WorldWideScience

Sample records for surfaces deposits produced

  1. Dendritic surface morphology of palladium hydride produced by electrolytic deposition

    International Nuclear Information System (INIS)

    Julin, Peng; Bursill, L.A.

    1990-01-01

    Conventional and high-resolution electron microscopic studies of electrolytically-deposited palladium hydride reveal a fascinating variety of surface profile morphologies. The observations provide direct information concerning the surface structure of palladium electrodes and the mechanism of electrolytic deposition of palladium black. Both classical electrochemical mechanisms and recent 'modified diffusion-limited-aggregation' computer simulations are discussed in comparison with the experimental results. 13 refs., 9 figs

  2. Surface-enhanced Raman spectroscopy (SERS) using Ag nanoparticle films produced by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, C.A., E-mail: smythc2@tcd.ie [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Mirza, I.; Lunney, J.G.; McCabe, E.M. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Pulsed laser deposition (PLD) produces silver nanoparticle films. Black-Right-Pointing-Pointer These films can be used for surface-enhanced Raman spectroscopy (SERS). Black-Right-Pointing-Pointer Commercial film shows good SERS reproducibility but poor signal intensity. Black-Right-Pointing-Pointer PLD shows a good SERS response coupled with good reproducibility. - Abstract: Thin silver nanoparticle films, of thickness 7 nm, were deposited onto glass microslides using pulsed laser deposition (PLD). The films were then characterised using UV-vis spectroscopy and scanning transmission electron microscopy before Rhodamine 6G was deposited onto them for investigation using surface-enhanced Raman spectroscopy (SERS). The sensitivity obtained using SERS was compared to that obtained using a colloidal silver suspension and also to a commercial SERS substrate. The reproducibility of the films is also examined using statistical analysis.

  3. Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition

    Science.gov (United States)

    Markwitz, Andreas; Gupta, Prasanth; Mohr, Berit; Hübner, René; Leveneur, Jerome; Zondervan, Albert; Becker, Hans-Werner

    2016-03-01

    Amorphous atomically flat diamond-like carbon (DLC) coatings were produced by direct ion deposition using a system based on a Penning ion source, butane precursor gas and post acceleration. Hydrogen depth profiles of the DLC coatings were measured with the 15N R-NRA method using the resonant nuclear reaction 1H(15N, αγ)12C (Eres = 6.385 MeV). The films produced at 3.0-10.5 kV acceleration voltage show two main effects. First, compared to average elemental composition of the film, the near-surface region is hydrogen depleted. The increase of the hydrogen concentration by 3% from the near-surface region towards the bulk is attributed to a growth model which favours the formation of sp2 hybridised carbon rich films in the film formation zone. Secondly, the depth at which the maximum hydrogen concentration is measured increases with acceleration voltage and is proportional to the penetration depth of protons produced by the ion source from the precursor gas. The observed effects are explained by a deposition process that takes into account the contributions of ion species, hydrogen effusion and preferential displacement of atoms during direct ion deposition.

  4. Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition

    Energy Technology Data Exchange (ETDEWEB)

    Markwitz, Andreas, E-mail: A.Markwitz@gns.cri.nz [GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Gupta, Prasanth [GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Mohr, Berit [GNS Science, Lower Hutt (New Zealand); Hübner, René [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Leveneur, Jerome; Zondervan, Albert [GNS Science, Lower Hutt (New Zealand); Becker, Hans-Werner [RUBION, Ruhr-University Bochum (Germany)

    2016-03-15

    Amorphous atomically flat diamond-like carbon (DLC) coatings were produced by direct ion deposition using a system based on a Penning ion source, butane precursor gas and post acceleration. Hydrogen depth profiles of the DLC coatings were measured with the 15N R-NRA method using the resonant nuclear reaction {sup 1}H({sup 15}N, αγ){sup 12}C (E{sub res} = 6.385 MeV). The films produced at 3.0–10.5 kV acceleration voltage show two main effects. First, compared to average elemental composition of the film, the near-surface region is hydrogen depleted. The increase of the hydrogen concentration by 3% from the near-surface region towards the bulk is attributed to a growth model which favours the formation of sp{sup 2} hybridised carbon rich films in the film formation zone. Secondly, the depth at which the maximum hydrogen concentration is measured increases with acceleration voltage and is proportional to the penetration depth of protons produced by the ion source from the precursor gas. The observed effects are explained by a deposition process that takes into account the contributions of ion species, hydrogen effusion and preferential displacement of atoms during direct ion deposition.

  5. Model of depositing layer on cylindrical surface produced by induction-assisted laser cladding process

    Directory of Open Access Journals (Sweden)

    Kotlan Václav

    2017-12-01

    Full Text Available A model of hybrid cladding on a cylindrical surface is built and numerically solved. Heating of both substrate and the powder material to be deposited on its surface is realized by laser beam and preheating inductor. The task represents a hard-coupled electromagnetic-thermal problem with time-varying geometry. Two specific algorithms are developed to incorporate this effect into the model, driven by local distribution of temperature and its gradients. The algorithms are implemented into the COMSOL Multiphysics 5.2 code that is used for numerical computations of the task. The methodology is illustrated with a typical example whose results are discussed.

  6. Porous SiO2/HAp Coatings on Cp-Titanium Grade 1 Surfaces Produced by Electrophoretic Deposition

    Directory of Open Access Journals (Sweden)

    Moskalewicz T.

    2016-12-01

    Full Text Available Porous hydroxyapatite doped SiO2 coatings were electrophoretically deposited (EPD on commercially pure titanium. The influence of EPD parameters on coatings quality was investigated. Microstructural observation was done using transmission and scanning electron microscopy as well as X-ray diffractometry.

  7. Dry deposition on urban surfaces

    International Nuclear Information System (INIS)

    Roed, J.

    1985-01-01

    In order to facilitate developing a model for deposition in urban areas, beryllium-7, created by cosmic radiation and fall-out cesium-137, have been used as tracers in measurements designed to find the dry deposition velocity on building surfaces. A literature review has revealed that very little work has been done on deposition in urban areas; therefore, a major effort on meausring the deposition parameter is needed to construct reliable models in this field. Deposition velocities in the range from 0.001-0.04 cm/s have been found. (author)

  8. Oxide cathodes produced by plasma deposition

    International Nuclear Information System (INIS)

    Scheitrum, G.; Caryotakis, G.; Pi, T.; Umstattd, R.; Brown, I.; Montiero, O.

    1997-01-01

    These are two distinct applications for high-current-density, long-life thermionic cathodes. The first application is as a substitute for explosive emission cathodes used in high-power microwave (HPM) devices being developed for Air Force programs. The second application is in SLAC's X-band klystrons for the Next Linear Collider (NLC). SLAC, UCD, and LBL are developing a plasma deposition process that eliminates the problems with binders, carbonate reduction, peeling, and porosity. The emission layer is deposited using plasma deposition of metallic barium in vacuum with an oxygen background gas. An applied bias voltage drives the oxide plasma into the nickel surface. Since the oxide is deposited directly, it does not have problems with poisoning from a hydrocarbon binder. The density of the oxide layer is increased from the 40--50% for standard oxide cathodes to nearly 100% for plasma deposition

  9. Surface deposition from radioactive plumes

    International Nuclear Information System (INIS)

    Garland, J.A.

    1980-01-01

    Accidents involving nuclear plants may release radioactive particles and gases to the atmosphere. Dry deposition of particles has been investigated mainly in the laboratory and a general understanding of the transfer mechanisms has been established. However there is apparently a substantial discrepancy between the few field observations of dry deposition of particles and laboratory measurements, particularly for 0.1 - 1 μm particles for which laboratory work shows very small deposition rates. In addition there are few estimates of deposition rates for forest and some other kinds of terrain. The most important gas in the context of a nuclear accident is I-131 and the behaviour of this gas at grass surfaces has received much attention. However smaller quantities of other gases and vapours may be released and the surface absorption of these species may require further investigation. In addition there is little knowledge of the behaviour of gases over many types of surface. The rate of deposition of particles and gases is influenced by many parameters including wind speed and the temperature stratification of the lower atmosphere. Conditions which give poor atmospheric dispersion usually give lower deposition velocities. Transfer to man depends on the availability of deposited materials on crops and grass. A wide range of isotopes including iodine and several metallic fission products are lost with a half life for residence on grass ranging from a few days to a few tens days, depending on climatic conditions

  10. Scaling in patterns produces by cluster deposition

    DEFF Research Database (Denmark)

    Kyhle, Anders; Sørensen, Alexis Hammer; Oddershede, Lene

    1997-01-01

    Cluster deposition on flat substrates can lead to surprising patterns. This pattern formation can be related either to phenomena taking place at the substrate surface or to dynamics in the cluster beam. We describe the observation of a pattern of particles each being an aggregate of Cu clusters. ...

  11. Producing of multicomponent and composite surface layers

    International Nuclear Information System (INIS)

    Wierzchon, T.; Bielinski, P.; Michalski, A.

    1995-01-01

    The paper presents a new method of producing multicomponent and composite layers on steel substrate. The combination of nickel plating with glow-discharge bordering or impulse-plasma deposition method gives an opportunity to obtain good properties of surface layers. The results of examinations of carbon 45 (0.45%C) steel, nickel plated and then borided under glow discharge conditions or covered with TiN layers are presented. The corrosion and friction wear resistance of such layers are markedly higher than for layer produced on non nickel plated substrates. (author). 19 refs, 5 figs

  12. Surface Finish after Laser Metal Deposition

    Science.gov (United States)

    Rombouts, M.; Maes, G.; Hendrix, W.; Delarbre, E.; Motmans, F.

    Laser metal deposition (LMD) is an additive manufacturing technology for the fabrication of metal parts through layerwise deposition and laser induced melting of metal powder. The poor surface finish presents a major limitation in LMD. This study focuses on the effects of surface inclination angle and strategies to improve the surface finish of LMD components. A substantial improvement in surface quality of both the side and top surfaces has been obtained by laser remelting after powder deposition.

  13. Surface acoustic wave dust deposition monitor

    Science.gov (United States)

    Fasching, G.E.; Smith, N.S. Jr.

    1988-02-12

    A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

  14. Amorphous boron coatings produced with vacuum arc deposition technology

    CERN Document Server

    Klepper, C C; Yadlowsky, E J; Carlson, E P; Keitz, M D; Williams, J M; Zuhr, R A; Poker, D B

    2002-01-01

    In principle, boron (B) as a material has many excellent surface properties, including corrosion resistance, very high hardness, refractory properties, and a strong tendency to bond with most substrates. The potential technological benefits of the material have not been realized, because it is difficult to deposit it as coatings. B is difficult to evaporate, does not sputter well, and cannot be thermally sprayed. In this article, first successful deposition results from a robust system, based on the vacuum (cathodic) arc technology, are reported. Adherent coatings have been produced on 1100 Al, CP-Ti, Ti-6Al-4V, 316 SS, hard chrome plate, and 52 100 steel. Composition and thickness analyses have been performed by Rutherford backscattering spectroscopy. Hardness (H) and modules (E) have been evaluated by nanoindentation. The coatings are very pure and have properties characteristic of B suboxides. A microhardness of up to 27 GPa has been measured on a 400-nm-thick film deposited on 52 100 steel, with a corresp...

  15. Earth Surface Processes, Landforms and Sediment Deposits

    Science.gov (United States)

    Bridge, John; Demicco, Robert

    Earth surface processes, landforms and sediment deposits are intimately related - involving erosion of rocks, generation of sediment, and transport and deposition of sediment through various Earth surface environments. These processes, and the landforms and deposits that they generate, have a fundamental bearing on engineering, environmental and public safety issues; on recovery of economic resources; and on our understanding of Earth history. This unique textbook brings together the traditional disciplines of sedimentology and geomorphology to explain Earth surface processes, landforms and sediment deposits in a comprehensive and integrated way. It is the ideal resource for a two-semester course in sedimentology, stratigraphy, geomorphology, and Earth surface processes from the intermediate undergraduate to beginning graduate level. The book is also accompanied by a website hosting illustrations and material on field and laboratory methods for measuring, describing and analyzing Earth surface processes, landforms and sediments.

  16. Electrostatic Deposition of Large-Surface Graphene

    Directory of Open Access Journals (Sweden)

    Charles Trudeau

    2018-01-01

    Full Text Available This work describes a method for electrostatic deposition of graphene over a large area using controlled electrostatic exfoliation from a Highly Ordered Pyrolytic Graphite (HOPG block. Deposition over 130 × 130 µm2 with 96% coverage is achieved, which contrasts with sporadic micro-scale depositions of graphene with little control from previous works on electrostatic deposition. The deposition results are studied by Raman micro-spectroscopy and hyperspectral analysis using large fields of view to allow for the characterization of the whole deposition area. Results confirm that laser pre-patterning of the HOPG block prior to cleaving generates anchor points favoring a more homogeneous and defect-free HOPG surface, yielding larger and more uniform graphene depositions. We also demonstrate that a second patterning of the HOPG block just before exfoliation can yield features with precisely controlled geometries.

  17. Growth characteristics of inclined columns produced by Glancing Angle Deposition (GLAD) and colloidal lithography

    DEFF Research Database (Denmark)

    Foss, Morten; Besenbacher, Flemming; Sutherland, Duncan S

    2011-01-01

    Nanocolumns were produced by performing Glancing Angle Deposition (GLAD) onto self-assembled template arrays consisting of platinum coated polystyrene spheres. By varying the angle of incidence (θ = 35°, 10° and 5°) and the deposited surface mass density it was possible to control the shape of th...

  18. Electroplating method for producing ultralow-mass fissionable deposits

    International Nuclear Information System (INIS)

    Ruddy, F.H.

    1989-01-01

    A method for producing ultralow-mass fissionable deposits for nuclear reactor dosimetry is described, including the steps of holding a radioactive parent until the radioactive parent reaches secular equilibrium with a daughter isotope, chemically separating the daughter from the parent, electroplating the daughter on a suitable substrate, and holding the electroplated daughter until the daughter decays to the fissionable deposit

  19. Electroless deposition of Ni-P on a silicon surface

    Directory of Open Access Journals (Sweden)

    hassan El Grini

    2017-06-01

    Full Text Available The present article concerns the metallization of silicon substrates by deposition of the nickel-phosphorus alloy produced by an autocatalytic chemical process. The deposition electrolyte is composed of a metal salt, a reducing agent (sodium hypophosphite, a complexing agent (sodium citrate and a buffer (ammonium acetate. The deposition could only be carried out after activation of the silicon by fixing catalytic species on its surface. The immersion of the silicon samples in palladium chloride made it possible to produce relatively thick and regular Ni-P coatings. The immersion time was optimized. The activation of Si was characterized by XPS and the Ni-P coating by XPS and M.E.B. The electrochemical study did not show any real mechanism changes compared to the Ni-P deposition on a conductive surface

  20. Impurities in chromium deposits produced by electroplating and physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dini, J.W.

    1994-05-01

    Impurity contents in electrodeposited (hexavalent and trivalent) chromium deposits and physically vapor deposited (thermal evaporation, electron beam evaporation and rf-sputtering) were compared. Oxygen is the key impurity obtained in electrodeposited films but it can be minimized in hexavalent plating solutions by operating at high temperature, e. g., 85 C. Electrodeposits produced in trivalent chromium plating solutions and physically vapor deposited films have much higher oxygen contents than electrodeposits produced in hexavalent chromium solutions operated at temperatures around 85 C. Depending on the target material used for physically vapor deposited films, these films can also have high amounts of other impurities.

  1. Dry deposition to vegetated surfaces: parametric dependencies

    International Nuclear Information System (INIS)

    Underwood, B.Y.

    1987-12-01

    The dry deposition velocity of airborne pollutants to vegetated surfaces depends on the physico-chemical form of the pollutant, on meteorological conditions (windspeed, atmospheric stability) and on characteristics of the surface cover. This report examines these dependencies, drawing on experimental data and on information from theoretical analyses. A canopy model is outlined which uses first-order closure of the equations for turbulent transport of momentum (or matter), with losses of momentum (or matter) to individual canopy elements parameterised in terms of the mean windspeed: the model has previously been tested against experimental data on an artificial 'grass' canopy. The model is used to elucidate the features of the dependence of deposition velocity on windspeed and on whether the pollutant is in gaseous or particulate form: in the former case, the dependence on the molecular diffusivity of the gas is shown; in the latter case, dependencies on particle diameter and density are deduced. The predictions are related to available measurements. Additional hypotheses are introduced to treat the influence of atmospheric stability on deposition, and the analysis is used to shed light on the somewhat confusing picture that has emerged from past experimental studies. In considering the dependence of deposition velocity on the structural properties of the vegetation, it is established that more parameters than the single one conventionally used -aerodynamic roughness length - are needed to characterise the surface cover. Some indications of the extent of variation in deposition velocity from one type of vegetation to another are elicited from the model. (author)

  2. Surface vertical deposition for gold nanoparticle film

    International Nuclear Information System (INIS)

    Diao, J J; Qiu, F S; Chen, G D; Reeves, M E

    2003-01-01

    In this rapid communication, we present the surface vertical deposition (SVD) method to synthesize the gold nanoparticle films. Under conditions where the surface of the gold nanoparticle suspension descends slowly by evaporation, the gold nanoparticles in the solid-liquid-gas junction of the suspension aggregate together on the substrate by the force of solid and liquid interface. When the surface properties of the substrate and colloidal nanoparticle suspension define for the SVD, the density of gold nanoparticles in the thin film made by SVD only depends on the descending velocity of the suspension surface and on the concentration of the gold nanoparticle suspension. (rapid communication)

  3. Analysis of the Surface of Deposited Copper After Electroerosion Treatment

    Science.gov (United States)

    Ablyaz, T. R.; Simonov, M. Yu.; Shlykov, E. S.

    2018-03-01

    An electron microscope analysis of the surface of deposited copper is performed after a profiling-piercing electroerosion treatment. The deposited copper is treated with steel, duralumin, and copper electrode tools at different pulse energies. The treatment with the duralumin electrode produces on the treated surface a web-like structure and cubic-morphology polyhedral dimples about 10 μm in size. The main components of the surface treated with the steel electrode are developed polyhedral dimples with a size of 10 - 50 μm. After the treatment with the copper electrode the main components of the treated surface are large polyhedral dimples about 30 - 80 μm in size.

  4. Purity and surface roughness of vacuum deposited aluminium films

    Energy Technology Data Exchange (ETDEWEB)

    Dhere, N G; Arsenio, T P [Instituto Militar de Engenharia, Rio de Janeiro (Brazil); Patnaik, B K [Pontificia Universidade Catolica do Rio de Janeiro (Brazil). Instituto de Fisica; Assuncao, F C.R.; de Souza, A M [Pontificia Universidade Catolica do Rio de Janeiro (Brazil). Departamento de Ciencia dos Materiais e Metalurgia

    1975-04-01

    The authors studied the purity, surface roughness and grain size of vacuum-deposited aluminium films, using an intermetallic crucible and a continuous feed of pure aluminium wire. The grain size and roughness were studied by electron difraction, X-ray diffraction and the scanning electron microscope. Purity was determined by X-ray fluorescence produced by proton bombardment in the Van de Graaff accelerator and by X-ray and optical emission spectrometry.

  5. Multiwalled Carbon Nanotube Deposition on Model Environmental Surfaces

    Science.gov (United States)

    Deposition of multiwalled carbon nanotubes (MWNTs) on model environmental surfaces was investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Deposition behaviors of MWNTs on positively and negatively charged surfaces were in good agreement with Der...

  6. Kinetics of particle deposition at heterogeneous surfaces

    Science.gov (United States)

    Stojiljković, D. Lj.; Vrhovac, S. B.

    2017-12-01

    The random sequential adsorption (RSA) approach is used to analyze adsorption of spherical particles of fixed diameter d0 on nonuniform surfaces covered by square cells arranged in a square lattice pattern. To characterize such pattern two dimensionless parameters are used: the cell size α and the cell-cell separation β, measured in terms of the particle diameter d0. Adsorption is assumed to occur if the particle (projected) center lies within a cell area. We focus on the kinetics of deposition process in the case when no more than a single disk can be placed onto any square cell (α deposition process is not consistent with the power law behavior. However, if the geometry of the pattern approaches towards ;noninteracting conditions; (β > 1), when adsorption on each cell can be decoupled, approach of the coverage fraction θ(t) to θJ becomes closer to the exponential law. Consequently, changing the pattern parameters in the present model allows to interpolate the deposition kinetics between the continuum limit and the lattice-like behavior. Structural properties of the jammed-state coverings are studied in terms of the radial distribution function g(r) and spatial distribution of particles inside the cell. Various, non-trivial spatial distributions are observed depending on the geometry of the pattern.

  7. Protective and decorative coatings produced by ion-plasma deposition

    International Nuclear Information System (INIS)

    Radjabov, T.D.; Kamardin, A.I.; Pulatov, S.U.

    1996-01-01

    Vacuum device is worked out for the vacuum low temperature deposition of protective and decorative films and studied technical regimes of obtaining such films to target from the metal,plastics, ceramic and glass with thickness up to 10 mkm and square 1 m 2 /cycle. Vacuum device provide possibility to create films by means of magnetron with pressure 100-10 1 Pa to different targets and to conduct preliminary treatment of them by argon ion beam with 3-4 keV energy for the cleaning of surface. Protective films of Chrome, Titanium, Nitride of Titanium and stainless steel have shown high adhesion properties up to 300-400 kgs/sm and ensure stable protection of surface from air and chemical corrosion. Obtained films has good decorative and colour characteristics. (author). 2 figs

  8. Worldwide dispersion and deposition of radionuclides produced in atmospheric tests.

    Science.gov (United States)

    Bennett, Burton G

    2002-05-01

    Radionuclides produced in atmospheric nuclear tests were widely dispersed in the global environment. From the many measurements of the concentrations in air and the deposition amounts, much was learned of atmospheric circulation and environmental processes. Based on these results and the reported fission and total yields of individual tests, it has been possible to devise an empirical model of the movement and residence times of particles in the various atmospheric regions. This model, applied to all atmospheric weapons tests, allows extensive calculations of air concentrations and deposition amounts for the entire range of radionuclides produced throughout the testing period. Especially for the shorter-lived fission radionuclides, for which measurement results at the time of the tests are less extensive, a more complete picture of levels and isotope ratios can be obtained, forming a basis for improved dose estimations. The contributions to worldwide fallout can be inferred from individual tests, from tests at specific sites, or by specific countries. Progress was also made in understanding the global hydrological and carbon cycles from the tritium and 14C measurements. A review of the global measurements and modeling results is presented in this paper. In the future, if injections of materials into the atmosphere occur, their anticipated motions and fates can be predicted from the knowledge gained from the fallout experience.

  9. TEXTILE SURFACE MODIFICATION BY PYHSICAL VAPOR DEPOSITION – (REVIEW

    Directory of Open Access Journals (Sweden)

    YUCE Ismail

    2017-05-01

    Full Text Available Textile products are used in various branches of the industry from automotive to space products. Textiles produced for industrial use are generally referred to as technical textiles. Technical textiles are nowadays applied to several areas including transportation, medicine, agriculture, protection, sports, packaging, civil engineering and industry. There are rapid developments in the types of materials used in technical textiles. Therefore, modification and functionalization of textile surfaces is becoming more crucial. The improvements of the properties such as anti-bacterial properties, fire resistivity, UV radiation resistance, electrical conductivity, self cleaning, and super hydrophobic, is getting more concern with respect to developments in textile engineering. The properties of textile surfaces are closely related to the fiber structure, the differences in the polymer composition, the fiber mixture ratio, and the physical and chemical processes applied. Textile surface modifications can be examined in four groups under the name mechanical, chemical, burning and plasma. Surface modifications are made to improve the functionality of textile products. Textile surface modifications affect the properties of the products such as softness, adhesion and wettability. The purpose of this work is to reveal varieties of vapor deposition modifications to improve functionality. For this purpose, the pyhsical vapor deposition methods, their affects on textile products and their end-uses will be reviewed.

  10. Dry deposition of particles to ocean surfaces

    NARCIS (Netherlands)

    Larsen, S.E.; Edson, J.B.; Hummelshoj, P.; Jensen, N.O.; Leeuw, G. de; Mestayer, P.G.

    1995-01-01

    Dry deposition of atmospheric particles mainly depends on wind speed and particle diameter. The dry deposition velocity, Vd, is found to vary by a factor of 100-1,000 with diameter in a likely diameter range, adding uncertainty to deposition estimates, because the diameter distribution for many

  11. Morphology of silver deposits produced by non-stationary steady regimes

    International Nuclear Information System (INIS)

    Popovski, Orce

    2002-01-01

    Morphology of silver electro deposits produced by periodical reversing of d.c. pulses was studied. Employing usual electrorefining conditions it is not possible to deposit compact silver layers from Ag non-complexing salts. This is due, mainly, to the high value of silver exchange current density and to the silver crystallographic peculiarity. In order to counteract this phenomenon, instead of usual, (stationer) potential-current regimes, non-stationary one was applied in this study. The effect of phosphate ions in the electrolyte was further clarified. A set of experimental conditions was applied so that silver was electrodeposited under mixed electrochemical and diffusion control. The primar cathodic pulse causes silver to nucleate with high density and nuclei to start to grow. The subsequent anodic pulse (current reversal) lowers the gradient of silver ion concentration and dissolves the most active growth centers as well. The combination of cathodic and anodic pulses diminishes the dendritic growth and helps smoothing of deposit surface to occur. Fine-grained and more compact deposits are produced, as compared to the ones grown in purely potentiostatic conditions. It was found that the addition of phosphate ions as well as the application of intensive electrolyte stirring change the Ag- grain morphology in favor of poli crystal whisker structure. (Author)

  12. Surface coatings deposited by CVD and PVD

    International Nuclear Information System (INIS)

    Gabriel, H.M.

    1982-01-01

    The demand for wear and corrosion protective coatings is increasing due to economic facts. Deposition processes in gas atmospheres like the CVD and PVD processes attained a tremendous importance especially in the field of the deposition of thin hard refractory and ceramic coatings. CVD and PVD processes are reviewed in detail. Some examples of coating installations are shown and numerous applications are given to demonstrate the present state of the art. (orig.) [de

  13. Carbon deposition on nickel ferrites and nickel-magnetite surfaces

    International Nuclear Information System (INIS)

    Allen, G.C.; Jutson, J.A.

    1988-06-01

    Carbon deposition on Commercial Advanced Gas-Cooled Reactor (CAGR) fuel cladding and heat exchanger surfaces lowers heat transfer efficiency and increases fuel pin temperatures. Several types of deposit have been identified including both thin dense layers and also low density columnar deposits with filamentary or convoluted laminar structure. The low-density types are often associated with particles containing iron, nickel or manganese. To identify the role of nickel in the deposition process surfaces composed of nickel-iron spinels or metallic nickel/magnetite mixtures have been exposed to γ radiation in a gas environment simulating that in the reactor. Examination of these surfaces by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) have shown that while metallic nickel (Ni(O)) catalyses the formation of filamentary low density carbon deposits, the presence of divalent nickel (Ni(II)) sites in spinel type oxides is associated only with dense deposits. (author)

  14. Studies Concerning Water-Surface Deposits in Recovery Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Strandberg, O; Arvesen, J; Dahl, L

    1971-11-15

    The Feed-water Committee of the Stiftelsen Svensk Cellulosaforskning (Foundation for Swedish Cellulose Research) has initiated research and investigations which aim to increase knowledge about water-surface deposits in boiler tubes, and the resulting risks of gas-surface corrosion in chemical recovery boilers (sulphate pulp industry). The Committee has arranged with AB Atomenergi, Studsvik, for investigations into the water-surface deposits on tubes from six Scandinavian boilers. These investigations have included direct measurements of the thermal conductivity of the deposits, and determinations of their quantity, thickness and structure have been carried out. Previous investigations have shown that gas-surface corrosion can occur at tube temperatures above 330 deg C. The measured values for the thermal conductivity of the deposits indicate that even with small quantities of deposit (c. 1 g/dm2 ) and a moderate boiler pressure (40 atm), certain types of deposit can give rise to the above-mentioned surface temperature, at which the risk of gas-surface corrosion becomes appreciable. For higher boiler pressures the risk is great even with a minimal layer of deposit. The critical deposit thickness can be as low as 0.1 mm

  15. Tungsten/copper composite deposits produced by a cold spray

    International Nuclear Information System (INIS)

    Kang, Hyun-Ki; Kang, Suk Bong

    2003-01-01

    An agglomerated tungsten/copper composite powder was both cold sprayed and plasma sprayed onto a mild steel substrate for electronic package applications. Most pores resulting from the spraying were found in the vicinity of the tungsten-rich regions of the final product. The levels of porosity varied with the amount of tungsten present. No copper oxidation was found at the cold-sprayed deposit, but relatively high copper oxidation was observed at the plasma-sprayed deposit

  16. Gasification of carbon deposits on catalysts and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, J L

    1986-10-01

    'Coke' deposited on catalysts and reactor surfaces includes a variety of carbons of different structures and origins, their reactivities being conveniently assessed by Temperature Programmed Reaction (TPR). The gasification of carbon deposits obtained in the laboratory under well controlled conditions, and the regeneration of coked catalysts from petroleum refining processes are reviewed and discussed. Filamentary carbon deposits, containing dispersed metal particles, behave as supported metal catalysts during gasification, and show high reactivities. Pyrolytic and acid catalysis carbons are less reactive on their own, as the gasification is not catalysed; however, metal components of the catalyst or metal impurities deposited on the surface may enhance gasification. 26 refs., 8 figs., 2 tabs.

  17. SERS analysis of Ag nanostructures produced by ion-beam deposition

    Science.gov (United States)

    Atanasov, P. A.; Nedyalkov, N. N.; Nikov, Ru G.; Grüner, Ch; Rauschenbach, B.; Fukata, N.

    2018-03-01

    This study deals with the development of a novel technique for formation of advanced Ag nanostructures (NSs) to be applied to high-resolution analyses based on surface enhanced Raman scattering (SERS). It has direct bearing on human health and food quality, e.g., monitoring small amount or traces of pollutants or undesirable additives. Three types of nanostructured Ag samples were produced using ion-beam deposition at glancing angle (GLAD) on quartz. All fabricated structures were covered with BI-58 pesticide (dimethoate) or Rhodamine 6G (R6G) for testing their potential for use as substrates for (SERS).

  18. Selective metal-vapor deposition on solvent evaporated polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Koji; Tsujioka, Tsuyoshi, E-mail: tsujioka@cc.osaka-kyoiku.ac.jp

    2015-12-31

    We report a selective metal-vapor deposition phenomenon based on solvent printing and evaporation on polymer surfaces and propose a method to prepare fine metal patterns using maskless vacuum deposition. Evaporation of the solvent molecules from the surface caused large free volumes between surface polymer chains and resulted in high mobility of the chains, enhancing metal-vapor atom desorption from the surface. This phenomenon was applied to prepare metal patterns on the polymer surface using solvent printing and maskless metal vacuum deposition. Metal patterns with high resolution of micron scale were obtained for various metal species and semiconductor polymer substrates including poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] and poly(3-hexylthiophene-2,5-diyl). - Highlights: • Selective metal-vapor deposition using solvent evaporation on polymer was attained. • Metal patterns with high resolution were obtained for various metal species. • This method can be applied to achieve fine metal-electrodes for polymer electronics.

  19. Dry Deposition, Surface Production and Dynamics of Aerosols in the Marine Boundary Layer

    DEFF Research Database (Denmark)

    Fairall, C.W.; Larsen, Søren Ejling

    1984-01-01

    A model of downward aerosol panicle flux characterized by dry deposition velocity, Vd, due to Slinn and Slinn (1980) is generalized to the case of nonzero surface concentration (absorbing surface with a surface source). A more general expression for the flux at some reference height is developed ...... produced as droplets at the surface and ‘continental’ background aerosols brought into the boundary layer at the top by entrainment and gravitational settling. Estimates of Si are provided....

  20. Dry deposition on smooth and rough urban surfaces

    International Nuclear Information System (INIS)

    Roed, J.

    1987-01-01

    Following the Chernobyl accident, dry deposition velocities on smooth surfaces indoors and outdoors have been measured in Denmark. Internal wall surfaces gave deposition velocities of 0.0008-0.0009 cm/s for 131I and 0.0001-0.0002 cm/s for 134Cs and 103Ru. Internal floor surfaces gave higher values for the deposition velocities: for 131I, 0.002 cm/s and for 134Cs and 103Ru, 0.0005-0.0013 cm/s. The deposition velocities on vertical and horizontal external surfaces were nearly equal. Those for 131I were found as 0.02-0.03 cm/s and for 137Cs as 0.001-0.002 cm/s. On external rough surfaces such as grass and corrugated roof material the deposition velocities for 134Cs and 103Ru were 0.03-0.05 cm/s. For iodine, however, deposition velocities were higher for clipped grass (2 cm/s) than for roof material (0.2-0.4 cm/s). The results show that internal deposition velocities are considerably lower than those on external smooth surfaces, and that the deposition velocities on rough surfaces are an order of magnitude higher than on smooth surfaces. It was also shown that the deposition velocities of iodine are considerably higher than those of cesium and ruthenium. This work was supported by EEC Radiation Protection Programme No B16-107-DK and by NKA, The Nordic Liaison Committee for Atomic Energy. (author)

  1. Responses of Surface Ozone Air Quality to Anthropogenic Nitrogen Deposition

    Science.gov (United States)

    Zhang, L.; Zhao, Y.; Tai, A. P. K.; Chen, Y.; Pan, Y.

    2017-12-01

    Human activities have substantially increased atmospheric deposition of reactive nitrogen to the Earth's surface, inducing unintentional effects on ecosystems with complex environmental and climate consequences. One consequence remaining unexplored is how surface air quality might respond to the enhanced nitrogen deposition through surface-atmosphere exchange. We combine a chemical transport model (GEOS-Chem) and a global land model (Community Land Model) to address this issue with a focus on ozone pollution in the Northern Hemisphere. We consider three processes that are important for surface ozone and can be perturbed by addition of atmospheric deposited nitrogen: emissions of biogenic volatile organic compounds (VOCs), ozone dry deposition, and soil nitrogen oxide (NOx) emissions. We find that present-day anthropogenic nitrogen deposition (65 Tg N a-1 to the land), through enhancing plant growth (represented as increases in vegetation leaf area index (LAI) in the model), could increase surface ozone from increased biogenic VOC emissions, but could also decrease ozone due to higher ozone dry deposition velocities. Meanwhile, deposited anthropogenic nitrogen to soil enhances soil NOx emissions. The overall effect on summer mean surface ozone concentrations show general increases over the globe (up to 1.5-2.3 ppbv over the western US and South Asia), except for some regions with high anthropogenic NOx emissions (0.5-1.0 ppbv decreases over the eastern US, Western Europe, and North China). We compare the surface ozone changes with those driven by the past 20-year climate and historical land use changes. We find that the impacts from anthropogenic nitrogen deposition can be comparable to the climate and land use driven surface ozone changes at regional scales, and partly offset the surface ozone reductions due to land use changes reported in previous studies. Our study emphasizes the complexity of biosphere-atmosphere interactions, which can have important

  2. Deposition of heated whey proteins on a chromium oxide surface.

    NARCIS (Netherlands)

    Jeurnink, Th.; Verheul, M.; Cohen Stuart, M.A.; Kruif, de C.G.

    1996-01-01

    Whey protein solutions were given different heat treatments after which their deposition on a chromium oxide surface (the outer layer of stainless steel) was measured by reflectometry. The deposition was studied under controlled flow conditions by using a stagnation point flow configuration. The

  3. Atomic and molecular layer deposition for surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Vähä-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.fi [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland); Sievänen, Jenni; Salo, Erkki; Heikkilä, Pirjo; Kenttä, Eija [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland); Johansson, Leena-Sisko, E-mail: leena-sisko.johansson@aalto.fi [Aalto University, School of Chemical Technology, Department of Forest Products Technology, PO Box 16100, FI‐00076 AALTO (Finland); Koskinen, Jorma T.; Harlin, Ali [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland)

    2014-06-01

    Atomic and molecular layer deposition (ALD and MLD, respectively) techniques are based on repeated cycles of gas–solid surface reactions. A partial monolayer of atoms or molecules is deposited to the surface during a single deposition cycle, enabling tailored film composition in principle down to molecular resolution on ideal surfaces. Typically ALD/MLD has been used for applications where uniform and pinhole free thin film is a necessity even on 3D surfaces. However, thin – even non-uniform – atomic and molecular deposited layers can also be used to tailor the surface characteristics of different non-ideal substrates. For example, print quality of inkjet printing on polymer films and penetration of water into porous nonwovens can be adjusted with low-temperature deposited metal oxide. In addition, adhesion of extrusion coated biopolymer to inorganic oxides can be improved with a hybrid layer based on lactic acid. - Graphical abstract: Print quality of a polylactide film surface modified with atomic layer deposition prior to inkjet printing (360 dpi) with an aqueous ink. Number of printed dots illustrated as a function of 0, 5, 15 and 25 deposition cycles of trimethylaluminum and water. - Highlights: • ALD/MLD can be used to adjust surface characteristics of films and fiber materials. • Hydrophobicity after few deposition cycles of Al{sub 2}O{sub 3} due to e.g. complex formation. • Same effect on cellulosic fabrics observed with low temperature deposited TiO{sub 2}. • Different film growth and oxidation potential with different precursors. • Hybrid layer on inorganic layer can be used to improve adhesion of polymer melt.

  4. Surface treatment of nanocrystal quantum dots after film deposition

    Science.gov (United States)

    Sykora, Milan; Koposov, Alexey; Fuke, Nobuhiro

    2015-02-03

    Provided are methods of surface treatment of nanocrystal quantum dots after film deposition so as to exchange the native ligands of the quantum dots for exchange ligands that result in improvement in charge extraction from the nanocrystals.

  5. Nanostructured high valence silver oxide produced by pulsed laser deposition

    International Nuclear Information System (INIS)

    Dellasega, D.; Facibeni, A.; Di Fonzo, F.; Russo, V.; Conti, C.; Ducati, C.; Casari, C.S.; Li Bassi, A.; Bottani, C.E.

    2009-01-01

    Among silver oxides, Ag 4 O 4 , i.e. high valence Ag(I)Ag(III) oxide, is interesting for applications in high energy batteries and for the development of antimicrobial coatings. We here show that ns UV pulsed laser deposition (PLD) in an oxygen containing atmosphere allows the synthesis of pure Ag 4 O 4 nanocrystalline thin films, permitting at the same time to control the morphology of the material at the sub-micrometer scale. Ag 4 O 4 films with a crystalline domain size of the order of tens of nm can be deposited provided the deposition pressure is above a threshold (roughly 4 Pa pure O 2 or 20 Pa synthetic air). The formation of this particular high valence silver oxide is explained in terms of the reactions occurring during the expansion of the ablated species in the reactive atmosphere. In particular, expansion of the PLD plasma plume is accompanied by formation of low stability Ag-O dimers and atomic oxygen, providing reactive species at the substrate where the film grows. Evidence of reactive collisions in the expanding ablation plume is obtained by analysis of the plume visible shape in inert and reactive atmospheres. In addition, we show how the dimensionless deposition parameter L, relating the target-to-substrate distance to the ablation plume maximum expansion length, can be used to classify different growth regimes. It is thus possible to vary the stoichiometry and the morphology of the films, from compact and columnar to foam-like, by controlling both the gas pressure and the target-to-substrate distance

  6. Deposition of thin films and surface modification by pulsed high energy density plasma

    International Nuclear Information System (INIS)

    Yan Pengxun; Yang Size

    2002-01-01

    The use of pulsed high energy density plasma is a new low temperature plasma technology for material surface treatment and thin film deposition. The authors present detailed theoretical and experimental studies of the production mechanism and physical properties of the pulsed plasma. The basic physics of the pulsed plasma-material interaction has been investigated. Diagnostic measurements show that the pulsed plasma has a high electron temperature of 10-100 eV, density of 10 14 -10 16 cm -3 , translation velocity of ∼10 -7 cm/s and power density of ∼10 4 W/cm 2 . Its use in material surface treatment combines the effects of laser surface treatment, electron beam treatment, shock wave bombardment, ion implantation, sputtering deposition and chemical vapor deposition. The metastable phase and other kinds of compounds can be produced on low temperature substrates. For thin film deposition, a high deposition ratio and strong film to substrate adhesion can be achieved. The thin film deposition and material surface modification by the pulsed plasma and related physical mechanism have been investigated. Thin film c-BN, Ti(CN), TiN, DLC and AlN materials have been produced successfully on various substrates at room temperature. A wide interface layer exists between film and substrate, resulting in strong adhesion. Metal surface properties can be improved greatly by using this kind of treatment

  7. Mechanism of deposit formation on fuel-wetted metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stavinoha, L.L.; Westbrook, S.R.; McInnis, L.A. [Southwest Research Institute, San Antonio, TX (United States)

    1995-05-01

    Experiments were performed in a Single-Tube Heat Exchanger (STHE) apparatus and a Hot Liquid Process Simulator (HLPS) configured and operated to meet Jet Fuel Thermal Oxidation Tester (JFTOT) ASTM D 3241 requirements. The HLPS-JFTOT heater tubes used were 1018 mild steel, 316 stainless steel (SS), 304 stainless steel (SS), and 304 SS tubes coated with aluminum, magnesium, gold, and copper. A low-sulfur Jet A fuel with a breakpoint temperature of 254{degrees}C was used to create deposits on the heater tubes at temperatures of 300{degrees}C, 340{degrees}C, and 380{degrees}C. Deposit thickness was measured by dielectric breakdown voltage and Auger ion milling. Pronounced differences between the deposit thickness measuring techniques suggested that both the Auger milling rate and the dielectric strength of the deposit may be affected by deposit morphology/composition (such as metal ions that may have become included in the bulk of the deposit). Carbon burnoff data were obtained as a means of judging the validity of DMD-derived deposit evaluations. ESCA data suggest that the thinnest deposit was on the magnesium-coated test tube. The Scanning Electron Microscope (SEM) photographs showed marked variations in the deposit morphology and the results suggested that surface composition has a significant effect on the mechanism of deposition. The most dramatic effect observed was that the bulk of deposits moved to tube locations of lower temperature as the maximum temperature of the tube was increased from 300{degrees} to 380{degrees}C, also verified in a single-tube heat exchanger. The results indicate that the deposition rate and quantity at elevated temperatures is not completely temperature dependent, but is limited by the concentration of dissolved oxygen and/or reactive components in the fuel over a temperature range.

  8. ELECTROCATALYSIS ON SURFACES MODIFIED BY METAL MONOLAYERS DEPOSITED AT UNDERPOTENTIALS.

    Energy Technology Data Exchange (ETDEWEB)

    ADZIC,R.

    2000-12-01

    The remarkable catalytic properties of electrode surfaces modified by monolayer amounts of metal adatoms obtained by underpotential deposition (UPD) have been the subject of a large number of studies during the last couple of decades. This interest stems from the possibility of implementing strictly surface modifications of electrocatalysts in an elegant, well-controlled way, and these bi-metallic surfaces can serve as models for the design of new catalysts. In addition, some of these systems may have potential for practical applications. The UPD of metals, which in general involves the deposition of up to a monolayer of metal on a foreign substrate at potentials positive to the reversible thermodynamic potential, facilitates this type of surface modification, which can be performed repeatedly by potential control. Recent studies of these surfaces and their catalytic properties by new in situ surface structure sensitive techniques have greatly improved the understanding of these systems.

  9. Electrical properties of multilayer (DLC-TiC) films produced by pulsed laser deposition

    Science.gov (United States)

    Alawajji, Raad A.; Kannarpady, Ganesh K.; Nima, Zeid A.; Kelly, Nigel; Watanabe, Fumiya; Biris, Alexandru S.

    2018-04-01

    In this work, pulsed laser deposition was used to produce a multilayer diamond like carbon (ML (DLC-TiC)) thin film. The ML (DLC-TiC) films were deposited on Si (100) and glass substrates at various substrate temperatures in the range of 20-450 °C. Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), and atomic force microscopy were utilized to characterize the prepared films. Raman analysis revealed that as the substrate temperature increased, the G-peak position shifted to a higher raman shift and the full width at half maximum of the G and D bands decreased. XPS analysis indicated a decrease in sp3/sp2 ratio and an increase in Ti-C bond intensity when the substrate temperature was increased. Additionally, the surface roughness of ML (DLC-TiC) filmswas affected by the type and temperature of the substrate. The electrical measurement results indicated that the electrical resistivity of the ML (DLC-TiC) film deposited on Si and glass substrates showed the same behavior-the resistivity decreased when substrate temperature increased. Furthermore, the ML (DLC-TiC) films deposited on silicon showed lower electrical resistivity, dropping from 8.39E-4 Ω-cm to 5.00E-4 Ω-cm, and, similarly, the films on the glass substrate displayed a drop in electrical resistivity from 1.8E-2 Ω-cm to 1.2E-3 Ω-cm. These enhanced electrical properties indicate that the ML (DLC-TiC) films have widespread potential as transducers for biosensors in biological research; electrochemical electrodes, because these films can be chemically modified; biocompatible coatings for medicals tools; and more.

  10. Characterization of triboelectrically charged particles deposited on dielectric surfaces

    Science.gov (United States)

    Nesterov, A.; Löffler, F.; Cheng, Yun-Chien; Torralba, G.; König, K.; Hausmann, M.; Lindenstruth, V.; Stadler, V.; Bischoff, F. R.; Breitling, F.

    2010-04-01

    A device for the measurement of q/m-values and charge degradation of triboelectrically charged particles deposited on a surface was developed. The setup is based on the integration of currents, which are induced in a Faraday cage by insertion of a solid support covered with charged particles. The conductivity of different particle supports was taken into account. The 'blow-off' method, in which the particles are first deposited, and then blown off using an air stream, can be used for characterization of triboelectric properties of particles relative to different surfaces.

  11. Characterization of triboelectrically charged particles deposited on dielectric surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Nesterov, A; Torralba, G; Hausmann, M; Lindenstruth, V [Kirchhoff Institute of Physics, In Neuenheimer Feld 227, Heidelberg (Germany); Loeffler, F; Cheng, Yun-Chien; Koenig, K; Stadler, V; Bischoff, F R [German Cancer Research Centre, In Neuenheimer Feld 280, Heidelberg (Germany); Breitling, F, E-mail: Frank.Breitling@KIT.ed, E-mail: alexander.nesterov-mueller@kit.ed [Karlsruhe Institute of Technology (KIT), Institute for Microstructure Technology, Herrmann von Helmholtzplatz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2010-04-28

    A device for the measurement of q/m-values and charge degradation of triboelectrically charged particles deposited on a surface was developed. The setup is based on the integration of currents, which are induced in a Faraday cage by insertion of a solid support covered with charged particles. The conductivity of different particle supports was taken into account. The 'blow-off' method, in which the particles are first deposited, and then blown off using an air stream, can be used for characterization of triboelectric properties of particles relative to different surfaces.

  12. ASSESSMENT OF SURFACE QUALITY FOR CHOSEN MILLING STRATEGIES WHEN PRODUCING RELIEF SURFACES

    OpenAIRE

    Jan Varga; Jozef Stahovec; Jozef Beno; Marek Vrabeľ

    2014-01-01

    The paper deals with design and modeling of the relief surfaces that are produced in milling. Modeled and real surface quality is presented for the chosen fragments of the relief surfaces. Fragmentation of the relief surfaces has been made by the surface sampling. Milling strategies are compared with regard to surface formation. Surface quality was checked with regard to applied cutting conditions.

  13. Deposition and characterization of ITO films produced by laser ablation at 355 nm

    DEFF Research Database (Denmark)

    Holmelund, E.; Thestrup Nielsen, Birgitte; Schou, Jørgen

    2002-01-01

    Indium tin oxide (ITO) films have been deposited by pulsed laser deposition (PLD) at 355 nm. Even though the absorption of laser light at the wavelength 355 nm is much smaller than that of the standard excimer lasers for PLD at 248 nm and 193 nm, high-quality films can be produced. At high fluence...

  14. Pure and Sn-doped ZnO films produced by pulsed laser deposition

    DEFF Research Database (Denmark)

    Holmelund, E.; Schou, Jørgen; Tougaard, S.

    2002-01-01

    A new technique, metronome doping, has been used for doping of films during pulsed laser deposition (PLD). This technique makes it possible to dope continuously during film growth with different concentrations of a dopant in one deposition sequence. Films of pure and doped ZnO have been produced...

  15. Deposition of fine and ultrafine particles on indoor surface materials

    DEFF Research Database (Denmark)

    Afshari, Alireza; Reinhold, Claus

    2008-01-01

    -scale test chamber. Experiments took place in a 32 m3 chamber with walls and ceiling made of glass. Prior to each experiment the chamber was flushed with outdoor air to reach an initial particle concentration typical of indoor air in buildings with natural ventilation. The decay of particle concentrations...... The aim of this study was the experimental determination of particle deposition for both different particle size fractions and different indoor surface materials. The selected surface materials were glass, gypsum board, carpet, and curtain. These materials were tested vertically in a full...... was monitored. Seven particle size fractions were studied. These comprised ultrafine and fine particles. Deposition was higher on carpet and curtain than on glass and gypsum board. Particles ranging from 0.3 to 0.5 µm had the lowest deposition. This fraction also has the highest penetration and its indoor...

  16. Chemical milling solution produces smooth surface finish on aluminum

    Science.gov (United States)

    Lorenzen, H. C.

    1966-01-01

    Elementary sulfur mixed into a solution of caustic soda and salts produces an etchant which will chemically mill end-grain surfaces on aluminum plate. This composition results in the least amount of thickness variation and pitting.

  17. Effects of surface deposition and droplet injection on film cooling

    International Nuclear Information System (INIS)

    Wang, Jin; Cui, Pei; Vujanović, Milan; Baleta, Jakov; Duić, Neven; Guzović, Zvonimir

    2016-01-01

    Highlights: • Cooling effectiveness is significantly affected by the deposition size. • Coverage area for model without mist is reduced by increasing the deposition height. • Wall temperature is decreased by 15% with 2% mist injection. • Cooling coverage is increased by more than three times with 2% mist injection. • Cooling effectiveness for mist models is improved by increasing deposition height. - Abstract: In the present research, the influence of the particle dispersion onto the continuous phase in film cooling application was analysed by means of numerical simulations. The interaction between the water droplets and the main stream plays an important role in the results. The prediction of two-phase flow is investigated by employing the discrete phase model (DPM). The results present heat transfer characteristics in the near-wall region under the influence of mist cooling. The local wall temperature distribution and film cooling effectiveness are obtained, and results show that the film cooling characteristics on the downstream wall are affected by different height of surface deposits. It is also found that smaller deposits without mist injection provide a lower wall temperature and a better cooling performance. With 2% mist injection, evaporation of water droplets improves film cooling effectiveness, and higher deposits cause lateral and downstream spread of water droplets. The results indicate that mist injection can significantly enhance film cooling performance.

  18. Weathering and decontamination of radioactivity deposited on asphalt surfaces

    International Nuclear Information System (INIS)

    Warming, L.

    1982-12-01

    Longlived fission products might be deposited in the environment after a serious reactor accident. At Risoe we have studied how danish weather conditions and fire hosing influence the decontamination of Rubidium 86 (representing Cesium 134 and 137) Barium-Lanthanum 140 and Ruthenium 103 deposited on asphalt surfaces. Measurements have been done at different types of roads and during all seasons including winter with snow and ice cover of the roads. The results from the first five experiments were used for calculating doses to the population in the land contamination (RISO-R-462). (author)

  19. Deposition of size-selected atomic clusters on surfaces

    International Nuclear Information System (INIS)

    Carroll, S.J.

    1999-06-01

    This dissertation presents technical developments and experimental and computational investigations concerned with the deposition of atomic clusters onto surfaces. It consists of a collection of papers, in which the main body of results are contained, and four chapters presenting a subject review, computational and experimental techniques and a summary of the results presented in full within the papers. Technical work includes the optimization of an existing gas condensation cluster source based on evaporation, and the design, construction and optimization of a new gas condensation cluster source based on RF magnetron sputtering (detailed in Paper 1). The result of cluster deposition onto surfaces is found to depend on the cluster deposition energy; three impact energy regimes are explored in this work. (1) Low energy: n clusters create a defect in the surface, which pins the cluster in place, inhibiting cluster diffusion at room temperature (Paper V). (3) High energy: > 50 eV/atom. The clusters implant into the surface. For Ag 20 -Ag 200 clusters, the implantation depth is found to scale linearly with the impact energy and inversely with the cross-sectional area of the cluster, with an offset due to energy lost to the elastic compression of the surface (Paper VI). For smaller (Ag 3 ) clusters the orientation of the cluster with respect to the surface and the precise impact site play an important role; the impact energy has to be 'focused' in order for cluster implantation to occur (Paper VII). The application of deposited clusters for the creation of Si nanostructures by plasma etching is explored in Paper VIII. (author)

  20. Combustion Chamber Deposits and PAH Formation in SI Engines Fueled by Producer Gas from Biomass Gasification

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Schramm, Jesper

    2003-01-01

    Investigations were made concerning the formation of combustion chamber deposits (CCD) in SI gas engines fueled by producer gas. The main objective was to determine and characterise CCD and PAH formation caused by the presence of the light tar compounds phenol and guaiacol in producer gas from an...

  1. Fractal characteristics of an asphaltene deposited heterogeneous surface

    International Nuclear Information System (INIS)

    Amin, J. Sayyad; Ayatollahi, Sh.; Alamdari, A.

    2009-01-01

    Several methods have been employed in recent years to investigate homogeneous surface topography based on image analysis, such as AFM (atomic force microscopy) and SEM (scanning electron microscopy). Fractal analysis of the images provides fractal dimension of the surface which is used as one of the most common surface indices. Surface topography has generally been considered to be mono-fractal. On the other hand, precipitation of organic materials on a rough surface and its irregular growth result in morphology alteration and converts a homogeneous surface to a heterogeneous one. In this case a mono-fractal description of the surface does not completely describe the nature of the altered surface. This work aims to investigate the topography alteration of a glass surface as a result of asphaltene precipitation and its growth at various pressures using a bi-fractal approach. The experimental results of the deposited surfaces were clearly indicating two regions of micro- and macro-asperities namely, surface types I and II, respectively. The fractal plots were indicative of bi-fractal behavior and for each surface type one fractal dimension was calculated. The topography information of the surfaces was obtained by two image analyses, AFM and SEM imaging techniques. Results of the bi-fractal analysis demonstrated that topography alteration in surface type II (macro-asperities) is more evident than that in surface type I (micro-asperities). Compared to surface type II, a better correlation was observed between the fractal dimensions inferred from the AFM images (D A ) and those of the SEM images (D S ) in surface type I.

  2. Putative cryomagma interaction with aerosols deposit at Titan's surface

    Science.gov (United States)

    Coll, Patrice; Navarro-Gonzalez, Rafael; Raulin, Francois; Coscia, David; Ramirez, Sandra I.; Buch, Arnaud; Szopa, Cyril; Poch, Olivier; Cabane, Michel; Brassé, Coralie

    The largest moon of Saturn, Titan, is known for its dense, nitrogen-rich atmosphere. The organic aerosols which are produced in Titan’s atmosphere are of great astrobiological interest, particularly because of their potential evolution when they reach the surface and may interact with putative ammonia-water cryomagma [1]. In this context we have followed the evolution of alkaline pH hydrolysis (25wt% ammonia-water) of Titan aerosol analogues, that have been qualified as representative of Titan’s aerosols [2]. Indeed the first results obtained by the ACP experiment onboard Huygens probe revealed that the main products obtained after thermolysis of Titan’s collected aerosols, were ammonia (NH3) and hydrogen cyanide (HCN). Then performing a direct comparison of the volatiles produced after a thermal treatment done in conditions similar to the ones used by the ACP experiment, we may estimate that the tholins we used are relevant to chemical analogues of Titan’s aerosols, and to note free of oxygen. Taking into account recent studies proposing that the subsurface ocean may contain a lower fraction of ammonia (about 5wt% or less [3]), and assuming the presence of specific gas species [4, 5], in particular CO2 and H2S, trapped in likely internal ocean, we determine a new probable composition of the cryomagma which could potentially interact with deposited Titan’s aerosols. We then carried out different hydrolyses, taking into account this composition, and we established the influence of the hydrolysis temperature on the organic molecules production. References: [1] Mitri et al., 2008. Resurfacing of Titan by ammonia-water cryomagma. Icarus. 196, 216-224. [2] Coll et al. 2013, Can laboratory tholins mimic the chemistry producing Titan's aerosols? A review in light of ACP experimental results, Planetary and Space Science 77, 91-103. [3] Tobie et al. 2012. Titan’s Bulk Composition Constrained by Cassini-Huygens: implication for internal outgassing. The

  3. Physical and optical characterisation of carbon-silicon layers produced by rapid thermal chemical vapour deposition

    International Nuclear Information System (INIS)

    McBride, G.M.

    1994-04-01

    The Quplas II reactor is a novel chemical vapour deposition (CVD) system, which was recently designed and built at The Queen's University of Belfast. The system was intended to produce layers of Silicon (Si) for application in advanced bipolar transistor manufacture. It became clear that the system was capable of depositing novel materials such as Silicon-Carbon (Si-C) films which could have application as the emitter material in heterojunction bipolar transistors (HBT's) formed on silicon substrates. This work focuses mainly on the development of analytical techniques to allow characterisation of the deposited layers of Si-C and permit optimisation of both the process conditions and the deposition system. The techniques that were developed to characterise the Si-C films in terms of their physical and optical properties included: Secondary Ion Mass Spectroscopy (SIMS), X-Ray Diffractometry (XRD), Transmission and Scanning Electron Microscopy (TEM and SEM), Near Infrared (NIR) and Ultraviolet/Visible/Near Infrared (UV/VIS/NIR) Spectroscopy. From assessing the data obtained from the analysis of the samples using the techniques mentioned above, it was possible to characterise the Si-C films in terms of: stoichiometry, crystallinity, degree of oxygen contamination, thickness, optical roughness of the film/air and film/substrate interfaces, and energy bandgap. In the fabrication of Si-C films it was found to be necessary to use low process pressures in order to ensure that the film deposition was slow enough to allow for a more ordered growth process. This led to the formation of polycrystalline Si-C films which had greatly reduced levels of oxygen compared to earlier amorphous films. In addition the polycrystalline Si-C films tended to have optically rough film/air and film/substrate interfaces. For most samples it was possible to obtain the thickness of their Si-C films from their SIMS profiles. Based on the method of interferometry, the thickness of the Si-C films

  4. One-step microwave plasma enhanced chemical vapor deposition (MW-PECVD) for transparent superhydrophobic surface

    Science.gov (United States)

    Thongrom, Sukrit; Tirawanichakul, Yutthana; Munsit, Nantakan; Deangngam, Chalongrat

    2018-02-01

    We demonstrate a rapid and environmental friendly fabrication technique to produce optically clear superhydrophobic surfaces using poly (dimethylsiloxane) (PDMS) as a sole coating material. The inert PDMS chain is transformed into a 3-D irregular solid network through microwave plasma enhanced chemical vapor deposition (MW-PECVD) process. Thanks to high electron density in the microwave-activated plasma, coating can be done in just a single step with rapid deposition rate, typically much shorter than 10 s. Deposited layers show excellent superhydrophobic properties with water contact angles of ∼170° and roll-off angles as small as ∼3°. The plasma-deposited films can be ultrathin with thicknesses under 400 nm, greatly diminishing the optical loss. Moreover, with appropriate coating conditions, the coating layer can even enhance the transmission over the entire visible spectrum due to a partial anti-reflection effect.

  5. Selective electrochemical gold deposition onto p-Si (1 0 0) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Santinacci, L; Etcheberry, A [Institut Lavoisier de Versailles (UMR CNRS 8180), University of Versailles-Saint-Quentin, 45 avenue des Etats-Unis, F-78035 Versailles cedex (France); Djenizian, T [Laboratoire Chimie Provence (UMR CNRS 6264), University of Aix-Marseille I-II-III, Centre Saint-Jerome, F-13397 Marseille Cedex 20 (France); Schwaller, P [Laboratory for Mechanics of Materials and Nanostructures, Swiss Federal Laboratory for Materials Testing and Research, Feuerwerkstr. 39, CH-3602 Thun (Switzerland); Suter, T [Laboratory for Corrosion and Materials Integrity, Swiss Federal Laboratory for Materials Testing and Research, Ueberlandstr. 129, CH-8600 Duebendorf (Switzerland); Schmuki, P [Department of Materials Science, LKO-WW4, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 7, D-91058 Erlangen (Germany)], E-mail: lionel.santinacci@uvsq.fr

    2008-09-07

    In this paper, we report selective electrochemical gold deposition onto p-type Si (1 0 0) into nanoscratches produced through a thin oxide layer using an atomic force microscope. A detailed description of the substrate engraving process is presented. The influence of the main scratching parameters such as the normal applied force, the number of scans and the scanning velocity are investigated as well as the mechanical properties of the substrate. Gold deposition is carried out in a KAu(CN){sub 2} + KCN solution by applying cathodic voltages for various durations. The gold deposition process is investigated by cyclic voltammetry. Reactivity enhancement at the scratched locations was studied by comparing the electrochemical behaviour of intact and engraved surfaces using a micro-electrochemical setup. Selective electrochemical gold deposition is achieved: metallic patterns with a sub-500 nm lateral resolution are obtained demonstrating, therefore, the bearing potential of this patterning technique.

  6. Performance evaluation of paper embossing tools produced by fused deposition modelling additive manufacturing technology

    Directory of Open Access Journals (Sweden)

    Gordana Delić

    2017-12-01

    Full Text Available From its beginnings, up to a few years ago, additive manufacturing technology was able to produce models or prototypes which have limited use, because of materials mechanical properties. With advancement and invention of new materials, this is changing. Now, it is possible to create 3D prints that can be used as final products or functional tools, using technology and materials with low environmental impact. The goal of this study was to examine opportunities for production of paper embossing tools by fused deposition modelling (FDM 3D printing. This study emphasises the use of environmentally friendly poly-lactic acid (PLA materials in FDM technology, contrary to the conventional method using metal alloys and acids. Embossing of line elements and letters using 3D printed embossing tools was done on six different types of paper. Embossing force was applied using SHIMADZU EZ-LX Compact Tabletop Testing Machine. Each type of paper was repeatedly embossed using different values of embossing force (in 250 N increments, starting at 1000 N to determine the optimal embossing force for each specific paper type. When determined, the optimal embossing force was used on ten samples for each paper type. Results of embossing were analysed and evaluated. The analysis consisted of investigating the effects of the applied embossing force and characteristics such as paper basis weight, paper structure, surface characteristic and fibre direction of the paper. Results show that paper characteristics determine the embossing force required for achieving a good embossing result. This means that with the right amount of embossing force, letters and borderlines can be equally well formed by the embossing process regardless of paper weight, surface characteristics, etc. Embossing tools produced in this manner can be used in case of the embossing elements that are not complex. The reason for this is the limitation of FDM technology and lack of precision needed for fine

  7. Deposition of silver nanoparticles on titanium surface for antibacterial effect

    Directory of Open Access Journals (Sweden)

    Liao Juan

    2010-04-01

    Full Text Available Liao Juan1, Zhu Zhimin3, Mo Anchun1,2, Li Lei1, Zhang Jingchao11State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, PR China; 2Department of Dental Implant, West China Stomatology Hospital, Sichuan University, Chengdu 610041, PR China; 3Department of Prosthodontics, West China Stomatology Hospital, Sichuan University, Chengdu 610041, PR ChinaAbstract: Microbial colonization on implanted devices and biofilm formation is a recurrent complication in implant surgery and may result in loss of implants. The aim of this study was to deposit silver nanoparticles on a titanium surface to obtain antibacterial properties. In the present study, we prepared a silver nanoparticle-modified titanium (Ti-nAg surface using silanization method. The morphology and chemical components of the Ti-nAg surface were characterized by scanning electron microscopy (SEM equipped with energy-dispersive spectroscopy (EDS. Two species of bacteria, Staphylococcus aureus and Escherichia coli, were utilized to test the antibacterial effect of the Ti-nAg treated surface. The SEM examination revealed that a small quantity of silver nanoparticles was sparsely deposited on the titanium surface. The diameter of these nanoparticles ranged from ten to several hundred nm. EDS analyses revealed that there was 4.26% of Ag present on the surface. After a 24-hour incubation, 94% of Staphylococcus aureus and over 95% of Escherichia coli had been killed on the Ti-nAg surface, and the SEM examination of anti-adhesive efficacy test showed that there were less bacteria attached to Ti-nAg surface than to a control surface of untreated Titanium. These data suggest that silver nanoparticle-modified titanium is a promising material with an antibacterial property that may be used as an implantable biomaterial.Keywords: nano-silver, titanium, antibacterial activity, silanization method

  8. Micro- and nano-surface structures based on vapor-deposited polymers

    Directory of Open Access Journals (Sweden)

    Hsien-Yeh Chen

    2017-07-01

    Full Text Available Vapor-deposition processes and the resulting thin polymer films provide consistent coatings that decouple the underlying substrate surface properties and can be applied for surface modification regardless of the substrate material and geometry. Here, various ways to structure these vapor-deposited polymer thin films are described. Well-established and available photolithography and soft lithography techniques are widely performed for the creation of surface patterns and microstructures on coated substrates. However, because of the requirements for applying a photomask or an elastomeric stamp, these techniques are mostly limited to flat substrates. Attempts are also conducted to produce patterned structures on non-flat surfaces with various maskless methods such as light-directed patterning and direct-writing approaches. The limitations for patterning on non-flat surfaces are resolution and cost. With the requirement of chemical control and/or precise accessibility to the linkage with functional molecules, chemically and topographically defined interfaces have recently attracted considerable attention. The multifunctional, gradient, and/or synergistic activities of using such interfaces are also discussed. Finally, an emerging discovery of selective deposition of polymer coatings and the bottom-up patterning approach by using the selective deposition technology is demonstrated.

  9. Surface modification of biomaterials by pulsed laser ablation deposition and plasma/gamma polymerization

    Science.gov (United States)

    Rau, Kaustubh R.

    ablation was developed for the 248 nm laser irradiation of silicone. The model demonstrated a good fit to the experimental data and showed that silicone underwent ablation by a thermal mechanism. In addition to PLAD studies, functionalization of stainless steel was carried out by a combined plasma/gamma method involving deposition of a hexane plasma polymer by RF plasma polymerization, followed by gamma radiation graft polymerization of methacrylic acid. The hydrograft modified surfaces were further modified by chemisorption reactions with poly(ethylene imine) to produce amine-rich surfaces. Bovine serum albumin was then bound via amino groups using glutaraldehyde coupling. A streaming potential cell was also built and used to measure the zeta potential of these ionic surfaces.

  10. Particle dry deposition to water surfaces: Processes and consequences

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, R.J.

    2000-01-01

    flux to coastal waters, atmosphere-surface exchange represents a significant component of the total flux and may be particularly critical during the summertime when both the riverine input and ambient nutrient concentrations are often at a minimum. In this chapter, we present an overview...... of the physical and chemical processes which dictate the quantity (and direction) of atmosphere-surface fluxes of trace chemicals to (and above) water surfaces with particular emphasis on the role of particles. Dry deposition (transfer to the surface in the absence of precipitation) of particles is determined...... efforts to simulate and measure fluxes close to the coastline. These arise in part from the complexity of atmospheric flow in this region where energy and chemical fluxes are highly inhomogeneous in space and time and thermally generated atmospheric circulations are commonplace. (C) 2000 Elsevier Science...

  11. Micro/nano engineering on stainless steel substrates to produce superhydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Beckford, Samuel; Zou Min, E-mail: mzou@uark.edu

    2011-12-30

    Creating micro-/nano-scale topography on material surfaces to change their wetting properties has been a subject of much interest in recent years. Wenzel in 1936 and Cassie and Baxter in 1944 proposed that by microscopically increasing the surface roughness of a substrate, it is possible to increase its hydrophobicity. This paper reports the fabrication of micro-textured surfaces and nano-textured surfaces, and the combination of both on stainless steel substrates by sandblasting, thermal evaporation of aluminum, and aluminum-induced crystallization (AIC) of amorphous silicon (a-Si). Meanwhile, fluorinated carbon films were used to change the chemical composition of the surfaces to render the surfaces more hydrophobic. These surface modifications were investigated to create superhydrophobic surfaces on stainless steel substrates. The topography resulting from these surface modifications was analyzed by scanning electron microscopy and surface profilometry. The wetting properties of these surfaces were characterized by water contact angle measurement. The results of this study show that superhydrophobic surfaces can be produced by either micro-scale surface texturing or nano-scale surface texturing, or the combination of both, after fluorinated carbon film deposition.

  12. Dry deposition fluxes and deposition velocities of trace metals in the Tokyo metropolitan area measured with a water surface sampler.

    Science.gov (United States)

    Sakata, Masahiro; Marumoto, Kohji

    2004-04-01

    Dry deposition fluxes and deposition velocities (=deposition flux/atmospheric concentration) for trace metals including Hg, Cd, Cu, Mn, Pb, and Zn in the Tokyo metropolitan area were measured using an improved water surface sampler. Mercury is deposited on the water surface in both gaseous (reactive gaseous mercury, RGM) and particulate (particulate mercury, Hg(p)) forms. The results based on 1 yr observations found that dry deposition plays a significant if not dominant role in trace metal deposition in this urban area, contributing fluxes ranging from 0.46 (Cd) to 3.0 (Zn) times those of concurrent wet deposition fluxes. The deposition velocities were found to be dependent on the deposition of coarse particles larger than approximately 5 microm in diameter on the basis of model calculations. Our analysis suggests that the 84.13% diameter is a more appropriate index for each deposited metal than the 50% diameter in the assumed undersize log-normal distribution, because larger particles are responsible for the flux. The deposition velocities for trace metals other than mercury increased exponentially with an increase in their 84.13% diameters. Using this regression equation, the deposition velocities for Hg(p) were estimated from its 84.13% diameter. The deposition fluxes for Hg(p) calculated from the estimated velocities tended to be close to the mercury fluxes measured with the water surface sampler during the study periods except during summer.

  13. Deposition of tin oxide doped with fluorine produced by sol-gel method and deposited by spray-pyrolysis

    International Nuclear Information System (INIS)

    Maia, Paulo Herbert Franca; Lima, Francisco Marcone; Sena, Aline Cosmo de; Silva, Alvaro Neuton; Almeida, Ana Fabiola Leite de; Freire, Francisco Nivaldo Aguiar

    2014-01-01

    Solar energy is one of the most important sources of renewable energy today, but its production is based on silicon cells, expensive and difficult to produce, so the research seek new materials to replace them. This work aims to deposit tin oxide doped with fluorine on the glass substrate using the sol-gel method to provide a working solution and spray pyrolysis technique to perform the deposition. F-SnO2 (FTO) were synthesized by sol-gel method, employing NH_4F and SnCl_2 precursor in an ethanol solution. Before the formation of the gel phase, the entire solution was sprayed, with the aid of a pistol aerographic substrate under heated at 600 °C divided by 50 applications and cooled in the furnace. The substrates had resistances between 10 and 30 S.cm. The energy dispersive x-ray (EDS) revealed the presence of fluorine in the SnO_2 network. (author)

  14. Effects of build parameters on linear wear loss in plastic part produced by fused deposition modeling

    Science.gov (United States)

    Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal

    2017-07-01

    Fused Deposition Modeling (FDM) is one of the prominent additive manufacturing technologies for producing polymer products. FDM is a complex additive manufacturing process that can be influenced by many process conditions. The industrial demands required from the FDM process are increasing with higher level product functionality and properties. The functionality and performance of FDM manufactured parts are greatly influenced by the combination of many various FDM process parameters. Designers and researchers always pay attention to study the effects of FDM process parameters on different product functionalities and properties such as mechanical strength, surface quality, dimensional accuracy, build time and material consumption. However, very limited studies have been carried out to investigate and optimize the effect of FDM build parameters on wear performance. This study focuses on the effect of different build parameters on micro-structural and wear performance of FDM specimens using definitive screening design based quadratic model. This would reduce the cost and effort of additive manufacturing engineer to have a systematic approachto make decision among the manufacturing parameters to achieve the desired product quality.

  15. Studies on deposition of radon daughters on glass surface

    International Nuclear Information System (INIS)

    Loerinc, M.; Feher, I.; Palfalvi, J.

    1998-01-01

    In a certain village in Northern Hungary, in some houses the radon concentration was found to be in the order of kBq.m -3 . In an attempt to decide whether an earthquake or the near-by mining activity is to blame, past radon concentration was studied making use of radon daughters embedded in the surface layer of glass sheets. In the investigation several conclusions were reached: drastic changes in Rn concentration could be excluded, ie., the high Rn concentration existed over the last 50 years; the continuing deposition of dirt on the glass surface and the occasional cleaning had no significant effect; the effect of corrosion processes at the glass surface should be further investigated. (A.K.)

  16. Reactive physical vapor deposition of TixAlyN: Integrated plasma-surface modeling characterization

    International Nuclear Information System (INIS)

    Zhang Da; Schaeffer, J.K.

    2004-01-01

    Reactive physical vapor deposition (RPVD) has been widely applied in the microelectronic industry for producing thin films. Fundamental understanding of RPVD mechanisms is needed for successful process development due to the high sensitivity of film properties on process conditions. An integrated plasma equipment-target nitridation modeling infrastructure for RPVD has therefore been developed to provide mechanistic insights and assist optimal process design. The target nitridation model computes target nitride coverage based on self-consistently derived plasma characteristics from the plasma equipment model; target sputter yields needed in the plasma equipment model are also self-consistently derived taking into account the yield-suppressing effect from nitridation. The integrated modeling infrastructure has been applied to investigating RPVD processing with a Ti 0.8 Al 0.2 compound target and an Ar/N 2 gas supply. It has been found that the process produces athermal metal neutrals as the primary deposition precursor. The metal stoichiometry in the deposited film is close to the target composition due to the predominance of athermal species in the flux that reaches the substrate. Correlations between process parameters (N 2 flow, target power), plasma characteristics, surface conditions, and deposition kinetics have been studied with the model. The deposition process is characterized by two regimes when the N 2 flow rate is varied. When N 2 is dilute relative to argon, target nitride coverage increases rapidly with increasing N 2 flow. The sputter yield and deposition rate consequently decrease. For less dilute N 2 mixtures, the sputter yield and deposition rate are stable due to the saturation of target nitridation. With increasing target power, the electron density increases nearly linearly while the variation of N generation is much smaller. Target nitridation and its suppression of the sputter yield saturate at high N 2 flow rendering these parameters

  17. Tribological investigations of perfluoroalkylsilanes monolayers deposited on titanium surface

    International Nuclear Information System (INIS)

    Cichomski, Michał

    2012-01-01

    Therefore the present work reports a systematic study of titanium modification by fluoroalkylsilanes and surface characterization from the tribological point of view. The vapor phase deposition method was used to modify titanium surfaces by fluoroalkylsilanes and the influence of the used modifier on the tribological properties is presented. The modification procedure efficiency, surface structure and morphology were characterized by secondary ion mass spectrometry, infrared spectroscopy and atomic force microscopy. The effectiveness of modification of the titanium surface was monitored by the measurement of the wetting contact angle and the surface free energy. The increase of surface hydrophobicity was observed upon the modification by increasing the wetting contact angle and reducing the surface free energy. The tribological performance of various perfluoroalkylsilanes films on the titanium surface was investigated in mili- and nano-newton load ranges. Dependence of the adhesive force and coefficient of friction values obtained in nano- and micro-scale on fluoroalkyl chain length was observed. Nano- and micro-tribological measurements show that titanium modified by fluoroalkylsilanes has lower adhesion and coefficient of friction than unmodified one. The investigation also indicates a decrease of the friction coefficient with increasing fluoric alkyl chain length. It was found that the titanium modified by fluoroalkylsilanes with longer alkyl chains is a prime candidate for practical use as a lubricant in biomedical and electronic applications. -- Highlights: ► Titanium surface modification by perfluoroalkylsilanes was investigated. ► The effectiveness of modification was monitored by the surface free energy. ► The modification procedure correctness was characterized by ToF-SIMS, AFM, FT-IR measurements. ► The tribological performance of modified titanium in differed scale was studied.

  18. Engineering Particle Surface Chemistry and Electrochemistry with Atomic Layer Deposition

    Science.gov (United States)

    Jackson, David Hyman Kentaro

    Atomic layer deposition (ALD) is a vapor phase thin film coating technique that relies on sequential pulsing of precursors that undergo self-limited surface reactions. The self- limiting reactions and gas phase diffusion of the precursors together enable the conformal coating of microstructured particles with a high degree of thickness and compositional control. ALD may be used to deposit thin films that introduce new functionalities to a particle surface. Examples of new functionalities include: chemical reactivity, a mechanically strong protective coating, and an electrically resistive layer. The coatings properties are often dependent on the bulk properties and microstructure of the particle substrate, though they usually do not affect its bulk properties or microstructure. Particle ALD finds utility in the ability to synthesize well controlled, model systems, though it is expensive due to the need for costly metal precursors that are dangerous and require special handling. Enhanced properties due to ALD coating of particles in various applications are frequently described empirically, while the details of their enhancement mechanisms often remain the focus of ongoing research in the field. This study covers the various types of particle ALD and attempts to describe them from the unifying perspective of surface science.

  19. Titanium nitride deposition in titanium implant alloys produced by powder metallurgy

    International Nuclear Information System (INIS)

    Henriques, V.A.R.; Cairo, C.A.A.; Faria, J.; Lemos, T.G.; Galvani, E.T.

    2009-01-01

    Titanium nitride (TiN) is an extremely hard material, often used as a coating on titanium alloy, steel, carbide, and aluminum components to improve wear resistance. Electron Beam Physical Vapor Deposition (EB-PVD) is a form of deposition in which a target anode is bombarded with an electron beam given off by a charged tungsten filament under high vacuum, producing a thin film in a substrate. In this work are presented results of TiN deposition in targets and substrates of Ti (C.P.) and Ti- 13 Nb- 13 Zr obtained by powder metallurgy. Samples were produced by mixing of hydride metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by sintering between 900°C up to 1400 °C, in vacuum. The deposition was carried out under nitrogen atmosphere. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. It was shown that the samples were sintered to high densities and presented homogeneous microstructure, with ideal characteristics for an adequate deposition and adherence. The film layer presented a continuous structure with 15μm. (author)

  20. Unusual behavior in magnesium-copper cluster matter produced by helium droplet mediated deposition

    Energy Technology Data Exchange (ETDEWEB)

    Emery, S. B., E-mail: samuel.emery@navy.mil; Little, B. K. [University of Dayton Research Institute, 300 College Park, Dayton, Ohio 45469 (United States); Air Force Research Laboratory, Munitions Directorate, 2306 Perimeter Rd., Eglin AFB, Florida 32542 (United States); Xin, Y. [National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 (United States); Ridge, C. J.; Lindsay, C. M. [Air Force Research Laboratory, Munitions Directorate, 2306 Perimeter Rd., Eglin AFB, Florida 32542 (United States); Buszek, R. J. [ERC Inc., Edwards AFB, California 93524 (United States); Boatz, J. A. [Air Force Research Laboratory, Aerospace System Directorate, Edwards AFB, California 93524 (United States); Boyle, J. M. [Naval Surface Warfare Center Indian Head Explosive Ordnance Technology Division, Indian Head, Maryland 20640 (United States)

    2015-02-28

    We demonstrate the ability to produce core-shell nanoclusters of materials that typically undergo intermetallic reactions using helium droplet mediated deposition. Composite structures of magnesium and copper were produced by sequential condensation of metal vapors inside the 0.4 K helium droplet baths and then gently deposited onto a substrate for analysis. Upon deposition, the individual clusters, with diameters ∼5 nm, form a cluster material which was subsequently characterized using scanning and transmission electron microscopies. Results of this analysis reveal the following about the deposited cluster material: it is in the un-alloyed chemical state, it maintains a stable core-shell 5 nm structure at sub-monolayer quantities, and it aggregates into unreacted structures of ∼75 nm during further deposition. Surprisingly, high angle annular dark field scanning transmission electron microscopy images revealed that the copper appears to displace the magnesium at the core of the composite cluster despite magnesium being the initially condensed species within the droplet. This phenomenon was studied further using preliminary density functional theory which revealed that copper atoms, when added sequentially to magnesium clusters, penetrate into the magnesium cores.

  1. Pulsed discharges produced by high-power surface waves

    Science.gov (United States)

    Böhle, A.; Ivanov, O.; Kolisko, A.; Kortshagen, U.; Schlüter, H.; Vikharev, A.

    1996-02-01

    The mechanisms of the ionization front advance in surface-wave-produced discharges are investigated using two experimental set-ups. The high-power surface waves are excited in a 3 cm wavelength band by a surfaguide and a novel type of launcher (an E-plane junction). The ionization front velocity of the surface wave is measured for a wide range of gas pressures, incident microwave power and initial pre-ionization. The experimental results are compared with theoretical ones based on three different models. The comparison between theory and experiment allows one to suggest a new interpretation of the ionization front's advance. The ionization front velocity is determined by a breakdown wave or an ionization wave in the electric field of a high-power surface wave in the zone near the ionization front.

  2. A COMPARISON OF THE TENSILE STRENGTH OF PLASTIC PARTS PRODUCED BY A FUSED DEPOSITION MODELING DEVICE

    Directory of Open Access Journals (Sweden)

    Juraj Beniak

    2015-12-01

    Full Text Available Rapid Prototyping systems are nowadays increasingly used in many areas of industry, not only for producing design models but also for producing parts for final use. We need to know the properties of these parts. When we talk about the Fused Deposition Modeling (FDM technique and FDM devices, there are many possible settings for devices and models which could influence the properties of a final part. In addition, devices based on the same principle may use different operational software for calculating the tool path, and this may have a major impact. The aim of this paper is to show the tensile strength value for parts produced from different materials on the Fused Deposition Modeling device when the horizontal orientation of the specimens is changed.

  3. Surface morphology of caldera-forming eruption deposits revealed by lidar mapping of Crater Lake National Park, Oregon- Implications for emplacement and surface modification

    Science.gov (United States)

    Robinson, Joel E.; Bacon, Charles R.; Major, Jon J.; Wright, Heather M.; Vallance, James W.

    2017-01-01

    Large explosive eruptions of silicic magma can produce widespread pumice fall, extensive ignimbrite sheets, and collapse calderas. The surfaces of voluminous ignimbrites are rarely preserved or documented because most terrestrial examples are heavily vegetated, or severely modified by post-depositional processes. Much research addresses the internal sedimentary characteristics, flow processes, and depositional mechanisms of ignimbrites, however, surface features of ignimbrites are less well documented and understood, except for comparatively small-volume deposits of historical eruptions. The ~7,700 calendar year B.P. climactic eruption of Mount Mazama, USA vented ~50 km3 of magma, deposited first as rhyodacite pumice fall and then as a zoned rhyodacite-to-andesite ignimbrite as Crater Lake caldera collapsed. Lidar collected during summer 2010 reveals the remarkably well-preserved surface of the Mazama ignimbrite and related deposits surrounding Crater Lake caldera in unprecedented detail despite forest cover. The ±1 m lateral and ±4 cm vertical resolution lidar allows surface morphologies to be classified. Surface morphologies are created by internal depositional processes and can point to the processes at work when pyroclastic flows come to rest. We describe nine surface features including furrow-ridge sets and wedge-shaped mounds in pumice fall eroded by high-energy pyroclastic surges, flow- parallel ridges that record the passage of multiple pyroclastic flows, perched benches of marginal deposits stranded by more-mobile pyroclastic-flow cores, hummocks of dense clasts interpreted as lag deposit, transverse ridges that mark the compression and imbrication of flows as they came to rest, scarps indicating ignimbrite remobilization, fields of pit craters caused by phreatic explosions, fractures and cracks caused by extensional processes resulting from ignimbrite volume loss, and stream channels eroded in the newly formed surface. The nine morphologies presented

  4. Nanoimprint Lithography on curved surfaces prepared by fused deposition modelling

    International Nuclear Information System (INIS)

    Köpplmayr, Thomas; Häusler, Lukas; Bergmair, Iris; Mühlberger, Michael

    2015-01-01

    Fused deposition modelling (FDM) is an additive manufacturing technology commonly used for modelling, prototyping and production applications. The achievable surface roughness is one of its most limiting aspects. It is however of great interest to create well-defined (nanosized) patterns on the surface for functional applications such as optical effects, electronics or bio-medical devices. We used UV-curable polymers of different viscosities and flexible stamps made of poly(dimethylsiloxane) (PDMS) to perform Nanoimprint Lithography (NIL) on FDM-printed curved parts. Substrates with different roughness and curvature were prepared using a commercially available 3D printer. The nanoimprint results were characterized by optical light microscopy, profilometry and atomic force microscopy (AFM). Our experiments show promising results in creating well-defined microstructures on the 3D-printed parts. (paper)

  5. A Metallurgical Investigation of the Direct Energy Deposition Surface Repair of Ferrous Alloys

    Science.gov (United States)

    Marya, Manuel; Singh, Virendra; Hascoet, Jean-Yves; Marya, Surendar

    2018-02-01

    Among additive manufacturing (AM) processes, the direct energy deposition (DED) by laser is explored to establish its applicability for the repair of ferrous alloys such as UNS G41400 low-alloy steel, UNS S41000 martensitic stainless steel, UNS S17400 precipitation-strengthened martensitic stainless steel, and UNS S32750 super-duplex stainless steel. Unlike plating, thermal spray, and conventional cladding weld, DED laser powder deposition offers potential advantages, e.g., thin deposits, limited dilutions, narrow heat-affected zones (HAZ), potentially improved surface properties. In this investigation, all AM deposits were completed with an IREPA CLAD™ system using a powder feed of UNS N06625, an alloy largely selected for its outstanding corrosion resistance. This investigation first addresses topological aspects of AM deposits (including visual imperfections) before focusing on changes in microstructure, microhardness, chemical composition across AM deposits and base materials. It has been established that dense, uniform, hard ( 300 HVN), crack-free UNS N06625-compliant AM deposits of fine dendritic microstructures are reliably produced. However, except for the UNS S32750 steel, a significant martensitic hardening was observed in the HAZs of UNS G41400 ( 650 HVN), UNS S41000 ( 500 HVN), and UNS S17400 ( 370 HVN). In summary, this investigation demonstrates that the DED laser repair of ferrous parts with UNS N06625 may restore damaged surfaces, but it also calls for cautions and complementary investigations for alloys experiencing a high HAZ hardening, for which industry standard recommendations are exceeded and lead to an increased risk of delayed cracking in corrosive environments.

  6. Growth and properties of the CuInS2 thin films produced by glancing angle deposition

    International Nuclear Information System (INIS)

    Akkari, F. Chaffar; Kanzari, M.; Rezig, B.

    2008-01-01

    We use the glancing angle deposition technique (GLAD) to grow CuInS 2 thin films by a vacuum thermal method onto glass substrates. During deposition, the substrate temperature was maintained at 200 deg. C. Due to shadowing effect the oblique angle deposition technique can produce nanorods tilted toward the incident deposition flux. The evaporated atoms arrive at the growing interface at a fixed angle θ measured from the substrate normal. The substrate is rotated with rotational speed ω fixed at 0.033 rev s -1 . We show that the use of this growth technique leads to an improvement in the optical properties of the films. Indeed high absorption coefficients (10 5 -3.10 5 cm -1 ) in the visible range and near-IR spectral range are reached. In the case of the absence of the substrate rotation, scanning electron microscopy pictures show that the structure of the resulting film consists of nanocolumns that are progressively inclined towards the evaporation source as the incident angle was increased. If a rapid azimuthal rotation accompanies the substrate tilt, the resulting nanostructure is composed of an array of pillars normal to the substrate. The surface morphology show an improvement without presence of secondary phases for higher incident angles (θ > 60 deg.)

  7. Reaction kinetics of metal deposition via surface limited red-ox replacement of underpotentially deposited metal monolayers

    International Nuclear Information System (INIS)

    Gokcen, Dincer; Bae, Sang-Eun; Brankovic, Stanko R.

    2011-01-01

    The study of the kinetics of metal deposition via surface limited red-ox replacement of underpotentially deposited metal monolayers is presented. The model system was Pt submonolayer deposition on Au(1 1 1) via red-ox replacement of Pb and Cu UPD monolayers on Au(1 1 1). The kinetics of a single replacement reaction was studied using the formalism of the comprehensive analytical model developed to fit the open circuit potential transients from deposition experiments. The practical reaction kinetics parameters like reaction half life, reaction order and reaction rate constant are determined and discussed with their relevance to design and control of deposition experiments. The effects of transport limitation and the role of the anions/electrolyte on deposition kinetics are investigated and their significance to design of effective deposition process is discussed.

  8. Enhanced surface functionality via plasma modification and plasma deposition techniques to create more biologically relevant materials

    Science.gov (United States)

    Shearer, Jeffrey C.

    Functionalizing nanoparticles and other unusually shaped substrates to create more biologically relevant materials has become central to a wide range of research programs. One of the primary challenges in this field is creating highly functionalized surfaces without modifying the underlying bulk material. Traditional wet chemistry techniques utilize thin film depositions to functionalize nanomaterials with oxygen and nitrogen containing functional groups, such as --OH and --NHx. These functional groups can serve to create surfaces that are amenable to cell adhesion or can act as reactive groups for further attachment of larger structures, such as macromolecules or antiviral agents. Additional layers, such as SiO2, are often added between the nanomaterial and the functionalized coating to act as a barrier films, adhesion layers, and to increase overall hydrophilicity. However, some wet chemistry techniques can damage the bulk material during processing. This dissertation examines the use of plasma processing as an alternative method for producing these highly functionalized surfaces on nanoparticles and polymeric scaffolds through the use of plasma modification and plasma enhanced chemical vapor deposition techniques. Specifically, this dissertation will focus on (1) plasma deposition of SiO2 barrier films on nanoparticle substrates; (2) surface functionalization of amine and alcohol groups through (a) plasma co-polymerization and (b) plasma modification; and (3) the design and construction of plasma hardware to facilitate plasma processing of nanoparticles and polymeric scaffolds. The body of work presented herein first examines the fabrication of composite nanoparticles by plasma processing. SiOxC y and hexylamine films were coated onto TiO2 nanoparticles to demonstrate enhanced water dispersion properties. Continuous wave and pulsed allyl alcohol plasmas were used to produce highly functionalized Fe2 O3 supported nanoparticles. Specifically, film composition was

  9. Combustion Chamber Deposits and PAH Formation in SI Engines Fueled by Producer Gas from Biomass Gasification

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Schramm, Jesper

    2003-01-01

    Investigations were made concerning the formation of combustion chamber deposits (CCD) in SI gas engines fueled by producer gas. The main objective was to determine and characterise CCD and PAH formation caused by the presence of the light tar compounds phenol and guaiacol in producer gas from...... on filters and a sorbent was used for collection of vapour phase aromatic compounds. The filters and sorbent were analysed for polycyclic aromatic hydrocarbons (PAH) formed during combustion. The measurements showed that there was no significant increase in particulate PAH emissions due to the tar compounds...

  10. Solid oxide fuel cell electrolytes produced via very low pressure suspension plasma spray and electrophoretic deposition

    Science.gov (United States)

    Fleetwood, James D.

    Solid oxide fuel cells (SOFCs) are a promising element of comprehensive energy policies due to their direct mechanism for converting the oxidization of fuel, such as hydrogen, into electrical energy. Both very low pressure plasma spray and electrophoretic deposition allow working with high melting temperature SOFC suspension based feedstock on complex surfaces, such as in non-planar SOFC designs. Dense, thin electrolytes of ideal composition for SOFCs can be fabricated with each of these processes, while compositional control is achieved with dissolved dopant compounds that are incorporated into the coating during deposition. In the work reported, sub-micron 8 mole % Y2O3-ZrO2 (YSZ) and gadolinia-doped ceria (GDC), powders, including those in suspension with scandium-nitrate dopants, were deposited on NiO-YSZ anodes, via very low pressure suspension plasma spray (VLPSPS) at Sandia National Laboratories' Thermal Spray Research Laboratory and electrophoretic deposition (EPD) at Purdue University. Plasma spray was carried out in a chamber held at 320 - 1300 Pa, with the plasma composed of argon, hydrogen, and helium. EPD was characterized utilizing constant current deposition at 10 mm electrode separation, with deposits sintered from 1300 -- 1500 °C for 2 hours. The role of suspension constituents in EPD was analyzed based on a parametric study of powder loading, powder specific surface area, polyvinyl butyral (PVB) content, polyethyleneimine (PEI) content, and acetic acid content. Increasing PVB content and reduction of particle specific surface area were found to eliminate the formation of cracks when drying. PEI and acetic acid content were used to control suspension stability and the adhesion of deposits. Additionally, EPD was used to fabricate YSZ/GDC bilayer electrolyte systems. The resultant YSZ electrolytes were 2-27 microns thick and up to 97% dense. Electrolyte performance as part of a SOFC system with screen printed LSCF cathodes was evaluated with peak

  11. Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose.

    Science.gov (United States)

    Selig, Michael J; Viamajala, Sridhar; Decker, Stephen R; Tucker, Melvin P; Himmel, Michael E; Vinzant, Todd B

    2007-01-01

    Electron microscopy of lignocellulosic biomass following high-temperature pretreatment revealed the presence of spherical formations on the surface of the residual biomass. The hypothesis that these droplet formations are composed of lignins and possible lignin carbohydrate complexes is being explored. Experiments were conducted to better understand the formation of these "lignin" droplets and the possible implications they might have on the enzymatic saccharification of pretreated biomass. It was demonstrated that these droplets are produced from corn stover during pretreatment under neutral and acidic pH at and above 130 degrees C, and that they can deposit back onto the surface of residual biomass. The deposition of droplets produced under certain pretreatment conditions (acidic pH; T > 150 degrees C) and captured onto pure cellulose was shown to have a negative effect (5-20%) on the enzymatic saccharification of this substrate. It was noted that droplet density (per unit area) was greater and droplet size more variable under conditions where the greatest impact on enzymatic cellulose conversion was observed. These results indicate that this phenomenon has the potential to adversely affect the efficiency of enzymatic conversion in a lignocellulosic biorefinery.

  12. Deposition and characterization of ZnS/Si heterojunctions produced by vacuum evaporation

    Science.gov (United States)

    Landis, Geoffrey A.; Loferski, Joseph J.; Beaulieu, Roland

    1988-01-01

    Isotype heterojunctions of ZnS (lattice constant 5.41 A) were grown on silicon (lattice constant 5.43 A) p-n junctions to form a minority-carrier mirror. The deposition process was vacuum evaporation from a ZnS powder source onto a heated (450 C) substrate. Both planar (100) and textured (111) surfaces were used. A reduction of the minority-carrier recombination at the surface was seen from increased short-wavelength quantum response and increased illuminated open-circuit voltage. The minority-carrier diffusion length was not degraded by the process.

  13. Deuterium retention properties of co-deposited carbon films produced at wall gaps

    International Nuclear Information System (INIS)

    Nobuta, Yuji; Kanazawa, Jun; Yamauchi, Yuji; Hino, Tomoaki; Yokoyama, Kenji; Suzuki, Satoshi; Ezato, Koichiro; Enoeda, Mikio; Akiba, Masato; Akamaru, Satoshi; Hatano, Yuji

    2013-01-01

    Deuterium retention properties in co-deposited carbon film produced in gap and the relationship between this retention behavior and the crystal structure of carbon film were investigated. In the case of a wide gap, the atomic ratio of deuterium to carbon (D/C) in the film was almost constant at any depth in the gap, while in the case of a narrow gap the D/C ratio decreased with increasing distance from the gap entrance. The micro structure of carbon film tended to be more amorphous for the film produced at locations deeper in the gap. Thermal desorption spectra of D 2 in the film produced near the gap entrance showed one broad main peak at around 1100 K, while that in the film produced near the bottom showed very sharp peaks at around 950 K. This difference in desorption behavior was related with the differences of micro structure. (author)

  14. Chemical bath deposited and dip coating deposited CuS thin films - Structure, Raman spectroscopy and surface study

    Science.gov (United States)

    Tailor, Jiten P.; Khimani, Ankurkumar J.; Chaki, Sunil H.

    2018-05-01

    The crystal structure, Raman spectroscopy and surface microtopography study on as-deposited CuS thin films were carried out. Thin films deposited by two techniques of solution growth were studied. The thin films used in the present study were deposited by chemical bath deposition (CBD) and dip coating deposition techniques. The X-ray diffraction (XRD) analysis of both the as-deposited thin films showed that both the films possess covellite phase of CuS and hexagonal unit cell structure. The determined lattice parameters of both the films are in agreement with the standard JCPDS as well as reported data. The crystallite size determined by Scherrer's equation and Hall-Williamsons relation using XRD data for both the as-deposited thin films showed that the respective values were in agreement with each other. The ambient Raman spectroscopy of both the as-deposited thin films showed major emission peaks at 474 cm-1 and a minor emmision peaks at 265 cm-1. The observed Raman peaks matched with the covellite phase of CuS. The atomic force microscopy of both the as-deposited thin films surfaces showed dip coating thin film to be less rough compared to CBD deposited thin film. All the obtained results are presented and deliberated in details.

  15. Dry deposition of submicron atmospheric aerosol over water surfaces in motion

    International Nuclear Information System (INIS)

    Nevenick, Calec

    2013-01-01

    conditions (central wind speed: 1, 2, 4, 5, 7.5 and 9.5 m/s), current (co - current and counter-current, water flow velocity: 0, 6 and 12 cm/s ), ambient (temperature and relative humidity of the air and water temperature), the liquid surface deformations (measured significant wave height) and size distribution of aerosols released. The modeling part was to adapt the model to resistance. Slinn and Slinn (1980). This model is based on the assumption of conservation of vertical flow in the boundary layer. This one is divided into two layers: a very thin deposition layer near the surface which is water-saturated and a transfer layer located above. The transfer layer provides the particle deposition layer by turbulent diffusion and sedimentation. In the deposition layer the particles are deposited under the effect of several mechanisms such as Brownian diffusion, sedimentation, impaction and phoretic mechanisms. The main adjustments made by this work have been to take specific account of the different classes of particle size distribution, the spectrum variation as a function of hygroscopicity, and mechanisms of aggregation. It is integrated mechanisms of diffusiophoresis and thermophoresis, respectively produced by the evaporation of water and the temperature gradient at the air-water interface. To account for hygroscopic uranine aerosols, the deposition rates are analyzed in terms of humidity and rescaled by the friction velocity. In all cases, the deposition rates rescaled by the friction velocity range from 10 -3 to a wind speed of 1 m/s to 10 -5 - 10 -4 for wind speeds above 5 m/s. It is shown that the changing speed rescaled is inversely proportional to the wind velocity when the water surface is smooth (between 1 and 5 m/s ) and becomes proportional to the deformation when the surface becomes significant (over 5 m/s ). Although the results do not clearly identify the effect of the current on the deposition velocity, the modeling shows that turbulent diffusion is dominant

  16. Dry deposition of submicron atmospheric aerosol over water surfaces in motion

    International Nuclear Information System (INIS)

    Calec, Nevenick

    2013-01-01

    conditions (central wind speed: 1, 2, 4, 5, 7.5 and 9.5 m/s), current (co-current and counter-current, water flow velocity: 0, 6 and 12 cm/s), ambient (temperature and relative humidity of the air and water temperature), the liquid surface deformations (measured significant wave height) and size distribution of aerosols released. The modeling part was to adapt the model to resistance. Slinn and Slinn (1980). This model is based on the assumption of conservation of vertical flow in the boundary layer. This one is divided into two layers: a very thin deposition layer near the surface which is water-saturated and a transfer layer located above. The transfer layer provides the particle deposition layer by turbulent diffusion and sedimentation. In the deposition layer the particles are deposited under the effect of several mechanisms such as Brownian diffusion, sedimentation, impaction and phoretic mechanisms. The main adjustments made by this work have been to take specific account of the different classes of particle size distribution, the spectrum variation as a function of hygroscopicity, and mechanisms of aggregation. It is integrated mechanisms of diffusiophoresis and thermophoresis, respectively produced by the evaporation of water and the temperature gradient at the air-water interface. To account for hygroscopic uranine aerosols, the deposition rates are analyzed in terms of humidity and rescaled by the friction velocity. In all cases, the deposition rates rescaled by the friction velocity range from 10 -3 to a wind speed of 1 m/s to 10 -5 - 10 -4 for wind speeds above 5 m/s. It is shown that the changing speed rescaled is inversely proportional to the wind velocity when the water surface is smooth (between 1 and 5 m/s ) and becomes proportional to the deformation when the surface becomes significant (over 5 m/s ). Although the results do not clearly identify the effect of the current on the deposition velocity, the modeling shows that turbulent diffusion is dominant in

  17. Uniform and Conformal Carbon Nanofilms Produced Based on Molecular Layer Deposition

    Directory of Open Access Journals (Sweden)

    Peng Yang

    2013-12-01

    Full Text Available Continuous and uniform carbon nanofilms (CNFs are prepared by pyrolysis of polyimide films which are produced by molecular layer deposition (MLD. The film thickness can be easily controlled at nanometer scale by altering the cycle numbers. During the annealing process at 600 °C, the polyimide film is subject to shrinkage of 70% in thickness. The obtained CNFs do not exhibit a well-graphitized structure due to the low calcination temperature. No clear pore structures are observed in the produced films. CNFs grown on a glass substrate with a thickness of about 1.4 nm shows almost 98% optical transmittance in the visible spectrum range. Au nanoparticles coated with CNFs are produced by this method. Carbon nanotubes with uniform wall thickness are obtained using anodic aluminum oxide as a template by depositing polyimide films into its pores. Our results demonstrate that this method is very effective to coat conformal and uniform CNFs on various substrates, such as nanoparticles and porous templates, to produce functional composite nanomaterials.

  18. Construction of mechanically durable superhydrophobic surfaces by thermal spray deposition and further surface modification

    Science.gov (United States)

    Chen, Xiuyong; Gong, Yongfeng; Suo, Xinkun; Huang, Jing; Liu, Yi; Li, Hua

    2015-11-01

    Here we report a simple and cost-effective technical route for constructing superhydrophobic surfaces with excellent abrasion resistance on various substrates. Rough surface structures were fabricated by thermal spray deposition of a variety of inorganic materials, and further surface modification was made by applying a thin layer of polytetrafluoroethylene. Results show that the Al, Cu, or NiCrBSi coatings with the surface roughness of up to 13.8 μm offer rough surface profile to complement the topographical morphology in micro-/nano-scaled sizes, and the hydrophobic molecules facilitate the hydrophobicity. The contact angles of water droplets of ∼155° with a sliding angle of up to 3.5° on the samples have been achieved. The newly constructed superhydrophobic coatings tolerate strong abrasion, giving clear insight into their long-term functional applications.

  19. Gold nanoparticles and films produced by a laser ablation/gas deposition (LAGD) method

    International Nuclear Information System (INIS)

    Kawakami, Yuji; Seto, Takafumi; Yoshida, Toshinobu; Ozawa, Eiichi

    2002-01-01

    Gold nanoparticles have great potential for various nanoelectronic applications such as single electron transistors, an infrared absorption sensor and so on. It is very important to understand and control the size distribution of the particles for such a variety of applications. In this paper, we report the size distribution of gold nanoparticles and the relationship between the nanoparticle-films and the electrical property produced by a laser ablation method. Gold nanoparticle-films were prepared by a technique, which sprays nanoparticles on the substrate through a nozzle. We call it a gas deposition method. The nanoparticles were generated by the nanosecond pulsed Nd:YAG laser ablation of a gold substrate under a low-pressure inert gas atmosphere. The ambient pressure was changed to control the average size and their distribution. The particles produced in the generation chamber were transported by a helium carrier gas to the deposition chamber and deposited on a substrate to form the films composed of gold nanoparticles. The electrical resistivity of the generated gold nanoparticle-films on the glass substrates was measured using a four-probe method. The size distribution of the nanoparticles was examined using transmission electron microscopy (TEM) and a low-pressure differential mobility analyzer (LP-DMA). The relationship between the particle size and the electrical properties of each film made by the different synthesis conditions were analyzed. The electrical resistivity changed from the order of 10 -5 to 10 -1 Ω cm depending on the ambient pressure and the size distribution

  20. FE-SEM, FIB and TEM Study of Surface Deposits of Apollo 15 Green Glass Volcanic Spherules

    Science.gov (United States)

    Ross, Daniel K.; Thomas-Keprta, K. L.; Rahman, Z.; Wentworth, S. J.; McKay, D. S.

    2011-01-01

    Surface deposits on lunar pyroclastic green (Apollo 15) and orange (Apollo 17) glass spherules have been attributed to condensation from the gas clouds that accompanied fire-fountain eruptions. The fire fountains cast molten lava high above the lunar surface and the silicate melt droplets quenched before landing producing the glass beads. Early investigations showed that these deposits are rich in sulfur and zinc. The deposits are extremely fine-grained and thin, so that it was never possible to determine their chemical compositions cleanly by SEM/EDX or electron probe x-ray analysis because most of the excited volume was in the under-lying silicate glass. We are investigating the surface deposits by TEM, using focused ion beam (FIB) microscopy to extract and thin the surface deposits. Here we report on chemical mapping of a FIB section of surface deposits of an Apollo green glass bead 15401using the ultra-high resolution JEOL 2500 STEM located at NASA Johnson Space Center.

  1. Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods.

    Science.gov (United States)

    Chung, Hung-Yi; Chen, Chih-Chia; Wu, Pin Chieh; Tseng, Ming Lun; Lin, Wen-Chi; Chen, Chih-Wei; Chiang, Hai-Pang

    2014-01-01

    Sensitivity of surface plasmon resonance phase-interrogation biosensor is demonstrated to be enhanced by oblique deposited silver nanorods. Silver nanorods are thermally deposited on silver nanothin film by oblique angle deposition (OAD). The length of the nanorods can be tuned by controlling the deposition parameters of thermal deposition. By measuring the phase difference between the p and s waves of surface plasmon resonance heterodyne interferometer with different wavelength of incident light, we have demonstrated that maximum sensitivity of glucose detection down to 7.1 × 10(-8) refractive index units could be achieved with optimal deposition parameters of silver nanorods.

  2. Electrical properties of conducting loads produced from polyaniline deposited in natural fibers and nanoclays

    International Nuclear Information System (INIS)

    Kosenhoski, Dirlaine; Saade, Wesley; Pinto, Camila P.; Becker, Daniela; Dalmolin, Carla; Pachekoski, Wagner M.

    2015-01-01

    Conducting polymers are known for their excellent magnetic and electrical properties, but they still are an expensive and limited choice to their use as a conducting load for composite materials. An alternative to optimize the electrical conductivity of polymeric composites is the deposition of a conducting polymer on materials already used as loads, as the deposition on natural fibers or the encapsulation of polymeric chains in the voids of host structures. In this work, bananastem fiber and montmorillonite nanoclay (MMT) were used as host structures for polyaniline synthesis in order to produce conducting loads. Samples were characterized by FT-IR and X-Rays Diffraction in order to confirm the formation of polyanilina / bananastem fibers or polyanilina / nanoclays loads. Influence on the electrical properties of the composites were evaluated by Electrochemical Impedance Spectroscopy (EIS), showing the maintenance of the electric conductivity of polyaniline and its potential use as a load for the formation of conducting composites. (author)

  3. Effect of microbial treatment on the prevention and removal of paraffin deposits on stainless steel surfaces.

    Science.gov (United States)

    Xiao, Meng; Li, Wen-Hong; Lu, Mang; Zhang, Zhong-Zhi; Luo, Yi-Jing; Qiao, Wei; Sun, Shan-Shan; Zhong, Wei-Zhang; Zhang, Min

    2012-11-01

    In this study, biosurfactant-producing strain N2 and non-biosurfactant producing stain KB18 were used to investigate the effects of microbial treatment on the prevention and removal of paraffin deposits on stainless steel surfaces. Strain N2, with a biosurfactant production capacity, reduced the contact angle of stainless steel to 40.04°, and the corresponding adhesion work of aqueous phase was decreased by 26.5 mJ/m(2). By contrast, KB18 could only reduce the contact angle to 50.83°, with a corresponding 7.6 mJ/m(2) decrease in the aqueous phase work adhesion. The paraffin removal test showed that the paraffin removal efficiencies of strain N2 and KB18 were 79.0% and 61.2%, respectively. Interestingly, the N2 cells could attach on the surface of the oil droplets to inhibit droplets coalescence. These results indicate that biosurfactant-producing strains can alter the wettability of stainless steel and thus eliminate paraffin deposition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Metal oxide targets produced by the polymer-assisted deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Mitch A., E-mail: mitch@berkeley.ed [Department of Chemistry, Room 446 Latimer Hall, University of California Berkeley, Berkeley, CA 94720-1460 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Ali, Mazhar N.; Chang, Noel N.; Parsons-Moss, T. [Department of Chemistry, Room 446 Latimer Hall, University of California Berkeley, Berkeley, CA 94720-1460 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Ashby, Paul D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Gates, Jacklyn M. [Department of Chemistry, Room 446 Latimer Hall, University of California Berkeley, Berkeley, CA 94720-1460 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Stavsetra, Liv [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Gregorich, Kenneth E.; Nitsche, Heino [Department of Chemistry, Room 446 Latimer Hall, University of California Berkeley, Berkeley, CA 94720-1460 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2010-02-11

    The polymer-assisted deposition (PAD) method was used to create crack-free homogenous metal oxide films for use as targets in nuclear science applications. Metal oxide films of europium, thulium, and hafnium were prepared as models for actinide oxides. Films produced by a single application of PAD were homogenous and uniform and ranged in thickness from 30 to 320 nm. Reapplication of the PAD method (six times) with a 10% by weight hafnium(IV) solution resulted in an equally homogeneous and uniform film with a total thickness of 600 nm.

  5. Metal oxide targets produced by the polymer-assisted deposition method

    International Nuclear Information System (INIS)

    Garcia, Mitch A.; Ali, Mazhar N.; Chang, Noel N.; Parsons-Moss, T.; Ashby, Paul D.; Gates, Jacklyn M.; Stavsetra, Liv; Gregorich, Kenneth E.; Nitsche, Heino

    2010-01-01

    The polymer-assisted deposition (PAD) method was used to create crack-free homogenous metal oxide films for use as targets in nuclear science applications. Metal oxide films of europium, thulium, and hafnium were prepared as models for actinide oxides. Films produced by a single application of PAD were homogenous and uniform and ranged in thickness from 30 to 320 nm. Reapplication of the PAD method (six times) with a 10% by weight hafnium(IV) solution resulted in an equally homogeneous and uniform film with a total thickness of 600 nm.

  6. Eight-term cyclic phosphites as coke deposit inhibitors and a method for producing them

    Energy Technology Data Exchange (ETDEWEB)

    Vershinin, P.V.; Chebotareva, E.G.; Kadyrova, V.Kh.; Kirpichnikov, P.A.; Pozdnev, V.V.; Vershinin, Yu.P.; Zharkova, V.M.

    1982-01-01

    It is proposed that a eight-term cyclic phosphite formula be used where R = methyl, R' = tertiary-butyl or alpha-methylcyclohexyl, R'' = tertiary-butyl, R''' = hydrogen, methyl, tertiary-butyle, bromine, X = methylene and sulfur as coke deposit inhibitors in the pyrolysis of petroleum raw materials. A method for producing the eight-term cyclic phosphite formula is proposed where a cyclic chlorophosphite formula interacts with a phenol formula in a medium of polar aprotic solvent using a base at 80-100 degrees.

  7. Microporous Ti implant compact coated with hydroxyapatite produced by electro-discharge-sintering and electrostatic-spray-deposition.

    Science.gov (United States)

    Jo, Y J; Kim, Y H; Jo, Y H; Seong, J G; Chang, S Y; Van Tyne, C J; Lee, W H

    2014-11-01

    A single pulse of 1.5 kJ/0.7 g of atomized spherical Ti powder from 300 μF capacitor was applied to produce the porous-surfaced Ti implant compact by electro-discharge-sintering (EDS). A solid core surrounded by porous layer was self-consolidated by a discharge in the middle of the compact in 122 μsec. Average pore size, porosity, and compressive yield strength of EDS Ti compact were estimated to be about 68.2 μm, 25.5%, and 266.4 MPa, respectively. Coatings with hydroxyapatite (HAp) on the Ti compact were conducted by electrostatic-spray-deposition (ESD) method. As-deposited HAp coating was in the form of porous structure and consisted of HAp particles which were uniformly distributed on the Ti porous structure. By heat-treatment at 700 degrees C, HAp particles were agglomerated each other and melted to form a highly smooth and homogeneous HAp thin film consisted of equiaxed nano-scaled grains. Porous-surfaced Ti implant compacts coated with highly crystalline apatite phase were successfully obtained by using the EDS and ESD techniques.

  8. Measurements of dry-deposition rates on various earth surfaces by 212Pb

    International Nuclear Information System (INIS)

    Osaki, S.; Sugihara, S.; Maeda, Y.

    2004-01-01

    Dry deposition rates of 212 Pb on a coniferous forest (Japanese cedar) and a broad-leaf forest (Pasania edulis) have been measured. Those on various kinds of grass fields, various states on artificial surface such as water, paper, and standing paper have been also measured. The dry deposition rates depend on the characteristics of depositing particles and the conditions of deposited surfaces. Dry deposition rates on the forest of Japanese cedar are highest because of the complex and adhesive surface of the leaves. Those on various grass fields are roughly depend on the logarithm of the height of their grasses. The total deposition rates of 7 Be do not depend on the densities or heights of the grasses. 7 Be may be not kept on their leaves or surface soil for a long time. The dry deposition rates of on artificial surface, e.g. paper and water surfaces make clear the mechanism on dry deposition, and suggest that more chances of collision and more adhesive of the surface are important for the dry deposition. About 90% of all deposition on the artificial paper grass was attached on the standing paper. On water surface, 60% of the rate of paper grass was attached, but only about 20% were attached on a dry paper plate. The aerosol particles are deposited by collision with the surface, therefore the deposition velocity depends on the chance of collision and the characteristics of the surface. Therefore the dry deposition rates on forests are larger and those of coniferous forest are largest. (author)

  9. Electrochemically assisted deposition of strontium modified magnesium phosphate on titanium surfaces

    International Nuclear Information System (INIS)

    Meininger, M.; Wolf-Brandstetter, C.; Zerweck, J.; Wenninger, F.; Gbureck, U.; Groll, J.; Moseke, C.

    2016-01-01

    Electrochemically assisted deposition was utilized to produce ceramic coatings on the basis of magnesium ammonium phosphate (struvite) on corundum-blasted titanium surfaces. By the addition of defined concentrations of strontium nitrate to the coating electrolyte Sr 2+ ions were successfully incorporated into the struvite matrix. By variation of deposition parameters it was possible to fabricate coatings with different kinetics of Sr 2+ into physiological media, whereas the release of therapeutically relevant strontium doses could be sustained over several weeks. Morphological and crystallographic examinations of the immersed coatings revealed that the degradation of struvite and the release of Sr 2+ ions were accompanied by a transformation of the coating to a calcium phosphate based phase similar to low-crystalline hydroxyapatite. These findings showed that strontium doped struvite coatings may provide a promising degradable coating system for the local application of strontium or other biologically active metal ions in the implant–bone interface. - Highlights: • Sr-doped struvite coatings have been deposited on titanium by electrochemically assisted deposition. • Sr content can be adjusted by means of process time, current density and pulse mode. • Sr-doped coatings release therapeutically relevant Sr doses in physiological media for several weeks. • During immersion in physiological media Sr-doped struvite coatings transform into a low crystalline calcium phosphate phase.

  10. Electrochemically assisted deposition of strontium modified magnesium phosphate on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Meininger, M. [Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg (Germany); Wolf-Brandstetter, C. [Max Bergmann Center for Biomaterials, Technical University of Dresden, Budapester Straße 27, D-01069 Dresden (Germany); Zerweck, J.; Wenninger, F.; Gbureck, U.; Groll, J. [Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg (Germany); Moseke, C., E-mail: claus.moseke@fmz.uni-wuerzburg.de [Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg (Germany)

    2016-10-01

    Electrochemically assisted deposition was utilized to produce ceramic coatings on the basis of magnesium ammonium phosphate (struvite) on corundum-blasted titanium surfaces. By the addition of defined concentrations of strontium nitrate to the coating electrolyte Sr{sup 2+} ions were successfully incorporated into the struvite matrix. By variation of deposition parameters it was possible to fabricate coatings with different kinetics of Sr{sup 2+} into physiological media, whereas the release of therapeutically relevant strontium doses could be sustained over several weeks. Morphological and crystallographic examinations of the immersed coatings revealed that the degradation of struvite and the release of Sr{sup 2+} ions were accompanied by a transformation of the coating to a calcium phosphate based phase similar to low-crystalline hydroxyapatite. These findings showed that strontium doped struvite coatings may provide a promising degradable coating system for the local application of strontium or other biologically active metal ions in the implant–bone interface. - Highlights: • Sr-doped struvite coatings have been deposited on titanium by electrochemically assisted deposition. • Sr content can be adjusted by means of process time, current density and pulse mode. • Sr-doped coatings release therapeutically relevant Sr doses in physiological media for several weeks. • During immersion in physiological media Sr-doped struvite coatings transform into a low crystalline calcium phosphate phase.

  11. Thin hydroxyapatite surface layers on titanium produced by ion implantation

    CERN Document Server

    Baumann, H; Bilger, G; Jones, D; Symietz, I

    2002-01-01

    In medicine metallic implants are widely used as hip replacement protheses or artificial teeth. The biocompatibility is in all cases the most important requirement. Hydroxyapatite (HAp) is frequently used as coating on metallic implants because of its high acceptance by the human body. In this paper a process is described by which a HAp surface layer is produced by ion implantation with a continuous transition to the bulk material. Calcium and phosphorus ions are successively implanted into titanium under different vacuum conditions by backfilling oxygen into the implantation chamber. Afterwards the implanted samples are thermally treated. The elemental composition inside the implanted region was determined by nuclear analysis methods as (alpha,alpha) backscattering and the resonant nuclear reaction sup 1 H( sup 1 sup 5 N,alpha gamma) sup 1 sup 2 C. The results of X-ray photoelectron spectroscopy indicate the formation of HAp. In addition a first biocompatibility test was performed to compare the growing of m...

  12. Surface characterization of hydrophobic thin films deposited by inductively coupled and pulsed plasmas

    International Nuclear Information System (INIS)

    Kim, Youngsoo; Lee, Ji-Hye; Kim, Kang-Jin; Lee, Yeonhee

    2009-01-01

    Different fluorocarbon thin films were deposited on Si substrates using a plasma-polymerization method. Fluorine-containing hydrophobic thin films were obtained by inductively coupled plasma (ICP) and pulsed plasma (PP) with a mixture of fluorocarbon precursors C 2 F 6 , C 3 F 8 , and c-C 4 F 8 and the unsaturated hydrocarbons of C 2 H 2 . The influence on the fluorocarbon surfaces of the process parameters for plasma polymerization, including the gas ratio and the plasma power, were investigated under two plasma-polymerized techniques with different fluorocarbon gas precursors. The hydrophobic properties, surface morphologies, and chemical compositions were elucidated using water contact angle measurements, field emission-scanning electron microscope, x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). In this study, the ICP technique provides coarser grained films and more hydrophobic surfaces as well as a higher deposition rate compared to the PP technique. XPS, FT-IR, and TOF-SIMS analyses indicated that the ICP technique produced more fluorine-related functional groups, including CF 2 and CF 3 , on the surface. From the curve-fitted XPS results, fluorocarbon films grown under ICP technique exhibited less degree of cross-linking and higher CF 2 concentrations than those grown under PP technique.

  13. Metallographic techniques for evaluation of Thermal Barrier Coatings produced by Electron Beam Physical Vapor Deposition

    International Nuclear Information System (INIS)

    Kelly, Matthew; Singh, Jogender; Todd, Judith; Copley, Steven; Wolfe, Douglas

    2008-01-01

    Thermal Barrier Coatings (TBC) produced by Electron Beam Physical Vapor Deposition (EB-PVD) are primarily applied to critical hot section turbine components. EB-PVD TBC for turbine applications exhibit a complicated structure of porous ceramic columns separated by voids that offers mechanical compliance. Currently there are no standard evaluation methods for evaluating EB-PVD TBC structure quantitatively. This paper proposes a metallographic method for preparing samples and evaluating techniques to quantitatively measure structure. TBC samples were produced and evaluated with the proposed metallographic technique and digital image analysis for columnar grain size and relative intercolumnar porosity. Incorporation of the proposed evaluation technique will increase knowledge of the relation between processing parameters and material properties by incorporating a structural link. Application of this evaluation method will directly benefit areas of quality control, microstructural model development, and reduced development time for process scaling

  14. Role of yttria-stabilized zirconia produced by ion-beam-assisted deposition on the properties of RuO2 on SiO2/Si

    International Nuclear Information System (INIS)

    Jia, Q.X.; Arendt, P.; Groves, J.R.; Fan, Y.; Roper, J.M.; Foltyn, S.R.

    1998-01-01

    Highly conductive biaxially textured RuO 2 thin films were deposited on technically important SiO 2 /Si substrates by pulsed laser deposition, where yttria-stabilized zirconia (YSZ) produced by ion-beam-assisted-deposition (IBAD) was used as a template to enhance the biaxial texture of RuO 2 on SiO 2 /Si. The biaxially oriented RuO 2 had a room-temperature resistivity of 37 μΩ-cm and residual resistivity ratio above 2. We then deposited Ba 0.5 Sr 0.5 TiO 3 thin films on RuO 2 /IBAD-YSZ/SiO 2 /Si. The Ba 0.5 Sr 0.5 TiO 3 had a pure (111) orientation normal to the substrate surface and a dielectric constant above 360 at 100 kHz. copyright 1998 Materials Research Society

  15. NiO/nanoporous graphene composites with excellent supercapacitive performance produced by atomic layer deposition

    International Nuclear Information System (INIS)

    Chen, Caiying; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Qin, Yong; Huang, Peipei; Li, Ping; Fan, Jinchuan; Song, Weiguo

    2014-01-01

    Nickel oxide (NiO) is a promising electrode material for supercapacitors because of its low cost and high theoretical specific capacitance of 2573 F g −1 . However, the low electronic conductivity and poor cycling stability of NiO limit its practical applications. To overcome these limitations, an efficient atomic layer deposition (ALD) method is demonstrated here for the fabrication of NiO/nanoporous graphene (NG) composites as electrode materials for supercapacitors. ALD allows uniform deposition of NiO nanoparticles with controlled sizes on the surface of NG, thus offering a novel route to design NiO/NG composites for supercapacitor applications with high surface areas and greatly improved electrical conductivity and cycle stability. Electrochemical measurements reveal that the NiO/NG composites obtained by ALD exhibited excellent specific capacitance of up to ∼1005.8 F g −1 per mass of the composite electrode (the specific capacitance value is up to ∼1897.1 F g −1 based on the active mass of NiO), and stable performance after 1500 cycles. Furthermore, electrochemical performance of the NiO/NG composites is found to strongly depend on the size of NiO nanoparticles. (paper)

  16. Surface free energy of TiC layers deposited by electrophoretic deposition (EPD)

    Science.gov (United States)

    Gorji, Mohammad Reza; Sanjabi, Sohrab

    2018-01-01

    In this study porous structure coatings of bare TiC (i.e. 20 nm, 0.7 µm and 5/45 µm) and core-shell structures of TiC/NiP synthesized through electroless plating were deposited by EPD. Room temperature surface free energy (i.e. γs) of TiC and TiC/NiP coatings were determined via measuring contact angles of distilled water and diiodemethane liquids. The effect of Ni-P shell on spreading behavior of pure copper on porous EPD structures was also investigated by high temperature wetting experiments. According to the results existence of a Ni-P layer around the TiC particles has led to roughness (i.e. at least 0.1 µm), and porosity mean length (i.e. at least 1 µm) increase. This might be related to various sizes of TiC agglomerates formed during electroless plating. It has been observed that room temperature γs changed from 44.49 to 54.12 mJ.m-2 as a consequence of particle size enlargement for TiC. The highest and lowest (67.25 and 44.49 mJ.m-2) γs were measured for TiC nanoparticles which showed 1.5 times increase in surface free energy after being plated with Ni-P. It was also observed that plating Ni-P altered non-spreading (θs > 100 o) behavior of TiC to full-spreading ((θs 0o)) which can be useful for preparation of hard coatings by infiltration sintering phenomenon. Zeta potential of EPD suspensions, morphology, phase structure and topography of as-EPD layers were investigated through Zetasizer, field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and atomic force microscopy (AFM) instruments respectively.

  17. Preliminary viability studies of fibroblastic cells cultured on microcrystalline and nanocrystalline diamonds produced by chemical vapour deposition method

    Directory of Open Access Journals (Sweden)

    Ana Amélia Rodrigues

    2013-02-01

    Full Text Available Implant materials used in orthopedics surgery have demonstrated some disadvantages, such as metallic corrosion processes, generation of wear particles, inflammation reactions and bone reabsorption in the implant region. The diamond produced through hot-filament chemical vapour deposition method is a new potential biomedical material due to its chemical inertness, extreme hardness and low coefficient of friction. In the present study we analysis two samples: the microcrystalline diamond and the nanocrystalline diamond. The aim of this study was to evaluate the surface properties of the diamond samples by scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Cell viability and morphology were assessed using thiazolyl blue tetrazolium bromide, cytochemical assay and scanning electron microscopy, respectively. The results revealed that the two samples did not interfere in the cell viability, however the proliferation of fibroblasts cells observed was comparatively higher with the nanocrystalline diamond.

  18. Effect of metal surface composition on deposition behavior of stainless steel component dissolved in liquid sodium

    International Nuclear Information System (INIS)

    Yokota, Norikatsu; Shimoyashiki, Shigehiro

    1988-01-01

    Deposition behavior of corrosion products has been investigated to clarify the effect of metal surface composition on the deposition process in liquid sodium. For the study a sodium loop made of Type 304 stainless steel was employed. Deposition test pieces, which were Type 304 stainless steel, iron, nickel or Inconel 718, were immersed in the sodium pool of the test pot. Corrosion test pieces, which were Type 304 stainless steel, 50 at% Fe-50 at%Mn and Inconel 718, were set in a heater pin assembly along the axial direction of the heater pin surface. Sodium temperatures at the outlet and inlet of the heater pin assembly were controlled at 943 and 833 K, respectively. Sodium was purified at a cold trap temperature of 393 K and the deposition test was carried out for 4.3 x 10 2 - 2.9 x 10 4 ks. Several crystallized particles were observed on the surface of the deposition test pieces. The particles had compositions and crystal structures which depended on both the composition of deposition test pieces and the concentration of iron and manganese in sodium. Only iron-rich particles having a polyhedral shape deposited on the iron surface. Two types of particles, iron-rich α-phase and γ-phase with nearly the same composition as stainless steel, were deposited on Type 304 stainless steel. A Ni-Mn alloy was deposited on the nickel surface in the case of a higher concentration of manganese in sodium. On the other hand, for a lower manganese concentration, a Fe-Ni alloy was precipitated on the nickel surface. Particles deposited on nickel had a γ-phase crystal structure similar to the deposition test piece of nickel. Hence, the deposition process can be explained as follows: Corrosion products in liquid sodium were deposited on the metal surface by forming a metal alloy selectively with elements of the metal surface. (author)

  19. Adsorption and revaporisation studies on iodine oxide aerosols deposited on containment surface materials in LWR

    Energy Technology Data Exchange (ETDEWEB)

    Tietze, S.; Foreman, M.R.StJ.; Ekberg, C. [Chalmers Univ. of Technology, Goeteborg (Sweden); Kaerkelae, T.; Auvinen, A.; Tapper, U.; Lamminmaeki, S.; Jokiniemi, J. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2012-12-15

    During a hypothetical severe nuclear accident, the radiation field will be very high in the nuclear reactor containment building. As a result gaseous radiolysis products will be formed. Elemental iodine can react in the gaseous phase with ozone to form solid iodine oxide aerosol particles (iodine oxide). Within the AIAS (Adsorption of Iodine oxide Aerosols on Surfaces) project the interactions of iodine oxide (IOx) aerosols with common containment surface materials were investigated. Common surface materials in Swedish and Finnish LWRs are Teknopox Aqua V A paint films and metal surfaces such as Cu, Zn, Al and SS, as well as Pt and Pd surfaces from hydrogen recombiners. Non-radioactive and {sup 131}I labelled iodine oxide aerosols were produced with the EXSI CONT facility from elemental iodine and ozone at VTT Technical Research Centre of Finland. The iodine oxide deposits were analysed with microscopic and spectroscopic measurement techniques to identify the kind of iodine oxide formed and if a chemical conversion on the different surface materials occurs. The revaporisation behaviour of the deposited iodine oxide aerosol particles from the different surface materials was studied under the influence of heat, humidity and gamma irradiation at Chalmers University of Technology, Sweden. Studies on the effects of humidity were performed using the FOMICAG facility, while heat and irradiation experiments were performed in a thermostated heating block and with a gammacell 22 having a dose rate of 14 kGy/h. The revaporisation losses were measured using a HPGe detector. The revaporisated {sup 131}I species from the surfaces were chemically tested for elemental iodine formation. The parameter dominating the degradation of the produced iodine oxide aerosols was humidity. Cu and Zn surfaces were found to react with iodine from the iodine oxide aerosols to form iodides, while no metal iodides were detected for Al and SS samples. Most of the iodine oxide aerosols are assumed to

  20. Adsorption and revaporisation studies on iodine oxide aerosols deposited on containment surface materials in LWR

    International Nuclear Information System (INIS)

    Tietze, S.; Foreman, M.R.StJ.; Ekberg, C.; Kaerkelae, T.; Auvinen, A.; Tapper, U.; Lamminmaeki, S.; Jokiniemi, J.

    2012-12-01

    During a hypothetical severe nuclear accident, the radiation field will be very high in the nuclear reactor containment building. As a result gaseous radiolysis products will be formed. Elemental iodine can react in the gaseous phase with ozone to form solid iodine oxide aerosol particles (iodine oxide). Within the AIAS (Adsorption of Iodine oxide Aerosols on Surfaces) project the interactions of iodine oxide (IOx) aerosols with common containment surface materials were investigated. Common surface materials in Swedish and Finnish LWRs are Teknopox Aqua V A paint films and metal surfaces such as Cu, Zn, Al and SS, as well as Pt and Pd surfaces from hydrogen recombiners. Non-radioactive and 131 I labelled iodine oxide aerosols were produced with the EXSI CONT facility from elemental iodine and ozone at VTT Technical Research Centre of Finland. The iodine oxide deposits were analysed with microscopic and spectroscopic measurement techniques to identify the kind of iodine oxide formed and if a chemical conversion on the different surface materials occurs. The revaporisation behaviour of the deposited iodine oxide aerosol particles from the different surface materials was studied under the influence of heat, humidity and gamma irradiation at Chalmers University of Technology, Sweden. Studies on the effects of humidity were performed using the FOMICAG facility, while heat and irradiation experiments were performed in a thermostated heating block and with a gammacell 22 having a dose rate of 14 kGy/h. The revaporisation losses were measured using a HPGe detector. The revaporisated 131 I species from the surfaces were chemically tested for elemental iodine formation. The parameter dominating the degradation of the produced iodine oxide aerosols was humidity. Cu and Zn surfaces were found to react with iodine from the iodine oxide aerosols to form iodides, while no metal iodides were detected for Al and SS samples. Most of the iodine oxide aerosols are assumed to be

  1. Influence of deposition temperature of thermal ALD deposited Al2O3 films on silicon surface passivation

    Directory of Open Access Journals (Sweden)

    Neha Batra

    2015-06-01

    Full Text Available The effect of deposition temperature (Tdep and subsequent annealing time (tanl of atomic layer deposited aluminum oxide (Al2O3 films on silicon surface passivation (in terms of surface recombination velocity, SRV is investigated. The pristine samples (as-deposited show presence of positive fixed charges, QF. The interface defect density (Dit decreases with increase in Tdep which further decreases with tanl up to 100s. An effective surface passivation (SRV<8 cm/s is realized for Tdep ≥ 200 °C. The present investigation suggests that low thermal budget processing provides the same quality of passivation as realized by high thermal budget process (tanl between 10 to 30 min.

  2. Radionuclide deposits on heat transfer surfaces in a circumt with dissociating N2O4 coolant

    International Nuclear Information System (INIS)

    Dolgov, V.M.; Katanaev, A.O.; Komissarov, F.D.

    1984-01-01

    Radionuclides deposits on heat transfer surfaces of a circuit with dissociating coolant are studied. The areas of preferential deposition of 54 Mn, 51 Cr, 134 Cs and their distribution along the heating and cooling surfaces are determined. The comparison of the obtained data on the nuclide and chemical compositions of the deposits in the areas of N 2 O 4 coolant heating and cooling shows that 54 Mn, 51 Cr, 134 Cs deposit preferentially on heat transfer surfaces in the area of the coolant heating. Fixed and movable deposits consists of the structural material oxides. The quantity of radionuclides in the deposits on the surfaces of heat transfer tubes in the area of cooling decreases with the coolant temperature drop

  3. Effect of surface deposits on electromagnetic waves propagating in uniform ducts

    Science.gov (United States)

    Baumeister, Kenneth J.

    1990-01-01

    A finite-element Galerkin formulation was used to study the effect of material surface deposits on the reflective characteristics of straight uniform ducts with PEC (perfectly electric conducting) walls. Over a wide frequency range, the effect of both single and multiple surface deposits on the duct reflection coefficient were examined. The power reflection coefficient was found to be significantly increased by the addition of deposits on the wall.

  4. Effect of rock fragment embedding on the aeolian deposition of dust on stone-covered surfaces

    NARCIS (Netherlands)

    Goossens, D.

    2005-01-01

    Many stone-covered surfaces on Earth are subject to aeolian deposition of atmospheric dust. This study investigates how the deposition of dust is affected when rock fragments become gradually more embedded in the ground or, inversely, become more concentrated on the surface. Experiments were

  5. Investigation of surface deposition pertaining to the calculation of the deposition of aerosols released in core-meltdown accidents in power reactors

    International Nuclear Information System (INIS)

    Roed, J.

    1981-10-01

    Deposition of fall-out particles of cesium-137 on vertical building surfaces has been measured. The deposition is combined with the corresponding concentration in air of fall-out particles to give the dry deposition velocity. The dry deposition velocity on plane collectors like building surfaces, plane bare soil, roads, etc. is compared to the velocity on rough surfaces like grass, clover, etc. This is done on the basis of our own measurements and the relevant literature. (author)

  6. Weld metal microstructures of hardfacing deposits produced by self-shielded flux-cored arc welding

    International Nuclear Information System (INIS)

    Dumovic, M.; Monaghan, B.J.; Li, H.; Norrish, J.; Dunne, D.P.

    2015-01-01

    The molten pool weld produced during self-shielded flux-cored arc welding (SSFCAW) is protected from gas porosity arising from oxygen and nitrogen by reaction ('killing') of these gases by aluminium. However, residual Al can result in mixed micro-structures of δ-ferrite, martensite and bainite in hardfacing weld metals produced by SSFCAW and therefore, microstructural control can be an issue for hardfacing weld repair. The effect of the residual Al content on weld metal micro-structure has been examined using thermodynamic modeling and dilatometric analysis. It is concluded that the typical Al content of about 1 wt% promotes δ-ferrite formation at the expense of austenite and its martensitic/bainitic product phase(s), thereby compromising the wear resistance of the hardfacing deposit. This paper also demonstrates how the development of a Schaeffler-type diagram for predicting the weld metal micro-structure can provide guidance on weld filler metal design to produce the optimum microstructure for industrial hardfacing applications.

  7. Surface modification of reverse osmosis desalination membranes by thin-film coatings deposited by initiated chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ozaydin-Ince, Gozde, E-mail: gozdeince@sabanciuniv.edu [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Matin, Asif, E-mail: amatin@mit.edu [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khan, Zafarullah, E-mail: zukhan@mit.edu [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Zaidi, S.M. Javaid, E-mail: zaidismj@kfupm.edu.sa [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gleason, Karen K., E-mail: kkgleasn@mit.edu [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2013-07-31

    Thin-film polymeric reverse osmosis membranes, due to their high permeation rates and good salt rejection capabilities, are widely used for seawater desalination. However, these membranes are prone to biofouling, which affects their performance and efficiency. In this work, we report a method to modify the membrane surface without damaging the active layer or significantly affecting the performance of the membrane. Amphiphilic copolymer films of hydrophilic hydroxyethylmethacrylate and hydrophobic perfluorodecylacrylate (PFA) were synthesized and deposited on commercial RO membranes using an initiated chemical vapor deposition technique which is a polymer deposition technique that involves free-radical polymerization initiated by gas-phase radicals. Relevant surface characteristics such as hydrophilicity and roughness could be systematically controlled by varying the polymer chemistry. Increasing the hydrophobic PFA content in the films leads to an increase in the surface roughness and hydrophobicity. Furthermore, the surface morphology studies performed using the atomic force microscopy show that as the thickness of the coating increases average surface roughness increases. Using this knowledge, the coating thickness and chemistry were optimized to achieve high permeate flux and to reduce cell attachment. Results of the static bacterial adhesion tests show that the attachment of bacterial cells is significantly reduced on the coated membranes. - Highlights: • Thin films are deposited on reverse osmosis membranes. • Amphiphilic thin films are resistant to protein attachment. • The permeation performance of the membranes is not affected by the coating. • The thin film coatings delayed the biofouling.

  8. Crystalline and amorphous carbon nitride films produced by high-energy shock plasma deposition

    International Nuclear Information System (INIS)

    Bursilll, L.A.; Peng, Julin; Gurarie, V.N.; Orlov, A.V.; Prawer, S.

    1995-01-01

    High-energy shock plasma deposition techniques are used to produce carbon-nitride films containing both crystalline and amorphous components. The structures are examined by high-resolution transmission electron microscopy, parallel-electron-energy loss spectroscopy and electron diffraction. The crystalline phase appears to be face-centered cubic with unit cell parameter approx. a=0.63nm and it may be stabilized by calcium and oxygen at about 1-2 at % levels. The carbon atoms appear to have both trigonal and tetrahedral bonding for the crystalline phase. There is PEELS evidence that a significant fraction of the nitrogen atoms have sp 2 trigonal bonds in the crystalline phase. The amorphous carbon-nitride film component varies from essentially graphite, containing virtually no nitrogen, to amorphous carbon-nitride containing up to 10 at % N, where the fraction of sp 3 bonds is significant. 15 refs., 5 figs

  9. Synthesis of nano-composite surfaces via the co-deposition of metallic salts and nano particles

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, J.W.; Tesh, S.J.; Crane, R.A.; Hallam, K.R.; Scott, T.B.

    2014-03-15

    Highlights: • Nanofaceted surfaces are prepared by a low current density (<0.1 A cm{sup 2}) electrodeposition method. • Surfaces are formed of nanoparticles anchored to a conductive (carbon) substrate. • Formed surfaces show a high nano-reactivity and surface area. • Demonstration of INP/FeCl{sub 3} nanocomposite for water filtration effectively removing BTEX contamination. -- Abstract: A novel, low energy method for coating different nano-particles via electro-deposition to a recyclable carbon glass supporting structure is demonstrated. In the resulting composite, the nano-material is bound to the substrate surface, thereby removing the potential for causing harmful interactions with the environment. Nano-particles were suspended in a salt solution and deposited at low current densities (<0.1 A cm{sup −2}) producing thin (<100 nm), uniform nano-faceted surfaces. A co-deposition mechanism of nano-particles and cations from the salt solution is proposed and explored. This has been successfully demonstrated for iron, sliver, titanium in the current work. Furthermore, the removal of the surface coatings can be achieved via a reversed current applied over the system, allowing for the recovery of surface bound metal contaminants. The demonstrated applicability of this coating method to different nano-particle types, is useful in many areas within the catalysis and water treatment industries. One such example, is demonstrated, for the treatment of BTEX contamination and show a greatly improved efficiency to current leading remediation agents.

  10. Polyelectrolyte surfactant aggregates and their deposition on macroscopic surfaces

    International Nuclear Information System (INIS)

    Voisin, David

    2002-01-01

    cationically modified guar gums (of varying charge density) with two anionic surfactants: sodium lauryl (or dodecyl) ether sulfate [SLES] and sodium dodecyl sulfate [SDS], for various concentrations of the polyelectrolyte and added sodium chloride, at room temperature. The addition of sodium chloride has only a minor net effect on the CFC, but increases the CSC significantly. The interactions between the cationic polyelectrolyte and the surfactant have been studied in the one-phase regions, i.e. below the CFC and above the CSC, using different techniques. Surface tension, electrophoresis, light scattering and viscosimetry have been employed. In the two-phase region, the sedimented floe phase has been analysed and the flocculation has been investigated. Rheology of the floe phase has been studied, after a mild compression by centrifugation. The initial rate of flocculation has been determined, using stop-flow equipment. The growth and the structure of the flocs have been investigated by light scattering. The open-network flocs of polyelectrolyte-surfactant particles grow to ∼10's μm in size, prior to their eventual settling out. Other colloidal particles can be trapped within these large flocs, and the flocs can be used to transport these particles to a macroscopic surface. The deposition and the removal of such composite flocs on glass surfaces, under flow, have been studied using a flow cell device coupled with an optical microscope. Scanning electron microscopy and atomic force microscopy have also been employed. (author)

  11. Polyelectrolyte surfactant aggregates and their deposition on macroscopic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Voisin, David

    2002-07-01

    the CSC have been determined for mixtures of cationically modified guar gums (of varying charge density) with two anionic surfactants: sodium lauryl (or dodecyl) ether sulfate [SLES] and sodium dodecyl sulfate [SDS], for various concentrations of the polyelectrolyte and added sodium chloride, at room temperature. The addition of sodium chloride has only a minor net effect on the CFC, but increases the CSC significantly. The interactions between the cationic polyelectrolyte and the surfactant have been studied in the one-phase regions, i.e. below the CFC and above the CSC, using different techniques. Surface tension, electrophoresis, light scattering and viscosimetry have been employed. In the two-phase region, the sedimented floe phase has been analysed and the flocculation has been investigated. Rheology of the floe phase has been studied, after a mild compression by centrifugation. The initial rate of flocculation has been determined, using stop-flow equipment. The growth and the structure of the flocs have been investigated by light scattering. The open-network flocs of polyelectrolyte-surfactant particles grow to {approx}10's {mu}m in size, prior to their eventual settling out. Other colloidal particles can be trapped within these large flocs, and the flocs can be used to transport these particles to a macroscopic surface. The deposition and the removal of such composite flocs on glass surfaces, under flow, have been studied using a flow cell device coupled with an optical microscope. Scanning electron microscopy and atomic force microscopy have also been employed. (author)

  12. Effects of negative bias on structure and surface topography of titanium films deposited by DC magnetron sputtering

    International Nuclear Information System (INIS)

    Duan Linglong

    2008-01-01

    Pure Ti films were fabricated by bias sputtering. The deposition rate, the density and the surface topography of the Ti films at different negative bias were studied. The results show that the deposition rate is weakly affected when the bias power is low. As the bias voltage increases, the deposition rate decreases strongly due to the increase of the layer density and the resputtering phenomena. The film density increased and saturated to nearly bulk value at a bias voltage of -119.1 V. SEM view indicates that the columnar-type structure of Ti films can be destroyed by applying negative bias. The experiments demonstrated that a dense Ti film with more smooth surface can be produced by applying negative bias. (authors)

  13. Effect of atomic layer deposition coatings on the surface structure of anodic aluminum oxide membranes.

    Science.gov (United States)

    Xiong, Guang; Elam, Jeffrey W; Feng, Hao; Han, Catherine Y; Wang, Hsien-Hau; Iton, Lennox E; Curtiss, Larry A; Pellin, Michael J; Kung, Mayfair; Kung, Harold; Stair, Peter C

    2005-07-28

    Anodic aluminum oxide (AAO) membranes were characterized by UV Raman and FT-IR spectroscopies before and after coating the entire surface (including the interior pore walls) of the AAO membranes by atomic layer deposition (ALD). UV Raman reveals the presence of aluminum oxalate in bulk AAO, both before and after ALD coating with Al2O3, because of acid anion incorporation during the anodization process used to produce AAO membranes. The aluminum oxalate in AAO exhibits remarkable thermal stability, not totally decomposing in air until exposed to a temperature >900 degrees C. ALD was used to cover the surface of AAO with either Al2O3 or TiO2. Uncoated AAO have FT-IR spectra with two separate types of OH stretches that can be assigned to isolated OH groups and hydrogen-bonded surface OH groups, respectively. In contrast, AAO surfaces coated by ALD with Al2O3 display a single, broad band of hydrogen-bonded OH groups. AAO substrates coated with TiO2 show a more complicated behavior. UV Raman results show that very thin TiO2 coatings (1 nm) are not stable upon annealing to 500 degrees C. In contrast, thicker coatings can totally cover the contaminated alumina surface and are stable at temperatures in excess of 500 degrees C.

  14. Enceladus' near-surface CO2 gas pockets and surface frost deposits

    Science.gov (United States)

    Matson, Dennis L.; Davies, Ashley Gerard; Johnson, Torrence V.; Combe, Jean-Philippe; McCord, Thomas B.; Radebaugh, Jani; Singh, Sandeep

    2018-03-01

    Solid CO2 surface deposits were reported in Enceladus' South Polar Region by Brown et al. (2006). They noted that such volatile deposits are temporary and posited ongoing replenishment. We present a model for this replenishment by expanding on the Matson et al. (2012) model of subsurface heat and chemical transport in Enceladus. Our model explains the distributions of both CO2 frost and complexed CO2 clathrate hydrate as seen in the Cassini Visual and Infrared Mapping Spectrometer (VIMS) data. We trace the journey of CO2 from a subsurface ocean. The ocean-water circulation model of Matson et al. (2012) brings water up to near the surface where gas exsolves to form bubbles. Some of the CO2 bubbles are trapped and form pockets of gas in recesses at the bottom of the uppermost ice layer. When fissures break open these pockets, the CO2 gas is vented. Gas pocket venting is episodic compared to the more or less continuous eruptive plumes, emanating from the "tiger stripes", that are supported by plume chambers. Two styles of gas pocket venting are considered: (1) seeps, and (2) blowouts. The presence of CO2 frost patches suggests that the pocket gas slowly seeped through fractured, cold ice and when some of the gas reached the surface it was cold enough to condense (i.e., T ∼70 to ∼119 K). If the fissure opening is large, a blowout occurs. The rapid escape of gas and drop in pocket pressure causes water in the pocket to boil and create many small aerosol droplets of seawater. These may be carried along by the erupting gas. Electrically charged droplets can couple to the magnetosphere, and be dragged away from Enceladus. Most of the CO2 blowout gas escapes from Enceladus and the remainder is distributed globally. However, CO2 trapped in a clathrate structure does not escape. It is much heavier and slower moving than the CO2 gas. Its motion is ballistic and has an average range of about 17 km. Thus, it contributes to deposits in the vicinity of the vent. Local heat

  15. Measurement of the specific surface area of loose copper deposit by electrochemical methods

    Directory of Open Access Journals (Sweden)

    E. A. Dolmatova

    2016-07-01

    Full Text Available In the work the surface area of the electrode with dispersed copper deposit obtained within 30 seconds was evaluated by techniques of chronopotentiometry (CPM and impedance spectroscopy. In method CPM the electrode surface available for measurement depends on the value of the polarizing current. At high currents during the transition time there is a change of surface relief that can not determine the full surface of loose deposit. The electrochemical impedance method is devoid of this shortcoming since the measurements are carried out in indifferent electrolyte in the absence of current. The area measured by the impedance is tens of times higher than the value obtained by chronopotentiometry. It is found that from a solution containing sulfuric acid the deposits form with a high specific surface area. Based on these data it was concluded that the method of impedance spectroscopy can be used to measure in situ the surface area of the dispersed copper deposits.

  16. Flame spray deposition of porous catalysts on surfaces and in microsystems

    DEFF Research Database (Denmark)

    Thybo, Susanne; Jensen, Søren; Johansen, Johnny

    2004-01-01

    Flame spray synthesis is investigated as a method for one step synthesis and deposition of porous catalysts onto surfaces and into microreactors. Using a standard photolithographic lift-off process, catalyst can be deposited on flat surfaces in patterns with sub-millimeter feature sizes....... With shadow masks, porous catalyst layers can be deposited selectively into microchannels. Using Au/TiO$_2$ as test catalyst and CO-oxidation as test reaction, it is found that the apparent activation energy of the deposited catalyst is similar to what is normally seen for supported gold catalysts...

  17. Formation of fouling deposits on a carbon steel surface from Colombian heavy crude oil under preheating conditions

    Science.gov (United States)

    Muñoz Pinto, D. A.; Cuervo Camargo, S. M.; Orozco Parra, M.; Laverde, D.; García Vergara, S.; Blanco Pinzon, C.

    2016-02-01

    Fouling in heat exchangers is produced by the deposition of undesired materials on metal surfaces. As fouling progresses, pressure drop and heat transfer resistance is observed and therefore the overall thermal efficiency of the equipment diminishes. Fouling is mainly caused by the deposition of suspended particles, such as those from chemical reactions, crystallization of certain salts, and some corrosion processes. In order to understand the formation of fouling deposits from Colombian heavy oil (API≈12.3) on carbon steel SA 516 Gr 70, a batch stirred tank reactor was used. The reactor was operated at a constant pressure of 340psi while varying the temperature and reaction times. To evaluate the formation of deposits on the metal surfaces, the steel samples were characterized by gravimetric analysis and Scanning Electron Microscopy (SEM). On the exposed surfaces, the results revealed an increase in the total mass derived from the deposition of salt compounds, iron oxides and alkaline metals. In general, fouling was modulated by both the temperature and the reaction time, but under the experimental conditions, the temperature seems to be the predominant variable that controls and accelerates fouling.

  18. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    International Nuclear Information System (INIS)

    Petala, M.; Tsiridis, V.; Mintsouli, I.; Pliatsikas, N.; Spanos, Th.; Rebeyre, P.; Darakas, E.; Patsalas, P.; Vourlias, G.; Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th.

    2017-01-01

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  19. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Petala, M., E-mail: petala@civil.auth.gr [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Tsiridis, V. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Mintsouli, I. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Pliatsikas, N. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Spanos, Th. [Department of Petroleum and Mechanical Engineering Sciences, Eastern Macedonia and Thrace Institute of Technology, Kavala, 65404 (Greece); Rebeyre, P. [ESA/ESTEC, P.O.Box 299, 2200 AG, Noordwijk (Netherlands); Darakas, E. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Patsalas, P.; Vourlias, G. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece)

    2017-02-28

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  20. Cu and Cu(Mn) films deposited layer-by-layer via surface-limited redox replacement and underpotential deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J.S., E-mail: jsfang@nfu.edu.tw [Department of Materials Science and Engineering, National Formosa University, Huwei 63201, Taiwan (China); Sun, S.L. [Department of Materials Science and Engineering, National Formosa University, Huwei 63201, Taiwan (China); Cheng, Y.L. [Department of Electrical Engineering, National Chi-Nan University, Nan-Tou 54561, Taiwan (China); Chen, G.S.; Chin, T.S. [Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan (China)

    2016-02-28

    Graphical abstract: - Abstract: The present paper reports Cu and Cu(Mn) films prepared layer-by-layer using an electrochemical atomic layer deposition (ECALD) method. The structure and properties of the films were investigated to elucidate their suitability as Cu interconnects for microelectronics. Previous studies have used primarily a vacuum-based atomic layer deposition to form a Cu metallized film. Herein, an entirely wet chemical process was used to fabricate a Cu film using the ECALD process by combining underpotential deposition (UPD) and surface-limited redox replacement (SLRR). The experimental results indicated that an inadequate UPD of Pb affected the subsequent SLRR of Cu and lead to the formation of PbSO{sub 4}. A mechanism is proposed to explain the results. Layer-by-layer deposition of Cu(Mn) films was successfully performed by alternating the deposition cycle-ratios of SLRR-Cu and UPD-Mn. The proposed self-limiting growth method offers a layer-by-layer wet chemistry-based deposition capability for fabricating Cu interconnects.

  1. Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition.

    Science.gov (United States)

    Liu, Donghua; Chen, Xiaosong; Hu, Yibin; Sun, Tai; Song, Zhibo; Zheng, Yujie; Cao, Yongbin; Cai, Zhi; Cao, Min; Peng, Lan; Huang, Yuli; Du, Lei; Yang, Wuli; Chen, Gang; Wei, Dapeng; Wee, Andrew Thye Shen; Wei, Dacheng

    2018-01-15

    Graphene is regarded as a potential surface-enhanced Raman spectroscopy (SERS) substrate. However, the application of graphene quantum dots (GQDs) has had limited success due to material quality. Here, we develop a quasi-equilibrium plasma-enhanced chemical vapor deposition method to produce high-quality ultra-clean GQDs with sizes down to 2 nm directly on SiO 2 /Si, which are used as SERS substrates. The enhancement factor, which depends on the GQD size, is higher than conventional graphene sheets with sensitivity down to 1 × 10 -9  mol L -1 rhodamine. This is attributed to the high-quality GQDs with atomically clean surfaces and large number of edges, as well as the enhanced charge transfer between molecules and GQDs with appropriate diameters due to the existence of Van Hove singularities in the electronic density of states. This work demonstrates a sensitive SERS substrate, and is valuable for applications of GQDs in graphene-based photonics and optoelectronics.

  2. The spatial thickness distribution of metal films produced by large area pulsed laser deposition

    DEFF Research Database (Denmark)

    Pryds, Nini; Schou, Jørgen; Linderoth, Søren

    2007-01-01

    Thin films of metals have been deposited in the large-area Pulsed Laser Deposition (PLD) Facility at Riso National Laboratory. Thin films of Ag and Ni were deposited with laser pulses from an excimer laser at 248 nm with a rectangular beam spot at a fluence of 10 J/cm(2) on glass substrates of 127...

  3. Hydroxyapatite growth induced by native extracellular matrix deposition on solid surfaces

    Directory of Open Access Journals (Sweden)

    Pramatarova L.

    2005-02-01

    Full Text Available Biological systems have a remarkable capability to produce perfect fine structures such as seashells, pearls, bones, teeth and corals. These structures are composites of interacting inorganic (calcium phosphate or carbonate minerals and organic counterparts. It is difficult to say with certainty which part has the primary role. For example, the growth of molluscan shell crystals is thought to be initiated from a solution by the extracellular organic matrix (ECM. According to this theory, the matrix induces nucleation of calcium containing crystals. Recently, an alternative theory has been put forward, stating that a class of granulocytic hemocytes would be directly involved in shell crystal production in oysters. In the work presented here the surface of AISI 316 stainless steel was modified by deposition of ECM proteins. The ability of the modified substrates to induce nucleation and growth of hydroxyapatite (HA from simulated body fluid (SBF was examined by a kinetic study using two methods: (1 a simple soaking process in SBF and (2 a laser-liquid-solid interaction (LLSI process which allows interaction between a scanning laser beam and a solid substrate immersed in SBF. The deposited HA layers were investigated by Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. It was found that a coating of stainless steel surface with native ECM proteins induced nucleation and growth of HA and facilitated its crystallization. By the process of simple soaking of the samples, irrespective of their horizontal or vertical position in the solution, HA layers were grown due to the reactive ECM-coated stainless steel surface. It was shown that the process occurring in the first stages of the growth was not only a result of the force of gravity. The application of the LLSI process strongly influenced HA formation on the ECM-modified substrates by promoting and enhancing the HA nucleation and growth through a synergistic effect

  4. An Experimental Study on Slurry Erosion Resistance of Single and Multilayered Deposits of Ni-WC Produced by Laser-Based Powder Deposition Process

    Science.gov (United States)

    Balu, Prabu; Hamid, Syed; Kovacevic, Radovan

    2013-11-01

    Single and multilayered deposits containing different mass fractions of tungsten carbide (WC) in nickel (Ni)-matrix (NT-20, NT-60, NT-80) are deposited on a AISI 4140 steel substrate using a laser-based powder deposition process. The transverse cross section of the coupons reveals that the higher the mass fraction of WC in Ni-matrix leads to a more uniform distribution through Ni-matrix. The slurry erosion resistance of the fabricated coupons is tested at three different impingement angles using an abrasive water jet cutting machine, which is quantified based on the erosion rate. The top layer of a multilayered deposit (i.e., NT-60 in a two-layer NT-60 over NT-20 deposit) exhibits better erosion resistance at all three tested impingement angles when compared to a single-layer (NT-60) deposit. A definite increase in the erosion resistance is noted with an addition of nano-size WC particles. The relationship between the different mass fractions of reinforcement (WC) in the deposited composite material (Ni-WC) and their corresponding matrix (Ni) hardness on the erosion rate is studied. The eroded surface is analyzed in the light of a three-dimensional (3-D) profilometer and a scanning electron microscope (SEM). The results show that a volume fraction of approximately 62% of WC with a Ni-matrix hardness of 540 HV resulting in the gouging out of WC from the Ni-matrix by the action of slurry. It is concluded that the slurry erosion resistance of the AISI 4140 steel can be significantly enhanced by introducing single and multilayered deposits of Ni-WC composite material fabricated by the laser-based powder deposition process.

  5. Influence of deposition rate on PL spectrum and surface morphology ...

    Indian Academy of Sciences (India)

    terized by large bond strength and extreme stability of exci- tons indicated by stronger exciton binding energy which is larger than that of ... ties of the ZnO thin films deposited on glass and LiNbO3 substrates were .... Skewness is a measure of.

  6. Modeling Dry Deposition of Aerosol Particles on Rough Surfaces

    Czech Academy of Sciences Publication Activity Database

    Hussein, T.; Smolík, Jiří; Kerminen, V.-M.; Kulmala, M.

    2012-01-01

    Roč. 46, č. 1 (2012), s. 44-59 ISSN 0278-6826 Institutional research plan: CEZ:AV0Z40720504 Keywords : aerosol particles * dry deposition * transport Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.780, year: 2012

  7. Bone surface deposition of 241Am in a person with occupational exposure

    International Nuclear Information System (INIS)

    Schlenker, R.A.; Oltman, B.G.; Kathren, R.L.

    1989-01-01

    We have measured the 241 Am concentrations in the vicinity of bone surfaces in 11 samples of cortical bone from a man whose occupational exposure occurred 25 to 27 years before death. Concentrations in bone surface deposits ranged between 44 and 185 Bq.cm -3 ; concentrations in subjacent bone ranged between 0 and 8.4 Bq.cm -3 . Thicknesses of the bone surface deposits were in the range 0.6 to 1.2 μm. An analysis of dose rates indicates that bone surface deposits contributed 40% or more of the terminal dose rate to bone surface tissues. Half-lives for the reduction of bone surface concentrations are estimated at 4.8 to 24 years, compared with the 50-and 100-year estimates recommended in current ICRP publications. These data are important for the estimation of the dose rate to bone surface tissues for radiation protection. (author)

  8. Energy deposition at the bone-tissue interface from nuclear fragments produced by high-energy nucleons

    Science.gov (United States)

    Cucinotta, Francis A.; Hajnal, Ferenc; Wilson, John W.

    1990-01-01

    The transport of nuclear fragmentation recoils produced by high-energy nucleons in the region of the bone-tissue interface is considered. Results for the different flux and absorbed dose for recoils produced by 1 GeV protons are presented in a bidirectional transport model. The energy deposition in marrow cavities is seen to be enhanced by recoils produced in bone. Approximate analytic formulae for absorbed dose near the interface region are also presented for a simplified range-energy model.

  9. Spatio-selective surface modification of glass assisted by laser-induced deposition of gold nanoparticles

    International Nuclear Information System (INIS)

    Takahashi, Hironobu; Niidome, Yasuro; Hisanabe, Hideyuki; Kuroiwa, Keita; Kimizuka, Nobuo; Yamada, Sunao

    2006-01-01

    Using pulsed laser irradiation (532 nm), dodecanethiol-capped gold nanoparticles (DT-Au) were deposited on the laser-irradiated region of a hydrophobic glass substrate modified with dimethyloctadecylchlorosilane (DMOS). After removal of deposited DT-Au, the laser-deposited region on the substrate was hydrophilic, as verified by static water contact angles. X-ray photoelectron spectroscopy suggested that the naked glass surface was not exposed at the hydrophilic region. Immersion of the substrate into gold nanorod (NR) solution selectively immobilized NRs on the hydrophilic surface via electrostatic interactions, indicating that the hydrophilic region was an anionic surface. From these results, it is expected that some immobilized DMOS groups on the laser-irradiated region of the substrate were oxidized during DT-Au deposition and fragmentation of the deposited DT-Au

  10. A fundamental study of fission product deposition on the wall surface

    International Nuclear Information System (INIS)

    Ishiguro, R.; Sakashita, H.; Sugiyama, K.

    1987-01-01

    Deposition of soluble matters on wall surfaces is studied in the present report for the purpose to understand a mechanism of fission product deposition on the wall surface in a molten salt reactor. Calcium carbonate solution is used to observe the fundamental mechanism of deposition. The experiments are performed under conditions of turbulent flow of the solution over a heated wall. According to the experimental results a model is proposed to estimate deposition rate. The model consists of two parts, one is the initial nucleus formation on a clean wall surface and the other is the constant increase of deposition succeeding to the first stage. The model is assessed by comparing it with the experimental results. Both results coincide well in some parameters, but not so well in others. (author)

  11. Deposits on heat exchanging surfaces, causes in the bleaching process and countermeasures; Belaeggningar paa vaermevaexlare, orsaker i blekprocessen och aatgaerder

    Energy Technology Data Exchange (ETDEWEB)

    Bjurstroem, Henrik [AaF-Energi och Miljoe AB, Stockholm (Sweden); Staahl, Charlotte; Widell, Lars [AaF-Celpap AB, Stockholm (Sweden)

    2003-06-01

    Energy conservation in process industry implies to a large extent recovery of heat (or cold) from a process stream and its utilization for another process stream. The savings of energy that can be achieved depend on the process streams, but also on the efficiency of the heat exchange. A small driving temperature difference is a condition for an extensive recovery and a satisfactory preservation of its quality, i.e. its temperature. As process streams contain compounds or components that can precipitate and form deposits on heat exchanging surfaces, the recovery of heat is degraded. In the pulp and paper industry, two trends combine to increase the extent of fouling: a larger degree of closure for the process and a change in pH-profile caused by a switch to elementary chlorine free bleaching. In this study, the occurrence of deposits has been investigated for the mills that produce mechanical pulp and for the fiber line in mills producing chemical pulp. Deposits on the evaporator surfaces are treated in a parallel study. Except for some plants, deposits are not an important problem today. That does not mean that there has not been any problem or that problems will not occur. The origin of deposits lies in the chemistry of the process, but deposits have consequences for the thermal energy management. A list of possible actions in order to avoid deposits or to mitigate their consequences has been dressed in this report. They should be considered with the following order of priority: avoiding that the compounds that may form deposits enter at all the process, section 6.1; avoiding that these compounds form a deposit once they have entered the process, section 6.2; cleaning if nothing else helps or costs too much, section 6.3. Some of these methods are well known or are conventional changes in the processes. Some of these methods are less well proven or less well documented. In a longer time perspective, the kidney technology that is being developed could contribute to

  12. Recent field studies of dry deposition to surfaces in plant canopies

    International Nuclear Information System (INIS)

    Lindberg, S.E.; Lovett, G.M.; Bondietti, E.A.; Davidson, C.I.

    1984-01-01

    A variety of field techniques were used to assess the dry deposition of sulfur. In a deciduous forest canopy in eastern Tennessee, inert petri plates and adjacent chestnut oak leaves showed similar SO 4 -2 deposition velocities of about 0.1 cm s -1 . In the same forest, statistical analysis of throughfall yielded a deposition velocity of 0.48 cm s -1 for total sulfur (SO 4 -2 plus SO 2 ). The throughfall technique appears useful for scaling individual surface measurements to larger spatial and temporal scales. On a grassy field in Illinois, flat Teflon plates, petri dishes, and dustfall buckets were exposed side by side. Measured sulfate deposition increased with increasing rim height on the collection surface, and deposition velocities ranged from 0.14 to 0.70 cm s -1 . Much of the deposition to these surfaces can be attributed to large-particle SO 4 -2 . Dry season (summer) deposition velocities of 7 Be in California were found to be similar to dry deposition velocities of 212 Pb in Tennessee, ranging from 0.18 to 0.35 cm s -1 . These natural radionuclides attach to submicron aerosols in the atmosphere and may be useful tracers of submicron SO 4 -2 deposition. 9 references, 5 figures, 4 tables

  13. Characterization of deposits formed on catalyst surfaces during hydrotreatment of coal-derived liquids

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    1982-04-01

    Loss of catalyst activity is attributed to the formation of polynuclear aromatic structures on the surface. Heavy species containing N and O heteroatoms were also present in deposits. Phenols, aromatic and heterocyclic compounds are considered to be the precursors for the formation of the deposits. (16 refs.)

  14. Molecular weight evaluation of poly-dimethylsiloxane on solid surfaces using silver deposition/TOF-SIMS

    Science.gov (United States)

    Inoue, Masae; Murase, Atsushi

    2004-06-01

    Molecular ions include information about end groups, functional groups and molecular weight. A method for directly detecting this in the high-mass region of the spectrum (>1000 amu) from poly-dimethylsiloxane (PDMS) on a solid surface was investigated. It was found that a TOF-SIMS analysis of silver-deposited surfaces (silver deposition/TOF-SIMS) is useful for this purpose. Two methods for silver deposition, the diode sputtering method and the vacuum evaporation coating method, were tried. The former required the sample to be cooled so as to prevent the damage of the sample surface due to thermal oxidation; the latter caused no damage to sample surfaces at room temperature. Using silver deposition/TOF-SIMS analysis, silver-cationized quasi-molecular ions were clearly detected from PDMS on solid surfaces and their images were observed without the interference of deposited silver. By applying to the analysis of paint defects, etc., it was confirmed that this technique is useful to analyze practical industrial materials. Silver-cationized ions were detected not only from PDMS, but also from other organic materials, such as some kinds of lubricant additives and fluorine oils on solid surfaces. Therefore, silver deposition/TOF-SIMS was proved to be useful for the analysis of thin substances on solid surfaces.

  15. Deposition of RuO 4 on various surfaces in a nuclear reactor containment

    Science.gov (United States)

    Holm, Joachim; Glänneskog, Henrik; Ekberg, Christian

    2009-07-01

    During a severe nuclear reactor accident with air ingress, ruthenium can be released from the nuclear fuel in the form of ruthenium tetroxide. Hence, it is important to investigate how the reactor containment is able to reduce the source term of ruthenium. The aim of this work was to investigate the deposition of gaseous ruthenium tetroxide on aluminium, copper and zinc, which all appear in relatively large amounts in reactor containment. The experiments show that ruthenium tetroxide is deposited on all the metal surfaces, especially on the copper and zinc surfaces. A large deposition of ruthenium tetroxide also appeared on the relatively inert glass surfaces in the experimental set-ups. The analyses of the different surfaces, with several analytical methods, showed that the form of deposited ruthenium was mainly ruthenium dioxide.

  16. Deposition of RuO{sub 4} on various surfaces in a nuclear reactor containment

    Energy Technology Data Exchange (ETDEWEB)

    Holm, Joachim, E-mail: joachim.holm@chalmers.s [Department of Nuclear Chemistry, Chalmers University of Technology, Se-412 96 Gothenburg (Sweden); Glaenneskog, Henrik [Ringhals AB, SE-430 22, Vaeroebacka (Sweden); Ekberg, Christian [Department of Nuclear Chemistry, Chalmers University of Technology, Se-412 96 Gothenburg (Sweden)

    2009-07-01

    During a severe nuclear reactor accident with air ingress, ruthenium can be released from the nuclear fuel in the form of ruthenium tetroxide. Hence, it is important to investigate how the reactor containment is able to reduce the source term of ruthenium. The aim of this work was to investigate the deposition of gaseous ruthenium tetroxide on aluminium, copper and zinc, which all appear in relatively large amounts in reactor containment. The experiments show that ruthenium tetroxide is deposited on all the metal surfaces, especially on the copper and zinc surfaces. A large deposition of ruthenium tetroxide also appeared on the relatively inert glass surfaces in the experimental set-ups. The analyses of the different surfaces, with several analytical methods, showed that the form of deposited ruthenium was mainly ruthenium dioxide.

  17. Surface electronic and structural properties of nanostructured titanium oxide grown by pulsed laser deposition

    NARCIS (Netherlands)

    Fusi, M.; Maccallini, E.; Caruso, T.; Casari, C. S.; Bassi, A. Li; Bottani, C. E.; Rudolf, P.; Prince, K. C.; Agostino, R. G.

    Titanium oxide nanostructured thin films synthesized by pulsed laser deposition (PLD) were here characterized with a multi-technique approach to investigate the relation between surface electronic, structural and morphological properties. Depending on the growth parameters, these films present

  18. Morphologies, microstructures, and mechanical properties of samples produced using laser metal deposition with 316 L stainless steel wire

    Science.gov (United States)

    Xu, Xiang; Mi, Gaoyang; Luo, Yuanqing; Jiang, Ping; Shao, Xinyu; Wang, Chunming

    2017-07-01

    Laser metal deposition (LMD) with a filler has been demonstrated to be an effective method for additive manufacturing because of its high material deposition efficiency, improved surface quality, reduced material wastage, and cleaner process environment without metal dust pollution. In this study, single beads and samples with ten layers were successfully deposited on a 316 L stainless steel surface under optimized conditions using a 4000 W continuous wave fibre laser and an arc welding machine. The results showed that satisfactory layered samples with a large deposition height and smooth side surface could be achieved under appropriate parameters. The uniform structures had fine cellular and network austenite grains with good metallurgical bonding between layers, showing an austenite solidification mode. Precipitated ferrite at the grain boundaries showed a subgrain structure with fine uniform grain size. A higher microhardness (205-226 HV) was detected in the middle of the deposition area, while the tensile strength of the 50 layer sample reached 669 MPa. In addition, ductile fracturing was proven by the emergence of obvious dimples at the fracture surface.

  19. Photon emission produced by particle-surface collisions

    International Nuclear Information System (INIS)

    White, C.W.; Tolk, N.H.

    1976-02-01

    Visible, ultraviolet, and infrared optical emission results from low-energy (20 eV-10 keV) particle-surface collisions. Several distinct kinds of collision induced optical radiation are discussed which provide fundamental information on particle-solid collision processes. Line radiation arises from excited states of sputtered surface constituents and backscattered beam particles. This radiation uniquely identifies the quantum state of sputtered or reflected particles, provides a method for identifying neutral atoms sputtered from the surface, and serves as the basis for a sensitive surface analysis technique. Broadband radiation from the bulk of the solid is attributed to the transfer of projectile energy to the electrons in the solid. Continuum emission observed well in front of transition metal targets is believed to arise from excited atom clusters (diatomic, triatomic, etc.) ejected from the solid in the sputtering process. Application of sputtered atom optical radiation for surface and depth profile analysis is demonstrated for the case of submonolayer quantities of chromium on silicon and aluminum implanted in SiO 2

  20. Tuning the deposition of molecular graphene nanoribbons by surface functionalization

    Science.gov (United States)

    Konnerth, R.; Cervetti, C.; Narita, A.; Feng, X.; Müllen, K.; Hoyer, A.; Burghard, M.; Kern, K.; Dressel, M.; Bogani, L.

    2015-07-01

    We show that individual, isolated graphene nanoribbons, created with a molecular synthetic approach, can be assembled on functionalised wafer surfaces treated with silanes. The use of surface groups with different hydrophobicities allows tuning the density of the ribbons and assessing the products of the polymerisation process.

  1. Environmental and geochemical assessment of surface sediments on irshansk ilmenite deposit area

    Directory of Open Access Journals (Sweden)

    Наталия Олеговна Крюченко

    2015-03-01

    Full Text Available It is revealed the problem of pollution of surface sediments of Irshansk ilmenite deposit area of various chemical elements hazard class (Mn, V, Ba, Ni, Co, Cr, Mo, Cu, Pb, Zn. It is determined its average content in surface sediments of various functional areas (forest and agricultural land, flood deposits, reclaimed land, calculated geochemical criteria, so given ecological and geochemical assessment of area

  2. A new, bright and hard aluminum surface produced by anodization

    Science.gov (United States)

    Hou, Fengyan; Hu, Bo; Tay, See Leng; Wang, Yuxin; Xiong, Chao; Gao, Wei

    2017-07-01

    Anodized aluminum (Al) and Al alloys have a wide range of applications. However, certain anodized finishings have relatively low hardness, dull appearance and/or poor corrosion resistance, which limited their applications. In this research, Al was first electropolished in a phosphoric acid-based solution, then anodized in a sulfuric acid-based solution under controlled processing parameters. The anodized specimen was then sealed by two-step sealing method. A systematic study including microstructure, surface morphology, hardness and corrosion resistance of these anodized films has been conducted. Results show that the hardness of this new anodized film was increased by a factor of 10 compared with the pure Al metal. Salt spray corrosion testing also demonstrated the greatly improved corrosion resistance. Unlike the traditional hard anodized Al which presents a dull-colored surface, this newly developed anodized Al alloy possesses a very bright and shiny surface with good hardness and corrosion resistance.

  3. Surface deposition measurements of the TMI-2 gross decontamination experiment

    International Nuclear Information System (INIS)

    McIssac, C.V.; Hetzer, D.C.

    1982-01-01

    In order to measure the effectiveness of the gross decontamination experiment (principally a water spray technique) performed in the TMI-2 reactor building, the Technical Information and Examination Program's Radiation and Environment personnel made surface activity measurements before and after the experiment. In conjunction with surface sampling, thermoluminescent dosimeter (TLD) and gamma spectrometry measurements were also performed to distinguish between radiation fields and contamination. The surface sampler used to collect samples from external surfaces within the reactor building is a milling tool having four major components: a 1.27-cm constant-speed drill; a drill support assembly that allows setting sample penetration depth; filter cartridges for intake air purification and sample collection; and an air pump that forces air across the surface being sampled and through the sample filter cartridge

  4. Simulation of depositions of a Lennard-Jones cluster on a crystalline surface

    International Nuclear Information System (INIS)

    Saitoh, Kuniyasu; Hayakawa, Hisao

    2009-01-01

    Depositions of amorphous Lennard-Jones clusters on a crystalline surface are numerically investigated. From the results of the molecular dynamics simulation, we found that the deposited clusters exhibit a transition from multilayered adsorption to monolayered adsorption at a critical incident speed. Employing the energy conservation law, we can explain the behavior of the ratio of the number of atoms adsorbed on the substrate to the cluster size. The boundary shape of the deposited cluster depends strongly on the incident speed, and some unstable modes grow during the spread of the deposited cluster on the substrate. We also discuss the wettability between different Lennard-Jones atoms. (author)

  5. Improvement and protection of niobium surface superconductivity by atomic layer deposition and heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Proslier, T.; /IIT, Chicago /Argonne; Zasadzinski, J.; /IIT, Chicago; Moore, J.; Pellin, M.; Elam, J.; /Argonne; Cooley, L.; /Fermilab; Antoine, C.; /Saclay

    2008-11-01

    A method to treat the surface of Nb is described, which potentially can improve the performance of superconducting rf cavities. We present tunneling and x-ray photoemission spectroscopy measurements at the surface of cavity-grade niobium samples coated with a 3 nm alumina overlayer deposited by atomic layer deposition. The coated samples baked in ultrahigh vacuum at low temperature degraded superconducting surface. However, at temperatures above 450 C, the tunneling conductance curves show significant improvements in the superconducting density of states compared with untreated surfaces.

  6. Surface Acoustic Wave Monitor for Deposition and Analysis of Ultra-Thin Films

    Science.gov (United States)

    Hines, Jacqueline H. (Inventor)

    2015-01-01

    A surface acoustic wave (SAW) based thin film deposition monitor device and system for monitoring the deposition of ultra-thin films and nanomaterials and the analysis thereof is characterized by acoustic wave device embodiments that include differential delay line device designs, and which can optionally have integral reference devices fabricated on the same substrate as the sensing device, or on a separate device in thermal contact with the film monitoring/analysis device, in order to provide inherently temperature compensated measurements. These deposition monitor and analysis devices can include inherent temperature compensation, higher sensitivity to surface interactions than quartz crystal microbalance (QCM) devices, and the ability to operate at extreme temperatures.

  7. Overlayer structure of subphthalocyanine derivative deposited on Au (111) surface by a spray-jet technique

    International Nuclear Information System (INIS)

    Suzuki, Hitoshi; Yamada, Toshiki; Miki, Hideki; Mashiko, Shinro

    2006-01-01

    A new spray-jet technique was used to deposit subphthalocyanine derivative (chloro[tri-tert-butyl subphthalocyaninato]boron (TBSubPc)) on Au (111) surface in an ultra-high vacuum (UHV) chamber. The deposited molecular overlayer was observed with UHV scanning tunneling microscopy (STM) at 77 K. The STM images showed that TBSubPc molecules formed a stripe pattern with regular spacing, indicating that they preferentially adsorbed along the herringbone structure of the Au (111) surface. This behavior was very similar to that of TBSubPc molecules deposited by thermal evaporation

  8. Phenomenological study of aerosol dry deposition in urban area: surface properties, turbulence and local meteorology influences

    International Nuclear Information System (INIS)

    Roupsard, P.

    2013-01-01

    Aerosol dry deposition is not much known for urban areas due to the lack of data. Knowledge on this phenomenon is necessary to understand pollutant fluxes in cities and to estimate inhabitant exposition to ionizing radiation of radioactive aerosols. A data providing could enable to enhance dry deposition models for these areas. An original experimental approach is performed to study submicron aerosol dry deposition on urban surfaces. Wind tunnel coupled to in situ experiments give results to study different physical phenomenon governing dry deposition. Dry deposition velocities are measured using aerosol tracers. These data are associated to turbulent and meteorological measured conditions. This database permits to classify the principal physical phenomenon for each experiment type. Finally, different phenomenon must be considered for chronic and acute exposition of urban surfaces to atmospheric particles. (author)

  9. Effect of strontium tantalate surface texture on nickel nanoparticle dispersion by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Compean-González, C.L. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66451 (Mexico); Arredondo-Torres, V.M. [Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Tzintzuntzan #173, Col. Matamoros, Morelia, Michoacán C.P. 58240 (Mexico); Zarazúa-Morin, M.E. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66451 (Mexico); Figueroa-Torres, M.Z., E-mail: m.zyzlila@gmail.com [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66451 (Mexico)

    2015-09-15

    Highlights: • Efficient short-time procedure for nickel nanoparticles dispersion by electroless. • Nanoparticles are spherical in shape with an average size of 15 nm. • Influence of surface texture on deposition temperature and time was observed. • Nickel deposition can be done below 50 °C. - Abstract: The present work studies the effect of smooth and porous texture of Sr{sub 2}Ta{sub 2}O{sub 7} on its surface modification with nickel nanoparticles through electroless deposition technique. The influence of temperature to control Ni nanoparticles loading amount and dispersion were analyzed. Nitrogen adsorption isotherms were used to examine surface texture characteristics. The morphology was observed by scanning electron microscopy (MEB) equipped with an energy dispersive spectrometry system (EDS), which was used to determine the amount of deposited Ni. The material with smooth texture (SMT) consists of big agglomerates of semispherical shape particles of 400 nm. Whilst the porous texture (PRT) exhibit a pore-wall formed of needles shape particles of around 200 nm in size. Results indicated that texture characteristics strongly influence the deposition reaction rate; for PRT oxide, Ni deposition can be done from 20 °C while for SMT oxide deposition begins at 40 °C. Analysis of Sr{sub 2}Ta{sub 2}O{sub 7} surface indicated that in both textures, Ni nanoparticles with spherical shape in the range of 10–20 nm were obtained.

  10. Study on effect of plasma surface treatments for diamond deposition by DC arc plasmatron.

    Science.gov (United States)

    Kang, In-Je; Joa, Sang-Beom; Lee, Heon-Ju

    2013-11-01

    To improve the thermal conductivity and wear resistance of ceramic materials in the field of renewable energy technologies, diamond coating by plasma processing has been carried out in recent years. This study's goal is to improve diamond deposition on Al2O3 ceramic substrates by plasma surface treatments. Before diamond deposition was carried out in a vacuum, plasma surface treatments using Ar gas were conducted to improve conditions for deposition. We also conducted plasma processing for diamond deposition on Al2O3 ceramic substrates using a DC arc Plasmatron. The Al2O3 ceramic substrates with diamond film (5 x 15 mm2), were investigated by SEM (Scanning Electron Microscopy), AFM (Atomic Force Microscopy) and XRD (X-ray Diffractometer). Then, the C-H stretching of synthetic diamond films by FTIR (Fourier Transform Infrared Spectroscopy) was studied. We identified nanocrystalline diamond films on the Al2O3 ceramic substrates. The results showed us that the deposition rate of diamond films was 2.3 microm/h after plasma surface treatments. Comparing the above result with untreated ceramic substrates, the deposition rate improved with the surface roughness of the deposited diamond films.

  11. Characterization of the damage produced on different materials surfaces

    International Nuclear Information System (INIS)

    Dellavale Clara, Hector Damian

    2004-01-01

    In the present work the characterization techniques of surfaces ULOI and RIMAPS have been applied on laboratory samples made from aluminium, stainless steel and material based on fiberglass.The resultant surfaces of, chemical etching with corrosive agents Keller and Tucker, mechanic damage from the wear and tear of abrasive paper and sandrubbing with alumina particles, are analyzed to different level of damage.The systematic application of the above mentioned techniques is carried out with the objective of finding information, which allows to characterize the superficial damage, both in its incipient state as in the extreme situation revealed by the presence of etch pits. Important results have been obtained, in the characterization of the incipient stage of the chemical etching, using the curves of the normalized area.In addition, it was possible to verify the capacity of the techniques in the early detection of the preferential directions generated by the etch pits

  12. Broadband antireflective silicon carbide surface produced by cost-effective method

    DEFF Research Database (Denmark)

    Argyraki, Aikaterini; Ou, Yiyu; Ou, Haiyan

    2013-01-01

    A cost-effective method for fabricating antireflective subwavelength structures on silicon carbide is demonstrated. The nanopatterning is performed in a 2-step process: aluminum deposition and reactive ion etching. The effect, of the deposited aluminum film thickness and the reactive ion etching...... conditions, on the average surface reflectance and nanostructure landscape have been investigated systematically. The average reflectance of silicon carbide surface is significantly suppressed from 25.4% to 0.05%, under the optimal experimental conditions, in the wavelength range of 390-784 nm. The presence...... of stochastic nanostructures also changes the wetting properties of silicon carbide surface from hydrophilic (47°) to hydrophobic (108°)....

  13. An analytical model for particulate deposition on vertical heat transfer surfaces in a boiling environment

    International Nuclear Information System (INIS)

    Keefer, R.H.; Rider, J.L.; Waldman, L.A.

    1993-01-01

    A frequent problem in heat exchange equipment is the deposition of particulates entrained in the working fluid onto heat transfer surfaces. These deposits increase the overall heat transfer resistance and can significantly degrade the performance of the heat exchanger. Accurate prediction of the deposition rate is necessary to ensure that the design and specified operating conditions of the heat exchanger adequately address the effects of this deposit layer. Although the deposition process has been studied in considerable detail, much of the work has focused on investigating individual aspects of the deposition process. This paper consolidates this previous research into a mechanistically based analytical prediction model for particulate deposition from a boiling liquid onto vertical heat transfer surfaces. Consistent with the well known Kern-Seaton approach, the model postulates net particulate accumulation to depend on the relative contributions of deposition and reentrainment processes. Mechanisms for deposition include boiling, momentum, and diffusion effects. Reentrainment is presumed to occur via an intermittent erosion process, with the energy for particle removal being supplied by turbulent flow instabilities. The contributions of these individual mechanisms are integrated to obtain a single equation for the deposit thickness versus time. The validity of the resulting model is demonstrated by comparison with data published in the open literature. Model estimates show good agreement with data obtained over a range of thermal-hydraulic conditions in both flow and pool boiling environments. The utility of the model in performing parametric studies (e.g. to determine the effect of flow velocity on net deposition) is also demonstrated. The initial success of the model suggests that it could prove useful in establishing a range of heat exchanger. operating conditions to minimize deposition

  14. Adsorption and revaporisation studies of thin iodine oxide and CsI aerosol deposits from containment surface materials in LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Tietze, S.; Foreman, M.; Ekberg, C. [Chalmers Univ. of Technology, Goeteborg (Sweden); Kaerkelae, T.; Auvinen, A.; Tapper, U.; Jokiniemi, J. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2013-07-15

    During a severe nuclear accident released fission and radiolysis products can react with each other to form new species which might contribute to the volatile source term. Iodine will be released from UO2 fuel mainly in form as CsI aerosol particles and elemental iodine. Elemental iodine can react in gaseous phase with ozone to form solid iodine oxide aerosol particles (IOx). Within the AIAS-2 (Adsorption of Iodine Aerosols on Surfaces) project the interactions of IOx and CsI aerosols with common containment surface materials was investigated. Common surface materials in Swedish and Finnish LWRs are Teknopox Aqua V A paint films and metal surfaces such as Cu, Zn, Al and SS. Non-radioactive and {sup 131}I labelled aerosols were produced from a KI solution and ozone with a new facility designed and built at VTT Technical Research Centre of Finland. CsI aerosols were produced from a CsI solution with the same facility. A monolayer of the aerosols was deposited on the surfaces. The deposits were analysed with microscopic and spectroscopic measurement techniques to identify the chemical form of the deposits on the surfaces to identify if a chemical conversion on the different surface materials had occured. The revaporisation behaviour of the deposited aerosol particles from the different surface materials was studied under the influence of heat, humidity and gamma irradiation at Chalmers University of Technology, Sweden. Studies on the effects of humidity were performed using the FOMICAG facility, while heat and irradiation experiments were performed in a thermostated heating block and with a gammacell 22 with a dose rate of 14 kGy/h. The revaporisation losses were measured using a HPGe detector. The decomposition effect of the radiolysis product carbon monoxide was tested on IOx aerosols deposited on a glass fibre filter. Iodine oxide particles were produced at 50 deg. C, 100 deg. C and 120 deg. C and deposited on filter samples in order to study the chemical

  15. Adsorption and revaporisation studies of thin iodine oxide and CsI aerosol deposits from containment surface materials in LWRs

    International Nuclear Information System (INIS)

    Tietze, S.; Foreman, M.; Ekberg, C.; Kaerkelae, T.; Auvinen, A.; Tapper, U.; Jokiniemi, J.

    2013-07-01

    During a severe nuclear accident released fission and radiolysis products can react with each other to form new species which might contribute to the volatile source term. Iodine will be released from UO2 fuel mainly in form as CsI aerosol particles and elemental iodine. Elemental iodine can react in gaseous phase with ozone to form solid iodine oxide aerosol particles (IOx). Within the AIAS-2 (Adsorption of Iodine Aerosols on Surfaces) project the interactions of IOx and CsI aerosols with common containment surface materials was investigated. Common surface materials in Swedish and Finnish LWRs are Teknopox Aqua V A paint films and metal surfaces such as Cu, Zn, Al and SS. Non-radioactive and 131 I labelled aerosols were produced from a KI solution and ozone with a new facility designed and built at VTT Technical Research Centre of Finland. CsI aerosols were produced from a CsI solution with the same facility. A monolayer of the aerosols was deposited on the surfaces. The deposits were analysed with microscopic and spectroscopic measurement techniques to identify the chemical form of the deposits on the surfaces to identify if a chemical conversion on the different surface materials had occured. The revaporisation behaviour of the deposited aerosol particles from the different surface materials was studied under the influence of heat, humidity and gamma irradiation at Chalmers University of Technology, Sweden. Studies on the effects of humidity were performed using the FOMICAG facility, while heat and irradiation experiments were performed in a thermostated heating block and with a gammacell 22 with a dose rate of 14 kGy/h. The revaporisation losses were measured using a HPGe detector. The decomposition effect of the radiolysis product carbon monoxide was tested on IOx aerosols deposited on a glass fibre filter. Iodine oxide particles were produced at 50 deg. C, 100 deg. C and 120 deg. C and deposited on filter samples in order to study the chemical speciation of

  16. Samples of Asteroid Surface Ponded Deposits in Chondritic Meteorites

    Science.gov (United States)

    Zolensky, M. E.; Lee, R.; Le, L.

    2004-01-01

    One of the many unexpected observations of asteroid 433 Eros by the Near Earth Asteroid Rendezvous (NEAR) mission was the many ponds of fine-grained materials [1-3]. The ponds have smooth surfaces, and define equipotential surfaces up to 10's of meters in diameter [4]. The ponds have a uniformly sub-cm grain size and appear to be cohesive or indurated to some degree, as revealed by slumping. The ponds appear to be concentrated within 30 degrees of the equator of Eros, where gravity is lowest. There is some insight into the mineralogy and composition of the ponds surfaces from NEAR spectroscopy [2,4,5,6]. Compared to the bulk asteroid, ponds: (1) are distinctly bluer (high 550/760 nm ratio), (2) have a deeper 1um mafic band, (3) have reflectance elevated by 5%.

  17. Surface-deposition and distribution of the radon-decay products indoors

    International Nuclear Information System (INIS)

    Espinosa, G.; Tommasino, L.

    2015-01-01

    The exposure to radon-decay products is of great concern both in dwellings and workplaces. The model to estimate the lung dose refers to the deposition mechanisms and particle sizes. Unfortunately, most of the dose data available are based on the measurement of radon concentration and the concentration of radon decay products. These combined measurements are widely used in spite of the fact that accurate dose assessments require information on the particle deposition mechanisms and the spatial distribution of radon decay products indoors. Most of the airborne particles and/or radon decay products are deposited onto indoor surfaces, which deposition makes the radon decay products unavailable for inhalation. These deposition processes, if properly known, could be successfully exploited to reduce the exposure to radon decay products. In spite of the importance of the surface deposition of the radon decay products, both for the correct evaluation of the dose and for reducing the exposure; little or no efforts have been made to investigate these deposition processes. Recently, two parallel investigations have been carried out in Rome and at Universidad Nacional Autónoma de México (UNAM) in Mexico City respectively, which address the issue of the surface-deposited radon decay products. Even though these investigations have been carried independently, they complement one another. It is with these considerations in mind that it was decided to report both investigations in the same paper. - Highlights: • Distribution of Radon and Thoron decay indoor products. • Indoor radon measurements complexity. • Short and long term measurements of surface deposit of Radon and Thoron decay products. • Microclimate controlled conditions room. • Nuclear Tracks Detectors

  18. Zinc-ion implanted and deposited titanium surfaces reduce adhesion of Streptococccus mutans

    International Nuclear Information System (INIS)

    Xu Juan; Ding Gang; Li Jinlu; Yang Shenhui; Fang Bisong; Sun Hongchen; Zhou Yanmin

    2010-01-01

    While titanium (Ti) is a commonly used dental implant material with advantageous biocompatible and mechanical properties, native Ti surfaces do not have the ability to prevent bacterial colonization. The objective of this study was to evaluate the chemical composition and bacterial adhesive properties of zinc (Zn) ion implanted and deposited Ti surfaces (Zn-PIIID-Ti) as potential dental implant materials. Surfaces of pure Ti (cp-Ti) were modified with increasing concentrations of Zn using plasma immersion ion implantation and deposition (PIIID), and elemental surface compositions were characterized by X-ray photoelectron spectrometry (XPS). To evaluate bacterial responses, Streptococcus mutans were seeded onto the modifiedTi surfaces for 48 h and subsequently observed by scanning electron microscopy. Relative numbers of bacteria on each surface were assessed by collecting the adhered bacteria, reculturing and counting colony forming units after 48 h on bacterial grade plates. Ti, oxygen and carbon elements were detected on all surfaces by XPS. Increased Zn signals were detected on Zn-PIIID-Ti surfaces, correlating with an increase of Zn-deposition time. Substantial numbers of S. mutans adhered to cp-Ti samples, whereas bacterial adhesion on Zn-PIIID-Ti surfaces signficantly decreased as the Zn concentration increased (p < 0.01). In conclusion, PIIID can successfully introduce Zn onto a Ti surface, forming a modified surface layer bearing Zn ions that consequently deter adhesion of S. mutans, a common bacterium in the oral environment.

  19. Zinc-ion implanted and deposited titanium surfaces reduce adhesion of Streptococccus mutans

    Energy Technology Data Exchange (ETDEWEB)

    Xu Juan, E-mail: doctorxue@126.com [Implant Center, School of Stomatology Jilin University, Changchun, Jilin (China) and Stomatological Hospital, Urumqi, Xinjiang (China); Ding Gang [Department of Stomatology, Yidu Central Hospital, Weifang, Shandong (China); Capital Medical University School of Stomatology, Beijing (China); Li Jinlu; Yang Shenhui; Fang Bisong [Capital Medical University School of Stomatology, Beijing (China); Sun Hongchen, E-mail: hcsun@jlu.edu.cn [Implant Center, School of Stomatology Jilin University, Changchun, Jilin (China); Zhou Yanmin, E-mail: zhouym62@126.com [Implant Center, School of Stomatology Jilin University, Changchun, Jilin (China)

    2010-10-01

    While titanium (Ti) is a commonly used dental implant material with advantageous biocompatible and mechanical properties, native Ti surfaces do not have the ability to prevent bacterial colonization. The objective of this study was to evaluate the chemical composition and bacterial adhesive properties of zinc (Zn) ion implanted and deposited Ti surfaces (Zn-PIIID-Ti) as potential dental implant materials. Surfaces of pure Ti (cp-Ti) were modified with increasing concentrations of Zn using plasma immersion ion implantation and deposition (PIIID), and elemental surface compositions were characterized by X-ray photoelectron spectrometry (XPS). To evaluate bacterial responses, Streptococcus mutans were seeded onto the modifiedTi surfaces for 48 h and subsequently observed by scanning electron microscopy. Relative numbers of bacteria on each surface were assessed by collecting the adhered bacteria, reculturing and counting colony forming units after 48 h on bacterial grade plates. Ti, oxygen and carbon elements were detected on all surfaces by XPS. Increased Zn signals were detected on Zn-PIIID-Ti surfaces, correlating with an increase of Zn-deposition time. Substantial numbers of S. mutans adhered to cp-Ti samples, whereas bacterial adhesion on Zn-PIIID-Ti surfaces signficantly decreased as the Zn concentration increased (p < 0.01). In conclusion, PIIID can successfully introduce Zn onto a Ti surface, forming a modified surface layer bearing Zn ions that consequently deter adhesion of S. mutans, a common bacterium in the oral environment.

  20. Monitoring of the Deposition of PAHs and Metals Produced by a Steel Plant in Taranto (Italy

    Directory of Open Access Journals (Sweden)

    M. Amodio

    2014-01-01

    Full Text Available A high time-resolved monitoring campaign of bulk deposition of PAHs and metals was conducted near the industrial area and at an urban background site in province of Taranto (Italy in order to evaluate the impact of the biggest European steel plant. The deposition fluxes of the sum of detected PAHs at the industrial area ranged from 92 to 2432 ng m−2d−1. In particular the deposition fluxes of BaP, BaA, and BkF were, on average, 10, 14, and 8 times higher than those detected at the urban background site, respectively. The same finding was for metals. The deposition fluxes of Ni (19.8 µg m−2 d−1 and As (2.2 µg m−2 d−1 at the industrial site were about 5 times higher than those at the urban background site, while the deposition fluxes of Fe (57 mg m−2d−1 and Mn (1.02 mg m−2d−1 about 31 times higher. Precipitation and wind speed played an important role in PAH deposition fluxes. Fe and Mn fluxes at the industrial site resulted high when wind direction favored the transport of air masses from the steel plant to the receptor site. The impact of the industrial area was also confirmed by IP/(IP + BgP, IP/BgP, and BaP/BgP diagnostic ratios.

  1. Improved Formulations for Air-Surface Exchanges Related to National Security Needs: Dry Deposition Models

    Energy Technology Data Exchange (ETDEWEB)

    Droppo, James G.

    2006-07-01

    The Department of Homeland Security and others rely on results from atmospheric dispersion models for threat evaluation, event management, and post-event analyses. The ability to simulate dry deposition rates is a crucial part of our emergency preparedness capabilities. Deposited materials pose potential hazards from radioactive shine, inhalation, and ingestion pathways. A reliable characterization of these potential exposures is critical for management and mitigation of these hazards. A review of the current status of dry deposition formulations used in these atmospheric dispersion models was conducted. The formulations for dry deposition of particulate materials from am event such as a radiological attack involving a Radiological Detonation Device (RDD) is considered. The results of this effort are applicable to current emergency preparedness capabilities such as are deployed in the Interagency Modeling and Atmospheric Assessment Center (IMAAC), other similar national/regional emergency response systems, and standalone emergency response models. The review concludes that dry deposition formulations need to consider the full range of particle sizes including: 1) the accumulation mode range (0.1 to 1 micron diameter) and its minimum in deposition velocity, 2) smaller particles (less than .01 micron diameter) deposited mainly by molecular diffusion, 3) 10 to 50 micron diameter particles deposited mainly by impaction and gravitational settling, and 4) larger particles (greater than 100 micron diameter) deposited mainly by gravitational settling. The effects of the local turbulence intensity, particle characteristics, and surface element properties must also be addressed in the formulations. Specific areas for improvements in the dry deposition formulations are 1) capability of simulating near-field dry deposition patterns, 2) capability of addressing the full range of potential particle properties, 3) incorporation of particle surface retention/rebound processes, and

  2. Scaling behavior of the surface roughness of platinum films grown by oblique angle deposition

    Science.gov (United States)

    Dolatshahi-Pirouz, A.; Hovgaard, M. B.; Rechendorff, K.; Chevallier, J.; Foss, M.; Besenbacher, F.

    2008-03-01

    Thin platinum films with well-controlled rough surface morphologies are grown by e-gun evaporation at an oblique angle of incidence between the deposition flux and the substrate normal. Atomic force microscopy is used to determine the root-mean-square value w of the surface roughness on the respective surfaces. From the scaling behavior of w , we find that while the roughness exponent α remains nearly unchanged at about 0.90, the growth exponent β changes from 0.49±0.04 to 0.26±0.01 as the deposition angle approaches grazing incidence. The values of the growth exponent β indicate that the film growth is influenced by both surface diffusion and shadowing effects, while the observed change from 0.49 to 0.26 can be attributed to differences in the relative importance of diffusion and shadowing with the deposition angle.

  3. The nanostructure and microstructure of SiC surface layers deposited by MWCVD and ECRCVD

    Science.gov (United States)

    Dul, K.; Jonas, S.; Handke, B.

    2017-12-01

    Scanning electron microscopy (SEM) and Atomic force microscopy (AFM) have been used to investigate ex-situ the surface topography of SiC layers deposited on Si(100) by Microwave Chemical Vapour Deposition (MWCVD) -S1,S2 layers and Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD) - layers S3,S4, using silane, methane, and hydrogen. The effects of sample temperature and gas flow on the nanostructure and microstructure have been investigated. The nanostructure was described by three-dimensional surface roughness analysis based on digital image processing, which gives a tool to quantify different aspects of surface features. A total of 13 different numerical parameters used to describe the surface topography were used. The scanning electron image (SEM) of the microstructure of layers S1, S2, and S4 was similar, however, layer S3 was completely different; appearing like grains. Nonetheless, it can be seen that no grain boundary structure is present in the AFM images.

  4. Effect of electro-co-deposition parameters on surface mechanical ...

    Indian Academy of Sciences (India)

    Particle size distribution of procured TiO2 powder. ... substrate were obtained by using Philips X'Pert System. ... by a drop. In case of Cu–TiO2 composite coating also similar trend in RTC of (220) was ... of hydrogen evolution at the cathode surface due to over voltage. At 30 g l−1 TiO2 with 5 A dm−2 current density the.

  5. Particulate matter mass concentrations produced from pavement surface abrasion

    Directory of Open Access Journals (Sweden)

    Fullova Dasa

    2017-01-01

    Full Text Available According to the latest findings particulate matter belong to the most significant pollutants in Europe together with ground-level ozone O3 and nitrogen dioxide NO2. Road traffic is one of the main sources of particulate matter. Traffic volume has unpleasant impact on longevity of the pavements and also on the environment. Vehicle motions cause mechanical wearing of the asphalt pavement surface - wearing course by vehicle tyres. The paper deals with abrasion of bituminous wearing courses of pavements. The asphalt mixtures are compared in terms of mechanically separated particulate matter. The samples of asphalt mixtures were rutted in wheel tracking machine. The particulate matter measurements were performed in laboratory conditions. The experimental laboratory measurements make it possible to sample particulates without contamination from exhaust emissions, abraded particles from vehicles, resuspension of road dust and climate affects. The paper offers partial results of measurements on six trial samples of asphalt mixtures with different composition. It presents particulate matter morphology and the comparison of rutted asphalt samples in terms of PM mass concentrations and chemical composition.

  6. Controlled surface diffusion in plasma-enhanced chemical vapor deposition of GaN nanowires

    International Nuclear Information System (INIS)

    Hou, W C; Hong, Franklin Chau-Nan

    2009-01-01

    This study investigates the growth of GaN nanowires by controlling the surface diffusion of Ga species on sapphire in a plasma-enhanced chemical vapor deposition (CVD) system. Under nitrogen-rich growth conditions, Ga has a tendency to adsorb on the substrate surface diffusing to nanowires to contribute to their growth. The significance of surface diffusion on the growth of nanowires is dependent on the environment of the nanowire on the substrate surface as well as the gas phase species and compositions. Under nitrogen-rich growth conditions, the growth rate is strongly dependent on the surface diffusion of gallium, but the addition of 5% hydrogen in nitrogen plasma instantly diminishes the surface diffusion effect. Gallium desorbs easily from the surface by reaction with hydrogen. On the other hand, under gallium-rich growth conditions, nanowire growth is shown to be dominated by the gas phase deposition, with negligible contribution from surface diffusion. This is the first study reporting the inhibition of surface diffusion effects by hydrogen addition, which can be useful in tailoring the growth and characteristics of nanowires. Without any evidence of direct deposition on the nanowire surface, gallium and nitrogen are shown to dissolve into the catalyst for growing the nanowires at 900 deg. C.

  7. Age, distribution, and significance within a sediment budget, of in-channel depositional surfaces in the Normanby River, Queensland, Australia

    Science.gov (United States)

    Pietsch, T. J.; Brooks, A. P.; Spencer, J.; Olley, J. M.; Borombovits, D.

    2015-06-01

    We present the results of investigations into alluvial deposition in the catchment of the Normanby River, which flows into Princess Charlotte Bay (PCB) in the northern part of the Great Barrier Reef Lagoon. Our focus is on the fine fraction (bank attached bars or inset or inner floodplains, these more or less flat-lying surfaces within the macro-channel have hitherto received little attention in sediment budgeting models. We use high resolution LiDAR based mapping combined with optical dating of exposures cut into these in-channel deposits to compare their aggradation rates with those found in other depositional zones in the catchment, namely the floodplain and coastal plain. In total 59 single grain OSL dates were produced across 21 stratigraphic profiles at 14 sites distributed though the 24 226 km2 catchment. In-channel storage in these inset features is a significant component of the contemporary fine sediment budget (i.e. recent decades/last century), annually equivalent to more than 50% of the volume entering the channel network from hillslopes and subsoil sources. Therefore, at the very least, in-channel storage of fine material needs to be incorporated into sediment budgeting exercises. Furthermore, deposition within the channel has occurred in multiple locations coincident in time with accelerated sediment production following European settlement. Generally, this has occurred on a subset of the features we have examined here, namely linear bench features low in the channel. This suggests that accelerated aggradation on in-channel depositional surfaces has been in part a response to accelerated erosion within the catchment. The entire contribution of ~ 370 kilotonnes per annum of fine sediment estimated to have been produced by alluvial gully erosion over the last ~ 100 years can be accounted for by that stored as in-channel alluvium. These features therefore can play an important role in mitigating the impact on the receiving water of accelerated erosion.

  8. Surface studies of tungsten erosion and deposition in JT-60U

    International Nuclear Information System (INIS)

    Ueda, Y.; Fukumoto, M.; Nishikawa, M.; Tanabe, T.; Miya, N.; Arai, T.; Masaki, K.; Ishimoto, Y.; Tsuzuki, K.; Asakura, N.

    2007-01-01

    In order to study tungsten erosion and migration in JT-60U, 13 W tiles have been installed in the outer divertor region and tungsten deposition on graphite tiles was measured. Dense local tungsten deposition was observed on a CFC tile toroidally adjacent to the W tiles, which resulted from prompt ionization and short range migration of tungsten along field lines. Tungsten deposition with relatively high surface density was found on an inner divertor tile around standard inner strike positions and on an outer wing tile of a dome. On the outer wing tile, tungsten deposition was relatively high compared with carbon deposition. In addition, roughly uniform tungsten depth distribution near the upper edge of the inner divertor tile was observed. This could be due to lift-up of strike point positions in selected 25 shots and tungsten flow in the SOL plasma

  9. Superhydrophobic hybrid inorganic-organic thiol-ene surfaces fabricated via spray-deposition and photopolymerization.

    Science.gov (United States)

    Sparks, Bradley J; Hoff, Ethan F T; Xiong, Li; Goetz, James T; Patton, Derek L

    2013-03-13

    We report a simple and versatile method for the fabrication of superhydrophobic inorganic-organic thiol-ene coatings via sequential spray-deposition and photopolymerization under ambient conditions. The coatings are obtained by spray-deposition of UV-curable hybrid inorganic-organic thiol-ene resins consisting of pentaerythritol tetra(3-mercaptopropionate) (PETMP), triallyl isocyanurate (TTT), 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (TMTVSi), and hydrophobic fumed silica nanoparticles. The spray-deposition process and nanoparticle agglomeration/dispersion provide surfaces with hierarchical morphologies exhibiting both micro- and nanoscale roughness. The wetting behavior, dependent on the concentration of TMTVSi and hydrophobic silica nanoparticles, can be varied over a broad range to ultimately provide coatings with high static water contact angles (>150°), low contact angle hysteresis, and low roll off angles (spray-deposition and UV-cure process on a variety of substrate surfaces including glass, paper, stone, and cotton fabric.

  10. Surface modification of nanoporous alumina layers by deposition of Ag nanoparticles. Effect of alumina pore diameter on the morphology of silver deposit and its influence on SERS activity

    Science.gov (United States)

    Pisarek, Marcin; Nowakowski, Robert; Kudelski, Andrzej; Holdynski, Marcin; Roguska, Agata; Janik-Czachor, Maria; Kurowska-Tabor, Elżbieta; Sulka, Grzegorz D.

    2015-12-01

    Self-organized Al2O3 nanoporous/nanotubular (Al2O3-NP) oxide layers decorated with silver nanoparticles (Ag-NPs) exhibiting specific properties may serve as attractive SERS substrates for investigating the interactions between an adsorbate and adsorbent, or as stable platforms for detecting various organic compounds. This article presents the influence of the size of the alumina nanopores with a deposit of silver nanoparticles obtained by the magnetron sputtering technique on the morphology of silver film. Moreover, the effect of pore diameter on the intensity of SERS spectra in Ag-NPs/Al2O3-NP/Al composites has also been estimated. For such investigations we used pyridine as a probe molecule, since it has a large cross-section for Raman scattering. To characterize the morphology of the composite oxide layer Ag-NPs/Al2O3-NP/Al, before and after deposition of Ag-NPs by PVD methods (Physical Vapor Deposition), we used scanning electron microscopy (SEM) and atomic force microscopy (AFM). The surface analytical technique of surface-enhanced Raman spectroscopy (SERS) was used to investigate the surface activity of the composite. The results obtained show that, for a carefully controlled amount of Ag (0.020 mg/cm2 - deposited on the top of alumina nanopores whose average size varies from ∼86 nm up to ∼320 nm) in the composites investigated, pore size significantly affects SERS enhancement. We obtained distinctly higher intensities of SERS spectra for substrates with an Ag-NPs deposit having a larger diameter of the alumina nanopores. AFM results suggest that both the lateral and perpendicular distribution of Ag-NPs within and on the top of the largest pores is responsible for the highest SERS activity of the resulting Ag-NPs/Al2O3-NP/Al composite layer, since it produces a variety of cavities and slits which function as resonators for the adsorbed molecules. The Ag-NPs/MeOx-NP/Me composite layers obtained ensure a good reproducibility of the SERS measurements.

  11. Measurements of the deposition rates of radon daughters on indoor surfaces

    International Nuclear Information System (INIS)

    Wang, H.; Essling, M.A.; Toohey, R.E.; Rundo, J.

    1982-01-01

    The deposition rates of radon daughters on indoor surfaces have been measured by exposing the window of a proportional counter to the air of a house with high concentrations of radon and its daughters. Deposition velocities for unattached 218 Po (RaA) and 214 Pb (RaB) of approximately 4 mm sec - 1 were obtained by dividing the deposition rates by the concentrations of unattached daughters in the air. These results agree with those obtained by other workers but are dependent on the assumptions made about the fractions of the daughters which are attached to the atmospheric aerosol

  12. Measurements of dry deposition rates of 212Pb from aerosols on various natural and artificial surfaces

    International Nuclear Information System (INIS)

    Osaki, S.; Sugihara, S.; Maeda, Y.; Osaki, T.

    2007-01-01

    The dry deposition rates on various grass fields and two forests have been measured by the use of 212 Pb (T 1/2 = 10.6 hours). The deposition rate on grass fields (average: 7 mm x s -1 ) roughly depends on the logarithms of the heights or densities of the grasses. The dry deposition rates on a broadleaved forest (Lithocarpus edulis) and a coniferous forest (Cryptomeria Japonica) were also measured. The highest (ave. 26 mm x s -1 ) was on the forest of C. Japonica because of the dense and adhesive surfaces of the leaves. (author)

  13. Nucleation and growth of copper phthalocyanine aggregates deposited from solution on planar surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ghani, Fatemeh [Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 Golm, 14476 Potsdam (Germany); Gojzewski, Hubert, E-mail: hubert.gojzewski@put.poznan.pl [Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 Golm, 14476 Potsdam (Germany); Institute of Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan (Poland); Riegler, Hans [Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 Golm, 14476 Potsdam (Germany)

    2015-10-01

    Graphical abstract: - Highlights: • Copper phthalocyanine deposited on planar surfaces by 3 solution process methods. • Aggregate morphology examined for coverage extending over 3 orders of magnitude. • Morphologies vary from small individual domains to mesh-like multilayers. • Nucleation and growth model explains the observed deposit morphologies. - Abstract: Copper phthalocyanine (CuPc) dissolved in trifluoroacetic acid (TFA) is deposited on solid SiO{sub 2} surfaces by solvent evaporation. The deposited CuPc aggregates are investigated by atomic force microscopy (AFM). The CuPc deposits were prepared by spin casting, dip coating, and spray deposition. Depending on the amount of deposited CuPc the aggregate morphology ranges from small individual domains to mesh-like multilayers. Each domain/layer consists of many parallel stacks of CuPc molecules with the square, plate-like molecules piled face-wise within each stack. The parallel stacks are attached sideways (i.e., edgewise attachment molecularly) to the substrate forming “nanoribbons” with uniform thickness of about 1 nm and varying width. The thickness reflects the length of a molecular edge, the width the number of stacks. A nucleation and growth model is presented that explains the observed aggregate and multilayer morphologies as result of the combination of nucleation, transport processes and a consequence of the anisotropic intermolecular interactions due to the shape of the CuPc molecule.

  14. Distribution and Orientation of Carbon Fibers in Polylactic Acid Parts Produced by Fused Deposition Modeling

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; W. Gutmann, Ingomar; Koch, Thomas

    2016-01-01

    The aim of this paper is the understanding of the fiber orientation by investigations in respect to the inner configuration of a polylactic acid matrix reinforced with short carbon fibers after a fused deposition modeling extrusion process. The final parts were analyzed by X-ray, tomography......, and magnetic resonance imaging allowing a resolved orientation of the fibers and distribution within the part. The research contributes to the understanding of the fiber orientation and fiber reinforcement of fused deposition modeling parts in additive manufacturing....

  15. Deposition and characterization of noble metal onto surfaces of 304l stainless steel

    International Nuclear Information System (INIS)

    Contreras R, A.; Arganis J, C. R.; Aguilar T, J. A.; Medina A, A. L.

    2010-10-01

    Noble metal chemical addition (NMCA) plus hydrogen water chemistry is an industry-wide accepted approach for potential intergranular stress corrosion cracking mitigation of BWR internals components. NMCA is a method of applying noble metal onto BWR internals surfaces using reactor water as the transport medium that causes the deposition of noble metal from the liquid onto surfaces. In this work different platinum concentration solutions were deposited onto pre-oxidized surfaces of 304l steel at 180 C during 48 hr in an autoclave. In order to simulate the zinc water conditions, deposits of Zn and Pt-Zn were also carried out. The solutions used to obtain the deposits were: sodium hexahydroxyplatinate (IV), zinc nitrate hydrate and zinc oxide. The deposits obtained were characterized by scanning electron microscopy and X-ray diffraction. Finally, the electrochemical corrosion potential of pre-oxidized samples with Pt deposit were obtained and compared with the electrochemical corrosion potential of only pre-oxidized samples. (Author)

  16. Surface Passivation of Silicon Using HfO2 Thin Films Deposited by Remote Plasma Atomic Layer Deposition System.

    Science.gov (United States)

    Zhang, Xiao-Ying; Hsu, Chia-Hsun; Lien, Shui-Yang; Chen, Song-Yan; Huang, Wei; Yang, Chih-Hsiang; Kung, Chung-Yuan; Zhu, Wen-Zhang; Xiong, Fei-Bing; Meng, Xian-Guo

    2017-12-01

    Hafnium oxide (HfO 2 ) thin films have attracted much attention owing to their usefulness in equivalent oxide thickness scaling in microelectronics, which arises from their high dielectric constant and thermodynamic stability with silicon. However, the surface passivation properties of such films, particularly on crystalline silicon (c-Si), have rarely been reported upon. In this study, the HfO 2 thin films were deposited on c-Si substrates with and without oxygen plasma pretreatments, using a remote plasma atomic layer deposition system. Post-annealing was performed using a rapid thermal processing system at different temperatures in N 2 ambient for 10 min. The effects of oxygen plasma pretreatment and post-annealing on the properties of the HfO 2 thin films were investigated. They indicate that the in situ remote plasma pretreatment of Si substrate can result in the formation of better SiO 2 , resulting in a better chemical passivation. The deposited HfO 2 thin films with oxygen plasma pretreatment and post-annealing at 500 °C for 10 min were effective in improving the lifetime of c-Si (original lifetime of 1 μs) to up to 67 μs.

  17. Field experiments for studying the deposition of aerosols onto vegetation and other surfaces

    International Nuclear Information System (INIS)

    Jonas, R.; Heinemann, K.

    1986-01-01

    For some pollutions, dry deposition clearly predominates in the long-term mean over the wash-out or wet deposition. The deposition velocity or fall-out constant, defined as follows, is a measure of the dry deposition of pollutants onto the soil or vegetation: upsilonsub(g) = K/I, where upsilonsub (g) = deposition velocity (cms -1 ); K = contamination of the sampling surface per cm 2 area (quantity deposited per cm 2 ); I = time-integrated air concentration conventionally measured at a reference height of 1 m above the ground. The deposition velocity of radioactively labelled test aerosols (copper sulphate) onto grass, clover, various species of tree (common beech, hornbeam, red oak, common oak, horse chestnut, silver birch, Norway maple, common spruce, Scots pine, Japanese larch, European larch, common silver fir) as well as onto bare soil, water, metals and horizontal filter paper was determined in an extensive series of field tests at the Julich Nuclear Research Centre (Jonas, 1984; Jonas and Heinemann, 1985). For determination of the deposition velocities, the reader is referred to Jonas and Heinemann (1985). (author)

  18. Surface morphology and preferential orientation growth of TaC crystals formed by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Xiang, E-mail: Xiong228@sina.co [State Key Lab for Powder Metallurgy, Central South University, Changsha 410083 (China); Chen Zhaoke; Huang Baiyun; Li Guodong [State Key Lab for Powder Metallurgy, Central South University, Changsha 410083 (China); Zheng Feng [School of Material Science and Engineering, Central South University, Changsha 410083 (China); Xiao Peng; Zhang Hongbo [State Key Lab for Powder Metallurgy, Central South University, Changsha 410083 (China)

    2009-04-02

    TaC film was deposited on (002) graphite sheet by isothermal chemical vapor deposition using TaCl{sub 5}-Ar-C{sub 3}H{sub 6} mixtures, with deposition temperature 1200 {sup o}C and pressure about 200 Pa. The influence of deposition position (or deposition rate) on preferential orientation and surface morphology of TaC crystals were investigated by X-ray diffraction and scanning electron microscopy methods. The deposits are TaC plus trace of C. The crystals are large individual columns with pyramidal-shape at deposition rate of 32.4-37.3 {mu}m/h, complex columnar at 37.3-45.6 {mu}m/h, lenticular-like at 45.6-54.6 {mu}m/h and cauliflower-like at 54.6-77.3 {mu}m/h, with <001>, near <001>, <110> and no clear preferential orientation, respectively. These results agree in part with the preditions of the Pangarov's model of the relationship between deposition rate and preferential growth orientation. The growth mechanism of TaC crystals in <001>, near <001>, <111> and no clear preferential orientation can be fairly explained by the growth parameter {alpha} with Van der Drift's model, deterioration model and Meakin model. Furthermore, a nucleation and coalescence model is also proposed to explain the formation mechanism of <110> lenticular-like crystals.

  19. Surface and corrosion characteristics of carbon plasma implanted and deposited nickel-titanium alloy

    International Nuclear Information System (INIS)

    Poon, R.W.Y.; Liu, X.Y.; Chung, C.Y.; Chu, P.K.; Yeung, K.W.K.; Lu, W.W.; Cheung, K.M.C.

    2005-01-01

    Nickel-titanium shape memory alloys (NiTi) are potentially useful in orthopedic implants on account of their super-elastic and shape memory properties. However, the materials are prone to surface corrosion and the most common problem is out-diffusion of harmful Ni ions from the substrate into body tissues and fluids. In order to improve the corrosion resistance and related surface properties, we used the technique of plasma immersion ion implantation and deposition to deposit an amorphous hydrogenated carbon coating onto NiTi and implant carbon into NiTi. Both the deposited amorphous carbon film and carbon plasma implanted samples exhibit much improved corrosion resistances and surface mechanical properties and possible mechanisms are suggested

  20. Structured Ti/hydrocarbon plasma polymer nanocomposites produced by magnetron sputtering with glancing angle deposition

    Czech Academy of Sciences Publication Activity Database

    Choukourov, A.; Solar, P.; Polonskyi, O.; Hanus, J.; Drabik, M.; Kylian, O.; Pavlova, Ewa; Slavinska, D.; Biederman, H.

    2010-01-01

    Roč. 7, č. 1 (2010), s. 25-32 ISSN 1612-8850 Institutional research plan: CEZ:AV0Z40500505 Keywords : glancing angle deposition * nanocomposites * nanostructures Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.643, year: 2010

  1. The structure and properties of a nickel-base superalloy produced by osprey atomization-deposition

    Science.gov (United States)

    Bricknell, Rodger H.

    1986-04-01

    The production of a nickel-base superalloy, René* 80, by the Osprey atomization-deposition process has been investigated. Dense (>99 pct) material with a fine-grained equiaxed microstructure was deposited using either argon or nitrogen as the atomizing gas. Defects present in the material included a chill region at the collector plate interface, entrapped recirculated particles, porosity, and ceramic particles from the melting and dispensing system. In contrast to other rapid solidification techniques, low oxygen pick-ups are noted in the current technique. Tensile strengths above those displayed by castings are found in both nitrogen and argon atomized material, and in both the as-deposited and heat treated conditions. In addition, no profound mid-temperature ductility loss is displayed by this low oxygen material, in contrast to results on other rapidly solidified material with high oxygen contents. These results are explained in terms of oxygen embrittlement. In view of the excellent properties measured, the attractive economics of the process, and the fact that fine control of the gas/metal flow ratio is shown to be unnecessary, it is concluded that atomization-deposition presents an attractive potential production route for advanced alloys.

  2. Examination of Surface Deposits on Oldbury Reactor Core Graphite to Determine the Concentration and Distribution of 14C.

    Directory of Open Access Journals (Sweden)

    Liam Payne

    Full Text Available Pile Grade A graphite was used as a moderator and reflector material in the first generation of UK Magnox nuclear power reactors. As all of these reactors are now shut down there is a need to examine the concentration and distribution of long lived radioisotopes, such as 14C, to aid in understanding their behaviour in a geological disposal facility. A selection of irradiated graphite samples from Oldbury reactor one were examined where it was observed that Raman spectroscopy can distinguish between underlying graphite and a surface deposit found on exposed channel wall surfaces. The concentration of 14C in this deposit was examined by sequentially oxidising the graphite samples in air at low temperatures (450°C and 600°C to remove the deposit and then the underlying graphite. The gases produced were captured in a series of bubbler solutions that were analysed using liquid scintillation counting. It was observed that the surface deposit was relatively enriched with 14C, with samples originating lower in the reactor exhibiting a higher concentration of 14C. Oxidation at 600°C showed that the remaining graphite material consisted of two fractions of 14C, a surface associated fraction and a graphite lattice associated fraction. The results presented correlate well with previous studies on irradiated graphite that suggest there are up to three fractions of 14C; a readily releasable fraction (corresponding to that removed by oxidation at 450°C in this study, a slowly releasable fraction (removed early at 600°C in this study, and an unreleasable fraction (removed later at 600°C in this study.

  3. Impact of microcrystalline silicon carbide growth using hot-wire chemical vapor deposition on crystalline silicon surface passivation

    International Nuclear Information System (INIS)

    Pomaska, M.; Beyer, W.; Neumann, E.; Finger, F.; Ding, K.

    2015-01-01

    Highly crystalline microcrystalline silicon carbide (μc-SiC:H) with excellent optoelectronic material properties is a promising candidate as highly transparent doped layer in silicon heterojunction (SHJ) solar cells. These high quality materials are usually produced using hot wire chemical vapor deposition under aggressive growth conditions giving rise to the removal of the underlying passivation layer and thus the deterioration of the crystalline silicon (c-Si) surface passivation. In this work, we introduced the n-type μc-SiC:H/n-type μc-SiO x :H/intrinsic a-SiO x :H stack as a front layer configuration for p-type SHJ solar cells with the μc-SiO x :H layer acting as an etch-resistant layer against the reactive deposition conditions during the μc-SiC:H growth. We observed that the unfavorable expansion of micro-voids at the c-Si interface due to the in-diffusion of hydrogen atoms through the layer stack might be responsible for the deterioration of surface passivation. Excellent lifetime values were achieved under deposition conditions which are needed to grow high quality μc-SiC:H layers for SHJ solar cells. - Highlights: • High surface passivation quality was preserved after μc-SiC:H deposition. • μc-SiC:H/μc-SiO x :H/a-SiO x :H stack a promising front layer configuration • Void expansion at a-SiO x :H/c-Si interface for deteriorated surface passivation • μc-SiC:H provides a high transparency and electrical conductivity.

  4. Cigarette smoke toxins deposited on surfaces: implications for human health.

    Directory of Open Access Journals (Sweden)

    Manuela Martins-Green

    Full Text Available Cigarette smoking remains a significant health threat for smokers and nonsmokers alike. Secondhand smoke (SHS is intrinsically more toxic than directly inhaled smoke. Recently, a new threat has been discovered - Thirdhand smoke (THS - the accumulation of SHS on surfaces that ages with time, becoming progressively more toxic. THS is a potential health threat to children, spouses of smokers and workers in environments where smoking is or has been allowed. The goal of this study is to investigate the effects of THS on liver, lung, skin healing, and behavior, using an animal model exposed to THS under conditions that mimic exposure of humans. THS-exposed mice show alterations in multiple organ systems and excrete levels of NNAL (a tobacco-specific carcinogen biomarker similar to those found in children exposed to SHS (and consequently to THS. In liver, THS leads to increased lipid levels and non-alcoholic fatty liver disease, a precursor to cirrhosis and cancer and a potential contributor to cardiovascular disease. In lung, THS stimulates excess collagen production and high levels of inflammatory cytokines, suggesting propensity for fibrosis with implications for inflammation-induced diseases such as chronic obstructive pulmonary disease and asthma. In wounded skin, healing in THS-exposed mice has many characteristics of the poor healing of surgical incisions observed in human smokers. Lastly, behavioral tests show that THS-exposed mice become hyperactive. The latter data, combined with emerging associated behavioral problems in children exposed to SHS/THS, suggest that, with prolonged exposure, they may be at significant risk for developing more severe neurological disorders. These results provide a basis for studies on the toxic effects of THS in humans and inform potential regulatory policies to prevent involuntary exposure to THS.

  5. The role of surface defects in HOPG on the electrochemical and physical deposition of Ag

    Directory of Open Access Journals (Sweden)

    R. PETROVIC

    1999-08-01

    Full Text Available The role of defects on a substrate surface during the initial stages of nucleation and growth of Ag deposited electrochemically and physically on highly oriented pyrolytic graphite (HOPG has been observed ex situ by scanning tunneling microscopy (STM. The silver was electrodeposited under current controlled electrochemical conditions at 26 µA/cm2, which corresponded to a deposition rate of 0.1 monolayers (ML per second. For comparison, physical deposition of Ag on HOPG was performed by DC Ar+ ion sputtering, at the same deposition rate and for the same deposition times. In both cases, Ag grows in an island growth mode, but the distribution of the islands appears to be quite different. In physical deposition, the Ag islands are almost homogeneously distributed over the substrate surface and a slight accumulation of islands on steps does not contribute significantly to the overall morphology. This indicates the crucial role of point defects on the substrate in the initial stages of nucleation. In electrochemical deposition, more lined defects are observed after a flow of current, and their role in the beginning of the nucleation is more pronounced. Lined defects are responsible for the string-like shaped domains of deposited atoms. Also, the existence of string-like shaped nucleation exclusion zones is indicated. The problem of the formation of nucleation exclusion zones, which appear only in electrochemical deposition, has been reconsidered and a new explanaton of their formation is given. A mathematical model for the calculation of the radius of the nucleation exclusion zone has been developed.

  6. Surface Enhanced Raman Scattering Substrates Made by Oblique Angle Deposition: Methods and Applications

    Directory of Open Access Journals (Sweden)

    Hin On Chu

    2017-02-01

    Full Text Available Surface Enhanced Raman Spectroscopy presents a rapid, non-destructive method to identify chemical and biological samples with up to single molecule sensitivity. Since its discovery in 1974, the technique has become an intense field of interdisciplinary research, typically generating >2000 publications per year since 2011. The technique relies on the localised surface plasmon resonance phenomenon, where incident light can couple with plasmons at the interface that result in the generation of an intense electric field. This field can propagate from the surface from the metal-dielectric interface, so molecules within proximity will experience more intense Raman scattering. Localised surface plasmon resonance wavelength is determined by a number of factors, such as size, geometry and material. Due to the requirements of the surface optical response, Ag and Au are typical metals used for surface enhanced Raman applications. These metals then need to have nano features that improve the localised surface plasmon resonance, several variants of these substrates exist; surfaces can range from nanoparticles in a suspension, electrochemically roughened electrodes to metal nanostructures on a substrate. The latter will be the focus of this review, particularly reviewing substrates made by oblique angle deposition. Oblique angle deposition is the technique of growing thin films so that the material flux is not normal to the surface. Films grown in this fashion will possess nanostructures, due to the atomic self-shadowing effect, that are dependent mainly on the deposition angle. Recent developments, applications and highlights of surface enhanced Raman scattering substrates made by oblique angle deposition will be reviewed.

  7. Effects of modified surfaces produced at plasma-facing surface on hydrogen release behavior in the LHD

    Directory of Open Access Journals (Sweden)

    Y. Nobuta

    2017-08-01

    Full Text Available In the present study, an additional deuterium (D ion irradiation was performed against long-term samples mounted on the helical coil can and in the outer private region in the LHD during the 17th experimental campaign. Based on the release behavior of the D and hydrogen (H retained during the experimental campaign, the difference of release behavior at the top surface and in bulk of modified surfaces is discussed. Almost all samples on the helical coil can were erosion-dominant and some samples were covered with boron or carbon, while a very thick carbon films were formed in the outer private region. In the erosion-dominant area, the D desorbed at much lower temperatures compared to that of H retained during the LHD plasma operation. For the samples covered with boron, the D tended to desorb at lower temperatures compared to H. For the carbon deposition samples, the D desorbed at much higher temperatures compared to no deposition and boron-covered samples, which was very similar to that of H. The D retention capabilities at the top surface of carbon and boron films were 2–3 times higher than no deposition area. The results indicate that the retention and release behavior at the top surface of the modified layer can be different from that of bulk substrate material.

  8. Chemical Controls of Ozone Dry Deposition to the Sea Surface Microlayer

    Science.gov (United States)

    Carpenter, L.; Chance, R.; Tinel, L.; Saint, A.; Sherwen, T.; Loades, D.; Evans, M. J.; Boxhall, P.; Hamilton, J.; Stolle, C.; Wurl, O.; Ribas-Ribas, M.; Pereira, R.

    2017-12-01

    Oceanic dry deposition of atmospheric ozone (O3) is both the largest and most uncertain O3 depositional sink, and is widely acknowledged to be controlled largely by chemical reactions in the sea surface microlayer (SML) involving iodide (I-) and dissolved organic material (DOM). These reactions not only determine how quickly O3 can be removed from the atmosphere, but also result in emissions of trace gases including volatile organic compounds and may constitute a source of secondary organic aerosols to the marine atmosphere. Iodide concentrations at the sea surface vary by approximately an order of magnitude spatially, leading to more than fivefold variation in ozone deposition velocities (and volatile iodine fluxes). Sea-surface temperature is a reasonable predictor of [I-], however two recent parameterisations for surface I- differ by a factor of two at low latitudes. The nature and reactivity of marine DOM to O3 is almost completely unknown, although studies have suggested approximately equivalent chemical control of I- and DOM on ozone deposition. Here we present substantial new measurements of oceanic I- in both bulk seawater and the overlying SML, and show improved estimates of the global sea surface iodide distribution. We also present analyses of water-soluble DOM isolated from the SML and bulk seawater, and corresponding laboratory studies of ozone uptake to bulk and SML seawater, with the aim of characterizing the reactivity of O3 towards marine DOM.

  9. Silicon surface passivation using thin HfO2 films by atomic layer deposition

    International Nuclear Information System (INIS)

    Gope, Jhuma; Vandana; Batra, Neha; Panigrahi, Jagannath; Singh, Rajbir; Maurya, K.K.; Srivastava, Ritu; Singh, P.K.

    2015-01-01

    Graphical abstract: - Highlights: • HfO 2 films using thermal ALD are studied for silicon surface passivation. • As-deposited thin film (∼8 nm) shows better passivation with surface recombination velocity (SRV) <100 cm/s. • Annealing improves passivation quality with SRV ∼20 cm/s for ∼8 nm film. - Abstract: Hafnium oxide (HfO 2 ) is a potential material for equivalent oxide thickness (EOT) scaling in microelectronics; however, its surface passivation properties particularly on silicon are not well explored. This paper reports investigation on passivation properties of thermally deposited thin HfO 2 films by atomic layer deposition system (ALD) on silicon surface. As-deposited pristine film (∼8 nm) shows better passivation with <100 cm/s surface recombination velocity (SRV) vis-à-vis thicker films. Further improvement in passivation quality is achieved with annealing at 400 °C for 10 min where the SRV reduces to ∼20 cm/s. Conductance measurements show that the interface defect density (D it ) increases with film thickness whereas its value decreases after annealing. XRR data corroborate with the observations made by FTIR and SRV data.

  10. Optimization of deposition conditions of CdS thin films using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Yücel, Ersin, E-mail: dr.ersinyucel@gmail.com [Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey); Güler, Nuray [Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey); Yücel, Yasin [Department of Chemistry, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey)

    2014-03-15

    Highlights: • Statistical methods used for optimization of CdS deposition parameters. • The morphology of the films was smooth, homogeneous and continuous. • Optimal conditions found as pH 11, stirring speed:361 rpm and deposition time: 55 min. • CdS thin film band gap value was 2.72 eV under the optimum conditions. -- Abstract: Cadmium sulfide (CdS) thin films were prepared on glass substrates by chemical bath deposition (CBD) technique under different pH, stirring speed and deposition time. Response Surface Methodology (RSM) and Central Composite Design (CCD) were used to optimization of deposition parameters of the CdS thin films. RSM and CCD were also used to understand the significance and interaction of the factors affecting the film quality. Variables were determined as pH, stirring speed and deposition time. The band gap was chosen as response in the study. Influences of the variables on the band gap and the film quality were investigated. 5-level-3-factor central composite design was employed to evaluate the effects of the deposition conditions parameters such as pH (10.2–11.8), stirring speed (132–468 rpm) and deposition time (33–67 min) on the band gap of the films. The samples were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) and ultraviolet–visible spectroscopy (UV–vis) measurements. The optimal conditions for the deposition parameters of the CdS thin films have been found to be: pH 11, 361 of stirring speed and 55 min of deposition time. Under the optimal conditions theoretical (predicted) band gap of CdS (2.66 eV) was calculated using optimal coded values from the model and the theoretical value is good agreement with the value (2.72 eV) obtained by verification experiment.

  11. A large-aperture, low-resolution quadrupole separator for producing deposited cluster materials

    CERN Document Server

    Denby, P M

    2000-01-01

    A wide-aperture, low-resolution quadrupole separator for metal clusters is described. Its performance has been evaluated by numerical calculations of the trajectories of clusters. Operating in the frequency range from 5 to 100 KHz allows one to separate clusters in the mass range from 30000 to 300000 AMU and by suitable choice of the AC and DC voltages one can obtain a resolution of 0.15. At this resolution the transmission of clusters from a source is 100% over the selected mass range. By biasing the quadrupole it has been possible to obtain a very sharp cut-off between the transmitted clusters and those outside the selected range. Trajectory calculation for clusters deposited onto a biased 2 cm diameter substrate show that it is possible to keep the deposition energy below 25 eV for 90% of the clusters when the quadrupole is itself biased.

  12. A large-aperture, low-resolution quadrupole separator for producing deposited cluster materials

    Energy Technology Data Exchange (ETDEWEB)

    Denby, P.M.; Eastham, D.A. E-mail: d.a.eastham@dl.ac.uk

    2000-03-01

    A wide-aperture, low-resolution quadrupole separator for metal clusters is described. Its performance has been evaluated by numerical calculations of the trajectories of clusters. Operating in the frequency range from 5 to 100 KHz allows one to separate clusters in the mass range from 30000 to 300000 AMU and by suitable choice of the AC and DC voltages one can obtain a resolution of 0.15. At this resolution the transmission of clusters from a source is 100% over the selected mass range. By biasing the quadrupole it has been possible to obtain a very sharp cut-off between the transmitted clusters and those outside the selected range. Trajectory calculation for clusters deposited onto a biased 2 cm diameter substrate show that it is possible to keep the deposition energy below 25 eV for 90% of the clusters when the quadrupole is itself biased.

  13. A large-aperture, low-resolution quadrupole separator for producing deposited cluster materials

    International Nuclear Information System (INIS)

    Denby, P.M.; Eastham, D.A.

    2000-01-01

    A wide-aperture, low-resolution quadrupole separator for metal clusters is described. Its performance has been evaluated by numerical calculations of the trajectories of clusters. Operating in the frequency range from 5 to 100 KHz allows one to separate clusters in the mass range from 30000 to 300000 AMU and by suitable choice of the AC and DC voltages one can obtain a resolution of 0.15. At this resolution the transmission of clusters from a source is 100% over the selected mass range. By biasing the quadrupole it has been possible to obtain a very sharp cut-off between the transmitted clusters and those outside the selected range. Trajectory calculation for clusters deposited onto a biased 2 cm diameter substrate show that it is possible to keep the deposition energy below 25 eV for 90% of the clusters when the quadrupole is itself biased

  14. Impact of climate change on surface ozone and deposition of sulphur and nitrogen in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Langner, J.; Bergstroem, R.; Foltescu, V. [Swedish Meteorological and Hydrological Institute, Norrkoeping (Sweden)

    2005-02-01

    The potential impact of regional climate change on the distribution and deposition of air pollutants in Europe has been studied using a regional chemistry/transport/deposition model, MATCH. MATCH was set up using meteorological output from two 10-year climate change experiments made with the Rossby Centre regional Atmospheric climate model version 1 (RCA1). RCA1 was forced by boundary conditions from two different global climate models using the IPCC IS92a (business as usual) emission scenario. The global mean warming in both the GCMs was 2.6 K and was reached in the period 2050-2070. Simulations with MATCH indicate substantial potential impact of regional climate change on both deposition of oxidised nitrogen and concentrations of surface ozone. The simulations show a strong increase in surface ozone expressed as AOT40 and mean of daily maximum over southern and central Europe and a decrease in northern Europe. The simulated changes in April-September AOT40 are significant in relation to inter-annual variability over extended areas. Changes in deposition of oxidised nitrogen are much smaller and also less coherent due to the strong inter-annual variability in precipitation in the RCA1 simulations and differences in the regional climate change simulated with RCA1 in the two regional scenarios. Changes in simulated annual deposition are significant in relation to inter-annual variability only over small areas. This indicates that longer simulation periods are necessary to establish changes in deposition. (author)

  15. Impact of climate change on surface ozone and deposition of sulphur and nitrogen in Europe

    Science.gov (United States)

    Langner, Joakim; Bergström, Robert; Foltescu, Valentin

    The potential impact of regional climate change on the distribution and deposition of air pollutants in Europe has been studied using a regional chemistry/transport/deposition model, MATCH. MATCH was set up using meteorological output from two 10-year climate change experiments made with the Rossby Centre regional Atmospheric climate model version 1 (RCA1). RCA1 was forced by boundary conditions from two different global climate models using the IPCC IS92a (business as usual) emission scenario. The global mean warming in both the GCMs was 2.6 K and was reached in the period 2050-2070. Simulations with MATCH indicate substantial potential impact of regional climate change on both deposition of oxidised nitrogen and concentrations of surface ozone. The simulations show a strong increase in surface ozone expressed as AOT40 and mean of daily maximum over southern and central Europe and a decrease in northern Europe. The simulated changes in April-September AOT40 are significant in relation to inter-annual variability over extended areas. Changes in deposition of oxidised nitrogen are much smaller and also less coherent due to the strong inter-annual variability in precipitation in the RCA1 simulations and differences in the regional climate change simulated with RCA1 in the two regional scenarios. Changes in simulated annual deposition are significant in relation to inter-annual variability only over small areas. This indicates that longer simulation periods are necessary to establish changes in deposition.

  16. The measurement of dry deposition and surface runoff to quantify urban road pollution in Taipei, Taiwan.

    Science.gov (United States)

    Wang, Yunn-Jinn; Chen, Chi-Feng; Lin, Jen-Yang

    2013-10-16

    Pollutants deposited on road surfaces and distributed in the environment are a source of nonpoint pollution. Field data are traditionally hard to collect from roads because of constant traffic. In this study, in cooperation with the traffic administration, the dry deposition on and road runoff from urban roads was measured in Taipei City and New Taipei City, Taiwan. The results showed that the dry deposition is 2.01-5.14 g/m(2) · day and 78-87% of these solids are in the 75-300 µm size range. The heavy metals in the dry deposited particles are mainly Fe, Zn, and Na, with average concentrations of 34,978, 1,519 and 1,502 ppm, respectively. Elevated express roads show the highest heavy metal concentrations. Not only the number of vehicles, but also the speed of the traffic should be considered as factors that influence road pollution, as high speeds may accelerate vehicle wear and deposit more heavy metals on road surfaces. In addition to dry deposition, the runoff and water quality was analyzed every five minutes during the first two hours of storm events to capture the properties of the first flush road runoff. The sample mean concentration (SMC) from three roads demonstrated that the first flush runoff had a high pollution content, notably for suspended solid (SS), chemical oxygen demand (COD), oil and grease, Pb, and Zn. Regular sweeping and onsite water treatment facilities are suggested to minimize the pollution from urban roads.

  17. Flexible, ionic liquid-based micro-supercapacitor produced by supersonic cluster beam deposition

    International Nuclear Information System (INIS)

    Bettini, L.G.; Piseri, P.; De Giorgio, F.; Arbizzani, C.; Milani, P.; Soavi, F.

    2015-01-01

    Highlights: • We exploited Supersonic Cluster Beam Deposition for the fabrication of a flexible, planar micro-supercapacitor featuring nanostructured carbon electrodes deposited on a plastic Mylar substrate and N-trimethyl-N-propyl-ammonium bis(trifluoromethanesulfonyl) imide (N 1113 TFSI) ionic liquid electrolyte. • The micro-supercapacitor operates at 3 V above RT up to 80 °C with a capacitance density approaching 10 F cm −3 and delivering maximum specific energy and power densities of 10 mWh cm −3 and 8-10 W cm −3 . • The micro-supercapacitor features long cycling stability over 2x10 4 cycle on flat and bent configuration. -- Graphical abstract: Display Omitted -- Abstract: Power generation and storage in electronics require flexible, thin micro-electrochemical energy storage/conversion systems. Micro-supercapacitors (μSCs) with double-layer capacitance carbon electrodes are attracting much attention for their capability of delivering short power pulses with high stability over repeated charge/discharge cycling. Supersonic Cluster Beam Deposition (SCBD) is an effective strategy for the development of nanostructured, binder-free porous carbon electrodes on temperature sensitive substrates including polymers. We exploited SCBD for the development of a flexible, planar μSC featuring nanostructured carbon (ns-C) electrodes deposited on a plastic Mylar substrate and N-trimethyl-N-propyl-ammonium bis(trifluoromethanesulfonyl) imide (N 1113 TFSI) ionic liquid electrolyte. The electrochemical performance at different temperatures of the μSC which operates at 3 V above RT up to 80 °C with a capacitance density approaching 10 F cm −3 and delivering maximum specific energy and power densities of 10 mWh cm −3 and 8-10 W cm −3 with long cycling stability over 2 × 10 4 cycles is here reported and discussed

  18. The Role of Titanium Surface Microtopography on Adhesion, Proliferation, Transformation, and Matrix Deposition of Corneal Cells.

    Science.gov (United States)

    Zhou, Chengxin; Lei, Fengyang; Chodosh, James; Paschalis, Eleftherios I

    2016-04-01

    Titanium (Ti) is an excellent implantable biomaterial that can be further enhanced by surface topography optimization. Despite numerous data from orthopedics and dentistry, the effect of Ti surface topography on ocular cells is still poorly understood. In light of the recent adaptation of Ti in the Boston Keratoprosthesis artificial cornea, we attempted to perform an extended evaluation of the effect of Ti surface topography on corneal cell adhesion, proliferation, cytotoxicity, transformation, and matrix deposition. Different surface topographies were generated on medical grade Ti-6Al-4V-ELI (extra-low interstitial), with linearly increased roughness (polished to grit blasted). Biological response was evaluated in vitro using human corneal limbal epithelial (HCLE) cells, stromal fibroblasts (HCF), and endothelial cells (HCEnC). None of the Ti surface topographies caused cytotoxicity to any of the three corneal cell types. However, rough Ti surface inhibited HCLE and HCF cell adhesion and proliferation, while HCEnC proliferation was unaffected. Long-term experiments with HCF revealed that rough Ti surface with R(a) (the arithmetic average of the profile height from the mean line) ≥ 1.15 μm suppressed HCF focal adhesion kinase phosphorylation, changed fibroblast morphology, and caused less aligned and reduced deposition of collagen matrix as compared to smooth Ti (R(a) ≤ 0.08 μm). In the presence of transforming growth factor β1 (TGFβ1) stimulation, rough Ti inhibited alpha-smooth muscle actin (α-SMA) expression and collagen deposition, leading to decreased myofibroblast transformation and disorganization of the collagen fibrils as compared to smooth Ti. This study suggests that Ti surface topography regulates corneal cell behavior in a tissue-dependent manner that varies across the corneal strata. Contrary to the accepted paradigm, smooth surface topography can enhance cell adhesion and proliferation and increase matrix deposition by corneal cells.

  19. Formation of patterned arrays of Au nanoparticles on SiC surface by template confined dewetting of normal and oblique deposited nanoscale films

    Energy Technology Data Exchange (ETDEWEB)

    Ruffino, F., E-mail: francesco.ruffino@ct.infn.it; Grimaldi, M.G.

    2013-06-01

    We report on the formation of patterned arrays of Au nanoparticles (NPs) on 6H SiC surface. To this end, we exploit the thermal-induced dewetting properties of a template confined deposited nanoscale Au film. In this approach, the Au surface pattern order, on the SiC substrate, is established by a template confined deposition using a micrometric template. Then, a dewetting process of the patterned Au film is induced by thermal processes. We compare the results, about the patterns formation, obtained for normal and oblique deposited Au films. We show that the normal and oblique depositions, through the same template, originate different patterns of the Au film. As a consequence of these different starting patterns, after the thermal processes, different patterns for the arrays of NPs originating from the dewetting mechanisms are obtained. For each fixed deposition angle α, the pattern evolution is analyzed, by scanning electron microscopy, as a function of the annealing time at 1173 K (900 °C). From these analyses, quantitative evaluations on the NPs size evolution are drawn. - Highlights: • Micrometric template-confined nanoscale gold films are deposited on silicon carbide. • The dewetting process of template-confined gold films on silicon carbide is studied. • Comparison of dewetting process of normal and oblique deposited gold films is drawn. • Patterned arrays of gold nanoparticles on silicon carbide surface are produced.

  20. Formation of patterned arrays of Au nanoparticles on SiC surface by template confined dewetting of normal and oblique deposited nanoscale films

    International Nuclear Information System (INIS)

    Ruffino, F.; Grimaldi, M.G.

    2013-01-01

    We report on the formation of patterned arrays of Au nanoparticles (NPs) on 6H SiC surface. To this end, we exploit the thermal-induced dewetting properties of a template confined deposited nanoscale Au film. In this approach, the Au surface pattern order, on the SiC substrate, is established by a template confined deposition using a micrometric template. Then, a dewetting process of the patterned Au film is induced by thermal processes. We compare the results, about the patterns formation, obtained for normal and oblique deposited Au films. We show that the normal and oblique depositions, through the same template, originate different patterns of the Au film. As a consequence of these different starting patterns, after the thermal processes, different patterns for the arrays of NPs originating from the dewetting mechanisms are obtained. For each fixed deposition angle α, the pattern evolution is analyzed, by scanning electron microscopy, as a function of the annealing time at 1173 K (900 °C). From these analyses, quantitative evaluations on the NPs size evolution are drawn. - Highlights: • Micrometric template-confined nanoscale gold films are deposited on silicon carbide. • The dewetting process of template-confined gold films on silicon carbide is studied. • Comparison of dewetting process of normal and oblique deposited gold films is drawn. • Patterned arrays of gold nanoparticles on silicon carbide surface are produced

  1. Deposition of gold nanoparticles from colloid on TiO2 surface

    Science.gov (United States)

    Rehacek, Vlastimil; Hotovy, Ivan

    2017-11-01

    In this paper, experimental results are presented on the deposition of colloidal gold nanoparticles on the surfaces of TiO2 prepared on silicon/silicon dioxide. Important procedures, such as titanium dioxide surface hydrophilization as well as functionalization by an organosilane coupling agent (3-aminopropyl) trimethoxysilane and (3-mercaptopropyl) trimethoxysilane were investigated in order to obtain a metal oxide surface with the most convenient properties for immobilization of gold nanoparticles having a dense and uniform distribution. TiO2 nanotips prepared by reactive ion etching of oxide surface covered with self-mask gold nanoparticles are demonstrated.

  2. Electrical properties of polyimides containing a near-surface deposit of silver

    Science.gov (United States)

    Rancourt, J. D.; Porta, G. M.; Taylor, L. T.

    1987-01-01

    Films containing a surface or near-surface deposit of palladium, gold or copper metal as well as tin, cobalt, copper, or lithium oxides have been prepared by dissolving appropriate metal salts into poly(amide-acid)/N,N-dimethylacetamide solutions and curing the solvent cast films to temperatures up to 300 C. This preparation technique has been extended to evaluate the thermal, spectroscopic, and electrical characteristics of condensation polyimide films modified with silver nitrate. A near-surface deposit of metallic silver results but the reflective surface has high electrical resistivity (sheet resistivity) due to a polymer coating or overlayer above the metal. Details pertaining to the silver nitrate modified condensation polyimides are presented. Also, the applicability of the structural model and electrical model previously proposed for the cobalt oxide system are assessed.

  3. Modification of implant material surface properties by means of oxide nano-structured coatings deposition

    Science.gov (United States)

    Safonov, Vladimir; Zykova, Anna; Smolik, Jerzy; Rogowska, Renata; Lukyanchenko, Vladimir; Kolesnikov, Dmitrii

    2014-08-01

    The deposition of functional coatings on the metal surface of artificial joints is an effective way of enhancing joint tribological characteristics. It is well-known that nanostructured oxide coatings have specific properties advantageous for future implant applications. In the present study, we measured the high hardness parameters, the adhesion strength and the low friction coefficient of the oxide magnetron sputtered coatings. The corrosion test results show that the oxide coating deposition had improved the corrosion resistance by a factor of ten for both stainless steel and titanium alloy substrates. Moreover, the hydrophilic nature of coated surfaces in comparison with the metal ones was investigated in the tensiometric tests. The surfaces with nanostructured oxide coatings demonstrated improved biocompatibility for in vitro and in vivo tests, attributed to the high dielectric constants and the high values of the surface free energy parameters.

  4. Low-energy ion-beam deposition apparatus equipped with surface analysis system

    International Nuclear Information System (INIS)

    Ohno, Hideki; Aoki, Yasushi; Nagai, Siro.

    1994-10-01

    A sophisticated apparatus for low energy ion beam deposition (IBD) was installed at Takasaki Radiation Chemistry Research Establishment of JAERI in March 1991. The apparatus is composed of an IBD system and a real time/in-situ surface analysis system for diagnosing deposited thin films. The IBD system provides various kinds of low energy ion down to 10 eV with current density of 10 μA/cm 2 and irradiation area of 15x15 mm 2 . The surface analysis system consists of RHEED, AES, ISS and SIMS. This report describes the characteristics and the operation procedure of the apparatus together with some experimental results on depositing thin carbon films. (author)

  5. Comparison of deposited surface area of airborne ultrafine particles generated from two welding processes.

    Science.gov (United States)

    Gomes, J F; Albuquerque, P C; Miranda, Rosa M; Santos, Telmo G; Vieira, M T

    2012-09-01

    This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.

  6. Electrochemical deposition on surface nanometric defects: Thermodynamics and grand canonical Monte Carlo simulations

    International Nuclear Information System (INIS)

    Luque, Noelia B.; Reinaudi, Luis; Serra, Pablo; Leiva, Ezequiel P.M.

    2009-01-01

    A thermodynamic analysis is performed on electrochemical metal deposition in the cavity of a foreign substrate. In particular, the deposition of Cu and Ag in nanometer-sized holes on Au(1 1 1) is studied by means of off-lattice atomistic Grand Canonical Monte Carlo simulations, using embedded atom method potentials. The present simulation conditions emulate experiments of electrochemical metal deposition in nanocavities, as performed in the literature. Depending on the system, remarkable differences are found in the way in which the defects are decorated, as well as in their energetics. When the interaction of the adsorbate atoms with the substrate is less favorable than the bulk interaction of the adsorbate, clusters are found that grow stepwise over the level of the surface. In the opposite case, the filling of the cavity occurs stepwise, without the occurrence of cluster growth above the surface level. The results of the simulations present a good qualitative agreement with experimental results from the literature

  7. Silver deposition on titanium surface by electrochemical anodizing process reduces bacterial adhesion of Streptococcus sanguinis and Lactobacillus salivarius.

    Science.gov (United States)

    Godoy-Gallardo, Maria; Rodríguez-Hernández, Ana G; Delgado, Luis M; Manero, José M; Javier Gil, F; Rodríguez, Daniel

    2015-10-01

    The aim of this study was to determine the antibacterial properties of silver-doped titanium surfaces prepared with a novel electrochemical anodizing process. Titanium samples were anodized with a pulsed process in a solution of silver nitrate and sodium thiosulphate at room temperature with stirring. Samples were processed with different electrolyte concentrations and treatment cycles to improve silver deposition. Physicochemical properties were determined by X-ray photoelectron spectroscopy, contact angle measurements, white-light interferometry, and scanning electron microscopy. Cellular cytotoxicity in human fibroblasts was studied with lactate dehydrogenase assays. The in vitro effect of treated surfaces on two oral bacteria strains (Streptococcus sanguinis and Lactobacillus salivarius) was studied with viable bacterial adhesion measurements and growth curve assays. Nonparametric statistical Kruskal-Wallis and Mann-Whitney U-tests were used for multiple and paired comparisons, respectively. Post hoc Spearman's correlation tests were calculated to check the dependence between bacteria adhesion and surface properties. X-ray photoelectron spectroscopy results confirmed the presence of silver on treated samples and showed that treatments with higher silver nitrate concentration and more cycles increased the silver deposition on titanium surface. No negative effects in fibroblast cell viability were detected and a significant reduction on bacterial adhesion in vitro was achieved in silver-treated samples compared with control titanium. Silver deposition on titanium with a novel electrochemical anodizing process produced surfaces with significant antibacterial properties in vitro without negative effects on cell viability. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Basement to surface expressions and critical factors in the genesis of unconformity-related deposits

    International Nuclear Information System (INIS)

    Potter, Eric

    2014-01-01

    Two subprojects: 1) Basement to surface expressions of deep mineralization and refinement of critical factors leading to the genesis of unconformity-related uranium deposits; and 2) Recognition of uranium ore system alteration signatures in complex terranes: IOCG vs albite-hosted uranium vs volcanic-hosted uranium.

  9. Speciated particle dry deposition to the sea surface: Results from ASEPS '97

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, R.J.; Geernaert, L.L.S.

    1999-01-01

    on Precipitation Scavenging and Atmosphere-Surface Exchange Processes. AMS, Richland, Washington, USA, 12pp.) model to calculate size-segregated dry deposition of particle inorganic nitrogen compounds to the western Baltic during the late Spring of 1997 based on data collected as part of the Air-Sea Exchange...

  10. Guided selective deposition of nanoparticles by tuning of the surface potential

    Science.gov (United States)

    Eklöf, J.; Stolaś, A.; Herzberg, M.; Pekkari, A.; Tebikachew, B.; Gschneidtner, T.; Lara-Avila, S.; Hassenkam, T.; Moth-Poulsen, K.

    2017-07-01

    Guided deposition of nanoparticles onto different substrates is of great importance for a variety of applications such as biosensing, targeted cancer therapy, anti-bacterial coatings and single molecular electronics. It is therefore important to gain an understanding of what parameters are involved in the deposition of nanoparticles. In this work we have deposited 60 nm, negatively charged, citrate stabilized gold nanoparticles onto microstructures consisting of six different materials, (vanadium (V), silicon dioxide (SiO2), gold (Au), aluminum (Al), copper (Cu) and nickel (Ni)). The samples have then been investigated by scanning electron microscopy to extract the particle density. The surface potential was calculated from the measured surface charge density maps measured by atomic force microscopy while the samples were submerged in a KCl water solution. These values were compared with literature values of the isoelectric points (IEP) of different oxides formed on the metals in an ambient environment. According to measurements, Al had the highest surface potential followed by Ni and Cu. The same trend was observed for the nanoparticle densities. No particles were found on V, SiO2 and Au. The literature values of the IEP showed a different trend compared to the surface potential measurements concluding that IEP is not a reliable parameter for the prediction of NP deposition. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Paule Pileni.

  11. Crack resistance of pvd coatings : Influence of surface treatment prior to deposition

    NARCIS (Netherlands)

    Zoestbergen, E; de Hosson, J.T.M.

    The crack resistance of three different PVD coatings, TiN, Ti(C,N), and a multilayer system of alternating TiN and TiAlN, have been investigated. The three coating systems were deposited onto substrates with a different surface roughness to study the influence of this pretreatment on the crack

  12. Modelling land surface fluxes of CO2 in response to climate change and nitrogen deposition

    DEFF Research Database (Denmark)

    Hansen, Kristina; Ambelas Skjøth, Carsten; Geels, Camilla

    Climate change, land use variations, and impacts of atmospheric nitrogen (N) deposition represent uncertainties for the prediction of future greenhouse gas exchange between land surfaces and the atmosphere as the mechanisms describing nutritional effects are not well developed in climate...... climate feedback mechanisms of CO2 between changes in management, land use practise, and climate change....

  13. Ultrasharp Si nanowires produced by plasma-enhanced chemical vapor deposition

    Czech Academy of Sciences Publication Activity Database

    Červenka, Jiří; Ledinský, Martin; Stuchlíková, The-Ha; Stuchlík, Jiří; Výborný, Zdeněk; Holovský, Jakub; Hruška, Karel; Fejfar, Antonín; Kočka, Jan

    2010-01-01

    Roč. 4, 1-2 (2010), s. 37-39 ISSN 1862-6254 R&D Projects: GA MŠk(CZ) LC06040; GA AV ČR KAN400100701; GA MŠk LC510 Institutional research plan: CEZ:AV0Z10100521 Keywords : nanowires * silicon * scanning electron microscopy * hemical vapor deposition * Raman spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.660, year: 2010 http://www3.interscience.wiley.com/ cgi -bin/fulltext/123213957/HTMLSTART

  14. Optical performance of thin films produced by the pulsed laser deposition of SiAlON and Er targets

    Energy Technology Data Exchange (ETDEWEB)

    Camps, I., E-mail: camps@io.cfmac.csic.es [Laser Processing Group, Instituto de Óptica, CSIC, C/Serrano 121, 28006 Madrid (Spain); Ramírez, J.M. [MIND-IN2UB, Departament d’Electrònica, Universitat de Barcelona, c/Martí i Franqués 1, 08028 Barcelona (Spain); Mariscal, A.; Serna, R. [Laser Processing Group, Instituto de Óptica, CSIC, C/Serrano 121, 28006 Madrid (Spain); Garrido, B. [MIND-IN2UB, Departament d’Electrònica, Universitat de Barcelona, c/Martí i Franqués 1, 08028 Barcelona (Spain); Perálvarez, M.; Carreras, J. [IREC, Fundació Privada Institut de Recerca en Energia de Catalunya (Spain); Barradas, N.P.; Alves, L.C. [C" 2TN, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10, 2695-066 Bobadela (Portugal); Alves, E. [IPFN, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10, 2695-066 Bobadela (Portugal)

    2015-05-01

    Highlights: • PLD production of Er-doped thin films from a low cost commercial SiAlON target. • The role of the ablation fluence on the composition, optical properties as well as on the light emission performance at 1.5 μm. • The optimized performance is obtained for the samples deposited at the higher used ablation energy density. Further improvement was achieved through annealing. - Abstract: We report the preparation and optical performance of thin films produced by pulsed laser deposition in vacuum at room temperature, by focusing an ArF excimer laser onto two separate targets: a commercial ceramic SiAlON and a metallic Er target. As a result of the alternate deposition Er:SiAlON films were formed. The as grown films exhibited an Er-related emission peaking at 1532 nm. The role of the PLD energy density during deposition on the final matrix film was investigated, in order to achieve an optimized matrix composition with enhanced optical properties, and its effect on the light emission performance.

  15. Surface morphology of thin lysozyme films produced by matrix-assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Purice, Andreea; Schou, Jørgen; Pryds, Nini

    2007-01-01

    Thin films of the protein, lysozyme, have been deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. Frozen targets of 0.3-1.0 wt.% lysozyme dissolved in ultrapure water were irradiated by laser light at 355 mn with a fluence of 2 J/cm(2). The surface quality of the thin....... The concentration of lysozyme in the ice matrix apparently does not play any significant role for the morphology of the film. The morphology obtained with MAPLE has been compared with results for direct laser irradiation of a pressed lysozyme sample (i.e. pulsed laser deposition (PLD)). (C) 2007 Elsevier B.V. All...

  16. Optical, mechanical and surface properties of amorphous carbonaceous thin films obtained by plasma enhanced chemical vapor deposition and plasma immersion ion implantation and deposition

    Science.gov (United States)

    Turri, Rafael G.; Santos, Ricardo M.; Rangel, Elidiane C.; da Cruz, Nilson C.; Bortoleto, José R. R.; Dias da Silva, José H.; Antonio, César Augusto; Durrant, Steven F.

    2013-09-01

    Diverse amorphous hydrogenated carbon-based films (a-C:H, a-C:H:F, a-C:H:N, a-C:H:Cl and a-C:H:Si:O) were obtained by radiofrequency plasma enhanced chemical vapor deposition (PECVD) and plasma immersion ion implantation and deposition (PIIID). The same precursors were used in the production of each pair of each type of film, such as a-C:H, using both PECVD and PIIID. Optical properties, namely the refractive index, n, absorption coefficient, α, and optical gap, ETauc, of these films were obtained via transmission spectra in the ultraviolet-visible near-infrared range (wavelengths from 300 to 3300 nm). Film hardness, elastic modulus and stiffness were obtained as a function of depth using nano-indentation. Surface energy values were calculated from liquid drop contact angle data. Film roughness and morphology were assessed using atomic force microscopy (AFM). The PIIID films were usually thinner and possessed higher refractive indices than the PECVD films. Determined refractive indices are consistent with literature values for similar types of films. Values of ETauc were increased in the PIIID films compared to the PECVD films. An exception was the a-C:H:Si:O films, for which that obtained by PIIID was thicker and exhibited a decreased ETauc. The mechanical properties - hardness, elastic modulus and stiffness - of films produced by PECVD and PIIID generally present small differences. An interesting effect is the increase in the hardness of a-C:H:Cl films from 1.0 to 3.0 GPa when ion implantation is employed. Surface energy correlates well with surface roughness. The implanted films are usually smoother than those obtained by PECVD.

  17. Optical, mechanical and surface properties of amorphous carbonaceous thin films obtained by plasma enhanced chemical vapor deposition and plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Turri, Rafael G.; Santos, Ricardo M.; Rangel, Elidiane C.; Cruz, Nilson C. da; Bortoleto, José R.R.; Dias da Silva, José H.; Antonio, César Augusto; Durrant, Steven F.

    2013-01-01

    Diverse amorphous hydrogenated carbon-based films (a-C:H, a-C:H:F, a-C:H:N, a-C:H:Cl and a-C:H:Si:O) were obtained by radiofrequency plasma enhanced chemical vapor deposition (PECVD) and plasma immersion ion implantation and deposition (PIIID). The same precursors were used in the production of each pair of each type of film, such as a-C:H, using both PECVD and PIIID. Optical properties, namely the refractive index, n, absorption coefficient, α, and optical gap, E Tauc , of these films were obtained via transmission spectra in the ultraviolet–visible near-infrared range (wavelengths from 300 to 3300 nm). Film hardness, elastic modulus and stiffness were obtained as a function of depth using nano-indentation. Surface energy values were calculated from liquid drop contact angle data. Film roughness and morphology were assessed using atomic force microscopy (AFM). The PIIID films were usually thinner and possessed higher refractive indices than the PECVD films. Determined refractive indices are consistent with literature values for similar types of films. Values of E Tauc were increased in the PIIID films compared to the PECVD films. An exception was the a-C:H:Si:O films, for which that obtained by PIIID was thicker and exhibited a decreased E Tauc . The mechanical properties – hardness, elastic modulus and stiffness – of films produced by PECVD and PIIID generally present small differences. An interesting effect is the increase in the hardness of a-C:H:Cl films from 1.0 to 3.0 GPa when ion implantation is employed. Surface energy correlates well with surface roughness. The implanted films are usually smoother than those obtained by PECVD.

  18. Multilayer Ti-Cr-N Coatings Produced by the Vacuum-Arc Deposition

    International Nuclear Information System (INIS)

    Kunchenko, Yu.V.; Kunchenko, V.V.; Neklyudov, I.M.; Kartmazov, G.N.; Andreev, A.A.

    2007-01-01

    A possibility is demonstrated for nanolayer TiN x /CrN x coating formation by the method of vacuum-arc deposition on the substrate, which being rotated around the 'Bulat'-type chamber axis intercepts sequentially the plasma flows generated by three evaporators. The model for calculating the coating deposition rate (thickness) was used to determine the geometrical parameters that provide the formation of layer structures in the nanometer range. The variations of phase-structure characteristics, compression microstresses (σ) microhardness (H v ) of the coating formed have been investigated as functions of nitrogen pressure (P N =0.001...1.0 Pa), bias voltage (U=-100...-300 V) and condensation temperature (T C =330...750 degree C) at focusing magnetic field strength H F =0; 35 and 100 Oe. The mentioned field strengths were responsible for the ion current densities (j∼5,8...10 and ≥15 mA/cm 2 ). A nonmonotonic behaviour of H v as a function of condensation temperature and of vacuum annealing temperature has been established. The maximum H v values (∼35...37 GPa) were observed in the 450...500 degree C range

  19. Computational study of platinum nanoparticle deposition on the surfaces of crevices

    Energy Technology Data Exchange (ETDEWEB)

    Gu, H.F., E-mail: guhaifeng@hrbeu.edu.cn [Laboratory for Thermal-Hydraulics, Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); College of Nuclear Science and Technology, Harbin Engineering University, 150001 Harbin (China); Niceno, B. [Laboratory for Thermal-Hydraulics, Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Grundler, P.V. [Laboratory for Nuclear Materials, Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Sharabi, M. [Laboratory for Thermal-Hydraulics, Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Mechanical Power Engineering Department, Mansoura University, 35516 Mansoura (Egypt); Veleva, L. [Laboratory for Nuclear Materials, Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Hot Laboratory Division, Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Ritter, S. [Laboratory for Nuclear Materials, Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2016-08-01

    Highlights: • Nano-particle deposition on the surface of crevices is studied using RANS simulation. • Model results are validated by comparing with experimental data. • Behaviours and mechanisms of particle deposition in different crevices are analyzed. • RANS models with Lagrangian particle tracking method are evaluated and discussed. - Abstract: A well-known issue in boiling water reactors (BWR), which can threaten their structural integrity, is stress corrosion cracking (SCC) of reactor internals and recirculation pipes due to the accumulation of oxidizing radiolysis products of water. Currently, many operators of BWRs use combined platinum particle and hydrogen injection into the reactor water to mitigate SCC by lowering the electrochemical corrosion potential. It is essential for efficient mitigation that Pt particles reach all water-wetted surfaces, including crevices and cracks, which are also reached by the oxidizing species. In this study, a set of crevices with different widths and orientations with respect to the fluid flow are investigated using numerical simulation tools and compared against experimental findings. The Reynolds-Averaged Navier–Stokes models are used to compute the mean turbulent flow quantities in three-dimensional crevices, and the discrete random walk model is used to evaluate the effect of velocity fluctuations on particle movement. The Lagrangian particle tracking analysis is performed and the average concentration of deposited particles on the surface of crevices is evaluated and compared with experimental results. The results show that Reynolds stress model combined with enhanced wall treatment provides a more accurate prediction of particle concentration and distribution on the surface of crevices than SST k–ω turbulence model, which was expected, owing to the anisotropic nature of the Reynolds stress model. Furthermore, analyses on the particle deposition shows that three different mechanisms play important roles in

  20. Flow of groundwater from great depths into the near surface deposits - modelling of a local domain in northeast Uppland

    International Nuclear Information System (INIS)

    Holmen, Johan G.; Forsman, Jonas

    2005-01-01

    Purpose: To study the flow of groundwater from rock masses at great depths and into the surface near deposits by use of mathematical models; and to estimate the spatial and temporal distribution of groundwater from great depths in the surface near deposits (quaternary deposits). The study is about the hydraulic interaction between the geosphere and the biosphere. Methodology: The system studied is represented by time dependent three dimensional mathematical models. The models include groundwater flows in the rock mass and in the quaternary deposits as well as surface water flows. The established groundwater models have such a resolution (degree of detail) that both rock masses at great depth and near surface deposits are included in the flow system studied. The modelling includes simulations under both steady state conditions and transient conditions The transient simulations represents the varying state of the groundwater system studied, caused by the variation in hydro-meteorological conditions during a normal year, a wet-year and a dry-year. The boundary condition along the topography of the model is a non-linear boundary condition, representing the ground surface above the sea and the varying actual groundwater recharge. Area studied: The area studied is located in Sweden, in the Northeast of the Uppland province, close to the Forsmark nuclear power plant. Water balance modelling: To obtain three significantly different groundwater recharge periods for the transient groundwater flow simulations a water balance modelling was carried out based on a statistical analysis of available hydro-meteorological data. To obtain a temporal distribution of the runoff (i.e. potential groundwater recharge), we have conducted a numerical time dependent water balance modelling. General conclusions of groundwater modelling: The discharge areas for the flow paths from great depth are given by the topography and located along valleys and lakes; the spatial and temporal extension of

  1. Flow of groundwater from great depths into the near surface deposits - modelling of a local domain in northeast Uppland

    Energy Technology Data Exchange (ETDEWEB)

    Holmen, Johan G.; Forsman, Jonas [Golder Associates, Stockholm (Sweden)

    2005-01-15

    Purpose: To study the flow of groundwater from rock masses at great depths and into the surface near deposits by use of mathematical models; and to estimate the spatial and temporal distribution of groundwater from great depths in the surface near deposits (quaternary deposits). The study is about the hydraulic interaction between the geosphere and the biosphere. Methodology: The system studied is represented by time dependent three dimensional mathematical models. The models include groundwater flows in the rock mass and in the quaternary deposits as well as surface water flows. The established groundwater models have such a resolution (degree of detail) that both rock masses at great depth and near surface deposits are included in the flow system studied. The modelling includes simulations under both steady state conditions and transient conditions The transient simulations represents the varying state of the groundwater system studied, caused by the variation in hydro-meteorological conditions during a normal year, a wet-year and a dry-year. The boundary condition along the topography of the model is a non-linear boundary condition, representing the ground surface above the sea and the varying actual groundwater recharge. Area studied: The area studied is located in Sweden, in the Northeast of the Uppland province, close to the Forsmark nuclear power plant. Water balance modelling: To obtain three significantly different groundwater recharge periods for the transient groundwater flow simulations a water balance modelling was carried out based on a statistical analysis of available hydro-meteorological data. To obtain a temporal distribution of the runoff (i.e. potential groundwater recharge), we have conducted a numerical time dependent water balance modelling. General conclusions of groundwater modelling: The discharge areas for the flow paths from great depth are given by the topography and located along valleys and lakes; the spatial and temporal extension of

  2. Critical review of gamma spectrometry detection approaches for in-plant surface deposition monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gregorich, Carola [Nuclear Fuels and Chemistry at the Electric Power Research Institute, Palo Alto, CA 94304, (United States)

    2015-07-01

    Surface deposition of activated corrosion product on oxide layers of light-water reactor primary system components is the primary source for ex-core radiation fields and personnel radiation exposure. Understanding the deposition mechanism and what factors influence the deposition and release behaviors are crucial for developing effective radiation field reduction measures. One of the available tools to assess the surface deposition is in-plant gamma spectrometry, which has been performed for several decades using either sodium iodide (NaI) or high-purity germanium (HPGe) detectors. Lately, the much more mobile cadmium-zinc-telluride (CZT) detectors are increasingly employed by stations because of their ease in use and handling. However, all of these gamma detectors face the same challenges; namely large-geometry samples of inconsistent sample compositions and sometimes gaps in the information necessary to establish proper efficiency calibrations. This paper reviews current measurements and efficiency calibration approaches taken in the industry. The validity of the measurement results and the feasibility of the data's use in understanding source term behavior is examined. Suggestions are made for the development of a more robust deposit characterization and radiation field monitoring program. (authors)

  3. Magnetic field effects on coating deposition rate and surface morphology coatings using magnetron sputtering

    International Nuclear Information System (INIS)

    Yang, Yu-Sen; Huang, Wesley

    2010-01-01

    Chromium nitride coatings exhibit superior hardness, excellent wear and oxidation resistance, and are widely applied in the die and mold industries. The aim of this study was to investigate magnetic field effects on the deposition rate and surface morphology of chromium nitride coatings deposited by magnetron sputtering. Four types of magnetic field configurations, including the magnetron sputtering system, SNSN, SNNN, and intermediate magnetron modification, are discussed in this paper. SKD11 cold work die steel and a silicon (100) chip were used as substrates in the chromium nitride depositions. The process parameters, such as target current, substrate bias, and the distance between the substrate and target, are at fixed conditions, except for the magnetic arrangement type. The experimental results showed that the deposition rates of the four types of magnetic field configurations were 1.06, 1.38, 1.67 and 1.26 µm h −1 , respectively. In these cases, the SNNN type performs more than 58% faster than the unbalanced magnetron configuration does for the deposition rate. The surface morphology of chromium nitride films was also examined by SEM and is discussed in this paper

  4. Surface Modification of Ceramic Membranes with Thin-film Deposition Methods for Wastewater Treatment

    KAUST Repository

    Jahangir, Daniyal

    2017-12-01

    Membrane fouling, which is caused by deposition/adsorption of foulants on the surface or within membrane pores, still remains a bottleneck that hampers the widespread application of membrane bioreactor (MBR) technology for wastewater treatment. Recently membrane surface modification has proved to be a useful method in water/wastewater treatment to improve the surface hydrophilicity of membranes to obtain higher water fluxes and to reduce fouling. In this study, membrane modification was investigated by depositing a thin film of same thickness of TiO2 on the surface of an ultrafiltration alumina membrane. Various thin-film deposition (TFD) methods were employed, i.e. electron-beam evaporation, sputter and atomic layer deposition (ALD), and a comparative study of the methods was conducted to assess fouling inhibition performance in a lab-scale anaerobic MBR (AnMBR) fed with synthetic municipal wastewater. Thorough surface characterization of all modified membranes was carried out along with clean water permeability (CWP) tests and fouling behavior by bovine serum albumin (BSA) adsorption tests. The study showed better fouling inhibition performance of all modified membranes; however the effect varied due to different surface characteristics obtained by different deposition methods. As a result, ALD-modified membrane showed a superior status in terms of surface characteristics and fouling inhibition performance in AnMBR filtration tests. Hence ALD was determined to be the best TFD method for alumina membrane surface modification for this study. ALD-modified membranes were further characterized to determine an optimum thickness of TiO2-film by applying different ALD cycles. ALD treatment significantly improved the surface hydrophilicity of the unmodified membrane. Also ALD-TiO2 modification was observed to reduce the surface roughness of original alumina membrane, which in turn enhanced the anti-fouling properties of modified membranes. Finally, a same thickness of ALD

  5. Pulsed laser deposition of metallic films on the surface of diamond particles for diamond saw blades

    International Nuclear Information System (INIS)

    Jiang Chao; Luo Fei; Long Hua; Hu Shaoliu; Li Bo; Wang Youqing

    2005-01-01

    Ti or Ni films have been deposited on the diamond particle surfaces by pulsed laser deposition. Compressive resistance of the uncoated and coated diamond particles was measured, respectively, in the experiments. The compressive resistance of the Ti-coated diamonds particles was found much higher than that of the uncoated ones. It increased by 39%. The surface morphology is observed by the metallography microscope. The surface of the uncoated diamonds particles had many hollows and flaws, while the surface of Ni-coated diamond particles was flat and smooth, and the surface of Ti-coated diamond particles had some metal masses that stood out of the surface of the Ti-coated film. The components of the metallic films of diamond particles were examined by X-ray diffractometry (XRD). TiC was found formed on the Ti-coated diamond surface, which resulted in increased surface bonding strength between the diamond particles and the Ti films. Meanwhile, TiC also favored improving the bonding strength between the coated diamond particles and the binding materials. Moreover, the bending resistance of the diamond saw blade made of Ti-coated diamond was drastically higher than that of other diamond saw blades, which also played an important role in improving the blade's cutting ability and lifetime. Therefore, it was most appropriate that the diamond saw blade was made of Ti-coated diamond particles rather than other materials

  6. Microstructure and surface morphology of YSZ thin films deposited by e-beam technique

    International Nuclear Information System (INIS)

    Laukaitis, G.; Dudonis, J.; Milcius, D.

    2008-01-01

    In present study yttrium-stabilized zirconia (YSZ) thin films were deposited on optical quartz (amorphous SiO 2 ), porous Ni-YSZ and crystalline Alloy 600 (Fe-Ni-Cr) substrates using e-beam deposition technique and controlling technological parameters: substrate temperature and electron gun power which influence thin-film deposition mechanism. X-ray diffraction, scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to investigate how thin-film structure and surface morphology depend on these parameters. It was found that the crystallite size, roughness and growth mechanism of YSZ thin films are influenced by electron gun power. To clarify the experimental results, YSZ thin-film formation as well evolution of surface roughness at its initial growing stages were analyzed. The evolution of surface roughness could be explained by the processes of surface mobility of adatoms and coalescence of islands. The analysis of these experimental results explain that surface roughness dependence on substrate temperature and electron gun power non-monotonous which could result from diffusivity of adatoms and the amount of atomic clusters in the gas stream of evaporated material

  7. Surface deposition of iodine on some agricultural plants in laboratory conditions

    International Nuclear Information System (INIS)

    Stano, V.

    1990-01-01

    The surface (primary) deposition of nuclides on the above-ground parts of plants was studied. Iodine retention coefficients were measured in laboratory conditions for maize, peas, spinach, lettuce and paprika grown in loose soil taken in the Kecerovce locality. The results confirmed the assumption that the surface deposition of iodine is closely related to the morphological and physiological properties of the plants, although the substrate on which the plants are grown plays an appreciable role as well (the biomass production is higher for plants grown in loose soil than for those grown in aqueous nutrient solutions). The assumption that the above-ground parts retain iodine in higher quantities than the generative organs do was also proved. In the crops the retention of iodine was markedly differentiated in dependence on their overall consistency or on the structure of the surface cuticle layers. (author). 1 tab., 10 refs

  8. Niobium thin film deposition studies on copper surfaces for superconducting radio frequency cavity applications

    Energy Technology Data Exchange (ETDEWEB)

    W. M. Roach, D. B. Beringer, J. R. Skuza, W. A. Oliver, C. Clavero, C. E. Reece, R. A. Lukaszew

    2012-06-01

    Thin film coatings have the potential to increase both the thermal efficiency and accelerating gradient in superconducting radio frequency accelerator cavities. However, before this potential can be realized, systematic studies on structure-property correlations in these thin films need to be carried out since the reduced geometry, combined with specific growth parameters, can modify the physical properties of the materials when compared to their bulk form. Here, we present our systematic studies of Nb thin films deposited onto Cu surfaces to clarify possible reasons for the limited success that this process exhibited in previous attempts. We compare these films with Nb grown on other surfaces. In particular, we study the crystal structure and surface morphology and their effect on superconducting properties, such as critical temperature and lower critical field. We found that higher deposition temperature leads to a sharper critical temperature transition, but also to increased roughness indicating that there are competing mechanisms that must be considered for further optimization.

  9. Niobium thin film deposition studies on copper surfaces for superconducting radio frequency cavity applications

    International Nuclear Information System (INIS)

    Roach, W.M.; Beringer, D.B.; Skuza, J.R.; Oliver, W.A.; Clavero, C.; Reece, C.E.; Lukaszew, R.A.

    2012-01-01

    Thin film coatings have the potential to increase both the thermal efficiency and accelerating gradient in superconducting radio frequency accelerator cavities. However, before this potential can be realized, systematic studies on structure-property correlations in these thin films need to be carried out since the reduced geometry, combined with specific growth parameters, can modify the physical properties of the materials when compared to their bulk form. Here, we present our systematic studies of Nb thin films deposited onto Cu surfaces to clarify possible reasons for the limited success that this process exhibited in previous attempts. We compare these films with Nb grown on other surfaces. In particular, we study the crystal structure and surface morphology and their effect on superconducting properties, such as critical temperature and lower critical field. We found that higher deposition temperature leads to a sharper critical temperature transition, but also to increased roughness indicating that there are competing mechanisms that must be considered for further optimization.

  10. Tribological properties of nitrogen-containing amorphous carbon film produced by dc plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Zhang Wei; Wazumi, Koichiro; Tanaka, Akihiro; Koga, Yoshinori

    2003-01-01

    The nitrogen-contained amorphous carbon (a-C:N) films were deposited in a dc plasma chemical vapor deposition system with different substrate bias voltages. The structural, mechanical, and tribological properties of the a-C:N films were investigated. The influence of the bias voltage on the tribological behaviors of the a-C:N films was evaluated under various environments (dry air, O 2 , N 2 , and vacuum) using a ball-on-disk friction tester. It showed that the sp 3 C and hydrogen concentration of the a-C:N films decreases with increasing the bias voltage. However, the nitrogen concentration increases with increasing the bias voltage. As a result, the hardness and internal stress decrease and the critical load for fracturing increases as the substrate bias increases. For the tribological properties of the a-C:N films, the friction coefficient of the films slightly decreases in the environments of N 2 , O 2 , or dry air, but increases slightly in the vacuum environment by increasing the bias voltage. It indicates that the incorporated nitrogen in the a-C:N films would decrease the friction coefficient of the films in N 2 or O 2 environments, but slightly increases the friction coefficient of the films in a vacuum. The excellent wear resistance of the a-C:N films, in the level of 10 -9 -10 -8 mm 3 /Nm, can be observed in N 2 , vacuum, and dry air environments. In addition, the effect of the bias voltage on the wear rate of the a-C:N films becomes less obvious by nitrogen incorporation. So, we suggest the incorporated nitrogen, which bonded to carbon and restrained the increase of the fraction of sp 2 C-C, would restrain the wear of the a-C:N films in different environments, especially in dry air

  11. Carbon monoxide oxidation on a Au(111 surface modified by spontaneously deposited Ru

    Directory of Open Access Journals (Sweden)

    ROLF-JÜRGEN BEHM

    2001-04-01

    Full Text Available The spontaneous deposition of Ru on Au(111 was performed in 10-3 M RuCl3 + 0.5 M H2SO4 solution. The obtained surface was characterized by STM under potential control in 0.5 M H2SO4 solution. The coverage of the Au(111 terraces by deposited Ru was estimated by STM to be 0.02 ML. Step decoration could be noticed in the STM images, which indicates that the steps, as lined defects, are active sites for the nucleation of Ru monolayer islands, while the random distribution of Ru nuclei, observed on the terraces indicates point defects as active sites. The electrocatalytic activity of Au(111 surface modified by spontaneously deposited Ru was studied towards CO oxidation. The significant enhancement in the reaction rate compared to CO oxidation on a pure Au(111 surface, indicated that the edges of the deposited Ru islands were the active sites for the reaction.

  12. Sodium vapor deposition onto a horizontal flat plate above liquid sodium surface, 2

    International Nuclear Information System (INIS)

    Kudo, Kazuhiko; Hirata, Masaru.

    1977-01-01

    The sodium vapor deposition onto a horizontal flat plate above liquid sodium surface was studied. The analysis was performed by assuming that the sodium mist is emitted into the main flow without condensation and then grows up in the main flow and drops on the sodium surface. The effects of growth of sodium mist to the system were investigated. The model of the phenomena is the sodium deposition onto a horizontal flat plate which is placed above the sodium surface with the medium cover gas. One-dimensional analysis can be done. The rate of deposition is greatly reduced when the temperature of the flat plate is lowered. For the analysis of this phenomena, it is assumed that the sodium mist grows by condensation. One of results is that the real state may be the state between the state that the condensation of mist is made in the boundary layer and the state that the mist is condensed in the main flow. Others are that there is no effect of sodium mist condensation on the rate of deposition, and that the rate of the vaporization of sodium is given by the original and the modified model. (Kato, T.)

  13. Coloration of metallic and/or ceramic surfaces obtained by atomic layer deposited nano-coatings

    International Nuclear Information System (INIS)

    Guzman, L.; Vettoruzzo, F.; Laidani, N.

    2016-01-01

    By depositing single layer coatings by means of physical vapor techniques, tailoring of their coloration is generally complex because a given color can be obtained only by very high composition control. Physical vapor deposition (PVD) processes are expensive and cannot be easily used for obtaining conformal coating on three-dimensional objects. Moreover PVD coatings exhibit intrinsic defects (columnar structures, pores) that affect their functional properties and applications such as barrier layers. Atomic layer deposition (ALD) technology delivers conformal coatings on different materials with very low defectiveness. A straightforward coloration can be obtained by a combination of two types of layers with different refraction index, deposited to high thickness precision. Computer simulation studies were performed to design the thickness and architecture of multilayer structures, to a total thickness of approximately 100 nm, suitable to modify the typical coloration of some materials, without altering their other physical and chemical properties. The most promising nano-layered structures were then deposited by ALD and tested with regard to their optical properties. Their total thicknesses were specified in such a way to be technically feasible and compatible with future industrial production. The materials employed in this study to build the optical coatings, are two oxides (Al_2O_3, TiO_2) deposited at 120 °C and two nitrides (AlN, TiN), which need a deposition temperature of 400 °C. The possibility of using such modern deposition technology for esthetic and decorative purposes, while maintaining the functional properties, opens perspectives of industrial applications. - Highlights: • Computer simulation is done to design multilayers made of Al_2O_3, TiO_2, AlN, and TiN. • Total thickness (< 120 nm) is specified to be compatible with industrial production. • The most promising nano-layered structures are then produced and optically tested. • An

  14. Influence of the Surface Layer on the Electrochemical Deposition of Metals and Semiconductors into Mesoporous Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Chubenko, E. B., E-mail: eugene.chubenko@gmail.com; Redko, S. V.; Sherstnyov, A. I.; Petrovich, V. A.; Kotov, D. A.; Bondarenko, V. P. [Belarusian State University of Information and RadioElectronics (Belarus)

    2016-03-15

    The influence of the surface layer on the process of the electrochemical deposition of metals and semiconductors into porous silicon is studied. It is shown that the surface layer differs in structure and electrical characteristics from the host porous silicon bulk. It is established that a decrease in the conductivity of silicon crystallites that form the surface layer of porous silicon has a positive effect on the process of the filling of porous silicon with metals and semiconductors. This is demonstrated by the example of nickel and zinc oxide. The effect can be used for the formation of nanocomposite materials on the basis of porous silicon and nanostructures with a high aspect ratio.

  15. Influence of the Surface Layer on the Electrochemical Deposition of Metals and Semiconductors into Mesoporous Silicon

    International Nuclear Information System (INIS)

    Chubenko, E. B.; Redko, S. V.; Sherstnyov, A. I.; Petrovich, V. A.; Kotov, D. A.; Bondarenko, V. P.

    2016-01-01

    The influence of the surface layer on the process of the electrochemical deposition of metals and semiconductors into porous silicon is studied. It is shown that the surface layer differs in structure and electrical characteristics from the host porous silicon bulk. It is established that a decrease in the conductivity of silicon crystallites that form the surface layer of porous silicon has a positive effect on the process of the filling of porous silicon with metals and semiconductors. This is demonstrated by the example of nickel and zinc oxide. The effect can be used for the formation of nanocomposite materials on the basis of porous silicon and nanostructures with a high aspect ratio.

  16. Nanostructured diamond film deposition on curved surfaces of metallic temporomandibular joint implant

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Marc D; Vohra, Yogesh K [Department of Physics, University of Alabama at Birmingham (UAB), Birmingham, AL (United States)

    2002-10-21

    Microwave plasma chemical vapour deposition of nanostructured diamond films was carried out on curved surfaces of Ti-6Al-4V alloy machined to simulate the shape of a temporomandibular joint (TMJ) dental implant. Raman spectroscopy shows that the deposited films are uniform in chemical composition along the radius of curvature of the TMJ condyle. Thin film x-ray diffraction reveals an interfacial carbide layer and nanocrystalline diamond grains in this coating. Nanoindentation hardness measurements show an ultra-hard coating with a hardness value of 60{+-}5 GPa averaged over three samples. (rapid communication)

  17. Surface modification of an epoxy resin with polyamines and polydopamine: The effect on the initial electroless copper deposition

    Energy Technology Data Exchange (ETDEWEB)

    Schaubroeck, David, E-mail: David.Schaubroeck@elis.ugent.be [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium); Mader, Lothar [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium); De Geyter, Nathalie; Morent, Rino [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); Dubruel, Peter [Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 bis, B-9000 Ghent (Belgium); Vanfleteren, Jan [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium)

    2014-06-01

    This paper describes the influence of polydopamine and polyamine surface modifications of an etched epoxy cresol novolak (ECN) resin on the initial electroless copper deposition. Three different strategies to introduce polyamines on a surface in aqueous environment are applied: via polyethyleneimine adsorption (PEI), via polydopamine and via polyamines grafted to polydopamine. Next, the influence of these surface modifications on the catalytic palladium activation is investigated through X-ray photoelectron spectroscopy (XPS) analysis. Finally, the initial electroless copper deposition on modified epoxy surfaces is evaluated using SEM and Energy Dispersive Spectroscopy (EDS). Grafted polyamines on polydopamine surface modifications result in a large increase of the initial deposited copper.

  18. Deposition of fibrinogen on the surface of in vitro thrombi prevents platelet adhesion.

    Science.gov (United States)

    Owaynat, Hadil; Yermolenko, Ivan S; Turaga, Ramya; Lishko, Valeryi K; Sheller, Michael R; Ugarova, Tatiana P

    2015-12-01

    The initial accumulation of platelets after vessel injury is followed by thrombin-mediated generation of fibrin which is deposited around the plug. While numerous in vitro studies have shown that fibrin is highly adhesive for platelets, the surface of experimental thrombi in vivo contains very few platelets suggesting the existence of natural anti-adhesive mechanisms protecting stabilized thrombi from platelet accumulation and continuous thrombus propagation. We previously showed that adsorption of fibrinogen on pure fibrin clots results in the formation of a nonadhesive matrix, highlighting a possible role of this process in surface-mediated control of thrombus growth. However, the deposition of fibrinogen on the surface of blood clots has not been examined. In this study, we investigated the presence of intact fibrinogen on the surface of fibrin-rich thrombi generated from flowing blood and determined whether deposited fibrinogen is nonadhesive for platelets. Stabilized fibrin-rich thrombi were generated using a flow chamber and the time that platelets spend on the surface of thrombi was determined by video recording. The presence of fibrinogen and fibrin on the surface of thrombi was analyzed by confocal microscopy using specific antibodies. Examination of the spatial distribution of two proteins revealed the presence of intact fibrinogen on the surface of stabilized thrombi. By manipulating the surface of thrombi to display either fibrin or intact fibrinogen, we found that platelets adhere to fibrin- but not to fibrinogen-coated thrombi. These results indicate that the fibrinogen matrix assembled on the outer layer of stabilized in vitro thrombi protects them from platelet adhesion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Role of SiC substrate surface on local tarnishing of deposited silver mirror stacks

    Science.gov (United States)

    Limam, Emna; Maurice, Vincent; Seyeux, Antoine; Zanna, Sandrine; Klein, Lorena H.; Chauveau, Grégory; Grèzes-Besset, Catherine; Savin De Larclause, Isabelle; Marcus, Philippe

    2018-04-01

    The role of the SiC substrate surface on the resistance to the local initiation of tarnishing of thin-layered silver stacks for demanding space mirror applications was studied by combined surface and interface analysis on model stack samples deposited by cathodic magnetron sputtering and submitted to accelerated aging in gaseous H2S. It is shown that suppressing the surface pores resulting from the bulk SiC material production process by surface pretreatment eliminates the high aspect ratio surface sites that are imperfectly protected by the SiO2 overcoat after the deposition of silver. The formation of channels connecting the silver layer to its environment through the failing protection layer at the surface pores and locally enabling H2S entry and Ag2S growth as columns until emergence at the stack surface is suppressed, which markedly delays tarnishing initiation and thereby preserves the optical performance. The results revealed that residual tarnishing initiation proceeds by a mechanism essentially identical in nature but involving different pathways short circuiting the protection layer and enabling H2S ingress until the silver layer. These permeation pathways are suggested to be of microstructural origin and could correspond to the incompletely coalesced intergranular boundaries of the SiO2 layer.

  20. Acidic deposition: State of science and technology. Report 11. Historical changes in surface-water acid-base chemistry in response to acidic deposition. Final report

    International Nuclear Information System (INIS)

    Sullivan, T.J.; Small, M.J.; Kingston, J.C.; Bernert, J.A.; Thomas, D.R.

    1990-09-01

    The objectives of the analyses reported in the State of Science report are to: identify the lake and stream populations in the United States that have experienced chronic changes in biologically significant constituents of surface water chemistry (e.g. pH, Al) in response to acidic deposition; quantify biologically meaningful historical changes in chronic surface water chemistry associated with acidic deposition, with emphasis on ANC, pH, and Al; estimate the proportion of lakes nor acidic that were not acidic in pre-industrial times; estimate the proportional response of each of the major chemical constituents that have changed in response to acidic deposition using a subset of statistically selected Adirondack lakes for which paleolimnological reconstructions of pre-industrial surface water chemistry have been performed; evaluate and improve, where appropriate and feasible, empirical models of predicting changes in ANC; and evaluate the response of seepage lakes to acidic deposition

  1. Oxidation of nanostructured Ti films produced by low energy cluster beam deposition: An X-ray Photoelectron Spectroscopy characterization

    International Nuclear Information System (INIS)

    Simone, Monica de; Snidero, Elena; Coreno, Marcello; Bongiorno, Gero; Giorgetti, Luca; Amati, Matteo; Cepek, Cinzia

    2012-01-01

    We used in-situ X-ray Photoelectron Spectroscopy (XPS) to study the oxidation process of a cluster-assembled metallic titanium film exposed to molecular oxygen at room temperature. The nanostructured film has been grown on a Si(111) substrate, in ultra high vacuum conditions, by coupling a supersonic cluster beam deposition system with an XPS experimental chamber. Our results show that upon in-situ oxygen exposure Ti 3+ is the first oxidation state observed, followed by Ti 4+ , whereas Ti 2+ is practically absent during the whole process. Our results compare well with the existing literature on Ti films produced using other techniques.

  2. Method and apparatus for producing ultralowmass fissionable deposits for reactor neutron dosimetry by recoil ion-implantation

    International Nuclear Information System (INIS)

    Ruddy, F.H.

    1988-01-01

    A method for producing a fissionable deposit of selectively ultralow mass for neutron dosimetry is described comprising the steps of: (a) spacing in opposing relation a substrate and an alpha-emitting parent source which decays to implant into the substrate of fissionable daughter ejected from the parent source as a result of the decay; and (b) holding the opposing relation for a period of time until the parent source decays to form a corresponding mass of isotopically pure fissionable daughter uniformly on the substrate

  3. Understanding the electron-stimulated surface reactions of organometallic complexes to enable design of precursors for electron beam-induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Julie A.; Rosenberg, Samantha G.; Barclay, Michael; Fairbrother, D. Howard [Johns Hopkins University, Department of Chemistry, Baltimore, MD (United States); Wu, Yung-Chien; McElwee-White, Lisa [University of Florida, Department of Chemistry, Gainesville, FL (United States)

    2014-12-15

    Standard practice in electron beam-induced deposition (EBID) is to use precursors designed for thermal processes, such as chemical vapor deposition (CVD). However, organometallic precursors that yield pure metal deposits in CVD often create EBID deposits with high levels of organic contamination. This contamination negatively impacts the deposit's properties (e.g., by increasing resistivity or decreasing catalytic activity) and severely limits the range of potential applications for metal-containing EBID nanostructures. To provide the information needed for the rational design of precursors specifically for EBID, we have employed an ultra-high vacuum (UHV) surface science approach to identify the elementary reactions of organometallic precursors during EBID. These UHV studies have demonstrated that the initial electron-induced deposition of the surface-bound organometallic precursors proceeds through desorption of one or more of the ligands present in the parent compound. In specific cases, this deposition step has been shown to proceed via dissociative electron attachment, involving low-energy secondary electrons generated by the interaction of the primary beam with the substrate. Electron beam processing of the surface-bound species produced in the initial deposition event usually causes decomposition of the residual ligands, creating nonvolatile fragments. This process is believed to be responsible for a significant fraction of the organic contaminants typically observed in EBID nanostructures. A few ligands (e.g., halogens) can, however, desorb during electron beam processing while other ligands (e.g., PF{sub 3}, CO) can thermally desorb if elevated substrate temperatures are used during deposition. Using these general guidelines for reactivity, we propose some design strategies for EBID precursors. The ultimate goal is to minimize organic contamination and thus overcome the key bottleneck for fabrication of relatively pure EBID nanostructures. (orig.)

  4. A Novel Nanomaterial of Graphene Oxide Dotted with Ni Nanoparticles Produced by Supercritical CO2-Assisted Deposition for Reducing Friction and Wear.

    Science.gov (United States)

    Meng, Yuan; Su, Fenghua; Chen, Yangzhi

    2015-06-03

    Graphene oxide dotted with nickel nanoparticles (Sc-Ni/GO) was synthesized by chemical deposition with the assistance of supercritical carbon dioxide (scCO2). The deposited Ni nanoparticles with diameters less than 5 nm are uniformly anchored on the surfaces of GO nanosheets. The as-prepared Sc-Ni/GO composites were employed as lubricating additives in paraffin oil and their tribological properties were tested using a four-ball tribometer. The results demonstrate that the Sc-Ni/GO composites are efficient lubricant additives. Adding 0.08 wt % Sc-Ni/GO into paraffin oil can reduce the friction coefficient and wear scar diameter by 32 and 42%, respectively, in comparison with the pure oil. In addition, Sc-Ni/GO composites exhibit superior lubricating performances than nano-Ni, GO nanosheets, and Ni/GO composites produced without the aid of scCO2. Such excellent lubricating properties of the Sc-Ni/GO composites derive from the synergistic lubricating actions of Ni nanoparticles and GO nanosheets during the rubbing process. The synergistic lubricating actions are closely related to the microstructure of the nanocomposites and the characteristic features of transfer film formed on the contact steel balls. The anchored Ni nanoparticles with smaller size and more uniform distribution on GO surfaces and the thin transfer film formed on the contact balls favor the full play of the synergistic actions.

  5. Tribological coatings for complex mechanical elements produced by supersonic cluster beam deposition of metal dichalcogenide nanoparticles

    Science.gov (United States)

    Piazzoni, C.; Buttery, M.; Hampson, M. R.; Roberts, E. W.; Ducati, C.; Lenardi, C.; Cavaliere, F.; Piseri, P.; Milani, P.

    2015-07-01

    Fullerene-like MoS2 and WS2 nanoparticles can be used as building blocks for the fabrication of fluid and solid lubricants. Metal dichalcogenide films have a very low friction coefficient in vacuum, therefore they have mostly been used as solid lubricants in space and vacuum applications. Unfortunately, their use is significantly hampered by the fact that in the presence of humidity, oxygen and moisture, the low-friction properties of these materials rapidly degrade due to oxidation. The use of closed-cage MoS2 and WS2 nanoparticles may eliminate this problem, although the fabrication of lubricant thin films starting from dichalcogenide nanoparticles is, to date, a difficult task. Here we demonstrate the use of supersonic cluster beam deposition for the coating of complex mechanical elements (angular contact ball bearings) with nanostructured MoS2 and WS2 thin films. We report structural and tribological characterization of the coatings in view of the optimization of tribological performances for aerospace applications.

  6. Self-cleaning and surface chemical reactions during hafnium dioxide atomic layer deposition on indium arsenide.

    Science.gov (United States)

    Timm, Rainer; Head, Ashley R; Yngman, Sofie; Knutsson, Johan V; Hjort, Martin; McKibbin, Sarah R; Troian, Andrea; Persson, Olof; Urpelainen, Samuli; Knudsen, Jan; Schnadt, Joachim; Mikkelsen, Anders

    2018-04-12

    Atomic layer deposition (ALD) enables the ultrathin high-quality oxide layers that are central to all modern metal-oxide-semiconductor circuits. Crucial to achieving superior device performance are the chemical reactions during the first deposition cycle, which could ultimately result in atomic-scale perfection of the semiconductor-oxide interface. Here, we directly observe the chemical reactions at the surface during the first cycle of hafnium dioxide deposition on indium arsenide under realistic synthesis conditions using photoelectron spectroscopy. We find that the widely used ligand exchange model of the ALD process for the removal of native oxide on the semiconductor and the simultaneous formation of the first hafnium dioxide layer must be significantly revised. Our study provides substantial evidence that the efficiency of the self-cleaning process and the quality of the resulting semiconductor-oxide interface can be controlled by the molecular adsorption process of the ALD precursors, rather than the subsequent oxide formation.

  7. Surface modification of an epoxy resin with polyamines and polydopamine: Adhesion toward electroless deposited copper

    Energy Technology Data Exchange (ETDEWEB)

    Schaubroeck, David, E-mail: David.Schaubroeck@elis.ugent.be [Center for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium); Mader, Lothar [Center for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium); Dubruel, Peter [Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 bis, B-9000 Ghent (Belgium); Vanfleteren, Jan [Center for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium)

    2015-10-30

    Highlights: • Surface modifications of epoxy resins with polydopamine and grafted polyamines can significantly increase the adhesion toward electroless deposited copper. • A clear characterization of the copper/epoxy interphase is provided by SEM analyses of cross sections. • Tailored conditions such as etching time (roughness) and electroless deposition temperature are needed to increase the adhesion of the modified surfaces. - Abstract: In this paper the influence of the epoxy roughness, surface modifications and ELD (electroless copper deposition) temperatures on the adhesive strength of the copper is studied. Good adhesion at low roughness values is targeted due to their applicability in high density electronic circuits. Roughened epoxy surfaces are modified with adsorbed polyamines, polydopamine and polyamines grafted to polydopamine. Next the, adhesive strength of ELD copper is determined with peel strength measurements and the interphases are examined with SEM (scanning electron microscopy). Polydopamine and polyamines grafted to polydopamine can lead to increased adhesive strength at lower roughness values compared to the non-modified samples at specific plating temperatures.

  8. The surface chemistry of 3-mercaptopropyltrimethoxysilane films deposited on magnesium alloy AZ91

    International Nuclear Information System (INIS)

    Scott, A.; Gray-Munro, J.E.

    2009-01-01

    Magnesium and its alloys have desirable physical and mechanical properties for a number of applications. Unfortunately, these materials are highly susceptible to corrosion, particularly in the presence of aqueous solutions. The purpose of this study is to develop a uniform, non-toxic surface treatment to enhance the corrosion resistance of magnesium alloys. This paper reports the influence of the coating bath parameters and alloy microstructure on the deposition of 3-mercaptopropyltrimethoxysilane (MPTS) coatings on magnesium alloy AZ91. The surface chemistry at the magnesium/MPTS interface has also been explored. The results indicate that the deposition of MPTS onto AZ91 was influenced by both the pH and MPTS concentration in the coating bath. Furthermore, scanning electron microscopy results showed that the MPTS film deposited uniformly on all phases of the magnesium alloy surface. X-ray photoelectron spectroscopy studies revealed that at the magnesium/MPTS interface, the molecules bond to the surface through the thiol group in an acid-base interaction with the Mg(OH) 2 layer, whereas in the bulk of the film, the molecules are randomly oriented.

  9. Memory effect in the deposition of C20 fullerenes on a diamond surface

    Science.gov (United States)

    Du, A. J.; Pan, Z. Y.; Ho, Y. K.; Huang, Z.; Zhang, Z. X.

    2002-07-01

    In this paper, the deposition of C20 fullerenes on a diamond (001)-(2×1) surface and the fabrication of C20 thin film at 100 K were investigated by a molecular dynamics (MD) simulation using the many-body Brenner bond order potential. First, we found that the collision dynamic of a single C20 fullerene on a diamond surface was strongly dependent on its impact energy. Within the energy range 10-45 eV, the C20 fullerene chemisorbed on the surface retained its free cage structure. This is consistent with the experimental observation, where it was called the memory effect in ``C20-type'' films [P. Melion et al., Int. J. Mod. B 9, 339 (1995); P. Milani et al., Cluster Beam Synthesis of Nanostructured Materials (Springer, Berlin, 1999)]. Next, more than one hundred C20 (10-25 eV) were deposited one after the other onto the surface. The initial growth stage of C20 thin film was observed to be in the three-dimensional island mode. The randomly deposited C20 fullerenes stacked on diamond surface and acted as building blocks forming a polymerlike structure. The assembled film was also highly porous due to cluster-cluster interaction. The bond angle distribution and the neighbor-atom-number distribution of the film presented a well-defined local order, which is of sp3 hybridization character, the same as that of a free C20 cage. These simulation results are again in good agreement with the experimental observation. Finally, the deposited C20 film showed high stability even when the temperature was raised up to 1500 K.

  10. Low energy Cu clusters slow deposition on a Fe (001) surface investigated by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shixu [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Laboratory of Advanced Nuclear Materials, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Gong, Hengfeng [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Division of Nuclear Materials Science and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Chen, Xuanzhi [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Li, Gongping, E-mail: ligp@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wang, Zhiguang, E-mail: zhgwang@impcas.ac.cn [Laboratory of Advanced Nuclear Materials, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-09-30

    Highlights: • We study the deposition of low energy Cu clusters on Fe (001) surface by molecular dynamics. • The interaction between low energy cluster and substrate can be divided to the landing and the thermal diffusion phases. • The phenomenon of contact epitaxy of cluster occurred. • The thermal diffusion of cluster atoms was analyzed. - Abstract: The slow deposition of low energy Cu clusters on a Fe (001) surface was investigated by molecular dynamics simulation. A many-body potential based on Finnis–Sinclair model was used to describe the interactions among atoms. Three clusters comprising of 13, 55 and 147 atoms, respectively, were deposited with incident energies ranging from 0.0 to 1.0 eV/atom at various substrate temperatures (0, 300 and 800 K). The rearrangement and the diffusion of cluster can occur, only when the cluster atoms are activated and obtained enough migration energy. The interaction between low energy cluster and substrate can be divided to the landing and the thermal diffusion phases. In the former, the migration energy originates from the latent heat of binding energy for the soft deposition regime and primarily comes from the incident energy of cluster for the energetic cluster deposition regime. In the latter, the thermal vibration would result in some cluster atoms activated again at medium and high substrate temperatures. Also, the effects of incident energy, cluster size and substrate temperature on the interaction potential energy between cluster and substrate, the final deposition morphology of cluster, the spreading index and the structure parameter of cluster are analyzed.

  11. The Measurement of Dry Deposition and Surface Runoff to Quantify Urban Road Pollution in Taipei, Taiwan

    Science.gov (United States)

    Wang, Yunn-Jinn; Chen, Chi-Feng; Lin, Jen-Yang

    2013-01-01

    Pollutants deposited on road surfaces and distributed in the environment are a source of nonpoint pollution. Field data are traditionally hard to collect from roads because of constant traffic. In this study, in cooperation with the traffic administration, the dry deposition on and road runoff from urban roads was measured in Taipei City and New Taipei City, Taiwan. The results showed that the dry deposition is 2.01–5.14 g/m2·day and 78–87% of these solids are in the 75–300 µm size range. The heavy metals in the dry deposited particles are mainly Fe, Zn, and Na, with average concentrations of 34,978, 1,519 and 1,502 ppm, respectively. Elevated express roads show the highest heavy metal concentrations. Not only the number of vehicles, but also the speed of the traffic should be considered as factors that influence road pollution, as high speeds may accelerate vehicle wear and deposit more heavy metals on road surfaces. In addition to dry deposition, the runoff and water quality was analyzed every five minutes during the first two hours of storm events to capture the properties of the first flush road runoff. The sample mean concentration (SMC) from three roads demonstrated that the first flush runoff had a high pollution content, notably for suspended solid (SS), chemical oxygen demand (COD), oil and grease, Pb, and Zn. Regular sweeping and onsite water treatment facilities are suggested to minimize the pollution from urban roads. PMID:24135820

  12. Surface characterization of ZnO nanorods grown by chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mbulanga, C.M., E-mail: crispin.mbulanga@nmmu.ac.za [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Urgessa, Z.N.; Tankio Djiokap, S.R.; Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Duvenhage, M.M.; Swart, H.C. [Department of Physics, University of the Free State, P.O Box 77000, Bloemfontein ZA9300 (South Africa)

    2016-01-01

    The surface composition of as-grown and annealed ZnO nanorods (ZNs) grown by a two-step chemical bath deposition method is investigated by the following surface-sensitive techniques: Time-of-Flight Secondary Ion Mass Spectroscopy (TOF-SIMS), X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). The presence of H on the surface and throughout the entire thickness of ZNs is confirmed by TOF-SIMS. Based on TOF-SIMS results, the O2 XPS peak mostly observable at ~531.5 is assigned to O bound to H. Furthermore, it is found that the near surface region of as-grown ZNs is Zn-rich, and annealing at high temperature (~850 °C) removes H-related defects from the surface of ZNs and affect the balance of zinc and oxygen concentrations.

  13. Hard Surface Layers by Pack Boriding and Gaseous Thermo-Reactive Deposition and Diffusion Treatments

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Bottoli, Federico; Dahl, Kristian Vinter

    2017-01-01

    ) layers with hardnesses up to 1800 HV. Titanizing of ARNE tool steel results in a surface layer consisting of TiC with a hardness of approximately 4000 HV. Duplex treatments, where boriding is combined with subsequent (TRD) titanizing, result in formation of hard TiB2 on top of a thick layer of Fe......Thermo-reactive deposition and diffusion (TRD) and boriding are thermochemical processes that result in very high surface hardness by conversion of the surface into carbides/nitrides and borides, respectively. These treatments offer significant advantages in terms of hardness, adhesion, tribo...... subjected to TRD (chromizing and titanizing) and boriding treatments. For the steels with low carbon content, chromizing results in surface alloying with chromium, i.e., formation of a (soft) “stainless” surface zone. Steels containing higher levels of carbon form chromium carbide (viz. Cr23C6, Cr7C3...

  14. Sputter deposited bioceramic coatings: surface characterisation and initial protein adsorption studies using surface-MALDI-MS

    DEFF Research Database (Denmark)

    Boyd, A. R.; Burke, G. A.; Duffy, H.

    2011-01-01

    Protein adsorption onto calcium phosphate (Ca–P) bioceramics utilised in hard tissue implant applications has been highlighted as one of the key events that influences the subsequent biological response, in vivo. This work reports on the use of surface-matrix assisted laser desorption ionisation...... to a combination of growth factors and lipoproteins present in serum. From the data obtained here it is evident that surface-MALDI-MS has significant utility as a tool for studying the dynamic nature of protein adsorption onto the surfaces of bioceramic coatings, which most likely plays a significant role...

  15. Topography and surface free energy of DPPC layers deposited on a glass, mica, or PMMA support.

    Science.gov (United States)

    Jurak, Malgorzata; Chibowski, Emil

    2006-08-15

    An investigation of energetic properties of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) layers deposited on glass, mica, and PMMA (poly(methyl methacrylate)) surfaces was carried out by means of contact angles measurements (advancing and receding) for three probe liquids (diiodomethane, water, and formamide). DPPC was deposited on the surfaces from water (on glass and mica) or methanol (on PMMA) solutions. The topography of the tested surfaces was determined with a help of scanning electron microscopy (SEM) and atomic force microscopy (AFM). Using the measured contact angles, the total apparent surface free energy and its components of the studied layers were determined from van Oss et al.'s (Lifshitz-van der Waals and acid-base components, LWAB) and contact angle hysteresis (CAH) approaches. It allowed us to learn about changes in the surface free energy of the layers (hydrophobicity/hydrophilicity) depending on their number and kind of support. It was found that the changes in the energy greatly depended on the surface properties of the substrate as well as the statistical number of monolayers of DPPC. However, principal changes took place for first three monolayers.

  16. Deposition of particles and iodine to outdoor surfaces and in the respiratory tract

    International Nuclear Information System (INIS)

    Garland, J.A.

    1988-01-01

    Dry deposition of particles depends strongly on particle size, and is also influenced by the geometry of the surface and weather parameters. Precipitation scavenging is also influenced to some degree by particle size, but hygroscopic properties of soluble particles are also likely to enhance deposition in precipitation. Similar comments apply in the respiratory tract, where particle size and solubility may influence the extent and site of deposition: the site is important for insoluble particles at least since it determines retention time in the body. Thus measurement of particle size and investigation of solubility would be valuable in interpreting deposition inhalation and air concentration observations. Iodine has several chemical forms in the air. It is valuable to sample in such a way that different forms are partitioned, although there is some uncertainty in their identification. The rate of deposition to vegetation depends strongly on the chemical form of the iodine, but the vapour forms of iodine that occur in the atmosphere may all be retained efficiently on inhalation

  17. The Barrier Properties of PET Coated DLC Film Deposited by Microwave Surface-Wave PECVD

    Science.gov (United States)

    Yin, Lianhua; Chen, Qiang

    2017-12-01

    In this paper we report the investigation of diamond-like carbon (DLC) deposited by microwave surface-wave plasma enhanced chemical vapor deposition (PECVD) on the polyethylene terephthalate (PET) web for the purpose of the barrier property improvement. In order to characterize the properties of DLC coatings, we used several substrates, silicon wafer, glass, and PET web and KBr tablet. The deposition rate was obtained by surface profiler based on the DLC deposited on glass substrates; Fourier transform infrared spectroscope (FTIR) was carried out on KBr tablets to investigate chemical composition and bonding structure; the morphology of the DLC coating was analyzed by atomic force microscope (AFM) on Si substrates. For the barrier properties of PET webs, we measured the oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) after coated with DLC films. We addressed the film barrier property related to process parameters, such as microwave power and pulse parameter in this work. The results show that the DLC coatings can greatly improve the barrier properties of PET webs.

  18. Surface treatment effect on Si (111) substrate for carbon deposition using DC unbalanced magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Aji, A. S., E-mail: aji.ravazes70@gmail.com; Sahdan, M. F.; Hendra, I. B.; Dinari, P.; Darma, Y. [Quantum Semiconductor and Devices Lab., Physics of Material Electronics Research Division, Department of Physics, Institut Teknologi Bandung (Indonesia)

    2015-04-16

    In this work, we studied the effect of HF treatment in silicon (111) substrate surface for depositing thin layer carbon. We performed the deposition of carbon by using DC Unbalanced Magnetron Sputtering with carbon pallet (5% Fe) as target. From SEM characterization results it can be concluded that the carbon layer on HF treated substrate is more uniform than on substrate without treated. Carbon deposition rate is higher as confirmed by AFM results if the silicon substrate is treated by HF solution. EDAX characterization results tell that silicon (111) substrate with HF treatment have more carbon fraction than substrate without treatment. These results confirmed that HF treatment on silicon Si (111) substrates could enhance the carbon deposition by using DC sputtering. Afterward, the carbon atomic arrangement on silicon (111) surface is studied by performing thermal annealing process to 900 °C. From Raman spectroscopy results, thin film carbon is not changing until 600 °C thermal budged. But, when temperature increase to 900 °C, thin film carbon is starting to diffuse to silicon (111) substrates.

  19. Nucleation and growth of microdroplets of ionic liquids deposited by physical vapor method onto different surfaces

    Science.gov (United States)

    Costa, José C. S.; Coelho, Ana F. S. M. G.; Mendes, Adélio; Santos, Luís M. N. B. F.

    2018-01-01

    Nanoscience and technology has generated an important area of research in the field of properties and functionality of ionic liquids (ILs) based materials and their thin films. This work explores the deposition process of ILs droplets as precursors for the fabrication of thin films, by means of physical vapor deposition (PVD). It was found that the deposition (by PVD on glass, indium tin oxide, graphene/nickel and gold-coated quartz crystal surfaces) of imidazolium [C4mim][NTf2] and pyrrolidinium [C4C1Pyrr][NTf2] based ILs generates micro/nanodroplets with a shape, size distribution and surface coverage that could be controlled by the evaporation flow rate and deposition time. No indication of the formation of a wetting-layer prior to the island growth was found. Based on the time-dependent morphological analysis of the micro/nanodroplets, a simple model for the description of the nucleation process and growth of ILs droplets is presented. The proposed model is based on three main steps: minimum free area to promote nucleation; first order coalescence; second order coalescence.

  20. Gamma radiation fields from activity deposited on road and soil surfaces

    International Nuclear Information System (INIS)

    Hedemann Jensen, P.

    1993-12-01

    Radioactive material deposited in the environment after an accidental release would cause exposure of the population living in the affected areas. The radiation field will depend on many factors such as radionuclide composition, surface contamination density, removal of activity by weathering and migration, and protective measures like decontamination, ploughing and covering by asphalt. Methods are described for calculation of air kerma rate from deposited activity on road and soil surfaces, both from the initially deposited activity and from activity distributed in the upper layer of soil as well as from activity covered by asphalt or soil. Air kerma rates are calculated for different source geometries and the results are fitted to a power-exponential function of photon energy, depth distributions in soil and horizontal dimensions. Based on this function calculations of air kerma rate can easily be made on a personal computer or programmable pocket calculator for specific radionuclide compositions and different horizontal and vertical distributions of the deposited activity. The calculations are compared to results from other methods like the Monte Carlo method and good agreement is found between the results. (au) (7 tabs., 12 ills., 8 refs.)

  1. Investigation of growth and characterization of nanostructured CuIn5S8 thin films produced by glancing angle deposition

    International Nuclear Information System (INIS)

    Sinaoui, A.; Chaffar-Akkari, F.; Gallas, B.; Demaille, D.; Kanzari, M.

    2015-01-01

    Ternary chalcogenide of copper and indium (CuIn 5 S 8 ) thin films were grown by thermal evaporation method using GLancing Angle Deposition (GLAD) technique. The samples were prepared under different incident angles (α = 0°, 40°, 60° and 85° measured from the normal to the substrate surface) with a substrate rotation of 2 rpm. X-ray diffraction, scanning electron microscopy, and ultraviolet–visible-infrared spectra are employed to characterize the microstructure and optical properties of the CuIn 5 S 8 thin films deposited by this technique. Under the GLAD conditions, we demonstrate that with substrate rotation, the columns were grown vertically due to the shadowing symmetry. The optical constants of the deposited films were determined from the analysis of transmission and reflection data. The results show that the refractive index and the thickness were decreased as α rises from 0° to 85° while the porosity and the Urbach energy were increased with increasing of the incident angle. The minimum refractive index is found to be 2.03 for the helical CuIn 5 S 8 film deposited at an angle of 85° and the Urbach energy was found to increase from 0.29 to 0.5 eV as α rises from 0° to 85°. Such changes of the optical behaviors are correlated with changes of the microstructure, especially a porous architecture which is favored for high incident angle. These properties exhibit potential for use in applications such as photonic crystals, graded index optical filters, and birefrigent omnidirectional reflectors. - Highlights: • GLancing angle deposition technique was employed to prepare CuIn 5 S 8 thin films. • CuIn 5 S 8 films exhibit a spinel structure with a preferred orientation along 311. • With substrate rotation, the columns were grown vertically due to shadowing symmetry. • The refractive index decreases with increasing glancing angle deposition. • Variations of the optical behaviors were correlated to the highly porous structure

  2. The erosion performance of particle reinforced metal matrix composite coatings produced by co-deposition cold gas dynamic spraying

    Science.gov (United States)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This work reports on the erosion performance of three particle reinforced metal matrix composite coatings, co-deposited with an aluminium binder via cold-gas dynamic spraying. The deposition of ceramic particles is difficult to achieve with typical cold spray techniques due to the absence of particle deformation. This issue has been overcome in the present study by simultaneously spraying the reinforcing particles with a ductile metallic binder which has led to an increased level of ceramic/cermet particles deposited on the substrate with thick (>400 μm) coatings produced. The aim of this investigation was to evaluate the erosion performance of the co-deposited coatings within a slurry environment. The study also incorporated standard metallographic characterisation techniques to evaluate the distribution of reinforcing particles within the aluminium matrix. All coatings exhibited poorer erosion performance than the uncoated material, both in terms of volume loss and mass loss. The Al2O3 reinforced coating sustained the greatest amount of damage following exposure to the slurry and recorded the greatest volume loss (approx. 2.8 mm3) out of all of the examined coatings. Despite the poor erosion performance, the WC-CoCr reinforced coating demonstrated a considerable hardness increase over the as-received AA5083 (approx. 400%) and also exhibited the smallest free space length between adjacent particles. The findings of this study reveal that the removal of the AA5083 matrix by the impinging silicon carbide particles acts as the primary wear mechanism leading to the degradation of the coating. Analysis of the wear scar has demonstrated that the damage to the soft matrix alloy takes the form of ploughing and scoring which subsequently exposes carbide/oxide particles to the impinging slurry.

  3. Electrophoretic deposition of carbon nanotubes on a carbon fiber surface with different index graphitization

    International Nuclear Information System (INIS)

    Almeida, E.C.; Baldan, M.R.; Ferreira, N.G.; Edwards, E.R.

    2009-01-01

    Full text: The purpose of this work is to examine the electrophoretic deposition of carbon nanotubes powder on carbon fibers, produced at different heat treatments temperatures. Besides, a systematic study of the effects of graphitization index from substrate on the structure and morphology of CNTs has been available. Carbon fibers were produced from polyacrylonitrile at three different heat treatments temperatures, 1000, 1500 and 2000 deg C. The carbon fibers microstructure or its graphitization index may be controlled by the heat treatments temperatures. The electrophoretic deposition of carbon nanotubes was obtained with the powder of carbon nanotubes dispersed in water by ultrasonication to obtain dispersions of 0.05 mg/mL. The carbon fibers were immersed in the nanotube dispersion, and a positive potential of 10 V/cm was applied. Morphology and microstructure of carbon nanotubes on carbon fibers were obtained by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. (author)

  4. Metal/Carbon Hybrid Nanostructures Produced from Plasma-Enhanced Chemical Vapor Deposition over Nafion-Supported Electrochemically Deposited Cobalt Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohammad Islam

    2018-04-01

    Full Text Available In this work, we report development of hybrid nanostructures of metal nanoparticles (NP and carbon nanostructures with strong potential for catalysis, sensing, and energy applications. First, the etched silicon wafer substrates were passivated for subsequent electrochemical (EC processing through grafting of nitro phenyl groups using para-nitrobenzene diazonium (PNBT. The X-ray photoelectron spectroscope (XPS and atomic force microscope (AFM studies confirmed presence of few layers. Cobalt-based nanoparticles were produced over dip or spin coated Nafion films under different EC reduction conditions, namely CoSO4 salt concentration (0.1 M, 1 mM, reduction time (5, 20 s, and indirect or direct EC reduction route. Extensive AFM examination revealed NP formation with different attributes (size, distribution depending on electrochemistry conditions. While relatively large NP with >100 nm size and bimodal distribution were obtained after 20 s EC reduction in H3BO3 following Co2+ ion uptake, ultrafine NP (<10 nm could be produced from EC reduction in CoSO4 and H3BO3 mixed solution with some tendency to form oxides. Different carbon nanostructures including few-walled or multiwalled carbon nanotubes (CNT and carbon nanosheets were grown in a C2H2/NH3 plasma using the plasma-enhanced chemical vapor deposition technique. The devised processing routes enable size controlled synthesis of cobalt nanoparticles and metal/carbon hybrid nanostructures with unique microstructural features.

  5. Communication: Surface-facilitated softening of ordinary and vapor-deposited glasses

    Science.gov (United States)

    Cubeta, Ulyana; Bhattacharya, Deepanjan; Sadtchenko, Vlad

    2017-08-01

    A common distinction between the ordinary glasses formed by melt cooling and the stable amorphous films formed by vapor deposition is the apparent mechanism of their devitrification. Using quasi-adiabatic, fast scanning calorimetry that is capable of heating rates in excess of 105 K s-1, we have investigated the softening kinetics of micrometer-scale, ordinary glass films of methylbenzene and 2-propanol. At the limit of high heating rates, the transformation mechanism of ordinary glasses is identical to that of their stable vapor-deposited counterparts. In both cases, softening is likely to begin at the sample surface and progress into its bulk via a transformation front. Furthermore, such a surface-facilitated mechanism complies with zero-order, Arrhenius rate law. The activation energy barriers for the softening transformation imply that the kinetics must be defined, at least in part, by the initial thermodynamic and structural state of the samples.

  6. Structural modification of titanium surface by octacalcium phosphate via Pulsed Laser Deposition and chemical treatment

    Directory of Open Access Journals (Sweden)

    I.V. Smirnov

    2017-06-01

    Full Text Available In the present study, the Pulsed Laser Deposition (PLD technique was applied to coat titanium for orthopaedic and dental implant applications. Calcium carbonate (CC was used as starting coating material. The deposited CC films were transformed into octacalcium phosphate (OCP by chemical treatments. The results of X-ray diffraction (XRD, Raman, Fourier Transform Infrared Spectroscopy (FTIR and scanning electron microscopy (SEM studies revealed that the final OCP thin films are formed on the titanium surface. Human myofibroblasts from peripheral vessels and the primary bone marrow mesenchymal stromal cells (BMMSs were cultured on the investigated materials. It was shown that all the investigated samples had no short-term toxic effects on cells. The rate of division of myofibroblast cells growing on the surface and saturated BMMSs concentration for the OCP coating were about two times faster than of cells growing on the CC films.

  7. Thickness determination of large-area films of yttria-stabilized zirconia produced by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pryds, N. [Materials Research Department, Riso National Laboratory, DK-4000 Roskilde (Denmark)]. E-mail: nini.pryds@risoe.dk; Toftmann, B. [Department of Optics and Plasma Research, Riso National Laboratory, DK-4000 Roskilde (Denmark); Bilde-Sorensen, J.B. [Materials Research Department, Riso National Laboratory, DK-4000 Roskilde (Denmark); Schou, J. [Department of Optics and Plasma Research, Riso National Laboratory, DK-4000 Roskilde (Denmark); Linderoth, S. [Materials Research Department, Riso National Laboratory, DK-4000 Roskilde (Denmark)

    2006-04-30

    Films of yttria-stabilized zirconia (YSZ) on a polished silicon substrate of diameter up to 125 mm have been produced in a large-area pulsed laser deposition (PLD) setup under typical PLD conditions. The film thickness over the full film area has been determined by energy-dispersive X-ray spectrometry in a scanning electron microscope (SEM) with use of a method similar to one described by Bishop and Poole. The attenuation of the electron-induced X-rays from the Si wafer by the film was monitored at a number of points along a diameter and the thickness was determined by Monte Carlo simulations of the attenuation for various values of film thickness with the program CASINO. These results have been compared with direct measurements in the SEM of the film thickness on a cross-section on one of the wafers. The results of these measurements demonstrate the ability of this technique to accurately determine the thickness of a large film, i.e. up to diameters of 125 mm, in a relatively short time, without destroying the substrate, without the need of a standard sample and without the need of a flat substrate. We have also demonstrated that by controlling the deposition parameters large-area YSZ films with uniform thickness can be produced.

  8. Thickness determination of large-area films of yttria-stabilized zirconia produced by pulsed laser deposition

    International Nuclear Information System (INIS)

    Pryds, N.; Toftmann, B.; Bilde-Sorensen, J.B.; Schou, J.; Linderoth, S.

    2006-01-01

    Films of yttria-stabilized zirconia (YSZ) on a polished silicon substrate of diameter up to 125 mm have been produced in a large-area pulsed laser deposition (PLD) setup under typical PLD conditions. The film thickness over the full film area has been determined by energy-dispersive X-ray spectrometry in a scanning electron microscope (SEM) with use of a method similar to one described by Bishop and Poole. The attenuation of the electron-induced X-rays from the Si wafer by the film was monitored at a number of points along a diameter and the thickness was determined by Monte Carlo simulations of the attenuation for various values of film thickness with the program CASINO. These results have been compared with direct measurements in the SEM of the film thickness on a cross-section on one of the wafers. The results of these measurements demonstrate the ability of this technique to accurately determine the thickness of a large film, i.e. up to diameters of 125 mm, in a relatively short time, without destroying the substrate, without the need of a standard sample and without the need of a flat substrate. We have also demonstrated that by controlling the deposition parameters large-area YSZ films with uniform thickness can be produced

  9. Improvement of Surface Finish by Multiple Piezoelectric Transducers in Fused Deposition Modelling

    OpenAIRE

    A. S. Mohamed; S. Maidin; S. B. Mohamed; M. K. Muhamad; J.H. U. Wong; W. F. A. Romlee

    2016-01-01

    Additive Manufacturing (AM) which embrace as a new range technology of creating and producing end user parts in term of adding material layer by layer to create solid object from 3D CAD data. AM in particular Fused Deposition Modelling (FDM) used (ABS) thermoplastic have shown the most popular among the industry as its technology can print complex geometrical part without human intervention and tools. However, FDM fierce enemy whereas the common problem of stair-stepping, which means that sea...

  10. A new temperature and humidity dependent surface site density approach for deposition ice nucleation

    OpenAIRE

    I. Steinke; C. Hoose; O. Möhler; P. Connolly; T. Leisner

    2014-01-01

    Deposition nucleation experiments with Arizona Test Dust (ATD) as a surrogate for mineral dusts were conducted at the AIDA cloud chamber at temperatures between 220 and 250 K. The influence of the aerosol size distribution and the cooling rate on the ice nucleation efficiencies was investigated. Ice nucleation active surface site (INAS) densities were calculated to quantify the ice nucleation efficiency as a function of temperature, humidity and the aerosol ...

  11. Deposition of Fibrinogen on the Surface of in vitro Thrombi Prevents Platelet Adhesion

    OpenAIRE

    Owaynat, Hadil; Yermolenko, Ivan S.; Turaga, Ramya; Lishko, Valeryi K.; Sheller, Michael R.; Ugarova, Tatiana P.

    2015-01-01

    The initial accumulation of platelets after vessel injury is followed by thrombin-mediated generation of fibrin which is deposited around the plug. While numerous in vitro studies have shown that fibrin is highly adhesive for platelets, the surface of experimental thrombi in vivo contains very few platelets suggesting the existence of natural anti-adhesive mechanisms protecting stabilized thrombi from platelet accumulation and continuous thrombus propagation. We previously showed that adsorpt...

  12. Laboratory study of SO2 dry deposition on limestone and marble: Effects of humidity and surface variables

    Science.gov (United States)

    Spiker, E. C.; Hosker, R.P.; Weintraub, V.C.; Sherwood, S.I.

    1995-01-01

    The dry deposition of gaseous air pollutants on stone and other materials is influenced by atmospheric processes and the chemical characteristics of the deposited gas species and of the specific receptor material. Previous studies have shown that relative humidity, surface moisture, and acid buffering capability of the receptor surface are very important factors. To better quantify this behavior, a special recirculating wind tunnel/environmental chamber was constructed, in which wind speed, turbulence, air temperature, relative humidity, and concentrations of several pollutants (SO2, O3, nitrogen oxides) can be held constant. An airfoil sample holder holds up to eight stone samples (3.8 cm in diameter and 1 cm thick) in nearly identical exposure conditions. SO2 deposition on limestone was found to increase exponentially with increasing relative humidity (RH). Marble behaves similarly, but with a much lower deposition rate. Trends indicate there is little deposition below 20% RH on clean limestone and below 60% RH on clean marble. This large difference is due to the limestone's greater porosity, surface roughness, and effective surface area. These results indicate surface variables generally limit SO2 deposition below about 70% RH on limestone and below at least 95% RH on marble. Aerodynamic variables generally limit deposition at higher relative humidity or when the surface is wet.The dry deposition of gaseous air pollutants on stone and other materials is influenced by atmospheric processes and the chemical characteristics of the deposited gas species and of the specific receptor material. Previous studies have shown that relative humidity, surface moisture, and acid buffering capability of the receptor surface are very important factors. To better quantify this behavior, a special recirculating wind tunnel/environmental chamber was constructed, in which wind speed, turbulence, air temperature, relative humidity, and concentrations of several pollutants (SO2, O3

  13. Distinct effects of Cr bulk doping and surface deposition on the chemical environment and electronic structure of the topological insulator Bi{sub 2}Se{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Turgut, E-mail: yilmaz@phys.uconn.edu [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Hines, William [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Sun, Fu-Chang [Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269 (United States); Pletikosić, Ivo [Department of Physics, Princeton University, Princeton, NJ 08544 (United States); Budnick, Joseph [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Valla, Tonica [Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Sinkovic, Boris [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States)

    2017-06-15

    Highlights: • Cr doping into the bulk of Bi{sub 2}Se{sub 3} opens an energy gap at the Dirac point which is observable in the non-magnetic state. • Cr surface deposition does not lead to open an energy gap at the Dirac point of Bi{sub 2}Se{sub 3}. • Formation of two distinct Bi and Cr core level peaks was observed upon the deposition of Cr on the surface of Bi{sub 2}Se{sub 3}. - Abstract: In this report, it is shown that Cr doped into the bulk and Cr deposited on the surface of Bi{sub 2}Se{sub 3} films produced by molecular beam epitaxy (MBE) have strikingly different effects on both the electronic structure and chemical environment. Angle resolved photoemission spectroscopy (ARPES) shows that Cr doped into the bulk opens a surface state energy gap which can be seen at room temperature; much higher than the measured ferromagnetic transition temperature of ≈10 K. On the other hand, similar ARPES measurements show that the surface states remain gapless down to 15 K for films with Cr surface deposition. In addition, core-level photoemission spectroscopy of the Bi 5d, Se 3d, and Cr 3p core levels show distinct differences in the chemical environment for the two methods of Cr introduction. Surface deposition of Cr results in the formation of shoulders on the lower binding energy side for the Bi 5d peaks and two distinct Cr 3p peaks indicative of two Cr sites. These striking differences suggests an interesting possibility that better control of doping at only near surface region may offer a path to quantum anomalous Hall states at higher temperatures than reported in the literature.

  14. Deposition and surface treatment of Ag-embedded indium tin oxide by plasma processing

    International Nuclear Information System (INIS)

    Kim, Jun Young; Kim, Jae-Kwan; Kim, Ja-Yeon; Kwon, Min-Ki; Yoon, Jae-Sik; Lee, Ji-Myon

    2013-01-01

    Ag-embedded indium tin oxide (ITO) films were deposited on Corning 1737 glass by radio-frequency magnetron sputtering under an Ar or Ar/O 2 mixed gas ambient with a combination of ITO and Ag targets that were sputtered alternately by switching on and off the shutter of the sputter gun. The effects of a subsequent surface treatment using H 2 and H 2 + O 2 mixed gas plasma were also examined. The specific resistance of the as-deposited Ag-embedded ITO sample was lower than that of normal ITO. The transmittance was quenched when Ag was incorporated in ITO. To enhance the specific resistance of Ag-embedded ITO, a surface treatment was conducted using H 2 or H 2 + O 2 mixed gas plasma. Although all samples showed improved specific resistance after the H 2 plasma treatment, the transmittance was quenched due to the formation of agglomerated metals on the surface. The specific resistance of the film was improved without any deterioration of the transmittance after a H 2 + O 2 mixed gas plasma treatment. - Highlights: • Ag-embedded indium tin oxide was deposited. • The contact resistivity was decreased by H 2 + O 2 plasma treatment. • The process was carried out at room temperature without thermal treatment. • The mechanism of enhancing the contact resistance was clarified

  15. Topography evolution of rough-surface metallic substrates by solution deposition planarization method

    Science.gov (United States)

    Chu, Jingyuan; Zhao, Yue; Liu, Linfei; Wu, Wei; Zhang, Zhiwei; Hong, Zhiyong; Li, Yijie; Jin, Zhijian

    2018-01-01

    As an emerging technique for surface smoothing, solution deposition planarization (SDP) has recently drawn more attention on the fabrication of the second generation high temperature superconducting (2G-HTS) tapes. In our work, a number of amorphous oxide layers were deposited on electro-polished or mirror-rolled metallic substrates by chemical solution route. Topography evolution of surface defects on these two types of metallic substrates was thoroughly investigated by atomic force microscopy (AFM). It was showed that root mean square roughness values (at 50 × 50 μm2 scanning scale) on both rough substrates reduced to ∼5 nm after coating with SDP-layer. The smoothing effect was mainly attributed to decrease of the depth at grain boundary grooving on the electro-polished metallic substrate. On the mirror-rolled metallic substrates, the amplitude and frequency of the height fluctuation perpendicular to the rolling direction were gradually reduced as depositing more numbers of SDP-layer. A high Jc value of 4.17 MA cm-2 (at 77 K, s.f.) was achieved on a full stack of YBCO/CeO2/IBAD-MgO/SDP-layer/C276 sample. This study enhanced understanding of the topography evolution on the surface defects covered by the SDP-layer, and demonstrated a low-cost route for fabricating IBAD-MgO based YBCO templates with a simplified architecture.

  16. Protective coating of inner surface of steel tubes via vacuum arc deposition

    Energy Technology Data Exchange (ETDEWEB)

    Maile, K.; Roos, E.; Lyutovich, A.; Boese, J.; Itskov, M. [Stuttgart Univ. (DE). Materialpruefungsanstalt (MPA); Ashurov, Kh.; Mirkarimov, A.; Kazantsev, S.; Kadirov, Kh. [Uzbek Academy of Science, Tashkent (Uzbekistan). Arifov Inst. of Electronics

    2010-07-01

    The Vacuum Arc Deposition (VAD) technique based on sputtering a chosen electrode material and its deposition via plasma allows highly-productive technology for creating a wide class of protecting coatings on complex structures. In this work, VAD was applied as a method for the protection of the inner surface of tubes for power-plant boilers against steam oxidation. For this aim, a source cathode of an alloy with high chromium and nickel content was employed in two different VAD treatment systems: a horizontal vacuum chamber (MPA) and a vertical system where the work-piece of the tubes to be protected served as a vacuum changer (Arifov Institute of Electronics). Surface coating with variation of deposition parameters and layer thickness was performed. Characterisation of coated tubes has shown that the method realised in this work allows attainment of material transfer from the cathode to the inner surface with nearly equal chemical composition. It was demonstrated that the initial martensitic structure of the tubes was kept after the vacuum-arc treatment which can provide for both the high mechanical robustness and the corrosion-resistance of the final material. (orig.)

  17. XPS investigations of ruthenium deposited onto representative inner surfaces of nuclear reactor containment buildings

    Energy Technology Data Exchange (ETDEWEB)

    Mun, C. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Direction de la Prevention des Accidents Majeurs (DPAM), Centre de Cadarache, BP3-13115 Saint-Paul-lez-Durance (France)]. E-mail: christian.mun@irsn.fr; Ehrhardt, J.J. [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME) UMR 7564, CNRS-Nancy University-405, rue de Vandoeuvre 54600 Villers-les-Nancy (France)]. E-mail: ehrhardt@lcpe.cnrs-nancy.fr; Lambert, J. [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME) UMR 7564, CNRS-Nancy University-405, rue de Vandoeuvre 54600 Villers-les-Nancy (France); Madic, C. [Commissariat a l' Energie Atomique (CEA), Direction de l' Energie Nucleaire, Centre de Saclay, 91191 Gif-sur-Yvette Cedex (France)]. E-mail: charles.madic@cea.fr

    2007-07-15

    In the case of a hypothetical severe accident in a nuclear power plant, interactions of gaseous RuO{sub 4} with reactor containment building surfaces (stainless steel and epoxy paint) could possibly lead to a black Ru-containing deposit on these surfaces. Some scenarios include the possibility of formation of highly radiotoxic RuO{sub 4}(g) by the interactions of these deposits with the oxidizing medium induced by air radiolysis, in the reactor containment building, and consequently dispersion of this species. Therefore, the accurate determination of the chemical nature of ruthenium in the deposits is of the high importance for safety studies. An experiment was designed to model the interactions of RuO{sub 4}(g) with samples of stainless steel and of steel covered with epoxy paint. Then, these deposits have been carefully characterised by scanning electron microscopy (SEM/EDS), electron probe microanalysis (EPMA) and X-ray photoelectron spectroscopy (XPS). The analysis by XPS of Ru deposits formed by interaction of RuO{sub 4}(g), revealed that the ruthenium is likely to be in the IV oxidation state, as the shapes of the Ru 3d core levels are very similar with those observed on the RuO{sub 2}.xH{sub 2}O reference powder sample. The analysis of O 1s peaks indicates a large component attributed to the hydroxyl functional groups. From these results, it was concluded that Ru was present on the surface of the deposits as an oxyhydroxide of Ru(IV). It has also to be pointed out that the presence of 'pure' RuO{sub 2}, or of a thin layer of RuO{sub 3} or Ru{sub 2}O{sub 5}, coming from the decomposition of RuO{sub 4} on the surface of samples of stainless steel and epoxy paint, could be ruled out. These findings will be used for further investigations of the possible revolatilisation phenomena induced by ozone.

  18. Thickness of Lipid Deposition on Oral Surfaces Depending on Oil Content and Its Influence on Mouthfeel Perception

    Directory of Open Access Journals (Sweden)

    Urška Pivk Kupirovič

    2012-01-01

    Full Text Available Lipid content in food strongly influences food perception on the level of textural properties. Lipids in contact with the tongue and palate are substantially responsible for the sensory impact of a product. The aim of this study is to investigate the impact of oil content on the thickness of lipid deposition on oral surface as well as on the mouthfeel perception. The fluorescent probe method was used to study the thickness of lipid deposition on oral surface. We observed an increase in the thickness of lipid deposition depending on the increase of oil content in oil/water dispersions. Clear correlation was shown between the thickness of lipid deposition on oral surfaces and the perception of mouthfeel. A direct measure of undisrupted deposition of food components on oral surface contributes to the understanding of the behaviour of food components in the mouth and their influence on mouthfeel perception.

  19. Fabrication of biomimetic superhydrophobic surface on engineering materials by a simple electroless galvanic deposition method.

    Science.gov (United States)

    Xu, Xianghui; Zhang, Zhaozhu; Yang, Jin

    2010-03-02

    We have reported an easy means in this paper to imitate the "lotus leaf" by constructing a superhydrophobic surface through a process combining both electroless galvanic deposition and self-assembly of n-octadecanethiol. Superhydrophobicity with a static water contact angle of about 169 +/- 2 degrees and a sliding angle of 0 +/- 2 degrees was achieved. Both the surface chemical compositions and morphological structures were analyzed. We have obtained a feather-like surface structure, and the thickness of the Ag film is about 10-30 microm. The stability of the superhydrophobic surface was tested under the following three conditions: (1) pH value from 1 to 13; (2) after freezing treatment at -20 degrees C; (3) at ambient temperature. It shows a notable stability in that the contact angle of the sample still remained higher than 150 degrees in different conditions. It can be concluded that our approach can provide an alternative way to fabricate stable superhydrophobic materials.

  20. Surface metal standards produced by ion implantation through a removable layer

    International Nuclear Information System (INIS)

    Schueler, B.W.; Granger, C.N.; McCaig, L.; McKinley, J.M.; Metz, J.; Mowat, I.; Reich, D.F.; Smith, S.; Stevie, F.A.; Yang, M.H.

    2003-01-01

    Surface metal concentration standards were produced by ion implantation and investigated for their suitability to calibrate surface metal measurements by secondary ion mass spectrometry (SIMS). Single isotope implants were made through a 100 nm oxide layer on silicon. The implant energies were chosen to place the peak of the implanted species at a depth of 100 nm. Subsequent removal of the oxide layer was used to expose the implant peak and to produce controlled surface metal concentrations. Surface metal concentration measurements by time-of-flight SIMS (TOF-SIMS) with an analysis depth of 1 nm agreed with the expected surface concentrations of the implant standards with a relative mean standard deviation of 20%. Since the TOF-SIMS relative sensitivity factors (RSFs) were originally derived from surface metal measurements of surface contaminated silicon wafers, the agreement implies that the implant standards can be used to measure RSF values. The homogeneity of the surface metal concentration was typically <10%. The dopant dose remaining in silicon after oxide removal was measured using the surface-SIMS protocol. The measured implant dose agreed with the expected dose with a mean relative standard deviation of 25%

  1. Investigation of produced waters radioactivity of oil and gas deposits in the Dnieper-Donets province

    Directory of Open Access Journals (Sweden)

    Plyatsuk L. D.

    2017-12-01

    Full Text Available The process of radioactive pollution of produced waters, oilfield equipment, oil-contaminated soils and sludge is widely spread and differs within the various oil and gas regions. Formation waters contained radioactive element isotopes become the significant source and cause of elevated level of equivalent dose power and as a consequence, an increase in the incidence among the population. The author's idea is formulation of specific recommendations on the decontamination of the investigated objects by conducting the necessary appropriate experimental studies. The purpose of the article is to determine the content of radionuclides, γ- and α-emitters in technogenic objects of Bugruvate oil and gas fields, and to reveal the relationship with the features of mineralogical composition, geological structure and technological process. The γ-spectrometric analysis was used to determine the radionuclide composition of the natural radiators of the 238U (226Ra, 214Pо, 214Bi and 232Th (228Ac, 212Pb, 212Вi series in samples of technological sludge, oil, individual soil samples and water. The content of radionuclides of α-emitters was determined using separate radiochemical techniques. It was investigated that the radioactivity of the formation water is mainly determined by 226Ra and 228Ra and the products of their decay.

  2. A comparison of multi-metal deposition processes utilising gold nanoparticles and an evaluation of their application to 'low yield' surfaces for finger mark development.

    Science.gov (United States)

    Fairley, C; Bleay, S M; Sears, V G; NicDaeid, N

    2012-04-10

    This paper reports a comparison of the effectiveness and practicality of using different multi-metal deposition processes for finger mark development. The work investigates whether modifications can be made to improve the performance of the existing process published by Schnetz. Secondly, we compare the ability of different multi-metal deposition processes to develop finger marks on a range of surfaces with that of other currently used development processes. All published multi-metal deposition processes utilise an initial stage of colloidal gold deposition followed by enhancement of the marks with using a physical developer. All possible combinations of colloidal gold and physical developer stages were tested. The method proposed by Schnetz was shown to be the most effective process, however a modification which reduced the pH of the enhancement solution was revealed to provide the best combination of effectiveness and practicality. In trials comparing the modified formulation with vacuum metal deposition, superglue and powder suspensions on surfaces which typically give low finger mark yields (cling film, plasticised vinyl, leather and masking tape), the modified method produced significantly better results over existing processes for cling film and plasticised vinyl. The modified formulation was found to be ineffective on both masking tape and leather. It is recommended that further tests be carried out on the modified multi-metal deposition formulation to establish whether it could be introduced for operational work on cling film material in particular. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Nanoparticle Enhanced Laser Induced Breakdown Spectroscopy: Effect of nanoparticles deposited on sample surface on laser ablation and plasma emission

    International Nuclear Information System (INIS)

    De Giacomo, A.; Gaudiuso, R.; Koral, C.; Dell'Aglio, M.; De Pascale, O.

    2014-01-01

    In this paper the use of metallic nanoparticles (NPs) for improving Laser Induced Breakdown Spectroscopy (LIBS) is discussed. In the case of conductors an emission signal enhancement up to 1–2 orders of magnitude was obtained depositing NPs on the sample surface by drying a micro-drop of colloidal solution. The basic mechanisms of Nanoparticle Enhanced LIBS (NELIBS) were studied and the main causes of this significantly large enhancement were found to be related to the effect of NPs on the laser ablation process, in terms of a faster and more efficient production of seed electrons with respect to conventional LIBS. The characteristics of NELIBS-produced plasma were investigated by emission spectroscopy and spectrally resolved images. In spite of similar plasma parameters, the NELIBS plasma was found to have larger emission volume and longer persistence than the LIBS one. A method to determine NP concentration and size was also proposed, which involved depositing NPs on non-interacting substrates, and proved the feasibility of LIBS as a fast detection tool for a preliminary characterization of NPs. - Highlights: • Effect of NPs on sample surface enables instantaneous field emission. • More efficient ablation • LIBS emission enhancement up to 1–2 orders of magnitude • Possibility of NP characterization in terms of concentration and size

  4. Uniform-sized silicone oil microemulsions: preparation, investigation of stability and deposition on hair surface.

    Science.gov (United States)

    Nazir, Habiba; Lv, Piping; Wang, Lianyan; Lian, Guoping; Zhu, Shiping; Ma, Guanghui

    2011-12-01

    Emulsions are commonly used in foods, pharmaceuticals and home-personal-care products. For emulsion based products, it is highly desirable to control the droplet size distribution to improve storage stability, appearance and in-use property. We report preparation of uniform-sized silicone oil microemulsions with different droplets diameters (1.4-40.0 μm) using SPG membrane emulsification technique. These microemulsions were then added into model shampoos and conditioners to investigate the effects of size, uniformity, and storage stability on silicone oil deposition on hair surface. We observed much improved storage stability of uniform-sized microemulsions when the droplets diameter was ≤22.7 μm. The uniform-sized microemulsion of 40.0 μm was less stable but still more stable than non-uniform sized microemulsions prepared by conventional homogenizer. The results clearly indicated that uniform-sized droplets enhanced the deposition of silicone oil on hair and deposition increased with decreasing droplet size. Hair switches washed with small uniform-sized droplets had lower values of coefficient of friction compared with those washed with larger uniform and non-uniform droplets. Moreover the addition of alginate thickener in the shampoos and conditioners further enhanced the deposition of silicone oil on hair. The good correlation between silicone oil droplets stability, deposition on hair and resultant friction of hair support that droplet size and uniformity are important factors for controlling the stability and deposition property of emulsion based products such as shampoo and conditioner. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Characterization and methanol electrooxidation studies of Pt(111)/Os surfaces prepared by spontaneous deposition.

    Science.gov (United States)

    Johnston, Christina M; Strbac, Svetlana; Lewera, Adam; Sibert, Eric; Wieckowski, Andrzej

    2006-09-12

    Catalytic activity of the Pt(111)/Os surface toward methanol electrooxidation was optimized by exploring a wide range of Os coverage. Various methods of surface analyses were used, including electroanalytical, STM, and XPS methods. The Pt(111) surface was decorated with nanosized Os islands by spontaneous deposition, and the Os coverage was controlled by changing the exposure time to the Os-containing electrolyte. The structure of Os deposits on Pt(111) was characterized and quantified by in situ STM and stripping voltammetry. We found that the optimal Os surface coverage of Pt(111) for methanol electrooxidation was 0.7 +/- 0.1 ML, close to 1.0 +/- 0.1 Os packing density. Apparently, the high osmium coverage Pt(111)/Os surface provides more of the necessary oxygen-containing species (e.g., Os-OH) for effective methanol electrooxidation than the Pt(111)/Os surfaces with lower Os coverage (vs e.g., Ru-OH). Supporting evidence for this conjecture comes from the CO electrooxidation data, which show that the onset potential for CO stripping is lowered from 0.53 to 0.45 V when the Os coverage is increased from 0.2 to 0.7 ML. However, the activity of Pt(111)/Os for methanol electrooxidation decreases when the Os coverage is higher than 0.7 +/- 0.1 ML, indicating that Pt sites uncovered by Os are necessary for sustaining significant methanol oxidation rates. Furthermore, osmium is inactive for methanol electrooxidation when the platinum substrate is absent: Os deposits on Au(111), a bulk Os ingot, and thick films of electrodeposited Os on Pt(111), all compare poorly to Pt(111)/Os. We conclude that a bifunctional mechanism applies to the methanol electrooxidation similarly to Pt(111)/Ru, although with fewer available Pt sites. Finally, the potential window for methanol electrooxidation on Pt(111)/Os was observed to shift positively versus Pt(111)/Ru. Because of the difference in the Os and Ru oxophilicity under electrochemical conditions, the Os deposit provides fewer

  6. Electroless oxidation of diamond surfaces in ceric and ferricyanide solutions: An easy way to produce 'C-O' functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Simon, N., E-mail: nathalie.simon@uvsq.f [Institut Lavoisier de Versailles, UMR 8180, Universite de Versailles-St-Quentin en Yvelines, 45 avenue des Etats Unis, 78000 Versailles (France); Charrier, G.; Etcheberry, A. [Institut Lavoisier de Versailles, UMR 8180, Universite de Versailles-St-Quentin en Yvelines, 45 avenue des Etats Unis, 78000 Versailles (France)

    2010-08-01

    Despite many works are devoted to oxidation of diamond surfaces, it is still a challenge, to successfully produce well defined 'C-O' functions, particularly for functionalization purposes. In this paper we describe and compare, for the first time, the 'electroless' oxidation of as-deposited polycrystalline boron-doped diamond (BDD) films in ceric and ferricyanide solutions at room temperature. Both reactions efficiently generate oxygen functionalities on BDD surface. While a higher amount of 'C-O' moieties is produced with Ce{sup 4+} as oxidizing agent, the use of ferricyanide specie seems the most interesting to specifically generate hydroxyl groups. Additionally, this easy to perform oxidative method appears not damaging for diamond surfaces and adapted to conductive or non-conductive materials. The resulting surfaces were characterized using X-ray photoelectron spectroscopy, contact angle and capacitance-voltage analysis.

  7. A novel method of calculating the energy deposition curve of nanosecond pulsed surface dielectric barrier discharge

    International Nuclear Information System (INIS)

    He, Kun; Wang, Xinying; Lu, Jiayu; Cui, Quansheng; Pang, Lei; Di, Dongxu; Zhang, Qiaogen

    2015-01-01

    To obtain the energy deposition curve is very important in the fields to which nanosecond pulse dielectric barrier discharges (NPDBDs) are applied. It helps the understanding of the discharge physics and fast gas heating. In this paper, an equivalent circuit model, composed of three capacitances, is introduced and a method of calculating the energy deposition curve is proposed for a nanosecond pulse surface dielectric barrier discharge (NPSDBD) plasma actuator. The capacitance C d and the energy deposition curve E R are determined by mathematically proving that the mapping from C d to E R is bijective and numerically searching one C d that satisfies the requirement for E R to be a monotonically non-decreasing function. It is found that the value of capacitance C d varies with the amplitude of applied pulse voltage due to the change of discharge area and is dependent on the polarity of applied voltage. The bijectiveness of the mapping from C d to E R in nanosecond pulse volumetric dielectric barrier discharge (NPVDBD) is demonstrated and the feasibility of the application of the new method to NPVDBD is validated. This preliminarily shows a high possibility of developing a unified approach to calculate the energy deposition curve in NPDBD. (paper)

  8. Physical principles of the surface-plasma method of producing beams of negative ions

    International Nuclear Information System (INIS)

    Bel'chenko, Yu.I.; Dimov, G.I.; Dudnikov, V.G.

    A study is made of the processes used to produce intensive beams of negative ions from surface-plasma sources (SPS). The concepts now being formulated concerning the formation of negative ions upon interaction of bombarding particles with the surface of a solid are analyzed. The peculiarities of the realization of optimal conditions for the production of beams of negative ions in SPS of various designs are discussed

  9. Coloration of metallic and/or ceramic surfaces obtained by atomic layer deposited nano-coatings

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, L., E-mail: luisg47@gmail.com [Fondazione Bruno Kessler (FBK), Centro Materiali e Microsistemi, Functional Materials & Photonic Structures Unit, via Sommarive 18, 38123 Trento (Italy); Vettoruzzo, F. [Ronda High Tech, via Vegri 83, 36010 Zane’, Vicenza (Italy); Laidani, N. [Fondazione Bruno Kessler (FBK), Centro Materiali e Microsistemi, Functional Materials & Photonic Structures Unit, via Sommarive 18, 38123 Trento (Italy)

    2016-02-29

    By depositing single layer coatings by means of physical vapor techniques, tailoring of their coloration is generally complex because a given color can be obtained only by very high composition control. Physical vapor deposition (PVD) processes are expensive and cannot be easily used for obtaining conformal coating on three-dimensional objects. Moreover PVD coatings exhibit intrinsic defects (columnar structures, pores) that affect their functional properties and applications such as barrier layers. Atomic layer deposition (ALD) technology delivers conformal coatings on different materials with very low defectiveness. A straightforward coloration can be obtained by a combination of two types of layers with different refraction index, deposited to high thickness precision. Computer simulation studies were performed to design the thickness and architecture of multilayer structures, to a total thickness of approximately 100 nm, suitable to modify the typical coloration of some materials, without altering their other physical and chemical properties. The most promising nano-layered structures were then deposited by ALD and tested with regard to their optical properties. Their total thicknesses were specified in such a way to be technically feasible and compatible with future industrial production. The materials employed in this study to build the optical coatings, are two oxides (Al{sub 2}O{sub 3}, TiO{sub 2}) deposited at 120 °C and two nitrides (AlN, TiN), which need a deposition temperature of 400 °C. The possibility of using such modern deposition technology for esthetic and decorative purposes, while maintaining the functional properties, opens perspectives of industrial applications. - Highlights: • Computer simulation is done to design multilayers made of Al{sub 2}O{sub 3}, TiO{sub 2}, AlN, and TiN. • Total thickness (< 120 nm) is specified to be compatible with industrial production. • The most promising nano-layered structures are then produced and

  10. Deposition of a thin electro-polymerized organic film on iron surface

    International Nuclear Information System (INIS)

    Lecayon, Gerard

    1980-01-01

    We use an electrochemical method to prepare a polymerized thin film, obtained from acrylonitrile in a solution of acetonitrile and tetraethylammonium perchlorate. The films are deposited on oxidized iron electrodes, with a surface area varying from a few mm to several cm, their thickness ranges from ten A to thousand A. This result is obtained by controlling the evolution of reactions: duplication, hydrogenation, polymerization which occur during the electrochemical reduction of acrylonitrile. The choice of suitable experimental conditions enhances the polymerization and increases the adherence of the polymer on the electrode. The usual methods of surface studies: S.E.M., A.E.S., S.I.M.S., permit the characterization of the electrode surface and the chemical composition of the deposit films. The molecular structure of polymer, and its evolution under aging or heating was studied by infrared multi-reflection spectroscopy. Very good correlation exists between the electrochemical characteristic: I = f(t), the initial surface state of the electrodes, and the homogeneity of the electro-polymerized films. Diagrams corresponding to mechanisms of different stages of electro-polymerization are proposed. (author) [fr

  11. Trace elements in the sea surface microlayer: rapid responses to changes in aerosol deposition

    Directory of Open Access Journals (Sweden)

    Alina M. Ebling

    2017-08-01

    Full Text Available Natural and anthropogenic aerosols are a significant source of trace elements to oligotrophic ocean surface waters, where they provide episodic pulses of limiting micronutrients for the microbial community. However, little is known about the fate of trace elements at the air-sea interface, i.e. the sea surface microlayer. In this study, samples of aerosols, sea surface microlayer, and underlying water column were collected in the Florida Keys during a dusty season (July 2014 and non-dusty season (May 2015 and analyzed for the dissolved and particulate elements Al, Fe, Ni, Cu, Zn, and Pb. Microlayer samples were collected using a cylinder of ultra-pure SiO2 (quartz glass, a novel adaptation of the glass plate technique. A significant dust deposition event occurred during the 2014 sampling period which resulted in elevated concentrations of trace elements in the microlayer. Residence times in the microlayer from this event ranged from 12 to 94 minutes for dissolved trace elements and from 1.3 to 3.4 minutes for particulate trace elements. These residence times are potentially long enough for the atmospherically derived trace elements to undergo chemical and biological alterations within the microlayer. Characterizing the trace element distributions within the three regimes is an important step towards our overall goals of understanding the rates and mechanisms of the solubilization of trace elements following aeolian dust deposition and how this might affect microorganisms in surface waters.

  12. Surface deposition of radon decay products with and without enhanced air motion

    International Nuclear Information System (INIS)

    Rudnick, S.N.; Maher, E.F.; Hinds, W.C.; First, M.W.

    1983-01-01

    The effectiveness of fan-induced air motion in reducing airborne activity of short-lived radon decay products was evaluated in a 78-m 3 chamber. Observed reductions were as high as 50% for RaA ( 218 Po), 79% for RaB ( 214 Pb), and 86% for RaC ( 214 Bi). Activity Measurements of these nuclides on chamber and fan surfaces, along with airborne activity, were used to calculate material balances. Greater than about 90% of deposited activity was found on chamber surfaces, although areal activity density was higher on fan surfaces. Deposition velocity and diffusional boundary thickness were also determined. When no fans were used, boundary layer thickness was estimated to be 25 times the recoil distance of a RaB atom and, with fans, about 4 times the recoil distance, suggesting that recoiling of RaB atoms probably do not play a significant role in the relationship between surface and airborne activity. The results of this study have relevance for all habitable spaces having excessive radon concentration

  13. Bacterial adherence on fluorinated carbon based coatings deposited on polyethylene surfaces

    International Nuclear Information System (INIS)

    Terriza, A; Del Prado, G; Perez, A Ortiz; Martinez, M J; Puertolas, J A; Manso, D Molina; Gonzalez-Elipe, A R; Yubero, F; Barrena, E Gomez; Esteban, J

    2010-01-01

    Development of intrinsically antibacterial surfaces is of key importance in the context of prostheses used in orthopaedic surgery. In this work we present a thorough study of several plasma based coatings that may be used with this functionality: diamond like carbon (DLC), fluorine doped DLC (F-DLC) and a high fluorine content carbon-fluor polymer (CF X ). The study correlates the surface chemistry and hydrophobicity of the coating surfaces with their antibacterial performance. The coatings were deposited by RF-plasma assisted deposition at room temperature on ultra high molecular weight polyethylene (UHMWPE) samples. Fluorine content and relative amount of C-C and C-F bond types was monitored by X-ray photoelectron spectroscopy and hydrophobicity by water contact angle measurements. Adherence of Staphylococcus aureus and Staphylococcus epidermidis to non-coated and coated UHMWPE samples was evaluated. Comparisons of the adherence performance were evaluated using a paired t test (two materials) and a Kruskall Wallis test (all the materials). S. aureus was statistically significant (p< 0.001) less adherent to DLC and F-DLC surfaces than S. epidermidis. Both bacteria showed reduction of adherence on DLC/UHMWPE. For S. aureus, reduction of bacterial adherence on F-DLC/UHMWPE was statistically significant respect to all other materials.

  14. Surface properties tuning of welding electrode-deposited hardfacings by laser heat treatment

    Science.gov (United States)

    Oláh, Arthur; Croitoru, Catalin; Tierean, Mircea Horia

    2018-04-01

    In this paper, several Cr-Mn-rich hardfacings have been open-arc deposited on S275JR carbon quality structural steel and further submitted to laser treatment at different powers. An overall increase with 34-98% in the average microhardness and wear resistance of the coatings has been obtained, due to the formation of martensite, silicides, as well as simple and complex carbides on the surface of the hardfacings, in comparison with the reference, not submitted to laser thermal treatment. Surface laser treatment of electrode-deposited hardfacings improves their chemical resistance under corrosive saline environments, as determined by the 43% lower amount of leached iron and respectively, 28% lower amount of manganese ions leached in a 10% wt. NaCl aqueous solution, comparing with the reference hardfacings. Laser heat treatment also promotes better compatibility of the hardfacings with water-based paints and oil-based paints and primers, through the relative increasing in the polar component of the surface energy (with up to 65%) which aids both water and filler spreading on the metallic surface.

  15. Growth and surface characterization of TiNbZr thin films deposited by magnetron sputtering for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Tallarico, D.A. [Federal University of Sao Carlos, Materials Science and Engineering Graduation Program, Via Washington Luis km 235, CEP 13565-905 Sao Carlos, SP (Brazil); Gobbi, A.L. [Brazilian Nanotechnology National Laboratory, Rua Giuseppe Máximo Scolfaro 10.000, CEP 13083-100 Campinas, SP (Brazil); Paulin Filho, P.I. [Federal University of Sao Carlos, Department of Materials Engineering, Via Washington Luis km 235, CEP 13565-905 Sao Carlos, SP (Brazil); Maia da Costa, M.E.H. [Pontifical Catholic University of Rio de Janeiro, Department of Physics, CEP 22451-900 Rio de Janeiro, RJ (Brazil); Nascente, P.A.P., E-mail: nascente@ufscar.br [Federal University of Sao Carlos, Department of Materials Engineering, Via Washington Luis km 235, CEP 13565-905 Sao Carlos, SP (Brazil)

    2014-10-01

    Low modulus of elasticity and the presence of non-toxic elements are important criteria for the development of materials for implant applications. Low modulus Ti alloys can be developed by designing β-Ti alloys containing non-toxic alloying elements such as Nb and Zr. Actually, most of the metallic implants are produced with stainless steel (SS) because it has adequate bulk properties to be used as biomaterials for orthopedic or dental implants and is less expensive than Ti and its alloys, but it is less biocompatible than them. The coating of this SS implants with Ti alloy thin films may be one alternative to improve the biomaterial properties at a relatively low cost. Sputtering is a physical deposition technique that allows the formation of nanostructured thin films. Nanostructured surfaces are interesting when it comes to the bone/implant interface due to the fact that both the surface and the bone have nanoscale particle sizes and similar mechanical properties. TiNbZr thin films were deposited on both Si(111) and stainless steel (SS) substrates. The TiNbZr/Si(111) film was used as a model system, while the TiNbZr/SS film might improve the biocompatibility and extend the life time of stainless steel implants. The morphology, chemical composition, Young's modulus, and hardness of the films were analyzed by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), and nanoindentation. - Highlights: • TiNbZr thin films were deposited on Si(111) and stainless steel (SS). • Their Young's modulus differences are within 5.3% and hardness 1.7%. • TiNbZr/SS film chemical composition remained almost constant with depth. • TiNbZr films presented nanostructured grains and low roughness for substrates. • TiNbZr/SS film hardness was about 100% greater than the SS substrate hardness.

  16. Growth and surface characterization of TiNbZr thin films deposited by magnetron sputtering for biomedical applications

    International Nuclear Information System (INIS)

    Tallarico, D.A.; Gobbi, A.L.; Paulin Filho, P.I.; Maia da Costa, M.E.H.; Nascente, P.A.P.

    2014-01-01

    Low modulus of elasticity and the presence of non-toxic elements are important criteria for the development of materials for implant applications. Low modulus Ti alloys can be developed by designing β-Ti alloys containing non-toxic alloying elements such as Nb and Zr. Actually, most of the metallic implants are produced with stainless steel (SS) because it has adequate bulk properties to be used as biomaterials for orthopedic or dental implants and is less expensive than Ti and its alloys, but it is less biocompatible than them. The coating of this SS implants with Ti alloy thin films may be one alternative to improve the biomaterial properties at a relatively low cost. Sputtering is a physical deposition technique that allows the formation of nanostructured thin films. Nanostructured surfaces are interesting when it comes to the bone/implant interface due to the fact that both the surface and the bone have nanoscale particle sizes and similar mechanical properties. TiNbZr thin films were deposited on both Si(111) and stainless steel (SS) substrates. The TiNbZr/Si(111) film was used as a model system, while the TiNbZr/SS film might improve the biocompatibility and extend the life time of stainless steel implants. The morphology, chemical composition, Young's modulus, and hardness of the films were analyzed by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), and nanoindentation. - Highlights: • TiNbZr thin films were deposited on Si(111) and stainless steel (SS). • Their Young's modulus differences are within 5.3% and hardness 1.7%. • TiNbZr/SS film chemical composition remained almost constant with depth. • TiNbZr films presented nanostructured grains and low roughness for substrates. • TiNbZr/SS film hardness was about 100% greater than the SS substrate hardness

  17. Excellent Silicon Surface Passivation Achieved by Industrial Inductively Coupled Plasma Deposited Hydrogenated Intrinsic Amorphous Silicon Suboxide

    Directory of Open Access Journals (Sweden)

    Jia Ge

    2014-01-01

    Full Text Available We present an alternative method of depositing a high-quality passivation film for heterojunction silicon wafer solar cells, in this paper. The deposition of hydrogenated intrinsic amorphous silicon suboxide is accomplished by decomposing hydrogen, silane, and carbon dioxide in an industrial remote inductively coupled plasma platform. Through the investigation on CO2 partial pressure and process temperature, excellent surface passivation quality and optical properties are achieved. It is found that the hydrogen content in the film is much higher than what is commonly reported in intrinsic amorphous silicon due to oxygen incorporation. The observed slow depletion of hydrogen with increasing temperature greatly enhances its process window as well. The effective lifetime of symmetrically passivated samples under the optimal condition exceeds 4.7 ms on planar n-type Czochralski silicon wafers with a resistivity of 1 Ωcm, which is equivalent to an effective surface recombination velocity of less than 1.7 cms−1 and an implied open-circuit voltage (Voc of 741 mV. A comparison with several high quality passivation schemes for solar cells reveals that the developed inductively coupled plasma deposited films show excellent passivation quality. The excellent optical property and resistance to degradation make it an excellent substitute for industrial heterojunction silicon solar cell production.

  18. Vapor Phase Polymerization Deposition Conducting Polymer Nanocomposites on Porous Dielectric Surface as High Performance Electrode Materials

    Institute of Scientific and Technical Information of China (English)

    Ya jie Yang; Luning Zhang; Shibin Li; Zhiming Wang; Jianhua Xu; Wenyao Yang; Yadong Jiang

    2013-01-01

    We report chemical vapor phase polymerization(VPP) deposition of poly(3,4-ethylenedioxythiophene)(PEDOT) and PEDOT/graphene on porous dielectric tantalum pentoxide(Ta2O5) surface as cathode films for solid tantalum electrolyte capacitors. The modified oxidant/oxidant-graphene films were first deposited on Ta2O5 by dip-coating, and VPP process was subsequently utilized to transfer oxidant/oxidant-graphene into PEDOT/PEDOT-graphene films. The SEM images showed PEDOT/PEDOT-graphene films was successfully constructed on porous Ta2O5 surface through VPP deposition, and a solid tantalum electrolyte capacitor with conducting polymer-graphene nano-composites as cathode films was constructed. The high conductivity nature of PEDOT-graphene leads to resistance decrease of cathode films and lower contact resistance between PEDOT/graphene and carbon paste. This nano-composite cathode films based capacitor showed ultralow equivalent series resistance(ESR) ca. 12 m? and exhibited excellent capacitance-frequency performance, which can keep 82% of initial capacitance at 500 KHz. The investigation on leakage current revealed that the device encapsulation process has no influence on capacitor leakage current, indicating the excellent mechanical strength of PEDOT/PEDOT-gaphene films. This high conductivity and mechanical strength of graphene-based polymer films shows promising future for electrode materials such as capacitors, organic solar cells and electrochemical energy storage devices.

  19. Biocompatibility of Mg Ion Doped Hydroxyapatite Films on Ti-6Al-4V Surface by Electrochemical Deposition.

    Science.gov (United States)

    Lee, Kang; Choe, Han-Cheol

    2016-02-01

    In this study, we prepared magnesium (Mg) doped nano-phase hydroxyapatite (HAp) films on the TiO2 nano-network surface using electrochemical deposition method. Ti-6Al-4V ELI surface was anodized in 5 M NaOH solution at 0.3 A for 10 min. Nano-network TiO2 surface were formed by these anodization steps which acted as templates and anchorage for growth of the Mg doped HAp during subsequent pulsed electrochemical deposition process at 85 degrees C. The phase and morphologies of HAp deposits were influenced by the Mg ion concentration.

  20. Diffusion complex layers of TiC-Ni-Mo type produced on steel during vacuum titanizing process combined with the electrolytic deposition

    International Nuclear Information System (INIS)

    Kasprzycka, E.; Krolikowski, A.

    1999-01-01

    Diffusion carbide layers produced on steel surface by means of vacuum titanizing process have been studied. A new technological process combining a vacuum titanizing with an electrolytic deposition of Ni-Mo alloy has been proposed to increase of corrosion resistance of carbide layers. The effect of preliminary electrolytic deposition of Ni-Mo alloy on the NC10 steel surface on the titanized layer structure and its corrosion resistance has ben investigated. As a result, diffusion complex layers of TiC-Ni-Mo type on NC10 steel surface have been obtained. An X-ray structural analysis of titanized surfaces on NC10 steel precovered with an electrolytic Ni-Mo alloy coating (70%Ni+30%Mo) revealed a presence of titanium carbide TiC, NiTi, MoTi and trace quantity of austenite. The image of the TiC-Ni-Mo complex layer on NC10 steel surface obtained by means of joined SEM+TEM method and diagrams of elements distribution in the layer diffusion zone have been shown. Concentration of depth profiles of Ti, Ni, Mo, Cr and Fe in the layer diffusion zone obtained by means of the joined EDS+TEM method are shown. Concentration depth profiles of Ti, Ni, Mo, Cr and Fe in the layer diffusion zone obtained by means of the X r ay microanalysis and microhardness of the layer are shown. An X-ray structural analysis of titanized surfaces on the NC10 steel, without Ni-Mo alloy layer, revealed only a substantial presence of titanium carbide TiC. For corrosion resistance tests the steel samples with various diffusion layers and without layers were used: (i) the TiC-Ni-Mo titanized complex layers on NC10 steel, (ii) the TiC titanized carbide layers on the NC10 steel, (iii) the NC10 steel without layers. Corrosion measurements of sample under test have been performed in 0.1 M H 2 SO 4 by means of potentiodynamic polarization and electrochemical impedance tests. It has been found that the corrosion resistance of titanized steel samples with the TiC and TiC-Ni-Mo layers is higher than for the steel

  1. Hydrophobic and optical characteristics of graphene and graphene oxide films transferred onto functionalized silica particles deposited glass surface

    Science.gov (United States)

    Yilbas, B. S.; Ibrahim, A.; Ali, H.; Khaled, M.; Laoui, T.

    2018-06-01

    Hydrophobic and optical transmittance characteristics of the functionalized silica particles on the glass surface prior and after transfer of graphene and graphene oxide films on the surface are examined. Nano-size silica particles are synthesized and functionalized via chemical grafting and deposited onto a glass surface. Graphene film, grown on copper substrate, was transferred onto the functionalized silica particles surface through direct fishing method. Graphene oxide layer was deposited onto the functionalized silica particles surface via spin coating technique. Morphological, hydrophobic, and optical characteristics of the functionalized silica particles deposited surface prior and after graphene and graphene oxide films transfer are examined using the analytical tools. It is found that the functionalized silica particles are agglomerated at the surface forming packed structures with few micro/nano size pores. This arrangement gives rise to water droplet contact angle and contact angle hysteresis in the order of 163° and 2°, respectively, and remains almost uniform over the entire surface. Transferring graphene and depositing graphene oxide films over the functionalized silica particles surface lowers the water droplet contact angle slightly (157-160°) and increases the contact angle hysteresis (4°). The addition of the graphene and graphene oxide films onto the surface of the deposited functionalized silica particles improves the optical transmittance.

  2. Sticking non-stick: Surface and Structure control of Diamond-like Carbon in Plasma Enhanced Chemical Vapour Deposition

    Science.gov (United States)

    Jones, B. J.; Nelson, N.

    2016-10-01

    This short review article explores the practical use of diamond-like carbon (DLC) produced by plasma enhanced chemical vapour deposition (PECVD). Using as an example issues relating to the DLC coating of a hand-held surgical device, we draw on previous works using atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, tensiometry and electron paramagnetic resonance. Utilising data from these techniques, we examine the surface structure, substrate-film interface and thin film microstructure, such as sp2/sp3 ratio (graphitic/diamond-like bonding ratio) and sp2 clustering. We explore the variations in parameters describing these characteristics, and relate these to the final device properties such as friction, wear resistance, and diffusion barrier integrity. The material and device characteristics are linked to the initial plasma and substrate conditions.

  3. Sticking non-stick: Surface and Structure control of Diamond-like Carbon in Plasma Enhanced Chemical Vapour Deposition

    International Nuclear Information System (INIS)

    Jones, B J; Nelson, N

    2016-01-01

    This short review article explores the practical use of diamond-like carbon (DLC) produced by plasma enhanced chemical vapour deposition (PECVD). Using as an example issues relating to the DLC coating of a hand-held surgical device, we draw on previous works using atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, tensiometry and electron paramagnetic resonance. Utilising data from these techniques, we examine the surface structure, substrate-film interface and thin film microstructure, such as sp 2 /sp 3 ratio (graphitic/diamond-like bonding ratio) and sp 2 clustering. We explore the variations in parameters describing these characteristics, and relate these to the final device properties such as friction, wear resistance, and diffusion barrier integrity. The material and device characteristics are linked to the initial plasma and substrate conditions. (paper)

  4. RF-plasma vapor deposition of siloxane on paper. Part 1: Physical evolution of paper surface

    Science.gov (United States)

    Sahin, Halil Turgut

    2013-01-01

    An alternative, new approach to improve the hydrophobicity and barrier properties of paper was evaluated by radio-frequency (RF) plasma octamethylcyclotetrasiloxane (OMCTSO) vapor treatment. The interaction between OMCTSO and paper, causing the increased hydophobicity, is likely through covalent bonding. The deposited thin silicone-like polymeric layer from OMCTSO plasma treatment possessed desirable hydrophobic properties. The SEM micrographs showed uniformly distributed grainy particles with various shapes on the paper surface. Deposition of the silicone polymer-like layer with the plasma treatment affects the distribution of voids in the network structure and increases the barrier against water intake and air. The water absorptivity was reduced by 44% for the OMCTSO plasma treated sheet. The highest resistance to air flow was an approximately 41% lower air permeability than virgin paper.

  5. Surface modification of titanium membrane by chemical vapor deposition and its electrochemical self-cleaning

    International Nuclear Information System (INIS)

    Li, X.W.; Li, J.X.; Gao, C.Y.; Chang, M.

    2011-01-01

    Membrane separation is applied widely in many fields, while concentration polarization and membrane fouling, limiting its promotion and application greatly, are the bottlenecks in membrane application. Among which, membrane fouling is irreversible, membrane must be periodically cleaned or even replaced to restore permeability. Membrane cleaning has become one of Key issues in membrane separation areas. Considering incomparable electrochemical advantages of boron-doped diamond (BDD) film electrode over conventional electrode, a new composite membrane Ti/BDD, made by depositing CVD (chemical vapor deposition) boron-doped diamond film on titanium(Ti) membrane to modify porous titanium surface, that can be cleaned electrochemically is proposed. Feasibility of its preparation and application is discussed in this paper. Results shows that based on the unique electrochemical properties of diamond, cleaning level of this composite Ti/BDD membrane is significantly increased, making membrane life and efficiency improved prominently.

  6. Surface modification of titanium membrane by chemical vapor deposition and its electrochemical self-cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.W., E-mail: lynnww@sohu.com [School of Electronic and Information Engieering, Tianjin university, Tianjin, 300072 (China); School of Electronics Information Engieering, Tianjin University of Technology, Tianjin, 300384 (China); Li, J.X. [Tianjin Polytechnic University, Tianjin 300160 (China); Gao, C.Y. [Chinese Peoples Armed Police Forces Academy, Langfang 065000 (China); Chang, M. [School of Electronic and Information Engieering, Tianjin university, Tianjin, 300072 (China); School of Electronics Information Engieering, Tianjin University of Technology, Tianjin, 300384 (China)

    2011-10-15

    Membrane separation is applied widely in many fields, while concentration polarization and membrane fouling, limiting its promotion and application greatly, are the bottlenecks in membrane application. Among which, membrane fouling is irreversible, membrane must be periodically cleaned or even replaced to restore permeability. Membrane cleaning has become one of Key issues in membrane separation areas. Considering incomparable electrochemical advantages of boron-doped diamond (BDD) film electrode over conventional electrode, a new composite membrane Ti/BDD, made by depositing CVD (chemical vapor deposition) boron-doped diamond film on titanium(Ti) membrane to modify porous titanium surface, that can be cleaned electrochemically is proposed. Feasibility of its preparation and application is discussed in this paper. Results shows that based on the unique electrochemical properties of diamond, cleaning level of this composite Ti/BDD membrane is significantly increased, making membrane life and efficiency improved prominently.

  7. The Chemistry of Inorganic Precursors during the Chemical Deposition of Films on Solid Surfaces.

    Science.gov (United States)

    Barry, Seán T; Teplyakov, Andrew V; Zaera, Francisco

    2018-03-20

    The deposition of thin solid films is central to many industrial applications, and chemical vapor deposition (CVD) methods are particularly useful for this task. For one, the isotropic nature of the adsorption of chemical species affords even coverages on surfaces with rough topographies, an increasingly common requirement in microelectronics. Furthermore, by splitting the overall film-depositing reactions into two or more complementary and self-limiting steps, as it is done in atomic layer depositions (ALD), film thicknesses can be controlled down to the sub-monolayer level. Thanks to the availability of a vast array of inorganic and metalorganic precursors, CVD and ALD are quite versatile and can be engineered to deposit virtually any type of solid material. On the negative side, the surface chemistry that takes place in these processes is often complex, and can include undesirable side reactions leading to the incorporation of impurities in the growing films. Appropriate precursors and deposition conditions need to be chosen to minimize these problems, and that requires a proper understanding of the underlying surface chemistry. The precursors for CVD and ALD are often designed and chosen based on their known thermal chemistry from inorganic chemistry studies, taking advantage of the vast knowledge developed in that field over the years. Although a good first approximation, however, this approach can lead to wrong choices, because the reactions of these precursors at gas-solid interfaces can be quite different from what is seen in solution. For one, solvents often aid in the displacement of ligands in metalorganic compounds, providing the right dielectric environment, temporarily coordinating to the metal, or facilitating multiple ligand-complex interactions to increase reaction probabilities; these options are not available in the gas-solid reactions associated with CVD and ALD. Moreover, solid surfaces act as unique "ligands", if these reactions are to be

  8. Quantification of surface uplift by using paleo beach deposits (Oman, Northern Indian Ocean)

    Science.gov (United States)

    Hoffmann, Gösta; Schneider, Bastian; Monschau, Martin; Mechernich, Silke

    2017-04-01

    The study focusses on a coastal area along the Arabian Sea in Oman. Here, a staircase of marine terraces is seen as geomorphological evidence suggesting sub-recent uplift of a crustal block in the northeast of the Arabian Peninsula. The erosional terraces are cut into Paleocene to Early Eocene limestone formations. These limestone formations are underlain by allochtonous ophiolites. We mapped the terraces over a distance of 60 km and identified at least 8 terrace levels in elevations up to 350 m above present sea level. The uppermost terraces are erosional, whereas the lower ones are depositional in style. Mollusc and coral remains as well as beach-rock are encountered on the terrace surfaces. The formations are dissected by NW-SE trending faults. Some of the terraces are very pronounced features in the landscape and easy to trace, others are partly eroded and preserved as remnants only. The deposit along the shoreline angle act as a datum making use of the fact that the rocks formed in a defined horizontal level which is the paleo-sea level. Hence, any offset from the primary depositional level is evidence for neotectonic movements. We utilise differential GPS to map the elevation of beachrock deposits. Age constraints on terrace formation is derived by sampling the beachrock deposits and dating using cosmogenic nuclii. The results indicate ongoing uplift in the range of less than a millimetre per year. The uplift is differential as the terraces are tilted. We mapped oblique normal and strike-slip faults in the younger terraces. We hypothesise that the mechanism responsible for the uplift is not tectonics but driven by the serpentinisation of the ophiolite that underlie the limestone formations. One process during the serpentinisation is the hydration of the mantle rocks which is responsible for a decrease in density. The resulting buoyancy and significant solid volume increase lead to the observed deformation including uplift.

  9. Depression cathode structure for cathode ray tubes having surface smoothness and method for producing same

    International Nuclear Information System (INIS)

    Rychlewski, T.V.

    1984-01-01

    Depression cathode structures for cathode ray tubes are produced by dispensing liquid cathode material into the depression of a metallic supporting substrate, removing excess cathode material by passing a doctor blade across the substrate surface and over the depression, and drying the cathode layer to a substantially immobile state. The cathode layer may optionally be further shaped prior to substantially complete drying thereof

  10. A Strontium-Modified Titanium Surface Produced by a New Method and Its Biocompatibility In Vitro.

    Directory of Open Access Journals (Sweden)

    Chundong Liu

    Full Text Available To present a new and effective method of producing titanium surfaces modified with strontium and to investigate the surface characteristics and in vitro biocompatibility of titanium (Ti surfaces modified with strontium (Sr for bone implant applications.Sr-modified Ti surfaces were produced by sequential treatments with NaOH, strontium acetate, heat and water. The surface characteristics and the concentration of the Sr ions released from the samples were examined. Cell adhesion, morphology and growth were investigated using osteoblasts isolated from the calvaria of neonatal Sprague-Dawley rats. Expression of osteogenesis-related genes and proteins was examined to assess the effect of the Sr-modified Ti surfaces on osteoblasts.The modified titanium surface had a mesh structure with significantly greater porosity, and approximately5.37±0.35at.% of Sr was incorporated into the surface. The hydrophilicity was enhanced by the incorporation of Sr ions and water treatment. The average amounts of Sr released from the Sr-modified plates subjected to water treatment were slight higher than the plates without water treatment. Sr promoted cellular adhesion, spreading and growth compared with untreated Ti surfaces. The Sr-modified Ti plates also promoted expression of osteogenesis-related genes,and expression of OPN and COL-І by osteoblasts. Ti plates heat treated at 700°C showed increased bioactivity in comparison with those treated at 600°C. Water treatment upregulated the expression of osteogenesis-related genes.These results show that Sr-modification of Ti surfaces may improve bioactivity in vitro. Water treatment has enhanced the response of osteoblasts. The Sr-modified Ti heat-treated at 700°C exhibited better bioactivity compared with that heated at 600°C.

  11. A Strontium-Modified Titanium Surface Produced by a New Method and Its Biocompatibility In Vitro.

    Science.gov (United States)

    Liu, Chundong; Zhang, Yanli; Wang, Lichao; Zhang, Xinhua; Chen, Qiuyue; Wu, Buling

    2015-01-01

    To present a new and effective method of producing titanium surfaces modified with strontium and to investigate the surface characteristics and in vitro biocompatibility of titanium (Ti) surfaces modified with strontium (Sr) for bone implant applications. Sr-modified Ti surfaces were produced by sequential treatments with NaOH, strontium acetate, heat and water. The surface characteristics and the concentration of the Sr ions released from the samples were examined. Cell adhesion, morphology and growth were investigated using osteoblasts isolated from the calvaria of neonatal Sprague-Dawley rats. Expression of osteogenesis-related genes and proteins was examined to assess the effect of the Sr-modified Ti surfaces on osteoblasts. The modified titanium surface had a mesh structure with significantly greater porosity, and approximately5.37±0.35at.% of Sr was incorporated into the surface. The hydrophilicity was enhanced by the incorporation of Sr ions and water treatment. The average amounts of Sr released from the Sr-modified plates subjected to water treatment were slight higher than the plates without water treatment. Sr promoted cellular adhesion, spreading and growth compared with untreated Ti surfaces. The Sr-modified Ti plates also promoted expression of osteogenesis-related genes,and expression of OPN and COL-І by osteoblasts. Ti plates heat treated at 700°C showed increased bioactivity in comparison with those treated at 600°C. Water treatment upregulated the expression of osteogenesis-related genes. These results show that Sr-modification of Ti surfaces may improve bioactivity in vitro. Water treatment has enhanced the response of osteoblasts. The Sr-modified Ti heat-treated at 700°C exhibited better bioactivity compared with that heated at 600°C.

  12. TXRF study of electrochemical deposition of metals on glass-ceramic carbon electrode surfaces

    International Nuclear Information System (INIS)

    Alov, N.; Oskolok, K.; Wittershagen, A.; Mertens, M.; Rittmeyer, C.; Kolbesen, B.O.

    2000-01-01

    Nowadays the methods of solid surface analysis are widely used to study the thermodynamic and kinetic aspects of joint electrochemical deposition of metals on solid substrates. In this work the surfaces of some binary and ternary metal electrodeposits on disc glass-ceramic carbon electrodes were studied by total-reflection x-ray fluorescence spectroscopy (TXRF). Metal alloys were obtained as a result of electrochemical co-deposition of copper, cadmium and lead from n x 10 -4 M (Cu, Cd, Pb)(NO 3 ) 2 + 0.01 M HNO 3 solutions under mixing. TXRF measurements were performed with an ATOMIKA EXTRA II A spectrometer using Mo K α and W (Brems) primary excitation. The serious advantage of TXRF as a method of near-surface analysis is very high element sensitivity. Apart from main elements (Cu, Cd, Pb) we have detected trace elements (Cl, Ag, Pt, Hg) which are present in working solution and has an effect to the electrodeposit formation. The comparison of TXRF data with information obtained by X-ray photoelectron spectroscopy and electron-probe x-ray microanalysis permits to realize depth profiling electrochemical alloys. In particular it was found that in binary systems Cu-Pb and Cu-Cd the relative lead and cadmium content on the electrodeposit surface is considerably greater than in the bulk. These phenomena are due to the features of metal nucleation and growth mechanisms. High sensitivity of TXRF to surface morphology and the correlation of TXRF and scanning electron microscopy data allow to determine the area of prevailing location of metal in the heterogeneous alloy surface. So we have established that in Cu-Pb and Cu-Cd-Pb systems solid solution of copper and lead is formed: significant part of lead is deposited not only in specific 3D-clusters but also in copper thin film. It was demonstrated that the near-surface TXRF analysis of metal electrodeposits on solid electrodes is highly effective to study the mechanisms of metal nucleation, metal cluster and thin film

  13. Metals in bulk deposition and surface waters at two upland locations in northern England

    Energy Technology Data Exchange (ETDEWEB)

    Lawlor, A.J.; Tipping, E

    2003-02-01

    Surface water concentrations of potentially-toxic metals depend upon atmospheric deposition and catchment biogeochemical processes. - Concentrations of aluminium and minor metals (Mn, Ni, Cu, Zn, Sr, Cd, Ba, Pb) were measured in precipitation and surface water at two upland locations (Upper Duddon Valley, UDV; Great Dun Fell, GDF) in northern England for 1 year commencing April 1998. At both locations, the loads in bulk precipitation were at the lower ends of ranges reported for other rural and remote sites, for the period 1985-1995. The deposited metals were mostly in the dissolved form, and their concentrations tended to be greatest when rainfall volumes were low. The concentrations of Cu, Zn and Pb in deposition were correlated (r{sup 2}{>=}0.40) with concentrations of non-marine sulphate. Three streams, ranging in mean pH from 5.07 to 7.07, and with mean concentrations of dissolved organic carbon (DOC) <1 mg l{sup -1}, were monitored at UDV, and two pools (mean pH 4.89 and 6.83, mean DOC 22 and 15 mg l{sup -1}) at GDF. Aluminium and the minor metals were mainly in the dissolved form, and in the following ranges (means of 49-51 samples, {mu}g l{sup -1}): Al 36-530, Mn 4.4-36, Ni 0.26-2.8, Cu 0.25-1.7, Zn 2.1-30, Cd 0.03-0.16, Ba 1.9-140, Pb 0.10-4.5. Concentrations were generally higher at GDF. Differences in metal concentrations between the two locations and between waters at each location, and temporal variations in individual waters, can be explained qualitatively in terms of sorption to solid-phase soil organic matter and mineral surfaces, complexation and transport by DOC, and chemical weathering. The UDV catchments are sinks for Pb and sources of Al, Mn, Sr, Cd and Ba. The GDF catchments are sources of Al, Mn, Ni, Zn, Sr, Cd and Ba. Other metals measured at the two locations are approximately in balance. Comparison of metal:silicon ratios in the surface waters with values for silicate rocks indicates enrichment of Ni and Cu, and substantial enrichment of

  14. Surface Morphology Transformation Under High-Temperature Annealing of Ge Layers Deposited on Si(100).

    Science.gov (United States)

    Shklyaev, A A; Latyshev, A V

    2016-12-01

    We study the surface morphology and chemical composition of SiGe layers after their formation under high-temperature annealing at 800-1100 °C of 30-150 nm Ge layers deposited on Si(100) at 400-500 °C. It is found that the annealing leads to the appearance of the SiGe layers of two types, i.e., porous and continuous. The continuous layers have a smoothened surface morphology and a high concentration of threading dislocations. The porous and continuous layers can coexist. Their formation conditions and the ratio between their areas on the surface depend on the thickness of deposited Ge layers, as well as on the temperature and the annealing time. The data obtained suggest that the porous SiGe layers are formed due to melting of the strained Ge layers and their solidification in the conditions of SiGe dewetting on Si. The porous and dislocation-rich SiGe layers may have properties interesting for applications.

  15. Measurements of Deposition, Lung Surface Area and Lung Fluid for Simulation of Inhaled Compounds.

    Science.gov (United States)

    Fröhlich, Eleonore; Mercuri, Annalisa; Wu, Shengqian; Salar-Behzadi, Sharareh

    2016-01-01

    Modern strategies in drug development employ in silico techniques in the design of compounds as well as estimations of pharmacokinetics, pharmacodynamics and toxicity parameters. The quality of the results depends on software algorithm, data library and input data. Compared to simulations of absorption, distribution, metabolism, excretion, and toxicity of oral drug compounds, relatively few studies report predictions of pharmacokinetics and pharmacodynamics of inhaled substances. For calculation of the drug concentration at the absorption site, the pulmonary epithelium, physiological parameters such as lung surface and distribution volume (lung lining fluid) have to be known. These parameters can only be determined by invasive techniques and by postmortem studies. Very different values have been reported in the literature. This review addresses the state of software programs for simulation of orally inhaled substances and focuses on problems in the determination of particle deposition, lung surface and of lung lining fluid. The different surface areas for deposition and for drug absorption are difficult to include directly into the simulations. As drug levels are influenced by multiple parameters the role of single parameters in the simulations cannot be identified easily.

  16. Surface Preparation and Deposited Gate Oxides for Gallium Nitride Based Metal Oxide Semiconductor Devices

    Directory of Open Access Journals (Sweden)

    Paul C. McIntyre

    2012-07-01

    Full Text Available The literature on polar Gallium Nitride (GaN surfaces, surface treatments and gate dielectrics relevant to metal oxide semiconductor devices is reviewed. The significance of the GaN growth technique and growth parameters on the properties of GaN epilayers, the ability to modify GaN surface properties using in situ and ex situ processes and progress on the understanding and performance of GaN metal oxide semiconductor (MOS devices are presented and discussed. Although a reasonably consistent picture is emerging from focused studies on issues covered in each of these topics, future research can achieve a better understanding of the critical oxide-semiconductor interface by probing the connections between these topics. The challenges in analyzing defect concentrations and energies in GaN MOS gate stacks are discussed. Promising gate dielectric deposition techniques such as atomic layer deposition, which is already accepted by the semiconductor industry for silicon CMOS device fabrication, coupled with more advanced physical and electrical characterization methods will likely accelerate the pace of learning required to develop future GaN-based MOS technology.

  17. Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties

    Science.gov (United States)

    Palmstrom, Axel F.; Santra, Pralay K.; Bent, Stacey F.

    2015-07-01

    Nanostructured materials offer key advantages for third-generation photovoltaics, such as the ability to achieve high optical absorption together with enhanced charge carrier collection using low cost components. However, the extensive interfacial areas in nanostructured photovoltaic devices can cause high recombination rates and a high density of surface electronic states. In this feature article, we provide a brief review of some nanostructured photovoltaic technologies including dye-sensitized, quantum dot sensitized and colloidal quantum dot solar cells. We then introduce the technique of atomic layer deposition (ALD), which is a vapor phase deposition method using a sequence of self-limiting surface reaction steps to grow thin, uniform and conformal films. We discuss how ALD has established itself as a promising tool for addressing different aspects of nanostructured photovoltaics. Examples include the use of ALD to synthesize absorber materials for both quantum dot and plasmonic solar cells, to grow barrier layers for dye and quantum dot sensitized solar cells, and to infiltrate coatings into colloidal quantum dot solar cell to improve charge carrier mobilities as well as stability. We also provide an example of monolayer surface modification in which adsorbed ligand molecules on quantum dots are used to tune the band structure of colloidal quantum dot solar cells for improved charge collection. Finally, we comment on the present challenges and future outlook of the use of ALD for nanostructured photovoltaics.

  18. Niobium thin film deposition studies on copper surfaces for superconducting radio frequency cavity applications

    Directory of Open Access Journals (Sweden)

    W. M. Roach

    2012-06-01

    Full Text Available Thin film coatings have the potential to increase both the thermal efficiency and accelerating gradient in superconducting radio frequency accelerator cavities. However, before this potential can be realized, systematic studies on structure-property correlations in these thin films need to be carried out since the reduced geometry, combined with specific growth parameters, can modify the physical properties of the materials when compared to their bulk form. Here, we present our systematic studies of Nb thin films deposited onto Cu surfaces to clarify possible reasons for the limited success that this process exhibited in previous attempts. We compare these films with Nb grown on other surfaces. In particular, we study the crystal structure and surface morphology and their effect on superconducting properties, such as critical temperature and lower critical field. We found that higher deposition temperature leads to a sharper critical temperature transition, but also to increased roughness indicating that there are competing mechanisms that must be considered for further optimization.

  19. Ensuring the Environmental and Industrial Safety in Solid Mineral Deposit Surface Mining

    Science.gov (United States)

    Trubetskoy, Kliment; Rylnikova, Marina; Esina, Ekaterina

    2017-11-01

    The growing environmental pressure of mineral deposit surface mining and severization of industrial safety requirements dictate the necessity of refining the regulatory framework governing safe and efficient development of underground resources. The applicable regulatory documentation governing the procedure of ore open-pit wall and bench stability design for the stage of pit reaching its final boundary was issued several decades ago. Over recent decades, mining and geomechanical conditions have changed significantly in surface mining operations, numerous new software packages and computer developments have appeared, opportunities of experimental methods of source data collection and processing, grounding of the permissible parameters of open pit walls have changed dramatically, and, thus, methods of risk assessment have been perfected [10-13]. IPKON RAS, with the support of the Federal Service for Environmental Supervision, assumed the role of the initiator of the project for the development of Federal norms and regulations of industrial safety "Rules for ensuring the stability of walls and benches of open pits, open-cast mines and spoil banks", which contribute to the improvement of economic efficiency and safety of mineral deposit surface mining and enhancement of the competitiveness of Russian mines at the international level that is very important in the current situation.

  20. Scaling of surface roughness in sputter-deposited ZnO:Al thin films

    International Nuclear Information System (INIS)

    Mohanty, Bhaskar Chandra; Choi, Hong-Rak; Cho, Yong Soo

    2009-01-01

    We have studied surface roughness scaling of ZnO:Al thin films grown by rf magnetron sputtering of a compound target within framework of the dynamic scaling theory using atomic force microscopy. We have observed a crossover in scaling behavior of surface roughness at a deposition time of 25 min. Both the regimes are characterized by power-law dependence of local surface width w(r,t) on deposition time for small r, typical of anomalous scaling. The scaling exponents for the first regime indicate the existence of a new dynamics. For t≥25 min, the films follow super-rough scaling behavior with global exponents α=1.5±0.2 and β=1.03±0.01, and local exponents α local =1 and β local =0.67±0.05. The anomaly in the scaling behavior of the films is discussed in terms of the shadowing instability and bombardment of energetic particles during growth of the films.

  1. Kinetic model for hydroxyapatite precipitation on human enamel surface by electrolytic deposition

    International Nuclear Information System (INIS)

    Lei Caixia; Liao Yingmin; Feng Zude

    2009-01-01

    The electrolytic deposition (ELD) of hydroxyapatite (HAP) coating on human enamel surface for different loading times at varied temperatures (ranging from 37 deg. C to 85 deg. C) and varied current densities (ranging from 0.05 mA cm -2 to 10 mA cm -2 ) was investigated in this study. Thin film x-ray diffraction, Fourier transform infrared and micro-Raman spectra analysis, as well as an environmental scanning electron microscope, were used to characterize the coating. The results showed that only the HAP phase occurred on the enamel surface after ELD experiments. The contents of HAP deposits on the enamel surface linearly changed proportional to the square root of the loading time, which was in good agreement with the kinetic model of ELD of HAP coating based on one-dimensional diffusion. The induction periods were observed on all the regression lines, and the rate of the HAP coating formation on enamel showed a linear relationship with the current density. It was implied that the diffusion process was the rate-determining step in the ELD of the HAP coating on human enamel.

  2. Kinetic model for hydroxyapatite precipitation on human enamel surface by electrolytic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lei Caixia; Liao Yingmin; Feng Zude, E-mail: zdfeng@xmu.edu.c [College of Materials, Xiamen University, Xiamen 361005 (China)

    2009-06-15

    The electrolytic deposition (ELD) of hydroxyapatite (HAP) coating on human enamel surface for different loading times at varied temperatures (ranging from 37 deg. C to 85 deg. C) and varied current densities (ranging from 0.05 mA cm{sup -2} to 10 mA cm{sup -2}) was investigated in this study. Thin film x-ray diffraction, Fourier transform infrared and micro-Raman spectra analysis, as well as an environmental scanning electron microscope, were used to characterize the coating. The results showed that only the HAP phase occurred on the enamel surface after ELD experiments. The contents of HAP deposits on the enamel surface linearly changed proportional to the square root of the loading time, which was in good agreement with the kinetic model of ELD of HAP coating based on one-dimensional diffusion. The induction periods were observed on all the regression lines, and the rate of the HAP coating formation on enamel showed a linear relationship with the current density. It was implied that the diffusion process was the rate-determining step in the ELD of the HAP coating on human enamel.

  3. Erosion of pyrolytic carbon under high surface energy deposition from a pulsed hydrogen plasma

    International Nuclear Information System (INIS)

    Bolt, H.

    1992-01-01

    Carbon materials are widely applied as plasma facing materials in nuclear fusion devices and are also the prime candidate materials for the next generation of experimental fusion reactors. During operation these materials are frequently subjected to high energy deposition from plasma disruptions. The erosion of carbon materials is regarded as the main issue governing the operational lifetime of plasma facing components. Laboratory experiments have been performed to study the thermal erosion behaviour of carbon in a plasma environment. In the experiments the surface of pyrolytic carbon specimens was exposed to pulsed energy deposition of up to 3.8 MJ m -2 from a hydrogen plasma. The behaviour of the eroded carbon species in the plasma was measured by time-resolved and space-resolved spectroscopy. Intense line radiation of ionic carbon has been measured in the plasma in front of the carbon surface. The results show that the eroded carbon is immediately ionised in the vicinity of the material surface, with a fraction of it being ionised to the double-charged state. (Author)

  4. Surface deposition of 222Rn decay products with and without enhanced air motion

    International Nuclear Information System (INIS)

    Rudnick, S.N.; Maher, E.F.

    1986-01-01

    The effectiveness of fan-induced air motion in reducing airborne activities of short-lived 222 Rn decay products was evaluated in a 78.5-m3 chamber. Observed reductions were as high as 50% for 218Po (RaA), 79% for 214 Pb (RaB), and 86% for 214 Bi (RaC). Activity measurements of these nuclides on chamber and fan surfaces, along with airborne activities, were used to calculate material balances. Greater than about 90% of deposited activity was found on chamber surfaces, although areal activity densities were higher on fan surfaces. Deposition velocities for decay products not attached to particles were 2.3 mm s-1 when no fans were in operation and 9.2 to 13 mm s-1 when fans were used. Mean boundary layer thicknesses for unattached decay products were estimated to be about four times the recoil distance of a 214 Pb atom when no fans were used and about equal to the recoil distance when fans were used

  5. In situ measurement of fixed charge evolution at silicon surfaces during atomic layer deposition

    International Nuclear Information System (INIS)

    Ju, Ling; Watt, Morgan R.; Strandwitz, Nicholas C.

    2015-01-01

    Interfacial fixed charge or interfacial dipoles are present at many semiconductor-dielectric interfaces and have important effects upon device behavior, yet the chemical origins of these electrostatic phenomena are not fully understood. We report the measurement of changes in Si channel conduction in situ during atomic layer deposition (ALD) of aluminum oxide using trimethylaluminum and water to probe changes in surface electrostatics. Current-voltage data were acquired continually before, during, and after the self-limiting chemical reactions that result in film growth. Our measurements indicated an increase in conductance on p-type samples with p + ohmic contacts and a decrease in conductance on analogous n-type samples. Further, p + contacted samples with n-type channels exhibited an increase in measured current and n + contacted p-type samples exhibited a decrease in current under applied voltage. Device physics simulations, where a fixed surface charge was parameterized on the channel surface, connect the surface charge to changes in current-voltage behavior. The simulations and analogous analytical relationships for near-surface conductance were used to explain the experimental results. Specifically, the changes in current-voltage behavior can be attributed to the formation of a fixed negative charge or the modification of a surface dipole upon chemisorption of trimethylaluminum. These measurements allow for the observation of fixed charge or dipole formation during ALD and provide further insight into the electrostatic behavior at semiconductor-dielectric interfaces during film nucleation

  6. Deposition of corrosion products from dowels on human dental root surfaces measured with proton microprobe technique

    International Nuclear Information System (INIS)

    Brune, D.; Brunell, G.; Lindh, U.

    1982-01-01

    Distribution of copper, mercury and zinc on human teeth root surfaces adjacent to dowels of gold alloy or brass as well as dowels of brass in conjunction with an amalgam crown has been measured with a proton microprobe using PIXE techniques. Upper limits of the contents of gold and silver on the root surfaces were established. Pronounced concentration profiles of copper and zinc were observed on the root surfaces of teeth prepared with dowels of brass. The dowel of gold alloy revealed only zinc deposition. The major part of copper on the root surfaces is assumed to arise from corrosion of the dowels, and has been transported to the surface by diffusion through the dential tubuli. Zinc in the volume analysed is a constituent of dentin tissue as well as a corrosion product of the brass dowel. Part of the zinc level could also be ascribed to erosion of the zinc phosphate cement matrix. The volumes analysed were (25 x 25 x 25)μm 3 . The levels of copper, mercury and zinc on the tooth root surfaces attained values up to about 200, 20 and 600 ppm, respectively. (orig.)

  7. Deposition of corrosion products from dowels on human dental root surfaces measured with proton microprobe technique

    Science.gov (United States)

    Brune, D.; Brunell, G.; Lindh, U.

    1982-06-01

    Distribution of copper, mercury and zinc on human teeth root surfaces adjacent to dowels of gold alloy or brass as well as dowels of brass in conjunction with an amalgam crown has been measured with a proton microprobe using PIXE techniques. Upper limits of the contents of gold and silver on the root surfaces were established. Pronounced concentration profiles of copper and zinc were observed on the root surfaces of teeth prepared with dowels of brass. The dowel of gold alloy revealed only zinc deposition. The major part of copper on the root surfaces is assumed to arise from corrosion of the dowels, and has been transported to the surface by diffusion through the dential tubuli. Zinc in the volume analysed is a constituent of dentin tissue as well as a corrosion product of the brass dowel. Part of the zinc level could also be ascribed to erosion of the zinc phosphate cement matrix. The volumes analysed were (25×25×25)μm 3. The levels of copper, mercury and zinc on the tooth root surfaces attained values up to about 200, 20 and 600 ppm, respectively.

  8. Quantification of the dry aeolian deposition of dust on horizontal surfaces: an experimental comparison of theory and measurements

    NARCIS (Netherlands)

    Goossens, D.

    2005-01-01

    Eight techniques to quantify the deposition of aeolian dust on horizontal surfaces were tested in a wind tunnel. The tests included three theoretical techniques and five measurement techniques. The theoretical techniques investigated were: the gradient technique, the inferential technique without

  9. Plasma-polymerized SiOx deposition on polymer film surfaces for preparation of oxygen gas barrier polymeric films

    International Nuclear Information System (INIS)

    Inagaki, N.

    2003-01-01

    SiOx films were deposited on surfaces of three polymeric films, PET, PP, and Nylon; and their oxygen gas barrier properties were evaluated. To mitigate discrepancies between the deposited SiOx and polymer film, surface modification of polymer films was done, and how the surface modification could contribute to was discussed from the viewpoint of apparent activation energy for the permeation process. The SiOx deposition on the polymer film surfaces led to a large decrease in the oxygen permeation rate. Modification of polymer film surfaces by mans of the TMOS or Si-COOH coupling treatment in prior to the SiOx deposition was effective in decreasing the oxygen permeation rate. The cavity model is proposed as an oxygen permeation process through the SiOx-deposited Nylon film. From the proposed model, controlling the interface between the deposited SiOx film and the polymer film is emphasized to be a key factor to prepare SiOx-deposited polymer films with good oxygen gas barrier properties. (author)

  10. Novel ion-molecular surface reaction to result in CH3 adsorbates on (111) surface of chemical vapor deposition diamond from ethane and surface anionic sites

    International Nuclear Information System (INIS)

    Komatsu, Shojiro; Okada, Katsuyuki; Shimizu, Yoshiki; Moriyoshi, Yusuke

    2001-01-01

    The existence of CH 3 adsorbates on (111) surface of chemical vapor deposited diamond, which was observed by scanning tunneling microscopy, was explained by the following S N 2 (bimolecular, substitutional, and nucleophilic) type surface reaction; C(s) - +C 2 H 6 ->C(s)-CH 3 +CH 3 - , where C(s) denotes a surface carbon atom. The activation energy was estimated to be 36.78 kcal/mol and the reaction proved to be exothermic with the enthalpy change of -9.250 kcal/mol, according to ab initio molecular orbital calculations at MP2/3-21+G * //RHF/3-21G * level; this result is consistent with typical substrate temperatures, namely about 900 degree C, for chemical vapor deposition of diamond. Charge transfer from the highest occupied molecular orbital of the surface anionic site to the lowest unoccupied molecular orbital of ethane, that is antibonding at the CH 3 - CH 3 bond, has been clearly visualized. A characteristic configuration of an ethane molecule which is associated with an anionic vacant site C(s) - on hydrogenated (111) surface of diamond was also found. [copyright] 2001 American Institute of Physics

  11. Depositional patterns of the Mississippi Fan surface: Evidence from GLORIA II and high-resolution seismic profiles

    Science.gov (United States)

    Twichell, David C.; Kenyon, Neil H.; Parson, Lindsay M.; McGregor, Bonnie A.

    1991-01-01

    GLORIA long-range side-scan sonar imagery and 3.5-kHz seismic-reflection profiles depict a series of nine elongate deposits with generally high-backscatter surfaces covering most of the latest fanlobe sequence of the Mississippi Fan in the eastern Gulf of Mexico. The youngest deposit is a “slump” that covers a 250 by 100 km area of the middle and upper fan. The remaining mapped deposits, termed depositional lobes, are long (as much as 200 km) and relatively thin (less than 35 m thick) bodies. Small channels and lineations on the surface of many of these depositional lobes radiate from a single, larger main channel that is the conduit through which sediment has been supplied to these surficial deposits on the fan. The 3.5-kHz profiles show that adjacent depositional lobes overlap one another rather than interfingering, indicating that only one lobe was an active site of deposition at a time. Shifting of the depositional sites appears to be caused by both aggradation and avulsion. The chronology developed from the overlapping relations indicates the oldest of the mapped depositional lobes are on the lowermost fan, and the youngest are further up the fan. Depositional lobes on the lower fan consist of a series of smaller, elongate features with high-backscatter surfaces (540 km in length) located at the ends of previously unrecognized small channels (turbidity currents and/or debris flows, sand flows, or mud flows appear to be the dominant transport process constructing these depositional lobes. Channelized flow is an important mechanism for transporting sediment away from the main channel on this fan and the resulting facies created by these small flows are laterally discontinuous.

  12. Atmospheric deposition, resuspension and root uptake of plutonium in corn and other grain-producing agroecosystems near a nuclear fuel facility

    International Nuclear Information System (INIS)

    Pinder, J.E. III; McLeod, K.W.; Adriano, D.C.; Corey, J.C.; Boni, A.L.

    1989-01-01

    Plutonium released to the environment may contribute to dose to humans through inhalation or ingestion of contaminated foodstuffs. Plutonium contamination of agricultural plants may result from interception and retention of atmospheric deposition, resuspension of Pu-bearing soil particles to plant surfaces, and root uptake and translocation to grain. Plutonium on vegetation surfaces may be transferred to grain surfaces during mechanical harvesting. Data obtained from corn grown near the US Department of Energy's H-Area nuclear fuel chemical separations facility on the Savannah River Site was used to estimated parameters of a simple model of Pu transport in agroecosystems. The parameter estimates for corn were compared to those previously obtained for wheat and soybeans. Despite some differences in parameter estimates among crops, the relative importances of atmospheric deposition, resuspension and root uptake were similar among crops. For even small deposition rates, the relative importances of processes for Pu contamination of corn grain should be: transfer of atmospheric deposition from vegetation surfaces to grain surfaces during combining > resuspension of soil to grain surfaces > root uptake. Approximately 3.9 x 10 -5 of a year's atmospheric deposition is transferred to grain. Approximately 6.2 x 10 -9 of the Pu inventory in the soil is resuspended to corn grain, and a further 7.3 x 10 -10 of the soil inventory is absorbed by roots and translocated to grains

  13. Efficacy of Peracetic Acid in Inactivating Foodborne Pathogens on Fresh Produce Surface.

    Science.gov (United States)

    Singh, Prashant; Hung, Yen-Con; Qi, Hang

    2018-02-01

    Washing treatment with effective sanitizer is one of the critical steps in ensuring fresh produce safety. This study was to evaluate the efficacy of peracetic acid (PAA; VigorOx® 15 F&V), chlorine-based sanitizers (acidic electrolyzed water [AEO], near neutral electrolyzed water and bleach), lactic acid, and deionized (DI) water to reduce Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium DT104 from fresh produce surfaces. A 5-strain cocktail of E. coli O157:H7, L. monocytogenes, and S. Typhimurium DT104 was separately prepared and used for surface inoculation on produce samples (E. coli O157:H7 on romaine lettuce, lemons, tomatoes, and blueberries; L. monocytogenes on romaine lettuce and cantaloupe; S. Typhimurium DT104 on lemons, tomatoes, cantaloupe, and blueberries). PAA at 45, 85, and 100 mg/L; AEO, NNEO, and bleach at 100 mg/L of free chlorine; lactic acid at 2%; and DI water were used for washing inoculated produce in an automated produce washer for 5 min. In general, PAA at 100 mg/L achieved the highest microbial inactivation of E. coli O157:H7 (lettuce, lemon, tomato, and blueberry at 2.2, 5.7, 5.5, and 6.7 log CFU/g, respectively), S. Typhimurium DT104 (lemon, tomato, cantaloupe, blueberry at 5.4, 6.8, 4.5, and 5.9 log CFU/g, respectively), and L. monocytogenes (lettuce and cantaloupe at 2.4 and 4.4 log CFU/g, respectively). Efficacy of sanitizers on produce with coarse surface (for example, lettuce and cantaloupe) was lower than produce with smooth texture (lemon, tomato, and blueberry). Cross-contamination of E. coli O157:H7 among romaine lettuce heads during simulated retail crisping process was greatly reduced by the application of PAA and NNEO. NNEO and PAA showed high efficacy in foodborne pathogen removal from fresh produce. Produce surface texture plays an important role in pathogen removal. NNEO and PAA effectively prevented cross-contamination during the crisping process. © 2018 Institute of Food Technologists®.

  14. Surface-Enhanced Infrared Absorption of o-Nitroaniline on Nickel Nanoparticles Synthesized by Electrochemical Deposition

    Directory of Open Access Journals (Sweden)

    Yufang Niu

    2014-01-01

    Full Text Available Nickel nanoparticles were electrochemically deposited on indium-tin oxide (ITO coated glass plate in a modified Watt’s electrolyte. The surface-enhanced infrared absorption (SEIRA effect of the nanoparticles was evaluated by attenuated total reflection spectroscopy (ATR-FTIR using o-nitroaniline as a probe molecule. Electrodeposition parameters such as deposition time, pH value, and the type of surfactants were investigated. The morphology and the microstructure of the deposits were characterized by the field emission scanning electron microscope (FESEM and the atomic force microscope (AFM, respectively. The results indicate that the optimum parameters were potential of 1.3 V, time of 30 s, and pH of 8.92 in the solution of 0.3756 mol/L diethanolamine, 0.1 mol/L nickel sulfate, 0.01 mol/L nickel chloride, and 0.05 mol/L boric acid. The FESEM observation shows that the morphology of nickel nanoparticles with best enhancement effect is spherical and narrowly distributed particles with the average size of 50 nm. SEIRA enhancement factor is about 68.

  15. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kusworo, T. D., E-mail: tdkusworo@che.undip.ac.id; Aryanti, N., E-mail: nita.aryanti@gmail.com; Firdaus, M. M. H.; Sukmawati, H. [Chemical Engineering, Faculty of Engineering, Diponegoro University Prof. Soedarto Street, Tembalang, Semarang, 50239, Phone/Fax : (024)7460058 (Indonesia)

    2015-12-29

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second.

  16. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    International Nuclear Information System (INIS)

    Kusworo, T. D.; Aryanti, N.; Firdaus, M. M. H.; Sukmawati, H.

    2015-01-01

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second

  17. Dark Material at the Surface of Polar Crater Deposits on Mercury

    Science.gov (United States)

    Neumann, Gregory A.; Cavanaugh, John F.; Sun, Xiaoli; Mazarico, Erwan; Smith, David E.; Zuber, Maria T.; Solomon, Sean C.; Paige, Daid A.

    2012-01-01

    Earth-based radar measurements [1-3] have yielded images of radar-bright material at the poles of Mercury postulated to be near-surface water ice residing in cold traps on the permanently shadowed floors of polar impact craters. The Mercury Laser Altimeter (MLA) on board the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has now mapped much of the north polar region of Mercury [4] (Fig. 1). Radar-bright zones lie within polar craters or along poleward-facing scarps lying mainly in shadow. Calculations of illumination with respect to solid-body motion [5] show that at least 0.5% of the surface area north of 75deg N lies in permanent shadow, and that most such permanently shadowed regions (PSRs) coincide with radar-bright regions. MLA transmits a 1064-nm-wavelength laser pulse at 8 Hz, timing the leading and trailing edges of the return pulse. MLA can in some cases infer energy and thereby surface reflectance at the laser wavelength from the returned pulses. Surficial exposures of water ice would be optically brighter than the surroundings, but persistent surface water ice would require temperatures over all seasons to remain extremely low (Mercury s eccentric orbit, 3:2 spin-orbit resonance, and near-zero obliquity generally do not support such conditions in all permanently shadowed craters but suggest that water ice buried near the surface ( 1 Gy. We describe measurements of reflectivity derived from MLA pulse returns. These reflectivity data show that surface materials in the shadowed regions are darker than their surroundings, enough to strongly attenuate or extinguish laser returns. Such measurements appear to rule out widespread surface exposures of water ice. We consider explanations for the apparent low reflectivity of these regions involving other types of volatile deposit.

  18. Characterizations of arsenic-doped zinc oxide films produced by atmospheric metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Li-Wei, E-mail: onlyway54@hotmail.com [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Uen, Wu-Yih, E-mail: uenwuyih@ms37.hinet.net [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Lan, Shan-Ming; Liao, Sen-Mao [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Yang, Tsun-Neng; Wu, Chih-Hung; Hong, Hwe-Fen; Ma, Wei-Yang [Institute of Nuclear Energy Research, P.O. Box 3-11, Lungtan 32500, Taiwan (China); Shen, Chin-Chang [Chemical Engineering Division, Institute of Nuclear Energy Research, Longtan Township, Taoyuan 32546, Taiwan (China)

    2013-07-15

    p-type ZnO films were prepared by atmospheric metal-organic chemical vapor deposition technique using arsine (AsH{sub 3}) as the doping source. The electrical and optical properties of arsenic-doped ZnO (ZnO:As) films fabricated at 450–600 °C with various AsH{sub 3} flow rates ranging from 8 to 21.34 μmol/min were analyzed and compared. Hall measurements indicate that stable p-type ZnO films with hole concentrations varying from 7.2 × 10{sup 15} to 5.8 × 10{sup 18} cm{sup −3} could be obtained. Besides, low temperature (17 K) photoluminescence spectra of all ZnO:As films also demonstrate the dominance of the line related to the neutral acceptor-bound exciton. Moreover, the elemental identity and chemical bonding information for ZnO:As films were examined by X-ray photoelectron spectroscopy. Based on the results obtained, the effects of doping conditions on the mechanism responsible for the p-type conduction were studied. Conclusively, a simple technique to fabricate good-quality p-type ZnO films has been recognized in this work. Depositing the film at 550 °C with an AsH{sub 3} flow rate of 13.72 μmol/min is appropriate for producing hole concentrations on the order of 10{sup 17} cm{sup −3} for it. Ultimately, by increasing the AsH{sub 3} flow rate to 21.34 μmol/min for doping and depositing the film at 600 °C, ZnO:As films with a hole concentration over 5 × 10{sup 18} cm{sup −3} together with a mobility of 1.93 cm{sup 2}V{sup −1} s{sup −1} and a resistivity of 0.494 ohm-cm can be achieved.

  19. A Visual Detection System for Determining Tritium Surface Deposition Employing Phosphor Coated Materials

    International Nuclear Information System (INIS)

    Gentile, C.A.; Skinner, C.H.; Young, K.M.; Zweben, S.J.

    1999-01-01

    A method for visually observing tritium deposition on the surface of the Tokamak Fusion Test Reactor (TFTR) deuterium-tritium (D-T) tiles is being investigated at the Princeton Plasma Physics Laboratory. A green phosphor (P31, zinc sulfide: copper) similar to that used in oscilloscope screens with a wavelength peak of 530 nm was positioned on the surface of a TFTR D-T tile. The approximately 600 gram tile, which contains approximately 1.5 Ci of tritium located on the top approximately 1-50 microns of the surface, was placed in a two liter lexan chamber at Standard Temperature and Pressure (STP). The phosphor plates and phosphor powder were placed on the surface of the tile which resulted in visible light being observed, the consequence of tritium betas interacting with the phosphor. This technique provides a method of visually observing varying concentrations of tritium on the surface of D-T carbon tiles, and may be employed (in a calibrated system) to obtain quantitative data

  20. Calculated dose factors for the radiosensitive tissues in bone irradiated by surface-deposited radionuclides

    International Nuclear Information System (INIS)

    Spiers, F.W.; Whitwell, J.R.; Beddoe, A.H.

    1978-01-01

    The method of calculating dose factors for the haemopoietic marrow and endosteal tissues in human trabecular bone, used by Whitwell and Spiers for volume-seeking radionuclides, has been developed for the case of radionuclides which are deposited as very thin layers on bone surfaces. The Monte Carlo method is again used, but modifications to the computer program are made to allow for a surface rather than a volume source of particle emission. The principal change is the introduction of a surface-orientation factor which is shown to have a value of approximately 2, varying slightly with bone structure. Results are given for β-emitting radionuclides ranging from 171 Tm(anti Esub(β) = 0.025 MeV) to 90 Y(anti Esub(β) = 0.93 MeV), and also for the α-emitter 239 Pu. It is shown that where the particle ranges are short compared with the dimensions of the bone structures the dose factors for the surface seekers are much greater than those for the volume seekers. For long range particles the dose factors for surface- and volume-seeking radionuclides converge. Comparisons are given relating the dose factors calculated in this paper on the basis of measured bone structures to those of other workers based on single plane geometry. (author)

  1. Distribution of surface deposits in the Gijón urban subsurface (NW Spain)

    Science.gov (United States)

    López-Fernández, Carlos; Pando, Luis; María Díaz-Díaz, Luis; Arias, Daniel; Flor-Blanco, Germán

    2016-04-01

    Gijón is the second most populous city (278.285 inhabitants in 2015) of the Spanish north coast. The urban subsurface is mostly formed (≈80%) by Quaternary sediments which exceeds 20 meters of thickness when cover the Jurassic carbonate basement (Gijón Formation). This work has allowed to know the spatial distribution of the different types of sediments in urban area. To do this, a GIS database was developed that contains data from more than 450 geotechnical reports. Information provided by fieldwork and the exploration of excavation works in progress throughout the city was also incorporated. Currently, the geodatabase developed comprises more than 1,400 site investigation points: boreholes, dynamic probing and trial pits. This has been supplemented with hundreds on-site and laboratory tests carried out on core samples of soils and rocks, performed following renowned testing standards. Quaternary formations, largely concealed below man-made fills, set up two main areas composed by granular and cohesive soils: the littoral zone at the northern urban perimeter and the continental zone at the southern sector. The first one, fluvial-marine deposits, consist of sandy sediments related to beach/dune systems and marsh deposits, with gravels, organogenic mud and layers of Holocene peat. The southern area is composed by residual clays -silt and coarse-grained soils to a lesser extent- linked to the dissolution of the Mesozoic substrate. Associated with these two types of deposits, two main aquifers can be differentiated. The thickness of the man-made deposits, fluvial-marine sediments and residual deposits was determined in this work. Thus, a 3-d model of Gijón subsurface at urban scale was obtained. A map of the Jurassic bedrock bedrock was also produced. Building construction works may be affected by the geotechnical behavior of the Quaternary deposits and the saturation of granular sediments., This is because the shallowness of the water table, the usual low

  2. Photoelectric work function measurement of a cesiated metal surface and its correlation with the surface-produced H- ion flux

    International Nuclear Information System (INIS)

    Wada, M.; Berkner, K.H.; Pyle, R.V.; Stearns, J.W.

    1982-09-01

    For application in plasma heating, fueling, and current drive of magnetic fusion devices, high current negative deuterium ion sources for intense neutral beam injectors are being developed using efficient production of negative hydrogen isotope ions on low work function metal surfaces imbedded in hydrogen plasmas. In order to investigate the correlation between work function and negative hydrogen ion production, photoelectron emission from a cesiated metal surface, which is immersed in a hydrogen plasma with an electron density less than 5 x 10 10 /cc, was measured in the photon energy range of 1.3 to 4.1 eV. The work function determination was based on Fowler's analysis, and at the optimum coverage a work function of less than 1.5 eV was observed for a Cs-Cu surface. Measured values of work functions for different Cs coverages were compared to the negative hydrogen currents produced at the metal surface in the discharge; the surface production of negative hydrogen ion current is monotonically increasing with decreasing work function

  3. Potential dependent adhesion forces on bare and underpotential deposition modified electrode surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Serafin, J.M.; Hsieh, S.J.; Monahan, J.; Gewirth, A.A. [Univ. of Illinois, Urbana, IL (United States)

    1998-12-03

    Adhesion force measurements are used to determine the potential dependence of the force of adhesion between a Si{sub 3}N{sub 4} cantilever and a Au(111) surface modified by the underpotential deposition (upd) of Bi or Cu in acid solution or by oxide formation. The measured work of adhesion is near zero for most of the potential region examined in Bi upd but rises after the formation of a full Bi monolayer. The work of adhesion is high at positive potentials for Cu upd but then decreases as the Cu partial and full monolayers are formed. The work of adhesion is low in the oxide region on Au(111) but rises following the sulfate disordering transition at 1.1 V vs NHE. These results are interpreted in terms of the degree of solvent order on the electrode surface.

  4. A revised surface age for the North Polar Layered Deposits of Mars

    Science.gov (United States)

    Landis, Margaret E.; Byrne, Shane; Daubar, Ingrid J.; Herkenhoff, Kenneth E.; Dundas, Colin M.

    2016-01-01

    The North Polar Layered Deposits (NPLD) of Mars contain a complex stratigraphy that has been suggested to retain a record of past eccentricity- and obliquity-forced climate changes. The surface accumulation rate in the current climate can be constrained by the crater retention age. We scale NPLD crater diameters to account for icy target strength and compare surface age using a new production function for recent small impacts on Mars to the previously used model of Hartmann (2005). Our results indicate that ice is accumulating in these craters several times faster than previously thought, with a 100 m diameter crater being completely infilled within centuries. Craters appear to have a diameter-dependent lifetime, but the data also permit a complete resurfacing of the NPLD at ~1.5 ka.

  5. Intrinsic anomalous surface roughening of TiN films deposited by reactive sputtering

    International Nuclear Information System (INIS)

    Auger, M. A.; Vazquez, L.; Sanchez, O.; Cuerno, R.; Castro, M.; Jergel, M.

    2006-01-01

    We study surface kinetic roughening of TiN films grown on Si(100) substrates by dc reactive sputtering. The surface morphology of films deposited for different growth times under the same experimental conditions were analyzed by atomic force microscopy. The TiN films exhibit intrinsic anomalous scaling and multiscaling. The film kinetic roughening is characterized by a set of local exponent values α loc =1.0 and β loc =0.39, and global exponent values α=1.7 and β=0.67, with a coarsening exponent of 1/z=0.39. These properties are correlated to the local height-difference distribution function obeying power-law statistics. We associate this intrinsic anomalous scaling with the instability due to nonlocal shadowing effects that take place during thin-film growth by sputtering

  6. Deposition temperature dependence of material and Si surface passivation properties of O3-based atomic layer deposited Al2O3-based films and stacks

    International Nuclear Information System (INIS)

    Bordihn, Stefan; Mertens, Verena; Müller, Jörg W.; Kessels, W. M. M.

    2014-01-01

    The material composition and the Si surface passivation of aluminum oxide (Al 2 O 3 ) films prepared by atomic layer deposition using Al(CH 3 ) 3 and O 3 as precursors were investigated for deposition temperatures (T Dep ) between 200 °C and 500 °C. The growth per cycle decreased with increasing deposition temperature due to a lower Al deposition rate. In contrast the material composition was hardly affected except for the hydrogen concentration, which decreased from [H] = 3 at. % at 200 °C to [H]  2 O 3 /SiN x stacks complemented the work and revealed similar levels of surface passivation as single-layer Al 2 O 3 films, both for the chemical and field-effect passivation. The fixed charge density in the Al 2 O 3 /SiN x stacks, reflecting the field-effect passivation, was reduced by one order of magnitude from 3·10 12  cm −2 to 3·10 11  cm −2 when T Dep was increased from 300 °C to 500 °C. The level of the chemical passivation changed as well, but the total level of the surface passivation was hardly affected by the value of T Dep . When firing films prepared at of low T Dep , blistering of the films occurred and this strongly reduced the surface passivation. These results presented in this work demonstrate that a high level of surface passivation can be achieved for Al 2 O 3 -based films and stacks over a wide range of conditions when the combination of deposition temperature and annealing or firing temperature is carefully chosen

  7. Nanotechnology based surface treatments for corrosion protection and deposit control of power plant equipment. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-05-15

    Nanotechnology can provide possibilities for obtaining new valuable information regarding performance and corrosion protection in power plants. In general the desired performance of the contact surfaces is an easy-to-release effect. This is in order to prolong the time interval between cleaning periods or make the cleaning procedures easier and less expensive. Corrosion protection is also desired in order to extend the life time of various parts in the power plants and thus optimize the energy output and overall efficiency of the plant. Functional sol-gel coating based on nanotechnology is tested in a variety of conditions. Applications of functional sol-gel coatings were performed in the condenser and on seven air preheaters at Fynsvaerket, Odense, with corrosion protection as the main issue. Coatings with easy-to-clean effects were tested in the Flue Gas Desulphurization plant at Nordjyllandsvaerket, Aalborg, with the aim of reducing gipsum deposit. Thermo stabilized coatings were tested on tube bundles between in the passage from the 1st to 2end pass and on the wall between 1st and 2end pass at Amagervaerket, Copenhagen, and in the boiler at Haderslev CHP plant. The objective of this test were reducing deposits and increasing corrosion protection. The tested coatings were commercial available coatings and coatings developed in this project. Visual inspections have been performed of all applications except at Nordjyllandsvaerket. Corrosion assessment has been done at DTU - Mechanical Engineering. The results range from no difference between coated and uncoated areas to some improvements. At Amagervaerket the visual assessment showed in general a positive effect with a sol-gel hybrid system and a commercial system regarding removal of deposits. The visual assessment of the air preheaters at Fynsvaerket indicates reduced deposits on a sol-gel nanocomposite coated air preheater compared to an uncoated air preheater. (Author)

  8. Cracks and nanodroplets produced on tungsten surface samples by dense plasma jets

    Science.gov (United States)

    Ticoş, C. M.; Galaţanu, M.; Galaţanu, A.; Luculescu, C.; Scurtu, A.; Udrea, N.; Ticoş, D.; Dumitru, M.

    2018-03-01

    Small samples of 12.5 mm in diameter made from pure tungsten were exposed to a dense plasma jet produced by a coaxial plasma gun operated at 2 kJ. The surface of the samples was analyzed using a scanning electron microscope (SEM) before and after applying consecutive plasma shots. Cracks and craters were produced in the surface due to surface tensions during plasma heating. Nanodroplets and micron size droplets could be observed on the samples surface. An energy-dispersive spectroscopy (EDS) analysis revealed that the composition of these droplets coincided with that of the gun electrode material. Four types of samples were prepared by spark plasma sintering from powders with the average particle size ranging from 70 nanometers up to 80 μm. The plasma power load to the sample surface was estimated to be ≈4.7 MJ m-2 s-1/2 per shot. The electron temperature and density in the plasma jet had peak values 17 eV and 1.6 × 1022 m-3, respectively.

  9. Mechanisms of desorption of 134Cs and 85Sr aerosols deposited on urban surfaces

    International Nuclear Information System (INIS)

    Real, J.; Persin, F.; Camarasa-Claret, C.

    2002-01-01

    The radioactive isotopes of cesium and strontium may be deposited on urban surfaces in the case of an accidental atmospheric discharge from a nuclear facility and thus imply a health hazard. In order to handle the decontamination of these surfaces, we have carried out experiments under controlled conditions on tiles and concrete and we have studied the physical and chemical mechanisms at the solid-liquid interface. The deposition of radionuclides was carried out in the form of aerosols indicating an accidental source term. Their desorption by rainwater is low in all cases, of the order of 5-6% for cesium for any material and 29 and 12% for strontium on tile and concrete, respectively. The low desorption values of cesium may be explained by the strong bonding that occurs with the silicates constituting the tile due to virtually irreversible processes of exchange of ions and by the formation of insoluble complexes with the C-S-H gel of concrete. The strontium-tile bonds are weaker, while strontium precipitates with the carbonates of concrete in the form of SrCO 3 . In view of these characteristics, washing solutions with high concentrations of chloride and oxalate of ammonium chosen for their ion-exchanging and sequestering properties were tested on these surfaces. The desorption of cesium improved strongly since it reached 70% on tile and 90% on concrete after 24 h of contact, which is consistent with our knowledge of the bonds between this element and the surfaces. Strontium, given the greater complexity of physical and chemical forms that it may take is less well desorbed. The ammonium chloride improves the desorption (50% and 40%, for tile and concrete, respectively) but the oxalate, while it does not affect desorption on the tiles, decreases that on the concrete since by strongly etching the concrete, it causes the release of carbonate ions that precipitate with strontium

  10. Tribological Characteristic of Titanium Alloy Surface Layers Produced by Diode Laser Gas Nitriding

    Directory of Open Access Journals (Sweden)

    Lisiecki A.

    2016-06-01

    Full Text Available In order to improve the tribological properties of titanium alloy Ti6Al4V composite surface layers Ti/TiN were produced during laser surface gas nitriding by means of a novel high power direct diode laser with unique characteristics of the laser beam and a rectangular beam spot. Microstructure, surface topography and microhardness distribution across the surface layers were analyzed. Ball-on-disk tests were performed to evaluate and compare the wear and friction characteristics of surface layers nitrided at different process parameters, base metal of titanium alloy Ti6Al4V and also the commercially pure titanium. Results showed that under dry sliding condition the commercially pure titanium samples have the highest coefficient of friction about 0.45, compared to 0.36 of titanium alloy Ti6Al4V and 0.1-0.13 in a case of the laser gas nitrided surface layers. The volume loss of Ti6Al4V samples under such conditions is twice lower than in a case of pure titanium. On the other hand the composite surface layer characterized by the highest wear resistance showed almost 21 times lower volume loss during the ball-on-disk test, compared to Ti6Al4V samples.

  11. Cylindrical stationary striations in surface wave produced plasma columns of argon

    Science.gov (United States)

    Kumar, Rajneesh; Kulkarni, Sanjay V.; Bora, Dhiraj

    2007-12-01

    Striations are a good example of manifestation of a glow discharge. In the present investigation, stationary striations in the surface wave produced plasma column are formed. Physical parameters (length, number, etc.) of such striations can be controlled by operating parameters. With the help of bifurcation theory, experimental results are explained by considering two-step ionization in the surface wave discharge mechanism in argon gas. It is also observed that the bifurcation parameter is a function of input power, working pressure, and tube radius.

  12. Multi-year Surface Deposition of {sup 210}Pb and {sup 210}Po at Lisbon - Atmospheric Depositions of {sup 210}Pb and {sup 210}Po in Lisbon, Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Fernando P.; Oliveira, Joao M.; Alberto, G. [Instituto Superior Tecnico/ Campus Tecnologico e Nuclear, Universidade Tecnica de Lisboa, E.N. 10, 2686-953 Sacavem (Portugal)

    2014-07-01

    The long lived radon daughters {sup 210}Pb and {sup 210}Po were determined in samples of total atmospheric depositions obtained with surface collectors continuously operated during 5 years, near Lisbon. The average annual {sup 210}Pb flux was 66±12 Bq m{sup -2}, and the average annual {sup 210}Po flux was 8±3 Bq m{sup -2}, with an overall {sup 210}Po/{sup 210}Pb activity ratio of 0.15±0.06. Direct determination of the {sup 210}Pb atmospheric flux was compared with the {sup 210}Pb excess determined in soil surface layers along with atmospheric depositions of {sup 137}Cs. The deposition of atmospheric {sup 210}Pb was positively correlated with seasonal rainfall, while {sup 210}Po was mainly originated in soil particles re-suspension throughout the year and also in seasonal forest fires. Unusually high {sup 210}Po/{sup 210}Pb activity ratios, higher than unity, were occasionally recorded in atmospheric depositions and the sources and causes are discussed. Long time-series of {sup 210}Pb and {sup 210}Po deposition fluxes, as presented herein are useful to test and constrain parameters of the atmospheric Global Circulation Models. (authors)

  13. Biocompatibility and Surface Properties of TiO2 Thin Films Deposited by DC Magnetron Sputtering

    Science.gov (United States)

    López-Huerta, Francisco; Cervantes, Blanca; González, Octavio; Hernández-Torres, Julián; García-González, Leandro; Vega, Rosario; Herrera-May, Agustín L.; Soto, Enrique

    2014-01-01

    We present the study of the biocompatibility and surface properties of titanium dioxide (TiO2) thin films deposited by direct current magnetron sputtering. These films are deposited on a quartz substrate at room temperature and annealed with different temperatures (100, 300, 500, 800 and 1100 °C). The biocompatibility of the TiO2 thin films is analyzed using primary cultures of dorsal root ganglion (DRG) of Wistar rats, whose neurons are incubated on the TiO2 thin films and on a control substrate during 18 to 24 h. These neurons are activated by electrical stimuli and its ionic currents and action potential activity recorded. Through X-ray diffraction (XRD), the surface of TiO2 thin films showed a good quality, homogeneity and roughness. The XRD results showed the anatase to rutile phase transition in TiO2 thin films at temperatures between 500 and 1100 °C. This phase had a grain size from 15 to 38 nm, which allowed a suitable structural and crystal phase stability of the TiO2 thin films for low and high temperature. The biocompatibility experiments of these films indicated that they were appropriated for culture of living neurons which displayed normal electrical behavior. PMID:28788667

  14. Experimental setup for producing tungsten coated graphite tiles using plasma enhanced chemical vapor deposition technique for fusion plasma applications

    International Nuclear Information System (INIS)

    Chauhan, Sachin Singh; Sharma, Uttam; Choudhary, K.K.; Sanyasi, A.K.; Ghosh, J.; Sharma, Jayshree

    2013-01-01

    Plasma wall interaction (PWI) in fusion grade machines puts stringent demands on the choice of materials in terms of high heat load handling capabilities and low sputtering yields. Choice of suitable material still remains a challenge and open topic of research for the PWI community. Carbon fibre composites (CFC), Beryllium (Be), and Tungsten (W) are now being considered as first runners for the first wall components of future fusion machines. Tungsten is considered to be one of the suitable materials for the job because of its superior properties than carbon like low physical sputtering yield and high sputter energy threshold, high melting point, fairly high re-crystallization temperature, low fuel retention capabilities, low chemical sputtering with hydrogen and its isotopes and most importantly the reparability with various plasma techniques both ex-situ and in-situ. Plasma assisted chemical vapour deposition is considered among various techniques as the most preferable technique for fabricating tungsten coated graphite tiles to be used as tokamak first wall and target components. These coated tiles are more favourable compared to pure tungsten due to their light weight and easier machining. A system has been designed, fabricated and installed at SVITS, Indore for producing tungsten coated graphite tiles using Plasma Enhanced Chemical Vapor Deposition (PE-CVD) technique for Fusion plasma applications. The system contains a vacuum chamber, a turbo-molecular pump, two electrodes, vacuum gauges, mass analyzer, mass flow controllers and a RF power supply for producing the plasma using hydrogen gas. The graphite tiles will be put on one of the electrodes and WF6 gas will be inserted in a controlled manner in the hydrogen plasma to achieve the tungsten-coating with WF6 dissociation. The system is integrated at SVITS, Indore and a vacuum of the order of 3*10 -6 is achieved and glow discharge plasma has been created to test all the sub-systems. The system design with

  15. Effects of acid and alkaline based surface preparations on spray deposited cerium based conversion coatings on Al 2024-T3

    Energy Technology Data Exchange (ETDEWEB)

    Pinc, W. [Department of Materials Science Engineering, Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65409 (United States)], E-mail: wrphw5@mst.edu; Geng, S.; O' Keefe, M.; Fahrenholtz, W.; O' Keefe, T. [Department of Materials Science Engineering, Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2009-01-15

    Cerium based conversion coatings were spray deposited on Al 2024-T3 and characterized to determine the effect of surface preparation on the deposition rate and surface morphology. It was found that activation of the panel using a 1-wt.% sulfuric acid solution increased the coating deposition rate compared to alkaline cleaning alone. Analysis of the surface morphology of the coatings showed that the coatings deposited on the acid treated panels exhibited fewer visible cracks compared to coatings on alkaline cleaned panels. Auger electron spectroscopy depth profiling showed that the acid activation decreased the thickness of the aluminum oxide layer and the concentration of magnesium on the surface of the panels compared to the alkaline treatment. Additionally, acid activation increased the copper concentration at the surface of the aluminum substrate. Based on the results, the acid based surface treatment appeared to expose copper rich intermetallics, thus increasing the number of cathodic sites on the surface, which led to an overall increase in the deposition rate.

  16. Surface morphology of polyethylene glycol films produced by matrix-assisted pulsed laser evaporation (MAPLE): Dependence on substrate temperature

    DEFF Research Database (Denmark)

    Rodrigo, K.; Czuba, P.; Toftmann, B.

    2006-01-01

    The dependence of the surface morphology on the substrate temperature during film deposition was investigated for polyethylene glycol (PEG) films by matrix-assisted pulsed laser evaporation (MAPLE). The surface structure was studied with a combined technique of optical imaging and AFM measurements...

  17. Evaluation of the salt deposition on the canister surface of concrete cask. Part 2. Measurement test of the salt concentration in air and salt deposition in the field

    International Nuclear Information System (INIS)

    Wataru, Masumi

    2012-01-01

    Concerning the storage facility of spent nuclear fuel using the concrete cask, there is an issue of stress corrosion cracking(SCC). The cooling air goes up along the canister surface in the concrete cask. To evaluate the initiation of SCC or rusting, it is important to verify the estimation method of the sea salt deposition on the metal canister surface transported by cooling air including sea salt particles. To measure the deposition rate, field tests were performed in Choushi test center. In the field test, it was found that the amount of sea salt deposition was very low because the density of the atmospheric sea salt concentration was very low compared with the laboratory test. Using relation between laboratory data and filed data, it is possible to evaluate the salt deposition rate on the canister surface. We also measured atmospheric sea salt concentration in Choushi test center to make the environment condition clear and compared the measurement data with the calculation data to verify the evaluation model. We are developing the automatic measuring device for atmospheric sea salt concentration. To check its performance, we are measuring atmospheric sea salt concentration in Yokosuka Area of CRIEPI and it was confirmed that the device works for one month automatically and fulfills its specifications. (author)

  18. Metallic nanocone array photonic substrate for high-uniformity surface deposition and optical detection of small molecules

    International Nuclear Information System (INIS)

    Coppe, Jean-Philippe; Xu Zhida; Chen Yi; Logan Liu, G

    2011-01-01

    Molecular probe arrays printed on solid surfaces such as DNA, peptide, and protein microarrays are widely used in chemical and biomedical applications especially genomic and proteomic studies (Pollack et al 1999 Nat. Genet. 23 41-6, Houseman et al 2002 Nat. Biotechnol. 20 270-4, Sauer et al 2005 Nat. Rev. Genet. 6 465-76) as well as surface imaging and spectroscopy (Mori et al 2008 Anal. Biochem. 375 223-31, Liu et al 2006 Nat. Nanotechnol. 1 47-52, Liu 2010 IEEE J. Sel. Top. Quantum Electron. 16 662-71). Unfortunately the printed molecular spots on solid surfaces often suffer low distribution uniformity due to the lingering 'coffee stain' (Deegan et al 1997 Nature 389 827-9) problem of molecular accumulations and blotches, especially around the edge of deposition spots caused by solvent evaporation and convection processes. Here we present, without any surface chemistry modification, a unique solid surface of high-aspect-ratio silver-coated silicon nanocone arrays that allows highly uniform molecular deposition and thus subsequent uniform optical imaging and spectroscopic molecular detection. Both fluorescent Rhodamine dye molecules and unlabeled oligopeptides are printed on the metallic nanocone photonic substrate surface as circular spot arrays. In comparison with the printed results on ordinary glass slides and silver-coated glass slides, not only high printing density but uniform molecular distribution in every deposited spot is achieved. The high-uniformity and repeatability of molecular depositions on the 'coffee stain'-free nanocone surface is confirmed by laser scanning fluorescence imaging and surface enhanced Raman imaging experiments. The physical mechanism for the uniform molecular deposition is attributed to the superhydrophobicity and localized pinned liquid-solid-air interface on the silver-coated silicon nanocone surface. The unique surface properties of the presented nanocone surface enabled high-density, high-uniformity probe spotting beneficial

  19. Surface modification of Ti-30Ta alloy by electrospun PCL deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wada, C.M.; Rangel, A.L.R.; Souza, M.A. de; Claro, A.P.R.A.; Rezende, M.C.R. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), SP (Brazil); Almeida, R. dos S. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2014-07-01

    Full text: Surface modifications techniques have been used for change the inert surface of the titanium alloys for better interaction. Ingots of the experimental alloy Ti30Ta were melted in an arc furnace and re-melted ten times at least. They were homogenized under vacuum at 1000 °C for 86. 4 ks to eliminate chemical segregation and cold-worked by swaging. Discs were immersed in aqueous NaOH solution for 24 h, dried at room temperature, immersed in HCl and dried at 40 °C in oven for 24 hours. Followed, PCL fibers were deposited on the Ti30Ta alloy discs surfaces by electrospinning. Plasma treatment was carried out for change PCL electrospun by using stainless steel plasma reactor. Samples were immersed in SBF 5x solution for apatite growth. Surfaces were evaluated by using SEM, X-rays diffraction and contact angle. Samples exhibited hydrophilic behavior after plasma treatment and SBF immersion. Results are very interesting for biomedical applications. (author)

  20. Surface modification of Ti-30Ta alloy by electrospun PCL deposition

    International Nuclear Information System (INIS)

    Wada, C.M.; Rangel, A.L.R.; Souza, M.A. de; Claro, A.P.R.A.; Rezende, M.C.R.; Almeida, R. dos S.

    2014-01-01

    Full text: Surface modifications techniques have been used for change the inert surface of the titanium alloys for better interaction. Ingots of the experimental alloy Ti30Ta were melted in an arc furnace and re-melted ten times at least. They were homogenized under vacuum at 1000 °C for 86. 4 ks to eliminate chemical segregation and cold-worked by swaging. Discs were immersed in aqueous NaOH solution for 24 h, dried at room temperature, immersed in HCl and dried at 40 °C in oven for 24 hours. Followed, PCL fibers were deposited on the Ti30Ta alloy discs surfaces by electrospinning. Plasma treatment was carried out for change PCL electrospun by using stainless steel plasma reactor. Samples were immersed in SBF 5x solution for apatite growth. Surfaces were evaluated by using SEM, X-rays diffraction and contact angle. Samples exhibited hydrophilic behavior after plasma treatment and SBF immersion. Results are very interesting for biomedical applications. (author)

  1. Structure-related antibacterial activity of a titanium nanostructured surface fabricated by glancing angle sputter deposition

    International Nuclear Information System (INIS)

    Sengstock, Christina; Borgmann, Anna; Schildhauer, Thomas A; Köller, Manfred; Lopian, Michael; Motemani, Yahya; Khare, Chinmay; Buenconsejo, Pio John S; Ludwig, Alfred

    2014-01-01

    The aim of this study was to reproduce the physico-mechanical antibacterial effect of the nanocolumnar cicada wing surface for metallic biomaterials by fabrication of titanium (Ti) nanocolumnar surfaces using glancing angle sputter deposition (GLAD). Nanocolumnar Ti thin films were fabricated by GLAD on silicon substrates. S. aureus as well as E. coli were incubated with nanostructured or reference dense Ti thin film test samples for one or three hours at 37 °C. Bacterial adherence, morphology, and viability were analyzed by fluorescence staining and scanning electron microscopy and compared to human mesenchymal stem cells (hMSCs). Bacterial adherence was not significantly different after short (1 h) incubation on the dense or the nanostructured Ti surface. In contrast to S. aureus the viability of E. coli was significantly decreased after 3 h on the nanostructured film compared to the dense film and was accompanied by an irregular morphology and a cell wall deformation. Cell adherence, spreading and viability of hMSCs were not altered on the nanostructured surface. The results show that the selective antibacterial effect of the cicada wing could be transferred to a nanostructured metallic biomaterial by mimicking the natural nanocolumnar topography. (papers)

  2. Revegetation of Acid Rock Drainage (ARD) Producing Slope Surface Using Phosphate Microencapsulation and Artificial Soil

    Science.gov (United States)

    Kim, Jae Gon

    2017-04-01

    Oxidation of sulfides produces acid rock drainage (ARD) upon their exposure to oxidation environment by construction and mining activities. The ARD causes the acidification and metal contamination of soil, surface water and groundwater, the damage of plant, the deterioration of landscape and the reduction of slope stability. The revegetation of slope surface is one of commonly adopted strategies to reduce erosion and to increase slope stability. However, the revegetation of the ARD producing slope surface is frequently failed due to its high acidity and toxic metal content. We developed a revegetation method consisting of microencapsualtion and artificial soil in the laboratory. The revegetation method was applied on the ARD producing slope on which the revegetation using soil coverage and seeding was failed and monitored the plant growth for one year. The phosphate solution was applied on sulfide containing rock to form stable Fe-phosphate mineral on the surface of sulfide, which worked as a physical barrier to prevent contacting oxidants such as oxygen and Fe3+ ion to the sulfide surface. After the microencapsulation, two artificial soil layers were constructed. The first layer containing organic matter, dolomite powder and soil was constructed at 2 cm thickness to neutralize the rising acidic capillary water from the subsurface and to remove the dissolved oxygen from the percolating rain water. Finally, the second layer containing seeds, organic matter, nutrients and soil was constructed at 3 cm thickness on the top. After application of the method, the pH of the soil below the artificial soil layer increased and the ARD production from the rock fragments reduced. The plant growth showed an ordinary state while the plant died two month after germination for the previous revegetation trial. No soil erosion occurred from the slope during the one year field test.

  3. Comparison of Microstructure and Mechanical Properties of Scalmalloy® Produced by Selective Laser Melting and Laser Metal Deposition.

    Science.gov (United States)

    Awd, Mustafa; Tenkamp, Jochen; Hirtler, Markus; Siddique, Shafaqat; Bambach, Markus; Walther, Frank

    2017-12-23

    The second-generation aluminum-magnesium-scandium (Al-Mg-Sc) alloy, which is often referred to as Scalmalloy ® , has been developed as a high-strength aluminum alloy for selective laser melting (SLM). The high-cooling rates of melt pools during SLM establishes the thermodynamic conditions for a fine-grained crack-free aluminum structure saturated with fine precipitates of the ceramic phase Al₃-Sc. The precipitation allows tensile and fatigue strength of Scalmalloy ® to exceed those of AlSi10Mg by ~70%. Knowledge about properties of other additive manufacturing processes with slower cooling rates is currently not available. In this study, two batches of Scalmalloy ® processed by SLM and laser metal deposition (LMD) are compared regarding microstructure-induced properties. Microstructural strengthening mechanisms behind enhanced strength and ductility are investigated by scanning electron microscopy (SEM). Fatigue damage mechanisms in low-cycle (LCF) to high-cycle fatigue (HCF) are a subject of study in a combined strategy of experimental and statistical modeling for calculation of Woehler curves in the respective regimes. Modeling efforts are supported by non-destructive defect characterization in an X-ray computed tomography (µ-CT) platform. The investigations show that Scalmalloy ® specimens produced by LMD are prone to extensive porosity, contrary to SLM specimens, which is translated to ~30% lower fatigue strength.

  4. Durable and mass producible polymer surface structures with different combinations of micro–micro hierarchy

    International Nuclear Information System (INIS)

    Jiang, Yu; Suvanto, Mika; Pakkanen, Tapani A

    2016-01-01

    Extensive studies have been performed with the aim of fabricating hierarchical surface structures inspired by nature. However, synthetic hierarchical structures have to sacrifice mechanical resistance to functionality by introducing finer scaled structures. Therefore, surfaces are less durable. Surface micro–micro hierarchy has been proven to be effective in replacing micro–nano hierarchy in the sense of superhydrophobicity. However, less attention has been paid to the combined micro–micro hierarchies with surface pillars and pits incorporated together. The fabrication of this type of hierarchy may be less straightforward, with the possibility of being a complicated multi-step process. In this study, we present a simple yet mass producible fabrication method for hierarchical structures with different combinations of surface pillars and pits. The fabrication was based on only one aluminum (Al) mold with sequential mountings. The fabricated structures exhibit high mechanical durability and structural stabilities with a normal load up to 100 kg. In addition, the theoretical estimation of the wetting state shows a promising way of stabilizing a water droplet on the surface pit structures with a more stable Cassie–Baxter state. (paper)

  5. Pit formation on stainless steel surfaces pre-treated with biosurfactants produced by Pseudomonas fluorescens

    International Nuclear Information System (INIS)

    Dagbert, Catherine; Meylheuc, Thierry; Bellon-Fontaine, Marie-Noelle

    2008-01-01

    Today, it is widely established that the surface tension of water can be reduced by some microorganisms capable of synthesizing surface-active compounds called biosurfactants (BS). BS characteristics depend on the microorganism that produces them and therefore, on the microorganism culture conditions. Some studies on chemical surfactants have shown that the adsorption of surface-active compounds plays a major role in corrosion; indeed they are used as a good corrosion inhibition tool. The purpose of this study was first, to estimate the importance and behavior of the stainless steels passive film on the adsorption of BS, produced by the Gram negative bacteria Pseudomonas fluorescens, and secondly, to study the impact of these treatments on the pitting corrosion. In this paper, the galvanostatic polarization technique, used as accelerated method for determining the characteristic pit potentials on stainless steels, is examined. Pit growth, shape and cover formation were also observed. The surface topography of the corroded specimens was investigated using field emission scanning electron microscopy (FESEM)

  6. Pit formation on stainless steel surfaces pre-treated with biosurfactants produced by Pseudomonas fluorescens

    Energy Technology Data Exchange (ETDEWEB)

    Dagbert, Catherine [ECP-LGPM, Grande Voie des Vignes, 92295 Chatenay-Malabry (France)], E-mail: catherine.dagbert@ecp.fr; Meylheuc, Thierry; Bellon-Fontaine, Marie-Noelle [INRA, UMR 763 Bioadhesion et Hygiene des Materiaux, F-91300 Massy (France); AGROPARISTECH, UMR 763 Bioadhesion et Hygiene des Materiaux, F-91300 Massy (France)

    2008-12-01

    Today, it is widely established that the surface tension of water can be reduced by some microorganisms capable of synthesizing surface-active compounds called biosurfactants (BS). BS characteristics depend on the microorganism that produces them and therefore, on the microorganism culture conditions. Some studies on chemical surfactants have shown that the adsorption of surface-active compounds plays a major role in corrosion; indeed they are used as a good corrosion inhibition tool. The purpose of this study was first, to estimate the importance and behavior of the stainless steels passive film on the adsorption of BS, produced by the Gram negative bacteria Pseudomonas fluorescens, and secondly, to study the impact of these treatments on the pitting corrosion. In this paper, the galvanostatic polarization technique, used as accelerated method for determining the characteristic pit potentials on stainless steels, is examined. Pit growth, shape and cover formation were also observed. The surface topography of the corroded specimens was investigated using field emission scanning electron microscopy (FESEM)

  7. Metrological Aspects of Surface Topographies Produced by Different Machining Operations Regarding Their Potential Functionality

    Directory of Open Access Journals (Sweden)

    Żak Krzysztof

    2017-06-01

    Full Text Available This paper presents a comprehensive methodology for measuring and characterizing the surface topographies on machined steel parts produced by precision machining operations. The performed case studies concern a wide spectrum of topographic features of surfaces with different geometrical structures but the same values of the arithmetic mean height Sa. The tested machining operations included hard turning operations performed with CBN tools, grinding operations with Al2O3 ceramic and CBN wheels and superfinish using ceramic stones. As a result, several characteristic surface textures with the Sa roughness parameter value of about 0.2 μm were thoroughly characterized and compared regarding their potential functional capabilities. Apart from the standard 2D and 3D roughness parameters, the fractal, motif and frequency parameters were taken in the consideration.

  8. Surface passivation of nano-textured fluorescent SiC by atomic layer deposited TiO2

    DEFF Research Database (Denmark)

    Lu, Weifang; Ou, Yiyu; Jokubavicius, Valdas

    2016-01-01

    Nano-textured surfaces have played a key role in optoelectronic materials to enhance the light extraction efficiency. In this work, morphology and optical properties of nano-textured SiC covered with atomic layer deposited (ALD) TiO2 were investigated. In order to obtain a high quality surface fo...

  9. Surface resistance of YBa2Cu3O7 films deposited on LaGaO3 substrates

    International Nuclear Information System (INIS)

    Cooke, D.W.; Gray, E.R.; Houlton, R.J.; Javadi, H.H.S.; Maez, M.A.; Bennett, B.L.; Rusnak, B.; Meyer, E.A.; Arendt, P.N.; Beery, J.G.; Brown, D.R.; Garzon, F.H.; Raistriek, I.D.; Bolmaro, B.; Elliott, N.E.; Rollett, A.D.; Klein, N.; Muller, G.; Orbach, S.; Piel, H.; Josefowicz, J.Y.; Rensch, O.B.; Drabeck, L.; Gruner, G.

    1989-01-01

    Superconducting films of YBa 2 Cu 3 O 7 deposited onto LaGaO 3 substrates were prepared by e-beam and magnetron sputtering techniques. Surface resistance measurements made at 22 GHz, 86 GHz, and 148 GHz show that these films are superior to those deposited by similar techniques onto SrTiO 3 . Typical surface resistance values measured at 22 GHz and 12 K are ∼2 m(cgom) with the lowest value being 0.2 m(cgom), which is only 2 to 4 times higher than Nb. The surface resistance is proportional to the square of the measuring frequency

  10. Fabrication of a Large-Area Superhydrophobic SiO2 Nanorod Structured Surface Using Glancing Angle Deposition

    Directory of Open Access Journals (Sweden)

    Xun Lu

    2017-01-01

    Full Text Available A glancing angle deposition (GLAD technique was used to generate SiO2 nanorods on a glass substrate to fabricate a low-cost superhydrophobic functional nanostructured surface. GLAD-deposited SiO2 nanorod structures were fabricated using various deposition rates, substrate rotating speeds, oblique angles, and deposition times to analyze the effects of processing conditions on the characteristics of the fabricated functional nanostructures. The wettability of the surface was measured after surface modification with a self-assembled monolayer (SAM. The measured water contact angles were primarily affected by substrate rotation speed and oblique angle because the surface fraction of the GLAD nanostructure was mainly affected by these parameters. A maximum contact angle of 157° was obtained from the GLAD sample fabricated at a rotation speed of 5 rpm and an oblique angle of 87°. Although the deposition thickness (height of the nanorods was not a dominant factor for determining the wettability, we selected a deposition thickness of 260 nm as the optimum processing condition based on the measured optical transmittance of the samples because optically transparent films can serve as superhydrophobic functional nanostructures for optical applications.

  11. Silver nanoparticles deposited on graphene oxide for ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarker.

    Science.gov (United States)

    Yang, Lin; Zhen, Shu Jun; Li, Yuan Fang; Huang, Cheng Zhi

    2018-06-14

    Graphene oxide (GO) exhibits distinctive Raman scattering features for its high frequency D (disordered) and tangential modes (G-band), which are characteristically sharp at 1580 cm-1 and 1350 cm-1, respectively, but are too weak for sensitive quantitation purposes. By depositing silver nanoparticles on the surface of GO in this contribution, both D and G bands of GO become enhanced. The enzyme label of this method controls the dissolution of silver nanoparticles on the surface of GO through hydrogen peroxide which is produced by the oxidation of the enzyme substrate. With the dissolution of the silver nanoparticles a greatly decreased SERS signal of GO was obtained. This strategy involves dual signal amplification of the enzyme and nanocomposites to improve the detection sensitivity. As a proof of concept, prostate specific antigen (PSA), a biomarker for prostate cancer, is successfully detected as a target by forming a sandwich structure in immunoassay. The SERS immunoassay possesses excellent analytical performance in the range 0.5 pg mL-1 to 500 pg mL-1 with a limit of detection of 0.23 pg mL-1, making the detection of PSA serum samples from prostate cancer patients satisfactory, demonstrating that the sensitive enzyme-assisted dissolved AgNPs SERS immunoassay of PSA has potential applications in clinical diagnosis.

  12. Corrosion product deposition on fuel element surfaces of a boiling water reactor

    International Nuclear Information System (INIS)

    Orlov, A.

    2011-01-01

    solid solutions. These spinels are well-known for their magnetic behaviour. Since non magnetic zinc ferrite (ZnFe 2 O 4 ) may become magnetic when doped with even small amounts of Ni and/or Mn, their occurrence in the deposit layer has been analyzed. The magnetic permeability of zinc ferrite, trevorite (NiFe 2 O 4 ) and jacobsite (MnFe 2 O 4 ) and their solid solutions are estimated by magnetic moment additivity. The theoretical and literature data are compared with the magnetic permeability of the spinel-type fuel deposition layers gained by reactor pool side Eddy current (EC) analyses. The calculated thicknesses and magnetic permeability values of the deposition layers (estimated by MAGNACROX multifrequency EC method) are compared with the values estimated using an “ion magnetic moment additivity” model. The buildup of corrosion product deposits (crud) on the fuel cladding of the boiling water reactor, Kernkraftwerk Leibstadt (KKL) Switzerland has been investigated by using Gibbs Energy Minimization (GEM-Selector code) calculations of thermodynamic equilibrium at in situ temperatures and pressures, and by applying local experimental PIE techniques. Under the KKL water chemistry conditions, Zn addition together with the presence of Ni and Mn induce the formation of (Zn,Ni,Mn)Fe 2 O 4 spinel solid solutions. GEM calculations applied to the boiling zone match with the EPMA findings, indicating that zinc-rich ferritic spinels are formed on KKL fuel cladding mainly at the lower pin elevations under Zn water chemistry conditions. For the prediction of the crud formation on the fuel cladding, Gibbs energy minimization of the element species during water evaporation in the BWR core were modelled. On the base of the literature data, the solid solution model is proposed and used for the modelling. The modelled processes of water evaporation propose that the spinel phase is formed only at large amount of the evaporated water locally at the pin surface. Finally, all the

  13. Development surface modification technologies - A development of new nuclear materials by thin film deposition methods

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jong; Lee, Min Goo; Kim, Hyun Ho; Kim, Yong Il; Kwang, Hee Soo [Korea Advanced Institute of Scienec and Technology, Taejon (Korea, Republic of)

    1995-08-01

    Pitting corrosion of TiN-coted Inconel 600 in hightemperature chloride solution was studied. To improve the pitting resistance of Inconel 600 by depositing TiN thin film, TiN must have the thickness greater than a critical value at which the characteristics of the film itself appear. E{sub np}s of the TiN-coated sample were higher than those of the bare Inconel 600 at all the solution temperature implying that the TiN film improved the pitting resistance. The heavy defects on the surface of the substrate which were incompletely covered by TiN film served as the active sites for the pit nucleation. Fine polishing reduced those defects and improved the pitting resistance of the TiN-coated Inconel 600. The pit densities of the TiN-coated samples were much lower than those of the bare Inconel 600 at low chloride concentrations. However, at high chloride concentrations the TiN film failed to improve the pitting resistance of the Inconel. The TiN film deposited by ion-plating on Stellite was studied. The X-ray analysis shows that the deposited films were only in .delta.-TiN phase and the texture was changed from (111) to (200) with the increase of N{sub 2}/Ar ratio. The impurities in TiN films were carbon and oxygen. The amounts of these impurities were decreased greatly when the substrate bias, -200 V, was applied compared to no bias. 40 refs., 4 tabs., 20 figs. (author)

  14. Fabrication and surface passivation of porous 6H-SiC by atomic layer deposited films

    DEFF Research Database (Denmark)

    Lu, Weifang; Ou, Yiyu; Petersen, Paul Michael

    2016-01-01

    Porous 6H-SiC samples with different thicknesses were fabricated through anodic etching in diluted hydrofluoric acid. Scanning electron microscope images show that the dendritic pore formation in 6HSiC is anisotropic, which has different lateral and vertical formation rates. Strong photoluminesce...... above the 6H-SiC crystal band gap, which suggests that the strong photoluminescence is ascribed to surface state produced during the anodic etching....

  15. Pathogenic Escherichia coli producing Extended-Spectrum β-Lactamases isolated from surface water and wastewater.

    Science.gov (United States)

    Franz, Eelco; Veenman, Christiaan; van Hoek, Angela H A M; de Roda Husman, Ana; Blaak, Hetty

    2015-09-24

    To assess public health risks from environmental exposure to Extended-Spectrum β-Lactamases (ESBL)-producing bacteria, it is necessary to have insight in the proportion of relative harmless commensal variants and potentially pathogenic ones (which may directly cause disease). In the current study, 170 ESBL-producing E. coli from Dutch wastewater (n = 82) and surface water (n = 88) were characterized with respect to ESBL-genotype, phylogenetic group, resistance phenotype and virulence markers associated with enteroaggregative E. coli (EAEC), enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), extraintesinal E. coli (ExPEC), and Shiga toxin-producing E. coli (STEC). Overall, 17.1% of all ESBL-producing E. coli were suspected pathogenic variants. Suspected ExPECs constituted 8.8% of all ESBL-producing variants and 8.3% were potential gastrointestinal pathogens (4.1% EAEC, 1.8% EPEC, 1.2% EIEC, 1.2% ETEC, no STEC). Suspected pathogens were significantly associated with ESBL-genotype CTX-M-15 (X(2) = 14.7, P antibiotics. In conclusion, this study demonstrates that the aquatic environment is a potential reservoir of E. coli variants that combine ESBL-genes, a high level of multi-drug resistance and virulence factors, and therewith pose a health risk to humans upon exposure.

  16. The use of large surface area for particle and power deposition

    International Nuclear Information System (INIS)

    Seigneur, A.; Guilhem, D.; Hogan, J.

    1993-01-01

    Since the parallel heat flux passing through the LCFS has increased dramatically with the size of machines one has to cope with very large particle and power fluxes on the limiters. Thus the size of the limiters has been increased by the use of inner bumper limiters (for example in JET, TFTR, TORE-SUPRA and JT60). The 'exponential-sine' model is widely used to estimate the heat flux (Q) to a wall for a plasma flux surface with incident angle θ. The model predict Q = q || (0) sinθ e -ρ/λ q + q(0) cosθ e -ρ/λ q , (where θ=0 o when the flux surface is exactly tangential to the limiting surface), ρ is the minor radius measured from the last closed flux surface (LCFS), λ q is the SOL decay length of the heat flux density and q(0) is the heat flux density at the last closed surface. If we approximate the heat flux as Q = q || (0) e -ρ/λ q sin(θ+α), with α ≡ tan -1 [q(0)/q || (0)], then α can be interpreted as an effective 'minimum angle of incidence'. Under conditions where the geometric angle θ has been made almost grazing (below 5 o ) the predictions of the simplest model (with α=0 o ) is not adequate to represent the observation made in TORE-SUPRA; a similar result is found in TFTR. Experimental observations of heat and particle deposition on the large area limiter on the inner wall of TORE-SUPRA are presented. These results have been analyzed with a Monte Carlo code (THOR) describing the diffusion of hydrogenic particles across the LCFS to the limiting objects in the Scrape Off Layer (SOL), and by impurity generation calculations using the full 'exponential-sine' model (α ≠ 0) used as input to an impurity (carbon) Monte Carlo code (BBQ). (author) 6 refs., 3 figs., 1 tab

  17. Shielding factors for gamma radiation from activity deposited on structures and ground surfaces

    International Nuclear Information System (INIS)

    Hedemann Jensen, P.

    1982-11-01

    This report describes a computer model that calculates shielding factors for indoor residence in multistorey and single-family houses for gamma radiation from activity despoited on roofs, outer walls, and ground surfaces. The dimensions of the buildings including window areas and the nearby surroundings has to be speficied in the calculations. Shielding factors can be calculated for different photon energies and for a uniform surface activity distribution as well as for separate activity on roof, outer wall, and ground surface achieved from decontamination or different deposition velocities. For a given area with a known distribution of different houses a weighted shielding factor can be calculated as well as a time-averaged one based on a given residence time distribution for work/school, home, outdoors, and transportation. Calculated shielding factors are shown for typical Danish houses. To give an impression of the sensitivity of the shielding factor on the parameters used in the model, variations were made in some of the most important parameters: wall thickness, road and ground width, percentage of outer wall covered by windows, photon energy, and decontamination percentage for outer walls, ground and roofs. The uncertainity of the calculations is discussed. (author)

  18. Where the oil from surface and subsurface plumes deposited during/after Deepwater Horizon oil spill?

    Science.gov (United States)

    Yan, B.

    2016-02-01

    The Deepwater Horizon (DwH) oil spill released an estimated 4.9 million barrels (about 200 million gallons) of crude oil into the Gulf of Mexico between April 20, 2010 and July 15, 2010. Though Valentine et al. has linked the elevated oil components in some sediments with the subsurface plume, the sites with fallout from the ocean surface plume has not been identified. This piece of information is critical not only for a comprehensive scientific understanding of the ecosystem response and fate of spill-related pollutants, but also for litigation purposes and future spill response and restoration planning. In this study we focus on testing the hypothesis that marine snow from the surface plume were deposited on the sea floor over a broad area. To do so, we use publicly available data generated as part of the ongoing Natural Resource Damage Assessment (NRDA) process to assess the spatial distribution of petroleum hydrocarbons in the water column and deep-ocean sediments of the Gulf of Mexico. Sensitive hydrocarbon markers are used to differentiate hydrocarbons from surface plume, deep subsurface plume, and in-situ burning. Preliminary results suggest the overlapping but different falling sites of these plumes and the sedimentation process was controlled by various biological, chemical, and physical factors.

  19. Reactivity of surface of metal oxide particles: from adsorption of ions to deposition of colloidal particles

    International Nuclear Information System (INIS)

    Lefevre, Gregory

    2010-01-01

    In this Accreditation to supervise research (HDR), the author proposes an overview of his research works in the field of chemistry. These works more particularly addressed the understanding of the surface reactivity of metal oxide particles and its implication on sorption and adherence processes. In a first part, he addresses the study of surface acidity-alkalinity: measurement of surface reactivity by acid-base titration, stability of metal oxides in suspension, effect of morphology on oxide-hydroxide reactivity. The second part addresses the study of sorption: reactivity of iron oxides with selenium species, sorption of sulphate ions on magnetite, attenuated total reflection infrared spectroscopy (ATR-IR). Adherence effects are addressed in the third part: development of an experimental device to study adherence in massive substrates, deposition of particles under turbulent flow. The last part presents a research project on the effect of temperature on ion sorption at solids/solutions interfaces, and on the adherence of metal oxide particles. The author gives his detailed curriculum, and indicates his various publications, teaching activities, research and administrative responsibilities

  20. Surface functionalization of 3D-printed plastics via initiated chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    Christine Cheng

    2017-08-01

    Full Text Available 3D printing is a useful fabrication technique because it offers design flexibility and rapid prototyping. The ability to functionalize the surfaces of 3D-printed objects allows the bulk properties, such as material strength or printability, to be chosen separately from surface properties, which is critical to expanding the breadth of 3D printing applications. In this work, we studied the ability of the initiated chemical vapor deposition (iCVD process to coat 3D-printed shapes composed of poly(lactic acid and acrylonitrile butadiene styrene. The thermally insulating properties of 3D-printed plastics pose a challenge to the iCVD process due to large thermal gradients along the structures during processing. In this study, processing parameters such as the substrate temperature and the filament temperature were systematically varied to understand how these parameters affect the uniformity of the coatings along the 3D-printed objects. The 3D-printed objects were coated with both hydrophobic and hydrophilic polymers. Contact angle goniometry and X-ray photoelectron spectroscopy were used to characterize the functionalized surfaces. Our results can enable the use of iCVD to functionalize 3D-printed materials for a range of applications such as tissue scaffolds and microfluidics.

  1. Laser-Aided Directed Energy Deposition of Steel Powder over Flat Surfaces and Edges.

    Science.gov (United States)

    Caiazzo, Fabrizia; Alfieri, Vittorio

    2018-03-16

    In the framework of Additive Manufacturing of metals, Directed Energy Deposition of steel powder over flat surfaces and edges has been investigated in this paper. The aims are the repair and overhaul of actual, worn-out, high price sensitive metal components. A full-factorial experimental plan has been arranged, the results have been discussed in terms of geometry, microhardness and thermal affection as functions of the main governing parameters, laser power, scanning speed and mass flow rate; dilution and catching efficiency have been evaluated as well to compare quality and effectiveness of the process under conditions of both flat and edge depositions. Convincing results are presented to give grounds for shifting the process to actual applications: namely, no cracks or pores have been found in random cross-sections of the samples in the processing window. Interestingly an effect of the scanning conditions has been proven on the resulting hardness in the fusion zone; therefore, the mechanical characteristics are expected to depend on the processing parameters.

  2. Optimization of operating parameters in polysilicon chemical vapor deposition reactor with response surface methodology

    Science.gov (United States)

    An, Li-sha; Liu, Chun-jiao; Liu, Ying-wen

    2018-05-01

    In the polysilicon chemical vapor deposition reactor, the operating parameters are complex to affect the polysilicon's output. Therefore, it is very important to address the coupling problem of multiple parameters and solve the optimization in a computationally efficient manner. Here, we adopted Response Surface Methodology (RSM) to analyze the complex coupling effects of different operating parameters on silicon deposition rate (R) and further achieve effective optimization of the silicon CVD system. Based on finite numerical experiments, an accurate RSM regression model is obtained and applied to predict the R with different operating parameters, including temperature (T), pressure (P), inlet velocity (V), and inlet mole fraction of H2 (M). The analysis of variance is conducted to describe the rationality of regression model and examine the statistical significance of each factor. Consequently, the optimum combination of operating parameters for the silicon CVD reactor is: T = 1400 K, P = 3.82 atm, V = 3.41 m/s, M = 0.91. The validation tests and optimum solution show that the results are in good agreement with those from CFD model and the deviations of the predicted values are less than 4.19%. This work provides a theoretical guidance to operate the polysilicon CVD process.

  3. Deceleration-driven wetting transition of "gently" deposited drops on textured hydrophobic surfaces

    Science.gov (United States)

    Varanasi, Kripa; Kwon, Hyukmin; Paxson, Adam; Patankar, Neelesh

    2010-11-01

    Many applications of rough superhydrophobic surfaces rely on the presence of droplets in a Cassie state on the substrates. A well established understanding is that if sessile droplets are smaller than a critical size, then the large Laplace pressure induces wetting transition from a Cassie to a Wenzel state, i.e., the liquid impales the roughness grooves. Thus, larger droplets are expected to remain in the Cassie state. In this work we report a surprising wetting transition where even a "gentle" deposition of droplets on rough substrates lead to the transition of larger droplets to the Wenzel state. A hitherto unknown mechanism based on rapid deceleration is identified. It is found that modest amount of energy, during the deposition process, is channeled through rapid deceleration into high water hammer pressure which induces wetting transition. A new "phase" diagram is reported which shows that both large and small droplets can transition to Wenzel states due to the deceleration and Laplace mechanisms, respectively. This novel insight reveals for the first time that the attainment of a Cassie state is more restrictive than previous criteria based on the Laplace pressure transition mechanism.

  4. Polystyrene sphere monolayer assisted electrochemical deposition of ZnO nanorods with controlable surface density

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, D., E-mail: daniel.ramirez@ucv.c [Laboratorio de Electroquimica, Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Gomez, H. [Laboratorio de Electroquimica, Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Lincot, D. [Institute de Recherche et Developpement sur l' Energie Photovoltaique-IRDEP, 6 Quai Watier 78401, Chatou Cedex (France)

    2010-02-15

    In this paper we report the zinc oxide nanorods (ZnO NRs) growth by electrochemical deposition onto polycrystalline gold electrodes modified with assemblies of polystyrene sphere monolayers (PSSMs). Growth occurs through the interstitial spaces between the hexagonally close packed spheres. ZnO NRs nucleate in the region where three adjacent spheres leave a space, being able to grow and projected over the PSSMs. The nanorod surface density (N{sub NR}) shows a linear dependence with respect to a PS sphere diameter selected. XRD analysis shows these ZnO NRs are highly oriented along the (0 0 2) plane (c-axis). This open the possibility to have electronic devices with mechanically supported nanometric materials.

  5. Deposition of additives onto surface of carbon materials by blending method--general conception

    International Nuclear Information System (INIS)

    Przepiorski, Jacek

    2005-01-01

    Carbon fibers loaded with potassium carbonate and with metallic copper were prepared by applying a blending method. Raw isotropic coal pitch was blended with KOH or CuBr 2 and obtained mixtures were subjected to spinning. In this way KOH and copper salt-blended fiber with uniform distribution of potassium and copper were spun. The raw fibers were exposed to stabilization with a mixture of CO 2 and air or air only through heating to 330 deg. C and next to treatment with carbon dioxide or hydrogen at higher temperatures. Electron probe micro-analysis (EPMA) analyses showed presence of potassium carbonate or metallic copper predominantly in peripheral regions of the obtained fibers. Basing on the mechanisms of potassium and copper diffusion over the carbon volume, generalized method for the deposition of additives onto surface of carbon materials is proposed

  6. Formation of Micro- and Nanostructures on the Nanotitanium Surface by Chemical Etching and Deposition of Titania Films by Atomic Layer Deposition (ALD

    Directory of Open Access Journals (Sweden)

    Denis V. Nazarov

    2015-12-01

    Full Text Available In this study, an integrated approach was used for the preparation of a nanotitanium-based bioactive material. The integrated approach included three methods: severe plastic deformation (SPD, chemical etching and atomic layer deposition (ALD. For the first time, it was experimentally shown that the nature of the etching medium (acidic or basic Piranha solutions and the etching time have a significant qualitative impact on the nanotitanium surface structure both at the nano- and microscale. The etched samples were coated with crystalline biocompatible TiO2 films with a thickness of 20 nm by Atomic Layer Deposition (ALD. Comparative study of the adhesive and spreading properties of human osteoblasts MG-63 has demonstrated that presence of nano- and microscale structures and crystalline titanium oxide on the surface of nanotitanium improve bioactive properties of the material.

  7. Magnetic fields produced by rotating symmetrical bodies with homogeneous surface charge density

    International Nuclear Information System (INIS)

    Espejel-Morales, R; Murguía-Romero, G; Calles, A; Cabrera-Bravo, E; Morán-López, J L

    2016-01-01

    We present a numerical calculation for the stationary magnetic field produced by different rotating bodies with homogeneous and constant surface charge density. The calculation is done by superposing the magnetic field produced by a set of loops of current which mimic the magnetic field produced by belts of current defined by slices of fixed width. We consider the cases of a sphere, ellipsoids, open and closed cylinders and a combination of these in a dumbbell -like shell. We also plot their magnetic field lines using a technique that make use of the Runge–Kutta fourth-order method. Up to our knowledge, the case of closed cylinders was not calculated before. In contrast to previous results, we find that the magnetic field inside finite hollow bodies is homogeneous only in the case of a sphere. This is consequence of the fact that, for the sphere, the surface of any slice taken perpendicularly to the rotation axis, depends only on its thickness, like in the case of an infinite cylinder. (paper)

  8. Gloss and surface roughness produced by polishing kits on resin composites.

    Science.gov (United States)

    Sadidzadeh, Ramtin; Cakir, Deniz; Ramp, Lance C; Burgess, John O

    2010-08-01

    To compare in vitro the surface roughness (Ra) and gloss (G) produced by three conventional and one experimental polishing kits on four resin composites. 24 discs were prepared (d = 12 mm, t = 4 mm) for each resin composite: Filtek Supreme Plus Body/A2 (FSB), Yellow Translucent (FST), Heliomolar/A2 (HM), and EsthetX/A2 (EX) following the manufacturers' instructions. They were finished with 320 grit silicon carbide paper for 80 seconds each. Polishing systems: Sof-Lex, Enhance-Pogo, Astropol and Experimental Discs/EXL-695, were applied following manufacturers' instructions. Each specimen was ultrasonically cleaned with distilled water and dried. Gloss and Ra were measured with a small area glossmeter (Novo-curve) and non-contact profilometer (Proscan 2000) following ISO 4288, respectively. The results were evaluated by two-way ANOVA followed by separate one-way ANOVA and Tukey/Kramer test (P = 0.05). There was a significant interaction of surface roughness and gloss between the composites and polishing systems (P gloss was obtained for FSB composite polished with the Experimental kit. The experimental polishing system produced smoothest surfaces (P gloss (P < 0.05).

  9. 10 GHz surface impedance measurements of (Y9Er)BaCuO films produced by MOCVD, laser ablation, and sputtering

    International Nuclear Information System (INIS)

    Luine, J.; Daly, K.; Hu, R.; Kain, A.; Lee, A.; Manasevit, H.; Pettiette-Hall, C.; Simon, R.; St John, D.; Wagner, M.

    1991-01-01

    This paper reports on a parallel-plate resonator technique previously used to measure microwave surface resistance R s (T) extended to also measure absolute penetration depth λ(T). Measurements of both quantities near 10 GHz from 4.2 K to Tc are reported for ErBaCuO thin films produced by metal-organic chemical vapor deposition (MOCVD) and YBaCuO think films produced by laser ablation and single-target off-axis sputtering. All the films were made at TRW. Each production method gives rise to films whose surface resistance is below 1 milliohm at temperatures below 40K. The low temperature penetration depths range from 250 nm for the laser ablation and sputtered films to 800 nm for the MOCVD films. The penetration depths in all cases increase with temperature according to the Gorter-Casimir temperature dependence

  10. Simulation of trace metals and PAH atmospheric pollution over Greater Paris: Concentrations and deposition on urban surfaces

    Science.gov (United States)

    Thouron, L.; Seigneur, C.; Kim, Y.; Legorgeu, C.; Roustan, Y.; Bruge, B.

    2017-10-01

    Urban areas can be subject not only to poor air quality, but also to contamination of other environmental media by air pollutants. Here, we address the potential transfer of selected air pollutants (two metals and three PAH) to urban surfaces. To that end, we simulate meteorology and air pollution from Europe to a Paris suburban neighborhood, using a four-level one-way nesting approach. The meteorological and air quality simulations use urban canopy sub-models in order to better represent the effect of the urban morphology on the air flow, atmospheric dispersion, and deposition of air pollutants to urban surfaces. This modeling approach allows us to distinguish air pollutant deposition among various urban surfaces (roofs, roads, and walls). Meteorological model performance is satisfactory, showing improved results compared to earlier simulations, although precipitation amounts are underestimated. Concentration simulation results are also satisfactory for both metals, with a fractional bias Paris region. The model simulation results suggest that both wet and dry deposition processes need to be considered when estimating the transfer of air pollutants to other environmental media. Dry deposition fluxes to various urban surfaces are mostly uniform for PAH, which are entirely present in fine particles. However, there is significantly less wall deposition compared to deposition to roofs and roads for trace metals, due to their coarse fraction. Meteorology, particle size distribution, and urban morphology are all important factors affecting air pollutant deposition. Future work should focus on the collection of data suitable to evaluate the performance of atmospheric models for both wet and dry deposition with fine spatial resolution.

  11. Surface structure of ultrathin metal films deposited on copper single crystals

    International Nuclear Information System (INIS)

    Butterfield, M.T.

    2000-04-01

    Ultrathin films of Cobalt, Iron and Manganese have been thermally evaporated onto an fcc Copper (111) single crystal substrate and investigated using a variety of surface structural techniques. The small lattice mismatch between these metals and the Cu (111) substrate make them an ideal candidate for the study of the phenomena of pseudomorphic film growth. This is important for the understanding of the close relationship between film structure and magnetic properties. Growing films with the structure of their substrate rather than their bulk phase may provide an opportunity to grow materials with novel physical and magnetic properties, and hence new technological applications. Both Cobalt and Iron have been found to initially maintain a registry with the fcc Cu (111) surface in a manner consistent with pseudomorphic growth. This growth is complicated by island rather than layer by layer growth in the initials stages of the film. In both cases a change in the structure of the film seems to occur at a point where the coalescence of islands in the film may be expected to occur. When the film does change structure they do not form a perfect overlayer with the structure of their bulk counterpart. The films do contain a number of features representative of the bulk phase but also contain considerable disorder and possibly remnants of fcc (111) structure. The order present in these films can be greatly improved by annealing. Manganese appears to grow with an fcc Mn (111) lattice spacing and there is no sign of a change in structure in films of up to 4.61 ML thick. The gradual deposition and annealing of a film to 300 deg. C, with a total deposition time the same as that for a 1 ML thick film, causes a surface reconstruction to occur that is apparent in a R30 deg. (√3 x √3) LEED pattern. This is attributed to the formation of a surface alloy, which is also supported by the local expansion of the Cu lattice in the (111) direction. (author)

  12. Deposition behavior of polystyrene latex particles on solid surfaces during migration through an artificial fracture in a granite rock sample

    International Nuclear Information System (INIS)

    Chinju, Hirofumi; Tanaka, Satoru; Kuno, Yoshio

    2001-01-01

    The deposition behavior of colloids during transport through heterogeneous media was observed by conducting column experiments to study migration of polystyrene latex particles (diameter=309 nm) through columns packed with artificially fractured granite rock (length=300 and 150 mm). The experiments were conducted under conditions of different ionic strengths and flow rates. The results were similar to those for colloid deposition in columns packed with glass beads reported previously; the colloid breakthrough curves showed three stages, characterized by different rates of change in the concentration of effluent. Colloid deposition on the fracture surfaces was described by considering strong and weak deposition sites. Scanning Electron Microscopy (SEM) observations indicated the existence of strong and weak sites on the fracture surfaces regardless of mineral composition. The observations also showed that the strong deposition sites tended to exist on surface irregularities such as cracks or protrusions. The degree of colloid deposition increased with increasing ionic strength and decreasing flow rate. The dependencies on ionic strength and flow rate agreed qualitatively with the DLVO theory and the previous experimental results, respectively. (author)

  13. Surface modification to produce hydrophobic nano-silica particles using sodium dodecyl sulfate as a modifier

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Bing; Liang, Yong; Wang, Ting-Jie, E-mail: wangtj@tsinghua.edu.cn; Jiang, Yanping

    2016-02-28

    Graphical abstract: Nano silica particle was modified to produce hydrophobic surface with contact angle of 107° using the water soluble SDS as a modifier through a new route. The grafted density reached 1.82–2 nm. Brønsted acid sites supply proton to react with SDS via generating carbocation, forming a Si–O–C structure. - Highlights: • Silica was modified to produce hydrophobic surface using SDS as modifier. • The route is free of organic solvent and gets perfect contact of SDS and silica. • Contact angle of modified silica particles reached 107°. • Grafted density on the silica surface reached 1.82 SDS nm{sup −2}. • Brønsted acid sites supply proton to react with SDS via generating carbocation. - Abstract: Hydrophobic silica particles were prepared using the surfactant sodium dodecyl sulfate (SDS) as a modifier by a new route comprising three processes, namely, aqueous mixing, spray drying and thermal treatment. Since SDS dissolves in water, this route is free of an organic solvent and gave a perfect dispersion of SDS, that is, there was excellent contact between SDS and silica particles in the modification reaction. The hydrophobicity of the modified surface was verified by the contact angle of the nano-sized silica particles, which was 107°. The SDS grafting density reached 1.82 nm{sup −2}, which is near the highest value in the literature. The optimal parameters of the SDS/SiO{sub 2} ratio in the aqueous phase, process temperature and time of thermal treatment were determined to be 20%, 200 °C and 30 min, respectively. The grafting mechanism was studied by comparing the modification with that on same sized TiO{sub 2} particles, which indicated that the protons of the Brønsted acid sites on the surface of SiO{sub 2} reacted with SDS to give a carbocation which then formed a Si–O–C structure. This work showed that the hydrophilic surface of silica can be modified to be a hydrophobic surface by using a water soluble modifier SDS in a

  14. Effect of ozone concentration on silicon surface passivation by atomic layer deposited Al2O3

    International Nuclear Information System (INIS)

    Gastrow, Guillaume von; Li, Shuo; Putkonen, Matti; Laitinen, Mikko; Sajavaara, Timo; Savin, Hele

    2015-01-01

    Highlights: • The ALD Al 2 O 3 passivation quality can be controlled by the ozone concentration. • Ozone concentration affects the Si/Al 2 O 3 interface charge and defect density. • A surface recombination velocity of 7 cm/s is reached combining ozone and water ALD. • Carbon and hydrogen concentrations correlate with the surface passivation quality. - Abstract: We study the impact of ozone-based Al 2 O 3 Atomic Layer Deposition (ALD) on the surface passivation quality of crystalline silicon. We show that the passivation quality strongly depends on the ozone concentration: the higher ozone concentration results in lower interface defect density and thereby improved passivation. In contrast to previous studies, our results reveal that too high interface hydrogen content can be detrimental to the passivation. The interface hydrogen concentration can be optimized by the ozone-based process; however, the use of pure ozone increases the harmful carbon concentration in the film. Here we demonstrate that low carbon and optimal hydrogen concentration can be achieved by a single process combining the water- and ozone-based reactions. This process results in an interface defect density of 2 × 10 11 eV −1 cm −2 , and maximum surface recombination velocities of 7.1 cm/s and 10 cm/s, after annealing and after an additional firing at 800 °C, respectively. In addition, our results suggest that the effective oxide charge density can be optimized in a simple way by varying the ozone concentration and by injecting water to the ozone process.

  15. Protective capping and surface passivation of III-V nanowires by atomic layer deposition

    Directory of Open Access Journals (Sweden)

    Veer Dhaka

    2016-01-01

    Full Text Available Low temperature (∼200 °C grown atomic layer deposition (ALD films of AlN, TiN, Al2O3, GaN, and TiO2 were tested for protective capping and surface passivation of bottom-up grown III-V (GaAs and InP nanowires (NWs, and top-down fabricated InP nanopillars. For as-grown GaAs NWs, only the AlN material passivated the GaAs surface as measured by photoluminescence (PL at low temperatures (15K, and the best passivation was achieved with a few monolayer thick (2Å film. For InP NWs, the best passivation (∼2x enhancement in room-temperature PL was achieved with a capping of 2nm thick Al2O3. All other ALD capping layers resulted in a de-passivation effect and possible damage to the InP surface. Top-down fabricated InP nanopillars show similar passivation effects as InP NWs. In particular, capping with a 2 nm thick Al2O3 layer increased the carrier decay time from 251 ps (as-etched nanopillars to about 525 ps. Tests after six months ageing reveal that the capped nanostructures retain their optical properties. Overall, capping of GaAs and InP NWs with high-k dielectrics AlN and Al2O3 provides moderate surface passivation as well as long term protection from oxidation and environmental attack.

  16. Protective capping and surface passivation of III-V nanowires by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dhaka, Veer, E-mail: veer.dhaka@aalto.fi; Perros, Alexander; Kakko, Joona-Pekko; Haggren, Tuomas; Lipsanen, Harri [Department of Micro- and Nanosciences, Micronova, Aalto University, P.O. Box 13500, FI-00076 (Finland); Naureen, Shagufta; Shahid, Naeem [Research School of Physics & Engineering, Department of Electronic Materials Engineering, Australian National University, Canberra ACT 2601 (Australia); Jiang, Hua; Kauppinen, Esko [Department of Applied Physics and Nanomicroscopy Center, Aalto University, P.O. Box 15100, FI-00076 (Finland); Srinivasan, Anand [School of Information and Communication Technology, KTH Royal Institute of Technology, Electrum 229, S-164 40 Kista (Sweden)

    2016-01-15

    Low temperature (∼200 °C) grown atomic layer deposition (ALD) films of AlN, TiN, Al{sub 2}O{sub 3}, GaN, and TiO{sub 2} were tested for protective capping and surface passivation of bottom-up grown III-V (GaAs and InP) nanowires (NWs), and top-down fabricated InP nanopillars. For as-grown GaAs NWs, only the AlN material passivated the GaAs surface as measured by photoluminescence (PL) at low temperatures (15K), and the best passivation was achieved with a few monolayer thick (2Å) film. For InP NWs, the best passivation (∼2x enhancement in room-temperature PL) was achieved with a capping of 2nm thick Al{sub 2}O{sub 3}. All other ALD capping layers resulted in a de-passivation effect and possible damage to the InP surface. Top-down fabricated InP nanopillars show similar passivation effects as InP NWs. In particular, capping with a 2 nm thick Al{sub 2}O{sub 3} layer increased the carrier decay time from 251 ps (as-etched nanopillars) to about 525 ps. Tests after six months ageing reveal that the capped nanostructures retain their optical properties. Overall, capping of GaAs and InP NWs with high-k dielectrics AlN and Al{sub 2}O{sub 3} provides moderate surface passivation as well as long term protection from oxidation and environmental attack.

  17. Surface layer composition of titania produced by various methods. The change of layer state under illumination

    International Nuclear Information System (INIS)

    Zakharenko, V; Daibova, E; Zmeeva, O; Kosova, N

    2016-01-01

    The comparative analysis of experimental data over titanium dioxide powders prepared by various ways under ambient air is carried out. The results over TiO 2 prepared by high-temperature heating of anatase, produced by burning of titanium micro particles and grinding of rutile crystal are used for that comparison. Water and carbon dioxide were the main products released from the surface of the titania powders. It was found that under UV irradiation absorbed by titania, in absent oxygen, water effectively reacts with lattice oxygen of titanium dioxide. (paper)

  18. Reduced chemical warfare agent sorption in polyurethane-painted surfaces via plasma-enhanced chemical vapor deposition of perfluoroalkanes.

    Science.gov (United States)

    Gordon, Wesley O; Peterson, Gregory W; Durke, Erin M

    2015-04-01

    Perfluoralkalation via plasma chemical vapor deposition has been used to improve hydrophobicity of surfaces. We have investigated this technique to improve the resistance of commercial polyurethane coatings to chemicals, such as chemical warfare agents. The reported results indicate the surface treatment minimizes the spread of agent droplets and the sorption of agent into the coating. The improvement in resistance is likely due to reduction of the coating's surface free energy via fluorine incorporation, but may also have contributing effects from surface morphology changes. The data indicates that plasma-based surface modifications may have utility in improving chemical resistance of commercial coatings.

  19. Nanometer-size surface modification produced by single, low energy, highly charged ions

    International Nuclear Information System (INIS)

    Stockli, M.P.

    1994-01-01

    Atomically flat surfaces of insulators have been bombarded with low energy, highly charged ions to search for nanometer-size surface modifications. It is expected that the high electron deficiency of highly charged ions will capture and/or remove many of the insulator's localized electrons when impacting on an insulating surface. The resulting local electron deficiency is expected to locally disintegrate the insulator through a open-quotes Coulomb explosionclose quotes forming nanometer-size craters. Xe ions with charge states between 10+ and 45+ and kinetic energies between 0 and 10 keV/q were obtained from the KSU-CRYEBIS, a CRYogenic Electron Beam Ion Source and directed onto various insulating materials. Mica was favored as target material as atomically flat surfaces can be obtained reliably through cleaving. However, the authors observations with an atomic force microscope have shown that mica tends to defoliate locally rather than disintegrate, most likely due to the small binding forces between adjacent layers. So far the authors measurements indicate that each ion produces one blister if the charge state is sufficiently high. The blistering does not seem to depend very much on the kinetic energy of the ions

  20. Electrokinetic deposition of waterborne, particlate FeO(OH) and MnO2 on stainless steel surfaces

    International Nuclear Information System (INIS)

    Hermansson, H.-P.

    1977-01-01

    The study forms part of a programme of research into corrosion product behaviour in progress at Studsvik Energiteknik AB. Attention is in this instance focused on the incluence of electrokinetic factors upon the deposition of particulate corrosion products. The work has involved the development of experimental apparatus and techniques and investigation of the deposition characteristics of FeO(OH) and MnO 2 at temperatures below 100 deg C. The experimental results indicate that the deposition rate of the compounds under review depends mainly upon the zeta potential (zeta) of particles and of the test section wall. The deposition rate attains a maximum when the zeta potential is at a minimum or zero. Deposition occurs when |zeta|< approximately 40 m. Outside this interval deposition is not observed. Furthermore, the deposition rate maximum depends upon the rate of change of pH both as regards its magnitude and its position on the pH scale. This dependence can be accounted for in terms of a general drain of material from the loop as deposition proceeds and a difference in zeta potential between particles and the wall surface of the test section. (author)

  1. Facile Deposition of Ultrafine Silver Particles on Silicon Surface Not Submerged in Precursor Solutions for Applications in Antireflective Layer

    Directory of Open Access Journals (Sweden)

    Bing Jiang

    2014-01-01

    Full Text Available Using a facile deposition method, the ultrafine silver particles are successfully deposited on the Si surface that is not submerged in precursor solutions. The ultrafine silver particles have many advantages, such as quasiround shape, uniformity in size, monodisperse distribution, and reduction of agglomeration. The internal physical procedure in the deposition is also investigated. The results show that there are more particles on the rough Si surface due to the wetting effect of solid-liquid interface. The higher concentration of ethanol solvent can induce the increase of quantity and size of particles on Si surface not in solutions. The ultrafine particles can be used to prepare porous Si antireflective layer in solar cell applications.

  2. Metal Deposition from Organic Solutions for Microelectronic Applications

    National Research Council Canada - National Science Library

    Dahlgren, E

    2001-01-01

    ... plating in aqueous solutions. This process was also shown to be capable of producing selectively deposited seed layers only on exposed reactive metal surfaces for subsequent electroless and electrolytic metal depositions...

  3. Acidic deposition: State of science and technology. Report 9. Current status of surface-water acid-base chemistry. Final report

    International Nuclear Information System (INIS)

    Baker, L.A.; Kaufmann, P.R.; Brakke, D.F.; Herlihy, A.T.; Eilers, J.M.

    1990-09-01

    The report is based largely upon the National Surface Water Survey (NSWS), augmented by numerous smaller state and university surveys and many detailed watershed studies. In describing the current status of surface waters, the authors go far beyond the description of population statistics, although some of this is necessary, and direct their attention to the interpretation of these data. They address the question of the sources of acidity to surface waters in order to determine the relative importance of acidic deposition compared with other sources, such as naturally produced organic acids and acid mine drainage. They also examine in some detail what they call 'high interest' populations-the specific groups of lakes and streams most likely to be impacted by acidic deposition. The authors then turn to the general question of uncertainty, and finally examine low alkalinity surface waters in several other parts of the world to develop further inferences about the acid-base status of surface waters in the United States

  4. Atomic Layer-Deposited TiO2 Coatings on NiTi Surface

    Science.gov (United States)

    Vokoun, D.; Racek, J.; Kadeřávek, L.; Kei, C. C.; Yu, Y. S.; Klimša, L.; Šittner, P.

    2018-02-01

    NiTi shape-memory alloys may release poisonous Ni ions at the alloys' surface. In an attempt to prepare a well-performing surface layer on an NiTi sample, the thermally grown TiO2 layer, which formed during the heat treatment of NiTi, was removed and replaced with a new TiO2 layer prepared using the atomic layer deposition (ALD) method. Using x-ray photoelectron spectroscopy, it was found that the ALD layer prepared at as low a temperature as 100 °C contained Ti in oxidation states + 4 and + 3. As for static corrosion properties of the ALD-coated NiTi samples, they further improved compared to those covered by thermally grown oxide. The corrosion rate of samples with thermally grown oxide was 1.05 × 10-5 mm/year, whereas the corrosion rate of the ALD-coated samples turned out to be about five times lower. However, cracking of the ALD coating occurred at about 1.5% strain during the superelastic mechanical loading in tension taking place via the propagation of a localized martensite band.

  5. Photoluminescence transient study of surface defects in ZnO nanorods grown by chemical bath deposition

    Science.gov (United States)

    Barbagiovanni, E. G.; Strano, V.; Franzò, G.; Crupi, I.; Mirabella, S.

    2015-03-01

    Two deep level defects (2.25 and 2.03 eV) associated with oxygen vacancies (Vo) were identified in ZnO nanorods (NRs) grown by low cost chemical bath deposition. A transient behaviour in the photoluminescence (PL) intensity of the two Vo states was found to be sensitive to the ambient environment and to NR post-growth treatment. The largest transient was found in samples dried on a hot plate with a PL intensity decay time, in air only, of 23 and 80 s for the 2.25 and 2.03 eV peaks, respectively. Resistance measurements under UV exposure exhibited a transient behaviour in full agreement with the PL transient, indicating a clear role of atmospheric O2 on the surface defect states. A model for surface defect transient behaviour due to band bending with respect to the Fermi level is proposed. The results have implications for a variety of sensing and photovoltaic applications of ZnO NRs.

  6. Optical monitoring of surface processes relevant to thin film growth by chemical vapour deposition

    International Nuclear Information System (INIS)

    Simcock, Michael Neil

    2002-01-01

    This thesis reports on the investigation of the use of reflectance anisotropy spectroscopy (RAS) as an in-situ monitor for the preparation and oxidation of GaAs(100) c(4x4) surfaces using a CVD 2000 MOCVD reactor. These surfaces were oxidised using air. It was found that it was possible to follow surface degradation using RA transients at 2.6eV and 4eV. From this data it was possible to speculate on the nature of the surface oxidation process. A study was performed into the rate of surface degradation under different concentrations of air, it was found that the relation between the air concentration and the surface degradation was complicated but that the behaviour of the first third of the degradation approximated a first order behaviour. An estimation of the activation energy of the process was then made, and an assessment of the potential use of the glove-box for STM studies which is an integral part of the MOCVD equipment was also made. Following this, a description is given of the construction of an interferometer for monitoring thin film growth. An investigation is also described into two techniques designed to evaluate the changes in reflected intensity as measured by an interferometer. The first technique uses an iteration procedure to determine the film thickness from the reflection data. This is done using a Taylor series expansion of the thin film reflection function to iterate for the thickness. Problems were found with the iteration when applied to noisy data, these were solved by using a least squares fit to smooth the data. Problems were also found with the iteration at the turning points these were solved using the derivative of the function and by anticipating the position of the turning points. The second procedure uses the virtual interface method to determine the optical constants of the topmost deposited material, the virtual substrate, and the growth rate. This method is applied by using a Taylor series expansion of the thin film reflection

  7. Deposition of O atomic layers on Si(100) substrates for epitaxial Si-O superlattices: investigation of the surface chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Jayachandran, Suseendran, E-mail: suseendran.jayachandran@imec.be [KU Leuven, Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Delabie, Annelies; Billen, Arne [KU Leuven, Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Dekkers, Harold; Douhard, Bastien; Conard, Thierry; Meersschaut, Johan; Caymax, Matty [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, Wilfried [KU Leuven, Department of Physics and Astronomy, Celestijnenlaan 200D, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Heyns, Marc [KU Leuven, Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium)

    2015-01-01

    Highlights: • Atomic layer is deposited by O{sub 3} chemisorption reaction on H-terminated Si(100). • O-content has critical impact on the epitaxial thickness of the above-deposited Si. • Oxygen atoms at dimer/back bond configurations enable epitaxial Si on O atomic layer. • Oxygen atoms at hydroxyl and more back bonds, disable epitaxial Si on O atomic layer. - Abstract: Epitaxial Si-O superlattices consist of alternating periods of crystalline Si layers and atomic layers of oxygen (O) with interesting electronic and optical properties. To understand the fundamentals of Si epitaxy on O atomic layers, we investigate the O surface species that can allow epitaxial Si chemical vapor deposition using silane. The surface reaction of ozone on H-terminated Si(100) is used for the O deposition. The oxygen content is controlled precisely at and near the atomic layer level and has a critical impact on the subsequent Si deposition. There exists only a small window of O-contents, i.e. 0.7–0.9 atomic layers, for which the epitaxial deposition of Si can be realized. At these low O-contents, the O atoms are incorporated in the Si-Si dimers or back bonds (-OSiH), with the surface Si atoms mainly in the 1+ oxidation state, as indicated by infrared spectroscopy. This surface enables epitaxial seeding of Si. For O-contents higher than one atomic layer, the additional O atoms are incorporated in the Si-Si back bonds as well as in the Si-H bonds, where hydroxyl groups (-Si-OH) are created. In this case, the Si deposition thereon becomes completely amorphous.

  8. Evaluation of surface characteristics of rotary nickel-titanium instruments produced by different manufacturing methods.

    Science.gov (United States)

    Inan, U; Gurel, M

    2017-02-01

    Instrument fracture is a serious concern in endodontic practice. The aim of this study was to investigate the surface quality of new and used rotary nickel-titanium (NiTi) instruments manufactured by the traditional grinding process and twisting methods. Total 16 instruments of two rotary NiTi systems were used in this study. Eight Twisted Files (TF) (SybronEndo, Orange, CA, USA) and 8 Mtwo (VDW, Munich, Germany) instruments were evaluated. New and used of 4 experimental groups were evaluated using an atomic force microscopy (AFM). New and used instruments were analyzed on 3 points along a 3 mm. section at the tip of the instrument. Quantitative measurements according to the topographical deviations were recorded. The data were statistically analyzed with paired samples t-test and independent samples t-test. Mean root mean square (RMS) values for new and used TF 25.06 files were 10.70 ± 2.80 nm and 21.58 ± 6.42 nm, respectively, and the difference between them was statistically significant (P instruments produced by twisting method (TF 25.06) had better surface quality than the instruments produced by traditional grinding process (Mtwo 25.06 files).

  9. Target surface structure effects on x-ray generation from laser produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, Tadashi; Nakano, Hidetoshi; Uesugi, Naoshi [NTT Basic Research Laboratories, Atsugi, Kanagawa (Japan)

    2000-03-01

    We demonstrated two different methods to increase the x-ray conversion efficiency of laser-produced plasma by modifying the target surface structure. One way is making a rectangular groove on a target surface and confining a laser-produced plasma in it. By the plasma collision process, a time and wavelength (4-10 nm) integrated soft x-ray fluence enhancement of 35 times was obtained at a groove width of 20 {mu}m and a groove depth of 100 {mu}m on a Nd-doped glass target. The other way is making an array of nanoholes on an alumina target and increasing the laser interaction depth with it. The x-ray fluence enhancement increases as the ionization level of Al becomes higher and the x-ray wavelength becomes shorter. Over 50-fold enhancement was obtained at a soft x-ray wavelength around 6 nm, which corresponds to the emission from Al{sup 8+,9+} ions. (author)

  10. Target surface structure effects on x-ray generation from laser produced plasma

    International Nuclear Information System (INIS)

    Nishikawa, Tadashi; Nakano, Hidetoshi; Uesugi, Naoshi

    2000-01-01

    We demonstrated two different methods to increase the x-ray conversion efficiency of laser-produced plasma by modifying the target surface structure. One way is making a rectangular groove on a target surface and confining a laser-produced plasma in it. By the plasma collision process, a time and wavelength (4-10 nm) integrated soft x-ray fluence enhancement of 35 times was obtained at a groove width of 20 μm and a groove depth of 100 μm on a Nd-doped glass target. The other way is making an array of nanoholes on an alumina target and increasing the laser interaction depth with it. The x-ray fluence enhancement increases as the ionization level of Al becomes higher and the x-ray wavelength becomes shorter. Over 50-fold enhancement was obtained at a soft x-ray wavelength around 6 nm, which corresponds to the emission from Al 8+,9+ ions. (author)

  11. Enhancement of surface integrity of titanium alloy with copper by means of laser metal deposition process

    CSIR Research Space (South Africa)

    Erinosho, MF

    2016-04-01

    Full Text Available The laser metal deposition process possesses the combination of metallic powder and laser beam respectively. However, these combinations create an adhesive bonding that permanently solidifies the laser-enhanced-deposited powders. Titanium alloys (Ti...

  12. Trends in the chemistry of atmospheric deposition and surface waters in the Lake Maggiore catchment

    Directory of Open Access Journals (Sweden)

    M. Rogora

    2001-01-01

    Full Text Available The Lake Maggiore catchment is the area of Italy most affected by acid deposition. Trend analysis was performed on long-term (15-30 years series of chemical analyses of atmospheric deposition, four small rivers draining forested catchments and four high mountain lakes. An improvement in the quality of atmospheric deposition was detected, due to decreasing sulphate concentration and increasing pH. Similar trends were also found in high mountain lakes and in small rivers. Atmospheric deposition, however, is still providing a large and steady flux of nitrogen compounds (nitrate and ammonium which is causing increasing nitrogen saturation in forest ecosystems and increasing nitrate levels in rivers. Besides atmospheric deposition, an important factor controlling water acidification and recovery is the weathering of rocks and soils which may be influenced by climate warming. A further factor is the episodic deposition of Saharan calcareous dust which contributes significantly to base cation deposition. Keywords: trend, atmospheric deposition, nitrogen, stream water chemistry.

  13. Structure, morphology, and magnetic properties of Fe nanoparticles deposited onto single-crystalline surfaces

    Directory of Open Access Journals (Sweden)

    Armin Kleibert

    2011-01-01

    Full Text Available Background: Magnetic nanostructures and nanoparticles often show novel magnetic phenomena not known from the respective bulk materials. In the past, several methods to prepare such structures have been developed – ranging from wet chemistry-based to physical-based methods such as self-organization or cluster growth. The preparation method has a significant influence on the resulting properties of the generated nanostructures. Taking chemical approaches, this influence may arise from the chemical environment, reaction kinetics and the preparation route. Taking physical approaches, the thermodynamics and the kinetics of the growth mode or – when depositing preformed clusters/nanoparticles on a surface – the landing kinetics and subsequent relaxation processes have a strong impact and thus need to be considered when attempting to control magnetic and structural properties of supported clusters or nanoparticles.Results: In this contribution we focus on mass-filtered Fe nanoparticles in a size range from 4 nm to 10 nm that are generated in a cluster source and subsequently deposited onto two single crystalline substrates: fcc Ni(111/W(110 and bcc W(110. We use a combined approach of X-ray magnetic circular dichroism (XMCD, reflection high energy electron diffraction (RHEED and scanning tunneling microscopy (STM to shed light on the complex and size-dependent relation between magnetic properties, crystallographic structure, orientation and morphology. In particular XMCD reveals that Fe particles on Ni(111/W(110 have a significantly lower (higher magnetic spin (orbital moment compared to bulk iron. The reduced spin moments are attributed to the random particle orientation being confirmed by RHEED together with a competition of magnetic exchange energy at the interface and magnetic anisotropy energy in the particles. The RHEED data also show that the Fe particles on W(110 – despite of the large lattice mismatch between iron and tungsten – are

  14. Characteristics of the surface layer of barium strontium titanate thin films deposited by laser ablation

    International Nuclear Information System (INIS)

    Craciun, V.; Singh, R. K.

    2000-01-01

    Ba 0.5 Sr 0.5 TiO 3 (BST) thin films grown on Si by an in situ ultraviolet-assisted pulsed laser deposition (UVPLD) technique exhibited significantly higher dielectric constant and refractive index values and lower leakage current densities than films grown by conventional PLD under similar conditions. X-ray photoelectron spectroscopy (XPS) investigations have shown that the surface layer of the grown films contained, besides the usual BST perovskite phase, an additional phase with Ba atoms in a different chemical state. PLD grown films always exhibited larger amounts of this phase, which was homogeneously mixed with the BST phase up to several nm depth, while UVPLD grown films exhibited a much thinner (∼1 nm) and continuous layer. The relative fraction of this phase was not correlated with the amount of C atoms present on the surface. Fourier transform infrared spectroscopy did not find any BaCO 3 contamination layer, which was believed to be related to this new phase. X-ray diffraction measurement showed that although PLD grown films contained less oxygen atoms, the lattice parameter was closer to the bulk value than that of UVPLD grown films. After 4 keV Ar ion sputtering for 6 min, XPS analysis revealed a small suboxide Ba peak for the PLD grown films. This finding indicates that the average Ba-O bonds are weaker in these films, likely due to the presence of oxygen vacancies. It is suggested here that this new Ba phase corresponds to a relaxed BST surface layer. (c) 2000 American Institute of Physics

  15. Characteristics of the surface layer of barium strontium titanate thin films deposited by laser ablation

    Science.gov (United States)

    Craciun, V.; Singh, R. K.

    2000-04-01

    Ba0.5Sr0.5TiO3 (BST) thin films grown on Si by an in situ ultraviolet-assisted pulsed laser deposition (UVPLD) technique exhibited significantly higher dielectric constant and refractive index values and lower leakage current densities than films grown by conventional PLD under similar conditions. X-ray photoelectron spectroscopy (XPS) investigations have shown that the surface layer of the grown films contained, besides the usual BST perovskite phase, an additional phase with Ba atoms in a different chemical state. PLD grown films always exhibited larger amounts of this phase, which was homogeneously mixed with the BST phase up to several nm depth, while UVPLD grown films exhibited a much thinner (˜1 nm) and continuous layer. The relative fraction of this phase was not correlated with the amount of C atoms present on the surface. Fourier transform infrared spectroscopy did not find any BaCO3 contamination layer, which was believed to be related to this new phase. X-ray diffraction measurement showed that although PLD grown films contained less oxygen atoms, the lattice parameter was closer to the bulk value than that of UVPLD grown films. After 4 keV Ar ion sputtering for 6 min, XPS analysis revealed a small suboxide Ba peak for the PLD grown films. This finding indicates that the average Ba-O bonds are weaker in these films, likely due to the presence of oxygen vacancies. It is suggested here that this new Ba phase corresponds to a relaxed BST surface layer.

  16. Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage

    KAUST Repository

    Ahmed, Bilal

    2016-04-29

    Research on electrochemical energy storage devices including Li ion batteries (LIBs), Na ion batteries (NIBs) and supercapacitors (SCs) has accelerated in recent years, in part because developments in nanomaterials are making it possible to achieve high capacities and energy and power densities. These developments can extend battery life in portable devices, and open new markets such as electric vehicles and large-scale grid energy storage. It is well known that surface reactions largely determine the performance and stability of electrochemical energy storage devices. Despite showing impressive capacities and high energy and power densities, many of the new nanostructured electrode materials suffer from limited lifetime due to severe electrode interaction with electrolytes or due to large volume changes. Hence control of the surface of the electrode material is essential for both increasing capacity and improving cyclic stability of the energy storage devices.Atomic layer deposition (ALD) which has become a pervasive synthesis method in the microelectronics industry, has recently emerged as a promising process for electrochemical energy storage. ALD boasts excellent conformality, atomic scale thickness control, and uniformity over large areas. Since ALD is based on self-limiting surface reactions, complex shapes and nanostructures can be coated with excellent uniformity, and most processes can be done below 200. °C. In this article, we review recent studies on the use of ALD coatings to improve the performance of electrochemical energy storage devices, with particular emphasis on the studies that have provided mechanistic insight into the role of ALD in improving device performance. © 2016 Elsevier Ltd.

  17. Build-up dynamics of heavy metals deposited on impermeable urban surfaces.

    Science.gov (United States)

    Wicke, D; Cochrane, T A; O'Sullivan, A

    2012-12-30

    A method using thin boards (3 cm thick, 0.56 m(2)) comprising different paving materials typically used in urban environments (2 asphalt types and concrete) was employed to specifically investigate air-borne deposition dynamics of TSS, zinc, copper and lead. Boards were exposed at an urban car park near vehicular traffic to determine the rate of contaminant build-up over a 13-day dry period. Concentration profiles from simulated rainfall wash-off were used to determine contaminant yields at different antecedent dry days. Maximum contaminant yields after 13 days of exposure were 2.7 kg ha(-1) for TSS, 35 g ha(-1) zinc, 2.3 g ha(-1) copper and 0.4 g ha(-1) lead. Accumulation of all contaminants increased over the first week and levelled off thereafter, supporting theoretical assumptions that contaminant accumulation on impervious surfaces asymptotically approaches a maximum. Comparison of different surface types showed approximately four times higher zinc concentrations in runoff from asphalt surfaces and two times higher TSS concentrations in runoff from concrete, which is attributed to different physical and chemical compositions of the pavement types. Contaminant build-up and wash-off behaviours were modelled using exponential and saturation functions commonly applied in the US EPA's Stormwater Management Model (SWMM) showing good correlation between measured and modelled concentrations. Maximum build-up, half-saturation time, build-up rate constants and wash-off coefficients, necessary for stormwater contaminant modelling, were determined for the four contaminants studied. These parameters are required to model contaminant concentrations in urban runoff assisting in stormwater management decisions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Role of urban surface roughness in road-deposited sediment build-up and wash-off

    Science.gov (United States)

    Zhao, Hongtao; Jiang, Qian; Xie, Wenxia; Li, Xuyong; Yin, Chengqing

    2018-05-01

    Urban road surface roughness is one of the most important factors in estimation of surface runoff loads caused by road-deposited sediment (RDS) wash-off and design of its control measures. However, because of a lack of experimental data to distinguish the role of surface roughness, the effects of surface roughness on RDS accumulation and release are not clear. In this study, paired asphalt and concrete road surfaces and rainfall simulation designs were used to distinguish the role of surface roughness in RDS build-up and wash-off. Our results showed that typical asphalt surfaces often have higher depression depths than typical concrete surfaces, indicating that asphalt surfaces are relatively rougher than concrete surface. Asphalt surfaces can retain a larger RDS amount, relative higher percentage of coarser particles, larger RDS wash-off loads, and lower wash-off percentage, than concrete surfaces. Surface roughness has different effects in RDS motilities with different particle sizes during rainfall runoff, and the settleable particles (44-149 μm) were notably influenced by it. Furthermore, the first flush phenomenon tended to be greater on relatively smooth surfaces than relatively rough surfaces. Overall, surface roughness plays an important role in influencing the complete process of RDS build-up and wash-off on different road characteristics.

  19. Pt deposition on carbon paper and Ti mesh substrates by surface limited redox replacement

    CSIR Research Space (South Africa)

    Modibedi, M

    2011-12-01

    Full Text Available , the material used as gas diffusion layer for proton exchange membrane fuel cells (PEMFCs) and Ti-mesh. The deposition uses multiple redox replacement of underpotentially deposited Cu used as a sacrificial metal. The morphology and particle size of the deposited...

  20. Optical properties and surface characterization of pulsed laser-deposited Cu2ZnSnS4 by spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Crovetto, Andrea; Cazzaniga, Andrea; Ettlinger, Rebecca B.; Schou, Jørgen; Hansen, Ole

    2015-01-01

    Cu 2 ZnSnS 4 films prepared by pulsed laser deposition at different temperatures are characterized by spectroscopic ellipsometry. The focus is on confirming results from direct measurement techniques, by finding appropriate models of the surface overlayer for data fitting, and extracting the dielectric function of the films. It is found that the surface overlayer changes with film thickness and deposition temperature. Adopting different ellipsometry measurements and modeling strategies for each film, dielectric functions are extracted and compared. As the deposition temperature is increased, the dielectric functions exhibit additional critical points related to optical transitions in the material other than absorption across the fundamental band gap. In the case of a thin film < 200 nm thick, surface features observed by scanning electron microscopy and atomic force microscopy are accurately reproduced by ellipsometry data fitting. - Highlights: • Inhomogeneous Cu 2 ZnSnS 4 films are prepared by pulsed laser deposition. • The film surface includes secondary phases and topographic structures. • We model a film surface layer that fits ellipsometry data. • Ellipsometry data fits confirm results from direct measurement techniques. • We obtain the dielectric function of inhomogeneous Cu 2 ZnSnS 4 films

  1. Electro-deposition of Pd on Carbon paper and Ni foam via surface limited redox-replacement reaction for oxygen reduction reaction

    International Nuclear Information System (INIS)

    Modibedi, Remegia M.; Mathe, Mkhulu K.; Motsoeneng, Rapelang G.; Khotseng, Lindiwe E.; Ozoemena, Kenneth I.; Louw, Eldah K.

    2014-01-01

    Pd nanostructured catalysts were electrodeposited by surface-limited redox replacement reactions using the electrochemical atomic layer deposition technique. Carbon paper and Ni foam were used as substrates for the electrodeposition of the metal. Supported nanostructured Pd electrodes were characterized using electrochemical methods and scanning electron microscopy. Carbon paper and Ni foam produced good quality deposits with some agglomeration on Ni foam. The EDX profiles confirmed the presence of Pd particles. Cyclic voltammograms of the electrodeposited Pd on substrates showed features characteristic of polycrystalline Pd electrodes. In the acidic electrolyte a very weak oxygen reduction reaction (ORR) activity was observed on Pd/Carbon paper electrode when compared to Pd/Ni foam electrode. The Pd/Ni foam electrode showed improved ORR activity in alkaline medium

  2. Numerical investigation of aerodynamic flow actuation produced by surface plasma actuator on 2D oscillating airfoil

    Directory of Open Access Journals (Sweden)

    Minh Khang Phan

    2016-08-01

    Full Text Available Numerical simulation of unsteady flow control over an oscillating NACA0012 airfoil is investigated. Flow actuation of a turbulent flow over the airfoil is provided by low current DC surface glow discharge plasma actuator which is analytically modeled as an ion pressure force produced in the cathode sheath region. The modeled plasma actuator has an induced pressure force of about 2 kPa under a typical experiment condition and is placed on the airfoil surface at 0% chord length and/or at 10% chord length. The plasma actuator at deep-stall angles (from 5° to 25° is able to slightly delay a dynamic stall and to weaken a pressure fluctuation in down-stroke motion. As a result, the wake region is reduced. The actuation effect varies with different plasma pulse frequencies, actuator locations and reduced frequencies. A lift coefficient can increase up to 70% by a selective operation of the plasma actuator with various plasma frequencies and locations as the angle of attack changes. Active flow control which is a key advantageous feature of the plasma actuator reveals that a dynamic stall phenomenon can be controlled by the surface plasma actuator with less power consumption if a careful control scheme of the plasma actuator is employed with the optimized plasma pulse frequency and actuator location corresponding to a dynamic change in reduced frequency.

  3. Relation between crystallinity and chemical nature of surface on wettability: A study on pulsed laser deposited TiO2 thin films

    International Nuclear Information System (INIS)

    Shirolkar, Mandar M.; Phase, Deodatta; Sathe, Vasant; Choudhary, Ram Janay; Rodriguez-Carvajal, J.; Kulkarni, Sulabha K.

    2011-01-01

    Pure titania (TiO 2 ) polycrystalline thin films in rutile, anatase and mixed phase have been grown on amorphous glass substrates by pulsed laser deposition method at various oxygen gas pressure. Wettability investigations have been carried out on these films. Consistent with our previous report [J. Phys. D: Appl. Phys. 41, 155308 (2008)] it has been observed that for nearly same surface roughness large contact angle or superhydrophobicity is present when sample has a pure single phase and lower contact angle or hydrophobicity when mixed phases were present. Structural characterizations suggest that in addition to roughness, pure phase film surface associated with hydrophobic sites and mixed phase film surface show association of both hydrophobic and hydrophilic sites, which might be inducing specific wetting character. UV treatment induces superhydrophilicity in the films. It was observed that UV irradiation causes nonequilibrium state on the TiO 2 surface, leading to changes in the electron density, which in turn produces decrement in the crystallinity and lattice expansion. Reversible changes in the wetting state on the pure phase surfaces were observed to be faster than those on the mixed phase surfaces. We tried to establish the possible relation between crystalline phases, chemical nature of surface on reversible wettability besides the main governing parameter viz. surface roughness.

  4. Nucleation and growth kinetics for intercalated islands during deposition on layered materials with isolated pointlike surface defects

    International Nuclear Information System (INIS)

    Han, Yong; Lii-Rosales, A.; Zhou, Y.; Wang, C.-J.

    2017-01-01

    Theory and stochastic lattice-gas modeling is developed for the formation of intercalated metal islands in the gallery between the top layer and the underlying layer at the surface of layered materials. Our model for this process involves deposition of atoms, some fraction of which then enter the gallery through well-separated pointlike defects in the top layer. Subsequently, these atoms diffuse within the subsurface gallery leading to nucleation and growth of intercalated islands nearby the defect point source. For the case of a single point defect, continuum diffusion equation analysis provides insight into the nucleation kinetics. However, complementary tailored lattice-gas modeling produces a more comprehensive and quantitative characterization. We analyze the large spread in nucleation times and positions relative to the defect for the first nucleated island. We also consider the formation of subsequent islands and the evolution of island growth shapes. The shapes reflect in part our natural adoption of a hexagonal close-packed island structure. As a result, motivation and support for the model is provided by scanning tunneling microscopy observations of the formation of intercalated metal islands in highly-ordered pyrolytic graphite at higher temperatures.

  5. Year-round atmospheric wet and dry deposition of nitrogen and phosphorus on water and land surfaces in Nanjing, China.

    Science.gov (United States)

    Sun, Liying; Li, Bo; Ma, Yuchun; Wang, Jinyang; Xiong, Zhengqin

    2013-06-01

    The dry deposition of ammonium, nitrate, and total phosphorus (TP) to both water (DW) and land (DD) surfaces, along with wet deposition, were simultaneously monitored from March 2009 to February 2011 in Nanjing, China. Results showed that wet deposition of total phosphorus was 1.1 kg phosphorus ha (-1)yr(-1), and inorganic nitrogen was 28.7 kg nitrogen ha (-1)yr(-1), with 43% being ammonium nitrogen. Dry deposition of ammonium, nitrate, and total phosphorus, measured by the DW/DD method, was 7.5/2.2 kg nitrogen ha (-1)yr(-1), 6.3/ 4.9 kg nitrogen ha (-1)yr(-1), and 1.9/0.4 kg phosphorus ha (-1)yr(-1), respectively. Significant differences between the DW and DD methods indicated that both methods should be employed simultaneously when analyzing deposition to aquatic and terrestrial ecosystems in watershed areas. The dry deposition of ammonium, nitrate, and total phosphorus contributed 38%, 28%, and 63%, respectively, to the total deposition in the simulated aquatic ecosystem; this has significance for the field of water eutrophication control.

  6. Electrokinetic deposition of waterborne, particulate FeO(OH) and MnO2 on stainless steel surfaces

    International Nuclear Information System (INIS)

    Hermansson, H.-P.

    1977-02-01

    study forms part of a programme of research into corrosion product behaviour in progress at Aktiebolaget Atomenergi. Attention is in this instance focused on the influence of electrokinetic tic factors upon the deposition of particulate corrosion products. The work has involved the development of experimental apparatus and techniques and the investigation of the deposition characteristics of FeO(OH) and MnO 2 at temperatures below 100 degC. The experimental results indicate that the deposition rate of the compounds under review depends mainly upon the zeta potential (zeta) of the particle and of the test section wall. The deposition rate attains a maximum when the zeta potential is at a minimum or zero. Deposition occurs when zeta approx. < 40 mV. Outside this interval deposition is not observed. Furthermore, the deposition rate maximum depends upon the rate of change of pH both as regards its magnitude and its position on the pH scale. This dependence can be accounted for in terms of a general drain of material from the loop and a difference in zeta potential between particles and the wall surface of the test section. (author)

  7. Hybrid radio-frequency/direct-current plasma-enhanced chemical vapor deposition system for deposition on inner surfaces of polyethylene terephthalate bottles

    Science.gov (United States)

    Li, Jing; Tian, Xiubo; Gong, Chunzhi; Yang, Shiqin; Fu, Ricky K. Y.; Chu, Paul K.

    2009-12-01

    A hybrid radio-frequency (rf)/direct-current (dc) system has been developed to control the biasing effects during deposition of diamondlike carbon (DLC) films onto the inner wall of polyethylene terephthalate (PET) bottles. An additional dc bias is coupled to the rf electrode to produce the effect of equivalent rf self-biasing. This allows more flexible control of the deposition of the DLC films which are intended to improve the gas barrier characteristics. The experimental results demonstrate that the additional dc bias improves the adhesion strength between the DLC film and PET, although the enhancement in the gas barrier properties is not significantly larger compared to the one without dc bias. The apparatus and methodology have practical importance in the food and beverage industry.

  8. Hybrid radio-frequency/direct-current plasma-enhanced chemical vapor deposition system for deposition on inner surfaces of polyethylene terephthalate bottles

    International Nuclear Information System (INIS)

    Li Jing; Gong Chunzhi; Yang Shiqin; Tian Xiubo; Fu, Ricky K. Y.; Chu, Paul K.

    2009-01-01

    A hybrid radio-frequency (rf)/direct-current (dc) system has been developed to control the biasing effects during deposition of diamondlike carbon (DLC) films onto the inner wall of polyethylene terephthalate (PET) bottles. An additional dc bias is coupled to the rf electrode to produce the effect of equivalent rf self-biasing. This allows more flexible control of the deposition of the DLC films which are intended to improve the gas barrier characteristics. The experimental results demonstrate that the additional dc bias improves the adhesion strength between the DLC film and PET, although the enhancement in the gas barrier properties is not significantly larger compared to the one without dc bias. The apparatus and methodology have practical importance in the food and beverage industry.

  9. Hybrid radio-frequency/direct-current plasma-enhanced chemical vapor deposition system for deposition on inner surfaces of polyethylene terephthalate bottles

    Energy Technology Data Exchange (ETDEWEB)

    Li Jing; Gong Chunzhi; Yang Shiqin [Institute of Plasma Surface Engineering and Equipment, State Key Laboratory of Advanced Welding Production and Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Tian Xiubo [Institute of Plasma Surface Engineering and Equipment, State Key Laboratory of Advanced Welding Production and Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Fu, Ricky K. Y.; Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

    2009-12-15

    A hybrid radio-frequency (rf)/direct-current (dc) system has been developed to control the biasing effects during deposition of diamondlike carbon (DLC) films onto the inner wall of polyethylene terephthalate (PET) bottles. An additional dc bias is coupled to the rf electrode to produce the effect of equivalent rf self-biasing. This allows more flexible control of the deposition of the DLC films which are intended to improve the gas barrier characteristics. The experimental results demonstrate that the additional dc bias improves the adhesion strength between the DLC film and PET, although the enhancement in the gas barrier properties is not significantly larger compared to the one without dc bias. The apparatus and methodology have practical importance in the food and beverage industry.

  10. Electron pulsed beam induced processing of thin film surface by Nb3Ge deposited into a stainless steel tape

    International Nuclear Information System (INIS)

    Vavra, I.; Korenev, S.A.

    1988-01-01

    A surface of superconductive thin film of Nb 3 Ge deposited onto a stainless steel tape was processed using the electron beam technique. The electron beam used had the following parameters: beam current density from 400 to 1000 A/cm 2 ; beam energy 100 keV; beam impulse length 300 ns. By theoretical analysis it is shown that the heating of film surface is an adiabatic process. It corresponds to our experimental data and pictures showing a surface remelting due to electron beam influence. After beam processing the superconductive parameters of the film remain unchanged. Roentgenograms have been analysed of Nb 3 Ge film surface recrystallized due to electron beam influence

  11. Electrodeposition of ruthenium, rhodium and palladium from nitric acid and ionic liquid media: Recovery and surface morphology of the deposits

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, M.; Venkatesan, K.A.; Sudha, R. [Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102 (India); Srinivasan, T.G., E-mail: tgs@igcar.gov.com [Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102 (India); Vasudeva Rao, P.R. [Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102 (India)

    2011-07-15

    Research highlights: {yields} Platinum group metals are man-made noble metals. {yields} Electrochemical recovery of fission platinoids. {yields} Recovery from nitric acid medium. {yields} Recovery from ionic liquid medium. {yields} Platinoids with exotic surface morphologies. - Abstract: Electrodeposition is a promising technique for the recovery of platinum group metals with unique surface morphologies. The electrodeposition of palladium, ruthenium and rhodium from aqueous nitric acid, and non-aqueous 1-butyl-3-methylimidazolium chloride ionic liquid medium was studied at stainless steel electrode. The surface morphology and elemental composition of the resultant deposit were probed by scanning electron microscopy (SEM) and energy dispersive X-ray (EDS) analysis. Deposits with diverse surface morphologies and metal compositions were obtained by varying the composition of the electrolytic medium and applied potential. The results demonstrate the possibility of tailoring the morphologies of PGMs by controlling the composition and potential needed for electrodeposition.

  12. The Influence of Selected Fingerprint Enhancement Techniques on Forensic DNA Typing of Epithelial Cells Deposited on Porous Surfaces.

    Science.gov (United States)

    Tsai, Li-Chin; Lee, Cheng-Chang; Chen, Chun-Chieh; Lee, James Chun-I; Wang, Sheng-Meng; Huang, Nu-En; Linacre, Adrian; Hsieh, Hsing-Mei

    2016-01-01

    Fingerprints deposited at crime scene can be a source of DNA. Previous reports on the effects of fingerprint enhancement methods have focused mainly on fingermarks deposited in blood or saliva. Here, we evaluate the effects of fingerprint enhancement methods on fingerprints deposited on porous surfaces. We performed real-time quantification and STR typing, the results of which indicated that two methods (iodine fuming and 1,2-indanedione in ethyl acetate enhancement) had no effect on the quantity of DNA isolated and resultant STR alleles when compared to control samples. DNA quantities and allele numbers were lower for samples enhanced with silver nitrate and 1,2-indanedione in acetic acid when compared to control samples. Based on DNA quantity, quality, and observable stochastic effects, our data indicated that iodine fuming and 1,2-indanedione in ethyl acetate were the preferred options for the enhancement of fingerprints on porous surfaces. © 2015 American Academy of Forensic Sciences.

  13. Surface hardening of optic materials by deposition of diamond like carbon coatings from separated plasma of arc discharge

    Science.gov (United States)

    Osipkov, A. S.; Bashkov, V. M.; Belyaeva, A. O.; Stepanov, R.; Mironov, Y. M.; Galinovsky, A. L.

    2015-02-01

    This article considers the issue of strengthening of optic materials used in the IR spectrum by deposition of diamond like carbon coatings from separated plasma arc discharge. The report shows results of tests of bare and strengthened optical materials such as BaF2, MgF2, Si, Ge, including the testing of their strength and spectral characteristics. Results for the determination of optical constants for the DLC coatings deposited on substrates of Ge and Si, by using separated plasma, are also presented. Investigations showed that surface hardening of optical materials operable in the IR range, by the deposition of diamond like carbon coating onto their surface, according to this technology, considerably improves operational properties and preserves or improves their optic properties.

  14. Plasma-polymerized perfluoro(methylcyclohexane) coating on ethylene propylene diene elastomer surface: Effect of plasma processing condition on the deposition kinetics, morphology and surface energy of the film

    International Nuclear Information System (INIS)

    Tran, N.D.; Dutta, N.K.; Choudhury, N. Roy

    2005-01-01

    Plasma polymerization of perfluoro (methylcyclohexane) was carried out under cold plasma process operated at 13.56 MHz to deposit pore-free, uniform, ultra-thin film on an ethylene propylene diene terpolymer (EPDM) substrate in a view to modify the surface characteristics. The plasma fluoropolymeric films were formed at different plasma treatment times (from 20 s to 16 min), applied powers (20 to 100 W) and precursor flow rates to produce high quality films in a controllable yet tunable fashion. Scanning electron microscopy was employed successfully to characterize the evolution of the morphological feature in the film and also to determine the thickness of the coating. The surface energy of the film was determined by sessile drop method using different solvents as probe liquids. It is observed that a pore-free homogeneous plasma polymer thin film is formed within 20 s of treatment time, however, the morphology of the film depends on the plasma processing conditions, such as plasma power, precursor flow rate and deposition time. With increased time and power at a constant flow rate, the morphology of the film progressively changes from flat smooth to globular and rough. The kinetics and activation energy of the plasma polymer film deposition process were also estimated. The surface energy of the EPDM substrate decreased dramatically with plasma coating, however, it appears to be independent of the treatment time

  15. Effective optimization of surface passivation on porous silicon carbide using atomic layer deposited Al2O3

    DEFF Research Database (Denmark)

    Lu, Weifang; Iwasa, Yoshimi; Ou, Yiyu

    2017-01-01

    Porous silicon carbide (B–N co-doped SiC) produced by anodic oxidation showed strong photoluminescence (PL) at around 520 nm excited by a 375 nm laser. The porous SiC samples were passivated by atomic layer deposited (ALD) aluminum oxide (Al2O3) films, resulting in a significant enhancement...

  16. Surface chemistry of plasma-assisted atomic layer deposition of Al2O3 studied by infrared spectroscopy

    NARCIS (Netherlands)

    Langereis, E.; Keijmel, J.; Sanden, van de M.C.M.; Kessels, W.M.M.

    2008-01-01

    The surface groups created during plasma-assisted atomic layer deposition (ALD) of Al2O3 were studied by infrared spectroscopy. For temperatures in the range of 25–150 °C, –CH3 and –OH were unveiled as dominant surface groups after the Al(CH3)3precursor and O2 plasma half-cycles, respectively. At

  17. Passivation of surface states of α-Fe2O3(0001) surface by deposition of Ga2O3 overlayers: A density functional theory study.

    Science.gov (United States)

    Ulman, Kanchan; Nguyen, Manh-Thuong; Seriani, Nicola; Gebauer, Ralph

    2016-03-07

    There is a big debate in the community regarding the role of surface states of hematite in the photoelectrochemical water splitting. Experimental studies on non-catalytic overlayers passivating the hematite surface states claim a favorable reduction in the overpotential for the water splitting reaction. As a first step towards understanding the effect of these overlayers, we have studied the system Ga2O3 overlayers on hematite (0001) surfaces using first principles computations in the PBE+U framework. Our computations suggest that stoichiometric terminations of Ga2O3 overlayers are energetically more favored than the bare surface, at ambient oxygen chemical potentials. Energetics suggest that the overlayers prefer to grow via a layer-plus-island (Stranski-Krastanov) growth mode with a critical layer thickness of 1-2 layers. Thus, a complete wetting of the hematite surface by an overlayer of gallium oxide is thermodynamically favored. We establish that the effect of deposition of the Ga2O3 overlayers on the bare hematite surface is to passivate the surface states for the stoichiometric termination. For the oxygen terminated surface which is the most stable termination under photoelectrochemical conditions, the effect of deposition of the Ga2O3 overlayer is to passivate the hole-trapping surface state.

  18. Transforming a Simple Commercial Glue into Highly Robust Superhydrophobic Surfaces via Aerosol-Assisted Chemical Vapor Deposition.

    Science.gov (United States)

    Zhuang, Aoyun; Liao, Ruijin; Lu, Yao; Dixon, Sebastian C; Jiamprasertboon, Arreerat; Chen, Faze; Sathasivam, Sanjayan; Parkin, Ivan P; Carmalt, Claire J

    2017-12-06

    Robust superhydrophobic surfaces were synthesized as composites of the widely commercially available adhesives epoxy resin (EP) and polydimethylsiloxane (PDMS). The EP layer provided a strongly adhered micro/nanoscale structure on the substrates, while the PDMS was used as a post-treatment to lower the surface energy. In this study, the depositions of EP films were taken at a range of temperatures, deposition times, and substrates via aerosol-assisted chemical vapor deposition (AACVD). A novel dynamic deposition temperature approach was developed to create multiple-layered periodic micro/nanostructures that significantly improved the surface mechanical durability. Water droplet contact angles (CA) of 160° were observed with droplet sliding angles (SA) frequently UV testing (365 nm, 3.7 mW/cm 2 , 120 h) were carried out to exhibit the environmental stability of the films. Self-cleaning behavior was demonstrated in clearing the surfaces of various contaminating powders and aqueous dyes. This facile and flexible method for fabricating highly durable superhydrophobic polymer films points to a promising future for AACVD in their scalable and low-cost production.

  19. Differences observed in the surface morphology and microstructure of Ni-Fe-Cu ternary thin films electrochemically deposited at low and high applied current densities

    International Nuclear Information System (INIS)

    Sarac, U; Kaya, M; Baykul, M C

    2016-01-01

    In this research, nanocrystalline Ni-Fe-Cu ternary thin films using electrochemical deposition technique were produced at low and high applied current densities onto Indium Tin Oxide (ITO) coated conducting glass substrates. Change of surface morphology and microstructural properties of the films were investigated. Energy dispersive X-ray spectroscopy (EDX) measurements showed that the Ni-Fe-Cu ternary thin films exhibit anomalous codeposition behaviour during the electrochemical deposition process. From the X-ray diffraction (XRD) analyses, it was revealed that there are two segregated phases such as Cu- rich and Ni-rich within the films. The crystallographic structure of the films was face-centered cubic (FCC). It was also observed that the film has lower lattice micro-strain and higher texture degree at high applied current density. Scanning electron microscopy (SEM) studies revealed that the films have rounded shape particles on the base part and cauliflower-like structures on the upper part. The film electrodeposited at high current density had considerably smaller rounded shape particles and cauliflower-like structures. From the atomic force microscopy (AFM) analyses, it was shown that the film deposited at high current density has smaller particle size and surface roughness than the film grown at low current density. (paper)

  20. Molecular layer deposition of APTES on silicon nanowire biosensors: Surface characterization, stability and pH response

    International Nuclear Information System (INIS)

    Liang, Yuchen; Huang, Jie; Zang, Pengyuan; Kim, Jiyoung; Hu, Walter

    2014-01-01

    Graphical abstract: - Abstract: We report the use of molecular layer deposition (MLD) for depositing 3-aminopropyltriethoxysilane (APTES) on a silicon dioxide surface. The APTES monolayer was characterized using spectroscopic ellipsometry, contact angle goniometry, and atomic force microscopy. Effects of reaction time of repeating pulses and simultaneous feeding of water vapor with APTES were tested. The results indicate that the synergistic effects of water vapor and reaction time are significant for the formation of a stable monolayer. Additionally, increasing the number of repeating pulses improved the APTES surface coverage but led to saturation after 10 pulses. In comparing MLD with solution-phase deposition, the APTES surface coverage and the surface quality were nearly equivalent. The hydrolytic stability of the resulting films was also studied. The results confirmed that the hydrolysis process was necessary for MLD to obtain stable surface chemistry. Furthermore, we compared the pH sensing results of Si nanowire field effect transistors (Si NWFETs) modified by both the MLD and solution methods. The highly repeatable pH sensing results reflected the stability of APTES monolayers. The results also showed an improved pH response of the sensor prepared by MLD compared to the one prepared by the solution treatment, which indicated higher surface coverage of APTES

  1. Molecular layer deposition of APTES on silicon nanowire biosensors: Surface characterization, stability and pH response

    Science.gov (United States)

    Liang, Yuchen; Huang, Jie; Zang, Pengyuan; Kim, Jiyoung; Hu, Walter

    2014-12-01

    We report the use of molecular layer deposition (MLD) for depositing 3-aminopropyltriethoxysilane (APTES) on a silicon dioxide surface. The APTES monolayer was characterized using spectroscopic ellipsometry, contact angle goniometry, and atomic force microscopy. Effects of reaction time of repeating pulses and simultaneous feeding of water vapor with APTES were tested. The results indicate that the synergistic effects of water vapor and reaction time are significant for the formation of a stable monolayer. Additionally, increasing the number of repeating pulses improved the APTES surface coverage but led to saturation after 10 pulses. In comparing MLD with solution-phase deposition, the APTES surface coverage and the surface quality were nearly equivalent. The hydrolytic stability of the resulting films was also studied. The results confirmed that the hydrolysis process was necessary for MLD to obtain stable surface chemistry. Furthermore, we compared the pH sensing results of Si nanowire field effect transistors (Si NWFETs) modified by both the MLD and solution methods. The highly repeatable pH sensing results reflected the stability of APTES monolayers. The results also showed an improved pH response of the sensor prepared by MLD compared to the one prepared by the solution treatment, which indicated higher surface coverage of APTES.

  2. Optimization of synthesis conditions of PbS thin films grown by chemical bath deposition using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Yücel, Ersin, E-mail: dr.ersinyucel@gmail.com [Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey); Yücel, Yasin; Beleli, Buse [Department of Chemistry, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey)

    2015-09-05

    Highlights: • For the first time, RSM and CCD used for optimization of PbS thin film. • Tri-sodium citrate, deposition time and temperature were independent variables. • PbS thin film band gap value was 2.20 eV under the optimum conditions. • Quality of the film was improved after chemometrics optimization. - Abstract: In this study, PbS thin films were synthesized by chemical bath deposition (CBD) under different deposition parameters. Response surface methodology (RSM) was used to optimize synthesis parameters including amount of tri-sodium citrate (0.2–0.8 mL), deposition time (14–34 h) and deposition temperature (26.6–43.4 °C) for deposition of the films. 5-level-3-factor central composite design (CCD) was employed to evaluate effects of the deposition parameters on the response (optical band gap of the films). The significant level of both the main effects and the interaction are investigated by analysis of variance (ANOVA). The film structures were characterized by X-ray diffractometer (XRD). Morphological properties of the films were studied with a scanning electron microscopy (SEM). The optical properties of the films were investigated using a UV–visible spectrophotometer. The optimum amount of tri-sodium citrate, deposition time and deposition temperature were found to be 0.7 mL, 18.07 h and 30 °C respectively. Under these conditions, the experimental band gap of PbS was 2.20 eV, which is quite good correlation with value (1.98 eV) predicted by the model.

  3. Optimization of synthesis conditions of PbS thin films grown by chemical bath deposition using response surface methodology

    International Nuclear Information System (INIS)

    Yücel, Ersin; Yücel, Yasin; Beleli, Buse

    2015-01-01

    Highlights: • For the first time, RSM and CCD used for optimization of PbS thin film. • Tri-sodium citrate, deposition time and temperature were independent variables. • PbS thin film band gap value was 2.20 eV under the optimum conditions. • Quality of the film was improved after chemometrics optimization. - Abstract: In this study, PbS thin films were synthesized by chemical bath deposition (CBD) under different deposition parameters. Response surface methodology (RSM) was used to optimize synthesis parameters including amount of tri-sodium citrate (0.2–0.8 mL), deposition time (14–34 h) and deposition temperature (26.6–43.4 °C) for deposition of the films. 5-level-3-factor central composite design (CCD) was employed to evaluate effects of the deposition parameters on the response (optical band gap of the films). The significant level of both the main effects and the interaction are investigated by analysis of variance (ANOVA). The film structures were characterized by X-ray diffractometer (XRD). Morphological properties of the films were studied with a scanning electron microscopy (SEM). The optical properties of the films were investigated using a UV–visible spectrophotometer. The optimum amount of tri-sodium citrate, deposition time and deposition temperature were found to be 0.7 mL, 18.07 h and 30 °C respectively. Under these conditions, the experimental band gap of PbS was 2.20 eV, which is quite good correlation with value (1.98 eV) predicted by the model

  4. Treatment of sulphated water of surface origin produced by an open pit coal mine

    Directory of Open Access Journals (Sweden)

    Alan Campos-Sánchez

    2016-12-01

    Full Text Available The purpose of this study was to select the most suitable method of treatment of sulfated water produced by an open pit coal mine in Venezuela. Samples of water taken on surface, middle and bottom of water bodies in three areas were subjected to basic, gravimetric, volumetric and colorimetric analysis. The results indicated that the pH is within limits permitted by current environmental regulations, while total suspended solids, total dissolved solids, and sulfates exceed the normed values. The aerobic wetland method was selected as the most efficient for the removal of sulfates, depending on the physicochemical characteristics of the sulphated waters from the mine and because they are systems that use natural energy to purify water, its construction and maintenance costs Is significantly inferior to the conventional treatments and because, being replicas of natural ecosystems, they are integrated to the environment.

  5. Mechanical Characteristic of Remanufacturing of FV520B Precipitation Hardening Stainless Steel Using MAG Surfacing Deposition

    Directory of Open Access Journals (Sweden)

    LIU Jian

    2017-10-01

    Full Text Available Surfacing deposition forming method was adopted to carry out remanufacturing experiment of FV520B precipitation hardening stainless steel. Then the mechanical property characteristic of the remanufacturing layer was tested and studied, contrasted with the corresponding property of substrate. The results show that the remanufacturing layer, formed with MAG surfacing of FV520B precipitation hardening stainless steel has mechanical characteristic with high strength and hardness, the tensile strength reaches 1195MPa, exceeds 1092MPa of substrate, yield strength is 776MPa and average hardness is 336HV, is close to the corresponding property of substrate which is 859MPa and 353HV respectively; however, the elongation and impact toughness of the remanufacturing layer is merely 8.92% and 61J/cm2 respectively, it has a large gap with the corresponding property 19.72% and 144J/cm2 respectively of substrate. Fracture and microstructure analysis on specimens shows that the microstructure of remanufacturing layer is fast cooling non-equilibrium crystallized lath martensite, and carbide precipitated strengthening phase such as NbC, MoC, M23C6,etc, which is the reason that remanufacturing layer has high strength and high hardness. But as lack of aging treatment and Cu strengthening phase, and the weak interface between contaminating brittle phase or large size spherical particles and substrate will deteriorate the deformability and induce stress concentration and cracking when the material is load-carrying, and is the main reason of the remanufacturing layer having lower static tensile elongation and impact toughness.

  6. Surface roughening of undoped and in situ B-doped SiGe epitaxial layers deposited by using reduced pressure chemical vapor deposition

    Science.gov (United States)

    Kim, Youngmo; Park, Jiwoo; Sohn, Hyunchul

    2018-01-01

    Si1- x Ge x (:B) epitaxial layers were deposited by using reduced pressure chemical vapor deposition with SiH4, GeH4, and B2H6 source gases, and the dependences of the surface roughness of undoped Si1- x Ge x on the GeH4 flow rate and of Si1- x Ge x :B on the B2H6 flow rate were investigated. The root-mean-square (RMS) roughness value of the undoped Si1- x Ge x at constant thickness increased gradually with increasing Ge composition, resulting from an increase in the amplitude of the wavy surface before defect formation. At higher Ge compositions, the residual strain in Si1- x Ge x significantly decreased through the formation of defects along with an abrupt increase in the RMS roughness. The variation of the surface roughness of Si1- x Ge x :B depended on the boron (B) concentration. At low B concentrations, the RMS roughness of Si1- x Ge x remained constant regardless of Ge composition, which is similar to that of undoped Si1- x Ge x . However, at high B concentrations, the RMS roughness of Si1- x Ge x :B increased greatly due to B islanding. In addition, at very high B concentrations ( 9.9 at%), the RMS roughness of Si1- x Ge x :B decreased due to non-epitaxial growth.

  7. Enriching acid rock drainage related microbial communities from surface-deposited oil sands tailings.

    Science.gov (United States)

    Dean, Courtney; Xiao, Yeyuan; Roberts, Deborah J

    2016-10-01

    Little is known about the microbial communities native to surface-deposited pyritic oil sands tailings, an environment where acid rock drainage (ARD) could occur. The goal of this study was to enrich sulfur-oxidizing organisms from these tailings and determine whether different populations exist at pH levels 7, 4.5, and 2.5. Using growth-based methods provides model organisms for use in the future to predict potential activities and limitations of these organisms and to develop possible control methods. Thiosulfate-fed enrichment cultures were monitored for approximately 1 year. The results showed that the enrichments at pH 4.5 and 7 were established quicker than at pH 2.5. Different microbial community structures were found among the 3 pH environments. The sulfur-oxidizing microorganisms identified were most closely related to Halothiobacillus neapolitanus, Achromobacter spp., and Curtobacterium spp. While microorganisms related to Chitinophagaceae and Acidocella spp. were identified as the only possible iron-oxidizing and -reducing microbes. These results contribute to the general knowledge of the relatively understudied microbial communities that exist in pyritic oil sands tailings and indicate these communities may have a potential role in ARD generation, which may have implications for future tailings management.

  8. Impurity deposition on surface probes during different operation modes at EXTRAP T1

    International Nuclear Information System (INIS)

    Gudowska, I.; Bergsaker, H.; Hellblom, G.

    1991-01-01

    Surface probes were used in the impurity control program during initial operation of the EXTRAP T1 device. The EXTRAP concept, design and operation characteristics are given elsewhere. The dimensions of the device are R/a=0.5m/0.06m. Four different modes of operation were studied: pure EXTRAP, mixed EXTRAP, RFP and ULQ. Briefly, all four are toroidal plasma discharges, with poloidal magnetic field due to the toroidal plasma current. In the ULQ case, a relatively strong external toroidal magnetic field is applied. In the RFP, and in the mixed mode, an external toroidal field is applied early in the discharge, and the plasma subsequently relaxes into a state with self-generated toroidal field. In the EXTRAP and mixed EXTRAP modes, an additional strong external octupole field is applied, breaking the poloidal symmetry. Throughout the initial period of operation of the device, the plasma performance was largely dominated by impurities, in particular fluorine, which was present due to an accidental contamination of the vessel. Probes have been exposed in wall/liner position, and the objective has been to measure erosion and deposition and try to identify which mechanisms are mainly responsible for impurity production. (author) 5 refs., 2 figs., 1 tab

  9. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    Energy Technology Data Exchange (ETDEWEB)

    Rojaee, Ramin, E-mail: raminrojaee@aim.com [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Raeissi, Keyvan [Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of)

    2013-11-15

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF{sub 2} conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  10. Estimates of surface deposition of radioactivity and radiation doses resulting from proposed NNTRP activities

    International Nuclear Information System (INIS)

    Gudiksen, P.H.; Peterson, K.R.

    1975-04-01

    The National Nuclear Test Readiness Program (NNTRP) has been developed by the AEC (now ERDA) and DOD to maintain a state of readiness for the prompt resumption of atmospheric nuclear testing if circumstances warrant such resumption. Such proposed tests would be conducted at the Pacific Test Site. The environmental consequences of the program were assessed. Estimations were made of the magnitude and distribution of radioactive debris deposited on the surface waters of the Pacific Ocean as a result of the test and of the total person-rem to the Continental U.S. and Hawaiian Islands populations. Since the proposed test series consists of a wide range of weapon yields to be detonated at various altitudes and the specific number and types of tests change with time according to national defense needs, a set of seven representative tests were selected for performing a parametric yield analysis at various burst locations and heights. The yields were selected to cover the low intermediate, intermediate, and low megaton ranges. The respective yields, detonation heights, and ground zero locations of the seven bursts were considered. The atmospheric transport and diffusion models that were used are described and the meteorological and radiological input data used, and the results of the calculations are included. (U.S.)

  11. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    International Nuclear Information System (INIS)

    Rojaee, Ramin; Fathi, Mohammadhossein; Raeissi, Keyvan

    2013-01-01

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF 2 conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  12. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    Science.gov (United States)

    Rojaee, Ramin; Fathi, Mohammadhossein; Raeissi, Keyvan

    2013-11-01

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF2 conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  13. Tobacco toxins deposited on surfaces (third hand smoke) impair wound healing.

    Science.gov (United States)

    Dhall, Sandeep; Alamat, Raquelle; Castro, Anthony; Sarker, Altaf H; Mao, Jian-Hua; Chan, Alex; Hang, Bo; Martins-Green, Manuela

    2016-07-01

    Third hand smoke (THS) is the accumulation of second hand smoke (SHS) toxins on surfaces in homes, cars, clothing and hair of smokers. It is known that 88M US nonsmokers ≥3 years old living in homes of smokers are exposed to THS toxicants and show blood cotinine levels of ≥0.05 ng/ml, indicating that the toxins are circulating in their circulatory systems. The goal of the present study is to investigate the mechanisms by which THS causes impaired wound healing. We show that mice living under conditions that mimic THS exposure in humans display delayed wound closure, impaired collagen deposition, altered inflammatory response, decreased angiogenesis, microvessels with fibrin cuffs and a highly proteolytic wound environment. Moreover, THS-exposed mouse wounds have high levels of oxidative stress and significantly lower levels of antioxidant activity leading to molecular damage, including protein nitration, lipid peroxidation and DNA damage that contribute to tissue dysfunction. Furthermore, we show that elastase is elevated, suggesting that elastin is degraded and the plasticity of the wound tissue is decreased. Taken together, our results lead us to conclude that THS toxicants delay and impair wound healing by disrupting the sequential processes that lead to normal healing. In addition, the lack of elastin results in loss of wound plasticity, which may be responsible for reopening of wounds. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  14. Surface ozone seasonality under global change: Influence from dry deposition and isoprene emissions at northern mid-latitudes

    Science.gov (United States)

    Clifton, O.; Paulot, F.; Fiore, A. M.; Horowitz, L. W.; Malyshev, S.; Shevliakova, E.; Correa, G. J. P.; Lin, M.

    2017-12-01

    Identifying the contributions of nonlinear chemistry and transport to observed surface ozone seasonal cycles over land using global models relies on an accurate representation of ozone uptake by vegetation (dry deposition). It is well established that in the absence of ozone precursor emission changes, a warming climate will increase surface ozone in polluted regions, and that a rise in temperature-dependent isoprene emissions would exacerbate this "climate penalty". However, the influence of changes in ozone dry deposition, expected to evolve with climate and land use, is often overlooked in air quality projections. With a new scheme that represents dry deposition within the NOAA GFDL dynamic vegetation land model (LM3) coupled to the NOAA GFDL atmospheric chemistry-climate model (AM3), we simulate the impact of 21st century climate and land use on ozone dry deposition and isoprene emissions. This dry deposition parameterization is a version of the Wesely scheme, but uses parameters explicitly calculated by LM3 that respond to climate and land use (e.g., stomatal conductance, canopy interception of water, leaf area index). The parameterization includes a nonstomatal deposition dependence on humidity. We evaluate climatological present-day seasonal cycles of ozone deposition velocities and abundances with those observed at northern mid-latitude sites. With a set of 2010s and 2090s decadal simulations under a high climate warming scenario (RCP8.5) and a sensitivity simulation with well-mixed greenhouse gases following RCP8.5 but air pollutants held at 2010 levels (RCP8.5_WMGG), we examine changes in surface ozone seasonal cycles. We build on our previous findings, which indicate that strong reductions in anthropogenic NOx emissions under RCP8.5 cause the surface ozone seasonal cycle over the NE USA to reverse, shifting from a summer peak at present to a winter peak by 2100. Under RCP8.5_WMGG, we parse the separate effects of climate and land use on ozone dry

  15. Response surface optimization of biosurfactant produced by Pseudomonas aeruginosa MA01 isolated from spoiled apples.

    Science.gov (United States)

    Abbasi, Habib; Sharafi, Hakimeh; Alidost, Leila; Bodagh, Atefe; Zahiri, Hossein Shahbani; Noghabi, Kambiz Akbari

    2013-01-01

    A potent biosurfactant-producing bacterial strain isolated from spoiled apples was identified by 16S rRNA as Pseudomonas aeruginosa MA01. Compositional analysis revealed that the extracted biosurfactant was composed of high percentages of lipid (66%, w/w) and carbohydrate (32%, w/w). The