WorldWideScience

Sample records for surface-enhanced raman ser

  1. Applications of the surface enhanced Raman scattering (SERS)

    International Nuclear Information System (INIS)

    Picquart, M.; Haro P, E.; Bernard, S.

    2007-01-01

    Full text: Vibration spectroscopy techniques are used for many times to identify substances, determine molecular structure and quantify them, independently of their physical state. Raman spectroscopy as infrared absorption permit to access the vibration energy levels of molecules. In the second case, the permanent dipolar moment is involved while in the first one it is the polarizability (and the induced dipolar moment). Unfortunately, the classical Raman spectroscopy is low sensitive in particular in the case of biological molecules. On the opposite, the surface enhanced Raman spectroscopy (SERS) offers great potentialities. In this case, the molecules are adsorbed on a rough surface or on nanoparticles of gold or silver and the: signal can be increased by a factor of 10 7 to 10 8 . Moreover, the spectral enhancement is greater for the vibrations of the functional group of the molecule adsorbed on the substrate. In this work, we present the main theoretical bases of SERS, and some results obtain on different systems. (Author)

  2. Surface enhanced Raman scattering (SERS) fabrics for trace analysis

    International Nuclear Information System (INIS)

    Liu, Jun; Zhou, Ji; Tang, Bin; Zeng, Tian; Li, Yaling; Li, Jingliang; Ye, Yong; Wang, Xungai

    2016-01-01

    Highlights: • Gold nanoparticles are in-situ synthesized on silk fabrics by heating. • Flexible silk fabrics with gold nanoparticles are used for surface-enhanced Raman scattering (SERS). • SERS activities of silk fabrics with different gold contents are investigated. - Abstract: Flexible SERS active substrates were prepared by modification of silk fabrics with gold nanoparticles. Gold nanoparticles were in-situ synthesized after heating the silk fabrics immersed in gold ion solution. Localized surface plasmon resonance (LSPR) properties of the treated silk fabrics varied as the concentration of gold ions changed, in relation to the morphologies of gold nanoparticles on silk. In addition, X-ray diffraction (XRD) was used to observe the structure of the gold nanoparticle treated silk fabrics. The SERS enhancement effect of the silk fabrics treated with gold nanoparticles was evaluated by collecting Raman signals of different concentrations of p-aminothiophenol (PATP), 4-mercaptopyridine (4-MPy) and crystal violet (CV) solutions. The results demonstrate that the silk fabrics corresponding to 0.3 and 0.4 mM of gold ions possess high SERS activity compared to the other treated fabrics. It is suggested that both the gold content and morphologies of gold nanoparticles dominate the SERS effect of the treated silk fabrics.

  3. Surface enhanced Raman scattering (SERS) fabrics for trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Zhou, Ji [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Tang, Bin, E-mail: bin.tang@deakin.edu.au [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia); Zeng, Tian; Li, Yaling [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Li, Jingliang [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia); Ye, Yong, E-mail: yeyong@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Wang, Xungai [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia)

    2016-11-15

    Highlights: • Gold nanoparticles are in-situ synthesized on silk fabrics by heating. • Flexible silk fabrics with gold nanoparticles are used for surface-enhanced Raman scattering (SERS). • SERS activities of silk fabrics with different gold contents are investigated. - Abstract: Flexible SERS active substrates were prepared by modification of silk fabrics with gold nanoparticles. Gold nanoparticles were in-situ synthesized after heating the silk fabrics immersed in gold ion solution. Localized surface plasmon resonance (LSPR) properties of the treated silk fabrics varied as the concentration of gold ions changed, in relation to the morphologies of gold nanoparticles on silk. In addition, X-ray diffraction (XRD) was used to observe the structure of the gold nanoparticle treated silk fabrics. The SERS enhancement effect of the silk fabrics treated with gold nanoparticles was evaluated by collecting Raman signals of different concentrations of p-aminothiophenol (PATP), 4-mercaptopyridine (4-MPy) and crystal violet (CV) solutions. The results demonstrate that the silk fabrics corresponding to 0.3 and 0.4 mM of gold ions possess high SERS activity compared to the other treated fabrics. It is suggested that both the gold content and morphologies of gold nanoparticles dominate the SERS effect of the treated silk fabrics.

  4. Surface-enhanced Raman spectroscopy (SERS) using Ag nanoparticle films produced by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, C.A., E-mail: smythc2@tcd.ie [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Mirza, I.; Lunney, J.G.; McCabe, E.M. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Pulsed laser deposition (PLD) produces silver nanoparticle films. Black-Right-Pointing-Pointer These films can be used for surface-enhanced Raman spectroscopy (SERS). Black-Right-Pointing-Pointer Commercial film shows good SERS reproducibility but poor signal intensity. Black-Right-Pointing-Pointer PLD shows a good SERS response coupled with good reproducibility. - Abstract: Thin silver nanoparticle films, of thickness 7 nm, were deposited onto glass microslides using pulsed laser deposition (PLD). The films were then characterised using UV-vis spectroscopy and scanning transmission electron microscopy before Rhodamine 6G was deposited onto them for investigation using surface-enhanced Raman spectroscopy (SERS). The sensitivity obtained using SERS was compared to that obtained using a colloidal silver suspension and also to a commercial SERS substrate. The reproducibility of the films is also examined using statistical analysis.

  5. Application of surface-enhanced Raman spectroscopy (SERS) for cleaning verification in pharmaceutical manufacture.

    Science.gov (United States)

    Corrigan, Damion K; Cauchi, Michael; Piletsky, Sergey; Mccrossen, Sean

    2009-01-01

    Cleaning verification is the process by which pharmaceutical manufacturing equipment is determined as sufficiently clean to allow manufacture to continue. Surface-enhanced Raman spectroscopy (SERS) is a very sensitive spectroscopic technique capable of detection at levels appropriate for cleaning verification. In this paper, commercially available Klarite SERS substrates were employed in order to obtain the necessary enhancement of signal for the identification of chemical species at concentrations of 1 to 10 ng/cm2, which are relevant to cleaning verification. The SERS approach was combined with principal component analysis in the identification of drug compounds recovered from a contaminated steel surface.

  6. Development of surface enhanced Raman scattering (SERS) spectroscopy monitoring of fuel markers to prevent fraud

    Science.gov (United States)

    Wilkinson, Timothy; Clarkson, John; White, Peter C.; Meakin, Nicholas; McDonald, Ken

    2013-05-01

    Governments often tax fuel products to generate revenues to support and stimulate their economies. They also subsidize the cost of essential fuel products. Fuel taxation and subsidization practices are both subject to fraud. Oil marketing companies also suffer from fuel fraud with loss of legitimate sales and additional quality and liability issues. The use of an advanced marking system to identify and control fraud has been shown to be effective in controlling illegal activity. DeCipher has developed surface enhanced Raman scattering (SERS) spectroscopy as its lead technology for measuring markers in fuel to identify and control malpractice. SERS has many advantages that make it highly suitable for this purpose. The SERS instruments are portable and can be used to monitor fuel at any point in the supply chain. SERS shows high specificity for the marker, with no false positives. Multiple markers can also be detected in a single SERS analysis allowing, for example, specific regional monitoring of fuel. The SERS analysis from fuel is also quick, clear and decisive, with a measurement time of less than 5 minutes. We will present results highlighting our development of the use of a highly stable silver colloid as a SERS substrate to measure the markers at ppb levels. Preliminary results from the use of a solid state SERS substrate to measure fuel markers will also be presented.

  7. Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling

    International Nuclear Information System (INIS)

    Wang, Chao; Yu, Chenxu

    2015-01-01

    With the rapid development of analytical techniques, it has become much easier to detect chemical and biological analytes, even at very low detection limits. In recent years, techniques based on vibrational spectroscopy, such as surface enhanced Raman spectroscopy (SERS), have been developed for non-destructive detection of pathogenic microorganisms. SERS is a highly sensitive analytical tool that can be used to characterize chemical and biological analytes interacting with SERS-active substrates. However, it has always been a challenge to obtain consistent and reproducible SERS spectroscopic results at complicated experimental conditions. Microfluidics, a tool for highly precise manipulation of small volume liquid samples, can be used to overcome the major drawbacks of SERS-based techniques. High reproducibility of SERS measurement could be obtained in continuous flow generated inside microfluidic devices. This article provides a thorough review of the principles, concepts and methods of SERS-microfluidic platforms, and the applications of such platforms in trace analysis of chemical and biological analytes. (topical review)

  8. Analysis of silver nanoparticles in antimicrobial products using surface-enhanced Raman spectroscopy (SERS).

    Science.gov (United States)

    Guo, Huiyuan; Zhang, Zhiyun; Xing, Baoshan; Mukherjee, Arnab; Musante, Craig; White, Jason C; He, Lili

    2015-04-07

    Silver nanoparticles (AgNPs) are the most commonly used nanoparticles in consumer products. Concerns over human exposure to and risk from these particles have resulted in increased interest in novel strategies to detect AgNPs. This study investigated the feasibility of surface-enhanced Raman spectroscopy (SERS) as a method for the detection and quantification of AgNPs in antimicrobial products. By using ferbam (ferric dimethyl-dithiocarbamate) as an indicator molecule that binds strongly onto the nanoparticles, AgNPs detection and discrimination were achieved based on the signature SERS response of AgNPs-ferbam complexes. SERS response with ferbam was distinct for silver ions, silver chloride, silver bulk particles, and AgNPs. Two types of AgNPs with different coatings, citrate and polyvinylpirrolidone (PVP), both showed strong interactions with ferbam and induced strong SERS signals. SERS was effectively applicable for detecting Ag particles ranging from 20 to 200 nm, with the highest signal intensity in the 60-100 nm range. A linear relationship (R(2) = 0.9804) between Raman intensity and citrate-AgNPs concentrations (60 nm; 0-20 mg/L) indicates the potential for particle quantification. We also evaluated SERS detection of AgNPs in four commercially available antimicrobial products. Combined with ICP-MS and TEM data, the results indicated that the SERS response is primarily dependent on size, but also affected by AgNPs concentration. The findings demonstrate that SERS is a promising analytical platform for studying environmentally relevant levels of AgNPs in consumer products and related matrices.

  9. Derivatization reaction-based surface-enhanced Raman scattering (SERS) for detection of trace acetone.

    Science.gov (United States)

    Zheng, Ying; Chen, Zhuo; Zheng, Chengbin; Lee, Yong-Ill; Hou, Xiandeng; Wu, Li; Tian, Yunfei

    2016-08-01

    A facile method was developed for determination of trace volatile acetone by coupling a derivatization reaction to surface-enhanced Raman scattering (SERS). With iodide modified Ag nanoparticles (Ag IMNPs) as the SERS substrate, acetone without obvious Raman signal could be converted to SERS-sensitive species via a chemical derivatization reaction with 2,4-dinitrophenylhydrazine (2,4-DNPH). In addition, acetone can be effectively separated from liquid phase with a purge-sampling device and then any serious interference from sample matrices can be significantly reduced. The optimal conditions for the derivatization reaction and the SERS analysis were investigated in detail, and the selectivity and reproducibility of this method were also evaluated. Under the optimal conditions, the limit of detection (LOD) for acetone was 5mgL(-1) or 0.09mM (3σ). The relative standard deviation (RSD) for 80mgL(-1) acetone (n=9) was 1.7%. This method was successfully used for the determination of acetone in artificial urine and human urine samples with spiked recoveries ranging from 92% to 110%. The present method is convenient, sensitive, selective, reliable and suitable for analysis of trace acetone, and it could have a promising clinical application in early diabetes diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Surface enhanced Raman spectroscopy (SERS) for in vitro diagnostic testing at the point of care

    Science.gov (United States)

    Marks, Haley; Schechinger, Monika; Garza, Javier; Locke, Andrea; Coté, Gerard

    2017-06-01

    Point-of-care (POC) device development is a growing field that aims to develop low-cost, rapid, sensitive in-vitro diagnostic testing platforms that are portable, self-contained, and can be used anywhere - from modern clinics to remote and low resource areas. In this review, surface enhanced Raman spectroscopy (SERS) is discussed as a solution to facilitating the translation of bioanalytical sensing to the POC. The potential for SERS to meet the widely accepted "ASSURED" (Affordable, Sensitive, Specific, User-friendly, Rapid, Equipment-free, and Deliverable) criterion provided by the World Health Organization is discussed based on recent advances in SERS in vitro assay development. As SERS provides attractive characteristics for multiplexed sensing at low concentration limits with a high degree of specificity, it holds great promise for enhancing current efforts in rapid diagnostic testing. In outlining the progression of SERS techniques over the past years combined with recent developments in smart nanomaterials, high-throughput microfluidics, and low-cost paper diagnostics, an extensive number of new possibilities show potential for translating SERS biosensors to the POC.

  11. Surface enhanced Raman spectroscopy (SERS for in vitro diagnostic testing at the point of care

    Directory of Open Access Journals (Sweden)

    Marks Haley

    2017-06-01

    Full Text Available Point-of-care (POC device development is a growing field that aims to develop low-cost, rapid, sensitive in-vitro diagnostic testing platforms that are portable, self-contained, and can be used anywhere – from modern clinics to remote and low resource areas. In this review, surface enhanced Raman spectroscopy (SERS is discussed as a solution to facilitating the translation of bioanalytical sensing to the POC. The potential for SERS to meet the widely accepted “ASSURED” (Affordable, Sensitive, Specific, User-friendly, Rapid, Equipment-free, and Deliverable criterion provided by the World Health Organization is discussed based on recent advances in SERS in vitro assay development. As SERS provides attractive characteristics for multiplexed sensing at low concentration limits with a high degree of specificity, it holds great promise for enhancing current efforts in rapid diagnostic testing. In outlining the progression of SERS techniques over the past years combined with recent developments in smart nanomaterials, high-throughput microfluidics, and low-cost paper diagnostics, an extensive number of new possibilities show potential for translating SERS biosensors to the POC.

  12. Surface-Enhanced Raman Scattering (SERS) for Detection in Immunoassays: applications, fundamentals, and optimization

    International Nuclear Information System (INIS)

    Jeremy Daniel Driskell

    2006-01-01

    Immunoassays have been utilized for the detection of biological analytes for several decades. Many formats and detection strategies have been explored, each having unique advantages and disadvantages. More recently, surface-enhanced Raman scattering (SERS) has been introduced as a readout method for immunoassays, and has shown great potential to meet many key analytical figures of merit. This technology is in its infancy and this dissertation explores the diversity of this method as well as the mechanism responsible for surface enhancement. Approaches to reduce assay times are also investigated. Implementing the knowledge gained from these studies will lead to a more sensitive immunoassay requiring less time than its predecessors. This dissertation is organized into six sections. The first section includes a literature review of the previous work that led to this dissertation. A general overview of the different approaches to immunoassays is given, outlining the strengths and weaknesses of each. Included is a detailed review of binding kinetics, which is central for decreasing assay times. Next, the theoretical underpinnings of SERS is reviewed at its current level of understanding. Past work has argued that surface plasmon resonance (SPR) of the enhancing substrate influences the SERS signal; therefore, the SPR of the extrinsic Raman labels (ERLs) utilized in our SERS-based immunoassay is discussed. Four original research chapters follow the Introduction, each presented as separate manuscripts. Chapter 2 modifies a SERS-based immunoassay previously developed in our group, extending it to the low-level detection of viral pathogens and demonstrating its versatility in terms of analyte type, Chapter 3 investigates the influence of ERL size, material composition, and separation distance between the ERLs and capture substrate on the SERS signal. This chapter links SPR with SERS enhancement factors and is consistent with many of the results from theoretical treatments

  13. Surface-Enhanced Raman Scattering (SERS) for Detection in Immunoassays. Applications, fundamentals, and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Driskell, Jeremy Daniel [Iowa State Univ., Ames, IA (United States)

    2006-08-09

    Immunoassays have been utilized for the detection of biological analytes for several decades. Many formats and detection strategies have been explored, each having unique advantages and disadvantages. More recently, surface-enhanced Raman scattering (SERS) has been introduced as a readout method for immunoassays, and has shown great potential to meet many key analytical figures of merit. This technology is in its infancy and this dissertation explores the diversity of this method as well as the mechanism responsible for surface enhancement. Approaches to reduce assay times are also investigated. Implementing the knowledge gained from these studies will lead to a more sensitive immunoassay requiring less time than its predecessors. This dissertation is organized into six sections. The first section includes a literature review of the previous work that led to this dissertation. A general overview of the different approaches to immunoassays is given, outlining the strengths and weaknesses of each. Included is a detailed review of binding kinetics, which is central for decreasing assay times. Next, the theoretical underpinnings of SERS is reviewed at its current level of understanding. Past work has argued that surface plasmon resonance (SPR) of the enhancing substrate influences the SERS signal; therefore, the SPR of the extrinsic Raman labels (ERLs) utilized in our SERS-based immunoassay is discussed. Four original research chapters follow the Introduction, each presented as separate manuscripts. Chapter 2 modifies a SERS-based immunoassay previously developed in our group, extending it to the low-level detection of viral pathogens and demonstrating its versatility in terms of analyte type, Chapter 3 investigates the influence of ERL size, material composition, and separation distance between the ERLs and capture substrate on the SERS signal. This chapter links SPR with SERS enhancement factors and is consistent with many of the results from theoretical treatments

  14. Rapid detection of acetamiprid in foods using surface-enhanced Raman spectroscopy (SERS).

    Science.gov (United States)

    Wijaya, Wisiani; Pang, Shintaro; Labuza, Theodore P; He, Lili

    2014-04-01

    Acetamiprid is a neonicotinoid pesticide that is commonly used in modern farming. Acetamiprid residue in food commodities can be a potential harm to human and has been implicated in the honey bee hive die off crisis. In this study, we developed rapid, simple, and sensitive methods to detect acetamiprid in apple juice and on apple surfaces using surface-enhanced Raman spectroscopy (SERS). No pretreatment of apple juice sample was performed. A simple surface swab method was used to recover acetamiprid from the apple surface. Samples were incubated with silver dendrites for several minutes and SERS spectra were taken directly from the silver surface. Detection of a set of 5 apple juice samples can be done within 10 min. The swab-SERS method took 15 min for a set of 5 samples. Resulting spectral data were analyzed using principal component analysis. The highest acetamiprid peak at 634 cm(-1) was used to detect and quantify the amount of acetamiprid spiked in 1:1 water-methanol solvent, apple juice, and on apple surface. The SERS method was able to successfully detect acetamiprid at 0.5 μg/mL (0.5 ppm) in solvent, 3 μg/mL (3 ppm) in apple juice, and 0.125 μg/cm(2) on apple surfaces. The SERS methods provide simple, rapid, and sensitive ways to detect acetamiprid in beverages and on the surfaces of thick skinned fruits and vegetables. © 2014 Institute of Food Technologists®

  15. Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing.

    Science.gov (United States)

    Shen, Yanting; Liang, Lijia; Zhang, Shuqin; Huang, Dianshuai; Zhang, Jing; Xu, Shuping; Liang, Chongyang; Xu, Weiqing

    2018-01-25

    The pH value of subcellular organelles in living cells is a significant parameter in the physiological activities of cells. Its abnormal fluctuations are commonly believed to be associated with cancers and other diseases. Herein, a series of surface-enhanced Raman scattering (SERS) nanosensors with high sensitivity and targeting function was prepared for the quantification and monitoring of pH values in mitochondria, nucleus, and lysosome. The nanosensors were composed of gold nanorods (AuNRs) functionalized with a pH-responsive molecule (4-mercaptopyridine, MPy) and peptides that could specifically deliver the AuNRs to the targeting subcellular organelles. The localization of our prepared nanoprobes in specific organelles was confirmed by super-high resolution fluorescence imaging and bio-transmission electron microscopy (TEM) methods. By the targeting ability, the pH values of the specific organelles can be determined by monitoring the vibrational spectral changes of MPy with different pH values. Compared to the cases of reported lysosome and cytoplasm SERS pH sensors, more accurate pH values of mitochondria and nucleus, which could be two additional intracellular tracers for subcellular microenvironments, were disclosed by this SERS approach, further improving the accuracy of discrimination of related diseases. Our sensitive SERS strategy can also be employed to explore crucial physiological and biological processes that are related to subcellular pH fluctuations.

  16. Monitoring cell culture media degradation using surface enhanced Raman scattering (SERS) spectroscopy.

    Science.gov (United States)

    Calvet, Amandine; Ryder, Alan G

    2014-08-20

    The quality of the cell culture media used in biopharmaceutical manufacturing is a crucial factor affecting bioprocess performance and the quality of the final product. Due to their complex composition these media are inherently unstable, and significant compositional variations can occur particularly when in the prepared liquid state. For example photo-degradation of cell culture media can have adverse effects on cell viability and thus process performance. There is therefore, from quality control, quality assurance and process management view points, an urgent demand for the development of rapid and inexpensive tools for the stability monitoring of these complex mixtures. Spectroscopic methods, based on fluorescence or Raman measurements, have now become viable alternatives to more time-consuming and expensive (on a unit analysis cost) chromatographic and/or mass spectrometry based methods for routine analysis of media. Here we demonstrate the application of surface enhanced Raman scattering (SERS) spectroscopy for the simple, fast, analysis of cell culture media degradation. Once stringent reproducibility controls are implemented, chemometric data analysis methods can then be used to rapidly monitor the compositional changes in chemically defined media. SERS shows clearly that even when media are stored at low temperature (2-8°C) and in the dark, significant chemical changes occur, particularly with regard to cysteine/cystine concentration. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Estimating the Analytical and Surface Enhancement Factors in Surface-Enhanced Raman Scattering (SERS): A Novel Physical Chemistry and Nanotechnology Laboratory Experiment

    Science.gov (United States)

    Pavel, Ioana E.; Alnajjar, Khadijeh S.; Monahan, Jennifer L.; Stahler, Adam; Hunter, Nora E.; Weaver, Kent M.; Baker, Joshua D.; Meyerhoefer, Allie J.; Dolson, David A.

    2012-01-01

    A novel laboratory experiment was successfully implemented for undergraduate and graduate students in physical chemistry and nanotechnology. The main goal of the experiment was to rigorously determine the surface-enhanced Raman scattering (SERS)-based sensing capabilities of colloidal silver nanoparticles (AgNPs). These were quantified by…

  18. Label-free direct surface-enhanced Raman scattering (SERS) of nucleic acids (Conference Presentation)

    Science.gov (United States)

    Guerrini, Luca; Morla-Folch, Judit; Gisbert-Quilis, Patricia; Xie, Hainan; Alvarez-Puebla, Ramon

    2016-03-01

    Recently, plasmonic-based biosensing has experienced an unprecedented level of attention, with a particular focus on the nucleic acid detection, offering efficient solutions to engineer simple, fast, highly sensitive sensing platforms while overcoming important limitations of PCR and microarray techniques. In the broad field of plasmonics, surface-enhanced Raman scattering (SERS) spectroscopy has arisen as a powerful analytical tool for detection and structural characterization of biomolecules. Today applications of SERS to nucleic acid analysis largely rely on indirect strategies, which have been demonstrated very effective for pure sensing purposes but completely dismiss the exquisite structural information provided by the direct acquisition of the biomolecular vibrational fingerprint. Contrarily, direct label-free SERS of nucleic acid shows an outstanding potential in terms of chemical-specific information which, however, remained largely unexpressed mainly because of the inherent poor spectral reproducibility and/or limited sensitivity. To address these limitations, we developed a fast and affordable high-throughput screening direct SERS method for gaining detailed genomic information on nucleic acids (DNA and RNA) and for the characterization and quantitative recognition of DNA interactions with exogenous agents. The simple strategy relies on the electrostatic adhesion of DNA/RNA onto positively-charged silver colloids that promotes the nanoparticle aggregation into stable clusters yielding intense and reproducible SERS spectra at picogram level (i.e. the analysis can be performed without the necessity of amplification steps thus providing realistic direct information of the nucleic acid in its native state). We anticipate this method to gain a vast impact and set of applications in different fields, including medical diagnostics, genomic screening, drug discovery, forensic science and even molecular electronics.

  19. Performance Characteristics of Bio-Inspired Metal Nanostructures as Surface-Enhanced Raman Scattered (SERS) Substrates.

    Science.gov (United States)

    Areizaga-Martinez, Hector I; Kravchenko, Ivan; Lavrik, Nickolay V; Sepaniak, Michael J; Hernández-Rivera, Samuel P; De Jesús, Marco A

    2016-09-01

    The fabrication of high-performance plasmonic nanomaterials for bio-sensing and trace chemical detection is a field of intense theoretical and experimental research. The use of metal-silicon nanopillar arrays as analytical sensors has been reported with reasonable results in recent years. The use of bio-inspired nanocomposite structures that follow the Fibonacci numerical architecture offers the opportunity to develop nanostructures with theoretically higher and more reproducible plasmonic fields over extended areas. The work presented here describes the nanofabrication process for a series of 40 µm × 40 µm bio-inspired arrays classified as asymmetric fractals (sunflower seeds and romanesco broccoli), bilaterally symmetric (acacia leaves and honeycombs), and radially symmetric (such as orchids and lily flowers) using electron beam lithography. In addition, analytical capabilities were evaluated using surface-enhanced Raman scattering (SERS). The substrate characterization and SERS performance of the developed substrates as the strategies to assess the design performance are presented and discussed. © The Author(s) 2016.

  20. Label-Free Detection of Glycan-Protein Interactions for Array Development by Surface-Enhanced Raman Spectroscopy (SERS)

    NARCIS (Netherlands)

    Li, Xiuru; Martin, Sharon J H; Chinoy, Zoeisha S; Liu, Lin; Rittgers, Brandon; Dluhy, Richard A; Boons, Geert-Jan

    2016-01-01

    A glyco-array platform has been developed, in which glycans are attached to plasmonic nanoparticles through strain-promoted azide-alkyne cycloaddition. Glycan-protein binding events can then be detected in a label-free manner employing surface-enhanced Raman spectroscopy (SERS). As proof of concept,

  1. Surface-enhanced Raman scattering (SERS)-based volatile organic compounds (VOCs) detection using plasmonic bimetallic nanogap substrate

    DEFF Research Database (Denmark)

    Wong, Chi Lok; Dinish, U. S.; Buddharaju, Kavitha Devi

    2014-01-01

    In this paper, we present surface-enhanced Raman scattering (SERS)-based volatile organic compounds (VOCs) detection with bimetallic nanogap structure substrate. Deep UV photolithography at the wavelength of 250 nm is used to pattern circular shape nanostructures. The nanogap between adjacent cir......-based VOCs detection platform for point-of-care breath analysis, homeland security, chemical sensing and environmental monitoring....

  2. Biomedical Applications of Micro-Raman and Surface-Enhanced Raman Scattering (SERS) Technology

    Science.gov (United States)

    2012-10-01

    hydroxyapatite ; 1073cm-1, carbonate from carbonate apatite; 1442cm-1, cholesterol and cholesterol esters. 17 Table 1. Tentative assignment and Raman peak...allowed for the discrete location of atherosclerotic plaques. Raman peaks at 961 and 1073 cm-1 reveal the presence of calcium hydroxyapatite and... hydroxyapatite are located within the vessel wall. Similarly, Fig. 5 maps the Raman intensity of the peak at 1073cm-1, which is indicative of

  3. Toward development of a surface-enhanced Raman scattering (SERS)-based cancer diagnostic immunoassay panel.

    Science.gov (United States)

    Granger, Jennifer H; Granger, Michael C; Firpo, Matthew A; Mulvihill, Sean J; Porter, Marc D

    2013-01-21

    Proteomic analyses of readily obtained human fluids (e.g., serum, urine, and saliva) indicate that the diagnosis of complex diseases will be enhanced by the simultaneous measurement of multiple biomarkers from such samples. This paper describes the development of a nanoparticle-based multiplexed platform that has the potential for simultaneous read-out of large numbers of biomolecules. For this purpose, we have chosen pancreatic adenocarcinoma (PA) as a test bed for diagnosis and prognosis. PA is a devastating form of cancer in which an estimated 86% of diagnoses resulted in death in the United States in 2010. The high mortality rate is due, in part, to the asymptomatic development of the disease and the dearth of sensitive diagnostics available for early detection. One promising route lies in the development of a serum biomarker panel that can generate a signature unique to early stage PA. We describe the design and development of a proof-of-concept PA biomarker immunoassay array coupled with surface-enhanced Raman scattering (SERS) as a sensitive readout method.

  4. Highlights from Faraday Discussion FDSERS17: Surface Enhanced Raman Scattering - SERS, Glasgow, UK, 30th August-1st September 2017.

    Science.gov (United States)

    Di Martino, G; Fleming, H; Kamp, M; Lussier, F

    2017-11-28

    The 2017 Faraday Discussion on Surface Enhanced Raman Scattering (SERS) attracted more than a hundred delegates from a broad spectrum of backgrounds and experience levels, bringing together leading scientists involved in the long living field of SERS. The meeting gave an overview of the liveliness of the topic, characterised by open questions and fascinating science still to discover. In the following, we discuss the topics covered during this meeting and briefly highlight the content of each presentation.

  5. Comparison of time-gated surface-enhanced Raman spectroscopy (TG-SERS) and classical SERS based monitoring of Escherichia coli cultivation samples.

    Science.gov (United States)

    Kögler, Martin; Paul, Andrea; Anane, Emmanuel; Birkholz, Mario; Bunker, Alex; Viitala, Tapani; Maiwald, Michael; Junne, Stefan; Neubauer, Peter

    2018-06-08

    The application of Raman spectroscopy as a monitoring technique for bioprocesses is severely limited by a large background signal originating from fluorescing compounds in the culture media. Here we compare time-gated Raman (TG-Raman)-, continuous wave NIR-process Raman (NIR-Raman) and continuous wave micro-Raman (micro-Raman) approaches in combination with surface enhanced Raman spectroscopy (SERS) for their potential to overcome this limit. For that purpose, we monitored metabolite concentrations of Escherichia coli bioreactor cultivations in cell-free supernatant samples. We investigated concentration transients of glucose, acetate, AMP and cAMP at alternating substrate availability, from deficiency to excess. Raman and SERS signals were compared to off-line metabolite analysis of carbohydrates, carboxylic acids and nucleotides. Results demonstrate that SERS, in almost all cases, led to a higher number of identifiable signals and better resolved spectra. Spectra derived from the TG-Raman were comparable to those of micro-Raman resulting in well-discernable Raman peaks, which allowed for the identification of a higher number of compounds. In contrast, NIR-Raman provided a superior performance for the quantitative evaluation of analytes, both with and without SERS nanoparticles when using multivariate data analysis. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.

  6. Surface enhanced Raman scattering

    CERN Document Server

    Furtak, Thomas

    1982-01-01

    In the course of the development of surface science, advances have been identified with the introduction of new diagnostic probes for analytical characterization of the adsorbates and microscopic structure of surfaces and interfaces. Among the most recently de­ veloped techniques, and one around which a storm of controversy has developed, is what has now been earmarked as surface enhanced Raman scattering (SERS). Within this phenomenon, molecules adsorbed onto metal surfaces under certain conditions exhibit an anomalously large interaction cross section for the Raman effect. This makes it possible to observe the detailed vibrational signature of the adsorbate in the ambient phase with an energy resolution much higher than that which is presently available in electron energy loss spectroscopy and when the surface is in contact with a much larger amount of material than that which can be tolerated in infrared absorption experiments. The ability to perform vibrational spectroscopy under these conditions would l...

  7. Combining surface enhanced Raman scattering (SERS) and high-performance thin-layer chromatography (HPTLC)

    Science.gov (United States)

    Koglin, E.

    A new method for preparing SERS active surfaces using silver colloidal spheres deposited on HPTLC plates, used for thin-layer chromatography, is discussed in detail. The sensitivity of these activated HPTLC plates is so high that in-situ vibrational investigations of chromatogram spots are possible at the nanogram level. The HPTLC/SERS spectra of purine, benzoic acid and 1-nitro-pyrene adsorbed on silver colloidal activated silica gel plates are measured in the nanogram region. In addition we also report in this paper on the results of a feasibility study performed to evaluate the analytical potential of micro-Raman spectroscopy (triple monochromator, multichannel detection system) in SERS/HPTLC spot characterization. It permits the acquisition of Raman spectra from HPTLC spots down to 1 μm in size or other forms of microsamples approaching the picogram level in mass.

  8. Biological sensing with surface-enhanced Raman spectroscopy (SERS) using a facile and rapid silver colloid-based synthesis technique

    Science.gov (United States)

    Smyth, C.; Mehigan, S.; Rakovich, Y. P.; Bell, S. E. J.; McCabe, E. M.

    2011-03-01

    Optical techniques towards the realisation of sensitive and selective biosensing platforms have received a considerable amount of attention in recent times. Techniques based on interferometry, surface plasmon resonance, field-effect transistors and waveguides have all proved popular, and in particular, spectroscopy offers a large range of options. Raman spectroscopy has always been viewed as an information rich technique in which the vibrational frequencies reveal a lot about the structure of a compound. The issue with Raman spectroscopy has traditionally been that its rather low cross section leads to poor limits-of-detection. In response to this problem, Surface-enhanced Raman Scattering (SERS), which increases sensitivity by bringing the sample in contact with many types of enhanceing substrates, has been developed. Here we discuss a facile and rapid technique for the detection of pterins using colloidal silver suspensions. Pteridine compounds are a family of biochemicals, heterocyclic in structure, and employed in nature as components of colour pigmentation and also as facilitators for many metabolic pathways, particularly those relating to the amino acid hydroxylases. In this work, xanthopterin, isoxanthopterin and 7,8- dihydrobiopterin have been examined whilst absorbed to SERS-active silver colloids. SERS, while far more sensitive than regular Raman spectroscopy, has its own issues relating to the reproducibility of substrates. In order to obtain quantitative data for the pteridine compounds mentioned above, exploratory studies of methods for introducing an internal standard for normalisation of the signals have been carried out.e

  9. Rapid and sensitive detection of synthetic cannabinoids AMB-FUBINACA and α-PVP using surface enhanced Raman scattering (SERS)

    Science.gov (United States)

    Islam, Syed K.; Cheng, Yin Pak; Birke, Ronald L.; Green, Omar; Kubic, Thomas; Lombardi, John R.

    2018-04-01

    The application of surface enhanced Raman scattering (SERS) has been reported as a fast and sensitive analytical method in the trace detection of the two most commonly known synthetic cannabinoids AMB-FUBINACA and alpha-pyrrolidinovalerophenone (α-PVP). FUBINACA and α-PVP are two of the most dangerous synthetic cannabinoids which have been reported to cause numerous deaths in the United States. While instruments such as GC-MS, LC-MS have been traditionally recognized as analytical tools for the detection of these synthetic drugs, SERS has been recently gaining ground in the analysis of these synthetic drugs due to its sensitivity in trace analysis and its effectiveness as a rapid method of detection. This present study shows the limit of detection of a concentration as low as picomolar for AMB-FUBINACA while for α-PVP, the limit of detection is in nanomolar concentration using SERS.

  10. Surface Enhanced Raman Spectroscopy (SERS) methods for endpoint and real-time quantification of miRNA assays

    Science.gov (United States)

    Restaino, Stephen M.; White, Ian M.

    2017-03-01

    Surface Enhanced Raman spectroscopy (SERS) provides significant improvements over conventional methods for single and multianalyte quantification. Specifically, the spectroscopic fingerprint provided by Raman scattering allows for a direct multiplexing potential far beyond that of fluorescence and colorimetry. Additionally, SERS generates a comparatively low financial and spatial footprint compared with common fluorescence based systems. Despite the advantages of SERS, it has remained largely an academic pursuit. In the field of biosensing, techniques to apply SERS to molecular diagnostics are constantly under development but, most often, assay protocols are redesigned around the use of SERS as a quantification method and ultimately complicate existing protocols. Our group has sought to rethink common SERS methodologies in order to produce translational technologies capable of allowing SERS to compete in the evolving, yet often inflexible biosensing field. This work will discuss the development of two techniques for quantification of microRNA, a promising biomarker for homeostatic and disease conditions ranging from cancer to HIV. First, an inkjet-printed paper SERS sensor has been developed to allow on-demand production of a customizable and multiplexable single-step lateral flow assay for miRNA quantification. Second, as miRNA concentrations commonly exist in relatively low concentrations, amplification methods (e.g. PCR) are therefore required to facilitate quantification. This work presents a novel miRNA assay alongside a novel technique for quantification of nuclease driven nucleic acid amplification strategies that will allow SERS to be used directly with common amplification strategies for quantification of miRNA and other nucleic acid biomarkers.

  11. Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS)

    Science.gov (United States)

    Han, H. W.; Yan, X. L.; Dong, R. X.; Ban, G.; Li, K.

    2009-03-01

    In this paper, we show surface-enhanced Raman spectra (SERS) of serums from type II diabetes mellitus and diabetic complication (coronary disease, glaucoma and cerebral infarction), and analyze the SERS through the multivariate statistical methods of principal component analysis (PCA). In particular, we find that there exist many adenines in these serums, which maybe come from DNA (RNA) damage. The relative intensity of the band at 725±2 cm-1 assigned to adenine is higher for patients than for the healthy volunteers; therefore, it can be used as an important ‘fingerprint’ in order to diagnose these diseases. It is also shown that serums from type II diabetes mellitus group, diabetic complication group and healthy volunteers group can be discriminated by PCA.

  12. Self-assembled vertically aligned Au nanorod arrays for surface-enhanced Raman scattering (SERS) detection of Cannabinol

    Science.gov (United States)

    Milliken, Sarah; Fraser, Jeff; Poirier, Shawn; Hulse, John; Tay, Li-Lin

    2018-05-01

    Self-assembled multi-layered vertically aligned gold nanorod (AuNR) arrays have been fabricated by a simple preparation process that requires a balance between the particle concentration and the ionic strength of the solvent. An experimentally determined critical AuNR concentration of 2.0 nM and 50 mM NaCl produces well-ordered vertically aligned hexagonally close-packed AuNR arrays. We demonstrate surface treatment via UV Ozone cleaning of such samples to allow introduction of analyte molecules (benzenethiol and cannabinol) for effective surface enhanced Raman scattering detection. This is the first demonstration of the SERS analysis of cannabinol. This approach demonstrates a cost-effective, high-yield and simple fabrication route to SERS sensors with application in the screening for the cannabinoids.

  13. Porous Silicon Covered with Silver Nanoparticles as Surface-Enhanced Raman Scattering (SERS) Substrate for Ultra-Low Concentration Detection.

    Science.gov (United States)

    Kosović, Marin; Balarin, Maja; Ivanda, Mile; Đerek, Vedran; Marciuš, Marijan; Ristić, Mira; Gamulin, Ozren

    2015-12-01

    Microporous and macro-mesoporous silicon templates for surface-enhanced Raman scattering (SERS) substrates were produced by anodization of low doped p-type silicon wafers. By immersion plating in AgNO3, the templates were covered with silver metallic film consisting of different silver nanostructures. Scanning electron microscopy (SEM) micrographs of these SERS substrates showed diverse morphology with significant difference in an average size and size distribution of silver nanoparticles. Ultraviolet-visible-near-infrared (UV-Vis-NIR) reflection spectroscopy showed plasmonic absorption at 398 and 469 nm, which is in accordance with the SEM findings. The activity of the SERS substrates was tested using rhodamine 6G (R6G) dye molecules and 514.5 nm laser excitation. Contrary to the microporous silicon template, the SERS substrate prepared from macro-mesoporous silicon template showed significantly broader size distribution of irregular silver nanoparticles as well as localized surface plasmon resonance closer to excitation laser wavelength. Such silver morphology has high SERS sensitivity that enables ultralow concentration detection of R6G dye molecules up to 10(-15) M. To our knowledge, this is the lowest concentration detected of R6G dye molecules on porous silicon-based SERS substrates, which might even indicate possible single molecule detection.

  14. Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging.

    Science.gov (United States)

    Lee, Sangyeop; Chon, Hyangah; Lee, Jiyoung; Ko, Juhui; Chung, Bong Hyun; Lim, Dong Woo; Choo, Jaebum

    2014-01-15

    We report a surface-enhanced Raman scattering (SERS)-based cellular imaging technique to detect and quantify breast cancer phenotypic markers expressed on cell surfaces. This technique involves the synthesis of SERS nano tags consisting of silica-encapsulated hollow gold nanospheres (SEHGNs) conjugated with specific antibodies. Hollow gold nanospheres (HGNs) enhance SERS signal intensity of individual particles by localizing surface electromagnetic fields through pinholes in the hollow particle structures. This capacity to enhance imaging at the level of single molecules permits the use of HGNs to detect specific biological markers expressed in living cancer cells. In addition, silica encapsulation greatly enhances the stability of nanoparticles. Here we applied a SERS-based imaging technique using SEHGNs in the multiplex imaging of three breast cancer cell phenotypes. Expression of epidermal growth factor (EGF), ErbB2, and insulin-like growth factor-1 (IGF-1) receptors were assessed in the MDA-MB-468, KPL4 and SK-BR-3 human breast cancer cell lines. SERS imaging technology described here can be used to test the phenotype of a cancer cell and quantify proteins expressed on the cell surface simultaneously. Based on results, this technique may enable an earlier diagnosis of breast cancer than is currently possible and offer guidance in treatment. © 2013 Elsevier B.V. All rights reserved.

  15. The theory of surface-enhanced Raman scattering on semiconductor nanoparticles; toward the optimization of SERS sensors.

    Science.gov (United States)

    Lombardi, John R

    2017-12-04

    We present an expression for the lowest order nonzero contribution to the surface-enhanced Raman spectrum obtained from a system of a molecule adsorbed on a semiconductor nanoparticle. Herzberg-Teller vibronic coupling of the zero-order Born-Oppenheimer states results in an expression which may be regarded as an extension of the Albrecht A-, B-, and C-terms to SERS substrates. We show that the SERS enhancement is caused by combinations of several types of resonances in the combined system, namely, surface, exciton, charge-transfer, and molecular resonances. These resonances are coupled by terms in the numerator, which provide selection rules that enable various tests of the theory and predict the relative intensities of the Raman lines. Furthermore, by considering interactions of the various contributions to the SERS enhancement, we are able to develop ways to optimize the enhancement factor by tailoring the semiconductor nanostructure, thereby adjusting the locations of the various contributing resonances. This provides a procedure by which molecular sensors can be constructed and optimized. We provide several experimental examples on substrates such as monolayer MoS 2 and GaN nanorods.

  16. Surface-enhanced Raman scattering (SERS) for detection of phenylketonuria for newborn screening

    Science.gov (United States)

    Javanmard, M.; Davis, R. W.

    2014-02-01

    Diagnosis of Phenylketonuria (PKU) in newborns is important because it can potentially help prevent mental retardation since it is treatable by dietary means. PKU results in phenylketonurics having phenylalanine levels as high as 2 mM whereas the normal upper limit in healthy newborns is 120 uM. To this end, we are developing a microfluidic platform integrated with a SERS substrate for detection of high levels of phenylalanine. We have successfully demonstrated SERS detection of phenylalanine using various SERS substrates fabricated using nanosphere lithography, which exhibit high levels of field enhancement. We show detection of SERS at clinically relevant levels.

  17. Urinary tract infection (UTI) multi-bacteria multi-antibiotic testing using surface enhanced Raman spectroscopy (SERS)

    Science.gov (United States)

    Hadjigeorgiou, Katerina; Kastanos, Evdokia; Pitris, Costas

    2013-02-01

    Antibiotic resistance is a major health care problem mostly caused by the inappropriate use of antibiotics. At the root of the problem lies the current method for determination of bacterial susceptibility to antibiotics which requires overnight cultures. Physicians suspecting an infection usually prescribe an antibiotic without waiting for the results. This practice aggravates the problem of bacterial resistance. In this work, a rapid method of diagnosis and antibiogram for a bacterial infection was developed using Surface Enhanced Raman Spectroscopy (SERS) with silver nanoparticles. SERS spectra of three species of gram negative bacteria, Escherichia coli, Proteus spp., and Klebsiella spp. were obtained after 0 and 4 hour exposure to the seven different antibiotics. Even though the concentration of bacteria was low (2x105 cfu/ml), species classification was achieved with 94% accuracy using spectra obtained at 0 hours. Sensitivity or resistance to antibiotics was predicted with 81%-100% accuracy from spectra obtained after 4 hours of exposure to the different antibiotics. With the enhancement provided by SERS, the technique can be applied directly to urine or blood samples, bypassing the need for overnight cultures. This technology can lead to the development of rapid methods of diagnosis and antibiogram for a variety of bacterial infections.

  18. Multi-bacteria multi-antibiotic testing using surface enhanced Raman spectroscopy (SERS) for urinary tract infection (UTI) diagnosis

    Science.gov (United States)

    Hadjigeorgiou, Katerina; Kastanos, Evdokia; Pitris, Costas

    2013-06-01

    The inappropriate use of antibiotics leads to antibiotic resistance, which is a major health care problem. The current method for determination of bacterial susceptibility to antibiotics requires overnight cultures. However most of the infections cannot wait for the results to receive treatment, so physicians administer general spectrum antibiotics. This results in ineffective treatments and aggravates the rising problem of antibiotic resistance. In this work, a rapid method for diagnosis and antibiogram for a bacterial infection was developed using Surface Enhanced Raman Spectroscopy (SERS) with silver nanoparticles. The advantages of this novel method include its rapidness and efficiency which will potentially allow doctors to prescribe the most appropriate antibiotic for an infection. SERS spectra of three species of gram negative bacteria, Escherichia coli, Proteus spp., and Klebsiella spp. were obtained after 0 and 4 hour exposure to the seven different antibiotics. Bacterial strains were diluted in order to reach the concentration of (2x105 cfu/ml), cells/ml which is equivalent to the minimum concentration found in urine samples from UTIs. Even though the concentration of bacteria was low, species classification was achieved with 94% accuracy using spectra obtained at 0 hours. Sensitivity or resistance to antibiotics was predicted with 81%-100% accuracy from spectra obtained after 4 hours of exposure to the different antibiotics. This technique can be applied directly to urine samples, and with the enhancement provided by SERS, this method has the potential to be developed into a rapid method for same day UTI diagnosis and antibiogram.

  19. Non-labeling multiplex surface enhanced Raman scattering (SERS) detection of volatile organic compounds (VOCs)

    DEFF Research Database (Denmark)

    Wong, Chi Lok; Dinish, U. S.; Schmidt, Michael Stenbæk

    2014-01-01

    chemical sensing layer for the enrichment of gas molecules on sensor surface. The leaning nano-pillar substrate also showed highly reproducible SERS signal in cyclic VOCs detection, which can reduce the detection cost in practical applications. Further, multiplex SERS detection on different combination...... device for multiplex, specific and highly sensitive detection of complex VOCs samples that can find potential applications in exhaled breath analysis, hazardous gas analysis, homeland security and environmental monitoring....

  20. Complete urinary tract infection (UTI) diagnosis and antibiogram using surface enhanced Raman spectroscopy (SERS)

    Science.gov (United States)

    Hadjigeorgiou, Katerina; Kastanos, Evdokia; Kyriakides, Alexandros; Pitris, Costas

    2012-03-01

    There are three stages to a complete UTI diagnosis: (1) identification of a urine sample as positive/negative for an infection, (2) identification of the responsible bacterium, (3) antibiogram to determine the antibiotic to which the bacteria are most sensitive to. Using conventional methods, all three stages require bacterial cultures in order to provide results. This long delay in diagnosis causes a rise in ineffective treatments, chronic infections, health care costs and antibiotic resistance. In this work, SERS is used to identify a sample as positive/negative for a UTI as well as to obtain an antibiogram against different antibiotics. SERS spectra of serial dilutions of E. coli bacteria mixed with silver nanoparticles, showed a linear correlation between spectral intensity and concentration. For antibiotic sensitivity testing, SERS spectra of three species of gram negative bacteria were collected four hours after exposure to the antibiotics ciprofloxacin and amoxicillin. Spectral analysis revealed clear separation between bacterial samples exposed to antibiotics to which they were sensitive and samples exposed to antibiotics to which they were resistant. With the enhancement provided by SERS, the technique can be applied directly to urine samples leading to the development of a new, rapid method for UTI diagnosis and antibiogram.

  1. Unveiling NIR Aza-Boron-Dipyrromethene (BODIPY) Dyes as Raman Probes: Surface-Enhanced Raman Scattering (SERS)-Guided Selective Detection and Imaging of Human Cancer Cells.

    Science.gov (United States)

    Adarsh, Nagappanpillai; Ramya, Adukkadan N; Maiti, Kaustabh Kumar; Ramaiah, Danaboyina

    2017-10-12

    The development of new Raman reporters has attracted immense attention in diagnostic research based on surface enhanced Raman scattering (SERS) techniques, which is a well established method for ultrasensitive detection through molecular fingerprinting and imaging. Herein, for the first time, we report the unique and efficient Raman active features of the selected aza-BODIPY dyes 1-6. These distinctive attributes could be extended at the molecular level to allow detection through SERS upon adsorption onto nano-roughened gold surface. Among the newly revealed Raman reporters, the amino substituted derivative 4 showed high signal intensity at very low concentrations (ca. 0.4 μm for 4-Au). Interestingly, an efficient nanoprobe has been constructed by using gold nanoparticles as SERS substrate, and 4 as the Raman reporter (4-Au@PEG), which unexpectedly showed efficient recognition of three human cancer cells (lung: A549, cervical: HeLa, Fibrosarcoma: HT-1080) without any specific surface marker. We observed well reflected and resolved Raman mapping and characteristic signature peaks whereas, such recognition was not observed in normal fibroblast (3T3L1) cells. To confirm these findings, a SERS nanoprobe was conjugated with a specific tumour targeting marker, EGFR (Epidermal Growth Factor Receptor), a well known targeted agent for Human Fibrosarcoma (HT1080). This nanoprobe efficiently targeted the surface marker of HT1080 cells, threreby demonstrating its use as an ultrasensitive Raman probe for detection and targeted imaging, leaving normal cells unaffected. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Fabrication and Characterization of the US Army Research Laboratory Surface Enhanced Raman Scattering (SERS) Substrates

    Science.gov (United States)

    2017-12-04

    environmental contamination concerns. For SERS to function as an accurate, reliable, and reproducible technology for all of these research areas, it is... manufactured , demonstrate signal reproducibility from substrate to substrate and lot to lot, and are capable of being used in a host of environments...support staff must have safe food , air, water, and a secure environment. To ensure this safety it is important to not only detect, but also to

  3. Next-generation Surface Enhanced Raman Scattering (SERS) Substrates for Hazard Detection

    Science.gov (United States)

    2012-09-01

    substrates at differing concentrations ranging from 0.05 ug/cm2 to 50 ug/cm2. These concentrations were independently validated by UV -Vis...standard Klarite substrates at a concentration of 5.0 ug/cm2. The concentration jetted was validated using a secondary UV -Vis technique.(20, 81) After... Spectros ., 994 (1997). [58] Alexander, T.A., Le, D.M., "Characterization of a commercialized SERS-active substrate and its application to the

  4. Rapid detection and identification of energetic materials with surface enhanced raman spectrometry (SERS)

    Science.gov (United States)

    Han, Thomas Yong-Jin; Valdez, Carlos A; Olson, Tammy Y; Kim, Sung Ho; Satcher, Jr., Joe H

    2015-04-21

    In one embodiment, a system includes a plurality of metal nanoparticles functionalized with a plurality of organic molecules tethered thereto, wherein the plurality of organic molecules preferentially interact with one or more analytes when placed in proximity therewith. According to another embodiment, a method for detecting analytes includes contacting a fluid having one or more analytes of interest therein with a plurality of metal nanoparticles, each metal nanoparticle having a plurality of organic molecules tethered thereto, and detecting Raman scattering from an analyte of interest from the fluid, the analyte interacting with one or more of the plurality of organic molecules. In another embodiment, a method includes chemically modifying a plurality of cyclodextrin molecules at a primary hydroxyl moiety to create a chemical handle, and tethering the plurality of cyclodextrin molecules to a metal nanoparticle using the chemical handle. Other systems and methods for detecting analytes are also described.

  5. Measurement of the surface-enhanced coherent anti-Stokes Raman scattering (SECARS) due to the 1574 cm(-1) surface-enhanced Raman scattering (SERS) mode of benzenethiol using low-power (CW diode lasers.

    Science.gov (United States)

    Aggarwal, Roshan L; Farrar, Lewis W; Greeneltch, Nathan G; Van Duyne, Richard P; Polla, Dennis L

    2013-02-01

    The surface-enhanced coherent anti-Stokes Raman scattering (SECARS) from a self-assembled monolayer (SAM) of benzenethiol on a silver-coated surface-enhanced Raman scattering (SERS) substrate has been measured for the 1574 cm(-1) SERS mode. A value of 9.6 ± 1.7×10(-14) W was determined for the resonant component of the SECARS signal using 17.8 mW of 784.9 nm pump laser power and 7.1 mW of 895.5 nm Stokes laser power; the pump and Stokes lasers were polarized parallel to each other but perpendicular to the grooves of the diffraction grating in the spectrometer. The measured value of resonant component of the SECARS signal is in agreement with the calculated value of 9.3×10(-14) W using the measured value of 8.7 ± 0.5 cm(-1) for the SERS linewidth Γ (full width at half-maximum) and the value of 5.7 ± 1.4×10(-7) for the product of the Raman cross section σSERS and the surface concentration Ns of the benzenethiol SAM. The xxxx component of the resonant part of the third-order nonlinear optical susceptibility |3 χxxxx((3)R)| for the 1574 cm(-1) SERS mode has been determined to be 4.3 ± 1.1×10(-5) cm·g(-1)·s(2). The SERS enhancement factor for the 1574 cm(-1) mode was determined to be 3.6 ± 0.9×10(7) using the value of 1.8×10(15) molecules/cm(2) for Ns.

  6. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 2. Surface-Enhanced Raman Spectroscopy - Recent Advancement of Raman Spectroscopy. Ujjal Kumar Sur. General Article Volume 15 Issue 2 February 2010 pp 154-164 ...

  7. Surface Enhanced Raman Spectroscopy (SERS) and multivariate analysis as a screening tool for detecting Sudan I dye in culinary spices

    Science.gov (United States)

    Di Anibal, Carolina V.; Marsal, Lluís F.; Callao, M. Pilar; Ruisánchez, Itziar

    2012-02-01

    Raman spectroscopy combined with multivariate analysis was evaluated as a tool for detecting Sudan I dye in culinary spices. Three Raman modalities were studied: normal Raman, FT-Raman and SERS. The results show that SERS is the most appropriate modality capable of providing a proper Raman signal when a complex matrix is analyzed. To get rid of the spectral noise and background, Savitzky-Golay smoothing with polynomial baseline correction and wavelet transform were applied. Finally, to check whether unadulterated samples can be differentiated from samples adulterated with Sudan I dye, an exploratory analysis such as principal component analysis (PCA) was applied to raw data and data processed with the two mentioned strategies. The results obtained by PCA show that Raman spectra need to be properly treated if useful information is to be obtained and both spectra treatments are appropriate for processing the Raman signal. The proposed methodology shows that SERS combined with appropriate spectra treatment can be used as a practical screening tool to distinguish samples suspicious to be adulterated with Sudan I dye.

  8. Surface-enhanced Raman spectroscopy: nonlocal limitations

    DEFF Research Database (Denmark)

    Toscano, Giuseppe; Raza, Søren; Xiao, Sanshui

    2012-01-01

    for our understanding of surface-enhanced Raman spectroscopy (SERS). The intrinsic length scale of the electron gas serves to smear out assumed field singularities, leaving the SERS enhancement factor finite, even for geometries with infinitely sharp features. For silver nanogroove structures, mimicked...

  9. Ultrafast surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Keller, Emily L; Brandt, Nathaniel C; Cassabaum, Alyssa A; Frontiera, Renee R

    2015-08-07

    Ultrafast surface-enhanced Raman spectroscopy (SERS) with pico- and femtosecond time resolution has the ability to elucidate the mechanisms by which plasmons mediate chemical reactions. Here we review three important technological advances in these new methodologies, and discuss their prospects for applications in areas including plasmon-induced chemistry and sensing at very low limits of detection. Surface enhancement, arising from plasmonic materials, has been successfully incorporated with stimulated Raman techniques such as femtosecond stimulated Raman spectroscopy (FSRS) and coherent anti-Stokes Raman spectroscopy (CARS). These techniques are capable of time-resolved measurement on the femtosecond and picosecond time scale and can be used to follow the dynamics of molecules reacting near plasmonic surfaces. We discuss the potential application of ultrafast SERS techniques to probe plasmon-mediated processes, such as H2 dissociation and solar steam production. Additionally, we discuss the possibilities for high sensitivity SERS sensing using these stimulated Raman spectroscopies.

  10. A novel surface-enhanced Raman scattering (SERS) detection for natural gas exploration using methane-oxidizing bacteria.

    Science.gov (United States)

    Liang, Weiwei; Chen, Qiao; Peng, Fang; Shen, Aiguo; Hu, Jiming

    2018-07-01

    Methane-oxidizing bacteria (MOB), a unique group of Gram-negative bacteria utilizing methane as a sole source of carbon and energy, have been proved to be a biological indicator for gas prospecting. Field and cultivation-free detection of MOB is important but still challenging in current microbial prospecting of oil and gas (MPOG) system. Herein, SERS was used for the first time to our knowledge to investigate two species of methanotrophs and four closely relevant bacteria that universally coexisted in the upper soil of natural gas. A special but very simple approach was utilized to make silver nanoparticles (Ag NPs) sufficiently contact with every single bacterial cell, and highly strong and distinct Raman signals free from any native fluorescence have been obtained, and successfully utilized for distinguishing MOB from other species. A more convincing multi-Raman criterion based on single Raman bands, and further the entire Raman spectrum in combination with statistical analysis (e.g., principal component analysis (PCA)), which were found capable of classifying MOB related bacterial cells in soil with an accuracy of 100%. This study therefore demonstrated sensitive and rapid SERS measurement technique accompanied by complete Raman database of various gas reservoirs related bacteria could aid field exploration of natural gas reservoir. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Surface enhanced raman spectroscopy on chip

    DEFF Research Database (Denmark)

    Hübner, Jörg; Anhøj, Thomas Aarøe; Zauner, Dan

    2007-01-01

    In this paper we report low resolution surface enhanced Raman spectra (SERS) conducted with a chip based spectrometer. The flat field spectrometer presented here is fabricated in SU-8 on silicon, showing a resolution of around 3 nm and a free spectral range of around 100 nm. The output facet...... is projected onto a CCD element and visualized by a computer. To enhance the otherwise rather weak Raman signal, a nanosurface is prepared and a sample solutions is impregnated on this surface. The surface enhanced Raman signal is picked up using a Raman probe and coupled into the spectrometer via an optical...... fiber. The obtained spectra show that chip based spectrometer together with the SERS active surface can be used as Raman sensor....

  12. High Surface-Enhanced Raman Scattering (SERS) Amplification Factor Obtained with Silver Printed Circuit Boards and the Influence of Phenolic Resins for the Characterization of the Pesticide Thiram.

    Science.gov (United States)

    Silva de Almeida, Francylaine; Bussler, Larissa; Marcio Lima, Sandro; Fiorucci, Antonio Rogério; da Cunha Andrade, Luis Humberto

    2016-07-01

    In this work, low-cost substrates with rough silver surfaces were prepared from commercial copper foil-covered phenolic board (CPB) and an aqueous solution of AgNO3, and were used for surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS) measurements. A maximum SERS amplification factor of 1.2 × 10(7) was obtained for Rhodamine 6G (R6G), and use of the CPB resulted in a detection limit for Thiram pesticide of 0.5 µmol L(-1) The minimum detection level was limited by residual traces of phenolic groups that originated from the substrate resin, which became solubilized in the aqueous Ag(+) solution. It was found that the bands corresponding to the impurities had less influence in the Thiram analysis, which could be explained by the high affinity of sulfur for Ag surfaces. The influence of impurities in the SERS analyses therefore depended on the linkage between the rough silver surface and the analyte. The findings demonstrated the ease and effectiveness of using CPB to prepare a nanostructured surface for SERS. © The Author(s) 2016.

  13. A novel method for detection of phosphorylation in single cells by surface enhanced Raman scattering (SERS using composite organic-inorganic nanoparticles (COINs.

    Directory of Open Access Journals (Sweden)

    Catherine M Shachaf

    Full Text Available Detection of single cell epitopes has been a mainstay of immunophenotyping for over three decades, primarily using fluorescence techniques for quantitation. Fluorescence has broad overlapping spectra, limiting multiplexing abilities.To expand upon current detection systems, we developed a novel method for multi-color immuno-detection in single cells using "Composite Organic-Inorganic Nanoparticles" (COINs Raman nanoparticles. COINs are Surface-Enhanced Raman Scattering (SERS nanoparticles, with unique Raman spectra. To measure Raman spectra in single cells, we constructed an automated, compact, low noise and sensitive Raman microscopy device (Integrated Raman BioAnalyzer. Using this technology, we detected proteins expressed on the surface in single cells that distinguish T-cells among human blood cells. Finally, we measured intracellular phosphorylation of Stat1 (Y701 and Stat6 (Y641, with results comparable to flow cytometry.Thus, we have demonstrated the practicality of applying COIN nanoparticles for measuring intracellular phosphorylation, offering new possibilities to expand on the current fluorescent technology used for immunoassays in single cells.

  14. A novel method for detection of phosphorylation in single cells by surface enhanced Raman scattering (SERS) using composite organic-inorganic nanoparticles (COINs).

    Science.gov (United States)

    Shachaf, Catherine M; Elchuri, Sailaja V; Koh, Ai Leen; Zhu, Jing; Nguyen, Lienchi N; Mitchell, Dennis J; Zhang, Jingwu; Swartz, Kenneth B; Sun, Lei; Chan, Selena; Sinclair, Robert; Nolan, Garry P

    2009-01-01

    Detection of single cell epitopes has been a mainstay of immunophenotyping for over three decades, primarily using fluorescence techniques for quantitation. Fluorescence has broad overlapping spectra, limiting multiplexing abilities. To expand upon current detection systems, we developed a novel method for multi-color immuno-detection in single cells using "Composite Organic-Inorganic Nanoparticles" (COINs) Raman nanoparticles. COINs are Surface-Enhanced Raman Scattering (SERS) nanoparticles, with unique Raman spectra. To measure Raman spectra in single cells, we constructed an automated, compact, low noise and sensitive Raman microscopy device (Integrated Raman BioAnalyzer). Using this technology, we detected proteins expressed on the surface in single cells that distinguish T-cells among human blood cells. Finally, we measured intracellular phosphorylation of Stat1 (Y701) and Stat6 (Y641), with results comparable to flow cytometry. Thus, we have demonstrated the practicality of applying COIN nanoparticles for measuring intracellular phosphorylation, offering new possibilities to expand on the current fluorescent technology used for immunoassays in single cells.

  15. Synthesis of Ag nanobars in the presence of single-crystal seeds and a bromide compound, and their surface-enhanced Raman scattering (SERS) properties.

    Science.gov (United States)

    Zhang, Qiang; Moran, Christine H; Xia, Xiaohu; Rycenga, Matthew; Li, Naixu; Xia, Younan

    2012-06-19

    This Article describes the synthesis of Ag nanobars with different aspect ratios using a seed-mediated method and evaluation of their use for surface-enhanced Raman scattering (SERS). The formation of Ag nanobars was found to critically depend on the introduction of a bromide compound into the reaction system, with ionic salts being more effective than covalent molecules. We examined single-crystal seeds with both spherical and cubic shapes and found that Ag nanobars grown from spherical seeds had much higher aspect ratios than those grown from cubic seeds. The typical product of a synthesis contained nanocrystals with three different morphologies: nanocubes, nanobars with a square cross section, and nanobars with a rectangular cross section. Their formation can be attributed to the difference in growth rates along the three orthogonal directions. The SERS enhancement factor of the Ag nanobar was found to depend on its aspect ratio, its orientation relative to the laser polarization, and the wavelength of excitation.

  16. Specific behavior of the p-aminothiophenol--silver sol system in their Ultra-Violet-Visible (UV-Visible) and Surface Enhanced Raman (SERS) spectra.

    Science.gov (United States)

    Firkala, Tamás; Tálas, Emília; Mihály, Judith; Imre, Tímea; Kristyán, Sándor

    2013-11-15

    The UV-Visible and Surface Enhanced Raman Spectroscopy (SERS) behavior of silver sol (a typical SERS agent) were studied in the presence of different bifunctional thiols such as p-aminothiophenol, p-mercaptobenzoic acid, p-nitrothiophenol, p-aminothiophenol hydrochloride, and 2-mercaptoethylamine hydrochloride in diluted aqueous solution. Our results confirm that the p-aminothiophenol induced aggregation of citrate stabilized silver colloid originates from its electrostatic nature, as well as the azo-bridge formation cannot be the reason of the observed time dependent UV-Visible spectra. Based on our parallel SERS and electrospray ionization mass spectrometry measurements, we have concluded that certain amount of oxidized form of the probe molecule has to be present for the so-called b2-mode enhancement in the SERS spectrum of p-aminothiophenol. Our findings seem to support the idea that the azo-bridge formation is responsible for the b2-mode enhancement in the SERS spectrum of p-aminothiophenol. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Highly active surface-enhanced Raman scattering (SERS) substrates based on gold nanoparticles infiltrated into SiO{sub 2} inverse opals

    Energy Technology Data Exchange (ETDEWEB)

    Ankudze, Bright; Philip, Anish [Department of Chemistry, University of Eastern Finland, P.O. Box 111, F1-80101, Joensuu (Finland); Pakkanen, Tuula T., E-mail: Tuula.Pakkanen@uef.fi [Department of Chemistry, University of Eastern Finland, P.O. Box 111, F1-80101, Joensuu (Finland); Matikainen, Antti; Vahimaa, Pasi [Institute of Photonics, University of Eastern Finland, P.O. Box 111, F1-80101, Joensuu (Finland)

    2016-11-30

    Highlights: • SERS substrates prepared by infiltration of nanoparticles into SiO{sub 2} inverse opal. • The SERS substrate gives an enhancement factor of 10{sup 7} for 4-aminothiophenol. • The sensitivity of the substrate is mainly attributed to gold nanoparticle clusters. - Abstract: SiO{sub 2} inverse opal (IO) films with embedded gold nanoparticles (AuNPs) for surface-enhanced Raman scattering (SERS) application are reported. SiO{sub 2} IO films were loaded with AuNPs by a simple infiltration in a single cycle to form Au-SiO{sub 2} IOs. The optical property and the morphology of the Au-SiO{sub 2} IO substrates were characterized; it was observed that they retained the Bragg diffraction of SiO{sub 2} IO and the localized surface plasmon resonance (LSPR) of AuNPs. The SERS property of the Au-SiO{sub 2} IO substrates were studied with methylene blue (MB) and 4-aminothiophenol (4-ATP). The SERS enhancement factors were 10{sup 7} and 10{sup 6} for 4-ATP and MB, respectively. A low detection limit of 10{sup −10} M for 4-ATP was also obtained with the Au-SiO{sub 2} IO substrate. A relative standard deviation of 18.5% for the Raman signals intensity at 1077 cm{sup −1} for 4-ATP shows that the Au-SiO{sub 2} IO substrates have good signal reproducibility. The results of this study indicate that the Au-SiO{sub 2} IO substrates can be used in sensing and SERS applications.

  18. A large-scale superhydrophobic surface-enhanced Raman scattering (SERS) platform fabricated via capillary force lithography and assembly of Ag nanocubes for ultratrace molecular sensing.

    Science.gov (United States)

    Tan, Joel Ming Rui; Ruan, Justina Jiexin; Lee, Hiang Kwee; Phang, In Yee; Ling, Xing Yi

    2014-12-28

    An analytical platform with an ultratrace detection limit in the atto-molar (aM) concentration range is vital for forensic, industrial and environmental sectors that handle scarce/highly toxic samples. Superhydrophobic surface-enhanced Raman scattering (SERS) platforms serve as ideal platforms to enhance detection sensitivity by reducing the random spreading of aqueous solution. However, the fabrication of superhydrophobic SERS platforms is generally limited due to the use of sophisticated and expensive protocols and/or suffers structural and signal inconsistency. Herein, we demonstrate a high-throughput fabrication of a stable and uniform superhydrophobic SERS platform for ultratrace molecular sensing. Large-area box-like micropatterns of the polymeric surface are first fabricated using capillary force lithography (CFL). Subsequently, plasmonic properties are incorporated into the patterned surfaces by decorating with Ag nanocubes using the Langmuir-Schaefer technique. To create a stable superhydrophobic SERS platform, an additional 25 nm Ag film is coated over the Ag nanocube-decorated patterned template followed by chemical functionalization with perfluorodecanethiol. Our resulting superhydrophobic SERS platform demonstrates excellent water-repellency with a static contact angle of 165° ± 9° and a consequent analyte concentration factor of 59-fold, as compared to its hydrophilic counterpart. By combining the analyte concentration effect of superhydrophobic surfaces with the intense electromagnetic "hot spots" of Ag nanocubes, our superhydrophobic SERS platform achieves an ultra-low detection limit of 10(-17) M (10 aM) for rhodamine 6G using just 4 μL of analyte solutions, corresponding to an analytical SERS enhancement factor of 10(13). Our fabrication protocol demonstrates a simple, cost- and time-effective approach for the large-scale fabrication of a superhydrophobic SERS platform for ultratrace molecular detection.

  19. Intracellular surface-enhanced Raman scattering (SERS) with thermally stable gold nanoflowers grown from Pt and Pd seeds

    KAUST Repository

    Song, Hyon Min; Deng, Lin; Khashab, Niveen M.

    2013-01-01

    SERS provides great sensitivity at low concentrations of analytes. SERS combined with near infrared (NIR)-resonant gold nanomaterials are important candidates for theranostic agents due to their combined extinction properties and sensing abilities

  20. Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhijie; Wu, Yunping [National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004 (China); Wang, Zhihua, E-mail: zhwang@henu.edu.cn [College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004 (China); Zou, Xueyan; Zhao, Yanbao [National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004 (China); Sun, Lei, E-mail: sunlei@hneu.edu.cn [National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004 (China)

    2016-12-01

    Silver nanoparticle-embedded polyvinyl alcohol (PVA) nanofibers were prepared through electrospinning technique, using as antimicrobial agents and surface-enhanced Raman scattering (SERS) substrates. Ag nanoparticles (NPs) were synthesized in liquid phase, followed by evenly dispersing in PVA solution. After electrospinning of the mixed solution at room temperature, the PVA embedded with Ag NPs (Ag/PVA) composite nanofibers were obtained. The morphologies and structures of the as-synthesized Ag nanoparticles and Ag/PVA fibers were characterized by the techniques of transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV–vis), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Ag NPs have an average diameter of 13.8 nm, were found to be uniformly dispersed in PVA nanofibers. The Ag/PVA nanofibers provided robust antibacterial activities against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) microorganisms. It's also found that Ag/PVA nanofibers make a significant contribution to the high sensitivity of SERS to 4-mercaptophenol (4-MPh) molecules. - Highlights: • Ag NPs embedded in the PVA electropun nanofibrous films were synthesized successfully. • The as-synthesized nanofibrous film mats exhibit excellent antibacterial properties and SERS activates. • The mechanism of antibacterial and SERS effects were proposed.

  1. Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities

    International Nuclear Information System (INIS)

    Zhang, Zhijie; Wu, Yunping; Wang, Zhihua; Zou, Xueyan; Zhao, Yanbao; Sun, Lei

    2016-01-01

    Silver nanoparticle-embedded polyvinyl alcohol (PVA) nanofibers were prepared through electrospinning technique, using as antimicrobial agents and surface-enhanced Raman scattering (SERS) substrates. Ag nanoparticles (NPs) were synthesized in liquid phase, followed by evenly dispersing in PVA solution. After electrospinning of the mixed solution at room temperature, the PVA embedded with Ag NPs (Ag/PVA) composite nanofibers were obtained. The morphologies and structures of the as-synthesized Ag nanoparticles and Ag/PVA fibers were characterized by the techniques of transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV–vis), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Ag NPs have an average diameter of 13.8 nm, were found to be uniformly dispersed in PVA nanofibers. The Ag/PVA nanofibers provided robust antibacterial activities against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) microorganisms. It's also found that Ag/PVA nanofibers make a significant contribution to the high sensitivity of SERS to 4-mercaptophenol (4-MPh) molecules. - Highlights: • Ag NPs embedded in the PVA electropun nanofibrous films were synthesized successfully. • The as-synthesized nanofibrous film mats exhibit excellent antibacterial properties and SERS activates. • The mechanism of antibacterial and SERS effects were proposed.

  2. Surface-enhanced Raman scattering (SERS) of riboflavin on nanostructured Ag surfaces: The role of excitation wavelength, plasmon resonance and molecular resonance

    Science.gov (United States)

    Šubr, Martin; Kuzminova, Anna; Kylián, Ondřej; Procházka, Marek

    2018-05-01

    Optimization of surface-enhanced Raman scattering (SERS)-based sensors for (bio)analytical applications has received much attention in recent years. For optimum sensitivity, both the nanostructure fabrication process and the choice of the excitation wavelength used with respect to the specific analyte studied are of crucial importance. In this contribution, detailed SERS intensity profiles were measured using gradient nanostructures with the localized surface-plasmon resonance (LSPR) condition varying across the sample length and using riboflavin as the model biomolecule. Three different excitation wavelengths (633 nm, 515 nm and 488 nm) corresponding to non-resonance, pre-resonance and resonance excitation with respect to the studied molecule, respectively, were tested. Results were interpreted in terms of a superposition of the enhancement provided by the electromagnetic mechanism and intrinsic properties of the SERS probe molecule. The first effect was dictated mainly by the degree of spectral overlap between the LSPR band, the excitation wavelength along with the scattering cross-section of the nanostructures, while the latter was influenced by the position of the molecular resonance with respect to the excitation wavelength. Our experimental findings contribute to a better understanding of the SERS enhancement mechanism.

  3. Rapid Surface Enhanced Raman Scattering (SERS Detection of Sibutramine Hydrochloride in Pharmaceutical Capsules with a β-Cyclodextrin- Ag/Polyvivnyl Alcohol Hydrogel Substrate

    Directory of Open Access Journals (Sweden)

    Lei Ouyang

    2017-07-01

    Full Text Available Sibutramine hydrochloride (SH is a banned weight-loss drug, but its illegal addition to health products is still rampant. This suggests a very urgent need for a fast and precise detection method for SH. Surface Enhanced Raman Scattering (SERS is a promising candidate for this purpose, but the weak affinity between SH and bare metal limits its direct SERS detection. In the present work, β-cyclodextrin was capped in situ onto the surface of Ag nanoparticles to function as a scaffold to capture SH. The obtained Ag nanoparticles were encapsulated into polyvinyl alcohol (PVA to fabricate a SERS active hydrogel with excellent reproducibility. A facile SERS strategy based on such substrate was proposed for trace SH quantification with a linear range of 7.0–150.0 µg·mL–1, and a detection limit low to 3.0 µg·mL−1. It was applied to analyze seven types of commercial slimming capsules with satisfactory results, showing good prospect for real applications.

  4. Rapid Surface Enhanced Raman Scattering (SERS) Detection of Sibutramine Hydrochloride in Pharmaceutical Capsules with a β-Cyclodextrin- Ag/Polyvivnyl Alcohol Hydrogel Substrate.

    Science.gov (United States)

    Ouyang, Lei; Jiang, Zuyan; Wang, Nan; Zhu, Lihua; Tang, Heqing

    2017-07-10

    Sibutramine hydrochloride (SH) is a banned weight-loss drug, but its illegal addition to health products is still rampant. This suggests a very urgent need for a fast and precise detection method for SH. Surface Enhanced Raman Scattering (SERS) is a promising candidate for this purpose, but the weak affinity between SH and bare metal limits its direct SERS detection. In the present work, β-cyclodextrin was capped in situ onto the surface of Ag nanoparticles to function as a scaffold to capture SH. The obtained Ag nanoparticles were encapsulated into polyvinyl alcohol (PVA) to fabricate a SERS active hydrogel with excellent reproducibility. A facile SERS strategy based on such substrate was proposed for trace SH quantification with a linear range of 7.0-150.0 µg·mL -1 , and a detection limit low to 3.0 µg·mL -1 . It was applied to analyze seven types of commercial slimming capsules with satisfactory results, showing good prospect for real applications.

  5. Aqueously Dispersed Silver Nanoparticle-Decorated Boron Nitride Nanosheets for Reusable, Thermal Oxidation-Resistant Surface Enhanced Raman Spectroscopy (SERS) Devices

    Science.gov (United States)

    Lin, Yi; Bunker, Christopher E.; Fernandos, K. A. Shiral; Connell, John W.

    2012-01-01

    The impurity-free aqueous dispersions of boron nitride nanosheets (BNNS) allowed the facile preparation of silver (Ag) nanoparticle-decorated BNNS by chemical reduction of an Ag salt with hydrazine in the presence of BNNS. The resultant Ag-BNNS nanohybrids remained dispersed in water, allowing convenient subsequent solution processing. By using substrate transfer techniques, Ag-BNNS nanohybrid thin film coatings on quartz substrates were prepared and evaluated as reusable surface enhanced Raman spectroscopy (SERS) sensors that were robust against repeated solvent washing. In addition, because of the unique thermal oxidation-resistant properties of the BNNS, the sensor devices may be readily recycled by short-duration high temperature air oxidation to remove residual analyte molecules in repeated runs. The limiting factor associated with the thermal oxidation recycling process was the Ostwald ripening effect of Ag nanostructures.

  6. Utility of surface enhanced Raman spectroscopy (SERS) for elucidation and simultaneous determination of some penicillins and penicilloic acid using hydroxylamine silver nanoparticles.

    Science.gov (United States)

    El-Zahry, Marwa R; Refaat, Ibrahim H; Mohamed, Horria A; Rosenberg, Erwin; Lendl, Bernhard

    2015-11-01

    Elucidation and quantitative determination of some of commonly used penicillins (ampicillin, penicillin G and carbenicillin) in the presence of their main degradation product (penicilloic acid) were developed. Forced acidic and basic degradation processes were applied at different time intervals. The formed degradation products were elucidated and quantified using surface enhanced Raman spectroscopy (SERS). Silver nanoparticles (AgNPs) prepared by reduction of silver nitrate using hydroxylamine-HCl in alkaline medium were used as SERS substrate. The results obtained in SERS were confirmed by the application of LC/MS method. The concentration range was 100-600 ng/ml in case of the studied penicillins and 100-700 ng/ml in case of penicilloic acid. An excellent correlation coefficient was found in case of ampicillin (r=0.9993) and in the case of penicilloic acid (r=0.9997). Validation procedures were carried out including precision, robustness and accuracy by comparing F- and t-values of both the proposed and reported methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. A combined Surface Enhanced Raman Spectroscopy (SERS)/UV-vis approach for the investigation of dye content in commercial felt tip pens inks.

    Science.gov (United States)

    Saviello, Daniela; Trabace, Maddalena; Alyami, Abeer; Mirabile, Antonio; Giorgi, Rodorico; Baglioni, Piero; Iacopino, Daniela

    2018-05-01

    The development of protocols for the protection of the large patrimony of works of art created by felt tip pen media since the 1950's requires detailed knowledge of the main dyes constituting commercial ink mixtures. In this work Surface Enhanced Raman Scattering (SERS) and UV-vis spectroscopy were used for the first time for the systematic identification of dye composition in commercial felt tip pens. A large selection of pens comprising six colors of five different brands was analyzed. Intense SERS spectra were obtained for all colors, allowing identification of main dye constituents. Poinceau 4R and Eosin dyes were found to be the main constituents of red and pink colors; Rhodamine and Tartrazine were found in orange and yellow colors; Erioglaucine was found in green and blue colors. UV-vis analysis of the same inks was used to support SERS findings but also to unequivocally assign some uncertain dye identifications, especially for yellow and orange colors. The spectral data of all felt tip pens collected through this work were assembled in a database format. The data obtained through this systematic investigation constitute the basis for the assembly of larger reference databases that ultimately will support the development of conservation protocols for the long term preservation of modern art collections. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Surface-Enhanced Raman Scattering Physics and Applications

    CERN Document Server

    Kneipp, Katrin; Kneipp, Harald

    2006-01-01

    Almost 30 years after the first reports on surface-enhanced Raman signals, the phenomenon of surface-enhanced Raman scattering (SERS) is now well established. Yet, explaining the enhancement of a spectroscopic signal by fouteen orders of magnitude continues to attract the attention of physicists and chemists alike. And, at the same time and rapidly growing, SERS is becoming a very useful spectroscopic tool with exciting applications in many fields. SERS gained particular interest after single-molecule Raman spectroscopy had been demonstrated. This bookl summarizes and discusses present theoretical approaches that explain the phenomenon of SERS and reports on new and exciting experiments and applications of the fascinating spectroscopic effect.

  9. Intracellular surface-enhanced Raman scattering (SERS) with thermally stable gold nanoflowers grown from Pt and Pd seeds

    KAUST Repository

    Song, Hyon Min

    2013-01-01

    SERS provides great sensitivity at low concentrations of analytes. SERS combined with near infrared (NIR)-resonant gold nanomaterials are important candidates for theranostic agents due to their combined extinction properties and sensing abilities stemming from the deep penetration of laser light in the NIR region. Here, highly branched gold nanoflowers (GNFs) grown from Pd and Pt seeds are prepared and their SERS properties are studied. The growth was performed at 80°C without stirring, and this high temperature growth method is assumed to provide great shape stability of sharp tips in GNFs. We found that seed size must be large enough (>30 nm in diameter) to induce the growth of those SERS-active and thermally stable GNFs. We also found that the addition of silver nitrate (AgNO3) is important to induce sharp tip growth and shape stability. Incubation with Hela cells indicates that GNFs are taken up and reside in the cytoplasm. SERS was observed in those cells incubated with 1,10-phenanthroline (Phen)-loaded GNFs. This journal is © 2013 The Royal Society of Chemistry.

  10. Intracellular surface-enhanced Raman scattering (SERS) with thermally stable gold nanoflowers grown from Pt and Pd seeds.

    Science.gov (United States)

    Song, Hyon Min; Deng, Lin; Khashab, Niveen M

    2013-05-21

    SERS provides great sensitivity at low concentrations of analytes. SERS combined with near infrared (NIR)-resonant gold nanomaterials are important candidates for theranostic agents due to their combined extinction properties and sensing abilities stemming from the deep penetration of laser light in the NIR region. Here, highly branched gold nanoflowers (GNFs) grown from Pd and Pt seeds are prepared and their SERS properties are studied. The growth was performed at 80 °C without stirring, and this high temperature growth method is assumed to provide great shape stability of sharp tips in GNFs. We found that seed size must be large enough (>30 nm in diameter) to induce the growth of those SERS-active and thermally stable GNFs. We also found that the addition of silver nitrate (AgNO3) is important to induce sharp tip growth and shape stability. Incubation with Hela cells indicates that GNFs are taken up and reside in the cytoplasm. SERS was observed in those cells incubated with 1,10-phenanthroline (Phen)-loaded GNFs.

  11. Surface-enhanced Raman scattering on gold nanotrenches and nanoholes

    KAUST Repository

    Yue, Weisheng; Yang, Yang; Wang, Zhihong; Chen, Longqing; Wong, Ka Chun; Syed, Ahad A.; Chen, Zong; Wang, Xianbin

    2012-01-01

    Dependent effects on edge-to-edge distance and incidence polarization in surface-enhanced Raman Scattering (SERS) were studied in detection of 4-mercaptopyridine (4-MPy) molecules absorbed on gold nanotrenches and nanoholes. The gold nanostructures

  12. Surface-enhanced Raman spectroscopy (SERS) in food analytics: Detection of vitamins B2 and B12 in cereals.

    Science.gov (United States)

    Radu, Andreea Ioana; Kuellmer, Maria; Giese, Bernd; Huebner, Uwe; Weber, Karina; Cialla-May, Dana; Popp, Jürgen

    2016-11-01

    Food analysis has been gaining interest throughout recent decades for different reasons: the detection of hazardous substances in food and routine investigations of food composition and vitamin/nutrient contents. Regardless of the targeted component, food analysis raises a few challenges regarding the complexity of the matrix and detecting trace amounts of substances. We report herein the results obtained regarding the simultaneous detection of two B vitamins (riboflavin, vitamin B2 and cyanocobalamin, vitamin B12) by means of SERS. SERS provides molecular fingerprint identification and high analytical sensitivity together with a low processing time and cost. All these make SERS a promising tool for the development of food analytical methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Laser ablation surface-enhanced Raman microspectroscopy.

    Science.gov (United States)

    Londero, Pablo S; Lombardi, John R; Leona, Marco

    2013-06-04

    Improved identification of trace organic compounds in complex matrixes is critical for a variety of fields such as material science, heritage science, and forensics. Surface-enhanced Raman scattering (SERS) is a vibrational spectroscopy technique that can attain single-molecule sensitivity and has been shown to complement mass spectrometry, but lacks widespread application without a robust method that utilizes the effect. We demonstrate a new, highly sensitive, and widely applicable approach to SERS analysis based on laser ablation in the presence of a tailored plasmonic substrate. We analyze several challenging compounds, including non-water-soluble pigments and dyed leather from an ancient Egyptian chariot, achieving sensitivity as high as 120 amol for a 1:1 signal-to-noise ratio and 5 μm spatial resolution. This represents orders of magnitude improvement in spatial resolution and sensitivity compared to those of other SERS approaches intended for widespread application, greatly increasing the applicability of SERS.

  14. Rapid Biochemical Mixture Screening by Three-Dimensional Patterned Multifunctional Substrate with Ultra-Thin Layer Chromatography (UTLC) and Surface Enhanced Raman Scattering (SERS).

    Science.gov (United States)

    Lee, Bi-Shen; Lin, Pi-Chen; Lin, Ding-Zheng; Yen, Ta-Jen

    2018-01-11

    We present a three-dimensional patterned (3DP) multifunctional substrate with the functions of ultra-thin layer chromatography (UTLC) and surface enhanced Raman scattering (SERS), which simultaneously enables mixture separation, target localization and label-free detection. This multifunctional substrate is comprised of a 3DP silicon nanowires array (3DP-SiNWA), decorated with silver nano-dendrites (AgNDs) atop. The 3DP-SiNWA is fabricated by a facile photolithographic process and low-cost metal assisted chemical etching (MaCE) process. Then, the AgNDs are decorated onto 3DP-SiNWA by a wet chemical reduction process, obtaining 3DP-AgNDs@SiNWA multifunctional substrates. With various patterns designed on the substrates, the signal intensity could be maximized by the excellent confinement and concentrated effects of patterns. By using this 3DP-AgNDs@SiNWA substrate to scrutinize the mixture of two visible dyes, the individual target could be recognized and further boosted the Raman signal of target 15.42 times comparing to the un-patterned AgNDs@SiNWA substrate. Therefore, such a three-dimensional patterned multifunctional substrate empowers rapid mixture screening, and can be readily employed in practical applications for biochemical assays, food safety and other fields.

  15. Sputtering-growth of seeded Au nanoparticles for nanogap-assisted surface-enhanced Raman scattering (SERS) biosensing

    Science.gov (United States)

    Fu, Chit Yaw; U. S., Dinish; Rautela, Shashi; Goh, Douglas Wenda; Olivo, Malini

    2011-12-01

    Gold-coated array patterned with tightly-packed nanospheres was developed as a substrate base for constructing SERSenriched nanogaps with Au-nanoparticles (GNPs). Using 1,2-ethanedithiol as a linker, Au-NPs (=17-40nm) were anchored covalently on the sphere-array. Thin Au layer was sputtered on the substrate to mask the citrate coating of GNPs that could demote the sensing mechanism. The negatively-charged GNP surface warrants the colloidal stability, but the resulting repulsive force keeps the immobilized NPs apart by about 40nm. The attained gap size is inadequately narrow to sustain any intense enhancement owing to the near-field nature of SERS. Minimal amount of NaCl was then added to slightly perturb the colloidal stability by reducing their surface charge. Notably, the interparticle-gap reduces at increasing amount of salt, giving rise to increased packing density of GNPs. The SERS enhancement is also found to exponentially increase at decreasing gap size. Nevertheless, the minimum gap achieved is limited to merely 7nm. Excessive addition of salt would eventually induce complete aggregation of particles, forming clustered NPs on the array. A simple sputtering-growth approach is therefore proposed to further minimize the interparticle gap by enlarging the seeded NPs based on mild sputtering. The SEM images confirm that the gap below 7nm is achievable. With advent of the colloidal chemistry, the combined salt-induced aggregation and sputtering-growth techniques can be applied to engineer interparticle gap that is crucial to realize an ultrasensitive SERS biosensor. The proposed two-step preparation can be potentially adopted to fabricate the SERS-enriched nanogaps on the microfluidics platform.

  16. Nanostructured surface enhanced Raman scattering substrates for explosives detection

    DEFF Research Database (Denmark)

    Schmidt, Michael Stenbaek; Olsen, Jesper Kenneth; Boisen, Anja

    2010-01-01

    Here we present a method for trace detection of explosives in the gas phase using novel surface enhanced Raman scattering (SERS) spectroscopy substrates. Novel substrates that produce an exceptionally large enhancement of the Raman effect were used to amplify the Raman signal of explosives...

  17. Surface-Enhanced Raman Spectroscopy (SERS Tracking of Chelerythrine, a Na+/K+ Pump Inhibitor, into Cytosol and Plasma Membrane Fractions of Human Lens Epithelial Cell Cultures

    Directory of Open Access Journals (Sweden)

    Kevin M. Dorney

    2013-12-01

    Full Text Available Background/Aims: The quaternary benzo-phenanthridine alkaloid (QBA chelerythrine (CET is a pro-apoptotic drug and Na+/K+ pump (NKP inhibitor in human lens epithelial cells (HLECs. In order to obtain further insight into the mechanism of NKP inhibition by CET, its sub-cellular distribution was quantified in cytosolic and membrane fractions of HLEC cultures by surface-enhanced Raman spectroscopy (SERS. Methods: Silver nanoparticles (AgNPs prepared by the Creighton method were concentrated, and size-selected using a one-step tangential flow filtration approach. HLECs cultures were exposed to 50 μM CET in 300 mOsM phosphate-buffered NaCl for 30 min. A variety of cytosolic extracts, crude and purified membranes, prepared in lysing solutions in the presence and absence of a non-ionic detergent, were incubated with AgNPs and subjected to SERS analysis. Determinations of CET were based on a linear calibration plot of the integrated CET SERS intensity at its 659 cm-1 marker band as a function of CET concentration. Results: SERS detected chemically unaltered CET in both cytosol and plasma membrane fractions. Normalized for protein, the CET content was some 100 fold higher in the crude and purified plasma membrane fraction than in the soluble cytosolic extract. The total free CET concentration in the cytosol, free of membranes or containing detergent-solubilized membrane material, approached that of the incubation medium of HLECs. Conclusion: Given a negative membrane potential of HLECs the data suggest, but do not prove, that CET may traverse the plasma membrane as a positively charged monomer (CET+ accumulating near or above passive equilibrium distribution. These findings may contribute to a recently proposed hypothesis that CET binds to and inhibits the NKP through its cytosolic aspect.

  18. Surface-enhanced Raman spectroscopy (SERS) tracking of chelerythrine, a Na(+)/K(+) pump inhibitor, into cytosol and plasma membrane fractions of human lens epithelial cell cultures.

    Science.gov (United States)

    Dorney, Kevin M; Sizemore, Ioana E P; Alqahtani, Tariq; Adragna, Norma C; Lauf, Peter K

    2013-01-01

    The quaternary benzo-phenanthridine alkaloid (QBA) chelerythrine (CET) is a pro-apoptotic drug and Na(+)/K(+) pump (NKP) inhibitor in human lens epithelial cells (HLECs). In order to obtain further insight into the mechanism of NKP inhibition by CET, its sub-cellular distribution was quantified in cytosolic and membrane fractions of HLEC cultures by surface-enhanced Raman spectroscopy (SERS). Silver nanoparticles (AgNPs) prepared by the Creighton method were concentrated, and size-selected using a one-step tangential flow filtration approach. HLECs cultures were exposed to 50 μM CET in 300 mOsM phosphate-buffered NaCl for 30 min. A variety of cytosolic extracts, crude and purified membranes, prepared in lysing solutions in the presence and absence of a non-ionic detergent, were incubated with AgNPs and subjected to SERS analysis. Determinations of CET were based on a linear calibration plot of the integrated CET SERS intensity at its 659 cm(-1) marker band as a function of CET concentration. SERS detected chemically unaltered CET in both cytosol and plasma membrane fractions. Normalized for protein, the CET content was some 100 fold higher in the crude and purified plasma membrane fraction than in the soluble cytosolic extract. The total free CET concentration in the cytosol, free of membranes or containing detergent-solubilized membrane material, approached that of the incubation medium of HLECs. Given a negative membrane potential of HLECs the data suggest, but do not prove, that CET may traverse the plasma membrane as a positively charged monomer (CET(+)) accumulating near or above passive equilibrium distribution. These findings may contribute to a recently proposed hypothesis that CET binds to and inhibits the NKP through its cytosolic aspect. © 2014 S. Karger AG, Basel.

  19. Electrochemical and in-situ Surface-Enhanced Raman Spectroscopic (SERS) study of passive films formed on low-carbon steel in highly alkaline environments

    Science.gov (United States)

    Mancio, Mauricio

    In reinforced concrete, a passive layer forms because of the alkaline conditions in the pores of the cement paste, where large concentrations of hydroxides create a solution with pH typically between 12 and 14. The corrosion resistance of the material depends on the characteristics and integrity of the passive film; however, currently very limited information is available about the passive films formed on carbon steel under such conditions. This work presents an electrochemical and in-situ Surface-Enhanced Raman Spectroscopic (SERS) study of passive films formed on low-carbon steel in highly alkaline environments. More specifically, the study focuses on the characterization of the films formed on ASTM A36 steel reinforcing bar exposed to aqueous solutions that aim to reproduce the chemistry of the environment typically found within the cement paste. Electrochemical techniques such as cyclic potentiodynamic polarization curves, galvanostatic cathodic polarization and linear polarization resistance were employed, in addition to in-situ Surface Enhanced Raman Spectroscopy (SERS). The experimental setup was built in a way that SERS experiments could be performed simultaneously with potentiodynamic polarization curves, enabling a detailed analysis of the formation and reduction of the surface films as a function of applied potential. Three solutions with different pH levels were used for the polarization and SERS experiments, namely 0.55M KOH + 0.16M NaOH ([OH-]=0.71), 0.08M KOH + 0.02M NaOH ([OH-]=0.10) and 0.008M KOH + 0.002M NaOH ([OH-]=0.01). Additional NaOH solutions in which the pH was varied from 13 to 9 and the ionic strength from 10 -5 to 10-1 were prepared for a pilot study using linear polarization resistance. Results show that the features observed in the cyclic potentiodynamic polarization curves correlated well with the potential arrests observed in the GCP plots as well as with the changes observed in the SERS spectra, providing valuable information about

  20. Preparation of surface enhanced Raman substrate and its characterization

    Science.gov (United States)

    Liu, Y.; Wang, J. Y.; Wang, J. Q.

    2017-10-01

    Surface enhanced Raman spectroscopy (SERS) is a fast, convenient and highly sensitive detection technique, and preparing the good effect and repeatable substrate is the key to realize the trace amount and quantitative detection in the field of food safety detection. In this paper, a surface enhanced Raman substrate based on submicrometer silver particles structure was prepared by chemical deposition method, and characterized its structure and optical properties.

  1. High Density Periodic Metal Nanopyramids for Surface Enhanced Raman Spectroscopy

    NARCIS (Netherlands)

    Jin, Mingliang

    2012-01-01

    The work presented in this thesis is focused on two areas. First, a new type of nanotextured noble-metal surface has been developed. The new nanotextured surface is demonstrated to enhance inelastic (Raman) scattering, called surface enhanced Raman scattering (SERS), from molecules adsorbed on the

  2. Engineering Plasmonic Nanopillar Arrays for Surface-enhanced Raman Spectroscopy

    DEFF Research Database (Denmark)

    Wu, Kaiyu

    This Ph.D. thesis presents (i) an in-depth understanding of the localized surface plasmon resonances (LSPRs) in the nanopillar arrays (NPs) for surface-enhanced Raman spectroscopy (SERS), and (ii) systematic ways of optimizing the fabrication process of NPs to improve their SERS efficiencies. Thi...

  3. Detection and quantification of alternative splice sites in Arabidopsis genes AtDCL2 and AtPTB2 with highly sensitive surface enhanced Raman spectroscopy (SERS) and gold nanoprobes.

    Science.gov (United States)

    Kadam, Ulhas S; Schulz, Burkhard; Irudayaraj, Joseph

    2014-05-02

    Alternative splicing (AS) increases the size of the transcriptome and proteome to enhance the physiological capacity of cells. We demonstrate surface enhanced Raman spectroscopy (SERS) in combination with a DNA hybridization analytical platform to identify and quantify AS genes in plants. AS in AtDCL2 and AtPTB2 were investigated using non-fluorescent Raman probes using a 'sandwich assay'. Utilizing Raman probes conjugated to gold nanoparticles we demonstrate the recognition of RNA sequences specific to AtDCL2 and AtPTB2 splice junction variants with detection sensitivity of up to 0.1 fM. Published by Elsevier B.V.

  4. [Current views on surface enhanced Raman spectroscopy in microbiology].

    Science.gov (United States)

    Jia, Xiaoxiao; Li, Jing; Qin, Tian; Deng, Aihua; Liu, Wenjun

    2015-05-01

    Raman spectroscopy has generated many branches during the development for more than 90 years. Surface enhanced Raman spectroscopy (SERS) improves SNR by using the interaction between tested materials and the surface of rough metal, as to quickly get higher sensitivity and precision spectroscopy without sample pretreatment. This article describes the characteristic and classification of SERS, and updates the theory and clinical application of SERS. It also summarizes the present status and progress of SERS in various disciplines and illustrates the necessity and urgency of its research, which provides rationale for the application for SERS in microbiology.

  5. Raman spectroscopic analysis of cyanogenic glucosides in plants: development of a Flow Injection Surface-Enhanced Raman Scatter (FI-SERS) method for determination of cyanide

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Jørgensen, Kirsten; Møller, Birger Lindberg

    2004-01-01

    Cyanogenic glucosides were studied using Raman spectroscopy. Spectra of the crystal forms of linamarin, linustatin, neolinustatin, amygdalin, sambunigrin, and dhurrin were obtained using a Raman spectrograph microscope equipped with a 532 nm laser. The position of the signal from the CdropN tripl...

  6. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    weak Raman signal, which facilitates identification in chemi- cal and biological systems. Recently, single-molecule Raman scattering has enhanced the detection sensitivity limit of ... was working on the molecular diffraction of light, which ulti-.

  7. Surface enhanced raman spectroscopy analytical, biophysical and life science applications

    CERN Document Server

    Schlücker, Sebastian

    2013-01-01

    Covering everything from the basic theoretical and practical knowledge to new exciting developments in the field with a focus on analytical and life science applications, this monograph shows how to apply surface-enhanced Raman scattering (SERS) for solving real world problems. From the contents: * Theory and practice of SERS * Analytical applications * SERS combined with other analytical techniques * Biophysical applications * Life science applications including various microscopies Aimed at analytical, surface and medicinal chemists, spectroscopists, biophysicists and materials scientists. Includes a Foreword by the renowned Raman spectroscopist Professor Wolfgang Kiefer, the former Editor-in-Chief of the Journal of Raman Spectroscopy.

  8. A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/Graphene oxide/Cicada wing array

    Science.gov (United States)

    Shi, Guochao; Wang, Mingli; Zhu, Yanying; Shen, Lin; Wang, Yuhong; Ma, Wanli; Chen, Yuee; Li, Ruifeng

    2018-04-01

    In this work, we presented an eco-friendly and low-cost method to fabricate a kind of flexible and stable Au nanoparticles/graphene oxide/cicada wing (AuNPs/GO/CW) substrate. By controlling the ratio of reactants, the optimum SERS substrate with average AuNPs size of 65 nm was obtained. The Raman enhancement factor for rhodamine 6G (R6G) was 1.08 ×106 and the limit of detection (LOD) was as low as 10-8 M. After calibrating the Raman peak intensities of R6G, it could be quantitatively detected. In order to better understand the experimental results, the 3D finite-different time-domain simulation was used to simulate the AuNPs/GO/CW-1 (the diameter of the AuNPs was 65 nm) to further investigate the SERS enhancement effect. More importantly, the AuNPs/GO/CW-1 substrates not only can provide strong enhancement factors but also can be stable and reproducible. This SERS substrates owned a good stability for the SERS intensity which was reduced only by 25% after the aging time of 60 days and the relative standard deviation was lower than 20%, revealing excellent uniformity and reproducibility. Our positive findings can pave a new way to optimize the application of SERS substrate as well as provide more SERS platforms for quantitative detection of organic contaminants vestige, which makes it very promising in the trace detection of biological molecules.

  9. [Study on the surface-enhanced Raman spectrum of trimethoprim].

    Science.gov (United States)

    Zhang, Jin-zhi; Wang, Yuan

    2003-02-01

    A new method is given in this paper to study the spectra of trimethoprim by using the surface-enhanced Raman spectrum (SERS) technology and the highly efficient thin layer chromatography (TLC) dissociation technology. The results of SERS indicate that the main vibrant spectral band can be obtained by TLC in the samples of about 6 micrograms. The expansion and contraction of pyrimidine ring can be obviously increased and the molecule information can be exactly presented under the action of silver particles.

  10. A simple fabrication of plasmonic surface-enhanced Raman scattering (SERS) substrate for pesticide analysis via the immobilization of gold nanoparticles on UF membrane

    Science.gov (United States)

    Hong, Jangho; Kawashima, Ayato; Hamada, Noriaki

    2017-06-01

    In this study, we developed a facile fabrication method to access a highly reproducible plasmonic surface enhanced Raman scattering substrate via the immobilization of gold nanoparticles on an Ultrafiltration (UF) membrane using a suction technique. This was combined with a simple and rapid analyte concentration and detection method utilizing portable Raman spectroscopy. The minimum detectable concentrations for aqueous thiabendazole standard solution and thiabendazole in orange extract are 0.01 μg/mL and 0.125 μg/g, respectively. The partial least squares (PLS) regression plot shows a good linear relationship between 0.001 and 100 μg/mL of analyte, with a root mean square error of prediction (RMSEP) of 0.294 and a correlation coefficient (R2) of 0.976 for the thiabendazole standard solution. Meanwhile, the PLS plot also shows a good linear relationship between 0.0 and 2.5 μg/g of analyte, with an RMSEP value of 0.298 and an R2 value of 0.993 for the orange peel extract. In addition to the detection of other types of pesticides in agricultural products, this highly uniform plasmonic substrate has great potential for application in various environmentally-related areas.

  11. Aligned gold nanoneedle arrays for surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Yang Yong; Huang Zhengren; Jiang Dongliang; Tanemura, Masaki; Yamaguchi, Kohei; Li Zhiyuan; Huang Yingping; Kawamura, Go; Nogami, Masayuki

    2010-01-01

    A simple Ar + -ion irradiation route has been developed to prepare gold nanoneedle arrays on glass substrates for surface-enhanced Raman scattering (SERS)-active substrates. The nanoneedles exhibited very sharp tips with an apex diameter of 20 nm. These arrays were evaluated as potential SERS substrates using malachite green molecules and exhibited a SERS enhancement factor of greater than 10 8 , which is attributed to the localized electron field enhancement around the apex of the needle and the surface plasmon coupling originating from the periodic structure. This work demonstrates a new technique for producing controllable and reproducible SERS substrates potentially applicable for chemical and biological assays.

  12. [Surface-enhanced Raman spectroscopy analysis of thiabendazole pesticide].

    Science.gov (United States)

    Lin, Lei; Wu, Rui-mei; Liu, Mu-hua; Wang, Xiao-bin; Yan, Lin-yuan

    2015-02-01

    Surface-enhanced Raman spectroscopy (SERS) technique was used to analyze the Raman peaks of thiabendazole pesticides in the present paper. Surface enhanced substrates of silver nanoparticle were made based on microwave technology. Raman signals of thiabendazole were collected by laser Micro-Raman spectrometer with 514. 5 and 785 nm excitation wavelengths, respectively. The Raman peaks at different excitation wavelengths were analyzed and compared. The Raman peaks 782 and 1 012 at 785 nm excitation wavelength were stronger, which were C--H out-of-plane vibrations. While 1284, 1450 and 1592 cm(-1) at 514.5 nm excitation wavelength were stronger, which were vng and C==N stretching. The study results showed that the intensity of Raman peak and Raman shift at different excitation wavelengths were different And strong Raman signals were observed at 782, 1012, 1284, 1450 and 1592 cm(-1) at 514.5 and 785 nm excitation wavelengths. These characteristic vibrational modes are characteristic Raman peaks of carbendazim pesticide. The results can provide basis for the rapid screening of pesticide residue in agricultural products and food based on Raman spectrum.

  13. Surface-enhanced Raman spectroscopy bioanalytical, biomolecular and medical applications

    CERN Document Server

    Procházka, Marek

    2016-01-01

    This book gives an overview of recent developments in RS and SERS for sensing and biosensing considering also limitations, possibilities and prospects of this technique. Raman scattering (RS) is a widely used vibrational technique providing highly specific molecular spectral patterns. A severe limitation for the application of this spectroscopic technique lies in the low cross section of RS. Surface-enhanced Raman scattering (SERS) spectroscopy overcomes this problem by 6-11 orders of magnitude enhancement compared with the standard RS for molecules in the close vicinity of certain rough metal surfaces. Thus, SERS combines molecular fingerprint specificity with potential single-molecule sensitivity. Due to the recent development of new SERS-active substrates, labeling and derivatization chemistry as well as new instrumentations, SERS became a very promising tool for many varied applications, including bioanalytical studies and sensing. Both intrinsic and extrinsic SERS biosensing schemes have been employed to...

  14. Surface-Enhanced Raman Scattering in Molecular Junctions.

    Science.gov (United States)

    Iwane, Madoka; Fujii, Shintaro; Kiguchi, Manabu

    2017-08-18

    Surface-enhanced Raman scattering (SERS) is a surface-sensitive vibrational spectroscopy that allows Raman spectroscopy on a single molecular scale. Here, we present a review of SERS from molecular junctions, in which a single molecule or molecules are made to have contact from the top to the bottom of metal surfaces. The molecular junctions are nice platforms for SERS as well as transport measurement. Electronic characterization based on the transport measurements of molecular junctions has been extensively studied for the development of miniaturized electronic devices. Simultaneous SERS and transport measurement of the molecular junctions allow both structural (geometrical) and electronic information on the single molecule scale. The improvement of SERS measurement on molecular junctions open the door toward new nanoscience and nanotechnology in molecular electronics.

  15. Nanophotonics with Surface Enhanced Coherent Raman Microscopy

    Science.gov (United States)

    Fast, Alexander

    extended samples' surfaces can be visualized with a nanoscale axial resolution providing topographic information. Finally, a platform for coherently interrogating single molecules is presented. Single-molecule limit SE-CARS on non-resonant molecules is achieved by means of 3D local field confinement in the nanojunctions between two spherical gold nanoparticles. Localized plasmon resonance of the dimer nanostructure confines the probe volume down to 1 nm3 and provides the local field enhancement necessary to reach single-molecule detection limit. Nonlinear excitation of Raman vibrations in SE-CARS microspectroscopy allows for higher image acquisition rates than in conventionally used single-molecule surface enhanced Raman spectroscopy (SERS). Therefore, data throughput is significantly improved while preserving spectral information despite the presence of the metal. Data simultaneously acquired from hundreds of nanoantennas allows to establish the peak enhancement factor from the observed count rates and define the maximum allowed local-field that preserves the integrity of the antenna. These results are paramount for the future design of time resolved single-molecule studies with multiple pulsed laser excitations, required for single-molecule coherence manipulation and quantum computing.

  16. Ultrasensitive detection of phenolic antioxidants by surface enhanced Raman spectroscopy

    Science.gov (United States)

    Ornelas-Soto, N.; Aguilar-Hernández, I. A.; Afseth, N.; López-Luke, T.; Contreras-Torres, F. F.; Wold, J. P.

    2017-08-01

    Surface-Enhanced Raman Spectroscopy (SERS) is a powerful surface-sensitive technique to study the vibrational properties of analytes at very low concentrations. In this study, ferulic acid, p-coumaric acid, caffeic acid and sinapic acid were analyzed by SERS using Ag colloids. Analytes were detected up to 2.5x10-9M. For caffeic acid and coumaric acid, this detection limit has been reached for the first time, as well as the SERS analysis of sinapic acid using silver colloids.

  17. Surface-Enhanced Raman Spectroscopy Integrated Centrifugal Microfluidics Platform

    DEFF Research Database (Denmark)

    Durucan, Onur

    This PhD thesis demonstrates (i) centrifugal microfluidics disc platform integrated with Au capped nanopillar (NP) substrates for surface-enhanced Raman spectroscopy (SERS) based sensing, and (ii) novel sample analysis concepts achieved by synergistical combination of sensing techniques and minia......This PhD thesis demonstrates (i) centrifugal microfluidics disc platform integrated with Au capped nanopillar (NP) substrates for surface-enhanced Raman spectroscopy (SERS) based sensing, and (ii) novel sample analysis concepts achieved by synergistical combination of sensing techniques...... dense array of NP structures. Furthermore, the wicking assisted nanofiltration procedure was accomplished in centrifugal microfluidics platform and as a result additional sample purification was achieved through the centrifugation process. In this way, the Au coated NP substrate was utilized...

  18. Assessing Telomere Length Using Surface Enhanced Raman Scattering

    Science.gov (United States)

    Zong, Shenfei; Wang, Zhuyuan; Chen, Hui; Cui, Yiping

    2014-11-01

    Telomere length can provide valuable insight into telomeres and telomerase related diseases, including cancer. Here, we present a brand-new optical telomere length measurement protocol using surface enhanced Raman scattering (SERS). In this protocol, two single strand DNA are used as SERS probes. They are labeled with two different Raman molecules and can specifically hybridize with telomeres and centromere, respectively. First, genome DNA is extracted from cells. Then the telomere and centromere SERS probes are added into the genome DNA. After hybridization with genome DNA, excess SERS probes are removed by magnetic capturing nanoparticles. Finally, the genome DNA with SERS probes attached is dropped onto a SERS substrate and subjected to SERS measurement. Longer telomeres result in more attached telomere probes, thus a stronger SERS signal. Consequently, SERS signal can be used as an indicator of telomere length. Centromere is used as the inner control. By calibrating the SERS intensity of telomere probe with that of the centromere probe, SERS based telomere measurement is realized. This protocol does not require polymerase chain reaction (PCR) or electrophoresis procedures, which greatly simplifies the detection process. We anticipate that this easy-operation and cost-effective protocol is a fine alternative for the assessment of telomere length.

  19. Surface-enhanced Raman fiberoptic sensors for remote monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, D.L.; Alarie, J.P.; Vo-Dinh, T. [Oak Ridge National Lab., TN (United States). Health Sciences Research Div.

    1995-09-01

    A new sensor design for remote surface-enhanced Raman scattering (SERS) measurements has been developed for environmental applications. The design features the modification of an optical fiber using layers of alumina microparticles and silver coatings for inducing the SERS effect at the sensing probe. A single fiber carries both the laser excitation and the SERS signal radiation, keeping optical parameters at the remote tip simple and consistent. The small tip size achievable with this configuration also demonstrates potential of this new design as a microsensor for in-situ measurement in microenvironments. Details of sensor tip fabrication and optical system design are described. SERS spectra of aqueous environmental samples acquired in-situ using the SERS sensor are also presented to illustrate the effectiveness of the SERS sensor.

  20. Charge Transfer Effect on Raman and Surface Enhanced Raman Spectroscopy of Furfural Molecules.

    Science.gov (United States)

    Wan, Fu; Shi, Haiyang; Chen, Weigen; Gu, Zhaoliang; Du, Lingling; Wang, Pinyi; Wang, Jianxin; Huang, Yingzhou

    2017-08-02

    The detection of furfural in transformer oil through surface enhanced Raman spectroscopy (SERS) is one of the most promising online monitoring techniques in the process of transformer aging. In this work, the Raman of individual furfural molecules and SERS of furfural-M x (M = Ag, Au, Cu) complexes are investigated through density functional theory (DFT). In the Raman spectrum of individual furfural molecules, the vibration mode of each Raman peak is figured out, and the deviation from experimental data is analyzed by surface charge distribution. In the SERS of furfural-M x complexes, the influence of atom number and species on SERS chemical enhancement factors (EFs) are studied, and are further analyzed by charge transfer effect. Our studies strengthen the understanding of charge transfer effect in the SERS of furfural molecules, which is important in the online monitoring of the transformer aging process through SERS.

  1. Application of silver nanoparticles in the detection of SYBR Green I by surface enhanced Raman and surface-enhanced fluorescence

    Science.gov (United States)

    Guo, Wei; Wu, Jian; Wang, Chunyan; Zhang, Tian; Chen, Tao

    2018-05-01

    Silver nanomaterials have remarkable application in biomedical detection due to their unique surface plasmon resonance (SPR) characteristics. It can be used for surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF). Current research elaborates a technique for improvement of SYBR Green I detection obtained from surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) by silver nanoparticles with the average size about 70 nm. Primarily, SYBR Green I is an important fluorescent dye used in polymerase chain reaction (PCR). It is found that both Raman and fluorescence can be used for detection of this dye. Furthermore, the enhanced efficiency of the Raman and fluorescence by SERS and SEF is observed in this study, the enhancement factor for Raman signals is 3.2 × 103, and the fluorescence intensity bincreased two times by SEF. The quantitative detection of SYBR Green I by SERS and SEF can be achieved. The present work can be used to improve the detection of SYBR Green I by SERS and SEF. It would also be employed for high-sensitive detection of other materials in the future.

  2. Fabrication of Annealed Gold Nanostructures on Pre-Treated Glow-Discharge Cleaned Glasses and Their Used for Localized Surface Plasmon Resonance (LSPR and Surface Enhanced Raman Spectroscopy (SERS Detection of Adsorbed (Biomolecules

    Directory of Open Access Journals (Sweden)

    Rodica Elena Ionescu

    2017-01-01

    Full Text Available Metallic nanoparticles are considered as active supports in the development of specific chemical or biological biosensors. Well-organized nanoparticles can be prepared either through expensive (e.g., electron beam lithography or inexpensive (e.g., thermal synthesis approaches where different shapes of nanoparticles are easily obtained over large solid surfaces. Herein, the authors propose a low-cost thermal synthesis of active plasmonic nanostructures on thin gold layers modified glass supports after 1 h holding on a hot plate (~350 °C. The resulted annealed nanoparticles proved a good reproducibility of localized surface plasmon resonance (LSPR and surface enhanced Raman spectroscopy (SERS optical responses and where used for the detection of low concentrations of two model (biochemical molecules, namely the human cytochrome b5 (Cyt-b5 and trans-1,2-bis(4-pyridylethylene (BPE.

  3. Surface enhanced Raman spectroscopy on a flat graphene surface

    Science.gov (United States)

    Xu, Weigao; Ling, Xi; Xiao, Jiaqi; Dresselhaus, Mildred S.; Kong, Jing; Xu, Hongxing; Liu, Zhongfan; Zhang, Jin

    2012-01-01

    Surface enhanced Raman spectroscopy (SERS) is an attractive analytical technique, which enables single-molecule sensitive detection and provides its special chemical fingerprints. During the past decades, researchers have made great efforts towards an ideal SERS substrate, mainly including pioneering works on the preparation of uniform metal nanostructure arrays by various nanoassembly and nanotailoring methods, which give better uniformity and reproducibility. Recently, nanoparticles coated with an inert shell were used to make the enhanced Raman signals cleaner. By depositing SERS-active metal nanoislands on an atomically flat graphene layer, here we designed a new kind of SERS substrate referred to as a graphene-mediated SERS (G-SERS) substrate. In the graphene/metal combined structure, the electromagnetic “hot” spots (which is the origin of a huge SERS enhancement) created by the gapped metal nanoislands through the localized surface plasmon resonance effect are supposed to pass through the monolayer graphene, resulting in an atomically flat hot surface for Raman enhancement. Signals from a G-SERS substrate were also demonstrated to have interesting advantages over normal SERS, in terms of cleaner vibrational information free from various metal-molecule interactions and being more stable against photo-induced damage, but with a comparable enhancement factor. Furthermore, we demonstrate the use of a freestanding, transparent and flexible “G-SERS tape” (consisting of a polymer-layer-supported monolayer graphene with sandwiched metal nanoislands) to enable direct, real time and reliable detection of trace amounts of analytes in various systems, which imparts high efficiency and universality of analyses with G-SERS substrates. PMID:22623525

  4. Wavelength modulated surface enhanced (resonance) Raman scattering for background-free detection.

    Science.gov (United States)

    Praveen, Bavishna B; Steuwe, Christian; Mazilu, Michael; Dholakia, Kishan; Mahajan, Sumeet

    2013-05-21

    Spectra in surface-enhanced Raman scattering (SERS) are always accompanied by a continuum emission called the 'background' which complicates analysis and is especially problematic for quantification and automation. Here, we implement a wavelength modulation technique to eliminate the background in SERS and its resonant version, surface-enhanced resonance Raman scattering (SERRS). This is demonstrated on various nanostructured substrates used for SER(R)S. An enhancement in the signal to noise ratio for the Raman bands of the probe molecules is also observed. This technique helps to improve the analytical ability of SERS by alleviating the problem due to the accompanying background and thus making observations substrate independent.

  5. A microfluidic surface enhanced Raman spectroscopic biosensor using aptamer functionalized nanopillars

    DEFF Research Database (Denmark)

    Yang, J.; Palla, M.; Bosco, F. G.

    2013-01-01

    This paper presents a microchip incorporating an aptamer-functionalized nanopillar substrate, enabling the specific detection of low-abundance biomolecules using surface enhanced Raman spectroscopy (SERS). In a temperature controlled microchamber, aptamers immobilized on the nanostructure surface...

  6. Surface-enhanced Raman scattering on gold nanotrenches and nanoholes

    KAUST Repository

    Yue, Weisheng

    2012-04-01

    Dependent effects on edge-to-edge distance and incidence polarization in surface-enhanced Raman Scattering (SERS) were studied in detection of 4-mercaptopyridine (4-MPy) molecules absorbed on gold nanotrenches and nanoholes. The gold nanostructures with controllable size and period were fabricated using electron-beam lithography. Large SERS enhancement in detection of 4-MPy molecules on both nanostructred substrates was observed. The SERS enhancement increased exponentially with decrease of edge to-edge distance for both the nanotrenches and nanoholes while keeping the sizes of the nanotrenches and nanoholes unchanged. Investigation of polarization dependence showed that the SERS enhancement of nanotrenches was much more sensitive to the incidence polarizations than that of nanoholes. © 2012 American Scientific Publishers.

  7. Horizontal silicon nanowires for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Gebavi, Hrvoje; Ristić, Davor; Baran, Nikola; Mikac, Lara; Mohaček-Grošev, Vlasta; Gotić, Marijan; Šikić, Mile; Ivanda, Mile

    2018-01-01

    The main purpose of this paper is to focus on details of the fabrication process of horizontally and vertically oriented silicon nanowires (SiNWs) substrates for the application of surface-enhanced Raman spectroscopy (SERS). The fabrication process is based on the vapor-liquid-solid method and electroless-assisted chemical etching, which, as the major benefit, resulting in the development of economical, easy-to-prepare SERS substrates. Furthermore, we examined the fabrication of Au coated Ag nanoparticles (NPs) on the SiNWs substrates in such a way as to diminish the influence of silver NPs corrosion, which, in turn, enhanced the SERS time stability, thus allowing for wider commercial applications. The substances on which high SERS sensitivity was proved are rhodamine (R6G) and 4-mercaptobenzoic acid (MBA), with the detection limits of 10-8 M and 10-6 M, respectively.

  8. Surface-enhanced raman optical data storage system

    Science.gov (United States)

    Vo-Dinh, Tuan

    1994-01-01

    An improved Surface-Enhanced Raman Optical Data Storage System (SERODS) is disclosed. In the improved system, entities capable of existing in multiple reversible states are present on the storage device. Such entities result in changed Surface-Enhanced Raman Scattering (SERS) when localized state changes are effected in less than all of the entities. Therefore, by changing the state of entities in localized regions of a storage device, the SERS emissions in such regions will be changed. When a write-on device is controlled by a data signal, such a localized regions of changed SERS emissions will correspond to the data written on the device. The data may be read by illuminating the surface of the storage device with electromagnetic radiation of an appropriate frequency and detecting the corresponding SERS emissions. Data may be deleted by reversing the state changes of entities in regions where the data was initially written. In application, entities may be individual molecules which allows for the writing of data at the molecular level. A read/write/delete head utilizing near-field quantum techniques can provide for a write/read/delete device capable of effecting state changes in individual molecules, thus providing for the effective storage of data at the molecular level.

  9. A Novel Method for Detection of Phosphorylation in Single Cells by Surface Enhanced Raman Scattering (SERS) using Composite Organic-Inorganic Nanoparticles (COINs)

    OpenAIRE

    Shachaf, Catherine M.; Elchuri, Sailaja V.; Koh, Ai Leen; Zhu, Jing; Nguyen, Lienchi N.; Mitchell, Dennis J.; Zhang, Jingwu; Swartz, Kenneth B.; Sun, Lei; Chan, Selena; Sinclair, Robert; Nolan, Garry P.

    2009-01-01

    Background Detection of single cell epitopes has been a mainstay of immunophenotyping for over three decades, primarily using fluorescence techniques for quantitation. Fluorescence has broad overlapping spectra, limiting multiplexing abilities. Methodology/Principal Findings To expand upon current detection systems, we developed a novel method for multi-color immuno-detection in single cells using ?Composite Organic-Inorganic Nanoparticles? (COINs) Raman nanoparticles. COINs are Surface-Enhan...

  10. Surface enhanced Raman scattering spectroscopic waveguide

    Science.gov (United States)

    Lascola, Robert J; McWhorter, Christopher S; Murph, Simona H

    2015-04-14

    A waveguide for use with surface-enhanced Raman spectroscopy is provided that includes a base structure with an inner surface that defines a cavity and that has an axis. Multiple molecules of an analyte are capable of being located within the cavity at the same time. A base layer is located on the inner surface of the base structure. The base layer extends in an axial direction along an axial length of an excitation section. Nanoparticles are carried by the base layer and may be uniformly distributed along the entire axial length of the excitation section. A flow cell for introducing analyte and excitation light into the waveguide and a method of applying nanoparticles may also be provided.

  11. Trace drug analysis by surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Farquharson, Stuart; Lee, Vincent Y.

    2000-12-01

    Drug overdose involves more than 10 percent of emergency room (ER) cases, and a method to rapidly identify and quantify the abused drug is critical to the ability of the ER physician to administer the appropriate care. To this end, we have been developing a surface-enhanced Raman (SER) active material capable of detecting target drugs at physiological concentrations in urine. The SER-active material consists of a metal-doped sol-gel that provides not only a million fold increase in sensitivity but also reproducible measurements. The porous silica network offers a unique environment for stabilizing SER active metal particles and the high surface area increase the interaction between the analyte and metal particles. The sol-gel has been coated on the inside walls of glass samples vials, such that urine specimens may simply be introduced for analysis. Here we present the surface-enhanced Raman spectra of a series of barbiturates, actual urine specimens, and a drug 'spiked' urine specimen. The utility of pH adjustment to suppress dominant biochemicals associated with urine is also presented.

  12. Surface-enhanced Raman scattering in art and archaeology

    Science.gov (United States)

    Leona, Marco

    2005-11-01

    The identification of natural dyes found in archaeological objects and in works of art as textile dyes and lake pigments is a demanding analytical task. To address the problems raised by the very low dye content of dyed fibers and lake pigments, and by the requirement to remove only microscopic samples, surface enhanced Raman scattering techniques were investigated for application to museum objects. SERS gives excellent results with the majority of natural dyes, including: alizarin, purpurin, laccaic acid, carminic acid, kermesic acid, shikonin, juglone, lawsone, brazilin and brazilein, haematoxylin and haematein, fisetin, quercitrin, quercetin, rutin, and morin. In this study, limits of detection were determined for representative dyes and different SERS supports such as citrate reduced Ag colloid and silver nanoisland films. SERS was successfully used to identify natural madder in a microscopic fragment from a severely degraded 11th Century Byzantine textile recently excavated in Amorium, Turkey.

  13. Development of a Raman spectrometer to study surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Biswas, Nandita; Chadha, Ridhima; Kapoor, Sudhir; Sarkar, Sisir K.; Mukherjee, Tulsi

    2011-02-01

    Raman spectroscopy is an important tool, which provides enormous information on the vibrational and structural details of materials. This understanding is not only interesting due to its fundamental importance, but also of considerable importance in optoelectronics and device applications of these materials in nanotechnology. In this report, we begin with a brief introduction on the Raman effect and various Raman scattering techniques, followed by a detailed discussion on the development of an instrument with home-built collection optics attachment. This Raman system consists of a pulsed laser excitation source, a sample compartment, collection optics to collect the scattered light, a notch filter to reject the intense laser light, a monochromator to disperse the scattered light and a detector to detect the Raman signal. After calibrating the Raman spectrometer with standard solvents, we present our results on Surface-Enhanced Raman Scattering (SERS) investigations on three different kinds of chemical systems. (author)

  14. IR, Raman and SERS studies of methyl salicylate

    Science.gov (United States)

    Varghese, Hema Tresa; Yohannan Panicker, C.; Philip, Daizy; Mannekutla, James R.; Inamdar, S. R.

    2007-04-01

    The IR and Raman spectra of methyl salicylate (MS) were recorded and analysed. Surface enhanced Raman scattering (SERS) spectrum was recorded in silver colloid. The vibrational wave numbers of the compound have been computed using the Hartree-Fock/6-31G * basis and compared with the experimental values. SERS studies suggest a flat orientation of the molecule at the metal surface.

  15. Frontiers of surface-enhanced Raman scattering single nanoparticles and single cells

    CERN Document Server

    Ozaki, Yukihiro; Aroca, Ricardo

    2014-01-01

    A comprehensive presentation of Surface-Enhanced Raman Scattering (SERS) theory, substrate fabrication, applications of SERS to biosystems, chemical analysis, sensing and fundamental innovation through experimentation. Written by internationally recognized editors and contributors. Relevant to all those within the scientific community dealing with Raman Spectroscopy, i.e. physicists, chemists, biologists, material scientists, physicians and biomedical scientists. SERS applications are widely expanding and the technology is now used in the field of nanotechnologies, applications to biosystems, nonosensors, nanoimaging and nanoscience.

  16. Rapid surface enhanced Raman scattering detection method for chloramphenicol residues

    Science.gov (United States)

    Ji, Wei; Yao, Weirong

    2015-06-01

    Chloramphenicol (CAP) is a widely used amide alcohol antibiotics, which has been banned from using in food producing animals in many countries. In this study, surface enhanced Raman scattering (SERS) coupled with gold colloidal nanoparticles was used for the rapid analysis of CAP. Density functional theory (DFT) calculations were conducted with Gaussian 03 at the B3LYP level using the 3-21G(d) and 6-31G(d) basis sets to analyze the assignment of vibrations. Affirmatively, the theoretical Raman spectrum of CAP was in complete agreement with the experimental spectrum. They both exhibited three strong peaks characteristic of CAP at 1104 cm-1, 1344 cm-1, 1596 cm-1, which were used for rapid qualitative analysis of CAP residues in food samples. The use of SERS as a method for the measurements of CAP was explored by comparing use of different solvents, gold colloidal nanoparticles concentration and absorption time. The method of the detection limit was determined as 0.1 μg/mL using optimum conditions. The Raman peak at 1344 cm-1 was used as the index for quantitative analysis of CAP in food samples, with a linear correlation of R2 = 0.9802. Quantitative analysis of CAP residues in foods revealed that the SERS technique with gold colloidal nanoparticles was sensitive and of a good stability and linear correlation, and suited for rapid analysis of CAP residue in a variety of food samples.

  17. The Nanofabrication and Application of Substrates for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Xian Zhang

    2012-01-01

    Full Text Available Surface-enhanced Raman scattering (SERS was discovered in 1974 and impacted Raman spectroscopy and surface science. Although SERS has not been developed to be an applicable detection tool so far, nanotechnology has promoted its development in recent decades. The traditional SERS substrates, such as silver electrode, metal island film, and silver colloid, cannot be applied because of their enhancement factor or stability, but newly developed substrates, such as electrochemical deposition surface, Ag porous film, and surface-confined colloids, have better sensitivity and stability. Surface enhanced Raman scattering is applied in other fields such as detection of chemical pollutant, biomolecules, DNA, bacteria, and so forth. In this paper, the development of nanofabrication and application of surface-enhanced Ramans scattering substrate are discussed.

  18. Surface enhanced Raman spectroscopy: A review of recent applications in forensic science

    Science.gov (United States)

    Fikiet, Marisia A.; Khandasammy, Shelby R.; Mistek, Ewelina; Ahmed, Yasmine; Halámková, Lenka; Bueno, Justin; Lednev, Igor K.

    2018-05-01

    Surface enhanced Raman spectroscopy has many advantages over its parent technique of Raman spectroscopy. Some of these advantages such as increased sensitivity and selectivity and therefore the possibility of small sample sizes and detection of small concentrations are invaluable in the field of forensics. A variety of new SERS surfaces and novel approaches are presented here on a wide range of forensically relevant topics.

  19. Mathematical model for biomolecular quantification using large-area surface-enhanced Raman spectroscopy mapping

    DEFF Research Database (Denmark)

    Palla, Mirkó; Bosco, Filippo; Yang, Jaeyoung

    2015-01-01

    Surface-enhanced Raman spectroscopy (SERS) based on nanostructured platforms is a promising technique for quantitative and highly sensitive detection of biomolecules in the field of analytical biochemistry. Here, we report a mathematical model to predict experimental SERS signal (or hotspot) inte...

  20. Surface-enhanced Raman scattering sensing on black silicon

    International Nuclear Information System (INIS)

    Gervinskas, Gediminas; Seniutinas, Gediminas; Hartley, Jennifer S.; Stoddart, Paul R.; Juodkazis, Saulius; Kandasamy, Sasikaran; Fahim, Narges F.

    2013-01-01

    Reactive ion etching was used to fabricate black-Si over the entire surface area of 4-inch Si wafers. After 20 min of the plasma treatment, surface reflection well below 2% was achieved over the 300-1000 nm spectral range. The spikes of the black-Si substrates were coated by gold, resulting in an island film for surface-enhanced Raman scattering (SERS) sensing. A detection limit of 1 x 10 -6 M (at count rate > 10 2 s -1 . mW -1 ) was achieved for rhodamine 6G in aqueous solution when drop cast onto a ∝ 100-nm-thick Au coating. The sensitivity increases for thicker coatings. A mixed mobile-on-immobile platform for SERS sensing is introduced by using dog-bone Au nanoparticles on the Au/black-Si substrate. The SERS intensity shows a non-linear dependence on the solid angle (numerical aperture of excitation/collection optics) for a thick gold coating that exhibits a 10 times higher enhancement. This shows promise for augmented sensitivity in SERS applications. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Surface-enhanced Raman scattering sensing on black silicon

    Energy Technology Data Exchange (ETDEWEB)

    Gervinskas, Gediminas; Seniutinas, Gediminas; Hartley, Jennifer S.; Stoddart, Paul R.; Juodkazis, Saulius [Centre for Micro-Photonics and Industrial Research Institute Swinburne, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, VIC (Australia); The Australian National Fabrication Facility-ANFF, Victoria node, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, VIC (Australia); Kandasamy, Sasikaran [Melbourne Centre for Nanofabrication, Clayton, VIC (Australia); Fahim, Narges F. [Centre for Micro-Photonics and Industrial Research Institute Swinburne, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, VIC (Australia)

    2013-12-15

    Reactive ion etching was used to fabricate black-Si over the entire surface area of 4-inch Si wafers. After 20 min of the plasma treatment, surface reflection well below 2% was achieved over the 300-1000 nm spectral range. The spikes of the black-Si substrates were coated by gold, resulting in an island film for surface-enhanced Raman scattering (SERS) sensing. A detection limit of 1 x 10{sup -6} M (at count rate > 10{sup 2} s{sup -1}. mW{sup -1}) was achieved for rhodamine 6G in aqueous solution when drop cast onto a {proportional_to} 100-nm-thick Au coating. The sensitivity increases for thicker coatings. A mixed mobile-on-immobile platform for SERS sensing is introduced by using dog-bone Au nanoparticles on the Au/black-Si substrate. The SERS intensity shows a non-linear dependence on the solid angle (numerical aperture of excitation/collection optics) for a thick gold coating that exhibits a 10 times higher enhancement. This shows promise for augmented sensitivity in SERS applications. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Surface enhanced raman scattering at Ag-Pyridine interface by use of long range surface plasmon

    International Nuclear Information System (INIS)

    Baik, Moon Gu; Ko, Eu; Kwan, Do Kyeong; Lee, Ja Hyung; Chang, Joon Sung

    1990-01-01

    Surface-enhanced Raman scattering (SERS) experiment of pyridine (C 5 H 5 N) has been performed at silverpyridine interface by use of long range surface plasmon (LRSP) which is generated in the Sarid-type attenuated total reflection (ATR) structure consisting of prism, dielectic, metal and dielectic media. Generation of LRSP has been confirmed by observing the propagation of the LRSP. Raman signal of pyridine adsorbed on the silver surface in the above layered structure has been observed and compared with the bulk Raman signal and SERS signal from the chemically adsorbed pyridine. SERS experiment by use of LRSP has not yet reported to the best of our knowledge. (Author)

  3. Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Ho, Ho Pui; Lee, Rebecca K.Y.

    2009-01-01

    We present a study on the surface-enhanced Raman scattering (SERS) properties of Ag nanoparticle island substrates (NIS) and their applications for target oligonucleotide (OND) detection. It has been found that the surface nanostructure of NIS samples can be controlled with a good degree of repro......We present a study on the surface-enhanced Raman scattering (SERS) properties of Ag nanoparticle island substrates (NIS) and their applications for target oligonucleotide (OND) detection. It has been found that the surface nanostructure of NIS samples can be controlled with a good degree...

  4. Analysis of polymer surfaces and thin-film coatings with Raman and surface enhanced Raman scattering

    International Nuclear Information System (INIS)

    McAnally, Gerard David

    2001-01-01

    This thesis investigates the potential of surface-enhanced Raman scattering (SERS) for the analysis and characterisation of polymer surfaces. The Raman and SERS spectra from a PET film are presented. The SERS spectra from the related polyester PBT and from the monomer DMT are identical to PET, showing that only the aromatic signals are enhanced. Evidence from other compounds is presented to show that loss of the carbonyl stretch (1725 cm -1 ) from the spectra is due to a chemical interaction between the silver and surface carbonyl groups. The interaction of other polymer functional groups with silver is discussed. A comparison of Raman and SERS spectra collected from three faces of a single crystal shows the SERS spectra are depolarised. AFM images of the silver films used to obtain SERS are presented. They consist of regular islands of silver, fused together to form a complete film. The stability and reproducibility and of these surfaces is assessed. Band assignments for the SERS spectrum of PET are presented. A new band in the spectrum (1131 cm -1 ) is assigned to a complex vibration using a density functional calculation. Depth profiling through a polymer film on to the silver layer showed the SERS signals arise from the silver surface only. The profiles show the effects of refraction on the beam, and the adverse affect on the depth resolution. Silver films were used to obtain SERS spectra from a 40 nm thin-film coating on PET, without interference from the PET layer. The use of an azo dye probe as a marker to detect the coating is described. Finally, a novel method for the synthesis of a SERS-active vinyl-benzotriazole monomer is reported. The monomer was incorporated into a thin-film coating and the SERS spectrum obtained from the polymer. (author)

  5. Gold Nanoparticles Sliding on Recyclable Nanohoodoos-Engineered for Surface-Enhanced Raman Spectroscopy

    DEFF Research Database (Denmark)

    Wu, Kaiyu; Li, Tao; Schmidt, Michael Stenbæk

    2018-01-01

    Robust, macroscopically uniform, and highly sensitive substrates for surface-enhanced Raman spectroscopy (SERS) are fabricated using wafer-scale block copolymer lithography. The substrate consists of gold nanoparticles that can slide and aggregate on dense and recyclable alumina/silicon nanohoodo...... for obtaining cost-effective, high-quality, and reliable SERS spectra, facilitating a wide and simple use of SERS for both laboratorial and commercial applications...

  6. Utilizing Raman Spectroscopy and Surface-Enhanced Raman Spectroscopy to investigate healthy and cancerous colon samples

    International Nuclear Information System (INIS)

    Barzegar, A.; Rezaei, H.; Malekfar, R.

    2012-01-01

    In this study, spontaneous Raman scattering and surface-enhanced Raman scattering, Surface-Enhanced Raman Spectroscopy spectra have been investigated. The samples which were kept in the formalin solution selected from the human's healthy and cancerous colon tissues. The Surface-Enhanced Raman Spectroscopy spectra were collected by adding colloidal solution contained silver nanoparticles to the top of the samples. The recorded spectra were compared for the spontaneous Raman spectra of healthy and cancerous colon samples. The spontaneous and surface enhanced Raman scattering data were also collected and compared for both healthy and damaged samples.

  7. Electromagnetic theories of surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Ding, Song-Yuan; You, En-Ming; Tian, Zhong-Qun; Moskovits, Martin

    2017-07-07

    Surface-enhanced Raman spectroscopy (SERS) and related spectroscopies are powered primarily by the concentration of the electromagnetic (EM) fields associated with light in or near appropriately nanostructured electrically-conducting materials, most prominently, but not exclusively high-conductivity metals such as silver and gold. This field concentration takes place on account of the excitation of surface-plasmon (SP) resonances in the nanostructured conductor. Optimizing nanostructures for SERS, therefore, implies optimizing the ability of plasmonic nanostructures to concentrate EM optical fields at locations where molecules of interest reside, and to enhance the radiation efficiency of the oscillating dipoles associated with these molecules and nanostructures. This review summarizes the development of theories over the past four decades pertinent to SERS, especially those contributing to our current understanding of SP-related SERS. Special emphasis is given to the salient strategies and theoretical approaches for optimizing nanostructures with hotspots as efficient EM near-field concentrating and far-field radiating substrates for SERS. A simple model is described in terms of which the upper limit of the SERS enhancement can be estimated. Several experimental strategies that may allow one to approach, or possibly exceed this limit, such as cascading the enhancement of the local and radiated EM field by the multiscale EM coupling of hierarchical structures, and generating hotspots by hybridizing an antenna mode with a plasmonic waveguide cavity mode, which would result in an increased local field enhancement, are discussed. Aiming to significantly broaden the application of SERS to other fields, and especially to material science, we consider hybrid structures of plasmonic nanostructures and other material phases and strategies for producing strong local EM fields at desired locations in such hybrid structures. In this vein, we consider some of the numerical

  8. Surface-Enhanced Raman Spectroscopy Based Quantitative Bioassay on Aptamer-Functionalized Nanopillars Using Large-Area Raman Mapping

    DEFF Research Database (Denmark)

    Yang, Jaeyoung; Palla, Mirko; Bosco, Filippo

    2013-01-01

    Surface-enhanced Raman spectroscopy (SERS) has been used in a variety of biological applications due to its high sensitivity and specificity. Here, we report a SERS-based biosensing approach for quantitative detection of biomolecules. A SERS substrate bearing gold-decorated silicon nanopillars......-to-spot variation in conventional SERS quantification. Furthermore, we have developed an analytical model capable of predicting experimental intensity distributions on the substrates for reliable quantification of biomolecules. Lastly, we have calculated the minimum needed area of Raman mapping for efficient...

  9. A surface enhanced Raman scattering spectroscopic study of UO{sub 2}{sup 2+} at trace concentration

    Energy Technology Data Exchange (ETDEWEB)

    Franzen, Carola [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Carstensen, Lale [Technische Univ. Dresden (Germany); Firkala, T. [Helmholtz Institute Freiberg for Resource Technology, Freiberg (Germany); Steudtner, Robin [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology

    2017-06-01

    Techniques for rapid screening of uranium in environmental samples are needed. This study entails the development of Surface-Enhanced Raman scattering (SERS) spectroscopy for analyzing uranium(VI) in aqueous media with improved sensitivity.

  10. Indium nanoparticles for ultraviolet surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Das, Rupali; Soni, R. K.

    2018-05-01

    Ultraviolet Surface-enhanced Raman spectroscopy (UVSERS) has emerged as an efficient molecular spectroscopy technique for ultra-sensitive and ultra-low detection of analyte concentration. The generic SERS substrates based on gold and silver nanostructures have been extensively explored for high local electric field enhancement only in visible-NIR region of the electromagnetic spectrum. The template synthesis of controlled nanoscale size metallic nanostructures supporting localized surface plasmon resonance (LSPR) in the UV region have been recently explored due to their ease of synthesis and potential applications in optoelectronic, catalysis and magnetism. Indium (In0) nanoparticles exhibit active surface plasmon resonance (SPR) in ultraviolet (UV) and deep-ultaviolet (DUV) region with optimal absorption losses. This extended accessibility makes indium a promising material for UV plasmonic, chemical sensing and more recently in UV-SERS. In this work, spherical indium nanoparticles (In NPs) were synthesized by modified polyol reduction method using NaBH4 having local surface plasmon resonance near 280 nm. The as-synthesized spherical In0 nanoparticles were then coated with thin silica shells of thickness ˜ 5nm by a modified Stober method protecting the nanoparticles from agglomeration, direct contact with the probed molecules as well as prevent oxidation of the nanoparticles. Morphological evolution of In0 nanoparticles and SiO2 coating were characterized by transmission electron microscope (TEM). An enhanced near resonant shell-isolated SERS activity from thin film of tryptophan (Tryp) molecules deposited on indium coated substrates under 325nm UV excitation was observed. Finite difference time domain (FDTD) method is employed to comprehend the experimental results and simulate the electric field contours which showed amplified electromagnetic field localized around the nanostructures. The comprehensive analysis indicates that indium is a promising alternate

  11. Mathematical model for biomolecular quantification using surface-enhanced Raman spectroscopy based signal intensity distributions

    DEFF Research Database (Denmark)

    Palla, Mirko; Bosco, Filippo Giacomo; Yang, Jaeyoung

    2015-01-01

    This paper presents the development of a novel statistical method for quantifying trace amounts of biomolecules by surface-enhanced Raman spectroscopy (SERS) using a rigorous, single molecule (SM) theory based mathematical derivation. Our quantification framework could be generalized for planar...

  12. Facile fabrication of microfluidic surface-enhanced Raman scattering devices via lift-up lithography

    Science.gov (United States)

    Wu, Yuanzi; Jiang, Ye; Zheng, Xiaoshan; Jia, Shasha; Zhu, Zhi; Ren, Bin; Ma, Hongwei

    2018-04-01

    We describe a facile and low-cost approach for a flexibly integrated surface-enhanced Raman scattering (SERS) substrate in microfluidic chips. Briefly, a SERS substrate was fabricated by the electrostatic assembling of gold nanoparticles, and shaped into designed patterns by subsequent lift-up soft lithography. The SERS micro-pattern could be further integrated within microfluidic channels conveniently. The resulting microfluidic SERS chip allowed ultrasensitive in situ SERS monitoring from the transparent glass window. With its advantages in simplicity, functionality and cost-effectiveness, this method could be readily expanded into optical microfluidic fabrication for biochemical applications.

  13. Surface enhanced Raman optical activity (SEROA)

    DEFF Research Database (Denmark)

    Abdali, Salim; Blanch, E.W.

    2008-01-01

    Raman optical activity (ROA) directly monitors the stereochemistry of chiral molecules and is now an incisive probe of biomolecular structure. ROA spectra contain a wealth of information on tertiary folding, secondary structure and even the orientation of individual residues in proteins and nucleic...

  14. Role of Raman spectroscopy and surface enhanced Raman spectroscopy in colorectal cancer

    Science.gov (United States)

    Jenkins, Cerys A; Lewis, Paul D; Dunstan, Peter R; Harris, Dean A

    2016-01-01

    Colorectal cancer (CRC) is the fourth most common cancer in the United Kingdom and is the second largest cause of cancer related death in the United Kingdom after lung cancer. Currently in the United Kingdom there is not a diagnostic test that has sufficient differentiation between patients with cancer and those without cancer so the current referral system relies on symptomatic presentation in a primary care setting. Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) are forms of vibrational spectroscopy that offer a non-destructive method to gain molecular information about biological samples. The techniques offer a wide range of applications from in vivo or in vitro diagnostics using endoscopic probes, to the use of micro-spectrometers for analysis of biofluids. The techniques have the potential to detect molecular changes prior to any morphological changes occurring in the tissue and therefore could offer many possibilities to aid the detection of CRC. The purpose of this review is to look at the current state of diagnostic technology in the United Kingdom. The development of Raman spectroscopy and SERS in clinical applications relation for CRC will then be discussed. Finally, future areas of research of Raman/SERS as a clinical tool for the diagnosis of CRC are also discussed. PMID:27190582

  15. Using Raman Spectroscopy and Surface-Enhanced Raman Scattering to Identify Colorants in Art: An Experiment for an Upper-Division Chemistry Laboratory

    Science.gov (United States)

    Mayhew, Hannah E.; Frano, Kristen A.; Svoboda, Shelley A.; Wustholz, Kristin L.

    2015-01-01

    Surface-enhanced Raman scattering (SERS) studies of art represent an attractive way to introduce undergraduate students to concepts in nanoscience, vibrational spectroscopy, and instrumental analysis. Here, we present an undergraduate analytical or physical chemistry laboratory wherein a combination of normal Raman and SERS spectroscopy is used to…

  16. Influences of Au ion radiation on microstructure and surface-enhanced Raman scattering of nanoporous copper

    Science.gov (United States)

    Wang, Jing; Hu, Zhaoyi; Li, Rui; Liu, Xiongjun; Xu, Chuan; Wang, Hui; Wu, Yuan; Fu, Engang; Lu, Zhaoping

    2018-05-01

    In this work, effects of Au ion irradiation on microstructure and surface-enhanced Raman scattering (SERS) performance of nanoporous copper (NPC) were investigated. It is found that the microstructure of NPC could be tailored by the ion irradiation dose, i.e., the pore size decreases while the ligament size significantly coarsens with the increase of the irradiation dose. In addition, the SERS enhancement for rhodamine 6G molecules was improved by Au ions irradiation at an appropriate dose. The underlying mechanism of the increase of SERS enhancement resulted from ion irradiation was discussed. Our findings could provide a new way to tune nanoporosity of nanoporous metals and improve their SERS performance.

  17. Surface-enhanced Raman scattering from metal and transition metal nano-caped arrays

    Science.gov (United States)

    Sun, Huanhuan; Gao, Renxian; Zhu, Aonan; Hua, Zhong; Chen, Lei; Wang, Yaxin; Zhang, Yongjun

    2018-03-01

    The metal and transition metal cap-shaped arrays on polystyrene colloidal particle (PSCP) templates were fabricated to study the surface-enhanced Raman scattering (SERS) effect. We obtained the Ag and Fe complex film by a co-sputtering deposition method. The size of the deposited Fe particle was changed by the sputtering power. We also study the SERS enhancement mechanism by decorating the PATP probe molecule on the different films. The SERS signals increased firstly, and then decreased as the size of Fe particles grows gradually. The finite-difference time domain (FDTD) simulation and experimental Raman results manifest that SERS enhancement was mainly attributed to surface plasma resonance (SPR) between Ag and Ag nanoparticles. The SERS signals of PATP molecule were enhanced to reach a lowest detectable concentration of 10-8 mol/L. The research demonstrates that the SERS substrates with Ag-Fe cap-shaped arrays have a high sensitivity.

  18. Site-specific growth of Au-Pd alloy horns on Au nanorods: A platform for highly sensitive monitoring of catalytic reactions by surface enhancement raman spectroscopy

    KAUST Repository

    Huang, Jianfeng; Zhu, Yihan; Lin, Ming; Wang, Qingxiao; Zhao, Lan; Yang, Yang; Yao, Kexin; Han, Yu

    2013-01-01

    Surface-enhanced Raman scattering (SERS) is a highly sensitive probe for molecular detection. The aim of this study was to develop an efficient platform for investigating the kinetics of catalytic reactions with SERS. To achieve this, we synthesized

  19. Surface-enhanced Raman spectroscopy based on conical holed enhancing substrates

    International Nuclear Information System (INIS)

    Chen, Yao; Chen, Zeng-Ping; Zuo, Qi; Shi, Cai-Xia; Yu, Ru-Qin

    2015-01-01

    In this contribution, surface-enhanced Raman spectroscopy (SERS) based on conical holed glass substrates deposited with silver colloids was reported for the first time. It combines the advantages of both dry SERS assays based on plane films deposited with silver colloids and wet SERS assays utilizing cuvettes or capillary tubes. Compared with plane glass substrates deposited with silver colloids, the conical holed glass substrates deposited with silver colloids exhibited five-to ten-folds of increase in the rate of signal enhancement, due to the internal multiple reflections of both the excitation laser beam and the Raman scattering photons within conical holes. The application of conical holed glass substrates could also yield significantly stronger and more reproducible SERS signals than SERS assays utilizing capillary tubes to sample the mixture of silver colloids and the solution of the analyte of interest. The conical holed glass substrates in combination with the multiplicative effects model for surface-enhanced Raman spectroscopy (MEM SERS ) achieved quite sensitive and precise quantification of 6-mercaptopurine in complex plasma samples with an average relative prediction error of about 4% and a limit of detection of about 0.02 μM using a portable i-Raman 785H spectrometer. It is reasonable to expect that SERS technique based on conical holed enhancing substrates in combination with MEM SERS model can be developed and extended to other application areas such as drug detection, environmental monitoring, and clinic analysis, etc. - Highlights: • A novel conical holed SERS enhancing substrate was designed and manufactured. • The optimal conical holed glass substrates can produce stronger SERS signal. • The novel substrates can overcome the shortcomings of both dry and wet methods. • The novel substrates coupled with MEM SERS can realize quantitative SERS assays

  20. Glucose oxidase probe as a surface-enhanced Raman scattering sensor for glucose.

    Science.gov (United States)

    Qi, Guohua; Wang, Yi; Zhang, Biying; Sun, Dan; Fu, Cuicui; Xu, Weiqing; Xu, Shuping

    2016-10-01

    Glucose oxidase (GOx) possessing a Raman-active chromophore (flavin adenine dinucleotide) is used as a signal reporter for constructing a highly specific "turn off" surface-enhanced Raman scattering (SERS) sensor for glucose. This sensing chip is made by the electrostatic assembly of GOx over silver nanoparticle (Ag NP)-functionalized SERS substrate through a positively charged polyelectrolyte linker under the pH of 6.86. To trace glucose in blood serum, owing to the reduced pH value caused by the production of gluconic acid in the GOx-catalyzed oxidation reaction, the bonding force between GOx and polyelectrolyte weakens, making GOx drop off from the sensing chip. As a result, the SERS intensity of GOx on the chip decreases along with the concentration of glucose. This glucose SERS sensor exhibits excellent selectivity based on the specific GOx/glucose catalysis reaction and high sensitivity to 1.0 μM. The linear sensing range is 2.0-14.0 mM, which also meets the requirement on the working range of the human blood glucose detection. Using GOx as a probe shows superiority over other organic probes because GOx almost has no toxicity to the biological system. This sensing mechanism can be applied for intracellular in vivo SERS monitoring of glucose in the future. Graphical abstract Glucose oxidase is used as a Raman signal reporter for constructing a highly specific glucose surface-enhanced Raman scattering (SERS) sensor.

  1. Surface Plasmons and Surface Enhanced Raman Spectra of Aggregated and Alloyed Gold-Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Y. Fleger

    2009-01-01

    Full Text Available Effects of size, morphology, and composition of gold and silver nanoparticles on surface plasmon resonance (SPR and surface enhanced Raman spectroscopy (SERS are studied with the purpose of optimizing SERS substrates. Various gold and silver films made by evaporation and subsequent annealing give different morphologies and compositions of nanoparticles and thus different position of the SPR peak. SERS measurements of 4-mercaptobenzoic acid obtained from these films reveal that the proximity of the SPR peak to the exciting laser wavelength is not the only factor leading to the highest Raman enhancement. Silver nanoparticles evaporated on top of larger gold nanoparticles show higher SERS than gold-silver alloyed nanoparticles, in spite of the fact that the SPR peak of alloyed nanoparticles is narrower and closer to the excitation wavelength. The highest Raman enhancement was obtained for substrates with a two-peak particle size distribution for excitation wavelengths close to the SPR.

  2. Visible wavelength surface-enhanced Raman spectroscopy from In-InP nanopillars for biomolecule detection

    Science.gov (United States)

    Murdoch, B. J.; Portoles, J. F.; Tardio, S.; Barlow, A. J.; Fletcher, I. W.; Cumpson, P. J.

    2016-12-01

    Visible wavelength surface-enhanced Raman spectroscopy (SERS) has been observed from bovine serum albumin (BSA) using In-InP nanopillars synthesised by Ar gas cluster ion beam sputtering of InP wafers. InP provides a high local refractive index for plasmonic In structures, which increases the wavelength of the In surface plasmon resonance. The Raman scattering signal was determined to be up to 285 times higher for BSA deposited onto In-InP nanopillars when compared with Si wafer substrates. These substrates demonstrate the label-free detection of biomolecules by visible wavelength SERS, without the use of noble metal particles.

  3. Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas

    International Nuclear Information System (INIS)

    Fromm, David P.; Sundaramurthy, Arvind; Kinkhabwala, Anika; Schuck, P. James; Kino, Gordon S.; Moerner, W.E.

    2006-01-01

    Single metallic bowtie nanoantennas provide a controllable environment for surface-enhanced Raman scattering (SERS) of adsorbed molecules. Bowties have experimentally measured electromagnetic enhancements, enabling estimation of chemical enhancement for both the bulk and the few-molecule regime. Strong fluctuations of selected Raman lines imply that a small number of p-mercaptoaniline molecules on a single bowtie show chemical enhancement >10 7 , much larger than previously believed, likely due to charge transfer between the Au surface and the molecule. This chemical sensitivity of SERS has significant implications for ultra-sensitive detection of single molecules

  4. Click chemistry based biomolecular conjugation monitoring using surface-enhanced Raman spectroscopy mapping

    DEFF Research Database (Denmark)

    Palla, Mirko; Kumar, Shiv; Li, Zengmin

    2016-01-01

    We describe here a novel surface-enhanced Raman spectroscopy (SERS) based technique for monitoring the conjugation of small molecules by the well-known click reaction between an alkyne and azido moiety on the partner molecules. The monitoring principle is based on the loss of the characteristic...... alkyne/azide Raman signal with triazole formation in the reaction as a function of time. Since these universal Raman reporter groups are specific for click reactions, this method may facilitate a broad range of applications for monitoring the conjugation efficiency of molecules in diverse areas...

  5. Design of SERS nanoprobes for Raman imaging: materials, critical factors and architectures.

    Science.gov (United States)

    Li, Mingwang; Qiu, Yuanyuan; Fan, Chenchen; Cui, Kai; Zhang, Yongming; Xiao, Zeyu

    2018-05-01

    Raman imaging yields high specificity and sensitivity when compared to other imaging modalities, mainly due to its fingerprint signature. However, intrinsic Raman signals are weak, thus limiting medical applications of Raman imaging. By adsorbing Raman molecules onto specific nanostructures such as noble metals, Raman signals can be significantly enhanced, termed surface-enhanced Raman scattering (SERS). Recent years have witnessed great interest in the development of SERS nanoprobes for Raman imaging. Rationally designed SERS nanoprobes have greatly enhanced Raman signals by several orders of magnitude, thus showing great potential for biomedical applications. In this review we elaborate on recent progress in design strategies with emphasis on material properties, modifying factors, and structural parameters.

  6. Development of a miRNA surface-enhanced Raman scattering assay using benchtop and handheld Raman systems.

    Science.gov (United States)

    Schechinger, Monika; Marks, Haley; Locke, Andrea; Choudhury, Mahua; Cote, Gerard

    2018-01-01

    DNA-functionalized nanoparticles, when paired with surface-enhanced Raman spectroscopy (SERS), can rapidly detect microRNA. However, widespread use of this approach is hindered by drawbacks associated with large and expensive benchtop Raman microscopes. MicroRNA-17 (miRNA-17) has emerged as a potential epigenetic indicator of preeclampsia, a condition that occurs during pregnancy. Biomarker detection using an SERS point-of-care device could enable prompt diagnosis and prevention as early as the first trimester. Recently, strides have been made in developing portable Raman systems for field applications. An SERS assay for miRNA-17 was assessed and translated from traditional benchtop Raman microscopes to a handheld system. Three different photoactive molecules were compared as potential Raman reporter molecules: a chromophore, malachite green isothiocyanate (MGITC), a fluorophore, tetramethylrhodamine isothiocyanate, and a polarizable small molecule 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB). For the benchtop Raman microscope, the DTNB-labeled assay yielded the greatest sensitivity under 532-nm laser excitation, but the MGITC-labeled assay prevailed at 785 nm. Conversely, DTNB was preferable for the miniaturized 785-nm Raman system. This comparison showed significant SERS enhancement variation in response to 1-nM miRNA-17, implying that the sensitivity of the assay may be more heavily dependent on the excitation wavelength, instrumentation, and Raman reporter chosen than on the plasmonic coupling from DNA/miRNA-mediated nanoparticle assemblies. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  7. Development of a miRNA surface-enhanced Raman scattering assay using benchtop and handheld Raman systems

    Science.gov (United States)

    Schechinger, Monika; Marks, Haley; Locke, Andrea; Choudhury, Mahua; Cote, Gerard

    2018-01-01

    DNA-functionalized nanoparticles, when paired with surface-enhanced Raman spectroscopy (SERS), can rapidly detect microRNA. However, widespread use of this approach is hindered by drawbacks associated with large and expensive benchtop Raman microscopes. MicroRNA-17 (miRNA-17) has emerged as a potential epigenetic indicator of preeclampsia, a condition that occurs during pregnancy. Biomarker detection using an SERS point-of-care device could enable prompt diagnosis and prevention as early as the first trimester. Recently, strides have been made in developing portable Raman systems for field applications. An SERS assay for miRNA-17 was assessed and translated from traditional benchtop Raman microscopes to a handheld system. Three different photoactive molecules were compared as potential Raman reporter molecules: a chromophore, malachite green isothiocyanate (MGITC), a fluorophore, tetramethylrhodamine isothiocyanate, and a polarizable small molecule 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB). For the benchtop Raman microscope, the DTNB-labeled assay yielded the greatest sensitivity under 532-nm laser excitation, but the MGITC-labeled assay prevailed at 785 nm. Conversely, DTNB was preferable for the miniaturized 785-nm Raman system. This comparison showed significant SERS enhancement variation in response to 1-nM miRNA-17, implying that the sensitivity of the assay may be more heavily dependent on the excitation wavelength, instrumentation, and Raman reporter chosen than on the plasmonic coupling from DNA/miRNA-mediated nanoparticle assemblies.

  8. Plasmonic nanopillar structures for surface-enhanced raman scattering applications

    DEFF Research Database (Denmark)

    Rindzevicius, Tomas; Schmidt, Michael Stenbæk; Wu, Kaiyu

    2016-01-01

    have been utilized in surfaceenhanced Raman spectroscopy (SERS) for biological and chemical sensing. We present Au nanopillar (NP) SERS structures that are excellent for molecular detection. The NP structures can be fabricated using a simple two-step process. We analyze NP optical properties...

  9. Surface-enhanced raman spectroscopy substrate for arsenic sensing in groundwater

    Science.gov (United States)

    Yang, Peidong; Mulvihill, Martin; Tao, Andrea R.; Sinsermsuksakul, Prasert; Arnold, John

    2015-06-16

    A surface-enhanced Raman spectroscopy (SERS) substrate formed from a plurality of monolayers of polyhedral silver nanocrystals, wherein at least one of the monolayers has polyvinypyrrolidone (PVP) on its surface, and thereby configured for sensing arsenic is described. Highly active SERS substrates are formed by assembling high density monolayers of differently shaped silver nanocrystals onto a solid support. SERS detection is performed directly on this substrate by placing a droplet of the analyte solution onto the nanocrystal monolayer. Adsorbed polymer, polyvinypyrrolidone (PVP), on the surface of the nanoparticles facilitates the binding of both arsenate and arsenite near the silver surface, allowing for highly accurate and sensitive detection capabilities.

  10. Multiple layered metallic nanostructures for strong surface-enhanced Raman spectroscopy enhancement

    International Nuclear Information System (INIS)

    Xia, Ming; Xie, Ya-Hong; Qiao Kuan; Cheng Zhiyuan

    2016-01-01

    We report a systematic study on a practical way of patterning metallic nanostructures to achieve high surface-enhanced Raman spectroscopy (SERS) enhancement factors (EFs) and high hot-spot density. By simply superimposing a 1-layer Au nanotriangle array on another to form a multilayer nanotriangle array, the SERS signal can be enhanced by 2 orders of magnitude compared with a 1-layer nanotriangle array. The drastic increases in the SERS EF and the hot spot density of the multilayer Au nanotriangle array are due to the increase in the number of gaps formed between Au nanotriangles and the decrease of the gap width. (author)

  11. Surface-Enhanced Raman Scattering Sensor on an Optical Fiber Probe Fabricated with a Femtosecond Laser

    OpenAIRE

    Ma, Xiaodong; Huo, Haibin; Wang, Wenhui; Tian, Ye; Wu, Nan; Guthy, Charles; Shen, Mengyan; Wang, Xingwei

    2010-01-01

    A novel fabrication method for surface-enhanced Raman scattering (SERS) sensors that used a fast femtosecond (fs) laser scanning process to etch uniform patterns and structures on the endface of a fused silica optical fiber, which is then coated with a thin layer of silver through thermal evaporation is presented. A high quality SERS signal was detected on the patterned surface using a Rhodamine 6G (Rh6G) solution. The uniform SERS sensor built on the tip of the optical fiber tip was small, l...

  12. Selectivity/Specificity Improvement Strategies in Surface-Enhanced Raman Spectroscopy Analysis

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2017-11-01

    Full Text Available Surface-enhanced Raman spectroscopy (SERS is a powerful technique for the discrimination, identification, and potential quantification of certain compounds/organisms. However, its real application is challenging due to the multiple interference from the complicated detection matrix. Therefore, selective/specific detection is crucial for the real application of SERS technique. We summarize in this review five selective/specific detection techniques (chemical reaction, antibody, aptamer, molecularly imprinted polymers and microfluidics, which can be applied for the rapid and reliable selective/specific detection when coupled with SERS technique.

  13. Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates.

    Science.gov (United States)

    Choi, Suhee; Ahn, Miri; Kim, Jongwon

    2013-05-24

    The fabrication of effective surface-enhanced Raman scattering (SERS) substrates has been the subject of intensive research because of their useful applications. In this paper, dendritic gold (Au) rod (DAR) structures prepared by simple one-step electrodeposition in a short time were examined as an effective SERS-active substrate. The SERS activity of the DAR surfaces was compared to that of other nanostructured Au surfaces with different morphologies, and its dependence on the structural variation of DAR structures was examined. These comparisonal investigations revealed that highly faceted sharp edge sites present on the DAR surfaces play a critical role in inducing a high SERS activity. The SERS enhancement factor was estimated to be greater than 10(5), and the detection limit of rhodamine 6G at DAR surfaces was 10(-8)M. The DAR surfaces exhibit excellent spot-to-spot and substrate-to-substrate SERS enhancement reproducibility, and their long-term stability is very good. It was also demonstrated that the DAR surfaces can be effectively utilized in electrochemical SERS systems, wherein a reversible SERS behavior was obtained during the cycling to cathodic potential regions. Considering the straightforward preparation of DAR substrates and the clean nature of SERS-active Au surfaces prepared in the absence of additives, we expect that DAR surfaces can be used as cost-effective SERS substrates in analytical and electrochemical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Optimal Hotspots of Dynamic Surfaced-Enhanced Raman Spectroscopy for Drugs Quantitative Detection.

    Science.gov (United States)

    Yan, Xiunan; Li, Pan; Zhou, Binbin; Tang, Xianghu; Li, Xiaoyun; Weng, Shizhuang; Yang, Liangbao; Liu, Jinhuai

    2017-05-02

    Surface-enhanced Raman spectroscopy (SERS) as a powerful qualitative analysis method has been widely applied in many fields. However, SERS for quantitative analysis still suffers from several challenges partially because of the absence of stable and credible analytical strategy. Here, we demonstrate that the optimal hotspots created from dynamic surfaced-enhanced Raman spectroscopy (D-SERS) can be used for quantitative SERS measurements. In situ small-angle X-ray scattering was carried out to in situ real-time monitor the formation of the optimal hotspots, where the optimal hotspots with the most efficient hotspots were generated during the monodisperse Au-sol evaporating process. Importantly, the natural evaporation of Au-sol avoids the nanoparticles instability of salt-induced, and formation of ordered three-dimensional hotspots allows SERS detection with excellent reproducibility. Considering SERS signal variability in the D-SERS process, 4-mercaptopyridine (4-mpy) acted as internal standard to validly correct and improve stability as well as reduce fluctuation of signals. The strongest SERS spectra at the optimal hotspots of D-SERS have been extracted to statistics analysis. By using the SERS signal of 4-mpy as a stable internal calibration standard, the relative SERS intensity of target molecules demonstrated a linear response versus the negative logarithm of concentrations at the point of strongest SERS signals, which illustrates the great potential for quantitative analysis. The public drugs 3,4-methylenedioxymethamphetamine and α-methyltryptamine hydrochloride obtained precise analysis with internal standard D-SERS strategy. As a consequence, one has reason to believe our approach is promising to challenge quantitative problems in conventional SERS analysis.

  15. Detection of bacterial metabolites through dynamic acquisition from surface enhanced raman spectroscopy substrates integtrated in a centrifugal microfluidic platform

    DEFF Research Database (Denmark)

    Durucan, Onur; Morelli, Lidia; Schmidt, Michael Stenbæk

    2015-01-01

    In this work we present a novel technology that combines the advantages of centrifugal microfluidics with dynamic in-situ Surface Enhanced Raman Spectroscopy (SERS) sensing. Our technology is based on an automated readout system that allows on-line SERS acquisition on a rotating centrifugal...

  16. Surface-Enhanced Raman Scattering Using Silica Whispering-Gallery Mode Resonators

    Science.gov (United States)

    Anderson, Mark S.

    2013-01-01

    The motivation of this work was to have robust spectroscopic sensors for sensitive detection and chemical analysis of organic and molecular compounds. The solution is to use silica sphere optical resonators to provide surface-enhanced spectroscopic signal. Whispering-gallery mode (WGM) resonators made from silica microspheres were used for surface-enhanced Raman scattering (SERS) without coupling to a plasmonic mechanism. Large Raman signal enhancement is observed by exclusively using 5.08-micron silica spheres with 785-nm laser excitation. The advantage of this non-plasmonic approach is that the active substrate is chemically inert silica, thermally stable, and relatively simple to fabricate. The Raman signal enhancement is broadly applicable to a wide range of molecular functional groups including aliphatic hydrocarbons, siloxanes, and esters. Applications include trace organic analysis, particularly for in situ planetary instruments that require robust sensors with consistent response.

  17. Geometry of GLP on silver surface by surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Bao, PeiDi; Bao, Lang; Huang, TianQuan; Liu, XinMing; Wu, GuoFeng

    2000-05-01

    Leptospirosis is one of the most harmful zoonosis, it is a serious public health issue in some area of Sichuan province. Surface-Enhance Raman Scattering (SERS) Spectroscopy is an effective approach for the study of biomolecular adsorption on metal surface and provides information about the adsorbed species. Two samples of Leptospiral Glycolipoprotein (GLP-1) and GLP-2 which have different toxic effects have been obtained and investigated.

  18. Surface-enhanced Raman scattering on gold nanorod pairs with interconnection bars of different widths

    KAUST Repository

    Yue, Weisheng

    2012-08-01

    We demonstrate that surface-enhanced Raman scattering (SERS) enhancement could be tuned by adjusting the width of a connection bar at the bottom of a gold nanorod pair. Arrays of gold nanorod pairs with interconnection bars of different widths at the bottom of the interspace were fabricated by electron-beam lithography and used for the SERS study. Rhodamine 6G (R6G) was used as the probe molecule for the SERS. In addition to the large SERS enhancement observed in the nanostructured substrates, the SERS enhancement increases as the width of the connection bar increases. This result provides an important method for tuning SERS enhancement. Numerical simulations of electromagnetic properties on the nanostructures were performed with CST Microwave Studio, and the results correspond well with the experimental observations. © 2012 Elsevier B.V. All rights reserved.

  19. Controlled Clustering of Gold Nanoparticles using Solid-support for Surface-enhanced Raman Spectroscopic Probes

    International Nuclear Information System (INIS)

    Chang, Hyejin; Chae, Jinjoo; Jeong, Hong; Kang, Homan; Lee, Yoonsik

    2014-01-01

    We fabricated small clusters of gold nanoparticles by using solid-supported aggregation of gold nanoparticles. The fabricated Au nanoclusters consisting mainly of dimers showed homogeneous characteristics in cluster size and SERS intensity. The SERS enhancement of 4-ABT molecules in an effective area within 2-nm gap appeared to be approximately 10. Detachment process by ultrasonication was successively carried out in order to use the nanoclusters as SERS probes. The possibility of these clusters as SERS probe was proved in terms of signal and cluster size. Single molecule-level sensitivity of surface-enhanced Raman scattering (SERS) was known approximately fifteen years ago. Ever since there have been many different applications benefiting from the ultra-high sensitivity such as single molecule detection, chemical sensing and bio-molecular probes. Especially, SERS has drawn much attention in bio-multiplexing probes owing to its unique optical characteristics claiming extremely narrow bandwidth, high sensitivity of light signals, and non-bleaching feature

  20. Controlled Clustering of Gold Nanoparticles using Solid-support for Surface-enhanced Raman Spectroscopic Probes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hyejin; Chae, Jinjoo; Jeong, Hong [Department of Chemistry Education, Seoul (Korea, Republic of); Kang, Homan; Lee, Yoonsik [Interdisciplinary Program in Nano-Science and Technology, Pohang (Korea, Republic of)

    2014-03-15

    We fabricated small clusters of gold nanoparticles by using solid-supported aggregation of gold nanoparticles. The fabricated Au nanoclusters consisting mainly of dimers showed homogeneous characteristics in cluster size and SERS intensity. The SERS enhancement of 4-ABT molecules in an effective area within 2-nm gap appeared to be approximately 10. Detachment process by ultrasonication was successively carried out in order to use the nanoclusters as SERS probes. The possibility of these clusters as SERS probe was proved in terms of signal and cluster size. Single molecule-level sensitivity of surface-enhanced Raman scattering (SERS) was known approximately fifteen years ago. Ever since there have been many different applications benefiting from the ultra-high sensitivity such as single molecule detection, chemical sensing and bio-molecular probes. Especially, SERS has drawn much attention in bio-multiplexing probes owing to its unique optical characteristics claiming extremely narrow bandwidth, high sensitivity of light signals, and non-bleaching feature.

  1. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Science.gov (United States)

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2014-07-22

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  2. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Science.gov (United States)

    Bond, Tiziana C; Miles, Robin; Davidson, James; Liu, Gang Logan

    2015-11-03

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  3. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Science.gov (United States)

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2015-07-14

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  4. Quick Detection of Contaminants Leaching from Polypropylene Centrifuge Tube with Surface Enhanced Raman Spectroscopy and Ultra Violet Absorption Spectroscopy

    OpenAIRE

    Xu, Zhida; Liu, Logan

    2014-01-01

    Anomalous surface enhanced Raman scattering (SERS) peaks are identified for liquid sample stored in polypropylene centrifuge tubes (PP tube) for months. We observed the unexpected Raman peaks during experiments for Thiamine Hydrochloride aqueous solution stored in PP tube for two months. In order to identify the contaminants we have performed SERS experiments for de-ionized water (DI water) stored in polypropylene centrifuge tube for two months and compared them with fresh DI water sample. We...

  5. Fiber-optic surface-enhanced Raman system for field screening of hazardous compounds

    International Nuclear Information System (INIS)

    Ferrell, T.L.; Goudonnet, J.P.; Arakawa, E.T.; Reddick, R.C.; Gammage, R.B.; Haas, J.W.; James, D.R.; Wachter, E.A.

    1988-01-01

    Surface-enhanced Raman scattering permits identification of compounds adsorbed onto a metal microbase that is microlithographically produced with submicron resolution. Less than one percent of a monolayer of a Raman Active target compound offers a high signal-to-noise ratio. By depositing the microbase on the exterior of a fiber optic cable, convenient field screening or monitoring is permitted. By using highly effective microbases, it is possible to reduce laser power requirements sufficiently to allow an economical, but complete, system to be housed in a suitcase. We shall present details of SERS system of this type and shall show data on samples of interest in the screening of hazardous compounds

  6. Surface-Enhanced Raman Spectroscopy of Carbon Nanomembranes from Aromatic Self-Assembled Monolayers.

    Science.gov (United States)

    Zhang, Xianghui; Mainka, Marcel; Paneff, Florian; Hachmeister, Henning; Beyer, André; Gölzhäuser, Armin; Huser, Thomas

    2018-02-27

    Surface-enhanced Raman scattering spectroscopy (SERS) was employed to investigate the formation of self-assembled monolayers (SAMs) of biphenylthiol, 4'-nitro-1,1'-biphenyl-4-thiol, and p-terphenylthiol on Au surfaces and their structural transformations into carbon nanomembranes (CNMs) induced by electron irradiation. The high sensitivity of SERS allows us to identify two types of Raman scattering in electron-irradiated SAMs: (1) Raman-active sites exhibit similar bands as those of pristine SAMs in the fingerprint spectral region, but with indications of an amorphization process and (2) Raman-inactive sites show almost no Raman-scattering signals, except a very weak and broad D band, indicating a lack of structural order but for the presence of graphitic domains. Statistical analysis showed that the ratio of the number of Raman-active sites to the total number of measurement sites decreases exponentially with increasing the electron irradiation dose. The maximum degree of cross-linking ranged from 97 to 99% for the three SAMs. Proof-of-concept experiments were conducted to demonstrate potential applications of Raman-inactive CNMs as a supporting membrane for Raman analysis.

  7. Surface Enhanced Raman Scattering for Quantification of p-Coumaric Acid Produced by Escherichia coli

    DEFF Research Database (Denmark)

    Morelli, Lidia; Zor, Kinga; Jendresen, Christian Bille

    2017-01-01

    The number of newly developed genetic variants of microbial cell factories for production of biochemicals has been rapidly growing in recent years, leading to an increased need for new screening techniques. We developed a method based on surface-enhanced Raman scattering (SERS) coupled with liquid......-liquid extraction (LLE) for quantification of p-coumaric acid (pHCA) in the supernatant of genetically engineered Escherichia coli (E. coli) cultures. pHCA was measured in a dynamic range from 1 μM up to 50 μM on highly uniform SERS substrates based on leaning gold-capped nanopillars, which showed an in...

  8. Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering

    KAUST Repository

    Yue, Weisheng

    2012-10-26

    The fabrication of nanostructured substrates with precisely controlled geometries and arrangements plays an important role in studies of surface-enhanced Raman scattering (SERS). Here, we present two processes based on electron-beam lithography to fabricate gold nanostructures for SERS. One process involves making use of metal lift-off and the other involves the use of the plasma etching. These two processes allow the successful fabrication of gold nanostructures with various kinds of geometrical shapes and different periodic arrangements. 4-mercaptopyridine (4-MPy) and Rhodamine 6G (R6G) molecules are used to probe SERS signals on the nanostructures. The SERS investigations on the nanostructured substrates demonstrate that the gold nanostructured substrates have resulted in large SERS enhancement, which is highly dependent on the geometrical shapes and arrangements of the gold nanostructures. © 2012 IOP Publishing Ltd.

  9. Improved surface-enhanced Raman scattering on arrays of gold quasi-3D nanoholes

    KAUST Repository

    Yue, Weisheng

    2012-10-04

    Arrays of gold quasi-3D nanoholes were proposed and fabricated as substrates for surface-enhanced Raman scattering (SERS). By detecting rhodamine 6G (R6G) molecules, the gold quasi-3D nanoholes demonstrated an SERS intensity that was 25-62 times higher than that of two-dimensional nanoholes with the same geometrical shapes and periodicities. The larger SERS enhancement of the quasi-3D nanoholes is attributed to the enhanced electromagnetic field on the top-layer nanohole, the bottom nanodiscs and the field coupling between the two layers. In addition, the investigation of the shape dependence of the SERS on the quasi-3D nanoholes demonstrated that the quadratic, circular, triangular and rhombic holes exhibited different SERS properties. Numerical simulations of the electromagnetic properties on the nanostructures were performed with CST Microwave Studio, and the results agree with the experimental observations. © 2012 IOP Publishing Ltd.

  10. Polarization Dependence of Surface Enhanced Raman Scattering on a Single Dielectric Nanowire

    Directory of Open Access Journals (Sweden)

    Hua Qi

    2012-01-01

    Full Text Available Our measurements of surface enhanced Raman scattering (SERS on Ga2O3 dielectric nanowires (NWs core/silver composites indicate that the SERS enhancement is highly dependent on the polarization direction of the incident laser light. The polarization dependence of the SERS signal with respect to the direction of a single NW was studied by changing the incident light angle. Further investigations demonstrate that the SERS intensity is not only dependent on the direction and wavelength of the incident light, but also on the species of the SERS active molecule. The largest signals were observed on an NW when the incident 514.5 nm light was polarized perpendicular to the length of the NW, while the opposite phenomenon was observed at the wavelength of 785 nm. Our theoretical simulations of the polarization dependence at 514.5 nm and 785 nm are in good agreement with the experimental results.

  11. Hollow-Core Photonic Crystal Fibers for Surface-Enhanced Raman Scattering Probes

    Directory of Open Access Journals (Sweden)

    Xuan Yang

    2011-01-01

    Full Text Available Photonic crystal fiber (PCF sensors based on surface-enhanced Raman scattering (SERS have become increasingly attractive in chemical and biological detections due to the molecular specificity, high sensitivity, and flexibility. In this paper, we review the development of PCF SERS sensors with emphasis on our recent work on SERS sensors utilizing hollow-core photonic crystal fibers (HCPCFs. Specifically, we discuss and compare various HCPCF SERS sensors, including the liquid-filled HCPCF and liquid-core photonic crystal fibers (LCPCFs. We experimentally demonstrate and theoretically analyze the high sensitivity of the HCPCF SERS sensors. Various molecules including Rhodamine B, Rhodamine 6G, human insulin, and tryptophan have been tested to show the excellent performance of these fiber sensors.

  12. Laser writing of single-crystalline gold substrates for surface enhanced Raman spectroscopy

    Science.gov (United States)

    Singh, Astha; Sharma, Geeta; Ranjan, Neeraj; Mittholiya, Kshitij; Bhatnagar, Anuj; Singh, B. P.; Mathur, Deepak; Vasa, Parinda

    2017-07-01

    Surface enhanced Raman scattering (SERS) spectroscopy, a powerful contemporary tool for studying low-concentration analytes via surface plasmon induced enhancement of local electric field, is of utility in biochemistry, material science, threat detection, and environmental studies. We have developed a simple, fast, scalable, and relatively low-cost optical method of fabricating and characterizing large-area, reusable and broadband SERS substrates with long storage lifetime. We use tightly focused, intense infra-red laser pulses to write gratings on single-crystalline, Au (1 1 1) gold films on mica which act as SERS substrates. Our single-crystalline SERS substrates compare favourably, in terms of surface quality and roughness, to those fabricated in poly-crystalline Au films. Tests show that our SERS substrates have the potential of detecting urea and 1,10-phenantroline adulterants in milk and water, respectively, at 0.01 ppm (or lower) concentrations.

  13. Multi-metal, Multi-wavelength Surface-Enhanced Raman Spectroscopy Detection of Neurotransmitters.

    Science.gov (United States)

    Moody, Amber S; Sharma, Bhavya

    2018-04-05

    The development of a sensor for the rapid and sensitive detection of neurotransmitters could provide a pathway for the diagnosis of neurological diseases, leading to the discovery of more effective treatment methods. We investigate the use of surface enhanced Raman spectroscopy (SERS) based sensors for the rapid detection of melatonin, serotonin, glutamate, dopamine, GABA, norepinephrine, and epinephrine. Previous studies have demonstrated SERS detection of neurotransmitters; however, there has been no comprehensive study on the effect of the metal used as the SERS substrate or the excitation wavelength used for detection. Here, we present the detection of 7 neurotransmitters using both silver and gold nanoparticles at excitation wavelengths of 532, 633, and 785 nm. Over the range of wavelengths investigated, the SERS enhancement on the silver and gold nanoparticles varies, with an average enhancement factor of 10 5 -10 6 . The maximum SERS enhancement occurs at an excitation wavelength of 785 nm for the gold nanoparticles and at 633 nm for the silver nanoparticles.

  14. Silver-coated Si nanograss as highly sensitive surface-enhanced Raman spectroscopy substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jing; Kuo, Huei Pei; Hu, Min; Li, Zhiyong; Williams, R.S. [Hewlett-Packard Laboratories, Information and Quantum Systems Laboratory, Palo Alto, CA (United States); Ou, Fung Suong [Hewlett-Packard Laboratories, Information and Quantum Systems Laboratory, Palo Alto, CA (United States); Rice University, Department of Applied Physics, Houston, TX (United States); Stickle, William F. [Hewlett-Packard Company, Advanced Diagnostic Lab, Corvallis, OR (United States)

    2009-09-15

    We created novel surface-enhanced Raman spectroscopy (SERS) substrates by metalization (Ag) of Si nanograss prepared by a Bosch process which involves deep reactive ion etching of single crystalline silicon. No template or lithography was needed for making the Si nanograss, thus providing a simple and inexpensive method to achieve highly sensitive large-area SERS substrates. The dependence of the SERS effect on the thickness of the metal deposition and on the surface morphology and topology of the substrate prior to metal deposition was studied in order to optimize the SERS signals. We observed that the Ag-coated Si nanograss can achieve uniform SERS enhancement over large area ({proportional_to}1 cm x 1 cm) with an average EF (enhancement factor) of 4.2 x 10{sup 8} for 4-mercaptophenol probe molecules. (orig.)

  15. Surface-enhanced Raman scattering on periodic metal nanotips with tunable sharpness

    International Nuclear Information System (INIS)

    Linn, Nicholas C; Sun, C-H; Arya, Ajay; Jiang Peng; Jiang Bin

    2009-01-01

    This paper reports on a scalable bottom-up technology for producing periodic gold nanotips with tunable sharpness as surface-enhanced Raman scattering (SERS) substrates. Inverted silicon pyramidal pits, which are templated from non-close-packed colloidal crystals prepared by a spin-coating technology, are used as structural templates to replicate arrays of polymer nanopyramids with nanoscale sharp tips. The deposition of a thin layer of gold on the polymer nanopyramids leads to the formation of SERS-active substrates with a high enhancement factor (up to 10 8 ). The thickness of the deposited metal determines the sharpness of the nanotips and the resulting Raman enhancement factor. Finite-element electromagnetic modeling shows that the nanotips can significantly enhance the local electromagnetic field and the sharpness of nanotips greatly affects the SERS enhancement.

  16. Polytetrafluorethylene-Au as a substrate for surface-enhanced Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Siegel Jakub

    2011-01-01

    Full Text Available Abstract This study deals with preparation of substrates suitable for surface-enhanced Raman spectroscopy (SERS applications by sputtering deposition of gold layer on the polytetrafluorethylene (PTFE foil. Time of sputtering was investigated with respect to the surface properties. The ability of PTFE-Au substrates to enhance Raman signals was investigated by immobilization of biphenyl-4,4'-dithiol (BFD from the solutions with various concentrations. BFD was also used for preparation of sandwich structures with Au or Ag nanoparticles by two different procedures. Results showed that PTFE can be used for fabrication of SERS active substrate with easy handle properties at low cost. This substrate was sufficient for the measurement of SERS spectrum of BFD even at 10-8 mol/l concentration.

  17. Two-Dimensional Titanium Carbide (MXene) as Surface-Enhanced Raman Scattering Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sarycheva, Asia [Drexel Univ., Philadelphia, PA (United States); Makaryan, Taron [Drexel Univ., Philadelphia, PA (United States); Maleski, Kathleen [Drexel Univ., Philadelphia, PA (United States); Satheeshkumar, Elumalai [National Cheng Kung Univ., Tainan (Taiwan); National Institute of Technology-Trichy, Tamil Nadu (India); Melikyan, Armen [Russian-Armenian (Slavonic) State Univ., Yerevan (Armenia); Minassian, Hayk [A. Alikhanian National Science Lab., Yerevan (Armenia); Yoshimura, Masahiro [National Cheng Kung Univ., Tainan (Taiwan); Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States)

    2017-08-22

    Here, noble metal (gold or silver) nanoparticles or patterned films are typically used as substrates for surface-enhanced Raman spectroscopy (SERS). Two-dimensional (2D) carbides and nitrides (MXenes) exhibit unique electronic and optical properties, including metallic conductivity and plasmon resonance in the visible or near-infrared range, making them promising candidates for a wide variety of applications. Herein, we show that 2D titanium carbide, Ti3C2Tx, enhances Raman signal from organic dyes on a substrate and in solution. As a proof of concept, MXene SERS substrates were manufactured by spray-coating and used to detect several common dyes, with calculated enhancement factors reaching ~106. Titanium carbide MXene demonstrates SERS effect in aqueous colloidal solutions, suggesting the potential for biomedical or environmental applications, where MXene can selectively enhance positively charged molecules.

  18. Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse

    Science.gov (United States)

    Zhang, Wending; Li, Cheng; Gao, Kun; Lu, Fanfan; Liu, Min; Li, Xin; Zhang, Lu; Mao, Dong; Gao, Feng; Huang, Ligang; Mei, Ting; Zhao, Jianlin

    2018-05-01

    Au-nanoparticle (Au-NP) substrates for surface-enhanced Raman spectroscopy (SERS) were fabricated by grid-like scanning a Au-film using a femtosecond pulse. The Au-NPs were directly deposited on the Au-film surface due to the scanning process. The experimentally obtained Au-NPs presented local surface plasmon resonance effect in the visible spectral range, as verified by finite difference time domain simulations and measured reflection spectrum. The SERS experiment using the Au-NP substrates exhibited high activity and excellent substrate reproducibility and stability, and a clearly present Raman spectra of target analytes, e.g. Rhodamine-6G, Rhodamine-B and Malachite green, with concentrations down to 10‑9 M. This work presents an effective approach to producing Au-NP SERS substrates with advantages in activity, reproducibility and stability, which could be used in a wide variety of practical applications for trace amount detection.

  19. Detection of mast cell secretion by using surface enhanced Raman scattering

    Science.gov (United States)

    Li, Juan; Li, Ren; Zheng, Liqin; Wang, Yuhua; Xie, Shusen; Lin, Juqiang

    2016-10-01

    Acupuncture can cause a remarkable increase in degranulation of the mast cells, which has attracted the interest of researchers since the 1980s. Surface-enhanced Raman scattering (SERS) could obtain biochemical information with high sensitivity and specificity. In this study, SERS was used to detect the degree of degranulation of mast cells according to different incubate time. Mast cells was incubated with culture medium for 0 h, 12 h and 24 h, then centrifuge the culture medium, decant the supernatant, and discard the mast cell. SERS was performed to obtain the biochemical fingerprinting signatures of the centrifuged medium. The spectra data are then analyzed by spectral peaks attribution and the principal component analysis (PCA). The measured Raman spectra of the two groups were separated well by PCA. It indicated that mast cells had secreted some substances into cultured medium though degranulation did not happen.

  20. Surface-enhanced Raman effect in hybrid metal–semiconductor nanoparticle assemblies

    International Nuclear Information System (INIS)

    Lughi, Vanni; Bonifacio, Alois; Barbone, Matteo; Marsich, Lucia; Sergo, Valter

    2013-01-01

    Hybrid metal–semiconductor nanoparticles consisting of silver nanoparticle cores (AgNPs) coated with a layer of CdSe quantum dots (QDs) have been studied by Raman spectroscopy. The hybrid nanoparticles were prepared via electrostatic interaction by mixing aqueous suspensions of QDs and AgNPs, where opposite charges on the AgNPs and QDs surfaces were induced by opportunely selected capping agents. Assemblies of such hybrid nanoparticles show an increased intensity of the Raman spectrum of up to 500 times, when compared to that of the sole QDs. This enhancement is attributed to the SERS effect (Surface-enhanced Raman scattering). Such enhancement of the Raman modes suggests several opportunities for further research, both in imaging and sensing applications.

  1. Chloride ion-dependent surface-enhanced Raman scattering study of biotin on the silver surface

    International Nuclear Information System (INIS)

    Liu Fangfang; Gu Huaimin; Yuan Xiaojuan; Dong Xiao; Lin Yue

    2011-01-01

    In the present paper, the surface enhanced Raman scattering (SERS) technique was employed to study the SERS spectra of biotin molecules formed on the silver surface. The adsorption geometries of biotin molecules on the silver surface were analyzed based on the SERS data. It can be found that most vibration modes show a Raman shift in silver sol after the addition of sodium chloride solution. In addition, The Raman signals of biotin become weaker and weaker with the increase of the concentration of sodium chloride. This may be due to that the interaction between chloride ions and silver particles is stronger than the interaction between biotin molecules and silver particles. When the concentration of sodium chloride in silver colloid is higher than 0.05mol/L, superfluous chloride ions may form an absorption layer so that biotin can not be adsorbed on silver surface directly. The changes in intensity and profile shape in the SERS spectra suggest different adsorption behavior and surface-coverage of biotin on silver surface. The SERS spectra of biotin suggest that the contribution of the charge transfer mechanism to SERS may be dominant.

  2. Normal Raman and SERS spectroscopy of the vitamin E

    International Nuclear Information System (INIS)

    Cai Tiantian; Gu Huaimin; Yuan Xiaojuan; Liu Fangfang

    2011-01-01

    In this study, surface-enhanced Raman scattering(SERS)spectra of vitamin E were obtained on colloidal silver(Ag). Alpha-(-) tocopherol which is the only form that is recognized to meet human requirements was selected to study. The analytes (±)- -tocopherol were dissolved in chloroform (CHCl 3 ) and the silver colloid was poured into the compound. Silver colloid was reduced by hydroxylamine hydrochloride. The analytes were the supernatant after standing the mixture for the reason that chloroform have no signals in surface-enhanced Raman scattering in the Ag colloid, and it would not affect the determination of the (±)- -tocopherol. The Normal Raman and SERS spectrum of Vitamin E were contrastively studied to realize how the vitamin E stuck to the silver nanoparticles. The results show the fat-soluble substances can be analysed by SERS. The spectra indicate that the molecules are adsorbed on the surface through the COO- groups by the simultaneous involvement of a and -type coordination. These results suggest some important criteria for consideration in SERS measurements and also provide important insights into the problem of predicting SERS activities for different fat-soluble substances.

  3. Normal Raman and SERS spectroscopy of the vitamin E

    Energy Technology Data Exchange (ETDEWEB)

    Cai Tiantian; Gu Huaimin; Yuan Xiaojuan; Liu Fangfang, E-mail: guhm@scnu.edu.cn [MOE Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, 510631, Guangzhou (China)

    2011-01-01

    In this study, surface-enhanced Raman scattering(SERS)spectra of vitamin E were obtained on colloidal silver(Ag). Alpha-(-) tocopherol which is the only form that is recognized to meet human requirements was selected to study. The analytes ({+-})- -tocopherol were dissolved in chloroform (CHCl{sub 3}) and the silver colloid was poured into the compound. Silver colloid was reduced by hydroxylamine hydrochloride. The analytes were the supernatant after standing the mixture for the reason that chloroform have no signals in surface-enhanced Raman scattering in the Ag colloid, and it would not affect the determination of the ({+-})- -tocopherol. The Normal Raman and SERS spectrum of Vitamin E were contrastively studied to realize how the vitamin E stuck to the silver nanoparticles. The results show the fat-soluble substances can be analysed by SERS. The spectra indicate that the molecules are adsorbed on the surface through the COO- groups by the simultaneous involvement of a and -type coordination. These results suggest some important criteria for consideration in SERS measurements and also provide important insights into the problem of predicting SERS activities for different fat-soluble substances.

  4. Surface enhanced Raman spectroscopy platform based on graphene with one-year stability

    Energy Technology Data Exchange (ETDEWEB)

    Tite, Teddy [Univ Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516, 18 rue Professeur Benoit Lauras, F-42000 Saint-Etienne (France); Barnier, Vincent [Ecole Nationale Supérieure des Mines, CNRS, Laboratoire Georges Friedel UMR 5307, 158 cours Fauriel, F-42023 Saint-Etienne (France); Donnet, Christophe, E-mail: Christophe.Donnet@univ-st-etienne.fr [Univ Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516, 18 rue Professeur Benoit Lauras, F-42000 Saint-Etienne (France); Loir, Anne–Sophie; Reynaud, Stéphanie; Michalon, Jean–Yves; Vocanson, Francis; Garrelie, Florence [Univ Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516, 18 rue Professeur Benoit Lauras, F-42000 Saint-Etienne (France)

    2016-04-01

    We report the synthesis, characterization and use of a robust surface enhanced Raman spectroscopy platform with a stable detection for up to one year of Rhodamine R6G at a concentration of 10{sup −6} M. The detection of aminothiophenol and methyl parathion, as active molecules of commercial insecticides, is further demonstrated at concentrations down to 10{sup −5}–10{sup −6} M. This platform is based on large scale textured few-layer (fl) graphene obtained without any need of graphene transfer. The synthesis route is based on diamond-like carbon films grown by pulsed laser deposition, deposited onto silicon substrates covered by a Ni layer prior to diamond-like carbon deposition. The formation of fl-graphene film, confirmed by Raman spectroscopy and mapping, is obtained by thermal annealing inducing the diffusion of Ni atoms and the concomitant formation of nickel silicide compounds, as identified by Raman and Auger electron spectroscopies. The textured fl-graphene films were decorated with gold nanoparticles to optimize the efficiency of the SERS device to detect organic molecules at low concentrations. - Highlights: • Synthesis of graphene film from amorphous carbon by pulsed laser deposition with nickel catalyst • Large scale textured graphene with nanoscale roughness obtained through nickel silicide formation • Films used for surface enhanced Raman spectroscopy detection of organophosphate compounds • Stability of the SERS platforms over up to one year.

  5. Surface-enhanced Raman spectroscopy for differentiation between benign and malignant thyroid tissues

    Science.gov (United States)

    Li, Zuanfang; Li, Chao; Lin, Duo; Huang, Zufang; Pan, Jianji; Chen, Guannan; Lin, Juqiang; Liu, Nenrong; Yu, Yun; Feng, Shangyuan; Chen, Rong

    2014-04-01

    The aim of this study was to evaluate the potential of applying silver nano-particle based surface-enhanced Raman scattering (SERS) to discriminate different types of human thyroid tissues. SERS measurements were performed on three groups of tissue samples including thyroid cancers (n = 32), nodular goiters (n = 20) and normal thyroid tissues (n = 25). Tentative assignments of the measured tissue SERS spectra suggest interesting cancer specific biomolecular differences. The principal component analysis (PCA) and linear discriminate analysis (LDA) together with the leave-one-out, cross-validated technique yielded diagnostic sensitivities of 92%, 75% and 87.5%; and specificities of 82.6%, 89.4% and 84.4%, respectively, for differentiation among normal, nodular and malignant thyroid tissue samples. This work demonstrates that tissue SERS spectroscopy associated with multivariate analysis diagnostic algorithms has great potential for detection of thyroid cancer at the molecular level.

  6. Fast and sensitive trace analysis of malachite green using a surface-enhanced Raman microfluidic sensor.

    Science.gov (United States)

    Lee, Sangyeop; Choi, Junghyun; Chen, Lingxin; Park, Byungchoon; Kyong, Jin Burm; Seong, Gi Hun; Choo, Jaebum; Lee, Yeonjung; Shin, Kyung-Hoon; Lee, Eun Kyu; Joo, Sang-Woo; Lee, Kyeong-Hee

    2007-05-08

    A rapid and highly sensitive trace analysis technique for determining malachite green (MG) in a polydimethylsiloxane (PDMS) microfluidic sensor was investigated using surface-enhanced Raman spectroscopy (SERS). A zigzag-shaped PDMS microfluidic channel was fabricated for efficient mixing between MG analytes and aggregated silver colloids. Under the optimal condition of flow velocity, MG molecules were effectively adsorbed onto silver nanoparticles while flowing along the upper and lower zigzag-shaped PDMS channel. A quantitative analysis of MG was performed based on the measured peak height at 1615 cm(-1) in its SERS spectrum. The limit of detection, using the SERS microfluidic sensor, was found to be below the 1-2 ppb level and this low detection limit is comparable to the result of the LC-Mass detection method. In the present study, we introduce a new conceptual detection technology, using a SERS microfluidic sensor, for the highly sensitive trace analysis of MG in water.

  7. Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Wu Wei; Hu Min; Ou Fungsuong; Li Zhiyong; Williams, R Stanley

    2010-01-01

    We demonstrated a cost-effective and deterministic method of patterning 3D cone arrays over a large area by using nanoimprint lithography (NIL). Cones with tip radius of less than 10 nm were successfully duplicated onto the UV-curable imprint resist materials from the silicon cone templates. Such cone structures were shown to be a versatile platform for developing reliable, highly sensitive surface enhanced Raman spectroscopy (SERS) substrates. In contrast to the silicon nanocones, the SERS substrates based on the Au coated cones made by the NIL offered significant improvement of the SERS signal. A further improvement of the SERS signal was observed when the polymer cones were imprinted onto a reflective metallic mirror surface. A sub-zeptomole detection sensitivity for a model molecule, trans-1,2-bis(4-pyridyl)-ethylene (BPE), on the Au coated NIL cone surfaces was achieved.

  8. Effect of surface density silver nanoplate films toward surface-enhanced Raman scattering enhancement for bisphenol A detection

    Science.gov (United States)

    Bakar, N. A.; Salleh, M. M.; Umar, A. A.; Shapter, J. G.

    2018-03-01

    This paper reports a study on surface-enhanced Raman scattering (SERS) phenomenon of triangular silver nanoplate (NP) films towards bisphenol A (BPA) detection. The NP films were prepared using self-assembly technique with four different immersion times; 1 hour, 2 hours, 5 hours, and 8 hours. The SERS measurement was studied by observing the changes in Raman spectra of BPA after BPA absorbed on the NP films. It was found that the Raman intensity of BPA peaks was enhanced by using the prepared SERS substrates. This is clearly indicated that these SERS silver substrates are suitable to sense industrial chemical and potentially used as SERS detector. However, the rate of SERS enhancement is depended on the distribution of NP on the substrate surface.

  9. Implementation of molecularly imprinted polymer beads for surface enhanced Raman detection.

    Science.gov (United States)

    Kamra, Tripta; Zhou, Tongchang; Montelius, Lars; Schnadt, Joachim; Ye, Lei

    2015-01-01

    Molecularly imprinted polymers (MIPs) have a predesigned molecular recognition capability that can be used to build robust chemical sensors. MIP-based chemical sensors allow label-free detection and are particularly interesting due to their simple operation. In this work we report the use of thiol-terminated MIP microspheres to construct surfaces for detection of a model organic analyte, nicotine, by surface enhanced Raman scattering (SERS). The nicotine-imprinted microspheres are synthesized by RAFT precipitation polymerization and converted into thiol-terminated microspheres through aminolysis. The thiol groups on the MIP surface allow the microspheres to be immobilized on a gold-coated substrate. Three different strategies are investigated to achieve surface enhanced Raman scattering in the vicinity of the imprinted sites: (1) direct sputtering of gold nanoparticles, (2) immobilization of gold colloids through the MIP's thiol groups, and (3) trapping of the MIP microspheres in a patterned SERS substrate. For the first time we show that large MIP microspheres can be turned into selective SERS surfaces through the three different approaches of assembly. The MIP-based sensing surfaces are used to detect nicotine to demonstrate the proof of concept. As synthesis and surface functionalization of MIP microspheres and nanoparticles are well established, the methods reported in this work are handy and efficient for constructing label-free chemical sensors, in particular for those based on SERS detection.

  10. Surface-enhanced Raman scattering active gold nanostructure fabricated by photochemical reaction of synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Akinobu, E-mail: yamaguti@lasti.u-hyogo.ac.jp [Laboratory of Advance Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205 (Japan); Matsumoto, Takeshi [Laboratory of Advance Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205 (Japan); Okada, Ikuo; Sakurai, Ikuya [Synchrotoron Radiation Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Utsumi, Yuichi [Laboratory of Advance Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205 (Japan)

    2015-06-15

    The deposition of gold nanoparticles in an electroplating solution containing gold (I) trisodium disulphite under synchrotron X-ray radiation was investigated. The nanoparticles grew and aggregated into clusters with increasing radiation time. This behavior is explained by evaluating the effect of Derjaguin-Landau-Verweyand-Overbeek (DLVO) interactions combining repulsive electrostatic and attractive van der Waals forces on the particle deposition process. The surface-enhanced Raman scattering (SERS) of 4,4′ -bipyridine (4bpy) in aqueous solution was measured using gold nanoparticles immobilized on silicon substrates under systematically-varied X-ray exposure. The substrates provided an in situ SERS spectrum for 1 nM 4bpy. This demonstration creates new opportunities for chemical and environmental analyses through simple SERS measurements. - Highlights: • Gold nanoparticles were produced by photochemical reaction of synchrotron radiation. • The gold nanoparticles grew and aggregated into the higher-order nanostructure. • The behavior is qualitatively explained by analytical estimation. • The surface-enhanced Raman spectroscopy of 4,4′-bipyridine (4bpy) was demonstrated. • The substrate fabricated in a suitable condition provides in situ SERS for 1 nM 4bpy.

  11. Plasmonic nanostructures for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Jiang, Ruiqian

    In the last three decades, a large number of different plasmonic nanostructures have attracted much attention due to their unique optical properties. Those plasmonic nanostructures include nanoparticles, nanoholes and metal nanovoids. They have been widely utilized in optical devices and sensors. When the plasmonic nanostructures interact with the electromagnetic wave and their surface plasmon frequency match with the light frequency, the electrons in plasmonic nanostructures will resonate with the same oscillation as incident light. In this case, the plasmonic nanostructures can absorb light and enhance the light scattering. Therefore, the plasmonic nanostructures can be used as substrate for surface-enhanced Raman spectroscopy to enhance the Raman signal. Using plasmonic nanostructures can significantly enhance Raman scattering of molecules with very low concentrations. In this thesis, two different plasmonic nanostructures Ag dendrites and Au/Ag core-shell nanoparticles are investigated. Simple methods were used to produce these two plasmonic nanostructures. Then, their applications in surface enhanced Raman scattering have been explored. Ag dendrites were produced by galvanic replacement reaction, which was conducted using Ag nitrate aqueous solution and copper metal. Metal copper layer was deposited at the bottom side of anodic aluminum oxide (AAO) membrane. Silver wires formed inside AAO channels connected Ag nitrate on the top of AAO membrane and copper layer at the bottom side of AAO. Silver dendrites were formed on the top side of AAO. The second plasmonic nanostructure is Au/Ag core-shell nanoparticles. They were fabricated by electroless plating (galvanic replacement) reaction in a silver plating solution. First, electrochemically evolved hydrogen bubbles were used as template through electroless deposition to produce hollow Au nanoparticles. Then, the Au nanoparticles were coated with Cu shells in a Cu plating solution. In the following step, a Ag

  12. Surface-enhanced vibrational spectroscopy of B vitamins: what is the effect of SERS-active metals used?

    Science.gov (United States)

    Kokaislová, A; Matějka, P

    2012-05-01

    Surface-enhanced Raman scattering (SERS) spectroscopy and surface-enhanced infrared absorption (SEIRA) spectroscopy are analytical tools suitable for the detection of small amounts of various analytes adsorbed on metal surfaces. During recent years, these two spectroscopic methods have become increasingly important in the investigation of adsorption of biomolecules and pharmaceuticals on nanostructured metal surfaces. In this work, the adsorption of B-group vitamins pyridoxine, nicotinic acid, folic acid and riboflavin at electrochemically prepared gold and silver substrates was investigated using Fourier transform SERS spectroscopy at an excitation wavelength of 1,064 nm. Gold and silver substrates were prepared by cathodic reduction on massive platinum targets. In the case of gold substrates, oxidation-reduction cycles were applied to increase the enhancement factor of the gold surface. The SERS spectra of riboflavin, nicotinic acid, folic acid and pyridoxine adsorbed on silver substrates differ significantly from SERS spectra of these B-group vitamins adsorbed on gold substrates. The analysis of near-infrared-excited SERS spectra reveals that each of B-group vitamin investigated interacts with the gold surface via a different mechanism of adsorption to that with the silver surface. In the case of riboflavin adsorbed on silver substrate, the interpretation of surface-enhanced infrared absorption (SEIRA) spectra was also helpful in investigation of the adsorption mechanism.

  13. Theory of hyperbolic stratified nanostructures for surface-enhanced Raman scattering

    Science.gov (United States)

    Wong, Herman M. K.; Dezfouli, Mohsen Kamandar; Axelrod, Simon; Hughes, Stephen; Helmy, Amr S.

    2017-11-01

    We theoretically investigate the enhancement of surface enhanced Raman spectroscopy (SERS) using hyperbolic stratified nanostructures and compare to metal nanoresonators. The photon Green function of each nanostructure within its environment is first obtained from a semianalytical modal theory, which is used in a quantum optics formalism of the molecule-nanostructure interaction to model the SERS spectrum. An intuitive methodology is presented for calculating the single-molecule enhancement factor (SMEF), which is also able to predict known experimental SERS enhancement factors of a gold nanodimer. We elucidate the important figures-of-merit of the enhancement and explore these for different designs. We find that the use of hyperbolic stratified materials can enhance the photonic local density of states (LDOS) by close to two times in comparison to pure metal nanostructures, when both designed to work at the same operating wavelengths. However, the increased LDOS is accompanied by higher electric field concentration within the lossy hyperbolic material, which leads to increased quenching that serves to reduce the overall detected SERS enhancement in the far field. For nanoresonators with resonant localized surface plasmon wavelengths in the near-infrared, the SMEF for the hyperbolic stratified nanostructure is approximately one order of magnitude lower than the pure metal counterpart. Conversely, we show that by detecting the Raman signal using a near-field probe, hyperbolic materials can provide an improvement in SERS enhancement compared to using pure metal nanostructures when the probe is sufficiently close (<50 nm ) to the Raman active molecule at the plasmonic hotspot.

  14. Characterization and noninvasive diagnosis of bladder cancer with serum surface enhanced Raman spectroscopy and genetic algorithms

    Science.gov (United States)

    Li, Shaoxin; Li, Linfang; Zeng, Qiuyao; Zhang, Yanjiao; Guo, Zhouyi; Liu, Zhiming; Jin, Mei; Su, Chengkang; Lin, Lin; Xu, Junfa; Liu, Songhao

    2015-05-01

    This study aims to characterize and classify serum surface-enhanced Raman spectroscopy (SERS) spectra between bladder cancer patients and normal volunteers by genetic algorithms (GAs) combined with linear discriminate analysis (LDA). Two group serum SERS spectra excited with nanoparticles are collected from healthy volunteers (n = 36) and bladder cancer patients (n = 55). Six diagnostic Raman bands in the regions of 481-486, 682-687, 1018-1034, 1313-1323, 1450-1459 and 1582-1587 cm-1 related to proteins, nucleic acids and lipids are picked out with the GAs and LDA. By the diagnostic models built with the identified six Raman bands, the improved diagnostic sensitivity of 90.9% and specificity of 100% were acquired for classifying bladder cancer patients from normal serum SERS spectra. The results are superior to the sensitivity of 74.6% and specificity of 97.2% obtained with principal component analysis by the same serum SERS spectra dataset. Receiver operating characteristic (ROC) curves further confirmed the efficiency of diagnostic algorithm based on GA-LDA technique. This exploratory work demonstrates that the serum SERS associated with GA-LDA technique has enormous potential to characterize and non-invasively detect bladder cancer through peripheral blood.

  15. The nature of chemisorbates formed from ammonia on gold and palladium electrodes as discerned from surface-enhanced Raman spectroscopy

    NARCIS (Netherlands)

    Vooys, de A.C.A.; Mrozek, M.F.; Koper, M.T.M.; Santen, van R.A.; Veen, van J.A.R.; Weaver, M.J.

    2001-01-01

    The chemisorbates formed from ammonia-containing alkaline electrolyte on gold and palladium electrodes have been identified using surface-enhanced Raman spectroscopy (SERS). On gold, a potential-dependent band at ca. 365-385 cm(-1) is observed, consistent with the metal-nitrogen stretch for

  16. Achieving Very Low Levels of Detection: An Improved Surface-Enhanced Raman Scattering Experiment for the Physical Chemistry Teaching Laboratory

    Science.gov (United States)

    McMillan, Brian G.

    2016-01-01

    This experiment was designed and successfully introduced to complement the nanochemistry taught to undergraduate students in a useful and interesting way. Colloidal Ag nanoparticles were synthesized by a simple, room-temperature method, and the resulting suspension was then used to study the surface-enhanced Raman scattering (SERS) of methylene…

  17. Surface-enhanced Raman scattering from graphene covered gold nanocap arrays

    Science.gov (United States)

    Long, Kailin; Luo, Xiaoguang; Nan, Haiyan; Du, Deyang; Zhao, Weiwei; Ni, Zhenhua; Qiu, Teng

    2013-11-01

    This work reports an efficient method to fabricate large-area flexible substrates for surface enhanced Raman scattering (SERS) application. Our technique is based on a single-step direct imprint process via porous anodic alumina stamps. Periodic hexagonal arrangements of porous anodic alumina stamps are transferred to the polyethylene terephthalate substrates by mechanically printing process. Printed nanocaps will turn into "hot spots" for electromagnetic enhancement with a deposited gold film by high vacuum evaporation. The gaps between the nanocaps are controllable with a tight correspondence to the thickness of the deposited gold, which dramatically influence the enhancement factor. After covered with a single-layer graphene sheet, the gold nanocap substrate can be further optimized with an extra enhancement of Raman signals, and it is available for the trace detection of probe molecules. This convenient, simple, and low-cost method of making flexible SERS-active substrates potentially opens a way towards biochemical analysis and disease detection.

  18. Surface-enhanced raman spectroscopic studies of ellagic acid in silver colloids

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jang; Cheong, Byeong Seo; Cho, Han Gook [Dept. of Chemistry, Incheon National University, Incheon (Korea, Republic of)

    2015-06-15

    Surface-enhanced Raman scattering (SERS) spectroscopy has been applied for the vibrational characterization of ellagic acid (EA), a natural organic dye, using citrate-reduced silver colloids. The infrared and FT-Raman spectra of EA in the solid state were examined for comparison. Spectral assignments of the observed bands were aided by density functional theory (DFT) calculations employing the B3LYP functional. The variations in the SERS spectrum with pH and excitation wavelength were analyzed to gain information on the adsorption- and pH-dependent behaviors of the natural dye on the metal surface. On the basis of the observed spectral features and DFT calculations, the adsorption configuration of EA on the silver metal surface is proposed.

  19. Probing cytochrome c in living mitochondria with surface-enhanced Raman spectroscopy

    DEFF Research Database (Denmark)

    Brazhe, Nadezda A.; Evlyukhin, Andrey B.; Goodilin, Eugene A.

    2015-01-01

    Selective study of the electron transport chain components in living mitochondria is essential for fundamental biophysical research and for the development of new medical diagnostic methods. However, many important details of inter- and intramembrane mitochondrial processes have remained in shadow...... due to the lack of non-invasive techniques. Here we suggest a novel label-free approach based on the surface-enhanced Raman spectroscopy (SERS) to monitor the redox state and conformation of cytochrome c in the electron transport chain in living mitochondria. We demonstrate that SERS spectra of living...... mitochondria placed on hierarchically structured silver-ring substrates provide exclusive information about cytochrome c behavior under modulation of inner mitochondrial membrane potential, proton gradient and the activity of ATP-synthetase. Mathematical simulation explains the observed enhancement of Raman...

  20. Surface-enhanced Raman Spectroscopy of Ethephone Adsorbed on Silver Surface

    International Nuclear Information System (INIS)

    Lee, Chul Jae; Kim, Hee Jin; Karim, Mohammad Rezaul; Lee, Mu Sang

    2006-01-01

    We investigated the Surface-enhanced Raman Spectroscopy (SERS) spectrum of ethephone (2- chloroethylphosphonic acid). We observed significant signals in the ordinary Raman spectrum for solid-state ethephone as well as when it was adsorbed on a colloidal silver surface, strong vibrational signals were obtained at a very low concentration. The SERS spectra were obtained by silver colloids that were prepared by the γ - irradiation method. The influence of pH and the influence of anion (Cl - , Br - , I - ) on the adsorption orientation were investigated. Two different adsorption mechanisms were deduced, depending on the experimental conditions. The chlorine atom or the chlorine and two oxygen atoms were adsorbed on the colloidal silver surface. Among halide ions, Br - and I - were more strongly adsorbed on the colloidal silver surfaces. As a result, the adsorption of ethephone was less effective due to their steric hinderance

  1. Probing the adsorption mechanism in thiamazole bound to the silver surface with Surface-enhanced Raman Scattering and DFT

    Science.gov (United States)

    Biswas, Nandita; Thomas, Susy; Sarkar, Anjana; Mukherjee, Tulsi; Kapoor, Sudhir

    2009-09-01

    Surface-enhanced Raman scattering (SERS) of thiamazole have been investigated in aqueous solution. Thiamazole is an important anti-thyroid drug that is used in the treatment of hyperthyroidism (over activity of the thyroid gland). Due to its medicinal importance, the surface adsorption properties of thiamazole have been studied. The experimental Raman and SERS data are supported with DFT calculations using B3LYP functional with LANL2DZ basis set. From the SERS spectra as well as theoretical calculations, it has been inferred that thiamazole is chemisorbed to the silver surface directly through the sulphur atom and the ring N atom, with a tilted orientation.

  2. SERS Raman Sensor Based on Diameter-Modulated Sapphire Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Shimoji, Yutaka

    2010-08-09

    Surface enhanced Raman scattering (SERS) has been observed using a sapphire fiber coated with gold nano-islands for the first time. The effect was found to be much weaker than what was observed with a similar fiber coated with silver nanoparticles. Diameter-modulated sapphire fibers have been successfully fabricated on a laser heated pedestal growth system. Such fibers have been found to give a modest increase in the collection efficiency of induced emission. However, the slow response of the SERS effect makes it unsuitable for process control applications.

  3. Synthesis of anti-aggregation silver nanoparticles based on inositol hexakisphosphoric micelles for a stable surface enhanced Raman scattering substrate

    International Nuclear Information System (INIS)

    Wang Na; Yang Haifeng; Zhu Xuan; Zhang Rui; Wang Yao; Huang Guanfeng; Zhang Zongrang

    2009-01-01

    We report a novel method of synthesizing a kind of silver nanoparticles aided by the inositol hexakisphosphoric micelle as a soft template and stabilizer. By controlling the reaction time, UV-vis and TEM observations of the size growth of the nanoparticles are performed. Careful examinations of surface enhanced Raman scattering (SERS) spectra of 2-mercaptopyridine (2-Mpy) on the as-produced silver nanoparticles exhibit very stable and reproducible Raman signals within about 4 months.

  4. Shape-dependent surface-enhanced Raman scattering in gold–Raman-probe–silica sandwiched nanoparticles for biocompatible applications

    International Nuclear Information System (INIS)

    Li Ming; Cushing, Scott K; Lankford, Jessica; Wu, Nianqiang; Zhang Jianming; Ma Dongling; Aguilar, Zoraida P

    2012-01-01

    To meet the requirement of Raman probes (labels) for biocompatible applications, a synthetic approach has been developed to sandwich the Raman-probe (malachite green isothiocyanate, MGITC) molecules between the gold core and the silica shell in gold–SiO 2 composite nanoparticles. The gold–MGITC–SiO 2 sandwiched structure not only prevents the Raman probe from leaking out but also improves the solubility of the nanoparticles in organic solvents and in aqueous solutions even with high ionic strength. To amplify the Raman signal, three types of core, gold nanospheres, nanorods and nanostars, have been chosen as the substrates of the Raman probe. The effect of the core shape on the surface-enhanced Raman scattering (SERS) has been investigated. The colloidal nanostars showed the highest SERS enhancement factor while the nanospheres possessed the lowest SERS activity under excitation with 532 and 785 nm lasers. Three-dimensional finite-difference time domain (FDTD) simulation showed significant differences in the local electromagnetic field distributions surrounding the nanospheres, nanorods, and nanostars, which were induced by the localized surface plasmon resonance (LSPR). The electromagnetic field was enhanced remarkably around the two ends of the nanorods and around the sharp tips of the nanostars. This local electromagnetic enhancement made the dominant contribution to the SERS enhancement. Both the experiments and the simulation revealed the order nanostars > nanorods > nanospheres in terms of the enhancement factor. Finally, the biological application of the nanostar–MGITC–SiO 2 nanoparticles has been demonstrated in the monitoring of DNA hybridization. In short, the gold–MGITC–SiO 2 sandwiched nanoparticles can be used as a Raman probe that features high sensitivity, good water solubility and stability, low-background fluorescence, and the absence of photobleaching for future biological applications. (paper)

  5. Novel Chiroptical Analysis of Hemoglobin by Surface Enhanced Resonance Raman Optical Activity Spectroscopy

    DEFF Research Database (Denmark)

    Brazhe, Nadezda; Brazhe, Alexey; Sosnovtseva, Olga

    2010-01-01

    The metalloprotein hemoglobin (Hb) was studied using surface enhanced resonance Raman spectroscopy (SERRS) and surface enhanced resonance Raman optical activity (SERROA). The SERROA results are analyzed and compared with the SERRS, and the later to the resonance Raman (RRS) performed on Hb...

  6. Ag/SiO2 surface-enhanced Raman scattering substrate for plasticizer detection

    Science.gov (United States)

    Wu, Ming-Chung; Lin, Ming-Pin; Lin, Ting-Han; Su, Wei-Fang

    2018-04-01

    In this study, we demonstrated a simple method of fabricating a high-performance surface-enhanced Raman scattering (SERS) substrate. Monodispersive SiO2 colloidal spheres were self-assembled on a silicon wafer, and then a silver layer was coated on it to obtain a Ag/SiO2 SERS substrate. The Ag/SiO2 SERS substrates were used to detect three kinds of plasticizer with different concentrations, namely, including bis(2-ethylhexyl)phthalate (DEHP), benzyl butyl phthalate (BBP), and dibutyl phthalate (DBP). The enhancement of Raman scattering intensity caused by surface plasmon resonance can be observed using the Ag/SiO2 SERS substrates. The Ag/SiO2 SERS substrate with a 150-nm-thick silver layer can detect plasticizers, and it satisfies the detection limit of plasticizers at 100 ppm. The developed highly sensitive Ag/SiO2 SERS substrates show a potential for the design and fabrication of functional sensors to identify the harmful plasticizers that plastic products release in daily life.

  7. [Three-dimensional vertically aligned CNTs coated by Ag nanoparticles for surface-enhanced Raman scattering].

    Science.gov (United States)

    Zhang, Xiao-Lei; Zhang, Jie; Fan, Tuo; Ren, Wen-Jie; Lai, Chun-Hong

    2014-09-01

    In order to make surface-enhanced Raman scattering (SERS) substrates contained more "hot spots" in a three-dimensional (3D) focal volume, and can be adsorbed more probe molecules and metal nanoparticles, to obtain stronger Raman spectral signal, a new structure based on vertically aligned carbon nanotubes (CNTs) coated by Ag nanoparticles for surface Raman enhancement is presented. The vertically aligned CNTs are synthesized by chemical vapor deposition (CVD). A silver film is first deposited on the vertically aligned CNTs by magnetron sputtering. The samples are then annealed at different temperature to cause the different size silver nanoparticles to coat on the surface and sidewalls of vertically aligned CNTs. The result of scanning electron microscopy(SEM) shows that Ag nanoparticles are attached onto the sidewalls and tips of the vertically aligned CNTs, as the annealing temperature is different , pitch size, morphology and space between the silver nanoparticles is vary. Rhodamine 6G is served as the probe analyte. Raman spectrum measurement indicates that: the higher the concentration of R6G, the stronger the Raman intensity, but R6G concentration increase with the enhanced Raman intensity varies nonlinearly; when annealing temperature is 450 °C, the average size of silver nanoparticles is about 100 to 120 nm, while annealing temperature is 400 °C, the average size is about 70 nm, and the Raman intensity of 450 °C is superior to the annealing temperature that of 400 °C and 350 °C.

  8. Boron nitride nanosheets as improved and reusable substrates for gold nanoparticles enabled surface enhanced Raman spectroscopy

    KAUST Repository

    Cai, Qiran

    2015-01-01

    Atomically thin boron nitride (BN) nanosheets have been found to be excellent substrates for noble metal particles enabled surface enhanced Raman spectroscopy (SERS), thanks to their good adsorption of aromatic molecules, high thermal stability and weak Raman scattering. Faceted gold (Au) nanoparticles have been synthesized on BN nanosheets using a simple but controllable and reproducible sputtering and annealing method. The size and density of the Au particles can be controlled by sputtering time, current and annealing temperature etc. Under the same sputtering and annealing conditions, the Au particles on BN of different thicknesses show various sizes because the surface diffusion coefficients of Au depend on the thickness of BN. Intriguingly, decorated with similar morphology and distribution of Au particles, BN nanosheets exhibit better Raman enhancements than silicon substrates as well as bulk BN crystals. Additionally, BN nanosheets show no noticeable SERS signal and hence cause no interference to the Raman signal of the analyte. The Au/BN substrates can be reused by heating in air to remove the adsorbed analyte without loss of SERS enhancement. This journal is © the Owner Societies 2015.

  9. Detection of Surface-Linked Polychlorinated Biphenyls using Surface-Enhanced Raman Scattering Spectroscopy

    DEFF Research Database (Denmark)

    Rindzevicius, Tomas; Barten, Jan; Vorobiev, Mikhail

    2017-01-01

    We present an improved procedure for analytical detection of toxic polychlorinated biphenyls (PCB) using surface-enhanced Raman scattering (SERS) spectroscopy. A gold-capped silicon nanopillar substrate was utilized to concentrate PCB molecules within an area of high electromagnetic fields through...... formation of microsized nanopillar clusters, and consequently, so-called “hot spots” can be formed. In order to improve PCB detection limit, 3,3',4,4'-tetrachlorobiphenyl (PCB77) compounds were chemically modified with a – SCH3 (PCB77-SCH3) group. Experimental and numerical analysis of vibrational modes...

  10. Silver nanoparticles deposited on anodic aluminum oxide template using magnetron sputtering for surface-enhanced Raman scattering substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wong-ek, Krongkamol [Nanoscience and Technology Program, Chulalongkorn University, Bangkok 10330 (Thailand); Eiamchai, Pitak; Horprathum, Mati; Patthanasettakul, Viyapol [National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Rd., Klong Luang, Pathumthani 12120 (Thailand); Limnonthakul, Puenisara [Department of Physics, Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand); Chindaudom, Pongpan [National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Rd., Klong Luang, Pathumthani 12120 (Thailand); Nuntawong, Noppadon, E-mail: noppadon.nuntawong@nectec.or.t [National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Rd., Klong Luang, Pathumthani 12120 (Thailand)

    2010-09-30

    Low-cost and highly sensitive surface-enhanced Raman scattering (SERS) substrates have been fabricated by a simple anodizing process and a magnetron sputtering deposition. The substrates, which consist of silver nanoparticles embedded on anodic aluminum oxide (AAO) templates, are investigated by a scanning electron microscope and a confocal Raman spectroscopy. The SERS activities are demonstrated by Raman scattering from adsorbed solutions of methylene blue and pyridine on the SERS substrate surface. The most optimized SERS substrate contains the silver nanoparticles, with a size distribution of 10-30 nm, deposited on the AAO template. From a calculation, the SERS enhancement factor is as high as 8.5 x 10{sup 7}, which suggests strong potentials for direct applications in the chemical detection and analyses.

  11. Surface-enhanced Raman scattering reveals adsorption of mitoxantrone on plasma membrane of living cells

    International Nuclear Information System (INIS)

    Breuzard, G.; Angiboust, J.-F.; Jeannesson, P.; Manfait, M.; Millot, J.-M.

    2004-01-01

    Surface-enhanced Raman scattering (SERS) spectroscopy was applied to analyze mitoxantrone (MTX) adsorption on the plasma membrane microenvironment of sensitive (HCT-116 S) or BCRP/MXR-type resistant (HCT-116 R) cells. The addition of silver colloid to MTX-treated cells revealed an enhanced Raman scattering of MTX. Addition of extracellular DNA induced a total extinction of MTX Raman intensity for both cell lines, which revealed an adsorption of MTX on plasma membrane. A threefold higher MTX Raman intensity was observed for HCT-116 R, suggesting a tight MTX adsorption in the plasma membrane microenvironment. Fluorescence confocal microscopy confirmed a relative MTX emission around plasma membrane for HCT-116 R. After 30 min at 4 deg. C, a threefold decrease of the MTX Raman scattering was observed for HCT-116 R, contrary to HCT-116 S. Permeation with benzyl alcohol revealed a threefold decrease of membrane MTX adsorption on HCT-116 R, exclusively. This additional MTX adsorption should correspond to the drug bound to an unstable site on the HCT-116 R membrane. This study showed that SERS spectroscopy could be a direct method to reveal drug adsorption to the membrane environment of living cells

  12. Dynamic placement of plasmonic hotspots for super-resolution surface-enhanced Raman scattering.

    Science.gov (United States)

    Ertsgaard, Christopher T; McKoskey, Rachel M; Rich, Isabel S; Lindquist, Nathan C

    2014-10-28

    In this paper, we demonstrate dynamic placement of locally enhanced plasmonic fields using holographic laser illumination of a silver nanohole array. To visualize these focused "hotspots", the silver surface was coated with various biological samples for surface-enhanced Raman spectroscopy (SERS) imaging. Due to the large field enhancements, blinking behavior of the SERS hotspots was observed and processed using a stochastic optical reconstruction microscopy algorithm enabling super-resolution localization of the hotspots to within 10 nm. These hotspots were then shifted across the surface in subwavelength (hotspots. Using this technique, we also show that such subwavelength shifting and localization of plasmonic hotspots has potential for imaging applications. Interestingly, illuminating the surface with randomly shifting SERS hotspots was sufficient to completely fill in a wide field of view for super-resolution chemical imaging.

  13. Surface-enhanced Raman spectroscopy for uranium detection and analysis in environmental samples

    International Nuclear Information System (INIS)

    Ruan Chuanmin; Luo Wensui; Wang Wei; Gu Baohua

    2007-01-01

    Techniques for rapid screening of uranium in environmental samples are needed, and this study entails the development of surface-enhanced Raman scattering (SERS) for analyzing uranium in aqueous media with improved sensitivity and reproducibility. A new SERS substrate based on (aminomethyl)phosphonic acid (APA)-modified gold nanoparticles was found to give greater than three orders of magnitude SERS enhancement compared with unmodified bare gold nanoparticles. Intensities of uranyl band at about 830 cm -1 were proportional to the concentrations of uranium in solution, especially at relatively low concentrations ( -5 M). A detection limit of ∼8 x 10 -7 M was achieved with a good reproducibility since the measurement was performed directly in dispersed aqueous suspension. Without pretreatment, the technique was successfully employed for detecting uranium in a highly contaminated groundwater with a low pH, high dissolved salts (e.g., nitrate, sulfate, calcium and aluminum) and total organic carbon

  14. Surface-Enhanced Raman Spectroscopy for Uranium Detection and Analysis in Environmental Samples

    International Nuclear Information System (INIS)

    Ruan, Chuanmin; Luo, Wensui; Wang, Wei; Gu, Baohua

    2007-01-01

    Techniques for rapid screening of uranium in environmental samples are needed, and this study entails the development of surface-enhanced Raman scattering (SERS) for analyzing uranium in aqueous media with improved sensitivity and reproducibility. A new SERS substrate based on (aminomethyl)phosphonic acid (APA)-modified gold nanoparticles was found to give greater than three orders of magnitude SERS enhancement compared with unmodified bare gold nanoparticles. Intensities of uranyl band at about 830 cm-1 were proportional to the concentrations of uranium in solution, especially at relatively low concentrations (<10-5 M). A detection limit of ∼8 e10-7 M was achieved with a good reproducibility since the measurement was performed directly in dispersed aqueous suspension. Without pretreatment, the technique was successfully employed for the detection of uranium in a highly contaminated groundwater with a low pH, high dissolved salts (e.g., nitrate, sulfate, calcium and aluminum) and total organic carbon

  15. Discrimination of rectal cancer through human serum using surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Li, Xiaozhou; Yang, Tianyue; Li, Siqi; Zhang, Su; Jin, Lili

    2015-05-01

    In this paper, surface-enhanced Raman spectroscopy (SERS) was used to detect the changes in blood serum components that accompany rectal cancer. The differences in serum SERS data between rectal cancer patients and healthy controls were examined. Postoperative rectal cancer patients also participated in the comparison to monitor the effects of cancer treatments. The results show that there are significant variations at certain wavenumbers which indicates alteration of corresponding biological substances. Principal component analysis (PCA) and parameters of intensity ratios were used on the original SERS spectra for the extraction of featured variables. These featured variables then underwent linear discriminant analysis (LDA) and classification and regression tree (CART) for the discrimination analysis. Accuracies of 93.5 and 92.4 % were obtained for PCA-LDA and parameter-CART, respectively.

  16. Comparison of Surface-enhanced Raman Scattering Spectra of Two Kinds of Silver Nanoplate Films

    Institute of Scientific and Technical Information of China (English)

    TAO Jin-long; TANG Bin; XU Shu-ping; PAN Ling-yun; XU Wei-qing

    2012-01-01

    Surface-enhanced Raman scattering(SERS) spectra of different silver nanoplate self-assembled films at different excitation wavelengths were fairly compared.Shape conversion from silver nanoprisms to nanodisks on slides was in situ carried out.The SERS spectra of 4-mercaptopyridine(4-MPY) on these anisotropic silver nanoparticle self-assembled films present that strong enhancement appeared when the excitation line and the surface plasmon resonance(SPR) band of silver substrate overlapped.In this model,the influence of the crystal planes of silver nanoplates on SERS enhancement could be ignored because the basal planes were nearly unchanged in two kinds of silver nanoplate self-assembled films.

  17. Surface enhanced Raman spectroscopy for urinary tract infection diagnosis and antibiogram

    Science.gov (United States)

    Kastanos, Evdokia; Hadjigeorgiou, Katerina; Kyriakides, Alexandros; Pitris, Constantinos

    2010-02-01

    Urinary tract infection diagnosis and antibiogram require a minimum of 48 hours using standard laboratory practice. This long waiting period contributes to an increase in recurrent infections, rising health care costs, and a growing number of bacterial strains developing resistance to antibiotics. In this work, Surface Enhanced Raman Spectroscopy (SERS) was used as a novel method for classifying bacteria and determining their antibiogram. Five species of bacteria were classified with > 90% accuracy using their SERS spectra and a classification algorithm involving novel feature extraction and discriminant analysis. Antibiotic resistance or sensitivity was determined after just a two-hour exposure of bacteria to ciprofloxacin (sensitive) and amoxicillin (resistant) and analysis of their SERS spectra. These results can become the basis for the development of a novel method that would provide same day diagnosis and selection of the most appropriate antibiotic for most effective treatment of a urinary tract infection.

  18. Distinction of gastric cancer tissue based on surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Ma, Jun; Zhou, Hanjing; Gong, Longjing; Liu, Shu; Zhou, Zhenghua; Mao, Weizheng; Zheng, Rong-er

    2012-12-01

    Gastric cancer is one of the most common malignant tumors with high recurrence rate and mortality rate in China. This study aimed to evaluate the diagnostic capability of Surface-enhanced Raman spectroscopy (SERS) based on gold colloids for distinguishing gastric tissues. Gold colloids were directly mixed with the supernatant of homogenized tissues to heighten the Raman signal of various biomolecule. A total of 56 samples were collected from normal (30) and cancer (26). Raman spectra were obtained with a 785nm excitation in the range of 600-1800 cm-1. Significant spectral differences in SERS mainly belong to nucleic acid, proteins and lipids, particularly in the range of 653, 726, 828, 963, 1004, 1032, 1088, 1130, 1243, 1369, 1474, 1596, 1723 cm-1. PCA-LDA algorithms with leave-one-patient-out cross validation yielded diagnostic sensitivities of 90% (27/30), specificities of 88.5% (23/26), and accuracy of 89.3% (50/56), for classification of normal and cancer tissues. The receiver operating characteristic (ROC) surface is 0.917, illustrating the diagnostic utility of SERS together with PCA-LDA to identify gastric cancer from normal tissue. This work demonstrated the SERS techniques can be useful for gastric cancer detection, and it is also a potential technique for accurately identifying cancerous tumor, which is of considerable clinical importance to real-time diagnosis.

  19. Metal nanoinks as chemically stable surface enhanced scattering (SERS) probes for the analysis of blue BIC ballpoint pens.

    Science.gov (United States)

    Alyami, A; Saviello, D; McAuliffe, M A P; Mirabile, A; Lewis, L; Iacopino, D

    2017-06-07

    Metal nanoinks constituted by Ag nanoparticles and Au nanorods were employed as probes for the Surface Enhanced Raman Scattering (SERS) analysis of a blue BIC ballpoint pen. The dye components of the pen ink were first separated by thin layer chromatography (TLC) and subsequently analysed by SERS at illumination wavelengths of 514 nm and 785 nm. Compared to normal Raman conditions, enhanced spectra were obtained for all separated spots, allowing easy identification of phthalocyanine Blue 38 and triarylene crystal violet in the ink mixture. A combination of effects such as molecular resonance, electromagnetic and chemical effects were the contributing factors to the generation of spectra enhanced compared to normal Raman conditions. Enhancement factors (EFs) between 5 × 10 3 and 3 × 10 6 were obtained, depending on the combination of SERS probes and laser illumination used. In contrast to previous conflicting reports, the metal nanoinks were chemically stable, allowing the collection of reproducible spectra for days after deposition on TLC plates. In addition and in advance to previously reported SERS probes, no need for additional aggregating agents or correction of electrostatic charge was necessary to induce the generation of enhanced SERS spectra.

  20. Surface-Enhanced Raman Scattering Nanoparticles as Optical Labels for Imaging Cell Surface Proteins

    Science.gov (United States)

    MacLaughlin, Christina M.

    Assaying the expression of cell surface proteins has widespread application for characterizing cell type, developmental stage, and monitoring disease transformation. Immunophenotyping is conducted by treating cells with labelled targeting moieties that have high affinity for relevant surface protein(s). The sensitivity and specificity of immunophenotyping is defined by the choice of contrast agent and therefore, the number of resolvable signals that can be used to simultaneously label cells. Narrow band width surface-enhanced Raman scattering (SERS) nanoparticles are proposed as optical labels for multiplexed immunophenotying. Two types of surface coatings were investigated to passivate the gold nanoparticles, incorporate SERS functionality, and to facilitate attachment of targeting antibodies. Thiolated poly(ethylene glycol) forms dative bonds with the gold surface and is compatible with multiple physisorbed Raman-active reporter molecules. Ternary lipid bilayers are used to encapsulate the gold nanoparticles particles, and incorporate three different classes of Raman reporters. TEM, UV-Visible absorbance spectroscopy, DLS, and electrophoretic light scattering were used characterize the particle coating. Colourimetric protein assay, and secondary antibody labelling were used to quantify the antibody conjugation. Three different in vitromodels were used to investigate the binding efficacy and specificity of SERS labels for their biomarker targets. Primary human CLL cells, LY10 B lymphoma, and A549 adenocarcinoma lines were targeted. Dark field imaging was used to visualize the colocalization of SERS labels with cells, and evidence of receptor clustering was obtained based on colour shifts of the particles' Rayleigh scattering. Widefield, and spatially-resolved Raman spectra were used to detect labels singly, and in combination from labelled cells. Fluorescence flow cytometry was used to test the particles' binding specificity, and SERS from labelled cells was also

  1. Evolution of interfacial intercalation chemistry on epitaxial graphene/SiC by surface enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Ferralis, Nicola; Carraro, Carlo

    2014-01-01

    Highlights: • H-intercalated epitaxial graphene–SiC interface studied with surface enhanced Raman. • Evolution of graphene and H–Si interface with UV-ozone, annealing and O-exposure. • H–Si interface and quasi-freestanding graphene are retained after UV-ozone treatment. • Enhanced ozonolytic reactivity at the edges of H-intercalated defected graphene. • Novel SERS method for characterizing near-surface graphene–substrate interfaces. - Abstract: A rapid and facile evaluation of the effects of physical and chemical processes on the interfacial layer between epitaxial graphene monolayers on SiC(0 0 0 1) surfaces is essential for applications in electronics, photonics, and optoelectronics. Here, the evolution of the atomic scale epitaxial graphene-buffer-layer–SiC interface through hydrogen intercalation, thermal annealings, UV-ozone etching and oxygen exposure is studied by means of single microparticle mediated surface enhanced Raman spectroscopy (smSERS). The evolution of the interfacial chemistry in the buffer layer is monitored through the Raman band at 2132 cm −1 corresponding to the Si-H stretch mode. Graphene quality is monitored directly by the selectively enhanced Raman signal of graphene compared to the SiC substrate signal. Through smSERS, a simultaneous correlation between optimized hydrogen intercalation in epitaxial graphene/SiC and an increase in graphene quality is uncovered. Following UV-ozone treatment, a fully hydrogen passivated interface is retained, while a moderate degradation in the quality of the hydrogen intercalated quasi-freestanding graphene is observed. While hydrogen intercalated defect free quasi-freestanding graphene is expected to be robust upon UV-ozone, thermal annealing, and oxygen exposure, ozonolytic reactivity at the edges of H-intercalated defected graphene results in enhanced amorphization of the quasi-freestanding (compared to non-intercalated) graphene, leading ultimately to its complete etching

  2. Evolution of interfacial intercalation chemistry on epitaxial graphene/SiC by surface enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ferralis, Nicola, E-mail: ferralis@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Carraro, Carlo [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 (United States)

    2014-11-30

    Highlights: • H-intercalated epitaxial graphene–SiC interface studied with surface enhanced Raman. • Evolution of graphene and H–Si interface with UV-ozone, annealing and O-exposure. • H–Si interface and quasi-freestanding graphene are retained after UV-ozone treatment. • Enhanced ozonolytic reactivity at the edges of H-intercalated defected graphene. • Novel SERS method for characterizing near-surface graphene–substrate interfaces. - Abstract: A rapid and facile evaluation of the effects of physical and chemical processes on the interfacial layer between epitaxial graphene monolayers on SiC(0 0 0 1) surfaces is essential for applications in electronics, photonics, and optoelectronics. Here, the evolution of the atomic scale epitaxial graphene-buffer-layer–SiC interface through hydrogen intercalation, thermal annealings, UV-ozone etching and oxygen exposure is studied by means of single microparticle mediated surface enhanced Raman spectroscopy (smSERS). The evolution of the interfacial chemistry in the buffer layer is monitored through the Raman band at 2132 cm{sup −1} corresponding to the Si-H stretch mode. Graphene quality is monitored directly by the selectively enhanced Raman signal of graphene compared to the SiC substrate signal. Through smSERS, a simultaneous correlation between optimized hydrogen intercalation in epitaxial graphene/SiC and an increase in graphene quality is uncovered. Following UV-ozone treatment, a fully hydrogen passivated interface is retained, while a moderate degradation in the quality of the hydrogen intercalated quasi-freestanding graphene is observed. While hydrogen intercalated defect free quasi-freestanding graphene is expected to be robust upon UV-ozone, thermal annealing, and oxygen exposure, ozonolytic reactivity at the edges of H-intercalated defected graphene results in enhanced amorphization of the quasi-freestanding (compared to non-intercalated) graphene, leading ultimately to its complete etching.

  3. Sensitive determination of dopamine levels via surface-enhanced Raman scattering of Ag nanoparticle dimers.

    Science.gov (United States)

    Yu, Xiantong; He, XiaoXiao; Yang, Taiqun; Zhao, Litao; Chen, Qichen; Zhang, Sanjun; Chen, Jinquan; Xu, Jianhua

    2018-01-01

    Dopamine (DA) is an important neurotransmitter in the hypothalamus and pituitary gland, which can produce a direct influence on mammals' emotions in midbrain. Additionally, the level of DA is highly related with some important neurologic diseases such as schizophrenia, Parkinson, and Huntington's diseases, etc. In light of the important roles that DA plays in the disease modulation, it is of considerable significance to develop a sensitive and reproducible approach for monitoring DA. The objective of this study was to develop an efficient approach to quantitatively monitor the level of DA using Ag nanoparticle (NP) dimers and enhanced Raman spectroscopy. Ag NP dimers were synthesized for the sensitive detection of DA via surface-enhanced Raman scattering (SERS). Citrate was used as both the capping agent of NPs and sensing agent to DA, which is self-assembled on the surface of Ag NP dimers by reacting with the surface carboxyl group to form a stable amide bond. To improve accuracy and precision, the multiplicative effects model for surface-enhanced Raman spectroscopy was utilized to analyze the SERS assays. A low limits of detection (LOD) of 20 pM and a wide linear response range from 30 pM to 300 nM were obtained for DA quantitative detection. The SERS enhancement factor was theoretically valued at approximately 10 7 by discrete dipole approximation. DA was self-assembled on the citrate capped surface of Ag NPs dimers through the amide bond. The adsorption energy was estimated to be 256 KJ/mol using the Langmuir isotherm model. The density functional theory was used to simulate the spectral characteristics of SERS during the adsorption of DA on the surface of the Ag dimers. Furthermore, to improve the accuracy and precision of quantitative analysis of SERS assays with a multiplicative effects model for surface-enhanced Raman spectroscopy. A LOD of 20 pM DA-level was obtained, and the linear response ranged from 30 pM to 300 nM for quantitative DA detection. The

  4. Synthesis of 2.5 nm colloidal iridium nanoparticles with strong surface enhanced Raman scattering activity

    International Nuclear Information System (INIS)

    Cui, Malin; Zhao, Yuan; Wang, Chan; Song, Qijun

    2016-01-01

    Colloidal iridium nanoparticles (IrNPs) were synthesized through an environmentally friendly approach by using trisodium citrate as the capping molecule in an aqueous medium. The resulting colloidal IrNPs have a typical diameter of 2.5 nm and display absorption bands at 250, 400 and 600 nm. They possess uniform morphology, good dispersibility, excellent stability in water, and exhibit strong surface enhanced Raman scattering (SERS) activity with an enhancement factor (EF) of 3.5 × 10 5 at the 1512 cm -1 peak when using Rhodamine 6G as the probe molecule. The excellent SERS performance of the IrNPs was exemplarily applied to the determination of the industrial colorant Sudan Red I. The peak intensity of the Raman band at 1236 cm -1 is linearly related to the concentration of Sudan Red I which can be determined by SERS in the 2 nM to 8 μM concentration range with a limit of detection as low as 0.6 nM. In our perception, this strong SERS activity of the IrNPs has a large potential in the SERS-based quantitation of various chemical substances. (author)

  5. High surface enhanced Raman scattering activity of BN nanosheets–Ag nanoparticles hybrids

    International Nuclear Information System (INIS)

    Yang, Shanshan; Zhang, Zhaochun; Zhao, Jun; Zheng, Houli

    2014-01-01

    Highlights: • Boron nitride–silver nanohybrid was acquired through a liquid-phase reducing route. • The composite shown a high-quality SERS activity. • 2-Mercaptobenzimidazole was chemisorbed on silver surface in vertical orientation. -- Abstract: A facile liquid-phase reducing route was developed to modify boron nitride (BN) nanosheets with silver nanoparticles (AgNPs) in order to fabricate BN–AgNPs hybrids with high surface enhanced Raman scattering (SERS) activity. The layered structure and morphology of BN–AgNPs nanohybrids were characterized by transmission electron microscopy and atomic force microscopy, meanwhile, Fourier transform infrared spectroscopy and ultraviolet–visible were used for studying optical properties and surface plasmon resonance applied to the optical sensor. The SERS of adsorbed 2-mercaptobenzimidazole (MBI) molecule was investigated which shown that the BN–AgNPs substrate exhibited a very strong SERS activity, offering a great potential application in molecular probe sensor. On the basis of the analysis of SERS and the Raman surface selection rules, we could draw a conclusion that the MBI molecule was adsorbed upright on the AgNPs surface through the sulphur and nitrogen atoms. What is more, the cyclic voltammetry experiment indicated the electrochemically irreversible behavior of BN–AgNPs nanohybrids in KCl solution

  6. Superhydrophobic Ag decorated ZnO nanostructured thin film as effective surface enhanced Raman scattering substrates

    Science.gov (United States)

    Jayram, Naidu Dhanpal; Sonia, S.; Poongodi, S.; Kumar, P. Suresh; Masuda, Yoshitake; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2015-11-01

    The present work is an attempt to overcome the challenges in the fabrication of super hydrophobic silver decorated zinc oxide (ZnO) nanostructure thin films via thermal evaporation process. The ZnO nanowire thin films are prepared without any surface modification and show super hydrophobic nature with a contact angle of 163°. Silver is further deposited onto the ZnO nanowire to obtain nanoworm morphology. Silver decorated ZnO (Ag@ZnO) thin films are used as substrates for surface enhanced Raman spectroscopy (SERS) studies. The formation of randomly arranged nanowire and silver decorated nanoworm structure is confirmed using FESEM, HR-TEM and AFM analysis. Crystallinity and existence of Ag on ZnO are confirmed using XRD and XPS studies. A detailed growth mechanism is discussed for the formation of the nanowires from nanobeads based on various deposition times. The prepared SERS substrate reveals a reproducible enhancement of 3.082 × 107 M for Rhodamine 6G dye (R6G) for 10-10 molar concentration per liter. A higher order of SERS spectra is obtained for a contact angle of 155°. Thus the obtained thin films show the superhydrophobic nature with a highly enhanced Raman spectrum and act as SERS substrates. The present nanoworm morphology shows a new pathway for the construction of semiconductor thin films for plasmonic studies and challenges the orderly arranged ZnO nanorods, wires and other nano structure substrates used in SERS studies.

  7. Surface-enhanced Raman scattering active gold nanoparticle/nanohole arrays fabricated through electron beam lithography

    Science.gov (United States)

    Wu, Tsunghsueh; Lin, Yang-Wei

    2018-03-01

    Effective surface-enhanced Raman scattering (SERS)-active substrates from gold nanoparticle and gold nanohole arrays were successfully fabricated through electron beam lithography with precise computer-aided control of the unit size and intergap distance. Their SERS performance was evaluated using 4-mercaptobenzoic acid (4-MBA). These gold arrays yielded strong SERS signals under 785 nm laser excitation. The enhancement factors for 4-MBA molecules on the prepared gold nanoparticle and nanohole arrays maxed at 1.08 × 107 and 8.61 × 106, respectively. The observed increase in SERS enhancement was attributed to the localized surface plasmon resonance (LSPR) wavelength shifting toward the near-infrared regime when the gold nanohole diameter increased, in agreement with the theoretical prediction in this study. The contribution of LSPR to the Raman enhancement from nanohole arrays deposited on fluorine-doped tin oxide glass was elucidated by comparing SERS and transmission spectra. This simple fabrication procedure, which entails employing electron beam lithography and the controllability of the intergap distance, suggests highly promising uses of nanohole arrays as functional components in sensing and photonic devices.

  8. Chip-Scale Bioassays Based on Surface-Enhanced Raman Scattering: Fundamentals and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye-Young [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    This work explores the development and application of chip-scale bioassays based on surface-enhanced Raman scattering (SERS) for high throughput and high sensitivity analysis of biomolecules. The size effect of gold nanoparticles on the intensity of SERS is first presented. A sandwich immunoassay was performed using Raman-labeled immunogold nanoparticles with various sizes. The SERS responses were correlated to particle densities, which were obtained by atomic force microscopy (AFM). The response of individual particles was also investigated using Raman-microscope and an array of gold islands on a silicon substrate. The location and the size of individual particles were mapped using AFM. The next study describes a low-level detection of Escherichia coli 0157:H7 and simulants of biological warfare agents in a sandwich immunoassay format using SERS labels, which have been termed Extrinsic Raman labels (ERLs). A new ERL scheme based on a mixed monolayer is also introduced. The mixed monolayer ERLs were created by covering the gold nanoparticles with a mixture of two thiolates, one thiolate for covalently binding antibody to the particle and the other thiolate for producing a strong Raman signal. An assay platform based on mixed self-assembled monolayers (SAMs) on gold is then presented. The mixed SAMs were prepared from dithiobis(succinimidyl undecanoate) (DSU) to covalently bind antibodies on gold substrate and oligo(ethylene glycol)-terminated thiol to prevent nonspecific adsorption of antibodies. After the mixed SAMs surfaces, formed from various mole fraction of DSU were incubated with antibodies, AFM was used to image individual antibodies on the surface. The final study presents a collaborative work on the single molecule adsorption of YOYO-I labeled {lambda}-DNA at compositionally patterned SAMs using total internal reflection fluorescence microscopy. The role of solution pH, {lambda}-DNA concentration, and domain size was investigated. This work also revealed

  9. Non-invasive optical detection of esophagus cancer based on urine surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Huang, Shaohua; Wang, Lan; Chen, Weiwei; Lin, Duo; Huang, Lingling; Wu, Shanshan; Feng, Shangyuan; Chen, Rong

    2014-09-01

    A surface-enhanced Raman spectroscopy (SERS) approach was utilized for urine biochemical analysis with the aim to develop a label-free and non-invasive optical diagnostic method for esophagus cancer detection. SERS spectrums were acquired from 31 normal urine samples and 47 malignant esophagus cancer (EC) urine samples. Tentative assignments of urine SERS bands demonstrated esophagus cancer specific changes, including an increase in the relative amounts of urea and a decrease in the percentage of uric acid in the urine of normal compared with EC. The empirical algorithm integrated with linear discriminant analysis (LDA) were employed to identify some important urine SERS bands for differentiation between healthy subjects and EC urine. The empirical diagnostic approach based on the ratio of the SERS peak intensity at 527 to 1002 cm-1 and 725 to 1002 cm-1 coupled with LDA yielded a diagnostic sensitivity of 72.3% and specificity of 96.8%, respectively. The area under the receive operating characteristic (ROC) curve was 0.954, which further evaluate the performance of the diagnostic algorithm based on the ratio of the SERS peak intensity combined with LDA analysis. This work demonstrated that the urine SERS spectra associated with empirical algorithm has potential for noninvasive diagnosis of esophagus cancer.

  10. A Nanosensor for TNT Detection Based on Molecularly Imprinted Polymers and Surface Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Mikella E. Hankus

    2011-03-01

    Full Text Available We report on a new sensor strategy that integrates molecularly imprinted polymers (MIPs with surface enhanced Raman scattering (SERS. The sensor was developed to detect the explosive, 2,4,6-trinitrotoluene (TNT. Micron thick films of sol gel-derived xerogels were deposited on a SERS-active surface as the sensing layer. Xerogels were molecularly imprinted for TNT using non-covalent interactions with the polymer matrix. Binding of the TNT within the polymer matrix results in unique SERS bands, which allow for detection and identification of the molecule in the MIP. This MIP-SERS sensor exhibits an apparent dissociation constant of (2.3 ± 0.3 × 10−5 M for TNT and a 3 µM detection limit. The response to TNT is reversible and the sensor is stable for at least 6 months. Key challenges, including developing a MIP formulation that is stable and integrated with the SERS substrate, and ensuring the MIP does not mask the spectral features of the target analyte through SERS polymer background, were successfully met. The results also suggest the MIP-SERS protocol can be extended to other target analytes of interest.

  11. Fabrication and evolution of multilayer silver nanofilms for surface-enhanced Raman scattering sensing of arsenate

    Directory of Open Access Journals (Sweden)

    Li Jinwei

    2011-01-01

    Full Text Available Abstract Surface-enhanced Raman scattering (SERS has recently been investigated extensively for chemical and biomolecular sensing. Multilayer silver (Ag nanofilms deposited on glass slides by a simple electroless deposition process have been fabricated as active substrates (Ag/GL substrates for arsenate SERS sensing. The nanostructures and layer characteristics of the multilayer Ag films could be tuned by varying the concentrations of reactants (AgNO3/BuNH2 and reaction time. A Ag nanoparticles (AgNPs double-layer was formed by directly reducing Ag+ ions on the glass surfaces, while a top layer (3rd-layer of Ag dendrites was deposited on the double-layer by self-assembling AgNPs or AgNPs aggregates which had already formed in the suspension. The SERS spectra of arsenate showed that characteristic SERS bands of arsenate appear at approximately 780 and 420 cm-1, and the former possesses higher SERS intensity. By comparing the peak heights of the approximately 780 cm-1 band of the SERS spectra, the optimal Ag/GL substrate has been obtained for the most sensitive SERS sensing of arsenate. Using this optimal substrate, the limit of detection (LOD of arsenate was determined to be approximately 5 μg·l-1.

  12. One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Liu, Gui-qiang; Yu, Mei-dong; Liu, Zheng-qi; Liu, Xiao-shan; Huang, Shan; Pan, Ping-ping; Wang, Yan; Liu, Mu-lin; Gu, Gang

    2015-01-01

    One-process fabrication of highly active and reproducible surface-enhanced Raman scattering (SERS) substrates via ion beam deposition is reported. The fabricated metal–dielectric–metal (MDM) hierarchical nanostructure possesses rich nanogaps and a tunable resonant cavity. Raman scattering signals of analytes are dramatically strengthened due to the strong near-field coupling of localized surface plasmon resonances (LSPRs) and the strong interaction of LSPRs of metal NPs with surface plasmon polaritons (SPPs) on the underlying metal film by crossing over the dielectric spacer. The maximum Raman enhancement for the highest Raman peak at 1650 cm −1 is 13.5 times greater than that of a single metal nanoparticle (NP) array. Moreover, the SERS activity can be efficiently tailored by varying the size and number of voids between adjacent metal NPs and the thickness of the dielectric spacer. These findings may broaden the scope of SERS applications of MDM hierarchical nanostructures in biomedical and analytical chemistry. (paper)

  13. Influence of picosecond multiple/single line ablation on copper nanoparticles fabricated for surface enhanced Raman spectroscopy and photonics applications

    International Nuclear Information System (INIS)

    Hamad, Syed; Tewari, Surya P; Podagatlapalli, G Krishna; Rao, S Venugopal

    2013-01-01

    A comprehensive study comprising fabrication of copper nanoparticles (NPs) using picosecond (ps) multiple/single line ablation in various solvents such as acetone, dichloromethane (DCM), acetonitrile (ACN) and chloroform followed by optical, nonlinear optical (NLO), and surface enhanced Raman spectroscopy (SERS) characterization was performed. The influence of surrounding liquid media and the writing conditions resulted in fabrication of Cu NPs in acetone, CuCl NPs in DCM, CuO NPs in ACN and CuCl 2 NPs in chloroform. Prepared colloids were characterized through transmission electron microscopy, energy dispersive x-ray spectra, selected area electron diffraction and UV-visible absorption spectra. A detailed investigation of the surface enhanced Raman scattering (SERS) activity and the ps NLO properties of the colloids prepared through multiple/single line ablation techniques revealed that the best performance was achieved by Cu NPs for SERS applications and CuCl 2 NPs for NLO applications. (paper)

  14. Templated green synthesis of plasmonic silver nanoparticles in onion epidermal cells suitable for surface-enhanced Raman and hyper-Raman scattering

    DEFF Research Database (Denmark)

    Palanco, Marta Espina; Mogensen, Klaus Bo; Guehlke, Marina

    2016-01-01

    We report fast and simple green synthesis of plasmonic silver nanoparticles in the epidermal cells of onions after incubation with AgNO3 solution. The biological environment supports the generation of silver nanostructures in two ways. The plant tissue delivers reducing chemicals for the initial...... for one-and two-photon-excited spectroscopy such as surface enhanced Raman scattering (SERS) and surface enhanced hyper-Raman scattering (SEHRS). Our studies demonstrate a templated green preparation of enhancing plasmonic nanoparticles and suggest a new route to deliver silver nanoparticles as basic...... building blocks of plasmonic nanosensors to plants by the uptake of solutions of metal salts....

  15. Three-dimensional hybrid silicon nanostructures for surface enhanced Raman spectroscopy based molecular detection

    Science.gov (United States)

    Vendamani, V. S.; Nageswara Rao, S. V. S.; Venugopal Rao, S.; Kanjilal, D.; Pathak, A. P.

    2018-01-01

    Three-dimensional silver nanoparticles decorated vertically aligned Si nanowires (Si NWs) are effective surface-enhanced Raman spectroscopy (SERS) substrates for molecular detection at low concentration levels. The length of Si NWs prepared by silver assisted electroless etching is increased with an increase in etching time, which resulted in the reduced optical reflection in the visible region. These substrates were tested and optimized by measuring the Raman spectrum of standard dye Rhodamine 6G (R6G) of 10 nM concentration. Further, effective SERS enhancements of ˜105 and ˜104 were observed for the cytosine protein (concentration of 50 μM) and ammonium perchlorate (oxidizer used in explosives composition with a concentration of 10 μM), respectively. It is established that these three-dimensional SERS substrates yielded considerably higher enhancement factors for the detection of R6G when compared to previous reports. The sensitivity can further be increased and optimized since the Raman enhancement was found to increase with an increase in the density of silver nanoparticles decorated on the walls of Si NWs.

  16. Aggregation of nanoparticles in endosomes and lysosomes produces surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Lucas, Leanne J.; Chen, Xiaoke K.; Smith, Aaron J.; Korbelik, Mladen; Zeng, Haishan; Lee, Patrick W. K.; Hewitt, Kevin Cecil

    2015-01-01

    The purpose of this study was to explore the use of surface-enhanced Raman spectroscopy (SERS) to image the distribution of epidermal growth factor receptor (EGFR) in cells. To accomplish this task, 30-nm gold nanoparticles (AuNPs) tagged with antibodies to EGFR (1012 per mL) were incubated with cells (106 per mL) of the A431 human epidermoid carcinoma and normal human bronchial epithelial cell lines. Using the 632.8-nm excitation line of a He-Ne laser, Raman spectroscopy measurements were performed using a point mapping scheme. Normal cells show little to no enhancement. SERS signals were observed inside the cytoplasm of A431 cells with an overall enhancement of 4 to 7 orders of magnitude. Raman intensity maps of the 1450 and 1583 cm-1 peaks correlate well with the expected distribution of EGFR and AuNPs, aggregated following uptake by endosomes and lysosomes. Spectral features from tyrosine and tryptophan residues dominate the SERS signals.

  17. Dimensional scale effects on surface enhanced Raman scattering efficiency of self-assembled silver nanoparticle clusters

    International Nuclear Information System (INIS)

    Fasolato, C.; Domenici, F.; De Angelis, L.; Luongo, F.; Postorino, P.; Sennato, S.; Mura, F.; Costantini, F.; Bordi, F.

    2014-01-01

    A study of the Surface Enhanced Raman Scattering (SERS) from micrometric metallic nanoparticle aggregates is presented. The sample is obtained from the self-assembly on glass slides of micro-clusters of silver nanoparticles (60 and 100 nm diameter), functionalized with the organic molecule 4-aminothiophenol in water solution. For nanoparticle clusters at the micron scale, a maximum enhancement factor of 10 9 is estimated from the SERS over the Raman intensity ratio normalized to the single molecule contribution. Atomic force microscopy, correlated to spatially resolved Raman measurements, allows highlighting the connection between morphology and efficiency of the plasmonic system. The correlation between geometric features and SERS response of the metallic structures reveals a linear trend of the cluster maximum scattered intensity as a function of the surface area of the aggregate. On given clusters, the intensity turns out to be also influenced by the number of stacking planes of the aggregate, thus suggesting a plasmonic waveguide effect. The linear dependence results weakened for the largest area clusters, suggesting 30 μm 2 as the upper limit for exploiting the coherence over large scale of the plasmonic response.

  18. Amplification of Surface-Enhanced Raman Scattering Due to Substrate-Mediated Localized Surface Plasmons in Gold Nanodimers

    KAUST Repository

    Yue, Weisheng

    2017-03-28

    Surface-enhanced Raman scattering (SERS) is ubiquitous in chemical and biochemical sensing, imaging and identification. Maximizing SERS enhancement is a continuous effort focused on the design of appropriate SERS substrates. Here we show that significant improvement in a SERS signal can be achieved with substrates combining localized surface plasmon resonances and a nonresonant plasmonic substrate. By introducing a continuous gold (Au) film underneath Au nanodimers antenna arrays, an over 10-fold increase in SERS enhancement is demonstrated. Triangular, rectangle and disc dimers were studied, with bowtie antenna providing highest SERS enhancement. Simulations of electromagnetic field distributions of the Au nanodimers on the Au film support the observed enhancement dependences. The hybridization of localized plasmonic modes with the image modes in a metal film provides a straightforward way to improve SERS enhancement in designer SERS substrate.

  19. Rapid Determination of Thiabendazole Pesticides in Rape by Surface Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Lin, Lei; Dong, Tao; Nie, Pengcheng; Qu, Fangfang; He, Yong; Chu, Bingquan; Xiao, Shupei

    2018-04-04

    Thiabendazole is widely used in sclerotium blight, downy mildew and black rot prevention and treatment in rape. Accurate monitoring of thiabendazole pesticides in plants will prevent potential adverse effects to the Environment and human health. Surface Enhanced Raman Spectroscopy (SERS) is a highly sensitive fingerprint with the advantages of simple operation, convenient portability and high detection efficiency. In this paper, a rapid determination method of thiabendazole pesticides in rape was conducted combining SERS with chemometric methods. The original SERS were pretreated and the partial least squares (PLS) was applied to establish the prediction model between SERS and thiabendazole pesticides in rape. As a result, the SERS enhancing effect based on silver Nano-substrate was better than that of gold Nano-substrate, where the detection limit of thiabendazole pesticides in rape could reach 0.1 mg/L. Moreover, 782, 1007 and 1576 cm −1 could be determined as thiabendazole pesticides Raman characteristic peaks in rape. The prediction effect of thiabendazole pesticides in rape was the best ( R p 2 = 0.94, RMSEP = 3.17 mg/L) after the original spectra preprocessed with 1st-Derivative, and the linear relevance between thiabendazole pesticides concentration and Raman peak intensity at 782 cm −1 was the highest ( R² = 0.91). Furthermore, five rape samples with unknown thiabendazole pesticides concentration were used to verify the accuracy and reliability of this method. It was showed that prediction relative standard deviation was 0.70–9.85%, recovery rate was 94.71–118.92% and t value was −1.489. In conclusion, the thiabendazole pesticides in rape could be rapidly and accurately detected by SERS, which was beneficial to provide a rapid, accurate and reliable scheme for the detection of pesticides residues in agriculture products.

  20. Rapid Determination of Thiabendazole Pesticides in Rape by Surface Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Lei Lin

    2018-04-01

    Full Text Available Thiabendazole is widely used in sclerotium blight, downy mildew and black rot prevention and treatment in rape. Accurate monitoring of thiabendazole pesticides in plants will prevent potential adverse effects to the Environment and human health. Surface Enhanced Raman Spectroscopy (SERS is a highly sensitive fingerprint with the advantages of simple operation, convenient portability and high detection efficiency. In this paper, a rapid determination method of thiabendazole pesticides in rape was conducted combining SERS with chemometric methods. The original SERS were pretreated and the partial least squares (PLS was applied to establish the prediction model between SERS and thiabendazole pesticides in rape. As a result, the SERS enhancing effect based on silver Nano-substrate was better than that of gold Nano-substrate, where the detection limit of thiabendazole pesticides in rape could reach 0.1 mg/L. Moreover, 782, 1007 and 1576 cm−1 could be determined as thiabendazole pesticides Raman characteristic peaks in rape. The prediction effect of thiabendazole pesticides in rape was the best ( R p 2 = 0.94, RMSEP = 3.17 mg/L after the original spectra preprocessed with 1st-Derivative, and the linear relevance between thiabendazole pesticides concentration and Raman peak intensity at 782 cm−1 was the highest (R2 = 0.91. Furthermore, five rape samples with unknown thiabendazole pesticides concentration were used to verify the accuracy and reliability of this method. It was showed that prediction relative standard deviation was 0.70–9.85%, recovery rate was 94.71–118.92% and t value was −1.489. In conclusion, the thiabendazole pesticides in rape could be rapidly and accurately detected by SERS, which was beneficial to provide a rapid, accurate and reliable scheme for the detection of pesticides residues in agriculture products.

  1. Surface enhanced Raman scattering in organic thin films covered with silver, indium and magnesium

    International Nuclear Information System (INIS)

    Salvan, Georgeta; Zahn, Dietrich R.T.; Paez, Beynor

    2004-01-01

    In situ resonant Raman spectroscopy was applied for the investigation of the interface formation between silver, indium and magnesium with polycrystalline organic semiconductor layers of 3,4,9,10-perylene tetra-carboxylic dianhydride (PTCDA). The spectral region of internal as well as external vibrational modes was recorded in order to achieve information related to the chemistry and the structure of the interface as well as to morphology of the metal layer. The experiments benefit from a strong enhancement of the internal mode scattering intensities which is induced by the rough morphology of deposited metals leading to surface enhanced Raman scattering (SERS). The external modes, on the other hand, are attenuated at different rates indicating that the diffusion of the metal atoms into the crystalline layers is highest for indium and lowest for magnesium

  2. Surface enhanced Raman spectroscopic studies on aspirin : An experimental and theoretical approach

    Energy Technology Data Exchange (ETDEWEB)

    Premkumar, R.; Premkumar, S.; Parameswari, A.; Mathavan, T.; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, N.M.S.S.V.N College, Madurai-625019, Tamilnadu, India. (India); Rekha, T. N. [PG and Research Department of Physics, Lady Doak College, Madurai-625 002, Tamilnadu, India. (India)

    2016-05-06

    Surface enhanced Raman scattering (SERS) studies on aspirin molecule adsorbed on silver nanoparticles (AgNPs) were investigated by experimental and density functional theory approach. The AgNPs were synthesized by the solution-combustion method and characterized by the X-ray diffraction and high resolution-transmission electron microscopy techniques. The averaged particle size of synthesized AgNPs was calculated as ∼55 nm. The normal Raman spectrum (nRs) and SERS spectrum of the aspirin were recorded. The molecular structure of the aspirin and aspirin adsorbed on silver cluster were optimized by the DFT/ B3PW91 method with LanL2DZ basis set. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation. The calculated nRs and SERS frequencies were correlated well with the observed frequencies. The flat-on orientation was predicted from the nRs and SERS spectra, when the aspirin adsorbed on the AgNPs. Hence, the present studies lead to the understanding of adsorption process of aspirin on the AgNPs, which paves the way for biomedical applications.

  3. Surface-Enhanced Raman Spectroscopy as a Probe of the Surface Chemistry of Nanostructured Materials.

    Science.gov (United States)

    Dick, Susan; Konrad, Magdalena P; Lee, Wendy W Y; McCabe, Hannah; McCracken, John N; Rahman, Taifur M D; Stewart, Alan; Xu, Yikai; Bell, Steven E J

    2016-07-01

    Surface-enhanced Raman spectroscopy (SERS) is now widely used as a rapid and inexpensive tool for chemical/biochemical analysis. The method can give enormous increases in the intensities of the Raman signals of low-concentration molecular targets if they are adsorbed on suitable enhancing substrates, which are typically composed of nanostructured Ag or Au. However, the features of SERS that allow it to be used as a chemical sensor also mean that it can be used as a powerful probe of the surface chemistry of any nanostructured material that can provide SERS enhancement. This is important because it is the surface chemistry that controls how these materials interact with their local environment and, in real applications, this interaction can be more important than more commonly measured properties such as morphology or plasmonic absorption. Here, the opportunity that this approach to SERS provides is illustrated with examples where the surface chemistry is both characterized and controlled in order to create functional nanomaterials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Analysis of temporal evolution of quantum dot surface chemistry by surface-enhanced Raman scattering.

    Science.gov (United States)

    Doğan, İlker; Gresback, Ryan; Nozaki, Tomohiro; van de Sanden, Mauritius C M

    2016-07-08

    Temporal evolution of surface chemistry during oxidation of silicon quantum dot (Si-QD) surfaces were probed using surface-enhanced Raman scattering (SERS). A monolayer of hydrogen and chlorine terminated plasma-synthesized Si-QDs were spin-coated on silver oxide thin films. A clearly enhanced signal of surface modes, including Si-Clx and Si-Hx modes were observed from as-synthesized Si-QDs as a result of the plasmonic enhancement of the Raman signal at Si-QD/silver oxide interface. Upon oxidation, a gradual decrease of Si-Clx and Si-Hx modes, and an emergence of Si-Ox and Si-O-Hx modes have been observed. In addition, first, second and third transverse optical modes of Si-QDs were also observed in the SERS spectra, revealing information on the crystalline morphology of Si-QDs. An absence of any of the abovementioned spectral features, but only the first transverse optical mode of Si-QDs from thick Si-QD films validated that the spectral features observed from Si-QDs on silver oxide thin films are originated from the SERS effect. These results indicate that real-time SERS is a powerful diagnostic tool and a novel approach to probe the dynamic surface/interface chemistry of quantum dots, especially when they involve in oxidative, catalytic, and electrochemical surface/interface reactions.

  5. Surface enhanced Raman spectroscopic studies on aspirin : An experimental and theoretical approach

    International Nuclear Information System (INIS)

    Premkumar, R.; Premkumar, S.; Parameswari, A.; Mathavan, T.; Benial, A. Milton Franklin; Rekha, T. N.

    2016-01-01

    Surface enhanced Raman scattering (SERS) studies on aspirin molecule adsorbed on silver nanoparticles (AgNPs) were investigated by experimental and density functional theory approach. The AgNPs were synthesized by the solution-combustion method and characterized by the X-ray diffraction and high resolution-transmission electron microscopy techniques. The averaged particle size of synthesized AgNPs was calculated as ∼55 nm. The normal Raman spectrum (nRs) and SERS spectrum of the aspirin were recorded. The molecular structure of the aspirin and aspirin adsorbed on silver cluster were optimized by the DFT/ B3PW91 method with LanL2DZ basis set. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation. The calculated nRs and SERS frequencies were correlated well with the observed frequencies. The flat-on orientation was predicted from the nRs and SERS spectra, when the aspirin adsorbed on the AgNPs. Hence, the present studies lead to the understanding of adsorption process of aspirin on the AgNPs, which paves the way for biomedical applications.

  6. A practical method to fabricate gold substrates for surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Tantra, Ratna; Brown, Richard J C; Milton, Martin J T; Gohil, Dipak

    2008-09-01

    We describe a practical method of fabricating surface-enhanced Raman spectroscopy (SERS) substrates based on dip-coating poly-L-lysine derivatized microscope slides in a gold colloidal suspension. The use of only commercially available starting materials in this preparation is particularly advantageous, aimed at both reducing time and the inconsistency associated with surface modification of substrates. The success of colloid deposition has been demonstrated by scanning electron microscopy (SEM) and the corresponding SERS response (giving performance comparable to the corresponding traditional colloidal SERS substrates). Reproducibility was evaluated by conducting replicate measurements across six different locations on the substrate and assessing the extent of the variability (standard deviation values of spectral parameters: peak width and height), in response to either Rhodamine 6G or Isoniazid. Of particular interest is the observation of how some peaks in a given spectrum are more susceptible to data variability than others. For example, in a Rhodamine 6G SERS spectrum, spectral parameters of the peak at 775 cm(-1) were shown to have a relative standard deviation (RSD) % of or=10%. This observation is best explained by taking into account spectral variations that arise from the effect of a chemisorption process and the local nature of chemical enhancement mechanisms, which affects the enhancement of some spectral peaks but not others (analogous to resonant Raman phenomenon).

  7. Surface enhanced Raman spectroscopy detection of biomolecules using EBL fabricated nanostructured substrates.

    Science.gov (United States)

    Peters, Robert F; Gutierrez-Rivera, Luis; Dew, Steven K; Stepanova, Maria

    2015-03-20

    Fabrication and characterization of conjugate nano-biological systems interfacing metallic nanostructures on solid supports with immobilized biomolecules is reported. The entire sequence of relevant experimental steps is described, involving the fabrication of nanostructured substrates using electron beam lithography, immobilization of biomolecules on the substrates, and their characterization utilizing surface-enhanced Raman spectroscopy (SERS). Three different designs of nano-biological systems are employed, including protein A, glucose binding protein, and a dopamine binding DNA aptamer. In the latter two cases, the binding of respective ligands, D-glucose and dopamine, is also included. The three kinds of biomolecules are immobilized on nanostructured substrates by different methods, and the results of SERS imaging are reported. The capabilities of SERS to detect vibrational modes from surface-immobilized proteins, as well as to capture the protein-ligand and aptamer-ligand binding are demonstrated. The results also illustrate the influence of the surface nanostructure geometry, biomolecules immobilization strategy, Raman activity of the molecules and presence or absence of the ligand binding on the SERS spectra acquired.

  8. Surface-enhanced Raman imaging of cell membrane by a highly homogeneous and isotropic silver nanostructure

    Science.gov (United States)

    Zito, Gianluigi; Rusciano, Giulia; Pesce, Giuseppe; Dochshanov, Alden; Sasso, Antonio

    2015-04-01

    Label-free chemical imaging of live cell membranes can shed light on the molecular basis of cell membrane functionalities and their alterations under membrane-related diseases. In principle, this can be done by surface-enhanced Raman scattering (SERS) in confocal microscopy, but requires engineering plasmonic architectures with a spatially invariant SERS enhancement factor G(x, y) = G. To this end, we exploit a self-assembled isotropic nanostructure with characteristics of homogeneity typical of the so-called near-hyperuniform disorder. The resulting highly dense, homogeneous and isotropic random pattern consists of clusters of silver nanoparticles with limited size dispersion. This nanostructure brings together several advantages: very large hot spot density (~104 μm-2), superior spatial reproducibility (SD nanotoxicity issues. See DOI: 10.1039/c5nr01341k

  9. Rapid, green synthesis and surface-enhanced Raman scattering effect of single-crystal silver nanocubes

    Science.gov (United States)

    Mao, Aiqin; Jin, Xia; Gu, Xiaolong; Wei, Xiaoqing; Yang, Guojing

    2012-08-01

    Single-crystal silver (Ag) nanocubes have been synthesized by a rapid and green method at room temperature by adding sodium hydroxide solution to the mixed solutions of silver nitrate, glucose and polyvinylpyrrolidone (PVP). The X-ray diffraction (XRD), ultraviolet-visible (UV-visible) and transmission electron microscopy (TEM) were used to characterize the phase composition and morphology. The results showed that the as-prepared particles were single-crystal Ag nanocubes with edge lengths of around 77 nm and a growing direction along {1 0 0} facets. As substrates for surface-enhanced Raman scattering (SERS) experiment on crystal violet (CV), the SERS enhancement factor of the as-prepared Ag nanocubes were measured to be 5.5 × 104, indicating potential applications in chemical and biological analysis.

  10. Synthesis of gold nanoflowers using deep eutectic solvent with high surface enhanced Raman scattering properties

    Science.gov (United States)

    Aghakhani Mahyari, Farzaneh; Tohidi, Maryam; Safavi, Afsaneh

    2016-09-01

    A facile, seed-less and one-pot method was developed for synthesis of gold nanoflowers with multiple tips through reduction of HAuCl4 with deep eutectic solvent at room temperature. This solvent is eco-friendly, low-cost, non-toxic and biodegradable and can act as both reducing and shape-controlling agent. In this protocol, highly branched and stable gold nanoflowers were obtained without using any capping agent. The obtained products were characterized by different techniques including, field emission scanning electron microscopy, transmission electron microscopy, x-ray diffraction and UV-vis spectroscopy. The as-prepared gold nanoflowers exhibit efficient surface-enhanced Raman scattering (SERS) properties which can be used as excellent substrates for SERS.

  11. Rapid bacterial antibiotic susceptibility test based on simple surface-enhanced Raman spectroscopic biomarkers

    Science.gov (United States)

    Liu, Chia-Ying; Han, Yin-Yi; Shih, Po-Han; Lian, Wei-Nan; Wang, Huai-Hsien; Lin, Chi-Hung; Hsueh, Po-Ren; Wang, Juen-Kai; Wang, Yuh-Lin

    2016-03-01

    Rapid bacterial antibiotic susceptibility test (AST) and minimum inhibitory concentration (MIC) measurement are important to help reduce the widespread misuse of antibiotics and alleviate the growing drug-resistance problem. We discovered that, when a susceptible strain of Staphylococcus aureus or Escherichia coli is exposed to an antibiotic, the intensity of specific biomarkers in its surface-enhanced Raman scattering (SERS) spectra drops evidently in two hours. The discovery has been exploited for rapid AST and MIC determination of methicillin-susceptible S. aureus and wild-type E. coli as well as clinical isolates. The results obtained by this SERS-AST method were consistent with that by the standard incubation-based method, indicating its high potential to supplement or replace existing time-consuming methods and help mitigate the challenge of drug resistance in clinical microbiology.

  12. Gold nanoparticle incorporated inverse opal photonic crystal capillaries for optofluidic surface enhanced Raman spectroscopy.

    Science.gov (United States)

    Zhao, Xiangwei; Xue, Jiangyang; Mu, Zhongde; Huang, Yin; Lu, Meng; Gu, Zhongze

    2015-10-15

    Novel transducers are needed for point of care testing (POCT) devices which aim at facile, sensitive and quick acquisition of health related information. Recent advances in optofluidics offer tremendous opportunities for biological/chemical analysis using extremely small sample volumes. This paper demonstrates nanostructured capillary tubes for surface enhanced Raman spectroscopy (SERS) analysis in a flow-through fashion. The capillary tube integrates the SERS sensor and the nanofluidic structure to synergistically offer sample delivery and analysis functions. Inside the capillary tube, inverse opal photonic crystal (IO PhC) was fabricated using the co-assembly approach to form nanoscale liquid pathways. In the nano-voids of the IO PhC, gold nanoparticles were in situ synthesized and functioned as the SERS hotspots. The advantages of the flow-through SERS sensor are multifold. The capillary effect facilities the sample delivery process, the nanofluidic channels boosts the interaction of analyte and gold nanoparticles, and the PhC structure strengthens the optical field near the SERS hotspots and results in enhanced SERS signals from analytes. As an exemplary demonstration, the sensor was used to measure creatinein spiked in artificial urine samples with detection limit of 0.9 mg/dL. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. On-chip ultra-thin layer chromatography and surface enhanced Raman spectroscopy.

    Science.gov (United States)

    Chen, Jing; Abell, Justin; Huang, Yao-wen; Zhao, Yiping

    2012-09-07

    We demonstrate that silver nanorod (AgNR) array substrates can be used for on-chip separation and detection of chemical mixtures by combining ultra-thin layer chromatography (UTLC) and surface enhanced Raman spectroscopy (SERS). The UTLC-SERS plate consists of an AgNR array fabricated by oblique angle deposition. The capability of the AgNR substrates to separate the different compounds in a mixture was explored using a mixture of four dyes and a mixture of melamine and Rhodamine 6G at varied concentrations with different mobile phase solvents. After UTLC separation, spatially-resolved SERS spectra were collected along the mobile phase development direction and the intensities of specific SERS peaks from each component were used to generate chromatograms. The AgNR substrates demonstrate the potential for separating the test dyes with plate heights as low as 9.6 μm. The limits of detection are between 10(-5)-10(-6) M. Furthermore, we show that the coupling of UTLC with SERS improves the SERS detection specificity, as small amounts of target analytes can be separated from the interfering background components.

  14. Tuning plasmons layer-by-layer for quantitative colloidal sensing with surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Anderson, William J; Nowinska, Kamila; Hutter, Tanya; Mahajan, Sumeet; Fischlechner, Martin

    2018-04-19

    Surface-enhanced Raman spectroscopy (SERS) is well known for its high sensitivity that emerges due to the plasmonic enhancement of electric fields typically on gold and silver nanostructures. However, difficulties associated with the preparation of nanostructured substrates with uniform and reproducible features limit reliability and quantitation using SERS measurements. In this work we use layer-by-layer (LbL) self-assembly to incorporate multiple functional building blocks of collaborative assemblies of nanoparticles on colloidal spheres to fabricate SERS sensors. Gold nanoparticles (AuNPs) are packaged in discrete layers, effectively 'freezing nano-gaps', on spherical colloidal cores to achieve multifunctionality and reproducible sensing. Coupling between layers tunes the plasmon resonance for optimum SERS signal generation to achieve a 10 nM limit of detection. Significantly, using the layer-by-layer construction, SERS-active AuNP layers are spaced out and thus optically isolated. This uniquely allows the creation of an internal standard within each colloidal sensor to enable highly reproducible self-calibrated sensing. By using 4-mercaptobenzoic acid (4-MBA) as the internal standard adenine concentrations are quantified to an accuracy of 92.6-99.5%. Our versatile approach paves the way for rationally designed yet quantitative colloidal SERS sensors and their use in a variety of sensing applications.

  15. Extracting Optical Fiber Background from Surface-Enhanced Raman Spectroscopy Spectra Based on Bi-Objective Optimization Modeling.

    Science.gov (United States)

    Huang, Jie; Shi, Tielin; Tang, Zirong; Zhu, Wei; Liao, Guanglan; Li, Xiaoping; Gong, Bo; Zhou, Tengyuan

    2017-08-01

    We propose a bi-objective optimization model for extracting optical fiber background from the measured surface-enhanced Raman spectroscopy (SERS) spectrum of the target sample in the application of fiber optic SERS. The model is built using curve fitting to resolve the SERS spectrum into several individual bands, and simultaneously matching some resolved bands with the measured background spectrum. The Pearson correlation coefficient is selected as the similarity index and its maximum value is pursued during the spectral matching process. An algorithm is proposed, programmed, and demonstrated successfully in extracting optical fiber background or fluorescence background from the measured SERS spectra of rhodamine 6G (R6G) and crystal violet (CV). The proposed model not only can be applied to remove optical fiber background or fluorescence background for SERS spectra, but also can be transferred to conventional Raman spectra recorded using fiber optic instrumentation.

  16. Fabrication of bimetallic microfluidic surface-enhanced Raman scattering sensors on paper by screen printing.

    Science.gov (United States)

    Qu, Lu-Lu; Song, Qi-Xia; Li, Yuan-Ting; Peng, Mao-Pan; Li, Da-Wei; Chen, Li-Xia; Fossey, John S; Long, Yi-Tao

    2013-08-20

    Au-Ag bimetallic microfluidic, dumbbell-shaped, surface enhanced Raman scattering (SERS) sensors were fabricated on cellulose paper by screen printing. These printed sensors rely on a sample droplet injection zone, and a SERS detection zone at either end of the dumbbell motif, fabricated by printing silver nanoparticles (Ag NPs) and gold nanoparticles (Au NPs) successively with microscale precision. The microfluidic channel was patterned using an insulating ink to connect these two zones and form a hydrophobic circuit. Owing to capillary action of paper in the millimeter-sized channels, the sensor could enable self-filtering of fluids to remove suspended particles within wastewater without pumping. This sensor also allows sensitive SERS detection, due to advantageous combination of the strong surface enhancement of Ag NPs and excellent chemical stability of Au NPs. The SERS performance of the sensors was investigated by employing the probe rhodamine 6G, a limit of detection (LOD) of 1.1×10(-13)M and an enhancement factor of 8.6×10(6) could be achieved. Moreover, the dumbbell-shaped bimetallic sensors exhibited good stability with SERS performance being maintained over 14 weeks in air, and high reproducibility with less than 15% variation in spot-to-spot SERS intensity. Using these dumbbell-shaped bimetallic sensors, substituted aromatic pollutants in wastewater samples could be quantitatively analyzed, which demonstrated their excellent capability for rapid trace pollutant detection in wastewater samples in the field without pre-separation. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Simulating Surface-Enhanced Hyper-Raman Scattering Using Atomistic Electrodynamics-Quantum Mechanical Models.

    Science.gov (United States)

    Hu, Zhongwei; Chulhai, Dhabih V; Jensen, Lasse

    2016-12-13

    Surface-enhanced hyper-Raman scattering (SEHRS) is the two-photon analogue of surface-enhanced Raman scattering (SERS), which has proven to be a powerful tool to study molecular structures and surface enhancements. However, few theoretical approaches to SEHRS exist and most neglect the atomistic descriptions of the metal surface and molecular resonance effects. In this work, we present two atomistic electrodynamics-quantum mechanical models to simulate SEHRS. The first is the discrete interaction model/quantum mechanical (DIM/QM) model, which combines an atomistic electrodynamics model of the nanoparticle with a time-dependent density functional theory description of the molecule. The second model is a dressed-tensors method that describes the molecule as a point-dipole and point-quadrupole object interacting with the enhanced local field and field-gradients (FG) from the nanoparticle. In both of these models, the resonance effects are treated efficiently by means of damped quadratic response theory. Using these methods, we simulate SEHRS spectra for benzene and pyridine. Our results show that the FG effects in SEHRS play an important role in determining both the surface selection rules and the enhancements. We find that FG effects are more important in SEHRS than in SERS. We also show that the spectral features of small molecules can be accurately described by accounting for the interactions between the molecule and the local field and FG of the nanoparticle. However, at short distances between the metal and molecule, we find significant differences in the SEHRS enhancements predicted using the DIM/QM and the dressed-tensors methods.

  18. Direct identification of on-bead peptides using surface-enhanced Raman spectroscopic barcoding system for high-throughput bioanalysis.

    Science.gov (United States)

    Kang, Homan; Jeong, Sinyoung; Koh, Yul; Geun Cha, Myeong; Yang, Jin-Kyoung; Kyeong, San; Kim, Jaehi; Kwak, Seon-Yeong; Chang, Hye-Jin; Lee, Hyunmi; Jeong, Cheolhwan; Kim, Jong-Ho; Jun, Bong-Hyun; Kim, Yong-Kweon; Hong Jeong, Dae; Lee, Yoon-Sik

    2015-05-28

    Recently, preparation and screening of compound libraries remain one of the most challenging tasks in drug discovery, biomarker detection, and biomolecular profiling processes. So far, several distinct encoding/decoding methods such as chemical encoding, graphical encoding, and optical encoding have been reported to identify those libraries. In this paper, a simple and efficient surface-enhanced Raman spectroscopic (SERS) barcoding method using highly sensitive SERS nanoparticles (SERS ID) is presented. The 44 kinds of SERS IDs were able to generate simple codes and could possibly generate more than one million kinds of codes by incorporating combinations of different SERS IDs. The barcoding method exhibited high stability and reliability under bioassay conditions. The SERS ID encoding based screening platform can identify the peptide ligand on the bead and also quantify its binding affinity for specific protein. We believe that our SERS barcoding technology is a promising method in the screening of one-bead-one-compound (OBOC) libraries for drug discovery.

  19. Resonance Raman Optical Activity and Surface Enhanced Resonance Raman Optical Activity analysis of Cytochrome C

    DEFF Research Database (Denmark)

    Johannessen, Christian; Abdali, Salim; White, Peter C.

    2007-01-01

    High quality Resonance Raman (RR) and resonance Raman Optical Activity (ROA) spectra of cytochrome c were obtained in order to perform full assignment of spectral features of the resonance ROA spectrum. The resonance ROA spectrum of cytochrome c revealed a distinct spectral signature pattern due...... to resonance enhanced skeletal porphyrin vibrations, more pronounced than any contribution from the protein back-bone. Combining the intrinsic resonance enhancement of cytochrome c with surface plasmon enhancement by colloidal silver particles, the Surface Enhanced Resonance Raman Scattering (SERRS) and Chiral...... Enhanced Raman Spectroscopy (ChERS) spectra of the protein were successfully obtained at very low concentration (as low as 1 µM). The assignment of spectral features was based on the information obtained from the RR and resonance ROA spectra. Excellent agreement between RR and SERRS spectra is reported...

  20. In situ Silver Spot Preparation and on-Plate Surface-Enhanced Raman Scattering Detection in Thin Layer Chromatography Separation

    Science.gov (United States)

    Herman, K.; Mircescu, N. E.; Szabo, L.; Leopold, L. F.; Chiş, V.; Leopold, N.

    2013-05-01

    An improved approach for surface-enhanced Raman scattering (SERS) detection of mixture constituents after thin layer chromatography (TLC) separation is presented. A SERS active silver substrate was prepared under open air conditions, directly on the thin silica film by photo-reduction of silver nitrate, allowing the detection of binary mixtures of cresyl violet, bixine, crystal violet, and Cu(II) complex of 4-(2-pyridylazo)resorcinol. The recorded SERS spectrum provides a unique spectral fingerprint for each molecule; therefore the use of analyte standards is avoided, thus rendering the presented procedure advantageous compared to the conventional detection methodology in TLC.

  1. Laser Raman Spectroscopy with Different Excitation Sources and Extension to Surface Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Md. Wahadoszamen

    2015-01-01

    Full Text Available A dispersive Raman spectrometer was used with three different excitation sources (Argon-ion, He-Ne, and Diode lasers operating at 514.5 nm, 633 nm, and 782 nm, resp.. The system was employed to a variety of Raman active compounds. Many of the compounds exhibit very strong fluorescence while being excited with a laser emitting at UV-VIS region, hereby imposing severe limitation to the detection efficiency of the particular Raman system. The Raman system with variable excitation laser sources provided us with a desired flexibility toward the suppression of unwanted fluorescence signal. With this Raman system, we could detect and specify the different vibrational modes of various hazardous organic compounds and some typical dyes (both fluorescent and nonfluorescent. We then compared those results with the ones reported in literature and found the deviation within the range of ±2 cm−1, which indicates reasonable accuracy and usability of the Raman system. Then, the surface enhancement technique of Raman spectrum was employed to the present system. To this end, we used chemically prepared colloidal suspension of silver nanoparticles as substrate and Rhodamine 6G as probe. We could observe significant enhancement of Raman signal from Rhodamine 6G using the colloidal solution of silver nanoparticles the average magnitude of which is estimated to be 103.

  2. Synthesis of Au Nanostars and Their Application as Surface Enhanced Raman Scattering-Activity Tags Inside Living Cells.

    Science.gov (United States)

    Cao, Xiaowei; Shi, Chaowen; Lu, Wenbo; Zhao, Hang; Wang, Man; Tong, Wei; Dong, Jian; Han, Xiaodong; Qian, Weiping

    2015-07-01

    This work presents the synthesis and characterization of Au nanostars (AuNSs) and demonstrates their application as surface enhanced Raman scattering (SERS)-activity tags for cellular imaging and sensing. Nile blue A (NBA) and bovine serum albumin (BSA) were used as Raman reporter molecules and capping materials, respectively. The SERS-activity tags were tested on human lung adenocarcinoma cell (A549) and alveolar type II cell (AT II) and found to present a low level of cytotoxicity and high chemical stability. These SERS-activity tags not only can be applied in multiplexed cellular imaging, including dark field imaging, transmission electron microscopy (TEM) and SERS imaging, but also can be used for cellular sensing. The SERS spectra clearly identified cellular important components such as proteins, nucleic acids, lipids, and carbohydrates. This study also shows that endocytosis is the main channel of tags internalized in cells. The AuNSs exhibiting strong surface enhanced Raman effects are utilized in the design of an efficient, stable SERS-activity tag for intracellular applications.

  3. Synthesis of gold nanostars with fractal structure: application in surface-enhanced Raman scattering

    Science.gov (United States)

    Zhu, Jian; Liu, Mei-Jin; Li, Jian-Jun; Zhao, Jun-Wu

    2017-11-01

    Multi-branched gold nanostars with fractal feature were synthesized using the Triton X-100 participant seed-growth method. By increasing the amount of ascorbic acid, the branch length of gold nanostars could be greatly increased. It has been interesting to find that the secondary growth of new branches takes place from the elementary structure when the aspect ratio of the branches is greater than 8.0 and the corresponding plasmon absorption wavelength is greater than 900 nm. Raman activity of the gold nanostar films has been investigated by using the 4-mercaptobenzoic acid (4-MBA) as Raman active probe. Experimental results show that the surface-enhanced Raman scattering (SERS) ability of the gold nanostars could be efficiently improved when the fractal structure appears. The physical mechanism has been attributed to the intense increased secondary branch number and the increased "hot spots". These unique multi-branched gold nanostars with fractal feature and great SERS activity should have great potential in sensing applications.

  4. Quick detection of traditional Chinese medicine ‘Atractylodis Macrocephalae Rhizoma’ pieces by surface-enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Huang, Hao; Shi, Hong; Chen, Weiwei; Yu, Yun; Lin, Duo; Xu, Qian; Feng, Shangyuan; Lin, Juqiang; Chen, Rong

    2013-01-01

    A surface-enhanced Raman spectroscopy (SERS) method was developed for the analysis of traditional Chinese medicine ‘Atractylodis Macrocephalae Rhizoma’ pieces (AMRP) for the first time with the aim to develop a quick method for traditional Chinese medicine detection. Both Raman spectra and SERS spectra were obtained from AMRP, and tentative assignments of the Raman bands in the measured spectra suggested that only a few weak Raman peaks could be observed in the regular Raman spectra, while primary Raman peaks at around 536, 555, 619, 648, 691, 733, 790, 958, 1004, 1031, 1112, 1244, 1324, 1395, 1469, 1574 and 1632 cm −1 could be observed in the SERS spectra, with the strongest signals at 619, 733, 958, 1324, 1395 and 1469 cm −1 . This was due to a strong interaction between the silver colloids and the AMRP, which led to an extraordinary enhancement in the intensity of the Raman scattering in AMRP. This exploratory study suggests the SERS technique has great potential for providing a novel non-destructive method for effectively and accurately detecting traditional Chinese medicine without complicated separation and extraction. (paper)

  5. Quick detection of traditional Chinese medicine ‘Atractylodis Macrocephalae Rhizoma’ pieces by surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Huang, Hao; Shi, Hong; Feng, Shangyuan; Lin, Juqiang; Chen, Weiwei; Yu, Yun; Lin, Duo; Xu, Qian; Chen, Rong

    2013-01-01

    A surface-enhanced Raman spectroscopy (SERS) method was developed for the analysis of traditional Chinese medicine ‘Atractylodis Macrocephalae Rhizoma’ pieces (AMRP) for the first time with the aim to develop a quick method for traditional Chinese medicine detection. Both Raman spectra and SERS spectra were obtained from AMRP, and tentative assignments of the Raman bands in the measured spectra suggested that only a few weak Raman peaks could be observed in the regular Raman spectra, while primary Raman peaks at around 536, 555, 619, 648, 691, 733, 790, 958, 1004, 1031, 1112, 1244, 1324, 1395, 1469, 1574 and 1632 cm-1 could be observed in the SERS spectra, with the strongest signals at 619, 733, 958, 1324, 1395 and 1469 cm-1. This was due to a strong interaction between the silver colloids and the AMRP, which led to an extraordinary enhancement in the intensity of the Raman scattering in AMRP. This exploratory study suggests the SERS technique has great potential for providing a novel non-destructive method for effectively and accurately detecting traditional Chinese medicine without complicated separation and extraction.

  6. Surface-enhanced Raman scattering and density functional theory study of 1,4-benzenedithiol and its silver complexes.

    Science.gov (United States)

    Shao, Yangfan; Li, Chongyang; Feng, Yuanming; Lin, Wang

    2013-12-01

    This paper experimentally and theoretically investigated Raman and surface-enhanced Raman scattering (SERS) of 1,4-benzenedithiol (1,4-BDT). Density functional theory methods were used to study Raman scattering spectra of isolated 1,4-BDT and 1,4-BDT-Agn (n=2,4,6) complexes with B3LYP/6-311+g(d)(C,H,S)/Lanl2dz(Ag) basis set. A full assignment of the Raman spectrum of 1,4-BDT has been made based on the DFT analysis. The calculated data showed good agreement with experimental observations. The adsorption sites, metal cluster size, and HOMO-LUMO energies are discussed to give insight in the SERS mechanisms for 1,4-BDT molecules. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Optical nanoantennas for multiband surface-enhanced infrared and raman spectroscopy

    KAUST Repository

    D'Andrea, Cristiano

    2013-04-23

    In this article we show that linear nanoantennas can be used as shared substrates for surface-enhanced Raman and infrared spectroscopy (SERS and SEIRS, respectively). This is done by engineering the plasmonic properties of the nanoantennas, so to make them resonant in both the visible (transversal resonance) and the infrared (longitudinal resonance), and by rotating the excitation field polarization to selectively take advantage of each resonance and achieve SERS and SEIRS on the same nanoantennas. As a proof of concept, we have fabricated gold nanoantennas by electron beam lithography on calcium difluoride (1-2 μm long, 60 nm wide, 60 nm high) that exhibit a transverse plasmonic resonance in the visible (640 nm) and a particularly strong longitudinal dipolar resonance in the infrared (tunable in the 1280-3100 cm -1 energy range as a function of the length). SERS and SEIRS detection of methylene blue molecules adsorbed on the nanoantenna\\'s surface is accomplished, with signal enhancement factors of 5 × 102 for SERS (electromagnetic enhancement) and up to 105 for SEIRS. Notably, we find that the field enhancement provided by the transverse resonance is sufficient to achieve SERS from single nanoantennas. Furthermore, we show that by properly tuning the nanoantenna length the signals of a multitude of vibrational modes can be enhanced with SEIRS. This simple concept of plasmonic nanosensor is highly suitable for integration on lab-on-a-chip schemes for label-free chemical and biomolecular identification with optimized performances. © 2013 American Chemical Society.

  8. Gold split-ring resonators (SRRs) as substrates for surface-enhanced raman scattering

    KAUST Repository

    Yue, Weisheng

    2013-10-24

    We used gold split ring resonators (SRRs) as substrates for surface-enhanced Raman scattering (SERS). The arrays of SRRs were fabricated by electron-beam lithography in combination with plasma etching. In the detection of rhodamine 6G (R6G) molecules, SERS enhancement factors of the order of 105 was achieved. This SERS enhancement increased as the size of the split gap decrease as a consequence of the matching between the resonance wavelength of the SRRs and the excitation wavelength of SERS. As the size of the split gap decreased, the localized surface plasmon resonance shifted to near the excitation wavelength and, thus, resulted in the increase in the electric field on the nanostructures. We used finite integration method (FIT) to simulate numerically the electromagnetic properties of the SRRs. The results of the simulation agreed well with our experimental observations. We anticipate this work will provide an approach to manipulate the SERS enhancement by modulating the size of split gap with SRRs without affecting the area and structural arrangement. © 2013 American Chemical Society.

  9. Surface-enhanced Raman spectroscopy studies of yellow organic dyestuffs and lake pigments in oil paint.

    Science.gov (United States)

    Mayhew, Hannah E; Fabian, David M; Svoboda, Shelley A; Wustholz, Kristin L

    2013-08-21

    Identifying natural, organic dyes and pigments is important for the conservation, preservation, and historical interpretation of works of art. Although previous SERS studies have demonstrated high sensitivity and selectivity for red lake pigments using various pretreatment conditions, corresponding investigations of yellow lake pigments and paints are relatively sparse. Here, surface-enhanced Raman scattering (SERS) spectroscopy is used to identify a variety of yellow organic dyestuffs and lake pigments in oil paint. High-quality SERS spectra of yellow dyestuffs (i.e., turmeric, old fustic, Buckthorn berries) and corresponding paints could be obtained with or without sample pretreatment using microliter quantities of HCl and methanol at room temperature. However, the SERS spectra of yellow lake pigments (i.e., Stil de Grain, Reseda lake) and their corresponding oil paints were only observed upon sample pretreatment. Ultimately, we demonstrate a reliable sample treatment protocol for SERS-based identification of turmeric, old fustic, Buckthorn berries, Stil de Grain, and Reseda lake as well as for microscopic samples of the corresponding oil paints.

  10. Facile fabrication of superhydrophobic hybrid nanotip and nanopore arrays as surface-enhanced Raman spectroscopy substrates

    Science.gov (United States)

    Li, Yuxin; Li, Juan; Wang, Tiankun; Zhang, Zhongyue; Bai, Yu; Hao, Changchun; Feng, Chenchen; Ma, Yingjun; Sun, Runguang

    2018-06-01

    We demonstrate the fabrication of superhydrophobic hybrid nanotip and nanopore arrays (NTNPAs) that can act as sensitive surface-enhanced Raman spectroscopy (SERS) substrates. The large-area substrates were fabricated by following a facile, low-cost process consisting of the one-step voltage-variation anodization of Al foil, followed by Ag nanoparticle deposition and fluorosilane (FS) modification. Uniformly distributed, large-area (5 × 5 cm2) NTNPAs can be obtained rapidly by anodizing Al foil for 1560 s followed by Ag deposition for 400 s, which showed good SERS reproducibility as using1 μM Rhodamine 6G (R6G) as analyte. SERS performances of superhydrophobic NTNPAs with different FS modification and Ag nanoparticle deposition orders were also studied. The nanosamples with FS modification followed by Ag nanoparticle deposition (FS-Ag) showed better SERS sensitivity than the nanosamples with Ag nanoparticle deposition followed by FS modification (Ag-FS). The detection limit of a directly dried R6G droplet can reach 10-8 M on the FS-Ag nanosamples. The results can help create practical high sensitive SERS substrates, which can be used in developing advanced bio- and chemical sensors.

  11. Tip-Selective Growth of Silver on Gold Nanostars for Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Zhang, Weiqing; Liu, Jie; Niu, Wenxin; Yan, Heng; Lu, Xianmao; Liu, Bin

    2018-04-19

    Nanogaps as "hot spots" with highly localized surface plasmon can generate ultrastrong electromagnetic fields. Superior to the exterior nanogaps obtained via aggregation and self-assembly, interior nanogaps within Au and Ag nanostructures give stable and reproducible surface-enhanced Raman scattering (SERS) signals. However, the synthesis of nanostructures with interior hot spots is still challenging because of the lack of high-yield strategies and clear design principles. Herein, gold-silver nanoclusters (Au-Ag NCs) with multiple interior hot spots were fabricated as SERS platforms via selective growth of Ag nanoparticles on the tips of Au nanostars (Au NSs). Furthermore, the interior gap sizes of Au-Ag NCs can be facilely tuned by changing the amount of AgNO 3 used. Upon 785 nm excitation, single Au-Ag NC 350 exhibits 43-fold larger SERS enhancement factor and the optimal signal reproducibility relative to single Au NS. The SERS enhancement factors and signal reproducibility of Au-Ag NCs increase with the decrease of gap sizes. Collectively, the Au-Ag NCs could serve as a flexible, reproducible, and active platform for SERS investigation.

  12. Nanotextured thin films for detection of chemicals by surface enhanced Raman scattering

    Science.gov (United States)

    Korivi, Naga; Jiang, Li; Ahmed, Syed; Nujhat, Nabila; Idrees, Mohanad; Rangari, Vijaya

    2017-11-01

    We report on the development of large area, nanostructured films that function as substrates for surface enhanced Raman scattering (SERS) detection of chemicals. The films are made of polyethylene terephthalate layers partially embedded with multi-walled carbon nanotubes and coated with a thin layer of gold. The films are fabricated by a facile method involving spin-coating, acid dip, and magnetron sputtering. The films perform effectively as SERS substrates when used in the detection of dye pollutants such as Congo red dye, with an enhancement factor of 1.1  ×  106 and a detection limit of 10-7 M which is the lowest reported for CR detection by freestanding SERS film substrates. The films have a long shelf life, and cost US0.20 per cm2 of active area, far less than commercially available SERS substrates. This is the first such work on the use of a polymer layer modified with carbon nanotubes to create a nano-scale texture and arbitrary ‘hot-spots’, contributing to the SERS effect.

  13. Potential of non-invasive esophagus cancer detection based on urine surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Huang, Shaohua; Wang, Lan; Chen, Weisheng; Feng, Shangyuan; Lin, Juqiang; Huang, Zufang; Chen, Guannan; Li, Buhong; Chen, Rong

    2014-11-01

    Non-invasive esophagus cancer detection based on urine surface-enhanced Raman spectroscopy (SERS) analysis was presented. Urine SERS spectra were measured on esophagus cancer patients (n = 56) and healthy volunteers (n = 36) for control analysis. Tentative assignments of the urine SERS spectra indicated some interesting esophagus cancer-specific biomolecular changes, including a decrease in the relative content of urea and an increase in the percentage of uric acid in the urine of esophagus cancer patients compared to that of healthy subjects. Principal component analysis (PCA) combined with linear discriminant analysis (LDA) was employed to analyze and differentiate the SERS spectra between normal and esophagus cancer urine. The diagnostic algorithms utilizing a multivariate analysis method achieved a diagnostic sensitivity of 89.3% and specificity of 83.3% for separating esophagus cancer samples from normal urine samples. These results from the explorative work suggested that silver nano particle-based urine SERS analysis coupled with PCA-LDA multivariate analysis has potential for non-invasive detection of esophagus cancer.

  14. Potential of non-invasive esophagus cancer detection based on urine surface-enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Huang, Shaohua; Wang, Lan; Feng, Shangyuan; Lin, Juqiang; Huang, Zufang; Chen, Guannan; Li, Buhong; Chen, Rong; Chen, Weisheng

    2014-01-01

    Non-invasive esophagus cancer detection based on urine surface-enhanced Raman spectroscopy (SERS) analysis was presented. Urine SERS spectra were measured on esophagus cancer patients (n = 56) and healthy volunteers (n = 36) for control analysis. Tentative assignments of the urine SERS spectra indicated some interesting esophagus cancer-specific biomolecular changes, including a decrease in the relative content of urea and an increase in the percentage of uric acid in the urine of esophagus cancer patients compared to that of healthy subjects. Principal component analysis (PCA) combined with linear discriminant analysis (LDA) was employed to analyze and differentiate the SERS spectra between normal and esophagus cancer urine. The diagnostic algorithms utilizing a multivariate analysis method achieved a diagnostic sensitivity of 89.3% and specificity of 83.3% for separating esophagus cancer samples from normal urine samples. These results from the explorative work suggested that silver nano particle-based urine SERS analysis coupled with PCA–LDA multivariate analysis has potential for non-invasive detection of esophagus cancer. (letter)

  15. Diameter Effect of Silver Nanorod Arrays to Surface-enhanced Raman Scattering

    International Nuclear Information System (INIS)

    Gu, Geun Hoi; Kim, Min Young; Yoon, Hyeok Jin; Suh, Jung Sang

    2014-01-01

    The effect the diameter of silver nanorod arrays whose distance between the nanorods was uniform at 65 nm have on Surface-enhanced Raman Scattering (SERS) has been studied by varying the diameter from 28 to 51 nm. Nanorod length was fixed at approximately 62 nm, which is the optimum length for SERS by excitation with a 632.8 nm laser line. The transverse and longitudinal modes of the surface plasmon of these silver nanorods were near 400 and 630 nm, respectively. The extinction of the longitudinal mode increased with increasing nanorod diameter, while the transverse mode did not change significantly. High-quality SERS spectra of p-aminothiophenol and benzenethiol adsorbed on the tips of the silver nanorods were observed by excitation with a 632.8 nm laser line. The SERS enhancement increased with increasing nanorod diameter. We concluded that the SERS enhancement increases when the diameter of silver nanorods is increased mainly by increasing the excitation efficiency of the longitudinal mode. The enhancement factor for the silver nanorods with a 51 nm diameter was approximately 2 Χ 10 7

  16. Structure elucidation and degradation kinetic study of Ofloxacin using surface enhanced Raman spectroscopy

    Science.gov (United States)

    El-Zahry, Marwa R.; Lendl, Bernhard

    2018-03-01

    A simple, fast and sensitive surface enhanced Raman spectroscopy (SERS) method for quantitative determination of fluoroquinolone antibiotic Ofloxacin (OFX) is presented. Also the stability behavior of OFX was investigated by monitoring the SERS spectra of OFX after various degradation processes. Acidic, basic and oxidative force degradation processes were applied at different time intervals. The forced degradation conditions were conducted and followed using SERS method utilizing silver nanoparticles (Ag NPs) as a SERS substrate. The Ag NPs colloids were prepared by reduction of silver nitrate using polyethyelene glycol (PEG) as a reducing and stabilizing agent. Validation tests were done in accordance with International Conference on Harmonization (ICH) guidelines. The calibration curve with a correlation coefficient (R = 0.9992) was constructed as a relationship between the concentration range of OFX (100-500 ng/ml) and SERS intensity at 1394 cm- 1 band. LOD and LOQ values were calculated and found to be 23.5 ng/ml and 72.6 ng/ml, respectively. The developed method was applied successfully for quantitation of OFX in different pharmaceutical dosage forms. Kinetic parameters were calculated including rate constant of the degradation of the studied antibiotic.

  17. Gold split-ring resonators (SRRs) as substrates for surface-enhanced raman scattering

    KAUST Repository

    Yue, Weisheng; Yang, Yang; Wang, Zhihong; Chen, Longqing; Wang, Xianbin

    2013-01-01

    We used gold split ring resonators (SRRs) as substrates for surface-enhanced Raman scattering (SERS). The arrays of SRRs were fabricated by electron-beam lithography in combination with plasma etching. In the detection of rhodamine 6G (R6G) molecules, SERS enhancement factors of the order of 105 was achieved. This SERS enhancement increased as the size of the split gap decrease as a consequence of the matching between the resonance wavelength of the SRRs and the excitation wavelength of SERS. As the size of the split gap decreased, the localized surface plasmon resonance shifted to near the excitation wavelength and, thus, resulted in the increase in the electric field on the nanostructures. We used finite integration method (FIT) to simulate numerically the electromagnetic properties of the SRRs. The results of the simulation agreed well with our experimental observations. We anticipate this work will provide an approach to manipulate the SERS enhancement by modulating the size of split gap with SRRs without affecting the area and structural arrangement. © 2013 American Chemical Society.

  18. Characterization of Lactococcus lactis response to ampicillin and ciprofloxacin using surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Wang, Panxue; Pang, Shintaro; Zhang, Hua; Fan, Mingtao; He, Lili

    2016-01-01

    Decades of antibiotic use or misuse has resulted in antibiotic resistance in lactic acid bacteria, a group of common culture starters and probiotic microorganisms. This has urged researchers to study how lactic acid bacteria respond to antibiotics, so as to have a better strategy to identify and predict the antibiotic-resistant bacteria. This study aimed to characterize the biochemical profiles of Lactococcus lactis responding to antibiotics using surface-enhanced Raman spectroscopy (SERS). Lactococcus lactis exposed to antibiotics was mixed with 50-nm gold nanoparticles for subsequent SERS measurements. The SERS spectra analyzed by principal component analysis showed no significant change after 30 min of antibiotic treatment, whereas distinct changes were clearly observed after 60 and 90 min of antibiotic treatment. Different antibiotics induced different spectral changes, and these changes revealed the detailed biochemical information of cellular responses. This study demonstrates that the SERS method developed not only senses the changes in the bacterial cell wall, but also reveals details of the biochemical profiles, which help us to understand how lactic acid bacteria respond to antibiotics, as well as to set a base for the detection of antibiotic susceptibility of bacteria by SERS.

  19. Optical nanoantennas for multiband surface-enhanced infrared and raman spectroscopy

    KAUST Repository

    D'Andrea, Cristiano; Bochterle, Jö rg; Toma, Andrea; Huck, Christian W.; Neubrech, Frank; Messina, Elena; Fazio, Barbara; Maragó , Onofrio M.; Di Fabrizio, Enzo M.; Lamy De La Chapelle, Marc L.; Gucciardi, Pietro Giuseppe; Pucci, Annemarie

    2013-01-01

    In this article we show that linear nanoantennas can be used as shared substrates for surface-enhanced Raman and infrared spectroscopy (SERS and SEIRS, respectively). This is done by engineering the plasmonic properties of the nanoantennas, so to make them resonant in both the visible (transversal resonance) and the infrared (longitudinal resonance), and by rotating the excitation field polarization to selectively take advantage of each resonance and achieve SERS and SEIRS on the same nanoantennas. As a proof of concept, we have fabricated gold nanoantennas by electron beam lithography on calcium difluoride (1-2 μm long, 60 nm wide, 60 nm high) that exhibit a transverse plasmonic resonance in the visible (640 nm) and a particularly strong longitudinal dipolar resonance in the infrared (tunable in the 1280-3100 cm -1 energy range as a function of the length). SERS and SEIRS detection of methylene blue molecules adsorbed on the nanoantenna's surface is accomplished, with signal enhancement factors of 5 × 102 for SERS (electromagnetic enhancement) and up to 105 for SEIRS. Notably, we find that the field enhancement provided by the transverse resonance is sufficient to achieve SERS from single nanoantennas. Furthermore, we show that by properly tuning the nanoantenna length the signals of a multitude of vibrational modes can be enhanced with SEIRS. This simple concept of plasmonic nanosensor is highly suitable for integration on lab-on-a-chip schemes for label-free chemical and biomolecular identification with optimized performances. © 2013 American Chemical Society.

  20. SERS imaging of cell-surface biomolecules metabolically labeled with bioorthogonal Raman reporters.

    Science.gov (United States)

    Xiao, Ming; Lin, Liang; Li, Zefan; Liu, Jie; Hong, Senlian; Li, Yaya; Zheng, Meiling; Duan, Xuanming; Chen, Xing

    2014-08-01

    Live imaging of biomolecules with high specificity and sensitivity as well as minimal perturbation is essential for studying cellular processes. Here, we report the development of a bioorthogonal surface-enhanced Raman scattering (SERS) imaging approach that exploits small Raman reporters for visualizing cell-surface biomolecules. The cells were cultured and imaged by SERS microscopy on arrays of Raman-enhancing nanoparticles coated on silicon wafers or glass slides. The Raman reporters including azides, alkynes, and carbondeuterium bonds are small in size and spectroscopically bioorthogonal (background-free). We demonstrated that various cell-surface biomolecules including proteins, glycans, and lipids were metabolically incorporated with the corresponding precursors bearing a Raman reporter and visualized by SERS microscopy. The coupling of SERS microscopy with bioorthogonal Raman reporters expands the capabilities of live-cell microscopy beyond the modalities of fluorescence and label-free imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Simultaneous multiplexed quantification of nicotine and its metabolites using surface enhanced Raman scattering.

    Science.gov (United States)

    Alharbi, Omar; Xu, Yun; Goodacre, Royston

    2014-10-07

    The detection and quantification of xenobiotics and their metabolites in man is important for drug dosing, therapy and for substance abuse monitoring where longer-lived metabolic products from illicit materials can be assayed after the drug of abuse has been cleared from the system. Raman spectroscopy offers unique specificity for molecular characterization and this usually weak signal can be significantly enhanced using surface enhanced Raman scattering (SERS). We report here the novel development of SERS with chemometrics for the simultaneous analysis of the drug nicotine and its major xenometabolites cotinine and trans-3'-hydroxycotinine. Initial experiments optimized the SERS conditions and we found that when these three determinands were analysed individually that the maximum SERS signals were found at three different pH. These were pH 3 for nicotine and pH 10 and 11 for cotinine and trans-3'-hydroxycotinine, respectively. Tertiary mixtures containing nicotine, cotinine and trans-3'-hydroxycotinine were generated in the concentration range 10(-7)-10(-5) M and SERS spectra were collected at all three pH values. Chemometric analysis using kernel-partial least squares (K-PLS) and artificial neural networks (ANNs) were conducted and these models were validated using bootstrap resampling. All three analytes were accurately quantified with typical root mean squared error of prediction on the test set data being 5-9%; nicotine was most accurately predicted followed by cotinine and then trans-3'-hydroxycotinine. We believe that SERS is a powerful approach for the simultaneous analysis of multiple determinands without recourse to lengthy chromatography, as demonstrated here for the xenobiotic nicotine and its two major xenometabolites.

  2. Chemically stable Au nanorods as probes for sensitive surface enhanced scattering (SERS) analysis of blue BIC ballpoint pens

    Science.gov (United States)

    Alyami, Abeer; Saviello, Daniela; McAuliffe, Micheal A. P.; Cucciniello, Raffaele; Mirabile, Antonio; Proto, Antonio; Lewis, Liam; Iacopino, Daniela

    2017-08-01

    Au nanorods were used as an alternative to commonly used Ag nanoparticles as Surface Enhanced Raman Scattering (SERS) probes for identification of dye composition of blue BIC ballpoint pens. When used in combination with Thin Layer Chromatography (TLC), Au nanorod colloids allowed identification of the major dye components of the BIC pen ink, otherwise not identifiable by normal Raman spectroscopy. Thanks to their enhanced chemical stability compared to Ag colloids, Au nanorods provided stable and reproducible SERS signals and allowed easy identification of phthalocyanine and triarylene dyes in the pen ink mixture. These findings were supported by FTIR and MALDI analyses, also performed on the pen ink. Furthermore, the self-assembly of Au nanorods into large area ordered superstructures allowed identification of BIC pen traces. SERS spectra of good intensity and high reproducibility were obtained using Au nanorod vertical arrays, due to the high density of hot spots and morphological reproducibility of these superstructures. These results open the way to the employment of SERS for fast screening analysis and for quantitative analysis of pens and faded pens which are relevant for the fields of forensic and art conservation sciences.

  3. Detection of amino acid neurotransmitters by surface enhanced Raman scattering and hollow core photonic crystal fiber

    Science.gov (United States)

    Tiwari, Vidhu S.; Khetani, Altaf; Monfared, Ali Momenpour T.; Smith, Brett; Anis, Hanan; Trudeau, Vance L.

    2012-03-01

    The present work explores the feasibility of using surface enhanced Raman scattering (SERS) for detecting the neurotransmitters such as glutamate (GLU) and gamma-amino butyric acid (GABA). These amino acid neurotransmitters that respectively mediate fast excitatory and inhibitory neurotransmission in the brain, are important for neuroendocrine control, and upsets in their synthesis are also linked to epilepsy. Our SERS-based detection scheme enabled the detection of low amounts of GLU (10-7 M) and GABA (10-4 M). It may complement existing techniques for characterizing such kinds of neurotransmitters that include high-performance liquid chromatography (HPLC) or mass spectrography (MS). This is mainly because SERS has other advantages such as ease of sample preparation, molecular specificity and sensitivity, thus making it potentially applicable to characterization of experimental brain extracts or clinical diagnostic samples of cerebrospinal fluid and saliva. Using hollow core photonic crystal fiber (HC-PCF) further enhanced the Raman signal relative to that in a standard cuvette providing sensitive detection of GLU and GABA in micro-litre volume of aqueous solutions.

  4. Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Kiraly, Brian; Yang, Shikuan; Huang, Tony Jun

    2013-01-01

    We have fabricated porous silicon nanopillar arrays over large areas with a rapid, simple, and low-cost technique. The porous silicon nanopillars show unique longitudinal features along their entire length and have porosity with dimensions on the single-nanometer scale. Both Raman spectroscopy and photoluminescence data were used to determine the nanocrystallite size to be <3 nm. The porous silicon nanopillar arrays also maintained excellent ensemble properties, reducing reflection nearly fivefold from planar silicon in the visible range without any optimization, and approaching superhydrophobic behavior with increasing aspect ratio, demonstrating contact angles up to 138°. Finally, the porous silicon nanopillar arrays were made into sensitive surface-enhanced Raman scattering (SERS) substrates by depositing metal onto the pillars. The SERS performance of the substrates was demonstrated using a chemical dye Rhodamine 6G. With their multitude of properties (i.e., antireflection, superhydrophobicity, photoluminescence, and sensitive SERS), the porous silicon nanopillar arrays described here can be valuable in applications such as solar harvesting, electrochemical cells, self-cleaning devices, and dynamic biological monitoring. (paper)

  5. Surface-enhanced Raman scattering detection of silver nanoparticles in environmental and biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Huiyuan [Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 (United States); Xing, Baoshan, E-mail: bx@umass.edu [Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 (United States); Hamlet, Leigh C.; Chica, Andrea [Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 (United States); He, Lili, E-mail: lilihe@foodsci.umass.edu [Department of Food Science, University of Massachusetts, Amherst, MA 01003 (United States)

    2016-06-01

    Growing concerns over the potential release and threat of silver nanoparticles (AgNPs) to environmental and biological systems urge researchers to investigate their fate and behavior. However, current analytical techniques cannot meet the requirements for rapidly, sensitively and reliably probing AgNPs in complex matrices. Surface-enhanced Raman spectroscopy (SERS) has shown great capability for rapid detection of AgNPs based on an indicator molecule that can bind on the AgNP surface. The objective of this study was to exploit SERS to detect AgNPs in environmental and biological samples through optimizing the Raman indicator for SERS. Seven indicator molecules were selected and determined to obtain their SERS signals at optimal concentrations. Among them, 1,2-di(4-pyridyl)ethylene (BPE), crystal violet and ferric dimethyl-dithiocarbamate (ferbam) produced the highest SERS intensities. Further experiments on binding competition between each two of the three candidates showed that ferbam had the highest AgNPs-binding ability. The underlying mechanism lies in the strong binding affinity of ferbam with AgNPs via multiple sulfur atoms. We further validated ferbam to be an effective indicator for SERS detection of as low as 0.1 mg/L AgNPs in genuine surface water and 0.57 mg/L in spinach juice. Moreover, limited interference on SERS detection of AgNPs was found from environmentally relevant inorganic ions, organic matter, inorganic particles, as well as biologically relevant components, demonstrating the ferbam-assisted SERS is an effective and sensitive method to detect AgNPs in complex environmental and biological samples. - Graphical abstract: SERS signal intensity of ferbam indicates the concentration of AgNPs. - Highlights: • Ferbam was found to be the best indicator for SERS detection of AgNPs. • SERS was able to detect AgNPs in both environmental and biological samples. • Major components in the two matrices had limited effect on AgNP detection.

  6. Surface-enhanced Raman scattering detection of silver nanoparticles in environmental and biological samples

    International Nuclear Information System (INIS)

    Guo, Huiyuan; Xing, Baoshan; Hamlet, Leigh C.; Chica, Andrea; He, Lili

    2016-01-01

    Growing concerns over the potential release and threat of silver nanoparticles (AgNPs) to environmental and biological systems urge researchers to investigate their fate and behavior. However, current analytical techniques cannot meet the requirements for rapidly, sensitively and reliably probing AgNPs in complex matrices. Surface-enhanced Raman spectroscopy (SERS) has shown great capability for rapid detection of AgNPs based on an indicator molecule that can bind on the AgNP surface. The objective of this study was to exploit SERS to detect AgNPs in environmental and biological samples through optimizing the Raman indicator for SERS. Seven indicator molecules were selected and determined to obtain their SERS signals at optimal concentrations. Among them, 1,2-di(4-pyridyl)ethylene (BPE), crystal violet and ferric dimethyl-dithiocarbamate (ferbam) produced the highest SERS intensities. Further experiments on binding competition between each two of the three candidates showed that ferbam had the highest AgNPs-binding ability. The underlying mechanism lies in the strong binding affinity of ferbam with AgNPs via multiple sulfur atoms. We further validated ferbam to be an effective indicator for SERS detection of as low as 0.1 mg/L AgNPs in genuine surface water and 0.57 mg/L in spinach juice. Moreover, limited interference on SERS detection of AgNPs was found from environmentally relevant inorganic ions, organic matter, inorganic particles, as well as biologically relevant components, demonstrating the ferbam-assisted SERS is an effective and sensitive method to detect AgNPs in complex environmental and biological samples. - Graphical abstract: SERS signal intensity of ferbam indicates the concentration of AgNPs. - Highlights: • Ferbam was found to be the best indicator for SERS detection of AgNPs. • SERS was able to detect AgNPs in both environmental and biological samples. • Major components in the two matrices had limited effect on AgNP detection.

  7. Through tissue imaging of a live breast cancer tumour model using handheld surface enhanced spatially offset resonance Raman spectroscopy (SESORRS).

    Science.gov (United States)

    Nicolson, Fay; Jamieson, Lauren E; Mabbott, Samuel; Plakas, Konstantinos; Shand, Neil C; Detty, Michael R; Graham, Duncan; Faulds, Karen

    2018-04-21

    In order to improve patient survival and reduce the amount of unnecessary and traumatic biopsies, non-invasive detection of cancerous tumours is of imperative and urgent need. Multicellular tumour spheroids (MTS) can be used as an ex vivo cancer tumour model, to model in vivo nanoparticle (NP) uptake by the enhanced permeability and retention (EPR) effect. Surface enhanced spatially offset Raman spectroscopy (SESORS) combines both surface enhanced Raman spectroscopy (SERS) and spatially offset Raman spectroscopy (SORS) to yield enhanced Raman signals at much greater sub-surface levels. By utilizing a reporter that has an electronic transition in resonance with the laser frequency, surface enhanced resonance Raman scattering (SERRS) yields even greater enhancement in Raman signal. Using a handheld SORS spectrometer with back scattering optics, we demonstrate the detection of live breast cancer 3D MTS containing SERRS active NPs through 15 mm of porcine tissue. False color 2D heat intensity maps were used to determine tumour model location. In addition, we demonstrate the tracking of SERRS-active NPs through porcine tissue to depths of up to 25 mm. This unprecedented performance is due to the use of red-shifted chalcogenpyrylium-based Raman reporters to demonstrate the novel technique of surface enhanced spatially offset resonance Raman spectroscopy (SESORRS) for the first time. Our results demonstrate a significant step forward in the ability to detect vibrational fingerprints from a tumour model at depth through tissue. Such an approach offers significant promise for the translation of NPs into clinical applications for non-invasive disease diagnostics based on this new chemical principle of measurement.

  8. Analysis of low active-pharmaceutical-ingredient signal drugs based on thin layer chromatography and surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Li, Xiao; Chen, Hui; Zhu, Qingxia; Liu, Yan; Lu, Feng

    2016-11-30

    Active pharmaceutical ingredients (API) embedded in the excipients of the formula can usually be unravelled by normal Raman spectroscopy (NRS). However, more and more drugs with low API content and/or low Raman scattering coefficient were insensitive to NRS analysis, which was for the first time defined as Low API-Signal Drugs (LASIDs) in this paper. The NRS spectra of these LASIDs were similar to their dominant excipients' profiles, such as lactose, starch, microcrystalline cellulose (MCC), etc., and were classified into three types as such. 21 out of 100 kinds of drugs were screened as LASIDs and characterized further by Raman microscopic mapping. Accordingly, we proposed a tailored solution to the qualitation and quantitation problem of these LASIDs, using surface-enhanced Raman spectroscopic (SERS) detection on the thin layer chromatographic (TLC) plate both in situ and after-separation. Experimental conditions and parameters including TLC support matrix, SERS substrate, detection mode, similarity threshold, internal standard, etc., were optimized. All LASIDs were satisfactorily identified and the quantitation results agreed well with those of high performance liquid chromatography (HPLC). For some structural analogues of LASIDs, although they presented highly similar SERS spectra and were tough to distinguish even with Raman microscopic mapping, they could be successfully discriminated from each other by coupling SERS (with portable Raman spectrometer) with TLC. These results demonstrated that the proposed solution could be employed to detect the LASIDs with high accuracy and cost-effectiveness. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Multifunctional silver nanoparticle-doped silica for solid-phase extraction and surface-enhanced Raman scattering detection

    Science.gov (United States)

    Markina, Natalia E.; Markin, Alexey V.; Zakharevich, Andrey M.; Gorin, Dmitry A.; Rusanova, Tatiana Yu.; Goryacheva, Irina Yu.

    2016-12-01

    Multifunctional silica gel with embedded silver nanoparticles (SiO2-AgNP) is proposed for application as sorbent for solid-phase extraction (SPE) and simultaneously as substrate for surface-enhanced Raman spectroscopy (SERS) due to their high sorption properties and ability to enhance Raman signal (SERS-active sorbents). SiO2-AgNP was synthesized via alkaline hydrolysis of tetraethyl orthosilicate with simultaneous reduction of silver ions to silver nanoparticles (AgNP) within the SiO2 bulk. Synthesis of AgNP directly to the SiO2 matrix enables to exclude any additional stabilizers for the nanoparticles that educes signal-to-noise ratio during SERS measurement. Apart from Raman spectroscopy, obtained sorbents were also characterized by scanning electron microscopy and UV-visible diffuse reflectance spectroscopy. The influence of AgNO3 concentration used during the SiO2-AgNP synthesis on its gelling time, color, diffuse reflectance spectra, and enhancement of Raman signal was investigated. A Raman enhancement factor of SiO2-AgNP with optimal composition was around 105. Finally, the sorbents were applied for SPE and subsequent SERS detection of model compounds (rhodamine 6G and folic acid). It was found that SPE enables to decrease detectable concentrations by two orders. Therefore, SPE combined with SERS has high potential for further analytical investigations.

  10. Multifunctional silver nanoparticle-doped silica for solid-phase extraction and surface-enhanced Raman scattering detection

    Energy Technology Data Exchange (ETDEWEB)

    Markina, Natalia E.; Markin, Alexey V., E-mail: av-markin@mail.ru; Zakharevich, Andrey M.; Gorin, Dmitry A.; Rusanova, Tatiana Yu.; Goryacheva, Irina Yu. [Saratov State University (Russian Federation)

    2016-12-15

    Multifunctional silica gel with embedded silver nanoparticles (SiO{sub 2}–AgNP) is proposed for application as sorbent for solid-phase extraction (SPE) and simultaneously as substrate for surface-enhanced Raman spectroscopy (SERS) due to their high sorption properties and ability to enhance Raman signal (SERS-active sorbents). SiO{sub 2}–AgNP was synthesized via alkaline hydrolysis of tetraethyl orthosilicate with simultaneous reduction of silver ions to silver nanoparticles (AgNP) within the SiO{sub 2} bulk. Synthesis of AgNP directly to the SiO{sub 2} matrix enables to exclude any additional stabilizers for the nanoparticles that educes signal-to-noise ratio during SERS measurement. Apart from Raman spectroscopy, obtained sorbents were also characterized by scanning electron microscopy and UV-visible diffuse reflectance spectroscopy. The influence of AgNO{sub 3} concentration used during the SiO{sub 2}–AgNP synthesis on its gelling time, color, diffuse reflectance spectra, and enhancement of Raman signal was investigated. A Raman enhancement factor of SiO{sub 2}–AgNP with optimal composition was around 10{sup 5}. Finally, the sorbents were applied for SPE and subsequent SERS detection of model compounds (rhodamine 6G and folic acid). It was found that SPE enables to decrease detectable concentrations by two orders. Therefore, SPE combined with SERS has high potential for further analytical investigations.

  11. Surface-Enhanced Raman Scattering of Bacteria in Micro wells Constructed from Silver Nanoparticles

    International Nuclear Information System (INIS)

    Culha, M.; Yazici, M.M.; Kahraman, M.; Sahin, F.; Sesin Kocagoz, S.

    2012-01-01

    Whole bacterial cell characterization is critically important for fast bacterial identification. Surface-enhanced Raman scattering (SERS) is proven to be powerful technique to serve such a goal. In this study, the characterization of whole bacterial cells in the micro wells constructed from colloidal silver nanoparticles (AgNPs) with convective-assembly method is reported.- The proper size of the micro wells for the model bacteria, Escherichia coli and Staphylococcus cohnii, is determined to be 1.2μm from their electron microscopy images. A minimum dilution factor of 20 is necessary for the bacterial samples collected from growth media to diminish the bacterial aggregation to place the bacterial cells into the micro wells. The constructed micro well structures are tested for their bacterial SERS performance and compared to the SERS spectra obtained from the samples prepared with a simple mixing of bacteria and AgNPs for the same bacteria. The results indicate that micro well structures not only improve the spectral quality but also increase the reproducibility of the SERS spectra.

  12. In situ analysis of dynamic laminar flow extraction using surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Wang, Fei; Wang, Hua-Lin; Qiu, Yang; Chang, Yu-Long; Long, Yi-Tao

    2015-12-01

    In this study, we performed micro-scale dynamic laminar flow extraction and site-specific in situ chloride concentration measurements. Surface-enhanced Raman spectroscopy was utilized to investigate the diffusion process of chloride ions from an oil phase to a water phase under laminar flow. In contrast to common logic, we used SERS intensity gradients of Rhodamine 6G to quantitatively calculate the concentration of chloride ions at specific positions on a microfluidic chip. By varying the fluid flow rates, we achieved different extraction times and therefore different chloride concentrations at specific positions along the microchannel. SERS spectra from the water phase were recorded at these different positions, and the spatial distribution of the SERS signals was used to map the degree of nanoparticle aggregation. The concentration of chloride ions in the channel could therefore be obtained. We conclude that this method can be used to explore the extraction behaviour and efficiency of some ions or molecules that enhance the SERS intensity in water or oil by inducing nanoparticle aggregation.

  13. Non-invasive optical detection of HBV based on serum surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Zheng, Zuci; Wang, Qiwen; Weng, Cuncheng; Lin, Xueliang; Lin, Yao; Feng, Shangyuan

    2016-10-01

    An optical method of surface-enhanced Raman spectroscopy (SERS) was developed for non-invasive detection of hepatitis B surface virus (HBV). Hepatitis B virus surface antigen (HBsAg) is an established serological marker that is routinely used for the diagnosis of acute or chronic hepatitis B virus(HBV) infection. Utilizing SERS to analyze blood serum for detecting HBV has not been reported in previous literature. SERS measurements were performed on two groups of serum samples: one group for 50 HBV patients and the other group for 50 healthy volunteers. Blood serum samples are collected from healthy control subjects and patients diagnosed with HBV. Furthermore, principal components analysis (PCA) combined with linear discriminant analysis (LDA) were employed to differentiate HBV patients from healthy volunteer and achieved sensitivity of 80.0% and specificity of 74.0%. This exploratory work demonstrates that SERS serum analysis combined with PCA-LDA has tremendous potential for the non-invasive detection of HBV.

  14. Highly efficient construction of oriented sandwich structures for surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Guo Hongyun; Xu Weiqing; Xu Shuping; Zhou Ji; Lombardi, John R

    2013-01-01

    The purpose of this study is to solve the problem of low achievement in fabricating sandwich surface-enhanced Raman scattering (SERS) substrates. We demonstrated a highly efficient sandwich structure by the oriented assembly of metal nanoparticles (NPs) on a periodic hexagonal array of metal nanoprisms with 1,4-benzenedithiol (1,4-BDT) as linkers. The metal nanoprism array was prepared by vacuum deposition of metal on a close-packed polystyrene nanosphere pre-patterned substrate. The metal nanoprism array presents different surface properties from the pits left from the removal of polystyrene nanospheres, which causes linkers to selectively adsorb on the metal nanoprism array and sequentially leads to the oriented immobilization of the second-layer metal NPs, avoiding mismatched orientation. These sandwich SERS substrates were characterized by extinction spectroscopy and atomic force microscopy and their enhancement activity was evaluated under different excitation wavelengths. The sandwich structure greatly increases the achievement of ‘hot spots’ to almost 100% of all the metal nanoprisms and enables a large amplification of SERS signals by a factor of ten. This method has the advantages of simplicity, high efficiency, high throughput, controllability and high reproducibility. It has significance in both the study of SERS substrates and the development of plasmonic devices. (paper)

  15. Potential of cancer screening with serum surface-enhanced Raman spectroscopy and a support vector machine

    International Nuclear Information System (INIS)

    Li, S X; Zhang, Y J; Zeng, Q Y; Li, L F; Guo, Z Y; Liu, Z M; Xiong, H L; Liu, S H

    2014-01-01

    Cancer is the most common disease to threaten human health. The ability to screen individuals with malignant tumours with only a blood sample would be greatly advantageous to early diagnosis and intervention. This study explores the possibility of discriminating between cancer patients and normal subjects with serum surface-enhanced Raman spectroscopy (SERS) and a support vector machine (SVM) through a peripheral blood sample. A total of 130 blood samples were obtained from patients with liver cancer, colonic cancer, esophageal cancer, nasopharyngeal cancer, gastric cancer, as well as 113 blood samples from normal volunteers. Several diagnostic models were built with the serum SERS spectra using SVM and principal component analysis (PCA) techniques. The results show that a diagnostic accuracy of 85.5% is acquired with a PCA algorithm, while a diagnostic accuracy of 95.8% is obtained using radial basis function (RBF), PCA–SVM methods. The results prove that a RBF kernel PCA–SVM technique is superior to PCA and conventional SVM (C-SVM) algorithms in classification serum SERS spectra. The study demonstrates that serum SERS, in combination with SVM techniques, has great potential for screening cancerous patients with any solid malignant tumour through a peripheral blood sample. (letters)

  16. Surface enhanced Raman scattering imaging of developed thin-layer chromatography plates.

    Science.gov (United States)

    Freye, Chris E; Crane, Nichole A; Kirchner, Teresa B; Sepaniak, Michael J

    2013-04-16

    A method for hyphenating surface enhanced Raman scattering (SERS) and thin-layer chromatography (TLC) is presented that employs silver-polymer nanocomposites as an interface. Through the process of conformal blotting, analytes are transferred from TLC plates to nanocomposite films before being imaged via SERS. A procedure leading to maximum blotting efficiency was established by investigating various parameters such as time, pressure, and type and amount of blotting solvent. Additionally, limits of detection were established for test analytes malachite green isothiocyanate, 4-aminothiophenol, and Rhodamine 6G (Rh6G) ranging from 10(-7) to 10(-6) M. Band broadening due to blotting was minimal (∼10%) as examined by comparing the spatial extent of TLC-spotted Rh6G via fluorescence and then the SERS-based spot size on the nanocomposite after the blotting process. Finally, a separation of the test analytes was carried out on a TLC plate followed by blotting and the acquisition of distance × wavenumber × intensity three-dimensional TLC-SERS plots.

  17. Sensitive Detection of Biomolecules by Surface Enhanced Raman Scattering using Plant Leaves as Natural Substrates

    Directory of Open Access Journals (Sweden)

    Sharma Vipul

    2017-01-01

    Full Text Available Detection of biomolecules is highly important for biomedical and other biological applications. Although several methods exist for the detection of biomolecules, surface enhanced Raman scattering (SERS has a unique role in greatly enhancing the sensitivity. In this work, we have demonstrated the use of natural plant leaves as facile, low cost and eco-friendly SERS substrates for the sensitive detection of biomolecules. Specifically, we have investigated the influence of surface topography of five different plant leaf based substrates, deposited with Au, on the SERS performance by using L-cysteine as a model biomolecule. In addition, we have also compared the effect of sputter deposition of Au thin film with dropcast deposition of Au nanoparticles on the leaf substrates. Our results indicate that L-cysteine could be detected with high sensitivity using these plant leaf based substrates and the leaf possessing hierarchical micro/nanostructures on its surface shows higher SERS enhancement compared to a leaf having a nearplanar surface. Furthermore, leaves with drop-casted Au nanoparticle clusters performed better than the leaves sputter deposited with a thin Au film.

  18. Surface-Enhanced Raman Scattering of MEH-PPV on Gold and Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Beatriz R. Moraes

    2018-01-01

    Full Text Available The interaction of poly[2-methoxy-5-(2-ethylhexyloxy-1,4-phenylenevinylene] (MEH-PPV with Au or Ag nanospheres, Au nanostars, and Ag nanoprisms was investigated using surface-enhanced Raman scattering (SERS. The SERS investigation showed that adsorption of MEH-PPV strongly depends on the nature of the nanoparticle surface. On gold nanostars that present a thick layer of capping polymer, SERS spectrum is only observed in relatively concentrated MEH-PPV solution (1 mmol L−1. On the other hand, Au and Ag nanospheres present SERS spectra down to 10−6 mol L−1 and no chemical interaction of MEH-PPV and metal surface is observed. The spectra of MEH-PPV on Ag nanoprisms with PVP as stabilizing agent suggest that the capping polymer induces a planar conformation of MEH-PPV and consequently an increase of conjugation length. These results give support for the application of MEH-PPV on optoelectronics in which interfacial effects are critical in the device efficiency and stability.

  19. Surface-Enhanced Raman Scattering of Bacteria in Microwells Constructed from Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mustafa Çulha

    2012-01-01

    Full Text Available Whole bacterial cell characterization is critically important for fast bacterial identification. Surface-enhanced Raman scattering (SERS is proven to be powerful technique to serve such a goal. In this study, the characterization of whole bacterial cells in the microwells constructed from colloidal silver nanoparticles (AgNPs with “convective-assembly” method is reported. The proper size of the microwells for the model bacteria, Escherichia coli and Staphylococcus cohnii, is determined to be 1.2 μm from their electron microscopy images. A minimum dilution factor of 20 is necessary for the bacterial samples collected from growth media to diminish the bacterial aggregation to place the bacterial cells into the microwells. The constructed microwell structures are tested for their bacterial SERS performance and compared to the SERS spectra obtained from the samples prepared with a simple mixing of bacteria and AgNPs for the same bacteria. The results indicate that microwell structures not only improve the spectral quality but also increase the reproducibility of the SERS spectra.

  20. Towards the development of a rapid, portable, surface enhanced Raman spectroscopy based cleaning verification system for the drug nelarabine.

    Science.gov (United States)

    Corrigan, Damion K; Salton, Neale A; Preston, Chris; Piletsky, Sergey

    2010-09-01

    Cleaning verification is a scientific and economic problem for the pharmaceutical industry. A large amount of potential manufacturing time is lost to the process of cleaning verification. This involves the analysis of residues on spoiled manufacturing equipment, with high-performance liquid chromatography (HPLC) being the predominantly employed analytical technique. The aim of this study was to develop a portable cleaning verification system for nelarabine using surface enhanced Raman spectroscopy (SERS). SERS was conducted using a portable Raman spectrometer and a commercially available SERS substrate to develop a rapid and portable cleaning verification system for nelarabine. Samples of standard solutions and swab extracts were deposited onto the SERS active surfaces, allowed to dry and then subjected to spectroscopic analysis. Nelarabine was amenable to analysis by SERS and the necessary levels of sensitivity were achievable. It is possible to use this technology for a semi-quantitative limits test. Replicate precision, however, was poor due to the heterogeneous drying pattern of nelarabine on the SERS active surface. Understanding and improving the drying process in order to produce a consistent SERS signal for quantitative analysis is desirable. This work shows the potential application of SERS for cleaning verification analysis. SERS may not replace HPLC as the definitive analytical technique, but it could be used in conjunction with HPLC so that swabbing is only carried out once the portable SERS equipment has demonstrated that the manufacturing equipment is below the threshold contamination level.

  1. A simple approach for ultrasensitive detection of bisphenols by multiplexed surface-enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    De Bleye, C., E-mail: cdebleye@ulg.ac.be; Dumont, E.; Hubert, C.; Sacré, P.-Y.; Netchacovitch, L.; Chavez, P.-F.; Hubert, Ph.; Ziemons, E.

    2015-08-12

    Bisphenol A (BPA) is well known for its use in plastic manufacture and thermal paper production despite its risk of health toxicity as an endocrine disruptor in humans. Since the publication of new legislation regarding the use of BPA, manufacturers have begun to replace BPA with other phenolic molecules such as bisphenol F (BPF) and bisphenol B (BPB), but there are no guarantees regarding the health safety of these compounds at this time. In this context, a very simple, cheap and fast surface-enhanced Raman scattering (SERS) method was developed for the sensitive detection of these molecules in spiked tap water solutions. Silver nanoparticles were used as SERS substrates. An original strategy was employed to circumvent the issue of the affinity of bisphenols for metallic surfaces and the silver nanoparticles surface was functionalized using pyridine in order to improve again the sensitivity of the detection. Semi-quantitative detections were performed in tap water solutions at a concentrations range from 0.25 to 20 μg L{sup −1} for BPA and BPB and from 5 to 100 μg L{sup −1} for BPF. Moreover, a feasibility study for performing a multiplex-SERS detection of these molecules was also performed before successfully implementing the developed SERS method on real samples. - Highlights: • Development of a simple, fast and ultrasensitive SERS method to detect bisphenols. • Multiplexed-SERS detection of bisphenol A, bisphenol B and bisphenol F. • Implementation of the SERS developed method on real samples to detect bisphenols.

  2. A simple approach for ultrasensitive detection of bisphenols by multiplexed surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    De Bleye, C.; Dumont, E.; Hubert, C.; Sacré, P.-Y.; Netchacovitch, L.; Chavez, P.-F.; Hubert, Ph.; Ziemons, E.

    2015-01-01

    Bisphenol A (BPA) is well known for its use in plastic manufacture and thermal paper production despite its risk of health toxicity as an endocrine disruptor in humans. Since the publication of new legislation regarding the use of BPA, manufacturers have begun to replace BPA with other phenolic molecules such as bisphenol F (BPF) and bisphenol B (BPB), but there are no guarantees regarding the health safety of these compounds at this time. In this context, a very simple, cheap and fast surface-enhanced Raman scattering (SERS) method was developed for the sensitive detection of these molecules in spiked tap water solutions. Silver nanoparticles were used as SERS substrates. An original strategy was employed to circumvent the issue of the affinity of bisphenols for metallic surfaces and the silver nanoparticles surface was functionalized using pyridine in order to improve again the sensitivity of the detection. Semi-quantitative detections were performed in tap water solutions at a concentrations range from 0.25 to 20 μg L −1 for BPA and BPB and from 5 to 100 μg L −1 for BPF. Moreover, a feasibility study for performing a multiplex-SERS detection of these molecules was also performed before successfully implementing the developed SERS method on real samples. - Highlights: • Development of a simple, fast and ultrasensitive SERS method to detect bisphenols. • Multiplexed-SERS detection of bisphenol A, bisphenol B and bisphenol F. • Implementation of the SERS developed method on real samples to detect bisphenols

  3. Ad-hoc surface-enhanced Raman spectroscopy methodologies for the detection of artist dyestuffs: thin layer chromatography-surface enhanced Raman spectroscopy and in situ on the fiber analysis.

    Science.gov (United States)

    Brosseau, Christa L; Gambardella, Alessa; Casadio, Francesca; Grzywacz, Cecily M; Wouters, Jan; Van Duyne, Richard P

    2009-04-15

    Tailored ad-hoc methods must be developed for successful identification of minute amounts of natural dyes on works of art using Surface-Enhanced Raman Spectroscopy (SERS). This article details two of these successful approaches using silver film over nanosphere (AgFON) substrates and silica gel coupled with citrate-reduced Ag colloids. The latter substrate functions as the test system for the coupling of thin-layer chromatography and SERS (TLC-SERS), which has been used in the current research to separate and characterize a mixture of several artists' dyes. The poor limit of detection of TLC is overcome by coupling with SERS, and dyes which co-elute to nearly the same spot can be distinguished from each other. In addition, in situ extractionless non-hydrolysis SERS was used to analyze dyed reference fibers, as well as historical textile fibers. Colorants such as alizarin, purpurin, carminic acid, lac dye, crocin, and Cape jasmine were thus successfully identified.

  4. Application of Raman spectroscopy and surface-enhanced Raman scattering to the analysis of synthetic dyes found in ballpoint pen inks.

    Science.gov (United States)

    Geiman, Irina; Leona, Marco; Lombardi, John R

    2009-07-01

    The applicability of Raman spectroscopy and surface-enhanced Raman scattering (SERS) to the analysis of synthetic dyes commonly found in ballpoint inks was investigated in a comparative study. Spectra of 10 dyes were obtained using a dispersive system (633 nm, 785 nm lasers) and a Fourier transform system (1064 nm laser) under different analytical conditions (e.g., powdered pigments, solutions, thin layer chromatography [TLC] spots). While high fluorescence background and poor spectral quality often characterized the normal Raman spectra of the dyes studied, SERS was found to be generally helpful. Additionally, dye standards and a single ballpoint ink were developed on a TLC plate following a typical ink analysis procedure. SERS spectra were successfully collected directly from the TLC plate, thus demonstrating a possible forensic application for the technique.

  5. Raman microspectroscopy, surface-enhanced Raman scattering microspectroscopy, and stable-isotope Raman microspectroscopy for biofilm characterization.

    Science.gov (United States)

    Ivleva, Natalia P; Kubryk, Patrick; Niessner, Reinhard

    2017-07-01

    Biofilms represent the predominant form of microbial life on our planet. These aggregates of microorganisms, which are embedded in a matrix formed by extracellular polymeric substances, may colonize nearly all interfaces. Detailed knowledge of microorganisms enclosed in biofilms as well as of the chemical composition, structure, and functions of the complex biofilm matrix and their changes at different stages of the biofilm formation and under various physical and chemical conditions is relevant in different fields. Important research topics include the development and improvement of antibiotics and medical devices and the optimization of biocides, antifouling strategies, and biological wastewater treatment. Raman microspectroscopy is a capable and nondestructive tool that can provide detailed two-dimensional and three-dimensional chemical information about biofilm constituents with the spatial resolution of an optical microscope and without interference from water. However, the sensitivity of Raman microspectroscopy is rather limited, which hampers the applicability of Raman microspectroscopy especially at low biomass concentrations. Fortunately, the resonance Raman effect as well as surface-enhanced Raman scattering can help to overcome this drawback. Furthermore, the combination of Raman microspectroscopy with other microscopic techniques, mass spectrometry techniques, or particularly with stable-isotope techniques can provide comprehensive information on monospecies and multispecies biofilms. Here, an overview of different Raman microspectroscopic techniques, including resonance Raman microspectroscopy and surface-enhanced Raman scattering microspectroscopy, for in situ detection, visualization, identification, and chemical characterization of biofilms is given, and the main feasibilities and limitations of these techniques in biofilm research are presented. Future possibilities of and challenges for Raman microspectroscopy alone and in combination with other

  6. Surface-enhanced raman spectroscopy of quinomethionate adsorbed on silver colloids

    International Nuclear Information System (INIS)

    Kim, Mak Soon; Kang, Jae Soo; Park, Si Bum; Lee, Mu Sang

    2003-01-01

    We have studied the surface-enhanced Raman spectroscopy (SERS) spectrum of quinomethionate (6-methyl-1,3-dithiolo(4,5-b)quinoxalin-2-one), which is an insecticide or fungicide used on vegetables and wheat. We observed no signals in the ordinary Raman spectra of solid-state quinomethionate, but when it was adsorbed on a colloidal silver surface, strong vibrational signals were obtained at a very low concentration. The SERS spectra were obtained by silver colloids prepared by the Creighton et al. method. The influence of pH and the aggregation inductors (Cl - , Br - , I - , F - ) on the adsorption mechanism was investigated. Two different adsorption mechanisms were deduced, depending on the experimental conditions: The one N atom or two N atoms are chemisorbed on an Ag surface. An important contribution of the chemical mechanism was inferred when the one N atom was perpendicularly adsorbed on a surface. It is possible that quinomethionate can be detected to about 10 -5 M

  7. Surface-enhanced Raman spectroscopy on laser-engineered ruthenium dye-functionalized nanoporous gold

    Science.gov (United States)

    Schade, Lina; Franzka, Steffen; Biener, Monika; Biener, Jürgen; Hartmann, Nils

    2016-06-01

    Photothermal processing of nanoporous gold with a microfocused continuous-wave laser at λ = 532 nm provides a facile means in order engineer the pore and ligament size of nanoporous gold. In this report we take advantage of this approach in order to investigate the size-dependence of enhancement effects in surface-enhanced Raman spectroscopy (SERS). Surface structures with laterally varying pore sizes from 25 nm to ≥200 nm are characterized using scanning electron microscopy and then functionalized with N719, a commercial ruthenium complex, which is widely used in dye-sensitized solar cells. Raman spectroscopy reveals the characteristic spectral features of N719. Peak intensities strongly depend on the pore size. Highest intensities are observed on the native support, i.e. on nanoporous gold with pore sizes around 25 nm. These results demonstrate the particular perspectives of laser-fabricated nanoporous gold structures in fundamental SERS studies. In particular, it is emphasized that laser-engineered porous gold substrates represent a very well defined platform in order to study size-dependent effects with high reproducibility and precision and resolve conflicting results in previous studies.

  8. Surface-enhanced Raman spectroscopy substrate based on Ag-coated self-assembled polystyrene spheres

    Science.gov (United States)

    Mikac, Lara; Ivanda, Mile; Gotić, Marijan; Janicki, Vesna; Zorc, Hrvoje; Janči, Tibor; Vidaček, Sanja

    2017-10-01

    The silver (Ag) films were deposited on the monodispersed polystyrene spheres that were drop-coated on hydrophilic glass substrates in order to form a self-assembled 2D monolayer. Thus prepared Ag films over polystyrene nanospheres (AgFONs) were used to record the surface-enhanced Raman scattering (SERS) spectra of rhodamine 6G (R6G) and pyridine (λex = 514.5 nm). AgFONs were prepared by depositing 120, 180 and 240 nm thick Ag layer on the 1000 nm polystyrene spheres and 80, 120, 160 and 200 nm thick Ag layer on the 350 nm spheres as well as on their mixture (350 + 1000 nm). The silver was deposited by electron beam evaporation technique. The best enhancement of the Raman signal for both test molecules was obtained using 180 nm Ag film deposited on the 1000 nm spheres and using 80 nm Ag film deposited on the 350 nm polystyrene spheres. The lowest detectable concentrations of R6G and pyridine were 10-9 mol L-1 and 1.2 × 10-3 mol L-1, respectively. This study has shown that AgFONs could be regarded as good and reproducible SERS substrate for analytical detection of various organic molecules.

  9. Density functional theory and surface enhanced Raman spectroscopy studies of tautomeric hypoxanthine and its adsorption behaviors in electrochemical processes

    International Nuclear Information System (INIS)

    Huang, Wei; Jiang, Jin-Zhi; Chen, Liang; Zhang, Bi-Qi; Deng, Shu-Fen; Sun, Jian Jun; Chen, Wen-Kai

    2015-01-01

    ABSTRACT: Hypoxanthine, a purine heterocyclic compound with N and O atoms, has capability to combine metal ions or adsorb on metals. By using density functional theory (DFT) method calculation, the energy, charge distribution, molecular orbital and vibration spectra information of tautomeric hypoxanthine were given. Combined with these DFT results, the influence of pH on the structure of tautomeric hypoxanthine was studied by surface enhanced Raman spectroscopy (SERS). Electrochemical SERS was applied to study the properties of hypoxanthine/gold interface. It is found that the structure of adsorbed hypoxanthine was changed from slightly tilted to upright with negatively moving of potentials

  10. Paper-based microfluidic approach for surface-enhanced raman spectroscopy and highly reproducible detection of proteins beyond picomolar concentration.

    Science.gov (United States)

    Saha, Arindam; Jana, Nikhil R

    2015-01-14

    Although microfluidic approach is widely used in various point of care diagnostics, its implementation in surface enhanced Raman spectroscopy (SERS)-based detection is challenging. This is because SERS signal depends on plasmonic nanoparticle aggregation induced generation of stable electromagnetic hot spots and in currently available microfluidic platform this condition is difficult to adapt. Here we show that SERS can be adapted using simple paper based microfluidic system where both the plasmonic nanomaterials and analyte are used in mobile phase. This approach allows analyte induced controlled particle aggregation and electromagnetic hot spot generation inside the microfluidic channel with the resultant SERS signal, which is highly reproducible and sensitive. This approach has been used for reproducible detection of protein in the pico to femtomolar concentration. Presented approach is simple, rapid, and cost-effective, and requires low sample volume. Method can be extended for SERS-based detection of other biomolecules.

  11. Three-dimensional nanoporous MoS2 framework decorated with Au nanoparticles for surface-enhanced Raman scattering

    Science.gov (United States)

    Sheng, Yingqiang; Jiang, Shouzhen; Yang, Cheng; Liu, Mei; Liu, Aihua; Zhang, Chao; Li, Zhen; Huo, Yanyan; Wang, Minghong; Man, Baoyuan

    2017-08-01

    The three-dimensional (3D) MoS2 decorated with Au nanoparticles (Au NPs) hybrids (3D MoS2-Au NPs) for surface-enhanced Raman scattering (SERS) sensing was demonstrated in this paper. SEM, Raman spectroscopy, TEM, SAED, EDX and XRD were performed to characterize 3D MoS2-Au NPs hybrids. Rhodamine 6G (R6G), fluorescein and gallic acid molecules were used as the probe for the SERS detection of the 3D MoS2-Au NPs hybrids. In addition, we modeled the enhancement of the electric field of MoS2-Au NPs hybrids using Finite-difference time-domain (FDTD) analysis, which can further give assistance to the mechanism understanding of the SERS activity.

  12. Possibility of 1-nm level localization of a single molecule with gap-mode surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Choi, Han Kyu; Kim, Zee Hwan

    2015-01-01

    The electromagnetic (EM) enhancement mechanism of surface-enhanced Raman scattering (SERS) has been well established through 30 years of extensive investigation: molecules adsorbed on resonantly driven silver or gold nanoparticles (NPs) experience strongly enhanced field and thus show enhanced Raman scattering. Even stronger SERS enhancement is possible with a gap structure in which two or more NPs form assemblies with gap sizes of 1 nm or less. We have theoretically shown that the measurement of SERS angular distribution can reveal the position of a single molecule near the gap with 1-nm accuracy, even though the spatial extent of the enhanced field is ~10 nm. Real implementation of such experiment requires extremely well-defined (preferably a single crystal) dimeric junctions. Nevertheless, the experiment will provide spatial as well as frequency domain information on single-molecule dynamics at metallic surfaces

  13. Surface-enhanced Raman spectroscopic monitor of triglyceride hydrolysis in a skin pore phantom

    Science.gov (United States)

    Weldon, Millicent K.; Morris, Michael D.

    1999-04-01

    Bacterial hydrolysis of triglycerides is followed in a sebum probe phantom by microprobe surface-enhanced Raman scattering (SERS) spectroscopy. The phantom consists of a purpose-built syringe pump operating at physiological flow rates connected to a 300 micron i.d. capillary. We employ silicon substrate SERS microprobes to monitor the hydrolysis products. The silicon support allows some tip flexibility that makes these probes ideal for insertion into small structures. Propionibacterium acnes are immobilized on the inner surface of the capillary. These bacteria hydrolyze the triglycerides in a model sebum emulsion flowing through the capillary. The transformation is followed in vitro as changes in the SERS caused by hydrolysis of triglyceride to fatty acid. The breakdown products consists of a mixture of mono- and diglycerides and their parent long chain fatty acids. The fatty acids adsorb as their carboxylates and can be readily identified by their characteristic spectra. The technique can also confirm the presence of bacteria by detection of short chain carboxylic acids released as products of glucose fermentation during the growth cycle of these cells. Co-adsorption of propionate is observed. Spatial localization of the bacteria is obtained by ex-situ line imaging of the probe.

  14. Quantitative Determination of Nicotine in a PDMS Microfluidic Channel Using Surface Enhanced Raman Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae Hyun; Choo, Jae Bum [Hanyang University, Ansan (Korea, Republic of); Kim, Duck Joong [Dankook University, Cheonan (Korea, Republic of); Lee, Sang Hoon [Korea University, Seoul (Korea, Republic of)

    2006-02-15

    Rapid and highly sensitive determination of nicotine in a PDMS microfluidic channel was investigated using surface enhanced Raman spectroscopy (SERS). A three-dimensional PDMS microfluidic channel was fabricated for this purpose. This channel shows a high mixing efficiency because the transverse and vertical dispersions of the fluid occur simultaneously through the upper and lower zig zag-type blocks. A higher efficiency of mixing could also be obtained by splitting each of the confluent streams into two sub-streams that then joined and recombined. The SERS signal was measured after nicotine molecules were effectively adsorbed onto silver nanoparticles by passing through the three-dimensional channel. A quantitative analysis of nicotine was performed based on the measured peak area at 1030 cm{sup -1}. The detection limit was estimated to be below 0.1 ppm. In this work, the SERS detection, in combination with a PDMS microfluidic channel, has been applied to the quantitative analysis of nicotine in aqueous solution. Compared to the other conventional analytical methods, the detection sensitivity was enhanced up to several orders of magnitude.

  15. Self-assembly nanoparticle based tripetaloid structure arrays as surface-enhanced Raman scattering substrates

    International Nuclear Information System (INIS)

    Sun Mingrui; Qian Chuang; Wu Wengang; Yu Wenxuan; Wang Yifei; Mao Haiyang

    2012-01-01

    This paper reports a novel highly ordered tripetaloid structure array (TPSA) which performs very well as an active surface-enhanced Raman scattering (SERS) substrate. The TPSA is easily fabricated by anisotropic etching of a self-assembly silica-nanoparticle bilayer and a subsequent metal deposition step, with notable uniformity and reproducibility. Electromagnetic simulation indicates that the narrow inter-gaps and edge protrusions in the TPSA act as hot spots. In addition, the peak electromagnetic field intensity in the inter-gaps changes slightly and periodically as the polarization of the incident light varies from 0° to 360°. SERS experiments show that the SERS enhancement factor (EF) of a Au-film-covered TPSA is 12 times higher than that of regular Au-film-over-nanoparticles, and not sensitive to the polarization of the incident light. The spatially averaged EF of the TPSA is as high as 5.7 × 10 6 , and the local EF of its hot spots is much higher. (paper)

  16. Multivariate qualitative analysis of banned additives in food safety using surface enhanced Raman scattering spectroscopy.

    Science.gov (United States)

    He, Shixuan; Xie, Wanyi; Zhang, Wei; Zhang, Liqun; Wang, Yunxia; Liu, Xiaoling; Liu, Yulong; Du, Chunlei

    2015-02-25

    A novel strategy which combines iteratively cubic spline fitting baseline correction method with discriminant partial least squares qualitative analysis is employed to analyze the surface enhanced Raman scattering (SERS) spectroscopy of banned food additives, such as Sudan I dye and Rhodamine B in food, Malachite green residues in aquaculture fish. Multivariate qualitative analysis methods, using the combination of spectra preprocessing iteratively cubic spline fitting (ICSF) baseline correction with principal component analysis (PCA) and discriminant partial least squares (DPLS) classification respectively, are applied to investigate the effectiveness of SERS spectroscopy for predicting the class assignments of unknown banned food additives. PCA cannot be used to predict the class assignments of unknown samples. However, the DPLS classification can discriminate the class assignment of unknown banned additives using the information of differences in relative intensities. The results demonstrate that SERS spectroscopy combined with ICSF baseline correction method and exploratory analysis methodology DPLS classification can be potentially used for distinguishing the banned food additives in field of food safety. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Multivariate qualitative analysis of banned additives in food safety using surface enhanced Raman scattering spectroscopy

    Science.gov (United States)

    He, Shixuan; Xie, Wanyi; Zhang, Wei; Zhang, Liqun; Wang, Yunxia; Liu, Xiaoling; Liu, Yulong; Du, Chunlei

    2015-02-01

    A novel strategy which combines iteratively cubic spline fitting baseline correction method with discriminant partial least squares qualitative analysis is employed to analyze the surface enhanced Raman scattering (SERS) spectroscopy of banned food additives, such as Sudan I dye and Rhodamine B in food, Malachite green residues in aquaculture fish. Multivariate qualitative analysis methods, using the combination of spectra preprocessing iteratively cubic spline fitting (ICSF) baseline correction with principal component analysis (PCA) and discriminant partial least squares (DPLS) classification respectively, are applied to investigate the effectiveness of SERS spectroscopy for predicting the class assignments of unknown banned food additives. PCA cannot be used to predict the class assignments of unknown samples. However, the DPLS classification can discriminate the class assignment of unknown banned additives using the information of differences in relative intensities. The results demonstrate that SERS spectroscopy combined with ICSF baseline correction method and exploratory analysis methodology DPLS classification can be potentially used for distinguishing the banned food additives in field of food safety.

  18. Surface-Enhanced Raman Spectroscopy for Heterogeneous Catalysis Research

    NARCIS (Netherlands)

    Harvey, C.E.

    2013-01-01

    Raman spectroscopy is valuable characterization technique for the chemical analysis of heterogeneous catalysts, both under ex-situ and in-situ conditions. The potential for Raman to shine light on the chemical bonds present in a sample makes the method highly desirable for detailed catalyst

  19. Magnetically Assisted Surface-Enhanced Raman Spectroscopy for the Detection of Staphylococcus aureus Based on Aptamer Recognition.

    Science.gov (United States)

    Wang, Junfeng; Wu, Xuezhong; Wang, Chongwen; Shao, Ningsheng; Dong, Peitao; Xiao, Rui; Wang, Shengqi

    2015-09-23

    A magnetically assisted surface-enhanced Raman scattering (SERS) biosensor for single-cell detection of S. aureus on the basis of aptamer recognition is reported for the first time. The biosensor consists of two basic elements including a SERS substrate (Ag-coated magnetic nanoparticles, AgMNPs) and a novel SERS tag (AuNR-DTNB@Ag-DTNB core-shell plasmonic NPs or DTNB-labeled inside-and-outside plasmonic NPs, DioPNPs). Uniform, monodisperse, and superparamagnetic AgMNPs with favorable SERS activity and magnetic responsiveness are synthesized by using polymer polyethylenimine. AgMNPs use magnetic enrichment instead of repeated centrifugation to prevent sample sedimentation. DioPNPs are designed and synthesized as a novel SERS tag. The Raman signal of DioPNPs is 10 times stronger than that of the commonly used SERS tag AuNR-DTNB because of the double-layer DTNB and the LSPR position adjustment to match the given laser excitation wavelength. Consequently, a strong SERS enhancement is achieved. Under the optimized aptamer density and linker length, capture by aptamer-modified AgMNPs can achieve favorable bacteria arrest (up to 75%). With the conventional Raman spectroscopy, the limit of detection (LOD) is 10 cells/mL for S. aureus detection, and a good linear relationship is also observed between the SERS intensity at Raman peak 1331 cm(-1) and the logarithm of bacteria concentrations ranging from 10(1) to 10(5) cells/mL. With the help of the newly developed SERS mapping technique, single-cell detection of S. aureus is easily achieved.

  20. Surface enhanced Raman spectroscopic direct determination of low molecular weight biothiols in umbilical cord whole blood.

    Science.gov (United States)

    Kuligowski, Julia; El-Zahry, Marwa R; Sánchez-Illana, Ángel; Quintás, Guillermo; Vento, Máximo; Lendl, Bernhard

    2016-04-07

    Biothiols play an essential role in a number of biological processes in living organisms including detoxification and metabolism. Fetal to neonatal transition poses a pro-oxidant threat for newborn infants, especially those born prematurely. A reliable and rapid tool for the direct determination of thiols in small volume whole blood (WB) samples would be desirable for its application in clinical practice. This study shows the feasibility of Surface Enhanced Raman Spectroscopy (SERS) using a silver colloid prepared by reduction of silver nitrate using hydroxylamine, as the SERS substrate for the quantification of thiols in WB samples after a simple precipitation step for protein removal. Bands originating from biothiols (790, 714 and 642 cm(-1)) were enhanced by the employed SERS substrate and the specificity of the detected SERS signal was tested for molecules presenting -SH functional groups. A statistically significant correlation between the obtained SERS signals and the thiol concentration measured using a chromatographic reference method in umbilical cord WB samples could be demonstrated. Using WB GSH concentrations obtained from the chromatographic reference procedure, a Partial Least Squares (PLS) regression model covering GSH concentrations from 13 to 2200 μM was calculated obtaining a root mean square error of prediction (RMSEP) of 381 μM when applied to an external test set. The developed approach uses small blood sample volumes (50 μL), which is important for clinical applications, especially in the field of neonatology. This feasibility study shows that the present approach combines all the necessary characteristics for its potential application in clinical practice.

  1. Morphology modification of gold nanoparticles from nanoshell to C-shape: Improved surface enhanced Raman scattering

    International Nuclear Information System (INIS)

    Xing, Ting-Yang; Zhu, Jian; Li, Jian-Jun; Zhao, Jun-Wu

    2016-01-01

    Morphology modification of nanostructures is of great interest, because it can be used to fabricate nanostructures which are hard to be done using other methods. Different from traditional lithographic technique which is slow and expensive, morphology modification is easy, cheap, and reproducible. In this paper, modification of the optical and morphological properties of a hollow gold nanoshell (HGNS) is achieved by using H 2 O 2 as an oxidizer. The reshaping of these nanostructures has been demonstrated as a consequence of an oxidation process in which HGNSs are dissolved by H 2 O 2 under the acidic conditions provided by HCl. We investigate the oxidation process by a transmission electron microscope and propose a reshaping model involving four different shapes (HGNS, HGNS with hole, gold nanoring, and C-shaped gold nanoparticle) which are corresponding to the oxidation products of HGNSs at different pH values. Besides, the surface enhanced Raman scattering (SERS) activity of each oxidation product has been evaluated by using rhodamine 6G as the Raman active probe. It has been observed that the C-shaped gold nanoparticles which are corresponding to the oxidation products at the minimum pH value have the highest SERS activity and this result can also be interpreted by discrete-dipole approximation simulations. We demonstrate that the morphology modification of HGNSs becomes possible in a controlled manner using wet chemistry and can be used in preparation of gold nanoparticles such as HGNS with hole, gold nanoring, and C-shaped gold nanoparticle with large SERS activity. These nanostructures must have potential use in many plasmonic areas, including sensing, catalysis, and biomedicine.

  2. Morphology modification of gold nanoparticles from nanoshell to C-shape: Improved surface enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Ting-Yang; Zhu, Jian; Li, Jian-Jun; Zhao, Jun-Wu, E-mail: nanoptzhao@163.com [The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-06-28

    Morphology modification of nanostructures is of great interest, because it can be used to fabricate nanostructures which are hard to be done using other methods. Different from traditional lithographic technique which is slow and expensive, morphology modification is easy, cheap, and reproducible. In this paper, modification of the optical and morphological properties of a hollow gold nanoshell (HGNS) is achieved by using H{sub 2}O{sub 2} as an oxidizer. The reshaping of these nanostructures has been demonstrated as a consequence of an oxidation process in which HGNSs are dissolved by H{sub 2}O{sub 2} under the acidic conditions provided by HCl. We investigate the oxidation process by a transmission electron microscope and propose a reshaping model involving four different shapes (HGNS, HGNS with hole, gold nanoring, and C-shaped gold nanoparticle) which are corresponding to the oxidation products of HGNSs at different pH values. Besides, the surface enhanced Raman scattering (SERS) activity of each oxidation product has been evaluated by using rhodamine 6G as the Raman active probe. It has been observed that the C-shaped gold nanoparticles which are corresponding to the oxidation products at the minimum pH value have the highest SERS activity and this result can also be interpreted by discrete-dipole approximation simulations. We demonstrate that the morphology modification of HGNSs becomes possible in a controlled manner using wet chemistry and can be used in preparation of gold nanoparticles such as HGNS with hole, gold nanoring, and C-shaped gold nanoparticle with large SERS activity. These nanostructures must have potential use in many plasmonic areas, including sensing, catalysis, and biomedicine.

  3. A pH dependent Raman and surface enhanced Raman spectroscopic studies of citrazinic acid aided by theoretical calculations

    Science.gov (United States)

    Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar

    2016-12-01

    A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values ( 4 and 11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH 14 and brown at pH 2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms ;C;, ;H; and ;Dprot; at pH 14 and Forms ;A;, ;D;, and ;P; at pH 2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH 2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450 cm- 1, 616 to 632 cm- 1, 1332 to 1343 cm- 1 etc. Again, the most enhanced peak at 1548 cm- 1 in NRS while in the SERS window this appears at 1580 cm- 1. Similar observation was also made for CZA at pH 14. For example, the 423 cm- 1 band in the NRS profile experience a blue shift and appears at 447 cm- 1 in the SERS spectrum as well as other bands at 850, 1067 and 1214 cm- 1 in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH 2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH 14). The DFT calculations for these

  4. Gold Nanoparticle-based Surface-enhanced Raman Scattering Fe(III) Ion Sensor

    International Nuclear Information System (INIS)

    Ly, Nguyen Hoang; Joo, Sang-Woo; Cho, Kwang Hwi

    2015-01-01

    We performed density functional theory (DFT) calculations of 4-aminobenzo-15-crown-5 (4AB15C5) in conjugation with 4-mercaptobenzoic acid (4MCB) with the polarizable continuum model (PCM) while considering the aqueous media. After specific binding of the ferric ion onto the 4MCB.4AB15C5 compound, the Raman frequencies and intensities were estimated by DFT calculations with the PCM. It was predicted that the Raman intensities became significantly increased upon binding of the ferric ion. 4MCB.4AB15C5 could be assembled on gold nanoparticles (AuNPs) via the cleavage of the thiol bond. Colorimetric and UV.Vis absorption spectroscopy indicated that AuNPs became significantly aggregated in the presence of 1.10 mM of the ferric ion. Surface-enhanced Raman scattering (SERS) of 4MCB.4AB15C5 was used to identify the dissimilar spectral behaviors that yield a difference in intensity in the presence of the ferric ion. These changes were not observed in the other biological ions Zn 2+ , Mn 2+ , Fe 2+ , Na + , K + , Ca 2+ , Mg 2+ , NH 4+ , and Co 2+ . This study indicated that 4AB15C5 could be used to detect ferric ions in aqueous AuNP solutions by a combined method of colorimetric, UV.Vis absorption, and Raman spectroscopy. AuNPs.[4MCB. 4AB15C5] can thus be utilized as a selective turn-on sensor to Fe3 + in aqueous solutions above 1 mM.

  5. Surface-enhanced Raman scattering spectroscopy for rapid bacterial screening

    Science.gov (United States)

    This study reports the feasibility of citrate-reduced colloidal silver SERS for differentiating three important foodborne pathogens, E. coli, Listeria, and Salmonella. FT-Rama and SERS spectra of both silver colloids and silver colloids mixed with tripotassium phosphate were collected and analyzed t...

  6. Improving surface-enhanced Raman scattering effect using gold-coated hierarchical polystyrene bead substrates modified with postgrowth microwave treatment.

    Science.gov (United States)

    Yuen, Clement; Zheng, Wei; Huang, Zhiwei

    2008-01-01

    We report a novel postgrowth microwave heating implementation by selectively modifying hierarchical polystyrene (PS) bead substrates coated with gold (Au) films to effectively improve the surface-enhanced Raman scattering (SERS) effect on the analytes. The SERS signal of probe molecule rhodamine 6G (Rh 6G) on the microwave-treated Au-PS substrates can be improved by 10-fold, while the detection limit of Rh 6G in concentration can be enhanced by two orders of magnitude compared to the as-growth substrates. The high-quality SERS spectrum of saliva can also be acquired using the modified substrates, demonstrating the potential for the realization of the high-performance SERS substrates for biomedical applications.

  7. Fiber optic probe enabled by surface-enhanced Raman scattering for early diagnosis of potential acute rejection of kidney transplant

    Science.gov (United States)

    Chi, Jingmao; Chen, Hui; Tolias, Peter; Du, Henry

    2014-06-01

    We have explored the use of a fiber-optic probe with surface-enhanced Raman scattering (SERS) sensing modality for early, noninvasive and, rapid diagnosis of potential renal acute rejection (AR) and other renal graft dysfunction of kidney transplant patients. Multimode silica optical fiber immobilized with colloidal Ag nanoparticles at the distal end was used for SERS measurements of as-collected urine samples at 632.8 nm excitation wavelength. All patients with abnormal renal graft function (3 AR episodes and 2 graft failure episodes) who were clinically diagnosed independently show common unique SERS spectral features in the urines collected just one day after transplant. SERS-based fiber-optic probe has excellent potential to be a bedside tool for early diagnosis of kidney transplant patients for timely medical intervention of patients at high risk of transplant dysfunction.

  8. Ultra-thin layer chromatography and surface enhanced Raman spectroscopy on silver nanorod array substrates prepared by oblique angle deposition

    Science.gov (United States)

    Chen, Jing; Abell, Justin; Huang, Yao-wen; Zhao, Yiping

    2012-06-01

    We demonstrate the potential use of silver nanorod (AgNR) array substrates for on-chip separation and detection of chemical mixtures by ultra-thin layer chromatography (UTLC) and surface enhanced Raman spectroscopy (SERS). The capability of the AgNR substrates to separate different compounds in a mixture was explored using a mixture of the food colorant Brilliant Blue FCF and lactic acid, and the mixtures of Methylene Violet and BSA at various concentrations. After the UTLC process, spatially-resolved SERS spectra were collected along the mobile phase development direction and the intensities of specific SERS peaks from each component were used to generate chromatograms. The AgNR substrates demonstrate the capability of separating Brilliant Blue from lactic acid, as well as revealing the SERS signal of Methylene Violet from the massive BSA background after a simple UTLC step. This technique may have significant practical implications in actual detection of small molecules from complex food or clinical backgrounds.

  9. Surface-enhanced Raman spectroscopic studies of the Au-pentacene interface: a combined experimental and theoretical investigation.

    Science.gov (United States)

    Adil, D; Guha, S

    2013-07-28

    It has recently been shown [D. Adil and S. Guha, J. Phys. Chem. C 116, 12779 (2012)] that a large enhancement in the Raman intensity due to surface-enhanced Raman scattering (SERS) is observed from pentacene when probed through the Au contact in organic field-effect transistors (OFET) structures. Here, the SERS spectrum is shown to exhibit a high sensitivity to disorder introduced in the pentacene film by Au atoms. The Raman signature of the metal-semiconductor interface in pentacene OFETs is calculated with density-functional theory by explicitly considering the Au-pentacene interaction. The observed enhancement in the 1380 cm(-1) and the 1560 cm(-1) regions of the experimental Raman spectrum of pentacene is successfully modeled by Au-pentacene complexes, giving insights into the nature of disorder in the pentacene sp(2) network. Finally, we extend our previous work on high-operating voltage pentacene OFETs to low-operating voltage pentacene OFETs. No changes in the SERS spectra before and after subjecting the OFETs to a bias stress are observed, concurrent with no degradation in the threshold voltage. This shows that bias stress induced performance degradation is, in part, caused by field-induced structural changes in the pentacene molecule. Thus, we confirm that the SERS spectrum can be used as a visualization tool for correlating transport properties to structural changes, if any, in organic semiconductor based devices.

  10. Anti-reflection textured structures by wet etching and island lithography for surface-enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Bo-Kai [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Cheng, Hsin-Hung [Department of Marine Engineering, Taipei College of Maritime Technology, Taipei 11174, Taiwan (China); Nien, Li-Wei; Chen, Miin-Jang [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Nagao, Tadaaki [Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Li, Jia-Han [Department of Engineering Science and Ocean Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Hsueh, Chun-Hway, E-mail: hsuehc@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2015-12-01

    Graphical abstract: - Highlights: • We fabricated textured SERS substrate with a high surface area and low reflectance. • Large surface area of substrate contains more gold nanodroplets to absorb analytes. • Low reflectance of textured SERS substrate enabled multiple reflections of incident laser light. • We obtained strong SERS enhancement from nanopillar-on-pyramid SERS substrate. - Abstract: A high surface area and low reflection textured surface-enhanced Raman scattering (SERS) substrate with plasmonic gold nanodroplets fabricated by wet etching and island lithography was reported in the present study. Specifically, four textured substrates, planar, pyramid, nanopillar, and nanopillar-on-pyramid, were fabricated. The fabricated structures were simulated using the finite-difference time-domain method and the results agreed with the reflection and dark-field scattering measurements. Although the SERS signals varied in different measured regions because of the random nanostructure, the SERS substrates with nanopillar-on-pyramid structure always have the stronger enhancement factor than the SERS substrates with only pyramids or nanopillars. Based on the atomic force microscope and reflection measurements, the nanopillar-on-pyramid structure provided a large surface area and multiple reflections for SERS enhancement, which was about 3 orders of magnitude larger than that of the planar substrate. Our results can be applied to fabricate the inexpensive, large surface area, and high SERS enhancement substrates.

  11. Surface-enhanced Raman detection of RNA and DNA bases following flow-injection analysis or HPLC separation

    Science.gov (United States)

    Cotton, Therese M.; Sheng, Rong-Sheng; Ni, Fan

    1990-11-01

    The goal of this study is to develop Surface-enhanced Raman scattering (SERS) detection methods for flow injection analysis (FIA) and high performance liquid chromatography (HPLC). Nucleic acid bases have been chosen for analysis because of their importance in life processes. The advantages to the use of SERS-based detection include its sensitivity, specificity and versatility. With the development of improved methodology, the detection limits should be comparable to UV spectroscopy. However, the specificity is considerably superior to that obtained with electronic spectroscopy in that the Raman spectrum provides a molecular fingerprint of the individual analytes. Raman spectroscopy is very versatile: aqueous samples, gases and solids can be analyzed with equal facility. The results presented here demonstrate that SERS can be used as a detection method for both FIA and HPLC detection. In the following experiments Ag sols have been used as the active substrate. The effect of various parameters such as temperature, pH, flow rate, and the nature of the interface between the HPLC system and the Raman spectrometer have been examined. One of the most significant findings is that the temperature of the Ag sol/HPLC effluent mixture has a dramatic effect on the SERS intensities. This effect is a result of increased colloid aggregation at higher temperatures. Aggregation is known to produce greater enhancement in SERS and proceeds much more rapidly at elevated temperatures. An increase in the temperature of the Ag sol enables SERS detection under flowing conditions and in real time. This is a substantial improvement over many of the previous attempts to interface SERS detection to FIA or HPLC. In most of the previous studies, it was necessary to stop the flow as the analyte eluted from the chromatogram and measure the SERS spectra under static conditions.

  12. Design, fabrication, and characterization of metallic nanostructures for surface-enhanced Raman spectroscopy and plasmonic applications

    Science.gov (United States)

    Hao, Qingzhen

    Metal/dielectric nanostructures have the ability to sustain coherent electron oscillations known as surface plasmons. Due to their capability of localizing and guiding light in sub-wavelength metal nanostructures beyond diffraction limits, surface plasmon-based photonics, or “plasmonics” has opened new physical phenomena and lead to novel applications in metamaterials, optoelectronics, surface enhanced spectroscopy and biological sensing. This dissertation centers on design, fabrication, characterization of metallic nanostructures and their applications in surface-enhanced Raman spectroscopy (SERS) and actively tunable plasmonics. Metal-dielectric nanostructures are the building blocks for photonic metamaterials. One valuable design guideline for metamaterials is the Babinet’s principle, which governs the optical properties of complementary nanostructures. However, most complementary metamaterials are designed for the far infrared region or beyond, where the optical absorption of metal is small. We have developed a novel dual fabrication method, capable of simultaneously producing optically thin complementary structures. From experimental measurements and theoretical simulations, we showed that Babinet’s principle qualitatively holds in the visible region for the optically thin complements. The complementary structure is also a good platform to study subtle differences between nanoparticles and nanoholes in SERS (a surface sensitive technique, which can enhance the conventional Raman cross-section by 106˜108 fold, thus very useful for highly sensitive biochemical sensing). Through experimental measurement and theoretical analysis, we showed that the SERS enhancement spectrum (plot of SERS enhancement versus excitation wavelengths), dominated by local near-field, for nanoholes closely follows their far-field optical transmission spectrum. However, the enhancement spectrum for nanoparticles red-shifts significantly from their far-field optical extinction

  13. Study of Surface Enhanced Raman Scattering of Alizarin and Crystal Violet Dyes

    Science.gov (United States)

    Gopal, Ram; Swarnkar, Raj Kumar

    2010-06-01

    Surface enhanced Raman scattering (SERS) plays a vital role in analytical chemistry to characterize ultra trace quantity of organic compounds and biological samples. Two mechanisms have been considered to explain the SERS effect. The main contribution arises from a huge enhancement of the local electromagnetic field close to surface roughness of the metal structures, due to the excitation of a localized surface plasmon, while a further enhancement can be observed for molecules adsorbed onto specific sites when resonant charge transfer occurs. SERS signals have been observed from adsorbates on many metallic surfaces like Ag, Au, Ni, Cu etc. Additionally, metal oxide nanoparticles also show SERS signals It has now been established that SERS of analyte material is highly dependent on the type of substrate involved. Many types of nanostructures like nanofilms, nanorods, nanospheres etc. show highly efficient SERS signals. In particular, there are two routes available for the synthesis of these nanomaterials: the chemical route and the physical route. Chemical route involves many types of reducing agents and capping agents which can interfere in origin and measurement of these signals. The physical route avoids these anomalies and therefore it is suitable for the study of SERS phenomenon. Pulsed laser ablation in liquid medium is an excellent top down technique to produce colloidal solution of nanoparticles with desired shape and size having surface free from chemical contamination, which is essential requirement for surface application of nanoparticles. The present work deals with the study of SERS of Crystal violet dye and Alizarin group dye on Cu@ Cu_2O and Ag colloidal nanoparticles synthesized by pulsed laser ablation. M. Fleishchmann, P. J. Hendra, and A. J. McQuillian Chem. Phys. Lett., 26, 163, 1974. U. Wenning, B. Pettinger, and H. Wetzel Chem. Phys. Lett., 70, 49, 1980. S. C. Singh, R. K. Swarnkar, P. Ankit, M. C. Chattopadhyaya, and R. Gopal AIP Conf. Proc

  14. Indirect glyphosate detection based on ninhydrin reaction and surface-enhanced Raman scattering spectroscopy

    Science.gov (United States)

    Xu, Meng-Lei; Gao, Yu; Li, Yali; Li, Xueliang; Zhang, Huanjie; Han, Xiao Xia; Zhao, Bing; Su, Liang

    2018-05-01

    Glyphosate is one of the most commonly-used and non-selective herbicides in agriculture, which may directly pollute the environment and threaten human health. A simple and effective approach to assessment of its damage to the natural environment is thus quite necessary. However, traditional chromatography-based detection methods usually suffer from complex pretreatment procedures. Herein, we propose a simple and sensitive method for the determination of glyphosate by combining ninhydrin reaction and surface-enhanced Raman scattering (SERS) spectroscopy. The product (purple color dye, PD) of the ninhydrin reaction is found to SERS-active and directly correlate with the glyphosate concentration. The limit of detection of the proposed method for glyphosate is as low as 1.43 × 10- 8 mol·L- 1 with a relatively wider linear concentration range (1.0 × 10- 7-1.0 × 10- 4 mol·L- 1), which demonstrates its great potential in rapid, highly sensitive concentration determination of glyphosate in practical applications for safety assessment of food and environment.

  15. Surface-enhanced Raman scattering of the adsorption of pesticide endosulfan on gold nanoparticles.

    Science.gov (United States)

    Hernández-Castillo, M I; Zaca-Morán, O; Zaca-Morán, P; Orduña-Diaz, A; Delgado-Macuil, R; Rojas-López, M

    2015-01-01

    The absorption of pesticide endosulfan on the surface of gold nanoparticles results from the formation of micrometric structures (1-10 μm) with irregular shape because of the aggregation of individual particles. Such aggregation of gold nanoparticles after absorption of pesticide shows a surface-enhanced Raman scattering (SERS) spectrum, whose intensity depends on the concentration of endosulfan. In addition, the discoloration of the colloidal solution and a diminishing of the intensity of the surface plasmon resonance absorption from individual particles were observed by UV-visible spectroscopy. At the same time, a second band between 638 and 700 nm confirms the formation of aggregates of gold nanoparticles as the concentration of endosulfan increases. Finally, we used the SERS intensity of the S-O stretching vibration at 1239 cm(-1) from the SO3 group as a measure of concentration of pesticide endosulfan. This method could be used to estimate the level of pollution in water by endosulfan in a simple and practical form.

  16. Functionalized gold nanostars for label-free detection of PKA phosphorylation using surface-enhanced Raman spectroscopy

    Science.gov (United States)

    He, Shuai; Kah, James C. Y.

    2017-04-01

    Protein phosphorylation controls fundamental biological processes. Dysregulation of protein kinase is associated with a series of human diseases including cancer. Protein kinase A (PKA) activity has been reported to serve as a potential prognostic marker for cancer. To this end, we developed a non-radioactive, rapid, cheap and robust scheme based on surface-enhanced Raman spectroscopy (SERS) for label-free detection of PKA phosphorylation using gold nanostars (AuNS) functionalized with BSA-kemptide. While bovine serum albumin (BSA) proteins stabilized the AuNS, kemptide, which is a high affinity substrate peptide specific for PKA, were phosphorylated in vitro to generate Raman signals that were identified by performing principal component analysis (PCA) on the acquired SERS spectra.

  17. Surface-enhanced Raman scattering of 4-aminobenzenethiol sandwiched between silver nanoparticles and gold micro-powders

    International Nuclear Information System (INIS)

    Choi, Jeong Yong; Lee, Hyang Bong; Kim, Kwan; Shin Kuan Soo

    2015-01-01

    The surface-enhanced Raman scattering (SERS) activity of micrometer-sized gold (μAu) powders is far weaker than that of micrometer-sized silver (μAg) powders. The Raman peaks of organics assembled on μAu powders can, however, be enhanced dramatically by depositing Ag nanoparticles thereon to form the so-called sandwich structures. This is demonstrated in this work by using 4-aminobenzenthiol (4-ABT) as the prototype organic. Besides, the b_2-type bands of 4-ABT are found to be enhanced more than the a1-type band, and this is presumed to be a result of the favorable Ag-to-Au charge transfer configuration of the sandwich structure (Ag/4-ABT/μAu), associated with the chemical enhancement mechanism in SERS

  18. Plasmonic nanoantenna arrays for surface-enhanced Raman spectroscopy of lipid molecules embedded in a bilayer membrane.

    Science.gov (United States)

    Kühler, Paul; Weber, Max; Lohmüller, Theobald

    2014-06-25

    We demonstrate a strategy for surface-enhanced Raman spectroscopy (SERS) of supported lipid membranes with arrays of plasmonic nanoantennas. Colloidal lithography refined with plasma etching is used to synthesize arrays of triangular shaped gold nanoparticles. Reducing the separation distance between the triangle tips leads to plasmonic coupling and to a strong enhancement of the electromagnetic field in the nanotriangle gap. As a result, the Raman scattering intensity of molecules that are located at this plasmonic "hot-spot" can be increased by several orders of magnitude. The nanoantenna array is then embedded with a supported phospholipid membrane which is fluid at room temperature and spans the antenna gap. This configuration offers the advantage that molecules that are mobile within the bilayer membrane can enter the "hot-spot" region via diffusion and can therefore be measured by SERS without static entrapment or adsorption of the molecules to the antenna itself.

  19. Surface-enhanced Raman scattering from silver electrodes

    International Nuclear Information System (INIS)

    Trott, G.R.

    1982-01-01

    The chemical and physical origins of the anomalously large enhancement of the Raman scattering cross section for molecules adsorbed on silver electrodes in an electrochemical cell were investigated. The effect of the chemical reactions which occur during the anodization/activation procedure were studied using the Ag-CN system. It was shown that the function of the anodization process is to roughen the electrode surface and create an activated site for bonding to the cyanide. A new nonelectrochemical technique for activating the silver surface, along with a study of the enhanced cyanide Raman scattering in different background electrolytes, showed that the Raman active entity on the surface must be a silver-cyanide complex. In order to study the physical mechanism of the enhancement, the angular dependence of the scattered radiation was measured from pyridine adsorbed on an evaporated silver electrode. Both polycrystalline and single crystalline silver films were used. The angular dependence of the scattered radiation from these films showed that the metal surface was controlling the directional properties of the scattered radiation, and not the polarizability tensor of the adsorbate. Based on these experimental results, it was concluded that for weakly roughened silver electrodes the source of the anomalous enhancement is due to a resonant Raman scattering process

  20. Improved molecular fingerprint analysis employing multi-branched gold nanoparticles in conjunction with surface-enhanced Raman scattering

    Directory of Open Access Journals (Sweden)

    Johnston J

    2015-12-01

    Full Text Available Jencilin Johnston,1 Erik N Taylor,1,2 Richard J Gilbert,2 Thomas J Webster1,3 1Department of Chemical Engineering, 2Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA; 3Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: Vibrational spectroscopy is a powerful analytical tool that assesses molecular properties based on spectroscopic signatures. In this study, the effect of gold nanoparticle morphology (spherical vs multi-branched was assessed for the characterization of a Raman signal (ie, molecular fingerprint that may be helpful for numerous medical applications. Multi-branched gold nanoparticles (MBAuNPs were fabricated using a green chemistry method which employed the reduction of gold ion solute by 2-[4-(2-hydroxyethyl-1-piperazyl] ethane sulfonic acid. Two types of reporter dyes, indocyanine (IR820 and IR792 and carbocyanine (DTTC [3,3'-diethylthiatricarbocyanine iodide] and DTDC [3,3'-diethylthiadicarbocyanine iodide], were functionalized to the surface of the MBAuNPs and stabilized with denatured bovine serum albumin, thus forming the surface-enhanced Raman spectroscopy tag. Fluorescein isothiocyanate-conjugated anti-epidermal growth factor receptor to the surface-enhanced Raman spectroscopy tags and the properties of the resulting conjugates were assessed through determination of the Raman signal. Using the MBAuNP Raman probes synthesized in this manner, we demonstrated that MBAuNP provided significantly more surface-enhanced Raman scattering signal when compared with the associated spherical gold nanoparticle of similar size and concentration. MBAuNP enhancements were retained in the surface-enhanced Raman spectroscopy tags complexed to anti-epidermal growth factor receptor, providing evidence that this could be a useful biological probe for enhanced Raman molecular fingerprinting. Furthermore, while utilizing IR820 as a novel reporter dye

  1. Microwave assisted in situ synthesis of Ag–NaCMC films and their reproducible surface-enhanced Raman scattering signals

    International Nuclear Information System (INIS)

    Jiang, Tao; Li, Junpeng; Zhang, Li; Wang, Binbing; Zhou, Jun

    2014-01-01

    Graphical abstract: Two kinds of Ag–NaCMC films for surface-enhanced Raman scattering (SERS) were prepared by conventional heating and microwave assisted in situ reduction methods without any additional capping or reducing agents. A relatively narrow and symmetric surface plasmon resonance band was observed in the absorption spectra of the films fabricated by the microwave assisted in situ reduction method. More uniform silver nanoparticles (NPs) implied by the symmetric absorption spectrum were further confirmed by the scanning electron microscopy images. After the simulation of the E-field intensity distribution around the silver NPs in NaCMC film, the Raman scattering enhancement factors (EFs) of these films were then investigated with 4-mercaptobenzoic acid molecule as a SERS reporter. Improved reproducibility of SERS signal was obtained in the microwave assisted synthesized Ag–NaCMC film, although it maintained an EF as only 1.11 × 10 8 . The reproducible SERS signal of the Ag–NaCMC film is particularly attractive and this microwave assisted in situ reduction method is suitable for the production of excellent substrate for biosensor application. - Highlights: • The synthesis of Ag–NaCMC films was successfully fulfilled by a low-cost microwave method. • More uniform silver nanoparticles were observed in Ag–NaCMC film synthesized by microwave. • Improved reproducibility of SERS signal was obtained in microwave synthesized Ag–NaCMC film. - Abstract: Two kinds of Ag–NaCMC films for surface-enhanced Raman scattering (SERS) were prepared by conventional heating and microwave assisted in situ reduction methods without any additional capping or reducing agents. A relatively narrow and symmetric surface plasmon resonance band was observed in the absorption spectra of the films fabricated by the microwave assisted in situ reduction method. More uniform silver nanoparticles (NPs) implied by the symmetric absorption spectrum were further confirmed by

  2. Nanopillar Filters for Surface-Enhanced Raman Spectroscopy

    DEFF Research Database (Denmark)

    Durucan, Onur; Rindzevicius, Tomas; Schmidt, Michael Stenbæk

    2017-01-01

    We present a simple, robust, and automated molecule extraction technique based on a centrifugal microfluidic platform. Fast and facile extraction of a food adulterant (melamine) from a complex sample medium (milk) on a SERS substrate is demonstrated. The unique characteristic of the detection met...

  3. Application of surface enhanced Raman scattering and competitive adaptive reweighted sampling on detecting furfural dissolved in transformer oil

    Directory of Open Access Journals (Sweden)

    Weigen Chen

    2018-03-01

    Full Text Available Detecting the dissolving furfural in mineral oil is an essential technical method to evaluate the ageing condition of oil-paper insulation and the degradation of mechanical properties. Compared with the traditional detection method, Raman spectroscopy is obviously convenient and timesaving in operation. This study explored the method of applying surface enhanced Raman scattering (SERS on quantitative analysis of the furfural dissolved in oil. Oil solution with different concentration of furfural were prepared and calibrated by high-performance liquid chromatography. Confocal laser Raman spectroscopy (CLRS and SERS technology were employed to acquire Raman spectral data. Monte Carlo cross validation (MCCV was used to eliminate the outliers in sample set, then competitive adaptive reweighted sampling (CARS was developed to select an optimal combination of informative variables that most reflect the chemical properties of concern. Based on selected Raman spectral features, support vector machine (SVM combined with particle swarm algorithm (PSO was used to set up a furfural quantitative analysis model. Finally, the generalization ability and prediction precision of the established method were verified by the samples made in lab. In summary, a new spectral method is proposed to quickly detect furfural in oil, which lays a foundation for evaluating the ageing of oil-paper insulation in oil immersed electrical equipment.

  4. Application of surface enhanced Raman scattering and competitive adaptive reweighted sampling on detecting furfural dissolved in transformer oil

    Science.gov (United States)

    Chen, Weigen; Zou, Jingxin; Wan, Fu; Fan, Zhou; Yang, Dingkun

    2018-03-01

    Detecting the dissolving furfural in mineral oil is an essential technical method to evaluate the ageing condition of oil-paper insulation and the degradation of mechanical properties. Compared with the traditional detection method, Raman spectroscopy is obviously convenient and timesaving in operation. This study explored the method of applying surface enhanced Raman scattering (SERS) on quantitative analysis of the furfural dissolved in oil. Oil solution with different concentration of furfural were prepared and calibrated by high-performance liquid chromatography. Confocal laser Raman spectroscopy (CLRS) and SERS technology were employed to acquire Raman spectral data. Monte Carlo cross validation (MCCV) was used to eliminate the outliers in sample set, then competitive adaptive reweighted sampling (CARS) was developed to select an optimal combination of informative variables that most reflect the chemical properties of concern. Based on selected Raman spectral features, support vector machine (SVM) combined with particle swarm algorithm (PSO) was used to set up a furfural quantitative analysis model. Finally, the generalization ability and prediction precision of the established method were verified by the samples made in lab. In summary, a new spectral method is proposed to quickly detect furfural in oil, which lays a foundation for evaluating the ageing of oil-paper insulation in oil immersed electrical equipment.

  5. Surface-enhanced Raman scattering of dipolar molecules by the graphene Fermi surface modulation with different dipole moments

    Science.gov (United States)

    Zhang, Mingjia; Leng, Yandan; Huang, Jing; Yu, JiaoJiao; Lan, Zhenggang; Huang, Changshui

    2017-12-01

    We report the modulation of Raman scattering spectrum of chromophore/graphene hybrids by tunning the molecular polarization with different terminal groups (methyl, methoxy, nitrile, and two nitros). Based on the density functional theory, the specific dipole moment values of the chromophore molecules are calculated. An obvious surface-enhanced Raman scattering (SERS) was observed and the scattering intensity of molecule increases with enlarged dipole moment. According to the analysis of G band Raman shifts of graphene, the enhancement of the Raman signal can be attributed to strong electronic coupling between graphene and chromophore, which is closely related with the modulation of graphene Fermi surface by changing the dipole moment of the molecule. Besides, the optimization of the ground state geometry and the binding energy of the hybrids were also calculated with the Density Functional Based Tight Bonding (DFTB) method, which confirms that the enhanced Raman scattering of molecules on graphene arises from the improved energy level matching between graphene Fermi surface and molecular band, further providing a new way to design novel SERS devices.

  6. Early discrimination of nasopharyngeal carcinoma based on tissue deoxyribose nucleic acid surface-enhanced Raman spectroscopy analysis

    Science.gov (United States)

    Qiu, Sufang; Li, Chao; Lin, Jinyong; Xu, Yuanji; Lu, Jun; Huang, Qingting; Zou, Changyan; Chen, Chao; Xiao, Nanyang; Lin, Duo; Chen, Rong; Pan, Jianji; Feng, Shangyuan

    2016-12-01

    Surface-enhanced Raman spectroscopy (SERS) was employed to detect deoxyribose nucleic acid (DNA) variations associated with the development of nasopharyngeal carcinoma (NPC). Significant SERS spectral differences between the DNA extracted from early NPC, advanced NPC, and normal nasopharyngeal tissue specimens were observed at 678, 729, 788, 1337, 1421, 1506, and 1573 cm-1, which reflects the genetic variations in NPC. Principal component analysis combined with discriminant function analysis for early NPC discrimination yielded a diagnostic accuracy of 86.8%, 92.3%, and 87.9% for early NPC, advanced NPC, and normal nasopharyngeal tissue DNA, respectively. In this exploratory study, we demonstrated the potential of SERS for early detection of NPC based on the DNA molecular study of biopsy tissues.

  7. Rapid and sensitive detection of malachite green in aquaculture water by electrochemical preconcentration and surface-enhanced Raman scattering.

    Science.gov (United States)

    Xu, Kai-Xuan; Guo, Mei-Hong; Huang, Yu-Ping; Li, Xiao-Dong; Sun, Jian-Jun

    2018-04-01

    A highly sensitive and rapid method of in-situ surface-enhanced Raman spectroscopy (SERS) combining with electrochemical preconcentration (EP) in detecting malachite green (MG) in aquaculture water was established. Ag nanoparticles (AgNPs) were synthesized and spread onto the surface of gold electrodes after centrifuging to produce SERS-active substrates. After optimizing the pH values, preconcentration potentials and times, in-situ EP-SERS detection was carried out. A sensitive and rapid analysis of the low-concentration MG was accomplished within 200s and the limit of detection was 2.4 × 10 -16 M. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A New Smart Surface-Enhanced Raman Scattering Sensor Based on pH-Responsive Polyacryloyl Hydrazine Capped Ag Nanoparticles

    Science.gov (United States)

    Yuan, Shuai; Ge, Fengyan; Zhou, Man; Cai, Zaisheng; Guang, Shanyi

    2017-08-01

    A novel pH-responsive Ag@polyacryloyl hydrazide (Ag@PAH) nanoparticle for the first time as a surface-enhanced Raman scattering (SERS) substrate was prepared without reducing agent and end-capping reagent. Ag@PAH nanoparticles exhibited an excellent tunable detecting performance in the range from pH = 4 to pH = 9. This is explained that the swelling-shrinking behavior of responsive PAH can control the distance between Ag NPs and the target molecules under external pH stimuli, resulting in the tunable LSPR and further controlled SERS. Furthermore, Ag@PAH nanoparticles possessed an ultra-sensitive detecting ability and the detection limit of Rhodamine 6G reduced to 10-12 M. These advantages qualified Ag@PAH NP as a promising smart SERS substrate in the field of trace analysis and sensors.

  9. A New Smart Surface-Enhanced Raman Scattering Sensor Based on pH-Responsive Polyacryloyl Hydrazine Capped Ag Nanoparticles.

    Science.gov (United States)

    Yuan, Shuai; Ge, Fengyan; Zhou, Man; Cai, Zaisheng; Guang, Shanyi

    2017-08-14

    A novel pH-responsive Ag@polyacryloyl hydrazide (Ag@PAH) nanoparticle for the first time as a surface-enhanced Raman scattering (SERS) substrate was prepared without reducing agent and end-capping reagent. Ag@PAH nanoparticles exhibited an excellent tunable detecting performance in the range from pH = 4 to pH = 9. This is explained that the swelling-shrinking behavior of responsive PAH can control the distance between Ag NPs and the target molecules under external pH stimuli, resulting in the tunable LSPR and further controlled SERS. Furthermore, Ag@PAH nanoparticles possessed an ultra-sensitive detecting ability and the detection limit of Rhodamine 6G reduced to 10 -12  M. These advantages qualified Ag@PAH NP as a promising smart SERS substrate in the field of trace analysis and sensors.

  10. Electrochemical surface-enhanced Raman scattering measurement on ligand capped PbS quantum dots at gap of Au nanodimer

    Science.gov (United States)

    Li, Xiaowei; Minamimoto, Hiro; Murakoshi, Kei

    2018-05-01

    The vibrational characteristics of ligand-capped lead sulfide (PbS) quantum dots (QDs) were clarified via electrochemical surface-enhanced Raman spectroscopy (EC-SERS) using a hybridized system of gold (Au) nanodimers and PbS QDs under electrochemical potential control. Enhanced electromagnetic field caused by the coupling of QDs with plasmonic Au nanodimers allowed the characteristic behavior of the ligand oleic acid (OA) on the PbS QD surface to be detected under electrochemical potential control. Binding modes between the QDs and OA molecules were characterized using synchronous two-dimensional correlation spectra at distinct electrochemical potentials, confirming that the bidentate bridging mode was probably the most stable mode even under relatively negative potential polarization. Changes in binding modes and molecular orientations resulted in fluctuations in EC-SERS spectra. The present observations strongly recommend the validity of the QD-plasmonic nanostructure coupled system for sensitive molecular detection via EC-SERS.

  11. Graphene Dendrimer-stabilized silver nanoparticles for detection of methimazole using Surface-enhanced Raman scattering with computational assignment

    Science.gov (United States)

    Saleh, Tawfik A.; Al-Shalalfeh, Mutasem M.; Al-Saadi, Abdulaziz A.

    2016-08-01

    Graphene functionalized with polyamidoamine dendrimer, decorated with silver nanoparticles (G-D-Ag), was synthesized and evaluated as a substrate with surface-enhanced Raman scattering (SERS) for methimazole (MTZ) detection. Sodium borohydride was used as a reducing agent to cultivate silver nanoparticles on the dendrimer. The obtained G-D-Ag was characterized by using UV-vis spectroscopy, scanning electron microscope (SEM), high-resolution transmission electron microscope (TEM), Fourier-transformed infrared (FT-IR) and Raman spectroscopy. The SEM image indicated the successful formation of the G-D-Ag. The behavior of MTZ on the G-D-Ag as a reliable and robust substrate was investigated by SERS, which indicated mostly a chemical interaction between G-D-Ag and MTZ. The bands of the MTZ normal spectra at 1538, 1463, 1342, 1278, 1156, 1092, 1016, 600, 525 and 410 cm-1 were enhanced due to the SERS effect. Correlations between the logarithmical scale of MTZ concentrations and SERS signal intensities were established, and a low detection limit of 1.43 × 10-12 M was successfully obtained. The density functional theory (DFT) approach was utilized to provide reliable assignment of the key Raman bands.

  12. Ag Nanorods-Oxide Hybrid Array Substrates: Synthesis, Characterization, and Applications in Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Lingwei Ma

    2017-08-01

    Full Text Available Over the last few decades, benefitting from the sufficient sensitivity, high specificity, nondestructive, and rapid detection capability of the surface-enhanced Raman scattering (SERS technique, numerous nanostructures have been elaborately designed and successfully synthesized as high-performance SERS substrates, which have been extensively exploited for the identification of chemical and biological analytes. Among these, Ag nanorods coated with thin metal oxide layers (AgNRs-oxide hybrid array substrates featuring many outstanding advantages have been proposed as fascinating SERS substrates, and are of particular research interest. The present review provides a systematic overview towards the representative achievements of AgNRs-oxide hybrid array substrates for SERS applications from diverse perspectives, so as to promote the realization of real-world SERS sensors. First, various fabrication approaches of AgNRs-oxide nanostructures are introduced, which are followed by a discussion on the novel merits of AgNRs-oxide arrays, such as superior SERS sensitivity and reproducibility, high thermal stability, long-term activity in air, corrosion resistivity, and intense chemisorption of target molecules. Next, we present recent advances of AgNRs-oxide substrates in terms of practical applications. Intriguingly, the recyclability, qualitative and quantitative analyses, as well as vapor-phase molecule sensing have been achieved on these nanocomposites. We further discuss the major challenges and prospects of AgNRs-oxide substrates for future SERS developments, aiming to expand the versatility of SERS technique.

  13. Surface-enhanced Raman scattering by colloidal CdSe nanocrystal submonolayers fabricated by the Langmuir–Blodgett technique

    Directory of Open Access Journals (Sweden)

    Alexander G. Milekhin

    2015-12-01

    Full Text Available We present the results of an investigation of surface-enhanced Raman scattering (SERS by optical phonons in colloidal CdSe nanocrystals (NCs homogeneously deposited on both arrays of Au nanoclusters and Au dimers using the Langmuir–Blodgett technique. The coverage of the deposited NCs was less than one monolayer, as determined by transmission and scanning electron microscopy. SERS by optical phonons in CdSe nanocrystals showed a significant enhancement that depends resonantly on the Au nanocluster and dimer size, and thus on the localized surface plasmon resonance (LSPR energy. The deposition of CdSe nanocrystals on the Au dimer nanocluster arrays enabled us to study the polarization dependence of SERS. The maximal SERS signal was observed for light polarization parallel to the dimer axis. The polarization ratio of the SERS signal parallel and perpendicular to the dimer axis was 20. The SERS signal intensity was also investigated as a function of the distance between nanoclusters in a dimer. Here the maximal SERS enhancement was observed for the minimal distance studied (about 10 nm, confirming the formation of SERS “hot spots”.

  14. Formation of gold nanorods and gold nanorod films for surface-enhanced Raman scattering spectroscopy

    International Nuclear Information System (INIS)

    Trotsyuk, L.L.; Kulakovich, O.S.; Shabunya-Klyachkovskaya, E.V.; Gaponenko, S.V.; Vashchenko, S.V.

    2016-01-01

    The formation of gold nanorods as well as thin films prepared via electrostatic deposition of gold nanorods has been investigated. The obtained gold nanorods films have been used as substrates for the surface-enhanced Raman scattering analysis of sulfur-free organic molecules mitoxantrone and malachite green as well as inorganic malachite microcrystals for the first time. The additional modification of films with L-cysteine allows one to significantly extend the use of gold nanorods for the surface-enhanced Raman scattering analysis. (authors)

  15. Resonance surface enhanced Raman optical activity of myoglobin as a result of optimized resonance surface enhanced Raman scattering conditions

    DEFF Research Database (Denmark)

    Abdali, Salim; Johannessen, Christian; Nygaard, Jesper

    2007-01-01

    at single molecule level. The results of this work, using silver nanoparticles and a laser excitation of 532 nm, became only feasible when the concentrations of nanoparticles, aggregation agent NaCl and the studied molecule were optimized in a series of systematic optimization steps. The spectral analysis...... has shown that the SERS effect behaves consequently, depending on the concentration ratio of each component, i.e., myoglobin, Ag colloids and NaCl. Accordingly, it is shown here that SERS intensity has its maximum at certain concentration of these components, whereas below or above this value...

  16. Fabrication of a Au–polystyrene sphere substrate with three-dimensional nanofeatures for surface-enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Hu, Xiaotang; Xu, Zongwei; Li, Kang; Fang, Fengzhou; Wang, Liyang

    2015-01-01

    Graphical abstract: Methods for fabricating three-dimensional nanofeature arrays for surface-enhanced Raman spectroscopy (SERS) substrates were explored by combining the self-assembly of nanoscale polystyrene (PS) spheres with subsequent Au film ion sputter coating modulation. The substrate's nanoscale hot-spot features were controlled using the Au coating film thickness regulation and focused ion beam (FIB) nano-patterning regulation methods. Scanning electron microscopy and Raman spectroscopy were employed to analyze the substrate morphology and the enhancement mechanism of the three-dimensional SERS substrate. PS microspheres with diameters of 151 nm and 360 nm were coated with Au layers of different thicknesses ranging from 10 nm to 270 nm. The configuration of the Au–PS spheres can be regulated to hexagonal close packing with nanoscale V-shaped slits with a 10 to 20 nm gap pattern. Nanoscale Au particles and clusters with a clear outline covered the surface of the PS spheres, in which the multiple-scale structures increase the specific surface area of the SERS-active substrate. Nanoscale cracks formed on the smaller Au–PS spheres with a diameter of 151 nm, which also exhibited strong SERS activity. The substrate surface temperature regularly increased after Au coating, and the thermal expansion coefficient difference and PS glass transition properties were studied to explain the Au–PS spheres nanofeature configuration development. The fabricated Au–PS spheres SERS feature is a type of three-dimensional and highly ordered array, which can show Raman scattering characteristics by providing a SERS enhancement factor of greater than 107. - Highlights: • Au film coating over PS nanospheres was studied to develop 3D SERS substrate. • The Au–PS sphere can be hexagonal close packing with 10–20 nm nanoscale gaps. • PS glass transition property results in Au–PS sphere nano configuration evolution. • The nanoscale Au clusters with clear outline were

  17. Fabrication of a Au–polystyrene sphere substrate with three-dimensional nanofeatures for surface-enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaotang; Xu, Zongwei, E-mail: zongweixu@163.com; Li, Kang; Fang, Fengzhou, E-mail: fzfang@tju.edu.cn; Wang, Liyang

    2015-11-15

    Graphical abstract: Methods for fabricating three-dimensional nanofeature arrays for surface-enhanced Raman spectroscopy (SERS) substrates were explored by combining the self-assembly of nanoscale polystyrene (PS) spheres with subsequent Au film ion sputter coating modulation. The substrate's nanoscale hot-spot features were controlled using the Au coating film thickness regulation and focused ion beam (FIB) nano-patterning regulation methods. Scanning electron microscopy and Raman spectroscopy were employed to analyze the substrate morphology and the enhancement mechanism of the three-dimensional SERS substrate. PS microspheres with diameters of 151 nm and 360 nm were coated with Au layers of different thicknesses ranging from 10 nm to 270 nm. The configuration of the Au–PS spheres can be regulated to hexagonal close packing with nanoscale V-shaped slits with a 10 to 20 nm gap pattern. Nanoscale Au particles and clusters with a clear outline covered the surface of the PS spheres, in which the multiple-scale structures increase the specific surface area of the SERS-active substrate. Nanoscale cracks formed on the smaller Au–PS spheres with a diameter of 151 nm, which also exhibited strong SERS activity. The substrate surface temperature regularly increased after Au coating, and the thermal expansion coefficient difference and PS glass transition properties were studied to explain the Au–PS spheres nanofeature configuration development. The fabricated Au–PS spheres SERS feature is a type of three-dimensional and highly ordered array, which can show Raman scattering characteristics by providing a SERS enhancement factor of greater than 107. - Highlights: • Au film coating over PS nanospheres was studied to develop 3D SERS substrate. • The Au–PS sphere can be hexagonal close packing with 10–20 nm nanoscale gaps. • PS glass transition property results in Au–PS sphere nano configuration evolution. • The nanoscale Au clusters with clear outline

  18. Magnetic Fe{sub 3}O{sub 4}-Au core-shell nanostructures for surface enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.A.; Adams, S.A.; Zhang, J.Z. [Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064 (United States); Lopez-Luke, T. [Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064 (United States); Cento de Investigaciones en Optica, A.P. 1-948 Leon, Gto. 37150 (Mexico); Torres-Castro, A. [Universidad Autonoma de Nuevo Leon, A.P. 126-F, Monterrey, NL, 66450 (Mexico)

    2012-11-15

    The synthesis, structural and optical characterization, and application of superparamagnetic and water-dispersed Fe{sub 3}O{sub 4}-Au core-shell nanoparticles for surface enhanced Raman scattering (SERS) is reported. The structure of the nanoparticles was determined by scanning transmission electron microscopy (STEM) and high-resolution transmission electron microscopy (HRTEM). STEM images of the Fe{sub 3}O{sub 4}-Au core-shell nanoparticles reveal an average diameter of 120 nm and a high degree of surface roughness. The nanoparticles, which display superparamagnetic properties due to the core Fe{sub 3}O{sub 4} material, exhibit a visible surface plasmon resonance (SPR) peaked at 580 nm due to the outer gold shell. The nanoparticles are used as a substrate for surface enhanced Raman scattering (SERS) with rhodamine 6G (R6G) as a Raman reporter molecule. The SERS enhancement factor is estimated to be on the order of 10{sup 6}, which is {proportional_to} 2 times larger than that of conventional gold nanoparticles (AuNPs) under similar conditions. Significantly, magnetically-induced aggregation of the Fe{sub 3}O{sub 4}-Au core-shell nanoparticles substantially enhanced SERS activity compared to non-magnetically-aggregated Fe{sub 3}O{sub 4}-Au nanoparticles. This is attributed to both increased scattering from the aggregates as well as ''hot spots'' due to more junction sites in the magnetically-induced aggregates. The magnetic properties of the Fe{sub 3}O{sub 4} core, coupled with the optical properties of the Au shell, make the Fe{sub 3}O{sub 4}-Au nanoparticles unique for various potential applications including biological sensing and therapy. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Early diagnosis of influenza virus a using surface-enhanced Raman scattering-based lateral flow assay

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Ji; Choo, Jae Bum [Dept. of Bionano Technology, Hanyang University, Ansan (Korea, Republic of); Yang, Sung Chul [School of Architectural Engineering, Hongik University, Sejong (Korea, Republic of)

    2016-12-15

    We report a surface-enhanced Raman scattering (SERS)-based lateral flow assay (LFA) kit for the rapid diagnosis of influenza virus A. Influenza virus A is highly infectious and causes acute respiratory diseases. Therefore, it is important to diagnose the virus early to prevent a pandemic and to provide appropriate treatment to the patient and vaccination of high-risk individuals. Conventional diagnostic tests, including virus cell culture and real-time polymerase chain reaction, take longer than 1 day to confirm the disease. In contrast, a commercially available rapid influenza diagnostic test can detect the infection within 30 min, but it is hard to confirm viral infection using only this test because of its low sensitivity. Therefore, the development of a rapid and simple test for the early diagnosis of influenza infection is urgently needed. To resolve these problems, we developed a SERS-based LFA kit in which the gold nanoparticles in the commercial rapid kit were replaced with SERS-active nano tags. It is possible to quantitatively detect the influenza virus A with high sensitivity by measuring the enhanced Raman signal of these SERS nano tags on the LFA strip. The limit of detection (LOD) using our proposed SERS-based LFA kit was estimated to be 1.9 × 10{sup 4} PFU/mL, which is approximately one order of magnitude more sensitive than the LOD determined from the colorimetric LFA kit.

  20. Early diagnosis of influenza virus a using surface-enhanced Raman scattering-based lateral flow assay

    International Nuclear Information System (INIS)

    Park, Hyun Ji; Choo, Jae Bum; Yang, Sung Chul

    2016-01-01

    We report a surface-enhanced Raman scattering (SERS)-based lateral flow assay (LFA) kit for the rapid diagnosis of influenza virus A. Influenza virus A is highly infectious and causes acute respiratory diseases. Therefore, it is important to diagnose the virus early to prevent a pandemic and to provide appropriate treatment to the patient and vaccination of high-risk individuals. Conventional diagnostic tests, including virus cell culture and real-time polymerase chain reaction, take longer than 1 day to confirm the disease. In contrast, a commercially available rapid influenza diagnostic test can detect the infection within 30 min, but it is hard to confirm viral infection using only this test because of its low sensitivity. Therefore, the development of a rapid and simple test for the early diagnosis of influenza infection is urgently needed. To resolve these problems, we developed a SERS-based LFA kit in which the gold nanoparticles in the commercial rapid kit were replaced with SERS-active nano tags. It is possible to quantitatively detect the influenza virus A with high sensitivity by measuring the enhanced Raman signal of these SERS nano tags on the LFA strip. The limit of detection (LOD) using our proposed SERS-based LFA kit was estimated to be 1.9 × 10"4 PFU/mL, which is approximately one order of magnitude more sensitive than the LOD determined from the colorimetric LFA kit

  1. Rapid Detection and Identification of Overdose Drugs in Saliva by Surface-Enhanced Raman Scattering Using Fused Gold Colloids

    Directory of Open Access Journals (Sweden)

    Frank Inscore

    2011-07-01

    Full Text Available The number of drug-related emergency room visits in the United States doubled from 2004 to 2009 to 4.6 million. Consequently there is a critical need to rapidly identify the offending drug(s, so that the appropriate medical care can be administered. In an effort to meet this need we have been investigating the ability of surface-enhanced Raman spectroscopy (SERS to detect and identify numerous drugs in saliva at ng/mL concentrations within 10 minutes. Identification is provided by matching measured spectra to a SERS library comprised of over 150 different drugs, each of which possess a unique spectrum. Trace detection is provided by fused gold colloids trapped within a porous glass matrix that generate SERS. Speed is provided by a syringe-driven sample system that uses a solid-phase extraction capillary combined with a SERS-active capillary in series. Spectral collection is provided by a portable Raman analyzer. Here we describe successful measurement of representative illicit, prescribed, and over-the-counter drugs by SERS, and 50 ng/mL cocaine in saliva as part of a focused study.

  2. Polyethylenimine-assisted seed-mediated synthesis of gold nanoparticles for surface-enhanced Raman scattering studies

    Science.gov (United States)

    Philip, Anish; Ankudze, Bright; Pakkanen, Tuula T.

    2018-06-01

    Large-sized gold nanoparticles (AuNPs) were synthesized with a new polyethylenimine - assisted seed - mediated method for surface-enhanced Raman scattering (SERS) studies. The size and polydispersity of gold nanoparticles are controlled in the growth step with the amounts of polyethylenimine (PEI) and seeds. Influence of three silicon oxide supports having different surface morphologies, namely halloysite (Hal) nanotubes, glass plates and inverse opal films of SiO2, on the performance of gold nanoparticles in Raman scattering of a 4-aminothiophenol (4-ATP) analyte was investigated. Electrostatic interaction between positively charged polyethylenimine-capped AuNPs and negatively charged surfaces of silicon oxide supports was utilized in fabrication of the SERS substrates using deposition and infiltration methods. The Au-photonic crystal of the three SERS substrate groups is the most active one as it showed the highest analytical enhancement factor (AEF) and the lowest detection limit of 1x10-8 M for 4-ATP. Coupling of the optical properties of photonic crystals with the plasmonic properties of AuNPs provided Au-photonic crystals with the high SERS activity. The AuNPs clusters formed both in the photonic crystal and on the glass plate are capable of forming more hot spots as compared to sparsely distributed AuNPs on Hal nanotubes and thereby increasing the SERS enhancement.

  3. Intense and stable surface-enhanced Raman scattering from Ag@mesoporous SiO{sub 2} film

    Energy Technology Data Exchange (ETDEWEB)

    Long, Yongjin; Wang, Xiaolong; Chen, Dong; Jiang, Tao, E-mail: jiangtao@nbu.edu.cn; Zhao, Ziqi; Zhou, Jun, E-mail: zhoujun@nbu.edu.cn

    2016-09-15

    A surface-enhanced Raman scattering (SERS) film consisting of mesoporous silica (MSiO{sub 2}) coated Ag nanoparticles (NPs) was achieved. The as-prepared hybrid NPs were uniform in size and formed large amount of aggregates in the film. “Hot spots” were supposed to appear in the MSiO{sub 2} shells with an average size as small as 15 nm. Such a novel core–shell structure therefore induced the enhancement of SERS intensity compared to the film of bare Ag NPs and polymer film of Ag-CMC. The homogeneity and stability of SERS signals from the Ag@MSiO{sub 2} film were also tested. A relative standard deviation of SERS intensity lower than 20% from Raman mapping and a stable SERS signal with excitation power of 100 mW were observed, which were both better than the other two films. Moreover, the obtained Ag@MSiO{sub 2} film was applied to detect thiram pesticides and a detection limit as low as 1×10{sup −8} M was reached, which indicates the advantages of the Ag@MSiO{sub 2} film in biosensor.

  4. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Alan X. Wang

    2015-05-01

    Full Text Available Surface-enhanced Raman scattering (SERS has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs. Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene.

  5. Genus- and species-level identification of dermatophyte fungi by surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Witkowska, Evelin; Jagielski, Tomasz; Kamińska, Agnieszka

    2018-03-01

    This paper demonstrates that surface-enhanced Raman spectroscopy (SERS) coupled with principal component analysis (PCA) can serve as a fast and reliable technique for detection and identification of dermatophyte fungi at both genus and species level. Dermatophyte infections are the most common mycotic diseases worldwide, affecting a quarter of the human population. Currently, there is no optimal method for detection and identification of fungal diseases, as each has certain limitations. Here, for the first time, we have achieved with a high accuracy, differentiation of dermatophytes representing three major genera, i.e. Trichophyton, Microsporum, and Epidermophyton. Two first principal components (PC), namely PC-1 and PC-2, gave together 97% of total variance. Additionally, species-level identification within the Trichophyton genus has been performed. PC-1 and PC-2, which are the most diagnostically significant, explain 98% of the variance in the data obtained from spectra of: Trichophyton rubrum, Trichophyton menatgrophytes, Trichophyton interdigitale and Trichophyton tonsurans. This study offers a new diagnostic approach for the identification of dermatophytes. Being fast, reliable and cost-effective, it has the potential to be incorporated in the clinical practice to improve diagnostics of medically important fungi.

  6. Fabrication of large area nanoprism arrays and their application for surface enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Cui, B; Clime, L; Li, K; Veres, T

    2008-01-01

    This work demonstrates the fabrication of metallic nanoprism (triangular nanostructure) arrays using a low-cost and high-throughput process. In the method, the triangular structure is defined by the shadow of a pyramid during angle evaporation of a metal etching mask. The pyramids were created by nanoimprint lithography in polymethylmethacrylate (PMMA) using a mould having an inverse-pyramid-shaped hole array formed by KOH wet etching of silicon. Silver and gold nanoprism arrays with a period of 200 nm and an edge length of 100 nm have been fabricated and used as effective substrates for surface enhanced Raman spectroscopy (SERS) detection of rhodamine 6G (R6G) molecules. Numerical calculations confirmed the great enhancement of electric field near the sharp nanoprism corners, as well as the detrimental effect of the chromium adhesion layer on localized surface plasmon resonance. The current method can also be used to fabricate non-equilateral nanoprism and three-dimensional (3D) nanopyramid arrays, and it can be readily extended to other metals

  7. Silver endotaxy in silicon under various ambient conditions and their use as surface enhanced Raman spectroscopy substrates

    International Nuclear Information System (INIS)

    Juluri, R.R.; Ghosh, A.; Bhukta, A.; Sathyavathi, R.; Satyam, P.V.

    2015-01-01

    Search for reliable, robust and efficient substrates for surface enhanced Raman spectroscopy (SERS) leads to the growth of various shapes and nanostructures of noble metals, and in particular, Ag nanostructures for this purpose. Coherently embedded (also known as endotaxial) Ag nanostructures in silicon substrates can be made robust and reusable SERS substrates. In this paper, we show the possibility of the growth of Ag endotaxial structures in Si crystal during Ar and low-vacuum annealing conditions while this is absent in O 2 and ultra high vacuum (UHV) annealing conditions and along with their respective use as SERS substrates. Systems annealed under air-annealing and low-vacuum conditions were found to show larger enhancement factors (typically ≈ 5 × 10 5 in SERS measurement for 0.5 nM Crystal Violet (CV) molecule) while the systems prepared under UHV-annealing conditions (where no endotaxial Ag structures were formed) were found to be not effective as SERS substrates. Extensive electron microscopy, synchrotron X-ray diffraction and Rutherford backscattering spectrometry techniques were used to understand the structural aspects. - Highlights: • Various aspects on the growth of endotaxial Ag nanostructures are presented. • Optimum amount of oxygen is necessary for the growth of endotaxial structures. • Reaction of oxygen with GeOx and SiOx plays a crucial role. • Ag nanostructures prepared under UHV conditions show low SERS activity • SERS enhancement is better for low-vacuum and argon annealing conditions

  8. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review.

    Science.gov (United States)

    Liu, Yu; Zhou, Haibo; Hu, Ziwei; Yu, Guangxia; Yang, Danting; Zhao, Jinshun

    2017-08-15

    Rapid, accurate detection of pathogen bacteria is a highly topical research area for the sake of food safety and public health. Surface-enhanced Raman scattering (SERS) is being considered as a powerful and attractive technique for pathogen bacteria detection, due to its sensitivity, high speed, comparatively low cost, multiplexing ability and portability. This contribution aims to give a comprehensive overview of SERS as a technique for rapid detection of pathogen bacteria based on label and label-free strategies. A brief tutorial on SERS is given first of all. Then we summarize the recent trends and developments of label and label-free based SERS applied to detection of pathogen bacteria, including the relatively complete interpretation of SERS spectra. In addition, multifunctional SERS platforms for pathogen bacteria in matrix are discussed as well. Furthermore, an outlook of the work done and a perspective on the future directions of SERS as a reliable tool for real-time pathogen bacteria detection are given. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effect of halideions on the surface-enhanced Raman spectroscopy of methylene blue for borohydride-reduced silver colloid

    International Nuclear Information System (INIS)

    Dong Xiao; Gu Huaimin; Liu Fang

    2011-01-01

    The surface enhanced Raman scattering (SERS) spectrum of methylene blue (MB) was studied when adding a range of halideions to borohydride-reduced silver colloid. The halideions such as chloride, bromide and iodide were added as aggregating agents to study the effects of halideions on SERS spectroscopy of MB and observe which halideion gives the greatest enhancement for borohydride-reduced silver colloids. The SERS spectra of MB were also detected over a wide range of concentrations of halideions to find the optimum concentration of halideions for SERS enhancement. From the results of this study, the intensity of SERS signal of MB was enhanced significantly when adding halideions to the colloid. Among the three kinds of halideions, chloride gives the greatest enhancement on SERS signal. The enhancement factors for MB with optimal concentration of chloride, bromide and iodide are 3.44x10 4 , 2.04x10 4 , and 1.0x10 4 , respectively. The differences of the SERS spectra of MB when adding different kinds and concentrations of halideions to the colloid may be attributed to the both effects of extent of aggregation of the colloid and the modification of silver surface chemistry. The purpose of this study is to further investigate the effect of halideions on borohydride-reduced silver colloid and to make the experimental conditions suitable for detecting some analytes in high efficiency on rational principles.

  10. Surface enhanced raman scattering on tardigrada - Towards monitoring and imaging molecular structures in live cryptobiotic organisms

    DEFF Research Database (Denmark)

    Kneipp, Harald; Møbjerg, Nadja; Jørgensen, Aslak

    2013-01-01

    Tardigrades are microscopic metazoans which are able to survive extreme physical and chemical conditions by entering a stress tolerant state called cryptobiosis. At present, the molecular mechanisms behind cryptobiosis are still poorly understood. We show that surface enhanced Raman scattering su...

  11. Applicability of surface-enhanced resonance Raman scattering for the direct discrimination of ballpoint pen inks

    NARCIS (Netherlands)

    Seifar, R.M.; Verheul, J.M.; Ariese, F.; Brinkman, U.A.T.; Gooijer, C.

    2001-01-01

    In situ surface-enhanced resonance Raman spectroscopy (SERRS) with excitation at 685 nm is suitable for the direct discrimination of blue and black ballpoint pen inks on paper. For black inks, shorter excitation wavelengths can also be used. For blue inks, SERRS at 514.5 and 457.9 nm does not

  12. Ag coated microneedle based surface enhanced Raman scattering probe for intradermal measurements

    Science.gov (United States)

    Yuen, Clement; Liu, Quan

    2013-06-01

    We propose a silver coated microneedle to detect test molecules, including R6G and glucose, positioned at a depth of more than 700 μm below a skin phantom surface for mimicking intradermal surface-enhanced Raman scattering measurements.

  13. Effect of concentration and pH on the surface-enhanced Raman scattering of captopril on nano-colloidal silver surface

    Science.gov (United States)

    Gao, Junxiang; Gu, Huaimin; Liu, Fangfang; Dong, Xiao; Xie, Min; Hu, Yongjun

    2011-07-01

    In this report, Raman and surface-enhanced Raman scattering (SERS) spectra of captopril are studied in detail. Herein, the Raman bands are assigned by the density functional theory (DFT) calculations and potential energy distributions (PED) based on internal coordinates of the molecule, which are found to be in good agree with the experimental values. Furthermore, the concentration and pH dependence of the SERS intensity of the molecule is discussed. By analyzing the intensities variation of SERS bands of the different concentrations of captopril solution, it can be concluded that the molecules orientation adsorbed on the silver nanoparticles surface change with the change of the concentrations. The variation of SERS spectra of captopril with the change of pH suggests that the interaction among the adsorbates with Ag cluster depend on the protonated state of the adsorbate and the aggregation of silver nanoparticles.

  14. Adsorption and sub-nanomolar sensing of thioflavin T on colloidal gold nanoparticles, silver nanoparticles and silver-coated films studied using surface-enhanced Raman scattering.

    Science.gov (United States)

    Maiti, Nandita; Chadha, Ridhima; Das, Abhishek; Kapoor, Sudhir

    2015-01-01

    Raman and surface-enhanced Raman scattering (SERS) studies of thioflavin T (ThT) in solid, solution, gold nanoparticles (GNPs), silver nanoparticles (SNPs) and silver-coated films (SCFs) were investigated. Concentration-dependent SERS spectrum of ThT in GNPs and SNPs indicated the existence of two possible structures, one with the torsional angle (φ) between benzothiazole and dimethylaminobenzene rings being 37° and the other with φ=90°. The SERS spectrum of ThT in SCFs were similar to the Raman spectrum of solid and solution that suggests φ=37°. In this paper, the high sensitivity of the SERS technique was employed for sub-nanomolar (picomolar) sensing of ThT. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Determination of Ethanol in Blood Samples Using Partial Least Square Regression Applied to Surface Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Açikgöz, Güneş; Hamamci, Berna; Yildiz, Abdulkadir

    2018-04-01

    Alcohol consumption triggers toxic effect to organs and tissues in the human body. The risks are essentially thought to be related to ethanol content in alcoholic beverages. The identification of ethanol in blood samples requires rapid, minimal sample handling, and non-destructive analysis, such as Raman Spectroscopy. This study aims to apply Raman Spectroscopy for identification of ethanol in blood samples. Silver nanoparticles were synthesized to obtain Surface Enhanced Raman Spectroscopy (SERS) spectra of blood samples. The SERS spectra were used for Partial Least Square (PLS) for determining ethanol quantitatively. To apply PLS method, 920~820 cm -1 band interval was chosen and the spectral changes of the observed concentrations statistically associated with each other. The blood samples were examined according to this model and the quantity of ethanol was determined as that: first a calibration method was established. A strong relationship was observed between known concentration values and the values obtained by PLS method (R 2 = 1). Second instead of then, quantities of ethanol in 40 blood samples were predicted according to the calibration method. Quantitative analysis of the ethanol in the blood was done by analyzing the data obtained by Raman spectroscopy and the PLS method.

  16. Electromagnetic study of surface enhanced Raman scattering of plasmonic-biomolecule: An interaction between nanodimer and single biomolecule

    Science.gov (United States)

    Pandey, Gyanendra Krishna; Pathak, Nilesh Kumar; Uma, R.; Sharma, R. P.

    2017-04-01

    In this article we have investigated the electromagnetic surface enhanced Raman scattering (SERS) of single biomolecule adsorbed at the surface of spherical nanodimer. The SERS mechanism has been studied using first principle approach for spherical nanodimer geometry. The coupling of plasmonic concept to biomolecule results the broadband tunable enhancement in Raman gain factor. In this observation the enhancement factor was observed around ≈ 1015. The plasmonic properties of metal nanodimer are analysed in terms of surface plasmon resonances, extinction efficiency and polarisability that have been derived under quasistatic approximation. In this paper, various facets like interdipole separation, molecule distance and size of the plasmonic nanogeometry are taken into account to analyse the Raman gain factor. We also observe that the frequency range expands sufficiently which increases the broad detectability range of the molecule which generates signal even in the outside of Raman range i.e. in between IR to UV region. Lastly, the extinction spectra and electric field profile have been evaluated at resonance wavelength 364 nm. The comparison between electrostatic approach and numerical approach (using DDA) has also been done in terms of extinction spectra.

  17. Electromagnetic Modelling of Raman Enhancement from Nanoscale Structures as a Means to Predict the Efficacy of SERS Substrates

    Directory of Open Access Journals (Sweden)

    Richard J. C. Brown

    2007-01-01

    Full Text Available The requirement to optimise the balance between signal enhancement and reproducibility in surface enhanced Raman spectroscopy (SERS is stimulating the development of novel substrates for enhancing Raman signals. This paper describes the application of finite element electromagnetic modelling to predict the Raman enhancement produced from a variety of SERS substrates with differently sized, spaced and shaped morphologies with nanometre dimensions. For the first time, a theoretical comparison between four major generic types of SERS substrate (including metal nanoparticles, structured surfaces, and sharp tips has been performed and the results are presented and discussed. The results of the modelling are consistent with published experimental data from similar substrates.

  18. A Simple Surface-Enhanced Raman Spectroscopic Method for on-Site Screening of Tetracycline Residue in Whole Milk

    Directory of Open Access Journals (Sweden)

    Sagar Dhakal

    2018-02-01

    Full Text Available Therapeutic and subtherapeutic use of veterinary drugs has increased the risk of residue contamination in animal food products. Antibiotics such as tetracycline are used for mastitis treatment of lactating cows. Milk expressed from treated cows before the withdrawal period has elapsed may contain tetracycline residue. This study developed a simple surface-enhanced Raman spectroscopic (SERS method for on-site screening of tetracycline residue in milk and water. Six batches of silver colloid nanoparticles were prepared for surface enhancement measurement. Milk-tetracycline and water-tetracycline solutions were prepared at seven concentration levels (1000, 500, 100, 10, 1, 0.1, and 0.01 ppm and spiked with silver colloid nanoparticles. A 785 nm Raman spectroscopic system was used for spectral measurement. Tetracycline vibrational modes were observed at 1285, 1317 and 1632 cm−1 in water-tetracycline solutions and 1322 and 1621 cm−1 (shifted from 1317 and 1632 cm−1, respectively in milk-tetracycline solutions. Tetracycline residue concentration as low as 0.01 ppm was detected in both the solutions. The peak intensities at 1285 and 1322 cm−1 were used to estimate the tetracycline concentrations in water and milk with correlation coefficients of 0.92 for water and 0.88 for milk. Results indicate that this SERS method is a potential tool that can be used on-site at field production for qualitative and quantitative detection of tetracycline residues.

  19. A Simple Surface-Enhanced Raman Spectroscopic Method for on-Site Screening of Tetracycline Residue in Whole Milk.

    Science.gov (United States)

    Dhakal, Sagar; Chao, Kuanglin; Huang, Qing; Kim, Moon; Schmidt, Walter; Qin, Jianwei; Broadhurst, C Leigh

    2018-02-01

    Therapeutic and subtherapeutic use of veterinary drugs has increased the risk of residue contamination in animal food products. Antibiotics such as tetracycline are used for mastitis treatment of lactating cows. Milk expressed from treated cows before the withdrawal period has elapsed may contain tetracycline residue. This study developed a simple surface-enhanced Raman spectroscopic (SERS) method for on-site screening of tetracycline residue in milk and water. Six batches of silver colloid nanoparticles were prepared for surface enhancement measurement. Milk-tetracycline and water-tetracycline solutions were prepared at seven concentration levels (1000, 500, 100, 10, 1, 0.1, and 0.01 ppm) and spiked with silver colloid nanoparticles. A 785 nm Raman spectroscopic system was used for spectral measurement. Tetracycline vibrational modes were observed at 1285, 1317 and 1632 cm -1 in water-tetracycline solutions and 1322 and 1621 cm -1 (shifted from 1317 and 1632 cm -1 , respectively) in milk-tetracycline solutions. Tetracycline residue concentration as low as 0.01 ppm was detected in both the solutions. The peak intensities at 1285 and 1322 cm -1 were used to estimate the tetracycline concentrations in water and milk with correlation coefficients of 0.92 for water and 0.88 for milk. Results indicate that this SERS method is a potential tool that can be used on-site at field production for qualitative and quantitative detection of tetracycline residues.

  20. Facile synthesis of terminal-alkyne bioorthogonal molecules for live -cell surface-enhanced Raman scattering imaging through Au-core and silver/dopamine-shell nanotags.

    Science.gov (United States)

    Chen, Meng; Zhang, Ling; Yang, Bo; Gao, Mingxia; Zhang, Xiangmin

    2018-03-01

    Alkyne is unique, specific and biocompatible in the Raman-silent region of the cell, but there still remains a challenge to achieve ultrasensitive detection in living systems due to its weak Raman scattering. Herein, a terminal alkyne ((E)-2-[4-(ethynylbenzylidene)amino]ethane-1-thiol (EBAE)) with surface-enhanced Raman scattering is synthesized. The EBAE molecule possesses S- and C-termini, which can be directly bonded to gold nanoparticles and dopamine/silver by forming the Au-S chemical bond and the carbon-metal bond, respectively. The distance between Raman reporter and AuNPs/AgNPs can be reduced, contributing to forming hot-spot-based SERS substrate. The alkyne functionalized nanoparticles are based on Au core and encapsulating polydopamine shell, defined as Au-core and dopamine/Ag-shell (ACDS). The bimetallic ACDS induce strong SERS signals for molecular imaging that arise from the strong electromagnetic field. Furthermore, the EBAE provides a distinct peak in the cellular Raman-silent region with nearly zero background interference. The EBAE Raman signals could be tremendously enhanced when the Raman reporter is located at the middle of the Au-core and dopamine/Ag-shell. Therefore, this work could have huge potential benefits for the highly sensitive detection of intercellular information delivery by connecting the recognition molecules in biomedical diagnostics. Graphical abstract Terminal-alkyne-functionalized Au-core and silver/dopamine-shell nanotags for live-cell surface-enhanced Raman scattering imaging.

  1. Bare and protected sputtered-noble-metal films for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Talaga, David; Bonhommeau, Sébastien

    2014-11-01

    Sputtered silver and gold films with different surface morphologies have been prepared and coated with a benzenethiol self-assembled monolayer. Rough noble metal films showed strong Raman features assigned to adsorbed benzenethiol molecules upon irradiation over a wide energy range in the visible spectrum, which disclosed the occurrence of a significant surface-enhanced Raman scattering with maximal enhancement factors as high as 6 × 106. In addition, the adsorption of ethanethiol onto silver surfaces hinders their corrosion over days while preserving mostly intact enhancement properties of naked silver. This study may be applied to develop stable and efficient metalized probes for tip-enhanced Raman spectroscopy.

  2. A monolayer of hierarchical silver hemi-mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Zhu, Shuangmei; Fan, Chunzhen; Mao, Yanchao; Wang, Junqiao; He, Jinna; Liang, Erjun; Chao, Mingju

    2016-02-01

    We proposed a facile green synthesis system to synthesize large-scale Ag hemi-mesoparticles monolayer on Cu foil. Ag hemi-mesoparticles have different surface morphologies on their surfaces, including ridge-like, meatball-like, and fluffy-like shapes. In the reaction, silver nitrate was reduced by copper at room temperature in dimethyl sulfoxide via the galvanic displacement reaction. The different surface morphologies of the Ag hemi-mesoparticles were adjusted by changing the reaction time, and the hemi-mesoparticle surface formed fluffy-spherical nanoprotrusions at longer reaction time. At the same time, we explored the growth mechanism of silver hemi-mesoparticles with different surface morphologies. With 4-mercaptobenzoic acid as Raman probe molecules, the fluffy-like silver hemi-mesoparticles monolayer with the best activity of surface enhanced Raman scattering (SERS), the enhancement factor is up to 7.33 × 107 and the detection limit can reach 10-10M. SERS measurements demonstrate that these Ag hemi-mesoparticles can serve as sensitive SERS substrates. At the same time, using finite element method, the distribution of the localized electromagnetic field near the particle surface was simulated to verify the enhanced mechanism. This study helps us to understand the relationship between morphology Ag hemi-mesoparicles and the properties of SERS.

  3. High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing

    Science.gov (United States)

    Wang, Yuhong; Wang, Mingli; Shen, Lin; Sun, Xin; Shi, Guochao; Ma, Wanli; Yan, Xiaoya

    2018-04-01

    Natural dragonfly wing (DW), as a template, was deposited on noble metal sliver (Ag) nanoislands by magnetron sputtering to fabricate a flexible, low-cost, large-scale and environment-friendly surface-enhanced Raman scattering (SERS) substrate (Ag/DW substrate). Generally, materials with regular surface nanostructures are chosen for the templates, the selection of our new material with irregular surface nanostructures for substrates provides a new idea for the preparation of high-performance SERS-active substrates and many biomimetic materials. The optimum sputtering time of metal Ag was also investigated at which the prepared SERS-active substrates revealed remarkable SERS activities to 4-aminothiophenol (4-ATP) and crystal violet (CV). Even more surprisingly, the Ag/DW substrate with such an irregular template had reached the enhancement factor (EF) of ∼1.05 × 105 and the detection limit of 10-10 M to 4-ATP. The 3D finite-different time-domain (3D-FDTD) simulation illustrated that the "hot spots" between neighbouring Ag nanoislands at the top of pillars played a most important role in generating electromagnetic (EM) enhancement and strengthening Raman signals.

  4. Efficient surface enhanced Raman scattering on confeito-like gold nanoparticle-adsorbed self-assembled monolayers.

    Science.gov (United States)

    Chang, Chia-Chi; Imae, Toyoko; Chen, Liang-Yih; Ujihara, Masaki

    2015-12-28

    Confeito-like gold nanoparticles (AuNPs; average diameter = 80 nm) exhibiting a plasmon absorption band at 590 nm were adsorbed through immersion-adsorption on two self-assembled monolayers (SAMs) of 3-aminopropyltriethoxysilane (APTES-SAM) and polystyrene spheres coated with amine-terminated poly(amido amine) dendrimers (DEN/PS-SAM). The surface enhanced Raman scattering (SERS) effect on the SAM substrates was examined using the molecules of a probe dye, rhodamine 6G (R6G). The Raman scattering was strongly intensified on both substrates, but the enhancement factor (>10,000) of the AuNP/DEN/PS-SAM hierarchy substrate was 5-10 times higher than that of the AuNP/APTES-SAM substrate. This strong enhancement is attributed to the large surface area of the substrate and the presence of hot spots. Furthermore, analyzing the R6G concentration dependence of SERS suggested that the enhancement mechanism effectively excited the R6G molecules in the first layer on the hot spots and invoked the strong SERS effect. These results indicate that the SERS activity of confeito-like AuNPs on SAM substrates has high potential in molecular electronic devices and ultrasensitive analyses.

  5. An effective surface-enhanced Raman scattering template based on a Ag nanocluster-ZnO nanowire array

    International Nuclear Information System (INIS)

    Deng, S; Zhang, X; Loh, K P; Fan, H M; Sow, C H; Cheng, C-L; Foo, Y L

    2009-01-01

    An effective surface-enhanced Raman scattering (SERS) template based on a 3D hybrid Ag nanocluster (NC)-decorated ZnO nanowire array was fabricated through a simple process of depositing Ag NCs on ZnO nanowire arrays. The effects of particle size and excitation energy on the Raman scattering in these hybrid systems have been investigated using rhodamine 6G as a standard analyte. The results indicate that the hybrid nanosystem with 150 nm Ag NCs produces a larger SERS enhancement factor of 3.2 x 10 8 , which is much higher than that of 10 nm Ag NCs (6.0 x 10 6 ) under 532 nm excitation energy. The hybrid nanowire arrays were further applied to obtain SERS spectra of the two-photon absorption (TPA) chromophore T7. Finite-difference time-domain simulations reveal the presence of an enhanced field associated with inter-wire plasmon coupling of the 150 nm Ag NCs on adjacent ZnO nanowires; such a field was absent in the case of the 10 nm Ag NC-coated ZnO nanowire. Such hybrid nanosystems could be used as SERS substrates more effectively than assembled Ag NC film due to the enhanced light-scattering local field and the inter-wire plasmon-enhanced electromagnetic field.

  6. Surface-enhanced Raman spectroscopy of the anti-cancer drug irinotecan in presence of human serum albumin.

    Science.gov (United States)

    Vicario, A; Sergo, V; Toffoli, G; Bonifacio, A

    2015-03-01

    The development of nanotechnological devices and their clinical application in medicine has become increasingly important, especially in the context of targeted and personalized therapy. This is particularly important in cancer therapy, where antitumor drugs are highly cytotoxic and often exert their therapeutic effect at concentrations close to systemic toxicity. In the last years a growing number of studies has started to report the use of plasmonic nanoprobes in the field of theranostics, broadening the application of vibrational spectroscopies like Raman scattering and surface enhanced Raman scattering (SERS) in biomedicine. The present work aims to identify and characterize the vibrational profiles of a widely used anticancer drug, irinotecan (CPT-11). With a rational approach, SERS experiments have been performed on this analyte employing both Au and Ag colloids, starting from simple aqueous solutions up to albumin mixtures. A major step forward for drug detection in albumin solutions has been taken with the adoption of a simple deproteinization strategy, and a two-in-one-step separation and identification by coupling thin layer chromatography, TLC, with SERS (TLC-SERS). The latter has revealed to be a valid system for protein separation and simultaneous analyte detection, showing a potential to become an innovative, sensitive and low cost method for antineoplastic drug profiling in patients' body fluids. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Gold Nanostructures for Surface-Enhanced Raman Spectroscopy, Prepared by Electrodeposition in Porous Silicon

    Directory of Open Access Journals (Sweden)

    Yukio H. Ogata

    2011-04-01

    Full Text Available Electrodeposition of gold into porous silicon was investigated. In the present study, porous silicon with ~100 nm in pore diameter, so-called medium-sized pores, was used as template electrode for gold electrodeposition. The growth behavior of gold deposits was studied by scanning electron microscope observation of the gold deposited porous silicon. Gold nanorod arrays with different rod lengths were prepared, and their surface-enhanced Raman scattering properties were investigated. We found that the absorption peak due to the surface plasmon resonance can be tuned by changing the length of the nanorods. The optimum length of the gold nanorods was ~600 nm for surface-enhanced Raman spectroscopy using a He-Ne laser. The reason why the optimum length of the gold nanorods was 600 nm was discussed by considering the relationship between the absorption peak of surface plasmon resonance and the wavelength of the incident laser for Raman scattering.

  8. Hydrophobicity-driven self-assembly of protein and silver nanoparticles for protein detection using surface-enhanced Raman scattering.

    Science.gov (United States)

    Kahraman, Mehmet; Balz, Ben N; Wachsmann-Hogiu, Sebastian

    2013-05-21

    Surface-enhanced Raman scattering (SERS) is a promising analytical technique for the detection and characterization of biological molecules and structures. The role of hydrophobic and hydrophilic surfaces in the self-assembly of protein-metallic nanoparticle structures for label-free protein detection is demonstrated. Aggregation is driven by both the hydrophobicity of the surface as well as the charge of the proteins. The best conditions for obtaining a reproducible SERS signal that allows for sensitive, label-free protein detection are provided by the use of hydrophobic surfaces and 16 × 10(11) NPs per mL. A detection limit of approximately 0.5 μg mL(-1) is achieved regardless of the proteins' charge properties and size. The developed method is simple and can be used for reproducible and sensitive detection and characterization of a wide variety of biological molecules and various structures with different sizes and charge status.

  9. Surface enhanced Raman scattering as an in-reactor monitor of phenomena of interest to the Nuclear Power Industry

    International Nuclear Information System (INIS)

    Devine, T.M.

    1994-01-01

    Surface enhanced Raman spectroscopy (SERS) is proposed as a technique for monitoring in situ the passive films and corrosion products that form on the surfaces of alloys of interest in nuclear power plants. The technique is a highly sensitive procedure for detecting even very small quantities of species present on surfaces, in particular the surface of metallic alloys. The data could, for example, identify the constituents in passive films that are less than a monolayer in average thickness. Processes such as 60 Co pick-up could be monitored in real time. In fact, if it is known that incorporation of 60 Co occurs when a particular oxide film forms on the surface of the alloy, then measurement of the SER spectra could indicate when such films are beginning to form and thereby provide an early indication that conditions inside the reactor are now suitable for 60 Co pick-up in the passive films

  10. Highly Sensitive Detection of Clenbuterol in Animal Urine Using Immunomagnetic Bead Treatment and Surface-Enhanced Raman Spectroscopy

    Science.gov (United States)

    Cheng, Jie; Su, Xiao-Ou; Wang, Shi; Zhao, Yiping

    2016-09-01

    Combining surface-enhanced Raman spectroscopy (SERS) of aggregated graphene oxide/gold nanoparticle hybrids with immunomagnetic bead sample preparation method, a highly sensitive strategy to determine the clenbuterol content in animal urine was developed. Based on a linear calibration curve of the SERS characteristic peak intensity of clenbuterol at Δv = 1474 cm-1 versus the spiked clenbuterol concentration in the range of 0.5-20 ng·mL-1, the quantity of clenbuterol in real animal urine samples can be determined and matches well with those determined by LC-MS/MS, while the detection time is significantly reduced to 15 min/sample. The limits of detection and quantification in the urine are 0.5 ng·mL-1 and 1 ng·mL-1, respectively, and the recovery clenbuterol rates are 82.8-92.4% with coefficients of variation farming.

  11. Forensic Sampling and Analysis from a Single Substrate: Surface-Enhanced Raman Spectroscopy Followed by Paper Spray Mass Spectrometry.

    Science.gov (United States)

    Fedick, Patrick W; Bills, Brandon J; Manicke, Nicholas E; Cooks, R Graham

    2017-10-17

    Sample preparation is the most common bottleneck in the analysis and processing of forensic evidence. Time-consuming steps in many forensic tests involve complex separations, such as liquid and gas chromatography or various types of extraction techniques, typically coupled with mass spectrometry (e.g., LC-MS). Ambient ionization ameliorates these slow steps by reducing or even eliminating sample preparation. While some ambient ionization techniques have been adopted by the forensic community, there is significant resistance to discarding chromatography as most forensic analyses require both an identification and a confirmation technique. Here, we describe the use of a paper substrate, the surface of which has been inkjet printed with silver nanoparticles, for surface enhanced Raman spectroscopy (SERS). The same substrate can also act as the paper substrate for paper spray mass spectrometry. The coupling of SERS and paper spray ionization creates a quick, forensically feasible combination.

  12. Detection of mercury ions using silver telluride nanoparticles as a substrate and recognition element through surface-enhanced Raman scattering

    Directory of Open Access Journals (Sweden)

    Chia-Wei eWang

    2013-10-01

    Full Text Available In this paper we unveil a new sensing strategy for sensitive and selective detection of Hg2+ through surface-enhanced Raman scattering (SERS using Ag2Te nanoparticles (NPs as a substrate and recognition element and rhodamine 6G (R6G as a reporter. Ag2Te NPs prepared from tellurium dioxide and silver nitrate and hydrazine in aqueous solution containing sodium dodecyl sulfate at 90ºC with an average size of 26.8 ± 4.1 nm (100 counts have strong SERS activity. The Ag2Te substrate provides strong SERS signals of R6G with an enhancement factor of 3.6 × 105 at 1360 cm-1, which is comparable to Ag NPs. After interaction of Ag2Te NPs with Hg2+, some HgTe NPs are formed, leading to decreases in the SERS signal of R6G, mainly because HgTe NPs relative to Ag2Te NPs have weaker SERS activity. Under optimum conditions, this SERS approach using Ag2Te as substrates is selective for the detection of Hg2+, with a limit of detection of 3 nM and linearity over 10-150 nM. The practicality of this approach has been validated for the determination of the concentrations of spiked Hg2+ in a pond water sample.

  13. Electrical pulse – mediated enhanced delivery of silver nanoparticles into living suspension cells for surface enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Lin, J; Li, B; Feng, S; Chen, G; Li, Y; Huang, Z; Chen, R; Yu, Y; Huang, H; Lin, S; Li, C; Su, Y; Zeng, H

    2012-01-01

    Electrical pulse-mediated enhanced silver nanoparticles delivery is a much better method for intracellular surface-enhanced Raman spectroscopy (SERS) measurements of suspension cells. Robust and high-quality SERS spectra of living suspension cells were obtained based on an electroporation-SERS method, which can overcomes the shortcoming of non-uniform distribution of silver nanoparticles localized in the cell cytoplasm after electroporation and reduces the amount variance of silver nanoparticles delivered into different cells. The electroporation parameters include three 150 V (375 V/cm) electric pulses of 1, 5, and 5 ms durations respectively. Our results indicate that considerable amount of silver nanoparticles can be rapidly delivered into the human promyelocytic leukemia HL60 cells, and the satisfied SERS spectra were obtained while the viability of the treated cells was highly maintained (91.7%). The electroporation-SERS method offers great potential approach in delivering silver nanoparticles into living suspension cells, which is useful for widely biomedical applications including the real-time intracellular SERS analysis of living cells

  14. Surface-enhanced Raman spectroscopy of saliva proteins for the noninvasive differentiation of benign and malignant breast tumors

    Science.gov (United States)

    Feng, Shangyuan; Huang, Shaohua; Lin, Duo; Chen, Guannan; Xu, Yuanji; Li, Yongzeng; Huang, Zufang; Pan, Jianji; Chen, Rong; Zeng, Haishan

    2015-01-01

    The capability of saliva protein analysis, based on membrane protein purification and surface-enhanced Raman spectroscopy (SERS), for detecting benign and malignant breast tumors is presented in this paper. A total of 97 SERS spectra from purified saliva proteins were acquired from samples obtained from three groups: 33 healthy subjects; 33 patients with benign breast tumors; and 31 patients with malignant breast tumors. Subtle but discernible changes in the mean SERS spectra of the three groups were observed. Tentative assignments of the saliva protein SERS spectra demonstrated that benign and malignant breast tumors led to several specific biomolecular changes of the saliva proteins. Multiclass partial least squares–discriminant analysis was utilized to analyze and classify the saliva protein SERS spectra from healthy subjects, benign breast tumor patients, and malignant breast tumor patients, yielding diagnostic sensitivities of 75.75%, 72.73%, and 74.19%, as well as specificities of 93.75%, 81.25%, and 86.36%, respectively. The results from this exploratory work demonstrate that saliva protein SERS analysis combined with partial least squares–discriminant analysis diagnostic algorithms has great potential for the noninvasive and label-free detection of breast cancer. PMID:25609959

  15. Zinc oxide nanotubes decorated with silver nanoparticles as an ultrasensitive substrate for surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Gao, M.; Feng, B.; Sun, Y.; Xing, G.; Li, S.; Yang, J.; Yang, L.; Zhang, Y.; Liu, H.; Fan, H.; Sui, Y.; Zhang, Z.; Liu, S.; Song, H.

    2012-01-01

    We report on the fabrication of a highly aligned silver-decorated array of zinc oxide nanotubes for use in surface-enhanced Raman spectroscopy (SERS). The ZnO nanotube array was first prepared by chemical etching, and the silver nanoparticles (AgNPs) were then deposited on their surface by magnetron sputtering. Such ZnO/Ag hybrid structures are shown to act as SERS-active substrates with remarkable sensitivity. The enhancement factor can be as high as 10 5 when using 4-mercaptopyridine in solution as a SERS probe. The synergistic combination between SERS 'hot spots' and the formation of an interfacial electric field between the zinc oxide nanotubes and the AgNPs in our opinion contribute to the high sensitivity. The relative standard deviations of signal intensities for the major SERS peaks are <7 %. This demonstrates that the optimized ZnO/Ag hybrid represents an excellent SERS substrate that may be used in trace analysis and ultrasensitive molecular sensing. (author)

  16. Silver nanoparticle based surface enhanced Raman scattering spectroscopy of diabetic and normal rat pancreatic tissue under near-infrared laser excitation

    International Nuclear Information System (INIS)

    Huang, H; Shi, H; Chen, W; Yu, Y; Lin, D; Xu, Q; Feng, S; Lin, J; Huang, Z; Li, Y; Chen, R

    2013-01-01

    This paper presents the use of high spatial resolution silver nanoparticle based near-infrared surface enhanced Raman scattering (SERS) from rat pancreatic tissue to obtain biochrmical information about the tissue. A high quality SERS signal from a mixture of pancreatic tissues and silver nanoparticles can be obtained within 10 s using a Renishaw micro-Raman system. Prominent SERS bands of pancreatic tissue were assigned to known molecular vibrations, such as the vibrations of DNA bases, RNA bases, proteins and lipids. Different tissue structures of diabetic and normal rat pancreatic tissues have characteristic features in SERS spectra. This exploratory study demonstrated great potential for using SERS imaging to distinguish diabetic and normal pancreatic tissues on frozen sections without using dye labeling of functionalized binding sites. (letter)

  17. Coupled wave equations theory of surface-enhanced femtosecond stimulated Raman scattering.

    Science.gov (United States)

    McAnally, Michael O; McMahon, Jeffrey M; Van Duyne, Richard P; Schatz, George C

    2016-09-07

    We present a coupled wave semiclassical theory to describe plasmonic enhancement effects in surface-enhanced femtosecond stimulated Raman scattering (SE-FSRS). A key result is that the plasmon enhanced fields which drive the vibrational equation of motion for each normal mode results in dispersive lineshapes in the SE-FSRS spectrum. This result, which reproduces experimental lineshapes, demonstrates that plasmon-enhanced stimulated Raman methods provide unique sensitivity to a plasmonic response. Our derived SE-FSRS theory shows a plasmonic enhancement of |gpu|(2)ImχR(ω)gst (2)/ImχR(ω), where |gpu|(2) is the absolute square of the plasmonic enhancement from the Raman pump, χR(ω) is the Raman susceptibility, and gst is the plasmonic enhancement of the Stokes field in SE-FSRS. We conclude with a discussion on potential future experimental and theoretical directions for the field of plasmonically enhanced coherent Raman scattering.

  18. The synthesis of four-layer gold-silver-polymer-silver core-shell nanomushroom with inbuilt Raman molecule for surface-enhanced Raman scattering

    Science.gov (United States)

    Jiang, Tao; Wang, Xiaolong; Zhou, Jun

    2017-12-01

    A facial two-step reduction method was proposed to synthesize four-layer gold-silver-polymer-silver (Au@Ag@PSPAA@Ag) core-shell nanomushrooms (NMs) with inbuilt Raman molecule. The surface-enhanced Raman scattering (SERS) intensity of 4MBA adhered on the surface of Au core gradually increased with the modification of middle Ag shell and then Ag mushroom cap due to the formation of two kinds of ultra-small interior nanogap. Compared with the initial Au nanoparticles, the SERS enhancement ratio of the Au@Ag@PSPAA@Ag NMs approached to nearly 40. The novel core-shell NMs also exhibited homogeneous SERS signals for only one sample and reproducible signals for 10 different samples, certified by the low relative standard deviation values of less than 10% and 15% for the character peaks of 4-mercaptobenzoic acid, respectively. Such a novel four-layer core-shell nanostructure with reliable SERS performance has great potential application in quantitative SERS-based immunoassay.

  19. Facile synthesis of gold-capped TiO2 nanocomposites for surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Han, Di; Huang, Hao; Du, Deyang; Lang, Xianzhong; Long, Kailin; Hao, Qi; Qiu, Teng

    2015-01-01

    A convenient technique was developed to fabricate gold-capped TiO 2 nanocomposites as robust, cost-efficient and recyclable surface-enhanced Raman scattering (SERS) substrates. The morphologies of obtained nanocomposites exhibit nanotube, nanolace, and nanopore nanostructures by adjusting TiO 2 anodization parameters. As an illustration, dramatic enhancement is achieved using Rhodamine 6G as a molecular probe. Owing to activation by the incident laser beam, the localized electromagnetic field on the nanocomposite surface can be enhanced subsequently amplifying the Raman signal. The topography can be further tuned to optimize the enhancement factor by adjusting the time of gold evaporation. Finite-difference time-domain calculations indicate the nanopore structure may possess excellent SERS characteristic due to the high density of hot spots. In addition, the substrate can be self-cleaned under ultraviolet irradiation due to the superior photocatalytic capacity of the Au–TiO 2 nanocomposites. Our Au–TiO 2 nanocomposites with highly SERS-active properties and recyclability shows promising applications in the detection and treatment of pollutants. - Highlights: • Au–TiO 2 nanocomposites with different morphologies were fabricated. • Au–TiO 2 nanopore shows pronounced SERS compared with nanotube and nanolace. • The size of the gold nanocaps on Au–TiO 2 nanopore was tailored to optimize the SERS. • FDTD simulations indicate excellent SERS attributes to the high density of hot spots. • Au–TiO 2 nanocomposites prove to be recyclable substrates for SERS detection

  20. Development of novel series and parallel sensing system based on nanostructured surface enhanced Raman scattering substrate for biomedical application

    Science.gov (United States)

    Chang, Te-Wei

    With the advance of nanofabrication, the capability of nanoscale metallic structure fabrication opens a whole new study in nanoplasmonics, which is defined as the investigation of photon-electron interaction in the vicinity of nanoscale metallic structures. The strong oscillation of free electrons at the interface between metal and surrounding dielectric material caused by propagating surface plasmon resonance (SPR) or localized surface plasmon resonance (LSPR) enables a variety of new applications in different areas, especially biological sensing techniques. One of the promising biological sensing applications by surface resonance polariton is surface enhanced Raman spectroscopy (SERS), which significantly reinforces the feeble signal of traditional Raman scattering by at least 104 times. It enables highly sensitive and precise molecule identification with the assistance of a SERS substrate. Until now, the design of new SERS substrate fabrication process is still thriving since no dominant design has emerged yet. The ideal process should be able to achieve both a high sensitivity and low cost device in a simple and reliable way. In this thesis two promising approaches for fabricating nanostructured SERS substrate are proposed: thermal dewetting technique and nanoimprint replica technique. These two techniques are demonstrated to show the capability of fabricating high performance SERS substrate in a reliable and cost efficient fashion. In addition, these two techniques have their own unique characteristics and can be integrated with other sensing techniques to build a serial or parallel sensing system. The breakthrough of a combination system with different sensing techniques overcomes the inherent limitations of SERS detection and leverages it to a whole new level of systematic sensing. The development of a sensing platform based on thermal dewetting technique is covered as the first half of this thesis. The process optimization, selection of substrate material

  1. Normal Raman and surface enhanced Raman spectroscopic experiments with thin layer chromatography spots of essential amino acids using different laser excitation sources

    Science.gov (United States)

    István, Krisztina; Keresztury, Gábor; Szép, Andrea

    2003-06-01

    A comparative study of the feasibility and efficiency of Raman spectroscopic detection of thin layer chromatography (TLC) spots of some weak Raman scatterers (essential amino acids, namely, glycine and L-forms of alanine, serine, valine, proline, hydroxyproline, and phenylalanine) was carried out using four different visible and near-infrared (NIR) laser radiations with wavelengths of 532, 633, 785, and 1064 nm. Three types of commercial TLC plates were tested and the possibility of inducing surface enhanced Raman scattering (SERS) by means of Ag-sol was also investigated. The spectra obtained from spotted analytes adsorbed on TLC plates were of very different quality strongly depending on the excitation wavelength, the wetness of the samples, and the compounds examined. The best results were obtained with the simple silica TLC plate, and it has been established that the longest wavelength (lowest energy) NIR excitation of a Nd:YAG laser is definitely more suitable for generating normal Raman scattering of analyte spots than any of the visible radiations. Concerning SERS with application of Ag-sol to the TLC spots, 1-3 orders of magnitude enhancement was observed with wet samples, the greatest with the 532 nm radiation and gradually smaller with the longer wavelength excitations. It is shown, however, that due to severe adsorption-induced spectral distortions and increased sensitivity to microscopic inhomogeneity of the sample, none of the SERS spectra obtained with the dispersive Raman microscope operating in the visible region were superior to the best NIR normal FT-Raman spectra, as far as sample identification is concerned.

  2. Theoretical studies of surface enhanced hyper-Raman spectroscopy: The chemical enhancement mechanism

    Science.gov (United States)

    Valley, Nicholas; Jensen, Lasse; Autschbach, Jochen; Schatz, George C.

    2010-08-01

    Hyper-Raman spectra for pyridine and pyridine on the surface of a tetrahedral 20 silver atom cluster are calculated using static hyperpolarizability derivatives obtained from time dependent density functional theory. The stability of the results with respect to choice of exchange-correlation functional and basis set is verified by comparison with experiment and with Raman spectra calculated for the same systems using the same methods. Calculated Raman spectra were found to match well with experiment and previous theoretical calculations. The calculated normal and surface enhanced hyper-Raman spectra closely match experimental results. The chemical enhancement factors for hyper-Raman are generally larger than for Raman (102-104 versus 101-102). Integrated hyper-Raman chemical enhancement factors are presented for a set of substituted pyridines. A two-state model is developed to predict these chemical enhancement factors and this was found to work well for the majority of the molecules considered, providing a rationalization for the difference between hyper-Raman and Raman enhancement factors.

  3. In situ surface-enhanced Raman spectroscopy effect in zeolite due to Ag_2Se quantum dots

    International Nuclear Information System (INIS)

    Martinez-Nuñez, C. E.; Cortez-Valadez, M.; Delgado-Beleño, Y.; Flores-López, N. S.; Román-Zamorano, J. F.; Flores-Valenzuela, J.; Flores-Acosta, M.

    2017-01-01

    This study shows the presence of surface-enhanced Raman spectroscopy (SERS) effect caused by Ag_2Se quantum dots embedded in the zeolite matrix. The quantum dots that were synthesised and stabilised in the matrix of F9-NaX zeolite show a size of 5 nm and a quasi-spherical morphology. The calculated interplanar distances confirm the presence of quantum dots in cubic phase Im-m. We suppose that the in situ SERS effect in the material is caused by chemical-enhancement mechanism (CEM). The density functional theory (DFT) is undertaken to corroborate our hypothesis. The structure H_8Si_8Al_8O_1_2 represents the zeolite cavity unit, and small clusters of (Ag_2Se)_n represent the quantum dots. Both structures interact in the cavity to obtain the local minimum of the potential energy surface, leading to new molecular orbitals. After the analysis of the predicted Raman spectrum, the Raman bands increase significantly, agreeing with the experimental results at low wavenumbers in F9-NaX zeolite.

  4. In situ surface-enhanced Raman spectroscopy effect in zeolite due to Ag{sub 2}Se quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Nuñez, C. E. [Universidad de Sonora, Departamento de Investigación en Física (Mexico); Cortez-Valadez, M., E-mail: jose.cortez@unison.mx, E-mail: manuelcortez@live.com [Universidad de Sonora, CONACYT-Departamento de Investigación en Física (Mexico); Delgado-Beleño, Y.; Flores-López, N. S. [Universidad de Sonora, Departamento de Investigación en Física (Mexico); Román-Zamorano, J. F. [Centro de Investigación y Desarrollo Tecnológico en Electroquímica (Mexico); Flores-Valenzuela, J. [Universidad Autónoma de Sinaloa (Mexico); Flores-Acosta, M. [Universidad de Sonora, Departamento de Investigación en Física (Mexico)

    2017-02-15

    This study shows the presence of surface-enhanced Raman spectroscopy (SERS) effect caused by Ag{sub 2}Se quantum dots embedded in the zeolite matrix. The quantum dots that were synthesised and stabilised in the matrix of F9-NaX zeolite show a size of 5 nm and a quasi-spherical morphology. The calculated interplanar distances confirm the presence of quantum dots in cubic phase Im-m. We suppose that the in situ SERS effect in the material is caused by chemical-enhancement mechanism (CEM). The density functional theory (DFT) is undertaken to corroborate our hypothesis. The structure H{sub 8}Si{sub 8}Al{sub 8}O{sub 12} represents the zeolite cavity unit, and small clusters of (Ag{sub 2}Se){sub n} represent the quantum dots. Both structures interact in the cavity to obtain the local minimum of the potential energy surface, leading to new molecular orbitals. After the analysis of the predicted Raman spectrum, the Raman bands increase significantly, agreeing with the experimental results at low wavenumbers in F9-NaX zeolite.

  5. Surface-enhanced Raman scattering of amorphous silica gel adsorbed on gold substrates for optical fiber sensors

    Science.gov (United States)

    Degioanni, S.; Jurdyc, A. M.; Cheap, A.; Champagnon, B.; Bessueille, F.; Coulm, J.; Bois, L.; Vouagner, D.

    2015-10-01

    Two kinds of gold substrates are used to produce surface-enhanced Raman scattering (SERS) of amorphous silica obtained via the sol-gel route using tetraethoxysilane Si(OC2H5)4 (TEOS) solution. The first substrate consists of a gold nanometric film elaborated on a glass slide by sputter deposition, controlling the desired gold thickness and sputtering current intensity. The second substrate consists of an array of micrometer-sized gold inverted pyramidal pits able to confine surface plasmon (SP) enhancing electric field, which results in a distribution of electromagnetic energy inside the cavities. These substrates are optically characterized to observe SPR with, respectively, extinction and reflectance spectrometries. Once coated with thin layers of amorphous silica (SiO2) gel, these samples show Raman amplification of amorphous SiO2 bands. This enhancement can occur in SERS sensors using amorphous SiO2 gel as shells, spacers, protective coatings, or waveguides, and represents particularly a potential interest in the field of Raman distributed sensors, which use the amorphous SiO2 core of optical fibers as a transducer to make temperature measurements.

  6. Ag-NP@Ge-nanotaper/Si-micropillar ordered arrays as ultrasensitive and uniform surface enhanced Raman scattering substrates.

    Science.gov (United States)

    Liu, Jing; Meng, Guowen; Li, Zhongbo; Huang, Zhulin; Li, Xiangdong

    2015-11-21

    Surface-enhanced Raman scattering (SERS) is considered to be an excellent candidate for analytical detection schemes, because of its molecular specificity, rapid response and high sensitivity. Here, SERS-substrates of Ag-nanoparticle (Ag-NP) decorated Ge-nanotapers grafted on hexagonally ordered Si-micropillar (denoted as Ag-NP@Ge-nanotaper/Si-micropillar) arrays are fabricated via a combinatorial process of two-step etching to achieve hexagonal Si-micropillar arrays, chemical vapor deposition of flocky Ge-nanotapers on each Si-micropillar and decoration of Ag-NPs onto the Ge-nanotapers through galvanic displacement. With high density three-dimensional (3D) "hot spots" created from the large quantities of the neighboring Ag-NPs and large-scale uniform morphology, the hierarchical Ag-NP@Ge-nanotaper/Si-micropillar arrays exhibit strong and reproducible SERS activity. Using our hierarchical 3D SERS-substrates, both methyl parathion (a commonly used pesticide) and PCB-2 (one congener of highly toxic polychlorinated biphenyls) with concentrations down to 10(-7) M and 10(-5) M have been detected respectively, showing great potential in SERS-based rapid trace-level detection of toxic organic pollutants in the environment.

  7. Preparation of dendritic Ag/Au bimetallic nanostructures and their application in surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Yi Zao; Chen Shanjun; Chen Yan; Luo Jiangshan; Wu Weidong; Yi Yougen; Tang Yongjian

    2012-01-01

    Dendritic Ag/Au bimetallic nanostructures have been synthesized via a multi-stage galvanic replacement reaction of Ag dendrites in a chlorauric acid (HAuCl 4 ) solution at room temperature. After five stages of replacement reaction, one obtains structures with protruding nanocubes; these will mature into many porous structures with a few Ag atoms that are left over dendrites. The morphological and compositional changes which evolved with reaction stages were analyzed by using scanning electron microscopy, transmission electron microscopy, UV–visible spectroscopy, selected area electron diffraction and energy-dispersive X-ray spectrometry. The replacement of Ag with Au was confirmed. A formation mechanism involving the original development of Ag dendrites into porous structures with the growth of Au nanocubes on this underlying structure as the number of reaction stages is proposed. This was confirmed by surface-enhanced Raman scattering (SERS). The dendritic Ag/Au bimetallic nanostructures could be used as efficient SERS active substrates. It was found that the SERS enhancement ability was dependent on the stage of galvanic replacement reaction. - Highlights: ► Dendritic Ag/Au bimetallic nanostructures have been synthesized. ► Protruding cubic nanostructures obtained after 5 stages mature into porous structures. ► SERS results allow confirm the proposed formation mechanism. ► The nanostructures could be used as efficient SERS active substrates.

  8. Surface-enhanced Raman spectroscopy competitive binding biosensor development utilizing surface modification of silver nanocubes and a citrulline aptamer

    Science.gov (United States)

    Walton, Brian M.; Jackson, George W.; Deutz, Nicolaas; Cote, Gerard

    2017-07-01

    A point-of-care (PoC) device with the ability to detect biomarkers at low concentrations in bodily fluids would have an enormous potential for medical diagnostics outside the central laboratory. One method to monitor analytes at low concentrations is by using surface-enhanced Raman spectroscopy (SERS). In this preliminary study toward using SERS for PoC biosensing, the surface of colloidal silver (Ag) nanocubes has been modified to test the feasibility of a competitive binding SERS assay utilizing aptamers against citrulline. Specifically, Ag nanocubes were functionalized with mercaptobenzoic acid, as well as a heterobifunctional polyethylene glycol linker that forms an amide bond with the amino acid citrulline. After the functionalization, the nanocubes were characterized by zeta-potential, transmission electron microscopy images, ultraviolet/visible spectroscopy, and by SERS. The citrulline aptamers were developed and tested using backscattering interferometry. The data show that our surface modification method does work and that the functionalized nanoparticles can be detected using SERS down to a 24.5 picomolar level. Last, we used microscale thermophoresis to show that the aptamers bind to citrulline with at least a 50 times stronger affinity than other amino acids.

  9. M13 Bacteriophage/Silver Nanowire Surface-Enhanced Raman Scattering Sensor for Sensitive and Selective Pesticide Detection.

    Science.gov (United States)

    Koh, Eun Hye; Mun, ChaeWon; Kim, ChunTae; Park, Sung-Gyu; Choi, Eun Jung; Kim, Sun Ho; Dang, Jaejeung; Choo, Jaebum; Oh, Jin-Woo; Kim, Dong-Ho; Jung, Ho Sang

    2018-03-28

    A surface-enhanced Raman scattering (SERS) sensor comprising silver nanowires (AgNWs) and genetically engineered M13 bacteriophages expressing a tryptophan-histidine-tryptophan (WHW) peptide sequence (BPWHW) was fabricated by simple mixing of BPWHW and AgNW solutions, followed by vacuum filtration onto a glass-fiber filter paper (GFFP) membrane. The AgNWs stacked on the GFFP formed a high density of SERS-active hot spots at the points of nanowire intersections, and the surface-coated BPWHW functioned as a bioreceptor for selective pesticide detection. The BPWHW-functionalized AgNW (BPWHW/AgNW) sensor was characterized by scanning electron microscopy, confocal scanning fluorescence microscopy, atomic force microscopy, and Fourier transform infrared spectroscopy. The Raman signal enhancement and the selective pesticide SERS detection properties of the BPWHW/AgNW sensor were investigated in the presence of control substrates such as wild-type M13 bacteriophage-decorated AgNWs (BPWT/AgNW) and undecorated AgNWs (AgNW). The BPWHW/AgNW sensor exhibited a significantly higher capture capability for pesticides, especially paraquat (PQ), than the control SERS substrates, and it also showed a relatively higher selectivity for PQ than for other bipyridylium pesticides such as diquat and difenzoquat. Furthermore, as a field application test, PQ was detected on the surface of PQ-pretreated apple peels, and the results demonstrated the feasibility of using a paper-based SERS substrate for on-site residual pesticide detection. The developed M13 bacteriophage-functionalized AgNW SERS sensor might be applicable for the detection of various pesticides and chemicals through modification of the M13 bacteriophage surface peptide sequence.

  10. Surface enhanced Raman scattering of gold nanoparticles supported on copper foil with graphene as a nanometer gap

    International Nuclear Information System (INIS)

    Xiang, Quan; Zhu, Xupeng; Chen, Yiqin; Duan, Huigao

    2016-01-01

    Gaps with single-nanometer dimensions (<10 nm) between metallic nanostructures enable giant local field enhancements for surface enhanced Raman scattering (SERS). Monolayer graphene is an ideal candidate to obtain a sub-nanometer gap between plasmonic nanostructures. In this work, we demonstrate a simple method to achieve a sub-nanometer gap by dewetting a gold film supported on monolayer graphene grown on copper foil. The Cu foil can serve as a low-loss plasmonically active metallic film that supports the imaginary charge oscillations, while the graphene can not only create a stable sub-nanometer gap for massive plasmonic field enhancements but also serve as a chemical enhancer. We obtained higher SERS enhancements in this graphene-gapped configuration compared to those in Au nanoparticles on Cu film or on graphene–SiO 2 –Si. Also, the Raman signals measured maintained their fine features and intensities over a long time period, indicating the stability of this Au–graphene–Cu hybrid configuration as an SERS substrate. (paper)

  11. Detection of Mycoplasma pneumoniae in simulated and true clinical throat swab specimens by nanorod array-surface-enhanced Raman spectroscopy.

    Directory of Open Access Journals (Sweden)

    Suzanne L Hennigan

    Full Text Available The prokaryote Mycoplasma pneumoniae is a major cause of respiratory disease in humans, accounting for 20% of all community-acquired pneumonia and the leading cause of pneumonia in older children and young adults. The limitations of existing options for mycoplasma diagnosis highlight a critical need for a new detection platform with high sensitivity, specificity, and expediency. Here we evaluated silver nanorod arrays (NA as a biosensing platform for detection and differentiation of M. pneumoniae in culture and in spiked and true clinical throat swab samples by surface-enhanced Raman spectroscopy (SERS. Three M. pneumoniae strains were reproducibly differentiated by NA-SERS with 95%-100% specificity and 94-100% sensitivity, and with a lower detection limit exceeding standard PCR. Analysis of throat swab samples spiked with M. pneumoniae yielded detection in a complex, clinically relevant background with >90% accuracy and high sensitivity. In addition, NA-SERS correctly classified with >97% accuracy, ten true clinical throat swab samples previously established by real-time PCR and culture to be positive or negative for M. pneumoniae. Our findings suggest that the unique biochemical specificity of Raman spectroscopy, combined with reproducible spectral enhancement by silver NA, holds great promise as a superior platform for rapid and sensitive detection and identification of M. pneumoniae, with potential for point-of-care application.

  12. Piperidine adsorption on two different silver electrodes: A combined surface enhanced Raman spectroscopy and density functional theory study

    International Nuclear Information System (INIS)

    Hao Yanling; Fang Yan

    2007-01-01

    The surface enhanced Raman scattering (SERS) spectra of piperidine in silver colloid solution, on roughened silver electrode and on roughened silver electrode modified with silver nanoparticles were studied, and the high-quality SERS spectra of piperidine on roughened silver electrode modified with silver nanoparticles were obtained for the first time. Surface selection rules derived from the EM enhancement model were employed to deduce piperidine orientations on the different surfaces. On the basis of this, two models of piperidine adsorbed on the surface of the silver nanoparticles were built, and DFT-B3PW91/LanL2dz was applied to calculate the Raman frequencies. It proves that, at higher potential values, the piperidine is perpendicularly standing on the roughened silver electrode surface though its lone-electron pair, but in silver colloid solution and on the silver nanoparticles modified silver electrode the piperidine molecular lies flat on the silver surface. In the meantime, the potential dependent SERS of piperidine on the modified electrode were studied

  13. Red-Shift Effects in Surface Enhanced Raman Spectroscopy: Spectral or Intensity Dependence of the Near-Field?

    KAUST Repository

    Colas, Florent; Cottat, Maximilien; Gillibert, Raymond; Guillot, Nicolas; Djaker, Nadia; Lidgi-Guigui, Nathalie; Toury, Timothé e; Barchiesi, Dominique; Toma, Andrea; Di Fabrizio, Enzo M.; Gucciardi, Pietro Giuseppe; de la Chapelle, Marc Lamy

    2016-01-01

    Optimum amplification in Surface Enhanced Raman Scattering (SERS) from individual nanoantennas is expected when the excitation is slightly blue-shifted with respect to the Localized Surface Plasmon Resonance (LSPR), so that the LSPR peak falls in the middle between the laser and the Stokes Raman emission. Recent experiments have shown when moving the excitation from the visible to the near-infrared that this rule of thumb is no more valid. The excitation has to be red-shifted with respect to the LSPR peak, up to 80nm, to obtain highest SERS. Such discrepancy is usually attributed to a Near-Field (NF) to Far-Field (FF) spectral shift. Here we critically discuss this hypothesis for the case of gold nanocylinders. By combining multi-wavelength excitation SERS experiments with numerical calculations, we show that the red-shift of the excitation energy does not originate from a spectral shift between the extinction (FF) and the near-field distribution (NF), which is found to be not larger than 10nm. Rather, it can be accounted for by looking at the peculiar spectral dependence of the near-field intensity on the cylinders diameter, characterized by an initial increase, up to 180nm diameter, followed by a decrease and a pronounced skewness.

  14. Tuneable surface enhanced Raman spectroscopy hyphenated to chemically derivatized thin-layer chromatography plates for screening histamine in fish.

    Science.gov (United States)

    Xie, Zhengjun; Wang, Yang; Chen, Yisheng; Xu, Xueming; Jin, Zhengyu; Ding, Yunlian; Yang, Na; Wu, Fengfeng

    2017-09-01

    Reliable screening of histamine in fish was of urgent importance for food safety. This work presented a highly selective surface enhanced Raman spectroscopy (SERS) method mediated by thin-layer chromatography (TLC), which was tailored for identification and quantitation of histamine. Following separation and derivatization with fluram, plates were assayed with SERS, jointly using silver nanoparticle and NaCl. The latter dramatically suppressed the masking effect caused by excessive fluram throughout the plate, thus offering clear baseline and intensive Raman fingerprints specific to the analyte. Under optimized conditions, the usability of this method was validated by identifying the structural fingerprints of both targeted and unknown compounds in fish samples. Meanwhile, the quantitative results of this method agreed with those by an HPLC method officially suggested by EU for histamine determination. Showing remarkable cost-efficiency and user-friendliness, this facile TLC-SERS method was indeed screening-oriented and may be more attractive to controlling laboratories of limited resource. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Growth graphene on silver-copper nanoparticles by chemical vapor deposition for high-performance surface-enhanced Raman scattering

    Science.gov (United States)

    Zhang, Xiumei; Xu, Shicai; Jiang, Shouzhen; Wang, Jihua; Wei, Jie; Xu, Shida; Gao, Shoubao; Liu, Hanping; Qiu, Hengwei; Li, Zhen; Liu, Huilan; Li, Zhenhua; Li, Hongsheng

    2015-10-01

    We present a graphene/silver-copper nanoparticle hybrid system (G/SCNPs) to be used as a high-performance surface-enhanced Raman scattering (SERS) substrate. The silver-copper nanoparticles wrapped by a monolayer graphene layer are directly synthesized on SiO2/Si substrate by chemical vapor deposition in a mixture of methane and hydrogen. The G/SCNPs shows excellent SERS enhancement activity and high reproducibility. The minimum detected concentration of R6G is as low as 10-10 M and the calibration curve shows a good linear response from 10-6 to 10-10 M. The date fluctuations from 20 positions of one SERS substrate are less than 8% and from 20 different substrates are less than 10%. The high reproducibility of the enhanced Raman signals could be due to the presence of an ultrathin graphene layer and uniform morphology of silver-copper nanoparticles. The use of G/SCNPs for detection of nucleosides extracted from human urine demonstrates great potential for the practical applications on a variety of detection in medicine and biotechnology field.

  16. Red-Shift Effects in Surface Enhanced Raman Spectroscopy: Spectral or Intensity Dependence of the Near-Field?

    KAUST Repository

    Colas, Florent

    2016-06-06

    Optimum amplification in Surface Enhanced Raman Scattering (SERS) from individual nanoantennas is expected when the excitation is slightly blue-shifted with respect to the Localized Surface Plasmon Resonance (LSPR), so that the LSPR peak falls in the middle between the laser and the Stokes Raman emission. Recent experiments have shown when moving the excitation from the visible to the near-infrared that this rule of thumb is no more valid. The excitation has to be red-shifted with respect to the LSPR peak, up to 80nm, to obtain highest SERS. Such discrepancy is usually attributed to a Near-Field (NF) to Far-Field (FF) spectral shift. Here we critically discuss this hypothesis for the case of gold nanocylinders. By combining multi-wavelength excitation SERS experiments with numerical calculations, we show that the red-shift of the excitation energy does not originate from a spectral shift between the extinction (FF) and the near-field distribution (NF), which is found to be not larger than 10nm. Rather, it can be accounted for by looking at the peculiar spectral dependence of the near-field intensity on the cylinders diameter, characterized by an initial increase, up to 180nm diameter, followed by a decrease and a pronounced skewness.

  17. Ab Initio Calculations and Raman and SERS Spectral Analyses of Amphetamine Species

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Nørbygaard, Thomas; White, Peter C.

    2011-01-01

    For the first time, the differences between the spectra of amphetamine and amphetamine-H+ and between different conformers are thoroughly studied by ab initio model calculations, and Raman and surface-enhanced Raman spectroscopy (SERS) spectra are measured for different species of amphetamine....... The spectra of amphetamine and amphetamine-H+ sampleswere obtained and assigned according to a comparison of the experimental spectra and the ab initio MO calculations, performed using the Gaussian 03W program (Gaussian, Inc., Pittsburgh, PA). The analyses were based on complete geometry minimization...

  18. Determination of B-complex vitamins in pharmaceutical formulations by surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Junior, Benedito Roberto Alvarenga; Soares, Frederico Luis Felipe; Ardila, Jorge Armando; Durango, Luis Guillermo Cuadrado; Forim, Moacir Rossi; Carneiro, Renato Lajarim

    2018-01-01

    The aim of this work was to quantify B-complex vitamins in pharmaceutical samples by surface enhanced Raman spectroscopy technique using gold colloid substrate. Synthesis of gold nanoparticles was performed according to an adapted Turkevich method. Initial essays were able to suggest the orientation of molecules on gold nanoparticles surface. Central Composite design was performed to obtain the highest SERS signal for nicotinamide and riboflavin. The evaluated parameters in the experimental design were volume of AuNPs, concentration of vitamins and sodium chloride concentration. The best condition for nicotinamide was NaCl 2.3 × 10- 3 mol L- 1 and 700 μL of AuNPs colloid and this same condition showed to be adequate to quantify thiamine. The experimental design for riboflavin shows the best condition at NaCl 1.15 × 10- 2 mol L- 1 and 2.8 mL of AuNPs colloid. It was possible to quantify thiamine and nicotinamide in presence of others vitamins and excipients in two solid multivitamin formulations using the standard addition procedure. The standard addition curve presented a R2 higher than 0.96 for both nicotinamide and thiamine, at orders of magnitude 10- 7 and 10- 8 mol L- 1, respectively. The nicotinamide content in a cosmetic gel sample was also quantified by direct analysis presenting R2 0.98. The t-student test presented no significant difference regarding HPLC method. Despite the experimental design performed for riboflavin, it was not possible its quantification in the commercial samples.

  19. Surface-enhanced Raman scattering on molecular self-assembly in nanoparticle-hydrogel composite.

    Science.gov (United States)

    Miljanić, Snezana; Frkanec, Leo; Biljan, Tomislav; Meić, Zlatko; Zinić, Mladen

    2006-10-24

    Surface-enhanced Raman scattering has been applied to study weak intermolecular interactions between small organic gelling molecules involved in the silver nanoparticle-hydrogel composite formation. Assembly and disassembly of the gelator molecules in close vicinity to embedded silver nanoparticles were followed by changes in Raman intensity of the amide II and carboxyl vibrational bands, whereas the strength of the bands related to benzene modes remained constant. This implied that the gelator molecules were strongly attached to the silver particles through the benzene units, while participating in gel structure organization by intermolecular hydrogen bonding between oxalyl amide and carboxyl groups.

  20. Rapid thyroid dysfunction screening based on serum surface-enhanced Raman scattering and multivariate statistical analysis

    Science.gov (United States)

    Tian, Dayong; Lü, Guodong; Zhai, Zhengang; Du, Guoli; Mo, Jiaqing; Lü, Xiaoyi

    2018-01-01

    In this paper, serum surface-enhanced Raman scattering and multivariate statistical analysis are used to investigate a rapid screening technique for thyroid function diseases. At present, the detection of thyroid function has become increasingly important, and it is urgently necessary to develop a rapid and portable method for the detection of thyroid function. Our experimental results show that, by using the Silmeco-based enhanced Raman signal, the signal strength greatly increases and the characteristic peak appears obviously. It is also observed that the Raman spectra of normal and anomalous thyroid function human serum are significantly different. Principal component analysis (PCA) combined with linear discriminant analysis (LDA) was used to diagnose thyroid dysfunction, and the diagnostic accuracy was 87.4%. The use of serum surface-enhanced Raman scattering technology combined with PCA-LDA shows good diagnostic performance for the rapid detection of thyroid function. By means of Raman technology, it is expected that a portable device for the rapid detection of thyroid function will be developed.

  1. Replacement of Poly(vinyl pyrrolidone) by Thiols: A Systematic Study of Ag Nanocube Functionalization by Surface-Enhanced Raman Scattering

    OpenAIRE

    Moran, Christine H.; Rycenga, Matthew; Zhang, Qiang; Xia, Younan

    2011-01-01

    In this work, we used surface-enhanced Raman scattering (SERS) to monitor the replacement of poly(vinyl pyrrolidone) (PVP) on Ag nanocubes by cysteamine, thiol-terminated PEG, and benzenedithiol. PVP is widely used as a colloidal stabilizer and capping agent to control the shape of Ag (as well as many other noble metals) nanocrystals during synthesis, and to stabilize the final colloidal suspension. However, the surface chemistry of Ag nanocrystals often needs to be tailored for specific appl...

  2. Three-dimensional noble-metal nanostructure: A new kind of substrate for sensitive, uniform, and reproducible surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Tian Cui-Feng; You Hong-Jun; Fang Ji-Xiang

    2014-01-01

    Surface-enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy technique for highly sensitive structural detection of low concentration analyte. The SERS activities largely depend on the topography of the substrate. In this review, we summarize the recent progress in SERS substrate, especially focusing on the three-dimensional (3D) noble-metal substrate with hierarchical nanostructure. Firstly, we introduce the background and general mechanism of 3D hierarchical SERS nanostructures. Then, a systematic overview on the fabrication, growth mechanism, and SERS property of various noble-metal substrates with 3D hierarchical nanostructures is presented. Finally, the applications of 3D hierarchical nanostructures as SERS substrates in many fields are discussed. (invited review — international conference on nanoscience and technology, china 2013)

  3. Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Mu Cheng; Xu Dongsheng; Zhang Jianping

    2010-01-01

    Surface-enhanced Raman spectroscopy (SERS) with enormous enhancements has shown great potential in ultrasensitive detection technologies, but the fabrication of large-scale, controllable and reproducible substrates with high SERS activity is a major challenge. Here, we report the preparation of Au nanoparticle arrays for SERS-active substrates with tunable particle sizes and interparticle gaps, and the enhancement factor of the SERS signal obtained from 4-mercaptopyridine probe molecules was as high as 10 7 . The experimental data points show the increase of enhancement factor as a function of the ratio of diameter to interparticle gap, which can be explained by the averaged electromagnetic field enhancement model. Furthermore, we demonstrated that this type of substrate merits its high uniformity, high reproducibility and excellent long-term stability. As the fabrication protocol of such a SERS substrate is simple and inexpensive, this substrate may anticipate a wide range of applications in SERS-based sensors.

  4. High quality gold nanorods and nanospheres for surface-enhanced Raman scattering detection of 2,4-dichlorophenoxyacetic acid

    International Nuclear Information System (INIS)

    Jia Jinliang; Xu Hanhong; Zhang Guirong; Hu Zhun; Xu Boqing

    2012-01-01

    Nearly monodisperse Au nanorods (NRs) with different aspect ratios were separated from home-synthesized polydisperse samples using a gradient centrifugation method. The morphology, size and its distribution, and photo-absorption property were analyzed by transmission electron microscopy, atomic force microscopy and UV–visible spectroscopy. Subsequently, using colloidal Au NRs (36.2 nm ×10.7 nm) with 97.4% yield after centrifugation and Au nanospheres (NSs) (22.9 ± 1.0 nm in diameter) with 97.6% yield as Au substrates, surface-enhanced Raman scattering (SERS) spectra of 2,4-dichlorophenoxyacetic acid (2,4-D) were recorded using laser excitation at 632.8 nm. Results show that surface enhancement factors (EF) for Au NRs and NSs are 6.2 × 10 5 and 5.7 × 10 4 using 1.0 × 10 −6 M 2,4-D, respectively, illustrating that EF value is a factor of ∼10 greater for Au NRs substrates than for Au NSs substrates. As a result, large EF are a mainly result of chemical enhancement mechanisms. Thus, it is expected that Au NPs can find a comprehensive SERS application in the trace detection of pesticide residues. (paper)

  5. SERS microRaman spectral probing of adsorbate-containing, liquid-overlayed nanosponge Ag aggregates assembled from fractal aggregates

    Czech Academy of Sciences Publication Activity Database

    Sutrova, V.; Šloufová, I.; Nevoralová, Martina; Vlčková, B.

    2015-01-01

    Roč. 46, č. 6 (2015), s. 559-565 ISSN 0377-0486 R&D Projects: GA ČR GAP208/10/0941 Institutional support: RVO:61389013 Keywords : surface-enhanced Raman scattering (SERS) spectroscopy * Ag nanoparticles * Ag nanosponge aggregate Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.395, year: 2015

  6. A ternary functional Ag@GO@Au sandwiched hybrid as an ultrasensitive and stable surface enhanced Raman scattering platform

    Science.gov (United States)

    Zhang, Cong-yun; Hao, Rui; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing

    2017-07-01

    The graphene-mediated surface enhanced Raman scattering (SERS) substrates by virtues of plasmonic metal nanostructures and graphene or its derivatives have attracted tremendous interests which are expected to make up the deficiency of traditional plasmonic metal substrates. Herein, we designed and fabricated a novel ternary Ag@GO@Au sandwich hybrid wherein the ultrathin graphene oxide (GO) films were seamlessly wrapped around the hierarchical flower-like Ag particle core and meanwhile provided two-dimensional anchoring scaffold for the coating of Au nanoparticles (NPs). The surface coverage density of loading Au NPs could be readily controlled by tuning the dosage amount of Au particle solutions. These features endowed the sandwiched structures high enrichment capability for analytes such as aromatic molecules and astonishing SERS performance. The Raman signals were enormously enhanced with an ultrasensitive detection limit of rhodamine-6G (R6G) as low as 10-13 M based on the chemical enhancement from GO and multi-dimensional plasmonic coupling between the metal nanoparticles. In addition, the GO interlayer as an isolating shell could effectively prevent the metal-molecule direct interaction and suppress the oxidation of Ag after exposure at ambient condition which enabled the substrates excellent reproducibility with less than 6% signal variations and prolonged life-time. To evaluate the feasibility and the practical application for SERS detection in real-world samples based on GO sandwiched hybrid as SERS-active substrate, three different prohibited colorants with a series of concentrations were measured with a minimum detected concentration down to 10-9 M. Furthermore, the prepared GO sandwiched nanostructures can be used to identify different types of colorants existing in red wine, implying the great potential applications for single-particle SERS sensing of biotechnology and on-site monitoring in food security.

  7. Monitoring of anatabine release by methyl jasmonate elicited BY-2 cells using surface-enhanced Raman scattering.

    Science.gov (United States)

    De Bleye, C; Dumont, E; Dispas, A; Hubert, C; Sacré, P-Y; Netchacovitch, L; De Muyt, B; Kevers, C; Dommes, J; Hubert, Ph; Ziemons, E

    2016-11-01

    A new application of surface-enhanced Raman scattering (SERS) in the field of plant material analysis is proposed in this study. The aim was to monitor the release of anatabine by methyl jasmonate (MeJa) elicited Bright Yellow-2 (BY-2) cells. Gold nanoparticles (AuNps) were used as SERS substrate. The first step was to study the SERS activity of anatabine in a complex matrix comprising the culture medium and BY-2 cells. The second step was the calibration. This one was successfully performed directly in the culture medium in order to take into account the matrix effect, by spiking the medium with different concentrations of anatabine, leading to solutions ranging from 250 to 5000µgL(-1). A univariate analysis was performed, the intensity of a band situated at 1028cm(-1), related to anatabine, was plotted against the anatabine concentration. A linear relationship was observed with a R(2) of 0.9951. During the monitoring study, after the MeJa elicitation, samples were collected from the culture medium containing BY-2 cells at 0, 24h, 48h, 72h and 96h and were analysed using SERS. Finally, the amount of anatabine released in the culture medium was determined using the response function, reaching a plateau after 72h of 82µg of anatabine released/g of fresh weight (FW) MeJa elicited BY-2 cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A rapid method for detection of genetically modified organisms based on magnetic separation and surface-enhanced Raman scattering.

    Science.gov (United States)

    Guven, Burcu; Boyacı, İsmail Hakkı; Tamer, Ugur; Çalık, Pınar

    2012-01-07

    In this study, a new method combining magnetic separation (MS) and surface-enhanced Raman scattering (SERS) was developed to detect genetically modified organisms (GMOs). An oligonucleotide probe which is specific for 35 S DNA target was immobilized onto gold coated magnetic nanospheres to form oligonucleotide-coated nanoparticles. A self assembled monolayer was formed on gold nanorods using 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) and the second probe of the 35 S DNA target was immobilized on the activated nanorod surfaces. Probes on the nanoparticles were hybridized with the target oligonucleotide. Optimization parameters for hybridization were investigated by high performance liquid chromatography. Optimum hybridization parameters were determined as: 4 μM probe concentration, 20 min immobilization time, 30 min hybridization time, 55 °C hybridization temperature, 750 mM buffer salt concentration and pH: 7.4. Quantification of the target concentration was performed via SERS spectra of DTNB on the nanorods. The correlation between the target concentration and the SERS signal was found to be linear within the range of 25-100 nM. The analyses were performed with only one hybridization step in 40 min. Real sample analysis was conducted using Bt-176 maize sample. The results showed that the developed MS-SERS assay is capable of detecting GMOs in a rapid and selective manner. This journal is © The Royal Society of Chemistry 2012

  9. Direct visual evidence of end-on adsorption geometry of pyridine on silver surface investigated by surface enhanced Raman scattering and density functional theory calculations.

    Science.gov (United States)

    Bhunia, Snehasis; Forster, Stefan; Vyas, Nidhi; Schmitt, Hans-Christian; Ojha, Animesh K

    2015-12-05

    Fourier transform Raman (FT-Raman) spectra of neat pyridine (Py) and surface enhanced Raman scattering (SERS) spectra of Py with silver nanoparticles (AgNPs) solution at different molar concentrations (X=1.5M, 1.0M, 0.50 M, 0.25 M, and 0.125 M) were recorded using 1064 nm excitation wavelength. The intensity of Raman bands at ∼1003 (ν11) and ∼1035 (ν21) cm(-1) of Py is enhanced in the SERS spectra. Two new Raman bands were observed at ∼1009 (ν12) and ∼1038 (ν22) cm(-1) in the SERS spectra. These bands correspond to the ring breathing vibrations of Py molecules adsorbed at the AgNPs surface. The value of intensity ratios (I12/I11) and (I21/I22) is increased with dilution and attains a maximum value at X=0.5M and upon further dilution (0.25 and 0.125 M) it drops gradually. The theoretically calculated Raman spectra were found to be in good agreement with experimentally observed Raman spectra. Both, experimental and theoretical investigations have confirmed that the Py interacts with AgNPs via the end-on geometry. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Simultaneous multiplexed quantification of caffeine and its major metabolites theobromine and paraxanthine using surface-enhanced Raman scattering.

    Science.gov (United States)

    Alharbi, Omar; Xu, Yun; Goodacre, Royston

    2015-11-01

    Accurate quantitative measurement of drugs and their metabolites is important as this can be used to establish long-term abuse of illicit materials as well as establish accurate drug dosing for legal therapeutics. However, the levels of drugs and xenometabolites found in human body fluids necessitate methods that are highly sensitive as well as reproducible with the potential for portability. Raman spectroscopy does offer excellent reproducibility, portability and chemical specificity, but unfortunately, the Raman effect is generally too weak unless it is enhanced. We therefore developed surface-enhanced Raman scattering (SERS) and combined it with the powerful machine learning technique of artificial neural networks to enable rapid quantification of caffeine and its two major metabolites theobromine and paraxanthine. We established a three-way mixture analysis from 10(-5) to 10(-7) mol/dm(3), and excellent predictions were generated for all three analytes in tertiary mixtures. The range we selected reflects the levels found in human body fluids, and the typical errors for our portable SERS analysis were 1.7 × 10(-6) mol/dm(3) for caffeine, 8.8 × 10(-7) mol/dm(3) for theobromine and 9.6 × 10(-7) mol/dm(3) for paraxanthine. We believe this demonstrates the exciting prospect of using SERS for the quantitative analysis of multiple analytes simultaneously without recourse to lengthy and time-consuming chromatography, a method that often has to be combined with mass spectrometry.

  11. Protein–nanoparticle interaction in bioconjugated silver nanoparticles: A transmission electron microscopy and surface enhanced Raman spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Reymond-Laruinaz, Sébastien; Saviot, Lucien; Potin, Valérie; Marco de Lucas, María del Carmen, E-mail: delucas@u-bourgogne.fr

    2016-12-15

    Highlights: • Synthesis of protein-conjugated Ag nanoparticles (NPs) in absence of citrates. • NPs size and protein layer thickness determined by TEM. • SERS spectra showed the chemisorption of proteins on the surface of Ag-NPs. - Abstract: Understanding the mechanisms of interaction between proteins and noble metal nanoparticles (NPs) is crucial to extend the use of NPs in biological applications and nanomedicine. We report the synthesis of Ag-NPs:protein bioconjugates synthesized in total absence of citrates or other stabilizing agents in order to study the NP-protein interaction. Four common proteins (lysozyme, bovine serum albumin, cytochrome-C and hemoglobin) were used in this work. Transmission electron microscopy (TEM) and surface enhanced Raman spectroscopy (SERS) were mainly used to study these bioconjugated NPs. TEM images showed Ag NPs with sizes in the 5–40 nm range. The presence of a protein layer surrounding the Ag NPs was also observed by TEM. Moreover, the composition at different points of single bioconjugated NPs was probed by electron energy loss spectroscopy (EELS). The thickness of the protein layer varies in the 3–15 nm range and the Ag NPs are a few nanometers away. This allowed to obtain an enhancement of the Raman signal of the proteins in the analysis of water suspensions of bioconjugates. SERS results showed a broadening of the Raman bands of the proteins which we attribute to the contribution of different configurations of the proteins adsorbed on the Ag NPs surface. Moreover, the assignment of an intense and sharp peak in the low-frequency range to Ag–N vibrations points to the chemisorption of the proteins on the Ag-NPs surface.

  12. Photochemical decoration of gold nanoparticles on polymer stabilized magnetic microspheres for determination of adenine by surface-enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Alula, Melisew Tadele; Yang, Jyisy

    2015-01-01

    Magnetic microspheres decorated with gold nanoparticles (AuNPs) were prepared and used for the determination of adenine by surface-enhanced Raman scattering (SERS). Magnetic particles were first synthesized by coprecipitation of solutions containing iron(II) and iron(III) ions with ammonium hydroxide. Subsequently, the magnetic particles were suspended into a solution of poly(divinylbenzene-co-methyl methacrylate) to yield polymer-stabilized magnetic microspheres. These were further decorated with AuNPs via a new photochemical reduction method. The magnetic microspheres were characterized by XRD patterns and SEM images. They are shown to represent highly SERS-active substrates by giving an enhancement by almost 7 orders of magnitude compared to conventional Raman spectroscopy. Several factors that affect the photochemical reduction to form the AuNPs were examined. It is found that the concentration of gold ion, UV irradiation time, and citrate concentration have more impact on the reaction rate than on the morphologies of the AuNPs. The gold-decorated magnetic microspheres are highly stable in aqueous solution and capable of concentrating nucleobases. A linear response of the SERS signal to adenine in concentrations up to 10 μM is found, with a linear regression coefficient of 0.997. The detection limit is estimated to a few hundreds of nM (at an SNR of 3). Based on its specific Raman peak at 734 cm −1 , adenine can be selectively determined without interference by other nucleobases, and a recovery higher than 95 % could be obtained. (author)

  13. Protein–nanoparticle interaction in bioconjugated silver nanoparticles: A transmission electron microscopy and surface enhanced Raman spectroscopy study

    International Nuclear Information System (INIS)

    Reymond-Laruinaz, Sébastien; Saviot, Lucien; Potin, Valérie; Marco de Lucas, María del Carmen

    2016-01-01

    Highlights: • Synthesis of protein-conjugated Ag nanoparticles (NPs) in absence of citrates. • NPs size and protein layer thickness determined by TEM. • SERS spectra showed the chemisorption of proteins on the surface of Ag-NPs. - Abstract: Understanding the mechanisms of interaction between proteins and noble metal nanoparticles (NPs) is crucial to extend the use of NPs in biological applications and nanomedicine. We report the synthesis of Ag-NPs:protein bioconjugates synthesized in total absence of citrates or other stabilizing agents in order to study the NP-protein interaction. Four common proteins (lysozyme, bovine serum albumin, cytochrome-C and hemoglobin) were used in this work. Transmission electron microscopy (TEM) and surface enhanced Raman spectroscopy (SERS) were mainly used to study these bioconjugated NPs. TEM images showed Ag NPs with sizes in the 5–40 nm range. The presence of a protein layer surrounding the Ag NPs was also observed by TEM. Moreover, the composition at different points of single bioconjugated NPs was probed by electron energy loss spectroscopy (EELS). The thickness of the protein layer varies in the 3–15 nm range and the Ag NPs are a few nanometers away. This allowed to obtain an enhancement of the Raman signal of the proteins in the analysis of water suspensions of bioconjugates. SERS results showed a broadening of the Raman bands of the proteins which we attribute to the contribution of different configurations of the proteins adsorbed on the Ag NPs surface. Moreover, the assignment of an intense and sharp peak in the low-frequency range to Ag–N vibrations points to the chemisorption of the proteins on the Ag-NPs surface.

  14. Fast and eco-friendly fabrication of uniform Ag substrates for highly sensitive surface-enhanced Raman scattering

    Science.gov (United States)

    Xu, Yongda; Li, Xin; Jiang, Lan; Meng, Ge; Ran, Peng; Lu, Yongfeng

    2017-05-01

    This study proposed a fast, simple, eco-friendly method for obtaining highly sensitive and uniform surface-enhanced Raman scattering (SERS) of silver (Ag) nanotextured substrates decorated with silver nanoparticles in open air. By splitting conventional femtosecond pulses (subpulse delay Δt = 0 ps) into pulse trains (subpulse delay Δt = 3 ps), the mean diameter of Ag nanoparticles was reduced by almost half and the amount of Ag nanoparticles with a diameter ranging from 20 to 60 nm was increased by more than 11 times. The substrate fabricated by femtosecond pulse trains has four main merits as follows: (1) High sensitivity: the maximum SERS enhancement factor is 1.26 × 109; (2) High efficiency: the fabrication rate can be up to 1600 μm2/s, which is 20-40 times faster than femtosecond photochemical reduction; (3) Good reproducibility: the relative standard deviation of the Raman signal intensity is 10.7%, which is one-third of that for conventional femtosecond laser; (4) Eco-friendly fabrication: neither chemical reagents nor vacuum conditions are needed during the fabrication process.

  15. Microanalysis of Organic Pigments in Ancient Textiles by Surface-Enhanced Raman Scattering on Agar Gel Matrices

    Directory of Open Access Journals (Sweden)

    Marilena Ricci

    2016-01-01

    Full Text Available We review some new methods based on surface-enhanced Raman scattering (SERS for the nondestructive/minimally invasive identification of organic colorants in objects whose value or function precludes sampling, such as historic and archeological textiles, paintings, and drawing. We discuss in detail the methodology we developed for the selective extraction and identification of anthraquinones and indigoids in the typical concentration used in textiles by means of an ecocompatible homogeneous nanostructured agar matrix. The extraction system was modulated according to the chemical properties of the target analyte by choosing appropriate reagents for the extraction and optimizing the extraction time. The system has been found to be extremely stable, easy to use and produce, easy to store, and at the same time able to be analyzed even after long time intervals, maintaining its enhancement properties unaltered, without the detriment of the extracted compound. Highly structured SERS band intensities have been obtained from the extracted dyes adopting laser light excitations at 514.5 and 785 nm of a micro-Raman setup. This analytical method has been found to be extremely safe for the analyzed substrates, thus being a promising procedure for the selective analysis and detection of molecules at low concentration in the field of artworks conservation.

  16. Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy.

    Science.gov (United States)

    Zhu, Yongjian; Choe, Chun-Sik; Ahlberg, Sebastian; Meinke, Martina C; Alexiev, Ulrike; Lademann, Juergen; Darvin, Maxim E

    2015-05-01

    In order to investigate the penetration depth of silver nanoparticles (Ag NPs) inside the skin, porcine ears treated with Ag NPs are measured by two-photon tomography with a fluorescence lifetime imaging microscopy (TPT-FLIM) technique, confocal Raman microscopy (CRM), and surface-enhanced Raman scattering (SERS) microscopy. Ag NPs are coated with poly-N-vinylpyrrolidone and dispersed in pure water solutions. After the application of Ag NPs, porcine ears are stored in the incubator for 24 h at a temperature of 37°C. The TPT-FLIM measurement results show a dramatic decrease of the Ag NPs' signal intensity from the skin surface to a depth of 4 μm. Below 4 μm, the Ag NPs' signal continues to decline, having completely disappeared at 12 to 14 μm depth. CRM shows that the penetration depth of Ag NPs is 11.1 ± 2.1 μm. The penetration depth measured with a highly sensitive SERS microscopy reaches 15.6 ± 8.3 μm. Several results obtained with SERS show that the penetration depth of Ag NPs can exceed the stratum corneum (SC) thickness, which can be explained by both penetration of trace amounts of Ag NPs through the SC barrier and by the measurements inside the hair follicle, which cannot be excluded in the experiment.

  17. Surface Enhanced Raman Scattering Substrates Made by Oblique Angle Deposition: Methods and Applications

    Directory of Open Access Journals (Sweden)

    Hin On Chu

    2017-02-01

    Full Text Available Surface Enhanced Raman Spectroscopy presents a rapid, non-destructive method to identify chemical and biological samples with up to single molecule sensitivity. Since its discovery in 1974, the technique has become an intense field of interdisciplinary research, typically generating >2000 publications per year since 2011. The technique relies on the localised surface plasmon resonance phenomenon, where incident light can couple with plasmons at the interface that result in the generation of an intense electric field. This field can propagate from the surface from the metal-dielectric interface, so molecules within proximity will experience more intense Raman scattering. Localised surface plasmon resonance wavelength is determined by a number of factors, such as size, geometry and material. Due to the requirements of the surface optical response, Ag and Au are typical metals used for surface enhanced Raman applications. These metals then need to have nano features that improve the localised surface plasmon resonance, several variants of these substrates exist; surfaces can range from nanoparticles in a suspension, electrochemically roughened electrodes to metal nanostructures on a substrate. The latter will be the focus of this review, particularly reviewing substrates made by oblique angle deposition. Oblique angle deposition is the technique of growing thin films so that the material flux is not normal to the surface. Films grown in this fashion will possess nanostructures, due to the atomic self-shadowing effect, that are dependent mainly on the deposition angle. Recent developments, applications and highlights of surface enhanced Raman scattering substrates made by oblique angle deposition will be reviewed.

  18. Surface-enhanced Raman Scattering Study of the Binding Modes of a Dibenzotetraaza[14]annulene Derivative with DNA/RNA Polynucleotides

    OpenAIRE

    Miljanić, Snežana; Dijanošić, Adriana; Kalac, Matea; Radić Stojković, Marijana; Piantanida, Ivo; Pawlica, Dariusz; Eilmes, Julita

    2012-01-01

    Binding modes of a dibenzotetraaza14annulene (DBTAA) derivative with synthetic nucleic acids were studied using surface-enhanced Raman spectroscopy (SERS). Changes in SERS intensity and appearance of new bands in spectra were attributed to different complexes formed between the DBTAA molecules and DNA/RNA polynucleotides. A decrease in intensity pointed to intercalation as the dominant binding mode of the annulene derivative with poly dGdC-poly dGdC and poly rA-poly rU, whereas new bands in...

  19. Tuning the interaction between propagating and localized surface plasmons for surface enhanced Raman scattering in water for biomedical and environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Shioi, Masahiko, E-mail: shioi.masahiko@jp.panasonic.com [Device Solutions Center, Panasonic Corporation, 3-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 (Japan); Department of Electric and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan); Jans, Hilde [Interuniversity Microelectronics Center VZW., Kapeldreef 75, 3001 Leuven (Belgium); Lodewijks, Kristof [Interuniversity Microelectronics Center VZW., Kapeldreef 75, 3001 Leuven (Belgium); Department of Electrical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Van Dorpe, Pol; Lagae, Liesbet [Interuniversity Microelectronics Center VZW., Kapeldreef 75, 3001 Leuven (Belgium); Department of Physics, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Kawamura, Tatsuro [Device Solutions Center, Panasonic Corporation, 3-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 (Japan)

    2014-06-16

    With a view to biomedical and environmental applications, we investigate the plasmonic properties of a rectangular gold nanodisk array in water to boost surface enhanced Raman scattering (SERS) effects. To control the resonance wavelengths of the surface plasmon polariton and the localized surface plasmon, their dependence on the array period and diameter in water is studied in detail using a finite difference time domain method. A good agreement is obtained between calculated resonant wavelengths and those of gold nanodisk arrays fabricated using electron beam lithography. For the optimized structure, a SERS enhancement factor of 7.8 × 10{sup 7} is achieved in water experimentally.

  20. Classifying low-grade and high-grade bladder cancer using label-free serum surface-enhanced Raman spectroscopy and support vector machine

    Science.gov (United States)

    Zhang, Yanjiao; Lai, Xiaoping; Zeng, Qiuyao; Li, Linfang; Lin, Lin; Li, Shaoxin; Liu, Zhiming; Su, Chengkang; Qi, Minni; Guo, Zhouyi

    2018-03-01

    This study aims to classify low-grade and high-grade bladder cancer (BC) patients using serum surface-enhanced Raman scattering (SERS) spectra and support vector machine (SVM) algorithms. Serum SERS spectra are acquired from 88 serum samples with silver nanoparticles as the SERS-active substrate. Diagnostic accuracies of 96.4% and 95.4% are obtained when differentiating the serum SERS spectra of all BC patients versus normal subjects and low-grade versus high-grade BC patients, respectively, with optimal SVM classifier models. This study demonstrates that the serum SERS technique combined with SVM has great potential to noninvasively detect and classify high-grade and low-grade BC patients.

  1. Surface enhanced Raman spectroscopy analysis of HeLa cells using a multilayer substrate

    Science.gov (United States)

    Aguilar-Hernández, I. A.; Pichardo-Molina, J. L.; Lopez-Luke, T.; Ornelas-Soto, N.

    2017-08-01

    Single cell analysis can provide important information regarding cell composition, and can be used for biomedical applications. In this work, a SERS active substrate formed by 3 layers of gold nanospheres and a final layer of gold nanocubes was used for the label-free SERS analysis of HeLa cells. Nanocubes were selected due to the high electromagnetic enhancement expected in nanoparticles with sharp corners. Significant improvement in the reproducibility and quality of SERS spectra was found when compared to the spectra obtained using a nanosphere-only substrate and normal Raman spectroscopy.

  2. Rapid Detection and Identification of miRNAs by Surface-Enhanced Raman Spectroscopy Using Hollow Au Nanoflowers Substrates

    Directory of Open Access Journals (Sweden)

    Xiaowei Cao

    2017-01-01

    Full Text Available MicroRNAs (miRNAs are recognized as regulators of gene expression during the biological processes of cells as well as biomarkers of many diseases. Development of rapid and sensitive miRNA profiling methods is crucial for evaluating the pattern of miRNA expression related to normal and diseased states. This work presents a novel hollow Au nanoflowers (HAuNFs substrate for rapid detection and identification of miRNAs by surface-enhanced Raman scattering (SERS spectroscopy. We synthesized the HAuNFs by a seed-mediated growth approach. Then, HAuNFs substrates were fabricated by depositing HAuNFs onto the surfaces of (3-aminopropyltriethoxysilane- (APTES- functionalized ITO glass. The result demonstrated that HAuNFs substrates had very good reproducibility, homogeneous SERS activity, and high SERS effect. The substrates enabled us to successfully obtain the SERS spectra of miR-10a-5p, miR-125a-5p, and miR-196a-5p. The difference spectra among the three kinds of miRNAs were studied to better interpret the spectral differences and identify miRNA expression patterns with high accuracy. The principal component analysis (PCA of the SERS spectra was used to distinguish among the three kinds of miRNAs. Considering its time efficiency, being label-free, and its sensitivity, the SERS based on HAuNFs substrates is very promising for miRNA research and plays an important role in early disease detection and prevention.

  3. Sputtered gold-coated ITO nanowires by alternating depositions from Indium and ITO targets for application in surface-enhanced Raman scattering

    Science.gov (United States)

    Setti, Grazielle O.; Mamián-López, Mónica B.; Pessoa, Priscila R.; Poppi, Ronei J.; Joanni, Ednan; Jesus, Dosil P.

    2015-08-01

    Indium Tin oxide (ITO) nanowires were deposited by RF sputtering over oxidized silicon using ITO and Indium targets. The nanowires grew on the substrate with a catalyst layer of Indium by the vapor-liquid-solid (VLS) mechanism. Modifications in the deposition conditions affected the morphology and dimensions of the nanowires. The samples, after being covered with gold, were evaluated as surface-enhanced Raman scattering (SERS) substrates for detection of dye solutions and very good intensifications of the Raman signal were obtained. The SERS performance of the samples was also compared to that of a commercial SERS substrate and the results achieved were similar. To the best of our knowledge, this is the first time ITO nanowires were grown by the sputtering technique using oxide and metal targets.

  4. A simple way to synthesize large-scale Cu2O/Ag nanoflowers for ultrasensitive surface-enhanced Raman scattering detection

    Science.gov (United States)

    Zou, Junyan; Song, Weijia; Xie, Weiguang; Huang, Bo; Yang, Huidong; Luo, Zhi

    2018-03-01

    Here, we report a simple strategy to prepare highly sensitive surface-enhanced Raman spectroscopy (SERS) substrates based on Ag decorated Cu2O nanoparticles by combining two common techniques, viz, thermal oxidation growth of Cu2O nanoparticles and magnetron sputtering fabrication of a Ag nanoparticle film. Methylene blue is used as the Raman analyte for the SERS study, and the substrates fabricated under optimized conditions have very good sensitivity (analytical enhancement factor ˜108), stability, and reproducibility. A linear dependence of the SERS intensities with the concentration was obtained with an R 2 value >0.9. These excellent properties indicate that the substrate has great potential in the detection of biological and chemical substances.

  5. Diazonium Salt-Based Surface-Enhanced Raman Spectroscopy Nanosensor: Detection and Quantitation of Aromatic Hydrocarbons in Water Samples.

    Science.gov (United States)

    Tijunelyte, Inga; Betelu, Stéphanie; Moreau, Jonathan; Ignatiadis, Ioannis; Berho, Catherine; Lidgi-Guigui, Nathalie; Guénin, Erwann; David, Catalina; Vergnole, Sébastien; Rinnert, Emmanuel; Lamy de la Chapelle, Marc

    2017-05-24

    Here, we present a surface-enhanced Raman spectroscopy (SERS) nanosensor for environmental pollutants detection. This study was conducted on three polycyclic aromatic hydrocarbons (PAHs): benzo[a]pyrene (BaP), fluoranthene (FL), and naphthalene (NAP). SERS substrates were chemically functionalized using 4-dodecyl benzenediazonium-tetrafluoroborate and SERS analyses were conducted to detect the pollutants alone and in mixtures. Compounds were first measured in water-methanol (9:1 volume ratio) samples. Investigation on solutions containing concentrations ranging from 10 -6 g L -1 to 10 -3 g L -1 provided data to plot calibration curves and to determine the performance of the sensor. The calculated limit of detection (LOD) was 0.026 mg L -1 (10 -7 mol L -1 ) for BaP, 0.064 mg L -1 (3.2 × 10 -7 mol L -1 ) for FL, and 3.94 mg L -1 (3.1 × 10 -5 mol L -1 ) for NAP, respectively. The correlation between the calculated LOD values and the octanol-water partition coefficient (K ow ) of the investigated PAHs suggests that the developed nanosensor is particularly suitable for detecting highly non-polar PAH compounds. Measurements conducted on a mixture of the three analytes (i) demonstrated the ability of the developed technology to detect and identify the three analytes in the mixture; (ii) provided the exact quantitation of pollutants in a mixture. Moreover, we optimized the surface regeneration step for the nanosensor.

  6. In situ surface-enhanced Raman scattering spectroscopy exploring molecular changes of drug-treated cancer cell nucleus.

    Science.gov (United States)

    Liang, Lijia; Huang, Dianshuai; Wang, Hailong; Li, Haibo; Xu, Shuping; Chang, Yixin; Li, Hui; Yang, Ying-Wei; Liang, Chongyang; Xu, Weiqing

    2015-02-17

    Investigating the molecular changes of cancer cell nucleus with drugs treatment is crucial for the design of new anticancer drugs, the development of novel diagnostic strategies, and the advancement of cancer therapy efficiency. In order to better understand the action effects of drugs, accurate location and in situ acquisition of the molecular information of the cell nuclei are necessary. In this work, we report a microspectroscopic technique called dark-field and fluorescence coimaging assisted surface-enhanced Raman scattering (SERS) spectroscopy, combined with nuclear targeting nanoprobes, to in situ study Soma Gastric Cancer (SGC-7901) cell nuclei treated with two model drugs, e.g., DNA binder (Hoechst33342) and anticancer drug (doxorubicin, Dox) via spectral analysis at the molecular level. Nuclear targeting nanoprobes with an assembly structure of thiol-modified polyethylene glycol polymers (PEG) and nuclear localizing signal peptides (NLS) around gold nanorods (AuNRs) were prepared to achieve the amplified SERS signals of biomolecules in the cell nuclei. With the assistance of dark field/fluorescence imaging with simultaneous location, in situ SERS spectra in one cell nucleus were measured and analyzed to disclose the effects of Hoechst33342 and Dox on main biomolecules in the cell nuclei. The experimental results show that this method possesses great potential to investigate the targets of new anticancer drugs and the real-time monitoring of the dynamic changes of cells caused by exogenous molecules.

  7. Label-free aptamer-based sensor for specific detection of malathion residues by surface-enhanced Raman scattering

    Science.gov (United States)

    Nie, Yonghui; Teng, Yuanjie; Li, Pan; Liu, Wenhan; Shi, Qianwei; Zhang, Yuchao

    2018-02-01

    A novel label-free aptamer surface-enhanced Raman scattering (SERS) sensor for trace malathion residue detection was proposed. In this process, the binding of malathion molecule with aptamer is identified directly. The silver nanoparticles modified with positively charged spermine served as enhancing and capture reagents for the negatively charged aptamer. Then, the silver nanoparticles modified by aptamer were used to specifically capture the malathion. The SERS background spectra of spermine, aptamer, and malathion were recorded and distinguished with the spectrum of malathion-aptamer. To enhance the characteristic peak signal of malathion captured by the aptamer, the aggregate reagents (NaCl, KCl, MgCl2) were compared and selected. The selectivity of this method was verified in the mixed-pesticide standard solution, which included malathion, phosmet, chlorpyrifos-methyl, and fethion. Results show that malathion can be specifically identified when the mixed-pesticide interferences existed. The standard curve was established, presenting a good linear range of 5 × 10- 7 to 1 × 10- 5 mol·L- 1. The spiked experiments for tap water show good recoveries from 87.4% to 110.5% with a relative standard deviation of less than 4.22%. Therefore, the proposed label-free aptamer SERS sensor is convenient, specifically detects trace malathion residues, and can be applied for qualitative and quantitative analysis of other pesticides.

  8. Use of a fractal-like gold nanostructure in surface-enhanced raman spectroscopy for detection of selected food contaminants.

    Science.gov (United States)

    He, Lili; Kim, Nam-Jung; Li, Hao; Hu, Zhiqiang; Lin, Mengshi

    2008-11-12

    The safety of imported seafood products because of the contamination of prohibited substances, including crystal violet (CV) and malachite green (MG), raised a great deal of concern in the United States. In this study, a fractal-like gold nanostructure was developed through a self-assembly process and the feasibility of using surface-enhanced Raman spectroscopy (SERS) coupled with this nanostructure for detection of CV, MG, and their mixture (1:1) was explored. SERS was capable of characterizing and differentiating CV, MG, and their mixture on fractal-like gold nanostructures quickly and accurately. The enhancement factor of the gold nanostructures could reach an impressive level of approximately 4 x 10(7), and the lowest detectable concentration for the dye molecules was at approximately 0.2 ppb level. These results indicate that SERS coupled with fractal-like gold nanostructures holds a great potential as a rapid and ultra-sensitive method for detecting trace amounts of prohibited substances in contaminated food samples.

  9. Rapid and Quantitative Determination of S-Adenosyl-L-Methionine in the Fermentation Process by Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Hairui Ren

    2016-01-01

    Full Text Available Concentrations of S-Adenosyl-L-Methionine (SAM in aqueous solution and fermentation liquids were quantitatively determined by surface-enhanced Raman scattering (SERS and verified by high-pressure liquid chromatography (HPLC. The Ag nanoparticle/silicon nanowire array substrate was fabricated and employed as an active SERS substrate to indirectly measure the SAM concentration. The linear relationship between the integrated intensity of peak centered at ~2920 cm−1 in SERS spectra and the SAM concentration was established, and the limit of detections of SAM concentrations was analyzed to be ~0.1 g/L. The concentration of SAM in real solution could be predicted by the linear relationship and verified by the HPLC detection method. The relative deviations (δ of the predicted SAM concentration are less than 13% and the correlation coefficient is 0.9998. Rolling-Circle Filter was utilized to subtract fluorescence background and the optimal results were obtained when the radius of the analyzing circle is 650 cm−1.

  10. An ordered array of hierarchical spheres for surface-enhanced Raman scattering detection of traces of pesticide

    Science.gov (United States)

    Hu, Xiaoye; Zheng, Peng; Meng, Guowen; Huang, Qing; Zhu, Chuhong; Han, Fangming; Huang, Zhulin; Li, Zhongbo; Wang, Zhaoming; Wu, Nianqiang

    2016-09-01

    An ordered array of hierarchically-structured core-nanosphere@space-layer@shell-nanoparticles has been fabricated for surface-enhanced Raman scattering (SERS) detection. To fabricate this hierarchically-structured chip, a long-range ordered array of Au/Ag-nanospheres is first patterned in the nano-bowls on the planar surface of ordered nanoporous anodic titanium oxide template. A ultra-thin alumina middle space-layer is then conformally coated on the Au/Ag-nanospheres, and Ag-nanoparticles are finally deposited on the surface of the alumina space-layer to form an ordered array of Au/Ag-nanosphere@Al2O3-layer@Ag-nanoparticles. Finite-difference time-domain simulation shows that SERS hot spots are created between the neighboring Ag-nanoparticles. The ordered array of hierarchical nanostructures is used as the SERS-substrate for a trial detection of methyl parathion (a pesticide) in water and a limit of detection of 1 nM is reached, indicating its promising potential in rapid monitoring of organic pollutants in aquatic environment.

  11. A facile precursor route to highly loaded metal/ceramic nanofibers as a robust surface-enhanced Raman template

    Science.gov (United States)

    Park, Jay Hoon; Joo, Yong Lak

    2017-09-01

    We report silver (Ag)/ceramic nanofibers with highly robust and sensitive optical sensory capabilities that can withstand harsh conditions. These nanofibers are fabricated by first electrospinning solutions of poly vinyl alcohol (PVA) and metal precursor polymers, followed by subsequent series of heat treatment. The reported fabrication method demonstrate the effects of (i) the location of Ag crystals, (ii) crystal size and shape, and (iii) constituents of the ceramic matrix as surface-enhanced Raman spectroscopy (SERS) templates with 10-6 M 4-mercaptobenzoic acid (4-MBA). Notably, these silver/ceramic nanofibers preserved most of their highly sensitive localized surface plasmon resonance (LSPR) even under high temperature of 400 °C, in contrast to preformed Ag nanoparticles (NPs) in PVA nanofibers which lost most of its optical property presumably due to (i) Ag oxidation and (ii) loss of the matrix material. Among the ceramic substrates of ZrO2, Al2O3, and ZnO with silver crystals, we discovered that the ZnO substrate showed the most consistent and the strongest signal strength owing to the synergistic chemical and optical properties of the ZnO substrate. Moreover, the pure Ag nanofiber proved to be the best heat-resistant SERS template, owing to its (i) anisotropic morphology and (ii) thicker diameter when compared with other conventional Ag nanomaterials. These results demonstrated simple yet highly controllable fabrication of robust SERS templates, with potential applications in a catalytic sensory which is often exposed to harsh conditions.

  12. Classification of bacterial samples as negative or positive for a UTI and antibiogram using surface enhanced Raman spectroscopy

    Science.gov (United States)

    Kastanos, Evdokia; Hadjigeorgiou, Katerina; Kyriakides, Alexandros; Pitris, Costas

    2011-03-01

    Urinary tract infection (UTI) diagnosis requires an overnight culture to identify a sample as positive or negative for a UTI. Additional cultures are required to identify the pathogen responsible for the infection and to test its sensitivity to antibiotics. A rise in ineffective treatments, chronic infections, rising health care costs and antibiotic resistance are some of the consequences of this prolonged waiting period of UTI diagnosis. In this work, Surface Enhanced Raman Spectroscopy (SERS) is used for classifying bacterial samples as positive or negative for UTI. SERS spectra of serial dilutions of E.coli bacteria, isolated from a urine culture, were classified as positive (105-108 cells/ml) or negative (103-104 cells/ml) for UTI after mixing samples with gold nanoparticles. A leave-one-out cross validation was performed using the first two principal components resulting in the correct classification of 82% of all samples. Sensitivity of classification was 88% and specificity was 67%. Antibiotic sensitivity testing was also done using SERS spectra of various species of gram negative bacteria collected 4 hours after exposure to antibiotics. Spectral analysis revealed clear separation between the spectra of samples exposed to ciprofloxacin (sensitive) and amoxicillin (resistant). This study can become the basis for identifying urine samples as positive or negative for a UTI and determining their antibiogram without requiring an overnight culture.

  13. Surface-enhanced Raman scattering based nonfluorescent probe for multiplex DNA detection.

    Science.gov (United States)

    Sun, Lan; Yu, Chenxu; Irudayaraj, Joseph

    2007-06-01

    To provide rapid and accurate detection of DNA markers in a straightforward, inexpensive, and multiplex format, an alternative surface-enhanced Raman scattering based probe was designed and fabricated to covalently attach both DNA probing sequence and nonfluorescent Raman tags to the surface of gold nanoparticles (DNA-AuP-RTag). The intensity of Raman signal of the probes could be controlled through the surface coverage of the nonfluorescent Raman tags (RTags). Detection sensitivity of these probes could be optimized by fine-tuning the amount of DNA molecules and RTags on the probes. Long-term stability of the DNA-AuP-RTag probes was found to be good (over 3 months). Excellent multiplexing capability of the DNA-AuP-RTag scheme was demonstrated by simultaneous identification of up to eight probes in a mixture. Detection of hybridization of single-stranded DNA to its complementary targets was successfully accomplished with a long-term goal to use nonfluorescent RTags in a Raman-based DNA microarray platform.

  14. NIR–FT Raman, FT–IR and surface-enhanced Raman scattering ...

    Indian Academy of Sciences (India)

    Administrator

    Single crystals of (S)-phenylsuccinic acid (SPSA) were grown by the slow evaporation tech- nique and vibrational ... the shift of Raman frequencies, enhancing or weak- ening of .... Harmonic vibrational wave numbers were cal- culated using ...

  15. In situ surface enhanced resonance Raman scattering analysis of a reactive dye covalently bound to cotton.

    Science.gov (United States)

    White, P C; Munro, C H; Smith, W E

    1996-06-01

    An in situ surface enhanced resonance Raman scattering (SERRS) procedure is described for the analysis of a reactive dye covalently bound to a single strand of a cotton fibre. This procedure can be completed in 5 h, whereas an alternative enzyme digestion method takes approximately 21 h. These two fibre preparation methods give similar spectra from picogram quantities of dye present on a 2-5 mm length of fibre. The in situ nature of the analysis and the small sample size make this method particularly suitable for forensic applications.

  16. Recent strategies toward microfluidic-based surface-enhanced Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Týčová, Anna; Přikryl, Jan; Foret, František

    2017-01-01

    Roč. 38, č. 16 (2017), s. 1977-1987 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GBP206/12/G014 Grant - others:AV ČR(CZ) MSM200311601 Program:Program na podporu mezinárodní spolupráce začínajících výzkumných pracovníků Institutional support: RVO:68081715 Keywords : microfluidics * nanoparticles * separation * Surface-enhanced Raman spectroscopy Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.744, year: 2016

  17. Rapid identification of bacterial resistance to Ciprofloxacin using surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Kastanos, Evdokia; Hadjigeorgiou, Katerina; Pitris, Costas

    2014-02-01

    Due to its effectiveness and broad coverage, Ciprofloxacin is the fifth most prescribed antibiotic in the US. As current methods of infection diagnosis and antibiotic sensitivity testing (i.e. an antibiogram) are very time consuming, physicians prescribe ciprofloxacin before obtaining antibiogram results. In order to avoid increasing resistance to the antibiotic, a method was developed to provide both a rapid diagnosis and the sensitivity to the antibiotic. Using Surface Enhanced Raman Spectroscopy, an antibiogram was obtained after exposing the bacteria to Ciprofloxacin for just two hours. Spectral analysis revealed clear separation between sensitive and resistant bacteria and could also offer some inside into the mechanisms of resistance.

  18. [In situ thin layer chromatography-fourier transform-surface-enhanced Raman spectrum study on ingredients of berberine].

    Science.gov (United States)

    Wang, Yuan; Guo, Zhan-sheng; Wang, Ying-feng; Wang, Song-ying; Ren, Gui-fen; Zhang, Xiang-lan; Han, Xiu-lan

    2002-10-01

    Surface Enhanced Raman Scattering (SERS) combined with Thin Layer Chromatography (TLC) has been used for studying characteristic spectrum of molecules in situ in micrograms samples. There are very few report for applying the SERS-TCL method in the study of the effective ingredients of Chinese traditional herbs. Coptis Chinensis France is an often-used clinic Chinese traditional medicine. Its main effective components include berberine and so on, which have antibiotic very wide and also have curative effect on improving the functions of heart vascular cycles. Therefore the concentrations of berberine are very important for the quality control of the medicine. In this work, the ethanol extract of Coptis Chinensis France was first separated by TLC, the SERS was then measure directly after dropping silver gel on the separated spots. The method can be used for the finger print analysis of the berberine. 3 microL of alcohol extract of Coptis Chinensis France with total alkaloids concentration of 1.0 mg.mL was placed on silicon GF254 TLC plate. The sample was separated by developing solvent of n bulanol-Acitic acid-H2O (7:2:1 V/V). The positions of berberine in the sample were confirmed by the standard alkaloid solutions. The Rf values for berberine are 0.29. The silver gel was used as surface enhanced substrate and placed on the separated berberine spots. FT-SERS was measured directly by a Nicolet FT-Raman 910 spectrometer. Berberine belong to isoquinoline alkaloids. His structure can be found in reference. The date of spectrum of berberine can be seen that the band at 1,396 cm-1 due to Ar-OCH3 deformation vibrations was greatly enhanced, indicating that the molecule was absorbed on silver gel strongly through lone-pair electron in Ar-OCH3. The ring stretching mode occurring around 1,548 cm-1 represents isoquinoline ring in the molecule. The band at 727 cm-1 due to CH (ring) deformation vibrations was also enhanced.

  19. Surface-enhanced resonance Raman scattering spectroscopy of single R6G molecules

    Institute of Scientific and Technical Information of China (English)

    Zhou Zeng-Hui; Liu Li; Wang Gui-Ying; Xu Zhi-Zhan

    2006-01-01

    Surface-enhanced resonance Raman scattering (SERRS) of Rhodamine 6G (R6G) adsorbed on colloidal silver clusters has been studied. Based on the great enhancement of the Raman signal and the quench of the fluorescence, the SERRS spectra of R6G were recorded for the samples of dye colloidal solution with different concentrations. Spectral inhomogeneity behaviours from single molecules in the dried sample films were observed with complementary evidences, such as spectral polarization, spectral diffusion, intensity fluctuation of vibrational lines and even "breathing" of the molecules. Sequential spectra observed from a liquid sample with an average of 0.3 dye molecules in the probed volume exhibited the expected Poisson distribution for actually measuring 0, 1 or 2 molecules. Difference between the SERRS spectra of R6G excited by linearly and circularly polarized light were experimentally measured.

  20. Surface enhanced Raman spectroscopy in the presence of hydroquinone assisted by gold nanorods

    Science.gov (United States)

    Cabrera Alonso, R.; Guevara, Edgar; Ramírez Elías, Miguel G.; González, Francisco Javier

    2017-08-01

    Hydroquinone is an aromatic organic molecule found in skin lightening creams for dermatological melasma treatment. The absorbance of this substance at high concentrations can be the cause of skin diseases. Nowadays most of the methods used for medical diagnosis for dermatological diseases consist on invasive methods such as biopsies. In recent years non-invasive techniques based on the properties of light and the interaction with biological samples have come to a new way for medical diagnosis. By means of Raman spectroscopy is of great interest the detection of hydroquinone for future medical applications. Due to the low Raman signal that the biological samples present, it is necessary to make use of nanotechnology. Making biosensors (SERS substrates) that allow us to amplify the electromagnetic field for the biological Raman signals.

  1. Quantitative and Label-Free Detection of Protein Kinase A Activity Based on Surface-Enhanced Raman Spectroscopy with Gold Nanostars.

    Science.gov (United States)

    He, Shuai; Kyaw, Yi Mon Ei; Tan, Eddie Khay Ming; Bekale, Laurent; Kang, Malvin Wei Cherng; Kim, Susana Soo-Yeon; Tan, Ivan; Lam, Kong-Peng; Kah, James Chen Yong

    2018-04-26

    The activity of extracellular protein kinase A (PKA) is known to be a biomarker for cancer. However, conventional PKA assays based on colorimetric, radioactive, and fluorometric techniques suffer from intensive labeling-related preparations, background interference, photobleaching, and safety concerns. While surface-enhanced Raman spectroscopy (SERS)-based assays have been developed for various enzymes to address these limitations, their use in probing PKA activity is limited due to subtle changes in the Raman spectrum with phosphorylation. Here, we developed a robust colloidal SERS-based scheme for label-free quantitative measurement of PKA activity using gold nanostars (AuNS) as a SERS substrate functionalized with bovine serum albumin (BSA)-kemptide (Kem) bioconjugate (AuNS-BSA-Kem), where BSA conferred colloidal stability and Kem is a high-affinity peptide substrate for PKA. By performing principle component analysis (PCA) on the SERS spectrum, we identified two Raman peaks at 725 and 1395 cm -1 , whose ratiometric intensity change provided a quantitative measure of Kem phosphorylation by PKA in vitro and allowed us to distinguish MDA-MB-231 and MCF-7 breast cancer cells known to overexpress extracellular PKA catalytic subunits from noncancerous human umbilical vein endothelial cells (HUVEC) based on their PKA activity in cell culture supernatant. The outcome demonstrated potential application of AuNS-BSA-Kem as a SERS probe for cancer screening based on PKA activity.

  2. Surface-enhanced Raman scattering spectra revealing the inter-cultivar differences for Chinese ornamental Flos Chrysanthemum: a new promising method for plant taxonomy

    Directory of Open Access Journals (Sweden)

    Heng Zhang

    2017-10-01

    Full Text Available Abstract Background Flos Chrysanthemi, as a part of Chinese culture for a long history, is valuable for not only environmental decoration but also the medicine and food additive. Due to their voluminously various breeds and extensive distributions worldwide, it is burdensome to make recognition and classification among numerous cultivars with conventional methods which still rest on the level of morphologic observation and description. As a fingerprint spectrum for parsing molecular information, surface-enhanced Raman scattering (SERS could be a suitable candidate technique to characterize and distinguish the inter-cultivar differences at molecular level. Results SERS spectra were used to analyze the inter-cultivar differences among 26 cultivars of Chinese ornamental Flos Chrysanthemum. The characteristic peaks distribution patterns were abstracted from SERS spectra and varied from cultivars to cultivars. For the bands distributed in the pattern map, the similarities in general showed their commonality while in the finer scales, the deviations and especially the particular bands owned by few cultivars revealed their individualities. Since the Raman peaks could characterize specific chemical components, those diversity of patterns could indicate the inter-cultivar differences at the chemical level in fact. Conclusion In this paper, SERS technique is feasible for distinguishing the inter-cultivar differences among Flos Chrysanthemum. The Raman spectral library was built with SERS characteristic peak distribution patterns. A new method was proposed for Flos Chrysanthemum recognition and taxonomy.

  3. A new route to produce efficient surface-enhanced Raman spectroscopy substrates: Gold-decorated CdSe nanowires

    KAUST Repository

    Das, Gobind

    2013-04-13

    Surface-enhanced Raman spectroscopy is a popular tool for the detection of extremely small quantities of target molecules. Au nanoparticles have been very successful in this respect due to local enhancement of the light intensity caused by their plasmon resonance. Furthermore, Au nanoparticles are biocompatible, and target substances can be easily attached to their surface. Here, we demonstrate that Au-decorated CdSe nanowires when employed as SERS substrates lead to an enhancement as large as 105 with respect to the flat Au surfaces. In the case of hybrid metal-CdSe nanowires, the Au nucleates preferably on lattice defects at the lateral facets of the nanowires, which leads to a homogeneous distribution of Au nanoparticles on the nanowire, and to an efficient quenching of the nanowire luminescence. Moreover, the size of the Au nanoparticles can be well controlled via the AuCl3 concentration in the fabrication process. We demonstrate the effectiveness of our SERS substrates with two target substances, namely, cresyl-violet and rhodamine-6G. Au-decorated nanowires can be easily fabricated in large quantities at low cost by wet-chemical synthesis. Furthermore, their deposition onto various substrates, as well as the functionalization of these wires with the target substances, is as straightforward as with the traditional markers. © 2013 Springer Science+Business Media Dordrecht.

  4. Refractive index sensing and surface-enhanced Raman spectroscopy using silver–gold layered bimetallic plasmonic crystals

    Directory of Open Access Journals (Sweden)

    Somi Kang

    2017-11-01

    Full Text Available Herein we describe the fabrication and characterization of Ag and Au bimetallic plasmonic crystals as a system that exhibits improved capabilities for quantitative, bulk refractive index (RI sensing and surface-enhanced Raman spectroscopy (SERS as compared to monometallic plasmonic crystals of similar form. The sensing optics, which are bimetallic plasmonic crystals consisting of sequential nanoscale layers of Ag coated by Au, are chemically stable and useful for quantitative, multispectral, refractive index and spectroscopic chemical sensing. Compared to previously reported homometallic devices, the results presented herein illustrate improvements in performance that stem from the distinctive plasmonic features and strong localized electric fields produced by the Ag and Au layers, which are optimized in terms of metal thickness and geometric features. Finite-difference time-domain (FDTD simulations theoretically verify the nature of the multimode plasmonic resonances generated by the devices and allow for a better understanding of the enhancements in multispectral refractive index and SERS-based sensing. Taken together, these results demonstrate a robust and potentially useful new platform for chemical/spectroscopic sensing.

  5. A new route to produce efficient surface-enhanced Raman spectroscopy substrates: Gold-decorated CdSe nanowires

    KAUST Repository

    Das, Gobind; Chakraborty, Ritun; Gopalakrishnan, Anisha; Baranov, Dmitry; Di Fabrizio, Enzo M.; Krahne, Roman

    2013-01-01

    Surface-enhanced Raman spectroscopy is a popular tool for the detection of extremely small quantities of target molecules. Au nanoparticles have been very successful in this respect due to local enhancement of the light intensity caused by their plasmon resonance. Furthermore, Au nanoparticles are biocompatible, and target substances can be easily attached to their surface. Here, we demonstrate that Au-decorated CdSe nanowires when employed as SERS substrates lead to an enhancement as large as 105 with respect to the flat Au surfaces. In the case of hybrid metal-CdSe nanowires, the Au nucleates preferably on lattice defects at the lateral facets of the nanowires, which leads to a homogeneous distribution of Au nanoparticles on the nanowire, and to an efficient quenching of the nanowire luminescence. Moreover, the size of the Au nanoparticles can be well controlled via the AuCl3 concentration in the fabrication process. We demonstrate the effectiveness of our SERS substrates with two target substances, namely, cresyl-violet and rhodamine-6G. Au-decorated nanowires can be easily fabricated in large quantities at low cost by wet-chemical synthesis. Furthermore, their deposition onto various substrates, as well as the functionalization of these wires with the target substances, is as straightforward as with the traditional markers. © 2013 Springer Science+Business Media Dordrecht.

  6. A new route to produce efficient surface-enhanced Raman spectroscopy substrates: gold-decorated CdSe nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Das, Gobind; Chakraborty, Ritun; Gopalakrishnan, Anisha [Italian Institute of Technology, Nanostructure Division (Italy); Baranov, Dmitry [University of Colorado at Boulder, Department of Chemistry and Biochemistry (United States); Di Fabrizio, Enzo [King Abdullah University Science and Technology (KAUST), PSE and BESE Divisions (Saudi Arabia); Krahne, Roman, E-mail: roman.krahne@iit.it [Italian Institute of Technology, Nanostructure Division (Italy)

    2013-05-15

    Surface-enhanced Raman spectroscopy is a popular tool for the detection of extremely small quantities of target molecules. Au nanoparticles have been very successful in this respect due to local enhancement of the light intensity caused by their plasmon resonance. Furthermore, Au nanoparticles are biocompatible, and target substances can be easily attached to their surface. Here, we demonstrate that Au-decorated CdSe nanowires when employed as SERS substrates lead to an enhancement as large as 10{sup 5} with respect to the flat Au surfaces. In the case of hybrid metal-CdSe nanowires, the Au nucleates preferably on lattice defects at the lateral facets of the nanowires, which leads to a homogeneous distribution of Au nanoparticles on the nanowire, and to an efficient quenching of the nanowire luminescence. Moreover, the size of the Au nanoparticles can be well controlled via the AuCl{sub 3} concentration in the fabrication process. We demonstrate the effectiveness of our SERS substrates with two target substances, namely, cresyl-violet and rhodamine-6G. Au-decorated nanowires can be easily fabricated in large quantities at low cost by wet-chemical synthesis. Furthermore, their deposition onto various substrates, as well as the functionalization of these wires with the target substances, is as straightforward as with the traditional markers.

  7. Large-scale, rapid synthesis and application in surface-enhanced Raman spectroscopy of sub-micrometer polyhedral gold nanocrystals

    International Nuclear Information System (INIS)

    Guo Shaojun; Wang Yuling; Wang Erkang

    2007-01-01

    Macromolecule-protected sub-micrometer polyhedral gold nanocrystals have been facilely prepared by heating an aqueous solution containing poly (N-vinyl-2-pyrrolidone) (PVP) and HAuCl 4 without adding other reducing agents. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), ultraviolet-visible-near-infrared spectroscopy (UV-vis-NIR), and x-ray diffraction (XRD) were employed to characterize the obtained polyhedral gold nanocrystals. It is found that the 10:1 molar ratio of PVP to gold is a key factor for obtaining quasi-monodisperse polyhedral gold nanocrystals. Furthermore, the application of polyhedral gold nanocrystals in surface-enhanced Raman scattering (SERS) was investigated by using 4-aminothiophenol (4-ATP) as a probe molecule. The results indicated that the sub-micrometer polyhedral gold nanocrystals modified on the ITO substrate exhibited higher SERS activity compared to the traditional gold nanoparticle modified film. The enhancement factor (EF) on polyhedral gold nanocrystals was about six times larger than that obtained on aggregated gold nanoparticles (∼25 nm)

  8. Surface-enhanced Raman scattering detection of ammonium nitrate samples fabricated using drop-on-demand inkjet technology.

    Science.gov (United States)

    Farrell, Mikella E; Holthoff, Ellen L; Pellegrino, Paul M

    2014-01-01

    The United States Army and the first responder community are increasingly focusing efforts on energetic materials detection and identification. Main hazards encountered in theater include homemade explosives and improvised explosive devices, in part fabricated from simple components like ammonium nitrate (AN). In order to accurately detect and identify these unknowns (energetic or benign), fielded detection systems must be accurately trained using well-understood universal testing substrates. These training substrates must contain target species at known concentrations and recognized polymorphic phases. Ammonium nitrate is an explosive precursor material that demonstrates several different polymorphic phases dependent upon how the material is deposited onto testing substrates. In this paper, known concentrations of AN were uniformly deposited onto commercially available surface-enhanced Raman scattering (SERS) substrates using a drop-on-demand inkjet printing system. The phase changes observed after the deposition of AN under several solvent conditions are investigated. Characteristics of the collected SERS spectra of AN are discussed, and it is demonstrated that an understanding of the exact nature of the AN samples deposited will result in an increased ability to accurately and reliably "train" hazard detection systems.

  9. Graphene–Gold Nanoparticles Hybrid—Synthesis, Functionalization, and Application in a Electrochemical and Surface-Enhanced Raman Scattering Biosensor

    Directory of Open Access Journals (Sweden)

    Ibrahim Khalil

    2016-05-01

    Full Text Available Graphene is a single-atom-thick two-dimensional carbon nanosheet with outstanding chemical, electrical, material, optical, and physical properties due to its large surface area, high electron mobility, thermal conductivity, and stability. These extraordinary features of graphene make it a key component for different applications in the biosensing and imaging arena. However, the use of graphene alone is correlated with certain limitations, such as irreversible self-agglomerations, less colloidal stability, poor reliability/repeatability, and non-specificity. The addition of gold nanostructures (AuNS with graphene produces the graphene–AuNS hybrid nanocomposite which minimizes the limitations as well as providing additional synergistic properties, that is, higher effective surface area, catalytic activity, electrical conductivity, water solubility, and biocompatibility. This review focuses on the fundamental features of graphene, the multidimensional synthesis, and multipurpose applications of graphene–Au nanocomposites. The paper highlights the graphene–gold nanoparticle (AuNP as the platform substrate for the fabrication of electrochemical and surface-enhanced Raman scattering (SERS-based biosensors in diverse applications as well as SERS-directed bio-imaging, which is considered as an emerging sector for monitoring stem cell differentiation, and detection and treatment of cancer.

  10. Surface-enhanced Raman scattering of self-assembled thiol monolayers and supported lipid membranes on thin anodic porous alumina

    Directory of Open Access Journals (Sweden)

    Marco Salerno

    2017-01-01

    Full Text Available Thin anodic porous alumina (tAPA was fabricated from a 500 nm thick aluminum (Al layer coated on silicon wafers, through single-step anodization performed in a Teflon electrochemical cell in 0.4 M aqueous phosphoric acid at 110 V. Post-fabrication etching in the same acid allowed obtaining tAPA surfaces with ≈160 nm pore diameter and ≈80 nm corresponding wall thickness to be prepared. The tAPA surfaces were made SERS-active by coating with a thin (≈25 nm gold (Au layer. The as obtained tAPA–Au substrates were incubated first with different thiols, namely mercaptobenzoic acid (MbA and aminothiol (AT, and then with phospholipid vesicles of different composition to form a supported lipid bilayer (SLB. At each step, the SERS substrate functionality was assessed, demonstrating acceptable enhancement (≥100×. The chemisorption of thiols during the first step and the formation of SLB from the vesicles during the second step, were independently monitored by using a quartz crystal microbalance with dissipation monitoring (QCM-D technique. The SLB membranes represent a simplified model system of the living cells membranes, which makes the successful observation of SERS on these films promising in view of the use of tAPA–Au substrates as a platform for the development of surface-enhanced Raman spectroscopy (SERS biosensors on living cells. In the future, these tAPA–Au-SLB substrates will be investigated also for drug delivery of bioactive agents from the APA pores.

  11. Self-assembled monolayers of bimetallic Au/Ag nanospheres with superior surface-enhanced Raman scattering activity for ultra-sensitive triphenylmethane dyes detection.

    Science.gov (United States)

    Tian, Yue; Zhang, Hua; Xu, Linlin; Chen, Ming; Chen, Feng

    2018-02-15

    The bimetallic Au/Ag self-assembled monolayers (SAMs) were constructed by using mono-dispersed Au/Ag nanospheres (Ag: 4.07%-34.53%) via evaporation-based assembly strategy. The composition-dependent surface-enhanced Raman scattering (SERS) spectroscopy revealed that the Au/Ag (Ag: 16.83%) SAMs provide maximized activity for triphenylmethane dyes detection. With the inter-metallic synergy, the optimized SAMs enable the Raman intensity of crystal violet molecules to be about 223 times higher than that of monometallic Au SAMs. Moreover, the SERS signals with excellent uniformity (<5% variation) are sensitive down to 10 -13   M concentrations because of the optimal matching between bimetallic plasmon resonance and the incident laser wavelength.

  12. Facile synthesis of gold coated copper(II) hydroxide pine-needle-like micro/nanostructures for surface-enhanced Raman scattering

    Science.gov (United States)

    Long, Kailin; Du, Deyang; Luo, Xiaoguang; Zhao, Weiwei; Wu, Zhangting; Si, Lifang; Qiu, Teng

    2014-08-01

    This work reports a facile method to fabricate gold coated copper(II) hydroxide pine-needle-like micro/nanostructures for surface-enhanced Raman scattering (SERS) application. The effects of reaction parameters on the shape, size and surface morphology of the products are systematically investigated. The as-prepared 3D hierarchical structures have the advantage of a large surface area available for the formation of hot spots and the adsorption of target analytes, thus dramatically improving the Raman signals. The finite difference time domain calculations indicate that the pine-needle-like model pattern may demonstrate a high quality SERS property owing to the high density and abundant hot spot characteristic in closely spaced needle-like arms.

  13. High-Performance, Large Format Surfaces for Surface-Enhanced Raman Spectroscopy: Increasing the Accessibility of an Analytical Platform

    Science.gov (United States)

    Kanipe, Katherine Nicole

    Although surface-enhanced Raman spectroscopy (SERS) is a spectroscopic technique with unusually high sensitivity and molecular specificity, few practical analytical applications have been implemented that take advantage of its power. Based on what is understood about SERS from the experimental and theoretical research of the past forty years, we developed a few well-defined design principles on the basis of which a reliable and reproducibly manufacturable SERS-active substrate could be fabricated that is highly enhancing, highly uniform, stable, and based on a broad range of metals so that various chemical processes could be probed. Finally, we restricted ourselves to using only readily scalable fabrication techniques. The resulting SERS-active device was a metal over silica, two-dimensional nano-grating that was shown to produce enhancements of ˜107 when compared to a smooth surface of the same metal. This SERS substrate also shows unprecedented signal uniformity over square centimeters, and is fabricated using commonly-available foundry-based approaches exclusively. Initially, we explored the properties of a gold-coated substrates in which a first-order grating resonance due to long-range symmetry is augmented by a local resonance due to the individual core-shell grating elements. The SERS properties of such grating systems were systematically studied as a function of various structural parameters such as the grating pitch, the inter-element gap and the thickness of the metal layer. The most enhancing substrates were found to have a grating parameter with a radiative, rather than evanescent, first-order resonance; a sufficiently small gap between nearest neighbor grating elements to produce near-field interactions; and a gold layer whose thickness was larger than the electronic mean-free-path of the conduction electrons, so as to ensure a high conductivity for the metal layer to sustain strong surface plasmons. We applied these same architectural principles to

  14. Development of probes for bioanalytic applications of the surface-enhanced Raman scattering; Entwicklung neuer Sonden fuer bioanalytische Anwendungen der oberflaechenverstaerkten Raman-Streuung

    Energy Technology Data Exchange (ETDEWEB)

    Matschulat, Andrea Isabel

    2011-07-01

    Surface-enhanced Raman scattering (SERS) has been established as a versatile tool for probing and labeling in analytical applications, based on the vibrational spectra of samples as well as label molecules in the proximity of noble metal nanostructures. The aim of this work was the construction of novel SERS hybrid probes. The hybrid probes consisted of Au and Ag nanoparticles and reporter molecules, as well as a targeting unit. The concept for the SERS hybrid probe design was followed by experiments comprising characterization techniques such as UV/Vis-spectroscopy (UV/Vis), Transmission electron microscopy (TEM) and Dynamic Light Scattering (DLS), respectively. SERS experiments were performed for studying and optimizing the plasmonic properties of nanoparticles with respect to their enhancement capabilities. The SERS-probes had to meet following requirements: biocompatibility, stability in physiological media, and enhancement of Raman-signals from Raman reporter molecules enabling the identification of different probes even in a complex biological environment. Au and Ag nanoaggregates were found to be the most appropriate SERS substrates for the hybrid probe design. The utilization of Raman reporters enabled the identification of different SERS probes in multiplexing experiments. In particular, the multiplexing capability of ten various reporter molecules para-aminobenzenethiol, 2-naphthalenethiol, crystal violet, rhodamine (B) isothiocyanate, fluorescein isothiocyanate, 5,5'dithiobis(2-nitrobenzoic acid), para-mercaptobenzoic acid, acridine orange, safranine O und nile blue was studied using NIR-SERS excitation. As demonstrated by the results the reporters could be identified through their specific Raman signature even in the case of high structural similarity. Chemical separation analysis of the reporter signatures was performed in a trivariate approach, enabling the discrimination through an automated calculation of specific band ratios. The trivariate

  15. Surface-enhanced Raman spectroscopy of genomic DNA from in vitro grown tomato (Lycopersicon esculentum Mill.) cultivars before and after plant cryopreservation.

    Science.gov (United States)

    Muntean, Cristina M; Leopold, Nicolae; Tripon, Carmen; Coste, Ana; Halmagyi, Adela

    2015-06-05

    In this work the surface-enhanced Raman scattering (SERS) spectra of five genomic DNAs from non-cryopreserved control tomato plants (Lycopersicon esculentum Mill. cultivars Siriana, Darsirius, Kristin, Pontica and Capriciu) respectively, have been analyzed in the wavenumber range 400-1800 cm(-1). Structural changes induced in genomic DNAs upon cryopreservation were discussed in detail for four of the above mentioned tomato cultivars. The surface-enhanced Raman vibrational modes for each of these cases, spectroscopic band assignments and structural interpretations of genomic DNAs are reported. We have found, that DNA isolated from Siriana cultivar leaf tissues suffers the weakest structural changes upon cryogenic storage of tomato shoot apices. On the contrary, genomic DNA extracted from Pontica cultivar is the most responsive system to cryopreservation process. Particularly, both C2'-endo-anti and C3'-endo-anti conformations have been detected. As a general observation, the wavenumber range 1511-1652 cm(-1), being due to dA, dG and dT residues seems to be influenced by cryopreservation process. These changes could reflect unstacking of DNA bases. However, not significant structural changes of genomic DNAs from Siriana, Darsirius and Kristin have been found upon cryopreservation process of tomato cultivars. Based on this work, specific plant DNA-ligand interactions or accurate local structure of DNA in the proximity of a metallic surface, might be further investigated using surface-enhanced Raman spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Thermally generated metals for plasmonic coloring and surface-enhanced Raman sensing

    Science.gov (United States)

    Huang, Zhenping; Chen, Jian; Liu, Guiqiang; Wang, Yan; Liu, Yi; Tang, Li; Liu, Zhengqi

    2018-03-01

    Spectral coloring glass and its application on the surface-enhanced Raman scattering are demonstrated experimentally via a simple and moderate heat-treating of the top ultrathin gold film to create discrete nanoparticles, which can produce localized surface plasmon resonances and strong plasmonic near-field coupling effects. Ultrathin metal films with a wide range of thicknesses are investigated by different heat-treatment processes. The annealed metal films have been demonstrated with a series of spectral coloring responses. Moreover, the microscopy images of the metal film structures confirm the formation of distinct geometry features in these operation procedures. Densely packed nanoparticles are observed for the ultrathin metal film with the single-digit level of thickness. With increasing the film thickness over 10 nm, metallic clusters and porous morphologies can be obtained. Importantly, the metallic resonators can provide enhanced Raman scattering with the detection limit down to 10 - 7 molL - 1 of Rhodamine 6G molecules due to the excitation of plasmon resonances and strong near-field coupling effects. These features hold great potential for large-scale and low-cost production of colored glass and Raman substrate.

  17. Ultrasound-mediated method for rapid delivery of nano-particles into cells for intracellular surface-enhanced Raman spectroscopy and cancer cell screening

    International Nuclear Information System (INIS)

    Feng, Shangyuan; Li, Zhihua; Chen, Guannan; Huang, Shaohua; Huang, Zufang; Li, Yongzeng; Lin, Juqiang; Chen, Rong; Lin, Duo; Zeng, Haishan

    2015-01-01

    Surface-enhanced Raman spectroscopy (SERS) is a powerful technology for providing finger-printing information of cells. A big challenge has been the long time duration and inefficient uptake of metal nano-particles into living cells as substrate for SERS analysis. Herein, a simple method (based on ultrasound) for the rapid transfer of silver nanoparticles (NPs) into living cells for intracellular SERS spectroscopy was presented. In this study, the ultrasound-mediated method for NP delivery overcame the shortcoming of ‘passive uptake’, and achieved quick acquisition of reproducible SERS spectra from living human nasopharyngeal carcinoma cell lines (C666 and CNE1) and normal nasopharyngeal cell line (NP69). Tentative assignment of the Raman bands in the measured SERS spectra showed cancer cell specific biomolecular differences, including significantly lower DNA concentrations and higher protein concentrations in cancerous nasopharyngeal cells as compared to those of normal cells. Combined with PCA–LDA multivariate analysis, ultrasound-mediated cell SERS spectroscopy differentiated the cancerous cells from the normal nasopharyngeal cells with high diagnostic accuracy (98.7%), demonstrating great potential for high-throughput cancer cell screening applications. (paper)

  18. Sensitive and fast detection of fructose in complex media via symmetry breaking and signal amplification using surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Sun, Fang; Bai, Tao; Zhang, Lei; Ella-Menye, Jean-Rene; Liu, Sijun; Nowinski, Ann K; Jiang, Shaoyi; Yu, Qiuming

    2014-03-04

    A new strategy is proposed to sensitively and rapidly detect analytes with weak Raman signals in complex media using surface-enhanced Raman spectroscopy (SERS) via detecting the SERS signal changes of the immobilized probe molecules on SERS-active substrates upon binding of the analytes. In this work, 4-mercaptophenylboronic acid (4-MPBA) was selected as the probe molecule which was immobilized on the gold surface of a quasi-three-dimensional plasmonic nanostructure array (Q3D-PNA) SERS substrate to detect fructose. The molecule of 4-MPBA possesses three key functions: molecule recognition and reversible binding of the analyte via the boronic acid group, amplification of SERS signals by the phenyl group and thus shielding of the background noise of complex media, and immobilization on the surface of SERS-active substrates via the thiol group. Most importantly, the symmetry breaking of the 4-MPBA molecule upon fructose binding leads to the change of area ratio between totally symmetric 8a ring mode and nontotally symmetric 8b ring mode, which enables the detection. The detection curves were obtained in phosphate-buffered saline (PBS) and in undiluted artificial urine at clinically relevant concentrations, and the limit of detection of 0.05 mM was achieved.

  19. Rapid label-free identification of Klebsiella pneumoniae antibiotic resistant strains by the drop-coating deposition surface-enhanced Raman scattering method

    Science.gov (United States)

    Cheong, Youjin; Kim, Young Jin; Kang, Heeyoon; Choi, Samjin; Lee, Hee Joo

    2017-08-01

    Although many methodologies have been developed to identify unknown bacteria, bacterial identification in clinical microbiology remains a complex and time-consuming procedure. To address this problem, we developed a label-free method for rapidly identifying clinically relevant multilocus sequencing typing-verified quinolone-resistant Klebsiella pneumoniae strains. We also applied the method to identify three strains from colony samples, ATCC70063 (control), ST11 and ST15; these are the prevalent quinolone-resistant K. pneumoniae strains in East Asia. The colonies were identified using a drop-coating deposition surface-enhanced Raman scattering (DCD-SERS) procedure coupled with a multivariate statistical method. Our workflow exhibited an enhancement factor of 11.3 × 106 to Raman intensities, high reproducibility (relative standard deviation of 7.4%), and a sensitive limit of detection (100 pM rhodamine 6G), with a correlation coefficient of 0.98. All quinolone-resistant K. pneumoniae strains showed similar spectral Raman shifts (high correlations) regardless of bacterial type, as well as different Raman vibrational modes compared to Escherichia coli strains. Our proposed DCD-SERS procedure coupled with the multivariate statistics-based identification method achieved excellent performance in discriminating similar microbes from one another and also in subtyping of K. pneumoniae strains. Therefore, our label-free DCD-SERS procedure coupled with the computational decision supporting method is a potentially useful method for the rapid identification of clinically relevant K. pneumoniae strains.

  20. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering.

    Science.gov (United States)

    Zhu, Wenqi; Crozier, Kenneth B

    2014-10-14

    Plasmonic nanostructures enable light to be concentrated into nanoscale 'hotspots', wherein the intensity of light can be enhanced by orders of magnitude. This plasmonic enhancement significantly boosts the efficiency of nanoscale light-matter interactions, enabling unique linear and nonlinear optical applications. Large enhancements are often observed within narrow gaps or at sharp tips, as predicted by the classical electromagnetic theory. Only recently has it become appreciated that quantum mechanical effects could emerge as the feature size approaches atomic length-scale. Here we experimentally demonstrate, through observations of surface-enhanced Raman scattering, that the emergence of electron tunnelling at optical frequencies limits the maximum achievable plasmonic enhancement. Such quantum mechanical effects are revealed for metallic nanostructures with gap-widths in the single-digit angstrom range by correlating each structure with its optical properties. This work furthers our understanding of quantum mechanical effects in plasmonic systems and could enable future applications of quantum plasmonics.

  1. Sputtered gold-coated ITO nanowires by alternating depositions from Indium and ITO targets for application in surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Setti, Grazielle O.; Mamián-López, Mónica B.; Pessoa, Priscila R.; Poppi, Ronei J.; Joanni, Ednan; Jesus, Dosil P.

    2015-01-01

    Graphical abstract: - Highlights: • ITO nanowires were grown by the sputtering method using a new synthesis procedure. • By changing the deposition parameters the morphology and dimensions of the nanostructures were modified. • Seed layer thickness was an important factor for obtaining branched nanowires. • SERS substrates having good performance and a high application potential were produced. • The first Raman results for our substrates are already comparable to commercial substrates. - Abstract: Indium Tin oxide (ITO) nanowires were deposited by RF sputtering over oxidized silicon using ITO and Indium targets. The nanowires grew on the substrate with a catalyst layer of Indium by the vapor–liquid–solid (VLS) mechanism. Modifications in the deposition conditions affected the morphology and dimensions of the nanowires. The samples, after being covered with gold, were evaluated as surface-enhanced Raman scattering (SERS) substrates for detection of dye solutions and very good intensifications of the Raman signal were obtained. The SERS performance of the samples was also compared to that of a commercial SERS substrate and the results achieved were similar. To the best of our knowledge, this is the first time ITO nanowires were grown by the sputtering technique using oxide and metal targets

  2. In Situ Detection of Trace Furfural in Aqueous Solution Based on Au Nanoparticle/Au Film Surface-Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Wei Qi

    2016-01-01

    Full Text Available Furfural is an important chemical solvent and intermediate. Sensitive detection of this compound has attracted great interest in various fields. Surface-enhanced Raman spectroscopy (SERS is a highly sensitive method for material detection because of its optical enhancement effect of plasmonic nanostructures. This study presents a simple and versatile method to synthesize a SERS substrate, where polyaminothiophenol (PATP was used to realize the stable combination of Au nanoparticles (AuNPs and Au film via self-assembly. The near-field electric field distribution was calculated using the finite difference time domain (FDTD simulation to determine the parameters responsible for electric field enhancement. The simulation results show that SERS enhanced factors are sensitive to interparticle spacing and materials for solid support but insensitive to particle size. Moreover, the experimental results show that the optimized substrates with the highest Raman activity were formed by six layers of 60 nm AuNPs decorated on a 30 nm thick Au film, thereby validating the simulation results. The SERS factor of the optimal substrates is approximately 5.57 × 103, and the in situ detection limit is 4.8 ppm. The 3D Raman spectra, relative standard deviation values for major peaks, and changes in signal intensity with time show the good reproducibility and stability of the substrates.

  3. Sputtered gold-coated ITO nanowires by alternating depositions from Indium and ITO targets for application in surface-enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Setti, Grazielle O. [Institute of Chemistry, University of Campinas, Campinas, P.O. Box 6154, 13083-970 Campinas, SP (Brazil); Renato Archer Information Technology Center, Rodovia Dom Pedro I (SP-65), Km 143,6 – Amarais, 13069-901 Campinas, SP (Brazil); Mamián-López, Mónica B.; Pessoa, Priscila R.; Poppi, Ronei J. [Institute of Chemistry, University of Campinas, Campinas, P.O. Box 6154, 13083-970 Campinas, SP (Brazil); Joanni, Ednan, E-mail: ednan.joanni@cti.gov.br [Renato Archer Information Technology Center, Rodovia Dom Pedro I (SP-65), Km 143,6 – Amarais, 13069-901 Campinas, SP (Brazil); Jesus, Dosil P. [Institute of Chemistry, University of Campinas, Campinas, P.O. Box 6154, 13083-970 Campinas, SP (Brazil)

    2015-08-30

    Graphical abstract: - Highlights: • ITO nanowires were grown by the sputtering method using a new synthesis procedure. • By changing the deposition parameters the morphology and dimensions of the nanostructures were modified. • Seed layer thickness was an important factor for obtaining branched nanowires. • SERS substrates having good performance and a high application potential were produced. • The first Raman results for our substrates are already comparable to commercial substrates. - Abstract: Indium Tin oxide (ITO) nanowires were deposited by RF sputtering over oxidized silicon using ITO and Indium targets. The nanowires grew on the substrate with a catalyst layer of Indium by the vapor–liquid–solid (VLS) mechanism. Modifications in the deposition conditions affected the morphology and dimensions of the nanowires. The samples, after being covered with gold, were evaluated as surface-enhanced Raman scattering (SERS) substrates for detection of dye solutions and very good intensifications of the Raman signal were obtained. The SERS performance of the samples was also compared to that of a commercial SERS substrate and the results achieved were similar. To the best of our knowledge, this is the first time ITO nanowires were grown by the sputtering technique using oxide and metal targets.

  4. Ultra-small rhenium nanoparticles immobilized on DNA scaffolds: An excellent material for surface enhanced Raman scattering and catalysis studies.

    Science.gov (United States)

    Anantharaj, S; Sakthikumar, K; Elangovan, Ayyapan; Ravi, G; Karthik, T; Kundu, Subrata

    2016-12-01

    Highly Sensitive and ultra-small Rhenium (Re) metal nanoparticles (NPs) were successfully stabilized in water by the staging and fencing action of the versatile biomolecule DNA that resulted in two distinct aggregated chain-like morphologies with average grain sizes of 1.1±0.1nm and 0.7±0.1nm for the very first time within a minute of reaction time. Re NPs are formed by the borohydride reduction of ammonium perrhenate (NH4ReO4) in the presence of DNA at room temperature (RT) under stirring. The morphologies were controlled by carefully monitoring the molar ratio of NH4ReO4 and DNA. The synthesized material was employed in two potential applications: as a substrate for surface enhanced Raman scattering (SERS) studies and as a catalyst for the reduction of aromatic nitro compounds. SERS study was carried out by taking methylene blue (MB) as the probe and the highest SERS enhancement factor (EF) of 2.07×10(7) was found for the aggregated chain-like having average grain size of 0.7±0.1nm. Catalytic reduction of 4-nitro phenol (4-NP), 2-nitro phenol (2-NP) and 4-nitroaniline (4-NA) with a rate constant value of 6×10(-2)min(-1), 33.83×10(-2)min(-1) and 37.4×10(-2)min(-1) have testified the excellent catalytic performance of our Re NPs immobilized on DNA. The overall study have revealed the capability of DNA in stabilizing the highly reactive Re metal at nanoscale and made them applicable in practice. The present route can also be extended to prepare one dimensional (1-D), self-assembled NPs of other reactive metals, mixed metals or even metal oxides for specific applications in water based solutions. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Specificity and Strain-Typing Capabilities of Nanorod Array-Surface Enhanced Raman Spectroscopy for Mycoplasma pneumoniae Detection.

    Directory of Open Access Journals (Sweden)

    Kelley C Henderson

    Full Text Available Mycoplasma pneumoniae is a cell wall-less bacterial pathogen of the human respiratory tract that accounts for > 20% of all community-acquired pneumonia (CAP. At present the most effective means for detection and strain-typing is quantitative polymerase chain reaction (qPCR, which can exhibit excellent sensitivity and specificity but requires separate tests for detection and genotyping, lacks standardization between available tests and between labs, and has limited practicality for widespread, point-of-care use. We have developed and previously described a silver nanorod array-surface enhanced Raman Spectroscopy (NA-SERS biosensing platform capable of detecting M. pneumoniae with statistically significant specificity and sensitivity in simulated and true clinical throat swab samples, and the ability to distinguish between reference strains of the two main genotypes of M. pneumoniae. Furthermore, we have established a qualitative lower endpoint of detection for NA-SERS of < 1 genome equivalent (cell/μl and a quantitative multivariate detection limit of 5.3 ± 1 cells/μl. Here we demonstrate using partial least squares- discriminatory analysis (PLS-DA of sample spectra that NA-SERS correctly identified M. pneumoniae clinical isolates from globally diverse origins and distinguished these from a panel of 12 other human commensal and pathogenic mycoplasma species with 100% cross-validated statistical accuracy. Furthermore, PLS-DA correctly classified by strain type all 30 clinical isolates with 96% cross-validated accuracy for type 1 strains, 98% cross-validated accuracy for type 2 strains, and 90% cross-validated accuracy for type 2V strains.

  6. Gold Nanorods as Surface-Enhanced Raman Spectroscopy Substrates for Rapid and Sensitive Analysis of Allura Red and Sunset Yellow in Beverages.

    Science.gov (United States)

    Ou, Yiming; Wang, Xiaohui; Lai, Keqiang; Huang, Yiqun; Rasco, Barbara A; Fan, Yuxia

    2018-03-21

    Synthetic colorants in food can be a potential threat to human health. In this study, surface-enhanced Raman spectroscopy (SERS) coupled with gold nanorods as substrates is proposed to analyze allura red and sunset yellow in beverages. The gold nanorods with different aspect ratios were synthesized, and their long-term stability, SERS activity, and the effect of the different salts on the SERS signal were investigated. The results demonstrate that gold nanorods have a satisfactory stability (stored up to 28 days). SERS coupled with gold nanorods exhibit stronger sensitivity. MgSO 4 was chosen to improve the SERS signal of sunset yellow, and no salts could enhance the SERS signal of allura red. The lowest concentration was 0.10 mg/L for both colorant standard solutions. The successful prediction results using SERS were much closer to those obtained by high-performance liquid chromatography for the sample in beverages. SERS combined with gold nanorods shows potential for analyzing food colorants and other food additives as a rapid, convenient, and sensitive method.

  7. Au-coated ZnO nanorods on stainless steel fiber for self-cleaning solid phase microextraction-surface enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bo; Shi, Yu-e; Cui, Jingcheng; Liu, Zhen; Zhang, Xiaoli; Zhan, Jinhua, E-mail: jhzhan@sdu.edu.cn

    2016-06-07

    Solid phase microextraction-surface enhanced Raman spectroscopy (SPME–SERS), combining the pretreatment and determination functions, has been successfully used in environmental analysis. In this work, Au-coated ZnO nanorods were fabricated on stainless steel fiber as a self-cleaning SERS-active SPME fiber. The ZnO nanorods grown on stainless steel fiber were prepared via a simple hydrothermal approach. Then the obtained nanostructures were decorated with Au nanoparticles through ion-sputtering at room temperature. The obtained SERS-active SPME fiber is a reproducible sensitivity sensor. Taking p-aminothiophenol as the probe molecule, the RSD value of the SERS-active SPME fiber was 8.9%, indicating the fiber owned good uniformity. The qualitative and quantitative detection of crystal violet and malachite green was also achieved. The log–log plot of SERS intensity to crystal violet and malachite green concentration showed a good linear relationship. Meanwhile, this SERS-active SPME fiber can achieve self-cleaning owning to the excellent photocatalytic performance of ZnO nanorods. Crystal violet was still successfully detected even after five cycles, which indicated the high reproducibility of this SERS-active SPME fiber. - Graphical abstract: Au-coated ZnO NRs on stainless steel fiber were used as SERS-active SPME fiber with good extraction effect, high SERS sensitivity. Self-cleaning function of the fiber was achieved based on the photocatalytic degradation property of ZnO nanorods by UV irradiation. - Highlights: • Au-coated ZnO nanorods on stainless steel fiber as a SERS-active SPME fiber was fabricated. • The SERS-active SPME fiber can directly extract and detect the crystal violet and malachite green. • The SERS-active SPME fiber owns good extraction effect, and high SERS sensitivity. • Self-cleaning property of the fiber were achieved based on the photocatalytic degradation property of ZnO.

  8. Au-coated ZnO nanorods on stainless steel fiber for self-cleaning solid phase microextraction-surface enha