many ions in the food industry such as determination of calcium in milk products, fruit juice and different kinds of vegetables. In our experiment measurement of bottled water using ISP showed lower level of fluoride compared to measurement by UV/ VIS spectroscopy. This results confirmed higher sensitivity of ISE in reference to UV/VIS spectroscopy. By our experimental data we can conclude that the concentration in examined sample was within the allowed concentration according to World Health Organisation

  4. [Study on the determination of permanganate index by UV-Vis spectrometry].

    Science.gov (United States)

    Jiang, Shao-Jie; Shi, Fu-Rong; Zheng, Huai-Li

    2009-08-01

    Permanganate index is an important parameter to evaluate the organic pollution for water sources, and the current national standard method is titration analysis which needs large sample and is complicated. A new analytical method of measuring permanganate index in surface water using UV-Vis spectrometry has thus been studied. In the laboratory work, analytical wave-length of UV-Vis spectrometry was chosen. The effect of sulfuric acid dosage, concentration and dosage of KMnO4 together with heating temperature and time was identified. In order to evaluate this new method, the linear relationship of this method was tested and the analysis results were compared with those by titration method. The selected optimum analysis parameters were: 525 nm wavelength, 25% H2SO4 dosage of 5.00 mL, 0.012 50 mol x L(-1) KMnO4 dosage of 2.00 mL, 30 min heating time at the temperature of 100 degrees C. This UV-Vis spectrometry method was successfully applied to measuring the permanganate index of the samples collected from the Jialing River and the Yangtze River. Compared with the current national standard method, this method is time and cost efficient, sensitive and precise, with low reagent usage; and is also easy to be manipulated and can be employed for online monitor, thus making it an environmental friendly analysing method.

  5. Artificial neural network associated to UV/Vis spectroscopy for monitoring bioreactions in biopharmaceutical processes.

    Science.gov (United States)

    Takahashi, Maria Beatriz; Leme, Jaci; Caricati, Celso Pereira; Tonso, Aldo; Fernández Núñez, Eutimio Gustavo; Rocha, José Celso

    2015-06-01

    Currently, mammalian cells are the most utilized hosts for biopharmaceutical production. The culture media for these cell lines include commonly in their composition a pH indicator. Spectroscopic techniques are used for biopharmaceutical process monitoring, among them, UV-Vis spectroscopy has found scarce applications. This work aimed to define artificial neural networks architecture and fit its parameters to predict some nutrients and metabolites, as well as viable cell concentration based on UV-Vis spectral data of mammalian cell bioprocess using phenol red in culture medium. The BHK-21 cell line was used as a mammalian cell model. Off-line spectra of supernatant samples taken from batches performed at different dissolved oxygen concentrations in two bioreactor configurations and with two pH control strategies were used to define two artificial neural networks. According to absolute errors, glutamine (0.13 ± 0.14 mM), glutamate (0.02 ± 0.02 mM), glucose (1.11 ± 1.70 mM), lactate (0.84 ± 0.68 mM) and viable cell concentrations (1.89 10(5) ± 1.90 10(5) cell/mL) were suitably predicted. The prediction error averages for monitored variables were lower than those previously reported using different spectroscopic techniques in combination with partial least squares or artificial neural network. The present work allows for UV-VIS sensor development, and decreases cost related to nutrients and metabolite quantifications.

  6. A multi-input UV-VIS airborne GASCOD/A4r spectroradiometer for the validation of satellite remote sensing measurements

    Directory of Open Access Journals (Sweden)

    G. Pace

    2006-06-01

    Full Text Available The present paper describes a UV-VIS spectroradiometer named GASCOD/A4r developed at ISAC-CNR for remote sensing measurements aboard stratospheric M55-Geophysica aircraft, flying up to 21 km. Obtained experimental data are used for retrieving of NO2, O3 and of other minor gases atmospheric content, applying the DOAS (Differential Optical Absorption Spectroscopy method. UV actinic flux and J(NO2 are also derived. All these parameters are used for satellite data validation tasks. The specific results obtained during dedicated aircraft missions in different geographical areas have already been utilized for ENVISAT validation.

  7. A multi-input UV-VIS airborne GASCOD/A4r spectroradiometer for the validation of satellite remote sensing measurements

    OpenAIRE

    Pace, G.; F. Ravegnani; Petritoli, A.; Bortoli, D.; G. Giovanelli; Kostadinov, I.; Palazzi, E

    2006-01-01

    The present paper describes a UV-VIS spectroradiometer named GASCOD/A4r developed at ISAC-CNR for remote sensing measurements aboard stratospheric M55-Geophysica aircraft, flying up to 21 km. Obtained experimental data are used for retrieving of NO2, O3 and of other minor gases atmospheric content, applying the DOAS (Differential Optical Absorption Spectroscopy) method. UV actinic flux and J(NO2) are also derived. All these parameters are used for satellite data validation tasks. The specific...

  8. UV-Vis spectroscopic study and DFT calculation on the solvent effect of trimethoprim in neat solvents and aqueous mixtures.

    Science.gov (United States)

    Almandoz, M C; Sancho, M I; Duchowicz, P R; Blanco, S E

    2014-08-14

    The solvatochromic behavior of trimethoprim (TMP) was analyzed using UV-Vis spectroscopy and DFT methods in neat and binary aqueous solvent mixtures. The effects of solvent dipolarity/polarizability and solvent-solute hydrogen bonding interactions on the absorption maxima were evaluated by means of the linear solvation energy relationship concept of Kamlet and Taft. This analysis indicated that both interactions play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra of TMP and TMP:(solvent)n complexes in ACN and H2O using TD-DFT methods were in agreement with the experimental ones. Binary aqueous mixtures containing as co-solvents DMSO, ACN and EtOH were studied. Preferential solvation was detected as a nonideal behavior of the wavenumber curve respective to the analytical mole fraction of co-solvent in all binary systems. TMP molecules were preferentially solvated by the organic solvent over the whole composition range. Index of preferential solvation, as well as the influence of solvent parameters were calculated as a function of solvent composition.

  9. [Using UV-Vis Absorbance for Characterization of Maturity in Composting Process with Different Materials].

    Science.gov (United States)

    Zhao, Yue; Wei, Yu-quan; Li, Yang; Xi, Bei-dou; Wei, Zi-min; Wang, Xing-lei; Zhao, Zhi-nan; Ding, Jei

    2015-04-01

    The present study was conducted to assess the degree of humification in DOM during composting using different raw materials, and their effect on maturity of compost based on UV-Vis spectra measurements and chemometrics method. The raw materials of composting studied included chicken manure, pig manure, kitchen waste, lawn waste, fruits and vegetables waste, straw waste, green waste, sludge, and municipal solid waste. During composting, the parameters of UV-Vis spectra of DOM, including SUVA254 , SUVA280 , E250/E365, E4/E6, E2/E4, E2/E6, E253/E203, E253/E220, A226-400, S275-295 and S350-400 were calculated, Statistical analysis indicated that all the parameter were significantly changed during composting. SUVA254 and SUVA280 of DOM were continuously increased, E250/E365 and E4/E6 were continuously decreased in DOM, while A226-400, S275-295 and S350-400 of DOM at the final stage were significantly different with those at other stages of composting. Correlation analysis indicated that the parameters were significantly correlated with each other except for E2/E4 and E235/E203. Furthermore, principal component analysis suggested that A226-400, SUVA254, S350-400, SUVA280 and S275~295 were reasonable parameters for assessing the compost maturity. To distinguish maturity degree among different composts, hierarchical cluster analysis, an integrated tool utilizing multiple UV-Vis parameters, was performed based on the data (A226-400, SUVA254, S350-400, SUVA280 and S275-295) of DOM derived from the final stage of composting. Composts from different sources were clustered into 2 groups. The first group included chicken manure, pig manure, lawn waste, fruits and vegetables waste, green waste, sludge, and municipal solid waste characterized by a lower maturity degree, and the second group contained straw waste and kitchen waste associated with a higher maturity degree. The above results suggest that a multi-index of UV-Vis spectra could accurately evaluate the compost maturity

  10. Charge-Transfer Complexes and Photochemistry of Ozone with Ferrocene and n-Butylferrocene: A UV-vis Matrix-Isolation Study.

    Science.gov (United States)

    Pinelo, Laura F; Kugel, Roger W; Ault, Bruce S

    2015-10-15

    The reactions of ozone with ferrocene (cp2Fe) and with n-butylferrocene (n-butyl cp2Fe) were studied using matrix isolation, UV-vis spectroscopy, and theoretical calculations. The codeposition of cp2Fe with O3 and of n-butyl cp2Fe with O3 into an argon matrix led to the production of 1:1 charge-transfer complexes with absorptions at 765 and 815 nm, respectively. These absorptions contribute to the green matrix color observed upon initial deposition. The charge-transfer complexes underwent photochemical reactions upon irradiation with red light (λ ≥ 600 nm). Theoretical UV-vis spectra of the charge-transfer complexes and photochemical products were calculated using TD-DFT at the B3LYP/6-311G++(d,2p) level of theory. The calculated UV-vis spectra were in good agreement with the experimental results. MO analysis of these long-wavelength transitions showed them to be n→ π* on the ozone subunit in the complex and indicated that the formation of the charge-transfer complex between ozone and cp2Fe or n-butyl cp2Fe affects how readily the π* orbital on O3 is populated when red light (λ ≥ 600 nm) is absorbed. 1:1 complexes of cp2Fe and n-butyl cp2Fe with O2 were also observed experimentally and calculated theoretically. These results support and enhance previous infrared studies of the mechanism of photooxidation of ferrocene by ozone, a reaction that has considerable significance for the formation of iron oxide thin films for a range of applications.

  11. Raman and UV-Vis Spectroscopy Applied to the Analysis of Liver Tissues from Rats with Myocardial Ischemia Induced by Isoproterenol

    Institute of Scientific and Technical Information of China (English)

    GAO Hai-cheng; ZOU Ying-gang; HUANG Yu-xin; GAO Hai-mei; CHEN Lei; PEI Jin

    2011-01-01

    The application of the laser Raman spectroscopic(LRS) technique for the analysis of liver tissues from rats with myocardial ischemia induced by isoproterenol(ISO) was described.Animal model of myocardial ischemia was established for rats induced by ISO.Rats were randomly divided into four groups as normal group and myocardial ischemia groups.We observed the successful myocardial ischemia model via serum enzymes levels and hematoxylin-eosin(HE) staining,and detected the liver tissue of the rats from normal group and liver tissue of the rats from myocardial ischemia groups via UV-Vis spectroscopy(UV-Vis) and LRS,and the changes of the absorbance spectra were compared in the above four different groups.The results show that ISO can induce rat myocardial ischemia successfully.The spectrum of normal liver tissue supernatant exhibits a strong absorption band at 968 nm,but no absorption band appears in the spectra of liver tissue supernatant solutions from the rats with myocardial ischemia induction after 2,12 and 72 h presented at 968 nm.LRS results show that Raman intensities of the precipitates suffered from ISO-treatment after 2,12 and 72 h were obviously increased compared with that of the precipitate of the liver tissue of the normal rats suffered from 0.9 g/L normal saline(NS) treatment.These results indicate that LRS and UV-Vis can be harmless,nondestructive,rapid and effective methods for analyzing different pathological specimens of liver tissue from myocardial ischemia rats.

  12. Complexation between dodecyl sulfate surfactant and zein protein in solution.

    Science.gov (United States)

    Ruso, Juan M; Deo, Namita; Somasundaran, P

    2004-10-12

    Interactions between sodium dodecyl sulfate and zein protein, a model system for the understanding of the effect of surfactants on skin, were investigated using a range of techniques involving UV-vis spectroscopy, TOC (total organic carbon analysis), electrophoresis, and static and dynamic light scattering. Zein protein was solubilized by SDS. The adsorption of SDS onto insoluble protein fraction caused the zeta potential of the complex to become more negative. From these values, we calculated the Gibbs energy of absorption, which decreases when the SDS concentration is raised. Finally the structure of the complex, based on the analysis by static and dynamic light scattering, is proposed to be rod like.

  13. Inline UV-Vis spectroscopy to monitor and optimize cleaning-in-place (CIP) of whey filtration plants

    DEFF Research Database (Denmark)

    Berg, Thilo Heinz Alexander; Ottosen, Niels; van der Berg, Franciscus Winfried J.

    2017-01-01

    used for every day. We investigated the capability of inline UV-Vis spectroscopy to elucidate the dynamics of CIP of membrane filtration plants as a gateway to control and optimize the process. For this investigation aged membranes that had been used for industrial ultrafiltration of whey were...... transferred to a pilot plant equipped with inline UV-Vis spectroscopy on both the retentate and permeate side. Then the dynamics of multiple fouling and cleaning of these membranes were investigated. The results indicate that the first CIP step, caustic cleaning could be shortened and possibly reduced...... in concentration. The second step of CIP, enzymatic cleaning, seems to be active even longer than the anticipated time. Challenges, first findings and future steps of full scale inline UV-Vis spectroscopy are discussed. We conclude that inline UV-Vis spectroscopy can be used to optimize the processing time, energy...

  14. Using UHPLC and UV-vis fingerprint method to evaluate substitutes for Swertia mileensis: An endangered medicinal plant

    Directory of Open Access Journals (Sweden)

    Jie Li

    2017-01-01

    Abbreviation used: UHPLC: Ultra high performance liquid chromatography, UV-vis: Ultraviolet-vis, HBV: Anti-hepatitis virus, DNA: Deoxyribonucleic acid, PCA: Principal component analysis, D-GaIN: D-Galactosamine, BCG: Bacille Calmette-Guerin, LPS: Lipopolysaccharide

  15. Solvent dependency of the UV-Vis spectrum of indenoisoquinolines: role of keto-oxygens as polarity interaction probes.

    Directory of Open Access Journals (Sweden)

    Andrea Coletta

    Full Text Available Indenoisoquinolines are the most promising non-campthotecins topoisomerase IB inhibitors. We present an integrated experimental/computational investigation of the UV-Vis spectra of the IQNs parental compound (NSC314622 and two of its derivatives (NSC724998 and NSC725776 currently undergoing Phase I clinical trials. In all the three compounds a similar dependence of the relative absorption intensities at 270 nm and 290 nm on solvent polarity is found. The keto-oxygens in positions 5 and 11 of the molecular scaffold of the molecule are the principal chromophores involved in this dependence. Protic interactions on these sites are also found to give rise to absorptions at wavelength <250 nm observed in water solution, due to the stabilization of highly polarized tautomers of the molecule. These results suggest that the keto-oxygens are important polarizable groups that can act as useful interactors with the molecular receptor, providing at the same time an useful fingerprint for the monitoring of the drug binding to topoisomerase IB.

  16. Synthesis and Study of Optical Properties of Graphene/TiO2 Composites Using UV-VIS Spectroscopy

    Science.gov (United States)

    Rathod, P. B.; Waghuley, S. A.

    2016-09-01

    Graphene and TiO2 were synthesized using electrochemical exfoliation and co-precipitation methods, respectively. An ex situ approach was adopted for the graphene/TiO2 composites. The conformation of graphene in the TiO2 samples was examined through X-ray diffraction. Optical properties of the as-synthesised composites such as optical absorption, extinction coefficient, refractive index, real dielectric constant, imaginary dielectric constant, dissipation factor, and optical conductivity were measured using UV-Vis spectroscopy. The varying concentration of graphene in TiO2 affects the optical properties which appear different for 10 wt.% as compared to 5 wt.% graphene/ TiO2 composite. The composites exhibit an absorption peak at 300 nm with a decrease in band gap for 10 wt.% as compared to 5 wt.% graphene/TiO2 composite. The maximum optical conductivity for the graphene/TiO2 composite of 10 wt.% was found to be 1.86·10-2 Ω-1·m-1 at 300 nm.

  17. Raman, IR, UV-vis and EPR characterization of two copper dioxolene complexes derived from L-dopa and dopamine.

    Science.gov (United States)

    Barreto, Wagner J; Barreto, Sônia R G; Ando, Rômulo A; Santos, Paulo S; DiMauro, Eduardo; Jorge, Thiago

    2008-12-15

    The anionic complexes [Cu(L(1-))3](1-), L(-)=dopasemiquinone or L-dopasemiquinone, were prepared and characterized. The complexes are stable in aqueous solution showing intense absorption bands at ca. 605 nm for Cu(II)-L-dopasemiquinone and at ca. 595 nm for Cu(II)-dopasemiquinone in the UV-vis spectra, that can be assigned to intraligand transitions. Noradrenaline and adrenaline, under the same reaction conditions, did not yield Cu-complexes, despite the bands in the UV region showing that noradrenaline and adrenaline were oxidized during the process. The complexes display a resonance Raman effect, and the most enhanced bands involve ring modes and particularly the nuCC+nuCO stretching mode at ca. 1384 cm(-1). The free radical nature of the ligands and the oxidation state of the Cu(II) were confirmed by the EPR spectra that display absorptions assigned to organic radicals with g=2.0005 and g=2.0923, and for Cu(II) with g=2.008 and g=2.0897 for L-dopasemiquinone and dopasemiquinone, respectively. The possibility that dopamine and L-dopa can form stable and aqueous-soluble copper complexes at neutral pH, whereas noradrenaline and adrenaline cannot, may be important in understanding how Cu(II)-dopamine crosses the cellular membrane as proposed in the literature to explain the role of copper in Wilson disease.

  18. TDDFT study of UV-vis spectra of permethrin, cypermethrin and their beta-cyclodextrin inclusion complexes: a comparison of dispersion correction DFT (DFT-D3) and DFT.

    Science.gov (United States)

    Chen, Feifei; Wang, Yujiao; Xie, Xiaomei; Chen, Meng; Li, Wei

    2014-07-15

    A comparative study of DFT and DFT-D3 has been carried out on the UV-vis absorption of permethrin, cypermethrin and their β-cyclodextrin inclusion complexes. The TDDFT method with PCM (or COSMO) model was adopted and B3LYP, BLYP and BLYP-D3 functionals were selected. Comparing the simulated spectra with experimental one, we can notice that pure BLYP functional can better reproduce the UV-vis spectra than hybrid B3LYP, but empirical dispersion corrections BLYP-D3 has better performance than BLYP. BLYP-D3 calculations reveal that the main absorption bands of permethrin and cypermethrin arise from the π→π(*) transition, after encapsulated by β-CD to form inclusion complexes, the host-guest intermolecular charge transfer (ICT) makes the main absorption bands to be changed significantly in wavelength and intensity.

  19. Enhanced photocatalytic activity for H2 evolution under irradiation of UV-vis light by Au-modified nitrogen-doped TiO2.

    Science.gov (United States)

    Zhao, Weirong; Ai, Zhuyu; Dai, Jiusong; Zhang, Meng

    2014-01-01

    Photocatalytic water splitting for hydrogen evolution is a potential way to solve many energy and environmental issues. Developing visible-light-active photocatalysts to efficiently utilize sunlight and finding proper ways to improve photocatalytic activity for H2 evolution have always been hot topics for research. This study attempts to expand the use of sunlight and to enhance the photocatalytic activity of TiO2 by N doping and Au loading. Au/N-doped TiO2 photocatalysts were synthesized and successfully used for photocatalytic water splitting for H2 evolution under irradiation of UV and UV-vis light, respectively. The samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), and photoelectrochemical characterizations. DRS displayed an extension of light absorption into the visible region by doping of N and depositing with Au, respectively. PL analysis indicated electron-hole recombination due to N doping and an efficient inhibition of electron-hole recombination due to the loaded Au particles. Under the irradiation of UV light, the photocatalytic hydrogen production rate of the as-synthesized samples followed the order Au/TiO2 > Au/N-doped TiO2 > TiO2 > N-doped TiO2. While under irradiation of UV-vis light, the N-TiO2 and Au/N-TiO2 samples show higher H2 evolution than their corresponding nitrogen-free samples (TiO2 and Au/TiO2). This inconsistent result could be attributed to the doping of N and the surface plasmonic resonance (SPR) effect of Au particles extending the visible light absorption. The photoelectrochemical characterizations further indicated the enhancement of the visible light response of Au/N-doped TiO2. Comparative studies have shown that a combination of nitrogen doping and Au loading enhanced the visible light response of TiO2 and increased the utilization of solar energy, greatly

  20. Enhanced photocatalytic activity for H2 evolution under irradiation of UV-vis light by Au-modified nitrogen-doped TiO2.

    Directory of Open Access Journals (Sweden)

    Weirong Zhao

    Full Text Available BACKGROUND PURPOSE: Photocatalytic water splitting for hydrogen evolution is a potential way to solve many energy and environmental issues. Developing visible-light-active photocatalysts to efficiently utilize sunlight and finding proper ways to improve photocatalytic activity for H2 evolution have always been hot topics for research. This study attempts to expand the use of sunlight and to enhance the photocatalytic activity of TiO2 by N doping and Au loading. METHODS: Au/N-doped TiO2 photocatalysts were synthesized and successfully used for photocatalytic water splitting for H2 evolution under irradiation of UV and UV-vis light, respectively. The samples were characterized using X-ray diffraction (XRD, transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, UV-vis diffuse reflectance spectroscopy (DRS, photoluminescence spectroscopy (PL, and photoelectrochemical characterizations. RESULTS: DRS displayed an extension of light absorption into the visible region by doping of N and depositing with Au, respectively. PL analysis indicated electron-hole recombination due to N doping and an efficient inhibition of electron-hole recombination due to the loaded Au particles. Under the irradiation of UV light, the photocatalytic hydrogen production rate of the as-synthesized samples followed the order Au/TiO2 > Au/N-doped TiO2 > TiO2 > N-doped TiO2. While under irradiation of UV-vis light, the N-TiO2 and Au/N-TiO2 samples show higher H2 evolution than their corresponding nitrogen-free samples (TiO2 and Au/TiO2. This inconsistent result could be attributed to the doping of N and the surface plasmonic resonance (SPR effect of Au particles extending the visible light absorption. The photoelectrochemical characterizations further indicated the enhancement of the visible light response of Au/N-doped TiO2. CONCLUSION: Comparative studies have shown that a combination of nitrogen doping and Au loading enhanced the visible light response of

  1. Discrimination of Apple Liqueurs (Nalewka Using a Voltammetric Electronic Tongue, UV-Vis and Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Magdalena Śliwińska

    2016-10-01

    Full Text Available The capability of a phthalocyanine-based voltammetric electronic tongue to analyze strong alcoholic beverages has been evaluated and compared with the performance of spectroscopic techniques coupled to chemometrics. Nalewka Polish liqueurs prepared from five apple varieties have been used as a model of strong liqueurs. Principal Component Analysis has demonstrated that the best discrimination between liqueurs prepared from different apple varieties is achieved using the e-tongue and UV-Vis spectroscopy. Raman spectra coupled to chemometrics have not been efficient in discriminating liqueurs. The calculated Euclidean distances and the k-Nearest Neighbors algorithm (kNN confirmed these results. The main advantage of the e-tongue is that, using PLS-1, good correlations have been found simultaneously with the phenolic content measured by the Folin–Ciocalteu method (R2 of 0.97 in calibration and R2 of 0.93 in validation and also with the density, a marker of the alcoholic content method (R2 of 0.93 in calibration and R2 of 0.88 in validation. UV-Vis coupled with chemometrics has shown good correlations only with the phenolic content (R2 of 0.99 in calibration and R2 of 0.99 in validation but correlations with the alcoholic content were low. Raman coupled with chemometrics has shown good correlations only with density (R2 of 0.96 in calibration and R2 of 0.85 in validation. In summary, from the three holistic methods evaluated to analyze strong alcoholic liqueurs, the voltammetric electronic tongue using phthalocyanines as sensing elements is superior to Raman or UV-Vis techniques because it shows an excellent discrimination capability and remarkable correlations with both antioxidant capacity and alcoholic content—the most important parameters to be measured in this type of liqueurs.

  2. Discrimination of Apple Liqueurs (Nalewka) Using a Voltammetric Electronic Tongue, UV-Vis and Raman Spectroscopy.

    Science.gov (United States)

    Śliwińska, Magdalena; Garcia-Hernandez, Celia; Kościński, Mikołaj; Dymerski, Tomasz; Wardencki, Waldemar; Namieśnik, Jacek; Śliwińska-Bartkowiak, Małgorzata; Jurga, Stefan; Garcia-Cabezon, Cristina; Rodriguez-Mendez, Maria Luz

    2016-10-09

    The capability of a phthalocyanine-based voltammetric electronic tongue to analyze strong alcoholic beverages has been evaluated and compared with the performance of spectroscopic techniques coupled to chemometrics. Nalewka Polish liqueurs prepared from five apple varieties have been used as a model of strong liqueurs. Principal Component Analysis has demonstrated that the best discrimination between liqueurs prepared from different apple varieties is achieved using the e-tongue and UV-Vis spectroscopy. Raman spectra coupled to chemometrics have not been efficient in discriminating liqueurs. The calculated Euclidean distances and the k-Nearest Neighbors algorithm (kNN) confirmed these results. The main advantage of the e-tongue is that, using PLS-1, good correlations have been found simultaneously with the phenolic content measured by the Folin-Ciocalteu method (R² of 0.97 in calibration and R² of 0.93 in validation) and also with the density, a marker of the alcoholic content method (R² of 0.93 in calibration and R² of 0.88 in validation). UV-Vis coupled with chemometrics has shown good correlations only with the phenolic content (R² of 0.99 in calibration and R² of 0.99 in validation) but correlations with the alcoholic content were low. Raman coupled with chemometrics has shown good correlations only with density (R² of 0.96 in calibration and R² of 0.85 in validation). In summary, from the three holistic methods evaluated to analyze strong alcoholic liqueurs, the voltammetric electronic tongue using phthalocyanines as sensing elements is superior to Raman or UV-Vis techniques because it shows an excellent discrimination capability and remarkable correlations with both antioxidant capacity and alcoholic content-the most important parameters to be measured in this type of liqueurs.

  3. UV-vis spectroscopy and colorimetric models for detecting anthocyanin-metal complexes in plants: An overview of in vitro and in vivo techniques.

    Science.gov (United States)

    Fedenko, Volodymyr S; Shemet, Sergiy A; Landi, Marco

    2017-02-10

    Although anthocyanin (ACN) biosynthesis is one of the best studied pathways of secondary metabolism in plants, the possible physiological and ecological role(s) of these pigments continue to intrigue scientists. Like other dihydroxy B-ring substituted flavonoids, ACNs have an ability to bind metal and metalloid ions, a property that has been exploited for a variety of purposes. For example, the metal binding ability may be used to stabilize ACNs from plant food sources, or to modify their colors for using them as food colorants. The complexation of metals with cyanidin derivatives can also be used as a simple, sensitive, cheap, and rapid method for determination concentrations of several metals in biological and environmental samples using UV-vis spectroscopy. Far less information is available on the ecological significance of ACN-metal complexes in plant-environment interactions. Metalloanthocyanins (protocyanin, nemophilin, commelinin, protodelphin, cyanosalvianin) are involved in the copigmentation phenomenon that leads to blue-pigmented petals, which may facilitate specific plant-pollinator interactions. ACN-metal formation and compartmentation into the vacuole has also been proposed to be part of an orchestrated detoxification mechanism in plants which experience metal/metalloid excess. However, investigations into ACN-metal interactions in plant biology may be limited because of the complexity of the analytical techniques required. To address this concern, here we describe simple methods for the detection of ACN-metal both in vitro and in vivo using UV-vis spectroscopy and colorimetric models. In particular, the use of UV-vis spectra, difference absorption spectra, and colorimetry techniques will be described for in vitro determination of ACN-metal features, whereas reflectance spectroscopy and colorimetric parameters related to CIE L(*)a(*)b(*) and CIE XYZ systems will be detailed for in vivo analyses. In this way, we hope to make this high-informative tool

  4. XRD, lead equivalent and UV-VIS properties study of Ce and Pr lead silicate glasses

    Science.gov (United States)

    Alias, Nor Hayati; Abdullah, Wan Shafie Wan; Isa, Norriza Mohd; Isa, Muhammad Jamal Md; Muhammad, Azali; Zali, Nurazila Mat; Abdullah, Nuhaslinda Ee

    2014-02-01

    In this work, Cerium (Ce) and Praseodymium (Pr) containing lead silicate glasses were produced with 2 different molar ratios low (0.2 wt%) and high (0.4wt%). These types of glasses can satisfy the characteristics required for radiation shielding glasses and minimize the lead composition in glass. The radiation shielding properties of the synthesized glasses is explained in the form of lead equivalent study. The XRD diffraction and UV-VIS analysis were performed to observe the structural changes of the synthesis glasses at 1.5 Gy gamma radiation exposures.

  5. UV-Vis spectrometric detection of biodiesel/diesel blend adulterations with soybean oil

    OpenAIRE

    Fernandes,David D. S.; Gomes,Adriano A.; Fontes,Marcelo M. de; Costa,Gean B. da; Almeida,Valber E. de; Araújo,Mario C. U.; Galvão, Roberto K.H.; Véras,Germano

    2014-01-01

    A method for detecting adulterations of biodiesel/diesel blends (B5) with soybean oil using UV-Vis spectrometry is proposed. The study involves 90 samples comprising B5 blends with and without the addition of soybean oil (0.5 to 2.5% v/v). Suitable discrimination was achieved by using SIMCA (soft independent modeling of class analogy), KNN (K-nearest neighbors), PLS-DA (partial least squares discriminant analysis) and SPA-LDA (linear discriminant analysis with spectral variables selected by t...

  6. Characterization of combustion synthesized zirconia powder by UV-vis, IR and other techniques

    Indian Academy of Sciences (India)

    H Ranjan Sahu; G Ranga Rao

    2000-10-01

    Fine powders of zirconia were prepared by employing combustion method with varying fuel to precursor molar ratios. The zirconia powders contained more amount of monoclinic phase as the fuel content was increased. This aspect was studied using XRD, IR and UV-vis diffuse reflectance techniques. The surface acidbase properties of these samples were also investigated by indicator titration method. The catalytic activity was probed with transfer hydrogenation reaction in liquid phase. It was found that combustion synthesized zirconia did not provide required active sites for transfer hydrogenation reactions in liquid phase unlike hydrous zirconia.

  7. Airborne UV/Vis actinic measurements in the lower Antarctic stratosphere

    Science.gov (United States)

    Kostadinov, Ivan; Ravegnani, Fabrizio; Petritoli, Andrea; Bortoli, Daniele; Masieri, Samuele; Premuda, Margherita; Giovanelli, Giorgio

    2009-09-01

    The present work deals with UV/Vis up-welling and down-welling irradiation measurements carried out in the lower Antarctic stratosphere by means of GASCOD-A/4pi spectroradiometer on board the M55-Geophysica aircraft during the APE-GAIA campaign. Very few such measurements have been performed in the lower stratosphere. The experimental data are used for the calculation of NO2 photodissociation rate coefficients in the upper troposphere and lower stratosphere along the altitude of the flight. A detailed description of the measurement method, instrumentation and calibration procedures is presented. Experimental results are presented and discussed too.

  8. Determinación de MCE mediante espectrofotometría UV-VIS

    OpenAIRE

    Campos, D. H.; Nunes, C. A.; Carmo, L. F.

    2010-01-01

    Este artículo aborda el desarrollo y la validación de un método para la determinación de metoxicinamato de etilhexilo en aceites bronceadores por espectrofotometría UV-Vis. Los parámetros utilizados para la validación mostraron un buen funcionamiento de la metodología propuesta; la misma, se establece, tiene potencial para ser utilizada en laboratorios de control de calidad. Este artigo aborda o desenvolvimento e a validação de um método para a determinação de metoxicinamat...

  9. Monitoring of rain events with a submersible UV/VIS spectrophotometer.

    Science.gov (United States)

    Maribas, Aurélien; Laurent, Nadège; Battaglia, Philippe; do Carmo Lourenço da Silva, Maria; Pons, Marie-Noële; Loison, Bernard

    2008-01-01

    A submersible UV/VIS spectrophotometer has been implemented on the pre-treatment unit of a large-scale wastewater treatment plant (350,000 person-equivalent) to monitor the rapid changes in total Suspended Solids and total Chemical Oxygen Demand occurring during rain events as well as injections of reject water from the sludge treatment train or wasted activated sludge. Calibration has been proven to be difficult for fast composition-varying streams but the device is able to monitor qualitatively sudden quality changes, in spite of the noise affecting the signal.

  10. Determination of total flavonoids in three Sedum crude drugs by UV-Vis spectrophotometry

    Directory of Open Access Journals (Sweden)

    Yujie Chen

    2010-01-01

    Full Text Available A simple, rapid UV-Vis spectrophotometry method for the determination of total flavonoids in Sedum sarmentosum Bunge., S. lineare Thunb., and S. erythrostictum Migo. was developed, with a good linearity, precision, and stability. The detection wavelength was set at 500 nm, and an extraction solvent was optimized. Through the comparative study of multiple samples of the three plant drugs, their collected seasons and the habitats can be preliminarily ascertained, which may help to control the quality of the medicines to some extent.

  11. Study on the coordinative oxidation effect of ferrate and UV-vis/TiO2%高铁酸钾与UV-vis/TiO2协同氧化效应的研究

    Institute of Scientific and Technical Information of China (English)

    郗丽娟; 张瑛洁; 杨文慧; 陈雷; 王禄鹏; 赵徐军; 马军

    2007-01-01

    为研究高铁酸钾与紫外-可见光/二氧化钛(UV-vis/TiO2)光催化的协同氧化效应,以氨氮为目标物,研究了高铁酸钾、UV-vis/TiO2光催化以及高铁酸钾与UV-vis/TiO2光催化联用对水中氨氮的去除效果.结果表明,在高铁酸钾与UV-vis/TiO2光催化联用的条件下,在pH=8.0,温度为室温,反应时间为30 min,氨氮质量浓度50 mg/L,高铁酸钾、TiO2投加质量浓度分别为20、200 mg/L时,水中氨氮的去除率为97.5%,比单独的高铁酸钾或UV-vis/TiO2最大去除率分别提高了22.5%和14.7%.实验还表明,低浓度的高铁酸钾与UV-vis/TiO2光催化体系存在协同氧化效应,但高浓度的高铁酸钾对UV-vis/TiO2光催化体系却存在抑制效应.

  12. Quantum chemical calculations and analysis of FTIR, FT-Raman and UV-Vis spectra of temozolomide molecule

    Science.gov (United States)

    Bhat, Sheeraz Ahmad; Ahmad, Shabbir

    2015-11-01

    A combined experimental and theoretical study of the structure, vibrational and electronic spectra of temozolomide molecule, which is largely used in the treatment of brain tumours, is presented. FTIR (4000-400 cm-1) and FT-Raman spectra (4000‒50 cm-1) have been recorded and analysed using anharmonic frequency calculations using VPT2, VSCF and CC-VSCF levels of theory within B3LYP/6-311++G(d,p) framework. Anharmonic methods give accurate frequencies of fundamental modes, overtones as well as Fermi resonances and account for coupling of different modes. The anharmonic frequencies calculated using VPT2 and CC-VSCF methods show better agreement with the experimental data. Harmonic frequencies including solvent effects are also computed using IEF-PCM model. The magnitudes of coupling between pair of modes have been calculated using coupling integral based on 2MR-QFF approximation. Intermolecular interactions are discussed for three possible dimers of temozolomide. UV-Vis spectrum, examined in ethanol solvent, is compared with the calculated spectrum at TD-DFT/6-311++G(d,p) level of theory. The electronic properties, such as excitation energy, frontier molecular orbital energies and the assignments of the absorption bands are also discussed.

  13. Ornaments in radiation treatment of cultural heritage: Color and UV-vis spectral changes in irradiated nacres

    Science.gov (United States)

    Marušić, Katarina; Pucić, Irina; Desnica, Vladan

    2016-07-01

    Cultural heritage objects that are radiation treated in order to stop their biodegradation often contain ornamenting materials that cannot be removed. Radiation may produce unwanted changes to such materials. Nacre is a common ornamenting material so this is an attempt to assess the impact of gamma-radiation on its optical properties. Two types of nacre (yellow and white) were obtained from a museum and subjected to different absorbed doses of Co-60 gamma irradiation under the same conditions. The radiation induced changes of nacres color were investigated with fiber optic reflectance spectroscopy (FORS). Colorimetry in CIE Lab space revealed that in both nacres the lightness shifted to darker grey hues at high doses while the color component's (red, green, yellow and blue) behavior depended on the nacre type. Observable changes occurred at doses much above the dose range needed for radiation treatment of cultural heritage objects that are often ornamented with nacre. In UV-vis reflectance spectra of samples irradiated to high doses carbonate radical anion absorption appeared.

  14. UV-vis and Raman spectroelectrochemical investigation of the redox behavior of poly(5-cyanoindole) in acidic aqueous solutions

    Science.gov (United States)

    Talbi, H.; Billaud, D.; Louarn, G.; Pron, A.

    2000-03-01

    Spectroelectrochemical properties of conducting poly(5-cyanoindole) films deposited on indium tin oxide (ITO) and platinum electrodes are investigated using UV-vis and resonant Raman spectroscopies. The transitions from undoped to semi-conducting state of P5CN require the partial oxidation of the polymer to create radical-cations by insertion of charge-neutralizing anions into the polymer. In order to obtain detailed structural information from the vibrational spectra, it is necessary to know the vibrational modes of oxidation-sensitive bands. Vibrational assignments were made on the basis of the results obtained on polyindole and P5CN in acetonitrile solution. The drastic changes in optical absorption and Raman spectra observed at various stage of oxidation were explained by the conversions between at least three different structures. On the basis of the Raman spectra, we have identified the vibrational modes associated with neutral and polaronic segments. The perturbation associated with the coexistence of these polaronic segments has been described as a quinoid structure growing on the expense of the benzoid one. The results obtained indicate that the molecular properties of the conducting polymers at various stages of an oxidation are better revealed by in-situ Raman spectra than by ex-situ studies.

  15. A new method for the absolute radiance calibration for UV/vis measurements of scattered sun light

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2015-05-01

    Full Text Available Absolute radiometric calibrations are important for measurements of the atmospheric spectral radiance. Such measurements can be used to determine actinic fluxes, the properties of aerosols and clouds and the short wave energy budget. Conventional calibration methods in the laboratory are based on calibrated light sources and reflectors and are expensive, time consuming and subject to relatively large uncertainties. Also, the calibrated instruments might change during transport from the laboratory to the measurement sites. Here we present a new calibration method for UV/vis instruments that measure the spectrally resolved sky radiance, like for example zenith sky Differential Optical Absorption Spectroscopy (DOAS- instruments or Multi-AXis (MAX- DOAS instruments. Our method is based on the comparison of the solar zenith angle dependence of the measured zenith sky radiance with radiative transfer simulations. For the application of our method clear sky measurements during periods with almost constant aerosol optical depth are needed. The radiative transfer simulations have to take polarisation into account. We show that the calibration results are almost independent from the knowledge of the aerosol optical properties and surface albedo, which causes a rather small uncertainty of about <7%. For wavelengths below about 330 nm it is essential that the ozone column density during the measurements is constant and known.

  16. Estimation of water quality by UV/Vis spectrometry in the framework of treated wastewater reuse.

    Science.gov (United States)

    Carré, Erwan; Pérot, Jean; Jauzein, Vincent; Lin, Liming; Lopez-Ferber, Miguel

    2017-07-01

    The aim of this study is to investigate the potential of ultraviolet/visible (UV/Vis) spectrometry as a complementary method for routine monitoring of reclaimed water production. Robustness of the models and compliance of their sensitivity with current quality limits are investigated. The following indicators are studied: total suspended solids (TSS), turbidity, chemical oxygen demand (COD) and nitrate. Partial least squares regression (PLSR) is used to find linear correlations between absorbances and indicators of interest. Artificial samples are made by simulating a sludge leak on the wastewater treatment plant and added to the original dataset, then divided into calibration and prediction datasets. The models are built on the calibration set, and then tested on the prediction set. The best models are developed with: PLSR for COD (Rpred(2) = 0.80), TSS (Rpred(2) = 0.86) and turbidity (Rpred(2) = 0.96), and with a simple linear regression from absorbance at 208 nm (Rpred(2) = 0.95) for nitrate concentration. The input of artificial data significantly enhances the robustness of the models. The sensitivity of the UV/Vis spectrometry monitoring system developed is compatible with quality requirements of reclaimed water production processes.

  17. TiO2/WO3 photoactive bilayers in the UV-Vis light region

    Science.gov (United States)

    Vasilaki, E.; Vernardou, D.; Kenanakis, G.; Vamvakaki, M.; Katsarakis, N.

    2017-04-01

    In this work, photoactive bilayered films consisting of anatase TiO2 and monoclinic WO3 were synthesized by a sol-gel route. Titanium isopropoxide and tungsten hexachloride were used as metal precursors and deposition was achieved by spin-coating on Corning glass substrates. The samples were characterized by X-ray diffraction, photoluminescence, UV-Vis, and Raman spectroscopy, as well as field emission scanning electron microscopy. The prepared immobilized catalysts were tested for their photocatalytic performance by the decolorization of methylene blue in aqueous matrices, under UV-Vis light irradiation. The annealing process influenced the crystallinity of the bilayered films, while the concentration of the tungsten precursor solution and the position of the tungsten trioxide layer further affected their photocatalytic performance. In particular, the photocatalytic performance of the bilayered films was optimized at a concentration of 0.1 M of the WO3 precursor solution, when deposited as an overlying layer on TiO2 by two annealing steps ( 76% methylene blue decolorization in 300 min of irradiation versus 59% in the case of a bare TiO2 film). In general, the coupled layer catalysts exhibited superior photoactivity compared to that of bare TiO2 films with WO3 acting as an electron trap, resulting, therefore, in a more efficient electron-hole separation and inhibiting their recombination.

  18. Differentiation of tea varieties using UV-Vis spectra and pattern recognition techniques

    Science.gov (United States)

    Palacios-Morillo, Ana; Alcázar, Ángela.; de Pablos, Fernando; Jurado, José Marcos

    2013-02-01

    Tea, one of the most consumed beverages all over the world, is of great importance in the economies of a number of countries. Several methods have been developed to classify tea varieties or origins based in pattern recognition techniques applied to chemical data, such as metal profile, amino acids, catechins and volatile compounds. Some of these analytical methods become tedious and expensive to be applied in routine works. The use of UV-Vis spectral data as discriminant variables, highly influenced by the chemical composition, can be an alternative to these methods. UV-Vis spectra of methanol-water extracts of tea have been obtained in the interval 250-800 nm. Absorbances have been used as input variables. Principal component analysis was used to reduce the number of variables and several pattern recognition methods, such as linear discriminant analysis, support vector machines and artificial neural networks, have been applied in order to differentiate the most common tea varieties. A successful classification model was built by combining principal component analysis and multilayer perceptron artificial neural networks, allowing the differentiation between tea varieties. This rapid and simple methodology can be applied to solve classification problems in food industry saving economic resources.

  19. Preliminary Phytochemical, UV-VIS, HPLC and Anti-bacterial Studies on Gracilaria corticata J. Ag

    Institute of Scientific and Technical Information of China (English)

    Krishnaveni Eahamban; Johnson Marimuthu Antonisamy

    2012-01-01

    Objective: The present study aimed to investigate the preliminary phytochemical analysis and UV-VIS, HPTC profiling and the antibacterial activity of Gracilaria corticata J. Ag extracts against the Gram positive and Gram negative bacteria. Methods: Preliminary phytochemical screening was carried out by Harborne method. The G. corticata extracts were tested against bacteria by the agar disc diffusion method. Results: The results of the presence study showed the presence of alkaloids, steroids, phenolic groups, saponins, tannin, flavonoids, terpenoids, glycosides and sugars. Proteins, xantoproteins, coumarins and catechin did not show any positive result for their presence in any of the six extracts of Gracilaria corticata tested. The result of the present study revealed the various behavior character of Gracilaria corticata crude drug. The UV-VIS spectrum profile of Gracilaria corticata methanolic, petroleum ether, benzene and aqueous extracts profiles were recorded. The HPLC profile of Gracilaria corticata petroleum ether benzene and aqueous extracts were tabulated. The maximum (9/12 bacterial pathogens) degree of antibacterial activity was observed in isopropanol soxhlet extracts followed by isopropanol cold extracts (7/12 bacterial pathogens). Conclusion: The results of the present study showed that G. corticata may be rich sources of phytoconstituents which can be isolated and further screened for different kinds of biological activities, depending on their reported therapeutic uses.

  20. The UV-VIS spectrophotometry applied to color and stability study in colored mortars

    Directory of Open Access Journals (Sweden)

    Alejandre, F. J.

    1999-06-01

    Full Text Available In the field of methodologies for color studying, a research of it has been done on colored mortars by applying uv-vis spectrophotometry, instrumental technique which can be used for solid materials works, and previously applied to building materials study. Results obtained show that the mentioned technique permits to evaluate quantitatively and qualitatively colors in an easy and objective way, besides nowadays advantages of the instrumental analysis: digital color register, computerized data processing, and precision and exactness increment in chromatic comparisons.

    Dentro de las metodologías existentes para el estudio del color, se ha realizado una investigación del mismo en morteros coloreados por medio de la espectrofotometría UV-VIS, técnica instrumental que es adaptable al trabajo con materiales sólidos, y que ha sido aplicada anteriormente en el estudio de diversos materiales de construcción. Los resultados obtenidos muestran cómo la citada técnica permite además de evaluar cualitativamente y cuantitativamente los colores de forma sencilla y objetiva, el disponer de las ventajas que conlleva actualmente el análisis instrumental: registro digital del color, tratamiento informatizado de datos y aumento de precisión y exactitud en las comparaciones cromáticas.

  1. SANS and UV-vis spectroscopy studies of resultant structure from lysozyme adsorption on silica nanoparticles.

    Science.gov (United States)

    Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2011-08-16

    The interaction of lysozyme protein (M.W. 14.7 kD) with two sizes of silica nanoparticles (16 and 25 nm) has been examined in aqueous solution using UV-vis spectroscopy and small-angle neutron scattering (SANS). The measurements were performed on fixed concentration (1 wt %) of nanoparticles and varying concentration of protein in the range 0 to 2 wt %. The adsorption isotherm as obtained using UV-vis spectroscopy suggests strong interaction of the two components and shows an exponential behavior. The saturation values of adsorption are found to be around 90 and 270 protein molecules per particle for 16 and 25 nm sized nanoparticles, respectively. The adsorption of protein on nanoparticles leads to the aggregation of particles and these structures have been studied by SANS. The aggregates are characterized by fractal structure coexisting with unaggregated particles at low protein concentrations and free proteins at higher protein concentrations. Further, contrast variation SANS measurements have been carried out to differentiate the adsorbed and free protein in these systems.

  2. Experimental and theoretical studies on IR, Raman, and UV-Vis spectra of quinoline-7-carboxaldehyde.

    Science.gov (United States)

    Kumru, M; Küçük, V; Kocademir, M; Alfanda, H M; Altun, A; Sarı, L

    2015-01-05

    Spectroscopic properties of quinoline-7-carboxaldehyde (Q7C) have been studied in detail both experimentally and theoretically. The FT-IR (4000-50 cm(-1)), FT-Raman (4000-50 cm(-1)), dispersive-Raman (3500-50 cm(-1)), and UV-Vis (200-400 nm) spectra of Q7C were recorded at room temperature (25 °C). Geometry parameters, potential energy surface about CCH(O) bond, harmonic vibrational frequencies, IR and Raman intensities, UV-Vis spectrum, and thermodynamic characteristics (at 298.15K) of Q7C were computed at Hartree-Fock (HF) and density functional B3LYP levels employing the 6-311++G(d,p) basis set. Frontier molecular orbitals, molecular electrostatic potential, and Mulliken charge analyses of Q7C have also been performed. Q7C has two stable conformers that are energetically very close to each other with slight preference to the conformer that has oxygen atom of the aldehyde away from the nitrogen atom of the quinoline.

  3. Size-selective precipitation in colloidal semiconductor nanocrystals of CdTe and CdSe: a study by UV-VIS spectroscopy; Precipitacao seletiva de tamanhos em nanoparticulas semicondutoras coloidais de CdTe e CdSe: um estudo por espectroscopia UV-VIS

    Energy Technology Data Exchange (ETDEWEB)

    Viol, Livia Cristina de Souza; Silva, Fernanda Oliveira; Ferreira, Diego Lourenconi; Alves, Jose Luiz Aarestrup; Schiavon, Marco Antonio, E-mail: schiavon@ufsj.edu.b [Universidade Federal de Sao Joao del Rei, MG (Brazil). Dept. de Ciencias Naturais

    2011-07-01

    The post-preparative size-selective precipitation technique was applied in CdTe and CdSe semiconductor nanocrystals prepared via colloidal route in water. The synthesis of CdTe and CdSe nanoparticles and the effect of the post-preparative size-selective precipitation have been characterized mainly by mean of ultraviolet and visible absorption spectroscopy (UV-Vis). It was demonstrated that the size-selective precipitation are able to isolate particles of different sizes and purify the nanoparticles as well. (author)

  4. Validation of quantitative analysis method for triamcinolone in ternary complexes by UV-Vis spectrophotometry

    Directory of Open Access Journals (Sweden)

    GEORGE DARLOS A. AQUINO

    2011-06-01

    Full Text Available Triamcinolone (TRI, a drug widely used in the treatment of ocular inflammatory diseases, is practically insoluble in water, which limits its use in eye drops. Cyclodextrins (CDs have been used to increase the solubility or dissolution rate of drugs. The purpose of the present study was to validate a UV-Vis spectrophotometric method for quantitative analysis of TRI in inclusion complexes with beta-cyclodextrin (B-CD associated with triethanolamine (TEA (ternary complex. The proposed analytical method was validated with respect to the parameters established by the Brazilian regulatory National Agency of Sanitary Monitoring (ANVISA. The analytical measurements of absorbance were made at 242nm, at room temperature, in a 1-cm path-length cuvette. The precision and accuracy studies were performed at five concentration levels (4, 8, 12, 18 and 20μg.mL-1. The B-CD associated with TEA did not provoke any alteration in the photochemical behavior of TRI. The results for the measured analytical parameters showed the success of the method. The standard curve was linear (r2 > 0.999 in the concentration range from 2 to 24 μg.mL-1. The method achieved good precision levels in the inter-day (relative standard deviation-RSD <3.4% and reproducibility (RSD <3.8% tests. The accuracy was about 80% and the pH changes introduced in the robustness study did not reveal any relevant interference at any of the studied concentrations. The experimental results demonstrate a simple, rapid and affordable UV-Vis spectrophotometric method that could be applied to the quantitation of TRI in this ternary complex. Keywords: Validation. Triamcinolone. Beta-cyclodextrin. UV- Vis spectrophotometry. Ternary complexes. RESUMO Validação de método de análise quantitativa para a triancinolona a partir de complexo ternário por espectrofotometria de UV-Vis A triancinolona (TRI é um fármaco amplamente utilizado no tratamento de doenças inflamatórias do globo ocular e

  5. A rapid approach for measuring silver nanoparticle concentration and dissolution in seawater by UV-Vis.

    Science.gov (United States)

    Sikder, Mithun; Lead, Jamie R; Chandler, G Thomas; Baalousha, Mohammed

    2017-04-12

    Detection and quantification of engineered nanoparticles (NPs) in environmental systems is challenging and requires sophisticated analytical equipment. Furthermore, dissolution is an important environmental transformation process for silver nanoparticles (AgNPs) which affects the size, speciation and concentration of AgNPs in natural water systems. Herein, we present a simple approach for the detection, quantification and measurement of dissolution of PVP-coated AgNPs (PVP-AgNPs) based on monitoring their optical properties (extinction spectra) using UV-vis spectroscopy. The dependence of PVP-AgNPs extinction coefficient (ɛ) and maximum absorbance wavelength (λmax) on NP size was experimentally determined. The concentration, size, and extinction spectra of PVP-AgNPs were characterized during dissolution in 30ppt synthetic seawater. AgNPs concentration was determined as the difference between the total and dissolved Ag concentrations measured by inductively coupled plasma-mass spectroscopy (ICP-MS); extinction spectra of PVP-AgNPs were monitored by UV-vis; and size evolution was monitored by atomic force microscopy (AFM) over a period of 96h. Empirical equations for the dependence of maximum absorbance wavelength (λmax) and extinction coefficient (ɛ) on NP size were derived. These empirical formulas were then used to calculate the size and concentration of PVP-AgNPs, and dissolved Ag concentration released from PVP-AgNPs in synthetic seawater at variable particle concentrations (i.e. 25-1500μgL(-1)) and in natural seawater at particle concentration of 100μgL(-1). These results suggest that UV-vis can be used as an easy and quick approach for detection and quantification (size and concentration) of sterically stabilized PVP-AgNPs from their extinction spectra. This approach can also be used to monitor the release of Ag from PVP-AgNPs and the concurrent NP size change. Finally, in seawater, AgNPs dissolve faster and to a higher extent with the decrease in NP

  6. ATR-FTIR and UV-Vis Spectroscopic Studies of Aqueous U(IV)-oxalate Complexes under Mild Acidic Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Wansik; Jung, Euo Chang; Cho, Hyeryun; Park, Yangsoon; Ha, Yeongkeong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The redox transformation process between U(VI) and U(IV) likely involves the participation of soluble or dissolved U(IV) species, such as U(IV)-hydroxo compounds and organic/inorganic ligand complexes. However, their role in the redox process has not been well documented, partly due to the ready oxidation of soluble U(IV) species, and partly due to the assumption that soluble or dissolved forms of U(IV) account for only a minor fraction of uranium in groundwater systems. In this study, a bidentate chelate ligand, oxalate (Ox) was selected to examine the complexation behaviors of U(IV) and ultimately its impact on the U(IV) solubility in mildly acidic solutions. Although some early studies reported that oxalate and pyrophosphate, i. e., multivalent anions, can form soluble U(IV) complexes, the related thermodynamic data and evidences for chemical speciation are very scarce. In our previous work, the U(IV)-Ox 1:1 complex was identified by monitoring the gradual transition of the characteristic absorption spectrum of U(OH){sup 3+} to that of UOx{sup 2+} upon the addition of oxalate at pH 1.6.2.0. This work aims to further provide spectroscopic evidence for the formation of multi-ligand complexes, i. e., U(Ox)n{sup 4-2n} (n ≥ 2) at pH 2-5 using attenuated total reflectance (ATR)- FTIR spectroscopy and UV-Vis absorption spectroscopy. The solid phase of U(IV)-Ox complex system was also characterized through an XRD analysis. Analysis of the FTIR spectra is found to be useful to determine the complexation stoichiometry and to obtain the structural information of the complexes. The outcome of the spectroscopic analysis for the multi-ligand complexation equilibria will be discussed in detail.

  7. Discrimination of whisky brands and counterfeit identification by UV-Vis spectroscopy and multivariate data analysis.

    Science.gov (United States)

    Martins, Angélica Rocha; Talhavini, Márcio; Vieira, Maurício Leite; Zacca, Jorge Jardim; Braga, Jez Willian Batista

    2017-08-15

    The discrimination of whisky brands and counterfeit identification were performed by UV-Vis spectroscopy combined with partial least squares for discriminant analysis (PLS-DA). In the proposed method all spectra were obtained with no sample preparation. The discrimination models were built with the employment of seven whisky brands: Red Label, Black Label, White Horse, Chivas Regal (12years), Ballantine's Finest, Old Parr and Natu Nobilis. The method was validated with an independent test set of authentic samples belonging to the seven selected brands and another eleven brands not included in the training samples. Furthermore, seventy-three counterfeit samples were also used to validate the method. Results showed correct classification rates for genuine and false samples over 98.6% and 93.1%, respectively, indicating that the method can be helpful for the forensic analysis of whisky samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. UV/Vis Action Spectroscopy and Structures of Tyrosine Peptide Cation Radicals in the Gas Phase.

    Science.gov (United States)

    Viglino, Emilie; Shaffer, Christopher J; Tureček, František

    2016-06-20

    We report the first application of UV/Vis photodissociation action spectroscopy for the structure elucidation of tyrosine peptide cation radicals produced by oxidative intramolecular electron transfer in gas-phase metal complexes. Oxidation of Tyr-Ala-Ala-Ala-Arg (YAAAR) produces Tyr-O radicals by combined electron and proton transfer involving the phenol and carboxyl groups. Oxidation of Ala-Ala-Ala-Tyr-Arg (AAAYR) produces a mixture of cation radicals involving electron abstraction from the Tyr phenol ring and N-terminal amino group in combination with hydrogen-atom transfer from the Cα positions of the peptide backbone. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Microreactors with integrated UV/Vis spectroscopic detection for online process analysis under segmented flow.

    Science.gov (United States)

    Yue, Jun; Falke, Floris H; Schouten, Jaap C; Nijhuis, T Alexander

    2013-12-21

    Combining reaction and detection in multiphase microfluidic flow is becoming increasingly important for accelerating process development in microreactors. We report the coupling of UV/Vis spectroscopy with microreactors for online process analysis under segmented flow conditions. Two integration schemes are presented: one uses a cross-type flow-through cell subsequent to a capillary microreactor for detection in the transmission mode; the other uses embedded waveguides on a microfluidic chip for detection in the evanescent wave field. Model experiments reveal the capabilities of the integrated systems in real-time concentration measurements and segmented flow characterization. The application of such integration for process analysis during gold nanoparticle synthesis is demonstrated, showing its great potential in process monitoring in microreactors operated under segmented flow.

  10. Investigation on the thermal stability of PVC filled with hydrotalcite by the UV-vis spectroscopy.

    Science.gov (United States)

    Zhang, Qiang; Li, Hancheng

    2008-01-01

    The thermal stability of the polyvinyl chloride (PVC) filled with hydrotalcite was studied in this paper. It was found that the stability of the PVC resin mixed with organic Sn and hydrotalcite was better than that of the PVC resin mixed with organic Sn alone. The UV-vis spectra showed that under certain heat treatment conditions, the sample without hydrotalcite embodied relatively high content of the conjugated double bonds with the chain length of about 3-5, however, the content of the conjugated double bond with the chain length of about 7 was greatly increased when the hydrotalcite was filled into the PVC resin. The hydrotalcite could inhibit the thermal degradation process of PVC resin in ionic mechanism.

  11. Thermal edible oil evaluation by UV-Vis spectroscopy and chemometrics.

    Science.gov (United States)

    Gonçalves, Rhayanna P; Março, Paulo H; Valderrama, Patrícia

    2014-11-15

    Edible oils such as colza, corn, sunflower, soybean and olive were analysed by UV-Vis spectroscopy and Multivariate Curve Resolution with Alternating Least Squares (MCR-ALS). When vegetable oils were heated at high temperatures (frying), oxidation products were formed which were harmful to human health in addition to degrading the antioxidants present, and this study aimed to evaluate tocopherol (one antioxidant present in oils) and the behaviour of oxidation products in edible oils. The MCR-ALS results showed that the degradation started at 110°C and 85°C, respectively, for sunflower and colza oils, while tocopherol concentration decreased and oxidation products increased starting at 70°C in olive oil. In soybean and corn oils, tocopherol concentration started to decrease and oxidation products increased at 50°C. The results suggested that sunflower, colza and olive oils offered more resistance to increasing temperatures, while soybean and corn oils were less resistant.

  12. Defects in UV-vis-NIR reflectance spectra as method for forgery detections in writing documents

    Science.gov (United States)

    Somma, F.; Aloe, P.; Schirripa Spagnolo, G.

    2010-11-01

    Documents have taken up a very important place in our society. Frauds committed in connection with documents are not at all uncommon, and, in fact, represent a very large domain of the forensic science called "questioned documents". In the field of forensic examination of questioned documents, the legitimacy of an ink entry is often an essential question. A common type of forgery consists in materially altering an existing writing or adding a new writing. These changes can be characterized by means of optical spectroscopy. The aim of this work is to perform the UV-vis-NIR reflectance spectrophotometry to analyze a range of blue and black commercial ballpoint pens, in order to investigate the discriminating abilities of the different inks found on the same document.

  13. Fingerprinting Food Supplements and Their Botanical Ingredients by Coupled UV/Vis/FTIR Spectrometry

    Directory of Open Access Journals (Sweden)

    Anca Baciu

    2013-11-01

    Full Text Available Medicinal plants are used as ingredients for a large variety of herbal supplements. Their quality and safety versus efficacy, according to present legal requirements, need to meet the minimum quality criteria to support their use. Specific biomarkers to evaluate and screen their authenticity are phenolic derivatives, phtosterols, lipids or alkaloids. We report here the data obtained  for  two herbal food supplements (A and B obtained from  different mixtures of plants: Taraxacum officinalis, Cynara scolimus Silybum marianum as ingredients for product A  and Hypericum perforatum, Chelidonium majus and Lycopodium clavatum as ingredients for product B. The combination of UV-Vis and FTIR spectrometry allowed a specific fingerprint of biomarkers in individual plants and derived supplements ( A and B, by discriminating the specific areas and peaks of individual plants and  mixtures, the significant differences between the methanolic and water extracts. The data were compared using chemometry ( PCA and Cluster analysis. Using Vis spectrometry combined with FTIR  peak intensities at 1732 cm-1 and calibration with gallic acid,  the total phenolics concentrations ranged from 5.31 to 9.58 mg gallic acid eq/ml methanol, with a positive and significant correlation between the two methods (R2= 0.979. The phenolics’ concentration were 2.5 to 4 times lower in water extracts comparing with methanol extracts of  products A and B.  Finally, we assume that herbal supplements can be adequately characterized for their quality and safety by combined UV-Vis spectrometry/FTIR spectrometry, with good, fast and cheap informations about the main biomarkers of authenticity.

  14. [Measurement of Water COD Based on UV-Vis Spectroscopy Technology].

    Science.gov (United States)

    Wang, Xiao-ming; Zhang, Hai-liang; Luo, Wei; Liu, Xue-mei

    2016-01-01

    Ultraviolet/visible (UV/Vis) spectroscopy technology was used to measure water COD. A total of 135 water samples were collected from Zhejiang province. Raw spectra with 3 different pretreatment methods (Multiplicative Scatter Correction (MSC), Standard Normal Variate (SNV) and 1st Derivatives were compared to determine the optimal pretreatment method for analysis. Spectral variable selection is an important strategy in spectrum modeling analysis, because it tends to parsimonious data representation and can lead to multivariate models with better performance. In order to simply calibration models, the preprocessed spectra were then used to select sensitive wavelengths by competitive adaptive reweighted sampling (CARS), Random frog and Successive Genetic Algorithm (GA) methods. Different numbers of sensitive wavelengths were selected by different variable selection methods with SNV preprocessing method. Partial least squares (PLS) was used to build models with the full spectra, and Extreme Learning Machine (ELM) was applied to build models with the selected wavelength variables. The overall results showed that ELM model performed better than PLS model, and the ELM model with the selected wavelengths based on CARS obtained the best results with the determination coefficient (R2), RMSEP and RPD were 0.82, 14.48 and 2.34 for prediction set. The results indicated that it was feasible to use UV/Vis with characteristic wavelengths which were obtained by CARS variable selection method, combined with ELM calibration could apply for the rapid and accurate determination of COD in aquaculture water. Moreover, this study laid the foundation for further implementation of online analysis of aquaculture water and rapid determination of other water quality parameters.

  15. Perbandingan Reaksi Zat Besi Terhadap Teh Hitam dan Teh Hijau Secara In Vitro dengan Menggunakan Spektrofotometer Uv-Vis

    Directory of Open Access Journals (Sweden)

    Husnil Wardiyah

    2014-01-01

    Full Text Available AbstrakSalah satu permasalahan gizi yang dihadapi Indonesia adalah anemia defisiensi besi. Defesiensi besi ini dapat disebabkan oleh asupan dan serapan yang tidak adekuat, seperti kebiasaan mengonsumsi zat yang dapat menghambat penyerapan zat besi seperti minum teh pada saat makan. Hambatan penyerapan ini disebabkan oleh polifenol yang terkandung di dalam teh, terutama tanin. Penelitian ini dilakukan pada teh hitam dan teh hijau yang banyak dikonsumsi masyarakat. Larutan teh hitam dan teh hijau dijadikan sebagai kontrol, kemudian diberikan perlakuan dengan meneteskan FeCl3 1% sebanyak lima tetes. Larutan tersebut dibaca besar absorbannya dengan spektrofotometer UV-Vis. Prosedur ini dilakukan dengan pengulangan sebanyak lima kali. Data hasil penelitian diolah dengan menggunakan independent sample t test untuk melihat perbedaan rata-rata pada dua kelompok sampel tersebut. Dari hasil penelitian didapatkan rata-rata besar absorban teh hitam kontrol 0,539 dan setelah diteteskan zat besi 0,30640. Absorban teh hijau kontrol 0,961 dan setelah diteteskan zat besi 0,65020. Hal ini berarti bahwa terjadi penurunan konsentrasi larutan tersebut. Penurunan absorban pada kontrol teh hitam dengan perlakuan adalah 43,15%, sedangkan pada teh hijau adalah 32,34%. Berdasarkan uji statistik, disimpulkan bahwa terdapat perbedaan bermakna antara absorbansi teh hitam dan teh hijau.Kata kunci: Teh hitam, teh hijau, zat besi, absorban.AbstractOne of the nutritional problems faced by Indonesia is iron deficiency anemia. It is caused by inadequate intake and absorption. One of the causes of this inadequate absorption is eating habit to consume substances that can inhibit iron absorption like drinking tea while eating. This is caused by tea polyphenol compounds, especially tannins. Black tea and green tea were observed in this research since these are widely consumed by public. Solution of black tea and green tea were used as control and they were treated by giving five

  16. Thiol-thione tautomeric analysis, spectroscopic (FT-IR, Laser-Raman, NMR and UV-vis) properties and DFT computations of 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule.

    Science.gov (United States)

    Gökce, Halil; Öztürk, Nuri; Ceylan, Ümit; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2016-06-15

    In this study, the 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule (C7H6N4S) molecule has been characterized by using FT-IR, Laser-Raman, NMR and UV-vis spectroscopies. Quantum chemical calculations have been performed to investigate the molecular structure (thione-thiol tautomerism), vibrational wavenumbers, electronic transition absorption wavelengths in DMSO solvent and vacuum, proton and carbon-13 NMR chemical shifts and HOMOs-LUMOs energies at DFT/B3LYP/6-311++G(d,p) level for all five tautomers of the title molecule. The obtained results show that the calculated vibrational wavenumbers, NMR chemical shifts and UV-vis wavelengths are in a good agreement with experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Thiol-thione tautomeric analysis, spectroscopic (FT-IR, Laser-Raman, NMR and UV-vis) properties and DFT computations of 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule

    Science.gov (United States)

    Gökce, Halil; Öztürk, Nuri; Ceylan, Ümit; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2016-06-01

    In this study, the 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule (C7H6N4S) molecule has been characterized by using FT-IR, Laser-Raman, NMR and UV-vis spectroscopies. Quantum chemical calculations have been performed to investigate the molecular structure (thione-thiol tautomerism), vibrational wavenumbers, electronic transition absorption wavelengths in DMSO solvent and vacuum, proton and carbon-13 NMR chemical shifts and HOMOs-LUMOs energies at DFT/B3LYP/6-311 ++G(d,p) level for all five tautomers of the title molecule. The obtained results show that the calculated vibrational wavenumbers, NMR chemical shifts and UV-vis wavelengths are in a good agreement with experimental data.

  18. Ultra-Sensitive Instrumentation in the UV-Vis-NIR Spectral Region with Applications on Overtone Spectroscopy

    Science.gov (United States)

    Camejo, David

    Fourier transform infrared spectroscopy (FT-IR) is a technique widely used in molecular spectroscopy. Technology advancements are such that FT-IR spectrometers can measure vibrational transitions occurring well within the visible (Vis) region of the electromagnetic spectrum. High overtone transitions of C-H, N-H, and O-H can be measured in the near-infrared (NIR) and the Vis regions using long path cells. Despite the large sensitivity of the FT-IR spectrometers and the use of long path cells, the absorption intensities of these transitions are so low that commercial FT-IR spectrometers would not register the absorption bands. Phase shift cavity ring down (PS-CRD) and thermal lens spectroscopy (TLS) are ultra-sensitive instrumental absorption techniques very commonly used in our laboratory. These are very powerful techniques for the detection of weak absorptions in the NIR-Vis region. In the case of high overtone spectra, CRD is ideal for gas samples whereas TLS is great for liquid samples. In our laboratory we use FT-IR and UV-Vis spectrometers as complementary techniques to CRDS and TLS. In order to simulate conditions in the atmospheres of other planets, we couple our instruments to a low temperature cryostat. In this way, these ultra-sensitive techniques can be applied to the study of gases in the atmosphere and liquid cryo-solutions to simulate the lakes of Saturn's largest moon, Titan. This work shows the use of signal-to-noise ratios to determine the spectral quality of spectra obtained with the PS-CRD technique, particularly in situations where human eye cannot perceive the small differences. We evaluate the impact of some instrumental parameters involved in data acquisition process of the PS-CRD technique, as well as evaluate the spectral quality as a function of the On-Axis/Off-Axis position of the incoming beam. This work also introduces the use of a second pumping laser for the analysis of multi-component samples in thermal lens. The design facilitates

  19. Dopant occupancy and UV-VIS-NIR spectroscopy of Mg (0, 4, 5 and 6 mol.%):Dy:LiNbO3 crystal

    Science.gov (United States)

    Dai, Li; Liu, Chunrui; Han, Xianbo; Wang, Luping; Tan, Chao; Yan, Zhehua; Xu, Yuheng

    2017-09-01

    A series of Dy:LiNbO3 crystals with x mol.% Mg2+ ions (x =0, 4, 5 and 6 mol.%) were grown by the Czochralski method. The effective segregation coefficient of Mg2+ and Dy3+ ions was studied by the inductively coupled plasma-atomic emission spectrometry (ICP-AES). UV-VIS-NIR absorption spectra and Judd-Ofelt theory were used to investigate their spectroscopic properties. J-O intensity parameters (Ω2 = 7.53 × 10‑20cm2, Ω4 = 6.98 × 10‑20cm2, and Ω6 = 3.09 × 10‑20cm2) and larger spectroscopic quality factor (X = 2.26) for Mg:(6 mol.%)Dy:LiNbO3 crystals were obtained.

  20. Styrene oligomerization as a molecular probe reaction for zeolite acidity: a UV-Vis spectroscopy and DFT study

    NARCIS (Netherlands)

    Buurmans, I.L.C.; Pidko, E.A.; de Groot, J.M.; Stavitski, I.; van Santen, R.A.; Weckhuysen, B.M.

    2013-01-01

    A series of H-ZSM-5 crystallites with different framework Si/Al ratios was studied by analyzing the kinetics and reaction mechanism of the oligomerization of 4-fluorostyrene as molecular probe reaction for Brønsted acidity. The formation of carbocationic species was followed by UV-Vis spectroscopy.

  1. Representativeness errors in comparing chemistry transport and chemistry climate models with satellite UV-Vis tropospheric column retrievals

    NARCIS (Netherlands)

    Boersma, K.F.; Vinken, G.C.M.; Eskes, H.J.

    2016-01-01

    Ultraviolet-visible (UV-Vis) satellite retrievals of trace gas columns of nitrogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO) are useful to test and improve models of atmospheric composition, for data assimilation, air quality hindcasting and forecasting, a

  2. Combined operando Raman/UV-Vis-NIR spectroscopy as a tool to study supported metal oxide catalysts at work

    NARCIS (Netherlands)

    Tinnemans, Stanislaus Josephus

    2006-01-01

    A novel set-up has been developed in which two complementary spectroscopic techniques, namely operando Raman and UV-Vis-NIR spectroscopy, are combined. With this set-up it is possible to characterize catalytic materials under reaction conditions (high temperature, normal pressure) and in this way on

  3. Study of the Complexation Behavior of Calixarene with Transition Metal Cations by UV-vis and Fluorescent Spectra

    Institute of Scientific and Technical Information of China (English)

    YANG,Jun-Lin(杨俊林); ZHENG,Qi-Yu(郑企雨); AN,Li-Na(安丽娜); CHEN,Chuan-Feng(陈传峰); LIN,Hong-Zhen(蔺洪振); BAI,Feng-Lian(白凤莲); HUANG,Zhi-Tang(黄志镗)

    2002-01-01

    A new fluorescent compound based on calix[4]arene skeleton was synthesized. Its complexation ability with transition metal ions, such as Fe3+, Co2+, Ni2+, Cu2+, Zn2+ and Ag+, was investigated by UV-vis and fluorescent spectra.

  4. Combined operando Raman/UV-Vis-NIR spectroscopy as a tool to study supported metal oxide catalysts at work

    NARCIS (Netherlands)

    Tinnemans, Stanislaus Josephus

    2006-01-01

    A novel set-up has been developed in which two complementary spectroscopic techniques, namely operando Raman and UV-Vis-NIR spectroscopy, are combined. With this set-up it is possible to characterize catalytic materials under reaction conditions (high temperature, normal pressure) and in this way on

  5. Detection and characterization of silver nanoparticles and dissolved species of silver in culture medium and cells by AsFlFFF-UV-Vis-ICPMS: application to nanotoxicity tests.

    Science.gov (United States)

    Bolea, E; Jiménez-Lamana, J; Laborda, F; Abad-Álvaro, I; Bladé, C; Arola, L; Castillo, J R

    2014-03-07

    A methodology based on Asymmetric Flow Field-Flow Fractionation (AsFlFFF) coupled with UV-Vis absorption spectrometry and ICP mass spectrometry (ICPMS) has been developed and applied to the study of silver nanoparticles (AgNPs) and dissolved species of silver in culture media and cells used in cytotoxicity tests. The effect of a nano-silver based product (protein stabilized silver nanoparticles ca. 15 nm average diameter) on human hepatoma (HepG2) cell viability has been studied. UV-Vis absorption spectrometry provided information about the nature (organic vs. nanoparticle) of the eluted species, whereas the silver was monitored by ICPMS. A shift towards larger hydrodynamic diameters was observed in the AgNPs after a 24 hour incubation period in the culture medium, which suggests a "protein corona" effect. Silver(I) associated with proteins present in the culture medium has also been detected, as a consequence of the oxidation process experimented by the AgNPs. However, the Ag(I) released into the culture medium did not justify the toxicity levels observed. AgNPs associated with the cultured HepG2 cells were also identified by AsFlFFF, after applying a solubilisation process based on the use of tetramethylammonium hydroxide (TMAH) and Triton X-100. These results have been confirmed by transmission electronic microscopy (TEM) analysis of the fractions collected from the AsFlFFF. The effect of AgNPs on HepG2 cells has been compared to that caused by silver(I) as AgNO3 under the same conditions. The determination of the total content of silver in the cells confirms that a much larger mass of silver as AgNPs with respect to AgNO3 (16 to 1) is needed to observe a similar toxicity.

  6. Dispersive liquid-liquid microextraction of thiram followed by microvolume UV-vis spectrophotometric determination

    Science.gov (United States)

    Rastegarzadeh, Saadat; Pourreza, Nahid; Larki, Arash

    2013-10-01

    A novel and simple method for the sensitive determination of trace amounts of fungicide thiram is developed by combination of dispersive liquid-liquid microextraction (DLLME) and microvolume UV-vis spectrophotometry. The method is based on the conversion of thiram to a yellow product in the presence of ethanolic potassium hydroxide and copper sulfate, and its extraction into CCL4 using DLLME technique. In this method the ethanol existing in ethanolic KOH plays as disperser solvent and a cloudy solution is formed by injection of only CCl4 as extractant solvent into sample solution. Under the optimum conditions, the calibration graph was linear over the range of 25-1000 ng mL-1 of thiram with limit of detection of 11.5 ng mL-1. The relative standard deviation (RSD) for 100 and 500 ng mL-1 of thiram was 2.7 and 1.1% (n = 8), respectively. The proposed method was successfully applied to determination of thiram in water and plant seed samples.

  7. The translucency of dental composites investigated by UV-VIS spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dumitrescu, L. Silaghi [Babes Bolyai University -Raluca Ripan Chemistry Research Institute, Cluj-Napoca (Romania); Pastrav, O. [Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca (Romania); Prejmerean, C.; Prodan, D.; Boboia, S.; Codruta, S.; Moldovan, M. [Babes Bolyai University - Raluca Ripan Chemistry Research Institute, Cluj-Napoca (Romania)

    2013-11-13

    Translucency is the property of a material to partially transmit and diffuse incident light, and can be described as a partial opacity or a state between complete opacity and complete transparency. The purpose of this study is to evaluate the translucency index of resin composites according to their chemical structure and to the light source used for curing. Our study was achieved on four commercial composite samples (30 mm × 2 mm) cured with two different lamps (Optilux - halogen bulb and Ultralight - LED). Measurements were made with a UV-VIS spectrophotometer, and the reflection spectrum was recorded in the 380-770 nm region on white and black, compared with a SPECTRALON standard white. For all materials cured with the LED lamp on the glossy sides, the best results were given by Tetric Evo Ceram followed by Filtek Supreme, Restacril{sup RO} and Premise. The measurements made on samples cured with an Optilux lamp, to the smooth and rough sides of the samples, revealed that the highest index of translucency is provided by Tetric Evo Ceram on the smooth side, followed by Filtek Supreme, Restacril{sup RO} and Premises. We can say that the translucency of the composites is mostly determined by the chemical composition of the material, which is observed from transmittance values recorded for each sample, and by the source of radiation applied on the sample.

  8. The translucency of dental composites investigated by UV-VIS spectroscopy

    Science.gov (United States)

    Dumitrescu, L. Silaghi; Pastrav, O.; Prejmerean, C.; Prodan, D.; Boboia, S.; Codruta, S.; Moldovan, M.

    2013-11-01

    Translucency is the property of a material to partially transmit and diffuse incident light, and can be described as a partial opacity or a state between complete opacity and complete transparency. The purpose of this study is to evaluate the translucency index of resin composites according to their chemical structure and to the light source used for curing. Our study was achieved on four commercial composite samples (30 mm × 2 mm) cured with two different lamps (Optilux - halogen bulb and Ultralight - LED). Measurements were made with a UV-VIS spectrophotometer, and the reflection spectrum was recorded in the 380-770 nm region on white and black, compared with a SPECTRALON standard white. For all materials cured with the LED lamp on the glossy sides, the best results were given by Tetric Evo Ceram followed by Filtek Supreme, RestacrilRO and Premise. The measurements made on samples cured with an Optilux lamp, to the smooth and rough sides of the samples, revealed that the highest index of translucency is provided by Tetric Evo Ceram on the smooth side, followed by Filtek Supreme, RestacrilRO and Premises. We can say that the translucency of the composites is mostly determined by the chemical composition of the material, which is observed from transmittance values recorded for each sample, and by the source of radiation applied on the sample.

  9. Capturing latent fingerprints from metallic painted surfaces using UV-VIS spectroscope

    Science.gov (United States)

    Makrushin, Andrey; Scheidat, Tobias; Vielhauer, Claus

    2015-03-01

    In digital crime scene forensics, contactless non-destructive detection and acquisition of latent fingerprints by means of optical devices such as a high-resolution digital camera, confocal microscope, or chromatic white-light sensor is the initial step prior to destructive chemical development. The applicability of an optical sensor to digitalize latent fingerprints primarily depends on reflection properties of a substrate. Metallic painted surfaces, for instance, pose a problem for conventional sensors which make use of visible light. Since metallic paint is a semi-transparent layer on top of the surface, visible light penetrates it and is reflected off of the metallic flakes randomly disposed in the paint. Fingerprint residues do not impede light beams making ridges invisible. Latent fingerprints can be revealed, however, using ultraviolet light which does not penetrate the paint. We apply a UV-VIS spectroscope that is capable of capturing images within the range from 163 to 844 nm using 2048 discrete levels. We empirically show that latent fingerprints left behind on metallic painted surfaces become clearly visible within the range from 205 to 385 nm. Our proposed streakiness score feature determining the proportion of a ridge-valley pattern in an image is applied for automatic assessment of a fingerprint's visibility and distinguishing between fingerprint and empty regions. The experiments are carried out with 100 fingerprint and 100 non-fingerprint samples.

  10. Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions

    Science.gov (United States)

    Wang, Ning; Tan, Furui; Zhao, Yu; Tsoi, Chi Chung; Fan, Xudong; Yu, Weixing; Zhang, Xuming

    2016-06-01

    On-chip integration of optical detection units into the microfluidic systems for online monitoring is highly desirable for many applications and is also well in line with the spirit of optofluidics technology–fusion of optics and microfluidics for advanced functionalities. This paper reports the construction of a UV-Vis spectrophotometer on a microreactor, and demonstrates the online monitoring of the photocatalytic degradations of methylene blue and methyl orange under different flow rates and different pH values by detecting the intensity change and/or the peak shift. The integrated device consists of a TiO2-coated glass substrate, a PDMS micro-sized reaction chamber and two flow cells. By comparing with the results of commercial equipment, we have found that the measuring range and the sensitivity are acceptable, especially when the transmittance is in the range of 0.01–0.9. This integrated optofluidic device can significantly cut down the test time and the sample volume, and would provide a versatile platform for real-time characterization of photochemical performance. Moreover, its online monitoring capability may enable to access the usually hidden information in biochemical reactions like intermediate products, time-dependent processes and reaction kinetics.

  11. The analysis of alcoholic extracts of hypericum species by UV/VIS spectrophotometry

    Directory of Open Access Journals (Sweden)

    DanielaGÎTEA

    2010-05-01

    Full Text Available In this report, the UV/VIS spectrophotometric method was employed in order to identify and dose the active principles contained in the alcoholic extracts of Hypericum perforatum L., Hypericum maculatum Crantz, with two subspecies, Hypericum tetrapterum Fries and Hypericum hirsutum L. The most important active principles are hypericin and flavones. For the identification of flavones an officinal method in FR X was used, whereas for the hypericin - an officinal method in the European Pharmacopoeia. The obtained results led to the conclusion that H. maculatum has the highest content of total hypericins (0.496g% as well as flavonoids (6.418g%. In the European Pharmacopoeia the St. John’s wort monograph specifies the exact content of hypericin of the vegetable product (determined through the spectophotometric method, of 0.08g% total hypericin. Given this fact, all the studied Hypericum species fit within the limits imposed by the E. Ph. There is no stipulation in FR X regarding the limits of hypericin concentrations or of other active principles that can be found in Hyperici herba extracts.

  12. COMPARATIVE ANALYSIS FOR METAL BINDING CAPACITY OF CYSTEINE BY USING UV-VIS SPECTROPHOTOMETER

    Directory of Open Access Journals (Sweden)

    Shivendu Ranjan

    2012-05-01

    Full Text Available The metal binding capacity of cysteine with three different metals Nickel, Copper and Lead was studied using UV-Vis spectrophotometer for which absorbance values were taken after interaction of cysteine with metal salt solutions (10ppm and 100ppm. Before taking above absorbance dilution factor was set using cysteine stock. The increase in peak intensity was observed when metal salt solution and metal saltcysteine solution were compared. Based on peak shift and peak intensity finally it can be concluded that the binding capacity of cysteine with Nickel is more, followed by lead and copper. The normal chromophore activity in cysteine is due to the sulphur in which the transition takes place from non bonding orbital’s to the excited antibonding orbital in the range of 210-215nm range. The binding of the metals with cysteine may affect the chromophore activity and may also lead to structural damage of the chromophore. This can give the decrease in the peak intensity or the complete shift in the peak. These results suggest that cysteine metal binding ability can be used for the removal of the metals in water purification. Also this property can be used in removal of metals from our body considering the fact that cysteine may not show adverse effect in the system. So we can go for designing a new type of drug containing cysteine which helps to prevent the accumulation of such metals and thus prevent us from adverse effect.

  13. Preparation, stability and two-dimensional ordered arrangement of gold nanoparticles capped by surfactants with different chain lengths

    Institute of Scientific and Technical Information of China (English)

    周学华; 李津如; 刘春艳; 江龙

    2002-01-01

    Gold nanoparticles modified with C10NH2, C12NH2, C16NH2 and C18NH2 respectively have been prepared by the reverse micelle method. Nanoparticles stability and their two-dimensional (2D) ordered arrangement were studied by UV-Vis absorption spectra and LB technique. The factors, such as the chain length and the size distribution of particles, which affect the 2D ordered arrangement formation, are discussed. Experimental results show that the longer the chain length of surfactants capping the gold nanoparticles, the more stable the nanoparticles, and the more ordered 2D arrangement of gold nanoparticles.

  14. Structural and spectroscopic (UV-Vis, IR, Raman, and NMR) characteristics of anisaldehydes that are flavoring food additives: A density functional study in comparison with experiments

    Science.gov (United States)

    Altun, Ahmet; Swesi, O. A. A.; Alhatab, B. S. S.

    2017-01-01

    The molecular structures, vibrational spectra (IR and Raman), electronic spectra (UV-Vis and DOS), and NMR spectra (13C and 1H) of p-anisaldehyde, m-anisaldehyde, and o-anisaldehyde have been studied by using the B3LYP density functional and the 6-311++G** basis set. While p-anisaldehyde has been found to contain two stable conformers at room temperature, m-anisaldehyde and o-anisaldehyde contain four stable conformers. In agreement with the calculated ground-state energetics and small transition barriers, the comparison of the experimental and calculated spectra of the anisaldehydes indicates equilibrium between all conformers at room temperature. However, the two conformers of o-anisaldehyde, in which the methoxy group lies out of the ring plane, are too rare at the equilibrium. The equilibrium conditions of the conformers of the anisaldehyde isomers have been shown readily accessible through UV-Vis and 13C NMR spectral studies but requiring very detailed vibrational analyses. The effect of the solvent has been found to red-shift the electronic absorption bands and to make the anisaldehydes more reactive and soft. Molecular electrostatic potential maps of the anisaldehydes show that their oxygen atoms are the sites for nucleophilic reactivity. Compared with the most sophisticated NBO method, ESP charges have been found mostly reliable while Mulliken charges fail badly with the present large 6-311++G** basis set. The present calculations reproduce not only the experimental spectral characteristics of the anisaldehydes but also reveal their several structural features.

  15. 纳米银的合成及其UV-Vis光谱特性%Synthesis and UV-Vis Spectral Properties of Silver Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    张万忠; 乔学亮; 陈建国

    2007-01-01

    作为贵金属纳米材料,纳米银在许多领域的广泛应用而成为当今纳米科学最感兴趣的研究对象.简单介绍了纳米银的合成方法如光化学法、超声辅助还原法、电化学还原法、模板法、辐射还原法和生物化学法,主要讨论了化学还原法和微乳液法以及纳米银合成研究的一些进展.光谱吸收是纳米银的重要性质,UV-Vis特征光谱是研究纳米银的形成和纳米晶生长的重要手段,因此详细评述了纳米银的光谱特性,最后,对它们的研究发展趋势进行了展望.%Silver nanoparticles, as noble metallic nanomaterials, are of particular interest today because of their applications in many areas. Besides a brief introduction on the synthetic methods of silver nanoparticles, such as chemical reduction,photochemical method, ultrasonic-assisted reduction, electro-chemical method, template, irradiating reduction and biochemical method, the mini-review mainly discuss chemical reduction and microemulsion method as well as some research advances of the methods for preparation of silver nanoparticles. The characteristic absorption spectra are the important properties of silver nanoparticles, and the UV-Vis spectral researches are good for characterization of the formation and growth of silver nanocrystals. Thus, the UV-Vis spectral properties of silver nanoparticles are reviewed. The possible developing trends of the study on the synthetic methods and spectral properties of silver nanoparticles are also prospected.

  16. Ultrafast infrared and UV-vis studies of the photochemistry of methoxycarbonylphenyl azides in solution.

    Science.gov (United States)

    Xue, Jiadan; Luk, Hoi Ling; Eswaran, S V; Hadad, Christopher M; Platz, Matthew S

    2012-06-07

    The photochemistry of 4-methoxycarbonylphenyl azide (2a), 2-methoxycarbonylphenyl azide (3a), and 2-methoxy-6-methoxycarbonylphenyl azide (4a) were studied by ultrafast time-resolved infrared (IR) and UV-vis spectroscopies in solution. Singlet nitrenes and ketenimines were observed and characterized for all three azides. Isoxazole species 3g and 4g are generated after photolysis of 3a and 4a, respectively, in acetonitrile. Triplet nitrene 4e formation correlated with the decay of singlet nitrene 4b. The presence of water does not change the chemistry or kinetics of singlet nitrenes 2b and 3b, but leads to protonation of 4b to produce nitrenium ion 4f. Singlet nitrenes 2b and 3b have lifetimes of 2 ns and 400 ps, respectively, in solution at ambient temperature. The singlet nitrene 4b in acetonitrile has a lifetime of about 800 ps, and reacts with water with a rate constant of 1.9 × 10(8) L·mol(-1)·s(-1) at room temperature. These results indicate that a methoxycarbonyl group at either the para or ortho positions has little influence on the ISC rate, but that the presence of a 2-methoxy group dramatically accelerates the ISC rate relative to the unsubstituted phenylnitrene. An ortho-methoxy group highly stabilizes the corresponding nitrenium ion and favors its formation in aqueous solvents. This substituent has little influence on the ring-expansion rate. These results are consistent with theoretical calculations for the various intermediates and their transition states. Cyclization from the nitrene to the azirine intermediate is favored to proceed toward the electron-deficient ester group; however, the higher energy barrier is the ring-opening process, that is, azirine to ketenimine formation, rendering the formation of the ester-ketenimine (4d') to be less favorable than the isomeric MeO-ketenimine (4d).

  17. Sensitive and accurate dual wavelength UV-VIS polarization detector for optical remote sensing of tropospheric aerosols

    CERN Document Server

    David, G; Thomas, B; Rairoux, P

    2012-01-01

    An UV-VIS polarization Lidar has been designed and specified for aerosols monitoring in the troposphere, showing the ability to precisely address low particle depolarization ratios, in the range of a few percents. Non-spherical particle backscattering coefficients as low as 5 {\\times} 10-8 m-1.sr-1 have been measured and the particle depolarization ratio detection limit is 0.6 %. This achievement is based on a well-designed detector with laser-specified optical components (polarizers, dichroic beamsplitters) summarized in a synthetic detector transfer matrix. Hence, systematic biases are drastically minimized. The detector matrix being diagonal, robust polarization calibration has been achieved under real atmospheric conditions. This UV-VIS polarization detector measures particle depolarization ratios over two orders of magnitude, from 0.6 up to 40 %, which is new, especially in the UV where molecular scattering is strong. Hence, a calibrated UV polarization-resolved time-altitude map is proposed for urban an...

  18. Aluminum-induced changes in properties and fouling propensity of DOM solutions revealed by UV-vis absorbance spectral parameters.

    Science.gov (United States)

    Zhou, Minghao; Meng, Fangang

    2016-04-15

    The integration of pre-coagulation with ultrafiltration (UF) is expected to not only reduce membrane fouling but also improve natural organic matter (NOM) removal. However, it is difficult to determine the proper coagulant dosage for different water qualities. The objective of this study was to probe the potential of UV-vis spectroscopic analysis to reveal the coagulant-induced changes in the fouling potentials of dissolved organic matter (DOM) and to determine the optimal coagulant dosage. The Zeta potentials (ZPs) and average particle size of the four DOM solutions (Aldrich humic acid (AHA), AHA-sodium alginate (SA), AHA-bovine serum albumin (BSA) and AHA-dextran (DEX)) coagulated with aluminum chloride (AlCl3) were measured. Results showed that increasing the aluminum coagulant dosage induced the aggregation of DOM. Meanwhile, the addition of aluminum coagulant resulted in an increase in DSlope(325-375) (the slope of the log-transformed absorbance spectra from 325 to 375 nm) and a decrease in S(275-295) (the slope of the log-transformed absorption coefficient from 275 to 295 nm) and SR (the ratio of Slope(275-295) and Slope(350-400)). The variations of these spectral parameters (i.e., DSlope(325-375), S(275-295) and SR) correlated well with the aluminum-caused changes in ZPs and average particle size. This implies that spectral parameters have the potential to indicate DOM aggregation. In addition, good correlations of spectral parameters and membrane fouling behaviors (i.e., unified membrane fouling index (UMFI)) suggest that the changes in DSlope(325-375), S(275-295) and SR were indicative of the aluminum-caused alterations of fouling potentials of all DOM solutions. Interestingly, the optimal dosage of aluminum (40 μM for AHA, AHA-BSA, and AHA-DEX) was obtained based on the relation between spectral parameters and fouling behaviors. Overall, the spectroscopic analysis, particularly for the utilization of spectral parameters, provided a convenient approach

  19. Inter-laboratory comparisons of hexenuronic acid measurements in kraft eucalyptus pulps using a UV-Vis spectroscopic method

    Science.gov (United States)

    J.Y. Zhu; H.F Zhou; Chai X.S.; Donna Johannes; Richard Pope; Cristina Valls; M. Blanca Roncero

    2014-01-01

    An inter-laboratory comparison of a UV-Vis spectroscopic method (TAPPI T 282 om-13 “Hexeneuronic acid content of chemical pulp”) for hexeneuronic acid measurements was conducted using three eucalyptus kraft pulps. The pulp samples were produced in a laboratory at kappa numbers of approximately 14, 20, and 35. The hexeneuronic acid contents of the three pulps were...

  20. UV Irradiation Chlorine Dioxide Photocatalytic Oxidation of Simulated Fuchsine Wastewater by UV-Vis and Online FTIR Spectrophotometric Method

    OpenAIRE

    Jie Liu; Chunlei Huai; Na Li; Xiaomei Wang; Laishun Shi

    2012-01-01

    The photocatalyst TiO2/SiO2 was prepared and used for chlorine dioxide photocatalytic oxidation of simulated fuchsine wastewater under UV irradiation. The removal efficiency of fuchsine treated by photocatalytic oxidation process is higher than that of chemical oxidation process. By using UV-Vis and online FTIR analysis technique, the intermediates during the degradation process were obtained. The benzene ring in fuchsine was degraded into quinone and carboxylic acid and finally changed into ...

  1. Forecasting of UV-Vis absorbance time series using artificial neural networks combined with principal component analysis.

    Science.gov (United States)

    Plazas-Nossa, Leonardo; Hofer, Thomas; Gruber, Günter; Torres, Andres

    2017-02-01

    This work proposes a methodology for the forecasting of online water quality data provided by UV-Vis spectrometry. Therefore, a combination of principal component analysis (PCA) to reduce the dimensionality of a data set and artificial neural networks (ANNs) for forecasting purposes was used. The results obtained were compared with those obtained by using discrete Fourier transform (DFT). The proposed methodology was applied to four absorbance time series data sets composed by a total number of 5705 UV-Vis spectra. Absolute percentage errors obtained by applying the proposed PCA/ANN methodology vary between 10% and 13% for all four study sites. In general terms, the results obtained were hardly generalizable, as they appeared to be highly dependent on specific dynamics of the water system; however, some trends can be outlined. PCA/ANN methodology gives better results than PCA/DFT forecasting procedure by using a specific spectra range for the following conditions: (i) for Salitre wastewater treatment plant (WWTP) (first hour) and Graz West R05 (first 18 min), from the last part of UV range to all visible range; (ii) for Gibraltar pumping station (first 6 min) for all UV-Vis absorbance spectra; and (iii) for San Fernando WWTP (first 24 min) for all of UV range to middle part of visible range.

  2. Non-contact assessment of COD and turbidity concentrations in water using diffuse reflectance UV-Vis spectroscopy.

    Science.gov (United States)

    Agustsson, Jon; Akermann, Oliver; Barry, D Andrew; Rossi, Luca

    2014-08-01

    Water contamination is an important environmental concern underlining the need for reliable real-time information on contaminant concentrations in natural waters. Here, a new non-contact UV-Vis spectroscopic approach for monitoring contaminants in water, and especially wastewater, is proposed. Diffuse reflectance UV-Vis spectroscopy was applied to measure simultaneously the chemical oxygen demand (COD) and turbidity (TUR) concentrations in water. The measurements were carried out in the wavelength range from 200-1100 nm. The measured spectra were analysed using partial-least-squares (PLS) regression. The correlation coefficient between the measured and the reference concentrations of COD and TUR in the water samples were R(2) = 0.85 and 0.96, respectively. These results highlight the potential of non-contact UV-Vis spectroscopy for the assessment of water contamination. A system built on the concept would be able to monitor wastewater pollution continuously, without the need for laborious sample collection and subsequent laboratory analysis. Furthermore, since no parts of the system are in contact with the wastewater stream the need for maintenance is minimised.

  3. Simultaneous determination of traces amounts of cadmium, zinc, and cobalt based on UV-Vis spectrometry combined with wavelength selection and partial least squares regression.

    Science.gov (United States)

    Xu, Deng; Fan, Wei; Lv, Huiying; Liang, Yizeng; Shan, Yang; Li, Gaoyang; Yang, Zhenyu; Yu, Ling

    2014-04-05

    The use of wavelength selection before partial least squares regression (PLSR) for simultaneous determination of divalent metal ions, cadmium, zinc and cobalt by UV-Vis spectrometry was investigated in this paper. The number of wavelengths selected by competitive adaptive reweighted sampling (CARS) for cadmium, zinc, and cobalt were 21, 13 and 7, respectively, from the 916 original wavelength points. The analytical system was based on the formation of the complexes with 2-(5-bromo-2-pyridylazo)-5-(diethylamino)phenol (Br-PADAP) in surfactant media. Compared with the results of full spectra calibration, the root mean squared error of prediction (RMSEP) reduced to 0.0110, 0.0098 and 0.0031 for cadmium, zinc and cobalt, respectively. Moreover, by using the selective wavelengths instead of the 916 original wavelengths, the latent variables of PLS models reduced to 3, 3 and 4. The results indicated that the PLS model established by selected wavelength could be used for simultaneous determination of divalent metal ions. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Synergistic enhancement effect of room temperature ionic liquids for cloud point extraction combined with UV-vis spectrophotometric determination nickel in environmental samples

    Science.gov (United States)

    Zeng, Chujie; Xu, Xili; Zhou, Neng; Lin, Yao

    A new method based on enhancement effect of room temperature ionic liquids for cloud point extraction trace amounts of nickel combined with UV-vis spectrophotometric determination was developed. Room temperature ionic liquids (RTILs) and diethyldithiocarbamate (DDTC) were used enhancement reagent and chelating reagent, respectively. The addition of room temperature ionic liquids leads to 3.0 times improvement in the determination of nickel. The nonionic surfactant Triton X-100 was used as the extractant. When the temperature of the system was higher than the cloud point of Triton X-100, Ni-DTC complex was extracted into Triton X-100 and separation of the analyte from the matrix was achieved. Some parameters that influenced cloud point extraction and subsequent determination were evaluated in detail, such as the concentrations of RTILs, DDTC and Triton X-100; pH of sample solution, as well as interferences. Under optimized conditions, an enrichment factor of 72 could be obtained, and the detection limit (LOD) for Ni was 0.5 ng mL-1. Relative standard deviations for five replicate determinations of the standard solution containing 50 ng mL-1 Ni was 3.9%. The proposed method was successfully applied to the determination of nickel in certified reference materials with satisfactory results.

  5. Precipitação seletiva de tamanhos em nanopartículas semicondutoras coloidais de CdTe e CdSe: um estudo por espectroscopia UV-VIS

    OpenAIRE

    Lívia Cristina de Souza Viol; Fernanda Oliveira Silva; Diego Lourençoni Ferreira; José Luiz Aarestrup Alves; Marco Antônio Schiavon

    2011-01-01

    The post-preparative size-selective precipitation technique was applied in CdTe and CdSe semiconductor nanocrystals prepared via colloidal route in water. The synthesis of CdTe and CdSe nanoparticles and the effect of the post-preparative size-selective precipitation have been characterized mainly by mean of ultraviolet and visible absorption spectroscopy (UV-Vis). It was demonstrated that the size-selective precipitation are able to isolate particles of different sizes and purify the nanopar...

  6. Precipitação seletiva de tamanhos em nanopartículas semicondutoras coloidais de CdTe e CdSe: um estudo por espectroscopia UV-VIS

    Directory of Open Access Journals (Sweden)

    Lívia Cristina de Souza Viol

    2011-01-01

    Full Text Available The post-preparative size-selective precipitation technique was applied in CdTe and CdSe semiconductor nanocrystals prepared via colloidal route in water. The synthesis of CdTe and CdSe nanoparticles and the effect of the post-preparative size-selective precipitation have been characterized mainly by mean of ultraviolet and visible absorption spectroscopy (UV-Vis. It was demonstrated that the size-selective precipitation are able to isolate particles of different sizes and purify the nanoparticles as well.

  7. AquaScan: A miniaturized UV/VIS/IR hyperspectral imager for autonomous airborne and underwater imaging spectroscopy of coastal & oceanic environments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The AquaScan, a miniaturized UV/VIS/NIR hyperspectral imager will be built for deployment on a UAV or small manned aircraft for ocean coastal remote sensing...

  8. Screening of Satureja subspicata Vis. Honey by HPLC-DAD, GC-FID/MS and UV/VIS: Prephenate Derivatives as Biomarkers

    National Research Council Canada - National Science Library

    Jerković, Igor; Kranjac, Marina; Marijanović, Zvonimir; Zekić, Marina; Radonić, Ani; Tuberoso, Carlo Ignazio Giovanni

    2016-01-01

    ...%. Bioprospecting of the samples was performed by HPLC-DAD, GC-FID/MS, and UV/VIS. Prephenate derivatives were shown to be dominant by the HPLC-DAD analysis, particularly phenylalanine (167.8 mg/kg...

  9. P3HT:DiPBI bulk heterojunction solar cells: morphology and electronic structure probed by multiscale simulation and UV/vis spectroscopy.

    Science.gov (United States)

    Winands, Thorsten; Böckmann, Marcus; Schemme, Thomas; Ly, Phong-Minh Timmy; de Jong, Djurre H; Wang, Zhaohui; Denz, Cornelia; Heuer, Andreas; Doltsinis, Nikos L

    2016-02-17

    Coarse grained molecular dynamics simulations are performed for a mixture of poly(3-hexylthiophene) (P3HT) and diperylene bisimide (DiPBI). The effect of different annealing and cooling protocols on the morphology is investigated and the resulting domain structures are analyzed. In particular, π-stacked clusters of DiPBI molecules are observed whose size decreases with increasing temperature. Domain structure and diffusivity data suggest that the DiPBI subsystem undergoes an order → disorder phase transition between 700 and 900 K. Electronic structure calculations based on density functional theory are carried out after backmapping the coarse grained model onto an atomistic force field representation built upon first principles. UV/vis absorption spectra of the P3HT:DiPBI mixture are computed using time-dependent density functional linear response theory and recorded experimentally for a spin-coated thin film. It is demonstrated that the absorption spectrum depends sensitively on the details of the amorphous structure, thus providing valuable insight into the morphology. In particular, the results show that the tempering procedure has a significant influence on the material's electronic properties. This knowledge may help to develop effective processing routines to enhance the performance of bulk heterojunction solar cells.

  10. Poly(ethylene oxide) Solubilization in Reverse Microemulsion: Conductivity and UV-Vis Spectra Studies

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effect of poly (ethylene oxide) (PEO) on the w/o microemulsion is studied. The addition of PEO induces a decrease of attractive interaction between droplets in reverse microemulsion. Due to the absence of interaction between cationic surfactant and neutral polymer, the polymer molecules are forced into the interior of water core, avoiding the interfacial region.

  11. H-aggregate analysis of P3HT thin films-Capability and limitation of photoluminescence and UV/Vis spectroscopy

    OpenAIRE

    Philipp Ehrenreich; Susanne T. Birkhold; Eugen Zimmermann; Hao Hu; Kwang-Dae Kim; Jonas Weickert; Thomas Pfadler; Lukas Schmidt-Mende

    2016-01-01

    Polymer morphology and aggregation play an essential role for efficient charge carrier transport and charge separation in polymer-based electronic devices. It is a common method to apply the H-aggregate model to UV/Vis or photoluminescence spectra in order to analyze polymer aggregation. In this work we present strategies to obtain reliable and conclusive information on polymer aggregation and morphology based on the application of an H-aggregate analysis on UV/Vis and photoluminescence spect...

  12. 离子液体调控溶剂热合成TiO2纳米颗粒及紫外-可见光催化降解性能%Ionic Liquid-controlled Synthesis of TiO2 through A Solvothermal Method and the photodegradation Property under UV-Vis Irradiation

    Institute of Scientific and Technical Information of China (English)

    杜记民; 赵国燕; 李亚晓; 毛彦君; 钱永腾; 何稳; 李志双

    2012-01-01

    以钛酸情丁酯(TEOS)、去离子水为原料,离子液体l-丁基-3-甲基四氟硼酸咪唑盐([Bmim] BF4)为表面活性剂,通过溶剂热法制备了锐钛矿相TiO2纳米颗粒.用X-射线衍射仪(XRD)、扫描电镜(SEM)、紫外一可见吸收光谱仪(UV-Vis)对产物的晶相、形貌和光学性能进行表征.为了评估光催化活性,并以甲基橙水溶液为研究对象,在紫外光照射下分析不同照射时间下光降解效率.结果表明,离子液体、去离子水和钛酸四丁酯的体积比为1.3∶1∶1.3时,反应所得到的TiO2具有较高光催化活性,明显优于未添加离子液体的产品,这一结果可归因于其具有较大的比表面积.%Nanocrystalline TiO2 was synthesized with ionic liquid [Bmim] [ BF4 ] as surfactant, TEOS as starting material in ethanol solution by solvothermal method at 180℃for 24 h. The structure, morphology and optical property of the obtained samples were characterized with X-ray diffraction, SEM and UV-Vis spectroscopy. As-synthesized TiO2 products with sizes of 20 ~ 30 nm show spherical motif and anatase crystalline phase. Un-vis absorption illustrates that TiO2 samples have a relative strange absorpion peak at 340 nm and blue-shift with decreasing sizes of samples. For the sake of evaluation of photcatalytic activity of our samples, the photocatalytic degradation of methyl orange were conducted using UV lamb as light source in water. The product prepared in the mixted solution of 1 mL ionic liquid and 0. 75 mL water at 180℃for 24 h showed better photocatalytic activity with photodecomposion up to 98% under UV irradiation for 70 min in comparison with commercial TiO2. The higher photocatalytic activity was attributed to the large surface area of the catalyst.

  13. Absorption and recovery of n-hexane in aqueous solutions of fluorocarbon surfactants.

    Science.gov (United States)

    Xiao, Xiao; Yan, Bo; Fu, Jiamo; Xiao, Xianming

    2015-11-01

    n-Hexane is widely used in industrial production as an organic solvent. As an industrial exhaust gas, the contribution of n-hexane to air pollution and damage to human health are attracting increasing attention. In the present study, aqueous solutions of two fluorocarbon surfactants (FSN100 and FSO100) were investigated for their properties of solubilization and dynamic absorption of n-hexane, as well as their capacity for regeneration and n-hexane recovery by thermal distillation. The results show that the two fluorocarbon surfactants enhance dissolution and absorption of n-hexane, and their effectiveness is closely related to their concentrations in solution. For low concentration solutions (0.01%-0.30%), the partition coefficient decreases dramatically and the saturation capacity increases significantly with increasing concentration, but the changes for both are more modest when the concentration is over 0.30%. The FSO100 solution presents a smaller partition coefficient and a greater saturation capacity than the FSN100 solution at the same concentration, indicating a stronger solubilization for n-hexane. Thermal distillation is a feasible method to recover n-hexane from these absorption solutions, and to regenerate them. With 90sec heating at 80-85°C, the recovery of n-hexane ranges between 81% and 85%, and the regenerated absorption solution maintains its original performance during reuse. This study provides basic information on two fluorocarbon surfactants for application in the treatment of industrial n-hexane waste gases.

  14. Fuzzy clustering evaluation of the discrimination power of UV-Vis and (±) ESI-MS detection system in individual or coupled RPLC for characterization of Ginkgo Biloba standardized extracts.

    Science.gov (United States)

    Medvedovici, Andrei; Albu, Florin; Naşcu-Briciu, Rodica Domnica; Sârbu, Costel

    2014-02-01

    Discrimination power evaluation of UV-Vis and (±) electrospray ionization/mass spectrometric techniques, (ESI-MS) individually considered or coupled as detectors to reversed phase liquid chromatography (RPLC) in the characterization of Ginkgo Biloba standardized extracts, is used in herbal medicines and/or dietary supplements with the help of Fuzzy hierarchical clustering (FHC). Seventeen batches of Ginkgo Biloba commercially available standardized extracts from seven manufacturers were measured during experiments. All extracts were within the criteria of the official monograph dedicated to dried refined and quantified Ginkgo extracts, in the European Pharmacopoeia. UV-Vis and (±) ESI-MS spectra of the bulk standardized extracts in methanol were acquired. Additionally, an RPLC separation based on a simple gradient elution profile was applied to the standardized extracts. Detection was made through monitoring UV absorption at 220 nm wavelength or the total ion current (TIC) produced through (±) ESI-MS analysis. FHC was applied to raw, centered and scaled data sets, for evaluating the discrimination power of the method with respect to the origins of the extracts and to the batch to batch variability. The discrimination power increases with the increase of the intrinsic selectivity of the spectral technique being used: UV-Vis

  15. Análise screening de vinhos empregando um analisador fluxo-batelada, espectroscopia UV-VIS e quimiometria

    OpenAIRE

    Jaqueline Azevedo Nascimento; Amália Geíza Gama Dionísio; Elaine Cristina Lima do Nascimento; Sueny Kêlia Barbosa Freitas; Mário César Ugulino de Araújo

    2010-01-01

    A simple, robust, versatile, high analytical frequency method was proposed to check if a sample of wine is within the range of standards set by the manufacturer, using the UV-VIS spectroscopy, multivariate analysis and a flow-batch analyzer. Two hundred and fifty-two samples of wines were analyzed. The results from the application of Hierachical Cluster Analysis (HCA) to the matrix of the data involving all samples show the formation of fifteen types of wine. A Soft Independent Modelling of C...

  16. New Chiral Calixarene Derivatives: Syntheses and Their Chiral Recognition Toward Amino Acids by UV-Vis Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Three novel types of chiral calixarene derivatives 5, 8, and 10 were designed and synthesized by introducing chiral units to parent calixarenes. Their chiralities were confirmed by rotational analysis. Chiral recognition properties of these host compounds towards L- and D-threonine were studied by UV-Vis spectroscopy. The results indicated that calixarene derivatives 5 and 8 exhibited good chiral recognition capabilities toward L- or D-threonine. Although calixarene derivative 10 had no evident chiral recognition ability, the supramolecules of calixarene derivative 10 with L- or D-threonine showed a hypochromic effect or hyperchromic effect respectively. Therefore, calixarene derivative 10 might serve as a good chiral UV-indicator.

  17. Development of a UV/Vis spectrophotometric method for analysis of total polyphenols from Caesalpinia peltophoroides Benth

    Directory of Open Access Journals (Sweden)

    Fernanda G. Bueno

    2012-01-01

    Full Text Available Caesalpinia peltophoroides is a domesticated tree found in Brazil. It was necessary to develop an analytical method to determine the content of total polyphenols (TP in this herbal drug. The pre-analytical method was standardized for analysis time, wavelength, and the best standard to use. The optimum conditions were: pyrogallol, 760 nm, and 30 min respectively. Under these conditions, validation by UV/Vis spectrophotometry proved to be reliable for TP of the crude extract and semipurified fractions from C. peltophoroides. Standardization is required for every herbal drug, and this method proved to be linear, precise, accurate, reproducible, robust, and easy to perform.

  18. Synthesis, X-ray, NMR, FT-IR, UV/vis, DFT and TD-DFT studies of N-(4-chlorobutanoyl)-N'-(2-, 3- and 4-methylphenyl)thiourea derivatives.

    Science.gov (United States)

    Abosadiya, Hamza M; Anouar, El Hassane; Hasbullah, Siti Aishah; Yamin, Bohari M

    2015-06-05

    A new isomers of thiourea derivatives, namely N-(4-chlorobutanoyl)-N'-(2-methylphenyl)-thiourea (1a), N-(4-chlorobutanoyl)-N'-(3-methylphenyl)thiourea (1b) and N-(4-chlorobutanoyl)-N'-(4-methylphenyl)thiourea (1c) have been synthesized by refluxing mixture of equimolar amounts of 4-chlorobutanoylisothiocyanate with 2, 3 or 4-toluidine, respectively. The three isomers were characterized by spectroscopic (UV/vis, FT-IR and NMR) and X-ray crystallography techniques. To investigate the isomerization effect on spectroscopic data, DFT and TD-DFT calculations have been carried out using five hybrid functionals (B3LYP, B3P86, CAM-B3LYP, M06-2X and PBE0) to predict UV/vis absorption bands (n→π∗ and π→π∗), (1)H and (13)C NMR chemical shifts, FT-IR vibration modes and X-ray parameters (bonds, bond angles and torsion angles) for 1a, 1b and 1c isomers. The results showed that the isomerization effect is significant on λ(MAX) absorption bands, while for IR and NMR the effect is negligible. In accordance with previous studies, B3LYP, B3P86 and PBE0 gave the most reliable to predict the excitation energies of thiourea derivatives.

  19. Studies on effect of various surfactants on stable dispersion of graphene nano particles in simarouba biodiesel

    Science.gov (United States)

    Paramashivaiah, B. M.; Rajashekhar, C. R.

    2016-09-01

    Discovery of graphene has inspired researchers a range of potential applications. Conventional fluids with nanoparticle of size 1-100nm dispersed in them are called Nanofluids. Nanofluids are found to possess increased physical and thermal properties like thermal diffusivity, viscosity, thermal conductivity and convective heat transfer coefficient. These properties can be explored in the field of IC engines as additives in improving the engine performance and reducing the harmful emissions like NOx, CO, UBHC etc. In this work, a comparative study of two anionic dispersants Sodium Dodecyl Sulfate (SDS) and Sodium Dodecyl Benzene Sulfonate (SDBS) as dispersants for stable dispersion of graphene in Simarouba biodiesel with 20%blend in diesel (SME20) was made. Nanofluids samples of graphene at 20ppm and different mass fraction of SDBS & SDS were prepared. Dispersion of graphene was achieved by ultrasonication and magnetic stirring. Dispersion was characterized with Ultra Violet Visible (UV-Vis) spectroscopy. The UV-Vis absorption spectra revealed the presence of Graphene with characteristic λmax at around 250 nm. Experimental result showed that with increase in concentration of dispersant, the value of absorbance also increased. There is a linear relation between stability of dispersion and UV absorbency. An optimum graphene- to-surfactant ratio was determined. Surfactant concentration above or below this ratio was shown to decreases the stability of dispersion. For a mass fraction of 1:4, Graphene to SBDS ratio, the absolute value of UV absorbency was highest. Dispersion stability of SDBS was better than SDS at all concentration levels.

  20. THE APPLICATION OF UV-Vis/H2O2/FERRIOXALATE IN WASTEWATER TREATMENT%UV-Vis/H2O2/草酸铁络合物法在水处理中的应用

    Institute of Scientific and Technical Information of China (English)

    张乃东; 郑威; 黄君礼

    2003-01-01

    介绍了各光Fenton法的运行机理及存在的优缺点,综述了UV-Vis/H2O2/草酸铁络合物法在水处理中的应用状况,并对其今后的发展趋势进行了阐述.UV-Vis/H2O2/草酸铁络合物法是一种新的高级氧化技术,是对光Fenton法的发展,在处理高浓度难降解有机废水方面效果优于UV/Fe2+/H2O2法、UV/H2O2法、TiO2法和WO3法等,因其具有一定的利用太阳能的潜力,所以具有较好的应用前景.

  1. 基于光谱分解的Clementine UV/VIS/NIR数据月表矿物填图%MINERAL MAPPING OF THE LUNAR SURFACE USING CLEMENTINE UV/VIS/NIR DATA BASED ON UNMIXING OF SPECTRAL

    Institute of Scientific and Technical Information of China (English)

    闫柏琨; 甘甫平; 王润生; 王振超; 杨苏明

    2009-01-01

    月表主要矿物的空间分布是研究月球起源演化等科学问题的重要基础信息之一.基于Hapke模型与光谱线性分解的矿物提取方法,利用Clementine UV/VIS/NIR数据提取月表单斜辉石、斜方辉石、橄榄石、斜长石及钛铁矿等5类主要矿物的体积百分含量分布,并基于阿波罗(Apollo)月岩(壤)矿物分析数据对提取结果进行评价,对方法和提取结果中存在的问题进行分析,提出了进一步改进的措施.%The distribution of mineral abundances on lunar surface is one of the basic kinds of information which contains important data such as the origin and evolution of the moon. In this paper, the distribution of clinopyroxene, orthopyroxene, olivine, plagioclase and ilmenite on lunar surface was mapped based on Hapke radioactive transfer model and linear unmixing of spectra using Clementine UV/VIS/NIR data. The result is compared with the results obtained by previous researchers and Apollo sample analysis, and the problems existing in mineral abundance mapping are analyzed preliminarily.

  2. Synthesis of N/Fe Comodified TiO2 Loaded on Bentonite for Enhanced Photocatalytic Activity under UV-Vis Light

    Directory of Open Access Journals (Sweden)

    Xi Cao

    2016-01-01

    Full Text Available To improve the efficiency of TiO2 as a photocatalyst for contaminant degradation, a novel nanocomposite catalyst of (N, Fe modified TiO2 nanoparticles loaded on bentonite (B-N/Fe-TiO2 was successfully prepared for the first time by sol-gel method. The synthesized B-N/Fe-TiO2 catalyst composites were characterized by multiple techniques, including scanning electron microscope (SEM, energy dispersive spectrometry (EDS, X-ray diffraction (XRD, Fourier transform infrared spectra (FT-IR, X-ray fluorescence (XRF, nitrogen adsorption/desorption, UV-Vis diffuse reflectance spectra (DRS, and electron paramagnetic resonance (EPR. The results showed that bentonite significantly enhanced the dispersion of TiO2 nanoparticles and increased the specific surface area of the catalysts. Compared with nondoped TiO2, single element doped TiO2, or unloaded TiO2 nanoparticles, B-N/Fe-TiO2 had the highest absorption in UV-visible region. The photocatalytic activity of B-N/Fe-TiO2 was also the highest, based on the degradation of methyl blue (MB at room temperature under UV and visible light irradiation. In particular, the synthesized B-N/Fe-TiO2 showed much greater photocatalytic efficiency than N/Fe-TiO2 under visible light, the newly synthesized B-N/Fe-TiO2 is going to significantly increase the photocatalytic efficiency of the catalyst using sun light.

  3. Full Solution-Processed Synthesis and Mechanisms of a Recyclable and Bifunctional Au/ZnO Plasmonic Platform for Enhanced UV/Vis Photocatalysis and Optical Properties.

    Science.gov (United States)

    Hang, Da-Ren; Islam, Sk Emdadul; Chen, Chun-Hu; Sharma, Krishna Hari

    2016-10-10

    The synthesis of noble metal/semiconductor hybrid nanostructures for enhanced catalytic or superior optical properties has attracted a lot of attention in recent years. In this study, a facile and all-solution-processed synthetic route was employed to demonstrate an Au/ZnO platform with plasmonic-enhanced UV/Vis catalytic properties while retaining strengthened luminescent properties. The visible-light response of photocatalysis is supported by localized surface plasmon resonance (LSPR) excitations while the enhanced performance under UV is aided by charge separation and strong absorption. The enhancement in optical properties is mainly due to local field enhancement effect and coupling between exciton and LSPR. Luminescent characteristics are investigated and discussed in detail. Recyclability tests showed that the Au/ZnO substrate is reusable by cleaning and has a long shelf life. Our result suggests that plasmonic enhancement of photocatalytic performance is not necessarily a trade-off for enhanced near-band-edge emission in Au/ZnO. This approach may give rise to a new class of versatile platforms for use in novel multifunctional and integrated devices.

  4. Standardized high-performance liquid chromatography of 182 mycotoxins and other fungal metabolites based on alkylphenone retention indices and UV-VIS spectra (diode array detection).

    Science.gov (United States)

    Frisvad, J C; Thrane, U

    1987-08-28

    A general standardized method for the analysis of mycotoxins and other fungal secondary metabolites has been developed, based on high-performance liquid chromatography (HPLC) with an alkylphenone retention index and photodiode-array detection combined with thin-layer chromatography (TLC) in two different eluents. Each fungal secondary metabolite is characterized by its bracketed alkylphenone retention time index, its UV-VIS absorption maxima and its retardation factors relative to griseofulvin in two TLC eluents. This system is effective for the comparison of chemotaxonomic data in different laboratories and for a precise identification of fungi based on organic solvent extracts of fungal cultures. All important groups of mycotoxins and other fungal secondary metabolites could be detected in the HPLC system described and data are listed for 182 metabolites. The fungal secondary metabolites separated and characterized include aflatoxin B1, B2, G1 and G2, ochratoxin A, citrinin, penicillin acid, viomellein, penitrem A, patulin, sterigmatocystin, alternariol, tenuazonic acid, trichothecenes, roquefortines, fusarin C, zearalenone, PR-toxin, citreoviridin, viridicatumtoxin, verruculogen, rugulosin, cyclopiazonic acid, penicillin G and many other alkaloids, polyketides and terpenes.

  5. Investigation of the azo-hydrazone tautomeric equilibrium in an azo dye involving the naphthalene moiety by UV-vis spectroscopy and quantum chemistry

    Science.gov (United States)

    Ünal, Arslan; Eren, Bilge; Eren, Erdal

    2013-10-01

    Photophysical properties of the azo-hydrazone tautomerism of Eriochrome Blue Black B (1-(1-hydroxy-2-naphthylazo)-2-naphthol-4-sulphonic acid) in DMF, MeCN and water were investigated using UV-visible spectroscopy and quantum chemical calculations. The optimized molecular structure parameters, relative energies, mole fractions, electronic absorption spectra and HOMO-LUMO energies for possible stable tautomeric forms of EBB were theoretically calculated by using hybrid density functional theory, (B3LYP) methods with 6-31G(d) basis set level and polarizable continuum model (PCM) for solvation effect. The effects of varying pH-, dye concentration-, solvent-, temperature-, and time-dependences on the UV-vis spectra of Eriochrome Blue Black B were also investigated experimentally. The calculations showed that the dye exhibited acid-base, azo-hydrazone and aggregate equilibria in DMF solution, while the most probably preferred form in MeCN solution was azo form. Thermodynamic parameters of dimerization reaction in DMF solution proved that entropy was the driving force of this reaction.

  6. Vibrational spectra, UV-vis spectral analysis and HOMO-LUMO studies of 2,4-dichloro-5-nitropyrimidine and 4-methyl-2-(methylthio)pyrimidine.

    Science.gov (United States)

    Arivazhagan, M; Anitha Rexalin, D

    2013-04-15

    The FT-IR and FT-Raman vibrational spectra of 2,4-dichloro-5-nitropyrimidine (DCNP) and 4-methyl-2-(methylthio)pyrimidine (MTP) have been recorded in the range 4000-400 and 3600-50 cm(-1), respectively. A detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The optimized molecular geometry and vibrational frequencies in the ground state are calculated using density functional B3LYP method with 6-31+G(d,p) and 6-311++G(d,p) basis set combinations. With the help of specific scaling procedures, the observed vibrational wavenumbers in FT-IR and FT-Raman spectra are analyzed and assigned to different normal modes of the molecules. The predicted first hyperpolarizability reveals that the molecules are an attractive object for future studies of non-linear optical properties. And also HOMO-LUMO energy gap explains the eventual charge transfer interaction taking place within the molecules. UV-vis spectral analysis of the title compounds has been researched by theoretical calculations. The frontier orbital energies, absorption wavelengths (λ), oscillator strengths (f) and excitation energies (E) studied using TD-DFT (B3LYP) with 6-311++G(d,p) basis set are calculated in this work.

  7. Spectroscopic ellipsometry and UV-vis studies at room temperature of the novel organic-inorganic hybrid of salt Bis (4-acetylanilinium) tetrachlorocadmiate

    Science.gov (United States)

    Jellibi, A.; Chaabane, I.; Guidara, K.

    2016-05-01

    The optical properties of Bis (4-acetylanilinium) tetrachlorocadmiate compound were studied using phase modulated spectroscopic ellipsometry (PMSE) and ultraviolet-visible (UV-Vis) spectroscopy in the range 200-800 nm. The optical absorbance were measured in order to deduce the absorption coefficient α and optical band gap Eg, thus the Tauc model was used to determine the optical gap energy of the synthesized (C8H10NO)2CdCl4 compound. The analysis of the data revealed the existence of optical allowed direct transition mechanisms with the band gap energy equal to 3.17 eV. On the other hand the single-effective-oscillator model was used to fit the calculated data to the experimental ellipsometric spectra. Thus the values of the dispersion energy and single-oscillator strength are determined. Also, the extinction coefficient, refractive index, dispersion parameter and both the real εr and imaginary parts εi of the dielectric permittivity of Bis (4-acetylanilinium) tetrachlorocadmiate compound were calculated and the results are discussed.

  8. Effects of UV-Vis Irradiation on Vanadium Etioporphyrins Extracted from Crude Oil and the Role of Nanostructured Titania

    Directory of Open Access Journals (Sweden)

    Debra Jene Kirkconnell Reyes

    2014-01-01

    Full Text Available The role of UV-irradiation on oil and its derivatives is particularly important for analyzing the degradability of specific oil compounds. Also, nanostructured-TiO2 is one of the most promising photocatalysts so it is expected to be useful in their degradation. However the complexity of crude oil, as well as that of the reactions involved, is such that the effect of the presence of TiO2 under illumination is not well understood. In this paper, the influence of UV-Vis irradiation on vanadium etioporphyrins, extracted from crude oil from Dos Bocas, Tabasco, Mexico, is studied using UV-Vis spectrophotometry in the absence and presence of nanostructured TiO2 or nitrogen-doped TiO2 modified with copper (N-TiO2/Cu. It is shown that the addition of water shortens the time to start photodegradation. However, once this process has initiated, the system enters a second stage, that is very similar for samples with or without water. It is also shown that the use of N-TiO2/Cu induces an important delay in the initiation of the porphyrins’ photodegradation process. Additionally, it has been found that the presence of TiO2 in samples extracted with water induces a small reduction in the photodegradation duration and, hence, that TiO2 can catalyze the degradation of petroporphyrins.

  9. TiO{sub 2}/WO{sub 3} photoactive bilayers in the UV-Vis light region

    Energy Technology Data Exchange (ETDEWEB)

    Vasilaki, E. [University of Crete, Department of Chemistry, Heraklion, Crete (Greece); Technological Educational Institute of Crete, Center of Materials Technology and Photonics, School of Engineering, Heraklion, Crete (Greece); Vernardou, D. [Technological Educational Institute of Crete, Center of Materials Technology and Photonics, School of Engineering, Heraklion, Crete (Greece); Kenanakis, G.; Katsarakis, N. [Technological Educational Institute of Crete, Center of Materials Technology and Photonics, School of Engineering, Heraklion, Crete (Greece); Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser, Vassilika Vouton, P.O. Box 1385, Heraklion, Crete (Greece); Vamvakaki, M. [Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser, Vassilika Vouton, P.O. Box 1385, Heraklion, Crete (Greece); University of Crete, Department of Materials Science and Technology, Heraklion, Crete (Greece)

    2017-04-15

    In this work, photoactive bilayered films consisting of anatase TiO{sub 2} and monoclinic WO{sub 3} were synthesized by a sol-gel route. Titanium isopropoxide and tungsten hexachloride were used as metal precursors and deposition was achieved by spin-coating on Corning glass substrates. The samples were characterized by X-ray diffraction, photoluminescence, UV-Vis, and Raman spectroscopy, as well as field emission scanning electron microscopy. The prepared immobilized catalysts were tested for their photocatalytic performance by the decolorization of methylene blue in aqueous matrices, under UV-Vis light irradiation. The annealing process influenced the crystallinity of the bilayered films, while the concentration of the tungsten precursor solution and the position of the tungsten trioxide layer further affected their photocatalytic performance. In particular, the photocatalytic performance of the bilayered films was optimized at a concentration of 0.1 M of the WO{sub 3} precursor solution, when deposited as an overlying layer on TiO{sub 2} by two annealing steps (∝76% methylene blue decolorization in 300 min of irradiation versus ∝59% in the case of a bare TiO{sub 2} film). In general, the coupled layer catalysts exhibited superior photoactivity compared to that of bare TiO{sub 2} films with WO{sub 3} acting as an electron trap, resulting, therefore, in a more efficient electron-hole separation and inhibiting their recombination. (orig.)

  10. UV/vis, 1H, and 13C NMR spectroscopic studies to determine mangiferin p Ka values

    Science.gov (United States)

    Gómez-Zaleta, Berenice; Ramírez-Silva, María Teresa; Gutiérrez, Atilano; González-Vergara, Enrique; Güizado-Rodríguez, Marisol; Rojas-Hernández, Alberto

    2006-07-01

    The acid constants of mangiferin (a natural xanthonoid) in aqueous solution were determined through an UV/vis spectroscopic study employing the SQUAD program as a computational tool. A NMR study complements the p Ka values assignment and evidences a H-bridge presence on 1-C. The chemical model used was consistent with the experimental data obtained. The p Ka values determined with this procedure were as follows: H 4(MGF) = H 3(MGF) - + H +, pK(6-H) = 6.52 ± 0.06; H 3(MGF) - = H 2(MGF) 2- + H +, pK(3-H) = 7.97 ± 0.06; H 2(MGF) 2- = H(MGF) 3- + H +, pK(7-H) = 9.44 ± 0.04; H(MGF) 3- = (MGF) 4- + H +, pK(1-H) = 12.10 ± 0.01; where it has been considered mangiferin C 19H 18O 11 as H 4(MGF). Mangiferin UV/vis spectral behavior, stability study in aqueous solution as well as NMR spectroscopy studies: one-dimensional 1H, 13C, 2D correlated 1H/ 13C performed by (g)-HSQC and (g)-HMBC methods; are also presented. p Ka values determination of H 4(MGF) in aqueous solution is a necessary contribution to subsequent pharmacokinetic study, and a step towards the understanding of its biological effects.

  11. Interactions of the baicalin and baicalein with bilayer lipid membranes investigated by cyclic voltammetry and UV-Vis spectroscopy.

    Science.gov (United States)

    Zhang, Ying; Wang, Xuejing; Wang, Lei; Yu, Miao; Han, Xiaojun

    2014-02-01

    The baicalin and baicalein are the major flavonoids found in Radix Scutellariae, an essential herb in traditional Chinese medicine for thousands of years. The interactions of the baicalin and baicalein with lipid bilayer membranes were studied using cyclic voltammetry and UV-Vis spectroscopy. The thickness d of supported bilayer lipid membranes was calculated as d=4.59(±0.36) nm using AC impedance spectroscopy. The baicalein interacted with egg PC bilayer membranes in a dose-dependent manner. The responses of K3Fe(CN)6 on lipid bilayer membrane modified Pt electrode linearly increased in a concentration range of baicalein from 6.25μM to 25μM with a detection limit of 0.1μM and current-concentration sensitivity of 0.11(±0.01) μA/μM, and then reached a plateau from 25μM to 50μM. However the baicalin showed much weaker interactions with egg PC bilayer membranes. UV-Vis spectroscopy also confirmed that the baicalein could interact with egg PC membranes noticeably, but the interaction of baicalin with membranes was hard to be detected. The results provide useful information on understanding the mechanism of action of Radix Scutellariae in vivo. © 2013.

  12. Determination of antioxidant capacity of diverse fruits by electron spin resonance (ESR) and UV-vis spectrometries.

    Science.gov (United States)

    Zang, Shuang; Tian, Sizhu; Jiang, Jia; Han, Dandan; Yu, Xinyu; Wang, Kun; Li, Dan; Lu, Dayong; Yu, Aimin; Zhang, Ziwei

    2017-04-15

    Twenty-one kinds of fruits including strawberry, mulberry, lemon, banana, etc. were measured for antioxidant capacity based on their ability to scavenge 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical. Vitamin C equivalent antioxidant capacity (VCEAC) was used to quantify antioxidant capacity of the studied fruits. The results were expressed as mg of ascorbic acid equivalent per 100g fruit. Each fruit was divided into two parts: harvest part (fresh fruit analyzed immediately), and liquid nitrogen frozen part (fruit frozen and pulverized in liquid nitrogen). Antioxidant capacities of both fresh and frozen fruits were determined, and VCEAC values were proved to have no significant difference. For the frozen fruits, the antioxidant capacities were measured by electron spin resonance spectroscopy (ESR) and UV-vis spectrometry. VCEAC values obtained with UV-vis and ESR range from 11.48 to 345.75mg/100g and 7.01 to 366.26mg/100g. Experimental results indicated that VCEAC values obtained by two methods were highly correlated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Flavonol-carbon nanostructure hybrid systems: a DFT study on the interaction mechanism and UV/Vis features.

    Science.gov (United States)

    García, Gregorio; Atilhan, Mert; Aparicio, Santiago

    2016-02-14

    Flavonols are a class of natural compounds with potential biological and pharmacological applications. They are also natural pigments responsible for the diversity of colors in plants. Flavonols offer the possibility of tuning their features through chemical functionalization as well as the presence of an aromatic backbone, which could lead to non-covalent interactions with different nanostructures or aromatic molecules. In this work, a protocol based on ONIOM (QM/QM) calculations to investigate the structural features (binding energies, intermolecular interactions) of flavonols interacting with the surface of several carbon nanostructures (such as graphene, fullerene C60 and carbon nanotubes) is developed. The confinement of flavonols inside carbon nanotubes has also been studied. Three flavonols, galangin, quercetin and myricetin, as well as pristine flavone were selected. Special attention has also been paid to the changes in UV/Vis features of flavonols due to the interaction with carbon nanostructures. Our results point out that π-stacking interactions are the driving force for the adsorption onto carbon nanostructures as well as for the confinement inside carbon nanotubes. Likewise, UV/Vis features of flavonols could be fine-tuned through the interaction with suitable carbon nanostructures.

  14. Traceability of Boletaceae Mushrooms Using Data Fusion of UV-vis and FT-IR Combined with Chemometrics Methods.

    Science.gov (United States)

    Yao, Sen; Li, Tao; Liu, HongGao; Li, JieQing; Wang, YuanZhong

    2017-09-30

    Boletaceae mushrooms are wild-grown edible mushrooms which have high nutrition, delicious flavor and large economic value distributing in Yunnan Province, China. Traceability is important for the authentication and quality assessment of Boletaceae mushrooms. In this study, ultraviolet visible (UV-vis) and Fourier transform infrared (FT-IR) spectroscopies were applied for traceability of 247 Boletaceae mushroom samples in combination with chemometrics. Compared with single spectroscopy technique, data fusion strategy can obviously improve the classification performance in PLS-DA and GS-SVM models, both species and geographical origins traceabilities. In addition, PLS-DA and GS-SVM models can provide 100.00% accuracy for species traceability, and have reliable evaluation parameters. For geographical origins traceability, the accuracy of prediction in PLS-DA model by data fusion was just 64.63%, but the GS-SVM model based on data fusion was 100.00%. The results demonstrated that data fusion strategy of UV-vis and FT-IR combined with GS-SVM could provide the higher synergic effect for traceability of Boletaceae mushrooms and have a good generalization ability for the comprehensive quality control and evaluation of similar food. This article is protected by copyright. All rights reserved.

  15. Binding of caffeine with caffeic acid and chlorogenic acid using fluorescence quenching, UV/vis and FTIR spectroscopic techniques.

    Science.gov (United States)

    Belay, Abebe; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2016-03-01

    The interactions of caffeine (CF) with chlorogenic acid (CGA) and caffeic acid (CFA) were investigated by fluorescence quenching, UV/vis and Fourier transform infrared (FTIR) spectroscopic techniques. The results of the study indicated that the fluorescence quenching between caffeine and hydroxycinnamic acids could be rationalized in terms of static quenching or the formation of non-fluorescent CF-CFA and CF-CGA complexes. From fluorescence quenching spectral analysis, the quenching constant (KSV), quenching rate constant (kq), number of binding sites (n), thermodynamic properties and conformational changes of the interaction were determined. The quenching constants (KSV) between CF and CGA, CFA are 1.84 × 10(4) and 1.04 × 10(4) L/mol at 298 K and their binding site n is ~ 1. Thermodynamic parameters determined using the Van't Hoff equation indicated that hydrogen bonds and van der Waal's forces have a major role in the reaction of caffeine with caffeic acid and chlorogenic acid. The 3D fluorescence, UV/vis and FTIR spectra also showed that the binding of CF with CFA and CGA induces conformational changes in CFA and CGA.

  16. Deep eutectic solvents for the self-assembly of gold nanoparticles: a SAXS, UV-Vis, and TEM investigation.

    Science.gov (United States)

    Raghuwanshi, Vikram Singh; Ochmann, Miguel; Hoell, Armin; Polzer, Frank; Rademann, Klaus

    2014-06-03

    In this work, we report the formation and growth mechanisms of gold nanoparticles (AuNPs) in eco-friendly deep eutectic solvents (DES; choline chloride and urea). AuNPs are synthesized on the DES surface via a low-energy sputter deposition method. Detailed small angle X-ray scattering (SAXS), UV-Vis, and cryogenic transmission electron microscopy (cryo-TEM) investigations show the formation of AuNPs of 5 nm diameter. Data analysis reveals that for a prolonged gold-sputtering time there is no change in the size of the particles. Only the concentration of AuNPs increases linearly in time. More surprisingly, the self-assembly of AuNPs into a first and second shell ordered system is observed directly by in situ SAXS for prolonged gold-sputtering times. The self-assembly mechanism is explained by the templating nature of DES combined with the equilibrium between specific physical interaction forces between the AuNPs. A disulfide-based stabilizer, bis((2-mercaptoethyl)trimethylammonium) disulfide dichloride, was applied to suppress the self-assembly. Moreover, the stabilizer even reverses the self-assembled or agglomerated AuNPs back to stable 5 nm individual particles as directly evidenced by UV-Vis. The template behavior of DES is compared to that of nontemplating solvent castor oil. Our results will also pave the way to understand and control the self-assembly of metallic and bimetallic nanoparticles.

  17. CdSe quantum dots stabilized by carboxylic-functionalized PVA: Synthesis and UV-vis spectroscopy characterization

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, Herman S., E-mail: hmansur@demet.ufmg.br [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Belo Horizonte, MG (Brazil); Mansur, Alexandra A.P. [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Belo Horizonte, MG (Brazil)

    2011-02-15

    Quantum dots (QDs) have drawn the attention of the research community in the last decade due to their potential use in the fast developing area of nanotechnology. In this study, it is reported the synthesis and characterization CdSe nanoparticles using acid-functionalized poly(vinyl alcohol) (PVA-COOH) polymer as capping ligands via aqueous route at room temperature by methods of colloidal chemistry. Different molar concentrations of PVA-COOH were investigated aiming at producing stable nanoparticles using cadmium perchlorate and synthesized sodium selenosulfate. UV-vis spectroscopy was used to evaluate the kinetics and the relative stability of CdSe nanocrystals considering their size as-prepared and subsequent growth. The QDs sizes were estimated by the 'absorbance onset' from UV-vis spectroscopy spectra, considering theoretical and empirical methods. The results have indicated that precursor solution of PVA-COOH at concentration of 1.0 mol L{sup -1} was effective on stabilizing colloidal CdSe QDs in aqueous suspension. Moreover, ultra-small CdSe nanocrystals were produced with calculated average particles size under 2.0 nm, indicating they were in the so-called 'quantum-size confinement range'. Hence, it was developed a relatively simple colloidal route using a single-step method to produce CdSe QDs water soluble and commercially available polymers that offers a window of opportunities to explore these novel nanohybrid materials.

  18. Screening analysis of biodiesel feedstock using UV-vis, NIR and synchronous fluorescence spectrometries and the successive projections algorithm.

    Science.gov (United States)

    Insausti, Matías; Gomes, Adriano A; Cruz, Fernanda V; Pistonesi, Marcelo F; Araujo, Mario C U; Galvão, Roberto K H; Pereira, Claudete F; Band, Beatriz S F

    2012-08-15

    This paper investigates the use of UV-vis, near infrared (NIR) and synchronous fluorescence (SF) spectrometries coupled with multivariate classification methods to discriminate biodiesel samples with respect to the base oil employed in their production. More specifically, the present work extends previous studies by investigating the discrimination of corn-based biodiesel from two other biodiesel types (sunflower and soybean). Two classification methods are compared, namely full-spectrum SIMCA (soft independent modelling of class analogies) and SPA-LDA (linear discriminant analysis with variables selected by the successive projections algorithm). Regardless of the spectrometric technique employed, full-spectrum SIMCA did not provide an appropriate discrimination of the three biodiesel types. In contrast, all samples were correctly classified on the basis of a reduced number of wavelengths selected by SPA-LDA. It can be concluded that UV-vis, NIR and SF spectrometries can be successfully employed to discriminate corn-based biodiesel from the two other biodiesel types, but wavelength selection by SPA-LDA is key to the proper separation of the classes. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Combined SAXS/UV-vis/Raman as a diagnostic and structure resolving tool in materials and life sciences applications.

    Science.gov (United States)

    Haas, Sylvio; Plivelic, Tomás S; Dicko, Cedric

    2014-02-27

    In order to diagnose and fully correlate structural, chemical, and functional features of macromolecules and particles in solution, we propose the integration of spectroscopy and scattering on the same measuring volume and at the same time in a dedicated sample environment with multiple probes. Combined SAXS/UV-vis and SAXS/Raman information are employed to study the radiation damage effect in proteins in solution and the scattering from single wall carbon nanotubes (SWNTs) in SDS dispersion, respectively. In the first case, a clear correlation is observed between the time dependence of the radius of gyration (Rg) of the protein determined by SAXS and the turbidity of the protein solution extracted from simultaneous UV-vis measurements. In the second case, the ratio of bundled/isolated carbon nanotubes is obtained unambiguously through proper modeling of the scattering data and cross-validated with the Raman information. The uses of convex constraint analysis (CCA) and two-dimensional correlation analyses (2DCOS and 2DHCOS) are introduced to fully explore the combination of data sets from different techniques and to extract unique insights from the sample.

  20. Growth of block copolymer stabilized metal nanoparticles probed simultaneously by in situ XAS and UV-Vis spectroscopy.

    Science.gov (United States)

    Nayak, C; Bhattacharyya, D; Jha, S N; Sahoo, N K

    2016-01-01

    The growth of Au and Pt nanoparticles from their respective chloride precursors using block copolymer-based reducers has been studied by simultaneous in situ measurement of XAS and UV-Vis spectroscopy at the energy-dispersive EXAFS beamline (BL-08) at INDUS-2 SRS at RRCAT, Indore, India. While the XANES spectra of the precursor give real-time information on the reduction process, the EXAFS spectra reveal the structure of the clusters formed at the intermediate stages of growth. The growth kinetics of both types of nanoparticles are found to be almost similar and are found to follow three stages, though the first stage of nucleation takes place earlier in the case of Au than in the case of Pt nanoparticles due to the difference in the reduction potential of the respective precursors. The first two stages of the growth of Au and Pt nanoparticles as obtained by in situ XAS measurements could be corroborated by simultaneous in situ measurement of UV-Vis spectroscopy also.

  1. Investigation of Antioxidant Activity of Pomegranate Juices by Means of Electron Paramagnetic Resonance and UV-Vis Spectroscopy.

    Science.gov (United States)

    Kozik, Violetta; Jarzembek, Krystyna; Jędrzejowska, Agnieszka; Bąk, Andrzej; Polak, Justyna; Bartoszek, Mariola; Pytlakowska, Katarzyna

    2015-01-01

    Pomegranate fruit (Punica granatum L.) is a source of numerous phenolic compounds, and it contains flavonoids such as anthocyanins, anthocyanidins, cyanidins, catechins and other complexes of flavonoids, ellagitannins, and hydrolyzed tannins. Pomegranate juice shows antioxidant, antiproliferative, and anti-atherosclerotic properties. The antioxidant capacity (TEAC) of the pomegranate juices was measured using electron paramagnetic resonance (EPR) spectroscopy and 1,1-diphenyl-2-picrylhydrazyl (DPPH•) as a source of free radicals, and the total phenolic (TP) content was measured using UV-Vis spectroscopy. All the examined pomegranate juices exhibited relatively high antioxidant properties. The TEAC values determined by means of EPR spectroscopy using Trolox (TE) as a free radical scavenger were in the range of 463.12 to 1911.91 μmol TE/100 mL juice. The TP content measured by the Folin-Ciocalteu method, using gallic acid (GA) as a free radical scavenger, widely varied in the investigated pomegranate juice samples and ranged from 1673.62 to 5263.87 mg GA/1 L juice. The strongest antioxidant properties were observed with the fresh pomegranate juices obtained from the fruits originating from Israel, Lebanon, and Azerbaijan. Correlation analysis of numerical data obtained by means of EPR spectroscopy (TEAC) and UV-Vis spectroscopy (TP) gave correlation coefficient (r)=0.90 and determination coefficient (r2)=0.81 (P<0.05).

  2. Interactions of Ovalbumin with Ionic Surfactants

    Institute of Scientific and Technical Information of China (English)

    GUO Xia; YAN Hui; GUO Rong

    2008-01-01

    The interactions of ovalbumin (OVA) with one anionic surfactant,sodium dodecyl sulfate (SDS),and two cationic surfactants,dodecyl trimethylammonium bromide (DTAB) and cetyl trimethylammonium bromide (CTAB),in water have been studied through fluorescence and UV-Vis spectroscopies and transmission electronic microscopy,combined with the measurement of conductivity.OVA can increase the critical micelle concentrations (cmc) of SDS and CTAB but has little effect on that of DTAB.The interaction between surfactant monomer and OVA is greater than that between surfactant micelles and OVA.Moreover,SDS can make OVA unfolded while cationic surfactants cannot.

  3. Synthesis, CMC determination, and intercalative binding interaction with nucleic acid of a surfactant-copper(II) complex with modified phenanthroline ligand (dpq).

    Science.gov (United States)

    Nagaraj, Karuppiah; Ambika, Subramanian; Arunachalam, Sankaralingam

    2015-01-01

    A surfactant-copper(II) complex, [Cu(dpq)2DA](ClO4)2 (dpq = dipyrido[3,2-d:2'-3'-f]quinoxaline; DA-dodecylamine), was synthesized and characterized on the basis of elemental analyses, UV-vis, IR, and EPR spectra. The critical micelle concentration (CMC) value of this surfactant-copper(II) complex in aqueous solution was found out from conductance measurements. Specific conductivity data at different temperature served for the evaluation of the temperature-dependent CMC and the thermodynamics of micellization (ΔG°(m), ΔH°(m) and ΔS°(m)). In addition, the complex has been examined by its ability to bind to nucleic acids (DNA and RNA) in tris-HCl buffer by UV-vis absorption, emission spectroscopy techniques, and viscosity measurements. The complex has been found to bind strongly to nucleic acids with apparent binding constants at DNA and RNA is 4.3 × 10(5), 9.0 × 10(5) M(-1), respectively. UV-vis studies of the interaction of the complex with DNA/RNA have revealed that the complex can bind to both DNA and RNA by the intercalative binding mode via ligand dpq into the base pairs of DNA and RNA which has been verified by viscosity measurements. The presence of long aliphatic chain in the surfactant complex increases this hydrophobic interaction. The binding constants have been calculated. The cytotoxic activity of this complex on human liver carcinoma cancer cells was determined by adopting 3-(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyl tetrazolium bromide assay and specific staining techniques. The antimicrobial and antifungal screening tests of this complex have shown good results.

  4. The Analysis of UV-Vis Spectrophotometer Calibration Precautions%紫外可见分光光度计检定注意事项分析

    Institute of Scientific and Technical Information of China (English)

    张硕

    2015-01-01

    UV-Vis spectrophotometer is in accordance with the absorption spectrum of the substance to an instrument study its composition,structure and interactions. UV-visible absorption spectrum of the molecule is because some of these groups after absorbing UV-visible radiation,appeared electronic transition absorption spectrum is formed,we can take advantage of its UV-visible spectrophotometer qualitative analysis. The high precision instruments ,mainly through the monochromator technology to analyze the 190-1100nm wavelength range of the spectrum. This article tries to analyze the UV-visible spectrophotometry verification issues that need attention,to reduce errors,make more accurate and reliable test results.%紫外可见分光光度计是按照物质的吸收光谱来对其成分、结构以及相互作用进行研究的一种仪器.分子的紫外可见吸收光谱是因为其中的部分基团在吸收紫外可见辐射之后,出现电子能级跃迁而形成吸收光谱,我们利用紫外可见分光光度计能够对其进行定性分析.该仪器精密度高,主要通过单色器技术对波长范围在190~1100nm的光谱进行分析.文章试分析在紫外可见分光检定中需要注意的事项,旨在减少误差,让检定结果更加准确可靠.

  5. Copper(II) and nickel(II) complexes of tetradentate Schiff base ligand: UV-Vis and FT-IR spectra and DFT calculation of electronic, vibrational and nonlinear optical properties

    Science.gov (United States)

    Zarei, Seyed Amir; Khaledian, Donya; Akhtari, Keivan; Hassanzadeh, Keyumars

    2015-11-01

    The experimental fourier transform infrared (FT-IR) and ultraviolet-visible (UV-Vis) spectra of copper(II) and nickel(II) complexes of the deprotonated tetradentate Schiff base ligand N,N‧-bis(2-hydroxybenzylidene)-2,2-dimethyl-1,3-propanediamine (H2L) are compared with their corresponding theoretical ones. The applied theoretical method is based on the density functional theory and time-dependent density functional theory at the UPBE0/PBE0 levels using Def2-TZVP basis set. The computational optimised geometric parameters of the complexes are in good agreement with their corresponding experimental data. The FT-IR and UV-Vis spectra of the complexes were reproduced on the basis of their optimised structures. The vibrational assignments of some fundamental modes of the complexes are performed. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies are calculated. The analyses of the calculated electronic absorption spectra of the complexes are carried out to elucidate the electronic transitions assignments and their characters. Second-order nonlinear optical property of the complexes is evaluated by the above-mentioned theoretical method that implies much greater values for the complexes in comparison with the corresponding value of urea.

  6. Análise screening de vinhos empregando um analisador fluxo-batelada, espectroscopia UV-VIS e quimiometria Screening analysis of wines using flow-batch analyzer, UV-VIS spectroscopy and chemometrics

    Directory of Open Access Journals (Sweden)

    Jaqueline Azevedo Nascimento

    2010-01-01

    Full Text Available A simple, robust, versatile, high analytical frequency method was proposed to check if a sample of wine is within the range of standards set by the manufacturer, using the UV-VIS spectroscopy, multivariate analysis and a flow-batch analyzer. Two hundred and fifty-two samples of wines were analyzed. The results from the application of Hierachical Cluster Analysis (HCA to the matrix of the data involving all samples show the formation of fifteen types of wine. A Soft Independent Modelling of Class Analogy (SIMCA model was constructed and used to classify the samples of the overall forecast. As a result, it is observed that the prediction was performed with a success rate of 99.2% for a confidence level of 95%. This shows that the proposed methodology can be used as an effective tool for classifying of samples of wines.

  7. Formic acid enhanced effective degradation of methyl orange dye in aqueous solutions under UV-Vis irradiation.

    Science.gov (United States)

    Wang, Jingjing; Bai, Renbi

    2016-09-15

    Developing efficient technologies to treat recalcitrant organic dye wastewater has long been of great research and practical interest. In this study, a small molecule, formic acid (FA), was applied as a process enhancer for the degradation of methyl orange (MO) dye as a model recalcitrant organic pollutant in aqueous solutions under the condition of UV-Vis light irradiation and air aeration at the ambient temperature of 25 °C. It was found that the decolouration of the dye solutions can be rapidly achieved, reducing the time, for example, from around 17.6 h without FA to mostly about less than 2 h with the presence of FA. The mineralization rate of MO dye reached as high as 81.8% in 1.5 h in the case of initial MO dye concentration at 25 mg L(-1), which is in contrast to nearly no mineralization of the MO dye for a similar system without the FA added. The study revealed that the generation of the H2O2 species in the system was enhanced and the produced OH radicals effectively contributed to the degradation of the MO dye. Process parameters such as the initial concentration of MO dye, FA dosage and solution pH were all found to have some effect on the degradation efficiency under the same condition of UV-Vis light irradiation and air aeration. The MO dye degradation performance was found to follow a first-order reaction rate to the MO dye concentration in most cases and there existed a positive correlation between the reaction rate constant and the initial FA concentration. Compared to the traditional H2O2/UV-Vis oxidation system, the use of FA as a process-enhancing agent can have the advantages of low cost, easy availability, and safe to use. The study hence demonstrates a promising approach to use a readily available small molecule of FA to enhance the degradation of recalcitrant organic pollutants, such as MO dye, especially for their pre-treatment.

  8. Discrimination of Brazilian propolis according to the seasoning using chemometrics and machine learning based on UV-Vis scanning data.

    Science.gov (United States)

    Tomazzoli, Maíra Maciel; Pai Neto, Remi Dal; Moresco, Rodolfo; Westphal, Larissa; Zeggio, Amélia Regina Somensi; Specht, Leandro; Costa, Christopher; Rocha, Miguel; Maraschin, Marcelo

    2015-10-21

    Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plant's resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis' chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds (λ = 280-400ηm), suggesting that besides the biological activities of those

  9. Novel Local Calibration Method for Chemical Oxygen Demand Measurements by Using UV-Vis Spectrometry

    Science.gov (United States)

    Yingtian, Hu; Chao, Liu; Xiaoping, Wang

    2017-05-01

    In recent years, ultraviolet-visible spectroscopy has been widely used for chemical oxygen demand (COD) measurements of water. However, chemical compositions of substance in different water samples can cause measurement deviations, so a local calibration is needed. In this study, a novel local calibration method is proposed. The absorption spectra of COD standard solutions and wastewater samples taken from four factories were collected. We analyzed the impact of chemical compositions of substance in different water samples and extracted the morphology features of their absorptive spectra for recognition models. Furthermore, we calculated the local calibration parameters of the four categories of real water samples by specific modification based on the ability of light absorption in various water environments. After the process of local calibration, the root mean square errors (RMSEs) of the predictions were very small, which highlights the potential of this method for improving the accuracy and adaptability of COD measurements based on ultraviolet-visible spectrum.

  10. Vibronic-structure tracking: A shortcut for vibrationally resolved UV/Vis-spectra calculations

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Dennis; König, Carolin; Neugebauer, Johannes, E-mail: j.neugebauer@uni-muenster.de [Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster (Germany)

    2014-10-28

    The vibrational coarse structure and the band shapes of electronic absorption spectra are often dominated by just a few molecular vibrations. By contrast, the simulation of the vibronic structure even in the simplest theoretical models usually requires the calculation of the entire set of normal modes of vibration. Here, we exploit the idea of the mode-tracking protocol [M. Reiher and J. Neugebauer, J. Chem. Phys. 118, 1634 (2003)] in order to directly target and selectively calculate those normal modes which have the largest effect on the vibronic band shape for a certain electronic excitation. This is achieved by defining a criterion for the importance of a normal mode to the vibrational progressions in the absorption band within the so-called “independent mode, displaced harmonic oscillator” (IMDHO) model. We use this approach for a vibronic-structure investigation for several small test molecules as well as for a comparison of the vibronic absorption spectra of a truncated chlorophyll a model and the full chlorophyll a molecule. We show that the method allows to go beyond the often-used strategy to simulate absorption spectra based on broadened vertical excitation peaks with just a minimum of computational effort, which in case of chlorophyll a corresponds to about 10% of the cost for a full simulation within the IMDHO approach.

  11. UV/Vis spectroscopy of C60 embedded in water ice

    DEFF Research Database (Denmark)

    Cuylle, Steven; Linnartz, Harold; Thrower, John

    2012-01-01

    Electronic solid state spectra are recorded for C60 embedded in 40 K water ice using broad band direct absorption spectroscopy, and assigned with reference to existing matrix data. The results are interesting in view of the recent gas phase detection of fullerenes in the interstellar medium...

  12. UV/vis range photodetectors based on thin film ALD grown ZnO/Si heterojunction diodes

    Science.gov (United States)

    Alkis, Sabri; Tekcan, Burak; Nayfeh, Ammar; Kemal Okyay, Ali

    2013-10-01

    We present ultraviolet-visible (UV/vis) range photodetectors (PDs) based on thin film ZnO (n)/Si (p) heterojunction diodes. ZnO films are grown by the atomic layer deposition (ALD) technique at growth temperatures of 80, 150, 200 and 250 ° C. The fabricated ZnO (n)/Si (p) photodetectors (ZnO-Si-PDs) show good electrical rectification characteristics with ON/OFF ratios reaching up to 103. Under UV (350 nm wavelength) and visible (475 nm wavelength) light illumination, the ZnO-Si-PDs give photoresponsivity values of 30-37 mA W-1 and 74-80 mA W-1 at 0.5 V reverse bias, respectively. Photoluminescence (PL) spectra of ALD grown ZnO thin films are used to support the results.

  13. Chemical Speciation of the System Cu(II-Indomethacin in Ethanol and Water by UV-Vis Spectrophotometry

    Directory of Open Access Journals (Sweden)

    Norma Rodríguez-Laguna

    2016-01-01

    Full Text Available It has been proposed that the metal-drug complexes could be in fact the active agents displaying therapeutic effects of drugs. The characterization of the global formation equilibrium of complexes formed between metal ions and species with biological activity such as nonsteroidal anti-inflammatory drugs provides essential information to understand the mechanism of action of drugs. Since equilibrium constants determine the relative predominance of species, they provide crucial information to identify what complexes are more likely to be present in the system being responsible for the therapeutic effects of the drug. In this paper, the systems formed between copper and Indomethacin of different concentrations in ethanol or water were studied by UV-Vis spectrophotometry. The stoichiometry of the complexes Cu(II–Indomethacin and their formation constants were investigated. Moreover, molecular structures of the Cu(II–Indomethacin complexes were explored by means of the molecular modeling within the frame of the density functional theory.

  14. EPR and UV/VIS spectroscopic investigations of VO2+ complexes and compounds formed in alkali pyrosulfates

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Eriksen, Kim Michael; Fehrmann, Rasmus

    2002-01-01

    fraction of the sample occupied by the cation. This indicates that spin-spin relaxation effects are the major contribution to line broadening. Combining information from UV/VIS and EPR spectra shows that the VO2+ unit in the molten salt solvent exhibits electronic properties close to aqueous solutions of V(IV).......The catalytically important molten salt-gas system M2S2O7-M2SO4-V2O5/SO2(g) (M = Na. K, Rb, Cs) has been investigated by X- and Q-band EPR spectroscopy. In order to obtain information about the V(IV) complex formation in the melts, samples rather dilute in V2O5 were quenched from the molten state...

  15. OPTIMIZATION OF A UV-VIS SPECTROMETRIC METHOD FOR CAFFEINE ANALYSIS IN TEA, COFFEE AND OTHER BEVERAGES

    Directory of Open Access Journals (Sweden)

    S. DOBRINAS

    2014-01-01

    Full Text Available A method has been developed and validated for the determination of caffeine in tea, coffee and other beverages by UV-VIS spectrometry. A linear calibration curve was generated with caffeine concentration ranging from 3 mg∙L-1 to 18 mg∙L-1. The procedure developed provides a 0.85 mg∙L-1 detection limit of caffeine, respectively 1.52 mg∙L-1 quantification limit and the relative standard deviation (RSD was less than 0.05 % for independent measurement. The developed method was sensitive/specific and robust. Caffeine in tea infusions was found to be dependent on infusion time, the longer of the infusion time and the higher of the caffeine concentrations in tea infusions.

  16. Library of UV-Vis-NIR reflectance spectra of modern organic dyes from historic pattern-card coloured papers.

    Science.gov (United States)

    Montagner, Cristina; Bacci, Mauro; Bracci, Susanna; Freeman, Rachel; Picollo, Marcello

    2011-09-01

    An accurate characterisation of the organic dyes used in artworks, especially those made of paper, is an important factor in designing safe conservation treatments. In the case of synthetic organic dyes used in modern works of art, for example, one frequently encountered difficulty is that some of these dyes are not still commercially available. Recognizing this problem, the authors of this paper present the results of an analysis of UV-Vis-NIR fibre optic reflectance spectra of 82 samples of dyed paper prepared with 41 dyes. The samples come from a historic book, The Dyeing of Paper in the Pulp, which was published by Interessen-Gemeinschaft (I.G.) Farbenindustrie in 1925. The dyes used in the paper pulp belong to the azo compounds, acridine, anthraquinone, azine, diphenylmethane, indigoid, methine, nitro, quinoline, thiazine, triphenylmethane, sulphur and xanthene classes.

  17. Evaluation of clinoptilolite for removal of ammoniacal nitrogen produced in aquaculture by Neutron activation analysis and UV-VIS spectrophotometry

    Energy Technology Data Exchange (ETDEWEB)

    Bibiano C, L.; Iturbe G, J.L.; Lopez M, B.E.; Martinez M, V. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    In fish culture system, ammonia is excreted in the water as a metabolic by-product. In this work, sorption properties of clinoptilolite were determined and it was applied in culture of the rainbow trout Oncorhynchus mykiss for the removal of the ammoniacal nitrogen. The original clinoptilolite was treated with 1N NaCl solution from 24 to 192 h, for exchange NH{sub 4} ions produced in fish culture. The content of Na in the clinoptilolite was determined by neutron activation analysis. The ammonium ion content in the exchange was analysed by UV-VIS spectrophotometry. Maximum uptake of sodium was reached between 24 and 48 hours at neutral pH with granules of the clinoptilolite from 14 to 24 mesh size. The adsorption capacity was from 3.28 to 6.8 mg of ammonium per gram of clinoptilolite. (Author)

  18. SAXS Combined with UV-vis Spectroscopy and QELS: Accurate Characterization of Silver Sols Synthesized in Polymer Matrices

    Science.gov (United States)

    Bulavin, Leonid; Kutsevol, Nataliya; Chumachenko, Vasyl; Soloviov, Dmytro; Kuklin, Alexander; Marynin, Andrii

    2016-01-01

    The present work demonstrates a validation of small-angle X-ray scattering (SAXS) combining with ultra violet and visible (UV-vis) spectroscopy and quasi-elastic light scattering (QELS) analysis for characterization of silver sols synthesized in polymer matrices. Polymer matrix internal structure and polymer chemical nature actually controlled the sol size characteristics. It was shown that for precise analysis of nanoparticle size distribution these techniques should be used simultaneously. All applied methods were in good agreement for the characterization of size distribution of small particles (less than 60 nm) in the sols. Some deviations of the theoretical curves from the experimental ones were observed. The most probable cause is that nanoparticles were not entirely spherical in form.

  19. Micro-Raman and UV-VIS Studies of 100 MeV Ni4+ Irradiated Cadmium Telluride Thin Films

    Directory of Open Access Journals (Sweden)

    Neelam Pahwa

    2011-01-01

    Full Text Available CdTe thin films grown by thermal evaporation on quartz substrates were irradiated with Swift (100 MeV Ni 4 + ions for fluences in the range 1.0 × 1011 - 1.0 × 1013 cm – 2. The modification in the structure and optical properties has been studied as a function of ion fluence using Micro-Raman spectroscopy and UV-VIS spectroscopy. In Micro Raman spectrum, weak LO and TO modes of CdTe and A1 & E modes of Te were observed with blue shift which was found to increase with increase in fluence. Intensity of these modes decreased with increase in ion fluence. UV-transmission showed pronounced interference fringes, indicating a good quality of the films. The bandgap was found to increase in the range 1.4-1.75 eV with increase in fluence.

  20. Thermal-induced changes of kale's antioxidant activity analyzed by HPLC-UV/Vis-online-TEAC detection.

    Science.gov (United States)

    Fiol, Michaela; Weckmüller, Annika; Neugart, Susanne; Schreiner, Monika; Rohn, Sascha; Krumbein, Angelika; Kroh, Lothar W

    2013-06-01

    Generally, boiling of vegetables is assumed leading to lower nutritional values because of leaching effects and activity loss of bioactive compounds. Kale (Brassica oleracea var. sabellica) reveals a great diversity of flavonoids, which have been shown to be good antioxidants. As Brassica vegetables are mainly consumed cooked, the influence of boiling on kale's flavonoids and their antioxidant activity was investigated. Therefore, three kale cultivars were cooked at 100°C for 2 and 4h prior to analysis. The total phenolic content (TPC) and the total antioxidant activity (TEAC assay and EPR spectrometry) of each cultivar were determined and revealed no change, independent of cooking time, although kale samples visually altered. Using the HPLC-UV/Vis-online-TEAC approach, distinct changes in composition and antioxidant activity of the flavonoids were detectable. Thus, it was observable, that the antioxidant activities of the reaction products compensated the "loss" of the antioxidant activity of the original compounds of the uncooked material.

  1. An UV Vis spectroscopic study on carbenium ions formed on HY FAU zeolite upon the adsorption of various hydrocarbons

    Science.gov (United States)

    Kiricsi, I.; Pálinkó, I.; Kollár, T.

    2003-06-01

    It was shown that adsorbed hydrogen-rich carbonaceous residues could be formed on zeolites, but, when the temperature was not too high, they were typical only for unsaturated hydrocarbons. The overlayer then mainly contained alkenyl carbenium ions of various length. They were detected on the zeolite surface by UV-Vis spectroscopy. In the formation of these ions both Brønsted and Lewis acid centres played significant role. The unsaturated carbenium ions provided additional Lewis acid sites participating in hydride ion abstraction. The formation of alkenyl carbenium ions started at temperature as low as 298 K for butadiene. When n-butane, a saturated hydrocarbon, was the model, adsorbed hydrogen-rich carbonaceous residues were not found even at adsorption temperature as high as 473 K.

  2. Conformational analysis, UV-VIS, MESP, NLO and NMR studies of 6-methoxy-1,2,3,4-tetrahydronaphthalene.

    Science.gov (United States)

    Arivazhagan, M; Kavitha, R; Subhasini, V P

    2014-07-15

    The detailed HF and B3LYP/6-311++G(d,p) comparative studies on the complete FT-IR and FT-Raman spectra of 6-methoxy-1,2,3,4-tetrahydronaphthalene [MTHN] have been studied. In view of the special properties and uses, the present investigation has been undertaken to provide a satisfactorily vibrational analysis of 6-methoxy-1,2,3,4-tetrahydronaphthalene. Therefore, a thorough Raman, IR, molecular electrostatic potential (MESP), non-linear optical (NLO) properties, UV-VIS, HOMO-LUMO and NMR spectroscopic investigation are reported complemented by B3LYP theoretical predictions with basis set 6-311++G(d,p) to provide novel insight on vibrational assignments and conformational stability of MTHN. Potential energy surface scans (PES) of the CH3 group are undertaken to shed light on the rather complicated conformational interchanges in the compound under investigation.

  3. A comparison of antioxidative capacities of fruit juices, drinks and nectars, as determined by EPR and UV-vis spectroscopies.

    Science.gov (United States)

    Bartoszek, Mariola; Polak, Justyna

    2016-01-15

    The differences in the Trolox Equivalent Antioxidant Capacity (TEAC) values at the same incubation time obtained by two different techniques: electron paramagnetic resonance (EPR) spectroscopy and ultraviolet visible (UV-vis) spectroscopy, which use the same antioxidant-free radical reaction mechanism, were determined for fruit juices, nectars and drinks. For this study, the stable free radical 1,1-Diphenyl-2-picryl-hydrazyl (DPPH(•)) was used. The antioxidant capacity was presented in Trolox Equivalents, e.g., μM trolox per 100 ml of sample. All of the studied fruit juices, drinks and nectars showed antioxidative properties. Dependencies between TEAC values and the percent fruit content and sample color were observed for the studied beverages. It was found that EPR spectroscopy is the more adequate method for determining TEAC values for these kinds of samples.

  4. SAXS Combined with UV-vis Spectroscopy and QELS: Accurate Characterization of Silver Sols Synthesized in Polymer Matrices.

    Science.gov (United States)

    Bulavin, Leonid; Kutsevol, Nataliya; Chumachenko, Vasyl; Soloviov, Dmytro; Kuklin, Alexander; Marynin, Andrii

    2016-12-01

    The present work demonstrates a validation of small-angle X-ray scattering (SAXS) combining with ultra violet and visible (UV-vis) spectroscopy and quasi-elastic light scattering (QELS) analysis for characterization of silver sols synthesized in polymer matrices. Polymer matrix internal structure and polymer chemical nature actually controlled the sol size characteristics. It was shown that for precise analysis of nanoparticle size distribution these techniques should be used simultaneously. All applied methods were in good agreement for the characterization of size distribution of small particles (less than 60 nm) in the sols. Some deviations of the theoretical curves from the experimental ones were observed. The most probable cause is that nanoparticles were not entirely spherical in form.

  5. Sucrose as chiral selector for determining enantiomeric composition of phenylalanine by UV-vis spectroscopy and chemometrics

    Institute of Scientific and Technical Information of China (English)

    Qian Qian Li; Jia Duan; Li Jun Wu; Yue Huang; Guo Tang; Shun Geng Min

    2012-01-01

    The determination of enantiomeric composition by partial least squares (PLS) modeling of UV-vis spectral data was investigated for samples of phenylalanine (phe) using sucrose as a chiral auxiliary.And a new data preprocess method,reference band normalization,was introduced to eliminate the spectral variations due to the changes of total concentration of phe.The determination coefficient (R2) and the standard error of calibration set (SEC) of 13 standard samples are 0.9987 and 0.0128 respectively.The standard error of validation set (SECV) of 7 validation samples is 0.0049.The standard error of predict (SEP) of 6 blind samples for evaluating the robustness of the model is 0.0366.The regression model is robust to determine enantiomeric composition when total concentration varied.It is demonstrated that the reference band normalization is a convenient method of compensating for variations in total concentrations without knowing that in advance.

  6. Alkali metal salts of rutin - Synthesis, spectroscopic (FT-IR, FT-Raman, UV-VIS), antioxidant and antimicrobial studies.

    Science.gov (United States)

    Samsonowicz, M; Kamińska, I; Kalinowska, M; Lewandowski, W

    2015-12-05

    In this work several metal salts of rutin with lithium, sodium, potassium, rubidium and cesium were synthesized. Their molecular structures were discussed on the basis of spectroscopic (FT-IR, FT-Raman, UV-VIS) studies. Optimized geometrical structure of rutin was calculated by B3LYP/6-311++G(∗∗) method and sodium salt of rutin were calculated by B3LYP/LanL2DZ method. Metal chelation change the biological properties of ligand therefore the antioxidant (FRAP and DPPH) and antimicrobial activities (toward Escherichia coli, Staphylococcus aureus, Enterococcus faecium, Proteus vulgaris, Pseudomonas aeruginosa, Klebsiella pneumonia, Candida albicans and Saccharomyces cerevisiae) of alkali metal salts were evaluated and compared with the biological properties of rutin.

  7. UV-Vis Spectroscopy Study on Interaction between Microperoxidase-11 and Pr Ion Under Acid Rain Stress

    Institute of Scientific and Technical Information of China (English)

    吉红念; 黄晓华; 周青; 陆天虹

    2002-01-01

    Interaction between rare earth ion praseodymium (Pr(Ⅲ)) and MP11 with/without hydrogen ion (H+) in different media( aqueous, phosphate buffer, physiological condition) were studied by UV-Vis spectroscopy. All the results indicate that Pr(Ⅲ) interacts with MP11, increasing the non-planarity of porphyrin periphery, leading MP11 to form two conformations when titrated by Pr(Ⅲ). Excessive Pr(Ⅲ) acts as a contaminant in living organism. H+ and Pr(Ⅲ) have antagonistic effect on MP11, suggesting that at suitable concentration under physiological conditions, Pr(Ⅲ) can be used as biomodulator in protecting plants from acid rain stress or in rehabilitating the harm.

  8. Balloon-borne limb profiling of UV/vis skylight radiances, O3, NO2, and BrO: technical set-up and validation of the method

    Directory of Open Access Journals (Sweden)

    F. Weidner

    2005-01-01

    Full Text Available A novel light-weight, elevation scanning and absolutely calibrated UV/vis spectrometer and its application to balloon-borne limb radiance and trace gas profile measurements is described. Its performance and the novel method of balloon-borne UV/vis limb trace gas measurements has been tested against simultaneous observations of the same atmospheric parameters available from either (a in-situ instrumentation (cf., by an electrochemical cell (ECC ozone sonde also deployed aboard the gondola or (b trace gas profiles inferred from UV/vis/near IR solar occultation measurements performed on the same payload. The novel technique is also cross validated with radiative transfer modeling. Reasonable agreement is found (a between measured and simulated limb radiances and (b inferred limb O3, NO2, and BrO and correlative profile measurements when properly accounting for all relevant atmospheric parameters (temperature, pressure, aerosol extinction, and major absorbers.

  9. Detection of Outliers and Imputing of Missing Values for Water Quality UV-VIS Absorbance Time Series

    Directory of Open Access Journals (Sweden)

    Leonardo Plazas-Nossa

    2017-01-01

    Full Text Available Context: The UV-Vis absorbance collection using online optical captors for water quality detection may yield outliers and/or missing values. Therefore, data pre-processing is a necessary pre-requisite to monitoring data processing. Thus, the aim of this study is to propose a method that detects and removes outliers as well as fills gaps in time series. Method: Outliers are detected using Winsorising procedure and the application of the Discrete Fourier Transform (DFT and the Inverse of Fast Fourier Transform (IFFT to complete the time series. Together, these tools were used to analyse a case study comprising three sites in Colombia ((i Bogotá D.C. Salitre-WWTP (Waste Water Treatment Plant, influent; (ii Bogotá D.C. Gibraltar Pumping Station (GPS; and, (iii Itagüí, San Fernando-WWTP, influent (Medellín metropolitan area analysed via UV-Vis (Ultraviolet and Visible spectra. Results: Outlier detection with the proposed method obtained promising results when window parameter values are small and self-similar, despite that the three time series exhibited different sizes and behaviours. The DFT allowed to process different length gaps having missing values. To assess the validity of the proposed method, continuous subsets (a section of the absorbance time series without outlier or missing values were removed from the original time series obtaining an average 12% error rate in the three testing time series. Conclusions: The application of the DFT and the IFFT, using the 10% most important harmonics of useful values, can be useful for its later use in different applications, specifically for time series of water quality and quantity in urban sewer systems. One potential application would be the analysis of dry weather interesting to rain events, a feat achieved by detecting values that correspond to unusual behaviour in a time series. Additionally, the result hints at the potential of the method in correcting other hydrologic time series.

  10. Mixing Across a Simple Mare-Highland Contact in the Grimaldi Basin: New Insights from Clementine UV/VIS Data

    Science.gov (United States)

    Li, L.; Mustard, J. F.; He, G.

    1996-03-01

    The investigation of the composition of mare-highland boundaries carried out by Mustard et al. using multispectral images from the Galileo Solid State Imaging (SSI) instrument reveals the existence of three distinct mixing systematics across the mare-highland contacts in the region of southwestern Procellarum. The three basic types are narrow, moderate, and complex mixing gradients, and each implies a different set of fundamental processes that have contributed to the observed gradients. However, the 4 km resolution of the Galileo SSI data is too low to critically evaluate the exact properties of these boundaries, particularly in areas with rapidly changing abundances. The higher spatial resolution of Clementine UV/VIS data ( ~200 m/pixel, 5 filters between 0.415- 1.0 am-micrometers) allows the contact of mare-highland to be addressed in more detail. We have begun a series of studies to characterize and model mixing across mare-highland boundaries using these data, beginning with simple boundaries (sharp geologic contact, simple superposition of mare on highland). In this study, the contact between the Grimaldi mare and the highland on the southern edge is investigated through the spectral mixture analysis of Clementine UV/VIS data. Our preliminary analyses reveals the boundary consists of three mixing zones: moderate, steep, and moderate. The moderate zones on the mare and highland sides of the contact are approximately 30km wide, while the steep zone is ~6-8 km wide. We are currently examining other such simple boundaries to determine if the physical dimensions and properties are consistent across the moon, and thus a chracteristic properties of simple boundaries.

  11. Investigation on interaction of DNA and several cationic surfactants with different head groups by spectroscopy, gel electrophoresis and viscosity technologies.

    Science.gov (United States)

    Guo, Qing; Zhang, Zhaohong; Song, Youtao; Liu, Shuo; Gao, Wei; Qiao, Heng; Guo, Lili; Wang, Jun

    2017-02-01

    In this study, the interaction between DNA and several cationic surfactants with different head groups such as ethyl hexadecyl dimethyl ammonium bromide (EHDAB), hexadecyl dimethyl benzyl ammonium chloride (HDBAC), and cetyl pyridinium bromide (CPB) were investigated by UV-vis absorption, fluorescence and circular dichroism (CD) spectroscopy, gel electrophoresis, and viscosity technologies. The results show that these cationic surfactants can interact with DNA and major binding modes are electrostatic and hydrophobic. Also, CPB and HDBAC molecules interact with DNA by partial intercalation, and CPB has slightly stronger intercalation than HDBAC, while EHDAB interacts with DNA by non-intercalation. The different head groups of the surfactant molecules can influence the interaction strength. CPB has the stronger interaction with DNA than the others. Moreover, surfactant concentration, the ratio of DNA and fluorescence probe, ionic strength can influence the interaction. The surfactants may interact with DNA by the competition reactions with BR for DNA-BR. The increase of ionic strength may favor the surface binding between DNA and surfactants to some extent. This work provides deep mechanistic insight on the toxicity of cationic surfactants with different head groups to DNA molecules.

  12. Experimental Study on the Absorption of Toluene from Exhaust Gas by Paraffin/Surfactant/Water Emulsion

    Directory of Open Access Journals (Sweden)

    Ping Fang

    2016-01-01

    Full Text Available A new paraffin/surfactant/water emulsion (PSW for volatile organic compounds (VOCs controlling was prepared and its potential for VOCs removal was investigated. Results indicated that PSW-5 (5%, v/v provided higher toluene absorption efficiency (90.77% than the other absorbents used. The saturation pressure, Henry’s constant, and activity coefficient of toluene in PSW-5 were significantly lower than those in water, and toluene solubility (1.331 g·L−1 in the PSW-5 was more than 2.5 times higher than the value in water. Several factors potentially affecting the toluene absorption efficiency were systematically investigated. The results suggested that concentration and pH of PSW, absorption temperature, and gas flow rate all had a strong influence on the toluene absorption, but the inlet concentration of toluene had little effect on the toluene absorption. There were different absorbing performances of PSW-5 on different VOCs, and the ketones, esters, and aromatics were more easily removed by the PSW-5 than the alkanes. Regeneration and reuse of the PSW were possible; after 3 runs of regeneration the absorption efficiency of PSW-5 for toluene also could reach 82.42%. So, the PSW is an economic, efficient, and safe absorbent and has a great prospect in organic waste gas treatment.

  13. NIR absorbing diferrocene-containing meso-cyano-BODIPY with a UV-Vis-NIR spectrum remarkably close to that of magnesium tetracyanotetraferrocenyltetraazaporphyrin.

    Science.gov (United States)

    Didukh, Natalia O; Zatsikha, Yuriy V; Rohde, Gregory T; Blesener, Tanner S; Yakubovskyi, Viktor P; Kovtun, Yuriy P; Nemykin, Victor N

    2016-10-04

    Diferrocene-containing meso-cyano-BODIPY (4) was prepared by the direct cyanation/oxidation reaction of symmetric BODIPY 1 followed by Knoevenagel condensation with ferrocenealdehyde. Ferrocene-containing BODIPY 4 was characterized by a variety of spectroscopic, electrochemical, and theoretical methods and its UV-Vis-NIR spectrum has a striking similarity with a UV-Vis-NIR spectrum of the previously reported magnesium 2(3),7(8),12(13),17(18)-tetracyano-3(2),8(7),13(12),18(17)-tetraferrocenyl-5,10,15,20-tetraazaporphyrin.

  14. Ultraviolet-visible light (UV-Vis)-reversible but fluorescence-irreversible chemosensor for copper in water and its application in living cells.

    Science.gov (United States)

    Huo, Fang-Jun; Yin, Cai-Xia; Yang, Yu-Tao; Su, Jing; Chao, Jian-Bin; Liu, Dian-Sheng

    2012-03-06

    An ultraviolet-visible light (UV-Vis)-reversible but fluorescence-irreversible chemosensor was developed for the detection of copper. Coordination between the probe, 2-pyridylaldehyde fluorescein hydrazone (FHP), and Cu(2+) gave a reversible UV-Vis response, Storage of the probe-Cu complex resulted in hydrolytic cleavage of the N═C bond, which released the fluorophore (ring-opened fluorescein hydrazine) and gave irreversible fluorescence. Thus, FHP becomes a multifunctional chemosensor, and its reversibility can be controlled by the reaction time. Cu(2+) in living cells could be detected using FHP and general fluorescence methods.

  15. Experimental Study on the Absorption of Toluene from Exhaust Gas by Paraffin/Surfactant/Water Emulsion

    OpenAIRE

    Ping Fang; Zi-jun Tang; Xiong-bo Chen; Zhi-xiong Tang; Ding-sheng Chen; Jian-hang Huang; Wen-hao Zeng; Chao-ping Cen

    2016-01-01

    A new paraffin/surfactant/water emulsion (PSW) for volatile organic compounds (VOCs) controlling was prepared and its potential for VOCs removal was investigated. Results indicated that PSW-5 (5%, v/v) provided higher toluene absorption efficiency (90.77%) than the other absorbents used. The saturation pressure, Henry’s constant, and activity coefficient of toluene in PSW-5 were significantly lower than those in water, and toluene solubility (1.331 g·L−1) in the PSW-5 was more than 2.5 times ...

  16. UV-Vis Spectroscopy as a Tool for Safeguards; Instrumentation installation and fundamental data collection

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Nicholas A. [Argonne National Lab. (ANL), Argonne, IL (United States); Krebs, John F. [Argonne National Lab. (ANL), Argonne, IL (United States); Hebden, Andrew S. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-20

    Two spectrophotometric process monitors, one optimized for high concentration (approximately 10 g/L) and one for trace levels (approximately 10 ppm),were developed at Argonne and installed at the SRS H-Canyon facility for field testing. These systems were built of Commercial-Off-The-Shelf components utilizing a custom, facility-specific hardware interface. The systems directly provide a qualitative measurement of process chemistry (i.e. valence state). With appropriate calibrations the systems could provide quantitative data. Laboratory tests were performed to determine the spectrophotometric molar absorptivity coefficients for relevant actinide and transition metals of interest.

  17. Kolliphor surfactants affect solubilization and bioavailability of fenofibrate. Studies of in vitro digestion and absorption in rats

    DEFF Research Database (Denmark)

    Berthelsen, Ragna; Holm, Rene; Jacobsen, Jette

    2015-01-01

    formulations only comprised an aqueous micellar solution of the model drug (fenofibrate) in varying concentrations (2–25% (w/v)) of the three tested surfactants. Increased concentrations of Kolliphor ELP and EL led to increased fenofibrate AUC0–24h values. For the Kolliphor RH40 formulations, an apparent...... fenofibrate absorption optimum was seen at 15% (w/v) surfactant, displaying both the highest AUC0–24h and Cmax. The reduced absorption of fenofibrate from the formulation containing the highest level of surfactant (25% w/v) was thought to be caused by some degree of trapping within Kolliphor RH40 micelles....... In vitro, Kolliphor ELP and EL were found to be more prone to digestion than Kolliphor RH40, though not affecting the in vivo results. The highest fenofibrate bioavailability was attained from formulations with high Kolliphor ELP/EL levels (25% (w/v)), indicating that these surfactants are the better...

  18. Determination of Anionic Surfactants Using Atomic Absorption Spectrometry and Anodic Stripping Voltammetry

    Science.gov (United States)

    John, Richard; Lord, Daniel

    1999-09-01

    An experiment has been developed for our undergraduate analytical chemistry course that demonstrates the indirect analysis of anionic surfactants by techniques normally associated with metal ion determination; that is, atomic absorption spectroscopy (AAS) and anodic stripping voltammetry (ASV). The method involves the formation of an extractable complex between the synthetic surfactant anion and the bis(ethylenediamine)diaqua copper(II) cation. This complex is extracted into chloroform and then back-extracted into dilute acid. The resulting Cu(II) ions are determined by AAS and ASV. Students are required to determine the concentration of a pre-prepared "unknown" anionic surfactant solution and to collect and analyze a real sample of their choice. After the two extraction processes, students typically obtain close to 100% analytical recovery. Correlation between student AAS and ASV results is very good, indicating that any errors that occur probably result from their technique (dilutions, extractions, preparation of standards, etc.) rather than from the end analyses. The experiment is a valuable demonstration of the following analytical principles: indirect analysis; compleximetric analysis; liquid-liquid (solvent) extraction; back-extraction (into dilute acid); analytical recovery; and metal ion analysis using flame-AAS and ASV.

  19. A new approach for retrieving the UV-vis optical properties of ambient aerosols

    Science.gov (United States)

    Bluvshtein, Nir; Flores, J. Michel; Segev, Lior; Rudich, Yinon

    2016-08-01

    Atmospheric aerosols play an important part in the Earth's energy budget by scattering and absorbing incoming solar and outgoing terrestrial radiation. To quantify the effective radiative forcing due to aerosol-radiation interactions, researchers must obtain a detailed understanding of the spectrally dependent intensive and extensive optical properties of different aerosol types. Our new approach retrieves the optical coefficients and the single-scattering albedo of the total aerosol population over 300 to 650 nm wavelength, using extinction measurements from a broadband cavity-enhanced spectrometer at 315 to 345 nm and 390 to 420 nm, extinction and absorption measurements at 404 nm from a photoacoustic cell coupled to a cavity ring-down spectrometer, and scattering measurements from a three-wavelength integrating nephelometer. By combining these measurements with aerosol size distribution data, we retrieved the time- and wavelength-dependent effective complex refractive index of the aerosols. Retrieval simulations and laboratory measurements of brown carbon proxies showed low absolute errors and good agreement with expected and reported values. Finally, we implemented this new broadband method to achieve continuous spectral- and time-dependent monitoring of ambient aerosol population, including, for the first time, extinction measurements using cavity-enhanced spectrometry in the 315 to 345 nm UV range, in which significant light absorption may occur.

  20. UV-vis and Transport Characterization of Degradation in Polymer Blend Photovoltaics

    Science.gov (United States)

    Sena, Emilee; Peel, Justin; Nathan, Shreya; Wesenberg, Devin; Wallis, Marianne; Adalsteinsson, Thorsteinn; McNelis, Brian; Barber, Richard

    2011-03-01

    Organic photovoltaic cells are prepared using an active layer containing a functionalized C60 molecule, [6-6]-phenyl C61 butyric acid octadecyl ester (PCBOD); and a conjugated polymer, poly(3-hexylthiophene) (P3HT). PCBOD functions as an electron acceptor in conjunction with P3HT, the electron donor. Both current-voltage (IV) transport data of solar cells and spectroscopic absorption data of the corresponding active layer are collected at regular time intervals for periods up to several days. IV data show changes in power conversion efficiency which are strongly dependent on device preparation (stoichiometry, annealing, etc.). Ultraviolet and visible light absorption exhibits similar time dependence. Recent results show that annealing the active layer up to 200rC substantially improves device performance. Further spectroscopic studies, such as Carbon-13 NMR spectroscopy, are ongoing. Supported by a Santa Clara University Science, Technology and Society Grant, a grant from IntelliVision and the SCU BIN-REU: funded in part by the UC Santa Cruz BIN-RDI, NASA Grant NNX09AQ44A.

  1. Weakened negative effect of Au/TiO2 photocatalytic activity by CdS quantum dots deposited under UV-vis light illumination at different intensity ratios.

    Science.gov (United States)

    Song, Kang; Wang, Xiaohong; Xiang, Qun; Xu, Jiaqiang

    2016-10-26

    Herein, we demonstrate experimentally the coexistence of photocatalytic dual opposite roles of Au nanoparticles in a UV-vis light irradiated Au/TiO2 system. We have investigated that the photocatalytic performance curves of Au/TiO2 and CdS/Au/TiO2 for degradation of methylene blue (MB) all present a V-shape with different radiation power ratios. However, through the comparison of photocatalytic activities of Au/TiO2 and CdS/Au/TiO2 by statistics and mathematical simulation, we propose qualitatively that the deposition of CdS used as a photosensitizer could extend the Au/TiO2 light absorption range and weaken the negative effect of Au/TiO2. Compared with Au/TiO2, it is proven indirectly that the photo-excited electrons of CdS/Au/TiO2 transfer from CdS to Au, and then to TiO2. Furthermore, we discuss the photocatalytic dual opposite roles of Au nanoparticles between CdS and TiO2, the positive effect includes localized surface plasmon resonance (LSPR) and Schottky barrier (SB), and the negative effect is that Au nanoparticles can be used as a new charge-carrier recombination center. In addition, we have analyzed that the dual opposite relationship of Au/TiO2 under the irradiation of mixed-light could be regulated by changing the intensity ratio of visible to UV light as well.

  2. FT-IR, FT-Raman, NMR and UV-Vis spectra and DFT calculations of 5-bromo-2-ethoxyphenylboronic acid (monomer and dimer structures).

    Science.gov (United States)

    Sas, E B; Kose, E; Kurt, M; Karabacak, M

    2015-02-25

    In this study, the Fourier Transform Infrared (FT-IR) and Fourier Transform Raman (FT-Raman) spectra of 5-bromo-2-ethoxyphenylboronic acid (5Br2EPBA) are recorded in the solid phase in the region 4000-400 cm(-1) and 3500-10 cm(-1), respectively. The (1)H, (13)C and DEPT nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The UV-Vis absorption spectrum of 5Br2EPBA is saved in the range of 200-400 nm in ethanol and water. The following theoretical calculations for monomeric and dimeric structures are supported by experimental results. The molecular geometry and vibrational frequencies in the ground state are calculated by using DFT methods with 6-31G(d,p) and 6-311G(d,p) basis sets. There are four conformers for the present molecule. The computational results diagnose the most stable conformer of 5Br2EPBA as Trans-Cis (TC) form. The complete assignments are performed on the basis of the total energy distribution (TED) of vibrational modes, calculated with scaled quantum mechanics (SQM) method in parallel quantum solutions (PQS) program. The (1)H and (13)C NMR chemical shifts of 5Br2EPBA molecule are calculated by using the Gauge Invariant Atomic Orbital (GIAO) method in DMSO and gas phase for monomer and dimer structures of the most stable conformer. Moreover, electronic properties, such as the HOMO and LUMO energies (by TD-DFT and CIS methods) and molecular electrostatic potential surface (MEPs) are investigated. Stability of the molecule arising from hyper-conjugative interactions, charge delocalization is analyzed using natural bond orbital (NBO) analysis. Nonlinear optical (NLO) properties and thermodynamic features are presented. All calculated results are compared with the experimental data of the title molecule. The correlation of theoretical and experimental results provides a detailed description of the structural and physicochemical properties of the title molecule.

  3. UV-Vis absorption spectroscopy and chemometrics to discriminate between the two basic categories and types of tequila

    Science.gov (United States)

    Barbosa Garcia, O.; Ramos Ortiz, G.; Pichardo Molina, J.; Maldonado, J. L.; Meneses Nava, M. A.; Landgrave, J. E. A.

    2007-03-01

    An alternative method to chromatography is reported to discriminate among white and aging tequilas. In a previous work we had reported a similar method to discriminate between 100% blue agave and mixed tequilas. A data base of 145 tequilas was created where well known tequila brands and tequilas in bulk were included. The bottled tequilas were purchased at various Mexican liquor stores to ensure that different batches of each brand were included in the data base. The method that we propose to discriminate tequilas may also be used for quality control in distilleries and, with the help of the data base, to identify counterfeit tequilas.

  4. Distributed Read-out Imaging Device array for astronomical observations in UV/VIS

    Science.gov (United States)

    Hijmering, Richard A.

    2009-12-01

    STJ (Superconducting Tunneling Junctions) are being developed as spectro-photometers in wavelengths ranging from the NIR to X-rays. 10x12 arrays of STJs have already been successfully used as optical imaging spectrometers with the S-Cam 3, on the William Hershel Telescope on La Palma and on the Optical Ground Station on Tenerife. To overcome the limited field of view which can be achieved with single STJ arrays, DROIDS (Distributed Read Out Imaging Devices) are being developed which produce next to energy and timing also produce positional information with each detector element. These DROIDS consist of a superconducting absorber strip with proximized STJs on either end. The STJs are a Ta/Al/AlOx/Al/Ta 100/30/1/30/100nm sandwich of which the bottom electrode Ta layer is one with the 100nm thick absorber layer. The ratio of the two signals from the STJs provides information on the absorption position and the sum signal is a measure for the energy of the absorbed photon. In this thesis we present different important processes which are involved with the detection of optical photons using DROIDs. This includes the spatial and spectral resolution, confinement of the quasiparticles in the proximized STJs to enhance tunnelling and quasiparticle creation resulting from absorption of a photon in the proximized STJ. We have combined our findings in the development of a 2D theoretical model which describes the diffusion of quasiparticles and imperfect confinement via exchange of quasiparticles between the absorber and STJ. Finally we will present some of the first results obtained with an array of 60 360x33.5 μm2 DROIDs in 3x20 format.

  5. Four Brazilian Maytenus salicifolia Reissek (Celastraceae groups studied by TLC and UV/Vis spectrophotometry Estudo de quatro populações de Maytenus salicifolia Reissek (Celastraceae por CCD e espectrometria na região do UV/Vis

    Directory of Open Access Journals (Sweden)

    Frederico N. Valladão

    2009-09-01

    Full Text Available The great variety of angiosperms shows the need to development of botanical classification systems supported by phytochemistry, biochemistry and others. Recently, techniques of analysis used for the isolation and characterization of secondary metabolites have been employed as auxiliary quick and efficient methods for the identification and classification of plant species. M. salicifolia is popularly known in Brazil, as "small coffee" and decoct obtained from its fresh leaves is topically used to alleviate itches and other skins allergic symptoms. This work presents the use of TLC and UV/Vis spectrophotomety processes to be applied like an auxiliary method in botanical taxonomy. The results demonstrate that this process can be used in differentiation of the same genera species, and in the selection of chemical variations between individuals of the same species.A grande variedade de angiospermas apontou a necessidade do desenvolvimento de sistemas de classificação botânica apoiada pela fitoquímica, bioquímica e outras. Recentemente, técnicas de análise utilizadas para o isolamento e caracterização de metabólitos secundários vêm sendo empregadas como métodos auxiliares rápidos e eficientes para identificação e classificação de espécies vegetais. M. salicifolia é popularmente conhecida no Brasil, como "cafezinho". O chá obtido a partir de folhas frescas é usado topicamente para aliviar pruridos e sintomas alergiformes. Este trabalho apresenta a utilização do CCD em sílica gel e espectrofotometria no UV / Vis como métodos auxiliares na identificação botânica de M. salicifolia. Os resultados demonstraram que este processo pode ser usado na diferenciação de plantas do mesmo gênero, assim como detectar variações químicas entre indivíduos de uma mesma espécie.

  6. Electrooxidation of dissolved dsDNA backed by in situ UV-Vis spectroscopy.

    Science.gov (United States)

    Nowicka, Anna M; Zabost, Ewelina; Donten, Mikolaj; Mazerska, Zofia; Stojek, Zbigniew

    2007-05-01

    The electrooxidation of double-stranded DNA (dsDNA) from calf thymus was carried by using cyclic voltammetry. A glassy carbon disk-, a platinum disk-, a platinum mesh- and a carbon vapor-deposited platinum mesh electrodes were used. It is shown that the appropriate chemical and biological (steam treatment) purification of the complete cell allows, for the graphite electrode, formation of a wide anodic dsDNA signal with two visible anodic peaks. There was no necessity of preaccumulation of dsDNA on the electrode surface and of use of mediators to get well defined voltammetric signals. These peaks apparently reflect electrooxidation of the DNA's guanine and adenine. The spectrophotometric data obtained during the electrooxidation indicate that the absorbance increases with an increase in potential and electrooxidation current of dsDNA. However, the absorption band maximum either does or does not change its position depending on the mesh material. This different spectroscopic behavior may mean that the changes in the dsDNA structure upon electrooxidation are different in the case of Pt and C electrodes.

  7. Operando UV-Vis spectroscopy of a catalytic solid in a pilos-scale reactor: deactivation of a CrOx/Al2O3 propane dehydrogenation catalyst

    NARCIS (Netherlands)

    Sattler, J.J.H.B.|info:eu-repo/dai/nl/328235601; Gonzalez-Jimenez, I.D.; Mens, A.J.M.|info:eu-repo/dai/nl/313707065; Arias, M.J.|info:eu-repo/dai/nl/314076727; Visser, T.|info:eu-repo/dai/nl/110288327; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2013-01-01

    A novel operando UV-Vis spectroscopic set-up has been constructed and tested for the investigation of catalyst bodies loaded in a pilot-scale reactor under relevant reaction conditions. Spatiotemporal insight into the formation and burning of coke deposits on an industrial CrOx/Al2O3 catalyst during

  8. A novel combined approach of diffuse reflectance UV-Vis-NIR spectroscopy and multivariate analysis for non-destructive examination of blue ballpoint pen inks in forensic application.

    Science.gov (United States)

    Kumar, Raj; Sharma, Vishal

    2017-03-15

    The present research is focused on the analysis of writing inks using destructive UV-Vis spectroscopy (dissolution of ink by the solvent) and non-destructive diffuse reflectance UV-Vis-NIR spectroscopy along with Chemometrics. Fifty seven samples of blue ballpoint pen inks were analyzed under optimum conditions to determine the differences in spectral features of inks among same and different manufacturers. Normalization was performed on the spectroscopic data before chemometric analysis. Principal Component Analysis (PCA) and K-mean cluster analysis were used on the data to ascertain whether the blue ballpoint pen inks could be differentiated by their UV-Vis/UV-Vis NIR spectra. The discriminating power is calculated by qualitative analysis by the visual comparison of the spectra (absorbance peaks), produced by the destructive and non-destructive methods. In the latter two methods, the pairwise comparison is made by incorporating the clustering method. It is found that chemometric method provides better discriminating power (98.72% and 99.46%, in destructive and non-destructive, respectively) in comparison to the qualitative analysis (69.67%). Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Combined Operando UV/Vis/IR Spectroscopy Reveals the Role of Methoxy and Aromatic Species during the Methanol-to-Olefins Reaction over H-SAPO-34

    NARCIS (Netherlands)

    Qian, Qingyun; Vogt, Charlotte; Mokhtar, Mohamed; Asiri, Abdullah M.; Al-Thabaiti, Shaeel A.; Basahel, Suliman N.; Ruiz-Martinez, Javier; Weckhuysen, Bert M.

    2014-01-01

    The methanol-to-olefins (MTO) process over H-SAPO-34 is investigated by using an operando approach combining UV/Vis and IR spectroscopies with on-line mass spectrometry. Methanol, methoxy, and protonated dimethyl ether are the major species during the induction period, whereas polyalkylated benzenes

  10. A novel combined approach of diffuse reflectance UV-Vis-NIR spectroscopy and multivariate analysis for non-destructive examination of blue ballpoint pen inks in forensic application

    Science.gov (United States)

    Kumar, Raj; Sharma, Vishal

    2017-03-01

    The present research is focused on the analysis of writing inks using destructive UV-Vis spectroscopy (dissolution of ink by the solvent) and non-destructive diffuse reflectance UV-Vis-NIR spectroscopy along with Chemometrics. Fifty seven samples of blue ballpoint pen inks were analyzed under optimum conditions to determine the differences in spectral features of inks among same and different manufacturers. Normalization was performed on the spectroscopic data before chemometric analysis. Principal Component Analysis (PCA) and K-mean cluster analysis were used on the data to ascertain whether the blue ballpoint pen inks could be differentiated by their UV-Vis/UV-Vis NIR spectra. The discriminating power is calculated by qualitative analysis by the visual comparison of the spectra (absorbance peaks), produced by the destructive and non-destructive methods. In the latter two methods, the pairwise comparison is made by incorporating the clustering method. It is found that chemometric method provides better discriminating power (98.72% and 99.46%, in destructive and non-destructive, respectively) in comparison to the qualitative analysis (69.67%).

  11. Performance of an in-plane detection cell with integrated waveguides for UV/Vis absorbance measurements on microfluidic separation devices

    DEFF Research Database (Denmark)

    Petersen, Nickolaj Jacob; Mogensen, Klaus Bo; Kutter, Jörg Peter

    2002-01-01

    A microfluidic device with integrated waveguides and a long path length detection cell for UV/Vis absorbance detection is presented. The 750 mum U-cell detection geometry was evaluated in terms of its optical performance as well as its influence on efficiency for electrophoretic separations...

  12. Real-time activity monitoring of New Delhi metallo-β-lactamase-1 in living bacterial cells by UV-Vis spectroscopy.

    Science.gov (United States)

    Yang, Ke-Wu; Zhou, Yajun; Ge, Ying; Zhang, Yuejuan

    2017-07-13

    We report an UV-Vis method for monitoring the hydrolysis of the β-lactam antibiotics inside living bacterial cells. Cell-based studies demonstrated that the hydrolysis of cefazolin was inhibited by three known NDM-1 inhibitors. This approach can be applied to the monitoring of reactions in a complex biological system, for instance in medical testing.

  13. Operando UV-Vis spectroscopy of a catalytic solid in a pilos-scale reactor: deactivation of a CrOx/Al2O3 propane dehydrogenation catalyst

    NARCIS (Netherlands)

    Sattler, J.J.H.B.; Gonzalez-Jimenez, I.D.; Mens, A.J.M.; Arias, M.J.; Visser, T.; Weckhuysen, B.M.

    2013-01-01

    A novel operando UV-Vis spectroscopic set-up has been constructed and tested for the investigation of catalyst bodies loaded in a pilot-scale reactor under relevant reaction conditions. Spatiotemporal insight into the formation and burning of coke deposits on an industrial CrOx/Al2O3 catalyst during

  14. Application of a UV-Vis submersible probe for capturing changes in DOC concentrations across a mire complex during the snowmelt and summer periods

    Science.gov (United States)

    Avagyan, Armine; Runkle, Benjamin; Kutzbach, Lars

    2013-04-01

    An accurate quantification of dissolved organic carbon (DOC) is crucial for understanding changes in water resources under the influence of climate, land use and urbanization. However, the conventionally used methods do not allow high frequency in situ analyses in remote or hostile environments (e.g., industrial wastewater or during environmental high-flow events, such as snowmelt or floods). In particular, missing measurements during the snowmelt period in landscapes of the boreal region can lead to significant miscalculations in regional carbon budgets. Therefore, the aim of the study was to test the performance of a portable, submersible UV-Vis spectrophotometer (spectro::lyser, s::can Messtechnik GmbH, Austria) during the snowmelt period in a boreal mire-forest catchment, and to provide a conceptual understanding of the spatial and temporal dynamics of DOC concentrations during and after snowmelt. During 2011, water samples were collected from the near-pristine Ust-Pojeg mire complex in northwestern Russia (61° 56'N, 50° 13'E). Sampling started during the spring snowmelt period and continued until late fall. The mire presented a mosaic of different landscape units. The mire consisted of minerogeous (fen), ombrogenous (bog), and transitional forest-mire (lagg) zones. Water samples were taken from the surface across the mire (22 points at 50-m intervals). DOC concentrations were analyzed directly at the study site using a portable, submersible UV-Vis spectrophotometer, which uses high-resolution absorbance measurements over the wavelength range 200-742.5 nm at 2.5-nm intervals as a proxy for DOC content. Because the DOC composition of fluids varies by site, a local calibration replaced the default settings of the spectro::lyser (Global Calibration) to enhance the accuracy of the measurements. To evaluate the local calibration and correct for drift, the same samples (n = 157) were additionally analyzed using the wet persulfate oxidation method (O

  15. ESTIMACIÓN DEL EXPONENTE DE HURST Y DIMENSIÓN FRACTAL PARA EL ANÁLISIS DE SERIES DE TIEMPO DE ABSORBANCIA UV-VIS

    Directory of Open Access Journals (Sweden)

    Leonardo Plazas Nossa

    2014-01-01

    Full Text Available El objetivo de este trabajo es estimar el exponente o parámetro de Hurst y la dimensión fractal para el análisis de series de tiempo de espectrometría UV-Vis, utilizando el análisis de componentes principales PCA (Principal Component Analysis. El análisis se realiza para comprender si las series de tiempo de absorbancia UV-Vis son persistentes, anti-persistentes, determinísticas o si son ruido blanco. Se utilizaron tres diferentes series de tiempo de absorbancia UV-Vis para tres diferentes sitios de estudio: (i Planta de tratamiento de aguas residuales Salitre (PTAR en Bogotá; (ii Estación elevadora de Gibraltar en Bogotá (EEG; y (iii Planta de tratamiento de aguas residuales San Fernando (PTAR en Itagüí (sur de Medellín. Cada una de las series de tiempo tiene igual número de muestras (5705. Se redujo la dimensionalidad de los espectros de absorbancia, dada su alta correlación, con PCA y se utilizó para cada sitio de estudio la primera componente principal. Esta componente principal explicó entre el 82% al 94% de la variabilidad para los tres sitios de estudio. Se determinaron los exponentes de Hurst: (i 0.8 para PTAR Salitre; (ii 0.85 para EEG; y (iii 0.89 para PTAR San Fernando. A partir de los valores de los exponentes de Hurst se determinan las dimensiones fractales para las tres series de tiempo de absorbancia UV-Vis en los tres sitios de estudio y se obtiene en promedio una dimensión fractal de 1153. Las tres series de tiempo de absorbancia UV-Vis son persistentes y con alta auto-similitud, dado que el exponente de Hurst es mayor a 0.5.

  16. Chlorine Dioxide-Iodide-Methyl Acetoacetate Oscillation Reaction Investigated by UV-Vis and Online FTIR Spectrophotometric Method

    Science.gov (United States)

    Shi, Laishun; Wang, Xiaomei; Li, Na; Liu, Jie; Yan, Chunying

    2012-01-01

    In order to study the chemical oscillatory behavior and mechanism of a new chlorine dioxide-iodide ion-methyl acetoacetate reaction system, a series of experiments were done by using UV-Vis and online FTIR spectrophotometric method. The initial concentrations of methyl acetoacetate, chlorine dioxide, potassium iodide, and sulfuric acid and the pH value have great influence on the oscillation observed at wavelength of 289 nm. There is a preoscillatory or induction period, and the amplitude and the number of oscillations are associated with the initial concentration of reactants. The equations for the triiodide ion reaction rate changing with reaction time and the initial concentrations in the oscillation stage were obtained. Oscillation reaction can be accelerated by increasing temperature. The apparent activation energies in terms of the induction period and the oscillation period were 26.02 KJ/mol and 17.65 KJ/mol, respectively. The intermediates were detected by the online FTIR analysis. Based upon the experimental data in this work and in the literature, a plausible reaction mechanism was proposed for the oscillation reaction. PMID:22454614

  17. Chlorine Dioxide-Iodide-Methyl Acetoacetate Oscillation Reaction Investigated by UV-Vis and Online FTIR Spectrophotometric Method

    Directory of Open Access Journals (Sweden)

    Laishun Shi

    2012-01-01

    Full Text Available In order to study the chemical oscillatory behavior and mechanism of a new chlorine dioxide-iodide ion-methyl acetoacetate reaction system, a series of experiments were done by using UV-Vis and online FTIR spectrophotometric method. The initial concentrations of methyl acetoacetate, chlorine dioxide, potassium iodide, and sulfuric acid and the pH value have great influence on the oscillation observed at wavelength of 289 nm. There is a preoscillatory or induction period, and the amplitude and the number of oscillations are associated with the initial concentration of reactants. The equations for the triiodide ion reaction rate changing with reaction time and the initial concentrations in the oscillation stage were obtained. Oscillation reaction can be accelerated by increasing temperature. The apparent activation energies in terms of the induction period and the oscillation period were 26.02 KJ/mol and 17.65 KJ/mol, respectively. The intermediates were detected by the online FTIR analysis. Based upon the experimental data in this work and in the literature, a plausible reaction mechanism was proposed for the oscillation reaction.

  18. Fluorescence lifetime and UV-Vis spectroscopy to evaluate the interactions between quercetin and its yeast microcapsule.

    Science.gov (United States)

    Pham-Hoang, Bao-Ngoc; Winckler, Pascale; Waché, Yves

    2017-09-09

    Quercetin is a fragile bioactive compound. Several works have tried to preserve it by encapsulation but the form of encapsulation (mono- or supra-molecular structure, tautomeric form), though important for stability and bioavailability, remains unknown. The present work aims at developing a fluorescence lifetime technique to evaluate the structure of quercetin during encapsulation in a vector capsule that has already proven efficiency, yeast cells. Molecular stabilization was observed during a four-month storage period. The time-correlated single-photon counting (TCSPC) technique was used to evaluate the interaction between quercetin molecules and the yeast capsule. The various tautomeric forms, as identified by UV-Vis spectroscopy, resulted in various lifetimes in TCSPC, although they varied also with the buffer environment. Quercetin in buffer exhibited a three-to-four longer long time after 24 h (changing from 6-7 to 18-23 ns), suggesting an aggregation of molecules. In yeast microcapsules, the long-time population exhibited a longer lifetime (around 27 ns) from the beginning and concerned about 20% of molecules compared to dispersed quercetin. This shows that lifetime analysis can show the monomolecular instability of quercetin in buffer and the presence of interactions between quercetin molecules and their microcapsules. This article is protected by copyright. All rights reserved.

  19. Identification of different species of Bacillus isolated from Nisargruna Biogas Plant by FTIR, UV-Vis and NIR spectroscopy

    Science.gov (United States)

    Ghosh, S. B.; Bhattacharya, K.; Nayak, S.; Mukherjee, P.; Salaskar, D.; Kale, S. P.

    2015-09-01

    Definitive identification of microorganisms, including pathogenic and non-pathogenic bacteria, is extremely important for a wide variety of applications including food safety, environmental studies, bio-terrorism threats, microbial forensics, criminal investigations and above all disease diagnosis. Although extremely powerful techniques such as those based on PCR and microarrays exist, they require sophisticated laboratory facilities along with elaborate sample preparation by trained researchers. Among different spectroscopic techniques, FTIR was used in the 1980s and 90s for bacterial identification. In the present study five species of Bacillus were isolated from the aerobic predigester chamber of Nisargruna Biogas Plant (NBP) and were identified to the species level by biochemical and molecular biological (16S ribosomal DNA sequence) methods. Those organisms were further checked by solid state spectroscopic absorbance measurements using a wide range of electromagnetic radiation (wavelength 200 nm to 25,000 nm) encompassing UV, visible, near Infrared and Infrared regions. UV-Vis and NIR spectroscopy was performed on dried bacterial cell suspension on silicon wafer in specular mode while FTIR was performed on KBr pellets containing the bacterial cells. Consistent and reproducible species specific spectra were obtained and sensitivity up to a level of 1000 cells was observed in FTIR with a DTGS detector. This clearly shows the potential of solid state spectroscopic techniques for simple, easy to implement, reliable and sensitive detection of bacteria from environmental samples.

  20. Ozone ProfilE Retrieval Algorithm for nadir-looking satellite instruments in the UV-VIS

    Directory of Open Access Journals (Sweden)

    J. C. A. van Peet

    2013-10-01

    Full Text Available For the retrieval of the vertical distribution of ozone in the atmosphere the Ozone ProfilE Retrieval Algorithm (OPERA has been further developed. The new version (1.26 of OPERA is capable of retrieving ozone profiles from UV-VIS observations of most nadir looking satellite instruments like GOME, SCIAMACHY, OMI and GOME-2. The set-up of OPERA is described and results are presented for GOME and GOME-2 observations. The retrieved ozone profiles are globally compared to ozone sondes for the year 1997 and 2008. Relative differences between GOME/GOME-2 and ozone sondes are within the limits as specified by the user requirements from the Climate Change Initiative (CCI program of ESA. To demonstrate the performance of the algorithm under extreme circumstances the 2009 Antarctic ozone hole season was investigated in more detail using GOME-2 ozone profiles and lidar data, which showed an unusual persistence of the vortex over the Río Gallegos observing station (51° S, 69.3° W. By applying OPERA to multiple instruments a timeseries of ozone profiles from 1996 to 2013 from a single robust algorithm can be created.

  1. p-Dimethylaminocinnamaldehyde Derivatization for Colorimetric Detection and HPLC-UV/Vis-MS/MS Identification of Indoles

    Science.gov (United States)

    Porubsky, Patrick R.; Scott, Emily E.; Williams, Todd D.

    2008-01-01

    Cytochrome P450 2A13 is a lung specific enzyme known to activate the potent tobacco procarcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) into two carcinogenic metabolites. CYP2A13 has been crystallized and X-ray diffraction experiments illuminated the structure of this enzyme, but with an unknown ligand present in the enzyme active site. This unknown ligand was suspected to be indole but a selective method had to be developed to differentiate among indole and its metabolites in the protein sample. We successfully modified a microbiological colorimetric assay to spectrophotometrically differentiate between indole and a number of possible indole metabolites in nanomolar concentrations by derivatization with p-dimethylaminocinnamaldehyde (DMACA). Further differentiation of indoles was made by mass spectrometry (HPLC-UV/Vis-MS/MS) utilizing the chromophore generated in the DMACA conjugation as a UV signature for HPLC detection. The ligand in the crystallized protein was identified as unsubstituted indole, which facilitated refinement of two alternate conformations in the CYP2A13 crystal structure active site. PMID:18423367

  2. Screening method for the detection of artificial colours in saffron using derivative UV-Vis spectrometry after precipitation of crocetin.

    Science.gov (United States)

    Zalacain, A; Ordoudi, S A; Blázquez, I; Díaz-Plaza, E M; Carmona, M; Tsimidou, M Z; Alonso, G L

    2005-07-01

    A screening method for the detection of artificial colours (naphthol yellow, tartrazine, quinoline yellow, Sunset yellow, Allura red, amaranth, azorubine, Ponceau 4R and Red 2G) in saffron is described. The method involves removal of crocins by precipitation of crocetin (pH 0.1, 90 degrees C) before adsorption of the artificial colours on polyamide SPE cartridges (pH 2). After washing with methanol, acetone and methanol, elution was done with a methanol:ammonia solution (95:5 v/v), and detection was performed by derivative spectrometry. Sample pretreatment changes the UV-Vis saffron extract profile in such a way that second derivative spectra can be used to identify the presence of added colours. Erythrosine, which was found to be pH dependent, could not be detected under the above conditions. The lowest detectable amount for each colour was strongly dependent on chemical structure. The recovery of carminic acid was very low possibly due to irreversible retention on the polyamide. This procedure can replace the current ISO TLC method (2003) and be used alternatively or in combination with HPLC procedures adopted in the same standard.

  3. Multi-spectroscopic analysis of cholesterol gallstone using TOF-SIMS, FTIR and UV-Vis spectroscopy

    Science.gov (United States)

    Jaswal, Brij Bir S.; Kumar, Vinay; Swart, H. C.; Sharma, Jitendra; Rai, Pradeep K.; Singh, Vivek K.

    2015-10-01

    For the first time, spatial distribution of major and trace elements has been studied in cholesterol gallstones using time-of-flight secondary mass ion mass spectrometry (TOF-SIMS). The TOF-SIMS has been used to study the elemental constituents of the center and surface parts of the gallstone sample. We have classified the gallstone sample using Fourier transform spectroscopy. The detected elements in cholesterol gallstone sample were carbon (C), hydrogen (H), calcium (Ca), sodium (Na), potassium (K), strontium (Sr), copper (Cu), iron (Fe), chromium (Cr), mercury (Hg) and lead (Pb). The detected molecules in the cholesterol gallstone were CH3 +, CO3 +, CaCO3 + and C3H+. Our results revealed that the contents of these elements in cholesterol gallstone were higher in the center part than that in the surface part. In the present paper, we have also presented the UV-Vis spectroscopic studies of the center and surface parts of the gallstone sample which indicated the presence of a higher content of cholesterol in the surface part and bilirubin in the center part.

  4. Sucrose as chiral selector for determining enantiomeric composition of metalaxyl by UV-vis spectroscopy and PLS regression

    Science.gov (United States)

    Li, Qianqian; Huang, Yue; Duan, Jia; Wu, Lijun; Tang, Guo; Zhu, Yewei; Min, Shungeng

    2013-01-01

    This study revealed that it was possible to determine the enantiomeric composition of with multivariate regression models of spectral data obtained by ordinary UV-vis spectrophotometry of enantiomeric guest-host complexes. The total 60 samples involving three concentration levels of metalaxyl as low, medium and high were prepared for spectral collecting. Four methods of modeling were subsequently proposed and compared including two common ways and two compensating ways for variations in total analyte concentration. Firstly, without normalization robust modeling was failed to achieve while employing the medium concentration levels as calibration and the other two levels as a validation. The same case occurred when full-cross validation was conducted. Besides, two enhanced methods were developed to account for the systematic variation. One of which normalized the spectra with respect to the total concentration of enantiomeric, along with spectral data, as a variable in the statistical analysis. The other one ignored variations in total concentration, relying on the specific band normalization to sort out any variations due to total concentration differences. The results clearly demonstrated that the spectra according to concentration provided the acceptable predictive ability in determining enantiomeric composition.

  5. BSA adsorption onto nanospheres: Influence of surface curvature as probed by electrophoretic light scattering and UV/vis spectroscopy

    Science.gov (United States)

    Sánchez-Pérez, Julio A.; Gallardo-Moreno, Amparo M.; González-Martín, M. Luisa; Vadillo-Rodríguez, Virginia

    2015-10-01

    The influence of surface curvature on the adsorption of bovine serum albumin (BSA) was evaluated through the combination of two fairly simple techniques: electrophoretic light scattering and UV/vis spectroscopy. Measurements were carried out for a range of protein concentrations (0-320 μg/ml) at pH 3.5, 4.5 and 7 using hydrophobic polystyrene nanospheres of 38.8, 82 and 220 nm in diameter. The results obtained demonstrate that the charge of the BSA molecules in solution dictates the pH-dependent behavior of the protein-coated nanospheres, indicating in all cases a significant adsorption of BSA molecules. At a fixed pH, however, it is the zeta potential that characterizes the uncoated nanospheres normalized by their surface area that primarily controls protein adsorption. In particular, it is found that the rate at which BSA interact with the different nanospheres increases as their negative zeta potential per unit area (or diameter) increases (decreases) regardless of the pH. Moreover, provided that adsorption occurs away from the isoelectric point of the protein, highly curved surfaces are found to stabilize the native-like conformation of BSA upon adsorption by likely reducing lateral interactions between adsorbed molecules.

  6. Measurement of quantity of iron in magnetically labeled cells: comparison among different UV/VIS spectrometric methods.

    Science.gov (United States)

    Rad, Ali M; Janic, Branislava; Iskander, A S M; Soltanian-Zadeh, Hamid; Arbab, Ali S

    2007-11-01

    Cell labeling with superparamagnetic iron oxides (SPIO) is becoming a routine procedure in cellular magnetic resonance imaging (MRI). Quantifying the intracellular iron in labeled cells is a prerequisite for determining the number of accumulated cells by quantitative MRI studies. To establish the most sensitive and reproducible method for measuring iron concentration in magnetically labeled cells, we investigated and compared four different methods using an ultraviolet-visible (UV/VIS) spectrophotometer. Background spectra were obtained for 5 and 10 M hydrochloric acids, a mixture of 100 mM citric acid plus ascorbic acid and bathophenanthroline sulphonate (BPS), and a mixture of 5 M hydrochloric acid plus 5% ferrocyanide. Spectra of the same solutions containing either 10 or 5 microg/mL iron oxides were also created to determine the peak absorbance wavelengths for the dissolved iron. In addition, different known iron concentrations were used to obtain calibration lines for each method. Based on the calibration factors, iron was measured in samples with a known amount of iron and in labeled cells. Methods based on the use of 10 M hydrochloric acid underestimated iron concentration in all experiments; for this method to give an accurate measurement, iron concentration in sample needs to be at least 3 microg/mL.

  7. Identification of different species of Bacillus isolated from Nisargruna Biogas Plant by FTIR, UV-Vis and NIR spectroscopy.

    Science.gov (United States)

    Ghosh, S B; Bhattacharya, K; Nayak, S; Mukherjee, P; Salaskar, D; Kale, S P

    2015-09-05

    Definitive identification of microorganisms, including pathogenic and non-pathogenic bacteria, is extremely important for a wide variety of applications including food safety, environmental studies, bio-terrorism threats, microbial forensics, criminal investigations and above all disease diagnosis. Although extremely powerful techniques such as those based on PCR and microarrays exist, they require sophisticated laboratory facilities along with elaborate sample preparation by trained researchers. Among different spectroscopic techniques, FTIR was used in the 1980s and 90s for bacterial identification. In the present study five species of Bacillus were isolated from the aerobic predigester chamber of Nisargruna Biogas Plant (NBP) and were identified to the species level by biochemical and molecular biological (16S ribosomal DNA sequence) methods. Those organisms were further checked by solid state spectroscopic absorbance measurements using a wide range of electromagnetic radiation (wavelength 200 nm to 25,000 nm) encompassing UV, visible, near Infrared and Infrared regions. UV-Vis and NIR spectroscopy was performed on dried bacterial cell suspension on silicon wafer in specular mode while FTIR was performed on KBr pellets containing the bacterial cells. Consistent and reproducible species specific spectra were obtained and sensitivity up to a level of 1000 cells was observed in FTIR with a DTGS detector. This clearly shows the potential of solid state spectroscopic techniques for simple, easy to implement, reliable and sensitive detection of bacteria from environmental samples.

  8. Spectral analysis, vibrational assignments, NBO analysis, NMR, UV-Vis, hyperpolarizability analysis of 2-aminofluorene by density functional theory.

    Science.gov (United States)

    Jone Pradeepa, S; Sundaraganesan, N

    2014-05-05

    In this present investigation, the collective experimental and theoretical study on molecular structure, vibrational analysis and NBO analysis has been reported for 2-aminofluorene. FT-IR spectrum was recorded in the range 4000-400 cm(-1). FT-Raman spectrum was recorded in the range 4000-50 cm(-1). The molecular geometry, vibrational spectra, and natural bond orbital analysis (NBO) were calculated for 2-aminofluorene using Density Functional Theory (DFT) based on B3LYP/6-31G(d,p) model chemistry. (13)C and (1)H NMR chemical shifts of 2-aminofluorene were calculated using GIAO method. The computed vibrational and NMR spectra were compared with the experimental results. The total energy distribution (TED) was derived to deepen the understanding of different modes of vibrations contributed by respective wavenumber. The experimental UV-Vis spectra was recorded in the region of 400-200 nm and correlated with simulated spectra by suitably solvated B3LYP/6-31G(d,p) model. The HOMO-LUMO energies were measured with time dependent DFT approach. The nonlinearity of the title compound was confirmed by hyperpolarizabilty examination. Using theoretical calculation Molecular Electrostatic Potential (MEP) was investigated.

  9. Assessment of gamma radiolytic degradation in waste lubricating oil by GC/MS and UV/VIS

    Science.gov (United States)

    Scapin, Marcos A.; Duarte, Celina L.; Bustillos, José Oscar W. V.; Sato, Ivone M.

    2009-07-01

    The hydrocarbons degradation by gamma irradiation of the waste automotive lubricating oil at different absorbed doses has was investigated. The waste automotive oil in a Brazilian oil recycling company was collected. This sample was fractioned and 50% and 70% (v/v) Milli-Q water were added. Each sample was irradiated with 100, 200 and 500 kGy doses using a gamma source Co-60—GAMMACELL type, with 5×10 3 Ci total activity. Gas chromatography-mass spectrometry (GC/MS) was used to identify degraded organic compounds. The mass spectra were analyzed using the mass spectral library from NIST, installed in the spectrometer. The sample irradiated at 500 kGy dose with 70% (v/v) Milli-Q water addition formed eight degradation products, namely diethanolmethylamine (C 5H 13NO), diethyldiethylene glycol (C 8H 18O 3), 1-octyn-3-ol, 4-ethyl (C 10H 18O) and 1.4-pentanediamine, N1, N1-diethyl (C 9H 22N 2). The color changing of the waste lubricating oil, for different absorbed doses, was determined by UV/VIS spectrophotometer. The related sample showed the lowest absorbance value evidencing the formation of 2-ethoxyethyl ether (C 8H 18O 3) compound.

  10. Self-assembled systems of water soluble metal 8-hydroxyquinolates with surfactants and conjugated polyelectrolytes

    DEFF Research Database (Denmark)

    Burrows, Hugh D.; Costa, Telma; Luisa Ramos, M.

    2016-01-01

    We have studied the interaction of 8-hydroxyquinoline-5-sulfonate (8-HQS) with the metal ions Al(III) and Zn(II) in aqueous solution in the presence of tetraalkylammonium surfactants using UV/vis absorption, fluorescence, NMR spectroscopy and electrical conductivity measurements, complemented by ...... assembly between the conjugated polyelectrolyte and the metal/8-HQS complex, as demonstrated by electronic energy transfer. The potential of these systems in sensing, light harvesting, and electron injection/transport layers in organic semiconductor devices is discussed....... by DFT calculations and molecular dynamics (MD) simulations. Under appropriate conditions, complexes between 8-HQS and metal ions form rapidly, and have similar electronic, spectroscopic and photophysical properties to the corresponding metal quinolates, such as Alq3. These interact with the cationic...

  11. Lipid nanoparticles with no surfactant improve oral absorption rate of poorly water-soluble drug.

    Science.gov (United States)

    Funakoshi, Yuka; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2013-07-15

    A pharmacokinetic study was performed in rats to evaluate the oral absorption ratios of nanoparticle suspensions containing the poorly water-soluble compound nifedipine (NI) and two different types of lipids, including hydrogenated soybean phosphatidylcholine and dipalmitoylphosphatidylglycerol. NI-lipid nanoparticle (LN) suspensions with a mean particle size of 48.0 nm and a zeta potential of -57.2 mV were prepared by co-grinding combined with a high-pressure homogenization process. The oral administration of NI-LN suspensions to rats led to a significant increase in the NI plasma concentration, and the area under the curve (AUC) value was found to be 108 min μg mL⁻¹, indicating a 4-fold increase relative to the NI suspensions. A comparison of the pharmacokinetic parameters of the NI-LN suspensions with those of the NI solution prepared using only the surfactant polysorbate 80 revealed that although the AUC and bioavailability (59%) values were almost identical, a rapid absorption rate was still observed in the NI-LN suspensions. These results therefore indicated that lipid nanoparticles prepared using only two types of phospholipid with a mean particle size of less than 50 nm could improve the absorption of the poorly water-soluble drug. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Absorption of gaseous toluene in aqueous solutions of some kinds of fluorocarbon surfactant.

    Science.gov (United States)

    Xiao, Xiao; Yan, Bo; Fu, Jiamo; Xiao, Xianming

    2015-01-01

    A self-designed device was applied to treat a simulated exhaust gas loaded with toluene by aqueous solutions of five kinds of fluorocarbon surfactant (FS-3100, FS-22, FSN-100, FSO-100 and FSG) under the controlled laboratory conditions. The simulated exhaust gas is generated by a mixture of clean air and toluene vapor, and its toluene concentration can be controlled by changing the volume ratio of the inlet air to the vapor. Two mass transfer methods: liquid-liquid transfer and gas-liquid transfer, were compared for their toluene saturation capacities of these absorbent solutions, and it was found that more toluene was dissolved by the liquid-liquid transfer than by the gas-liquid transfer. According to the saturation capacities of these absorbent solutions and their Henry's Constants, FSO-100 is the best absorbent to treat the simulated exhaust gas and was selected for further experiments. The FSO-100 absorbent solution with a concentration of 0.1 % shows an efficient absorption to the simulated exhaust gas, with a toluene saturation capacity of 4.2 mg/g. Heating distillation (90- 95 oC) is highly efficient to recover toluene from the FSO-100 absorbent solution as well as regenerate it. A toluene recovery of about 85 % was achieved. The regenerated absorption solution can keep its initial toluene absorption capacity during the reuse.

  13. FT-IR, UV-vis, 1H and 13C NMR spectra and the equilibrium structure of organic dye molecule disperse red 1 acrylate: a combined experimental and theoretical analysis.

    Science.gov (United States)

    Cinar, Mehmet; Coruh, Ali; Karabacak, Mehmet

    2011-12-01

    This study reports the characterization of disperse red 1 acrylate compound by spectral techniques and quantum chemical calculations. The spectroscopic properties were analyzed by FT-IR, UV-vis, (1)H NMR and (13)C NMR techniques. FT-IR spectrum in solid state was recorded in the region 4000-400 cm(-1). The UV-vis absorption spectrum of the compound that dissolved in methanol was recorded in the range of 200-800 nm. The (1)H and (13)C NMR spectra were recorded in CDCl(3) solution. The structural and spectroscopic data of the molecule in the ground state were calculated using density functional theory (DFT) employing B3LYP exchange correlation and the 6-311++G(d,p) basis set. The vibrational wavenumbers were calculated and scaled values were compared with experimental FT-IR spectrum. A satisfactory consistency between the experimental and theoretical spectra was obtained and it shows that the hybrid DFT method is very useful in predicting accurate vibrational structure, especially for high-frequency region. The complete assignments were performed on the basis of the experimental results and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Isotropic chemical shifts were calculated using the gauge-invariant atomic orbital (GIAO) method. A study on the electronic properties were performed by timedependent DFT (TD-DFT) and CIS(D) approach. To investigate non linear optical properties, the electric dipole moment μ, polarizability α, anisotropy of polarizability Δα and molecular first hyperpolarizability β were computed. The linear polarizabilities and first hyperpolarizabilities of the studied molecule indicate that the compound can be a good candidate of nonlinear optical materials.

  14. Solvent and H/D isotope effects on the proton transfer pathways in heteroconjugated hydrogen-bonded phenol-carboxylic acid anions observed by combined UV-vis and NMR spectroscopy.

    Science.gov (United States)

    Koeppe, Benjamin; Guo, Jing; Tolstoy, Peter M; Denisov, Gleb S; Limbach, Hans-Heinrich

    2013-05-22

    Heteroconjugated hydrogen-bonded anions A···H···X(-) of phenols (AH) and carboxylic/inorganic acids (HX) dissolved in CD2Cl2 and CDF3/CDF2Cl have been studied by combined low-temperature UV-vis and (1)H/(13)C NMR spectroscopy (UVNMR). The systems constitute small molecular models of hydrogen-bonded cofactors in proteins such as the photoactive yellow protein (PYP). Thus, the phenols studied include the PYP cofactor 4-hydroxycinnamic acid methyl thioester, and the more acidic 4-nitrophenol and 2-chloro-4-nitrophenol which mimic electronically excited cofactor states. It is shown that the (13)C chemical shifts of the phenolic residues of A···H···X(-), referenced to the corresponding values of A···H···A(-), constitute excellent probes for the average proton positions. These shifts correlate with those of the H-bonded protons, as well as with the H/D isotope effects on the (13)C chemical shifts. A combined analysis of UV-vis and NMR data was employed to elucidate the proton transfer pathways in a qualitative way. Dual absorption bands of the phenolic moiety indicate a double-well situation for the shortest OHO hydrogen bonds studied. Surprisingly, when the solvent polarity is low the carboxylates are protonated whereas the proton shifts toward the phenolic oxygens when the polarity is increased. This finding indicates that because of stronger ion-dipole interactions small anions are stabilized at high solvent polarity and large anions exhibiting delocalized charges at low solvent polarities. It also explains the large acidity difference of phenols and carboxylic acids in water, and the observation that this difference is strongly reduced in the interior of proteins when both partners form mutual hydrogen bonds.

  15. Absorption-enhancing effects of gemini surfactant on the intestinal absorption of poorly absorbed hydrophilic drugs including peptide and protein drugs in rats.

    Science.gov (United States)

    Alama, Tammam; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2016-02-29

    In general, the intestinal absorption of small hydrophilic molecules and macromolecules like peptides, after oral administration is very poor. Absorption enhancers are considered to be one of the most promising agents to enhance the intestinal absorption of drugs. In this research, we focused on a gemini surfactant, a new type of absorption enhancer. The intestinal absorption of drugs, with or without sodium dilauramidoglutamide lysine (SLG-30), a gemini surfactant, was examined by an in situ closed-loop method in rats. The intestinal absorption of 5(6)-carboxyfluorescein (CF) and fluorescein isothiocyanate-dextrans (FDs) was significantly enhanced in the presence of SLG-30, such effect being reversible. Furthermore, the calcium levels in the plasma significantly decreased when calcitonin was co-administered with SLG-30, suggestive of the increased intestinal absorption of calcitonin. In addition, no significant increase in the of lactate dehydrogenase (LDH) activity or in protein release from the intestinal epithelium was observed in the presence of SLG-30, suggestive of the safety of this compound. These findings indicate that SLG-30 is an effective absorption-enhancer for improving the intestinal absorption of poorly absorbed drugs, without causing serious damage to the intestinal epithelium.

  16. FTIR, Raman, and UV-Vis spectroscopic and DFT investigations of the structure of iron-lead-tellurate glasses.

    Science.gov (United States)

    Rada, Simona; Dehelean, Adriana; Culea, Eugen

    2011-08-01

    In this work, the effects of iron ion intercalations on lead-tellurate glasses were investigated via FTIR, Raman and UV-Vis spectroscopies. This homogeneous glass system has compositions xFe(2)O(3)·(100-x)[4TeO(2)·PbO(2)], where x = 0-60 mol%. The presented observations in these mechanisms show that the lead ions have a pronounced affinity towards [TeO(3)] structural units, resulting in the deformation of the Te-O-Te linkages, and leading to the intercalation of [PbO( n )] (n = 3, 4) and [FeO( n )] (n = 4, 6) entities in the [TeO(4)] chain network. The formation of negatively charged [FeO(4)](1-) structural units implies the attraction of Pb(2+) ions in order to compensate for this electrical charge. Upon increasing the Fe(2)O(3) content to 60 mol%, the network can accommodate an excess of oxygen through the formation of [FeO(6)] structural units and the conversion of [TeO(4)] into [TeO(3)] structural units. For even higher Fe(2)O(3) contents, Raman spectra indicate a greater degree of depolymerization of the vitreous network than FTIR spectra do. The bands due to the Pb-O bond vibrations are very strongly polarized and the [TeO(4)] structural units convert into [TeO(3)] units via an intermediate coordination stage termed "[TeO(3+1)]" structural units. Our UV-Vis spectroscopic data show two mechanisms: (i) the conversion of the Fe(3+) to Fe(2+) at the same time as the oxidation of Pb(2+) to Pb(+4) ions for samples with low Fe(2)O(3) contents; (ii) when the Fe(2)O(3) content is high (x ≥ 50 mol%), the Fe(2+) ions capture positive holes and are transferred to Fe(3+) ions through a photochemical reaction, while the Pb(2+) ions are formed by the reduction of Pb(4+) ions. DFT calculations show that the addition of Fe(2)O(3) to lead-tellurate glasses seems to break the axial Te-O bonds, and the [TeO(4)] structural units are gradually transformed into [TeO(3+1)]- and [TeO(3)]-type polyhedra. Analyzing these data further indicates a gradual

  17. The effects of pH and surfactants on the absorption and fluorescence properties of ochratoxin A and zearalenone.

    Science.gov (United States)

    Li, Taihua; Kim, Bo Bae; Ha, Tae Hwan; Shin, Yong-Beom; Kim, Min-Gon

    2015-11-01

    The pH and surfactant dependencies of the absorption and fluorescence properties of ochratoxin A (OTA) and zearalenone (ZEN), the main mycotoxins found as contaminants in foods and feeds, were evaluated. Three surfactants with different ionic properties were investigated, namely sodium dodecyl sulfate (SDS, anionic), Tween 20 (nonionic) and hexadecyltrimethylammonium bromide (CTAB, cationic). The results show that the effects of pH on the absorption wavelength maxima and fluorescence efficiencies of the mycotoxins, which are a consequence of the presence of acidic phenol and/or carboxyl containing fluorophores, are dependent on the ionic nature of the added surfactants. Specifically, the fluorescence responses to pH changes of OTA and ZEN are similar in the presence or absence of Tween 20 and SDS. By contrast, the pH-dependent fluorescence properties of these mycotoxins are altered when CTAB is present in the solutions. Moreover, unlike OTA, ZEN in aqueous solution displays almost no fluorescence. However, fluorescence enhancement takes place when surfactants are present in aqueous solutions of this mycotoxin. The results of this study demonstrate that the different microenvironments, present in the organized micellar systems created by the individual surfactants, can be potentially employed to modulate the sensitivities and selectivities of the fluorescence detection of OTA or ZEN. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Complexation study of brilliant cresyl blue with beta-cyclodextrin and its derivatives by UV-vis and fluorospectrometry.

    Science.gov (United States)

    Zhang, Qing-Feng; Jiang, Zi-Tao; Guo, Yu-Xian; Li, Rong

    2008-01-01

    The complexation reactions of brilliant cresyl blue (BCB) with beta-cyclodextrin (beta-CD), mono[2-O-(2-hydroxypropyl)]-beta-CD (2-HP-beta-CD), mono[2-O-(2-hydroxyethyl)]-beta-CD (2-HE-beta-CD), and heptakis(2,6-di-methyl) -beta-CD (DM-beta-CD) were investigated using UV-vis and fluorospectrometry. The complexation between BCB and CDs could inhibit the aggregation of BCB molecules and could cause its absorbance at 634nm gradually increasing. The fluorescence of BCB was also enhanced with the addition of CDs. The fluorescence enhancement was more notable in neutral and acidic media than in basic media. Hildebrand-Benesi equation was used to calculate the formation constants of beta-CDs with BCB based on the fluorescence differences in the CDs solution. The stoichiometry ratio was found to be 1:1. The complexing capacities of beta-CD and its three derivatives were compared and the results followed the order: 2-HP-beta-CD>2-HE-beta-CD>DM-beta-CD>beta-CD. The effect of temperature on the formation of BCB-beta-CD inclusion complexes has also been examined. The results revealed that the formation constants decreased with the increase of temperature from 1038.9 to 491.6l/mol. Enthalpy and entropy values were calculated and the values were -25.77kJ/mol and 35.04J/kmol, respectively. The thermodynamic measurements suggest that the inclusive process was enthalpic favor. The release of high-energy water molecules and Van der Waals force played an important role in the inclusive process.

  19. Biotechnologically obtained nanocomposites: A practical application for photodegradation of Safranin-T under UV-Vis and solar light.

    Science.gov (United States)

    Pinto da Costa, João; Girão, Ana V; Monteiro, Olinda C; Trindade, Tito; Costa, Maria C

    2015-01-01

    This research was undertaken to determine the potential of biologically obtained ZnS-TiO2 nanocomposites to be used as catalysts in the photodegradation of organic pollutants, namely, Safranin-T. The photocatalysts were prepared by modifying the surface of commercial TiO2 particles with naturally produced ZnS, using sulfide species produced by sulfate-reducing bacteria and metal contaminated wastewaters. Comparative studies using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM), prior and after photodegradation, were carried out in order to monitor possible structural and morphological changes on the particles. Adsorption properties and specific areas were determined by the Brunauer-Emmet-Teller (BET) method. The final solutions were characterized by UV-Vis and chemical oxygen demand (COD) content in order to determine Safranin-T concentration and toxicity. The influence of the catalyst amount, initial pH and dye concentration was also evaluated. Finally, the efficiency of the precipitates as catalysts in sunlight-mediated photodegradation was investigated, performing two scale experiments by using different volumes of dye-contaminated water (150 mL and 10 L). All tested composites showed potential to be used as photocatalysts for the degradation of Safranin-T, although the ZnS-TiO2_0.06 composite (0.06 g of TiO2 per 50 mL of the zinc solution) was the most effective. This substantiates the applicability of these biologically obtained materials as efficient photocatalysts for the degradation of organic pollutants, in laboratorial conditions and under direct sunlight.

  20. UV-Vis microspectrophotometry as a method of differentiation between cotton fibre evidence coloured with reactive dyes

    Science.gov (United States)

    Was-Gubala, Jolanta; Starczak, Roza

    2015-05-01

    The main purposes of this study was to assess the usefulness of microspectrophotometry (MSP), both in the ultraviolet (UV) and visible (Vis) range for discriminating single cotton fibres dyed with reactive dyes coming from the same manufacturer, as well as the possibility of evaluation of the concentration of dye in an examine fibre. This study utilised woven cotton fabrics dyed with different concentrations of one-compound reactive dyes with the commercial name Cibacron® (at present Novacron®) as the focus of the MSP analysis. The spectra were recorded in the UV-Vis range between 200 and 800 nm, in transmission mode. The results from this study illustrated that all of the analysed cotton samples dyed with reactive dyes were distinguishable between each other with the use of MSP, mostly in the visible, and also in ultraviolet range. The limit for applied MSP techniques was 0.18% of the concentration of a dye in the textile sample. The results indicate that based on the absorbance measurements for fibres constituting e.g. forensic traces it was not possible to estimate the concentration of the dye in the fibre because Beer's law did not obey. The intra-sample, and inter- sample variation, as well as dichroism effect in a case of a cotton fibres dyed with reactive dye were observed. On the basis of the results obtained for each analysed cotton sample, it was concluded that there was no correlation between colour uniformity in cotton fabric (changes in lightness, red/green and yellow/blue colour) and concentration of the reactive dye.

  1. Desarrollo de métodos rápidos basados en espectroscopía UV-VIS-NIR para el análisis de vinos

    OpenAIRE

    Martelo Vidal, María José

    2014-01-01

    La verificación de la autenticidad de los alimentos en general, y del vino en particular, es una de las aplicaciones potenciales más importantes de la espectroscopía UV-VIS-NIR. Las adulteraciones del vino pueden ser de muchos tipos (adición de azúcar, ácidos o aceites volátiles, redilución de concentrados, adición de zumo de otras frutas, y mezcla con vinos de peor calidad). Algunas de las aplicaciones de la espectroscopía UV-VIS-NIR en vinos que se están estudiando en los últimos años son e...

  2. Aqueous-Phase Synthesis of Silver Nanodiscs and Nanorods in Methyl Cellulose Matrix: Photophysical Study and Simulation of UV-Vis Extinction Spectra Using DDA Method.

    Science.gov (United States)

    Sarkar, Priyanka; Bhui, Dipak Kumar; Bar, Harekrishna; Sahoo, Gobinda Prasad; Samanta, Sadhan; Pyne, Santanu; Misra, Ajay

    2010-07-18

    We present a very simple and effective way for the synthesis of tunable coloured silver sols having different morphologies. The procedure is based on the seed-mediated growth approach where methyl cellulose (MC) has been used as soft-template in the growth solution. Nanostructures of varying morphologies as well as colour of the silver sols are controlled by altering the concentration of citrate in the growth solution. Similar to the polymers in the solution, citrate ions also dynamically adsorbed on the growing silver nanoparticles and promote one (1-D) and two-dimensional (2-D) growth of nanoparticles. Silver nanostructures are characterized using UV-vis and HR-TEM spectroscopic study. Simulation of the UV-vis extinction spectra of our synthesized silver nanostructures has been carried out using discrete dipole approximation (DDA) method.

  3. dd excitations in CPO-27-Ni metal-organic framework: comparison between resonant inelastic X-ray scattering and UV-vis spectroscopy.

    Science.gov (United States)

    Gallo, Erik; Lamberti, Carlo; Glatzel, Pieter

    2013-05-20

    We identify the dd excitations in the metal-organic framework CPO-27-Ni by coupling resonant inelastic X-ray scattering (RIXS) and UV-vis spectroscopy, and we show that the element selectivity of RIXS is crucial to observing the full dd multiplet structure, which is not visible in UV-vis. The combination of calculations using crystal-field multiplet theory and density functional theory can reproduce the RIXS spectral features, crucially improving interpretation of the experimental data. We obtain the crystal-field splitting and magnitude of the electron-electron interactions and correct previously reported values. RIXS instruments at synchrotron radiation sources are accessible to all researchers, and the technique can be applied to a broad range of systems.

  4. Novel absorption detection techniques for capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Yongjun [Iowa State Univ., Ames, IA (United States)

    1994-07-27

    Capillary electrophoresis (CE) has emerged as one of the most versatile separation methods. However, efficient separation is not sufficient unless coupled to adequate detection. The narrow inner diameter (I.D.) of the capillary column raises a big challenge to detection methods. For UV-vis absorption detection, the concentration sensitivity is only at the μM level. Most commercial CE instruments are equipped with incoherent UV-vis lamps. Low-brightness, instability and inefficient coupling of the light source with the capillary limit the further improvement of UV-vis absorption detection in CE. The goals of this research have been to show the utility of laser-based absorption detection. The approaches involve: on-column double-beam laser absorption detection and its application to the detection of small ions and proteins, and absorption detection with the bubble-shaped flow cell.

  5. Quantification of fullerene aggregate nC60 in wastewater by high-performance liquid chromatography with UV-vis spectroscopic and mass spectrometric detection.

    Science.gov (United States)

    Wang, Chao; Shang, Chii; Westerhoff, Paul

    2010-06-01

    This paper evaluates the performance of liquid-liquid extraction (LLE) and solid phase extraction (SPE) in separating and concentrating aqueous fullerene (nC(60)) from wastewater and compares UV-vis spectroscopy and mass spectrometry for the quantification of C(60). LLE was suitable for multiple wastewater matrices, while SPE required filtration or reclaimed wastewater and secondary effluent of less suspended solids. Calibration curves plotted as peak areas of UV absorbance at 332 nm against spiked nC(60) concentrations showed good linearity over a range of 20-200 microg L(-1) after 10-fold concentration by LLE, but only over the range of 0.8-2 microg L(-1) for reclaimed wastewater and 0.8-4 microg L(-1) for secondary effluent after 1000-fold concentration by SPE. Recoveries of nC(60) by LLE were in the range of 89-94% with a standard deviation (SD) not more than 2% and recoveries of nC(60) by SPE were much lower, only 18% for reclaimed wastewater and 9% for secondary effluent. The method detection limits (MDLs) of LLE with UV-vis spectroscopy were 3-4 microg L(-1) for six water matrices and the MDLs of SPE with UV-vis spectroscopy were 0.42 microg L(-1) for reclaimed wastewater and 0.64 microg L(-1) for secondary effluent. UV-vis spectroscopy and mass spectrometry gave similar sensitivity. With LLE, mass spectrometry offered a small linear range of 20-60 microg L(-1), but it provided specificity based on the mass-to-charge ratios (m/z) of the molecular ions. This paper demonstrates the feasibility of the combination of different extraction and detection methods to quantify nC(60) in engineered wastewater matrices. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  6. Desenvolvimento de método analítico para quantificação do efavirenz por espectrofotometria no UV-Vis

    OpenAIRE

    Lariza Darlene Santos Alves; Larissa Araújo Rolim; Danilo Augusto Ferreira Fontes; Pedro José Rolim-Neto; Mônica Felts de La Roca Soares; José Lamartine Soares Sobrinho

    2010-01-01

    An UV-Vis spectrophotometry analytical method for quantifying Efavirenz was developed and validated as an alternative to replace the HPLC current method. The report method presents sample concentration of 10 μg mL-1, dissolved in a solution ethanol:water (60:40, v/v), economic and technically adequate for the purpose adopted. The results and the statistical treated proved that the method being considered an precise and accurate analytical low cost alternative for laboratory routine. The ...

  7. Use of UV-vis-NIR spectroscopy to monitor label-free interaction between molecular recognition elements and erythropoietin on a gold-coated polycarbonate platform.

    Science.gov (United States)

    Citartan, Marimuthu; Gopinath, Subash C B; Tominaga, Junji; Chen, Yeng; Tang, Thean-Hock

    2014-08-01

    Label-free-based detection is pivotal for real-time monitoring of biomolecular interactions and to eliminate the need for labeling with tags that can occupy important binding sites of biomolecules. One simplest form of label-free-based detection is ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy, which measure changes in reflectivity as a means to monitor immobilization and interaction of biomolecules with their corresponding partners. In biosensor development, the platform used for the biomolecular interaction should be suitable for different molecular recognition elements. In this study, gold (Au)-coated polycarbonate was used as a platform and as a proof-of-concept, erythropoietin (EPO), a doping substance widely abused by the athletes was used as the target. The interaction of EPO with its corresponding molecular recognition elements (anti-EPO monoclonal antibody and anti-EPO DNA aptamer) is monitored by UV-vis-NIR spectroscopy. Prior to this, to show that UV-vis-NIR spectroscopy is a suitable method for measuring biomolecular interaction, the interaction between biotin and streptavidin was demonstrated via this strategy and reflectivity of this interaction decreased by 25%. Subsequent to this, interaction of the EPO with anti-EPO monoclonal antibody and anti-EPO DNA aptamer resulted in the decrease of reflectivity by 5% and 10%, respectively. The results indicated that Au-coated polycarbonate could be an ideal biosensor platform for monitoring biomolecular interactions using UV-vis-NIR spectroscopy. A smaller version of the Au-coated polycarbonate substrates can be derived from the recent set-up, to be applied towards detecting EPO abuse among atheletes.

  8. H-aggregate analysis of P3HT thin films-Capability and limitation of photoluminescence and UV/Vis spectroscopy.

    Science.gov (United States)

    Ehrenreich, Philipp; Birkhold, Susanne T; Zimmermann, Eugen; Hu, Hao; Kim, Kwang-Dae; Weickert, Jonas; Pfadler, Thomas; Schmidt-Mende, Lukas

    2016-09-01

    Polymer morphology and aggregation play an essential role for efficient charge carrier transport and charge separation in polymer-based electronic devices. It is a common method to apply the H-aggregate model to UV/Vis or photoluminescence spectra in order to analyze polymer aggregation. In this work we present strategies to obtain reliable and conclusive information on polymer aggregation and morphology based on the application of an H-aggregate analysis on UV/Vis and photoluminescence spectra. We demonstrate, with P3HT as model system, that thickness dependent reflection behavior can lead to misinterpretation of UV/Vis spectra within the H-aggregate model. Values for the exciton bandwidth can deviate by a factor of two for polymer thicknesses below 150 nm. In contrast, photoluminescence spectra are found to be a reliable basis for characterization of polymer aggregation due to their weaker dependence on the wavelength dependent refractive index of the polymer. We demonstrate this by studying the influence of surface characteristics on polymer aggregation for spin-coated thin-films that are commonly used in organic and hybrid solar cells.

  9. ANALISA FLAVONOID DARI EKSTRAK ETANOL 96% KULIT BUAH OKRA MERAH (Abelmoschus esculentus L. Moench SECARA KROMATOGRAFI LAPIS TIPIS DAN SPEKTROFOTOMETRI UV-VIS

    Directory of Open Access Journals (Sweden)

    Nia Lisnawati

    2016-03-01

    Full Text Available Has done research on flavonoids Analysis of Ethanol Extract 96% Fruit Leather Red Okra In Thin Layer Chromatography and Spectrophotometer UV-Vis. The purpose of this study was to analyze the content of the fruit skin red okra (Abelmoschus esculentus L. Moench by using the method of thin layer chromatography (TLC under UV light and spectrophotometry UV-Vis. Reference standards used in this study is the Standard Solution Routine Quercetin. The results of the research that has been done by the method of thin layer chromatography obtained Rf values of 0.81 and produces the color orange. And the results of research conducted by spectrophotometry UV-Vis method obtained 333,117 mg.L-1 or 421,629 mg.kg-1 or 0,84339 %. The conclusion from this study is that the 96% ethanol extract of the fruit leather red okra (Abelmoschus esculentus L. Moench positive (+ contains flavonoids with levels of 0,84339 %.

  10. 紫外-可见分光光度法快速确定细菌菌液的浓度%Bacterial Counts by UV-Vis Spectrophotometry

    Institute of Scientific and Technical Information of China (English)

    董自艳; 戴翚; 马仕洪; 胡昌勤

    2014-01-01

    Objective:To establish an UV-Vis Spectrophotometric method for bacterial counts.Methods: UV-Vis spectrophotometry and turbidimetry were used to investigate the correlations between two methods and absorbance with concentration of bacteria counts .Results:The correlation of absorbance with concentration of bacteria was well.The results of bacterial counts were stable.Conclusion:UV-Vis spectrophotometric method is rapid and suitable for bacterial counts.%目的:建立快速确定细菌菌液浓度的方法。方法:采用紫外-可见分光光度法和比浊法进行细菌计数,考察两种方法的相关性以及菌液浓度与吸光度之间的相关性。结果:细菌菌液的吸光度与其菌液浓度之间相关性良好,相应菌落计数结果稳定。结论:紫外-可见分光光度计可用于细菌菌液的快速计数。

  11. Detection of olive oil adulteration by low-field NMR relaxometry and UV-Vis spectroscopy upon mixing olive oil with various edible oils

    Directory of Open Access Journals (Sweden)

    S. Ok

    2017-03-01

    Full Text Available Adulteration of olive oil using unhealthy substitutes is considered a threat for public health. Low-field (LF proton (1H nuclear magnetic resonance (NMR relaxometry and ultra-violet (UV visible spectroscopy are used to detect adulteration of olive oil. Three different olive oil with different oleoyl acyl contents were mixed with almond, castor, corn, and sesame oils with three volumetric ratios, respectively. In addition, Arbequina olive oil was mixed with canola, flax, grape seed, peanut, soybean, and sunflower seed oils with three volumetric ratios. Transverse magnetization relaxation time (T2 curves were fitted with bi-exponential decaying functions. T2 times of each mixture of olive oils and castor oils, and olive oils and corn oils changed systematically as a function of volumetric ratio. To detect the adulteration in the mixtures with almond and sesame oils, both LF 1H NMR relaxometry and UV-Vis spectroscopy were needed, where UV-Vis-spectroscopy detected the adulteration qualitatively. In the mixtures of Arbequina olive oil and flax, peanut, soybean, and sunflower seed oils, both T21 and T22 values became longer systematically as the content of the olive oil was decreased. The unique UV-Vis maximum absorbance of flax oil at 320.0 nm shows the adulteration of olive oil qualitatively.

  12. Interval partial least squares and moving window partial least squares in determining the enantiomeric composition of tryptophan by using UV-Vis spectroscopy

    Directory of Open Access Journals (Sweden)

    Jiao Long

    2016-01-01

    Full Text Available The application of interval partial least squares (IPLS and moving window partial least squares (MWPLS to the enantiomeric analysis of tryptophan (Trp was investigated. A UV-Vis spectroscopy method for determining the enantiomeric composition of Trp was developed. The calibration model was built by using partial least squares (PLS, IPLS and MWPLS respectively. Leave-one-out cross validation and external test validation were used to assess the prediction performance of the established models. The validation result demonstrates the established full-spectrum PLS model is impractical for quantifying the relationship between the spectral data and enantiomeric composition of L-Trp. On the contrary, the developed IPLS and MWPLS model are both practicable for modeling this relationship. For the IPLS model, the root mean square relative error (RMSRE of external test validation and leave-one-out cross validation is 4.03 and 6.50 respectively. For the MWPLS model, the RMSRE of external test validation and leave-one-out cross validation is 2.93 and 4.73 respectively. Obviously, the prediction accuracy of the MWPLS model is higher than that of the IPLS model. It is demonstrated UV-Vis spectroscopy combined with MWPLS is a commendable method for determining the enantiomeric composition of Trp. MWPLS is superior to IPLS for selecting spectral region in UV-Vis spectroscopy analysis.

  13. Commonly used surfactant, Tween 80, improves absorption of P-glycoprotein substrate, digoxin, in rats.

    Science.gov (United States)

    Zhang, Hongjian; Yao, Ming; Morrison, Richard A; Chong, Saeho

    2003-09-01

    Tween 80 (Polysorbate 80) is a hydrophilic nonionic surfactant commonly used as an ingredient in dosing vehicles for pre-clinical in vivo studies (e.g., pharmacokinetic studies, etc.). Tween 80 increased apical to basolateral permeability of digoxin in Caco-2 cells suggesting that Tween 80 is an in vitro inhibitor of P-gp. The overall objective of the present study was to investigate whether an inhibition of P-gp by Tween 80 can potentially influence in vivo absorption of P-gp substrates by evaluating the effect of Tween 80 on the disposition of digoxin (a model P-gp substrate with minimum metabolism) after oral administration in rats. Rats were dosed orally with digoxin (0.2 mg/kg) formulated in ethanol (40%, v/v) and saline mixture with and without Tween 80 (1 or 10%, v/v). Digoxin oral AUC increased 30 and 61% when dosed in 1% and 10% Tween 80, respectively, compared to control (P Tween 80 is due, in part, to a systemic inhibition of digoxin excretion in addition to an inhibition of P-gp in the GI tract, a separate group of rats received digoxin intravenously (0.2 mg/kg) and Tween 80 (10% v/v) orally. No significant changes in digoxin IV AUC was noted when Tween 80 was administered orally. In conclusion, Tween 80 significantly increased digoxin AUC and Cmax after oral administration, and the increased AUC is likely to be due to an inhibition of P-gp in the gut (i.e., improved absorption). Therefore, Tween 80 is likely to improve systemic exposure of P-gp substrates after oral administration. Comparing AUC after oral administration with and without Tween 80 may be a viable strategy in evaluating whether oral absorption of P-gp substrates is potentially limited by P-gp in the gut.

  14. Development of an analytical method for cephapirin and its metabolite in bovine milk and serum by liquid chromatography with UV-VIS detection and confirmation by thermospray mass spectometry.

    Science.gov (United States)

    Tyczkowska, K L; Voyksner, R D; Aronson, A L

    1991-03-01

    Metabolites of the cephapirin beta-lactam antibiotic have not previously been reported in bovine milk. The principal metabolite was tentatively identified as desacetylcephapirin by liquid chromatography with UV-VIS photodiode array (LC/UV-VIS PDA), and liquid-chromatography-mass-spectrometric (LC-MS) detection. Synthetic desacetylcephapirin was prepared by incubation of cephapirin in bovine milk and serum at 37 degrees C. Also, a method for determining cephapirin in bovine milk and serum was developed. The detection limits for cephapirin and desacetylcephapirin were estimated to be 10 and 50 micrograms/kg, respectively, for LC/UV-VIS PDA, and 100 and 500 micrograms/kg for LC-MS.

  15. Application of UV-Vis Spectroscopy in Chemical Research%紫外-可见光谱技术在化学研究中的应用

    Institute of Scientific and Technical Information of China (English)

    何建波; 朱燕舞

    2012-01-01

    The application of ultraviolet-visible (UV-Vis) spectroscopy has been expanded from conventional identification and content determination of compounds to cover diverse aspects of the determination of chemical reaction thermodynamics and kinetics. In order to guide students to use the UV-Vis spectroscopy technology flexibly in experiments and research, its application in chemical research is summarized based on the examples available in the literature and the experimental data in the lab. The discussed aspects include the equilibrium constant measurement of different types of chemical reactions such as acid-base dissociation reaction, coordination reaction and small molecule-DNA interaction, the rate constant measurement taking a polymerization reaction as an example, and in situ UV-Vis spectroelectrochemical measurement for electrode reactions. The cited examples show that UV-Vis speclroscopy technology can play an important role in chemical reaction study, based on the appropriate design of experiments.%紫外-可见(UV-Vis)光谱技术已从常规的化合物定性鉴定及含量测定拓展应用到化学反应热力学和动力学测定的许多方面. 为引导学生灵活运用该技术开展实验及研究,通过引用文献中的实例和本实验室的实测数据,从多方面概括了UV-Vis光谱技术在化学反应研究中的应用,包括一元/多元酸碱离解反应、配合反应、小分子与DNA相互作用等不同类型化学反应的平衡常数测定,以聚合反应为例的动力学速率常数测定,以及基于薄层长光程电解池的电化学反应原位光谱电化学测量等 这些实例表明,通过恰当的实验方案设计,UV-Vis光谱技术可以在化学反应研究中发挥重要作用.

  16. Using UHPLC and UV-vis Fingerprint Method to Evaluate Substitutes for Swertia mileensis: An Endangered Medicinal Plant

    Science.gov (United States)

    Li, Jie; Zhang, Ji; Jin, Hang; Wang, Yuan-Zhong; Huang, Heng-Yu

    2017-01-01

    Swertia.Swertiamarin is the unique common compounds for four plants, which exist are in leaves of S. davidii with the highest content.The obvious diversity in four plants was displayed from comprehensive point of view though similarity assay and PCA analysis.The UV fingerprint method offsets the defect that the UHPLC fingerprint reflected messages of secoiridoid glycosides only. Abbreviation used: UHPLC: Ultra high performance liquid chromatography, UV-vis: Ultraviolet-vis, HBV: Anti-hepatitis virus, DNA: Deoxyribonucleic acid, PCA: Principal component analysis, D-GaIN: D-Galactosamine, BCG: Bacille Calmette-Guerin, LPS: Lipopolysaccharide PMID:28216877

  17. An Investigation of CNT Cytotoxicity by Using Surfactants in Different Ratio

    Science.gov (United States)

    Kumar, Sandeep; Kumar, Neeraj; Thakur, Rajesh; Bhanjana, Gaurav; Dilbaghi, Neeraj

    2011-12-01

    This account reports a comparative analysis on dispersion of multiwalled and single walled carbon nanotubes with different surfactants like—Triton X-100, Tween 20, Tween 80, and sodium dodecyl sulfate (SDS). Dispersion of CNTs has been characterized by UV-Vis spectroscopy, electron microscopy and probe microscopy. An optimum CNT-to-surfactant ratio has been determined for each surfactant. Surfactant concentration in different ratio is found to deteriorate the quality of nanotube dispersion. Electron microscopy analysis of a high-surfactant sample concentration enables us to construct a plausible mechanism for increase or decrease in CNT dispersion at high surfactant concentration.

  18. Preconcentration and determination of cadmium in water and food samples by in situ surfactant-based solid-phase extraction and flame atomic absorption spectrometry

    National Research Council Canada - National Science Library

    Jamali, Mohammad Reza; Boromandi, Afsaneh

    2014-01-01

    In situ surfactant-based solid-phase extraction (ISS-SPE) is proposed as a preconcentration procedure for the determination of cadmium in water and food samples by flame atomic absorption spectrometry...

  19. Thermodynamic Study of the Ion-Pair Complexation Equilibria of Dye and Surfactant by Spectral Titration and Chemometric Analysis

    Directory of Open Access Journals (Sweden)

    Hakimeh Abbasi Awal

    2017-12-01

    Full Text Available Surfactant-dye interactions are very important in chemical and dyeing processes. The dyes interact strongly with surfactant and show new spectrophotometric properties, so the UV-vis absorption spectrophotometric method has been used to study this process and extract some thermodynamic parameters. In this work, the association equilibrium between ionic dyes and ionic surfactant were studied by analyzing spectrophotometric data using chemometric methods. Methyl orange and crystal violet were selected as a model of cationic and anionic dyes respectively. Also sodium dodecyl sulphate and cetyltrimethylammonium bromide were selected as anionic and cationic surfactant, respectively. Hard model methods such as target transform fitting (TTF classical multi-wavelength fitting and soft model method such as multivariate curve resolution (MCR were used to analyze data that were recorded as a function of surfactant concentration in premicellar and postmicellar regions. Hard model methods were used to resolve data using ion-pair model in premicellar region in order to extract the concentration and spectral profiles of individual components and also related thermodynamic parameters. The equilibrium constants and other thermodynamic parameters of interaction of dyes with surfactants were determined by studying the dependence of their absorption spectra on the temperature in the range 293–308 K at concentrations of 5 × 10−6 M and 8 × 10−6 M for dye crystal violet and methyl orange, respectively. In postmicellar region, the MCR-ALS method was applied for resolving data and getting the spectra and concentration profiles in complex mixtures of dyes and surfactants.

  20. Structure and photoluminescence properties of fishbone-like PbMoO4 nanostructures obtained via the surfactant-assisted hydrothermal method

    Institute of Scientific and Technical Information of China (English)

    Runping Jia; Kangsheng Zheng

    2012-01-01

    Fishbone-like PbMoO4 nanostructures are successfully obtained via the surfactant-assisted hydrothermal method at 160 ℃.Polyethylene glycol (PEG2000) is used as the template agent.The nanostructures are characterized via X-ray diffraction,field-emission scanning electron microscopy,Fourier transform infrared spectroscopy,ultraviolet-visible light (UV-Vis) spectroscopy,and photoluminescence (PL) measurements.The PbMoO4 morphology is highly associated with the molecular nature of PEG2000.PbMoO4 nanoparticles obtained from PEG2000 have a fishbone-shaped,scheelite-type tetragonal structure,in which numerous secondary branches vertically grow on both sides of the main stem.The structures exhibit broad PL emission bands with the maximum at 306 and 390 nm when excited at 250 nm.In addition,the UV-Vis absorption edge of the structures is in the 280 to 310 nm region,and the band gap is 4.07 eV.A plausible formation mechanism for the fishbone-like PbMoO4 nanostructures is also discussed.

  1. Binuclear Pt-Tl bonded complex with square pyramidal coordination around Pt: a combined multinuclear NMR, EXAFS, UV-Vis, and DFT/TDDFT study in dimethylsulfoxide solution.

    Science.gov (United States)

    Purgel, Mihály; Maliarik, Mikhail; Glaser, Julius; Platas-Iglesias, Carlos; Persson, Ingmar; Tóth, Imre

    2011-07-04

    The structure and bonding of a new Pt-Tl bonded complex formed in dimethylsulfoxide (dmso), (CN)(4)Pt-Tl(dmso)(5)(+), have been studied by multinuclear NMR and UV-vis spectroscopies, and EXAFS measurements in combination with density functional theory (DFT) and time dependent density functional theory (TDDFT) calculations. This complex is formed following the equilibrium reaction Pt(CN)(4)(2-) + Tl(dmso)(6)(3+) ⇆ (CN)(4)Pt-Tl(dmso)(5)(+) + dmso. The stability constant of the Pt-Tl bonded species, as determined using (13)C NMR spectroscopy, amounts to log K = 2.9 ± 0.2. The (NC)(4)Pt-Tl(dmso)(5)(+) species constitutes the first example of a Pt-Tl bonded cyanide complex in which the sixth coordination position around Pt (in trans with respect to the Tl atom) is not occupied. The spectral parameters confirm the formation of the metal-metal bond, but differ substantially from those measured earlier in aqueous solution for complexes (CN)(5)Pt-Tl(CN)(n)(H(2)O)(x)(n-) (n = 0-3). The (205) Tl NMR chemical shift, δ = 75 ppm, is at extraordinary high field, while spin-spin coupling constant, (1)J(Pt-Tl) = 93 kHz, is the largest measured to date for a Pt-Tl bond in the absence of supporting bridging ligands. The absorption spectrum is dominated by two strong absorption bands in the UV region that are assigned to MMCT (Pt → Tl) and LMCT (dmso → Tl) bands, respectively, on the basis of MO and TDDFT calculations. The solution of the complex has a bright yellow color as a result of a shoulder present on the low energy side of the band at 355 nm. The geometry of the (CN)(4)Pt-Tl core can be elucidated from NMR data, but the particular stoichiometry and structure involving the dmso ligands are established by using Tl and Pt L(III)-edge EXAFS measurements. The Pt-Tl bond distance is 2.67(1) Å, the Tl-O bond distance is 2.282(6) Å, and the Pt-C-N entity is linear with Pt-C and Pt···N distances amounting to 1.969(6) and 3.096(6) Å, respectively. Geometry optimizations on

  2. Kolliphor surfactants affect solubilization and bioavailability of fenofibrate. Studies of in vitro digestion and absorption in rats.

    Science.gov (United States)

    Berthelsen, Ragna; Holm, René; Jacobsen, Jette; Kristensen, Jakob; Abrahamsson, Bertil; Müllertz, Anette

    2015-04-06

    Selection of excipients for drug formulations requires both intellectual and experimental considerations as many of the used excipients are affected by physiological factors, e.g., they may be digested by pancreatic enzymes in the gastrointestinal tract. In the present paper we have looked systematically into the differences between Kolliphor ELP, EL, and RH40 and how they affect the bioavailability of fenofibrate, through pharmacokinetic studies in rats and in vitro lipolysis studies. The study design was made as simple as possible to avoid confounding factors, for which reason the tested formulations only comprised an aqueous micellar solution of the model drug (fenofibrate) in varying concentrations (2-25% (w/v)) of the three tested surfactants. Increased concentrations of Kolliphor ELP and EL led to increased fenofibrate AUC0-24h values. For the Kolliphor RH40 formulations, an apparent fenofibrate absorption optimum was seen at 15% (w/v) surfactant, displaying both the highest AUC0-24h and Cmax. The reduced absorption of fenofibrate from the formulation containing the highest level of surfactant (25% w/v) was thought to be caused by some degree of trapping within Kolliphor RH40 micelles. In vitro, Kolliphor ELP and EL were found to be more prone to digestion than Kolliphor RH40, though not affecting the in vivo results. The highest fenofibrate bioavailability was attained from formulations with high Kolliphor ELP/EL levels (25% (w/v)), indicating that these surfactants are the better choice for solubilizing fenofibrate in order to increase the absorption upon oral administration. Due to drug dependent effects of the different types of Kolliphor, more studies are recommended in order to understand which type of Kolliphor is best suited for a given drug.

  3. Analysis of pure tar substances (polycyclic aromatic hydrocarbons) in the gas stream using ultraviolet visible (UV-Vis) spectroscopy and multivariate curve resolution (MCR).

    Science.gov (United States)

    Weide, Tobias; Guschin, Viktor; Becker, Wolfgang; Koelle, Sabine; Maier, Simon; Seidelt, Stephan

    2015-01-01

    The analysis of tar, mostly characterized as polycyclic aromatic hydrocarbons (PAHs), describes a topic that has been researched for years. An online analysis of tar in the gas stream in particular is needed to characterize the tar conversion or formation in the biomass gasification process. The online analysis in the gas is carried out with ultraviolet-visible (UV-Vis) spectroscopy (190-720 nm). This online analysis is performed with a measuring cell developed by the Fraunhofer Institute for Chemical Technology (ICT). To this day, online tar measurements using UV-Vis spectroscopy have not been carried out in detail. Therefore, PAHs are analyzed as follows. The measurements are split into different steps. The first step to prove the online method is to vaporize single tar substances. These experiments show that a qualitative analysis of PAHs in the gas stream with the used measurement setup is possible. Furthermore, it is shown that the method provides very exact results, so that a differentiation of various PAHs is possible. The next step is to vaporize a PAH mixture. This step consists of vaporizing five pure substances almost simultaneously. The interpretation of the resulting data is made using a chemometric interpretation method, the multivariate curve resolution (MCR). The verification of the calculated results is the main aim of this experiment. It has been shown that the tar mixture can be analyzed qualitatively and quantitatively (in arbitrary units) in detail using the MCR. Finally it is the main goal of this paper to show the first steps in the applicability of the UV-Vis spectroscopy and the measurement setup on online tar analysis in view of characterizing the biomass gasification process. Due to that, the gasification plant (at the laboratory scale), developed and constructed by the Fraunhofer ICT, has been used to vaporize these substances. Using this gasification plant for the experiments enables the usage of the measurement setup also for the

  4. UV-Vis/FT-NIR in situ monitoring of visible-light induced polymerization of PEGDA hydrogels initiated by eosin/triethanolamine/O2.

    Science.gov (United States)

    Kaastrup, Kaja; Aguirre-Soto, Alan; Wang, Chen; Bowman, Christopher N; Stansbury, Jeffery; Sikes, Hadley D

    In conjunction with a tertiary amine coinitiator, eosin, a photoreducible dye, has been shown to successfully circumvent oxygen inhibition in radical photopolymerization reactions. However, the role of O2 in the initiation and polymerization processes remains inconclusive. Here, we employ a UV-Vis/FT-NIR analytical tool for real-time, simultaneous monitoring of chromophore and monomer reactive group concentrations to investigate the eosin-activated photopolymerization of PEGDA-based hydrogels under ambient conditions. First, we address the challenges associated with spectroscopic monitoring of the polymerization of hydrogels using UV-Vis and FT-NIR, proposing metrics for quantifying the extent of signal loss from reflection and scattering, and showing their relation to microgelation and network formation. Second, having established a method for extracting kinetic information by eliminating the effects of changing refractive index and scattering, the coupled UV-Vis/FT-NIR system is applied to the study of eosin-activated photopolymerization of PEGDA in the presence of O2. Analysis of the inhibition time, rate of polymerization, and rate of eosin consumption under ambient and purged conditions indicates that regeneration of eosin in the presence of oxygen and consumption of oxygen occur via a nonchain process. This suggests that the uniquely high O2 resilience is due to alternative processes such as energy transfer from photo-activated eosin to oxygen. Uncovering the intricacies of the role of O2 in eosin-mediated initiation aids the design of O2 resistant free radical polymerization systems relevant to photonics, optoelectronics, biomaterials, and biosensing.

  5. UV-Vis/FT-NIR in situ monitoring of visible-light induced polymerization of PEGDA hydrogels initiated by eosin/triethanolamine/O2

    Science.gov (United States)

    Kaastrup, Kaja; Aguirre-Soto, Alan; Wang, Chen; Bowman, Christopher N.; Stansbury, Jeffery; Sikes, Hadley D.

    2016-01-01

    In conjunction with a tertiary amine coinitiator, eosin, a photoreducible dye, has been shown to successfully circumvent oxygen inhibition in radical photopolymerization reactions. However, the role of O2 in the initiation and polymerization processes remains inconclusive. Here, we employ a UV-Vis/FT-NIR analytical tool for real-time, simultaneous monitoring of chromophore and monomer reactive group concentrations to investigate the eosin-activated photopolymerization of PEGDA-based hydrogels under ambient conditions. First, we address the challenges associated with spectroscopic monitoring of the polymerization of hydrogels using UV-Vis and FT-NIR, proposing metrics for quantifying the extent of signal loss from reflection and scattering, and showing their relation to microgelation and network formation. Second, having established a method for extracting kinetic information by eliminating the effects of changing refractive index and scattering, the coupled UV-Vis/FT-NIR system is applied to the study of eosin-activated photopolymerization of PEGDA in the presence of O2. Analysis of the inhibition time, rate of polymerization, and rate of eosin consumption under ambient and purged conditions indicates that regeneration of eosin in the presence of oxygen and consumption of oxygen occur via a nonchain process. This suggests that the uniquely high O2 resilience is due to alternative processes such as energy transfer from photo-activated eosin to oxygen. Uncovering the intricacies of the role of O2 in eosin-mediated initiation aids the design of O2 resistant free radical polymerization systems relevant to photonics, optoelectronics, biomaterials, and biosensing. PMID:26755925

  6. Combination of UV-vis spectroscopy and chemometrics to understand protein-nanomaterial conjugate: a case study on human serum albumin and gold nanoparticles.

    Science.gov (United States)

    Wang, Yong; Ni, Yongnian

    2014-02-01

    Study of the interactions between proteins and nanomaterials is of great importance for understanding of protein nanoconjugate. In this work, we choose human serum albumin (HSA) and citrate-capped gold nanoparticles (AuNPs) as a model of protein and nanomaterial, and combine UV-vis spectroscopy with multivariate curve resolution by an alternating least squares (MCR-ALS) algorithm to present a new and efficient method for comparatively comprehensive study of evolution of protein nanoconjugate. UV-vis spectroscopy coupled with MCR-ALS allows qualitative and quantitative extraction of the distribution diagrams, spectra and kinetic profiles of absorbing pure species (AuNPs and AuNPs-HSA conjugate are herein identified) and undetectable species (HSA) from spectral data. The response profiles recovered are converted into the desired thermodynamic, kinetic and structural parameters describing the protein nanoconjugate evolution. Analysis of these parameters for the system gives evidence that HSA molecules are very likely to be attached to AuNPs surface predominantly as a flat monolayer to form a stable AuNPs-HSA conjugate with a core-shell structure, and the binding process takes place mainly through electrostatic and hydrogen-bond interactions between the positively amino acid residues of HSA and the negatively carboxyl group of citrate on AuNPs surface. The results obtained are verified by transmission electron microscopy, zeta potential, circular dichroism spectroscopy and Fourier transform infrared spectroscopy, showing the potential of UV-vis spectroscopy for study of evolution of protein nanoconjugate. In parallel, concentration evolutions of pure species resolved by MCR-ALS are used to construct a sensitive spectroscopic biosensor for HSA with a linear range from 1.8 nM to 28.1 nM and a detection limit of 0.8 nM.

  7. Solvent effect in implicit/explicit model on FT-IR, 1H, 13C and 19F NMR, UV-vis and fluorescence spectra, linear, second- and third-nonlinear optical parameters of 2-(trifluoromethyl)benzoic acid: Experimental and computational study

    Science.gov (United States)

    Avcı, Davut; Altürk, Sümeyye; Tamer, Ömer; Kuşbazoğlu, Mustafa; Atalay, Yusuf

    2017-09-01

    FT-IR, 1H, 13C and 19F NMR, UV-vis and fluorescence spectra for 2-(trifluoromethyl)benzoic acid (2-TFMBA) were recorded. DFT//B3LYP/6-31++G(d,p) calculations were used to determine the optimized molecular geometry, vibrational frequencies, 1H, 13C and 19F GIAO-NMR chemical shifts of 2-TFMBA. The detailed assignments of vibrational frequencies were carried out on the basis of potential energy distribution (PED) by using VEDA program. TD-DFT/B3LYP/6-31++G(d,p) calculations with the PCM (polarizable continuum model) in ethanol and DMSO solvents based on implicit/explicit model and gas phase in the excited state were employed to investigate UV-vis absorption and fluorescence emission wavelengths. The UV-vis and emission spectra were given in ethanol and DMSO solvents, and the major contributions to the electronic transitions were obtained. In addition, the NLO parameters (β, γ and χ(3)) and frontier molecular orbital energies of 2-TFMBA were calculated by using B3LYP/6-31++G(d,p) level. The NLO parameters of 2-TFMBA were compared with that of para-Nitroaniline (pNA) and urea which are the typical NLO materials. The refractive index (n) is calculated by using the Lorentz-Lorenz equation to observe polarization behavior of 2-TFMBA in DMSO and ethanol solvents. In order to investigate intramolecular and hydrogen bonding interactions, NBO calculations were also performed by the same level. To sum up, considering the well-known biological role, photochemical properties of 2-TFMBA were discussed.

  8. Experimental (X-ray, IR and UV-vis.) and DFT studies on cocrystallization of two tautomers of a novel Schiff base compound

    Science.gov (United States)

    Temel, Ersin; Alaşalvar, Can; Eserci, Hande; Ağar, Erbil

    2017-01-01

    In this study, the structure of 4-(((2-methyl-3-nitrophenyl)imino)methyl)benzene-1,2,3-triol was investigated with experimental (X-ray single crystal technique, UV-vis. and FT-IR spectroscopic techniques) and theoretical (DFT) methods. X-ray studies show that there are two independent molecules in asymmetric unit and coexist both keto-amin and enol-imine tautomeric forms. Theoretical studies were carried out in B3LYP with CAM-631G(d,p). The data obtained from calculation were compared with experimental data.

  9. Synthesis and Characterization of Zirconia Nanocrystallites by Cationic Surfactant and Anionic Surfactant

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Study on nanomaterials has attracted great interests in recent years. In this article,zirconia nanocrystallites of different structures have been successfully synthesized via hydrothermal methods with cationic surfactant (CTAB) and anionic surfactant (SDS), respectively. Differential Scanning Calorimeter (DSC-TG), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM), Ultraviolet-Visible (UV-vis) and N2 adsorption-desorption analyses are used for their structure characteristics. The results show that the cationic surfactant has a distinctive direction effect on the formation of zirconia nanocrystallites, while the anionic surfactant has a self-assembly synergistic effect on them. The sample synthesized with the cationic surfactant presents good dispersion with the main phase of tetragonal zirconia, and the average nanocryst al size is around 15nm after calcination at 500 ℃. While the sample synthesized with the anionic surfactant exhibits a worm-like mesoporous structure with pure tetragonal phase after calcination at 500 ℃ and with good thermal stability.

  10. Oxalyl chloride, ClC(O)C(O)Cl: UV/vis spectrum and Cl atom photolysis quantum yields at 193, 248, and 351 nm.

    Science.gov (United States)

    Ghosh, Buddhadeb; Papanastasiou, Dimitrios K; Burkholder, James B

    2012-10-28

    Oxalyl chloride, (ClCO)(2), has been used as a Cl atom photolytic precursor in numerous laboratory kinetic and photochemical studies. In this study, the UV/vis absorption spectrum of (ClCO)(2) and the Cl atom quantum yields in its photolysis at 193, 248, and 351 nm are reported. The UV∕vis spectrum was measured between 200 and 450 nm at 296 K using diode array spectroscopy in conjunction with an absolute cross section obtained at 213.9 nm. Our results are in agreement with the spectrum reported by Baklanov and Krasnoperov [J. Phys. Chem. A 105, 97-103 (2001)], which was obtained at 11 discrete wavelengths between 193.3 and 390 nm. Cl atom quantum yields, Φ(λ), were measured using pulsed laser photolysis coupled with time resolved atomic resonance fluorescence detection of Cl. The UV photolysis of (ClCO)(2) has been shown in previous studies to occur via an impulsive three-body dissociation mechanism, (COCl)(2) + hv → ClCO* + Cl + CO (2), where the excited ClCO radical, ClCO*, either dissociates or stabilizes ClCO* → Cl + CO (3a), → ClCO (3b). ClCO is thermally unstable at the temperatures (253-298 K) and total pressures (13-128 Torr) used in our experiments ClCO + M → Cl + CO + M (4) leading to the formation of a secondary Cl atom that was resolvable in the Cl atom temporal profiles obtained in the 248 and 351 nm photolysis of (ClCO)(2). Φ(193 nm) was found to be 2.07 ± 0.37 independent of bath gas pressure (25.8-105.7 Torr, N(2)), i.e., the branching ratio for channel 2a or the direct formation of 2Cl + 2CO in the photolysis of (ClCO)(2) is >0.95. At 248 nm, the branching ratio for channel 2a was determined to be 0.79 ± 0.15, while the total Cl atom yield, i.e., following the completion of reaction (4), was found to be 1.98 ± 0.26 independent of bath gas pressure (15-70 Torr, N(2)). Φ(351 nm) was found to be pressure dependent between 7.8 and 122.4 Torr (He, N(2)). The low-pressure limit of the total Cl atom quantum yield, Φ(0)(351 nm), was 2

  11. FTIR and UV-vis diffuse reflectance spectroscopy studies of the wet chemical (WC) route synthesized nano-structure CoFe(2)O(4) from CoCl(2) and FeCl(3).

    Science.gov (United States)

    Habibi, Mohammad Hossein; Parhizkar, Hadi Janan

    2014-06-05

    Nano-structure CoFe(2)O(4) has been fabricated by wet chemical route using CoCl2 and FeCl3 as simple precursors. The prepared nano-structure samples was calcined at 600°C and characterized by fourier transform infrared spectra (FTIR), UV-vis diffuse reflectance spectroscopy (DRS), X-ray powder diffractometry (XRD), and field emission scanning electron microscopy (FESEM). X-ray diffraction patterns confirmed the presence of the spinel phases with average crystallite sizes of 47nm. Field emission scanning electron microscopy investigations showed spherical morphology of nanoparticles with average particle size of 46nm. The FTIR spectra of CoFe(2)O(4) nanoparticles showed absorption bands at about 594cm(-1) and 401cm(-1) due to the stretching vibrations of Co-O and Fe-O respectively. Investigation of the optical properties of the produced nano-structure CoFe(2)O(4) confirmed its semiconducting properties by revealing two optical band gaps at 1.4 and 2.0eV.

  12. Molecular structure, vibrational spectroscopic (FT-IR, FT-Raman), UV-vis spectra, first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis, thermodynamic properties of benzophenone 2,4-dicarboxylic acid by ab initio HF and density functional method.

    Science.gov (United States)

    Chaitanya, K

    2012-02-01

    The FT-IR (4000-450 cm(-1)) and FT-Raman spectra (3500-100 cm(-1)) of benzophenone 2,4-dicarboxylic acid (2,4-BDA) have been recorded in the condensed state. Density functional theory calculation with B3LYP/6-31G(d,p) basis set have been used to determine ground state molecular geometries (bond lengths and bond angles), harmonic vibrational frequencies, infrared intensities, Raman activities and bonding features of the title compounds. The assignments of the vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the scaled quantum mechanical force field (SQMFF) methodology. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of 2,4-BDA is calculated using HF/6-31G(d,p) method on the finite-field approach. The stability of molecule has been analyzed by using NBO analysis. The calculated first hyperpolarizability shows that the molecule is an attractive molecule for future applications in non-linear optics. The calculated HOMO and LUMO energies show that charge transfer occurs within these molecules. Mulliken population analysis on atomic charges is also calculated. Because of vibrational analyses, the thermodynamic properties of the title compound at different temperatures have been calculated. Finally, the UV-vis spectra and electronic absorption properties were explained and illustrated from the frontier molecular orbitals.

  13. Comparative fingerprint and extraction yield of Diospyrus ferrea (willd.) Bakh. root with phenol compounds (gallic acid), as determined by uv-vis and ft-ir spectroscopy

    Institute of Scientific and Technical Information of China (English)

    RVijayalakshmi; RRavindhran

    2012-01-01

    Objective: To analyze the comparative finger print and extraction yield of D.ferrea root with phenol compound (Gallic acid), as determined by UV-Vis spectroscopy and FTIR spectroscopy.Method:The UV Vis spectroscopy and FTIR spectroscopy are adequate techniques to fingerprint comparatively and to evaluate the extraction yield of D.ferrea root extract. The higher extraction yield was recorded in ethanol comparatively superior and richer in phenol (gallic acid). Gallic acid has therapeutic application for inflammatory allergic diseases due to its ability to inhibit histamine. Finger print region was recorded between 500-3500 cm-1 for each extract and functional groups were identified and compared with the standard. Result: The extraction factor was superior in ethanol (270 nm) rich in polar molecules. The FTIR signal at 900, 1500, 1714, 3000, 3100cm-1 considered as a good indicator of phenol (gallic acid).The functional groups of each extract were identified.Conclusion: The UV and FTIR method was validated as a good tool to investigate the finger print and to predict the composition of different root extract of D.ferrea.

  14. Quantification of Coffea arabica and Coffea canephora var. robusta concentration in blends by means of synchronous fluorescence and UV-Vis spectroscopies.

    Science.gov (United States)

    Dankowska, A; Domagała, A; Kowalewski, W

    2017-09-01

    The potential of fluorescence, UV-Vis spectroscopies as well as the low- and mid-level data fusion of both spectroscopies for the quantification of concentrations of roasted Coffea arabica and Coffea canephora var. robusta in coffee blends was investigated. Principal component analysis was used to reduce data multidimensionality. To calculate the level of undeclared addition, multiple linear regression (PCA-MLR) models were used with lowest root mean square error of calibration (RMSEC) of 3.6% and root mean square error of cross-validation (RMSECV) of 7.9%. LDA analysis was applied to fluorescence intensities and UV spectra of Coffea arabica, canephora samples, and their mixtures in order to examine classification ability. The best performance of PCA-LDA analysis was observed for data fusion of UV and fluorescence intensity measurements at wavelength interval of 60nm. LDA showed that data fusion can achieve over 96% of correct classifications (sensitivity) in the test set and 100% of correct classifications in the training set, with low-level data fusion. The corresponding results for individual spectroscopies ranged from 90% (UV-Vis spectroscopy) to 77% (synchronous fluorescence) in the test set, and from 93% to 97% in the training set. The results demonstrate that fluorescence, UV, and visible spectroscopies complement each other, giving a complementary effect for the quantification of roasted Coffea arabica and Coffea canephora var. robusta concentration in blends. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Screening of Satureja subspicata Vis. Honey by HPLC-DAD, GC-FID/MS and UV/VIS: Prephenate Derivatives as Biomarkers.

    Science.gov (United States)

    Jerković, Igor; Kranjac, Marina; Marijanović, Zvonimir; Zekić, Marina; Radonić, Ani; Tuberoso, Carlo Ignazio Giovanni

    2016-03-21

    The samples of Satureja subspicata Vis. honey were confirmed to be unifloral by melissopalynological analysis with the characteristic pollen share from 36% to 71%. Bioprospecting of the samples was performed by HPLC-DAD, GC-FID/MS, and UV/VIS. Prephenate derivatives were shown to be dominant by the HPLC-DAD analysis, particularly phenylalanine (167.8 mg/kg) and methyl syringate (MSYR, 114.1 mg/kg), followed by tyrosine and benzoic acid. Higher amounts of MSYR (3-4 times) can be pointed out for distinguishing S. subspicata Vis. honey from other Satureja spp. honey types. GC-FID/MS analysis of ultrasonic solvent extracts of the samples revealed MSYR (46.68%, solvent pentane/Et2O 1:2 (v/v); 52.98%, solvent CH2Cl2) and minor abundance of other volatile prephenate derivatives, as well as higher aliphatic compounds characteristic of the comb environment. Two combined extracts (according to the solvents) of all samples were evaluated for their antioxidant properties by FRAP and DPPH assay; the combined extracts demonstrated higher activity (at lower concentrations) in comparison with the average honey sample. UV/VIS analysis of the samples was applied for determination of CIE Lab colour coordinates, total phenolics (425.38 mg GAE/kg), and antioxidant properties (4.26 mmol Fe(2+)/kg (FRAP assay) and 0.8 mmol TEAC/kg (DDPH assay)).

  16. Time dependent profile retrieval of UV/vis absorbing radicals from balloon-borne limb measurements – a case study on NO2 and O3

    Directory of Open Access Journals (Sweden)

    R. Schofield

    2010-07-01

    Full Text Available A new "Bayesian" minimization algorithm for the retrieval of the diurnal variation of UV/vis absorbing radicals (O3, NO2, BrO, OClO and HONO from balloon-borne limb scattered skylight observations is discussed. The method evaluates spectroscopic measurements in combination with radiative transfer calculations to drive a mathematical inversion on a discrete time and height grid. Here, the proposed method is applied to data obtained during two deployments of the mini-DOAS instrument on different balloon payloads in northern Brazil in June 2005. The retrieval is tested by comparing the inferred profiles to in-situ ozone sounding data and to measurements of the ENVISAT/SCIAMACHY satellite instrument performed during a collocated overpass. The comparison demonstrates the strength and validity of our approach. In particular for time-varying radical concentrations, photochemical corrections due to temporal mismatch of the corresponding observations are rendered dispensable. Thus, limb scanning UV/vis spectrometry from balloon platforms offers a more direct and concise approach for satellite validation of radical measurements than solar occultation measurements. Furthermore, monitoring of the diurnal variation of stratospheric radicals allows us to constrain photochemical parameters which are critical for stratospheric ozone chemistry, such as the photolysis frequency of N2O5 by observations of the diurnal variation of NO2.

  17. Comparative evaluation of natural and acid-modified layered mineral materials as rimifon-carriers using UV/VIS, FTIR, and equilibrium sorption study

    Directory of Open Access Journals (Sweden)

    Nedyalka Georgieva

    2015-12-01

    Full Text Available The encapsulation of rimifon on natural (NZ and acid-modified (AMZ zeolites was investigated by UV/VIS, FTIR, and equilibrium sorption studies in aqueous medium. The UV/VIS and FTIR spectral investigations provided data on the nature and characteristics of the drug–zeolite complexes. The probable host–guest interactions during rimifon encapsulation in AMZ include van der Waals interactions, as well as H-bonds established between the O-atom from the carbonyl (>C=O group and N-pyridine/N-hydrazine atoms in rimifon and zeolite OH-groups. The maximum experimental equilibrium sorption capacity of AMZ (qmax = 7.17 mg/g was approximately 24 times higher than that of NZ. Baudu and Fritz–Schlunder isotherms almost overlapped and seemed to be the best-fitting models with regard to the experimental equilibrium data of rimifon sorption on AMZ. The unique properties of AMZ and the established high extend of rimifon encapsulation proved the possibility of its successful application as rimifon-carrier for environmental and medical purposes.

  18. Assessment of repeatability of composition of perfumed waters by high-performance liquid chromatography combined with numerical data analysis based on cluster analysis (HPLC UV/VIS - CA).

    Science.gov (United States)

    Ruzik, L; Obarski, N; Papierz, A; Mojski, M

    2015-06-01

    High-performance liquid chromatography (HPLC) with UV/VIS spectrophotometric detection combined with the chemometric method of cluster analysis (CA) was used for the assessment of repeatability of composition of nine types of perfumed waters. In addition, the chromatographic method of separating components of the perfume waters under analysis was subjected to an optimization procedure. The chromatograms thus obtained were used as sources of data for the chemometric method of cluster analysis (CA). The result was a classification of a set comprising 39 perfumed water samples with a similar composition at a specified level of probability (level of agglomeration). A comparison of the classification with the manufacturer's declarations reveals a good degree of consistency and demonstrates similarity between samples in different classes. A combination of the chromatographic method with cluster analysis (HPLC UV/VIS - CA) makes it possible to quickly assess the repeatability of composition of perfumed waters at selected levels of probability. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  19. Computing UV/vis spectra using a combined molecular dynamics and quantum chemistry approach: bis-triazin-pyridine (BTP) ligands studied in solution.

    Science.gov (United States)

    Höfener, Sebastian; Trumm, Michael; Koke, Carsten; Heuser, Johannes; Ekström, Ulf; Skerencak-Frech, Andrej; Schimmelpfennig, Bernd; Panak, Petra J

    2016-03-21

    We report a combined computational and experimental study to investigate the UV/vis spectra of 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridine (BTP) ligands in solution. In order to study molecules in solution using theoretical methods, force-field parameters for the ligand-water interaction are adjusted to ab initio quantum chemical calculations. Based on these parameters, molecular dynamics (MD) simulations are carried out from which snapshots are extracted as input to quantum chemical excitation-energy calculations to obtain UV/vis spectra of BTP ligands in solution using time-dependent density functional theory (TDDFT) employing the Tamm-Dancoff approximation (TDA). The range-separated CAM-B3LYP functional is used to avoid large errors for charge-transfer states occurring in the electronic spectra. In order to study environment effects with theoretical methods, the frozen-density embedding scheme is applied. This computational procedure allows to obtain electronic spectra calculated at the (range-separated) DFT level of theory in solution, revealing solvatochromic shifts upon solvation of up to about 0.6 eV. Comparison to experimental data shows a significantly improved agreement compared to vacuum calculations and enables the analysis of relevant excitations for the line shape in solution.

  20. Calibration of UV/Vis spectrophotometers: A review and comparison of different methods to estimate TSS and total and dissolved COD concentrations in sewers, WWTPs and rivers.

    Science.gov (United States)

    Lepot, Mathieu; Torres, Andres; Hofer, Thomas; Caradot, Nicolas; Gruber, Günter; Aubin, Jean-Baptiste; Bertrand-Krajewski, Jean-Luc

    2016-09-15

    UV/Vis spectrophotometers have been used for one decade to monitor water quality in various locations: sewers, rivers, wastewater treatment plants (WWTPs), tap water networks, etc. Resulting equivalent concentrations of interest can be estimated by three ways: i) by manufacturer global calibration; ii) by local calibration based on the provided global calibration and grab sampling; iii) by advanced calibration looking for relations between UV/Vis spectra and corresponding concentrations from grab sampling. However, no study has compared the applied methods so far. This collaborative work presents a comparison between five different methods. A Linear Regression (LR), Support Vector Machine (SVM), EVOlutionary algorithm method (EVO) and Partial Least Squares (PLS) have been applied on various data sets (sewers, rivers, WWTPs under dry, wet and all weather conditions) and for three water quality parameters: TSS, COD total and dissolved. Two criteria (r(2) and Root Mean Square Error RMSE) have been calculated - on calibration and verification data subsets - to evaluate accuracy and robustness of the applied methods. Values of criteria have then been statistically analysed for all and separated data sets. Non-consistent outcomes come through this study. According to the Kruskal-Wallis test and RMSEs, PLS and SVM seem to be the best methods. According to uncertainties in laboratory analysis and ranking of methods, LR and EVO appear more robust and sustainable for concentration estimations. Conclusions are mostly independent of water matrices, weather conditions or concentrations investigated.

  1. Combined experimental and quantum chemical studies on spectroscopic (FT-IR, FT-Raman, UV-Vis, and NMR) and structural characteristics of quinoline-5-carboxaldehyde

    Science.gov (United States)

    Kumru, Mustafa; Altun, Ahmet; Kocademir, Mustafa; Küçük, Vesile; Bardakçı, Tayyibe; Şaşmaz, İbrahim

    2016-12-01

    Comparative experimental and theoretical studies have been performed on the structure and spectral (FT-IR, FT-Raman, UV-Vis and NMR) features of quinoline-5-carboxaldehyde. Quantum chemical calculations have been carried out at Hartree-Fock and density functional B3LYP levels with the triple-zeta 6-311++G** basis set. Two stable conformers of quinoline-5-carboxaldehyde arising from the orientation of the carboxaldehyde moiety have been located at the room temperature. The energetic separation of these conformers is as small as 2.5 kcal/mol with a low transition barrier (around 9 kcal/mol). Therefore, these conformers are expected to coexist at the room temperature. Several molecular characteristics of quinoline-5-carboxaldehyde obtained through B3LYP and time-dependent B3LYP calculations, such as conformational stability, key geometry parameters, vibrational frequencies, IR and Raman intensities, UV-Vis vertical excitation energies and the corresponding oscillator strengths have been analyzed. The 1H and 13C NMR chemical shifts of quinoline-5-carboxaldehyde were also investigated.

  2. FT-IR, micro-Raman and UV-vis spectroscopic and quantum chemical calculation studies on the 6-chloro-4-hydroxy-3-phenyl pyridazine compound

    Science.gov (United States)

    Sarıkaya, Ebru Karakaş; Bahçeli, Semiha; Varkal, Döndü; Dereli, Ömer

    2017-08-01

    In this work, the study of the6-chloro-4-hydroxy-3-phenyl pyridazine compound, (C10 H7 N2 O Cl with synonym 4-pyridazinol, 6-chloro-3-phenyl-), was verified experimentally by using the Fourier Transformed Infrared (FT-IR), micro-Raman and UV/vis (in N,N-dimethylformamide solvent) spectroscopies. Furthermore, the optimized molecular geometry, conformatinal analysis, vibrational frequencies, the simulated UV/vis spectra (in gas and in N,N-dimethylformamide solvent), 1H and 13C NMR chemical shift (in gas, in chloroform and N,N-dimethylformamide in solvents) values, HOMO-LUMO analysis, the molecular electrostatic potential (MEP) surface and thermodynamic parameters ofthe6-chloro-4-hydroxy-3-phenyl pyridazine compound were calculated by using DFT/B3LYP method with 6-311++G(d,p) basis set in ground state. The comparison of the calculated and vibrational frequencies with the experimental values provides important information about the title compound.

  3. Isomerization and increase in the antioxidant properties of lycopene from Momordica cochinchinensis (gac) by moderate heat treatment with UV-Vis spectra as a marker.

    Science.gov (United States)

    Phan-Thi, Hanh; Waché, Yves

    2014-08-01

    Momordica cochinchinensis (gac) is a plant rich in lycopene. This pigment tends to solubilize in oil and get damaged during extraction. The impact of heating on cis-isomerization of oil-free lycopene in hexane was studied at 50 and 80°C during 240min with UV-Vis spectrometry, DAD-HPLC and TEAC test. The initial all-trans-form isomerized to the 13-cis isomer more rapidly at 80°C. After this treatment, 16% of the lycopene compounds were in the 9-cis-form. This isomer triggered an increase in the antioxidant properties which was detectable from concentrations above 9% and resulted in a change from 2.4 to 3.7μmol Trolox equivalent. It is thus possible to increase the bioactivity of lycopene samples by controlling heating. The evolution of ratios calculated from the global UV-Vis spectrum was representative of cis-isomerization and spectrometry can thus be a simple way to evaluate the state of isomerization of lycopene solutions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Effect of the solvent on the size of clay nanoparticles in solution as determined using an ultraviolet-visible (UV-Vis) spectroscopy methodology.

    Science.gov (United States)

    Alin, Jonas; Rubino, Maria; Auras, Rafael

    2015-06-01

    Ultraviolet-visible (UV-Vis) spectroscopy methodology was developed and utilized for the in situ nanoscale measurement of the size of mineral clay agglomerates in various liquid suspensions. The clays studied were organomodified and unmodified montmorillonite clays (I.44p, Cloisite 93a, and PGN). The methodology was compared and validated against dynamic light scattering (DLS) analysis. The method was able to measure clay agglomerates in solvents in situations where DLS analysis was unsuccessful due to the shapes, polydispersity, and high aspect ratios of the clay particles and the complexity of the aggregates, or dispersion medium. The measured clay agglomerates in suspension were found to be in the nanometer range in the more compatible solvents, and their sizes correlated with the Hansen solubility parameter space distance between the clay modifiers and the solvents. Mass detection limits for size determination were in the range from 1 to 9 mg/L. The methodology thus provides simple, rapid, and inexpensive characterization of clays or particles in the nano- or microsize range in low concentrations in various liquid media, including complex mixtures or highly viscous fluids that are difficult to analyze with DLS. In addition, by combining UV-VIS spectroscopy with DLS it was possible to discern flocculation behavior in liquids, which otherwise could result in false size measurements by DLS alone.

  5. Silver nanoparticles obtained with a glucose modified siloxane surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Racles, Carmen, E-mail: raclesc@icmpp.ro; Airinei, Anton; Stoica, Iuliana; Ioanid, Aurelia [' Petru Poni' Institute of Macromolecular Chemistry (Romania)

    2010-08-15

    Silver nanoparticles were obtained in aqueous medium, at room temperature, by redox reactions, with or without glucose, in the presence of a glucose-containing cyclosiloxane. The siloxane surfactant can act as stabilizer when glucose is present in the system, but also as reducing agent and stabilizer when no glucose is added. The kinetics was followed by absorption UV-Vis spectroscopy, and different behaviors were found for the two versions of the redox process: first-order kinetics for the reaction with glucose and a much slower complex reaction with three zero-order steps when no glucose was added. The reactions were also investigated with IR absorption spectroscopy. The resulting nanoparticles were analyzed by dynamic light scattering (DLS), atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) analysis, and transmision electron microscopy (TEM). All data showed evidence for the formation of silver spherical nanoparticles, with an average diameter of 14 nm (reaction with glucose) and 6.5 nm (reaction without glucose), respectively.

  6. A simple and efficient ultrasonic-assisted extraction procedure combined with UV-Vis spectrophotometry for the pre-concentration and determination of folic acid (vitamin B9) in various sample matrices.

    Science.gov (United States)

    Gürkan, Ramazan; Altunay, Nail

    2016-07-01

    A simple and efficient ultrasonic-assisted extraction (UAE) procedure has been proposed for the pre-concentration of (2S)-2-[(4-{[(2-amino-4-hydroxypteridin-yl)methyl]amino}phenyl)formamido]pentanedioic acid (folic acid) in vegetables, pharmaceuticals and foods prior to determination at 540 nm using UV-Vis spectrophotometry. The method is based on hydrophobic ternary complex formation of folic acid with silver ions in the presence of cetyltrimethylammonium bromide (CTAB) as a sensitivity enhancer counter ion at pH 7.0, and then extraction into a micellar phase of polyethylene glycol monoalkyl ether (Genapol X-080). The impacts on the extraction efficiency and complex formation of analytical parameters such as sample pH, concentration of silver, concentration of surfactants and extraction time, ultrasonic time and sample volume, were investigated and optimised in detail. The matrix effect on the pre-concentration and determination of folic acid was investigated, and it was observed that the proposed method was highly selective against possible matrix co-extractives. Under optimised conditions, a good linear relationship between the analytical signal and folic acid concentration was obtained in the range of 0.6-180 μg l(-1) with a detection limit of 0.19 μg l(-1) and quantification limit of 0.63 μg l(-1). The applicability was evaluated using samples fortified at different concentration levels, and recoveries higher than 94.1% were obtained. The precision as the percent relative standard deviation (RSD%) was in range of 2.5-3.8% (10 and 40 μg l(-1), n = 5). The proposed method was validated by analysis of two standard reference materials (SRMs) and various real samples, and satisfactory results were obtained.

  7. The UV-Vis Spectrum Analysis on the Interaction between Rutin and Human Serum Albumin%芦丁与人血清白蛋白相互作用的紫外可见光谱特性研究

    Institute of Scientific and Technical Information of China (English)

    黄汉昌; 姜招峰

    2011-01-01

    In order to inveatigate the interaction between rutin and human serum albumin (lISA) ,this article determined the ultraviolt-visible (UV-Vis) absorption spectrum,circular diachroism and HSA fluorescence spectrum,and further to analyse the difference between the spectra before and after rutin and HSA mixed. The results indicated that rutin shows three particular UV absorption-peak at the wavelength 264.0,285.5 and 354.5 nm and circular diachroism at the wavelength ranges 330 ~300 nm and 300 ~23.0 nm. When rutin interacted with HSA,the UV absorption peak of Rutin will be shifted to long wavelength. However,for the structure of HSA,rutin will change the HSA tertiary structure rather than secondary strcture. The fluoresenee of HSA is also influenced by mtin. The excitation wavelength will be shift towards long wavelength, while emission wavelength will be shift towards short wavelength when HSA interacted with rutin.%本文通过测定芦丁与HSA相互作用前后的紫外可见吸收光谱、圆二色性及人血清白蛋白(HSA)的荧光特性,研究了芦丁与HSA结合作用.结果表明,芦丁在紫外区有三个特征的吸收峰(264.0、285.5及354.5nm)、在330~300nm及300~230nm处显示圆二色性,HSA引起芦丁紫外可见吸收光谱波峰红移;芦丁与HSA相互作用后,不引起HSA二级结构的改变,但对其三级结构有影响,同时对HSA荧光激发及发生光谱最大峰位及幅度有影响.

  8. A DFT study on structures, frontier molecular orbitals and UV-vis spectra of RuX(PPh3)(NHCPh2)L (X=Tp and Cp; L=Cl and N3).

    Science.gov (United States)

    Wang, Tsang-Hsiu; Wang, I-Teng; Huang, Wen-Lin; Huang, Li-Yu

    2014-01-01

    Geometry optimization for RuX(PPh3)(NHCPh2)(L) (X=hydridotris(pyrazolyl)borate (Tp) and cyclopentadiene (Cp); L=Cl and N3) are investigated by using density functional theory (DFT) with DZVP2/DZVP all-electron mixed basis sets and compared with available experimental values, and the calculated structures are in very good agreement with experimental data. The frontier molecular orbitals (FMOs) and electronic transitions have been investigated as well. Our calculations show that the π electron-rich ligand (N3) may increase the energies of occupied orbitals and reduce the energy gap of the HOMO-LUMO (ΔEL-H) in these ruthenium based complexes. The simulated UV-vis spectra of these complexes in methanol have been studied with time-dependent density functional theory (TD-DFT), and conductor-like polarizable continuum model (CPCM) was employed to account for the solvent effects. Our results show that a number of absorption peaks are found in the visible region (400-800 nm) with non-zero oscillator strengths. The strongest adsorption feature is associated to a transition from HOMO-2 to LUMO, which is assigned to metal-to-ligand charge transfer (MLCT) or metal/ligand-to-ligand charge transfer (MLCT/LLCT) depending on co-ligands. In addition, the Cp group increases electron-accept ability and results in red shift due to its π electron-rich and π donor characters. According to our results, these ruthenium based complexes are good candidates for dye-sensitized solar cell owing to their absorption intensities and rich absorption bands in the visible region. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Fibrinogen stability under surfactant interaction.

    Science.gov (United States)

    Hassan, Natalia; Barbosa, Leandro R S; Itri, Rosangela; Ruso, Juan M

    2011-10-01

    Differential scanning calorimetry (DSC), circular dichroism (CD), difference spectroscopy (UV-vis), Raman spectroscopy, and small-angle X-ray scattering (SAXS) measurements have been performed in the present work to provide a quantitatively comprehensive physicochemical description of the complexation between bovine fibrinogen and the sodium perfluorooctanoate, sodium octanoate, and sodium dodecanoate in glycine buffer (pH 8.5). It has been found that sodium octanoate and dodecanoate act as fibrinogen destabilizer. Meanwhile, sodium perfluorooctanoate acts as a structure stabilizer at low molar concentration and as a destabilizer at high molar concentration. Fibrinogen's secondary structure is affected by all three studied surfactants (decrease in α-helix and an increase in β-sheet content) to a different extent. DSC and UV-vis revealed the existence of intermediate states in the thermal unfolding process of fibrinogen. In addition, SAXS data analysis showed that pure fibrinogen adopts a paired-dimer structure in solution. Such a structure is unaltered by sodium octanoate and perfluoroctanoate. However, interaction of sodium dodecanoate with the fibrinogen affects the protein conformation leading to a complex formation. Taken together, all results evidence that both surfactant hydrophobicity and tail length mediate the fibrinogen stability upon interaction. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Photoacoustic Optical Properties at UV, VIS, and near IR Wavelengths for Laboratory Generated and Winter Time Ambient Urban Aerosols

    Science.gov (United States)

    Gyawali, M.; Arnott, W. P.; Zaveri, R. A.; Song, C.; Moosmuller, H.; Liu, L.; Mishchenko, M. I.; Chen, L.-W.A.; Green, M. C.; Watson, J. G.; Chow, J. C.

    2012-01-01

    We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM (sub 2.5) and PM( sub 10) (particulate matter with aerodynamic diameters less than 2.5 micrometers and 10 micrometers, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Angstrom exponent of absorption (AEA), and Angstrom exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In

  11. Photoacoustic optical properties at UV, VIS, and near IR wavelengths for laboratory generated and winter time ambient urban aerosols

    Directory of Open Access Journals (Sweden)

    M. Gyawali

    2012-03-01

    Full Text Available We present the laboratory and ambient photoacoustic (PA measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory-generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols and relatively clean (aged aerosols conditions. Particulate matter (PM concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM2.5 and PM10 (particulate matter with aerodynamic diameters less than 2.5 μm and 10 μm, respectively and gaseous pollutants: carbon monoxide (CO, nitric oxide (NO, and nitrogen dioxide (NO2. The diurnal change of absorption and scattering coefficients during the polluted (inversion days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA, Ångström exponent of absorption (AEA, and Ångström exponent of scattering (AES for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy

  12. Photoacoustic optical properties at UV, VIS, and near IR wavelengths for laboratory generated and winter time ambient urban aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Gyawali, Madhu S.; Arnott, W. Patrick; Zaveri, Rahul A.; Song, Chen; Moosmuller, H.; Liu, Li; Mishchenko, M.; Chen, L-W A.; Green, M.; Watson, J. G.; Chow, J. C.

    2012-03-08

    We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM{sub 2.5} and PM{sub 10} (particulate matter with aerodynamic diameters less than 2.5 {mu}m and 10 {mu}m, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO{sub 2}). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Angstrom exponent of absorption (AEA), and Angstrom exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In

  13. Determination of trace inorganic mercury species in water samples by cloud point extraction and UV-vis spectrophotometry.

    Science.gov (United States)

    Ulusoy, Halil Ibrahim

    2014-01-01

    A new micelle-mediated extraction method was developed for preconcentration of ultratrace Hg(II) ions prior to spectrophotometric determination. 2-(2'-Thiazolylazo)-p-cresol (TAC) and Ponpe 7.5 were used as the chelating agent and nonionic surfactant, respectively. Hg(II) ions form a hydrophobic complex with TAC in a micelle medium. The main factors affecting cloud point extraction efficiency, such as pH of the medium, concentrations of TAC and Ponpe 7.5, and equilibration temperature and time, were investigated in detail. An overall preconcentration factor of 33.3 was obtained upon preconcentration of a 50 mL sample. The LOD obtained under the optimal conditions was 0.86 microg/L, and the RSD for five replicate measurements of 100 microg/L Hg(II) was 3.12%. The method was successfully applied to the determination of Hg in environmental water samples.

  14. The impacts of turbidity for COD measurements using UV-Vis spectrometry and compensation method (Conference Presentation)

    Science.gov (United States)

    Wen, Yizhang; Hu, Yingtian; Wang, Xiaoping

    2016-09-01

    Ultraviolet absorption spectroscopy is one of physical methods used for chemical oxygen demand (COD) measurements of water. The absorbances in ultraviolet band have a relationship to COD. However, turbidity in water could scatter emitting light and influence the absorbances. So it is very important to compensate for the impact of turbidity. In this study, the absorption spectra of standard COD solution (potassium acid phthalate), turbidity solution (Formazine) and their mixture are sampled in the wavelength range from 220 to 750 nm. The impacts of turbidity for COD measurement and compensation method are studied based on these data. The absorbance of mixture substract the absorbance of turbidity solution is less than the absorbance of standard COD solution. The result indicates that turbidity particles decrease the light absorption of organic molecules. Furthermore, we discover that the impact of turbidity is greater for the larger absorbance of the standard COD solution. Then attenuation coeffcient (AC()) is introduced and calculated based on exprimental results. In the process of turbidity compensation, the turbidity of solution is estimated using the absorbance of visible wavelength. The absorption spectra of the turbidity in the ultraviolet wavelength are simulated using normalization technique. The satisfactory prediction result of COD is achieved for the mixture after the turbidity compensation. In conclusion, the new turbidity compensation method could eliminate the influence of turbidity for COD measurements based on absorption spectroscopy.

  15. Discrimination of various paper types using diffuse reflectance ultraviolet-visible near-infrared (UV-Vis-NIR) spectroscopy: forensic application to questioned documents.

    Science.gov (United States)

    Kumar, Raj; Kumar, Vinay; Sharma, Vishal

    2015-06-01

    Diffuse reflectance ultraviolet-visible-near-infrared (UV-Vis-NIR) spectroscopy is applied as a means of differentiating various types of writing, office, and photocopy papers (collected from stationery shops in India) on the basis of reflectance and absorbance spectra that otherwise seem to be almost alike in different illumination conditions. In order to minimize bias, spectra from both sides of paper were obtained. In addition, three spectra from three different locations (from one side) were recorded covering the upper, middle, and bottom portions of the paper sample, and the mean average reflectivity of both the sides was calculated. A significant difference was observed in mean average reflectivity of Side A and Side B of the paper using Student's pair >t-test. Three different approaches were used for discrimination: (1) qualitative features of the whole set of samples, (2) principal component analysis, and (3) a combination of both approaches. On the basis of the first approach, i.e., qualitative features, 96.49% discriminating power (DP) was observed, which shows highly significant results with the UV-Vis-NIR technique. In the second approach the discriminating power is further enhanced by incorporating the principal component analysis (PCA) statistical method, where this method describes each UV-Vis spectrum in a group through numerical loading values connected to the first few principal components. All components described 100% variance of the samples, but only the first three PCs are good enough to explain the variance (PC1 = 51.64%, PC2 = 47.52%, and PC3 = 0.54%) of the samples; i.e., the first three PCs described 99.70% of the data, whereas in the third approach, the four samples, C, G, K, and N, out of a total 19 samples, which were not differentiated using qualitative features (approach no. 1), were therefore subjected to PCA. The first two PCs described 99.37% of the spectral features. The discrimination was achieved by using a loading plot between

  16. 可见分光光度法测定胡椒碱纯度的研究%study on Purity of Piperine by UV-VIS Spectrophotometry

    Institute of Scientific and Technical Information of China (English)

    吴琼; 谭娟娟; 刘业明; 史载锋

    2011-01-01

    [目的]考察可见分光光度法测定胡椒碱含量的最佳溶剂和最适宜检测波长.[方法]以二氯乙烷、乙酸乙酯和无水乙醇作为溶剂,考察胡椒碱在380~420 nm波长范围内的最佳溶剂和测定波长,并将其测定纯度与HPLC法进行比较.[结果]最佳的溶剂为无水乙醇;在较低浓度范围内(0~0.01 g/L),胡椒碱最适宜的测定波长为380 nm,而在较高浓度范围(0.20~1.00 g/L),其最适宜的测定波长则为400 nm.可见分光光度法所测定的样品中胡椒碱纯度与HPLC法进行比较,平均误差为0.85%.[结论]利用可见分光光度计测定胡椒碱纯度具有较高的准确度,是可行的.%[ Objective ] To investigate the optimal solvent and detection wavelength for piperine by UV-VIS spectrophotometry. [ Method ] Using dichloroethane, ethyl acetate and absolute ethanol as solvent, the optimal solvent and detection wavelength of piperine were surveyed at wavelength of 380 - 420 nm, and the determined result was compared with that detected by HPLC. [ Result ] The optimum solvent was absolute ethanol, and the optimum detection wavelength for piperine was 380 nm at lower concentration (0 -0.01 g/L), while that was 400 nm at higher concentration (0.20 - 1.00 g/L). The mean error between the purity determined by UV-VIS spectrophotometry and HPLC method was just 0.85%. [ Conclusion] Good in precision, UV-VIS spectrophotometry is favorable for the determination of piperine.

  17. Photoacoustic optical properties at UV, VIS, and near IR wavelengths for laboratory generated and winter time ambient urban aerosols

    Directory of Open Access Journals (Sweden)

    M. Gyawali

    2011-09-01

    Full Text Available We present the first laboratory and ambient photoacoustic (PA measurement of aerosol light absorption coefficients at ultraviolet (UV wavelength (i.e. 355 nm and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory-generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Exact T-matrix method calculations were used to model the absorption and scattering characteristics of fractal-like agglomerates of different compactness and varying number of monomers. With these calculations, we attempted to estimate the number of monomers and fractal dimension of laboratory generated kerosene soot. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009, and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols and relatively clean (aged aerosols conditions. Particulate matter (PM concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM2.5 and PM10 (particulate matter with aerodynamic diameters less than 2.5 μm and 10 μm, respectively and gaseous pollutants: carbon monoxide (CO, nitric oxide (NO, and nitrogen dioxide (NO2. The diurnal change of absorption and scattering coefficients during the polluted (inversion days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from

  18. Incorporation of Co(II) in dealuminated BEA zeolite at lattice tetrahedral sites evidenced by XRD, FTIR, diffuse reflectance UV-Vis, EPR, and TPR.

    Science.gov (United States)

    Dzwigaj, S; Che, M

    2006-06-29

    A CoSiBEA zeolite is prepared by a two-step postsynthesis method that consists of first creating vacant T-sites with associated silanol groups by dealumination of TEABEA zeolite with nitric acid and then impregnating the resulting SiBEA zeolite with an aqueous solution of Co(NO3)2. The incorporation of Co into lattice sites of SiBEA is evidenced by XRD. The consumption of OH groups is monitored by FTIR. The presence of Co in its II oxidation state and in tetrahedral coordination is evidenced by diffuse reflectance UV-vis and EPR spectroscopy. The very high reduction temperature (1120 K) of cobalt in CoSiBEA zeolite determined by TPR confirms that Co interacts strongly with the zeolite support, consistent with lattice tetrahedral (T(d)) coordination.

  19. Stratospheric OClO and NO2 measured by groundbased UV/Vis-spectroscopy in Greenland in January and February 1990 and 1991

    Science.gov (United States)

    Roth, A.; Perner, D.

    1994-01-01

    Groundbased UV/Vis-spectroscopy of zenith scattered sunlight was performed at Sondre Stromfjord (Greenland) during Jan/Feb 1990 and Jan/Feb 1991. Considerable amounts of OClO were observed during both campaigns. Maximum OClO vertical column densities at 92 deg solar zenith angle (SZA) were 7.4 x 10(exp 13) molec/sq cm in 1990 and 5.7 x 10(exp 13) molec/sq cm in 1991 (chemical enhancement is included in the calculation of the air mass factor (AMF)). A threshold seems to exist for OClO detection: OClO was detected on every day when the potential vorticity at the 475 K level of potential temperature was higher than 35 x 10(exp -6)Km(exp 2)kg(exp -1)s(exp -1). NO2 vertical columns lower than 1 x 10(exp 15) molec/sq cm were frequently observed in both winters.

  20. Feasibility of UV-VIS-Fluorescence spectroscopy combined with pattern recognition techniques to authenticate a new category of plant food supplements.

    Science.gov (United States)

    Boggia, Raffaella; Turrini, Federica; Anselmo, Marco; Zunin, Paola; Donno, Dario; Beccaro, Gabriele L

    2017-07-01

    Bud extracts, named also "gemmoderivatives", are a new category of natural products, obtained macerating meristematic fresh tissues of trees and plants. In the European Community these botanical remedies are classified as plant food supplements. Nowadays these products are still poorly studied, even if they are widely used and commercialized. Several analytical tools for the quality control of these very expensive supplements are urgently needed in order to avoid mislabelling and frauds. In fact, besides the usual quality controls common to the other botanical dietary supplements, these extracts should be checked in order to quickly detect if the cheaper adult parts of the plants are deceptively used in place of the corresponding buds whose harvest-period and production are extremely limited. This study aims to provide a screening analytical method based on UV-VIS-Fluorescence spectroscopy coupled to multivariate analysis for a rapid, inexpensive and non-destructive quality control of these products.

  1. Integrity characterization of myoglobin released from poly(ε-caprolactone) microspheres using two analytical methods: UV/Vis spectrometry and conductometric bi-enzymatic biosensor.

    Science.gov (United States)

    Hnaien, M; Ruffin, E; Bordes, C; Marcillat, O; Lagarde, F; Jaffrezic-Renault, N; Briançon, S

    2011-06-01

    Myoglobin (Mb)-loaded poly(ε-caprolactone) (PCL) microparticles were prepared by multiple emulsion with solvent extraction/evaporation method under more or less deleterious operating conditions. The protein integrity was monitored using both UV/Vis absorbance ratio method at specific wavelengths and a conductometric bi-enzymatic biosensor based on proteinase K and pronase. Under standard operating conditions, Mb remained in native conformation, while different degrees of protein denaturation were observed by changing the encapsulation conditions. It was shown that solvent elimination under reduced pressure and in a lower extent addition of a higher molecular weight PCL led to protein alteration. In the first case, the loss of protein integrity can be attributed to residual solvent entrapped in particles whose solidification was accelerated. In the second case, denaturation may be explained by an increase in the protein exposure time at water/organic solvent interface due to an increase in organic phase viscosity.

  2. XRD and UV-Vis diffuse reflectance analysis of CeO2-ZrO2 solid solutions synthesized by combustion method

    Indian Academy of Sciences (India)

    G Ranga Rao; H Ranjan Sahu

    2001-10-01

    A series of ceria-incorporated zirconia (Ce1-ZrO2, = 0 to 1) solid solutions were prepared by employing the solution combustion synthesis route. The products were characterized by XRD and UV-Vis-NIR diffuse reflectance spectroscopy. The materials are crystalline in nature and the lattice parameters of the solid solution series follow Vegard’s law. Diffuse reflectance spectra of the solid solutions in the UV region show two intense bands at 250 and 297 nm which are assigned respectively to Ce3+ ← O2- and Ce4+ ← O2- charge transfer transitions. The two vibrational bands in 6960 cm-1 and 5168 cm-1 in the NIR region indicate the presence of surface hydroxyl groups on these materials.

  3. Depth probing of the hydride formation process in thin Pd films by combined electrochemistry and fiber optics-based in situ UV/vis spectroscopy.

    Science.gov (United States)

    Wickman, Björn; Fredriksson, Mattias; Feng, Ligang; Lindahl, Niklas; Hagberg, Johan; Langhammer, Christoph

    2015-07-15

    We demonstrate a flexible combined electrochemistry and fiber optics-based in situ UV/vis spectroscopy setup to gain insight into the depth evolution of electrochemical hydride and oxide formation in Pd films with thicknesses of 20 and 100 nm. The thicknesses of our model systems are chosen such that the films are thinner or significantly thicker than the optical skin depth of Pd to create two distinctly different situations. Low power white light is irradiated on the sample and analyzed in three different configurations; transmittance through, and, reflectance from the front and the back side of the film. The obtained optical sensitivities correspond to fractions of a monolayer of adsorbed or absorbed hydrogen (H) and oxygen (O) on Pd. Moreover, a combined simultaneous readout obtained from the different optical measurement configurations provides mechanistic insights into the depth-evolution of the studied hydrogenation and oxidation processes.

  4. Determination of Retinol, α-Tocopherol, Lycopene, and β-Carotene in Human Plasma Using HPLC with UV-Vis Detection: Application to a Clinical Study

    Directory of Open Access Journals (Sweden)

    Roman Kand’ár

    2013-01-01

    Full Text Available A method is described here for the simultaneous determination of retinol, α-tocopherol, lycopene, and β-carotene in human plasma. The effectiveness of various protein precipitants and extraction solvents was tested. After adequate sample preparation, the samples were injected directly into the HPLC system. The separation was realized on an analytical reversed-phase column with a UV-Vis detection. The analytical performance of this method was satisfactory. The intraassay and interassay coefficients of variation were below 10%. The recoveries were as follows: 97.0% (CV 2.4% for retinol, 94.6% (CV 1.7% for α-tocopherol, 91.9% (CV 3.6% for lycopene, and 93.9% (CV 4.2% for β-carotene. The levels of selected fat-soluble vitamins in plasma of patients with cardiovascular disease were measured and discussed.

  5. Determination of fungicide carbendazim in water and soil samples using dispersive liquid-liquid microextraction and microvolume UV-vis spectrophotometry.

    Science.gov (United States)

    Pourreza, Nahid; Rastegarzadeh, Saadat; Larki, Arash

    2015-03-01

    This article presents a new and sensitive method for the determination of trace amounts of fungicide carbendazim by dispersive liquid-liquid microextraction (DLLME) combined with UV-vis spectrophotometry. The method is based on the reduction of Fe(III) to Fe(II) by carbendazim, its reaction with potassium ferricynide to form a blue product and extraction into CCL4 by DLLME technique using methyltrioctylammonium chloride (Aliquat 336) as a disperser agent. Under the established optimum conditions, the calibration graph was linear in the range of 5-600 ng mL(-1) of carbendazim with a limit of detection of 2.1 ng mL(-1). The relative standard deviations for eight replicate determinations of 50 and 300 ng mL(-1) of carbendazim were 3.9% and 1.0%, respectively. The proposed method was successfully applied to determination of carbendazim in soil and water samples.

  6. Ion pair-based liquid-phase microextraction combined with cuvetteless UV-vis micro-spectrophotometry as a miniaturized assay for monitoring ammonia in waters.

    Science.gov (United States)

    Senra-Ferreiro, Sonia; Pena-Pereira, Francisco; Costas-Mora, Isabel; Romero, Vanesa; Lavilla, Isela; Bendicho, Carlos

    2011-09-15

    A miniaturized method based on liquid-phase microextraction (LPME) in combination with microvolume UV-vis spectrophotometry for monitoring ammonia in waters is proposed. The methodology is based on the extraction of the ion pair formed between the blue indophenol obtained according to the Berthelot reaction and a quaternary ammonium salt into a microvolume of organic solvent. Experimental parameters affecting the LPME performance such as type and concentration of the quaternary ammonium ion salt required to form the ion pair, type and volume of extractant solvent, effect of disperser solvent, ionic strength and extraction time, were optimized. A detection limit of 5.0 μg L(-1) ammonia and an enrichment factor of 30 can be attained after a microextraction time of 4 min. The repeatability, expressed as relative standard deviation, was 7.6% (n=7). The proposed method can be successfully applied to the determination of trace amounts of ammonia in several environmental water samples.

  7. Desenvolvimento de método analítico para quantificação do efavirenz por espectrofotometria no UV-Vis

    Directory of Open Access Journals (Sweden)

    Lariza Darlene Santos Alves

    2010-01-01

    Full Text Available An UV-Vis spectrophotometry analytical method for quantifying Efavirenz was developed and validated as an alternative to replace the HPLC current method. The report method presents sample concentration of 10 μg mL-1, dissolved in a solution ethanol:water (60:40, v/v, economic and technically adequate for the purpose adopted. The results and the statistical treated proved that the method being considered an precise and accurate analytical low cost alternative for laboratory routine. The adaptability of this method in product and other analytical methods development has been challenged by mathematical calculation of drug extinction coefficient in water and methanol and practical experiments, showing interesting results.

  8. Thermal transformation of bioactive caffeic acid on fumed silica seen by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry and quantum chemical methods.

    Science.gov (United States)

    Kulik, Tetiana V; Lipkovska, Natalia O; Barvinchenko, Valentyna M; Palyanytsya, Borys B; Kazakova, Olga A; Dudik, Olesia O; Menyhárd, Alfréd; László, Krisztina

    2016-05-15

    Thermochemical studies of hydroxycinnamic acid derivatives and their surface complexes are important for the pharmaceutical industry, medicine and for the development of technologies of heterogeneous biomass pyrolysis. In this study, structural and thermal transformations of caffeic acid complexes on silica surfaces were studied by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry (TPD MS) and quantum chemical methods. Two types of caffeic acid surface complexes are found to form through phenolic or carboxyl groups. The kinetic parameters of the chemical reactions of caffeic acid on silica surface are calculated. The mechanisms of thermal transformations of the caffeic chemisorbed surface complexes are proposed. Thermal decomposition of caffeic acid complex chemisorbed through grafted ester group proceeds via three parallel reactions, producing ketene, vinyl and acetylene derivatives of 1,2-dihydroxybenzene. Immobilization of phenolic acids on the silica surface improves greatly their thermal stability.

  9. Selective Alcohol Oxidation by a Copper TEMPO Catalyst: Mechanistic Insights by Simultaneously Coupled Operando EPR/UV-Vis/ATR-IR Spectroscopy.

    Science.gov (United States)

    Rabeah, Jabor; Bentrup, Ursula; Stößer, Reinhard; Brückner, Angelika

    2015-09-28

    The first coupled operando EPR/UV-Vis/ATR-IR spectroscopy setup for mechanistic studies of gas-liquid phase reactions is presented and exemplarily applied to the well-known copper/TEMPO-catalyzed (TEMPO=(2,2,6,6-tetramethylpiperidin-1-yl)oxyl) oxidation of benzyl alcohol. In contrast to previous proposals, no direct redox reaction between TEMPO and Cu(I) /Cu(II) has been detected. Instead, the role of TEMPO is postulated to be the stabilization of a (bpy)(NMI)Cu(II) -O2 (⋅-) -TEMPO (bpy=2,2'-bipyridine, NMI=N-methylimidazole) intermediate formed by electron transfer from Cu(I) to molecular O2 .

  10. Molecular structure and vibrational analysis of Trifluoperazine by FT-IR, FT-Raman and UV-Vis spectroscopies combined with DFT calculations.

    Science.gov (United States)

    Rajesh, P; Gunasekaran, S; Gnanasambandan, T; Seshadri, S

    2015-02-25

    The complete vibrational assignment and analysis of the fundamental vibrational modes of Trifluoperazine (TFZ) was carried out using the experimental FT-IR, FT-Raman and UV-Vis data and quantum chemical studies. The observed vibrational data were compared with the wavenumbers derived theoretically for the optimized geometry of the compound from the DFT-B3LYP gradient calculations employing 6-31G (d,p) basis set. Thermodynamic properties like entropy, heat capacity and enthalpy have been calculated for the molecule. The HOMO-LUMO energy gap has been calculated. The intramolecular contacts have been interpreted using natural bond orbital (NBO) and natural localized molecular orbital (NLMO) analysis. Important non-linear properties such as first hyperpolarizability of TFZ have been computed using B3LYP quantum chemical calculation.

  11. Analysis of anthocyanins in commercial fruit juices by using nano-liquid chromatography-electrospray-mass spectrometry and high-performance liquid chromatography with UV-vis detector.

    Science.gov (United States)

    Fanali, Chiara; Dugo, Laura; D'Orazio, Giovanni; Lirangi, Melania; Dachà, Marina; Dugo, Paola; Mondello, Luigi

    2011-01-01

    Nano-LC and conventional HPLC techniques were applied for the analysis of anthocyanins present in commercial fruit juices using a capillary column of 100 μm id and a 2.1 mm id narrow-bore C(18) column. Analytes were detected by UV-Vis at 518 nm and ESI-ion trap MS with HPLC and nano-LC, respectively. Commercial blueberry juice (14 anthocyanins detected) was used to optimize chromatographic separation of analytes and other analysis parameters. Qualitative identification of anthocyanins was performed by comparing the recorded mass spectral data with those of published papers. The use of the same mobile phase composition in both techniques revealed that the miniaturized method exhibited shorter analysis time and higher sensitivity than narrow-bore chromatography. Good intra-day and day-to-day precision of retention time was obtained in both methods with values of RSD less than 3.4 and 0.8% for nano-LC and HPLC, respectively. Quantitative analysis was performed by external standard curve calibration of cyanidin-3-O-glucoside standard. Calibration curves were linear in the concentration ranges studied, 0.1-50 and 6-50 μg/mL for HPLC-UV/Vis and nano-LC-MS, respectively. LOD and LOQ values were good for both methods. In addition to commercial blueberry juice, qualitative and quantitative analysis of other juices (e.g. raspberry, sweet cherry and pomegranate) was performed. The optimized nano-LC-MS method allowed an easy and selective identification and quantification of anthocyanins in commercial fruit juices; it offered good results, shorter analysis time and reduced mobile phase volume with respect to narrow-bore HPLC.

  12. A multifrequency virtual spectrometer for complex bio-organic systems: vibronic and environmental effects on the UV/Vis spectrum of chlorophyll a.

    Science.gov (United States)

    Barone, Vincenzo; Biczysko, Malgorzata; Borkowska-Panek, Monika; Bloino, Julien

    2014-10-20

    The subtle interplay of several different effects means that the interpretation and analysis of experimental spectra in terms of structural and dynamic characteristics is a challenging task. In this context, theoretical studies can be helpful, and as such, computational spectroscopy is rapidly evolving from a highly specialized research field toward a versatile and widespread tool. However, in the case of electronic spectra (e.g. UV/Vis, circular dichroism, photoelectron, and X-ray spectra), the most commonly used methods still rely on the computation of vertical excitation energies, which are further convoluted to simulate line shapes. Such treatment completely neglects the influence of nuclear motions, despite the well-recognized notion that a proper account of vibronic effects is often mandatory to correctly interpret experimental findings. Development and validation of improved models rooted into density functional theory (DFT) and its time-dependent extension (TD-DFT) is of course instrumental for the optimal balance between reliability and favorable scaling with the number of electrons. However, the implementation of easy-to-use and effective procedures to simulate vibrationally resolved electronic spectra, and their availability to a wide community of users, is at least equally important for reliable simulations of spectral line shapes for compounds of biological and technological interest. Here, such an approach has been applied to the study of the UV/Vis spectra of chlorophyll a. The results show that properly tailored approaches are feasible for state-of-the-art computational spectroscopy studies, and allow, with affordable computational resources, vibrational and environmental effects on the spectral line shapes to be taken into account for large systems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Insights into the Activity and Deactivation of the Methanol-to-Olefins Process over Different Small-Pore Zeolites As Studied with Operando UV-vis Spectroscopy.

    Science.gov (United States)

    Goetze, Joris; Meirer, Florian; Yarulina, Irina; Gascon, Jorge; Kapteijn, Freek; Ruiz-Martínez, Javier; Weckhuysen, Bert M

    2017-06-02

    The nature and evolution of the hydrocarbon pool (HP) species during the Methanol-to-Olefins (MTO) process for three small-pore zeolite catalysts, with a different framework consisting of large cages interconnected by small eight-ring windows (CHA, DDR, and LEV) was studied at reaction temperatures between 350 and 450 °C using a combination of operando UV-vis spectroscopy and online gas chromatography. It was found that small differences in cage size, shape, and pore structure of the zeolite frameworks result in the generation of different hydrocarbon pool species. More specifically, it was found that the large cage of CHA results in the formation of a wide variety of hydrocarbon pool species, mostly alkylated benzenes and naphthalenes. In the DDR cage, 1-methylnaphthalene is preferentially formed, while the small LEV cage generally contains fewer hydrocarbon pool species. The nature and evolution of these hydrocarbon pool species was linked with the stage of the reaction using a multivariate analysis of the operando UV-vis spectra. In the 3-D pore network of CHA, the reaction temperature has only a minor effect on the performance of the MTO catalyst. However, for the 2-D pore networks of DDR and LEV, an increase in the applied reaction temperature resulted in a dramatic increase in catalytic activity. For all zeolites in this study, the role of the hydrocarbon species changes with reaction temperature. This effect is most clear in DDR, in which diamantane and 1-methylnaphthalene are deactivating species at a reaction temperature of 350 °C, whereas at higher temperatures diamantane formation is not observed and 1-methylnaphthalene is an active species. This results in a different amount and nature of coke species in the deactivated catalyst, depending on zeolite framework and reaction temperature.

  14. Submersible UV-Vis spectroscopy for quantifying streamwater organic carbon dynamics: implementation and challenges before and after forest harvest in a headwater stream.

    Science.gov (United States)

    Jollymore, Ashlee; Johnson, Mark S; Hawthorne, Iain

    2012-01-01

    Organic material, including total and dissolved organic carbon (DOC), is ubiquitous within aquatic ecosystems, playing a variety of important and diverse biogeochemical and ecological roles. Determining how land-use changes affect DOC concentrations and bioavailability within aquatic ecosystems is an important means of evaluating the effects on ecological productivity and biogeochemical cycling. This paper presents a methodology case study looking at the deployment of a submersible UV-Vis absorbance spectrophotometer (UV-Vis spectro::lyzer model, s::can, Vienna, Austria) to determine stream organic carbon dynamics within a headwater catchment located near Campbell River (British Columbia, Canada). Field-based absorbance measurements of DOC were made before and after forest harvest, highlighting the advantages of high temporal resolution compared to traditional grab sampling and laboratory measurements. Details of remote deployment are described. High-frequency DOC data is explored by resampling the 30 min time series with a range of resampling time intervals (from daily to weekly time steps). DOC export was calculated for three months from the post-harvest data and resampled time series, showing that sampling frequency has a profound effect on total DOC export. DOC exports derived from weekly measurements were found to underestimate export by as much as 30% compared to DOC export calculated from high-frequency data. Additionally, the importance of the ability to remotely monitor the system through a recently deployed wireless connection is emphasized by examining causes of prior data losses, and how such losses may be prevented through the ability to react when environmental or power disturbances cause system interruption and data loss.

  15. Submersible UV-Vis Spectroscopy for Quantifying Streamwater Organic Carbon Dynamics: Implementation and Challenges before and after Forest Harvest in a Headwater Stream

    Directory of Open Access Journals (Sweden)

    Iain Hawthorne

    2012-03-01

    Full Text Available Organic material, including total and dissolved organic carbon (DOC, is ubiquitous within aquatic ecosystems, playing a variety of important and diverse biogeochemical and ecological roles. Determining how land-use changes affect DOC concentrations and bioavailability within aquatic ecosystems is an important means of evaluating the effects on ecological productivity and biogeochemical cycling. This paper presents a methodology case study looking at the deployment of a submersible UV-Vis absorbance spectrophotometer (UV-Vis spectro::lyzer model, s::can, Vienna, Austria to determine stream organic carbon dynamics within a headwater catchment located near Campbell River (British Columbia, Canada. Field-based absorbance measurements of DOC were made before and after forest harvest, highlighting the advantages of high temporal resolution compared to traditional grab sampling and laboratory measurements. Details of remote deployment are described. High-frequency DOC data is explored by resampling the 30 min time series with a range of resampling time intervals (from daily to weekly time steps. DOC export was calculated for three months from the post-harvest data and resampled time series, showing that sampling frequency has a profound effect on total DOC export. DOC exports derived from weekly measurements were found to underestimate export by as much as 30% compared to DOC export calculated from high-frequency data. Additionally, the importance of the ability to remotely monitor the system through a recently deployed wireless connection is emphasized by examining causes of prior data losses, and how such losses may be prevented through the ability to react when environmental or power disturbances cause system interruption and data loss.

  16. High-resolution Orbitrap mass spectrometry for the analysis of carotenoids in tomato fruit: validation and comparative evaluation towards UV-VIS and tandem mass spectrometry.

    Science.gov (United States)

    Van Meulebroek, Lieven; Vanden Bussche, Julie; Steppe, Kathy; Vanhaecke, Lynn

    2014-04-01

    In this study, a generic extraction protocol and full-scan high-resolution Orbitrap-mass spectrometry (MS) detection method were developed, enabling the metabolomic screening for carotenoids in tomato fruit tissue. To this end, the carotenoids lutein, zeaxanthin, α-carotene, β-carotene, and lycopene (representing both xanthofylls and carotenes) were considered. The extraction procedure was optimized by means of a D-optimal design and consisted of a liquid-liquid extraction with methanol/tert-butyl methyl ether (1:1, v/v). The considered compounds were detected by a single-stage Exactive(TM) mass spectrometer, operating at a mass resolution of 100,000 full width at half maximum. The validation study demonstrated excellent performance in terms of linearity (R (2) > 0.99), repeatability (CV ≤ 10.6 %), within-laboratory reproducibility (CV ≤ 12.2 %), and mean corrected recovery (ranging from 85 to 106 %). Additionally, a comparative evaluation towards well-established detection techniques, i.e., tandem mass spectrometry (MS/MS) and ultraviolet-visible spectroscopy (UV-VIS) photodiode array, indicated superior performance of high-resolution Orbitrap-MS with regard to specificity/selectivity and sensitivity (with limits of detection ranging from 1.0 to 3.8 pg μL(-1)). As a result, it may be concluded that high-resolution Orbitrap-MS is a suited alternative for UV-VIS or MS/MS in analyzing carotenoids and may offer significant value in carotenoid research because of the metabolomic screening possibilities.

  17. Experimental (FT-IR, FT-Raman, UV-Vis, 1H and 13C NMR) and computational (density functional theory) studies on 3-bromophenylboronic acid

    Science.gov (United States)

    Karabacak, M.; Kose, E.; Atac, A.; Sas, E. B.; Asiri, A. M.; Kurt, M.

    2014-11-01

    Structurally, boronic acids are trivalent boron-containing organic compounds that possess one alkyl substituent (i.e., C-Br bond) and two hydroxyl groups to fill the remaining valences on the boron atom. We studied 3-bromophenylboronic acid (3BrPBA); a derivative of boronic acid. This study includes the experimental (FT-IR, FT-Raman, 1H and 13C NMR, UV-Vis) techniques and theoretical (DFT-density functional theory) calculations. The experimental data are recorded, FT-IR (4000-400 cm-1) and FT-Raman spectra (3500-10 cm-1) in the solid phase. 1H and 13C NMR spectra are recorded in DMSO solution. UV-Vis spectrum is recorded in the range of 200-400 nm for each solution (in ethanol and water). The theoretical calculations are computed DFT/B3LYP/6-311++G(d,p) basis set. The optimum geometry is also obtained from inside for possible four conformers using according to position of hydrogen atoms after the scan coordinate of these structures. The fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and parallel quantum solutions (PQS) program. 1H and 13C NMR chemical shifts are racked on by using the gauge-invariant atomic orbital (GIAO) method. The time-dependent density functional theory (TD-DFT) is used to find HOMO and LUMO energies, excitation energies, oscillator strengths. The density of state of the studied molecule is investigated as total and partial density of state (TDOS and PDOS) and overlap population density of state (OPDOS or COOP) diagrams have been presented. Besides, frontier molecular orbitals (FMOs), molecular electrostatic potential surface (MEPs) and thermodynamic properties are performed. At the end of this work, the results are ensured beneficial for the literature contribution.

  18. A UV-vis study of the effects of alcohols on formation and stability of Mn(por)(O)(OAc) complexes

    Science.gov (United States)

    Mohajer, Daryoush; Jahanbani, Maryam

    2012-06-01

    Interactions of three different (acetato) (tetraarylporphyrinato) manganese (III) MnIII(por) with tetra-n-butylammonium hydrogen monopersulfate (n-Bu4NHSO5), in the presence of excess tetra-n-butylammonium acetate (n-Bu4NOAc) and in the absence or presence of various alcohols (alcohols = CH3OH, C2H5OH, i-C3H7OH, t-C4H9OH) in CH2Cl2, were monitored by their UV-vis spectral changes, under identical conditions, at room temperature. (Acetato) (tetrakispentafluorophenylporphyrinato) manganese (III) MnIII(tpfpp)(OAc) and (acetato) (tetramesitylporphyrinato) manganese (III) MnIII(tmp)(OAc) produced their corresponding high valent Mn(tpfpp)(O)(OAc) and Mn(tmp)(O)(OAc) both in the absence or presence of alcohols. Whereas, (acetato) (tetraphenylporphyrinato) manganese (III) MnIII(tpp)(OAc) only generated Mn(tpp)(O)(OAc) in the presence of less bulky alcohols. In the absence of alcohols or in the presence of t-C4H9OH, the UV-vis spectra displayed a very weak sign of formation of Mn(tpp)(O)(OAc) complex. It was observed that alcohols generally increased the rate of formation of Mn-oxo species in accordance with their acidity or hydrogen bonding strength, and enhanced the stability of Mn-oxo complexes, as their size increases. Attempts are made to explain these effects. A mechanistic scheme is also suggested for the decomposition of HSO5- to O2 and HSO4-, through the formation and dimerization of Mn-oxo species.

  19. Development of variable pathlength UV-vis spectroscopy combined with partial-least-squares regression for wastewater chemical oxygen demand (COD) monitoring.

    Science.gov (United States)

    Chen, Baisheng; Wu, Huanan; Li, Sam Fong Yau

    2014-03-01

    To overcome the challenging task to select an appropriate pathlength for wastewater chemical oxygen demand (COD) monitoring with high accuracy by UV-vis spectroscopy in wastewater treatment process, a variable pathlength approach combined with partial-least squares regression (PLSR) was developed in this study. Two new strategies were proposed to extract relevant information of UV-vis spectral data from variable pathlength measurements. The first strategy was by data fusion with two data fusion levels: low-level data fusion (LLDF) and mid-level data fusion (MLDF). Predictive accuracy was found to improve, indicated by the lower root-mean-square errors of prediction (RMSEP) compared with those obtained for single pathlength measurements. Both fusion levels were found to deliver very robust PLSR models with residual predictive deviations (RPD) greater than 3 (i.e. 3.22 and 3.29, respectively). The second strategy involved calculating the slopes of absorbance against pathlength at each wavelength to generate slope-derived spectra. Without the requirement to select the optimal pathlength, the predictive accuracy (RMSEP) was improved by 20-43% as compared to single pathlength spectroscopy. Comparing to nine-factor models from fusion strategy, the PLSR model from slope-derived spectroscopy was found to be more parsimonious with only five factors and more robust with residual predictive deviation (RPD) of 3.72. It also offered excellent correlation of predicted and measured COD values with R(2) of 0.936. In sum, variable pathlength spectroscopy with the two proposed data analysis strategies proved to be successful in enhancing prediction performance of COD in wastewater and showed high potential to be applied in on-line water quality monitoring.

  20. Nondestructive identification of dye mixtures in polyester and cotton fibers using raman spectroscopy and ultraviolet-visible (UV-Vis) microspectrophotometry.

    Science.gov (United States)

    Was-Gubala, Jolanta; Starczak, Roza

    2015-01-01

    Presented in this paper is an assessment of the applicability of Raman spectroscopy and microspectrophotometry (MSP) in visible and ultraviolet light (UV-Vis) in the examination of textile fibers dyed with mixtures of synthetic dyes. Fragments of single polyester fibers, stained with ternary mixtures of disperse dyes in small mass concentrations, and fragments of single cotton fibers, dyed with binary or ternary mixtures of reactive dyes, were subjected to the study. Three types of excitation sources, 514, 633, and 785 nm, were used during Raman examinations, while the MSP study was conducted in the 200 to 800 nm range. The results indicate that the capabilities for discernment of dye mixtures are similar in the spectroscopic methods that were employed. Both methods have a limited capacity to distinguish slightly dyed polyester fiber; additionally, it was found that Raman spectroscopy enables identification of primarily the major components in dye mixtures. The best results, in terms of the quality of Raman spectra, were obtained using an excitation source from the near infrared. MSP studies led to the conclusion that polyester testing should be carried out in the range above 310 nm, while for cotton fibers there is no limitation or restriction of the applied range. Also, MSP UV-Vis showed limited possibilities for discriminatory analysis of cotton fibers dyed with a mixture of reactive dyes, where the ratio of the concentration of the main dye used in the dyeing process to minor dye was higher than four. The results presented have practical applications in forensic studies, inter alia.

  1. Spectroscopic characterization approach to study surfactants effect on ZnO 2 nanoparticles synthesis by laser ablation process

    Science.gov (United States)

    Drmosh, Q. A.; Gondal, M. A.; Yamani, Z. H.; Saleh, T. A.

    2010-05-01

    Zinc peroxide nanoparticles having grain size less than 5 nm were synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3% H 2O 2. The effect of surfactants on the optical and structure of ZnO 2 was studied by applying different spectroscopic techniques. Structural properties and grain size of the synthesized nanoparticles were studied using XRD method. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7, 3.7, 3.3 and 2.8 nm in pure H 2O 2, and H 2O 2 mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO 2 nanoparticles prepared with and without surfactants show a characteristic ZnO 2 absorption at 435-445 cm -1. FTIR spectrum revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM while it appears in case of SDS. This could be due to high critical micelles SDS concentration comparing with others which is attributed to the adsorption anionic nature of this surfactant. Both FTIR and UV-vis spectra show a red shift in the presence of SDS and blue shift in the presence of CTAB and OGM. The blue shift in the absorption edge indicates the quantum confinement property of nanoparticles. The zinc peroxide nanoparticles prepared in additives-free media was also characterized by Raman spectra which show the characteristic peaks at 830-840 and 420-440 cm -1.

  2. Spectroscopic characterization approach to study surfactants effect on ZnO{sub 2} nanoparticles synthesis by laser ablation process

    Energy Technology Data Exchange (ETDEWEB)

    Drmosh, Q.A. [Laser Research Group, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Yamani, Z.H. [Laser Research Group, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Saleh, T.A. [Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2010-05-01

    Zinc peroxide nanoparticles having grain size less than 5 nm were synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3% H{sub 2}O{sub 2}. The effect of surfactants on the optical and structure of ZnO{sub 2} was studied by applying different spectroscopic techniques. Structural properties and grain size of the synthesized nanoparticles were studied using XRD method. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7, 3.7, 3.3 and 2.8 nm in pure H{sub 2}O{sub 2}, and H{sub 2}O{sub 2} mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO{sub 2} nanoparticles prepared with and without surfactants show a characteristic ZnO{sub 2} absorption at 435-445 cm{sup -1}. FTIR spectrum revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM while it appears in case of SDS. This could be due to high critical micelles SDS concentration comparing with others which is attributed to the adsorption anionic nature of this surfactant. Both FTIR and UV-vis spectra show a red shift in the presence of SDS and blue shift in the presence of CTAB and OGM. The blue shift in the absorption edge indicates the quantum confinement property of nanoparticles. The zinc peroxide nanoparticles prepared in additives-free media was also characterized by Raman spectra which show the characteristic peaks at 830-840 and 420-440 cm{sup -1}.

  3. Reflectance Spectra of Synthetic Ortho- and Clinoenstatite in the UV, VIS, and IR for Comparison with Fe-poor Asteroids

    Science.gov (United States)

    Markus, Kathrin; Arnold, Gabriele; Hiesinger, Harald; Rohrbach, Arno

    2016-04-01

    Major rock forming minerals like pyroxenes are very common in the solar system and show characteristic absorption bands due to Fe2+ in the VIS and NIR [e.g., 1, 2]. The Fe-free endmember enstatite is also a common mineral on planetary surfaces like asteroids and probably Mercury [3] and a major constituent of meteorites like aubrites [4] and enstatite chondrites [5]. Reflectance spectra of these meteorites as well as the enstatite-rich or generally Fe-poor asteroids like the asteroidal targets of the Esa Rosetta mission (2867) Steins [6] and (21) Lutetia [7] are often featureless in the VIS and NIR lacking the absorption features associated with iron incorporated into the crystal structure of silicates. Fe-bearing orthopyroxenes show diagnostic absorption bands at ˜1 μm and ˜2 μm. While systematic changes in positions and depths of these bands with changes in Fe- and Ca-content of orthopyroxenes have been extensively studied [e.g., 2, 8], almost Fe-free enstatite is so far only spectroscopically investigated by [2]. For a better understanding of these Fe-poor bodies the availability of laboratory spectra of Fe-free silicates as analog materials are crucial but terrestrial samples of enstatite usually contain several mol% of FeO with pure enstatite being extremely rare. For easy availability of larger amounts of pure enstatite we developed a technique for synthesis of enstatite. These enstatite samples can be used as analog materials for laboratory studies for e.g. producing mixtures with other mineral samples. Enstatite has 3 stable polymorphs with clinoenstatite, orthoenstatite, and protoenstatite being stable at low (600° C), and high (>1000° C) temperatures [9]. Orthoenstatite and protoenstatite are orthorhombic, while clinoenstatite is monoclinic. Orthoenstatite is abundant in terrestrial rocks and in meteorites. Clinoenstatite is known from meteorites [5, 9]. Both polymorphs of enstatite therefore exist on the parent bodies of aubrites and enstatite

  4. All-reflective UV-VIS-NIR transmission and fluorescence spectrometer for μm-sized samples

    Directory of Open Access Journals (Sweden)

    Friedrich O. Kirchner

    2014-07-01

    Full Text Available We report on an optical transmission spectrometer optimized for tiny samples. The setup is based on all-reflective parabolic optics and delivers broadband operation from 215 to 1030 nm. A fiber-coupled light source is used for illumination and a fiber-coupled miniature spectrometer for detection. The diameter of the probed area is less than 200 μm for all wavelengths. We demonstrate the capability to record transmission, absorption, reflection, fluorescence and refractive indices of tiny and ultrathin sample flakes with this versatile device. The performance is validated with a solid state wavelength standard and with dye solutions.

  5. Faster photodegradation rate and higher dioxin yield of triclosan induced by cationic surfactant CTAB.

    Science.gov (United States)

    Qiao, Xianliang; Zheng, Xiaodong; Xie, Qing; Yang, Xianhai; Xiao, Jie; Xue, Weifeng; Chen, Jingwen

    2014-06-30

    Triclosan has received extensive attention as it has been frequently detected in the aquatic environment. Photolysis was found to be a major pathway governing the fate of triclosan in the aquatic environment. However, the effects of surfactants that usually coexist with triclosan, on the photodegradation of triclosan, are largely unknown. In this study, the effects of selected surfactants on the photodegradation of triclosan were investigated experimentally. The results show that anionic sodium dodecyl benzene sulfonate, sodium dodecyl sulfate and neutral polyoxyethylene (20) sorbitan monooleate inhibit the photolysis of triclosan, whereas cationic cetyltrimethylammonium bromide (CTAB) significantly accelerates the photodegradation rate of triclosan. The interactions between the hydrophilic group of CTAB and anionic triclosan lead to the apparent decrease of pKa of triclosan from 8.4 to 6.1, which increase the fraction of anionic triclosan from 4% to 89% in neutral solution. A red shift in the UV-VIS absorption spectrum is exhibited, thus leading to the increased photodegradation rate of triclosan. The accelerations caused by CTAB were observed under xenon lamp and Hg lamp irradiances, as well as under natural sunlight. Effect of CTAB demonstrated pH dependence with significantly enhancement under pH 5∼9 and inhibition at pH=3. The presence of CTAB also increased the yield of 2,8-dichlorodibenzo-p-dioxin from the photolysis of triclosan about 7 times at pH=7.

  6. Adsorption of Cationic Laser Dye onto Polymer/Surfactant Complex Film

    Institute of Scientific and Technical Information of China (English)

    Pabitra Kumar Paul; Syed Arshad Hussain; Debajyoti Bhattacharjee; Mrinal Pal

    2011-01-01

    Fabrication of complex molecular films of organic materials is one of the most important issues in modern nanoscience and nanotechnology. Soft materials with flexible properties have been given much attention and can be obtained through bottom up processing from functional molecules, where self-assembly based on supramolecular chemistry and designed assembly have become crucial processes and technologies. In this work, we report the successful incorporation of cationic laser dye rhodamine 6G abbreviated as R6G into the pre-assembled polyelectrolyte/surfactant complex film onto quartz substrate by electrostatic adsorption technique. Poly(allylamine hydrochloride) (PAH) was used as polycation and sodium dodecyl sulphate (SDS) was used as anionic surfactant. UV-Vis absorption spectroscopic characterization reveals the formation of only H-type aggregates of R6G in their aqueous solution and both H- and J-type aggregates in PAH/SDS/R6G complex layer-by-layber films as well as the adsorption kinetics of R6G onto the complex films. The ratio of the absorbance intensity of two aggregated bands in PAH/SDS/R6G complex films is merely independent of the concentration range of the SDS solution used to fabricate PAH/SDS complex self-assembled films. Atomic force microscopy reveals the formation of R6G aggregates in PAH/SDS/R6G complex films.

  7. [Ultraviolet-visible (UV-Vis) and fluorescence spectral characteristics of dissolved organic matter (DOM) in soils of water-level fluctuation zones of the Three Gorges Reservoir Region].

    Science.gov (United States)

    Gao, Jie; Jiang Tao; Li, Lu-lu; Chen, Xue-shuang; Wei, Shi-qiang; Wang, Ding-yong; Yan, Jin- long; Zhao, Zheng

    2015-01-01

    Ultraviolet-visible (UV-Vis) absorption spectroscopy and three-dimensional fluorescence spectroscopy, combined with fluorescence regional integration were conducted to investigate the geochemical characteristics of DOM extracted from soils of water-level fluctuation zones of the Three Gorges Reservoir Region. The results showed that the average CDOM concentrations in soils were in order of Zhongxian > Fengdu > Fuling > Wanzhou > Wushan > Yunyang > Fengjie > Kaixian. Additionally, in Zhongxian, Fengdu and Fuling, the CDOM concentration [a (355)], aromaticity (SUVA254) and hydrophobicity (SUVA260) were all much higher than those at the other sampling sites, but the humification index (HIX) was lower. Four fluorophores were observed in all soil DOM samples, including three humic-like fluorescence peaks (A, C and M respectively) and one tryptophan-like fluorescence peak (T). Proportion of fluorescence regional integration of ultraviolet region humic-like A fluorophore was the highest as compared with the others. More importantly, tryptophan-like fluorophore (T) and a(355) showed significant correlation (r = 0.674, P < 0.01), indicating the variance of CDOM concentration was possibly dependent on T fluorophore. Meanwhile, the total integrated fluorescence intensity(TOT) of 3D- EEM was an appropriate parameter to characterize the total contributions of fluorophores in DOM. Furthermore, the humification degree of DOM in soils was low in comparison with higher biological availability. Conclusively it seemed that the influence of "alternation of wetting and drying" resulted from water-level fluctuation on the geochemical characteristics of soil DOM was not significant as expected. It might be related to local agricultural activity, littoral plant growth and DOM mineralization process.

  8. Two new two-dimensional coordination polymers based on isophthalate and a flexible N-donor ligand containing benzimidazole and pyridine rings: synthesis, crystal structures and a solid-state UV-Vis study.

    Science.gov (United States)

    Hasi, Qi Meige; Fan, Yan; Hou, Chen; Yao, Xiao Qiang; Liu, Jia Cheng

    2016-10-01

    In coordination chemistry and crystal engineering, many factors influence the construction of coordination polymers and the final frameworks depend greatly on the organic ligands used. N-Donor ligands with diverse coordination modes and conformations have been employed to assemble metal-organic frameworks. Carboxylic acid ligands can deprotonate completely or partially when bonding to metal ions and can also act as donors or acceptors of hydrogen bonds and are thus good candidates for the construction of supramolecular architectures. Two new transition metal complexes, namely poly[diaqua(μ4-1,4-bis{[1-(pyridin-3-ylmethyl)-1H-benz[d]imidazol-2-yl]methoxy}benzene)bis(μ2-isophthalato)dicobalt(II)], [Co(C8H4O4)(C34H28N6O2)0.5(H2O)]n, (1), and poly[diaqua(μ4-1,4-bis{[1-(pyridin-3-ylmethyl)-1H-benz[d]imidazol-2-yl]methoxy}benzene)bis(μ2-isophthalato)dicadmium(II)], [Cd(C8H4O4)(C34H28N6O2)0.5(H2O)]n, have been constructed using a symmetric N-donor ligand and a carboxylate ligand under hydrothermal conditions. X-ray crystallographic studies reveal that complexes (1) and (2) are isostructural, both of them exhibiting three-dimensional supramolecular architectures built by hydrogen bonds in which the coordinated water molecules serve as donors, while the O atoms of the carboxylate groups act as acceptors. Furthermore, (1) and (2) have been characterized by elemental, IR spectroscopic, powder X-ray diffraction (PXRD) and thermogravimetric analyses. The UV-Vis absorption spectrum of complex (1) has also been investigated.

  9. Ultraviolet-Visible (UV-Vis) and Fluorescence Spectroscopic Investigation of the Interactions of Ionic Liquids and Catalase.

    Science.gov (United States)

    Dong, Xing; Fan, Yunchang; Yang, Peng; Kong, Jichuan; Li, Dandan; Miao, Juan; Hua, Shaofeng; Hu, Chaobing

    2016-11-01

    The inhibitory effects of nine ionic liquids (ILs) on the catalase activity were investigated using fluorescence, absorption ultraviolet-visible spectroscopy. The interactions of ILs and catalase on the molecular level were studied. The experimental results indicated that ILs could inhibit the catalase activity and their inhibitory abilities depended on their chemical structures. Fluorescence experiments showed that hydrogen bonding played an important role in the interaction process. The inhibitory abilities of ILs on catalase activity could be simply described by their hydrophobicity and hydrogen bonding abilities. Unexpected less inhibitory effects of trifluoromethanesulfonate (TfO(-)) might be ascribed to its larger size, which makes it difficult to go through the substrate channel of catalase to the active site. © The Author(s) 2016.

  10. Absorption Complex between Porphyrin and Phenothiazine in Reverse Micelles

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The interaction between amphiphilic porphyrin and phenothiazine in AOT/isooctane/ water reverse micelle was investigated by UV-Vis spectra. A new absorption complex between the two species is formed in such circumstances, which is ascribed to the enrichment of the components by the reverse micelle. The fluorescence quenching of CHTTP by PTH becomes more efficient after the formation of the absorption complex.

  11. UV-Vis spectrophotometric studies of self-oxidation/dissociation of quaternary ammonium permanganates (QAP) - impact of solvent polarity

    Science.gov (United States)

    Bank, Suraj Prakash; Guru, Partha Sarathi; Dash, Sukalyan

    2015-05-01

    Self-oxidation/dissociation of some quaternary ammonium permanganates (QAPs), such as cetyltrimethylammonium permanganate (CTAP) and tetrabutylammonium permanganate (TBAP), have been studied spectrophotometrically in six different organic solvent media of different polarities wherein the compounds show good solubility and stability. The optical densities of the substrates at zero time (ODo) and first-order rate constants of dissociation (k1) have been determined from their successive scanning for 40 min. At comparable experimental conditions, absorption capabilities of the substrates are compared from the ODo values in various organic media; the stability of the solutions is compared from the successive scan spectra in those media. The ODo values and the k1 values have been plotted against some solvent parameters to understand their effects on the absorbance and reactivity of the QAPs. These data are also subjected to multiple regression analysis to explain the influence of various solvent parameters on the ion-pairing properties of the substrates, thus elucidating their effects on the process of self-oxidation/dissociation of the substrates.

  12. An UV-vis spectroelectrochemical approach for rapid detection of phenazines and exploration of their redox characteristics.

    Science.gov (United States)

    Chen, Wei; Liu, Xiao-Yang; Qian, Chen; Song, Xiang-Ning; Li, Wen-Wei; Yu, Han-Qing

    2015-02-15

    Phenazines are widely distributed in the environment and play an important role in various biological processes to facilitate microbial metabolism and electron transfer. In this work, an efficient and reliable spectroelectrochemical method is developed to quantitatively detect 1-hydroxyphenazine (1-OHPZ), a representative phenazine, and explore its redox characteristics. This approach is based on the sensitive absorption change of 1-OHPZ in response to its changes under redox state in rapid electrochemical reduction. The redox reaction of 1-OHPZ in aqueous solution is a proton-coupled electron transfer process, with a reversible one-step 2e(-)/2H(+) transfer reaction. This spectroelectrochemical approach exhibits good linear response covering two magnitudes to 1-OHPZ with a detection limit of 0.48µM, and is successfully applied to detect 1-OHPZ from a mixture of phenazines produced by Pseudomonas aeruginosa cultures. This method might also be applicable in exploring the abundance and redox processes of a wide range of other redox-active molecules in natural and engineered environments.

  13. Comparative evaluation of UV-vis-IR Nd:YAG laser cleaning of beeswax layers on granite substrates

    Energy Technology Data Exchange (ETDEWEB)

    Pan, A., E-mail: aldarapan@uvigo.es [Departamento de Fisica Aplicada, E.T.S.I Industriales, Universidad de Vigo, Rua Maxwell s/n. Campus Universitario Lagoas-Marcosende, E-36310 Vigo (Spain); Chiussi, S.; Gonzalez, P.; Serra, J.; Leon, B. [Departamento de Fisica Aplicada, E.T.S.I Industriales, Universidad de Vigo, Rua Maxwell s/n. Campus Universitario Lagoas-Marcosende, E-36310 Vigo (Spain)

    2011-04-15

    The beeswax treatment applied in the sixties to prevent rain water from penetrating the outer stone surface of valuable granitic Galician monuments is contributing to the acceleration of the superficial degradation process of these monuments. At present, the northern sector of the renaissance frieze in the Cloister of the Cathedral of Santiago de Compostela is one of the most representative examples. Conventional wax removal methods (water, chemical and mechanical cleaning) can possibly destruct important details of the relief. Therefore laser removal is considered as a good alternative. In this work, we report systematic investigations of the effect of laser cleaning at different Nd:YAG laser wavelengths (266, 355, 532 and 1064 nm) on representative samples of the real historical surfaces. Laser removal of beeswax on granite at neither of the four wavelengths of the Nd:YAG laser is not a layer by layer removal process. For each irradiance and wavelength there is a maximum thickness that can be completely removed by a single pulse. Above this thickness the waxy material is not removed, although it undergoes thermal modifications; since the fraction of radiation that reaches the granite substrate is not enough to trigger the ejection of material. Our results show that the wax-granite interface plays a fundamental role in granite cleaning, and when the wax is weakened by absorption of radiation at 266 nm, the removal process becomes more efficient.

  14. Comparative evaluation of UV-vis-IR Nd:YAG laser cleaning of beeswax layers on granite substrates

    Science.gov (United States)

    Pan, A.; Chiussi, S.; González, P.; Serra, J.; León, B.

    2011-04-01

    The beeswax treatment applied in the sixties to prevent rain water from penetrating the outer stone surface of valuable granitic Galician monuments is contributing to the acceleration of the superficial degradation process of these monuments. At present, the northern sector of the renaissance frieze in the Cloister of the Cathedral of Santiago de Compostela is one of the most representative examples. Conventional wax removal methods (water, chemical and mechanical cleaning) can possibly destruct important details of the relief. Therefore laser removal is considered as a good alternative. In this work, we report systematic investigations of the effect of laser cleaning at different Nd:YAG laser wavelengths (266, 355, 532 and 1064 nm) on representative samples of the real historical surfaces. Laser removal of beeswax on granite at neither of the four wavelengths of the Nd:YAG laser is not a layer by layer removal process. For each irradiance and wavelength there is a maximum thickness that can be completely removed by a single pulse. Above this thickness the waxy material is not removed, although it undergoes thermal modifications; since the fraction of radiation that reaches the granite substrate is not enough to trigger the ejection of material. Our results show that the wax-granite interface plays a fundamental role in granite cleaning, and when the wax is weakened by absorption of radiation at 266 nm, the removal process becomes more efficient.

  15. Effect of the nickel precursor on the impregnation and drying of γ-Al2O3 catalyst bodies: a UV-vis and IR micro-spectroscopic study

    NARCIS (Netherlands)

    Espinosa Alonso, L.; de Jong, K.P.; Weckhuysen, B.M.

    2008-01-01

    The elemental preparation steps of impregnation and drying of Ni/g-Al2O3 catalyst bodies have been studied by combining UV-vis and IR microspectroscopy. The influence of the number of chelating ligands in [Ni(en)x(H2O)6-2x]2+ precursor complexes (with en ) ethylenediamine and x ) 0-3) has been inves

  16. Bis(í-oxo)dicopper in Cu-ZSM-5 and Its Role in the Decomposition of NO: A Combined in Situ XAFS, UV-Vis-Near-IR, and Kinetic Study

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Groothaert, M.H.; Bokhoven, J.A. van; Battiston, A.A.; Schoonheydt, R.A.

    2003-01-01

    In situ XAFS combined with UV-vis-near-IR spectroscopy are used to identify the active site in copper-loaded ZSM-5 responsible for the catalytic decomposition of NO. Cu-ZSM-5 was probed with in situ XAFS (i) after O2 activation and (ii) while catalyzing the direct decomposition of NO into N2 and O2.

  17. Retrieving simulated volcanic, desert dust and sea-salt particle properties from two/three-component particle mixtures using UV-VIS polarization lidar and T matrix

    Directory of Open Access Journals (Sweden)

    G. David

    2013-07-01

    Full Text Available During transport by advection, atmospheric nonspherical particles, such as volcanic ash, desert dust or sea-salt particles experience several chemical and physical processes, leading to a complex vertical atmospheric layering at remote sites where intrusion episodes occur. In this paper, a new methodology is proposed to analyse this complex vertical layering in the case of a two/three-component particle external mixtures. This methodology relies on an analysis of the spectral and polarization properties of the light backscattered by atmospheric particles. It is based on combining a sensitive and accurate UV-VIS polarization lidar experiment with T-matrix numerical simulations and air mass back trajectories. The Lyon UV-VIS polarization lidar is used to efficiently partition the particle mixture into its nonspherical components, while the T-matrix method is used for simulating the backscattering and depolarization properties of nonspherical volcanic ash, desert dust and sea-salt particles. It is shown that the particle mixtures' depolarization ratio δ p differs from the nonspherical particles' depolarization ratio δns due to the presence of spherical particles in the mixture. Hence, after identifying a tracer for nonspherical particles, particle backscattering coefficients specific to each nonspherical component can be retrieved in a two-component external mixture. For three-component mixtures, the spectral properties of light must in addition be exploited by using a dual-wavelength polarization lidar. Hence, for the first time, in a three-component external mixture, the nonsphericity of each particle is taken into account in a so-called 2β + 2δ formalism. Applications of this new methodology are then demonstrated in two case studies carried out in Lyon, France, related to the mixing of Eyjafjallajökull volcanic ash with sulfate particles (case of a two-component mixture and to the mixing of dust with sea-salt and water-soluble particles

  18. Conformational and phase transitions in DNA--photosensitive surfactant solutions: Experiment and modeling.

    Science.gov (United States)

    Kasyanenko, N; Lysyakova, L; Ramazanov, R; Nesterenko, A; Yaroshevich, I; Titov, E; Alexeev, G; Lezov, A; Unksov, I

    2015-02-01

    DNA binding to trans- and cis-isomers of azobenzene containing cationic surfactant in 5 mM NaCl solution was investigated by the methods of dynamic light scattering (DLS), low-gradient viscometry (LGV), atomic force microscopy (AFM), circular dichroism (CD), gel electrophoresis (GE), flow birefringence (FB), UV-Vis spectrophotometry. Light-responsive conformational transitions of DNA in complex with photosensitive surfactant, changes in DNA optical anisotropy and persistent length, phase transition of DNA into nanoparticles induced by high surfactant concentration, as well as transformation of surfactant conformation under its binding to macromolecule were studied. Computer simulations of micelles formation for cis- and trans-isomers of azobenzene containing surfactant, as well as DNA-surfactant interaction, were carried out. Phase diagram for DNA-surfactant solutions was designed. The possibility to reverse the DNA packaging induced by surfactant binding with the dilution and light irradiation was shown.

  19. 基于紫外-可见光光谱的水质分析方法研究进展与应用%Water Quality Analysis by UV-Vis Spectroscopy: A Review of Methodology and Application

    Institute of Scientific and Technical Information of China (English)

    侯迪波; 张坚; 陈泠; 黄平捷; 张光新

    2013-01-01

    Compared with the traditional approaches,UV-Vis spectroscopy is gaining growing acceptance in the field of online water-quality monitoring as an effective method for water quality analysis.UV-Vis spectroscopy has the advantages of fast response,low maintenance costs,and no secondary pollution.In the present paper,the principle of water quality analysis by UVVis spectroscopy is introduced.Existing researches on the online analysis of water quality using UV-Vis spectrum and data fusion technologies are comprehensively reviewed.The applications of UV-Vis based methods in multi-parameter water-quality monitoring,water-quality classification,and water-quality alarm are also discussed.Finally,future research directions are outlined.%相对于传统水质分析方法,紫外-可见光(ultraviolet-visible,UV-Vis)光谱法具有检测速度快、维护成本低、无二次污染等优点,目前已被广泛应用于水质在线监测各个领域.介绍了UV-Vis光谱法的检测原理,论述了基于UV-Vis光谱的常规水质分析方法研究现状,以及UV-Vis光谱法与其他水质检测方法相融合以提高水质检测性能方面的研究进展,探讨了UV-Vis光谱分析在水质多参数在线监测、水质分类、水质报警等方面的应用现状及其发展趋势.

  20. The local structure and optical absorption characteristic investigation on Fe doped TiO2 nanoparticles

    CERN Document Server

    Zhao, Tianxing; Huang, Junheng; He, Jinfu; Liu, Qinghua; Pan, Zhiyun; Wu, Ziyu

    2014-01-01

    The local structures and optical absorption characteristic of Fe doped TiO2 nanoparticles synthesized by the sol-gel method were characterized by X-ray Diffraction (XRD), X-ray absorption fine structure spectroscopy (XAFS) and UV-Vis absorption spectroscopy (UV-Vis). XRD patterns show that all Fe-doped TiO2 samples have the characteristic anatase structure. Accurate Fe and Ti K-edge EXAFS analysis further reveal that all Fe atoms replace Ti atoms in the anatase lattice. The analysis of UV-Vis data shows a red shift to the visible range. According to the above results, we claim that substitutional Fe atoms lead to the formation of structural defects and new intermediate energy levels appear, narrowing the band gap and extending the optical absorption edge towards the visible region.

  1. A Highly Efficient UV-Vis-NIR Active Ln(3+)-Doped BiPO4/BiVO4 Nanocomposite for Photocatalysis Application.

    Science.gov (United States)

    Ganguli, Sagar; Hazra, Chanchal; Chatti, Manjunath; Samanta, Tuhin; Mahalingam, Venkataramanan

    2016-01-12

    In this Article, we report the synthesis of Ln(3+) (Yb(3+), Tm(3+))-doped BiPO4/BiVO4 nanocomposite photocatalyst that shows efficient photocatalytic activity under UV-visible-near-infrared (UV-vis-NIR) illumination. Incorporation of upconverting Ln(3+) ion pairs in BiPO4 nanocrystals resulted in strong emission in the visible region upon excitation with a NIR laser (980 nm). A composite of BiPO4 nanocrystals and vanadate was prepared by the addition of vanadate source to BiPO4 nanocrystals. In the nanocomposite, the strong blue emission from Tm(3+) ions via upconversion is nonradiatively transferred to BiVO4, resulting in the production of excitons. This in turn generates reactive oxygen species and efficiently degrades methylene blue dye in aqueous medium. The nanocomposite also shows high photocatalytic activity both under the visible region (0.010 min(-1)) and under the full solar spectrum (0.047 min(-1)). The results suggest that the photocatalytic activity of the nanocomposite under both NIR as well as full solar irradiation is better compared to other reported nanocomposite photocatalysts. The choice of BiPO4 as the matrix for Ln(3+) ions has been discussed in detail, as it plays an important role in the superior NIR photocatalytic activity of the nanocomposite photocatalyst.

  2. UV-cured polymeric films containing ZnO and silver nanoparticles with UV-vis light-assisted photocatalytic activity

    Science.gov (United States)

    Podasca, Viorica E.; Buruiana, Tinca; Buruiana, Emil C.

    2016-07-01

    Hybrid polymer composites incorporating preformed ZnO alone or its mixture with Ag nanoparticles created during UV irradiation of some urethane acrylic monomers including trietoxysilylpropyl carbamoyloxyethyl methacrylate were synthesized and characterized by spectroscopic (1H (13C) NMR, FTIR, UV-vis, fluorescence, X-ray diffraction) and microscopic (AFM, ESEM/EDX, TEM) techniques. The results confirmed that the double bond conversion measured through FTIR spectroscopy varied in the range of 57-90% (after 60 s of irradiation), exhibiting formulation composition dependence. In the crosslinked polymer networks the existence of individual nanoparticles with primarily spherical shape and sizes between 5 and 15 nm for ZnO, and around 3 nm for in situ photogenerated silver nanoparticles was evidenced. Additionally, the photocatalytic effect of the photopolymerized hybrid films was investigated by determining the decomposition rate of the methylene blue (MB) in ethanol (over 90%) under UV (2.7 × 10-2 s-1) and visible irradiation (2.9 × 10-2 min-1). It was found that the composite films containing a higher amount of ZnO-Ag nanoparticles placed in water induced the photodecomposition of MB (∼87% after 100 min of visible irradiation; k = 2.1 × 10-2 min-1). The good efficiency of the NPs from these polymer films make them attractive for applications in photocatalysis of organic dye molecules.

  3. Sensitive Determination of Uranium in Natural Waters Using UV-Vis Spectrometry After Preconcentration by Ion-Imprinted Polymer-Ternary Complexes.

    Science.gov (United States)

    Bicim, Tulin; Yaman, Mehmet

    2016-07-01

    The main purpose of this study was to achieve a substantial increase in the sensitivity of the uranium determination using UV-Vis spectrometry. To achieve this goal, ion-imprinted polymers were prepared for the uranyl (imprint) ion by the formation of a ternary (salicylaldoxime and 4-vinylpyridine) complex in 2-methoxy ethanol (porogen) following copolymerization with methacrylic acid. The synthesized polymers were characterized by FTIR analysis and thermogravimetric analysis. In the preconcentration step, the optimal pH was determined to be between values of 3.5 and 6.5. The adsorbed UO2(2+) was completely eluted by 10 mL of 3.0 mol L(-1) HClO4. The developed method was applied to uranium (VI) determination in natural water samples. By using the initial volume of 500 mL and final volume of 5 mL, a concentration of 1 μg L(-1) can be determined by applying the developed method in this study.

  4. A unique quantitative method of acid value of edible oils and studying the impact of heating on edible oils by UV-Vis spectrometry.

    Science.gov (United States)

    Zhang, Wenle; Li, Na; Feng, Yuyan; Su, Shujun; Li, Tao; Liang, Bing

    2015-10-15

    UV-Vis spectroscopy coupled with chemometrics was used effectively to study the impact of heating on edible oils (corn oil, sunflower oil, rapeseed oil, peanut oil, soybean oil and sesame oil) and determine their acid value. Analysis of their first derivative spectra showed that the peak at 370 nm was a common indicator of the heated oils. Partial least squares regression (PLS) and principle component regression (PCR) were applied to building individual quantitative models of acid value for each kind of oil, respectively. The PLS models had a better performance than PCR models, with determination coefficients (R(2)) of 0.9904-0.9977 and root mean square errors (RMSE) of 0.0230-0.0794 for the prediction sets of each kind of oil, respectively. An integrate quantitative model built by support vector regression for all the six kinds of oils was also developed and gave a satisfactory prediction with a R(2) of 0.9932 and a RMSE of 0.0656. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Inductively coupled plasma mass spectrometry in comparison with neutron activation and ion chromatography with UV/VIS detection for the determination of lanthanides in plant materials.

    Science.gov (United States)

    Bulska, Ewa; Danko, Bożena; Dybczyński, Rajmund S; Krata, Agnieszka; Kulisa, Krzysztof; Samczyński, Zbigniew; Wojciechowski, Marcin

    2012-08-15

    Analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) for determination of lanthanides in plant materials was investigated and compared with neutron activation analysis (NAA) as well as ion chromatography (IC) with UV-VIS detection. Two sample preparation protocols were tested: (i) microwave assisted digestion by concentrated nitric acid; (ii) microwave digestion involving silica and fluoride removal, followed by the selective and quantitative lanthanides group separation from the plant matrix. Several Certified Reference Materials (CRM) of plant origin were used for the evaluation of the accuracy of the applied analytical procedures. The consistency of results, obtained by various methods, enabled to establish the tentative recommended values (TRV) for several missing elements in one of CRMs. The ICP-MS, due to its very high sensitivity, has the potential to contribute to this aim. The discrepancy of the results obtained by various methods was discussed in a view of possible matrix effects related to the composition of investigated materials. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Synthesis, physicochemical and spectroscopic characterization of copper(II)-polysaccharide pullulan complexes by UV-vis, ATR-FTIR, and EPR.

    Science.gov (United States)

    Mitić, Zarko; Cakić, Milorad; Nikolić, Goran M; Nikolić, Ružica; Nikolić, Goran S; Pavlović, Radmila; Santaniello, Enzo

    2011-02-15

    Bioactive copper(II) complexes with polysaccharides, like pullulan and dextran, are important in both veterinary and human medicine for the treatment of hypochromic microcitary anemia and hypocupremia. In aqueous alkaline solutions, Cu(II) ion forms complexes with the exopolysaccharide pullulan and its reduced low-molecular derivative. The metal content and the solution composition depend on pH, temperature, and time of the reaction. The complexing process begins in a weak alkali solution (pH >7) and involves OH groups of pullulan monomer (glucopyranose) units. Complexes of Cu(II) ion with reduced low-molecular pullulan (RLMP, M(w) 6000 g mol(-1)) were synthesized in water solutions, at the boiling temperature and at different pH values ranging from 7.5 to 12. The Cu(II) complex formation with RLMP was analyzed by UV-vis spectrophotometry and other physicochemical methods. Spectroscopic characterizations (ATR-FTIR, FT-IRIS, and EPR) and spectra-structure correlation of Cu(II)-RLMP complexes were also carried out.

  7. Synthesis, spectroscopy (vibrational, NMR and UV-vis) studies, HOMO-LUMO and NBO analysis of 8-formyl-7-hydroxy-4-methylcoumarin by ab initio calculations

    Science.gov (United States)

    Moghanian, Hassan; Mobinikhaledi, Akbar; Monjezi, Roya

    2013-11-01

    In this work, 8-formyl-7-hydroxy-4-methylcoumarin has been synthesized and characterized by elemental analysis, FT-IR, FT Raman, 1H NMR, 13C NMR and UV-vis spectra. The molecular geometry, harmonic vibrational frequencies and gauge including atomic orbital (GIAO) 1H and 13C chemical shift values of the title compound in the ground state have been calculated by using Hartree-Fock (HF) and density functional methods (B3LYP) with 6-311++G(d,p) as basis set. The vibrational assignments of wave numbers were interpreted in terms of potential energy distribution (PED) analysis and the scaled B3LYP/6-311++G(d,p) results show the good agreement with the experimental values. The UV spectra of investigated compound were recorded in the region of 230-500 nm in chloroform solution. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) in gas and CHCl3 theoretically and results were compared with experimental observations. The molecular stability arising from hyperconjugative interactions and charge delocalization have been analyzed using natural bond orbital (NBO) analysis. In addition, Frontier Molecular Orbitals (FMO), Molecular Electrostatic Potential (MEP) and thermodynamic properties of the studied compound such as heat capacity (C), entropy (S) and enthalpy changes (H) at different temperatures have been calculated.

  8. Unified ZnO Q-dot growth mechanism from simultaneous UV-Vis and EXAFS monitoring of sol-gel reactions induced by different alkali base

    Science.gov (United States)

    Caetano, Bruno L.; Silva, Marlon N.; Santilli, Celso V.; Briois, Valérie; Pulcinelli, Sandra H.

    2016-11-01

    This article aims to give experimental evidences of the universality of main steps involved in ZnO nanoparticles formation and growth from sol-gel process. In this way, we revisit the effect of the alkali base (LiOH, NaOH, KOH) used to induce the hydrolysis-condensation reaction in order to unfold the ZnO Q-dot formation mechanisms by using simultaneous time resolved monitoring of zinc species and Q-dot size by combining EXAFS and UV-Vis spectroscopy. Irrespective of the alkali base used, nucleation and growth of ZnO Q-dots occur by consumption of zinc oxy-acetate precursor. Higher amounts of ZnO nanocrystal are produced as the strength of the base increases. After achieving the steady state equilibrium regime the Q-dot growth occurs initially by oriented attachment coalescence mechanism followed by the Ostwald ripening coarsening. The dependence of the formation and growth mechanisms on the base strength allows the fine tuning of the Q-dot size and photoluminescence properties.

  9. Chemometric processing of second-order liquid chromatographic data with UV-vis and fluorescence detection. A comparison of multivariate curve resolution and parallel factor analysis 2.

    Science.gov (United States)

    Bortolato, Santiago A; Olivieri, Alejandro C

    2014-09-01

    Second-order liquid chromatographic data with multivariate spectral (UV-vis or fluorescence) detection usually show changes in elution time profiles from sample to sample, causing a loss of trilinearity in the data. In order to analyze them with an appropriate model, the latter should permit a given component to have different time profiles in different samples. Two popular models in this regard are multivariate curve resolution-alternating least-squares (MCR-ALS) and parallel factor analysis 2 (PARAFAC2). The conditions to be fulfilled for successful application of the latter model are discussed on the basis of simple chromatographic concepts. An exhaustive analysis of the multivariate calibration models is carried out, employing both simulated and experimental chromatographic data sets. The latter involve the quantitation of benzimidazolic and carbamate pesticides in fruit and juice samples using liquid chromatography with diode array detection, and of polycyclic aromatic hydrocarbons in water samples, in both cases in the presence of potential interferents using liquid chromatography with fluorescence spectral detection, thereby achieving the second-order advantage. The overall results seem to favor MCR-ALS over PARAFAC2, especially in the presence of potential interferents.

  10. Two Novel μ-Oxo Diiron(Ⅲ) Schiff Base Complexes: X-ray Diffraction Analyses, IR, UV-Vis, CD spectra, Magnetic Susceptibility and Electrochemistry

    Institute of Scientific and Technical Information of China (English)

    阮文娟; 胡国航; 王树军; 田建华; 王庆伦; 朱志昂

    2005-01-01

    The novel μ-oxo diiron(Ⅲ) Schiff base complexes, {[Fe(tbusalphn)]2(μ-O)} (1) [tbusalphn=N,N'-o-pheny-lenebis(3,5-di-tert-butylsalicylideneiminato)] and { [Fe(R,R-salchxn)]2(μ-O)} (2) [R,R-salchxn=N,N'-R,R-cyclo-hexanebis(salicylideneiminato)] have been synthesized and characterized by elemental analyses, spectroscopy,magnetic susceptibility, electrochemical measurements and X-ray diffraction techniques. X-my analyses revealed that the complex 1-CH3OH has nearly linear Fe-O-Fe angle of 176.5(2)° due to their steric crowding of ligands owing bulky substitute group, while fairly bent Fe-O-Fe angle was allowed by the reduced steric crowding of the ligands in 2-CaH6N2-0.5C2H5OH [149.6(1)°]. FT-IR, UV-Vis, CD spectra, magnetic susceptibility and cyclic voltammogram (CV) of complexes 1 and 2 have been further investigated.

  11. Global Monitoring of Atmospheric Trace Gases, Clouds and Aerosols from UV/vis/NIR Satellite Instruments: Currents Status and Near Future Perspectives

    Science.gov (United States)

    Wagner, T.; Beirle, S.; Deutschmann, T.; Frankenberg, C.; Grzegorski, M.; Khokhar, M. F.; Kühl, S.; Marbach, T.; Mies, K.; de Vries, M. Penning; Platt, U.; Pukite, J.; Sanghavi, S.

    2008-04-01

    A new generation of UV/vis/near-IR satellite instruments like GOME (since 1995), SCIAMACHY (since 2002), OMI (since 2004), and GOME-2 (since 2006) allows to measure several important stratospheric and tropospheric trace gases like O3, NO2, OClO, HCHO, SO2, BrO, and H2O as well as clouds and aerosols from space. Because of its extended spectral range, the SCIAMACHY instrument also allows the retrieval of Greenhouse gases (CO2, CH4) and CO in the near IR. Almost all of the tropospheric trace gases are observed by these instruments for the first time. From satellite data it is possible to investigate the temporal and spatial variation. Also different sources can be characterised and quantified. The derived global distributions can serve as input and for the validation of atmospheric models. Here we give an overview on the current status of these new instruments and data products and their recent applications to various atmospheric and oceanic phenomena.

  12. Characterisation of an Aromatic Plant-based Formula using UV-Vis Spectroscopy, LC–ESI(+QTOF-MS and HPLC-DAD Analysis

    Directory of Open Access Journals (Sweden)

    Florina Bunghez

    2013-11-01

    Full Text Available Abstract. It is known for a long time that seasoning/condimentary herbs have antioxidant activity and antibacterial properties, being good natural alternatives for disease prevention. The different efficiency of these plants is assigned to their bioactive molecules, stability and bioavailability. In the present study seven aromatic herbs (basil, thyme, oregano, rosemary, clove, cinnamon and sage were investigated individually. A new product was developed using basil, thyme, oregano, rosemary, clove, cinnamon and sage, according to a default recipe. The characterization of each plant aimed to identify the specific “fingerprint” by its main bioactive molecules and the “traceability” of these molecules in the new product, made by mixing the selected plants according to a default recipe. In order to determine the main bioactive compounds of the individual plants composition, in comparison with the new plant-based (EPC formula, high throughput techniques like UV-Vis spectroscopy and LC-QTOF-MS  spectrometry were used. The most important bioactive compounds determined in the studied herbs, which may exert antioxidant activity and antibacterial properties, were phenolic compounds (phenolic acids, flavonoids, quinones, clorophylls as well some polar terpenoids. The fingerprints are providing comprehensive and accurate information about the compounds that may exert antimicrobial properties. In order to assure the biological effects and the bioavailability of the polyphenols and the secondary metabolites we have to consider the antagonistic and synergistic effect that the metabolites can exert on each other.

  13. On the role of localized surface plasmon resonance in UV-Vis light irradiated Au/TiO₂ photocatalysis systems: pros and cons.

    Science.gov (United States)

    Lin, Zhongjin; Wang, Xiaohong; Liu, Jun; Tian, Zunyi; Dai, Loucheng; He, Beibei; Han, Chao; Wu, Yigui; Zeng, Zhigang; Hu, Zhiyu

    2015-03-07

    The role of localized surface plasmon resonance (LSPR) in UV-Vis light irradiated Au/TiO2 photocatalysis systems has been investigated, and it is demonstrated experimentally for the first time that both pros and cons of LSPR exist simultaneously for this photocatalytic reaction. We have proved that when operating under mixed UV and green light irradiation, the LSPR injected hot electrons (from the Au nanoparticles to TiO2 under green light irradiation) may surmount the Schottky barrier (SB) formed between the Au nanoparticles and TiO2, and flow back into the TiO2. As a result, these electrons may compensate for and even surpass those transferred from TiO2 to the Au nanoparticles, thus accelerating the recombination of UV excited electron-hole pairs in TiO2. This is the negative effect of LSPR. On the other hand, more hot electrons existing on the surface of the Au nanoparticles due to LSPR would favor the photocatalytic reaction, which accompanied by the negative effect dominates the overall photocatalytic performance. The presented results reveal the multi-faceted essence of LSPR in Au/TiO2 structures, and is instructive for the application of metal-semiconductor composites in photocatalysis. Moreover, it is confirmed that the extent to which the above pros and cons of LSPR dominate the overall photocatalytic reaction depends on the intensity ratio of visible to UV light.

  14. Determination of total iron in water and foods by dispersive liquid-liquid microextraction coupled with microvolume UV-vis spectrophotometry.

    Science.gov (United States)

    Peng, Bo; Shen, Yingping; Gao, Zhuantao; Zhou, Min; Ma, Yongjun; Zhao, Shengguo

    2015-06-01

    A novel microvolume UV-vis spectrophotometry method was proposed for the rapid determination of total iron coupling with an efficient pretreatment method known as dispersive liquid-liquid microextraction (DLLME). The basis of the method is a quantitative colorimetric reaction between ferrous iron and 2-(5-bromo-2-pyridylazo)-5-(diethyl amino) phenol (5-Br-PADAP) after the reduction of Fe(III) to Fe(II) by using ascorbic acid as reducing agent. Parameters related to the efficiency of microextraction, such as pH, complexant concentration, the volume ratio of disperser solvent and extraction solvent were discussed and optimized in detail. Under the optimized conditions, the absorbance was in proportion to iron concentration in the range of 5-400μgL(-1) with a correlation coefficient (R) of 0.9993. The limit of detection (LOD) and limit of quantitation (LOQ) were 1.5μgL(-1) and 5.2μgL(-1), respectively. The relative standard deviation (RSD) for samples were 1.37- 4.42% (n=3). Good recoveries of iron were obtained in the range of 95.4-103.2% in food samples, 96.9-103.6% in water samples and 98.8-102.3% in Certified Reference Material. The proposed method was rapid, reliable and high-selective for the determination of total iron in food and water samples.

  15. Rapid and sensitive method for the determination of acetaldehyde in fuel ethanol by high-performance liquid chromatography with UV-Vis detection

    Energy Technology Data Exchange (ETDEWEB)

    Saczk, Adelir Aparecida; Okumura, Leonardo Luiz; Firmino de Oliveira, Marcelo; Boldrin Zanoni, Maria Valnice; Ramos Stradiotto, Nelson [Instituto de Quimica, UNESP, Quitandinha, Araraquara, SP (Brazil)

    2005-04-01

    A high-performance liquid chromatography (HPLC) method for the determination of acetaldehyde in fuel ethanol was developed. Acetaldehyde was derivatized with 0.900 mL 2,4-dinitrophenylhydrazine (DNPHi) reagent and 50 {mu}L phosphoric acid 1 mol L{sup -1} at a controlled room temperature of 15 C for 20 min. The separation of acetaldehyde-DNPH (ADNPH) was carried out on a Shimadzu Shim-pack C{sub 18} column, using methanol/LiCl{sub (aq)} 1.0 mM (80/20, v/v) as a mobile phase under isocratic elution and UV-Vis detection at 365 nm. The standard curve of ADNPH was linear in the range 3-300 mg L{sup -1} per injection (20 {mu}L) and the limit of detection (LOD) for acetaldehyde was 2.03 {mu}g L{sup -1}, with a correlation coefficient greater than 0.999 and a precision (relative standard deviation, RSD) of 5.6% (n=5). Recovery studies were performed by fortifying fuel samples with acetaldehyde at various concentrations and the results were in the range 98.7-102%, with a coefficient of variation (CV) from 0.2% to 7.2%. Several fuel samples collected from various gas stations were analyzed and the method was successfully applied to the analysis of acetaldehyde in fuel ethanol samples. (orig.)

  16. New design of experiment combined with UV-Vis spectroscopy for extraction and estimation of polyphenols from Basil seeds, Red seeds, Sesame seeds and Ajwan seeds

    Science.gov (United States)

    Mabood, Fazal; Gilani, Syed Abdullah; Hussain, Javid; Alshidani, Sulaiman; Alghawi, Said; Albroumi, Mohammed; Alameri, Saif; Jabeen, Farah; Hussain, Zahid; Al-Harrasi, Ahmed; Al Abri, Zahra K. M.; Farooq, Saima; Naureen, Zakira; Hamaed, Ahmad; Rasul Jan, M.; Shah, Jasmin

    2017-05-01

    New experimental designs for the extraction of polyphenols from different seeds including Basil seed, Red seed, Sesame seeds and Ajwan seeds were investigated. Four variables the concentration and volume of methanol and NaOH solutions as well as the temperature and time of extraction were varied to see their effect on total phenol extraction. The temperature was varied in the range from 25 °C to 200 °C while the time in the range from 30 to 200 minutes. Response surface methodology was used to optimize the extraction parameters. The estimation of polyphenols was measured through phenols reduction UV-Vis spectroscopic method of phosphotungstic-phosphomolybdic acids (Folin-Ciocalteu's reagent). Calibration curve was made by using tannic acid as a polyphenols standard in the concentration range from 0.1 to 10 ppm. The regression line obtained shows the value of correlation coefficient i.e. R = 0.930 and Root mean square error of cross validation (RMSEC) value of 0.0654. The Basil seeds were found containing the highest amount of total phenols i.e. 785.76 mg/100 g. While the Sesame seeds having the least amount i.e. 33.08 mg/100 g. The Ajwan seeds and the Red seeds are containing the medium amounts i.e. 379 mg/100 g and 220.54 mg/100 g respectively.

  17. Conformational stability, spectroscopic (FT-IR, FT-Raman and UV-Vis) analysis, NLO, NBO, FMO and Fukui function analysis of 4-hexylacetophenone by density functional theory.

    Science.gov (United States)

    Saravanan, S; Balachandran, V

    2015-03-05

    The experimental and theoretical study on the structures and vibrations of 4-hexylacetophenone (abbreviated as 4HAP) are presented. The FT-IR and FT-Raman spectra of the title compound have been recorded in the region 4000-400cm(-1) and 3500-100cm(-1) respectively. The molecular structures, vibrational wavenumbers, infrared intensities and Raman activities were calculated using DFT (B3LYP and LSDA) method with 6-311++G(d,p) basis set. The most stable conformer of 4HAP is identified from the computational results. The assignments of the vibrational spectra have been carried out with the aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMEF). The linear polarizability (α) and the first hyperpolarizability (βtot) values of the investigated molecule have been computed using B3LYP and LSDA with 6-311++G(d,p) basis set. Stability of the molecule arising from hyper conjugative interaction and charge transfer delocalization has been analyzed using natural bond orbital (NBO) analysis. The molecule orbital contributions are studied by density of energy states (DOSs). UV-Vis spectrum and effects of solvents have been discussed effects of solvents have been discussed and the electronic properties such as HOMO and LUMO energies were determined by time-dependent TD-DFT approach. Fukui function and Mulliken analysis on atomic charges of the title compound have been calculated. Finally, electrophilic and nucleophilic descriptors of the title molecule have been calculated.

  18. New design of experiment combined with UV-Vis spectroscopy for extraction and estimation of polyphenols from Basil seeds, Red seeds, Sesame seeds and Ajwan seeds.

    Science.gov (United States)

    Mabood, Fazal; Gilani, Syed Abdullah; Hussain, Javid; Alshidani, Sulaiman; Alghawi, Said; Albroumi, Mohammed; Alameri, Saif; Jabeen, Farah; Hussain, Zahid; Al-Harrasi, Ahmed; Al Abri, Zahra K M; Farooq, Saima; Naureen, Zakira; Hamaed, Ahmad; Rasul Jan, M; Shah, Jasmin

    2017-01-26

    New experimental designs for the extraction of polyphenols from different seeds including Basil seed, Red seed, Sesame seeds and Ajwan seeds were investigated. Four variables the concentration and volume of methanol and NaOH solutions as well as the temperature and time of extraction were varied to see their effect on total phenol extraction. The temperature was varied in the range from 25°C to 200°C while the time in the range from 30 to 200minutes. Response surface methodology was used to optimize the extraction parameters. The estimation of polyphenols was measured through phenols reduction UV-Vis spectroscopic method of phosphotungstic-phosphomolybdic acids (Folin-Ciocalteu's reagent). Calibration curve was made by using tannic acid as a polyphenols standard in the concentration range from 0.1 to 10ppm. The regression line obtained shows the value of correlation coefficient i.e. R=0.930 and Root mean square error of cross validation (RMSEC) value of 0.0654. The Basil seeds were found containing the highest amount of total phenols i.e. 785.76mg/100g. While the Sesame seeds having the least amount i.e. 33.08mg/100g. The Ajwan seeds and the Red seeds are containing the medium amounts i.e. 379mg/100g and 220.54mg/100g respectively.

  19. Using UV-Vis spectroscopy for simultaneous geographical and varietal classification of tea infusions simulating a home-made tea cup.

    Science.gov (United States)

    Diniz, Paulo Henrique Gonçalves Dias; Barbosa, Mayara Ferreira; de Melo Milanez, Karla Danielle Tavares; Pistonesi, Marcelo Fabián; de Araújo, Mário César Ugulino

    2016-02-01

    In this work we proposed a method to verify the differentiating characteristics of simple tea infusions prepared in boiling water alone (simulating a home-made tea cup), which represents the final product as ingested by the consumers. For this purpose we used UV-Vis spectroscopy and variable selection through the Successive Projections Algorithm associated with Linear Discriminant Analysis (SPA-LDA) for simultaneous classification of the teas according to their variety and geographic origin. For comparison, KNN, CART, SIMCA, PLS-DA and PCA-LDA were also used. SPA-LDA and PCA-LDA provided significantly better results for tea classification of the five studied classes (Argentinean green tea; Brazilian green tea; Argentinean black tea; Brazilian black tea; and Sri Lankan black tea). The proposed methodology provides a simpler, faster and more affordable classification of simple tea infusions, and can be used as an alternative approach to traditional tea quality evaluation as made by skilful tasters, which is evidently partial and cannot assess geographic origins.

  20. Biogenic unmodified gold nanoparticles for selective and quantitative detection of cerium using UV-vis spectroscopy and photon correlation spectroscopy (DLS).

    Science.gov (United States)

    Priyadarshini, E; Pradhan, N; Panda, P K; Mishra, B K

    2015-06-15

    The ability of self-functionalized biogenic GNPs towards highly selective colorimetric detection of rare earth element cerium is being reported for the first time. GNPs underwent rapid aggregation on addition of cerium indicated by red shift of SPR peak followed by complete precipitation. Hereby, this concept of co-ordination of cerium ions onto the GNP surface has been utilized for detection of cerium. The remarkable capacity of GNPs to sensitively detect Ce without proves beneficial compared to previous reports of colorimetric sensing. MDL was 15 and 35 ppm by DLS and UV-vis spectroscopy respectively, suggesting DLS to be highly sensitive and a practical alternative in ultrasensitive detection studies. The sensing system showed a good linear fit favouring feasible detection of cerium in range of 2-50 ppm. Similar studies further showed the superior selectivity of biogenic GNPs compared to chemically synthesized counterparts. The sensing system favours on-site analysis as it overcomes need of complex instrumentation, lengthy protocols and surface modification of GNP.

  1. APPLICATION OF QuEChERS METHOD FOR THE DETERMINATION OF PHENYLUREA HERBICIDES IN BEETROOT BY HPLC WITH UV-VIS DETECTION

    Directory of Open Access Journals (Sweden)

    Magdalena Surma

    2015-02-01

    Full Text Available Phenylurea herbicides are an important group of herbicides utilized in weed control. They have been on sale since the 1950s and are still in common use throughout the world from pre- and post-emergence control of many annual and perennial broad-leaved weeds. The aim of this work was to evaluate the utility of the QuEChERS method for the determination of phenylurea pesticides (chlortoluron, isoproturon, linuron, metobromuron, metoxuron, monolinuron in beetroot by HPLC with UV/Vis detection. Different types of sorbents (PSA, C18, SAX and NH2 and solvents (hexane, ethyl acetate were applied. The obtained results showed that the best recovery ratios were received for the method with PSA and GCB sorbents and using acetonitrile as an extraction solvent with RSD lower than 15% for most compounds. The linearity of calibration curves was higher than 0.98 for all target analytes. The results show that the QuEChERS method can be successfully applied for the determination of phenylurea herbicides in beetroot.

  2. An intensive dispersion and synchronous assembly of single-walled carbon nanotubes in a surfactant-oil-water association system.

    Science.gov (United States)

    Zhang, Yan; Li, Dechun; Wu, Lin; Zhou, Liang; Du, Yanan; Wang, Meng; Li, Ying

    2016-04-28

    This paper reports a novel approach for achieving an intensive dispersion and synchronous assembly of single-walled carbon nanotubes (SWNTs) using a surfactant-oil-water association system as medium. A kind of nonionic surfactant N,N-bis(2-hydroxyethyl)dodecanamide (DDA) which could form a bi-continuous network structure not only in water but also in dodecane was used. The SWNTs were infiltrated into the dodecane-DDA mixture instead of DDA aqueous solution, and the attractive van der Waals forces between the pristine SWNT agglomerates were decreased in the first place; the thorough dispersion of the SWNTs was completed in the subsequent phase transformation by adjusting the oil/water ratio, along with mild sonication stirring. The individual SWNTs with different chiralities, such as (6,5), (7,5), (7,6), and (9,4), are all separated well after mild centrifugation treatment, which was confirmed by the well-resolved UV-Vis-NIR absorption and sharp fluorescence spectra. In particular, the self-assembly of DDA drove the separated individual SWNTs forming a large scale spatial network architecture. We believe that the SOW-SWNT suspension has high potential in constructing new functional materials by introducing diverse desirable components through the oil phase and also the water phase medium.

  3. β-萘酚取代环三磷腈的合成及其紫外-可见光谱性能研究%Study on synthesis of hexa-(β-naphthyloxy)cyclotri-phosphazene and its UV-vis properties

    Institute of Scientific and Technical Information of China (English)

    鞠志宇; 李岐峰

    2014-01-01

    Hexa-(β-naphthyloxy)cyclotriphosphazene is synthesized by the necleophilic substitution reaction of β-naphthol with hexachlorocyclotriphosphazene, which were characterized by NMR, IR, MS and UV-Vis spec-tra. The aximum absorption wavelength (λmax)of the β-naphthol and its derivative in ethanol, hexamethylene and acetonitrile, respectively,were separately determined by UV-Vis spectroscopy. The effects of the solvents and molecular structure on absorption spectra were studied. The results showed that the maximum absorption wave-length (λmax) of hexa-(β-naphthyloxy)cyclotriphosphazene on ultraviolet absorption spectra had not a shift in ethanol, hexamethylene and acetonitrile. Ultraviolet absorption wavelength (λmax) of hexa-(β-naphthyloxy)cyclot-riphosphazene had a blue shift in contrast to that of β-naphthol in acetonitrile, which demonstrated that the molec-ular conjugational effect of hexa-(β-naphthyloxy)cyclotriphosphazene had decreased.%通过六氯环三磷腈与β-萘酚反应合成了一种新型六(β-萘氧基)环三磷腈化合物,其结构经核磁共振谱、红外光谱和质谱表征。紫外-可见吸收光谱法测定了β-萘酚和六(β-萘氧基)环三磷腈在乙醇、环己烷和乙腈中的最大吸收波长(λmax),并探讨了分子结构和溶剂对吸收光谱的影响。研究发现,溶剂效应对六(β-萘氧基)环三磷腈的吸收光谱无明显影响;六(β-萘氧基)环三磷腈相比β-萘酚最大吸收波长发生蓝移,说明六(β-萘氧基)环三磷腈相比β-萘酚的分子共轭程度降低。

  4. HF-EPR, Raman, UV/VIS Light Spectroscopic, and DFT Studies of the Ribonucleotide Reductase R2 Tyrosyl Radical from Epstein-Barr Virus

    Science.gov (United States)

    Tomter, Ane B.; Zoppellaro, Giorgio; Schmitzberger, Florian; Andersen, Niels H.; Barra, Anne-Laure; Engman, Henrik; Nordlund, Pär; Andersson, K. Kristoffer

    2011-01-01

    Epstein-Barr virus (EBV) belongs to the gamma subfamily of herpes viruses, among the most common pathogenic viruses in humans worldwide. The viral ribonucleotide reductase small subunit (RNR R2) is involved in the biosynthesis of nucleotides, the DNA precursors necessary for viral replication, and is an important drug target for EBV. RNR R2 generates a stable tyrosyl radical required for enzymatic turnover. Here, the electronic and magnetic properties of the tyrosyl radical in EBV R2 have been determined by X-band and high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy recorded at cryogenic temperatures. The radical exhibits an unusually low g1-tensor component at 2.0080, indicative of a positive charge in the vicinity of the radical. Consistent with these EPR results a relatively high C-O stretching frequency associated with the phenoxyl radical (at 1508 cm−1) is observed with resonance Raman spectroscopy. In contrast to mouse R2, EBV R2 does not show a deuterium shift in the resonance Raman spectra. Thus, the presence of a water molecule as a hydrogen bond donor moiety could not be identified unequivocally. Theoretical simulations showed that a water molecule placed at a distance of 2.6 Å from the tyrosyl-oxygen does not result in a detectable deuterium shift in the calculated Raman spectra. UV/VIS light spectroscopic studies with metal chelators and tyrosyl radical scavengers are consistent with a more accessible dimetal binding/radical site and a lower affinity for Fe2+ in EBV R2 than in Escherichia coli R2. Comparison with previous studies of RNR R2s from mouse, bacteria, and herpes viruses, demonstrates that finely tuned electronic properties of the radical exist within the same RNR R2 Ia class. PMID:21980375

  5. IR, UV-Vis, magnetic and thermal characterization of chelates of some catecholamines and 4-aminoantipyrine with Fe(III) and Cu(II)

    Science.gov (United States)

    Mohamed, Gehad G.; Zayed, M. A.; El-Dien, F. A. Nour; El-Nahas, Reham G.

    2004-07-01

    The dopamine derivatives participate in the regulation of wide variety of physiological functions in the human body and in medication life. Increase and/or decrease in the concentration of dopamine in human body reflect an indication for diseases such as Schizophrenia and/or Parkinson diseases. α-Methyldopa (α-MD) in tablets is used in medication of hypertension. The Fe(III) and Cu(II) chelates with coupled products of adrenaline hydrogen tartarate (AHT), levodopa (LD), α-MD and carbidopa (CD) with 4-aminoantipyrine (4-AAP) are prepared and characterized. Different physico-chemical methods like IR, magnetic and UV-Vis spectra are used to investigate the structure of these chelates. Fe(III) form 1:2 (M:catecholamines) chelates while Cu(II) form 1:1 chelates. Catecholamines behave as a bidentate mono- or dibasic ligands in binding to the metal ions. IR spectra show that the catecholamines are coordinated to the metal ions in a bidentate manner with O,O donor sites of the phenolic - OH. Magnetic moment measurements reveal the presence of Fe(III) chelates in octahedral geometry while the Cu(II) chelates are square planar. The thermal decomposition of Fe(III) and Cu(II) complexes is studied using thermogravimetric (TGA) and differential thermal analysis (DTA) techniques. The water molecules are removed in the first step followed immediately by decomposition of the ligand molecules. The activation thermodynamic parameters, such as, energy of activation, enthalpy, entropy and free energy change of the complexes are evaluated and the relative thermal stability of the complexes are discussed.

  6. HF-EPR, Raman, UV/VIS light spectroscopic, and DFT studies of the ribonucleotide reductase R2 tyrosyl radical from Epstein-Barr virus.

    Directory of Open Access Journals (Sweden)

    Ane B Tomter

    Full Text Available Epstein-Barr virus (EBV belongs to the gamma subfamily of herpes viruses, among the most common pathogenic viruses in humans worldwide. The viral ribonucleotide reductase small subunit (RNR R2 is involved in the biosynthesis of nucleotides, the DNA precursors necessary for viral replication, and is an important drug target for EBV. RNR R2 generates a stable tyrosyl radical required for enzymatic turnover. Here, the electronic and magnetic properties of the tyrosyl radical in EBV R2 have been determined by X-band and high-field/high-frequency electron paramagnetic resonance (EPR spectroscopy recorded at cryogenic temperatures. The radical exhibits an unusually low g₁-tensor component at 2.0080, indicative of a positive charge in the vicinity of the radical. Consistent with these EPR results a relatively high C-O stretching frequency associated with the phenoxyl radical (at 1508 cm⁻¹ is observed with resonance Raman spectroscopy. In contrast to mouse R2, EBV R2 does not show a deuterium shift in the resonance Raman spectra. Thus, the presence of a water molecule as a hydrogen bond donor moiety could not be identified unequivocally. Theoretical simulations showed that a water molecule placed at a distance of 2.6 Å from the tyrosyl-oxygen does not result in a detectable deuterium shift in the calculated Raman spectra. UV/VIS light spectroscopic studies with metal chelators and tyrosyl radical scavengers are consistent with a more accessible dimetal binding/radical site and a lower affinity for Fe²⁺ in EBV R2 than in Escherichia coli R2. Comparison with previous studies of RNR R2s from mouse, bacteria, and herpes viruses, demonstrates that finely tuned electronic properties of the radical exist within the same RNR R2 Ia class.

  7. Experimental (X-ray, FT-IR and UV-vis spectra) and theoretical methods (DFT study) of (E)-3-methoxy-2-[(p-tolylimino)methyl]phenol.

    Science.gov (United States)

    Demircioğlu, Zeynep; Albayrak, Çiğdem; Büyükgüngör, Orhan

    2014-07-15

    A suitable single crystal of (E)-3-methoxy-2-[(p-tolylimino)methyl]phenol, formulated as C15H15N1O2, reveals that the structure is adopted to its E configuration about the azomethine C=N double bond. The compound adopts a enol-imine tautomeric form with a strong intramolecular O-H⋯N hydrogen bond. The single crystal X-ray diffraction analysis at 296K crystallizes in the monoclinic space group P21/c with a = 13.4791(11) Å, b = 6.8251(3) Å, c = 18.3561(15) Å, α = 90°, β = 129.296(5)°, γ = 90° and Z = 4. Comprehensive theoretical and experimental structural studies on the molecule have been carried out by FT-IR and UV-vis spectrometry. Optimized molecular structure and harmonic vibrational frequencies have been investigated by DFT/B3LYP method with 6-31G(d,p) basis set. Stability of the molecule, hyperconjugative interactions, charge delocalization and intramolecular hydrogen bond has been analyzed by using natural bond orbital (NBO) analysis. Electronic structures were discussed by TD-DFT method and the relocation of the electron density were determined. The energetic behavior of the title compound has been examined in solvent media using polarizable continuum model (PCM). Molecular electrostatic potential (MEP), Mulliken population method and natural population analysis (NPA) have been studied. Nonlinear optical (NLO) properties were also investigated. In addition, frontier molecular orbitals analysis have been performed from the optimized geometry. An ionization potential (I), electron affinity (A), electrophilicity index (ω), chemical potential (μ), electronegativity (χ), hardness (η), and softness (S), have been investigated.

  8. Hydride generation coupled to microfunnel-assisted headspace liquid-phase microextraction for the determination of arsenic with UV-Vis spectrophotometry.

    Science.gov (United States)

    Hashemniaye-Torshizi, Reihaneh; Ashraf, Narges; Arbab-Zavar, Mohammad Hossein

    2014-12-01

    In this research, a microfunnel-assisted headspace liquid-phase microextraction technique has been used in combination with hydride generation to determine arsenic (As) by UV-Vis spectrophotometry. The method is based on the reduction of As to arsine (AsH3) in acidic media by sodium tetrahydroborate (NaBH4) followed by its subsequent reaction with silver diethyldithiocarbamate (AgDDC) to give an absorbing complex at 510 nm. The complexing reagent (AgDDC) has been dissolved in a 1:1 (by the volume ratio) mixture of chloroform/chlorobenzene microdroplet and exposed to the generated gaseous arsine via a reversed microfunnel in the headspace of the sample solution. Several operating parameters affecting the performance of the method have been examined and optimized. Acetonitrile solvent has been added to the working samples as a sensitivity enhancement agent. Under the optimized operating conditions, the detection limit has been measured to be 0.2 ng mL(-1) (based on 3sb/m criterion, n b = 8), and the calibration curve was linear in the range of 0.5-12 ng mL(-1). The relative standard deviation for eight replicate measurements was 1.9 %. Also, the effects of several potential interferences have been studied. The accuracy of the method was validated through the analysis of JR-1 geological standard reference material. The method has been successfully applied for the determination of arsenic in raw and spiked soft drink and water samples with the recoveries that ranged from 91 to 106 %.

  9. The spectroscopic (FT-IR, UV-vis), Fukui function, NLO, NBO, NPA and tautomerism effect analysis of (E)-2-[(2-hydroxy-6-methoxybenzylidene)amino]benzonitrile.

    Science.gov (United States)

    Demircioğlu, Zeynep; Kaştaş, Çiğdem Albayrak; Büyükgüngör, Orhan

    2015-03-15

    A new o-hydroxy Schiff base, (E)-2-[(2-hydroxy-6-methoxybenzylidene)amino]benzonitrile was isolated and investigated by experimental and theoretical methodologies. The solid state molecular structure was determined by X-ray diffraction method. The vibrational spectral analysis was carried out by using FT-IR spectroscopy in the range of 4000-400cm(-)(1). Theoretical calculations were performed by density functional theory (DFT) method using 6-31G(d,p) basis set. The results of the calculations were applied to simulated spectra of the title compound, which show excellent agreement with observed spectra. The UV-vis spectrum of the compound was recorded in the region 200-800 nm in several solvents and electronic properties such as excitation energies, and wavelengths were calculated by TD-DFT/B3LYP method. The most prominent transitions were corresponds to π→π∗. Hybrid density functional theory (DFT) was used to investigate the enol-imine and keto-amine tautomers of titled compound. The titled compound showed the preference of enol form, as supported by X-ray and spectroscopic analysis results. The geometric and molecular properties were compaired for both enol-imine and keto-amine forms. Additionally, geometry optimizations in solvent media were performed with the same level of theory by the integral equation formalism polarizable continuum (IEF-PCM). Stability of the molecule arises from hyperconjugative interactions, charge delocalization and intramolecular hydrogen bond has been analyzed using natural bond orbital (NBO) analysis. Mulliken population method and natural population analysis (NPA) have been studied. Also, condensed Fukui function and relative nucleophilicity indices calculated from charges obtained with orbital charge calculation methods (NPA). Molecular electrostatic potential (MEP) and non linear optical (NLO) properties are also examined.

  10. Communication: Electronic UV-Vis transient spectra of the ∙OH reaction products of uracil, thymine, cytosine, and 5,6-dihydrouracil by using the complete active space self-consistent field second-order perturbation (CASPT2//CASSCF) theory.

    Science.gov (United States)

    Francés-Monerris, Antonio; Merchán, Manuela; Roca-Sanjuán, Daniel

    2013-08-21

    Addition of ∙OH radicals to pyrimidine nucleobases is a common reaction in DNA/RNA damage by reactive oxygen species. Among several experimental techniques, transient absorption spectroscopy has been during the last decades used to characterize such compounds. Discrepancies have however appeared in the assignment of the adduct or adducts responsible for the reported transient absorption UV-Vis spectra. In order to get an accurate assignment of the transient spectra and a unified description of the absorption properties of the ∙OH reaction products of pyrimidines, a systematic complete active space self-consistent field second-order perturbation (CASPT2//CASSCF) theory study has been carried out on the uracil, thymine, and cytosine ∙OH addition adducts, as well as on the 5,6-dihydrouracil hydrogen abstraction products. With the obtained findings, the C5OH contributions to the lowest-energy band can be finally discarded. Instead, a bright (2)(π2) state of the C6OH adducts is determined to be the main responsible in all compounds for the absorption band in the Vis range.

  11. Enhancement of intestinal absorption of poorly absorbed hydrophilic compounds by simultaneous use of mucolytic agent and non-ionic surfactant.

    Science.gov (United States)

    Takatsuka, Shinya; Kitazawa, Takeo; Morita, Takahiro; Horikiri, Yuji; Yoshino, Hiroyuki

    2006-01-01

    The effect of co-administration of a mucolytic agent with a penetration enhancer was assessed on the intestinal absorption of poorly absorbed hydrophilic compounds. Fluorescein isothiocyanate-labeled dextran with average molecular weight of ca. 4.4 kDa (FD-4) was used as a model compound, and N-acetylcysteine (NAC) was used as a mucolytic agent. Sodium caprate (C10), tartaric acid (TA), sodium taurodeoxycholate (TDC), sodium dodecyl sulfate (SDS), p-t-octyl phenol polyoxyethylene-9.5 (Triton X-100, TX-100) were selected as penetration enhancers with different mechanisms of action. Various dosing solutions containing a penetration enhancer in the absence or in the presence of NAC were directly administered into the exposed rat jejunum, and the bioavailability of FD-4 up to 2 h was determined. The extent of improvement by co-administration was highly dependent on the penetration enhancer species applied. The observed enhancement was thought to result from the mucolytic activity of NAC, which can reduce the mucus viscosity and facilitate the penetration of FD-4 to mucosal membrane. Among the combinations tested, the simultaneous administration of NAC and TX-100 provided the highest enhancement (22.5-fold) of intestinal FD-4 absorption compared to the control. Although the detailed mechanism for the observed drastic improvement is unclear, one possible reason was thought to be due to the improved diffusivity of TX-100 micellar system in the mucus layer. All these results suggest that the combination of a mucolytic agent and a non-ionic surfactant may have potential as an enhancing system for peroral delivery of poorly absorbed hydrophilic compounds like protein and peptide drugs.

  12. Novel mixed metal Ag(I)-Sb(III)-metallotherapeutics of the NSAIDs, aspirin and salicylic acid: Enhancement of their solubility and bioactivity by using the surfactant CTAB.

    Science.gov (United States)

    Gkaniatsou, E I; Banti, C N; Kourkoumelis, N; Skoulika, S; Manoli, M; Tasiopoulos, A J; Hadjikakou, S K

    2015-09-01

    The already known Ag(I)-Sb(III) compound of the formula {Ag(Ph3Sb)3(NO3)} (1) and two novel mixed metal Ag(I)-Sb(III) metallotherapeutics of the formulae {Ag(Ph3Sb)3(SalH)}(2) and {Ag(Ph3Sb)3(Asp)}(3) (SalH2=salicylic acid, AspH=aspirin or 2-acetylsalicylic acid and Ph3Sb=triphenyl antimony(III)) have been synthesised and characterised by m.p., vibrational spectroscopy (mid-FT-IR), (13)C-,(1)H-NMR, UV-visible (UV-vis) spectroscopic techniques, high resolution mass spectroscopy (HRMS) and X-ray crystallography. Compounds 1,-3 were treated with the surfactant cetyltrimethylammonium bromide (CTAB) in order to enhance their solubility and as a consequence their bioactivity. The resulting micelles a-c were characterised with X-ray powder diffraction (XRPD) analysis, X-ray fluorescence (XRF) spectroscopy, Energy-dispersive X-ray spectroscopy (EDX), conductivity, Thermal gravimetry-differential thermal analysis (TG-DTA), and atomic absorption. Compounds 1-3 and the relevant micelles a-c were evaluated for their in vitro cytotoxic activity against human cancer cell lines: MCF-7 (breast, estrogen receptor (ER) positive), MDA-MB-231 (breast, ER negative) and MRC-5 (normal human fetal lung fibroblast cells) with sulforhodamine B (SRB) colorimetric assay. The results show significant increase in the activity of micelles compared to that of the initial compounds. Moreover, micelles exhibited lower activity against normal cells than tumor cells. The binding affinity of a-c towards the calf thymus (CT)-DNA, lipoxygenase (LOX) and glutathione (GSH) was studied by the fluorescent emission light and UV-vis spectroscopy.

  13. Comparison Between Three Chromatographic (GC-ECD, GC-PFPD and GC-ITD-MS) Methods and a UV-Vis Spectrophotometric Method for the Determination of Dithiocarbamates in Lettuce

    OpenAIRE

    Pizzutti,Ionara R.; Kok,André de; Silva,Rosselei C. da; Rohers,Graciele N.

    2017-01-01

    The purpose of this study was to compare the performance of gas chromatographic with electron capture detector, pulsed flame photometric detector and mass spectrometry (GC-ECD, GC-PFPD and GC-MS) and UV-Vis spectrophotometric methods, based on acidic hydrolysis with tin(II) chloride of dithiocarbamate and analysis of the evolved CS2. For the validation studies were assessed linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy and precision. Recovery experiments were pe...

  14. DEGRADAÇÃO TÉRMICA DE TOCOFEROL E PRODUTOS DE OXIDAÇÃO EM DIFERENTES CLASSES DE AZEITE DE OLIVA UTILIZANDO ESPECTROSCOPIA UV-VIS E MCR-ALS

    OpenAIRE

    Rhayanna P. Gonçalves; Março,Paulo H.; Patrícia Valderrama

    2015-01-01

    Extra virgin olive oil, virgin olive oil and mixed oil were analyzed by UV-Vis spectroscopy and Multivariate Curve Resolution with Alternating Least Squares (MCR-ALS). When the oils were heated at high temperatures (frying), oxidation products were formed which were harmful to human health and antioxidants present were degraded. The aim of this study was to evaluate tocopherol (an antioxidant present in oils) and the behaviour of oxidation products in different olive oil classes. MCR-ALS resu...

  15. Effect of Molecular Guest Binding on the d-d Transitions of Ni(2+) of CPO-27-Ni: A Combined UV-Vis, Resonant-Valence-to-Core X-ray Emission Spectroscopy, and Theoretical Study.

    Science.gov (United States)

    Gallo, Erik; Gorelov, Evgeny; Guda, Alexander A; Bugaev, Aram L; Bonino, Francesca; Borfecchia, Elisa; Ricchiardi, Gabriele; Gianolio, Diego; Chavan, Sachin; Lamberti, Carlo

    2017-10-04

    We used Ni K-edge resonant-valence-to-core X-ray emission spectroscopy (RVtC-XES, also referred to as direct RIXS), an element-selective bulk-sensitive synchrotron-based technique, to investigate the electronic structure of the CPO-27-Ni metal-organic framework (MOF) upon molecular adsorption of significant molecular probes: H2O, CO, H2S, and NO. We compare RVtC-XES with UV-vis spectroscopy, and we show that the element selectivity of RVtC-XES is of strategic significance to observe the full set of d-d excitations in Ni(2+), which are partially overshadowed by the low-energy π-π* transitions of the Ni ligands in standard diffuse-reflectance UV-vis experiments. Our combined RVtC-XES/UV-vis approach provides access to the whole set of d-d excitations, allowing us a complete discussion of the changes undergone by the electronic configuration of the Ni(2+) sites hosted within the MOF upon molecular adsorption. The experimental data have been interpreted by multiplet ligand-field theory calculations based on Wannier orbitals. This study represents a step further in understanding the ability of the CPO-27-Ni MOFs in molecular sorption and separation applications.

  16. Equilibrium Structures and Absorption Spectra for SixOy Molecular Clusters using Density Functional Theory

    Science.gov (United States)

    2017-05-05

    frequencies within the IR and UV - visible ranges. The absorption spectrum corresponding to excitation states of SixOy-nH2O molecular clusters consisting of...Energies and IR Spectra……………………….......................….4 DFT Calculation of UV -Vis Spectra………………………………………………………….……5 Conclusion...calculation of approximate UV -Vis absorption spectra for SixOy molecular clusters, which uses time-dependent density functional theory (TD-DFT) as

  17. Estudo das dispersões aquosas de nanotubos de carbono utilizando diferentes surfactantes Study of aqueous dispersions of carbon nanotubes using different surfactants

    Directory of Open Access Journals (Sweden)

    Isabella R. da Silva

    2013-01-01

    Full Text Available The dispersion of carbon nanotubes in water for their utilization in nanoscale devices is a challenging task. Comparative studies on interaction and dispersion of multi-wall carbon nanotubes (MWNT using two different surfactants (sodium dodecyl sulfate, SDS, and polyoxyethylenesorbitanmonooleate, Tween 80 are presented. The interaction between carbon nanotubes and surfactants was studied by tensiometry, conductivimetry, and fluorimetry. The dispersions of MWNT in surfactants were characterized using a UV-vis spectrophotometer. For effective dispersion, the minimum weight ratio of MWNT to surfactant was 1:41 and 1:3 for SDS and Tween 80, respectively.

  18. Spectroscopic studies on the interaction of bovine serum albumin with surfactants and apigenin

    Science.gov (United States)

    Zhao, Xu-Na; Liu, Yi; Niu, Li-Yuan; Zhao, Chen-Ping

    The binding of apigenin (Ap) to bovine serum albumin (BSA) has been studied using the methods of fluorescence spectroscopy and UV-vis absorption spectroscopy. The spectroscopic analysis of the quenching mechanism indicates that the quenching constants are inversely correlated with the temperatures and the quenching process could result from a static interaction. The type of interaction force was discussed and the binding site of Ap was in site I (subdomain IIA) of BSA. The thermodynamic parameters ΔH and ΔS are -42.02 kJ mol-1 and -48.31 J mol-1 K-1, respectively and the negative ΔG implying that the binding interaction was spontaneous. The distance r between BSA and Ap was calculated according to Förster's theory and the value is 3.44 nm. The synchronous and three-dimensional fluorescence spectra show that the binding of Ap to BSA could lead to the changes in the conformation and microenvironment of BSA. At the same time, the effects of ionic surfactants on the interaction of Ap and BSA have also been investigated.

  19. Effect of curcumin on the binding of cationic, anionic and nonionic surfactants with myoglobin

    Science.gov (United States)

    Mondal, Satyajit; Ghosh, Soumen

    2017-04-01

    Interaction of a globular protein, myoglobin and different surfactants has been studied in the absence and presence of curcumin in phosphate buffer at pH = 7.4 by UV-VIS spectrophotometry, fluorimetry and fluorescence polarization anisotropy methods. Results show that heme environment of myoglobin is changed by cationic cetyltrimethylammonium bromide (CTAB) and sodium N-dodecanoyl sarcosinate (SDDS). In the presence of curcumin, CTAB cannot change the heme; but SDDS can make change. Nonionic surfactant N-decanoyl-N-methylglucamine (Mega 10) cannot change the heme environment. Protein is unfolded by the surfactant. Curcumin can prevent the unfolding of protein in the low concentration region of ionic surfactants such as CTAB and SDDS. In nonionic surfactant media, curcumin accelerates the denaturation process. Due to myoglobin-curcumin complex formation, rotational motion of curcumin decreases in surfactant media and so anisotropy increases.

  20. Effects of Various Surfactants on the Dispersion of MWCNTs-OH in Aqueous Solution.

    Science.gov (United States)

    Cui, Hongzhi; Yan, Xiantong; Monasterio, Manuel; Xing, Feng

    2017-09-06

    Dispersion of carbon nanotubes (CNTs) is a challenge for their application in the resulting matrixes. The present study conducted a comparison investigation of the effect of four surfactants: Alkylphenol polyoxyethylene ether (APEO), Silane modified polycarboxylate (Silane-PCE), I-Cationic polycarboxylate (I-C-PCE), and II-Cationic polycarboxylate (II-C-PCE) on the dispersion of hydroxyl functionalized multi-walled carbon nanotubes (MWCNTs-OH). Among the four surfactants, APEO and II-C-PCE provide the best and the worst dispersion effect of CNTs in water, respectively. Dispersion effect of MWCNTs-OH has been characterized by optical microscope (OM), field emission-scanning electron microscope (FE-SEM), and Ultraviolet-visible spectroscopy (UV-Vis).The OM images are well consistent with the UV-Vis results. Based on the chemical molecular structures of the four surfactants, the mechanism of MWCNTs-OH dispersion in water was investigated. For each kind of surfactant, an optimum surfactant/MWCNTs-OH ratio has been determined. This ratio showed a significant influence on the dispersion of MWCNTs-OH. Surfactant concentration higher or lower than this value can weaken the dispersion quality of MWCNTs-OH.

  1. UV-vis spectral analysis of lawsone in henna powder%紫外可见光谱分析海娜粉中的指甲花醌

    Institute of Scientific and Technical Information of China (English)

    乔仙蓉

    2016-01-01

    通过分析海娜粉浸提液和不同pH介质中指甲花醌溶液的紫外可见光谱,研究了分光光度法定量测定海娜粉中指甲花醌含量的检测波长和参比溶液。选择453 nm作为检测波长,以pH=2盐酸介质中的海娜粉浸提液作为参比,测定pH=12的氢氧化钠介质中试液的吸光度值,根据标准曲线法定量分析海娜粉中的指甲花醌。结果表明,指甲花醌质量浓度在10~140 mg/L内符合朗伯比尔定律,线性相关系数r=0.99995,精密度RSD不高于0.47%。样品溶液吸光度值在14 h内无明显变化,指甲花醌加标回收率为99.0%~100.0%。本实验方法操作简便,结果可靠,可作为海娜粉中指甲花醌含量检测的依据。%UV - vis spectra of henna aqueous extract and lawsone solution of different pH mediums were analyzed to select the detection wavelength and the reference solution for determining lawsone content in henna powder by spectrophotometer. Selecting 453 nm as the detection wavelength,with henna powder extract in hydrochloric acid of pH value 2 as the reference solution,the absorbance value of the testing solution samples in NaOH solution of pH =12 as the working medium,the lawsone mass concentration in the henna powder sample was quantified based upon comparison with the standard calibration curve. The results showed that within the lawsone mass concentration range of 10~140 mg/L,the absorbance follows Lambert-Beer's law;the linear correlation coefficient is r=0. 999 95 and the precision RSD is less than 0. 47%. The absorbancevalue of the sample solution can keep stable within 14 h,while the lawsone spiked recoveries achieves 99. 0% ~100. 0%. The method is simple,reliable,and can be used to detect the lawsone content in henna powder.

  2. Study on molecular structure, spectroscopic properties (FTIR and UV-Vis), NBO, QTAIM, HOMO-LUMO energies and docking studies of 5-fluorouracil, a substance used to treat cancer

    Science.gov (United States)

    Almeida, Michell O.; Barros, Daiane A. S.; Araujo, Sheila C.; Faria, Sergio H. D. M.; Maltarollo, Vinicius G.; Honorio, Kathia M.

    2017-09-01

    Cancer cells can expand to other parts of body through blood system and nodes from a mechanism known as metastasis. Due to the large annual growth of cancer cases, various biological targets have been studied and related to this disorder. A very interesting target related to cancer is human epidermal growth factor receptor 2 (HER2). In this study, we analyzed the main intermolecular interactions between a drug used in the cancer treatment (5-fluorouracil) and HER2. Molecular modeling methods were also employed to assess the molecular structure, spectroscopic properties (FTIR and UV-Vis), NBO, QTAIM and HOMO-LUMO energies of 5-FU. From the docking simulations it was possible to analyze the interactions that occur between some residues in the binding site of HER2 and 5-FU. To validate the choice of basis set that was used in the NBO and QTAIM analyses, theoretical calculations were performed to obtain FT-IR and UV/Vis spectra, and the theoretical results are consistent with the experimental data, showing that the basis set chosen is suitable. For the maximum λ from the theoretical calculation (254.89 nm) of UV/Vis, the electronic transition from HOMO to LUMO occurs at 4.89 eV. From NBO analyses, we observed interactions between Asp863 and 5-FU, i.e. the orbitals with high transfer of electrons are LP O15 (donor NBO) and BD* (π) N1-H10 (acceptor NBO), being that the value of this interaction is 7.72 kcal/mol. Results from QTAIM indicate one main intermolecular H bond, which is necessary to stabilize the complex formed between the ligands and the biological target. Therefore, this study allowed a careful evaluation on the main structural, spectroscopic and electronic properties involved in the interaction between 5-FU and HER2, an important biological complex related to the cancer treatment.

  3. Magnetic Solid-Phase Extraction Using Fe3O4@SiO2 Magnetic Nanoparticles Followed by UV-Vis Spectrometry for Determination of Paraquat in Plasma and Urine Samples

    OpenAIRE

    Ou Sha; Yu Wang; Xin Yin; Xiaobing Chen; Li Chen; Shujun Wang

    2017-01-01

    A rapid and simple method was optimized and validated for the separation and quantification of paraquat, a frequently used herbicide and a leading cause of fatal poisoning worldwide, at trace levels with UV-Vis spectrophotometry in plasma and urine samples by direct magnetic solid-phase extraction. Fe3O4@SiO2 nanoparticles (NPs) were used as the magnetic solid-phase extraction agents and the paraquat absorbed on NPs was eluted using NaOH and ascorbic acid. Upon optimization, paraquat could be...

  4. Determination of Lead in Water Samples Using a New Vortex-Assisted, Surfactant-Enhanced Emulsification Liquid-Liquid Microextraction Combined with Graphite Furnace Atomic Absorption Spectrometry.

    Science.gov (United States)

    Peng, Guilong; He, Qiang; Lu, Ying; Mmereki, Daniel; Pan, Weiliang; Tang, Xiaohui; Zhou, Guangming; Mao, Yufeng; Su, Xaioxuan

    2016-04-01

    A low toxic solvent-based vortex-assisted surfactant-enhanced emulsification liquid-liquid microextraction (LT-VSLLME) combined with graphite furnace atomic absorption spectrometry was developed for the extraction and determination of lead (Pb) in water samples. In the LT-VSLLME method, the extraction solvent was dispersed into the aqueous samples by the assistance of vortex agitator. Meanwhile, the addition of a surfactant, which acted as an emulsifier, could enhance the speed of the mass-transfer from aqueous samples to the extraction solvent. The influences of analytical parameters, including extraction solvent type and its volume, surfactant type and its volume, pH, concentration of chelating agent, salt effect and extraction time were investigated. Under the optimized conditions, a good relative standard deviation of 3.69% at 10 ng L(-1) was obtained. The calibration graph showed a linear pattern in the ranges of 5-30 ngL(-1), with a limit of detection of 0.76 ng L(-1). The linearity was obtained by five points in the concentration range of 5-30 ngL(-1). The enrichment factor was 320. The procedure was applied to wastewater and river water, and the accuracy was assessed through the analysis of the recovery experiments.

  5. Electrochemical synthesis and characterization of novel electrochromic poly (3,4-ethylenedioxythiophene-co-Diclofenac) with surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Manisankar, P. [Department of Chemistry, Periyar University, Salem 636011, Tamil Nadu (India)]. E-mail: pms11@rediffmail.com; Vedhi, C. [Department of Industrial Chemistry, Alagappa University, Karaikudi 630003, Tamil Nadu (India)]. E-mail: cvedhi@rediffmail.com; Selvanathan, G. [Department of Industrial Chemistry, Alagappa University, Karaikudi 630003, Tamil Nadu (India); Gurumallesh Prabu, H. [Department of Industrial Chemistry, Alagappa University, Karaikudi 630003, Tamil Nadu (India)

    2006-03-15

    Copolymers prepared from 3,4-ethylenedioxythiophene (EDOT) and Diclofenac (DCF) through cyclic voltammetric method exhibited electroactive and electrochromic behaviours. Addition of DCF produced bathochromic shift of the EDOT main absorption band from 253.4 to 269.7 nm in the UV-vis spectra. The cyclic voltammetric studies were carried out with different feed concentration of DCF and in the presence of two different surfactants, SDS and CTAB on glassy carbon electrode surface. Effect of scan rate on the three types of electroactive copolymer films was studied. The three different copolymers showed good adherence on the glassy carbon electrode surface in aqueous 0.1 M KCl medium. Spectroelectrochemical analysis of copolymer film was carried out on Indium-Tin-Oxide (ITO) plate and it showed multicolor electrochromic behaviour when the applied potential was changed. The color of the copolymer was changed from neutral yellow to brown and to violet in 0.1 M KCl medium. Among the three different copolymers, the copolymer prepared in presence of CTAB resulted in high contrast colors. The electrochromic parameters such as coloration efficiency, optical contrast, response time and stability were also evaluated. The surface morphology of the copolymer films was characterized by SEM analysis.

  6. UV-visible spectroscopy as an alternative to liquid chromatography for determination of everolimus in surfactant-containing dissolution media: a useful approach based on solid-phase extraction.

    Science.gov (United States)

    Kamberi, Marika; Tran, Thu-Ngoc

    2012-11-01

    High-throughput 96-well solid phase extraction (SPE) plate with C-18 reversed phase sorbent followed by UV-visible (UV-Vis) microplate reader was applied to the analysis of hydrophobic drugs in surfactant-containing dissolution media, which are often used to evaluate the in-vitro drug release of drug eluting stents (DES). Everolimus and dissolution medium containing Triton X-405 were selected as representatives, and the appropriate SPE conditions (adsorption, washing and elution) were investigated to obtain a practical and reliable sample clean-up. It was shown that the developed SPE procedure was capable of removing interfering components (Triton X-405 and its impurities), allowing for an accurate automated spectrophotometric analysis to be performed. The proposed UV-Vis spectrophotometric method yielded equivalent results compared to a classical LC analysis method. Linear regression analysis indicated that both methods have the ability to obtain test results that are directly proportional to the concentration of analyte in the sample within the selected range of 1.0-10 μg/ml for everolimus, with a coefficient of correlation (r(2)) value of >0.998 and standard deviation of the residuals (Syx) of UV-Vis spectrophotometric method and from 98 to 102 for the HPLC method, respectively. The 95% CI of the mean recovery for the UV-Vis spectrophotometric method was 99-102% and for the HPLC method was 99-101%. No statistical difference was found between the mean recoveries of the methods (p=0.42). Hence the methods are free from interference due to Triton and other chemicals present in the dissolution medium. The variation in the amount of everolimus estimated by UV-Vis spectrophotometric and HPLC methods was ≤3.5%, and the drug release profiles obtained by both methods were found to be equivalent by evaluation with two-one-sided t-test (two-tailed, p=0.62; mean of differences, 0.17; 95% CI, 0.62-0.96) and similarity factor f2 (f2 value, 87). The excellent conformity of

  7. Suspended nanoparticles in surfactant media as a microextraction technique for simultaneous separation and preconcentration of cobalt, nickel and copper ions for electrothermal atomic absorption spectrometry determination.

    Science.gov (United States)

    Dadfarnia, Shayessteh; Shakerian, Farid; Shabani, Ali Mohammad Haji

    2013-03-15

    The aim of this study was to describe a new method of microextraction based on the suspension of alumina nanoparticles in the surfactant media for simultaneous separation and preconcentration of the ultra-traces of cobalt, nickel and copper ions. In this technique, the alumina nanoparticles were suspended in the non-ionic surfactant solution of Triton X-114. The analytes in the sample solution were adsorbed onto the nanoparticles. After the phase separation based on the cloud point of the mixture at 40 °C, the nanoparticles settled down in the surfactant rich phase. Then 120 μL of nitric acid (3.0 mol L(-1)) was added to the surfactant rich phase which caused desorption of the analytes. Finally, the liquid phase was separated by centrifugation from the nanoparticles and was used for the quantification of the analytes by the electrothermal atomic absorption spectrometry (ETAAS). The parameters affecting the extraction and detection processes were optimized. Under the optimized experimental conditions (i.e. pH∼8, Triton X-114, 0.05% (v/v); temperature 40 °C), a sample volume of 25 mL resulted in the enhancement factors of 198, 205 and 206 and detection limits (defined as 3Sb/m) of 2.5, 2.8 and 2.6 ng L(-1) for Co(II), Ni(II) and Cu(II) respectively. The sorbent showed high capacity for these metal ions (30-40 mg g(-1) sorbent). The method was successfully applied to the determination of the analytes in natural water samples.

  8. Combining in vitro and in silico methods for better prediction of surfactant effects on the absorption of poorly water soluble drugs-a fenofibrate case example

    DEFF Research Database (Denmark)

    Berthelsen, Ragna; Sjögren, Erik; Jacobsen, Jette

    2014-01-01

    The aim of this study was to develop a sensitive and discriminative in vitro-in silico model able to simulate the in vivo performance of three fenofibrate immediate release formulations containing different surfactants. In addition, the study was designed to investigate the effect of dissolution...... volume when predicting the oral bioavailability of the formulations. In vitro dissolution studies were carried out using the USP apparatus 2 or a mini paddle assembly, containing 1000mL or 100mL fasted state biorelevant medium, respectively. In silico simulations of small intestinal absorption were...... performed using the GI-Sim absorption model. All simulation runs were performed twice adopting either a total small intestinal volume of 533mL or 105mL, in order to examine the implication of free luminal water volumes for the in silico predictions. For the tested formulations, the use of a small...

  9. Energetics, structures, vibrational frequencies, vibrational absorption, vibrational circular dichroism and Raman intensities of Leu-enkephalin

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.

    2003-01-01

    , similar to the characteristic features in electronic circular dichroism spectra with respect to those in the UV-vis electronic absorption spectra. Finally, we have also attempted to stabilize the zwitterionic species by treating the aqueous environment by using a continuum solvent approach, the Onsager...

  10. Ultraviolet-visible absorptive features of water extractable and humic fractions of animal manure and compost

    Science.gov (United States)

    UV-vis spectroscopy is a useful tool for characterizing water extractable or humic fractions of natural organic matter (WEOM). Whereas the whole UV-visible spectra of these fractions are more or less featureless, the specific UV absorptivity at 254 and 280 nm as well as spectral E2/E3 and E4/E6 rat...

  11. Absorption of a volatile organic compound by a jet loop reactor with circulation of a surfactant solution: Performance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byungjoon; Hwang, Geelsu; Haam, Seungjoo; Lee, Changha [Department of Chemical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Ahn, Ik-Sung [Department of Chemical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)], E-mail: iahn@yonsei.ac.kr; Lee, Kyoungjoo [Advanced Biotech Inc., Seoul (Korea, Republic of)

    2008-05-01

    Biofiltration shows high efficiency for the removal of industrial waste gases and reliable operational stability at low investment and operating cost, especially when the VOC concentration is low, such as 100 ppmv ({mu}L L{sup -1}) or less. However, it has been reported that the abrupt change in VOC concentrations leads to the failure of the biofilter. Hence, the pretreatment of waste gases is necessary to ensure the stable operation of the biofilter. The objective of this study is to develop a jet loop reactor (JLR) with circulation of a surfactant solution to lower the concentration of VOCs, especially hydrophobic VOCs. Toluene and Tween 81 were used as a model industrial waste gas and a surfactant, respectively. Among several non-ionic surfactants tested, Tween 81 showed the most rapid dissolution of toluene. When a JLR is replaced with fresh Tween 81 solution (0.3% w/v) every hour, it successfully absorbed for 48 h over 90% of the toluene in an inlet gas containing toluene at 1000 ppmv ({mu}L L{sup -1}) or less. Therefore, JLR with circulation of a surfactant solution is believed to ensure the stable operation of the biofilter even with the unexpected increase in the VOC concentrations.

  12. Keto-enol tautomerism of (E)-2-[(3,4-dimethylphenylimino)methyl]-4-nitrophenol: Synthesis, X-ray, FT-IR, UV-Vis, NMR and quantum chemical characterizations

    Science.gov (United States)

    Özek Yıldırım, Arzu; Yıldırım, M. Hakkı; Albayrak Kaştaş, Çiǧdem

    2017-01-01

    (E)-2-((3,4-dimethylphenylimino)methyl)-4-nitrophenol, which is a new Schiff base compound, was synthesized and characterized by experimental and computational methods. Molecular geometry, harmonic oscillator model of aromaticity (HOMA) indices, intra- and inter-molecular interactions in the crystal structure were determined by using single crystal X-ray diffraction technique. The optimized structures, which are obtained by Gaussian and Slater type orbitals, were compared to experimental structures to determine how much correlation is found between the experimental and the calculated properties. Intramolecular and hyperconjugative interactions of bonds have been found by Natural Bond Orbital analysis. The experimental infrared spectrum of the compound has been analyzed in detail by the calculated infrared spectra and Potential Energy Distribution analysis. To find out about the correlation between the solvent polarity and the enol-keto equilibrium, experimental UV-Visible spectra of the compound were obtained in benzene, CHCl3, EtOH and DMSO solvents. In these solvents, the UV-Vis spectra and relaxed potential energy surface scan (PES) calculations have been performed to get more insight into the equilibrium dynamics. Solvent effects in UV-Vis and PES calculations have been taken into account by using Polarizable Continuum Modelling method. 1H and 13C NMR spectra of the compound (in DMSO) were analyzed. The computational study of nonlinear optical properties shows that the compound can be used for the development of nonlinear optical materials.

  13. Syntheses, electronic structures, and EPR/UV-vis-NIR spectroelectrochemistry of nickel(II), copper(II), and zinc(II) complexes with a tetradentate ligand based on S-methylisothiosemicarbazide.

    Science.gov (United States)

    Arion, Vladimir B; Rapta, Peter; Telser, Joshua; Shova, Sergiu S; Breza, Martin; Luspai, Karol; Kozisek, Jozef

    2011-04-04

    Template condensation of 3,5-di-tert-butyl-2-hydroxybenzaldehyde S-methylisothiosemicarbazone with pentane-2,4-dione and triethyl orthoformate at elevated temperatures resulted in metal complexes of the type M(II)L, where M = Ni and Cu and H(2)L = a novel tetradentate ligand. These complexes are relevant to the active site of the copper enzymes galactose oxidase and glyoxal oxidase. Demetalation of Ni(II)L with gaseous hydrogen chloride in chloroform afforded the metal-free ligand H(2)L. Then by the reaction of H(2)L with Zn(CH(3)COO)(2)·2H(2)O in a 1:1 molar ratio in 1:2 chloroform/methanol, the complex Zn(II)L(CH(3)OH) was prepared. The three metal complexes and the prepared ligand were characterized by spectroscopic methods (IR, UV-vis, and NMR spectroscopy), X-ray crystallography, and DFT calculations. Electrochemically generated one-electron oxidized metal complexes [NiL](+), [CuL](+), and [ZnL(CH(3)OH)](+) and the metal-free ligand cation radical [H(2)L](+•) were studied by EPR/UV-vis-NIR and DFT calculations. These studies demonstrated the interaction between the metal ion and the phenoxyl radical.

  14. Determination of formal redox potentials in aqueous solution of copper(II) complexes with ligands having nitrogen and oxygen donor atoms and comparison with their EPR and UV-Vis spectral features.

    Science.gov (United States)

    Tabbì, Giovanni; Giuffrida, Alessandro; Bonomo, Raffaele P

    2013-11-01

    Formal redox potentials in aqueous solution were determined for copper(II) complexes with ligands having oxygen and nitrogen as donor atoms. All the chosen copper(II) complexes have well-known stereochemistries (pseudo-octahedral, square planar, square-based pyramidal, trigonal bipyramidal or tetrahedral) as witnessed by their reported spectroscopic, EPR and UV-visible (UV-Vis) features, so that a rough correlation between the measured redox potential and the typical geometrical arrangement of the copper(II) complex could be established. Negative values have been obtained for copper(II) complexes in tetragonally elongated pseudo-octahedral geometries, when measured against Ag/AgCl reference electrode. Copper(II) complexes in tetrahedral environments (or flattened tetrahedral geometries) show positive redox potential values. There is a region, always in the field of negative redox potentials which groups the copper(II) complexes exhibiting square-based pyramidal arrangements. Therefore, it is suggested that a measurement of the formal redox potential could be of great help, when some ambiguities might appear in the interpretation of spectroscopic (EPR and UV-Vis) data. Unfortunately, when the comparison is made between copper(II) complexes in square-based pyramidal geometries and those in square planar environments (or a pseudo-octahedral) a little perturbed by an equatorial tetrahedral distortion, their redox potentials could fall in the same intermediate region. In this case spectroscopic data have to be handled with great care in order to have an answer about a copper complex geometrical characteristics.

  15. UV-Vis spectroscopy and density functional study of solvent effect on the charge transfer band of the n → σ* complexes of 2-Methylpyridine and 2-Chloropyridine with molecular iodine

    Science.gov (United States)

    Gogoi, Pallavi; Mohan, Uttam; Borpuzari, Manash Protim; Boruah, Abhijit; Baruah, Surjya Kumar

    2017-03-01

    UV-Vis spectroscopy has established that Pyridine substitutes form n→σ* charge transfer (CT) complexes with molecular Iodine. This study is a combined approach of purely experimental UV-Vis spectroscopy, Multiple linear regression theory and Computational chemistry to analyze the effect of solvent upon the charge transfer band of 2-Methylpyridine-I2 and 2-Chloropyridine-I2 complexes. Regression analysis verifies the dependence of the CT band upon different solvent parameters. Dielectric constant and refractive index are considered among the bulk solvent parameters and Hansen, Kamlet and Catalan parameters are taken into consideration at the molecular level. Density Functional Theory results explain well the blue shift of the CT bands in polar medium as an outcome of stronger donor acceptor interaction. A logarithmic relation between the bond length of the bridging atoms of the donor and the acceptor with the dielectric constant of the medium is established. Tauc plot and TDDFT study indicates a non-vertical electronic transition in the complexes. Buckingham and Lippert Mataga equations are applied to check the Polarizability effect on the CT band.

  16. Synthesis, spectroscopic (UV-Vis, FT-IR and NMR), single crystal XRD of 3,5-diethyl -2,6-di(thiophen-2-yl)piperidin-4-on-1-ium picrate: A comprehensive experimental and computational study

    Science.gov (United States)

    Arockia doss, M.; Rajarajan, G.; Thanikachalam, V.; Selvanayagam, S.; Sridhar, B.

    2017-01-01

    A piperidin-4-one containing picrate 3,5-diethyl -2,6-di(thiophen-2-yl)piperidin-4-on-1-ium picrate [3,5-DPPP] was synthesized. The molecular structure of 3,5-DPPP was confirmed by FT-IR, NMR, Uv-Vis, single crystal XRD analysis and DFT and HF methods with 6-31G(d,p) basis set. The XRD data confirm the transfer of protons from picric acid (O2) to piperidin-4-one ring (N1). The 3,5-DPPP compound is stabilized by the presence of intermolecular and intramolecular hydrogen bonds (N-H⋯O, C-H⋯S and C-H⋯O). Density functional theory and HF calculations have been used widely for calculating a wide variety of molecular properties such as optimized structure, FT-IR and Uv-Vis spectra, and provided reliable results which are in agreement with experimental data. The charge density data have been used to understand the properties of molecular systems. Furthermore, several quantum chemical insights have been obtained in the form of the total and partial density of states, the HOMO-LUMO energy gap and electrostatic potential map etc. In addition, the polarizability and first hyperpolarizability were calculated to show the potential applications of 3,5-DPPP in nonlinear optics.

  17. Análise multicomponente simultânea por espectrofotometria de absorção molecular UV-VIS

    Directory of Open Access Journals (Sweden)

    Saldanha Teresa Cristina B.

    1999-01-01

    Full Text Available This review presents the evolution of simultaneous multicomponent analysis by absorption spectrophotometry in the ultraviolet and visual regions in terms of some qualitative and quantitative analysis techniques, otimization methods, as well as applications and modern trends.

  18. Análise multicomponente simultânea por espectrofotometria de absorção molecular UV-VIS

    OpenAIRE

    Saldanha Teresa Cristina B.; Araújo Mário César U. de; Barros Neto Benício de

    1999-01-01

    This review presents the evolution of simultaneous multicomponent analysis by absorption spectrophotometry in the ultraviolet and visual regions in terms of some qualitative and quantitative analysis techniques, otimization methods, as well as applications and modern trends.

  19. A novel approach to enhancement of surface properties of CdO films by using surfactant: dextrin

    Science.gov (United States)

    Sahin, Bünyamin; Bayansal, Fatih; Yüksel, Mustafa

    2015-12-01

    We studied the effect of an organic surfactant, dextrin, concentration on structural, morphological and optical properties of nanostructured CdO films deposited on glass substrates by using an easy and low-cost SILAR method. Microstructures of the nanostructured CdO films were optimized by adjusting dextrin concentration. XRD, SEM and UV-Vis Spectroscopy were used to study phase structure, surface morphology and optical properties of CdO films. Furthermore, effects of dextrin concentration on the surface roughness characteristics of CdO samples were reported. The results showed that the presence of organic surfactant highly affected the physical properties of CdO nanomaterials.

  20. UV-Visible Absorption Spectroscopy Enhanced X-ray Crystallography at Synchrotron and X-ray Free Electron Laser Sources.

    Science.gov (United States)

    Cohen, Aina E; Doukov, Tzanko; Soltis, Michael S

    2016-01-01

    This review describes the use of single crystal UV-Visible Absorption micro-Spectrophotometry (UV-Vis AS) to enhance the design and execution of X-ray crystallography experiments for structural investigations of reaction intermediates of redox active and photosensitive proteins. Considerations for UV-Vis AS measurements at the synchrotron and associated instrumentation are described. UV-Vis AS is useful to verify the intermediate state of an enzyme and to monitor the progression of reactions within crystals. Radiation induced redox changes within protein crystals may be monitored to devise effective diffraction data collection strategies. An overview of the specific effects of radiation damage on macromolecular crystals is presented along with data collection strategies that minimize these effects by combining data from multiple crystals used at the synchrotron and with the X-ray free electron laser.