WorldWideScience

Sample records for surface waters determined

  1. Determination of Groundwater and Surface Water Qualities at Si Racha, Chon Buri

    International Nuclear Information System (INIS)

    Wangsawang, Jarinee; Naenorn, Warinlada; Khuntong, Soontree; Wongsorntam, Krirk; Udomsomporn, Suchin

    2011-06-01

    Full text: Groundwater (13 wells) and surface water (7 ponds) at Si Racha, Chon Buri province were collected for measurement of water qualities and radionuclides. The water qualities included physical and chemical analysis such as pH, EC, TS, TDS, TSS, TKN, total phosphate, BOD, COD, total hardness and FOG based on standard methods for examination of water and wastewater. Heavy metals (Cd, Cu, Cr, Fe, Mn, Ni and Zn) were analyzed by ICP-AES while total coliform was determined by Multiple Tube Methods. Moreover, radionuclides were analyzed by gamma spectrometer and gross beta and gross alpha were obtained from low background gas proportional counter. Values of most parameters in groundwater were below water qualities standards but all parameters in surface water samples were exceeded water qualities standards. It was found that all radionuclides in water samples were originated from natural uranium and thorium series. The data obtained enabled evaluation of pollutants in groundwater and surface water

  2. Surface Water & Surface Drainage

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data set contains boundaries for all surface water and surface drainage for the state of New Mexico. It is in a vector digital data structure digitized from a...

  3. Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water.

    Science.gov (United States)

    Frank, Alexander H; Garcia, Juan A L; Herndl, Gerhard J; Reinthaler, Thomas

    2016-06-01

    To decipher the influence of depth stratification and surface provincialism on the dark ocean prokaryotic community composition, we sampled the major deep-water masses in the eastern North Atlantic covering three biogeographic provinces. Their diversity was evaluated using ordination and canonical analysis of 454 pyrotag sequences. Variance partitioning suggested that 16% of the variation in the bacterial community composition was based on depth stratification while 9% of the variation was due to geographic location. General linear mixed effect models showed that the community of the subsurface waters was connected to the dark ocean prokaryotic communities in different biogeographic provinces. Cluster analysis indicated that some prokaryotic taxa are specific to distinct regions in bathypelagic water masses. Taken together, our data suggest that the dark ocean prokaryotic community composition of the eastern North Atlantic is primed by the formation and the horizontal transport of water masses. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Determination of γ-rays emitting radionuclides in surface water: application of a quantitative biosensing method

    International Nuclear Information System (INIS)

    Wolterbeek, H. Th.; Van der Meer, A. J. G. M.

    1995-01-01

    A quantitative biosensing method has been developed for the determination of γ-rays emitting radionuclides in surface water. The method is based on the concept that at equilibrium the specific radioactivity in the biosensor is equal to the specific radioactivity in water. The method consists of the measurement of both the radionuclide and the related stable isotope (element) in the biosensor and the determination of the element in water. This three-way analysis eliminates problems such as unpredictable biosensor behaviour, effects of water elemental composition or further abiotic parameters on accumulation levels: what remains is the generally high enrichment (bioaccumulation factor BCF) of elements and radionuclides in the biosensor material. Using water plants, the method is shown to be three to five orders of magnitude more sensitive than the direct analysis of water. (author)

  5. Determination of {gamma}-rays emitting radionuclides in surface water: application of a quantitative biosensing method

    Energy Technology Data Exchange (ETDEWEB)

    Wolterbeek, H Th; Van der Meer, A. J. G. M. [Delft University of Technology, Interfaculty Reactor Institute, Mekelweg 15, 2629 JB Delft (Netherlands)

    1995-12-01

    A quantitative biosensing method has been developed for the determination of {gamma}-rays emitting radionuclides in surface water. The method is based on the concept that at equilibrium the specific radioactivity in the biosensor is equal to the specific radioactivity in water. The method consists of the measurement of both the radionuclide and the related stable isotope (element) in the biosensor and the determination of the element in water. This three-way analysis eliminates problems such as unpredictable biosensor behaviour, effects of water elemental composition or further abiotic parameters on accumulation levels: what remains is the generally high enrichment (bioaccumulation factor BCF) of elements and radionuclides in the biosensor material. Using water plants, the method is shown to be three to five orders of magnitude more sensitive than the direct analysis of water. (author)

  6. Sampling problems and the determination of mercury in surface water, seawater, and air

    International Nuclear Information System (INIS)

    Das, H.A.; van der Sloot, H.A.

    1976-01-01

    Analysis of surface water for mercury comprises the determination of both ionic and organically bound mercury in solution and that of the total mercury content of the suspended matter. Eventually, metallic mercury has to be determined too. Requirements for the sampling procedure are given. A method for the routine determination of mercury in surface water and seawater was developed and applied to Dutch surface waters. The total sample volume is 2500 ml. About 500 ml is used for the determination of the content of suspended matter and the total amount of mercury in the water. The sample is filtered through a bed of previously purified active charcoal at a low flow-rate. The main portion ca. 2000 ml) passes a flow-through centrifuge to separate the solid fraction. One liter is used to separate ''inorganic'' mercury by reduction, volatilization in an airstream and adsorption on active charcoal. The other liter is led through a column of active charcoal to collect all mercury. The procedures were checked with 197 Hg radiotracer both as an ion and incorporated in organic compounds. The mercury is determined by thermal neutron activation, followed by volatilization in a tube furnace and adsorption on a fresh carbon bed. The limit of determination is approximately equal to 1 ng 1 -1 . The rate of desorption from and adsorption on suspended material has been measured as a function of a pH of the solution for Hg +2 and various other ions. It can be concluded that only the procedure mentioned above does not disturb the equilibrium. The separation of mercury from air is obtained by suction of 1 m 3 through a 0.22 μm filter and a charcoal bed. The determination is then performed as in the case of the water samples

  7. Determination of trifluoroacetic acid in 1996--1997 precipitation and surface waters in California and Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Wujcik, C.E.; Cahill, T.M.; Seiber, J.N. [Univ. of Nevada, Reno, NV (United States)

    1999-05-15

    The atmospheric degradation of three chlorofluorocarbon (CFC) replacement compounds, namely HFC-134a, HCFC-123, and HCFC-124, results in the formation of trifluoroacetic acid (TFA). Concentrations of TFA were determined in precipitation and surface water samples collected in California and Nevada during 1996--1997. Terminal lake systems were found to have concentrations 4--13 times higher than their calculated yearly inputs, providing evidence for accumulation. The results support dry deposition as the primary contributor of TFA to surface waters in arid and semiarid environments. Precipitation samples obtained from three different locations contained 20.7--1530 ng/L with significantly higher concentrations in fogwater over rainwater. Elevated levels of TFA were observed for rainwater collected in Nevada over those collected in California, indicating continual uptake and concentration as clouds move from a semiarid to arid climate. Thus several mechanisms exist, including evaporative concentration, vapor-liquid phase partitioning, lowered washout volumes of atmospheric deposition water, and dry deposition, which may lead to elevated concentrations of TFA in atmospheric and surface waters above levels expected from usual rainfall washout.

  8. A nanosilver-based spectrophotometric method for determination of malachite green in surface water samples.

    Science.gov (United States)

    Sahraei, R; Farmany, A; Mortazavi, S S; Noorizadeh, H

    2013-07-01

    A new spectrophotometric method is reported for the determination of nanomolar level of malachite green in surface water samples. The method is based on the catalytic effect of silver nanoparticles on the oxidation of malachite green by hexacyanoferrate (III) in acetate-acetic acid medium. The absorbance is measured at 610 nm with the fixed-time method. Under the optimum conditions, the linear range was 8.0 × 10(-9)-2.0 × 10(-7) mol L(-1) malachite green with a correlation coefficient of 0.996. The limit of detection (S/N = 3) was 2.0 × 10(-9) mol L(-1). Relative standard deviation for ten replicate determinations of 1.0 × 10(-8) mol L(-1) malachite green was 1.86%. The method is featured with good accuracy and reproducibility for malachite green determination in surface water samples without any pre-concentration and separation step.

  9. Gross alpha and gross beta determination in surface and groundwater water by liquid scintillation counting (LSC)

    International Nuclear Information System (INIS)

    Faria, Ligia S.; Moreira, Rubens M.

    2013-01-01

    The present study has used 40 samples of groundwater and surface water collected at four different sites along the period of one year in Brumadinho and Nova Lima, two municipalities in the State of Minas Gerais, Brazil, as part of a more extensive study aiming at determination of the natural radioactivity in the water used for domestic use. These two sites are inside an Environmental Protection Area is located in a region of very intensive iron ore exploration. In addition of mineral resources, the region has a geological characteristic that includes quartzitic conglomerates associated with uranium. Radioactivity levels were determined via liquid scintillation counting (LSC), a fast and high counting efficiency method that can be advantageously employed to determine gross alpha and gross beta activity in liquid samples. Previously to gross alpha and gross beta counting the samples were acidified with concentrated HNO 3 in the field. The technique involved a pre-concentration of the sample to obtain a low detection limit. Specific details of the employed methodology are commented. The results showed that concentrations of gross alpha natural activity and gross beta values ranged from less than the detection limit of the equipment (0.03 Bq.L -1 ) to 0.275 ± 0.05 Bq.L -1 for gross alpha. As regards gross beta, all samples were below the limit of detection. (author)

  10. Development of a test system for the determination of biodegradability in surface waters

    International Nuclear Information System (INIS)

    Kalsch, W.; Knacker, T.; Robertz, M.; Schallnass, H.J.

    1997-01-01

    The study presented here describes the development of a laboratory test system for the determination of aerobic biodegradability of substances at low concentrations in surface water. It was aimed to prepare a draft guideline for a biodegradation simulation test according to OECD format. The experimental approach was based on a literature study conducted within the frame of this project. Further useful information on the possible test design was derived from the German BBA guideline 5-1. Natural water and sediments were collected. Radiolabelled Lindane or 4-Nitrophenol was added. The test vessels (reactors) were aerated and incubated under controlled conditions for up to 92 days. The results showed biological stability of the sediment/water systems even without addition of nutrients and adherence to non-reducing conditions. Mineralisation of 4-Nitrophenol was influenced by the sediment type, the method of aeration and temperature. Factors affecting the mineralisation of Lindane were the method of application and again, the sediment type and temperature. Considerable amounts of the radioactivity were bound to the sediment and were to a large extent unextractable. The potential of a reactor to mineralise a test substance could not be correlated with the biological parameters measured. (orig.) [de

  11. Water content determination of soil surface in an intensive apple orchard

    Science.gov (United States)

    Riczu, Péter; Nagy, Gábor; Tamás, János

    2015-04-01

    Currently in Hungary, less than 100,000 hectares of orchards can be found, from which cultivation of apple is one of the most dominant ones. Production of marketable horticulture products can be difficult without employing advanced and high quality horticulture practices, which, in turn, depends on appropriate management and irrigation systems, basically. The got out water amount depend on climatic, edafic factors and the water demand of plants as well. The soil water content can be determined by traditional and modern methods. In order to define soil moisture content, gravimetry measurement is one of the most accurate methods, but it is time consuming and sometimes soil sampling and given results are in different times. Today, IT provides the farmers such tools, like global positioning system (GPS), geographic information system (GIS) and remote sensing (RS). These tools develop in a great integration rapidly. RS methods are ideal to survey larger area quick and accurate. Laser scanning is a novel technique which analyses a real-world or object environment to collect structural and spectral data. In order to obtain soil moisture information, the Leica ScanStation C10 terrestrial 3D laser scanner was used on an intensive apple orchard on the Study and Regional Research Farm of the University of Debrecen, near Pallag. Previously, soil samples from the study area with different moisture content were used as reference points. Based on the return intensity values of the laser scanner can be distinguished the different moisture content areas of soil surface. Nevertheless, the error of laser distance echo were examined and statistically evaluated. This research was realized in the frames of TÁMOP 4.2.4. A/2-11-1-2012-0001 "National Excellence Program - Elaborating and operating an inland student and researcher personal support system". The project was subsidized by the European Union and co-financed by the European Social Fund.

  12. Determination of pesticides in surface and ground water used for human consumption in Guatemala

    International Nuclear Information System (INIS)

    Knedel, W.; Chiquin, J.C.; Perez, J.; Rosales, S.

    1999-01-01

    A 15 month sampling and analysis programme was carried out to monitor concentrations of 37 targeted organochlorine, organophosphorus and organopyrethroid pesticides in surface and ground water in Guatemala. The 80 sampling points included 4 points in a lake, one point in each of the four lagoons, 10 municipal water systems of major towns, and 62 points along 52 rivers, most of which are located in the southern coast along borders with Mexico and El Salvador, and are one of the most productive areas in the country. The sampling used provided only preliminary information on the pattern of pesticide contamination of surface and ground water. It showed contamination of surface water in Los Esclavos watershed, Motagua river watershed as well as Villalobos, lake Amatitlan and Michatoya river watershed. Cypermethrin was the ubiquitous pesticides in some areas present in concentrations exceeding toxic levels for fish and other aquatic organisms. Several of the other targeted organophosphorus and ECD detectable pesticides were also detected in surface water. Some municipal water samples also had low levels of pesticides. (author)

  13. Surface-water surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Saldi, K.A.; Dirkes, R.L.; Blanton, M.L.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the Surface water on and near the Hanford Site is monitored to determine the potential effects of Hanford operations. Surface water at Hanford includes the Columbia River, riverbank springs, ponds located on the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site. Columbia River sediments are also included in this discussion. Tables 5.3.1 and 5.3.2 summarize the sampling locations, sample types, sampling frequencies, and sample analyses included in surface-water surveillance activities during 1994. Sample locations are also identified in Figure 5.3.1. This section describes the surveillance effort and summarizes the results for these aquatic environments. Detailed analytical results are reported by Bisping (1995).

  14. Surface-water surveillance

    International Nuclear Information System (INIS)

    Saldi, K.A.; Dirkes, R.L.; Blanton, M.L.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the Surface water on and near the Hanford Site is monitored to determine the potential effects of Hanford operations. Surface water at Hanford includes the Columbia River, riverbank springs, ponds located on the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site. Columbia River sediments are also included in this discussion. Tables 5.3.1 and 5.3.2 summarize the sampling locations, sample types, sampling frequencies, and sample analyses included in surface-water surveillance activities during 1994. Sample locations are also identified in Figure 5.3.1. This section describes the surveillance effort and summarizes the results for these aquatic environments. Detailed analytical results are reported by Bisping (1995)

  15. RIMAPS characterization of a surface in the variable aperture fracture model and determination of the main paths for water flow

    International Nuclear Information System (INIS)

    Fuentes, Nestor O.

    2003-01-01

    To understand the real incidence of fracture geometry in the unsteady behavior of flowing water channels, the RIMAPS (Rotated Image with Maximum Average Power Spectrum) technique is used to determine the main directions of these channels. This new characterization technique works on digitized images obtained from the surfaces under study. The present work presents the results of a comparison between the flow directions predicted by RIMAPS and the real channels directions observed in a laboratory experiment. A perfect accordance was verified between the directions obtained in both cases. It can be concluded from these results that geometrical characteristics of a fracture surface determine the main path directions for water flow. (author)

  16. Determination of the Presence of Three Antimicrobials in Surface Water Collected from Urban and Rural Areas

    Directory of Open Access Journals (Sweden)

    Alberto Cepeda

    2013-02-01

    Full Text Available Due to the continuous release of antimicrobials into the environment, the aim of this study was to compare the frequency of detection of sulfamethazine, sulfamethoxypyridazine and trimethoprim in surface water collected from urban and rural areas in Northwestern Spain. A monitoring study was conducted with 314 river water samples analyzed by high-performance liquid chromatography coupled to tandem mass spectrometry. The results indicated that 37% of the samples contained residues of at least one of the investigated antimicrobials, and every sampling site yielded positive samples. At sites located near the discharge points of wastewater treatment plants and near the collection point of a drinking-water treatment plant, more than 6% of the samples were positive for the presence of antimicrobial residues.

  17. A pilot test of methods for determination of trace metals bound to colloids in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Kersti (Geosigma AB (Sweden))

    2011-01-15

    Two methods have been tested for the determination of trace metals associated with colloid species in surface waters, using test water from Eckarfjaerden (PFM000070) in Forsmark; 1) fractionation (ultra filtration) using special membrane filters with cut-offs of 1 kD and 5 kD and 2) filtration using a system of standard membrane filters with varying pore sizes connected in series. Both methods were somewhat modified compared to previous methods for colloid determination in groundwater within the site investigations at Forsmark and Laxemar (PLU). The results show that, in general, the largest amounts of metals associated with a colloid phase were recovered in the fraction between 1kD and 5 kD which indicates that the metal ions are associated with low molecular weight organic acids. Similar amounts were recovered on the filters in the filtration experiment. A minor part of the colloidal phase metals was recovered in the fraction larger than 5 kD i.e. metal ions associated with larger organic acids or colloidal size clay minerals. The metals present preferably as colloids in the fractionation experiment were: iron, thorium, cerium, uranium, neodymium, titanium, zirconium and yttrium. The filtering experiment showed larger parts of titanium and aluminum in the colloid phase than the fractionation experiment while the iron and cerium portions were equal and the uranium, yttrium and neodymium portions were lower. The results from the fractionation test showed that the dissolved parts were large for barium, manganese, strontium and rubidium. In the filtration test, uranium, yttrium and rubidium, were also present mainly as dissolved ions. The detection limit for filter analysis of thorium was high, and the part of thorium present as colloids was determined to <50%. Issues and methodological problems: - Severe contamination caused interpretation difficulties for several metal ions, especially chromium, nickel and zinc. - Both methods are time consuming and difficult to

  18. Gas chromatographic determination of acid herbicides in surface water samples with electron-capture detection and mass spectrometric confirmation

    NARCIS (Netherlands)

    Vink, M.; Poll, J.M. van der

    1996-01-01

    The development of a multi-residue method for the determination of eight polar acidic herbicides (MCPA, MCPB, mecoprop, 2,4-D, dichlorprop, bentazone, dicamba and dikegulac) in surface water is described. The method involves an off-line solid-phase extraction (SPE) procedure prior to instrumental

  19. Determining risk for severe leptospirosis by molecular analysis of environmental surface waters for pathogenic Leptospira.

    Directory of Open Access Journals (Sweden)

    Christian A Ganoza

    2006-08-01

    Full Text Available Although previous data indicate that the overall incidence of human leptospirosis in the Peruvian Amazon is similar in urban and rural sites, severe leptospirosis has been observed only in the urban context. As a potential explanation for this epidemiological observation, we tested the hypothesis that concentrations of more virulent Leptospira would be higher in urban than in rural environmental surface waters.A quantitative real-time PCR assay was used to compare levels of Leptospira in urban and rural environmental surface waters in sites in the Peruvian Amazon region of Iquitos. Molecular taxonomic analysis of a 1,200-bp segment of the leptospiral 16S ribosomal RNA gene was used to identify Leptospira to the species level. Pathogenic Leptospira species were found only in urban slum water sources (Fisher's exact test; p = 0.013. The concentration of pathogen-related Leptospira was higher in urban than rural water sources (approximately 10(3 leptospires/ml versus 0.5 x 10(2 leptospires/ml; F = 8.406, p < 0.05. Identical 16S rRNA gene sequences from Leptospira interrogans serovar Icterohaemorrhagiae were found in urban slum market area gutter water and in human isolates, suggesting a specific mode of transmission from rats to humans. In a prospective, population-based study of patients presenting with acute febrile illness, isolation of L. interrogans-related leptospires from humans was significantly associated with urban acquisition (75% of urban isolates; human isolates of other leptospiral species were associated with rural acquisition (78% of rural isolates (chi-square analysis; p < 0.01. This distribution of human leptospiral isolates mirrored the distribution of leptospiral 16S ribosomal gene sequences in urban and rural water sources.Our findings data support the hypothesis that urban severe leptospirosis in the Peruvian Amazon is associated with higher concentrations of more pathogenic leptospires at sites of exposure and transmission

  20. Disposable screen printed graphite electrode for the direct electrochemical determination of ibuprofen in surface water

    KAUST Repository

    Amin, Sidra

    2014-08-01

    The potential of square wave voltammetry (SWV) for the determination of ibuprofen in aqueous solution, applying baseline correction, is reported. A screen printed graphite electrodes (SPGEs), especially pretreated for this purpose, were used to investigate the electrochemical oxidation and detection of ibuprofen. After optimization of SWV parameters, measurements were carried out at 200 Hz modulation frequency, 4 mV step potential and 40 mV pulse amplitude for the determination of ibuprofen. The surfaces of both untreated and pretreated SPGEs were characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The electro-catalytic properties of both the electrodes were correlated with the surface treatment. The pretreated screen printed graphite electrode exhibited a high sensitivity toward ibuprofen even in low concentration. The developed method was found rapid, cost-effective and reproducible for in-field ibuprofen detection.

  1. Disposable screen printed graphite electrode for the direct electrochemical determination of ibuprofen in surface water

    KAUST Repository

    Amin, Sidra; Soomro, M. Tahir; Memon, Najma; Solangi, Amber R.; Sirajuddin; Qureshi, Tahira; Behzad, Ali Reza

    2014-01-01

    The potential of square wave voltammetry (SWV) for the determination of ibuprofen in aqueous solution, applying baseline correction, is reported. A screen printed graphite electrodes (SPGEs), especially pretreated for this purpose, were used to investigate the electrochemical oxidation and detection of ibuprofen. After optimization of SWV parameters, measurements were carried out at 200 Hz modulation frequency, 4 mV step potential and 40 mV pulse amplitude for the determination of ibuprofen. The surfaces of both untreated and pretreated SPGEs were characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The electro-catalytic properties of both the electrodes were correlated with the surface treatment. The pretreated screen printed graphite electrode exhibited a high sensitivity toward ibuprofen even in low concentration. The developed method was found rapid, cost-effective and reproducible for in-field ibuprofen detection.

  2. A sensitive and quantitative biosensing method for the determination of {gamma}-ray emitting radionuclides in surface water

    Energy Technology Data Exchange (ETDEWEB)

    Wolterbeek, H.Th.; Meer, A.J.G.M. van der [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.

    1996-11-01

    A quantitative and sensitive biosensing method has been developed for the determination of {gamma}-ray emitting radionuclides in surface water. The method is based on the concept that at equilibrium the specific radioactivity in the biosensor is equal to the specific radioactivity in water. The method consists of the measurement of both the radionuclide and the element in the biosensor and the determination of the element level in water. This three-way analysis eliminates problems such as unpredictable biosensor behaviour, effects of water elemental composition or further abiotic parameters: what remains is the generally high enrichment (bioaccumulation factor BCF) of elements and radionuclides in the biosensor material. Measurements were performed with floating water plants (Azolla filiculoides Lamk., Spirodela polyrhiza/Lemna sp.) and the fully submerged water plant Ceratophyllum demersum L., which were sampled from ditch water. Concentrations of elements and radionuclides were determined in both water and biosensor plants, using Neutron Activation Analysis (NAA), ICP-MS, and {gamma}-ray spectrometry, respectively. For the latter, both 1 litre samples (Marinelli-geometry) and 1 cm{sup 3} samples (well-type detectors) were applied in measurements. (author).

  3. A sensitive and quantitative biosensing method for the determination of γ-ray emitting radionuclides in surface water

    International Nuclear Information System (INIS)

    Wolterbeek, H.Th.; Meer, A.J.G.M. van der

    1996-01-01

    A quantitative and sensitive biosensing method has been developed for the determination of γ-ray emitting radionuclides in surface water. The method is based on the concept that at equilibrium the specific radioactivity in the biosensor is equal to the specific radioactivity in water. The method consists of the measurement of both the radionuclide and the element in the biosensor and the determination of the element level in water. This three-way analysis eliminates problems such as unpredictable biosensor behaviour, effects of water elemental composition or further abiotic parameters: what remains is the generally high enrichment (bioaccumulation factor BCF) of elements and radionuclides in the biosensor material. Measurements were performed with floating water plants (Azolla filiculoides Lamk., Spirodela polyrhiza/Lemna sp.) and the fully submerged water plant Ceratophyllum demersum L., which were sampled from ditch water. Concentrations of elements and radionuclides were determined in both water and biosensor plants, using Neutron Activation Analysis (NAA), ICP-MS, and γ-ray spectrometry, respectively. For the latter, both 1 litre samples (Marinelli-geometry) and 1 cm 3 samples (well-type detectors) were applied in measurements. (author)

  4. New method to determine initial surface water displacement at tsunami source

    Science.gov (United States)

    Lavrentyev, Mikhail; Romanenko, Alexey; Tatarintsev, Pavel

    2013-04-01

    Friday, March 11, 2011 at 05:46:23 UTC, Japan was struck by an 8.9-magnitude earthquake near its Northeastern coast. This is one of the largest earthquakes that Japan has ever experienced. Tsunami waves swept away houses and cars and caused massive human losses. To predict tsunami wave parameters better and faster, we propose to improve data inversion scheme and achieve the performance gain of data processing. One of the reasons of inaccurate predictions of tsunami parameters is that very little information is available about the initial disturbance of the sea bed at tsunami source. In this paper, we suggest a new way of improving the quality of tsunami source parameters prediction. Modern computational technologies can accurately calculate tsunami wave propagation over the deep ocean provided that the initial displacement (perturbation of the sea bed at tsunami source) is known [4]. Direct geophysical measurements provide the location of an earthquake hypocenter and its magnitude (the released energy evaluation). Among the methods of determination of initial displacement the following ones should be considered. Calculation through the known fault structure and available seismic information. This method is widely used and provides useful information. However, even if the exact knowledge about rock blocks shifts is given, recalculation in terms of sea bed displacement is needed. This results in a certain number of errors. GPS data analysis. This method was developed after the December 2004 event in the Indian Ocean. A good correlation between dry land based GPS sensors and tsunami wave parameters was observed in the particular case of the West coast of Sumatra, Indonesia. This approach is very unique and can hardly been used in other geo locations. Satellite image analysis. The resolution of modern satellite images has dramatically improved. In the future, correct data of sea surface displacement will probably be available in real time, right after a tsunamigenic

  5. Determination of BTEX in surface and ground waters at Centro Experimental Aramar area

    International Nuclear Information System (INIS)

    Matoso, Erika; Oliveira, Rando M. de; Segre, Nádia

    2017-01-01

    The mixture of the monocyclic aromatic compounds benzene, toluene, ethylbenzene and xylene isomers is defined as BTEX. The presence of BTEX in the environment is regularly associated with petroleum and its byproducts leakages or industrial effluent discharge. BTEX may cause serious problems to human and animal health. Human exposure to these aromatic compounds can lead to eye and skin irritation, central nervous system weakening and bone marrow depression. According to World Health Organization (WHO) benzene can cause cancer development. A new unit process in Centro Experimental Aramar (CEA) using BTEX-containing products will be launched shortly. Therefore, BTEX monitoring will be necessary since effluents release in Brazil is controlled by CONAMA regulations. Besides, as these compounds has never been evaluated in CEA, it is important to provide knowledge on the current BTEX concentration, in order to establish pre-operational values in CEA region and nearby. The CONAMA regulations for BTEX in superficial waters sets very low limits (such as 0,002 mg L- 1 for toluene and 0,005 mg L-1 for benzene). For this reason, it was developed in this work an analytical method by Headspace-GC-MS to achieve these values. The figures of merit determined were limit of detection (LOD), limit of quantification (LOQ), precision and accuracy. BTEX was analyzed in superficial waters from three different sampling points at Ipanema River and ground water collected in eight different sampling points. All sampling points were located a ratio 10 km radius from CEA. (author)

  6. Determination of BTEX in surface and ground waters at Centro Experimental Aramar area

    Energy Technology Data Exchange (ETDEWEB)

    Matoso, Erika; Oliveira, Rando M. de; Segre, Nádia, E-mail: ematoso@hotmail.com [Centro Tecnológico da Marinha em São Paulo (CEA/CTMSP), Iperó, SP (Brazil). Centro Experimental Aramar

    2017-07-01

    The mixture of the monocyclic aromatic compounds benzene, toluene, ethylbenzene and xylene isomers is defined as BTEX. The presence of BTEX in the environment is regularly associated with petroleum and its byproducts leakages or industrial effluent discharge. BTEX may cause serious problems to human and animal health. Human exposure to these aromatic compounds can lead to eye and skin irritation, central nervous system weakening and bone marrow depression. According to World Health Organization (WHO) benzene can cause cancer development. A new unit process in Centro Experimental Aramar (CEA) using BTEX-containing products will be launched shortly. Therefore, BTEX monitoring will be necessary since effluents release in Brazil is controlled by CONAMA regulations. Besides, as these compounds has never been evaluated in CEA, it is important to provide knowledge on the current BTEX concentration, in order to establish pre-operational values in CEA region and nearby. The CONAMA regulations for BTEX in superficial waters sets very low limits (such as 0,002 mg L- 1 for toluene and 0,005 mg L-1 for benzene). For this reason, it was developed in this work an analytical method by Headspace-GC-MS to achieve these values. The figures of merit determined were limit of detection (LOD), limit of quantification (LOQ), precision and accuracy. BTEX was analyzed in superficial waters from three different sampling points at Ipanema River and ground water collected in eight different sampling points. All sampling points were located a ratio 10 km radius from CEA. (author)

  7. Determination of DDT and metabolites in surface water and sediment using LLE, SPE, ACE and SE.

    Science.gov (United States)

    Sibali, Linda L; Okonkwo, Jonathan O; Zvinowanda, Caliphs

    2009-12-01

    Surface water and sediment samples collected from Jukskei River in South Africa, were subjected to different extraction techniques, liquid-liquid (LLE), solid-phase extraction (SPE), activated carbon extraction (ACE) and soxhlet extraction (SE) for sediment. The samples were extracted with dichloromethane, cleaned in a silica gel column and the extracts quantified using a Varian 3800 GC-ECD. The percentage recovery test for 2,4'DDT, DDE and DDD and 4,4'DDT, DDE and DDD in water ranged from 80%-96% and 76%-95% (LLE); 56%-76% and 56%-70% (SPE) and 75%-84% (ACE), respectively; while that recoveries for sediment samples varied from 65%-95% for 2,4'DDT, DDE and DDD and 80%-91% for 4,4'DDT, DDE and DDD. The high recoveries exhibited by ACE compared very well with LLE and SE. This was not the case with SPE which exhibited the lowest value of recoveries for both 2,4 and 4,4'DDD, DDE and DDT standard samples. The mean concentrations of DDT and metabolites ranged from nd-1.10 μg/L, nd-0.80 μg/L, nd-1.21 μg/L and 1.92 μg/L for LLE, SPE, ACE and SE, respectively. The total DDT (2,4' and 4,4'-DDT) in water and sediment samples ranged from 1.20-3.25 μg/L and 1.82-5.24 μg/L, respectively. The low concentrations of the DDT metabolites obtained in the present study may suggest a recent contamination of the river by DDT.

  8. A solid phase extraction-ion chromatography with conductivity detection procedure for determining cationic surfactants in surface water samples.

    Science.gov (United States)

    Olkowska, Ewa; Polkowska, Żaneta; Namieśnik, Jacek

    2013-11-15

    A new analytical procedure for the simultaneous determination of individual cationic surfactants (alkyl benzyl dimethyl ammonium chlorides) in surface water samples has been developed. We describe this methodology for the first time: it involves the application of solid phase extraction (SPE-for sample preparation) coupled with ion chromatography-conductivity detection (IC-CD-for the final determination). Mean recoveries of analytes between 79% and 93%, and overall method quantification limits in the range from 0.0018 to 0.038 μg/mL for surface water and CRM samples were achieved. The methodology was applied to the determination of individual alkyl benzyl quaternary ammonium compounds in environmental samples (reservoir water) and enables their presence in such types of waters to be confirmed. In addition, it is a simpler, less time-consuming, labour-intensive, avoiding use of toxic chloroform and significantly less expensive methodology than previously described approaches (liquid-liquid extraction coupled with liquid chromatography-mass spectrometry). Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Application of response surface methodology for determination of methyl red in water samples by spectrophotometry method.

    Science.gov (United States)

    Khodadoust, Saeid; Ghaedi, Mehrorang

    2014-12-10

    In this study a rapid and effective method (dispersive liquid-liquid microextraction (DLLME)) was developed for extraction of methyl red (MR) prior to its determination by UV-Vis spectrophotometry. Influence variables on DLLME such as volume of chloroform (as extractant solvent) and methanol (as dispersive solvent), pH and ionic strength and extraction time were investigated. Then significant variables were optimized by using a Box-Behnken design (BBD) and desirability function (DF). The optimized conditions (100μL of chloroform, 1.3mL of ethanol, pH 4 and 4% (w/v) NaCl) resulted in a linear calibration graph in the range of 0.015-10.0mgmL(-1) of MR in initial solution with R(2)=0.995 (n=5). The limits of detection (LOD) and limit of quantification (LOQ) were 0.005 and 0.015mgmL(-1), respectively. Finally, the DLLME method was applied for determination of MR in different water samples with relative standard deviation (RSD) less than 5% (n=5). Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Application of response surface methodology for determination of methyl red in water samples by spectrophotometry method

    Science.gov (United States)

    Khodadoust, Saeid; Ghaedi, Mehrorang

    2014-12-01

    In this study a rapid and effective method (dispersive liquid-liquid microextraction (DLLME) was developed for extraction of methyl red (MR) prior to its determination by UV-Vis spectrophotometry. Influence variables on DLLME such as volume of chloroform (as extractant solvent) and methanol (as dispersive solvent), pH and ionic strength and extraction time were investigated. Then significant variables were optimized by using a Box-Behnken design (BBD) and desirability function (DF). The optimized conditions (100 μL of chloroform, 1.3 mL of ethanol, pH 4 and 4% (w/v) NaCl) resulted in a linear calibration graph in the range of 0.015-10.0 mg mL-1 of MR in initial solution with R2 = 0.995 (n = 5). The limits of detection (LOD) and limit of quantification (LOQ) were 0.005 and 0.015 mg mL-1, respectively. Finally, the DLLME method was applied for determination of MR in different water samples with relative standard deviation (RSD) less than 5% (n = 5).

  11. Influence of ammonia on forming the toxicity of waters from the surface sources of water supply determined on Carassius auratus gibelio (Bloch, 1782

    Directory of Open Access Journals (Sweden)

    Е. Arystarkhova

    2018-03-01

    Full Text Available Purpose. Determination of the influence of ammonia in waters from surface sources of water supply of Zhytomyr city on forming the toxicity of these waters determined by test-reactions of atypical motor activity of Carassius auratus gibelio (Bloch, 1782 with the use of the «time sampling» method during 2012–2014. Methodology. Biotesting was performed at the Municipal Enterprise "Zhytomyrvodokanal". Water samples were taken once a month time from the Teteriv river reservoirs and tap water network and then placed into aquaria (8 dm3 on a group. Control and experimental groups of fish were formed according to the following scheme: control group — samples of settled (24 hours tap water; experimental group D-1 — water samples from the Denyshivske reservoir; experimental group D-2 — water samples from the Vidsichne water intake. Test specimens were females of C. auratus gibelio. Biotesting was conducted using the «time sampling» method by keeping fish (n=30 in water for 12 hours. The toxicity indexes of waters were calculated on the basis of the following test-reactions: spiral-like and vector movements, jumping out from water, immobilization and death of fish. Statistical processing of study results were performed using cross-correlation and regression analysis in MS Excel 2007 and Statistica-6. Findings. The study showed an effect of ammonia on the toxicity of waters from reservoirs of the Teteriv river that was determined by atypical motor activity with the use of the «time sampling» method, which consisted in the instantaneous fixation of the number of individuals that favored one or another act of behavior. It was shown that females not adapted to the action of ammonia reacted to its concentration in water of more than 0.55 mg/dm3 by disorders in movements. Unlike fish of experience groups, only single pathological acts were observed in the control group. A positive moderate relationship, which had a tendency to an increase, was

  12. Development and application of a sol-gel immunosorbent-based method for the determination of isoproturon in surface water.

    Science.gov (United States)

    Zhang, Xiuli; Martens, Dieter; Krämer, Petra M; Kettrup, Antonius A; Liang, Xinmiao

    2006-01-13

    An immunosorbent was fabricated by encapsulation of monoclonal anti-isoproturon antibodies in sol-gel matrix. The immunosorbent-based loading, rinsing and eluting processes were optimized. Based on these optimizations, the sol-gel immunosorbent (SG-IS) selectively extracted isoproturon from an artificial mixture of 68 pesticides. In addition to this high selectivity, the SG-IS proved to be reusable. The SG-IS was combined with liquid chromatography-tandem mass spectrometry (LC-MS-MS) to determine isoproturon in surface water, and the linear range was up to 2.2 microg/l with correlation coefficient higher than 0.99 and relative standard deviation (RSD) lower than 5% (n=8). The limit of quantitation (LOQ) for 25-ml surface water sample was 5 ng/l.

  13. Surface freezing of water

    OpenAIRE

    P?rez-D?az, J. L.; ?lvarez-Valenzuela, M. A.; Rodr?guez-Celis, F.

    2016-01-01

    Freezing, melting, evaporation and condensation of water are essential ingredients for climate and eventually life on Earth. In the present work, we show how surface freezing of supercooled water in an open container is conditioned and triggered?exclusively?by humidity in air. Additionally, a change of phase is demonstrated to be triggered on the water surface forming surface ice crystals prior to freezing of bulk. The symmetry of the surface crystal, as well as the freezing point, depend on ...

  14. Determination of total arsenic and arsenic species in drinking water, surface water, wastewater, and snow from Wielkopolska, Kujawy-Pomerania, and Lower Silesia provinces, Poland.

    Science.gov (United States)

    Komorowicz, Izabela; Barałkiewicz, Danuta

    2016-09-01

    Arsenic is a ubiquitous element which may be found in surface water, groundwater, and drinking water. In higher concentrations, this element is considered genotoxic and carcinogenic; thus, its level must be strictly controlled. We investigated the concentration of total arsenic and arsenic species: As(III), As(V), MMA, DMA, and AsB in drinking water, surface water, wastewater, and snow collected from the provinces of Wielkopolska, Kujawy-Pomerania, and Lower Silesia (Poland). The total arsenic was analyzed by inductively coupled plasma mass spectrometry (ICP-MS), and arsenic species were analyzed with use of high-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC/ICP-MS). Obtained results revealed that maximum total arsenic concentration determined in drinking water samples was equal to 1.01 μg L(-1). The highest concentration of total arsenic in surface water, equal to 3778 μg L(-1) was determined in Trująca Stream situated in the area affected by geogenic arsenic contamination. Total arsenic concentration in wastewater samples was comparable to those determined in drinking water samples. However, significantly higher arsenic concentration, equal to 83.1 ± 5.9 μg L(-1), was found in a snow sample collected in Legnica. As(V) was present in all of the investigated samples, and in most of them, it was the sole species observed. However, in snow sample collected in Legnica, more than 97 % of the determined concentration, amounting to 81 ± 11 μg L(-1), was in the form of As(III), the most toxic arsenic species.

  15. Determining water sources in the boundary layer from tall tower profiles of water vapor and surface water isotope ratios after a snowstorm in Colorado

    Directory of Open Access Journals (Sweden)

    D. Noone

    2013-02-01

    Full Text Available The D/H isotope ratio is used to attribute boundary layer humidity changes to the set of contributing fluxes for a case following a snowstorm in which a snow pack of about 10 cm vanished. Profiles of H2O and CO2 mixing ratio, D/H isotope ratio, and several thermodynamic properties were measured from the surface to 300 m every 15 min during four winter days near Boulder, Colorado. Coeval analysis of the D/H ratios and CO2 concentrations find these two variables to be complementary with the former being sensitive to daytime surface fluxes and the latter particularly indicative of nocturnal surface sources. Together they capture evidence for strong vertical mixing during the day, weaker mixing by turbulent bursts and low level jets within the nocturnal stable boundary layer during the night, and frost formation in the morning. The profiles are generally not well described with a gradient mixing line analysis because D/H ratios of the end members (i.e., surface fluxes and the free troposphere evolve throughout the day which leads to large uncertainties in the estimate of the D/H ratio of surface water flux. A mass balance model is constructed for the snow pack, and constrained with observations to provide an optimal estimate of the partitioning of the surface water flux into contributions from sublimation, evaporation of melt water in the snow and evaporation from ponds. Results show that while vapor measurements are important in constraining surface fluxes, measurements of the source reservoirs (soil water, snow pack and standing liquid offer stronger constraint on the surface water balance. Measurements of surface water are therefore essential in developing observational programs that seek to use isotopic data for flux attribution.

  16. Water on a Hydrophobic surface

    Science.gov (United States)

    Scruggs, Ryan; Zhu, Mengjue; Poynor, Adele

    2012-02-01

    Hydrophobicity, meaning literally fear of water, is exhibited on the surfaces of non-stick cooking pans and water resistant clothing, on the leaves of the lotus plan, or even during the protein folding process in our bodies. Hydrophobicity is directly measured by determining a contact angle between water and an objects surface. Associated with a hydrophobic surface is the depletion layer, a low density region approximately 0.2 nm thick. We study this region by comparing data found in lab using surface plasmon resonance techniques to theoretical calculations. Experiments use gold slides coated in ODT and Mercapto solutions to model both hydrophobic and hydrophilic surfaces respectively.

  17. Determination of barium in surface and ground waters at Centro Experimental Aramar area

    Energy Technology Data Exchange (ETDEWEB)

    Matoso, Erika, E-mail: ematoso@hotmail.com [Centro Tecnologico da Marinha em Sao Paulo (CEA/CTMS), Ipero, SP (Brazil). Centro Experimental Aramar; Cadore, Solange, E-mail: cadore@iqm.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Quimica. Departamento de Quimica Analica

    2015-07-01

    Barium can be found in waters up to 1 mg L{sup -1} and came from natural sources such as sedimentary rocks erosion rich in feldspar and barite. Also anthropogenic activities can release this element such as oil and gas industry, agricultural defensives, chemical industry and waste disposal. At high doses, barium can be harmful to human central nervous system and can also cause high blood pressure, heart problems, fatigue and anxiety. The water potability defined by Brazilian's Ministry of Healthy sets barium concentration up to 0.7 mg L{sup -1} and official regulation defines the same limit of this element to superficial waters (according CONAMA resolution 357/2005) and ground waters (Sao Paulo state regulation). In this work, barium was analyzed monthly in superficial waters from 4 different sampling locations, located in a ratio of 10-km-long from Centro Experimental Aramar (CEA) at Ipanema River, during one year, in order to evaluate the river in different conditions (seasons, temperature and rain period). The ground water was collected every six months. The analytical technique applied was ICP OES and the method conditions were optimized: wavelength, linearity, signal background ratio, detection and quantification limits. Data obtained in this work will contribute to evaluate the presence of barium at CEA region and nearby in order to compare it with current Brazilian regulations. (author)

  18. Determination of barium in surface and ground waters at Centro Experimental Aramar area

    International Nuclear Information System (INIS)

    Matoso, Erika; Cadore, Solange

    2015-01-01

    Barium can be found in waters up to 1 mg L -1 and came from natural sources such as sedimentary rocks erosion rich in feldspar and barite. Also anthropogenic activities can release this element such as oil and gas industry, agricultural defensives, chemical industry and waste disposal. At high doses, barium can be harmful to human central nervous system and can also cause high blood pressure, heart problems, fatigue and anxiety. The water potability defined by Brazilian's Ministry of Healthy sets barium concentration up to 0.7 mg L -1 and official regulation defines the same limit of this element to superficial waters (according CONAMA resolution 357/2005) and ground waters (Sao Paulo state regulation). In this work, barium was analyzed monthly in superficial waters from 4 different sampling locations, located in a ratio of 10-km-long from Centro Experimental Aramar (CEA) at Ipanema River, during one year, in order to evaluate the river in different conditions (seasons, temperature and rain period). The ground water was collected every six months. The analytical technique applied was ICP OES and the method conditions were optimized: wavelength, linearity, signal background ratio, detection and quantification limits. Data obtained in this work will contribute to evaluate the presence of barium at CEA region and nearby in order to compare it with current Brazilian regulations. (author)

  19. A fast determination of nitrate in rain and surface waters by means of UV spectrophotometry

    International Nuclear Information System (INIS)

    Slanina, J.; Lingerak, W.A.; Bergman, L.

    1976-01-01

    Organic substances are the main interference in the direct U.V. spectrophotometric determination of nitrate at 210 nm. An active carbon filter (Filopur) is therefore proposed which adsorbs all organic interferences. With this filter the U.V. spectrophotometric method gives the same results as the Na-salicylate method. The reproducibility is generally better than 5%. One determination takes 50 s. (orig.) [de

  20. In-syringe dispersive liquid-liquid microextraction with liquid chromatographic determination of synthetic pyrethroids in surface water

    Directory of Open Access Journals (Sweden)

    Saeed S. Albaseer

    2012-03-01

    Full Text Available An indigenously fabricated in laboratory glass syringe was used for in-syringe dispersive liquid-liquid microextraction (is-DLLME and preconcentration of synthetic pyrethroids (SPs from surface waters suitable for their determination by high performance liquid chromatography. In contrast to classical DLLME, is-DLLME allows the use of lighter-than-water organic solvents and the analysis of environmental contaminants’ samples without prior filtration, which is of great importance due to the high affinity of pyrethroids to adsorb to solid particulates present in environmental samples. The effects of various parameters on the extraction efficiency were evaluated and optimized systemically using one-factor-at-a-time method (OFAT and statistically using full factorial design (24. Three SPs (viz.; cypermethrin, resmethrin and permethrin were analyzed. The method showed good accuracy with RSD% in the range of of 4.8–6.9%. The method detection limits of the three pesticides ranged from 0.14 to 0.16 ng mL-1. The proposed method was applied for the determination of synthetic pyrethroids in lake water

  1. Surface freezing of water.

    Science.gov (United States)

    Pérez-Díaz, J L; Álvarez-Valenzuela, M A; Rodríguez-Celis, F

    2016-01-01

    Freezing, melting, evaporation and condensation of water are essential ingredients for climate and eventually life on Earth. In the present work, we show how surface freezing of supercooled water in an open container is conditioned and triggered-exclusively-by humidity in air. Additionally, a change of phase is demonstrated to be triggered on the water surface forming surface ice crystals prior to freezing of bulk. The symmetry of the surface crystal, as well as the freezing point, depend on humidity, presenting at least three different types of surface crystals. Humidity triggers surface freezing as soon as it overpasses a defined value for a given temperature, generating a plurality of nucleation nodes. An evidence of simultaneous nucleation of surface ice crystals is also provided.

  2. Solid phase extraction using molecular imprinting polymers (MISPE for the determination of estrogens in surface water by HPLC

    Directory of Open Access Journals (Sweden)

    Viviane do Nascimento Bianchi

    2017-05-01

    Full Text Available Estrogens are emerging pollutants and traditional sewage treatments unable to remove them. They are harmful to human health and to the environment. It is therefore important to evaluate the presence and concentration of estrogens in water bodies and environmental matrices. This work presents the development and application of a methodology for the determination of E1, E3, EE2 and E2 in surface waters using solid phase extraction with molecular imprinting polymers (MISPE followed by identification and quantification by HPLC-DAD. Acetonitrile and water deionized acidified with phosphoric acid pH 3 (1:1, v/v, a flow rate of 1.0 ml min-1, at 40°C and an injection volume of 5 µL. The method was validated according to the protocol ICH Q2R. Reproducibility and repeatability tests resulted in a smaller variation coefficient of 10%; the calibration curves in the concentration ranged from 1 to 20 mg L-1, with return linearity values greater than 0.99. The limits of detection and quantification were less than 1 mg L-1 and the method was satisfactory for specificity and selectivity tests using caffeine, which is often found in water bodies receiving effluent, and DES, an estrogen used in the treatment of prostate cancer. Selected samples underwent clean-up and pre-concentration treatments using solid phase extraction with commercial phase (C18 and molecularly imprinted polymers (MISPE. The analysis of MISPE extracts indicate that it is possible to obtain results with greater sensitivity and precision for analyses of complex environmental matrices, demonstrating that the developed method can be applied in complex environmental matrices.

  3. Surface Water in Hawaii

    Science.gov (United States)

    Oki, Delwyn S.

    2003-01-01

    Surface water in Hawaii is a valued resource as well as a potential threat to human lives and property. The surface-water resources of Hawaii are of significant economic, ecologic, cultural, and aesthetic importance. Streams supply more than 50 percent of the irrigation water in Hawaii, and although streams supply only a few percent of the drinking water statewide, surface water is the main source of drinking water in some places. Streams also are a source of hydroelectric power, provide important riparian and instream habitats for many unique native species, support traditional and customary Hawaiian gathering rights and the practice of taro cultivation, and possess valued aesthetic qualities. Streams affect the physical, chemical, and aesthetic quality of receiving waters, such as estuaries, bays, and nearshore waters, which are critical to the tourism-based economy of the islands. Streams in Hawaii pose a danger because of their flashy nature; a stream's stage, or water level, can rise several feet in less than an hour during periods of intense rainfall. Streams in Hawaii are flashy because rainfall is intense, drainage basins are small, basins and streams are steep, and channel storage is limited. Streamflow generated during periods of heavy rainfall has led to loss of property and human lives in Hawaii. Most Hawaiian streams originate in the mountainous interiors of the islands and terminate at the coast. Streams are significant sculptors of the Hawaiian landscape because of the erosive power of the water they convey. In geologically young areas, such as much of the southern part of the island of Hawaii, well-defined stream channels have not developed because the permeability of the surface rocks generally is so high that rainfall infiltrates before flowing for significant distances on the surface. In geologically older areas that have received significant rainfall, streams and mass wasting have carved out large valleys.

  4. {sup 226}Ra, {sup 228}Ra and {sup 210}Pb determination in surface water and groundwater by liquid scintillation counting

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Ligia S.; Moreira, Rubens M., E-mail: ligsfaria@gmail.com, E-mail: rubens@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The municipalities of Brumadinho and Nova Lima are located in the metropolitan region of Belo Horizonte city, in the State of Minas Gerais. These two sites are important due to being located inside an Environmental Protection Area inserted in the Iron Quadrangle. In addition to the mineral wealth, the region has geological features that include quartz conglomerates associated with uranium and a significant groundwater potential exhibiting quite peculiar and complex hydrogeological features, such as the quartzite aquifer itself. Nuclear techniques applied to hydrology, such as Liquid Scintillation Counting technique (LSC), make possible the evaluation of natural radioactivity in surface water and groundwater. The objectives of this study were the determination of the activities of the long half-life radionuclides of the uranium and thorium series, such as {sup 226}Ra, {sup 228}Ra and {sup 210}Pb, and provide an effective methodology to define if the direct consumption of these waters can cause risk to health due to its radioactivity. The results were compared with the recommendations of the Ministry of Health. (author)

  5. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment

  6. Determination of the ratio between phosphorus and uranium in surface waters selected in the State of Mexico

    International Nuclear Information System (INIS)

    Ordonez R, E.

    2001-01-01

    The agricultural regions lately, they have suffered a severe contamination for the big ones quantities of chemical fertilizers and of pesticides applied to improve their production and quality, increasing these in areas with temperatures but you lower that the average. For the importance of the physicochemical processes that they are made in the waters to settle down surface near to agricultural fields, the physicochemical characteristics were analysed of these waters to determine the contributions that they carry out the phosphate fertilizers that are carried by the escorrentia toward the borders and to make a pursuit of their variability during an agricultural cycle, in times of the summertime and of rains, as well as to observe the effect of the depth in these physicochemical properties. Its were sampling three borders and a spring that it served of white, all them located in the suburbs of the Xinantecatl (Nevado de Toluca), municipality of Zinacantepec, State of Mexico, area with the temperatures but drops registered in the region. They were carried out samplings in the first days of the months of April, July and November. The points of those sampled borders were the influent, the effluent and 3 different depths (lm, 3m and 5m). where was not possible sampling all the points, its were sampling only the one influent and the effluent. The selected physicochemical parameters were the temperature, the pH, the conductivity electric and the one oxygenates dissolved This determination in situ you carries out with a team portable of type Check-Mate, of interchangeable electrodes. The certain anions they were phosphates, nitrates, sulfates and bicarbonates; the measurement of the concentration of anions, one carries out for ultraviolet-visible light spectroscopy and titration. The cations analysed they were sodium, potassium, iron, calcium and magnesium. The cations concentration was determined by atomic absorption spectroscopy. The determination of the uranium

  7. Controllability of Surface Water Networks

    Science.gov (United States)

    Riasi, M. Sadegh; Yeghiazarian, Lilit

    2017-12-01

    To sustainably manage water resources, we must understand how to control complex networked systems. In this paper, we study surface water networks from the perspective of structural controllability, a concept that integrates classical control theory with graph-theoretic formalism. We present structural controllability theory and compute four metrics: full and target controllability, control centrality and control profile (FTCP) that collectively determine the structural boundaries of the system's control space. We use these metrics to answer the following questions: How does the structure of a surface water network affect its controllability? How to efficiently control a preselected subset of the network? Which nodes have the highest control power? What types of topological structures dominate controllability? Finally, we demonstrate the structural controllability theory in the analysis of a wide range of surface water networks, such as tributary, deltaic, and braided river systems.

  8. Pesticide residue determination in surface waters by stir bar sorptive extraction and liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Giordano, A; Fernández-Franzón, M; Ruiz, M J; Font, G; Picó, Y

    2009-03-01

    In this stir bar sorptive extraction (SBSE) method, 16 pesticides were extracted from surface water samples by sorption onto 1 mm polydimethylsiloxane layer coated on a 10-mm-length stir bar magnet. After liquid desorption of the analytes with 1 ml of methanol, the detection was performed on a liquid chromatography-tandem mass spectrometry with a triple quadrupole (QqQ) analyzer using selected reaction monitoring mode via electrospray ionization. Parameters affecting SBSE operation, including sample volume, salt addition, extraction time, stirring rate, and desorption conditions, have been evaluated. The optimized SBSE method required two 50 ml aliquots of surface water samples, one aliquot was added of 30% NaCl and stirred at 900 rpm during 1 h for testing five pesticides with log K(o/w) 3. The method was validated in spiked surface water samples at limits of quantifications (LOQs) and ten times the LOQs showing recoveries Albufera Lake and surrounding channels, showing that SBSE is a powerful tool for routine control analysis of pesticide residues in surface water.

  9. Studying, Determining The Radionuclide Of Tritum In The Water Samples (Rain, Surface Water) By Using Liquid Scintillation Counting (TRi-carb 3180TR/SL)

    International Nuclear Information System (INIS)

    Nguyen Thi Linh; Nguyen Dinh Tung; Truong Y; Le Nhu Sieu; Nguyen Van Phuc; Nguyen Van Phu; Nguyen Kim Thanh

    2014-01-01

    Tritium in the environment is of natural or man-made origin. Tritium is a radioactive isotope that occurs in the environment and is associated with the interaction of cosmic ray in the atmosphere. However, the most significant sources of tritium in the environment results from nuclear weapons testing in the atmosphere carried out during the late 1950s and early 1960s. Today, the most important new sources of tritium in the environments, such as power stations, processing and using of isotopes released the local tritium. The objective of this study is the application of the liquid scintillation technique to tritium analysis in water samples (rain, and surface waters). Following the Eichrom Tritium Column technique, an aliquot of the passed tritium resin sample (10 mL) is mixed with 10 mL of scintillation cocktail (Ultima Gold LLT, Packard) in 20-mL plastic- container vials and the sample activity is determined using a liquid scintillation spectrometer, Tri-carb 3180TR/SL. Counting efficiency is evaluated with internal standards. The tritium concentrations of water samples that were collected from DaLat, Lamdong range between 0 to 36.2 TU. (author)

  10. Water on graphene surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo, M C [Departamento de Sistemas Fisicos, Quimicos y Naturales, Facultad de Ciencias Experimentales, Universidad Pablo de Olavide, Carretera de Utrera, km 1, E-41013 Sevilla (Spain); Marti, J, E-mail: cgorbar@upo.e, E-mail: jordi.marti@upc.ed [Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, B4-B5 Campus Nord, E-08034 Barcelona, Catalonia (Spain)

    2010-07-21

    In this paper, we summarize the main results obtained in our group about the behavior of water confined inside or close to different graphene surfaces by means of molecular dynamics simulations. These include the inside and outside of carbon nanotubes, and the confinement inside a slit pore or a single graphene sheet. We paid special attention to some thermodynamical (binding energies), structural (hydrogen-bond distributions) and dynamic (infrared spectra) properties, and their comparison to their bulk counterparts.

  11. Determination of submicrogram-per-liter concentrations of caffeine in surface water and groundwater samples by solid-phase extraction and liquid chromatography

    Science.gov (United States)

    Burkhardt, M.R.; Soliven, P.P.; Werner, S.L.; Vaught, D.G.

    1999-01-01

    A method for determining submicrogram-per-liter concentrations of caffeine in surface water and groundwater samples has been developed. Caffeine is extracted from a 1 L water sample with a 0.5 g graphitized carbon-based solid-phase cartridge, eluted with methylene chloride-methanol (80 + 20, v/v), and analyzed by liquid chromatography with photodiode-array detection. The single-operator method detection limit for organic-free water samples was 0.02 ??g/L. Mean recoveries and relative standard deviations were 93 ?? 13% for organicfree water samples fortified at 0.04 ??g/L and 84 ?? 4% for laboratory reagent spikes fortified at 0.5 ??g/L. Environmental concentrations of caffeine ranged from 0.003 to 1.44 ??g/L in surface water samples and from 0.01 to 0.08 ??g/L in groundwater samples.

  12. Semi-permeable surface analytical reversed-phase column for the improved trace analysis of acidic pesticides in water with coupled-column reversed-phase liquid chromatography with UV detection. Determination of bromoxynil and bentazone in surface water.

    Science.gov (United States)

    Hogendoorn, E A; Westhuis, K; Dijkman, E; Heusinkveld, H A; den Boer, A C; Evers, E A; Baumann, R A

    1999-10-08

    The coupled-column (LC-LC) configuration consisting of a 3 microm C18 column (50 x 4.6 mm I.D.) as the first column and a 5 microm C18 semi-permeable-surface (SPS) column (150 x 4.6 mm I.D.) as the second column appeared to be successful for the screening of acidic pesticides in surface water samples. In comparison to LC-LC employing two C18 columns, the combination of C18/SPS-C18 significantly decreased the baseline deviation caused by the hump of the co-extracted humic substances when using UV detection (217 nm). The developed LC-LC procedure allowed the simultaneous determination of the target analytes bentazone and bromoxynil in uncleaned extracts of surface water samples to a level of 0.05 microg/l in less than 15 min. In combination with a simple solid-phase extraction step (200 ml of water on a 500 mg C18-bonded silica) the analytical procedure provides a high sample throughput. During a period of about five months more than 200 ditch-water samples originating from agricultural locations were analyzed with the developed procedure. Validation of the method was performed by randomly analyzing recoveries of water samples spiked at levels of 0.1 microg/l (n=10), 0.5 microg/l (n=7) and 2.5 microg/l (n=4). Weighted regression of the recovery data showed that the method provides overall recoveries of 95 and 100% for bentazone and bromoxynil, respectively, with corresponding intra-laboratory reproducibilities of 10 and 11%, respectively. Confirmation of the analytes in part of the samples extracts was carried out with GC-negative ion chemical ionization MS involving a derivatization step with bis(trifluoromethyl)benzyl bromide. No false negatives or positives were observed.

  13. Residue determination and levels of glyphosate in surface waters, sediments and soils associated with oil palm plantation in Tasik Chini, Pahang, Malaysia

    Science.gov (United States)

    Mardiana-Jansar, K.; Ismail, B. S.

    2014-09-01

    Levels of glyphosate and its main metabolite were determined in surface water, soil and sediment samples from an oil palm plantation area located at Tasik Chini, Pahang, Malaysia. The optimization analytical method has been developed for the determination of glyphosate herbicide and its metabolite amino-methyl-phosphonic acid (AMPA) in surface waters to a level of 0.1μg/L, while in sediments and soils to a level of 0.5μg/g with a good linearity in the calibration range of 1-100μg/L. The procedure involves a pre-columnderivatization step with 9-fluorenyl-methyl-chloroformate (FMOC-Cl) yielding highly fluorescent derivatives of the analytes which can be determined by HPLC with fluorescence detection. In the field, levels of glyphosate in surface waters ranges from not detected to 1.0mg/L, while in soils and sediments were from not detected to 6.0mg/kg. For AMPA, the residues in surface waters were between not detected to 2.0mg/L, while in soil and sediment samples were from not detected to 5mg/kg. This variation of glyphosate and AMPA levels depended directly on time of pesticide application and the season.

  14. Applying a method of chemical separation and mass spectrometry for the determination of radium-226 in surface water

    International Nuclear Information System (INIS)

    Sibello Hernandez, Rita Y; Cozzella, Maria Letizia; Guillen Arruebarrena, Aniel

    2014-01-01

    Radium-226 ( 226 Ra) is a naturally occurring radionuclide, alpha emitter with half-life of 1 622 years originating from uranium-238 ( 238 U). Its presence in drinking water is a major radiological hazards, which requires constant monitoring. The analytical techniques used in the determination of 226 Ra generally require the establishment of secular equilibrium and/or tedious separation of other elements. The main objective of this paper is to demonstrate the efficiency and speed of a method of preconcentration and separation of 226 Ra in natural water samples using coprecipitation with MnO 2 radius and purification by cation exchange resin Dowex 50WX8. Measurement technique was Quadrupole Mass Spectrometry and associated induced plasma ICP-Q-MS. The 226 Ra values obtained are in the range of 0,010-0,219 pg/L in natural waters analyzed

  15. Determination of Endocrine Disrupting Compounds in surface waters by means of chromatographic techniques coupled to mass spectrometry

    Directory of Open Access Journals (Sweden)

    M. Di Carro

    2011-01-01

    Full Text Available Two analytical methods were developed to study five endocrine disrupting compounds (4-n-nonylphenol, bisphenol A, estrone, 17β-estradiol and 17α-ethinylestradiol in waters. One method includes a fast liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS-MS analysis, while the second comprise a Stir Bar Sorptive Extraction (SBSE followed by a headspace derivatization and gaschromatography-mass spectrometry (GC-MS analysis. Passive samplers POCIS (Polar Organic Chemical Integrative Samplers were used as sampling and preconcentration steps in order to reach the very low levels of the analytes in environmental waters. Both methods were then applied to the determination of the analytes in different water samples.

  16. Determining TOC in Waters

    Science.gov (United States)

    Kehoe, Thomas J.

    1977-01-01

    The instrumental method for detecting total organic carbon (TOC) in water samples is detailed. The method's limitations are discussed and certain precautions that must be taken are emphasized. The subject of TOC versus COD and BOD is investigated and TOC is determined to be a valid indication of biological demand. (BT)

  17. Development of an analytical methodology for the determination of the antiparasitic drug toltrazuril and its two metabolites in surface water, soil and animal manure

    DEFF Research Database (Denmark)

    Olsen, Jesper; Björklund, Erland; Krogh, Kristine A

    2012-01-01

    This paper presents the development, optimization and validation of a LC-MS/MS methodology to determine the antiparasitic veterinary drug toltrazuril and its two main metabolites, toltrazuril sulfoxide and toltrazuril sulfone, in environmental surface water, soil and animal manure. Using solid...... phase extraction and selective pressurized liquid extraction with integrated clean-up, the analytical method allows for the determination of these compounds down to 0.06-0.13 ng L(-1) in water, 0.01-0.03 ng g(-1)dw in soil and 0.22-0.51 ng g(-1) dw in manure. The deuterated analog of toltrazuril...... was used as internal standard, and ensured method accuracy in the range 96-123% for water and 77-110% for soil samples. The developed method can also be applied to simultaneously determine steroid hormones in the solid samples. The antiparasitic drug and its metabolites were found in manure and soil up...

  18. Determination of geohydrologic framework and extent of d- water contamination using surface geophysical techniques at Picatinny Arsenal, New Jersey

    Science.gov (United States)

    Lacombe, Pierre

    1986-01-01

    Seismic-refraction, electric-resistivity sounding, and electromagnetic conductivity techniques were used to determine the geohydrologic framework and extent of groundwater contamination at Picatinny Arsenal in northern New Jersey. The area studied encompasses about 4 sq mi at the southern end of the Arsenal. The bedrock surface beneath the glacial sediments was delineated by seismic-refraction techniques. Data for 12 seismic lines were collected using a 12-channel engineering seismograph. Competent bedrock crops out on both sides of the valley, but is about 290 ft below land surface in the deepest part of the topographic valley. Where the exposed bedrock surface forms steep slopes on the valley side, it remains steep below the valley fill. Likewise, gentle bedrock valley slopes have gentle subsurface slopes. The deepest part of the bedrock valley is along the southern extension of the Green Pond fault. The electric-resistivity sounding technique was used to determine the sediment types. Data were collected from four sites using the offset Wenner electrode configuration. Below the surface layer, the sediments have apparent and computed resistivity values of 120 to 170 ohm-meters. These values correspond to a saturated fine-grained sediment such as silt or interbedded sand and clay. Groundwater contamination was by electromagnetic conductivity techniques using transmitting and receiving coils separated by 32.8 ft and 12 ft. Thirteen sites have apparent conductivity values exceeding 15 millimhos/m. Of these, seven sites indicate groundwater contamination from a variety of sources including a sanitary landfill, pyrotechnic testing ground, burning area, former domestic sewage field, salt storage facility, hazardous waste disposal lagoon, sewage treatment plant, and fertilizer storage shed. Three areas underlain by clay or muck are interpreted to be free of contamination. (Author 's abstract)

  19. Uranium determination in water

    International Nuclear Information System (INIS)

    Prudenzo, E.J.; Puga, Maria J.; Cerchietti, Maria L.R.; Arguelles, Maria G.

    2005-01-01

    In our laboratory, a procedure has been assessed to determine uranium content of water in normal situations. The method proposed without sample pre-treatment, is simple and rapid. Uranium mass is measured by fluorimetry. For calculation of detection limit (Ld) and quantification level (Lq) we used blank samples and the results were analyzed for different statistical test. The calculation of total propagated uncertainty and sources contribution on real samples are presented. (author)

  20. A molecular dynamics investigation of the surface tension of water nanodroplets and a new technique for local pressure determination through density correlation

    Science.gov (United States)

    Leong, Kai-Yang; Wang, Feng

    2018-04-01

    The surface tension of nanoscale droplets of water was studied with molecular dynamics simulations using the BLYPSP-4F water potential. The internal pressure of the droplet was measured using an empirical correlation between the pressure and density, established through a series of bulk simulations performed at pressures from 1 to 1000 bars. Such a procedure allows for reliable determination of internal pressure without the need to calculate the local virial. The surface tension, estimated with the Young-Laplace relation, shows good agreement with the Tolman equation with a Tolman length of -0.48 Å. The interface of a liquid water droplet is shown to be around 1.1-1.3 nm thick depending on radii. The fairly thick interface region puts a lower limit on the size of droplets that still have a bulk-like interior.

  1. Spatial variations of prokaryotic communities in surface water from India Ocean to Chinese marginal seas and their underlining environmental determinants

    Directory of Open Access Journals (Sweden)

    Xiaowei eZheng

    2016-02-01

    Full Text Available To illustrate the biogeographic patterns of prokaryotic communities in surface sea water, 24 samples were systematically collected across a large distance from Indian Ocean to Chinese marginal seas, with an average distance of 453 km between two adjacent stations. A total of 841,364 quality reads was produced by the high throughput DNA sequencing of the 16S rRNA genes. Phylogenetic analysis showed that Proteobacteria were predominant in all samples, with Alphaproteobacteria and Gammaproteobacteria being the two most abundant components. Cyanobacteria represented the second largest fraction of the total quality reads, and mainly included Prochlorococcus and Synechococcus. The semi-closed marginal seas, including South China Sea (SCS and nearby regions, exhibited a transition in community composition between oceanic and coastal seas, based on the distribution patterns of Prochlorococcus and Synechococcus as well as a non-metric multidimensional scaling (NMDS analysis. Distinct clusters of prokaryotes from coastal and open seas, and from different water masses in Indian Ocean were obtained by Bray-Curtis dissimilarity analysis at the OTU level, revealing a clear spatial heterogeneity. The major environmental factors correlated with the community variation in this broad scale were identified as salinity, temperature and geographic distance. Community comparison among regions shows that anthropogenic contamination is another dominant factor in shaping the biogeographic patterns of the microorganisms. These results suggest that environmental factors involved in complex interactions between land and sea act synergistically in driving spatial variations in coastal areas.

  2. Sorption properties of algae Spirogyra sp. and their use for determination of heavy metal ions concentrations in surface water.

    Science.gov (United States)

    Rajfur, Małgorzata; Kłos, Andrzej; Wacławek, Maria

    2010-11-01

    Kinetics of heavy-metal ions sorption by alga Spirogyra sp. was evaluated experimentally in the laboratory, using both the static and the dynamic approach. The metal ions--Mn(2+), Cu(2+), Zn(2+) and Cd(2+)--were sorbed from aqueous solutions of their salts. The static experiments showed that the sorption equilibria were attained in 30 min, with 90-95% of metal ions sorbed in first 10 min of each process. The sorption equilibria were approximated with the Langmuir isotherm model. The algae sorbed each heavy metal ions proportionally to the amount of this metal ions in solution. The experiments confirmed that after 30 min of exposition to contaminated water, the concentration of heavy metal ions in the algae, which initially contained small amounts of these metal ions, increased proportionally to the concentration of metal ions in solution. The presented results can be used for elaboration of a method for classification of surface waters that complies with the legal regulations. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Pesticide exposure assessment for surface waters in the EU. Part 2: Determination of statistically based run-off and drainage scenarios for Germany.

    Science.gov (United States)

    Bach, Martin; Diesner, Mirjam; Großmann, Dietlinde; Guerniche, Djamal; Hommen, Udo; Klein, Michael; Kubiak, Roland; Müller, Alexandra; Preuss, Thomas G; Priegnitz, Jan; Reichenberger, Stefan; Thomas, Kai; Trapp, Matthias

    2017-05-01

    In order to assess surface water exposure to active substances of plant protection products (PPPs) in the European Union (EU), the FOCUS (FOrum for the Co-ordination of pesticide fate models and their USe) surface water workgroup introduced four run-off and six drainage scenarios for Step 3 of the tiered FOCUSsw approach. These scenarios may not necessarily represent realistic worst-case situations for the different Member States of the EU. Hence, the suitability of the scenarios for risk assessment in the national authorisation procedures is not known. Using Germany as an example, the paper illustrates how national soil-climate scenarios can be developed to model entries of active substances into surface waters from run-off and erosion (using the model PRZM) and from drainage (using the model MACRO). In the authorisation procedure for PPPs on Member State level, such soil-climate scenarios can be used to determine exposure endpoints with a defined overall percentile. The approach allows the development of national specific soil-climate scenarios and to calculate percentile-based exposure endpoints. The scenarios have been integrated into a software tool analogous to FOCUS-SWASH which can be used in the future to assess surface water exposure in authorisation procedures of PPPs in Germany. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  4. Method development for determination of herbicides and insecticides in surface waters using solid-phase extraction and high performance liquid chromatography

    International Nuclear Information System (INIS)

    Lebre, Daniel Temponi

    2000-01-01

    Determination of low concentrations of pesticides in surface and ground waters requires high sensitivity analytical techniques. Solid-Phase Extraction (SPE) has been successfully employed to pre concentrate and extract pesticides compounds from water samples. High Performance Liquid Chromatography (HPLC) coupled with UV/Vis detector was used to separate and quantify the extracted compounds. In this work, samples of surface waters with known concentrations of herbicides (atrazine, simazine and trifluralin) and insecticides (aldicarb, carbofuran and carbaryl) were extracted by using SPE off-line technique. The compounds were separated and quantified by reverse phase HPLC with UV detection at 220 ηm. The extraction efficiency was compared between two columns filled with different materials: C 18 -bonded silica phase (500 mg) and copolymer styrenedivynilbenzene resin (250 mg). The results were evaluated as the percent recovery of compounds obtained using different solvents at different concentrations. The results showed that recovery of the analytes greater than 80 % were obtained in SPE columns filled with C 18 bonded silica phase with 6 mL of acetonitrile. Once the optimum conditions were chosen for simulate water samples, the method was validated through analytical and statistical procedures and applied for surface waters. The suitability of the method was verified for the studied compounds showing good sensitivity, i. e., concentrations within the range of 0.4 to 4.0 μgL -1 of pesticides could be quantified attending the limits proposed by official regulations. (author)

  5. MCX based solid phase extraction combined with liquid chromatography tandem mass spectrometry for the simultaneous determination of 31 endocrine-disrupting compounds in surface water of Shanghai.

    Science.gov (United States)

    Zhang, Hong-Chang; Yu, Xue-jun; Yang, Wen-chao; Peng, Jin-feng; Xu, Ting; Yin, Da-Qiang; Hu, Xia-lin

    2011-10-15

    A novel analytical method employing MCX (mixed-mode cationic exchange) based solid phase extraction (SPE) coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS) was developed to detect 31 endocrine-disrupting compounds (EDCs) in surface water samples simultaneously. The target EDCs belong to five classes, including seven estrogens, eight androgens, six progesterones, five adrenocortical hormones and five industrial compounds. In order to simultaneously concentrate the target EDCs and eliminate matrix interferences in the water samples, MCX SPE cartridges were employed for SPE, and then followed by a simple and highly efficient three-step sequential elution procedure. Two electrospray ionization (ESI) detection modes, positive (ESI+) and (ESI-), were optimized for HPLC-MS/MS analysis to obtain the highest sensitivity for all the EDCs. The limits of detection (LODs) were 0.02-1.9 ng L(-1), which are lower than or comparable to these reported in references. Wide linear ranges (LOD-100 ng L(-1) for ESI+ mode, and LOD-200 ng L(-1) for ESI- mode) were obtained with determination coefficients (R(2)) higher than 0.99 for all the compounds. With five internal standards, good recoveries (84.4-103.0%) of all the target compounds were obtained in selected surface water samples. The developed method was successfully applied to investigate the EDCs occurrence in the surface water of Shanghai by analyzing surface water samples from 11 sites. The results showed that nearly all the target compounds (30 in 31) were present in the surface water samples of Shanghai, of which three industrial compounds (4-t-OP, BPA, and BPF) showed the highest concentrations (median concentrations were 11.88-23.50 ng L(-1)), suggesting that industrial compounds were the dominating EDCs in the surface water of Shanghai, and much more attention should be paid on these compounds. Our present research demonstrated that SPE with MCX cartridges combined with HPLC-MS/MS was convenient

  6. Determination of the Geogenic Metal Background in Surface Water: Benchmarking Methodology for the Rivers of Saxony-Anhalt, Germany

    Directory of Open Access Journals (Sweden)

    Petra Schneider

    2017-01-01

    Full Text Available Geogenic concentrations are defined as those concentrations that represent the natural background without any anthropogenic influence. The paper describes a statistical method for determining geogenic metal concentrations in rivers based on the concept of “aggregated riverine landscapes” (ARLs, which applies to all rivers in the Federal State of Saxony-Anhalt (Germany. The methodology includes the pre-selection of existing data by eliminating all sampling locations from the database which have anthropogenic influence, the GIS-based allocation of the sampling locations with respect to the respective ARL being the evaluation units, and the assessment of the geogenic background by statistical calculation of the 90th percentile. After validation of the methodology, the existing database was complemented by additional measurements for regions with data gaps. About 85,000 records of water samples, 1400 records of sediment samples, and 920 records of suspended particulate samples were used for the determination of the geogenic metal concentrations in the rivers of Saxony-Anhalt. The investigation included the parameters Al, Ag, As, B, Ba, Be, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Se, Ti, U, V, and Zn. The investigation results offer the determination of regions with increased background levels for certain metals or metalloids in Saxony-Anhalt.

  7. Water at surfaces with tunable surface chemistries

    Science.gov (United States)

    Sanders, Stephanie E.; Vanselous, Heather; Petersen, Poul B.

    2018-03-01

    Aqueous interfaces are ubiquitous in natural environments, spanning atmospheric, geological, oceanographic, and biological systems, as well as in technical applications, such as fuel cells and membrane filtration. Where liquid water terminates at a surface, an interfacial region is formed, which exhibits distinct properties from the bulk aqueous phase. The unique properties of water are governed by the hydrogen-bonded network. The chemical and physical properties of the surface dictate the boundary conditions of the bulk hydrogen-bonded network and thus the interfacial properties of the water and any molecules in that region. Understanding the properties of interfacial water requires systematically characterizing the structure and dynamics of interfacial water as a function of the surface chemistry. In this review, we focus on the use of experimental surface-specific spectroscopic methods to understand the properties of interfacial water as a function of surface chemistry. Investigations of the air-water interface, as well as efforts in tuning the properties of the air-water interface by adding solutes or surfactants, are briefly discussed. Buried aqueous interfaces can be accessed with careful selection of spectroscopic technique and sample configuration, further expanding the range of chemical environments that can be probed, including solid inorganic materials, polymers, and water immiscible liquids. Solid substrates can be finely tuned by functionalization with self-assembled monolayers, polymers, or biomolecules. These variables provide a platform for systematically tuning the chemical nature of the interface and examining the resulting water structure. Finally, time-resolved methods to probe the dynamics of interfacial water are briefly summarized before discussing the current status and future directions in studying the structure and dynamics of interfacial water.

  8. Determination of adsorbable organic halogens in surface water samples by combustion-microcoulometry versus combustion-ion chromatography titration.

    Science.gov (United States)

    Kinani, Aziz; Sa Lhi, Hacène; Bouchonnet, Stéphane; Kinani, Said

    2018-03-02

    Adsorbable Organic Halogen (AOX) is an analytical parameter of considerable interest since it allows to evaluate the amount of organohalogen disinfection by-products (OXBPs) present in a water sample. Halogen speciation of AOX into adsorbable organic chlorine, bromine and iodine, respectively AOCl, AOBr and AOI, is extremely important since it has been shown that iodinated and brominated organic by-products tend to be more toxic than their chlorinated analogues. Chemical speciation of AOX can be performed by combustion-ion chromatography (C-IC). In the present work, the effectiveness of the nitrate wash according to ISO 9562 standard method protocol to eliminate halide ions interferences was firstly examined. False positive AOX values were observed when chloride concentration exceeded 100 ppm. The improvements made to the washing protocol have eliminated chloride interference for concentrations up to 1000 ppm. A C-IC method for chemical speciation of AOX into AOCl, AOBr, and AOI has been developed and validated. The most important analytical parameters were investigated. The following optimal conditions were established: an aqueous solution containing 2.4 mM sodium bicarbonate/2.0 mM sodium carbonate, and 2% acetone (v/v) as mobile phase, 2 mL of aqueous sodium thiosulfate (500 ppm) as absorption solution, 0.2 mL min -1 as water inlet flow rate for hydropyrolysis, and 10 min as post-combustion time. The method was validated according to NF T90-210 standard method. Calibration curves fitted through a quadratic equation show coefficients of determination (r 2 ) greater than 0.9998, and RSD less than 5%. The LOQs were 0.9, 4.3, and 5.7 μg L -1 Cl for AOCl, AOBr, and AOI, respectively. The accuracy, in terms of relative error, was within a ± 10% interval. The applicability of the validated method was demonstrated by the analysis of twenty four water samples from three rivers in France. The measurements reveals AOX amounts above 10

  9. Highly fluorescent carbon dots as nanoprobes for sensitive and selective determination of 4-nitrophenol in surface waters

    International Nuclear Information System (INIS)

    Ahmed, Gaber Hashem Gaber; Laíño, Rosana Badía; Calzón, Josefa Angela García; García, Marta Elena Díaz

    2015-01-01

    We report on the synthesis of carbon dots (C-dots) by thermal carbonization of a mixture of ethyleneglycol bis-(2-aminoethyl ether)-N,N,N’,N’-tetraacetic acid (EGTA) and tris(hydroxymethyl)aminomethane (Tris). The resulting C-dots were characterized by X-ray diffraction, proton and carbon nuclear magnetic resonance, FTIR and fluorescence spectroscopy, and high-resolution TEM. The data reveal that the C-dots are mainly capped with hydroxy and carbonyl groups and are highly fluorescent with an emission peak that shifts from 427 to 438 nm if the excitation wavelength is increased from 310 to 360–370 nm. Fluorescence is quenched by 4-nitrophenol (4-NP), and this effect was exploited to design a simple and rapid protocol for the determination of 4-NP. The detection limit is 28 nM and the linear range extends from 0.1 to 50 μM. The method was successfully applied to the determination of 4-NP in spiked river and sea waters. (author)

  10. Determination of trace quaternary ammonium surfactants in water by combining solid-phase extraction with surface-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Chen, Y C; Sun, M C

    2001-01-01

    This study demonstrates the feasibility of combining solid-phase extraction (SPE) with surface-assisted laser desorption/ionization (SALDI) mass spectrometry to determine trace quaternary ammonium surfactants in water. The trace surfactants in water were directly concentrated on the surface of activated carbon sorbent in SPE. The activated carbon sorbent was then mixed with the SALDI liquid for SALDI analysis. No SPE elution procedure was necessary. Experimental results indicate that the surfactants with longer chain alkyl groups exhibit higher sensitivities than those with shorter chain alkyl groups in SPE-SALDI analysis. The detection limit for hexadecyltrimethylammonium bromide is around 10 ppt in SPE-SALDI analysis by sampling 100 mL of aqueous solution, while that of tetradecyltrimethylammonium bromide is about 100 ppt. The detection limit for decyltrimethylammonium bromide and dodecyltrimethylammonium bromide is in the low-ppb range. Copyright 2001 John Wiley & Sons, Ltd.

  11. Sustaining dry surfaces under water

    DEFF Research Database (Denmark)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional...... mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have...... not been investigated, and are critically important to maintain surfaces dry under water.In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical...

  12. Determination of surface and groundwater quality in the Orontes basin (Syria) and the negative effect of some pollutants on the water, soil, and plants at this area

    International Nuclear Information System (INIS)

    Kassem, A.

    2005-01-01

    This work deals with the physical/chemical characteristics and quality of surface and ground water in the basin of the Orontes river in Syria. It also deals with concentration of basic elements and trace elements in water, soil and some plant leaves in that area. The internationally acknowledged methods were used to determine the physical constituents and to analyze elements of the most important basic and sub compounds in 95 water samples (77 ground samples and 18 surface samples). The instrumental Neutron Activation Analysis was used to analyze some major elements and trace elements in 18 soil samples and 9 plant leave samples. Evaluation of analysis results of those samples shows the great geo-ecological and geographic effect and the effect of human activities on polluting the water, soil and plants according to quality of irrigation water, effect of air, liquid and solid rejects of the industrial and municipal sites, nature and repetition of plantations and type of fertilizers and pesticides used in the studied area.(author)

  13. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    OpenAIRE

    Kostik, Vesna; Bauer, Biljana; Kavrakovski, Zoran

    2014-01-01

    The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupl...

  14. Tritium determination in water

    International Nuclear Information System (INIS)

    Gavini, Ricardo M.

    2008-01-01

    An analytical procedure for the determination of tritium in water is described in this paper. The determination is carried out in presence of other radionuclides, such as Fe-55, Ni-63, Mn-54, Zn-65, Co-60, Cd-109, Sr-90, Cs-134 and Cs-137. The method consists in a simple distillation stage prior to measurement by liquid scintillation counting. The samples containing beta and gamma emitters are conditioned with a (NO 3 ) 2 Pb solution and Na(OH) up to pH = 7 - 8. This produces lead hydroxide precipitation that allows fixing volatile elements, which could be transported together with tritium, and may increase the extinction degree of the sample or interfere with the counting process. Special attention must be paid if presence of Fe-55 (E max ∼ 5.95 keV) is suspected as it might not be distinguished from tritium (E max ∼ 18 keV), leading to an overestimation of tritium activity. Different tests were carried to obtain the optimum method conditions, to achieve the purification of the tritium and a pH near to 7 in the distilled. The detection limit (2σ) was 8.0 Bq/l and the distillation performance was 98.3 %. This technique was applied to water samples containing Fe-55 and other gamma radionuclides in 1M hydrochloric acid media in successive Environmental Measurements Laboratory (EML), U.S. Department of Energy (DOE) intercomparison programs. The results obtained were very satisfactory and are presented in this paper. (author)

  15. Determination of physical and dynamic properties of suspended particles in water column with ultrasonic scanning in between the water surface and stable sediment layer.

    Science.gov (United States)

    Acar, Dursun; Alpar, Bedri; Ozeren, Sinan; Cagatay, Namık; Sari, Erol; Vardar, Denizhan; Eris, Kadir

    2015-04-01

    The behavior of seafloor sediment with its water column should be known against any occurrences of anoxic or oxic conditions. The most important ones of these conditions are possible leakage of natural gas or escape of liquids from sediment. On the basis of combined solid/liquid flow dynamics in sedimentation, such kind of events can change, even in an effective manner, the dynamic movements of molecules and their cumulative mass of particules, i.e. the suspended materials. The deployment of suitable sediment traps or ultrasonic transducers somewhere in the water column are not easy attempts in order to obtain useful information about the state of suspended materials during sedimentation. These are usually bulky instruments; therefore they may behave like an anti-move suppresser on the particles moving in the float direction, in oxic and anoxic manner. These instruments, on the other hand, may cover the effects of diffusive flow or bubble formed gas and fluid escape from the sediment surface into the water column. Ultrasonic scanners, however, are able to make observations in a remote manner, without affecting such artificial events. Our field trials were successfully completed at the historical estuary called Halic of Marmara sea . The physical properties; such as the velocity of particles, their travel directions, their dimensions and the ability to observe anti-compositor crushes of shock waves of the bubbles are only a few of these observations in natural ambience. The most important problem solved about water pressure during 3 atmosphere . The sensor has been tested successfully few times. We used the ''High voltage electric isolator oil filling'' to the inside of the scanner for pressure equalization between outer side and inner body of probe at a depth of (20 meters) beneath the sea surface . The transmitted signals by the planar crystal of the transducer become weaker under the pressure of overlying water column in depths. Our efforts are now focused on the

  16. Determining lake surface water temperatures worldwide using a tuned one-dimensional lake model (FLake, v1)

    Science.gov (United States)

    Layden, Aisling; MacCallum, Stuart N.; Merchant, Christopher J.

    2016-06-01

    A tuning method for FLake, a one-dimensional (1-D) freshwater lake model, is applied for the individual tuning of 244 globally distributed large lakes using observed lake surface water temperatures (LSWTs) derived from along-track scanning radiometers (ATSRs). The model, which was tuned using only three lake properties (lake depth, snow and ice albedo and light extinction coefficient), substantially improves the measured mean differences in various features of the LSWT annual cycle, including the LSWTs of saline and high altitude lakes, when compared to the observed LSWTs. Lakes whose lake-mean LSWT persists below 1 °C for part of the annual cycle are considered to be seasonally ice-covered. For trial seasonally ice-covered lakes (21 lakes), the daily mean and standard deviation (2σ) of absolute differences between the modelled and observed LSWTs are reduced from 3.07 °C ± 2.25 °C to 0.84 °C ± 0.51 °C by tuning the model. For all other trial lakes (14 non-ice-covered lakes), the improvement is from 3.55 °C ± 3.20 °C to 0.96 °C ± 0.63 °C. The post tuning results for the 35 trial lakes (21 seasonally ice-covered lakes and 14 non-ice-covered lakes) are highly representative of the post-tuning results of the 244 lakes. For the 21 seasonally ice-covered lakes, the modelled response of the summer LSWTs to changes in snow and ice albedo is found to be statistically related to lake depth and latitude, which together explain 0.50 (R2adj, p = 0.001) of the inter-lake variance in summer LSWTs. Lake depth alone explains 0.35 (p = 0.003) of the variance. Lake characteristic information (snow and ice albedo and light extinction coefficient) is not available for many lakes. The approach taken to tune the model, bypasses the need to acquire detailed lake characteristic values. Furthermore, the tuned values for lake depth, snow and ice albedo and light extinction coefficient for the 244 lakes provide some guidance on improving FLake LSWT modelling.

  17. Wetland Surface Water Processes

    National Research Council Canada - National Science Library

    1993-01-01

    .... Temporary storage includes channel, overbank, basin, and groundwater storage. Water is removed from the wetland through evaporation, plant transpiration, channel, overland and tidal flow, and groundwater recharge...

  18. The method of determining surface water erosion influence on agricultural valorization of soils with usage of geoprocessing techniques and spatial information systems

    Directory of Open Access Journals (Sweden)

    Prus Barbara

    2016-12-01

    Full Text Available The aim of the paper is to propose methodical solutions concerning synthetic agricultural analysis of production space which consists in combined (synthetic – in spatial and statistical contexts – analysis and evaluation of quality and farming utility of soils in connection with soils erosive risk level. The paper is aimed at presentation of methodology useful in such type of analyses as well as demonstration to what extent the areas of farming production space being subject to restrictive protection are exposed to destructive effect of surface water erosion. Own factor (HDSP.E was suggested, which is a high degree synthesis of soil protection in connection with degrees of surface water erosion risk. The proposed methodology was used for detailed spatial analyses performed for Tomice – the Małopolska rural commune (case study. The area model elaborated for the proposed methodology’s purpose faced with soils mechanical composition allowed to make a model of surface water erosion in five-grade scale. Synthetic evaluation (product of spatial objects on numerous thematic layers of quality and farming utility of soils and also zones of surface water erosion risk allowed to assign spatial distribution of HDSP.E factor (abbreviation of high degree of soil protection combined with erosion. The analyses enabled to determine proportional contribution of the most valuable resources of farming production space that are subject to soil erosion negative phenomenon. Geoprocessing techniques used for the analyses of environmental elements of farming production space were applied in the paper. The analysis of spatial distribution of researched phenomena was elaborated in Quantum GIS programme.

  19. Determination of six microcystins and nodularin in surface and drinking waters by on-line solid phase extraction-ultra high pressure liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Beltrán, Eduardo; Ibáñez, María; Sancho, Juan Vicente; Hernández, Félix

    2012-11-30

    Microcystins and nodularin are cyclic peptides hepatotoxins produced by cyanobacterial genera (blue-green algae). Toxic cyanobacterial blooms are a worldwide problem, as reported in several countries, like China, Australia, or the United States. Therefore, it is necessary to develop sensitive and reliable analytical methodology to determine this type of toxins in water at parts per billion levels, or even lower. In this work, the potential of solid-phase extraction coupled on-line to ultra-high-pressure liquid chromatography/electrospray tandem mass spectrometry (SPE-UHPLC-MS/MS) has been investigated for the efficient quantification and confirmation of microcystins LR, RR, YR, LY, LW, LF and nodularin in surface and drinking water samples, at sub-ppb levels. The method developed involves the injection of only 1 mL of water sample into the on-line SPE-UHPLC-MS/MS system and allows the rapid determination of the compounds selected (8 min of chromatographic run), avoiding laborious sample treatment. The method was validated in surface and drinking water by means of recovery experiments at 0.25 and 1 μg L(-1). Average recoveries (n=5) ranged from 71 to 116%, with relative standard deviations (RSDs) lower than 15%. For microcystins LR, RR, YR and nodularin, a third level was also assayed (0.1 μg L(-1)) obtaining satisfactory data too. Limits of detection between 0.002 and 0.0405 μg L(-1) were estimated (0.0005 μg L(-1) for nodularin). The developed method was applied to the analysis of water samples collected in the province of Castellón (Spain). The acquisition of three MS/MS transitions for each compound allowed the unequivocal confirmation of positive samples, which was supported by the accomplishment of ion intensity ratios and retention time when compared with reference standards. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Determination of eight pesticides of varying polarity in surface waters using solid phase extraction with multiwalled carbon nanotubes and liquid chromatography-linear ion trap mass spectrometry

    International Nuclear Information System (INIS)

    Dahane, Soraya; Derdour, Aicha; García, María Dolores Gil; Moreno, Ana Uclés; Galera, María Martínez; Viciana, María del Mar Socías

    2015-01-01

    We describe a MWCNT-based method for the solid-phase extraction of eight pesticides from environmental water samples. The analytes are extracted from 100 mL samples at pH 5.0 (containing 5 mmol L −1 of KCl) by passing the solution through a column filled with 20 mg of multiwalled carbon nanotubes. Following elution, the pesticides were determined by LC and electrospray ionization hybrid quadrupole linear ion trap MS. Two selected reaction monitoring transitions were monitored per compound, the most intense one being used for quantification and the second one for confirmation. In addition, an information-dependent acquisition experiment was performed for unequivocal confirmation of positive findings. Matrix effect was not found in real waters and therefore the quantitation was carried out with calibration graphs built with solvent based standards. Except for cymoxanil, the detection and quantitation limits in surface waters are in the range from 0.3 to 9.5 ng L −1 and 1.6 to 45.2 ng L −1 , respectively. Recoveries from spiked ultrapure water are ∼100 %, except for the most polar pesticides methomyl and cymoxanil. The same behavior is found for real water samples (except for phosalone). The relative standard deviation is <10 % in all cases. (author)

  1. Flame atomic absorption spectrometric determination of heavy metals in aqueous solution and surface water preceded by co-precipitation procedure with copper(II) 8-hydroxyquinoline

    Science.gov (United States)

    Ipeaiyeda, Ayodele Rotimi; Ayoade, Abisayo Ruth

    2017-12-01

    Co-precipitation procedure has widely been employed for preconcentration and separation of metal ions from the matrices of environmental samples. This is simply due to its simplicity, low consumption of separating solvent and short duration for analysis. Various organic ligands have been used for this purpose. However, there is dearth of information on the application of 8-hydroxyquinoline (8-HQ) as ligand and Cu(II) as carrier element. The use of Cu(II) is desirable because there is no contamination and background adsorption interference. Therefore, the objective of this study was to use 8-HQ in the presence of Cu(II) for coprecipitation of Cd(II), Co(II), Cr(III), Ni(II) and Pb(II) from standard solutions and surface water prior to their determinations by flame atomic absorption spectrometry (FAAS). The effects of pH, sample volume, amount of 8-HQ and Cu(II) and interfering ions on the recoveries of metal ions from standard solutions were monitored using FAAS. The water samples were treated with 8-HQ under the optimum experimental conditions and metal concentrations were determined by FAAS. The metal concentrations in water samples not treated with 8-HQ were also determined. The optimum recovery values for metal ions were higher than 85.0%. The concentrations (mg/L) of Co(II), Ni(II), Cr(III), and Pb(II) in water samples treated with 8-HQ were 0.014 ± 0.002, 0.03 ± 0.01, 0.04 ± 0.02 and 0.05 ± 0.02, respectively. These concentrations and those obtained without coprecipitation technique were significantly different. Coprecipitation procedure using 8-HQ as ligand and Cu(II) as carrier element enhanced the preconcentration and separation of metal ions from the matrix of water sample.

  2. Determination of radium in water

    Energy Technology Data Exchange (ETDEWEB)

    Hohorst, F.A.; Huntley, M.W.; Hartenstein, S.D.

    1995-10-01

    These detailed work instructions (DWIs) are tailored for the analysis of radium-226 and radium-228 in drinking water supplies from ground water and surface water sources and composites derived from them. The instructions have been adapted from several sources, including a draft EPA method. One objective was to minimize the generation of mixed wastes. Quantitative determinations of actinium-228 are made at 911 keV. The minimum detection level (MDL) for the gamma spectrometric measurements at this energy vary with matrix, volume, geometry, detector, background, and counting statistics. The range of MDL`s for current detectors is 0.07 to 0.5 Bq/sample. Quantitative determinations of radium-226 are made by counting the high energy alpha particles which radium-226 progeny emit using liquid scintillation counting (LSC). The minimum detectable activity (MDA) is 3.8 E-3 Bq/sample. The maximum concentration which may be counted on available instruments without dilution is about 2 E + 5 Bq/sample. Typically, this determination of radium in a 2 L sample has a yield of 80%. If radium-228 is determined using a 16 h count after 50 h grow-in, the typical MDL is 1 E-9 to 8 E-9 {mu}Ci/mL (1 to 8 pCi/L). If radium-226 is determined using a 2.5 h count after 150 h grow-in, the typical MDA is about 1 E-10 {mu}Ci/mL (0. 1 pCi/L).

  3. Determination of radium in water

    International Nuclear Information System (INIS)

    Hohorst, F.A.; Huntley, M.W.; Hartenstein, S.D.

    1995-10-01

    These detailed work instructions (DWIs) are tailored for the analysis of radium-226 and radium-228 in drinking water supplies from ground water and surface water sources and composites derived from them. The instructions have been adapted from several sources, including a draft EPA method. One objective was to minimize the generation of mixed wastes. Quantitative determinations of actinium-228 are made at 911 keV. The minimum detection level (MDL) for the gamma spectrometric measurements at this energy vary with matrix, volume, geometry, detector, background, and counting statistics. The range of MDL's for current detectors is 0.07 to 0.5 Bq/sample. Quantitative determinations of radium-226 are made by counting the high energy alpha particles which radium-226 progeny emit using liquid scintillation counting (LSC). The minimum detectable activity (MDA) is 3.8 E-3 Bq/sample. The maximum concentration which may be counted on available instruments without dilution is about 2 E + 5 Bq/sample. Typically, this determination of radium in a 2 L sample has a yield of 80%. If radium-228 is determined using a 16 h count after 50 h grow-in, the typical MDL is 1 E-9 to 8 E-9 μCi/mL (1 to 8 pCi/L). If radium-226 is determined using a 2.5 h count after 150 h grow-in, the typical MDA is about 1 E-10 μCi/mL (0. 1 pCi/L)

  4. Bioregional Assessments: Determining the Impacts of Coal Resource Development on Water Resources in Australia through Groundwater, Surface Water and Ecological Modelling

    Science.gov (United States)

    Peeters, L. J.; Post, D. A.; Crosbie, R.; Holland, K.

    2017-12-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States, in Australia extraction of methane from coal bed methane deposits (termed `coal seam gas' in Australia) has been the focus to date. The two sources of methane share many of the same characteristics including the potential requirement for hydraulic fracturing. However, as coal seam gas deposits generally occur at shallower depths than shale gas, the potential impacts of extraction on surface and groundwater resources may be of even greater concern. The Australian Federal Government commissioned a multi-disciplinary programme of bioregional assessments to improve understanding of the potential impacts of coal seam gas and large coal mining activities on water resources and water-dependent assets across six bioregions Australia. A bioregional assessment is a transparent scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. The first step in the analysis is to establish the most likely scenario for coal development in each region and establish a causal pathway linking coal development to impacts to the social, economic and ecological functioning of water resources. This forms the basis for a sequence of probabilistic geological, hydrogeological, hydrological and ecological models to quantify the probability of potential impacts. This suite of models is developed independent of the proponents and regulators of coal resource developments and so can provide unbiased information to all stakeholders. To demonstrate transparency of the modelling, all inputs, outputs and executables will be available from http://www.bioregionalassessments.gov.au. The analysis delineated a zone of potential hydrological change for each region, outside of which impacts

  5. Determining the terrain characteristics related to the surface expression of subsurface water pressurization in permafrost landscapes using susceptibility modelling

    Directory of Open Access Journals (Sweden)

    J. E. Holloway

    2017-06-01

    Full Text Available Warming of the Arctic in recent years has led to changes in the active layer and uppermost permafrost. In particular, thick active layer formation results in more frequent thaw of the ice-rich transient layer. This addition of moisture, as well as infiltration from late season precipitation, results in high pore-water pressures (PWPs at the base of the active layer and can potentially result in landscape degradation. To predict areas that have the potential for subsurface pressurization, we use susceptibility maps generated using a generalized additive model (GAM. As model response variables, we used active layer detachments (ALDs and mud ejections (MEs, both formed by high PWP conditions at the Cape Bounty Arctic Watershed Observatory, Melville Island, Canada. As explanatory variables, we used the terrain characteristics elevation, slope, distance to water, topographic position index (TPI, potential incoming solar radiation (PISR, distance to water, normalized difference vegetation index (NDVI; ME model only, geology, and topographic wetness index (TWI. ALDs and MEs were accurately modelled in terms of susceptibility to disturbance across the study area. The susceptibility models demonstrate that ALDs are most probable on hill slopes with gradual to steep slopes and relatively low PISR, whereas MEs are associated with higher elevation areas, lower slope angles, and areas relatively far from water. Based on these results, this method identifies areas that may be sensitive to high PWPs and helps improve our understanding of geomorphic sensitivity to permafrost degradation.

  6. Determination of biocides and pesticides by on-line solid phase extraction coupled with mass spectrometry and their behaviour in wastewater and surface water

    International Nuclear Information System (INIS)

    Singer, Heinz; Jaus, Sylvia; Hanke, Irene; Lueck, Alfred; Hollender, Juliane; Alder, Alfredo C.

    2010-01-01

    This study focused on the input of hydrophilic biocides into the aquatic environment and on the efficiency of their removal in conventional wastewater treatment by a mass flux analysis. A fully automated method consisting of on-line solid phase extraction coupled to LC-ESI-MS/MS was developed and validated for the simultaneous trace determination of different biocidal compounds (1,2-benzisothiazoline-3-one (BIT), 3-Iodo-2-propynylbutyl-carbamate (IPBC), irgarol 1051 and 2-N-octyl-4-isothiazolinone (octhilinone, OIT), carbendazim, diazinon, diuron, isoproturon, mecoprop, terbutryn and terbutylazine) and pharmaceuticals (diclofenac and sulfamethoxazole) in wastewater and surface water. In the tertiary effluent, the highest average concentrations were determined for mecoprop (1010 ng/L) which was at comparable levels as the pharmaceuticals diclofenac (690 ng/L) and sulfamethoxazole (140 ng/L) but 1-2 orders of magnitude higher than the other biocidal compounds. Average eliminations for all compounds were usually below 50%. During rain events, increased residual amounts of biocidal contaminants are discharged to receiving surface waters. - Incomplete removal of biocides and pesticides during wastewater treatment.

  7. Determination of biocides and pesticides by on-line solid phase extraction coupled with mass spectrometry and their behaviour in wastewater and surface water

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Heinz; Jaus, Sylvia; Hanke, Irene; Lueck, Alfred; Hollender, Juliane [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Duebendorf (Switzerland); Alder, Alfredo C., E-mail: alfredo.alder@eawag.c [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Duebendorf (Switzerland)

    2010-10-15

    This study focused on the input of hydrophilic biocides into the aquatic environment and on the efficiency of their removal in conventional wastewater treatment by a mass flux analysis. A fully automated method consisting of on-line solid phase extraction coupled to LC-ESI-MS/MS was developed and validated for the simultaneous trace determination of different biocidal compounds (1,2-benzisothiazoline-3-one (BIT), 3-Iodo-2-propynylbutyl-carbamate (IPBC), irgarol 1051 and 2-N-octyl-4-isothiazolinone (octhilinone, OIT), carbendazim, diazinon, diuron, isoproturon, mecoprop, terbutryn and terbutylazine) and pharmaceuticals (diclofenac and sulfamethoxazole) in wastewater and surface water. In the tertiary effluent, the highest average concentrations were determined for mecoprop (1010 ng/L) which was at comparable levels as the pharmaceuticals diclofenac (690 ng/L) and sulfamethoxazole (140 ng/L) but 1-2 orders of magnitude higher than the other biocidal compounds. Average eliminations for all compounds were usually below 50%. During rain events, increased residual amounts of biocidal contaminants are discharged to receiving surface waters. - Incomplete removal of biocides and pesticides during wastewater treatment.

  8. Analysis of molybdenum, tungsten, and vanadium in surface water of the Atlantic Ocean using solid phase extraction with 8-hydroxyquinoline and ICP MS determination

    Science.gov (United States)

    Rimskaya-Korsakova, M. N.; Berezhnaya, E. D.; Dubinin, A. V.

    2017-07-01

    An analytical technique is proposed to determine ultratrace concentrations of Mo, V, and W found in seawater using mass spectrometry with inductively coupled plasma (ICP MS) after preliminary concentration by solid-phase extraction of metal complexes with 8-hydroxyquinoline (8-HQ) on C18 octadecyl silica. The technique utilizes 150 mL of a water sample. A preconcentration factor 50 is obtained. The detection limits are 0.25 nmol/kg, 0.041 nmol/kg, and 5 pmol/kg for Mo, V, and W, respectively. Dissolved Mo, V, and Wconcentrations in surface seawater from Atlantic Ocean transect were determined. The concentrations ranges along the transect were: 91-108 nmol/kg for Mo, 28-35 nmol/kg for V, and 55-75 pmol/kg for W. The Mo/W ratio varied from 1300 to 1800.

  9. Total Nitrogen in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess nitrogen in surface water can result in eutrophication. TOTALN is reported in kilograms/hectare/year. More information about these resources, including the...

  10. Total Phosphorus in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess phosphorus in surface water can result in eutrophication. TOTALP is reported in kilograms/hectare/year. More information about these resources, including the...

  11. Free Surface Water Tunnel (FSWT)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Free Surface Water Tunnel consists of the intake plenum, the test section and the exit plenum. The intake plenum starts with a perforated pipe that...

  12. Geochemical and isotopic determination of deep groundwater contributions and salinity to the shallow groundwater and surface water systems, Mesilla Basin, New Mexico, Texas, and Mexico

    Science.gov (United States)

    Robertson, A.; Carroll, K. C.; Kubicki, C.; Purtshert, R.

    2017-12-01

    The Mesilla Basin/Conejos-Médanos aquifer system, extending from southern New Mexico to Chihuahua, Mexico, is a priority transboundary aquifer under the 2006 United States­-Mexico Transboundary Aquifer Assessment Act. Declining water levels, deteriorating water quality, and increasing groundwater use by municipal, industrial, and agricultural users on both sides of the international border raise concerns about long-term aquifer sustainability. Relative contributions of present-day and "paleo" recharge to sustainable fresh groundwater yields has not been determined and evidence suggests that a large source of salinity at the distal end of the Mesilla Basin is saline discharge from deep groundwater flow. The magnitude and distribution of those deep saline flow paths are not determined. The contribution of deep groundwater to discharge and salinity in the shallow groundwater and surface water of the Mesilla Basin will be determined by collecting discrete groundwater samples and analyzing for aqueous geochemical and isotopic tracers, as well as the radioisotopes of argon and krypton. Analytes include major ions, trace elements, the stable isotopes of water, strontium and boron isotopes, uranium isotopes, the carbon isotopes of dissolved inorganic carbon, noble gas concentrations and helium isotope ratios. Dissolved gases are extracted and captured from groundwater wells using membrane contactors in a process known as ultra-trace sampling. Gas samples are analyzed for radioisotope ratios of krypton by the ATTA method and argon by low-level counting. Effectiveness of the ultra-trace sampling device and method was evaluated by comparing results of tritium concentrations to the krypton-85 content. Good agreement between the analyses, especially in samples with undetectable tritium, indicates that the ultra-trace procedure is effective and confirms that introduction of atmospheric air has not occurred. The geochemistry data indicate a complex system of geochemical

  13. Assessment of hydrogeologic terrains, well-construction characteristics, groundwater hydraulics, and water-quality and microbial data for determination of surface-water-influenced groundwater supplies in West Virginia

    Science.gov (United States)

    Kozar, Mark D.; Paybins, Katherine S.

    2016-08-30

    In January 2014, a storage tank leaked, spilling a large quantity of 4-methylcyclohexane methanol into the Elk River in West Virginia and contaminating the water supply for more than 300,000 people. In response, the West Virginia Legislature passed Senate Bill 373, which requires the West Virginia Department of Health and Human Resources (WVDHHR) to assess the susceptibility and vulnerability of public surface-water-influenced groundwater supply sources (SWIGS) and surface-water intakes statewide. In response to this mandate for reassessing SWIGS statewide, the U.S. Geological Survey (USGS), in cooperation with the WVDHHR, Bureau of Public Health, Office of Environmental Health Services, compiled available data and summarized the results of previous groundwater studies to provide the WVDHHR with data that could be used as part of the process for assessing and determining SWIGS.

  14. An On-Line Solid Phase Extraction-Liquid Chromatography-Tandem Mass Spectrometry Method for the Determination of Perfluoroalkyl Acids in Drinking and Surface Waters

    Directory of Open Access Journals (Sweden)

    Michela Mazzoni

    2015-01-01

    Full Text Available An UHPLC-MS/MS multiresidue method based on an on-line solid phase extraction (SPE procedure was developed for the simultaneous determination of 9 perfluorinated carboxylates (from 4 to 12 carbon atoms and 3 perfluorinated sulphonates (from 4 to 8 carbon atoms. This work proposes using an on-line solid phase extraction before chromatographic separation and analysis to replace traditional methods of off-line SPE before direct injection to LC-MS/MS. Manual sample preparation was reduced to sample centrifugation and acidification, thus eliminating several procedural errors and significantly reducing time-consuming and costs. Ionization suppression between target perfluorinated analytes and their coeluting SIL-IS were detected for homologues with a number of carbon atoms less than 9, but the quantitation was not affected. Total matrix effect corrected by SIL-IS, inclusive of extraction efficacy, and of ionization efficiency, ranged between −34 and +39%. The percentage of recoveries, between 76 and 134%, calculated in different matrices (tap water and rivers impacted by different pollutions was generally satisfactory. LODs and LOQs of this on-line SPE method, which also incorporate recovery losses, ranged from 0.2 to 5.0 ng/L and from 1 to 20 ng/L, respectively. Validated on-line SPE-LC/MS/MS method has been applied in a wide survey for the determination of perfluoroalkyl acids in Italian surface and ground waters.

  15. An On-Line Solid Phase Extraction-Liquid Chromatography-Tandem Mass Spectrometry Method for the Determination of Perfluoroalkyl Acids in Drinking and Surface Waters

    Science.gov (United States)

    Mazzoni, Michela; Rusconi, Marianna; Valsecchi, Sara; Martins, Claudia P. B.; Polesello, Stefano

    2015-01-01

    An UHPLC-MS/MS multiresidue method based on an on-line solid phase extraction (SPE) procedure was developed for the simultaneous determination of 9 perfluorinated carboxylates (from 4 to 12 carbon atoms) and 3 perfluorinated sulphonates (from 4 to 8 carbon atoms). This work proposes using an on-line solid phase extraction before chromatographic separation and analysis to replace traditional methods of off-line SPE before direct injection to LC-MS/MS. Manual sample preparation was reduced to sample centrifugation and acidification, thus eliminating several procedural errors and significantly reducing time-consuming and costs. Ionization suppression between target perfluorinated analytes and their coeluting SIL-IS were detected for homologues with a number of carbon atoms less than 9, but the quantitation was not affected. Total matrix effect corrected by SIL-IS, inclusive of extraction efficacy, and of ionization efficiency, ranged between −34 and +39%. The percentage of recoveries, between 76 and 134%, calculated in different matrices (tap water and rivers impacted by different pollutions) was generally satisfactory. LODs and LOQs of this on-line SPE method, which also incorporate recovery losses, ranged from 0.2 to 5.0 ng/L and from 1 to 20 ng/L, respectively. Validated on-line SPE-LC/MS/MS method has been applied in a wide survey for the determination of perfluoroalkyl acids in Italian surface and ground waters. PMID:25834752

  16. Heavy metals, salts and organic residues in old solid urban waste landfills and surface waters in their discharge areas: determinants for restoring their impact.

    Science.gov (United States)

    Pastor, J; Hernández, A J

    2012-03-01

    This study was designed to determine the state of polluted soils in the main landfills of the Community of Madrid (central Spain), as part of a continuous assessment of the impacts of urban solid waste (USW) landfills that were capped with a layer of soil 20 years ago. Our analysis of this problem has been highly conditioned by the constant re-use of many of the USW landfills, since they have never been the target of any specific restoration plan. Our periodical analysis of cover soils and soils from discharge areas of the landfills indicates soil pollution has worsened over the years. Here, we examined heavy metal, salts, and organic compounds in soil and surface water samples taken from 15 landfills in the Madrid region. Impacts of the landfill soil covers on nematode and plant diversity were also evaluated. These analyses continue to reveal the presence of heavy metals (Zn, Cu, Cr, Ni, Pb, Cd) in soils, and salts (sulphates, chlorides and nitrates) in soils and surface waters. In addition, non-agricultural organic compounds, mainly aromatic and aliphatic hydrocarbons, often appeared in very high concentrations, and high levels of insecticides such as gamma-HCH (lindane) were also detected in soils. Around 50% of the water samples collected showed chemical demand of oxygen (CDO) values in excess of 150 mg/l. Traces of phenolic compounds were detected in some landfills, some of which exhibited high levels of 2-chlorophenol and pentachlorophenol. All these factors are conditioning both the revegetation of the landfill systems and the remediation of their slopes and terrestrial ecosystems arising in their discharge areas. This work updates the current situation and discusses risks for the health of the ecosystems, humans, domestic animals and wildlife living close to these landfills. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Determination of pharmaceutical compounds in surface- and ground-water samples by solid-phase extraction and high-performance liquid chromatography-electrospray ionization mass spectrometry

    Science.gov (United States)

    Cahill, J.D.; Furlong, E.T.; Burkhardt, M.R.; Kolpin, D.; Anderson, L.G.

    2004-01-01

    Commonly used prescription and over-the-counter pharmaceuticals are possibly present in surface- and ground-water samples at ambient concentrations less than 1 μg/L. In this report, the performance characteristics of a combined solid-phase extraction isolation and high-performance liquid chromatography–electrospray ionization mass spectrometry (HPLC–ESI-MS) analytical procedure for routine determination of the presence and concentration of human-health pharmaceuticals are described. This method was developed and used in a recent national reconnaissance of pharmaceuticals in USA surface waters. The selection of pharmaceuticals evaluated for this method was based on usage estimates, resulting in a method that contains compounds from diverse chemical classes, which presents challenges and compromises when applied as a single routine analysis. The method performed well for the majority of the 22 pharmaceuticals evaluated, with recoveries greater than 60% for 12 pharmaceuticals. The recoveries of angiotensin-converting enzyme inhibitors, a histamine (H2) receptor antagonist, and antihypoglycemic compound classes were less than 50%, but were retained in the method to provide information describing the potential presence of these compounds in environmental samples and to indicate evidence of possible matrix enhancing effects. Long-term recoveries, evaluated from reagent-water fortifications processed over 2 years, were similar to initial method performance. Method detection limits averaged 0.022 μg/L, sufficient for expected ambient concentrations. Compound-dependent matrix effects on HPLC/ESI-MS analysis, including enhancement and suppression of ionization, were observed as a 20–30% increase in measured concentrations for three compounds and greater than 50% increase for two compounds. Changing internal standard and more frequent ESI source maintenance minimized matrix effects. Application of the method in the national survey demonstrates that several

  18. Shake-flask test for determination of biodegradation rates of 14C-labelled chemicals at low concentrations in surface water systems

    DEFF Research Database (Denmark)

    Ingerslev, F.; Nyholm, Niels

    2000-01-01

    A simple shake-flask surface water biodegradability die away test with C-14-labeled chemicals added to microgram per liter concentrations (usually 1-100 mu g/L) is described and evaluated. The aim was to provide information on biodegradation behavior and kinetic rates at environmental (low...... regular reinoculation with freshly collected surface water could, however, overcome the problems of false-negative results. (C) 2000 Academic Press....

  19. Liquid chromatographic-tandem mass spectrometric method for the simultaneous determination of alkylphenols polyethoxylates, alkylphenoxy carboxylates and alkylphenols in wastewater and surface-water.

    Science.gov (United States)

    Ciofi, L; Ancillotti, C; Chiuminatto, U; Fibbi, D; Checchini, L; Orlandini, S; Del Bubba, M

    2014-10-03

    Four different pellicular stationary phases (i.e. octadecylsilane, octasilane, Phenyl-Hexyl and pentafluorophenyl) were investigated for the chromatographic resolution of alkylphenols (APs), alkylphenols polyethoxylates (APnEOs) and alkylphenoxy carboxylates (APECs) using mixtures of water and organic solvents (i.e. methanol, acetonitrile and tetrahydrofuran) as eluents, in order to obtain their determination by a single LC-MS/MS run. In fact, alkylphenols and alkylphenoxy carboxylates must be analysed in negative ion mode, whereas alkylphenols polyethoxylates undergo ionisation only in positive ion mode, and therefore, two distinct LC-MS/MS analysis are commonly adopted. The best resolution among the aforementioned target analytes was achieved on the pentafluorophenyl column, eluting with an acidified water-acetonitrile-tetrahydrofuran mixture and using the post column addition of an ammonia solution in methanol for the detection of positively ionisable compounds. Under these optimized chromatographic conditions the investigated compounds were determined via a single chromatographic run, with only one polarity switch, in 15min, achieving the following instrumental detection limits: 600pg for AP1EOs, 0.8-14pg for AP2EOs, 10.4-150pg for APs and 4.4-4.8pg for APECs. The chromatographic method was coupled with solid-phase extraction and clean-up procedures and successfully applied to the analysis of wastewater and surface water samples, highlighting mean concentration ranging from 6ng/L for 4-t-OP1EC to 1434ng/L for 4-NP1121EC, depending on the sample analysed. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Groundwater–Surface Water Exchange

    DEFF Research Database (Denmark)

    Karan, Sachin

    The exchange of groundwater-surface water has been invetigated in the western part of Denmark. Holtum AA provides the framework for all the performed investigations. Several methods are used, primarily eld based measurements ombined with numerical models to achieve insight to the governing...... processes of interaction between groundwater and surface water. By using heat as a tracer it has been possible to use temperature directly as calibrationtargets in a groundwater and heat transport model. Thus, it is possible to use heat investigate the change in groundwater discharge in dynamic conditions...... by using simple temperature devices along a stream to delineate the areas of interest in regard to GW{SW exchange. Thus, at several locations in a stream a temperature data logger was placed in the water column and right at the streambed-water interface. By looking at the correlation of streambed...

  1. A Green Preconcentration Method for Determination of Cobalt and Lead in Fresh Surface and Waste Water Samples Prior to Flame Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    Naeemullah

    2012-01-01

    Full Text Available Cloud point extraction (CPE has been used for the preconcentration and simultaneous determination of cobalt (Co and lead (Pb in fresh and wastewater samples. The extraction of analytes from aqueous samples was performed in the presence of 8-hydroxyquinoline (oxine as a chelating agent and Triton X-114 as a nonionic surfactant. Experiments were conducted to assess the effect of different chemical variables such as pH, amounts of reagents (oxine and Triton X-114, temperature, incubation time, and sample volume. After phase separation, based on the cloud point, the surfactant-rich phase was diluted with acidic ethanol prior to its analysis by the flame atomic absorption spectrometry (FAAS. The enhancement factors 70 and 50 with detection limits of 0.26 μg L−1 and 0.44 μg L−1 were obtained for Co and Pb, respectively. In order to validate the developed method, a certified reference material (SRM 1643e was analyzed and the determined values obtained were in a good agreement with the certified values. The proposed method was applied successfully to the determination of Co and Pb in a fresh surface and waste water sample.

  2. Determination of retinal surface area.

    Science.gov (United States)

    Nagra, Manbir; Gilmartin, Bernard; Thai, Ngoc Jade; Logan, Nicola S

    2017-09-01

    Previous attempts at determining retinal surface area and surface area of the whole eye have been based upon mathematical calculations derived from retinal photographs, schematic eyes and retinal biopsies of donor eyes. 3-dimensional (3-D) ocular magnetic resonance imaging (MRI) allows a more direct measurement, it can be used to image the eye in vivo, and there is no risk of tissue shrinkage. The primary purpose of this study is to compare, using T2-weighted 3D MRI, retinal surface areas for superior-temporal (ST), inferior-temporal (IT), superior-nasal (SN) and inferior-nasal (IN) retinal quadrants. An ancillary aim is to examine whether inter-quadrant variations in area are concordant with reported inter-quadrant patterns of susceptibility to retinal breaks associated with posterior vitreous detachment (PVD). Seventy-three adult participants presenting without retinal pathology (mean age 26.25 ± 6.06 years) were scanned using a Siemens 3-Tesla MRI scanner to provide T2-weighted MR images that demarcate fluid-filled internal structures for the whole eye and provide high-contrast delineation of the vitreous-retina interface. Integrated MRI software generated total internal ocular surface area (TSA). The second nodal point was used to demarcate the origin of the peripheral retina in order to calculate total retinal surface area (RSA) and quadrant retinal surface areas (QRSA) for ST, IT, SN, and IN quadrants. Mean spherical error (MSE) was -2.50 ± 4.03D and mean axial length (AL) 24.51 ± 1.57 mm. Mean TSA and RSA for the RE were 2058 ± 189 and 1363 ± 160 mm 2 , respectively. Repeated measures anova for QRSA data indicated a significant difference within-quadrants (P area/mm increase in AL. Although the differences between QRSAs are relatively small, there was evidence of concordance with reported inter-quadrant patterns of susceptibility to retinal breaks associated with PVD. The data allow AL to be converted to QRSAs, which will assist further

  3. Surface Water Quality Monitoring Sites

    Data.gov (United States)

    Minnesota Department of Natural Resources — The MN Department of Agriculture (MDA) is charged with periodically collecting and analyzing water samples from selected locations throughout the state to determine...

  4. Groundwater and surface water pollution

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Y.S.; Hamidi, A. [eds.

    2000-07-01

    This book contains almost all the technical know-how that is required to clean up the water supply. It provides a survey of up-to-date technologies for remediation, as well as a step-by-step guide to pollution assessment for both ground and surface waters. In addition to focusing on causes, effects, and remedies, the book stresses reuse, recycling, and recovery of resources. The authors suggest that through total recycling wastes can become resources.

  5. Surface water quality assessment using factor analysis

    African Journals Online (AJOL)

    2006-01-16

    Jan 16, 2006 ... Surface water, groundwater quality assessment and environ- .... Urbanisation influences the water cycle through changes in flow and water ..... tion of aquatic life, CCME water quality Index 1, 0. User`s ... Water, Air Soil Pollut.

  6. Liquid chromatographic determination of water

    Science.gov (United States)

    Fortier, N.E.; Fritz, J.S.

    1990-11-13

    A sensitive method for the determination of water in the presence of common interferences is presented. The detection system is based on the effect of water on the equilibrium which results from the reaction aryl aldehydes, such as cinnamaldehyde and methanol in the eluent to form cinnamaldehyde dimethylacetal, plus water. This equilibrium is shifted in a catalytic atmosphere of a hydrogen ion form past column reactor. The extent of the shift and the resulting change in absorbance are proportional to the amount of water present. 1 fig.

  7. Suburban Soils: Are they the answer in determining factors controlling non-point-source DOC and DON in urban surface waters?

    Science.gov (United States)

    Aitkenhead-Peterson, J. A.

    2016-12-01

    (adjusted r2 = 0.81; p < 0.0001). Models for estimating WEDOC and WEDON were also produced for the individual cities. While sodium may be a player in the increasing DOC and DON observed in urban surface waters, more research is needed to determine the mechanisms of WEDOC and WEDON release from urban soils.

  8. Part 2: Surface water quality

    International Nuclear Information System (INIS)

    1997-01-01

    In 1996 the surface water quality measurements were performed, according to the Agreement, at 8 profiles on the Hungarian territory and at 15 profiles on the Slovak territory. Basic physical and chemical parameters (as water temperature, pH values, conductivity, suspended solids, cations and anions (nitrates, ammonium ion, nitrites, total nitrogen, phosphates, total phosphorus, oxygen and organic carbon regime parameters), metals (iron, manganese and heavy metals), biological and microbiological parameters (coliform bacteria, chlorophyll-a, saprobity index and other biological parameters) and quality of sediment were measured

  9. Water data to answer urgent water policy questions: Monitoring design, available data, and filling data gaps for determining whether shale gas development activities contaminate surface water or groundwater in the Susquehanna River Basin

    Science.gov (United States)

    Betanzo, Elin A.; Hagen, Erik R.; Wilson, John T.; Reckhow, Kenneth H.; Hayes, Laura; Argue, Denise M.; Cangelosi, Allegra A.

    2016-01-01

    Throughout its history, the United States has made major investments in assessing natural resources, such as soils, timber, oil and gas, and water. These investments allow policy makers, the private sector and the American public to make informed decisions about cultivating, harvesting or conserving these resources to maximize their value for public welfare, environmental conservation and the economy. As policy issues evolve, new priorities and challenges arise for natural resource assessment, and new approaches to monitoring are needed. For example, new technologies for oil and gas development or alternative energy sources may present new risks for water resources both above and below ground. There is a need to evaluate whether today’s water monitoring programs are generating the information needed to answer questions surrounding these new policy priorities. The Northeast-Midwest Institute (NEMWI), in cooperation with the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program, initiated this project to explore the types and amounts of water data needed to address water-quality related policy questions of critical concern to today’s policy makers and whether those data are currently available. The collaborating entities identified two urgent water policy questions and conducted case studies in the Northeast-Midwest region to determine the water data needed, water data available, and the best ways to fill the data gaps relative to those questions. This report details the output from one case study and focuses on the Susquehanna River Basin, a data-rich area expected to be a best-case scenario in terms of water data availability.

  10. Development of a test system for the determination of biodegradability in surface waters; Entwicklung eines Testsystems fuer die Pruefung des biologischen Abbaus in Oberflaechengewaessern

    Energy Technology Data Exchange (ETDEWEB)

    Kalsch, W; Knacker, T; Robertz, M; Schallnass, H J

    1997-04-01

    The study presented here describes the development of a laboratory test system for the determination of aerobic biodegradability of substances at low concentrations in surface water. It was aimed to prepare a draft guideline for a biodegradation simulation test according to OECD format. The experimental approach was based on a literature study conducted within the frame of this project. Further useful information on the possible test design was derived from the German BBA guideline 5-1. Natural water and sediments were collected. Radiolabelled Lindane or 4-Nitrophenol was added. The test vessels (reactors) were aerated and incubated under controlled conditions for up to 92 days. The results showed biological stability of the sediment/water systems even without addition of nutrients and adherence to non-reducing conditions. Mineralisation of 4-Nitrophenol was influenced by the sediment type, the method of aeration and temperature. Factors affecting the mineralisation of Lindane were the method of application and again, the sediment type and temperature. Considerable amounts of the radioactivity were bound to the sediment and were to a large extent unextractable. The potential of a reactor to mineralise a test substance could not be correlated with the biological parameters measured. (orig.) [Deutsch] Die vorliegende Studie beschreibt die Entwicklung eines Labortestverfahrens zur Pruefung des aeroben Abbaus niedrig konzentrierter Stoffe in Oberflaechengewaessern. Dabei war es ein Ziel, das Verfahren so weit abzusichern, dass ein Entwurf fuer eine Pruefrichtlinie als Simulationstest im Format der OECD-Richtlinien abgefasst werden konnte. Grundlage fuer die Konzeption war eine zuvoerderst durchgefuehrte Literaturstudie. Hinweise auf ein moegliches Testdesign ergaben sich auch aus der BBA-Richtlinie 5-1. Wasser und Sediment wurden der Natur entnommen und nach Zugabe der radioaktiven Pruefsubstanz Lindan oder 4-Nitrophenol in einem beluefteten Gefaess unter

  11. Characterisation of the inorganic chemistry of surface waters in ...

    African Journals Online (AJOL)

    The main purpose of this study was to determine a simple inorganic chemistry index that can be used for all surface waters in South Africa, in order to characterise the inorganic chemistry of surface waters. Water quality data collected up until 1999 from all sample monitoring stations (2 068 monitoring stations, 364 659 ...

  12. Determination of heavy water in heavy water - light water mixtures

    International Nuclear Information System (INIS)

    Sanhueza M, A.

    1986-01-01

    A description about experimental methodology to determine isotopic composition of heavy water - light water mixtures is presented. The employed methods are Nuclear Magnetic Resonance Spectroscopy, for measuring heavy water concentrations from 0 to 100% with intervals of 10% approx., and mass Spectrometry, for measuring heavy water concentrations from 0.1 to 1% with intervals of 0.15% approx., by means of an indirect method of Dilution. (Author)

  13. DETERMINATION OF RADIATOR COOLING SURFACE

    Directory of Open Access Journals (Sweden)

    A. I. Yakubovich

    2009-01-01

    Full Text Available The paper proposes a methodology for calculation of a radiator cooling surface with due account of heat transfer non-uniformity on depth of its core. Calculation of radiator cooling surfaces of «Belarus-1221» and «Belarus-3022» tractors has been carried out in the paper. The paper also advances standard size series of radiators for powerful «Belarus» tractor type.

  14. Polyelectrolyte determination in drinking water

    African Journals Online (AJOL)

    try as there are no readily available methods for the determination of residual polyelectrolyte concentration. This study aims at ... quate, making the need to quantify them more critical (Fielding,. 1999). ... decisions and actions are sometimes required in the environ- ... were conducted on both distilled and real water systems.

  15. Determination of water retention curves of concrete

    International Nuclear Information System (INIS)

    Villar, M.V.; Romero, F.J.

    2015-01-01

    The water retention curves of concrete and mortar obtained with two different techniques and following wetting and drying paths were determined. The material was the same used to manufacture the disposal cells of the Spanish surface facility of El Cabril. The water retention capacity of mortar is clearly higher than that of concrete when expressed as gravimetric water content, but the difference reduces when it is expressed as degree of saturation. Hysteresis between wetting and drying was observed for both materials, particularly for mortar. The tests went on for very long periods of time, and concerns about the geochemical, mineralogical and porosity changes occurred in the materials during the determinations (changes in dry mass, grain density, samples volume) and their repercussion on the results obtained (water content and degree of saturation computation) were raised. Also, the fact of having used techniques applying total and matrix suction could have affected the results. (authors)

  16. Rapid determination of trace nitrophenolic organics in water by combining solid-phase extraction with surface-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Chen, Y C; Shiea, J; Sunner, J

    2000-01-01

    A rapid technique for the screening of trace compounds in water by combining solid-phase extraction (SPE) with activated carbon surface-assisted laser desorption/ionization (SALDI) time-of-flight mass spectrometry is demonstrated. Activated carbon is used both as the sorbent in SPE and as the solid in the SALDI matrix system. This eliminates the need for an SPE elution process. After the analytes have been adsorbed on the surfaces of the activated carbon during SPE extraction, the activated carbon is directly mixed with the SALDI liquid and mass spectrometric analysis is performed. Trace phenolic compounds in water were used to demonstrate the effectiveness of the method. The detection limit for these compounds is in the ppb to ppt range. Copyright 2000 John Wiley & Sons, Ltd.

  17. Determination of free cyanide and total cyanide concentrations in surface and underground waters in Bogoso and its surrounding areas in Ghana

    Directory of Open Access Journals (Sweden)

    S. Obiri

    2007-08-01

    Full Text Available Concentrations of free cyanide and total cyanide in water samples in Bogoso and its surrounding areas in Ghana have been measured in this study. Concentrations of free cyanide and total cyanide were found to be above the maximum permissible discharge limit of effluent from mining companies into natural waters set by Environmental Protection Agency, Ghana (GEPA. A comparison of the results obtained in this study with permissible levels set by US Environmental Protection Agency and the World Health Organization reveals that surface waters in the study areas are highly polluted with cyanide and it's not safe for human consumptions. This means that, the resident in and around Bogoso are at risk.

  18. Surface-water investigations at Barrow, Alaska

    Science.gov (United States)

    Jones, Stanley H.

    1972-01-01

    The U.S. Public Health Service is currently developing plans for a long-term water supply and sewage treatment system for the village of Barrow, Alaska. To assist in planning, the U.S. Geological Survey was requested to initiate a cooperative streamflow data-collection program with the U.S. Public Health Service in June 1972 to determine the availability of surface water and the areal distribution of runoff in the Barrow area. This basic-data report summarizes the streamflow data collected from June 1 through July 10, 1972, at three gaging stations in the Barrow area (fig. 1) and discusses the future data-collection program.

  19. Quantitative method of viral pollution determination for large volume of water using ferric hydroxide gel impregnated on the surface of glassfibre cartridge

    Directory of Open Access Journals (Sweden)

    Akira Homma

    1974-01-01

    Full Text Available Quantitative method of viral pollution determination for large volume of water using ferric hydroxide gel impregnated on the surface of glassfibre cartridge filter. The use of ferric hydroxide gel, impregnated on the surface of glassfibre cartridge filter enable us to recover 62.5% of virus (Poliomylitis type I, Lsc strain exsogeneously added to 400 liters of tap-water. The virus concentrator system consists of four cartridge filters, in which the three first one are clarifiers, where the contaminants are removed physically, without significant virus loss at this stage. The last cartridge filter is impregnated with ferric hydroxide gel, where the virus is adsorbed. After the required volume of water has been processed, the last filter is removed from the system and the viruses are recovered from the gel, using 1 liter of glycine/NaOH buffer, at pH 11. Immediately the eluate is clarified through series of cellulose acetate membranes mounted in a 142mm Millipore filter. For the second step of virus concentration, HC1 1N is added slowly to the eluate to achieve pH 3.5-4. MgC1, is added to give a final concentration of 0.05M and the viruses are readsorbed on a 0.45 , porosity (HA cellulose acetate membrane, mounted in a 90 mm Millipore filter. The viruses are recovered using the same eluent plus 10% of fetal calf serum, to a final volume of 3 ml. In this way, it was possible to concentrate virus from 400 liters of tap-water, into 1 liter in the first stage of virus concentration and just to 3 ml of final volume in a second step. The efficiency, simplicity and low operational cost, provded by the method, make it feasible to study viral pollution of recreational and tap-water sources.Relata-se o emprego de um concentrador portátil, o qual se mostrou capaz de recuperar 62,5% dos vírus (Polio I, amostra Lsc experimentalmente dispersos em 400 litros de água, os quais foram reduzidos a 3 ml. O sistema concentrador de vírus é composto de quatro

  20. Groundwater-surface water interaction

    International Nuclear Information System (INIS)

    White, P.A.; Clausen, B.; Hunt, B.; Cameron, S.; Weir, J.J.

    2001-01-01

    This chapter discusses natural and modified interactions between groundwater and surface water. Theory on recharge to groundwater from rivers is introduced, and the relative importance of groundwater recharge from rivers is illustrated with an example from the Ngaruroro River, Hawke's Bay. Some of the techniques used to identify and measure recharge to groundwater from gravel-bed rivers will be outlined, with examples from the Ngaruroro River, where the recharge reach is relatively well defined, and from the Rakaia River, where it is poorly defined. Groundwater recharged from rivers can have characteristic chemical and isotopic signatures, as shown by Waimakariri River water in the Christchurch-West Melton groundwater system. The incorporation of groundwater-river interaction in a regional groundwater flow model is outlined for the Waimea Plains, and relationships between river scour and groundwater recharge are examined for the Waimakariri River. Springs are the result of natural discharge from groundwater systems and are important water sources. The interactions between groundwater systems, springs, and river flow for the Avon River in New Zealand will be outlined. The theory of depletion of stream flow by groundwater pumpage will be introduced with a case study from Canterbury, and salt-water intrusion into groundwater systems with examples from Nelson and Christchurch. The theory of artificial recharge to groundwater systems is introduced with a case study from Hawke's Bay. Wetlands are important to flora, and the relationship of the wetland environment to groundwater hydrology will be discussed, with an example from the South Taupo wetland. (author). 56 refs., 25 figs., 3 tabs

  1. Global modelling of Cryptosporidium in surface water

    Science.gov (United States)

    Vermeulen, Lucie; Hofstra, Nynke

    2016-04-01

    Conclusions GloWPa-Crypto is the first global model that can be used to analyse dynamics in surface water pathogen concentrations worldwide. Global human Cryptosporidium emissions are estimated at 1 x 10^17 oocysts/ year for the year 2010.We estimated future emissions for SSP1 and SSP3. Preliminary results show that for SSP1human emissions are approximately halved by 2050. The SSP3 human emissions are 1.5 times higher than the 2010 emissions due to increased population growth and urbanisation. Livestock Cryptosporidium emissions are expected to increase under both SSP1 and SSP3, as meat consumption continues to rise. We conclude that population growth, urbanization, changes in sanitation systems and treatment, and changes in livestock consumption and production systems are important processes that determine future Cryptosporidium emissions to surface water. References Hofstra N, Bouwman A F, Beusen A H W and Medema G J 2013 Exploring global Cryptosporidium emissions to surface water Sci. Total Environ. 442 10-9 Kiulia N M, Hofstra N, Vermeulen L C, Obara M A, Medema G J and Rose J B 2015 Global occurrence and emission of rotaviruses to surface waters Pathogens 4 229-55 Vermeulen L C, De Kraker J, Hofstra N, Kroeze C and Medema G J 2015 Modelling the impact of sanitation, population and urbanization estimates on human emissions of Cryptosporidium to surface waters - a case study for Bangladesh and India Environ. Res. Lett. 10

  2. Indices of quality surface water bodies in the planning of water resources

    Directory of Open Access Journals (Sweden)

    Rodríguez-Miranda, Juan Pablo

    2016-12-01

    Full Text Available This paper considers a review of the literature major and significant methods of quality indices of water applied in surface water bodies, used and proposed for assessing the significance of parameters of water quality in the assessment of surface water currents and they are usually used in making decisions for intervention and strategic prevention measures for those responsible for the conservation and preservation of watersheds where these water bodies belong. An exploratory methodology was applied to realize the conceptualization of each water quality index. As a result, it is observed that there are several important methods for determining the water quality index applied in surface water bodies.

  3. Potentially hazardous substances in surface waters. II. Cholinesterase inhibitors in Dutch surface waters

    NARCIS (Netherlands)

    Greve, P.A.; Freudenthal, J.; Wit, S.L.

    1972-01-01

    Several analytical methods were employed to determine the concentrations of cholinesterase inhibitors in several Dutch surface waters. An Auto-Analyzer method was used for screening purposes; thin-layer chromatography and gas-liquid chromatography-mass spectrometry were used for identification and

  4. Semi-automated technique for the separation and determination of barium and strontium in surface waters by ion exchange chromatography and atomic emission spectrometry

    International Nuclear Information System (INIS)

    Pierce, F.D.; Brown, H.R.

    1977-01-01

    A semi-automated method for the separation and the analysis of barium and strontium in surface waters by atomic emission spectrometry is described. The method employs a semi-automated separation technique using ion exchange and an automated aspiration-analysis procedure. Forty specimens can be prepared in approximately 90 min and can be analyzed for barium and strontium content in 20 min. The detection limits and sensitivities provided by the described technique are 0.003 mg/l and 0.01 mg/l respectively for barium and 0.00045 mg/l and 0.003 mg/l respectively for strontium

  5. Thermophoretically driven water droplets on graphene and boron nitride surfaces

    Science.gov (United States)

    Rajegowda, Rakesh; Kannam, Sridhar Kumar; Hartkamp, Remco; Sathian, Sarith P.

    2018-05-01

    We investigate thermally driven water droplet transport on graphene and hexagonal boron nitride (h-BN) surfaces using molecular dynamics simulations. The two surfaces considered here have different wettabilities with a significant difference in the mode of droplet transport. The water droplet travels along a straighter path on the h-BN sheet than on graphene. The h-BN surface produced a higher driving force on the droplet than the graphene surface. The water droplet is found to move faster on h-BN surface compared to graphene surface. The instantaneous contact angle was monitored as a measure of droplet deformation during thermal transport. The characteristics of the droplet motion on both surfaces is determined through the moment scaling spectrum. The water droplet on h-BN surface showed the attributes of the super-diffusive process, whereas it was sub-diffusive on the graphene surface.

  6. Models of Fate and Transport of Pollutants in Surface Waters

    Science.gov (United States)

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  7. Source Water Assessment for the Las Vegas Valley Surface Waters

    Science.gov (United States)

    Albuquerque, S. P.; Piechota, T. C.

    2003-12-01

    The 1996 amendment to the Safe Drinking Water Act of 1974 created the Source Water Assessment Program (SWAP) with an objective to evaluate potential sources of contamination to drinking water intakes. The development of a Source Water Assessment Plan for Las Vegas Valley surface water runoff into Lake Mead is important since it will guide future work on source water protection of the main source of water. The first step was the identification of the watershed boundary and source water protection area. Two protection zones were delineated. Zone A extends 500 ft around water bodies, and Zone B extends 3000 ft from the boundaries of Zone A. These Zones extend upstream to the limits of dry weather flows in the storm channels within the Las Vegas Valley. After the protection areas were identified, the potential sources of contamination in the protection area were inventoried. Field work was conducted to identify possible sources of contamination. A GIS coverage obtained from local data sources was used to identify the septic tank locations. Finally, the National Pollutant Discharge Elimination System (NPDES) Permits were obtained from the State of Nevada, and included in the inventory. After the inventory was completed, a level of risk was assigned to each potential contaminating activity (PCA). The contaminants of concern were grouped into five categories: volatile organic compounds (VOCs), synthetic organic compounds (SOCs), inorganic compounds (IOCs), microbiological, and radionuclides. The vulnerability of the water intake to each of the PCAs was assigned based on these five categories, and also on three other factors: the physical barrier effectiveness, the risk potential, and the time of travel. The vulnerability analysis shows that the PCAs with the highest vulnerability rating include septic systems, golf courses/parks, storm channels, gas stations, auto repair shops, construction, and the wastewater treatment plant discharges. Based on the current water quality

  8. Determination of Th-230 in water

    International Nuclear Information System (INIS)

    Oliveira Melo, M.A.M. de

    1990-01-01

    On of the current goals of the Radiochemistry Division of CDTN is to acquire capability in determining contaminants of high radiotoxicity in different matrixes. The method described here was developed in order to determine Th-230 in water, one of the decay products of the uranium series, belongs to the most restrictive class of radionuclides, on account of its alpha emission and half-life of 8 x 10 4 years. The method conesists of two radiochemical steps, one electrodeposition step and alpha spectrometry with the use of a surface-barrier detector. Water samples with internal Th-230 standards were analysed and the results showed good reproducibility with erros a around 10% and alfa detection efficiency of 12%. The lower detection limit is around 0,4 Bq/l. (author) [pt

  9. Ionic liquid-based single-drop microextraction followed by liquid chromatography-ultraviolet spectrophotometry detection to determine typical UV filters in surface water samples.

    Science.gov (United States)

    Vidal, Lorena; Chisvert, Alberto; Canals, Antonio; Salvador, Amparo

    2010-04-15

    A user-friendly and inexpensive ionic liquid-based single-drop microextraction (IL-SDME) procedure has been developed to preconcentrate trace amounts of six typical UV filters extensively used in cosmetic products (i.e., 2-hydroxy-4-methoxybenzophenone, isoamyl 4-methoxycinnamate, 3-(4'-methylbenzylidene)camphor, 2-ethylhexyl 2-cyano-3,3-diphenylacrylate, 2-ethylhexyl 4-dimethylaminobenzoate and 2-ethylhexyl 4-methoxycinnamate) from surface water samples prior to analysis by liquid chromatography-ultraviolet spectrophotometry detection (LC-UV). A two-stage multivariate optimization approach was developed by means of a Plackett-Burman design for screening and selecting the significant variables involved in the SDME procedure, which were later optimized by means of a circumscribed central composite design. The studied variables were drop volume, sample volume, agitation speed, ionic strength, extraction time and ethanol quantity. Owing to particularities, ionic liquid type and pH of the sample were optimized separately. Under optimized experimental conditions (i.e., 10 microL of 1-hexyl-3-methylimidazolium hexafluorophosphate, 20 mL of sample containing 1% (v/v) ethanol and NaCl free adjusted to pH 2, 37 min extraction time and 1300 rpm agitation speed) enrichment factors up to ca. 100-fold were obtained depending on the target analyte. The method gave good levels of repeatability with relative standard deviations varying between 2.8 and 8.8% (n=6). Limits of detection were found in the low microg L(-1) range, varying between 0.06 and 3.0 microg L(-1) depending on the target analyte. Recovery studies from different types of surface water samples collected during the winter period, which were analysed and confirmed free of all target analytes, ranged between 92 and 115%, showing that the matrix had a negligible effect upon extraction. Finally, the proposed method was applied to the analysis of different water samples (taken from two beaches, two swimming pools and a

  10. Determining Adequate Averaging Periods and Reference Coordinates for Eddy Covariance Measurements of Surface Heat and Water Vapor Fluxes over Mountainous Terrain

    Directory of Open Access Journals (Sweden)

    Yi-Ying Chen Ming-Hsu Li

    2012-01-01

    Full Text Available Two coordinate rotation approaches (double and planar-fit rotations and no rotation, in association with averaging periods of 15 - 480 min, were applied to compute surface heat and water vapor fluxes using the eddy covariance approach. Measurements were conducted in an experimental watershed, the Lien-Hua-Chih (LHC watershed, located in central Taiwan. For no rotation and double rotation approaches, an adequate averaging period of 15 or 30 min was suggested for better energy closure and small variations on energy closure fractions. For the planar-fit rotation approach, an adequate averaging period of 60 or 120 min was recommended, and a typical averaging period of 30 min is not superior to that of 60 or 120 min in terms of better energy closure and small variations on energy closure fractions. The Ogive function analysis revealed that the energy closure was improved with the increase of averaging time by capturing sensible heat fluxes at low-frequency ranges during certain midday hours at LHC site. Seasonal variations of daily energy closure fractions, high in dry season and low in wet season, were found to be associated with the surface dryness and strength of turbulent development. The mismatching of flux footprint areas among flux sensors was suggested as the cause of larger CF variations during the dry seasons as that indicated by the footprint analysis showing scattered source areas. During the wet season, the underestimation of turbulent fluxes by EC observations at the LHC site was attributed to weak turbulence developments as the source area identified by the footprint analysis was closer to the flux tower than those scattered in dry season.

  11. DETERMINATION OF SURFACE CHARGE DENSITY OF α ...

    African Journals Online (AJOL)

    a

    The whole set up was interfaced with a computer for easy data acquisition. It was observed that ... parameters. KEY WORDS: Alumina, Surface charge density, Acid-base titration, Point of zero charge ... For instance, Al2(SO4)3 is used in water ...

  12. Synthesis of surface Cr (VI)-imprinted magnetic nanoparticles for selective dispersive solid-phase extraction and determination of Cr (VI) in water samples.

    Science.gov (United States)

    Qi, Xue; Gao, Shuang; Ding, Guosheng; Tang, An-Na

    2017-01-01

    A facile, rapid and selective magnetic dispersed solid-phase extraction (dSPE) method for the extraction and enrichment of Cr (VI) prior to flame atomic absorption spectrometry (AAS) was introduced. For highly selective and efficient extraction, magnetic Cr (VI)-imprinted nanoparticles (Fe 3 O 4 @ Cr (VI) IIPs) were prepared by hyphenating surface ion-imprinted with sol-gel techniques. In the preparation process, chromate (Cr(VI)) was used as the template ion; vinylimidazole and 3-aminopropyltriethoxysilane were selected as organic functional monomer and co-monomer respectively. Another reagent, methacryloxypropyltrimethoxysilane was adopted as coupling agent to form the stable covalent bonding between organic and inorganic phases. The effects of various parameters on the extraction efficiency, such as pH of sample solution, the amount of adsorbent, extraction time, the type and concentration of eluent were systematically investigated. Furthermore, the thermodynamic and kinetic properties of the adsorption process were studied to explore the internal adsorption mechanism. Under optimized conditions, the preconcentration factor, limit of detection and linear range of the established dSPE-AAS method for Cr (VI) were found to be 98, 0.29μgL -1 and 4-140μgL -1 , respectively. The developed method was also successfully applied to the analysis of Cr (VI) in different water samples with satisfactory results, proving its reliability and feasibility in real sample analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Possibilities of surface waters monitoring at mining areas using UAV

    Science.gov (United States)

    Lisiecka, Ewa; Motyka, Barbara; Motyka, Zbigniew; Pierzchała, Łukasz; Szade, Adam

    2018-04-01

    The selected, remote measurement methods are discussed, useful for determining surface water properties using mobile unmanned aerial platforms (UAV). The possibilities of using this type of solutions in the scope of measuring spatial, physicochemical and biological parameters of both natural and anthropogenic water reservoirs, including flood polders, water-filled pits, settling tanks and mining sinks were analyzed. Methods of remote identification of the process of overgrowing this type of ecosystems with water and coastal plant formations have also been proposed.

  14. Liquid Water may Stick on Hydrophobic Surfaces

    Indian Academy of Sciences (India)

    IAS Admin

    Common Perception. A surface can be classified as. > Wetting. > Non-wetting. Depending on the spreading characteristics of a droplet of water that splashes on the surface. The behavior of fluid on a solid surface under static and dynamic ..... color of the number density profile. Ions at the interface tend to form pinning zones ...

  15. Methods on estimation of the evaporation from water surface

    International Nuclear Information System (INIS)

    Trajanovska, Lidija; Tanushevska, Dushanka; Aleksovska, Nina

    2001-01-01

    The whole world water supply on the Earth is in close dependence on hydrological cycle connected with water circulation at Earth-Atmosphere route through evaporation, precipitation and water runoff. Evaporation exists worldwide where the atmosphere is unsatiated of water steam (when there is humidity in short supply) and it depends on climatic conditions in some regions. The purpose of this paper is to determine a method for estimation of evaporation of natural water surface in our areas, that means its determination as exact as possible. (Original)

  16. Surface composition and surface properties of water hyacinth ...

    African Journals Online (AJOL)

    Surface composition and surface properties of water hyacinth ( Eichhornia ... (2/1, v/v) followed by ethanol, using Fourier Transform Infra-red (FT-IR) spectroscopy, ... polar organic solvents and non-polar n-alkane hydrocarbons is discussed.

  17. Waste water treatment in surface mines

    Energy Technology Data Exchange (ETDEWEB)

    Navasardyants, M A; Esipov, V Z; Ryzhkov, Yu A

    1981-01-01

    This paper evaluates problems associated with waste water from coal surface mines of the Kemerovougol' association in the Kuzbass. Waste water treatment in the Kuzbass is of major importance as the region is supplied with water from only one river, the Tom river. Water influx to Kemerovougol' surface mines in a year amounts to 136 million m/sup 3/. The water is used during technological processes, for fire fighting, and spraying to prevent dusting; the rest, about 82.1 million m/sup 3/, is discharged into surface waters. Of this amount, 25.1 million m/sup 3/ is heavily polluted water, 46.6 million m3 are polluted but within limits, and 10.4 million m/sup 3/ are characterized as relatively clean. Waste water is polluted with: suspended matters, oils and oil products, nitrates, nitrides and chlorides. Suspended matter content sometimes reaches 4,000 and 5,000 mg/l, and oil product content in water amounts to 2.17 mg/l. Water treatment in surface mines is two-staged: sumps and sedimentation tanks are used. Water with suspended matter content of 50 to 100 mg/l in winter and summer, and 200 to 250 mg/l in spring and autumn is reduced in sumps to 25 to 30 mg/l in summer and winter and to 40 to 50 mg/l in autumn and spring. During the first stage water treatment efficiency ranges from 50 to 80%. During the second stage water is collected in sedimentation tanks. It is noted that so-called secondary pollution is one of the causes of the relatively high level of suspended matter in discharged water. Water discharged from sedimentation tanks carries clay and loam particles from the bottom and walls of water tanks and channels.

  18. Water vapor retrieval over many surface types

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C.; Clodius, W.C.; Johnson, J.

    1996-04-01

    In this paper we present a study of of the water vapor retrieval for many natural surface types which would be valuable for multi-spectral instruments using the existing Continuum Interpolated Band Ratio (CIBR) for the 940 nm water vapor absorption feature. An atmospheric code (6S) and 562 spectra were used to compute the top of the atmosphere radiance near the 940 nm water vapor absorption feature in steps of 2.5 nm as a function of precipitable water (PW). We derive a novel technique called ``Atmospheric Pre-corrected Differential Absorption`` (APDA) and show that APDA performs better than the CIBR over many surface types.

  19. Clean Air Markets - Monitoring Surface Water Chemistry

    Science.gov (United States)

    Learn about how EPA uses Long Term Monitoring (LTM) and Temporily Integrated Monitoring of Ecosystems (TIME) to track the effect of the Clean Air Act Amendments on acidity of surface waters in the eastern U.S.

  20. Surface Waters Information Management System (SWIMS)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Surface Waters Information Management System (SWIMS) has been designed to meet multi-agency hydrologic database needs for Kansas. The SWIMS project was supported...

  1. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during

  2. Turbulent flow over an interactive alternating land-water surface

    Science.gov (United States)

    Van Heerwaarden, C.; Mellado, J. P.

    2014-12-01

    The alternating land-water surface is a challenging surface to represent accurately in weather and climate models, but it is of great importance for the surface energy balance in polar regions. The complexity of this surface lies in the fact that secondary circulations, which form at the boundary of water and land, interact strongly with the surface energy balance. Due to its large heat capacity, the water temperature adapts slowly to the flow, thus the properties of the atmosphere determine the uptake of energy from the water. In order to study this complex system in a simpler way, retaining only the most essential physics, we have simplified the full surface energy balance including radiation. We have derived a boundary condition that mimics the full balance and can be formulated as a so-called Robin boundary condition: a linear combination of Dirichlet (fixed temperature) and Neumann (fixed temperature gradient) ones. By spatially varying the coefficients, we are able to express land and water using this boundary condition. We have done a series of direct numerical simulations in which we generate artificial land-water patterns from noise created from a Gaussian spectrum centered around a dominant wave number. This method creates realistic random patterns, but we are still in control of the length scales. We show that the system can manifest itself in three regimes: micro-, meso- and macro-scale. In the micro-scale, we find perfect mixing of the near-surface atmosphere that results in identical air properties over water and land. In the meso-scale, secondary circulations alter the heat exchange considerably by advecting air between land and water. In addition, they bring the surface temperature of the land closer to that of the air, thereby modulating the energy loss due to outgoing longwave radiation. In the macro-scale regime, the flow over land and water become independent of each other and only the large scale forcings determine the energy balance.

  3. Smears for determinations surface unfixed tritium contamination

    International Nuclear Information System (INIS)

    Postolache, Cristian; Matei, Lidia

    2003-01-01

    The present paper describes a method of obtaining expanded polystyrene with hydrophilized surface smears by radioinduced grafting of acrylic acid. The grafting was carried out by using a 60 Co γ radiation source. The variation of grafting rates as a function of dose range and absorbed dose was established. Grafting radiochemical rates were determined by radiometric methods using acrylic acid labeled with tritium as a grafting agent. The sampling coefficients and the reproducibility were analyzed as a function of the nature of the contaminated surface. (authors)

  4. In situ biodenitrification of nitrate surface water

    International Nuclear Information System (INIS)

    Schmidt, G.C.; Ballew, M.B.

    1995-01-01

    The US Department of Energy's Weldon Spring Site Remedial Action Project has successfully operated a full-scale in situ biodenitrification system to treat water with elevated nitrate levels in abandoned raffinate pits. Bench- and pilot-scale studies were conducted to evaluate the feasibility of the process and to support its full-scale design and application. Bench testing evaluated variables that would influence development of an active denitrifying biological culture. The variables were carbon source, phosphate source, presence and absence of raffinate sludge, addition of a commercially available denitrifying microbial culture, and the use of a microbial growth medium. Nitrate levels were reduced from 750 mg/L NO 3 -N to below 10 mg/L NO 3 -N within 17 days. Pilot testing simulated the full-scale process to determine if nitrate levels could be reduced to less than 10 mg/L NO 3 -N when high levels are present below the sludge surface. Four separate test systems were examined along with two control systems. Nitrates were reduced from 1,200 mg/L NO 3 -N to below 2 mg/L NO 3 -N within 21 days. Full-scale operation has been initiated to denitrify 900,000-gal batches alternating between two 1-acre ponds. The process used commercially available calcium acetate solution and monosodium/disodium phosphate solution as a nutrient source for indigenous microorganisms to convert nitrates to molecular nitrogen and water

  5. Radon determination in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Segovia A, N.; Bulbulian G, S

    1991-08-15

    Studies on natural radioactivity in ground water were started in Mexico in San Luis Potosi state followed by samplings from deep wells and springs in the states of Mexico and Michoacan. The samples were analyzed for solubilized and {sup 226} Ra- supported {sup 222} Rn. Some of them were also studied for {sup 234} U/ {sup 238} U activity ratio. In this paper we discuss the activities obtained and their relationship with the geologic characteristics of the studied zones. (Author)

  6. Radon determination in ground water

    International Nuclear Information System (INIS)

    Segovia A, N.; Bulbulian G, S.

    1991-08-01

    Studies on natural radioactivity in ground water were started in Mexico in San Luis Potosi state followed by samplings from deep wells and springs in the states of Mexico and Michoacan. The samples were analyzed for solubilized and 226 Ra- supported 222 Rn. Some of them were also studied for 234 U/ 238 U activity ratio. In this paper we discuss the activities obtained and their relationship with the geologic characteristics of the studied zones. (Author)

  7. Advances on surface structural determination by LEED

    International Nuclear Information System (INIS)

    Soares, Edmar A; De Carvalho, Vagner E; De Castilho, Caio M C

    2011-01-01

    In the last 40 years, low energy electron diffraction (LEED) has proved to be the most reliable quantitative technique for surface structural determination. In this review, recent developments related to the theory that gives support to LEED structural determination are discussed under a critical analysis of the main theoretical approximation-the muffin-tin calculation. The search methodologies aimed at identifying the best matches between theoretical and experimental intensity versus voltage curves are also considered, with the most recent procedures being reviewed in detail. (topical review)

  8. Radionuclide transfer onto ground surface in surface water flow, 1

    International Nuclear Information System (INIS)

    Mukai, Masayuki; Takebe, Shinichi; Komiya, Tomokazu; Kamiyama, Hideo

    1991-07-01

    Radionuclides migration in ground surface water flow is considered to be one of the important path way in the scenario for environmental migration of radionuclides leaked from low level radioactive waste repository. Simulating the slightly sloped surface on which contaminated solution is flowing downward, testing for radionuclide migration on ground surface had been started. As it's first step, an experiment was carried out under the condition of restricted infiltration in order to elucidate the adsorption behavior of radionuclides onto the loamy soil surface in related with hydraulic conditions. Radionuclides concentration change in effluent solution with time and a concentration distribution of radionuclides adsorbed on the ground surface were obtained from several experimental conditions combining the rate and the duration time of the water flow. The radionuclides concentration in the effluent solution was nearly constant during each experimental period, and was reduced under the condition of lower flow rate. The surface distribution of radionuclides concentration showed two distinctive regions. The one was near the inlet vessel where the concentration was promptly reducing, and the other was following the former where the concentration was nearly constant. The characteristic surface distribution of radionuclides concentration can be explained by a two dimensional diffusion model with a first order adsorption reaction, based on the advection of flow rate distribution in perpendicular direction. (author)

  9. A calorimetric method to determine water activity.

    Science.gov (United States)

    Björklund, Sebastian; Wadsö, Lars

    2011-11-01

    A calorimetric method to determine water activity covering the full range of the water activity scale is presented. A dry stream of nitrogen gas is passed either over the solution whose activity should be determined or left dry before it is saturated by bubbling through water in an isothermal calorimeter. The unknown activity is in principle determined by comparing the thermal power of vaporization related to the gas stream with unknown activity to that with zero activity. Except for three minor corrections (for pressure drop, non-perfect humidification, and evaporative cooling) the unknown water activity is calculated solely based on the water activity end-points zero and unity. Thus, there is no need for calibration with references with known water activities. The method has been evaluated at 30 °C by measuring the water activity of seven aqueous sodium chloride solutions ranging from 0.1 mol kg(-1) to 3 mol kg(-1) and seven saturated aqueous salt solutions (LiCl, MgCl(2), NaBr, NaCl, KCl, KNO(3), and K(2)SO(4)) with known water activities. The performance of the method was adequate over the complete water activity scale. At high water activities the performance was excellent, which is encouraging as many other methods used for water activity determination have limited performance at high water activities. © 2011 American Institute of Physics

  10. Manufacturing and characterisation of water repellent surfaces

    DEFF Research Database (Denmark)

    De Grave, Arnaud; Botija, Pablo; Hansen, Hans Nørgaard

    2006-01-01

    design criteria for such surfaces. The problem of adapting this behaviour to artificially roughened surfaces is addressed by providing design criteria for superhydrophobic, water-repellent and self-cleaning surfaces according to the concrete performance desired for them. Different kind of manufacturing...... techniques are investigated and the production of patterned micro structured surfaces following two different manufacturing techniques is reported. The first is a combination of laser manufacturing and hot embossing on polystyrene. To compare geometry and functionality a non-silicon based lithography...

  11. Ultra-trace-level determination of polar pesticides and their transformation products in surface and estuarine water samples using column liquid chromatography electrospray-tandem mass spectrometry

    NARCIS (Netherlands)

    Steen, R.J.C.A.; Hogenboom, A.C.; Leonards, P.E.G.; Peerboom, R.A.L.; Cofino, W.P.; Brinkman, U.A.T.

    1999-01-01

    A method is developed for the determination of polar pesticides and their transformation products [atrazine, deethylatrazine, deisopropylatrazine, hydroxyatrazine, diuron, 3,4-dichlorophenylmethylurea, 3,4-dichlorophenylurea (DPU), monuron, bentazone, anthranil-isopropylamide, chloridazon,

  12. Basin scale management of surface and ground water

    International Nuclear Information System (INIS)

    Tracy, J.C.; Al-Sharif, M.

    1993-01-01

    An important element in the economic development of many regions of the Great Plains is the availability of a reliable water supply. Due to the highly variable nature of the climate through out much of the Great Plains region, non-controlled stream flow rates tend to be highly variable from year to year. Thus, the primary water supply has tended towards developing ground water aquifers. However, in regions where shallow ground water is extracted for use, there exists the potential for over drafting aquifers to the point of depleting hydraulically connected stream flows, which could adversely affect the water supply of downstream users. To prevent the potential conflict that can arise when a basin's water supply is being developed or to control the water extractions within a developed basin requires the ability to predict the effect that water extractions in one region will have on water extractions from either surface or ground water supplies else where in the basin. This requires the ability to simulate ground water levels and stream flows on a basin scale as affected by changes in water use, land use practices and climatic changes within the basin. The outline for such a basin scale surface water-ground water model has been presented in Tracy (1991) and Tracy and Koelliker (1992), and the outline for the mathematical programming statement to aid in determining the optimal allocation of water on a basin scale has been presented in Tracy and Al-Sharif (1992). This previous work has been combined into a computer based model with graphical output referred to as the LINOSA model and was developed as a decision support system for basin managers. This paper will present the application of the LINOSA surface-ground water management model to the Rattlesnake watershed basin that resides within Ground Water Management District Number 5 in south central Kansas

  13. Radioactivity in surface waters and its effects

    International Nuclear Information System (INIS)

    Stoeber, I.

    1987-01-01

    In consequence of the reactor accident in Chernobyl, the State Office for Water and Waste Disposal of North-Rhine Westphalia implemented immediate programmes for monitoring radioactivity in surface waters, including their sediments and organisms. Of the initially-measured radionuclides, only cesium-137, with its long half-life of 30 years, is of interest. Only trace amounts of the almost equally long-lived strontium 90 (half-life 28 years) were present in rainfall. Cs-137 is a non-natural-radionuclide, occurring solely as a by-product of nuclear installations and atomic bomb tests. Following the ban on surface testing of nuclear weapons, the Cs-137 content of surface waters had fallen significantly up to April 1986. The load due to the reactor disaster is of the same order of magnitude as that produced by atomic testing at the end of the nineteen-sixties. The paper surveys radioactive pollution of surface waters in North-Rhine Westphalia and its effects on water use, especially in regard to potable water supplies and the fish population. (orig./HSCH) [de

  14. Assessment of produced water contaminated soils to determine remediation requirements

    International Nuclear Information System (INIS)

    Clodfelter, C.

    1995-01-01

    Produced water and drilling fluids can impact the agricultural properties of soil and result in potential regulatory and legal liabilities. Produced water typically is classified as saline or a brine and affects surface soils by increasing the sodium and chloride content. Sources of produced water which can lead to problems include spills from flowlines and tank batteries, permitted surface water discharges and pit areas, particularly the larger pits including reserve pits, emergency pits and saltwater disposal pits. Methods to assess produced water spills include soil sampling with various chemical analyses and surface geophysical methods. A variety of laboratory analytical methods are available for soil assessment which include electrical conductivity, sodium adsorption ratio, cation exchange capacity, exchangeable sodium percent and others. Limiting the list of analytical parameters to reduce cost and still obtain the data necessary to assess the extent of contamination and determine remediation requirements can be difficult. The advantage to using analytical techniques is that often regulatory remediation standards are tied to soil properties determined from laboratory analysis. Surface geophysical techniques can be an inexpensive method to rapidly determine the extent and relative magnitude of saline soils. Data interpretations can also provide an indication of the horizontal as well as the vertical extent of impacted soils. The following discussion focuses on produced water spills on soil and assessment of the impacted soil. Produced water typically contains dissolved hydrocarbons which are not addressed in this discussion

  15. Surface tension of normal and heavy water

    International Nuclear Information System (INIS)

    Straub, J.; Rosner, N.; Grigull, V.

    1980-01-01

    A Skeleton Table and simple interpolation equation for the surface tension of light water was developed by the Working Group III of the International Association for the Properties of Steam and is recommended as an International Standard. The Skeleton Table is based on all known measurements of the surface tension and individual data were weighted corresponding to the accuracy of the measurements. The form of the interpolation equation is based on a physical concept. It represents an extension of van der Waals-equation, where the exponent conforms to the 'Scaling Laws'. In addition for application purposes simple relations for the Laplace-coefficient and for the density difference between the liquid and gaseous phases of light water are given. The same form of interpolation equation for the surface tension can be used for heavy water, for which the coefficients are given. However, this equation is based only on a single set of data. (orig.) [de

  16. Development of an analytical methodology for the determination of the antiparasitic drug toltrazuril and its two metabolites in surface water, soil and animal manure

    DEFF Research Database (Denmark)

    Olsen, Jesper; Björklund, Erland; Krogh, Kristine A

    2012-01-01

    ... with an EC 50 of 3.16 mg L ‚àí1 for toltrazuril [9]. Due to toltrazurils frequent usage ... a LC-MS/MS methodology to determine toltrazuril , toltrazuril sulfoxide and toltrazuril sulfone in ... SPE), and in agricultural soil, animal manure and sediment using pressurized liquid extraction ( PLE ). ...

  17. Determination of Organophosphorous Pesticides in Environmental Water Samples Using Surface-Engineered C18 Functionalized Silica-Coated Core-Shell Magnetic Nanoparticles-Based Extraction Coupled with GC-MS/MS Analysis.

    Science.gov (United States)

    Srivastava, Neha; Kumari, Supriya; Nair, Kishore; Alam, Samsul; Raza, Syed K

    2017-05-01

    The present paper depicts a novel method based on magnetic SPE (MSPE) for the determination of organophosphorus pesticides (OPs) such as phorate, malathion, and chlorpyrifos in environmental water samples. In this study, C18 functionalized silica-coated core-shell iron oxide magnetic nanoparticles (MNPs) were used as a surface-engineered magnetic sorbent for the selective extraction of pesticides from aqueous samples, followed by GC-MS and GC-tandem MS analysis for confirmative determination of the analytes. Various important method parameters, including quantity of MNP adsorbent, volume of sample, effective time for extraction, nature of the desorbing solvent, and pH of the aqueous sample, were investigated and optimized to obtain maximum method performance. Under the optimized instrumental analysis conditions, good linearity (r2 value ≥0.994) was achieved at the concentration range of 0.5-500 μg/L. Recoveries were in the range of 79.2-96.3 and 80.4-97.5% in selective-ion monitoring and multiple reaction monitoring (MRM) modes, respectively, at the spiking concentrations of 1, 5, and 10 μg/L. MRM mode showed better sensitivity, selectivity, and low-level detection (0.5 μg/L) of analytes. The novel MSPE method is a simple, cheap, rapid, and eco-friendly method for the determination of OPs in environmental water samples.

  18. Electrolysis of water on (oxidized) metal surfaces

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Logadottir, Ashildur; Nørskov, Jens Kehlet

    2005-01-01

    Density functional theory calculations are used as the basis for an analysis of the electrochemical process, where by water is split to form molecular oxygen and hydrogen. We develop a method for obtaining the thermochemistry of the electrochemical water splitting process as a function of the bias...... directly from the electronic structure calculations. We consider electrodes of Pt(111) and Au(111) in detail and then discuss trends for a series of different metals. We show that the difficult step in the water splitting process is the formation of superoxy-type (OOH) species on the surface...... by the splitting of a water molecule on top an adsorbed oxygen atom. One conclusion is that this is only possible on metal surfaces that are (partly) oxidized. We show that the binding energies of the different intermediates are linearly correlated for a number of metals. In a simple analysis, where the linear...

  19. Occurrence of Surface Water Contaminations: An Overview

    Science.gov (United States)

    Shahabudin, M. M.; Musa, S.

    2018-04-01

    Water is a part of our life and needed by all organisms. As time goes by, the needs by human increased transforming water quality into bad conditions. Surface water contaminated in various ways which is pointed sources and non-pointed sources. Pointed sources means the source are distinguished from the source such from drains or factory but the non-pointed always occurred in mixed of elements of pollutants. This paper is reviewing the occurrence of the contaminations with effects that occurred around us. Pollutant factors from natural or anthropology factors such nutrients, pathogens, and chemical elements contributed to contaminations. Most of the effects from contaminated surface water contributed to the public health effects also to the environments.

  20. Fluorimetric determination of uranium in water

    International Nuclear Information System (INIS)

    Acosta L, E.

    1992-02-01

    The fluorimetric method for the determination of microquantities of uranium in water is described. This method covers the determination of uranium in water in the interval from 0.2 to 50 ppm on 50 ml. of radioactive base sample. These limits can be variable if the volume of the aliquot one of the base sample is changed, as well as the volume of the used aliquot one for to the final determination of uranium. (Author)

  1. Surface Water Protection by Productive Buffers

    DEFF Research Database (Denmark)

    Christen, Benjamin

    Vegetated riparian buffer zones are a widely recommended best management practice in agriculture for protecting surface and coastal waters from diffuse nutrient pollution. On the background of the EU funded research project NitroEurope (NEU; www.NitroEurope.eu), this study concentrates...... on the mitigation of nitrogen pollution in surface and groundwater, using riparian buffer zones for biomass production. The objectives are to map suitable areas for buffer implementation across the six NEU study landscapes, model tentative N-loss mitigation, calculate biomass production potential and economic...... designed for local conditions could be a way of protecting water quality attractive to many stakeholders....

  2. Ambient-Temperature Trap/Release of Arsenic by Dielectric Barrier Discharge and Its Application to Ultratrace Arsenic Determination in Surface Water Followed by Atomic Fluorescence Spectrometry.

    Science.gov (United States)

    Mao, Xuefei; Qi, Yuehan; Huang, Junwei; Liu, Jixin; Chen, Guoying; Na, Xing; Wang, Min; Qian, Yongzhong

    2016-04-05

    A novel dielectric barrier discharge reactor (DBDR) was utilized to trap/release arsenic coupled to hydride generation atomic fluorescence spectrometry (HG-AFS). On the DBD principle, the precise and accurate control of trap/release procedures was fulfilled at ambient temperature, and an analytical method was established for ultratrace arsenic in real samples. Moreover, the effects of voltage, oxygen, hydrogen, and water vapor on trapping and releasing arsenic by DBDR were investigated. For trapping, arsenic could be completely trapped in DBDR at 40 mL/min of O2 input mixed with 600 mL/min Ar carrier gas and 9.2 kV discharge potential; prior to release, the Ar carrier gas input should be changed from the upstream gas liquid separator (GLS) to the downstream GLS and kept for 180 s to eliminate possible water vapor interference; for arsenic release, O2 was replaced by 200 mL/min H2 and discharge potential was adjusted to 9.5 kV. Under optimized conditions, arsenic could be detected as low as 1.0 ng/L with an 8-fold enrichment factor; the linearity of calibration reached R(2) > 0.995 in the 0.05 μg/L-5 μg/L range. The mean spiked recoveries for tap, river, lake, and seawater samples were 98% to 103%; and the measured values of the CRMs including GSB-Z50004-200431, GBW08605, and GBW(E)080390 were in good agreement with the certified values. These findings proved the feasibility of DBDR as an arsenic preconcentration tool for atomic spectrometric instrumentation and arsenic recycling in industrial waste gas discharge.

  3. Reaction of water vapor with a clean liquid uranium surface

    International Nuclear Information System (INIS)

    Siekhaus, W.

    1985-01-01

    To study the reaction of water vapor with uranium, we have exposed clean liquid uranium surfaces to H 2 O under UHV conditions. We have measured the surface concentration of oxygen as a function of exposure, and determined the maximum attainable surface oxygen concentration X 0 /sup s/ as a function of temperature. We have used these measurements to estimate, close to the melting point, the solubility of oxygen (X 0 /sup b/, -4 ) and its surface segregation coefficient β/sup s/(> 10 3 ). 8 refs., 5 figs., 1 tab

  4. Possibilities of surface waters monitoring at mining areas using UAV

    Directory of Open Access Journals (Sweden)

    Lisiecka Ewa

    2018-01-01

    Full Text Available The selected, remote measurement methods are discussed, useful for determining surface water properties using mobile unmanned aerial platforms (UAV. The possibilities of using this type of solutions in the scope of measuring spatial, physicochemical and biological parameters of both natural and anthropogenic water reservoirs, including flood polders, water-filled pits, settling tanks and mining sinks were analyzed. Methods of remote identification of the process of overgrowing this type of ecosystems with water and coastal plant formations have also been proposed.

  5. Surface-Water Conditions in Georgia, Water Year 2005

    Science.gov (United States)

    Painter, Jaime A.; Landers, Mark N.

    2007-01-01

    INTRODUCTION The U.S. Geological Survey (USGS) Georgia Water Science Center-in cooperation with Federal, State, and local agencies-collected surface-water streamflow, water-quality, and ecological data during the 2005 Water Year (October 1, 2004-September 30, 2005). These data were compiled into layers of an interactive ArcReaderTM published map document (pmf). ArcReaderTM is a product of Environmental Systems Research Institute, Inc (ESRI?). Datasets represented on the interactive map are * continuous daily mean streamflow * continuous daily mean water levels * continuous daily total precipitation * continuous daily water quality (water temperature, specific conductance dissolved oxygen, pH, and turbidity) * noncontinuous peak streamflow * miscellaneous streamflow measurements * lake or reservoir elevation * periodic surface-water quality * periodic ecological data * historical continuous daily mean streamflow discontinued prior to the 2005 water year The map interface provides the ability to identify a station in spatial reference to the political boundaries of the State of Georgia and other features-such as major streams, major roads, and other collection stations. Each station is hyperlinked to a station summary showing seasonal and annual stream characteristics for the current year and for the period of record. For continuous discharge stations, the station summary includes a one page graphical summary page containing five graphs, a station map, and a photograph of the station. The graphs provide a quick overview of the current and period-of-record hydrologic conditions of the station by providing a daily mean discharge graph for the water year, monthly statistics graph for the water year and period of record, an annual mean streamflow graph for the period of record, an annual minimum 7-day average streamflow graph for the period of record, and an annual peak streamflow graph for the period of record. Additionally, data can be accessed through the layer's link

  6. Impinging Water Droplets on Inclined Glass Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lance, Blake [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ho, Clifford K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Multiphase computational models and tests of falling water droplets on inclined glass surfaces were developed to investigate the physics of impingement and potential of these droplets to self-clean glass surfaces for photovoltaic modules and heliostats. A multiphase volume-of-fluid model was developed in ANSYS Fluent to simulate the impinging droplets. The simulations considered different droplet sizes (1 mm and 3 mm), tilt angles (0°, 10°, and 45°), droplet velocities (1 m/s and 3 m/s), and wetting characteristics (wetting=47° contact angle and non-wetting = 93° contact angle). Results showed that the spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) decreased with increasing inclination angle due to the reduced normal force on the surface. The hydrophilic surface yielded greater spread factors than the hydrophobic surface in all cases. With regard to impact forces, the greater surface tilt angles yielded lower normal forces, but higher shear forces. Experiments showed that the experimentally observed spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) was significantly larger than the simulated spread factor. Observed spread factors were on the order of 5 - 6 for droplet velocities of ~3 m/s, whereas the simulated spread factors were on the order of 2. Droplets were observed to be mobile following impact only for the cases with 45° tilt angle, which matched the simulations. An interesting phenomenon that was observed was that shortly after being released from the nozzle, the water droplet oscillated (like a trampoline) due to the "snapback" caused by the surface tension of the water droplet being released from the nozzle. This oscillation impacted the velocity immediately after the release. Future work should evaluate the impact of parameters such as tilt angle and surface wettability on the impact of particle/soiling uptake and removal to investigate ways that

  7. Thermodynamic properties of water solvating biomolecular surfaces

    Science.gov (United States)

    Heyden, Matthias

    Changes in the potential energy and entropy of water molecules hydrating biomolecular interfaces play a significant role for biomolecular solubility and association. Free energy perturbation and thermodynamic integration methods allow calculations of free energy differences between two states from simulations. However, these methods are computationally demanding and do not provide insights into individual thermodynamic contributions, i.e. changes in the solvent energy or entropy. Here, we employ methods to spatially resolve distributions of hydration water thermodynamic properties in the vicinity of biomolecular surfaces. This allows direct insights into thermodynamic signatures of the hydration of hydrophobic and hydrophilic solvent accessible sites of proteins and small molecules and comparisons to ideal model surfaces. We correlate dynamic properties of hydration water molecules, i.e. translational and rotational mobility, to their thermodynamics. The latter can be used as a guide to extract thermodynamic information from experimental measurements of site-resolved water dynamics. Further, we study energy-entropy compensations of water at different hydration sites of biomolecular surfaces. This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

  8. Surface-Water Data, Georgia, Water Year 1999

    Science.gov (United States)

    Alhadeff, S. Jack; Landers, Mark N.; McCallum, Brian E.

    1999-01-01

    Water resources data for the 1999 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in one volume in a digital format on a CD-ROM. This volume contains discharge records of 121 gaging stations; stage for 13 gaging stations; stage and contents for 18 lakes and reservoirs; continuous water quality records for 10 stations; and the annual peak stage and annual peak discharge for 75 crest-stage partial-record stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Records of discharge and stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological water-supply papers entitled, 'Surface-Water Supply of the United States.' Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperature, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled, 'Quality of Surface Waters of the United States.' Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled, 'Ground-Water Levels in the United States.' Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from the U.S. Geological Survey, Branch of Information Services, Federal Center, Box 25286, Denver, CO 80225. For water years 1961 through 1970, streamflow data were released by the U.S. Geological Survey in annual reports on a State-boundary basis prior to the two 5-year series water-supply papers, which cover this period. The data contained in the water-supply papers are considered the official record. Water-quality records for water years 1964 through 1970 were similarly released

  9. Surface water, particulate matter, and sediments of inland waters

    International Nuclear Information System (INIS)

    Mundschenk, H.

    1985-01-01

    The Bundesanstalt fuer Gewaesserkunde (BfG) since 1958 runs a system for monitoring the surface water and sediments of Federal German waterways in its capacity as a directing water monitoring centre. The data recorded over the years show that the radioactivity released by the various emission sources leads to radionuclide concentrations in water, particulate matter, or sediments that generally are below the detection limits defined in the relevant legal provisions governing monitoring and surveillance of nuclear facilities effluents. Representative examples of measuring methods and results (as for e.g. for H-3) are given. (DG) [de

  10. Sr90 determination in calcareous water

    International Nuclear Information System (INIS)

    Cohen, P.; Pardo, G.; Wormser, G.

    1958-01-01

    The Straub method (ref. 2) for determination of radioactive strontium in water containing calcium is valid within very wide limits, and particularly in the case of residual water from the chemical purification treatment of the radioactive liquid effluent at the C.E.N. Saclay. (author) [fr

  11. Calorimetric determination of the water energy dosis

    International Nuclear Information System (INIS)

    Krauss, Achim

    2013-01-01

    The water calorimeter of the PTB is described, which consists of a water phantom operated at 4 C, whereby the radiation-induced temperature raise is measured by means of thermistors. As application example the determination of the radiation-quality dependent k Q factors of ionization chambers for all medical accelerators present in the PTB is described. (HSI)

  12. The influence of lithology on surface water sources | Science ...

    Science.gov (United States)

    Understanding the temporal and spatial variability of surface water sources within a basin is vital to our ability to manage the impacts of climate variability and land cover change. Water stable isotopes can be used as a tool to determine geographic and seasonal sources of water at the basin scale. Previous studies in the Coastal Range of Oregon reported that the variation in the isotopic signatures of surface water does not conform to the commonly observed “rainout effect”, which exhibits a trend of increasing isotopic depletion with rising elevation. The primary purpose of this research is to investigate the mechanisms governing seasonal and spatial variations in the isotopic signature of surface waters within the Marys River Basin, located in the leeward side of the Oregon Coastal Range. Surface water and precipitation samples were collected every 2-3 weeks for isotopic analysis of δ18O and δ2H for one year. Results indicate a significant difference in isotopic signature between watersheds underlain by basalt and sandstone. The degree of separation was the most distinct during the summer when low flows reflect deeper groundwater sources, whereas isotopic signatures during the rainy season (fall and winter) showed a greater degree of similarity between the two lithologies. This indicates that baseflow within streams drained by sandstone versus basalt is being supplied from two distinctly separate water sources. In addition, Marys River flow at the outle

  13. Modeling global distribution of agricultural insecticides in surface waters

    International Nuclear Information System (INIS)

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J.; Schäfer, Ralf B.; Fornaroli, Riccardo; Liess, Matthias

    2015-01-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. - Highlights: • First global map on insecticide runoff through modelling. • Model predicts upper limit of insecticide exposure when compared to field data. • Water bodies in 40% of global land surface may be at risk of adverse effects. • Insecticide application rate, terrain slope and rainfall main drivers of exposure. - We provide the first global map on insecticide runoff to surface water predicting that water bodies in 40% of global land surface may be at risk of adverse effects

  14. Quality Determination of Pipe-Borne Water in Sokoto Metropolis ...

    African Journals Online (AJOL)

    The quality of the pipe-borne water supplied to Sokoto metropolis was determined in this study. The total bacterial count was carried out using surface plating method of inoculation. The coliforms were enumerated using multiple tube fermentation technique (Most Probable Number Method). Some physicochemical ...

  15. Macroelements in the surface microlayer of water of urban ponds

    Directory of Open Access Journals (Sweden)

    Antonowicz Józef Piotr

    2016-03-01

    Full Text Available Analyses were conducted concerning the accumulation of four metals representing the group of macroelements, i.e. sodium, potassium, calcium and magnesium in two ponds located in the city of Słupsk. Water samples for chemical analyses were collected from the surface microlayer using a Garrett net. At the same time subsurface water samples were collected. Concentrations of metals were determined using a mass spectrometer. Generally, amounts of sodium, potassium, calcium and magnesium were similar in surface microlayer and subsurface water. Only in the case of potassium and calcium was low enrichment observed in the surface microlayer in one pond, while the greatest extent for magnesium enrichment was observed in the spring period.

  16. Transport and transformation of surface water masses across the ...

    African Journals Online (AJOL)

    Transport and transformation of surface water masses across the Mascarene Plateau during the Northeast Monsoon season. ... Mixing occurs in the central gap between intermediate water masses (Red Sea Water [RSW] and Antarctic Intermediate Water [AAIW]) as well as in the upper waters (Subtropical Surface Water ...

  17. Particle dry deposition to water surfaces: Processes and consequences

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, R.J.

    2000-01-01

    flux to coastal waters, atmosphere-surface exchange represents a significant component of the total flux and may be particularly critical during the summertime when both the riverine input and ambient nutrient concentrations are often at a minimum. In this chapter, we present an overview...... of the physical and chemical processes which dictate the quantity (and direction) of atmosphere-surface fluxes of trace chemicals to (and above) water surfaces with particular emphasis on the role of particles. Dry deposition (transfer to the surface in the absence of precipitation) of particles is determined...... efforts to simulate and measure fluxes close to the coastline. These arise in part from the complexity of atmospheric flow in this region where energy and chemical fluxes are highly inhomogeneous in space and time and thermally generated atmospheric circulations are commonplace. (C) 2000 Elsevier Science...

  18. Liquid Chromatography with Post-Column Reagent Addition of Ammonia in Methanol Coupled to Negative Ion Electrospray Ionization Tandem Mass Spectrometry for Determination of Phenoxyacid Herbicides and their Degradation Products in Surface Water

    Directory of Open Access Journals (Sweden)

    Renata Raina

    2010-01-01

    Full Text Available A new liquid chromatography (LC-negative ion electrospray ionization (ESI − –tandem mass spectrometry (MS/MS method with post-column addition of ammonia in methanol has been developed for the analysis of acid herbicides: 2,4-dichlorophenoxy acetic acid, 4-chloro-o-tolyloxyacetic acid, 2-(2-methyl-4-chlorophenoxybutyric acid, mecoprop, dichlorprop, 4-(2,4-dichlorophenoxy butyric acid, 2,4,5-trichlorophenoxy propionic acid, dicamba and bromoxynil, along with their degradation products: 4-chloro-2-methylphenol, 2,4-dichlorophenol, 2,4,5-trichlorophenol and 3,5-dibromo-4-hydroxybenzoic acid. The samples were extracted from the surface water matrix using solid-phase extraction (SPE with a polymeric sorbent and analyzed with LC ESI − with selected reaction monitoring (SRM using a three-point confirmation approach. Chromatography was performed on a Zorbax Eclipse XDB-C18 (50 × 4.6 mm i.d., 1.8 μm with a gradient elution using water-methanol with 2 mM ammonium acetate mobile phase at a flow rate of 0.15 mL/min. Ammonia in methanol (0.8 M was added post-column at a flow rate of 0.05 mL/min to enhance ionization of the degradation products in the MS source. One SRM transition was used for quantitative analysis while the second SRM along with the ratio of SRM1/SRM2 within the relative standard deviation determined by standards for each individual pesticide and retention time match were used for confirmation. The standard deviation of ratio of SRM1/SRM2 obtained from standards run on the day of analysis for different phenoxyacid herbicides ranged from 3.9 to 18.5%. Limits of detection (LOD were between 1 and 15 ng L −1 and method detection limits (MDL with strict criteria requiring <25% deviation of peak area from best-fit line for both SRM1 and SRM2 ranged from 5 to 10 ng L −1 for acid ingredients (except dicamba at 30 ng L −1 and from 2 to 30 ng L −1 for degradation products. The SPE-LC-ESI − MS/MS method permitted low nanogram

  19. Radiological monitoring. Controlling surface water pollution

    International Nuclear Information System (INIS)

    Morin, Maxime

    2018-01-01

    Throughout France, surface waters (from rivers to brooks) located at the vicinity of nuclear or industrial sites, are subject to regular radiological monitoring. An example is given with the radiological monitoring of a small river near La Hague Areva's plant, where contaminations have been detected with the help of the French IRSN nuclear safety research organization. The sampling method and various measurement types are described

  20. Bulk water freezing dynamics on superhydrophobic surfaces

    Science.gov (United States)

    Chavan, S.; Carpenter, J.; Nallapaneni, M.; Chen, J. Y.; Miljkovic, N.

    2017-01-01

    In this study, we elucidate the mechanisms governing the heat-transfer mediated, non-thermodynamic limited, freezing delay on non-wetting surfaces for a variety of characteristic length scales, Lc (volume/surface area, 3 mm commercial superhydrophobic spray coatings, showing a monotonic increase in freezing time with coating thickness. The added thermal resistance of thicker coatings was much larger than that of the nanoscale superhydrophobic features, which reduced the droplet heat transfer and increased the total freezing time. Transient finite element method heat transfer simulations of the water slab freezing process were performed to calculate the overall heat transfer coefficient at the substrate-water/ice interface during freezing, and shown to be in the range of 1-2.5 kW/m2K for these experiments. The results shown here suggest that in order to exploit the heat-transfer mediated freezing delay, thicker superhydrophobic coatings must be deposited on the surface, where the coating resistance is comparable to the bulk water/ice conduction resistance.

  1. Convergent surface water distributions in U.S. cities

    Science.gov (United States)

    M.K. Steele; J.B. Heffernan; N. Bettez; J. Cavender-Bares; P.M. Groffman; J.M. Grove; S. Hall; S.E. Hobbie; K. Larson; J.L. Morse; C. Neill; K.C. Nelson; J. O' Neil-Dunne; L. Ogden; D.E. Pataki; C. Polsky; R. Roy Chowdhury

    2014-01-01

    Earth's surface is rapidly urbanizing, resulting in dramatic changes in the abundance, distribution and character of surface water features in urban landscapes. However, the scope and consequences of surface water redistribution at broad spatial scales are not well understood. We hypothesized that urbanization would lead to convergent surface water abundance and...

  2. Studies Concerning Water-Surface Deposits in Recovery Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Strandberg, O; Arvesen, J; Dahl, L

    1971-11-15

    The Feed-water Committee of the Stiftelsen Svensk Cellulosaforskning (Foundation for Swedish Cellulose Research) has initiated research and investigations which aim to increase knowledge about water-surface deposits in boiler tubes, and the resulting risks of gas-surface corrosion in chemical recovery boilers (sulphate pulp industry). The Committee has arranged with AB Atomenergi, Studsvik, for investigations into the water-surface deposits on tubes from six Scandinavian boilers. These investigations have included direct measurements of the thermal conductivity of the deposits, and determinations of their quantity, thickness and structure have been carried out. Previous investigations have shown that gas-surface corrosion can occur at tube temperatures above 330 deg C. The measured values for the thermal conductivity of the deposits indicate that even with small quantities of deposit (c. 1 g/dm2 ) and a moderate boiler pressure (40 atm), certain types of deposit can give rise to the above-mentioned surface temperature, at which the risk of gas-surface corrosion becomes appreciable. For higher boiler pressures the risk is great even with a minimal layer of deposit. The critical deposit thickness can be as low as 0.1 mm

  3. Water droplet evaporation from sticky superhydrophobic surfaces

    Science.gov (United States)

    Lee, Moonchan; Kim, Wuseok; Lee, Sanghee; Baek, Seunghyeon; Yong, Kijung; Jeon, Sangmin

    2017-07-01

    The evaporation dynamics of water from sticky superhydrophobic surfaces was investigated using a quartz crystal microresonator and an optical microscope. Anodic aluminum oxide (AAO) layers with different pore sizes were directly fabricated onto quartz crystal substrates and hydrophobized via chemical modification. The resulting AAO layers exhibited hydrophobic or superhydrophobic characteristics with strong adhesion to water due to the presence of sealed air pockets inside the nanopores. After placing a water droplet on the AAO membranes, variations in the resonance frequency and Q-factor were measured throughout the evaporation process, which were related to changes in mass and viscous damping, respectively. It was found that droplet evaporation from a sticky superhydrophobic surface followed a constant contact radius (CCR) mode in the early stage of evaporation and a combination of CCR and constant contact angle modes without a Cassie-Wenzel transition in the final stage. Furthermore, AAO membranes with larger pore sizes exhibited longer evaporation times, which were attributed to evaporative cooling at the droplet interface.

  4. Remote sensing as a surface water quality monitoring support in the semiarid region of Brazil

    OpenAIRE

    Fernando Bezerra Lopes

    2013-01-01

    The contamination of surface water bodies due to antropic action has made water ever more scarce. Knowledge of the water quality is essential to determine instruments for it's management . Monitoring water quality in huge areas requires a high number of saimples for water quality control. This fact, allied to the high costs of water analysis, limits the evaluation that can be made of continental waters. Even though in later years geoprocessing and remote sensin...

  5. DETERMINANTS OF RESIDENTIAL PER CAPITA WATER ...

    African Journals Online (AJOL)

    This report presents the findings of the study on the determinants of residential per capita water demand of Makurdi metropolis in Benue State, Nigeria. Data for the study was obtained by the use of questionnaires, oral interviews and observations. The data was analyzed using SPSS. Twenty variables were considered in ...

  6. Sorption-scintillation determination of 90Sr in natural water

    International Nuclear Information System (INIS)

    Andryushchenko, A.Yu.; Blank, A.B.; Budakovsky, S.V.; Tarasenko, O.A.; Shevtsov, N.I.

    2003-01-01

    A porous composite material is described for determination of radionuclides in aquatic objects of the environment. Possibilities have been studied for the use of this material in monitoring of 90 Sr content in natural waters. The composite is a scintillator with through pores, the surface of which is impregnated by a sorbent that is selective with respect to strontium. The structure of the material allows combination of two processes--concentrating the radionuclide and measuring its activity. Studies were carried out using both model systems based on reference radioactive solutions and samples of natural water contaminated with radionuclides. It is shown that the use of the proposed method for analysis of natural water allows determination in water of 4x10 -2 Bq l -1 of 90 Sr, which is by two orders of magnitude lower than its maximum acceptable concentration

  7. Water evaporation on highly viscoelastic polymer surfaces.

    Science.gov (United States)

    Pu, Gang; Severtson, Steven J

    2012-07-03

    Results are reported for a study on the evaporation of water droplets from a highly viscoelastic acrylic polymer surface. These are contrasted with those collected for the same measurements carried out on polydimethylsiloxane (PDMS). For PDMS, the evaporation process involves the expected multistep process including constant drop area, constant contact angle, and finally a combination of these steps until the liquid is gone. In contrast, water evaporation from the acrylic polymer shows a constant drop area mode throughout. Furthermore, during the evaporation process, the drop area actually expands on the acrylic polymer. The single mode evaporation process is consistent with formation of wetting structures, which cannot be propagated by the capillary forces. Expansion of the drop area is attributed to the influence of the drop capillary pressure. Furthermore, the rate of drop area expansion is shown to be dependent on the thickness of the polymer film.

  8. Determination of the ratio between phosphorus and uranium in surface waters selected in the State of Mexico; Determinacion de la relacion entre fosforo y uranio en cuerpos de agua seleccionados en el Estado de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez R, E

    2001-07-01

    The agricultural regions lately, they have suffered a severe contamination for the big ones quantities of chemical fertilizers and of pesticides applied to improve their production and quality, increasing these in areas with temperatures but you lower that the average. For the importance of the physicochemical processes that they are made in the waters to settle down surface near to agricultural fields, the physicochemical characteristics were analysed of these waters to determine the contributions that they carry out the phosphate fertilizers that are carried by the escorrentia toward the borders and to make a pursuit of their variability during an agricultural cycle, in times of the summertime and of rains, as well as to observe the effect of the depth in these physicochemical properties. Its were sampling three borders and a spring that it served of white, all them located in the suburbs of the Xinantecatl (Nevado de Toluca), municipality of Zinacantepec, State of Mexico, area with the temperatures but drops registered in the region. They were carried out samplings in the first days of the months of April, July and November. The points of those sampled borders were the influent, the effluent and 3 different depths (lm, 3m and 5m). where was not possible sampling all the points, its were sampling only the one influent and the effluent. The selected physicochemical parameters were the temperature, the pH, the conductivity electric and the one oxygenates dissolved This determination in situ you carries out with a team portable of type Check-Mate, of interchangeable electrodes. The certain anions they were phosphates, nitrates, sulfates and bicarbonates; the measurement of the concentration of anions, one carries out for ultraviolet-visible light spectroscopy and titration. The cations analysed they were sodium, potassium, iron, calcium and magnesium. The cations concentration was determined by atomic absorption spectroscopy. The determination of the uranium

  9. Determination of the ratio between phosphorus and uranium in surface waters selected in the State of Mexico; Determinacion de la relacion entre fosforo y uranio en cuerpos de agua seleccionados en el Estado de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez R, E

    2001-07-01

    The agricultural regions lately, they have suffered a severe contamination for the big ones quantities of chemical fertilizers and of pesticides applied to improve their production and quality, increasing these in areas with temperatures but you lower that the average. For the importance of the physicochemical processes that they are made in the waters to settle down surface near to agricultural fields, the physicochemical characteristics were analysed of these waters to determine the contributions that they carry out the phosphate fertilizers that are carried by the escorrentia toward the borders and to make a pursuit of their variability during an agricultural cycle, in times of the summertime and of rains, as well as to observe the effect of the depth in these physicochemical properties. Its were sampling three borders and a spring that it served of white, all them located in the suburbs of the Xinantecatl (Nevado de Toluca), municipality of Zinacantepec, State of Mexico, area with the temperatures but drops registered in the region. They were carried out samplings in the first days of the months of April, July and November. The points of those sampled borders were the influent, the effluent and 3 different depths (lm, 3m and 5m). where was not possible sampling all the points, its were sampling only the one influent and the effluent. The selected physicochemical parameters were the temperature, the pH, the conductivity electric and the one oxygenates dissolved This determination in situ you carries out with a team portable of type Check-Mate, of interchangeable electrodes. The certain anions they were phosphates, nitrates, sulfates and bicarbonates; the measurement of the concentration of anions, one carries out for ultraviolet-visible light spectroscopy and titration. The cations analysed they were sodium, potassium, iron, calcium and magnesium. The cations concentration was determined by atomic absorption spectroscopy. The determination of the uranium

  10. Liquid Chromatography with Post-Column Reagent Addition of Ammonia in Methanol Coupled to Negative Ion Electrospray Ionization Tandem Mass Spectrometry for Determination of Phenoxyacid Herbicides and their Degradation Products in Surface Water

    Directory of Open Access Journals (Sweden)

    Michele L. Etter

    2010-02-01

    Full Text Available A new liquid chromatography (LC-negative ion electrospray ionization (ESI–tandem mass spectrometry (MS/MS method with post-column addition of ammonia in methanol has been developed for the analysis of acid herbicides: 2,4-dichlorophenoxy ace- tic acid, 4-chloro-o-tolyloxyacetic acid, 2-(2-methyl-4-chlorophenoxybutyric acid, mecoprop, dichlorprop, 4-(2,4-dichlorophenoxy butyric acid, 2,4,5-trichlorophenoxy propionic acid, dicamba and bromoxynil, along with their degradation products: 4-chloro-2- methylphenol, 2,4-dichlorophenol, 2,4,5-trichlorophenol and 3,5-dibromo-4-hydroxybenzoic acid. The samples were extracted from the surface water matrix using solid-phase extraction (SPE with a polymeric sorbent and analyzed with LC ESI- with selected reaction monitoring (SRM using a three-point confirmation approach. Chromatography was performed on a Zorbax Eclipse XDB-C18 (50 × 4.6 mm i.d., 1.8 µm with a gradient elution using water-methanol with 2 mM ammonium acetate mobile phase at a flow rate of 0.15 mL/min. Ammonia in methanol (0.8 M was added post-column at a flow rate of 0.05 mL/min to enhance ionization of the deg- radation products in the MS source. One SRM transition was used for quantitative analysis while the second SRM along with the ratio of SRM1/SRM2 within the relative standard deviation determined by standards for each individual pesticide and retention time match were used for confirmation. The standard deviation of ratio of SRM1/SRM2 obtained from standards run on the day of analysis for different phenoxyacid herbicides ranged from 3.9 to 18.5%. Limits of detection (LOD were between 1 and 15 ng L-1 and method detection limits (MDL with strict criteria requiring

  11. Effect of solid waste landfill on underground and surface water ...

    African Journals Online (AJOL)

    Effect of solid waste landfill on underground and surface water quality at ring road, Ibadan, Nigeria. ... parameters showed increased concentrations over those from control sites. ... Keywords: Landfill, groundwater, surface-water, pollution.

  12. chemical and microbiological assessment of surface water samples

    African Journals Online (AJOL)

    PROF EKWUEME

    concentrations and bacteriological content. Evaluation of the results ... and Aninri local government areas of Enugu state. Surface water ... surface water bodies are prone to impacts from ... Coal Measures (Akamigbo, 1987). The geologic map ...

  13. Radioactivity levels in surface water of lakes around Izmir / Turkey

    International Nuclear Information System (INIS)

    Doyurum, S.; Turkozu, D. A.; Aslani, M. A. A.; Aytas, S.; Eral, M.; Kaygun, A. K.

    2006-01-01

    Radioactivity presents in surface continental waters is mainly due to the presence of radioactive elements in the earth's crust, other artificial radionuclides have appeared due to such human activities as nuclear power plants, nuclear weapons testing and manufacture and use of radioactive sources It is well known that natural radionuclides can be effective as tracers for the different processes controlling the distribution of elements among dissolved and particulate phases in aquatic systems. The detection of high radionuclide concentrations was proposed as a public health problem in several areas and consequently studies into the risks of radionuclides were started in the 2000s. Especially, these radioactive substances in groundwater are an unwanted and involuntary risk factor from natural sources, not artificial sources. These radioactive substances include uranium, radon found in uranium series, and other radioactive substances such as radium and gross alpha. Uranium present in rock, soil, and natural materials, and is found in small quantities in air, water, and food that people always contact. In this project, lake water samples were collected from three lakes around Izmir-Turkey. In surface lake water samples, pH, mV and conductivity values were measured and alkaline content was determined titrimetrically. The uranium concentrations in the lake water samples were measured using uranium analyzer. The radioactivity concentrations related to gross radium isotopes, gross-? and gross-? activities in the surface lake water were determined. The correlation among some parameters for water samples and concentrations of uranium, activity concentration of gross radium isotopes, gross alpha and gross beta radioactivity are also discussed

  14. [Occurrence of bacteria of the Yersinia genus in surface water].

    Science.gov (United States)

    Krogulska, B; Maleszewska, J

    1992-01-01

    The aim of the study was determination of the frequency of occurrence of Yersinia genus bacteria in surface waters polluted to various degrees with bacteria of the coliform and of fecal coli. For detection of Yersinia rods the previously elaborated medium Endo MLCe and the membrane filter method were applied. Samples of 42 surface waters were examined, including 26 from rivers and 16 from lakes, ponds and clay-pits. On the basis of sanitary bacteriological analysis 16 surface waters were classified to class I purity, 10 to class II, the remaining ones to class III or beyond classification. Yersinia rods were detected in 15 water bodies that is 35.7% of the examined waters. A total of 27 Yersinia strains were identified with dominance of Y. intermedia (14 strains) and Y. enterocolitica (10 strains). Three strains represented by the species Yersinia frederiksenii. Most of the Y. enterocolitica strains belonged to biotype 1, the particular strains being represented by various serotypes. Hence their different origin may be concluded. The pathogenic serotypes 0:3 and 0:9 of Yersinia enterocolitica were not detected.

  15. Determination of 46Sc in water

    International Nuclear Information System (INIS)

    Huo Bijun; Ji Zhaogang; Wang Juying

    1985-01-01

    Analytical procedures for the determination of 46 Sc in water is presented. 46 Sc in water is concentrated with Fe(OH) 3 ; Then 46 Sc is extracted with TBP and purified by precipitating it with Amygdalic Acid. Finally the precipitate is ignited into Sc 2 O 3 under 800 deg C and β-activity is counted. In this method chemical reeovery for Sc was (90.8 +- 2.8)% and radiochemical recovery for 46 Sc was (89.8 +- 3.8)%. Purification factors for some of the relevant Radionuclides ranged from 10 3 to 10 5

  16. Mathematical aspects of surface water waves

    International Nuclear Information System (INIS)

    Craig, Walter; Wayne, Clarence E

    2007-01-01

    The theory of the motion of a free surface over a body of water is a fascinating subject, with a long history in both applied and pure mathematical research, and with a continuing relevance to the enterprises of mankind having to do with the sea. Despite the recent advances in the field (some of which we will hear about during this Workshop on Mathematical Hydrodynamics at the Steklov Institute), and the current focus of the mathematical community on the topic, many fundamental mathematical questions remain. These have to do with the evolution of surface water waves, their approximation by model equations and by computer simulations, the detailed dynamics of wave interactions, such as would produce rogue waves in an open ocean, and the theory (partially probabilistic) of approximating wave fields over large regions by averaged 'macroscopic' quantities which satisfy essentially kinetic equations of motion. In this note we would like to point out open problems and some of the directions of current research in the field. We believe that the introduction of new analytical techniques and novel points of view will play an important role in the future development of the area.

  17. Water infiltration into exposed fractured rock surfaces

    International Nuclear Information System (INIS)

    Rasmussen, T.C.; Evans, D.D.

    1993-01-01

    Fractured rock media are present at many existing and potential waste disposal sites, yet characterization data and physical relationships are not well developed for such media. This study focused on water infiltration characteristics of an exposed fractured rock as an approach for defining the upper boundary condition for unsaturated-zone water percolation and contaminant transport modeling. Two adjacent watersheds of 0.24 and 1.73 ha with slopes up to 45% were instrumented for measuring rainfall and runoff. Fracture density was measured from readily observable fracture traces on the surface. Three methods were employed to evaluate the rainfall-runoff relationship. The first method used the annual totals and indicated that only 22.5% of rainfall occurred as runoff for the 1990-1991 water year, which demonstrates a high water intake rate by the exposed fracture system. The second method employed total rainfall and runoff for individual storms in conjunction with the commonly used USDA Soil Conservation Service curve number method developed for wide ranges of soils and vegetation. Curve numbers between 75 and 85 were observed for summer and winter storms with dry antecedent runoff conditions, while values exceeded 90 for wet conditions. The third method used a mass-balance approach for four major storms, which indicated that water intake rates ranged from 2.0 to 7.3 mm h -1 , yielding fracture intake velocities ranging from 122 to 293 m h -1 . The three analyses show the complexity of the infiltration process for fractured rock. However, they contribute to a better understanding of the upper boundary condition for predicting contaminant transport through an unsaturated fractured rock medium. 17 refs., 4 figs., 1 tab

  18. Microcystin-LR in surface water of Ponjavica river

    Directory of Open Access Journals (Sweden)

    Natić Dejan

    2012-01-01

    Full Text Available Background/Aim. Cyanobacterial toxins befall a group of various compounds according to chemical structure and health effects on people and animals. The most significant in this large group of compounds are microcystins. Their presence in water used for human consumption causes serious health problems, liver beeing the target organ. Microcystins are spread all over the world. Waterblooms of cyanobacterias and their cyanotoxins are also common in the majority of surface waters in Serbia. The aim of this study was to propose HPLC method for determination of mikrocystin-LR, to validate the method and to use it for determination of microcystin-LR in the surface water of the river Ponjavica. The Ponjavica is very eutrophic water and has ideal conditions for the cyanobacterial growth. Methods. Sample of water form the Ponjavica river were collected during the summer 2008. Coupled columns (HLB, Sep-Pak, were used for sample preparation and HPLC/PDA method was used for quantification of microcystin- LR. Results. Parameters of validation show that the proposed method is simple, fast, sensitive (0.1 mg/L and selective with the yield of 89%-92%. The measuring uncertainty of

  19. Organic acids in naturally colored surface waters

    Science.gov (United States)

    Lamar, William L.; Goerlitz, D.F.

    1966-01-01

    Most of the organic matter in naturally colored surface waters consists of a mixture of carboxylic acids or salts of these acids. Many of the acids color the water yellow to brown; however, not all of the acids are colored. These acids range from simple to complex, but predominantly they are nonvolatile polymeric carboxylic acids. The organic acids were recovered from the water by two techniques: continuous liquid-liquid extraction with n-butanol and vacuum evaporation at 50?C (centigrade). The isolated acids were studied by techniques of gas, paper, and column chromatography and infrared spectroscopy. About 10 percent of the acids recovered were volatile or could be made volatile for gas chromatographic analysis. Approximately 30 of these carboxylic acids were isolated, and 13 of them were individually identified. The predominant part of the total acids could not be made volatile for gas chromatographic analysis. Infrared examination of many column chromatographic fractions indicated that these nonvolatile substances are primarily polymeric hydroxy carboxylic acids having aromatic and olefinic unsaturation. The evidence suggests that some of these acids result from polymerization in aqueous solution. Elemental analysis of the sodium fusion products disclosed the absence of nitrogen, sulfur, and halogens.

  20. The interaction between surface water and groundwater and its ...

    Indian Academy of Sciences (India)

    Surface water; groundwater; stable isotopes; water quality; Second Songhua River basin. .... The total dissolved solid (TDS) was calculated by the con- centrations of major ions in ...... evaluating water quality management effectiveness; J.

  1. Atmospheric Water Harvesting: Role of Surface Wettability and Edge Effect

    KAUST Repository

    Jin, Yong; Zhang, Lianbin; Wang, Peng

    2017-01-01

    Atmospheric water is emerging as an important potable water source. The present work experimentally and theoretically investigates water condensation and collection on flat surfaces with contrasting contact angles and contact angle hysteresis (CAH

  2. Determination of mercury in drinking water

    International Nuclear Information System (INIS)

    Anand, S.J.S.

    1976-01-01

    Determination of mercury in drinking water samples have been carried out by neutron activation followed by chemical separation. The chemical analysis is necessary as the levels of mercury in these samples are quite low and activities of sodium, copper etc. interfere in its determination by direct spectroscopy. Solvent extraction separation offers speed and complete separation from interfering activities. Some of drinking water samples collected at Trombay have been analysed and their result are given in this paper. The procedure was checked with 197 Hg tracer and the reproducibility of the procedure is within 5%. It was free from contamination due to the activities of Cu, Na etc. The time of analysis was 15 minutes, and upto 5 samples could be analysed conveniently at a time. The average chemical yield was 72%. (T.I.)

  3. Cholesterol enhances surface water diffusion of phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chi-Yuan; Kausik, Ravinath; Han, Songi, E-mail: songi@chem.ucsb.edu [Department of Chemistry and Biochemistry and Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States); Olijve, Luuk L. C. [Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven (Netherlands)

    2014-12-14

    Elucidating the physical effect of cholesterol (Chol) on biological membranes is necessary towards rationalizing their structural and functional role in cell membranes. One of the debated questions is the role of hydration water in Chol-embedding lipid membranes, for which only little direct experimental data are available. Here, we study the hydration dynamics in a series of Chol-rich and depleted bilayer systems using an approach termed {sup 1}H Overhauser dynamic nuclear polarization (ODNP) NMR relaxometry that enables the sensitive and selective determination of water diffusion within 5–10 Å of a nitroxide-based spin label, positioned off the surface of the polar headgroups or within the nonpolar core of lipid membranes. The Chol-rich membrane systems were prepared from mixtures of Chol, dipalmitoyl phosphatidylcholine and/or dioctadecyl phosphatidylcholine lipid that are known to form liquid-ordered, raft-like, domains. Our data reveal that the translational diffusion of local water on the surface and within the hydrocarbon volume of the bilayer is significantly altered, but in opposite directions: accelerated on the membrane surface and dramatically slowed in the bilayer interior with increasing Chol content. Electron paramagnetic resonance (EPR) lineshape analysis shows looser packing of lipid headgroups and concurrently tighter packing in the bilayer core with increasing Chol content, with the effects peaking at lipid compositions reported to form lipid rafts. The complementary capability of ODNP and EPR to site-specifically probe the hydration dynamics and lipid ordering in lipid membrane systems extends the current understanding of how Chol may regulate biological processes. One possible role of Chol is the facilitation of interactions between biological constituents and the lipid membrane through the weakening or disruption of strong hydrogen-bond networks of the surface hydration layers that otherwise exert stronger repulsive forces, as reflected in

  4. Biofilm Surface Density Determines Biocide Effectiveness

    Directory of Open Access Journals (Sweden)

    Sara Bas

    2017-12-01

    Full Text Available High resistance of biofilms for chemical challenges is a serious industrial and medical problem. In this work a gradient of surface covered with biofilm has been produced and correlated to the effectiveness of different commercially available oxidative biocides. The results for thin Escherichia coli biofilms grown in rich media supplemented with glucose or lactose on glass or poly methyl methacrylate surfaces indicate that the effectiveness of hydrogen peroxide or chlorine dioxide and quaternary ammonium compounds is inversely proportional to the fraction of the surface covered with the biofilm. In areas where biofilm covered more than 90% of the available surface the biocide treatment was inefficient after 60 min of incubation. The combined effect of oxidant and surfactant increased the effectiveness of the biocide. On the other hand, the increased biofilm viscoelasticity reduced biocide effectiveness. The results emphasize differential biocide effectiveness depending on the fraction of the attached bacterial cells. The results suggest that biofilm biocide resistance is an acquired property that increases with biofilm maturation. The more dense sessile structures present lower log reductions compared to less dense ones.

  5. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations

    Science.gov (United States)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil

    2011-01-01

    Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on

  6. Structure and optical properties of water covered Cu(110) surfaces

    International Nuclear Information System (INIS)

    Baghbanpourasl, A.

    2014-01-01

    (110) surface due to surface relaxation is studied using elastooptic theory. The RAS of the most thermodynamically stable structures are calculated. The calculated spectra can be used as a reference for RAS experiments for determining the adsorbed structure. Calculations show that for all of these structures, RA spectra are sensitive to the water structures considered. In other words different adsorbed water structures have different RA spectra, which makes the structures distinguishable from each other. The origins of the peaks are studied in the band structure and it is observed that surface states are not quenched when water adsorbs in intact form. (author) [de

  7. General fundamentals of calculation for determining the radiation exposure due to radioactive discharge into surface waters. I. Flowing waters. Allgemeine Berechnungsgrundlagen fuer die Bestimmung der Strahlenexposition durch radioaktive Einleitungen in Oberflaechengewaesser. T. 1. Fliessgewaesser

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The paper describes a mathematical model for estimating the internal radiation exposure via different exposure pathways through radioactive discharges from nuclear facilities (paragraph 45, rad. prot. law) into rivers. The connections between the compartments of an ecological system are shown in their main types. Not all exposure pathways described are relevant for all cases; the experts have to carry out the evaluation using their knowledge of the local circumstances. The model is only valid for running waters above the tidal limit with the plant operating according to the rules.

  8. RIVER-RAD, Radionuclide Transport in Surface Waters

    International Nuclear Information System (INIS)

    1996-01-01

    1 - Description of program or function: RIVER-RAD assesses the potential fate of radionuclides released to rivers. The model is simplified in nature and is intended to provide guidance in determining the potential importance of the surface water pathway, relevant transport mechanisms, and key radionuclides in estimating radiological dose to man. 2 - Method of solution: A compartmental linear transfer model is used in RIVER-RAD. The river system model in the code is divided into reaches (compartments) of equal size, each with a sediment compartment below it. The movement of radionuclides is represented by a series of transfers between the reaches, and between the water and sediment compartments of each reach. Within each reach (for both the water and sediment compartments), the radionuclides are assumed to be uniformly mixed. Upward volatilization is allowed from the water compartment, and the transfer of radionuclides between the reaches is determined by the flow rate of the river. Settling and resuspension velocities determine the transfer of absorbed radionuclides between the water and sediment compartments. Radioactive decay and decay-product buildup are incorporated into all transport calculations for all radionuclide chains specified by the user. Each nuclide may have unique input and removal rates. Volatilization and radiological decay are considered as linear rate constants in the model. 3 - Restrictions on the complexity of the problem: None noted

  9. Diminished Mercury Emission From Water Surfaces by Duckweed (Lemna minor)

    Science.gov (United States)

    Wollenberg, J. L.; Peters, S. C.

    2007-12-01

    Aquatic plants of the family Lemnaceae (generally referred to as duckweeds) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and decreases the amount of exposed water surface. These two factors would be expected to reduce mercury emission by limiting a) direct photoreduction of Hg(II), b) indirect reduction via coupled DOC photooxidation-Hg(II) reduction, and c) gas diffusion across the water-air interface. Conversely, previous studies have demonstrated transpiration of Hg(0) by plants, so it is therefore possible that the floating vegetative mat would enhance emission via transpiration of mercury vapor. The purpose of this experiment was to determine whether duckweed limits mercury flux to the atmosphere by shading and the formation of a physical barrier to diffusion, or whether it enhances emission from aquatic systems via transpiration of Hg(0). Deionized water was amended with mercury to achieve a final concentration of approximately 35 ng/L and allowed to equilibrate prior to the experiment. Experiments were conducted in rectangular polystyrene flux chambers with measured UV-B transmittance greater than 60% (spectral cutoff approximately 290 nm). Light was able to penetrate the flux chamber from the sides as well as the top throughout the experiment, limiting the effect of shading by duckweed on the water surface. Flux chambers contained 8L of water with varying percent duckweed cover, and perforated plastic sheeting was used as an abiotic control. Exposures were conducted outside on days with little to no cloud cover. Real time mercury flux was measured using atomic absorption (Mercury Instruments UT-3000). Total solar and ultraviolet radiation, as well as a suite of meteorological parameters, were also measured. Results indicate that duckweed diminishes mercury emission from the water surface

  10. Isotope Methods in Determining The Water Budget Elements; Su Buetcesi Elemanlarinin Bulunmasinda Izotop Yoentemi

    Energy Technology Data Exchange (ETDEWEB)

    Oezaydin, V [DSI, Technical Research and Quality Control Department, Ankara (Turkey)

    2002-07-01

    One of the main aims of the water engineers is the determination of the inflows to and outflows from a natural or artificial lake. According to the classical water balance equation inflows (precipitation on the lake surface, surface and subsurface inflows) mines the outflows (evaporation from lake surface, surface and subsurface outflows) should be equal to the volume change in a specified time interval. With the classical water budget equation it is possible to determine the total absolute subsurface inflow mines outflow but it is not possible to determine them separately. The two unknowns could be determined with one more equation. The isotopes, oxygen-18, deuterium or tritium, which are naturally present in water, could provide the extra equation by writing the isotopic mass balance equation. In this study, the theoretical background of isotope technique and application to Mogan Lake, will be presented which is used in determining the water budget of lakes.

  11. Biological methods used to assess surface water quality

    Directory of Open Access Journals (Sweden)

    Szczerbiñska Natalia

    2015-12-01

    Full Text Available In accordance with the guidelines of the Water Framework Directive 2000/60 (WFD, both ecological and chemical statuses determine the assessment of surface waters. The profile of ecological status is based on the analysis of various biological components, and physicochemical and hydromorphological indicators complement this assessment. The aim of this article is to present the biological methods used in the assessment of water status with a special focus on bioassay, as well as to provide a review of methods of monitoring water status. Biological test methods include both biomonitoring and bioanalytics. Water biomonitoring is used to assess and forecast the status of water. These studies aim to collect data on water pollution and forecast its impact. Biomonitoring uses organisms which are characterized by particular vulnerability to contaminants. Bioindicator organisms are algae, fungi, bacteria, larval invertebrates, cyanobacteria, macroinvertebrates, and fish. Bioanalytics is based on the receptors of contaminants that can be biologically active substances. In bioanalytics, biosensors such as viruses, bacteria, antibodies, enzymes, and biotests are used to assess degrees of pollution.

  12. DETERMINATION OF IMPORTANCE EVALUATION FOR THE SURFACE EXPLORATORY STUDIES FACILITY

    International Nuclear Information System (INIS)

    C.J. Byrne

    2000-01-01

    This DIE applies to the surface facilities component of the Yucca Mountain Site Characterization Project (W) ESF. The ESF complex-including surface and subsurface accommodations--encompasses an area that is approximately six miles wide and nine miles long (approximately 30,000 acres total) (United States Department of Energy [DOE] 1997, p. 9.04). It is located on federally withdrawn lands, near the southwest border of the Nevada Test Site (NTS) in southern Nevada (DOE 1997, p. 9.04). Site characterization activities are conducted within the subsurface ESF to obtain the information necessary to determine whether the Yucca Mountain Site is suitable as a geologic repository for spent nuclear fuel and high-level radioactive waste. Most ESF surface facilities are located within the Conceptual Controlled Area Boundary (CCAB) (DOE 1997, p. 9.04), with the exception of the southeastern most portions of the H-Road and the Water Supply System. Various SBT activities are also conducted throughout the Yucca Mountain region as a part of the overall site-characterization effort. In general, the DIE for SBT Activities (Civilian Radioactive Waste Management System [CRWMS] Management and Operating Contractor [M andO] 1998a) evaluates activities associated with SBT. Potential test-to-test interference and waste isolation impacts associated with SBT activities are also evaluated in CRWMS M andO (1998a)

  13. DETERMINATION OF IMPORTANCE EVALUATION FOR THE SURFACE EXPLORATORY STUDIES FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    C.J. Byrne

    2000-07-25

    This DIE applies to the surface facilities component of the Yucca Mountain Site Characterization Project (W) ESF. The ESF complex-including surface and subsurface accommodations--encompasses an area that is approximately six miles wide and nine miles long (approximately 30,000 acres total) (United States Department of Energy [DOE] 1997, p. 9.04). It is located on federally withdrawn lands, near the southwest border of the Nevada Test Site (NTS) in southern Nevada (DOE 1997, p. 9.04). Site characterization activities are conducted within the subsurface ESF to obtain the information necessary to determine whether the Yucca Mountain Site is suitable as a geologic repository for spent nuclear fuel and high-level radioactive waste. Most ESF surface facilities are located within the Conceptual Controlled Area Boundary (CCAB) (DOE 1997, p. 9.04), with the exception of the southeastern most portions of the H-Road and the Water Supply System. Various SBT activities are also conducted throughout the Yucca Mountain region as a part of the overall site-characterization effort. In general, the DIE for SBT Activities (Civilian Radioactive Waste Management System [CRWMS] Management and Operating Contractor [M&O] 1998a) evaluates activities associated with SBT. Potential test-to-test interference and waste isolation impacts associated with SBT activities are also evaluated in CRWMS M&O (1998a).

  14. Estimation of real-time N load in surface water using dynamic data driven application system

    Science.gov (United States)

    Y. Ouyang; S.M. Luo; L.H. Cui; Q. Wang; J.E. Zhang

    2011-01-01

    Agricultural, industrial, and urban activities are the major sources for eutrophication of surface water ecosystems. Currently, determination of nutrients in surface water is primarily accomplished by manually collecting samples for laboratory analysis, which requires at least 24 h. In other words, little to no effort has been devoted to monitoring real-time variations...

  15. Impacts of population growth, urbanisation and sanitation changes on global human Cryptosporidium emissions to surface water

    NARCIS (Netherlands)

    Hofstra, Nynke; Vermeulen-Henstra, Lucie

    2016-01-01

    Cryptosporidium is a pathogenic protozoan parasite and is a leading cause of diarrhoea worldwide. The concentration of Cryptosporidium in the surface water is a determinant for probability of exposure and the risk of disease. Surface water concentrations are expected to change with population

  16. Development of a fish test to determine endocrine effects in surface waters. Pt. 3: application of the fish test to monitoring surface waters by an environmental agency. Final report; Entwicklung eines Fischtests zur Erfassung von Stoffen mit endokrinen Wirkungen in Oberflaechengewaessern. Teilprojekt 3: Der neue Fischtest in der Gewaesserueberwachung durch eine Landesbehoerde. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Allner, B.; Schaat, A.; Theimer, S.; Stahlschmidt-Allner, P.

    1999-07-01

    The aim of the presented study was to establish a method to detect estrogen-induced effects in the aquatic environment, basing on the determination of yolk-proteins in the blood of male or juvenile fish by gel electrophoresis (SDS-PAGE). The method is suitable for the use in routine testing of sewage treatment works (STW) effluents as well as monitoring of free living fish. Effects of 1 ng/L etylestradiol or 100 ng/L estradiol are reliably detectable. In surface waters no estrogen-induced effects could be found, whereas effluents of some industrial STWs showed a weak estrogenic effect. Histology of normal gonadal development of the test fish is compared to the situation after exposure to endocrine disrupters and to the gonadal development of roach caught in the wild. A method to detect effects on the gonadotropin mediated control of reproduction was tested within a monitoring programme. At certain locations a high degree of juvenile male perch showed gonadal hypertrophy (pubertas praecox). It could be shown by chemical analysis that the effects on perch were highly correlated with the tributyl tin (TBT) burden of the sediment from the respective location. Exposing small fish species to TBT in single compound studies confirmed the finding that TBT may act as an endocrine disrupter on vertebrates. (orig.) [German] In der vorliegenden Studie wurde ein Verfahren zum Nachweis oestrogener Effekte in der aquatischen Umwelt etabliert. Die Methode basiert auf der Identifikation von Dotterproteinen im Blut maennlicher oder juveniler Fische mittels Gelelektrophorese und ist sowohl zum Einsatz in Monitoringprogrammen freilebender Fische als auch fuer die Routine der Abwasseruntersuchung nach DIN geeignet. Effekte von 1 ng/L Ethinyloestradiol und 100 ng/L Oestradiol sind sicher nachweisbar. Oestrogene Effekte von Oberflaechengewaessern wurden nicht gefunden, im Ablauf einzelner Industrieklaeranlagen war ein geringer oestrogener Effekt nachweisbar. Der Bericht enthaelt eine

  17. Impact of river restoration on groundwater - surface water - interactions

    Science.gov (United States)

    Kurth, Anne-Marie; Schirmer, Mario

    2014-05-01

    Since the end of the 19th century, flood protection was increasingly based on the construction of impermeable dams and side walls (BWG, 2003). In spite of providing flood protection, these measures also limited the connectivity between the river and the land, restricted the area available for flooding, and hampered the natural flow dynamics of the river. Apart from the debilitating effect on riverine ecosystems due to loss of habitats, these measures also limited bank filtration, inhibited the infiltration of storm water, and affected groundwater-surface water-interactions. This in turn had a profound effect on ecosystem health, as a lack of groundwater-surface water interactions led to decreased cycling of pollutants and nutrients in the hyporheic zone and limited the moderation of the water temperature (EA, 2009). In recent decades, it has become apparent that further damages to riverine ecosystems must be prohibited, as the damages to ecology, economy and society surmount any benefits gained from exploiting them. Nowadays, the restoration of rivers is a globally accepted means to restore ecosystem functioning, protect water resources and amend flood protection (Andrea et al., 2012; Palmer et al., 2005; Wortley et al., 2013). In spite of huge efforts regarding the restoration of rivers over the last 30 years, the question of its effectiveness remains, as river restorations often reconstruct a naturally looking rather than a naturally functioning stream (EA, 2009). We therefore focussed our research on the effectiveness of river restorations, represented by the groundwater-surface water-interactions. Given a sufficiently high groundwater level, a lack of groundwater-surface water-interactions after restoration may indicate that the vertical connectivity in the stream was not fully restored. In order to investigate groundwater-surface water-interactions we determined the thermal signature on the stream bed and in +/- 40 cm depth by using Distributed Temperature

  18. Contamination levels of human pharmaceutical compounds in French surface and drinking water.

    Science.gov (United States)

    Mompelat, S; Thomas, O; Le Bot, B

    2011-10-01

    The occurrence of 20 human pharmaceutical compounds and metabolites from 10 representative therapeutic classes was analysed from resource and drinking water in two catchment basins located in north-west France. 98 samples were analysed from 63 stations (surface water and drinking water produced from surface water). Of the 20 human pharmaceutical compounds selected, 16 were quantified in both the surface water and drinking water, with 22% of the values above the limit of quantification for surface water and 14% for drinking water). Psychostimulants, non-steroidal anti-inflammatory drugs, iodinated contrast media and anxiolytic drugs were the main therapeutic classes of human pharmaceutical compounds detected in the surface water and drinking water. The results for surface water were close to results from previous studies in spite of differences in prescription rates of human pharmaceutical compounds in different countries. The removal rate of human pharmaceutical compounds at 11 water treatment units was also determined. Only caffeine proved to be resistant to drinking water treatment processes (with a minimum rate of 5%). Other human pharmaceutical compounds seemed to be removed more efficiently (average elimination rate of over 50%) by adsorption onto activated carbon and oxidation/disinfection with ozone or chlorine (not taking account of the disinfection by-products). These results add to the increasing evidence of the occurrence of human pharmaceutical compounds in drinking water that may represent a threat to human beings exposed to a cocktail of human pharmaceutical compounds and related metabolites and by-products in drinking water.

  19. Determination of the surface drag coefficient

    DEFF Research Database (Denmark)

    Mahrt, L.; Vickers, D.; Sun, J.L.

    2001-01-01

    This study examines the dependence of the surface drag coefficient on stability, wind speed, mesoscale modulation of the turbulent flux and method of calculation of the drag coefficient. Data sets over grassland, sparse grass, heather and two forest sites are analyzed. For significantly unstable...... conditions, the drag coefficient does not depend systematically on z/L but decreases with wind speed for fixed intervals of z/L, where L is the Obukhov length. Even though the drag coefficient for weak wind conditions is sensitive to the exact method of calculation and choice of averaging time, the decrease...... of the drag coefficient with wind speed occurs for all of the calculation methods. A classification of flux calculation methods is constructed, which unifies the most common previous approaches. The roughness length corresponding to the usual Monin-Obukhov stability functions decreases with increasing wind...

  20. Modeling global distribution of agricultural insecticides in surface waters.

    Science.gov (United States)

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J; Schäfer, Ralf B; Fornaroli, Riccardo; Liess, Matthias

    2015-03-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Dissolution of organic solvents from painted surfaces into water

    International Nuclear Information System (INIS)

    Wren, J.C.; Jobe, D.J.; Sanipelli, G.G.; Ball, J.M.

    2000-01-01

    The presence of volatile iodine in containment buildings is one of the major safety concerns in the potential event of nuclear reactor accidents. Organic impurities in containment water, originating from various painted structural surfaces and organic materials, could have a significant impact on iodine volatility following an accident. To determine the source and magnitude of organic impurities and their effects on time-dependent iodine volatility, the dissolution for organic constituents from paints used in reactor buildings has been studied under postulated accident conditions. The studies of the organic dissolution from carbon steel coupons coated with zinc-primed vinyl, epoxy-primed polyurethane or epoxy paints over the temperature range 25-90 deg C are reported. Relatively large activation energies were measured for the release of the principal organic compounds from painted surfaces, suggesting it is the release of the solvents from the paint matrix rather than their diffusion through the solution that is the rate determining step for the dissolution mechanism. The similarities in the values of activation energies for the dissolution of different organic compounds from the paints suggest the release rate is independent of the nature of the painted surface or the type of organic being released from the surface. These two observations indicate that it may be possible to write a generalized rate expression for the release of organic compounds from painted surfaces in containment following an accident. The possible implications of these results for predicting iodine volatility in containment are also discussed. (author)

  2. Atmospheric Water Harvesting: Role of Surface Wettability and Edge Effect

    KAUST Repository

    Jin, Yong

    2017-06-23

    Atmospheric water is emerging as an important potable water source. The present work experimentally and theoretically investigates water condensation and collection on flat surfaces with contrasting contact angles and contact angle hysteresis (CAH) to elucidate their roles on water mass collection efficiency. The experimental results indicate that a hydrophilic surface promotes nucleation and individual droplets growth, and a surface with a low CAH tends to let a smaller droplet to slide down, but the overall water mass collection efficiency is independent of both surface contact angle and CAH. The experimental results agree well with our theoretical calculations. During water condensation, a balance has to be struck between single droplet growth and droplet density on a surface so as to maintain a constant water droplet surface coverage ratio, which renders the role of both surface wettability and hysteresis insignificant to the ultimate water mass collection. Moreover, water droplets on the edges of a surface grow much faster than those on the non-edge areas and thus dominate the contribution to the water mass collection by the entire surface, directly pointing out the very important role of edge effect on water condensation and collection.

  3. First Derivative UV Spectra of Surface Water as a Monitor of Chlorination in Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    V. Zitko

    2001-01-01

    Full Text Available Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.

  4. Tracer experiment by using radioisotope in surface water environment

    International Nuclear Information System (INIS)

    Suh, K.S.; Kim, K.C.; Chun, I.Y.; Jung, S.H.; Lee, C.W.

    2007-01-01

    Complete text of publication follows. 1. Objective An expansion of industrial activities and urbanization result in still increasing amount of pollutants discharged into surface water. Discharged pollutants in surface water have harmful effects on the ecology of a river system and human beings. Pollutants discharged into surface water is transported and dispersed under conditions characteristic to particular natural water receiver. Radiotracer method is a useful tool for monitoring the pollutant dispersion and description of mixing process taking place in natural streams. A tracer experiment using radioisotope was carried out to investigate the characteristics of a pollutant transport and a determination of the diffusion coefficients in a river system. 2. Methods The upper area of the Keum river was selected for the tracer experiment, which is located in a mid west of Korea. The measurements of the velocity and bathymetry before a tracer experiment were performed to select the sampling lines for a detection of the radioisotope. The radioisotope was instantaneously injected into a flow as a point source by an underwater glass-vial crusher. The detection was made with 60 2inch NaI(Tl) scintillation detectors at 3 transverse lines at a downstream position. The multi-channel data acquisition systems were used to collect and process the signals transmitted from the detectors. Two-dimensional numerical models were used to simulate the hydraulic parameters and the concentration distributions of the radioisotope injected into the river. 3. Results and Conclusion The calculated results such as velocity and concentrations were compared with the measured ones. The dispersion characteristics of the radioisotope were analyzed according to a variation of the flow rate, water level and diffusion coefficients. Also, the diffusion coefficients were calculated by using the measured concentrations and the coefficients obtained from the field experiment were compared with the ones

  5. A model to determine the economic viability of water fluoridation.

    Science.gov (United States)

    Kroon, Jeroen; van Wyk, Philippus Johannes

    2012-01-01

    In view of concerns expressed by South African local authorities the aim of this study was to develop a model to determine whether water fluoridation is economically viable to reduce dental caries in South Africa. Microsoft Excel software was used to develop a model to determine economic viability of water fluoridation for 17 water providers from all nine South African provinces. Input variables for this model relate to chemical cost, labor cost, maintenance cost of infrastructure, opportunity cost, and capital depreciation. The following output variables were calculated to evaluate the cost of water fluoridation: per capita cost per year, cost-effectiveness and cost-benefit. In this model it is assumed that the introduction of community water fluoridation can reduce caries prevalence by an additional 15 percent and that the savings in cost of treatment will be equal to the average fee for a two surface restoration. Water providers included in the study serve 53.5 percent of the total population of South Africa. For all providers combined chemical cost contributes 64.5 percent to the total cost, per capita cost per year was $0.36, cost-effectiveness was calculated as $11.41 and cost-benefit of the implementation of water fluoridation was 0.34. This model confirmed that water fluoridation is an economically viable option to prevent dental caries in South African communities, as well as conclusions over the last 10 years that water fluoridation leads to significant cost savings and remains a cost-effective measure for reducing dental caries, even when the caries-preventive effectiveness is modest. © 2012 American Association of Public Health Dentistry.

  6. Determinants of Nitrous Oxide Emission from Agricultural Drainage Waters

    International Nuclear Information System (INIS)

    Reay, D. S.; Edwards, A. C.; Smith, K. A.

    2004-01-01

    Emissions of the powerful greenhouse gas nitrous oxide (N 2 O) from agricultural drainage waters are poorly quantified and its determinants are not fully understood. Nitrous oxide formation in agricultural soils is known to increase in response to N fertiliser application, but the response of N 2 O in field drainage waters is unknown. This investigation combined an intensive study of the direct flux of N 2 O from the surface of a fertilised barley field with measurement of dissolved N 2 O and nitrate (NO 3 ) concentrations in the same field's drainage waters. Dissolved N 2 O in drainage waters showed a clear response to field N fertilisation, following an identical pattern to direct N 2 O flux from the field surface. The range in N 2 O concentrations between individual field drains sampled on the same day was large, indicating considerable spatial variability exists at the farm scale. A consistent pattern of very rapid outgassing of the dissolved N 2 O in open drainage ditches was accentuated at a weir, where increased turbulence led to a clear drop in dissolved N 2 O concentration. This study underlines the need for carefully planned sampling campaigns wherever whole farm or catchment N 2 O emission budgets are attempted. It adds weight to the argument for the downward revision of the IPCC emission factor (EF 5 -g) for NO 3 in drainage waters

  7. Determinants of nitrous oxide emission from agricultural drainage waters

    International Nuclear Information System (INIS)

    Reay, D. S.; Edwards, A. C.; Smith, K. A.

    2005-01-01

    Emissions of the powerful greenhouse gas nitrous oxide (N 2 O) from agricultural drainage waters are poorly quantified and its determinants are not fully understood. Nitrous oxide formation in agricultural soils is known to increase in response to N fertiliser application, but the response of N 2 O in field drainage waters is unknown. This investigation combined an intensive study of the direct flux of N 2 O from the surface of a fertilised barley field with measurement of dissolved N 2 O and nitrate (NO 3 ) concentrations in the same field's drainage waters. Dissolved N 2 O in drainage waters showed a clear response to field N fertilisation, following an identical pattern to direct N 2 O flux from the field surface. The range in N 2 O concentrations between individual field drains sampled on the same day was large, indicating considerable spatial variability exists at the farm scale. A consistent pattern of very rapid outgassing of the dissolved N 2 O in open drainage ditches was accentuated at a weir, where increased turbulence led to a clear drop in dissolved N 2 O concentration. This study underlines the need for carefully planned sampling campaigns wherever whole farm or catchment N 2 O emission budgets are attempted. It adds weight to the argument for the downward revision of the IPCC emission factor (EF 5 -g) for NO 3 in drainage waters

  8. Flame photometric determination of strontium in water

    Science.gov (United States)

    Skougstad, Marvin W.

    1957-01-01

    Preliminary search of reported methods of Sr analysis revealed several investigations which have been made for the determination of Sr with the flame photometer, both at relatively low concentrations (0 to 50 ppm Sr) and at higher concentrations. Generally the procedures described involved measurement of Sr emission at either 460.7 mu or at 681 mu. There is disagreement among those reporting methods for Sr as to the preference of the one wavelength over the other. The 681 line (or band) seems to be preferred because of its greater reproducibility and relative freedom from interference. The 460.7 mu line, however, lies in the region of greater sensitivity of the photomultiplier tube, and hence for this reason is preferred by some. This is an advantage, of course, when determining Sr at very low concentrations. This investigation is concerned with determining the optimum conditions for the determination of Sr at low concentration levels in water samples. Early experimental work indicated a greater sensitivity for the 460.7 mu (hereafter designated as 461 mu) Sr line. Therefore, most of the subsequent work was based on a study of the effects of various other materials and conditions on the emission of Sr at this wavelength.

  9. Photochemical Transformation Processes in Sunlit Surface Waters

    Science.gov (United States)

    Vione, D.

    2012-12-01

    Photochemical reactions are major processes in the transformation of hardly biodegradable xenobiotics in surface waters. They are usually classified into direct photolysis and indirect or sensitised degradation. Direct photolysis requires xenobiotic compounds to absorb sunlight, and to get transformed as a consequence. Sensitised transformation involves reaction with transient species (e.g. °OH, CO3-°, 1O2 and triplet states of chromophoric dissolved organic matter, 3CDOM*), photogenerated by so-called photosensitisers (nitrate, nitrite and CDOM). CDOM is a major photosensitiser: is it on average the main source of °OH (and of CO3-° as a consequence, which is mainly produced upon oxidation by °OH of carbonate and bicarbonate) and the only important source of 1O2 and 3CDOM* [1, 2]. CDOM origin plays a key role in sensitised processes: allochthonous CDOM derived from soil runoff and rich in fulvic and humic substances is usually more photoactive than autochthonous CDOM (produced by in-water biological processes and mainly consisting of protein-like material) or of CDOM derived from atmospheric deposition. An interesting gradual evolution of CDOM origin and photochemistry can be found in mountain lakes across the treeline, which afford a gradual transition of allochthonous- autochtonous - atmopheric CDOM when passing from trees to alpine meadows to exposed rocks [3]. Another important issue is the sites of reactive species photoproduction in CDOM. While there is evidence that smaller molecular weight fractions are more photoactive, some studies have reported considerable 1O2 reactivity in CDOM hydrophobic sites and inside particles [4]. We have recently addressed the problem and found that dissolved species in standard humic acids (hydrodynamic diameter pollutants to be assessed and modelled. For instance, it is possible to predict pollutant half-life times by knowing absorption spectrum, direct photolysis quantum yield and reaction rate constants with °OH, CO3

  10. Applicability of the direct injection liquid chromatographic tandem mass spectrometric analytical approach to the sub-ngL-1 determination of perfluoro-alkyl acids in waste, surface, ground and drinking water samples.

    Science.gov (United States)

    Ciofi, Lorenzo; Renai, Lapo; Rossini, Daniele; Ancillotti, Claudia; Falai, Alida; Fibbi, Donatella; Bruzzoniti, Maria Concetta; Santana-Rodriguez, José Juan; Orlandini, Serena; Del Bubba, Massimo

    2018-01-01

    The applicability of a direct injection UHPLC-MS/MS method for the analysis of several perfluoroalkyl acids (PFAAs) in a wide range of water matrices was investigated. The method is based on the direct injection of 100µL of centrifuged water sample, without any other sample treatment. Very good method detection limits (0.014-0.44ngL -1 ) and excellent intra and inter-day precision (RSD% values in the range 1.8-4.4% and 2.7-5.7%, respectively) were achieved, with a total analysis time of 20min per sample. A high number of samples - i.e. 8 drinking waters (DW), 12 ground waters (GW), 13 surface waters (SW), 8 influents and 11 effluents of wastewater treatment plants (WWTP IN and WWTP OUT ) were processed and the extent of matrix effect (ME) was calculated, highlighting the strong prevalence of |ME| 50% was occasionally observed only for perfluorooctanesulphonic and perfluorodecanoic acids. Linear discriminant analysis highlighted the great contribution of the sample origin (i.e. DW, GW, SW, WWTP IN and WWTP OUT ) to the ME. Partial least square regression (PLS) and leave-one-out cross-validation were performed in order to interpret and predict the signal suppression or enhancement phenomena as a function of physicochemical parameters of water samples (i.e. conductivity, hardness and chemical oxygen demand) and background chromatographic area. The PLS approach resulted only in an approximate screening, due to the low prediction power of the PLS models. However, for most analytes in most samples, the fitted and cross-validated values were such as to correctly distinguish between | ME | higher than 20% or below this limit. PFAAs in the aforementioned water samples were quantified by means of the standard addition method, highlighting their occurrence mainly in WWTP influents and effluents, at concentrations as high as one hundred of µgL -1 . Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Environmetric data interpretation to assess surface water quality

    International Nuclear Information System (INIS)

    Simeonova, P.; Papazova, P.; Lovchinov, V.

    2013-01-01

    Two multivariate statistical methods (Cluster analysis /CA/ and Principal components analysis /PCA/) were applied for model assessment of the water quality of Maritsa River and Tundja River on Bulgarian territory. The study used long-term monitoring data from many sampling sites characterized by various surface water quality indicators. The application of CA to the indicators results in formation of clusters showing the impact of biological, anthropogenic and eutrophication sources. For further assessment of the monitoring data, PCA was implemented, which identified, again, latent factors confirming, in principle, the clustering output. Their identification coincide correctly to the location of real pollution sources along the rivers catchments. The linkage of the sampling sites along the river flow by CA identified several special patterns separated by specific tracers levels. The apportionment models of the pollution determined the contribution of each one of identified pollution factors to the total concentration of each one of the water quality parameters. Thus, a better risk management of the surface water quality is achieved both on local and national level

  12. How to repel hot water from a superhydrophobic surface?

    KAUST Repository

    Yu, Zhejun

    2014-01-01

    Superhydrophobic surfaces, with water contact angles greater than 150° and slide angles less than 10°, have attracted a great deal of attention due to their self-cleaning ability and excellent water-repellency. It is commonly accepted that a superhydrophobic surface loses its superhydrophobicity in contact with water hotter than 50 °C. Such a phenomenon was recently demonstrated by Liu et al. [J. Mater. Chem., 2009, 19, 5602], using both natural lotus leaf and artificial leaf-like surfaces. However, our work has shown that superhydrophobic surfaces maintained their superhydrophobicity, even in water at 80 °C, provided that the leaf temperature is greater than that of the water droplet. In this paper, we report on the wettability of water droplets on superhydrophobic thin films, as a function of both their temperatures. The results have shown that both the water contact and slide angles on the surfaces will remain unchanged when the temperature of the water droplet is greater than that of the surface. The water contact angle, or the slide angle, will decrease or increase, however, with droplet temperatures increasingly greater than that of the surfaces. We propose that, in such cases, the loss of superhydrophobicity of the surfaces is caused by evaporation of the hot water molecules and their condensation on the cooler surface. © 2014 the Partner Organisations.

  13. Overview of total beta activity index and beta rest in surface waters of the Spanish rivers

    International Nuclear Information System (INIS)

    Pujol, L.; Payeras, J.; Pablo, M. A. de

    2013-01-01

    This work aims to give an overview of the index of total beta activity and the activity index beta rest in surface waters of the main Spanish rivers. These indices are a parameter over water quality that CEDEX comes determined by order of the Ministry of Agriculture, Food and Environment, in water policy. (Author)

  14. Distribution of {sup 129}I in terrestrial surface water environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xuegao [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Gong, Meng [College of Hydrology and Water Resources, Hohai University, Nanjing (China); Yi, Peng, E-mail: pengyi1915@163.com [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Aldahan, Ala [Department of Earth Sciences, Uppsala University, Uppsala (Sweden); Department of Geology, United Arab Emirates University, Al Ain (United Arab Emirates); Yu, Zhongbo [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Possnert, Göran [Tandem Laboratory, Uppsala University, Uppsala (Sweden); Chen, Li [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China)

    2015-10-15

    The global distribution of the radioactive isotope iodine-129 in surface waters (lakes and rivers) is presented here and compared with the atmospheric deposition and distribution in surface marine waters. The results indicate relatively high concentrations in surface water systems in close vicinity of the anthropogenic release sources as well as in parts of Western Europe, North America and Central Asia. {sup 129}I level is generally higher in the terrestrial surface water of the Northern hemisphere compared to the southern hemisphere. The highest values of {sup 129}I appear around 50°N and 40°S in the northern and southern hemisphere, separately. Direct gaseous and marine atmospheric emissions are the most likely avenues for the transport of {sup 129}I from the sources to the terrestrial surface waters. To apply iodine-129 as process tracer in terrestrial surface water environment, more data are needed on {sup 129}I distribution patterns both locally and globally.

  15. Spectrophotometric determination of silica in water. Low range

    International Nuclear Information System (INIS)

    Acosta L, E.

    1992-07-01

    The spectrophotometric method for the determination of the silica element in water, demineralized water, raw waters, laundry waters, waters treated with ion exchange resins and sea waters is described. This method covers the determination of the silica element in the interval from 20 to 1000 μg/l on 50 ml. of base sample. These limits its can be variable if the size of the used aliquot one is changed for the final determination of the silica element. (Author)

  16. Variability in chemistry of surface and soil waters of an ...

    African Journals Online (AJOL)

    Water chemistry is important for the maintenance of wetland structure and function. Interpreting ecological patterns in a wetland system therefore requires an in-depth understanding of the water chemistry of that system. We investigated the spatial distribution of chemical solutes both in soil pore water and surface water, ...

  17. Short Communication: Conductivity as an indicator of surface water ...

    African Journals Online (AJOL)

    Various water- soluble species are present in FeCr waste materials and in process water. Considering the size of the South African FeCr industry and its global importance, it is essential to assess the extent of potential surface water pollution in the proximity of FeCr smelters by such watersoluble species. In this study water ...

  18. Quantifying the impact of climate change on enteric waterborne pathogen concentrations in surface water

    NARCIS (Netherlands)

    Hofstra, N.

    2011-01-01

    Climate change, among other factors, will impact waterborne pathogen concentrations in surface water worldwide, possibly increasing the risk of diseases caused by these pathogens. So far, the impacts are only determined qualitatively and thorough quantitative estimates of future pathogen

  19. Nanostructure analysis of polymer assembly on water surface by X-ray reflectometry

    International Nuclear Information System (INIS)

    Yamaoka, H.; Matsuoka, H.; Kago, K.; Yoshitome, R.; Mouri, E.

    2000-01-01

    X-ray reflectivity (XR) is an extremely powerful technique to study the fine structure of surface and interface in the order of angstrom. In this study, we have performed systematic XR measurements for monolayers on water surface. The nanostructures of various monolayers were precisely determined, and their changes by surface pressure and photoisomerization were clearly detected. The structure of lipid monolayer and DNA complex at air-water interface was also evaluated. (author)

  20. Modeled effects on permittivity measurements of water content in high surface area porous media

    International Nuclear Information System (INIS)

    Jones, S.B.; Or, Dani

    2003-01-01

    Time domain reflectometry (TDR) has become an important measurement technique for determination of porous media water content and electrical conductivity due to its accuracy, fast response and automation capability. Water content is inferred from the measured bulk dielectric constant based on travel time analysis along simple transmission lines. TDR measurements in low surface area porous media accurately describe water content using an empirical relationship. Measurement discrepancies arise from dominating influences such as bound water due to high surface area, extreme aspect ratio particles or atypical water phase configuration. Our objectives were to highlight primary factors affecting dielectric permittivity measurements for water content determination in porous mixtures, and demonstrate the influence of these factors on mixture permittivity as predicted by a three-phase dielectric mixture model. Modeled results considering water binding, higher porosity, constituent geometry or phase configuration suggest any of these effects individually are capable of causing permittivity reduction, though all likely contribute in high surface area porous media

  1. TURBIDITY REMOVAL FROM SURFACE WATER USING ...

    African Journals Online (AJOL)

    User

    2016-06-01

    Jun 1, 2016 ... Plant-based coagulants are potential alternatives to chemical coagulants used in drinking water treatment. ... Conventional water treatment systems involve the use of synthetic ..... Thesis, Royal Institute of Technology (KTH),.

  2. A deformable surface model for real-time water drop animation.

    Science.gov (United States)

    Zhang, Yizhong; Wang, Huamin; Wang, Shuai; Tong, Yiying; Zhou, Kun

    2012-08-01

    A water drop behaves differently from a large water body because of its strong viscosity and surface tension under the small scale. Surface tension causes the motion of a water drop to be largely determined by its boundary surface. Meanwhile, viscosity makes the interior of a water drop less relevant to its motion, as the smooth velocity field can be well approximated by an interpolation of the velocity on the boundary. Consequently, we propose a fast deformable surface model to realistically animate water drops and their flowing behaviors on solid surfaces. Our system efficiently simulates water drop motions in a Lagrangian fashion, by reducing 3D fluid dynamics over the whole liquid volume to a deformable surface model. In each time step, the model uses an implicit mean curvature flow operator to produce surface tension effects, a contact angle operator to change droplet shapes on solid surfaces, and a set of mesh connectivity updates to handle topological changes and improve mesh quality over time. Our numerical experiments demonstrate a variety of physically plausible water drop phenomena at a real-time rate, including capillary waves when water drops collide, pinch-off of water jets, and droplets flowing over solid materials. The whole system performs orders-of-magnitude faster than existing simulation approaches that generate comparable water drop effects.

  3. Concentration data for anthropogenic organic compounds in ground water, surface water, and finished water of selected community water systems in the United States, 2002-05

    Science.gov (United States)

    Carter, Janet M.; Delzer, Gregory C.; Kingsbury, James A.; Hopple, Jessica A.

    2007-01-01

    The National Water-Quality Assessment Program of the U.S. Geological Survey began implementing Source Water-Quality Assessments (SWQAs) in 2001 that focus on characterizing the quality of source water and finished water of aquifers and major rivers used by some of the larger community water systems (CWSs) in the United States. As used for SWQA studies, source water is the raw (ambient) water collected at the supply well prior to water treatment (for ground water) or the raw (ambient) water collected from the river near the intake (for surface water), and finished water is the water that is treated and ready to be delivered to consumers. Finished water is collected before entering the distribution system. SWQA studies are conducted in two phases, and the objectives of SWQA studies are twofold: (1) to determine the occurrence and, for rivers, seasonal changes in concentrations of a broad list of anthropogenic organic compounds (AOCs) in aquifers and rivers that have some of the largest withdrawals for drinking-water supply (phase 1), and (2) for those AOCs found to occur most frequently in source water, characterize the extent to which these compounds are present in finished water (phase 2). These objectives were met for SWQA studies by collecting ground-water and surface-water (source) samples and analyzing these samples for 258 AOCs during phase 1. Samples from a subset of wells and surface-water sites located in areas with substantial agricultural production in the watershed were analyzed for 19 additional AOCs, for a total of 277 compounds analyzed for SWQA studies. The 277 compounds were classified according to the following 13 primary use or source groups: (1) disinfection by-products; (2) fumigant-related compounds; (3) fungicides; (4) gasoline hydrocarbons, oxygenates, and oxygenate degradates; (5) herbicides and herbicide degradates; (6) insecticides and insecticide degradates; (7) manufacturing additives; (8) organic synthesis compounds; (9) pavement- and

  4. Calcium carbonate nucleation in an alkaline lake surface water, Pyramid Lake, Nevada, USA

    Science.gov (United States)

    Reddy, Michael M.; Hoch, Anthony

    2012-01-01

    Calcium concentration and calcite supersaturation (Ω) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has Ω values of 10-16. Notwithstanding high Ω, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean Ω at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water Ω. Calcium concentration and Ω regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower Ω than filtered samples. Calcium concentration and Ω at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (Ω) + B. The best fit rate equation "Rate (Δ mM/Δ min) = -0.0026 Ω + 0.0175 (r = 0.904, n = 10)" was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, Ω at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors.

  5. Standards for heavy water concentration determinations in light water

    International Nuclear Information System (INIS)

    Varlam, M.; Steflea, D.; Pavelescu, M.

    1995-01-01

    The paper presents a method to prepare heavy water -light water standards within the range 144 ppm - 1%. A formula for computing standards concentration based on initial concentration of D 2 O and distilled water is given

  6. An ontology design pattern for surface water features

    Science.gov (United States)

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.

  7. Relation between 234Th scavenging and zooplankton biomass in Mediterranean surface waters

    International Nuclear Information System (INIS)

    Schmidt, S.; Reyss, J.L.; Buat-Menard, P.; Nival, P.; Baker, M.

    1992-01-01

    Dissolved and particulate 234 Th activities were determined and phyto-and zooplankton biomass were periodically measured 8 miles off Nice (Mediterranean Sea) during spring 1987. The results show a strong variability of 234 Th distribution on short time scales in northwestern Mediterranean surface waters. The good correlation observed the zooplankton biomass and the rate of 234 Th export to deep water in particulate form is agreement with the assumption that the residence time of particulate 234 Th in oceanic surface waters is controlled by zooplankton grazing. Moreover, our results indicate the importance of salps in particular as efficient removers of small suspended particles in surface waters

  8. Water analysis. Determination of elements by atomic absorption

    International Nuclear Information System (INIS)

    Anon.

    Analysis of homogeneous water solutions (plain water, polluted waters, effluents...) by atomic absorption spectrometry with correction for non specific absorption. The quantity ratio is determined by comparison with standard solutions, correction tables are given [fr

  9. Determination of water quality index and portability of Iguedo stream ...

    African Journals Online (AJOL)

    Determination of water quality index and portability of Iguedo stream in Edo ... has been found functional in assessing the water quality of this stream based on the ... Key words: Water quality index, physicochemical parameters, Iguedo Stream.

  10. Determination of tributyltin in whole water matrices under the European Water Framework Directive.

    Science.gov (United States)

    Richter, Janine; Fettig, Ina; Philipp, Rosemarie; Jakubowski, Norbert; Panne, Ulrich; Fisicaro, Paola; Alasonati, Enrica

    2016-08-12

    Monitoring of water quality is important to control water pollution. Contamination of the aquatic system has a large effect on human health and the environment. Under the European Water Framework Directive (WFD) 2000/60/EC and the related directive on environmental quality standards (EQS) in the field of water policy 2008/105/EC, the need for sensitive reference methods was highlighted. Since tributyltin (TBT) is one of the WFD listed priority substances a method was developed which is capable to qualify and quantify the pollutant at the required low WFD EQS of 0.2ngL(-1) in whole water bodies, i.e. in non-filtered water samples with dissolved organic carbon and suspended particulate matter. Therefore special attention was paid on the interaction of TBT with the suspended particulate matter and humic substances to obtain a complete representation of the pollution in surface waters. Different water samples were investigated varying the content of organic dissolved and suspended matter. Quantification was performed using species-specific isotope dilution (SSID) and gas chromatography with inductively coupled plasma mass spectrometry (GC-ICP-MS). Different sample treatment strategies were evaluated and compared. The process of internal standard addition was investigated and optimized, hence the equilibrium between internal standards and matrix is of primary importance to perform accurate SSID. Samples spiked at EQS level were analyzed with a recovery between 95 and 105 %. Additionally real surface water samples were investigated and the TBT concentration for the whole water body was determined and compared with conventional routine analysis method. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Shallow Water Measurements Using a Single Green Laser Corrected by Building a Near Water Surface Penetration Model

    Directory of Open Access Journals (Sweden)

    Jianhu Zhao

    2017-04-01

    Full Text Available To reduce the size and cost of an integrated infrared (IR and green airborne LiDAR bathymetry (ALB system, and improve the accuracy of the green ALB system, this study proposes a method to accurately determine water surface and water bottom heights using a single green laser corrected by the near water surface penetration (NWSP model. The factors that influence the NWSP of green laser are likewise analyzed. In addition, an NWSP modeling method is proposed to determine the relationship between NWSP and the suspended sediment concentration (SSC of the surface layer, scanning angle of a laser beam and sensor height. The water surface and water bottom height models are deduced by considering NWSP and using only green laser based on the measurement principle of the IR laser and green laser, as well as employing the relationship between NWSP and the time delay of the surface return of the green laser. Lastly, these methods and models are applied to a practical ALB measurement. Standard deviations of 3.0, 5.3, and 1.3 cm are obtained by the NWSP, water-surface height, and water-bottom height models, respectively. Several beneficial conclusions and recommendations are drawn through the experiments and discussions.

  12. water quality assessment of underground and surface water ...

    African Journals Online (AJOL)

    Dr Osondu

    Water quality assessment in the Ethiopian highlands is crucial owing to increasing ... and provide information for formulating appropriate framework for an integrated ... with four seasons (rainy, dry period, small rains ..... treatment. Annual conference proceedings, American Water Works ... Towns' water supply and sanitation.

  13. Infiltration of pesticides in surface water into nearby drinking water supply wells

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream......, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short......, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using...

  14. Engineering Extreme Hydrophobic and Super Slippery Water Shedding Surfaces

    Science.gov (United States)

    McHale, Glen

    2017-04-01

    The intrinsic water repellency of a material is fundamentally determined by its surface chemistry, but alone this does not determine the ability of a surface to shed water. Physical factors such as the surface texture/topography, rigidity/flexibility, granularity/porosity combined with the intrinsic wetting properties of the liquid with the surface and whether it is infused by a lubricating liquid are equally important. In this talk I will outline fundamental, but simple, ideas on the topographic enhancement of surface chemistry to create superhydrophobicity, the adhesion of particles to liquid-air interfaces to create liquid marbles, elastocapillarity to create droplet wrapping, and lubricant impregnated surfaces to create completely mobile droplets [1-3]. I will discuss how these ideas have their origins in natural systems and surfaces, such as Lotus leaves, galling aphids and the Nepenthes pitcher plant. I will show how we have applied these concepts to study the wetting of granular systems, such as sand, to understand extreme soil water repellency. I will argue that relaxing the assumption that a solid substrate is fixed in shape and arrangement, can lead to the formation of liquid marbles, whereby a droplet self-coats in a hydrophobic powder/grains. I will show that the concepts of wetting and porosity blur as liquids penetrate into a porous or granular substrate. I will also discuss how lubricant impregnated super slippery surfaces can be used to study a pure constant contact angle mode of droplet evaporation [4]. Finally, I will show dewetting of a surface is not simply a video reversal of wetting [5], and I will give an example of the use of perfect hydrophobicity using the Leidenfrost effect to create a new type of low friction mechanical and hear engine [6]. References: [1] Shirtcliffe, N. J., et al., An introduction to superhydrophobicity. Advances in Colloid and Interface Science, vol. 161, pp.124-138 (2010). [2] McHale, G. & Newton, M. I. Liquid

  15. Instability of confined water films between elastic surfaces

    NARCIS (Netherlands)

    de Beer, Sissi; 't Mannetje, Dieter; Zantema, Sietske; Mugele, Friedrich

    2010-01-01

    We investigated the dynamics of nanometer thin water films at controlled ambient humidity adsorbed onto two atomically smooth mica sheets upon rapidly bringing the surfaces into contact. Using a surface forces apparatus (SFA) in imaging mode, we found that the water films break up into a

  16. Economic Impacts of Surface Mining on Household Drinking Water Supplies

    Science.gov (United States)

    This report provides information on the economic and social impacts of contaminated surface and ground water supplies on residents and households near surface mining operations. The focus is on coal slurry contamination of water supplies in Mingo County, West Virginia, and descr...

  17. The impact of uncontrolled waste disposal on surface water quality ...

    African Journals Online (AJOL)

    The main threat to the surface water quality in Addis Ababa is environmental pollution derived from domestic and industrial activities. Due to the inadequacy of controlled waste management strategies and waste treatment plants, people are forced to discharge wastes both on open surface and within water bodies.

  18. Sampling procedure for lake or stream surface water chemistry

    Science.gov (United States)

    Robert Musselman

    2012-01-01

    Surface waters collected in the field for chemical analyses are easily contaminated. This research note presents a step-by-step detailed description of how to avoid sample contamination when field collecting, processing, and transporting surface water samples for laboratory analysis.

  19. Determination of Surface Fluxes Using a Bowen Ratio System

    African Journals Online (AJOL)

    USER

    Components of the surface fluxes of the energy balance equation were determined ... and vapour pressure in combination with point measurements of net .... approaches zero, then almost all the energy available is used in evapotranspiration.

  20. Determination of Phthalates in Drinking Water Samples

    African Journals Online (AJOL)

    user

    successfully applied to the analysis of phthalate esters contamination in bottled drinking water samples. ... esters are used in the manufacturing of polyvinyl chloride. (PVC). ... water, soil, air, food products and the human body. (Castillo et al.

  1. Determination of crystal water in uranium tetrafluoride

    International Nuclear Information System (INIS)

    Cheng Yingfang

    1991-01-01

    A gravimetric method for measuring crystal water in uranium tetrafluoride is reported. Being convenient, reliable and quick, it can be used as a routine analytical method measure crystal water in uranium tetrafluoride, thorium tetrafluoride etc

  2. Monitoring of Water and Contaminant Migration at the Groundwater-Surface Water Interface

    Science.gov (United States)

    2008-08-01

    seepage is occurring in a freshwater lake environment and to map the lateral extent of any subsurface contamination at the groundwater –surface water ...and Contaminant Migration at the Groundwater -Surface Water Interface August 2008 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...4. TITLE AND SUBTITLE Monitoring of Water and Contaminant Migration at the Groundwater -Surface Water Interface 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  3. Determining water management training needs through stakeholder ...

    African Journals Online (AJOL)

    South Africa is a water-stressed country and the efficient management of the demand for and frugal use of water is a topic that can no longer be avoided. Community-based natural resource management is an alternative approach to government stewardship of natural resources, and in the instance of water management it is ...

  4. Issues of the presence of parasitic protozoa in surface waters

    Directory of Open Access Journals (Sweden)

    Hawrylik Eliza

    2018-01-01

    This paper focuses on the problem of the presence of parasitic protozoa in surface waters. Characteristics of the most frequently recognized pathogens responsible for water-borne outbreaks were described, as well as sources of contamination and surface waters contamination due to protozoa of the genus Cryptosporidium and Giardia were presented. The methods of destroying the cysts and oocysts of parasitic protozoa used nowadays in the world were also presented in a review.

  5. 40 CFR 257.3-3 - Surface water.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a facility... Water Act, as amended. (b) For purposes of section 4004(a) of the Act, a facility shall not cause a...

  6. 77 FR 12227 - Long Term 2 Enhanced Surface Water Treatment Rule: Uncovered Finished Water Reservoirs; Public...

    Science.gov (United States)

    2012-02-29

    ... Water Treatment Rule: Uncovered Finished Water Reservoirs; Public Meeting AGENCY: Environmental... review of the uncovered finished water reservoir requirement in the Long Term 2 Enhanced Surface Water... uncovered finished water reservoir requirement and the agency's Six Year Review process. EPA also plans to...

  7. Lab-In-Syringe automation of stirring-assisted room-temperature headspace extraction coupled online to gas chromatography with flame ionization detection for determination of benzene, toluene, ethylbenzene, and xylenes in surface waters.

    Science.gov (United States)

    Horstkotte, Burkhard; Lopez de Los Mozos Atochero, Natalia; Solich, Petr

    2018-06-22

    Online coupling of Lab-In-Syringe automated headspace extraction to gas chromatography has been studied. The developed methodology was successfully applied to surface water analysis using benzene, toluene, ethylbenzene, and xylenes as model analytes. The extraction system consisted of an automatic syringe pump with a 5 mL syringe into which all solutions and air for headspace formation were aspirated. The syringe piston featured a longitudinal channel, which allowed connecting the syringe void directly to a gas chromatograph with flame ionization detector via a transfer capillary. Gas injection was achieved via opening a computer-controlled pinch valve and compressing the headspace, upon which separation was initialized. Extractions were performed at room temperature; yet sensitivity comparable to previous work was obtained by high headspace to sample ratio V HS /V Sample of 1.6:1 and injection of about 77% of the headspace. Assistance by in-syringe magnetic stirring yielded an about threefold increase in extraction efficiency. Interferences were compensated by using chlorobenzene as an internal standard. Syringe cleaning and extraction lasting over 10 min was carried out in parallel to the chromatographic run enabling a time of analysis of <19 min. Excellent peak area repeatabilities with RSD of <4% when omitting and <2% RSD when using internal standard corrections on 100 μg L -1 level were achieved. An average recovery of 97.7% and limit of detection of 1-2 μg L -1 were obtained in analyses of surface water. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Treatability of South African surface waters by enhanced coagulation

    African Journals Online (AJOL)

    The majority of South African inland surface water sources are compromised due to a long-standing national policy of mandatory return flows. With renewed emphasis on the removal of organic carbon in the latest SANS 241 water quality standard, many South African water treatment managers may need to consider ...

  9. Environmental impact of by pass channel of surface waters

    International Nuclear Information System (INIS)

    Vismara, R.; Renoldi, M.; Torretta, V.

    1996-01-01

    In this paper are analyzed the impacts generated by surface waters drawing on river course. This impacts are generated also by reduction of water flow. This effect is most important for the presence of biological community: algae, fiches, micro invertebrates. Are also reported regional laws, water master plan of Lombardia region

  10. Dose rate determining factors of PWR primary water

    International Nuclear Information System (INIS)

    Terachi, Takumi; Kuge, Toshiharu; Nakano, Nobuo

    2014-01-01

    The relationship between dose rate trends and water chemistry has been studied to clarify the determining factors on the dose rates. Therefore dose rate trends and water chemistry of 11 PWR plants of KEPCO (Kansai Electric Power Co., Inc.) were summarized. It is indicated that the chemical composition of the oxide film, behaviour of corrosion products and Co-58/Co-60 ratio in the primary system have effected dose rate trends based on plant operation experiences for over 40 years. According to plant operation experiences, the amount of Co-58 has been decreasing with the increasing duration of SG (Steam Generator) usage. It is indicated that the stable oxide film formation on the inner surface of SG tubing, is a major beneficial factor for radiation sources reduction. On the other hand, the reduction of the amount of Co-60 for the long term has been not clearly observed especially in particular high dose plants. The primary water parameters imply that considering release and purification balance on Co-59 is important to prevent accumulation of source term in primary water. In addition, the effect of zinc injection, which relates to the chemical composition of oxide film, was also assessed. As the results, the amount of radioactive Co has been clearly decreased. The decreasing trend seems to correlate to the half-life of Co-60, because it is considered that the injected zinc prevents the uptake of radioactive Co into the oxide film on the inner surface of the components and piping. In this paper, the influence of water chemistry and the replacement experiences of materials on the dose rates were discussed. (author)

  11. Effect of Surface-mantle Water Exchange Parameterizations on Exoplanet Ocean Depths

    Science.gov (United States)

    Komacek, Thaddeus D.; Abbot, Dorian S.

    2016-11-01

    Terrestrial exoplanets in the canonical habitable zone may have a variety of initial water fractions due to random volatile delivery by planetesimals. If the total planetary water complement is high, the entire surface may be covered in water, forming a “waterworld.” On a planet with active tectonics, competing mechanisms act to regulate the abundance of water on the surface by determining the partitioning of water between interior and surface. Here we explore how the incorporation of different mechanisms for the degassing and regassing of water changes the volatile evolution of a planet. For all of the models considered, volatile cycling reaches an approximate steady state after ∼ 2 {Gyr}. Using these steady states, we find that if volatile cycling is either solely dependent on temperature or seafloor pressure, exoplanets require a high abundance (≳ 0.3 % of total mass) of water to have fully inundated surfaces. However, if degassing is more dependent on seafloor pressure and regassing mainly dependent on mantle temperature, the degassing rate is relatively large at late times and a steady state between degassing and regassing is reached with a substantial surface water fraction. If this hybrid model is physical, super-Earths with a total water fraction similar to that of the Earth can become waterworlds. As a result, further understanding of the processes that drive volatile cycling on terrestrial planets is needed to determine the water fraction at which they are likely to become waterworlds.

  12. Characteristics of meter-scale surface electrical discharge propagating along water surface at atmospheric pressure

    International Nuclear Information System (INIS)

    Hoffer, Petr; Sugiyama, Yuki; Hosseini, S Hamid R; Akiyama, Hidenori; Lukes, Petr; Akiyama, Masahiro

    2016-01-01

    This paper reports physical characteristics of water surface discharges. Discharges were produced by metal needle-to-water surface geometry, with the needle electrode driven by 47 kV (FWHM) positive voltage pulses of 2 µ s duration. Propagation of discharges along the water surface was confined between glass plates with 2 mm separation. This allowed generation of highly reproducible 634 mm-long plasma filaments. Experiments were performed using different atmospheres: air, N 2 , and O 2 , each at atmospheric pressure. Time- and spatially-resolved spectroscopic measurements revealed that early spectra of discharges in air and nitrogen atmospheres were dominated by N 2 2nd positive system. N 2 radiation disappeared after approx. 150 ns, replaced by emissions from atomic hydrogen. Spectra of discharges in O 2 atmosphere were dominated by emissions from atomic oxygen. Time- and spatially-resolved emission spectra were used to determine temperatures in plasma. Atomic hydrogen emissions showed excitation temperature of discharges in air to be about 2  ×  10 4 K. Electron number densities determined by Stark broadening of the hydrogen H β line reached a maximum value of ∼10 18 cm −3 just after plasma initiation. Electron number densities and temperatures depended only slightly on distance from needle electrode, indicating formation of high conductivity leader channels. Direct observation of discharges by high speed camera showed that the average leader head propagation speed was 412 km · s −1 , which is substantially higher value than that observed in experiments with shorter streamers driven by lower voltages. (paper)

  13. Underground coal mine subsidence impacts on surface water

    International Nuclear Information System (INIS)

    Stump, D.E. Jr.

    1992-01-01

    This paper reports that subsidence from underground coal mining alters surface water discharge and availability. The magnitude and areal extent of these impacts are dependent on many factors, including the amount of subsidence, topography, geology, climate, surface water - ground water interactions, and fractures in the overburden. There alterations may have positive and/or negative impacts. One of the most significant surface water impacts occurred in July 1957 near West Pittston, Pennsylvania. Subsidence in the Knox Mine under the Coxton Yards of the Lehigh Valley Railroad allowed part of the discharge in the Susquehanna River to flow into the mine and create a crater 200 feet in diameter and 300 feet deep. Fourteen railroad gondola cars fell into the hole which was eventually filled with rock, sand, and gravel. Other surface water impacts from subsidence may include the loss of water to the ground water system, the gaining of water from the ground water system, the creation of flooded subsidence troughs, the increasing of impoundment storage capacity, the relocation of water sources (springs), and the alteration of surface drainage patterns

  14. OCCURRENCE OF ENTERIC VIRUSES IN SURFACE WATERS

    Science.gov (United States)

    Human enteric viruses cause a number of diseases when individuals are exposed to contaminated drinking & recreational waters. Vaccination against poliovirus has virtually eliminated poliomyelitis from the planet. Other members of enterovirus group cause numerous diseases. Hepatit...

  15. Wind effect on water surface of water reservoirs

    Directory of Open Access Journals (Sweden)

    Petr Pelikán

    2013-01-01

    Full Text Available The primary research of wind-water interactions was focused on coastal areas along the shores of world oceans and seas because a basic understanding of coastal meteorology is an important component in coastal and offshore design and planning. Over time the research showed the most important meteorological consideration relates to the dominant role of winds in wave generation. The rapid growth of building-up of dams in 20th century caused spreading of the water wave mechanics research to the inland water bodies. The attention was paid to the influence of waterwork on its vicinity, wave regime respectively, due to the shoreline deterioration, predominantly caused by wind waves. Consequently the similar principles of water wave mechanics are considered in conditions of water reservoirs. The paper deals with the fundamental factors associated with initial wind-water interactions resulting in the wave origination and growth. The aim of the paper is thepresentation of utilization of piece of knowledge from a part of sea hydrodynamics and new approach in its application in the conditions of inland water bodies with respect to actual state of the art. The authors compared foreign and national approach to the solved problems and worked out graphical interpretation and overview of related wind-water interaction factors.

  16. Surface properties and water treatment capacity of surface engineered silica coated with 3-(2-aminoethyl) aminopropyltrimethoxysilane

    International Nuclear Information System (INIS)

    Majewski, Peter; Keegan, Alexandra

    2012-01-01

    This study's focus was on the water-based, one-pot preparation and characterisation of silica particles coated with 3-(2-aminoethyl)aminopropyltrimethoxysilane (Diamo) and the efficiency of the material in removing the pathogens Escherichia coli, Pseudomonas aeruginosa, Mycobacterium immunogenum, Vibrio cholerae, poliovirus, and Cryptosporidium parvum. The water-based processing resulted in Diamo coated silica particles with significantly increased positive surface charge as determined by zeta potential measurements. In addition, X-ray photoelectron spectrometry of pure and Diamo coated silica confirmed the presence of Diamo on the surface of the particles. Thermogravimetric measurements and chemical analysis of the silica indicated a surface concentration of amine groups of about 1 mmol/g silica . Water treatment tests with the pathogens showed that a dose of about 10 g appeared to be sufficient to remove pathogens from pure water samples which were spiked with pathogen concentrations between about 10 2 and 10 4 cfu/mL.

  17. Presence and risk assessment of pharmaceuticals in surface water and drinking water

    DEFF Research Database (Denmark)

    Sanderson, Hans

    2011-01-01

    Trace amounts of pharmaceuticals have been detected in surface waters in the nano- to microgram per liter range, and in drinking water in the nanogram/L range. The environmental risks of pharmaceuticals in surface waters have been evaluated and generally found to be low if the wastewater is treated...

  18. Coastal surface water suitability analysis for irrigation in Bangladesh

    Science.gov (United States)

    Mahtab, Mohammad Hossain; Zahid, Anwar

    2018-03-01

    Water with adequate quality and quantity is very important for irrigation to ensure the crop yields. Salinity is common problem in the coastal waters in Bangladesh. The intensity of salinity in the coastal zone in Bangladesh is not same. It fluctuates over the year. Sodium is another hazard which may hamper permeability and ultimately affects the fertility. It can reduce the crop yields. Although surface water is available in the coastal zone of Bangladesh, but its quality for irrigation needs to be monitored over the year. This paper will investigate the overall quality of coastal surface waters. Thirty-three water samples from different rivers were collected both in wet period (October-December) and in dry period (February-April). Different physical and chemical parameters are considered for investigation of the adequacy of water with respect to international irrigation water quality standards and Bangladesh standards. A comparison between the dry and wet period coastal surface water quality in Bangladesh will also be drawn here. The analysis shows that coastal surface water in Bangladesh is overall suitable for irrigation during wet period, while it needs treatment (which will increase the irrigation cost) for using for irrigation during dry period. Adaptation to this situation can improve the scenario. An integrated plan should be taken to increase the water storing capacity in the coastal area to harvest water during wet period.

  19. A GPU-based mipmapping method for water surface visualization

    Science.gov (United States)

    Li, Hua; Quan, Wei; Xu, Chao; Wu, Yan

    2018-03-01

    Visualization of water surface is a hot topic in computer graphics. In this paper, we presented a fast method to generate wide range of water surface with good image quality both near and far from the viewpoint. This method utilized uniform mesh and Fractal Perlin noise to model water surface. Mipmapping technology was enforced to the surface textures, which adjust the resolution with respect to the distance from the viewpoint and reduce the computing cost. Lighting effect was computed based on shadow mapping technology, Snell's law and Fresnel term. The render pipeline utilizes a CPU-GPU shared memory structure, which improves the rendering efficiency. Experiment results show that our approach visualizes water surface with good image quality at real-time frame rates performance.

  20. Water resources data, Iowa, water year 2001, Volume 2. surface water--Missouri River basin, and ground water

    Science.gov (United States)

    Nalley, G.M.; Gorman, J.G.; Goodrich, R.D.; Miller, V.E.; Turco, M.J.; Linhart, S.M.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make this data readily available to interested parties outside of the Geological Survey, the data is published annually in this report series entitled “Water Resources Data - Iowa” as part of the National Water Data System. Water resources data for water year 2001 for Iowa consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report, in two volumes, contains stage or discharge records for 132 gaging stations; stage records for 9 lakes and reservoirs; water-quality records for 4 gaging stations; sediment records for 13 gaging stations; and water levels for 163 ground-water observation wells. Also included are peak-flow data for 92 crest-stage partial-record stations, water-quality data from 86 municipal wells, and precipitation data collected at 6 gaging stations and 2 precipitation sites. Additional water data were collected at various sites not included in the systematic data-collection program, and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled “Surface Water Supply of the United States.” Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they

  1. Deuterium content on surface waters VI to X Chile regions

    International Nuclear Information System (INIS)

    Aravena C, R; Pollastri J, A.; Suzuki S, O.

    1984-01-01

    One important parameter on any sitting study for a heavy water plant installation is the deuterium content of the feed water. Deuterium data on surface waters from differents areas located in the south of Chile, are presented. These results allow to idently some potential areas for a future heavy water plant. One of these areas, Lago Llanquihue, was sampled more in detail to study the vertical distribution and spatial variations. (Author)

  2. Desert Beetle-Inspired Superwettable Patterned Surfaces for Water Harvesting.

    Science.gov (United States)

    Yu, Zhenwei; Yun, Frank F; Wang, Yanqin; Yao, Li; Dou, Shixue; Liu, Kesong; Jiang, Lei; Wang, Xiaolin

    2017-09-01

    With the impacts of climate change and impending crisis of clean drinking water, designing functional materials for water harvesting from fog with large water capacity has received much attention in recent years. Nature has evolved different strategies for surviving dry, arid, and xeric conditions. Nature is a school for human beings. In this contribution, inspired by the Stenocara beetle, superhydrophilic/superhydrophobic patterned surfaces are fabricated on the silica poly(dimethylsiloxane) (PDMS)-coated superhydrophobic surfaces using a pulsed laser deposition approach with masks. The resultant samples with patterned wettability demonstrate water-harvesting efficiency in comparison with the silica PDMS-coated superhydrophobic surface and the Pt nanoparticles-coated superhydrophilic surface. The maximum water-harvesting efficiency can reach about 5.3 g cm -2 h -1 . Both the size and the percentage of the Pt-coated superhydrophilic square regions on the patterned surface affect the condensation and coalescence of the water droplet, as well as the final water-harvesting efficiency. The present water-harvesting strategy should provide an avenue to alleviate the water crisis facing mankind in certain arid regions of the world. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A short-term study of the state of surface water acidification at Semenyih dam

    International Nuclear Information System (INIS)

    Kantasamy, Nesamalar; Sumari, S.M.; Salam, S.M.; Riniswani Aziz

    2007-01-01

    A short-term study was done to analyze the state of acidification of surface water at Semenyih Dam. This study is part of a continuous monitoring programme for Malaysia as a participatory country of EANET (Acid Monitoring Network in East Asia). Surface water samples were taken at selected points of the dam from February to December 2005. Temperature, electrical conductivity, pH, alkalinity, acid neutralizing capacity (ANC) as well as concentration of specific ionic species were measured, determined and analysed in this study. Present available sort-term study data indicates Semenyih Dam surface water is currently not undergoing acidification. (author)

  4. Spectrophotometric determination of silica in water with Hach equipment

    International Nuclear Information System (INIS)

    Acosta L, E.

    1992-06-01

    The method for the determination of the silica element in water, demineralized water, raw waters, laundry waters, waters treated with ion exchange resins and sea waters using the indicated technique in the operation manual of the Hach equipment with a DR/3 spectrophotometer is described. This method covers the determination of the silica element in the interval from 0 to 1.5 mg/l on 50 ml. of base sample. These limits its can be variable if the size of the used aliquot one is changed for the final determination of the silica element. (Author)

  5. Conductivity as an indicator of surface water quality in the proximity ...

    African Journals Online (AJOL)

    2015-10-05

    Oct 5, 2015 ... FeCr smelting did not significantly impact surface water quality, but that surface run-off and/or groundwater leaching ... (EIAs) were required, or for older FeCr smelters during the .... then used for the determination of conductivity with a Hanna ... significant differences in the conductivity values measured at.

  6. Determination of oestrogen hormones in raw and treated water ...

    African Journals Online (AJOL)

    Hormones in water samples have been classified as 'emerging pollutants' and may pose a potential risk for humans. Hormones can be found in both surface and ground water at low concentrations. These compounds enter water streams through wastewater treatment plants (WWTP) and may elicit endocrine disruption to ...

  7. Surface and ground water quality in a restored urban stream affected by road salts

    Science.gov (United States)

    In 2001 research began in Minebank Run, MD to examine the impact of restoration on water quality. Our research area was to determine if road salts in the surface and ground waters are detrimental to the stream channel restoration. The upstream reach (UP), above the Baltimore I-...

  8. Method of and device for detecting oil pollutions on water surfaces

    Science.gov (United States)

    Belov, Michael Leonidovich [Moscow, RU; Gorodnichev, Victor Aleksandrovich [Moscow, RU; Kozintsev, Valentin Ivanovich [Moscow, RU; Smimova, Olga Alekseevna [Moscow, RU; Fedotov, Yurii Victorovich [Moscow, RU; Khroustaleva, Anastasiva Michailovnan [Moscow, RU

    2008-08-26

    Detection of oil pollution on water surfaces includes providing echo signals obtained from optical radiation of a clean water area at two wavelengths, optically radiating an investigated water area at two wavelengths and obtaining echo signals from the optical radiation of the investigated water area at the two wavelengths, comparing the echo signals obtained from the radiation of the investigated area at two wavelengths with the echo signals obtained from the radiation of the clean water area, and based on the comparison, determining presence or absence of oil pollution in the investigated water area.

  9. Some remarks on the solid surface tension determination from contact angle measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zdziennicka, Anna; Szymczyk, Katarzyna; Krawczyk, Joanna; Jańczuk, Bronisław, E-mail: bronislaw.janczuk@poczta.umcs.lublin.pl

    2017-05-31

    Graphical abstract: Surface tension of PE, nylon 6 and quartz from different approaches to the interface tension. - Highlights: • New values of water and formamide surface tension components were established. • Quartz surface tension depends on its crystal face. • Usefulness of different approaches for solid surface tension determination was tested. - Abstract: The measurements of water, formamide and diiodomethane contact angle (θ) on polytetrafluoroethylene (PTFE), polyethylene (PE), polymethyl methacrylate (PMMA), nylon 6, quartz and silica were performed. Based on the θ values of these liquids obtained on PTFE, the Lifshitz-van der Waals and acid-base and/or dispersion and polar components of their surface tension (ST) were determined. In turn, the θ values for water, formamide and diiodomethane on PMMA were applied to calculate the electron-acceptor and electron-donor parameters of the Lewis acid-base component of the formamide ST. For this calculation the same values of the electron-acceptor and electron-donor parameters for water ST were used. Taking into account the values of components and parameters of water, formamide and diiodomethane ST obtained by us, van Oss et al. and from the water(formamide)-n-alkane and water-diiodomethane interface tension, the components and parameters of studied solids ST were calculated. To this end different approaches to the interface tension were considered. The obtained values were compared with those in the literature. It was concluded that for determination of solid ST components and parameters, those of water, formamide and diiodomethane ST obtained from the θ measurements on the model solids should be used.

  10. 76 FR 7762 - Drinking Water: Regulatory Determination on Perchlorate

    Science.gov (United States)

    2011-02-11

    ...-9262-8] RIN 2040-AF08 Drinking Water: Regulatory Determination on Perchlorate AGENCY: Environmental...'s) regulatory determination for perchlorate in accordance with the Safe Drinking Water Act (SDWA... substantial likelihood that perchlorate will occur in public water systems with a frequency and at levels of...

  11. Ionization by a pulsed plasma surface water

    International Nuclear Information System (INIS)

    Bloyet, E.; Leprince, P.; Marec, J.; Llamas Blasco, M.

    1981-01-01

    The ionization mechanism is studied of a pulsed surface wave generating a microwave discharge. When the plasma is dominated by collisions, it is found that the velocity of the ionization front depends on the ponderomotive force due to the field gradient in the front. (orig.)

  12. Guidelines for surface water quality, vol. l

    International Nuclear Information System (INIS)

    1983-01-01

    A literature survey was carried out on the chemically toxic effects of uranium and uranium compounds on human health, aquatic life, plants and livestock. All the information collected is summarized in this document and, from it, maximum uranium concentrations in water at which toxic effects will not appear are recommended

  13. Water's Interfacial Hydrogen Bonding Structure Reveals the Effective Strength of Surface-Water Interactions.

    Science.gov (United States)

    Shin, Sucheol; Willard, Adam P

    2018-06-05

    We combine all-atom molecular dynamics simulations with a mean field model of interfacial hydrogen bonding to analyze the effect of surface-water interactions on the structural and energetic properties of the liquid water interface. We show that the molecular structure of water at a weakly interacting ( i.e., hydrophobic) surface is resistant to change unless the strength of surface-water interactions are above a certain threshold. We find that below this threshold water's interfacial structure is homogeneous and insensitive to the details of the disordered surface, however, above this threshold water's interfacial structure is heterogeneous. Despite this heterogeneity, we demonstrate that the equilibrium distribution of molecular orientations can be used to quantify the energetic component of the surface-water interactions that contribute specifically to modifying the interfacial hydrogen bonding network. We identify this specific energetic component as a new measure of hydrophilicity, which we refer to as the intrinsic hydropathy.

  14. Effect of Traditional Gold Mining to Surface Water Quality in Murung Raya District, Central Kalimantan Province

    OpenAIRE

    Wilopo, W; Resili, R; Putra, D P E

    2013-01-01

    There are many locations for traditional gold mining in Indonesia. One of these is in Murung Raya District, Central Kalimantan Province. Mining activities involving the application of traditional gold processing technology have a high potential to pollute the environment, especially surface water. Therefore, this study aims to determine the impact of gold mining and processing on surface water quality around the mine site. Based on the results of field surveys and laboratory analysis, our dat...

  15. Changes of carbon dioxide in surface waters during spring in the Southern Ocean

    NARCIS (Netherlands)

    Bakker, D.C.E.; Baar, H.J.W. de; Bathmann, U.V.

    1997-01-01

    The fugacity of CO2 (fCO2) and the content of chlorophyll a in surface-water were determined during consecutive sections between 47° and 60°S along 6°W in austral spring, October–November 1992. In the Polar Frontal region, the fCO2 of surface-water decreased from slightly below the atmospheric value

  16. Effect of water table dynamics on land surface hydrologic memory

    Science.gov (United States)

    Lo, Min-Hui; Famiglietti, James S.

    2010-11-01

    The representation of groundwater dynamics in land surface models has received considerable attention in recent years. Most studies have found that soil moisture increases after adding a groundwater component because of the additional supply of water to the root zone. However, the effect of groundwater on land surface hydrologic memory (persistence) has not been explored thoroughly. In this study we investigate the effect of water table dynamics on National Center for Atmospheric Research Community Land Model hydrologic simulations in terms of land surface hydrologic memory. Unlike soil water or evapotranspiration, results show that land surface hydrologic memory does not always increase after adding a groundwater component. In regions where the water table level is intermediate, land surface hydrologic memory can even decrease, which occurs when soil moisture and capillary rise from groundwater are not in phase with each other. Further, we explore the hypothesis that in addition to atmospheric forcing, groundwater variations may also play an important role in affecting land surface hydrologic memory. Analyses show that feedbacks of groundwater on land surface hydrologic memory can be positive, negative, or neutral, depending on water table dynamics. In regions where the water table is shallow, the damping process of soil moisture variations by groundwater is not significant, and soil moisture variations are mostly controlled by random noise from atmospheric forcing. In contrast, in regions where the water table is very deep, capillary fluxes from groundwater are small, having limited potential to affect soil moisture variations. Therefore, a positive feedback of groundwater to land surface hydrologic memory is observed in a transition zone between deep and shallow water tables, where capillary fluxes act as a buffer by reducing high-frequency soil moisture variations resulting in longer land surface hydrologic memory.

  17. Optimisation of ATP determination in drinking water

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    Adenosine Triphosphate (ATP) can be used as a relative measure of cell activity, and is measured by the light output from the reaction between luciferin and ATP catalyzed by firefly luciferase. The measurement has potential as a monitoring and surveillance tool within drinking water distribution,...... be separated from the water phase by filtration.......Adenosine Triphosphate (ATP) can be used as a relative measure of cell activity, and is measured by the light output from the reaction between luciferin and ATP catalyzed by firefly luciferase. The measurement has potential as a monitoring and surveillance tool within drinking water distribution...... and an Advance Coupe luminometer. The investigations showed a 60 times higher response of the PCP-kit, making it more suitable for measurement of samples with low ATP content. ATP-standard dilutions prepared in tap water were stable for at least 15 months when stored frozen at -80ºC, and storage of large...

  18. How well Can We Classify SWOT-derived Water Surface Profiles?

    Science.gov (United States)

    Frasson, R. P. M.; Wei, R.; Picamilh, C.; Durand, M. T.

    2015-12-01

    The upcoming Surface Water Ocean Topography (SWOT) mission will detect water bodies and measure water surface elevation throughout the globe. Within its continental high resolution mask, SWOT is expected to deliver measurements of river width, water elevation and slope of rivers wider than ~50 m. The definition of river reaches is an integral step of the computation of discharge based on SWOT's observables. As poorly defined reaches can negatively affect the accuracy of discharge estimations, we seek strategies to break up rivers into physically meaningful sections. In the present work, we investigate how accurately we can classify water surface profiles based on simulated SWOT observations. We assume that most river sections can be classified as either M1 (mild slope, with depth larger than the normal depth), or A1 (adverse slope with depth larger than the critical depth). This assumption allows the classification to be based solely on the second derivative of water surface profiles, with convex profiles being classified as A1 and concave profiles as M1. We consider a HEC-RAS model of the Sacramento River as a representation of the true state of the river. We employ the SWOT instrument simulator to generate a synthetic pass of the river, which includes our best estimates of height measurement noise and geolocation errors. We process the resulting point cloud of water surface heights with the RiverObs package, which delineates the river center line and draws the water surface profile. Next, we identify inflection points in the water surface profile and classify the sections between the inflection points. Finally, we compare our limited classification of simulated SWOT-derived water surface profile to the "exact" classification of the modeled Sacramento River. With this exercise, we expect to determine if SWOT observations can be used to find inflection points in water surface profiles, which would bring knowledge of flow regimes into the definition of river reaches.

  19. Determination of 40K in water samples

    International Nuclear Information System (INIS)

    Delgado, C. E.; Miranda C, L.; Cuevas J, A. K.; Vega C, H. R.

    2014-10-01

    The natural water used for human consumption comes from different sources, which may contain suspended solids in varying proportions. In groundwater, the source of suspended solids is related to the dissolution of mineral strata by the waters and leaching of rocks. Also, the radioactivity could concentrate on the bodies of slow-moving water that eventually could present a risk to ecosystems, as well as for the consumer. The water usually contains several natural radionuclides as: tritium, radon, radio, uranium isotopes, etc. The objective of this study was to evaluate the concentration of 40 K in water from different areas of Zacatecas state (Mexico). Four water samples were taken in triplicate from different areas; the 40 K concentration was measured with a spectrum metric system of gamma radiation with NaI (Tl) scintillation detector of 7.62 cm. In the measuring process a standard was prepared using water and KCl analytic grade where the 40 K concentration is 6.25 mol/Lt adding 250 mg/ml of potassium. Also the system was calibrated in energy using 3 point sources of 137 Cs, diameter 22 Na and 7.62 cm of height, using containers Marinelli and 60 Co. In the obtained spectra was observed that the photon of 1.432 MeV that emits the 40 K when decaying is the most important. The highest concentration was of 123 ± 5.2 Bq/lt and the lowest was of 9 ± 0.4 Bq/lt. Under the standards of drinking water, an amount of 40 K deposits an effective dose which contributes to annual dose received by people. (Author)

  20. Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces

    DEFF Research Database (Denmark)

    Schiros, T.; Ogasawara, H.; Naslund, L. A.

    2010-01-01

    of the mixed phase at metal surfaces. The surface bonding can be considered to be similar to accepting a hydrogen bond, and we can thereby apply general cooperativity rules developed for hydrogen-bonded systems. This provides a simple understanding of why water molecules become more strongly bonded...... to the surface upon hydrogen bonding to OH and why the OH surface bonding is instead weakened through hydrogen bonding to water. We extend the application of this simple model to other observed cooperativity effects for pure water adsorption systems and H3O+ on metal surfaces.......We examine the balance of surface bonding and hydrogen bonding in the mixed OH + H2O overlayer on Pt(111), Cu(111), and Cu(110) via density functional theory calculations. We find that there is a cooperativity effect between surface bonding and hydrogen bonding that underlies the stability...

  1. Spectrophotometric Determination of Boron in Environmental Water Samples

    International Nuclear Information System (INIS)

    San San; Khin Win Kyi; Kwaw Naing

    2002-02-01

    The present paper deals with the study on the methods for the determination of boron in the environmental water samples. The standard methods which are useful for this determination are discussed thoroughly in this work. Among the standard methods approved by American Public Health Association, the carmine method was selected for this study. Prior to the determination of boron in the water samples, the precision and accuracy of the methods of choice were examined by using standard boron solutions. The determination of Boron was carried out by using water samples, waste water from Aquaculture Research Centre, University of Yangon, the Ayeyarwady River water near Magway Myathalon Pagoda in Magway Division, ground water from Sanchaung Township, and tap water from Universities' Research Centre, University of Yangon. Analyses of these water samples were done and statistical treatment of the results was carried out. (author)

  2. chemical and microbiological assessment of surface water samples

    African Journals Online (AJOL)

    PROF EKWUEME

    were investigated in this study: Nine samples from different surface water bodies, two samples from two effluent sources ... Ezeagu, Udi, Nkanu, Oji River and some parts of Awgu and Aninri ..... Study of Stream Output from Small Catchments.

  3. Exciton-Promoted Desorption From Solid Water Surfaces A2

    DEFF Research Database (Denmark)

    McCoustra, M.R.S.; Thrower, J.D.

    2018-01-01

    Abstract Desorption from solid water surfaces resulting from interaction with electromagnetic and particle radiation is reviewed in the context of the role of nonthermal desorption in astrophysical environments. Experimental observations are interpreted in terms of mechanisms sharing a common basis...

  4. Titanium Dioxide-Based Antibacterial Surfaces for Water Treatment

    Science.gov (United States)

    The field of water disinfection is gaining much interest since waterborne diseases caused by pathogenic microorganisms directly endanger human health. Antibacterial surfaces offer a new, ecofriendly technique to reduce the harmful disinfection byproducts that form in medical and ...

  5. Insight into Chemistry on Cloud/Aerosol Water Surfaces.

    Science.gov (United States)

    Zhong, Jie; Kumar, Manoj; Francisco, Joseph S; Zeng, Xiao Cheng

    2018-05-15

    Cloud/aerosol water surfaces exert significant influence over atmospheric chemical processes. Atmospheric processes at the water surface are observed to follow mechanisms that are quite different from those in the gas phase. This Account summarizes our recent findings of new reaction pathways on the water surface. We have studied these surface reactions using Born-Oppenheimer molecular dynamics simulations. These studies provide useful information on the reaction time scale, the underlying mechanism of surface reactions, and the dynamic behavior of the product formed on the aqueous surface. According to these studies, the aerosol water surfaces confine the atmospheric species into a specific orientation depending on the hydrophilicity of atmospheric species or the hydrogen-bonding interactions between atmospheric species and interfacial water. As a result, atmospheric species are activated toward a particular reaction on the aerosol water surface. For example, the simplest Criegee intermediate (CH 2 OO) exhibits high reactivity toward the interfacial water and hydrogen sulfide, with the reaction times being a few picoseconds, 2-3 orders of magnitude faster than that in the gas phase. The presence of interfacial water molecules induces proton-transfer-based stepwise pathways for these reactions, which are not possible in the gas phase. The strong hydrophobicity of methyl substituents in larger Criegee intermediates (>C1), such as CH 3 CHOO and (CH 3 ) 2 COO, blocks the formation of the necessary prereaction complexes for the Criegee-water reaction to occur at the water droplet surface, which lowers their proton-transfer ability and hampers the reaction. The aerosol water surface provides a solvent medium for acids (e.g., HNO 3 and HCOOH) to participate in reactions via mechanisms that are different from those in the gas and bulk aqueous phases. For example, the anti-CH 3 CHOO-HNO 3 reaction in the gas phase follows a direct reaction between anti-CH 3 CHOO and HNO 3

  6. DETERMINING REFLECTANCE SPECTRA OF SURFACES AND CLOUDS ON EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Nicolas B.; Strait, Talia E., E-mail: n-cowan@northwestern.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, 2131 Tech Dr., IL 60208 (United States)

    2013-03-01

    Planned missions will spatially resolve temperate terrestrial planets from their host star. Although reflected light from such a planet encodes information about its surface, it has not been shown how to establish surface characteristics of a planet without assuming known surfaces to begin with. We present a reanalysis of disk-integrated, time-resolved, multiband photometry of Earth obtained by the Deep Impact spacecraft as part of the EPOXI Mission of Opportunity. We extract reflectance spectra of clouds, ocean, and land without a priori knowledge of the numbers or colors of these surfaces. We show that the inverse problem of extracting surface spectra from such data is a novel and extreme instance of spectral unmixing, a well-studied problem in remote sensing. Principal component analysis is used to determine an appropriate number of model surfaces with which to interpret the data. Shrink-wrapping a simplex to the color excursions of the planet yields a conservative estimate of the planet's endmember spectra. The resulting surface maps are unphysical, however, requiring negative or larger-than-unity surface coverage at certain locations. Our ''rotational unmixing'' supersedes the endmember analysis by simultaneously solving for the surface spectra and their geographical distributions on the planet, under the assumption of diffuse reflection and known viewing geometry. We use a Markov Chain Monte Carlo to determine best-fit parameters and their uncertainties. The resulting albedo spectra are similar to clouds, ocean, and land seen through a Rayleigh-scattering atmosphere. This study suggests that future direct-imaging efforts could identify and map unknown surfaces and clouds on exoplanets.

  7. Determining Surface Infiltration Rate of Permeable Pavements with Digital Imaging

    Directory of Open Access Journals (Sweden)

    Caterina Valeo

    2018-01-01

    Full Text Available Cell phone images of pervious pavement surfaces were used to explore relationships between surface infiltration rates (SIR measured using the ASTM C1701 standard test and using a simple falling head test. A fiber-reinforced porous asphalt surface and a highly permeable material comprised of stone, rubber and a polymer binder (Porous Pave were tested. Images taken with a high-resolution cellphone camera were acquired as JPEG files and converted to gray scale images in Matlab® for analysis. The distribution of gray levels was compared to the surface infiltration rates obtained for both pavements with attention given to the mean of the distribution. Investigation into the relationships between mean SIR and parameters determined from the gray level distribution produced in the image analysis revealed that mean SIR measured in both pavements were proportional to the inverse of the mean of the distribution. The relationships produced a coefficient of determination over 85% using both the ASTM and the falling head test in the porous asphalt surface. SIR measurements determined with the ASTM method were highly correlated with the inverse mean of the distribution of gray levels in the Porous Pave material as well, producing coefficients of determination of over 90% and Kendall’s tau-b of roughly 70% for nonparametric data.

  8. Radiolysis of water in the vicinity of passive surfaces

    International Nuclear Information System (INIS)

    Moreau, S.; Fenart, M.; Renault, J.P.

    2014-01-01

    Highlights: • HO° production through water radiolysis is enhanced near metal surfaces. • Hastelloy and Stainless steel surfaces can also produce HO° radicals through hydrogen peroxide activation. • There is a deficit in solvated electron production compared to hydroxyl radicals near metal surfaces. - Abstract: Porous metals were used to describe the water radiolysis in the vicinity of metal surfaces. The hydroxyl radical production under gamma irradiation was measured by benzoate scavenging in water confined in a 200 nm porous Ni base alloy or in Stainless steel. The presence of the metallic surfaces changed drastically the HO° production level and lifetime. The solvated electron production was measured via glycylglycine scavenging for Stainless steel and was found to be significantly smaller than hydroxyl production. These observations imply that interfacial radiolysis may deeply impact the corrosion behavior of the SS and Ni based alloys

  9. Water evaporation from substrate tooth surface during dentin treatments.

    Science.gov (United States)

    Kusunoki, Mizuho; Itoh, Kazuo; Gokan, Yuka; Nagai, Yoshitaka; Tani, Chihiro; Hisamitsu, Hisashi

    2011-01-01

    The purpose of this study was to evaluate changes in the quantity of water evaporation from tooth surfaces. The amount of water evaporation was measured using Multi probe adapter MPA5 and Tewameter TM300 (Courage+Khazaka Electric GmbH, Köln, Germany) after acid etching and GM priming of enamel; and after EDTA conditioning and GM priming of dentin. The results indicated that the amount of water evaporation from the enamel surface was significantly less than that from the dentin. Acid etching did not affect the water evaporation from enamel, though GM priming significantly decreased the evaporation (83.48 ± 15.14% of that before priming). The evaporation from dentin was significantly increased by EDTA conditioning (131.38 ± 42.08% of that before conditioning) and significantly reduced by GM priming (80.26 ± 7.43% of that before priming). It was concluded that dentin priming reduced water evaporation from the dentin surface.

  10. Safety assessment of greenhouse hydroponic tomatoes irrigated with reclaimed and surface water.

    Science.gov (United States)

    Lopez-Galvez, Francisco; Allende, Ana; Pedrero-Salcedo, Francisco; Alarcon, Juan Jose; Gil, Maria Isabel

    2014-11-17

    The impact of reclaimed and surface water on the microbiological safety of hydroponic tomatoes was assessed. Greenhouse tomatoes were irrigated with reclaimed and surface water and grown on two hydroponic substrates (coconut fiber and rock wool). Water samples (n=208) were taken from irrigation water, with and without the addition of fertilizers and drainage water, and hydroponic tomatoes (n=72). Samples were analyzed for indicator microorganisms, generic Escherichia coli and Listeria spp., and pathogenic bacteria such as Salmonella spp. and Shiga-toxigenic E. coli (STEC), using multiplex real-time PCR (RT-PCR) after enrichment. The correlation between climatological parameters such as temperature and the levels of microorganisms in water samples was also determined. In irrigation water, generic E. coli counts were higher in reclaimed than in surface water whereas Listeria spp. numbers increased after adding the fertilizers in both water sources. In drainage water, no clear differences in E. coli and Listeria numbers were observed between reclaimed and surface water. No positive samples for STEC were found in irrigation water. Presumptive positives for Salmonella spp. were found in 7.7% of the water samples and 62.5% of these samples were reclaimed water. Salmonella-positive samples by RT-PCR could not be confirmed by conventional methods. Higher concentrations of E. coli were associated with Salmonella-presumptive positive samples. Climatological parameters, such as temperature, were not correlated with the E. coli and Listeria spp. counts. Tomato samples were negative for bacterial pathogens, while generic E. coli and Listeria spp. counts were below the detection limit. The prevalence of presumptive Salmonella spp. found in irrigation water (reclaimed and surface water) was high, which might present a risk of contamination. The absence of pathogens on greenhouse hydroponic tomatoes indicates that good agricultural practices (GAP) were in place, avoiding the

  11. Unique water-water coordination tailored by a metal surface

    DEFF Research Database (Denmark)

    Schiros, T.; Andersson, Klas Jerker; MacNaughton, J.

    2013-01-01

    (2006)]. Using x-ray absorption spectroscopy we find an anomalous low-energy resonance at ~533.1 eV which, based on density functional theory spectrum simulations, we assign to an unexpected configuration of water units whose uncoordinated O-H bonds directly face those of their neighbors...

  12. Anomalous water dynamics at surfaces and interfaces: synergistic effects of confinement and surface interactions

    Science.gov (United States)

    Biswas, Rajib; Bagchi, Biman

    2018-01-01

    In nature, water is often found in contact with surfaces that are extended on the scale of molecule size but small on a macroscopic scale. Examples include lipid bilayers and reverse micelles as well as biomolecules like proteins, DNA and zeolites, to name a few. While the presence of surfaces and interfaces interrupts the continuous hydrogen bond network of liquid water, confinement on a mesoscopic scale introduces new features. Even when extended on a molecular scale, natural and biological surfaces often have features (like charge, hydrophobicity) that vary on the scale of the molecular diameter of water. As a result, many new and exotic features, which are not seen in the bulk, appear in the dynamics of water close to the surface. These different behaviors bear the signature of both water-surface interactions and of confinement. In other words, the altered properties are the result of the synergistic effects of surface-water interactions and confinement. Ultrafast spectroscopy, theoretical modeling and computer simulations together form powerful synergistic approaches towards an understanding of the properties of confined water in such systems as nanocavities, reverse micelles (RMs), water inside and outside biomolecules like proteins and DNA, and also between two hydrophobic walls. We shall review the experimental results and place them in the context of theory and simulations. For water confined within RMs, we discuss the possible interference effects propagating from opposite surfaces. Similar interference is found to give rise to an effective attractive force between two hydrophobic surfaces immersed and kept fixed at a separation of d, with the force showing an exponential dependence on this distance. For protein and DNA hydration, we shall examine a multitude of timescales that arise from frustration effects due to the inherent heterogeneity of these surfaces. We pay particular attention to the role of orientational correlations and modification of the

  13. The determination of iron-59 in water

    International Nuclear Information System (INIS)

    Zhao Min; Ban Ying

    1993-06-01

    A method to analyse iron-59 in water is introduced. The procedure of this method includes concentration by co-precipitation with hydroxides purification by anion exchange, electrodeposition in NH 4 H 2 PO 4 -(NH 4 ) 2 CO 3 system and final measurements of beta activity with a background beta-counter. The effect of iron carrier amount and pH value of water sample on the carrying Fe-59, and the effect of concentration hydrochloric acid, flowrate of adsorption and elutriation with 6 mol/L HCl-1% H 2 O 2 solution on the adsorption efficiency have been studied. The experimental results indicate that for 101 water sample, both the chemical and radiochemical yields are greater than 90%. For 51 Cr, 60 Co, 65 Zn, 95 Zr- 95 Nb and 137 Cs the decontamination factor is greater than 10 3 . The minimum detectable limit of this method is 3.8 x 10 -3 Bq/L

  14. A Probabilistic Analysis of Surface Water Flood Risk in London.

    Science.gov (United States)

    Jenkins, Katie; Hall, Jim; Glenis, Vassilis; Kilsby, Chris

    2017-10-30

    Flooding in urban areas during heavy rainfall, often characterized by short duration and high-intensity events, is known as "surface water flooding." Analyzing surface water flood risk is complex as it requires understanding of biophysical and human factors, such as the localized scale and nature of heavy precipitation events, characteristics of the urban area affected (including detailed topography and drainage networks), and the spatial distribution of economic and social vulnerability. Climate change is recognized as having the potential to enhance the intensity and frequency of heavy rainfall events. This study develops a methodology to link high spatial resolution probabilistic projections of hourly precipitation with detailed surface water flood depth maps and characterization of urban vulnerability to estimate surface water flood risk. It incorporates probabilistic information on the range of uncertainties in future precipitation in a changing climate. The method is applied to a case study of Greater London and highlights that both the frequency and spatial extent of surface water flood events are set to increase under future climate change. The expected annual damage from surface water flooding is estimated to be to be £171 million, £343 million, and £390 million/year under the baseline, 2030 high, and 2050 high climate change scenarios, respectively. © 2017 Society for Risk Analysis.

  15. Chlorine stress mediates microbial surface attachment in drinking water systems.

    Science.gov (United States)

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  16. Spectrophotometric determination of fluorides in water with Hach equipment

    International Nuclear Information System (INIS)

    Acosta L, E.

    1994-11-01

    The spectrophotometric method for the determination of the fluoride ion in water, demineralized water, raw waters, laundry waters and waters treated with ion exchange resins , using the technique and the SPADNS coloring indicated in the operation manual of the Hach equipment is described. This method covers the determination of the fluoride ion in the range from 0 to 2 mg/l on 25 ml. of radioactive base sample. These limits can be variable if the size of the used aliquot one is changed for the final determination of the fluoride ion. (Author)

  17. Impact of industrial effluents on surface waters

    International Nuclear Information System (INIS)

    Ahmed, K.

    2000-01-01

    The indiscriminate discharge of untreated municipal and industrial effluents has given rise to serious problems of water pollution and human health in Pakistan. The City of Lahore discharges about 365 mgd of wastewater with a BOD load of 250 tons per day, without treatment, into Ravi river. Because of the untreated industrial discharges, river Ravi is devoid of dissolved oxygen through most of its react between Lahore and Upper Chenab Canal under low flow conditions. Pollution levels can be controlled if each industry treats its own wastewater prior to disposal, in accordance with NEQS (Pakistan). (author)

  18. Recovery from acidification in European surface waters

    Czech Academy of Sciences Publication Activity Database

    Evans, C. D.; Cullen, J. M.; Alewell, C.; Kopáček, Jiří; Marchetto, A.; Moldan, F.; Prechtel, A.; Rogora, M.; Veselý, J.; Wright, R.

    2001-01-01

    Roč. 5, č. 3 (2001), s. 283-297 ISSN 1027-5606 R&D Projects: GA ČR GA206/00/0063 Grant - others:CEC RECOVER(XE) 2010 EVK1-CT-1999-00018; GMER(DE) PT BEO 51-0339476; UKDETR(GB) EPG1/3/92; NNP(NO) SFT2000; CEC(XE) EMERGE EVK1-CT-1999-00032 Keywords : acidification * recovery * sulphate Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.127, year: 2001

  19. Recovery of acidified European surface waters

    Czech Academy of Sciences Publication Activity Database

    Wright, R. F.; Larssen, T.; Camarero, L.; Cosby, B. J.; Ferrier, R. C.; Helliwell, R.; Forsius, M.; Jenkins, A.; Kopáček, Jiří; Majer, V.; Moldan, F.; Posch, M.; Rogora, M.; Schöpp, W.

    2005-01-01

    Roč. 39, č. 3 (2005), 64A-72A ISSN 0013-936X. [ Acid Rain 2005. International Conference on Acid Deposition /7./. Prague, 12.06.2005-17.06.2005] Grant - others:EC(XE) EMERGE EVK1-CT-1999-00032; EC(XE) RECOVER:2010 EVK1-CT-1999-00018; DEFRA(GB) EPG 1/3/194; ICST(ES) REN2000-0889/GLO Institutional research plan: CEZ:AV0Z60170517 Keywords : acid ification * recovery * European lake districts Subject RIV: DJ - Water Pollution ; Quality Impact factor: 4.054, year: 2005

  20. Determination of carbofuran in water by radioimmunoassay

    International Nuclear Information System (INIS)

    Zhu Guonian; Wu Huiming; Yang Ting; Hu Xiuqing

    2004-01-01

    A competitive radioimmunoassay (RIA) method was established to detect carbofuran in water samples. Compared with traditional analytical methods RIA provided a easy procedure with higher sensitivity. The detective limitation of RIA for carbofuran was proved to be 0.175 ng/ml. A study was performed to test validation of the RIA. In this study carbofuran residues in water samples were detected simultaneously by RIA and by high performance liquid chromatograph (HPLC). The linear correlation coefficient of the test results was measure to be 0.9985. (authors)

  1. Spectroscopic determination of optimal hydration time of zircon surface

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez R, E. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Garcia R, G. [Instituto Tecnologico de Toluca, Division de Estudios del Posgrado, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico); Garcia G, N., E-mail: eduardo.ordonez@inin.gob.m [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Av. Colon y Av. Tollocan, 50180 Toluca, Estado de Mexico (Mexico)

    2010-07-01

    When a mineral surface is immersed in an aqueous solution, it develops and electric charge produced by the amphoteric dissociation of hydroxyl groups created by the hydration of the solid surface. This is one influential surface property. The complete hydration process takes a time which is specific for each mineral species. The knowledge of the aqueous solution contact time for complete surface hydration is mandatory for further surface phenomena studies. This study deals with the optimal hydration time of the raw zircon (ZrSiO{sub 4}) surface comparing the classical potentiometric titrations with a fluorescence spectroscopy technique. The latter is easy and rea liable as it demands only one sample batch to determine the optimal time to ensure a total hydration of the zircon surface. The analytical results of neutron activation analysis showed the presence of trace quantities of Dy{sup 3+}, Eu{sup 3+} and Er{sup 3} in the bulk of zircon. The Dy{sup 3+} is structured in the zircon crystalline lattice and undergoes the same chemical reactions as zircon. Furthermore, the Dy{sup 3+} has a good fluorescent response whose intensity is enhanced by hydration molecules. The results show that, according to the potentiometric analysis, the hydration process for each batch (at least 8 sample batches) takes around 2 h, while the spectrometric method indicates only 5 minutes from only one batch. Both methods showed that the zircon surface have a 16 h optimal hydration time. (Author)

  2. Spectroscopic determination of optimal hydration time of zircon surface

    International Nuclear Information System (INIS)

    Ordonez R, E.; Garcia R, G.; Garcia G, N.

    2010-01-01

    When a mineral surface is immersed in an aqueous solution, it develops and electric charge produced by the amphoteric dissociation of hydroxyl groups created by the hydration of the solid surface. This is one influential surface property. The complete hydration process takes a time which is specific for each mineral species. The knowledge of the aqueous solution contact time for complete surface hydration is mandatory for further surface phenomena studies. This study deals with the optimal hydration time of the raw zircon (ZrSiO 4 ) surface comparing the classical potentiometric titrations with a fluorescence spectroscopy technique. The latter is easy and rea liable as it demands only one sample batch to determine the optimal time to ensure a total hydration of the zircon surface. The analytical results of neutron activation analysis showed the presence of trace quantities of Dy 3+ , Eu 3+ and Er 3 in the bulk of zircon. The Dy 3+ is structured in the zircon crystalline lattice and undergoes the same chemical reactions as zircon. Furthermore, the Dy 3+ has a good fluorescent response whose intensity is enhanced by hydration molecules. The results show that, according to the potentiometric analysis, the hydration process for each batch (at least 8 sample batches) takes around 2 h, while the spectrometric method indicates only 5 minutes from only one batch. Both methods showed that the zircon surface have a 16 h optimal hydration time. (Author)

  3. Preconcentration NAA for simultaneous multielemental determination in water sample

    International Nuclear Information System (INIS)

    Chatt, A.

    1999-01-01

    Full text: Environment concerns with water, air, land and their interrelationship viz., human beings, fauna and flora. One of the important environmental compartments is water. Elements present in water might face a whole lot of physico-chemical conditions. This poses challenges to measure their total concentrations as well as different species. Preconcentration of the elements present in water samples is a necessary requisites in water analysis. For multi elements concentration measurements, Neutron Activation Analysis (NAA) is one of the preferred analytical techniques due to its sensitivity and selectivity. In this talk preconcentration NAA for multielemental determination in water sample determination will be discussed

  4. Phthalates in surface water - a method for routine trace level analysis

    International Nuclear Information System (INIS)

    Furtmann, K.

    1994-01-01

    A routine method for the determination of phthalates in water is presented. It is suitable for all kinds of water like surface water, waste water, landfill leachate, rain water and ground water. Unfiltered water samples including all suspended particulate matter are extracted by solid-phase extraction in an all-glass apparatus using RPC-18. The extracts are measured by GC/MSD in the SIM mode. Due to an easy but efficient decontamination technique, method blanks could be decreased below 0.02 μg/l for all phthalates. The detection limits are 0.01 to 0.02 μg/l, the determination limits are 0.02 to 0.05 μg/l. Recovery for all phthalates is about 98% (± 5%). Phthalates were measured in about 400 samples of water of the river Rhine and its main affluents in Northrhine-Westfalia. (orig.)

  5. Adsorption of surface functionalized silica nanoparticles onto mineral surfaces and decane/water interface

    International Nuclear Information System (INIS)

    Metin, Cigdem O.; Baran, Jimmie R.; Nguyen, Quoc P.

    2012-01-01

    The adsorption of silica nanoparticles onto representative mineral surfaces and at the decane/water interface was studied. The effects of particle size (the mean diameters from 5 to 75 nm), concentration and surface type on the adsorption were studied in detail. Silica nanoparticles with four different surfaces [unmodified, surface modified with anionic (sulfonate), cationic (quaternary ammonium (quat)) or nonionic (polyethylene glycol (PEG)) surfactant] were used. The zeta potential of these silica nanoparticles ranges from −79.8 to 15.3 mV. The shape of silica particles examined by a Hitachi-S5500 scanning transmission electron microscope (STEM) is quite spherical. The adsorption of all the nanoparticles (unmodified or surface modified) on quartz and calcite surfaces was found to be insignificant. We used interfacial tension (IFT) measurements to investigate the adsorption of silica nanoparticles at the decane/water interface. Unmodified nanoparticles or surface modified ones with sulfonate or quat do not significantly affect the IFT of the decane/water interface. It also does not appear that the particle size or concentration influences the IFT. However, the presence of PEG as a surface modifying material significantly reduces the IFT. The PEG surface modifier alone in an aqueous solution, without the nanoparticles, yields the same IFT reduction for an equivalent PEG concentration as that used for modifying the surface of nanoparticles. Contact angle measurements of a decane droplet on quartz or calcite plate immersed in water (or aqueous nanoparticle dispersion) showed a slight change in the contact angle in the presence of the studied nanoparticles. The results of contact angle measurements are in good agreement with experiments of adsorption of nanoparticles on mineral surfaces or decane/water interface. This study brings new insights into the understanding and modeling of the adsorption of surface-modified silica nanoparticles onto mineral surfaces and

  6. Surface temperature and surface heat flux determination of the inverse heat conduction problem for a slab

    International Nuclear Information System (INIS)

    Kuroyanagi, Toshiyuki

    1983-07-01

    Based on an idea that surface conditions should be a reflection of interior temperature and interior heat flux variation as inverse as interior conditions has been determined completely by the surface temperature and/on surface heat flux as boundary conditions, a method is presented for determining the surface temperature and the surface heat flux of a solid when the temperature and heat flux at an interior point are a prescribed function of time. The method is developed by the integration of Duhumels' integral which has unknown temperature or unknown heat flux in its integrand. Specific forms of surface condition determination are developed for a sample inverse problem: slab. Ducussing the effect of a degree of avairable informations at an interior point due to damped system and the effect of variation of surface conditions on those formulations, it is shown that those formulations are capable of representing the unknown surface conditions except for small time interval followed by discontinuous change of surface conditions. The small un-resolved time interval is demonstrated by a numerical example. An evaluation method of heat flux at an interior point, which is requested by those formulations, is discussed. (author)

  7. Economic study of the treatment of surface water by small ...

    African Journals Online (AJOL)

    The purpose of this work is to evaluate the possibility of utilising an ultrafiltration process for the treatment of water from the dam in the Kabylia region of Algeria and, in particular, for the provision of drinking water to people living in dispersed small villages. The water quality was determined by measuring turbidity, and ...

  8. Dynamics of ice nucleation on water repellent surfaces.

    Science.gov (United States)

    Alizadeh, Azar; Yamada, Masako; Li, Ri; Shang, Wen; Otta, Shourya; Zhong, Sheng; Ge, Liehui; Dhinojwala, Ali; Conway, Ken R; Bahadur, Vaibhav; Vinciquerra, A Joseph; Stephens, Brian; Blohm, Margaret L

    2012-02-14

    Prevention of ice accretion and adhesion on surfaces is relevant to many applications, leading to improved operation safety, increased energy efficiency, and cost reduction. Development of passive nonicing coatings is highly desirable, since current antiicing strategies are energy and cost intensive. Superhydrophobicity has been proposed as a lead passive nonicing strategy, yet the exact mechanism of delayed icing on these surfaces is not clearly understood. In this work, we present an in-depth analysis of ice formation dynamics upon water droplet impact on surfaces with different wettabilities. We experimentally demonstrate that ice nucleation under low-humidity conditions can be delayed through control of surface chemistry and texture. Combining infrared (IR) thermometry and high-speed photography, we observe that the reduction of water-surface contact area on superhydrophobic surfaces plays a dual role in delaying nucleation: first by reducing heat transfer and second by reducing the probability of heterogeneous nucleation at the water-substrate interface. This work also includes an analysis (based on classical nucleation theory) to estimate various homogeneous and heterogeneous nucleation rates in icing situations. The key finding is that ice nucleation delay on superhydrophobic surfaces is more prominent at moderate degrees of supercooling, while closer to the homogeneous nucleation temperature, bulk and air-water interface nucleation effects become equally important. The study presented here offers a comprehensive perspective on the efficacy of textured surfaces for nonicing applications.

  9. Determination of 210Pb and 210Po in water samples

    International Nuclear Information System (INIS)

    Ayranov, M.; Tosheva, Z.; Kies, A.

    2004-01-01

    Lead-210 and Polonium-210 are naturally occurring members of the Uranium-238 decay series. They could be found in various environmental samples, such as groundwater, fish and shellfish, contributing an important component of the human natural radiation background. For this reason the development of a fast, reproducible and sensitive method for determination of 210 Pb and 210 Po is of a great concern. The aims of our study were to adopt procedures for radiochemical separation of these radionuclides and radioanalytical methods for their determination. The combination of electrochemical deposition, co-precipitation and extraction chromatography gives the opportunity for fast and effective radiochemical separation of the analytes. Polonium was spontaneously plated on copper disk from the stock solution. Lead was co-precipitated with Fe(OH) 3 and further purified by extraction chromatography on Sr Spec columns. Alpha spectra of polonium were collected on Canberra PIPS detectors with 900 mm 2 active surface. The activities of lead were determined by LSC (Gardian Wallac Oy). The minimum detectable activities for sample size 1000 mL and chemical yield of 88 % for the polonium and 85 % for the lead are presented. The proposed method proved to be fast, accurate and reproducible for routine determination of lead and polonium in environmental water samples. (authors)

  10. Determining Atmospheric Pressure Using a Water Barometer

    Science.gov (United States)

    Lohrengel, C. Frederick, II; Larson, Paul R.

    2012-01-01

    The atmosphere is an envelope of compressible gases that surrounds Earth. Because of its compressibility and nonuniform heating by the Sun, it is in constant motion. The atmosphere exerts pressure on Earth's surface, but that pressure is in constant flux. This experiment allows students to directly measure atmospheric pressure by measuring the…

  11. How to repel hot water from a superhydrophobic surface?

    KAUST Repository

    Yu, Zhejun; Yang, Jieyi; Wan, Fang; Ge, Quan; Yang, Longlai; Ding, Zunliang; Yang, Dequan; Sacher, Edward R.; Isimjan, Tayirjan T.

    2014-01-01

    Superhydrophobic surfaces, with water contact angles greater than 150° and slide angles less than 10°, have attracted a great deal of attention due to their self-cleaning ability and excellent water-repellency. It is commonly accepted that a

  12. Heavy Metals Pollution on Surface Water Sources in Kaduna ...

    African Journals Online (AJOL)

    This study examine the effects of heavy metal pollutants to aquatic ecosystems and the environment by considering the role of urban, municipal, agricultural, industrial and other anthropogenic processes as sources of heavy metal pollution in surface water sources of Kaduna metropolis. Samples of the polluted water were ...

  13. Pesticides distribution in surface waters and sediments of lotic and ...

    African Journals Online (AJOL)

    An investigation on the availability and distribution of Lindane (HCHs) and Total organochlorine phosphate (TOCP) in the surface waters and sediments of selected water bodies in Agbede wetlands was carried out from December, 2012 to May, 2014 in order to cover seasonal trends in both matrixes. A Gas Chromatograph ...

  14. Macro-invertebrate decline in surface water polluted with imidacloprid

    NARCIS (Netherlands)

    van Dijk, T.; van Staalduinen, M.A.; van der Sluijs, J.P.|info:eu-repo/dai/nl/073427489

    Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we

  15. Levels of Cd, Hg and Zn in some surface waters from the Eastern ...

    African Journals Online (AJOL)

    Total trace metals levels - Cd, Hg and Zn, which may affect human health and the "health" of the aquatic ecosystem, were determined in the Umtata, Buffalo, Keiskamma and Tyume Rivers and in the Sandile and Umtata Dams. These elements were also determined in sediment samples from some of these surface waters.

  16. Concentration data for anthropogenic organic compounds in groundwater, surface water, and finished water of selected community water systems in the United States, 2002-10

    Science.gov (United States)

    Carter, Janet M.; Kingsbury, James A.; Hopple, Jessica A.; Delzer, Gregory C.

    2010-01-01

    The National Water-Quality Assessment Program of the U.S. Geological Survey began implementing Source Water-Quality Assessments (SWQAs) in 2001 that focus on characterizing the quality of source water and finished water of aquifers and major rivers used by some of the larger community water systems in the United States. As used in SWQA studies, source water is the raw (ambient) water collected at the supply well before water treatment (for groundwater) or the raw (ambient) water collected from the river near the intake (for surface water), and finished water is the water that has been treated and is ready to be delivered to consumers. Finished-water samples are collected before the water enters the distribution system. The primary objective of SWQAs is to determine the occurrence of more than 250 anthropogenic organic compounds in source water used by community water systems, many of which currently are unregulated in drinking water by the U.S. Environmental Protection Agency. A secondary objective is to understand recurrence patterns in source water and determine if these patterns also occur in finished water before distribution. SWQA studies were conducted in two phases for most studies completed by 2005, and in one phase for most studies completed since 2005. Analytical results are reported for a total of 295 different anthropogenic organic compounds monitored in source-water and finished-water samples collected during 2002-10. The 295 compounds were classified according to the following 13 primary use or source groups: (1) disinfection by-products; (2) fumigant-related compounds; (3) fungicides; (4) gasoline hydrocarbons, oxygenates, and oxygenate degradates; (5) herbicides and herbicide degradates; (6) insecticides and insecticide degradates; (7) manufacturing additives; (8) organic synthesis compounds; (9) pavement- and combustion-derived compounds; (10) personal-care and domestic-use products; (11) plant- or animal-derived biochemicals; (12) refrigerants and

  17. Rapid surface-water volume estimations in beaver ponds

    Science.gov (United States)

    Karran, Daniel J.; Westbrook, Cherie J.; Wheaton, Joseph M.; Johnston, Carol A.; Bedard-Haughn, Angela

    2017-02-01

    Beaver ponds are surface-water features that are transient through space and time. Such qualities complicate the inclusion of beaver ponds in local and regional water balances, and in hydrological models, as reliable estimates of surface-water storage are difficult to acquire without time- and labour-intensive topographic surveys. A simpler approach to overcome this challenge is needed, given the abundance of the beaver ponds in North America, Eurasia, and southern South America. We investigated whether simple morphometric characteristics derived from readily available aerial imagery or quickly measured field attributes of beaver ponds can be used to approximate surface-water storage among the range of environmental settings in which beaver ponds are found. Studied were a total of 40 beaver ponds from four different sites in North and South America. The simplified volume-area-depth (V-A-h) approach, originally developed for prairie potholes, was tested. With only two measurements of pond depth and corresponding surface area, this method estimated surface-water storage in beaver ponds within 5 % on average. Beaver pond morphometry was characterized by a median basin coefficient of 0.91, and dam length and pond surface area were strongly correlated with beaver pond storage capacity, regardless of geographic setting. These attributes provide a means for coarsely estimating surface-water storage capacity in beaver ponds. Overall, this research demonstrates that reliable estimates of surface-water storage in beaver ponds only requires simple measurements derived from aerial imagery and/or brief visits to the field. Future research efforts should be directed at incorporating these simple methods into both broader beaver-related tools and catchment-scale hydrological models.

  18. An Ontology Design Pattern for Surface Water Features

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Gaurav [Ohio University; Mark, David [University at Buffalo (SUNY); Kolas, Dave [Raytheon BBN Technologies; Varanka, Dalia [U.S. Geological Survey, Rolla, MO; Romero, Boleslo E [University of California, Santa Barbara; Feng, Chen-Chieh [National University of Singapore; Usery, Lynn [U.S. Geological Survey, Rolla, MO; Liebermann, Joshua [Tumbling Walls, LLC; Sorokine, Alexandre [ORNL

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities can be found due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology. It can then be used to systematically incor-porate concepts that are specific to a culture, language, or scientific domain. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex surface water ontologies. A fundamental distinction is made in this on-tology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is imple-mented in OWL, but Description Logic axioms and a detailed explanation is provided. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. A discussion about why there is a need to complement the pattern with other ontologies, es-pecially the previously developed Surface Network pattern is also provided. Fi-nally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through a few queries and annotated geospatial datasets.

  19. Nonzero Ideal Gas Contribution to the Surface Tension of Water.

    Science.gov (United States)

    Sega, Marcello; Fábián, Balázs; Jedlovszky, Pál

    2017-06-15

    Surface tension, the tendency of fluid interfaces to behave elastically and minimize their surface, is routinely calculated as the difference between the lateral and normal components of the pressure or, invoking isotropy in momentum space, of the virial tensor. Here we show that the anisotropy of the kinetic energy tensor close to a liquid-vapor interface can be responsible for a large part of its surface tension (about 15% for water, independent from temperature).

  20. Practical aspects of tritium measurement in ground and surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Nitzsche, O [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik; Hebert, D [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik

    1997-03-01

    Tritium measurements are a powerful tool in hydrological and hydrogeological investigations for detecting mean residence times of several water reservoirs. Due to the low tritium activities in precipitation, ground and surface waters a low level measurement is necessary. Therefore often the liquid scintillation counting after an electrolytic enrichment of water is used. In this paper some practical aspects and problems of measurement are discussed and the problem of contamination in low level laboratories is shown. (orig.)

  1. Influence of Road Surface Microtexture on Thin Water Film Traction

    OpenAIRE

    BEAUTRU , Yannick; Kane , Malal; Do , Minh Tan; Cerezo , Véronique

    2012-01-01

    This paper deals with the contribution of road surface microtexture to the relationship between tire/road friction and water depth. The main objectives are the estimation of local water depths trapped at the tire/road interface and the definition of a critical water depth which can be used for driver assistance and information systems. Tests are performed in laboratory. Specimens are slabs made of asphalt concrete and mosaics composed of coarse aggregates. The aggregate mosaics are sandblaste...

  2. Methods for Determining Organic Matter and Colour in Water

    Directory of Open Access Journals (Sweden)

    Ramunė Albrektienė

    2011-02-01

    Full Text Available The article examines different methods for determining organic matter and colour in water. Most of organic compounds in water have a humic substance. These substances frequently form complexes with iron. Humic matter gives water a yellow-brownish colour. Water filtration through conventional sand filters does not remove colour and organic compounds, and therefore complicated water treatment methods shall be applied. The methods utilized for organic matter determination in water included research on total organic carbon, permanganate index and the bichromate number of UV absorption of 254 nm wave length. The obtained results showed the greatest dependence between water colour and permanganate index. However, UV adsorption could be used for organic matter determination during the operation of a water treatment plant and the start-up of plants as easy and fast methods.Article in Lithuanian

  3. Quantative determination of surface temperatures using an infrared camera

    International Nuclear Information System (INIS)

    Hsieh, C.K.; Ellingson, W.A.

    1977-01-01

    A method is presented to determine the surface-temperature distribution at each point in an infrared picture. To handle the surface reflection problem, three cases are considered that include the use of black coatings, radiation shields, and band-pass filters. For uniform irradiation on the test surface, the irradiation can be measured by using a cooled, convex mirror. Equations are derived to show that this surrounding irradiation effect can be subtracted out from the scanned radiation; thus the net radiation is related to only emission from the surface. To provide for temperature measurements over a large field, the image-processing technique is used to digitize the infrared data. The paper spells out procedures that involve the use of a computer for making point-by-point temperature calculations. Finally, a sample case is given to illustrate applications of the method. 6 figures, 1 table

  4. Water slip and friction at a solid surface

    Energy Technology Data Exchange (ETDEWEB)

    Brigo, L; Pierno, M; Mammano, F; Sada, C; Fois, G; Pozzato, A; Zilio, S dal; Mistura, G [Dipartimento di Fisica G Galilei, Universita degli Studi di Padova, via Marzolo 8, 35131 Padova (Italy); Natali, M [Istituto di Chimica Inorganica e delle Superfici (ICIS), CNR, Corso Stati Uniti 4, 35127 Padova (Italy); Tormen, M [TASC-INFM, CNR, S S 14 km 163.5 Area Science Park, 34012 Basovizza, Trieste (Italy)], E-mail: mistura@padova.infm.it

    2008-09-03

    A versatile micro-particle imaging velocimetry ({mu}-PIV) recording system is described, which allows us to make fluid velocity measurements in a wide range of flow conditions both inside microchannels and at liquid-solid interfaces by using epifluorescence and total internal reflection fluorescence excitation. This set-up has been applied to study the slippage of water over flat surfaces characterized by different degrees of hydrophobicity and the effects that a grooved surface has on the fluid flow inside a microchannel. Preliminary measurements of the slip length of water past various flat surfaces show no significant dependence on the contact angle.

  5. Stormwater Priority Pollutants Versus Surface Water Quality Criteria

    DEFF Research Database (Denmark)

    Eriksson, Eva; Ledin, Anna; Baun, Anders

    2011-01-01

    Stormwater in urban areas comprises of a substantial part of the urban water cycle, dominating the flow in many small urban streams, and the pollution levels are sizeable. No stormwater quality criteria were found here and no European or national emission limit values exist. Stormwater pollutants...... however are present in levels exceeding most of the regulated surface water quality criteria and environmental quality standards. Therefore catchment characterisation is needed to chose suitable treatment prior to discharge into receiving surface waters, as the mixing may be insufficient in small streams....

  6. Context of surveillance of underground and surface waters

    International Nuclear Information System (INIS)

    2010-01-01

    This document briefly describes the evolutions of regulations on site liquid effluents and of guideline values concerning radioactive wastes, briefly presents the surveillance of underground and surface waters of CEA sites, comments the guideline values of the radiological quality of waters aimed at human consumption, and gives an overview of information which are brought to public's attention. Then, for different CEA sites (Cadarache, Marcoule, Saclay, Grenoble, Fontenay-aux-Roses, Valduc, DIF), this document proposes a presentation of the hydrological context, regulatory context, the surface and underground water surveillance process and values, the storing zones of old wastes

  7. Polyelectrolyte determination in drinking water | Majam | Water SA

    African Journals Online (AJOL)

    Chemical contaminants that occur in drinking water are not usually associated with acute health effects when compared to microbial contaminants and are usually given a lower priority. Those that are of concern have cumulative toxic properties such as metals and substances that are carcinogenic. Some of these potentially ...

  8. Adsorption of egg phosphatidylcholine to an air/water and triolein/water bubble interface: use of the 2-dimensional phase rule to estimate the surface composition of a phospholipid/triolein/water surface as a function of surface pressure.

    Science.gov (United States)

    Mitsche, Matthew A; Wang, Libo; Small, Donald M

    2010-03-11

    Phospholipid monolayers play a critical role in the structure and stabilization of biological interfaces, including all membranes, the alveoli of the lungs, fat droplets in adipose tissue, and lipoproteins. The behavior of phospholipids in bilayers and at an air-water interface is well understood. However, the study of phospholipids at oil-water interfaces is limited due to technical challenges. In this study, egg phosphatidylcholine (EPC) was deposited from small unilamellar vesicles onto a bubble of either air or triolein (TO) formed in a low-salt buffer. The surface tension (gamma) was measured using a drop tensiometer. We observed that EPC binds irreversibly to both interfaces and at equilibrium exerts approximately 12 and 15 mN/m of pressure (Pi) at an air and TO interface, respectively. After EPC was bound to the interface, the unbound EPC was washed out of the cuvette, and the surface was compressed to study the Pi/area relationship. To determine the surface concentration (Gamma), which cannot be measured directly, compression isotherms from a Langmuir trough and drop tensiometer were compared. The air-water interfaces had identical characteristics using both techniques; thus, Gamma on the bubble can be determined by overlaying the two isotherms. Both TO and EPC are surface-active, so in a mixed TO/EPC monolayer, both molecules will be exposed to water. Since TO is less surface-active than EPC, as Pi increases, the TO is progressively ejected. To understand the Pi/area isotherm of EPC on a TO bubble, a variety of TO-EPC mixtures were spread at the air-water interface. The isotherms show an abrupt break in the curve caused by the ejection of TO from the monolayer into a new bulk phase. By overlaying the compression isotherm above the ejection point with a TO bubble compression isotherm, Gamma can be estimated. This allows determination of Gamma of EPC on a TO bubble as a function of Pi.

  9. Partitioning of water between surface and mantle on terrestrial exoplanets: effect of surface-mantle water exchange parameterizations on ocean depth

    Science.gov (United States)

    Komacek, T. D.; Abbot, D. S.

    2016-12-01

    Terrestrial exoplanets in the canonical habitable zone may have a variety of initial water fractions due to their volatile delivery rate via planetesimals. If the total planetary water complement is high, the entire surface may be covered in water, forming a "waterworld". The habitable zone for waterworlds is likely smaller than that for planets with partial land coverage because waterworlds lack the stabilizing silicate-weathering feedback. On a planet with active tectonics, competing mechanisms act to regulate the abundance of water on the surface by determining the partitioning of water between interior and surface. We have explored how the incorporation of different mechanisms for the outgassing and regassing of water changes the volatile evolution of a planet. Specifically, we have examined three models for volatile cycling: a model with degassing and regassing both determined by the seafloor pressure, one with mantle temperature-dependent degassing and regassing rates, and a hybrid model that has the degassing rate driven by seafloor pressure and the regassing rate determined by the mantle temperature. We find that the volatile cycling in all three of these scenarios reaches a steady-state after a few billion years. Using these steady-states, we can make predictions from each model for how much water is needed to flood the surface and make a waterworld. We find that if volatile cycling is either solely temperature-dependent or pressure-dependent, exoplanets require a high abundance (more than 0.3% by mass) of water to have fully inundated surfaces. This is because the waterworld boundary for these models is regulated by how much water can be stuffed into the mantle. However, if degassing is more dependent on the seafloor pressure and regassing mainly dependent on mantle temperature, super-Earth mass planets with a total water fraction similar to that of the Earth (approximately 0.05% by mass) can become waterworlds. As a result, further understanding of the

  10. Surface water pollution and water quality studies at Prestea Goldfields Limited (P. G. L.) Prestea, Ghana

    International Nuclear Information System (INIS)

    Ampong, Charles Horace

    1993-11-01

    Prestea is a mining community developed around Prestea Goldfields Limited, which is engaged in mining Sulphide gold ores known to give rise to several environmental problems like air pollution in the form of emissions of arsenic or arsenous oxides, with concurrent production of large amounts of Sulphur dioxide. As a result of extensive mining since 1929 using underground methods, involving about 18 million tons of ore, an estimated 3.5 - 4 million tons of tailings have been left on the surface in the vicinity of both current and historic treatment sites. Since the mine is located in an area of heavy rainfall, incessant rain will flush contaminants from tailings dumps and waste sites into the downstream environment and subsequently into surface waters. Water supply for the population in the area is derived from rivers and streams flowing in the area, supplemented by boreholes and spring water. Not much is known with respect to pollution levels along the rivers and streams which serve as water for domestic uses by settlers along these river banks and around. It therefore became necessary to carry out studies to ascertain the pollution levels of various water resources and to make some suggestions to guide pollution of these waters and uses of them as well. Water sampling was carried out in the rivers and streams. A spring water and well water were also sampled as reference data to ascertain background levels of pollutants. The work highlights activities of the mine and that of the surrounding inhabitants which are likely to result in the pollution of surface waters. It also discusses results of water samples within the area, Sample analysis included determination of parameters like pH, Temperature, Conductivity, Alkalinity, Total Dissolved Solids (TDS), Total Suspended Solids (TSS), Total Solids (TS), Total hardness, Cyanide and Sulphate concentrations among others. Concentrations of some heavy metals were also determined. Based on standards prevailing in the country

  11. Hydrophobic Surfaces: Topography Effects on Wetting by Supercooled Water and Freezing Delay

    DEFF Research Database (Denmark)

    Heydari, Golrokh; Thormann, Esben; Järn, Mikael

    2013-01-01

    Hydrophobicity, and in particular superhydrophobicity, has been extensively considered to promote ice-phobicity. Dynamic contact angle measurements above 0 °C have been widely used to evaluate the water repellency. However, it is the wetting properties of supercooled water at subzero temperatures...... and the derived work of adhesion that are important for applications dealing with icing. In this work we address this issue by determining the temperature-dependent dynamic contact angle of microliter-sized water droplets on a smooth hydrophobic and a superhydrophobic surface with similar surface chemistry....... The data highlight how the work of adhesion of water in the temperature interval from about 25 °C to below −10 °C is affected by surface topography. A marked decrease in contact angle on the superhydrophobic surface is observed with decreasing temperature, and we attribute this to condensation below...

  12. The Proposed Surface Water and Ocean Topography (SWOT) Mission

    Science.gov (United States)

    Fu, Lee-Lueng; Alsdorf, Douglas; Rodriguez, Ernesto; Morrow, Rosemary; Mognard, Nelly; Vaze, Parag; Lafon, Thierry

    2012-01-01

    A new space mission concept called Surface Water and Ocean Topography (SWOT) is being developed jointly by a collaborative effort of the international oceanographic and hydrological communities for making high-resolution measurement of the water elevation of both the ocean and land surface water to answer the questions about the oceanic submesoscale processes and the storage and discharge of land surface water. The key instrument payload would be a Ka-band radar interferometer capable of making high-resolution wide-swath altimetry measurement. This paper describes the proposed science objectives and requirements as well as the measurement approach of SWOT, which is baselined to be launched in 2019. SWOT would demonstrate this new approach to advancing both oceanography and land hydrology and set a standard for future altimetry missions.

  13. Polarization Patterns of Transmitted Celestial Light under Wavy Water Surfaces

    Directory of Open Access Journals (Sweden)

    Guanhua Zhou

    2017-03-01

    Full Text Available This paper presents a model to describe the polarization patterns of celestial light, which includes sunlight and skylight, when refracted by wavy water surfaces. The polarization patterns and intensity distribution of refracted light through the wave water surface were calculated. The model was validated by underwater experimental measurements. The experimental and theoretical values agree well qualitatively. This work provides a quantitative description of the repolarization and transmittance of celestial light transmitted through wave water surfaces. The effects of wind speed and incident sources on the underwater refraction polarization patterns are discussed. Scattering skylight dominates the polarization patterns while direct solar light is the dominant source of the intensity of the underwater light field. Wind speed has an influence on disturbing the patterns under water.

  14. Salinization and arsenic contamination of surface water in southwest Bangladesh.

    Science.gov (United States)

    Ayers, John C; George, Gregory; Fry, David; Benneyworth, Laura; Wilson, Carol; Auerbach, Leslie; Roy, Kushal; Karim, Md Rezaul; Akter, Farjana; Goodbred, Steven

    2017-09-11

    To identify the causes of salinization and arsenic contamination of surface water on an embanked island (i.e., polder) in the tidal delta plain of SW Bangladesh we collected and analyzed water samples in the dry (May) and wet (October) seasons in 2012-2013. Samples were collected from rice paddies (wet season), saltwater ponds used for brine shrimp aquaculture (dry season), freshwater ponds and tidal channels (both wet and dry season), and rainwater collectors. Continuous measurements of salinity from March 2012 to February 2013 show that tidal channel water increases from ~0.15 ppt in the wet season up to ~20 ppt in the dry season. On the polder, surface water exceeds the World Health Organization drinking water guideline of 10 μg As/L in 78% of shrimp ponds and 27% of rice paddies, raising concerns that produced shrimp and rice could have unsafe levels of As. Drinking water sources also often have unsafe As levels, with 83% of tubewell and 43% of freshwater pond samples having >10 μg As/L. Water compositions and field observations are consistent with shrimp pond water being sourced from tidal channels during the dry season, rather than the locally saline groundwater from tubewells. Irrigation water for rice paddies is also obtained from the tidal channels, but during the wet season when surface waters are fresh. Salts become concentrated in irrigation water through evaporation, with average salinity increasing from 0.43 ppt in the tidal channel source to 0.91 ppt in the rice paddies. Our observations suggest that the practice of seasonally alternating rice and shrimp farming in a field has a negligible effect on rice paddy water salinity. Also, shrimp ponds do not significantly affect the salinity of adjacent surface water bodies or subjacent groundwater because impermeable shallow surface deposits of silt and clay mostly isolate surface water bodies from each other and from the shallow groundwater aquifer. Bivariate plots of conservative element

  15. Using IR Imaging of Water Surfaces for Estimating Piston Velocities

    Science.gov (United States)

    Gålfalk, M.; Bastviken, D.; Arneborg, L.

    2013-12-01

    The transport of gasses dissolved in surface waters across the water-atmosphere interface is controlled by the piston velocity (k). This coefficient has large implications for, e.g., greenhouse gas fluxes but is challenging to quantify in situ. At present, empirical k-wind speed relationships from a small number of studies and systems are often extrapolated without knowledge of model performance. It is therefore of interest to search for new methods for estimating k, and to compare the pros and cons of existing and new methods. Wind speeds in such models are often measured at a height of 10 meters. In smaller bodies of water such as lakes, wind speeds can vary dramatically across the surface through varying degrees of wind shadow from e.g. trees at the shoreline. More local measurements of the water surface, through wave heights or surface motion mapping, could give improved k-estimates over a surface, also taking into account wind fetch. At thermal infrared (IR) wavelengths water has very low reflectivity (depending on viewing angle) than can go below 1%, meaning that more than 99% is heat radiation giving a direct measurement of surface temperature variations. Using an IR camera at about 100 frames/s one could map surface temperature structures at a fraction of a mm depth even with waves present. In this presentation I will focus on IR imaging as a possible tool for estimating piston velocities. Results will be presented from IR field measurements, relating the motions of surface temperature structures to k calculated from other simultaneous measurements (flux chamber and ADV-Based Dissipation Rate), but also attempting to calculate k directly from the IR surface divergence. A relation between wave height and k will also be presented.

  16. Comparative Evaluation of Effect of Water Absorption on the Surface Properties of Heat Cure Acrylic: An in vitro Study

    OpenAIRE

    Chandu, G S; Asnani, Pooja; Gupta, Siddarth; Faisal Khan, Mohd.

    2015-01-01

    Background: Use of alkaline peroxide denture cleanser with different temperature of water could cause a change in surface hardness of the acrylic denture and also has a bleaching effect. The purpose of the study was to determine the effect of increased water content during thermal cycling of hot water-treated acrylic on the surface hardness of acrylic denture base when compared to warm water treated acrylic. And to compare the bleaching effect of alkaline peroxide solution on the acrylic dent...

  17. water quality determination of rainwater harvesting birkas in harshin

    African Journals Online (AJOL)

    Osondu

    2012-03-14

    Mar 14, 2012 ... samples, 78.7 % exceed the standard COD value for surface water. Birkas with coliform ... Keywords: Harvesting, Birka, Physical, Chemical, Microbiology. Around 1.1 .... disinfection of water with lower pH value of less than 8 ...

  18. Multisample conversion of water to hydrogen by zinc for stable isotope determination

    Science.gov (United States)

    Kendall, C.; Coplen, T.B.

    1985-01-01

    Two techniques for the conversion of water to hydrogen for stable isotope ratio determination have been developed that are especially suited for automated multisample analysis. Both procedures involve reaction of zinc shot with a water sample at 450 ??C. in one method designed for water samples in bottles, the water is put in capillaries and is reduced by zinc in reaction vessels; overall savings in sample preparation labor of 75% have been realized over the standard uranium reduction technique. The second technique is for waters evolved under vacuum and is a sealed-tube method employing 9 mm o.d. quartz tubing. Problems inherent with zinc reduction include surface inhomogeneity of the zinc and exchange of hydrogen both with the zinc and with the glass walls of the vessels. For best results, water/zinc and water/glass surface area ratios of vessels should be kept as large as possible.

  19. Issues of the presence of parasitic protozoa in surface waters

    Science.gov (United States)

    Hawrylik, Eliza

    2018-02-01

    Parasitic protozoa are very numerous organisms in the environment that play an important role in the spread of water-borne diseases. Water-borne epidemics caused by parasitic protozoa are noted throughout the world. Within these organisms, intestinal protozoa of the genera Cryptosporidium and Giardia are ones of the most serious health hazards for humans. This paper focuses on the problem of the presence of parasitic protozoa in surface waters. Characteristics of the most frequently recognized pathogens responsible for water-borne outbreaks were described, as well as sources of contamination and surface waters contamination due to protozoa of the genus Cryptosporidium and Giardia were presented. The methods of destroying the cysts and oocysts of parasitic protozoa used nowadays in the world were also presented in a review.

  20. Determination of water content in natural zeolites by reflection method

    International Nuclear Information System (INIS)

    Sarria, Lopez P.; Desdin Garcia, V.; Freixas Lemus, V.; Dominguez Ley, O.; Csikai, G.

    1989-01-01

    Water content in natural zeolites collected from different site places in Cuba has been determined by neutron reflection method. Results show that it is possible to separate the minerals abundant in zeolite from the surrounding barren rocks. Water content of about 10% can be determined with 2-3% relative accuracy for different matrices, using 10 m measuring time

  1. Utilization threshold of surface water and groundwater based on the system optimization of crop planting structure

    Directory of Open Access Journals (Sweden)

    Qiang FU,Jiahong LI,Tianxiao LI,Dong LIU,Song CUI

    2016-09-01

    Full Text Available Based on the diversity of the agricultural system, this research calculates the planting structures of rice, maize and soybean considering the optimal economic-social-ecological aspects. Then, based on the uncertainty and randomness of the water resources system, the interval two-stage stochastic programming method, which introduces the uncertainty of the interval number, is used to calculate the groundwater exploitation and the use efficiency of surface water. The method considers the minimum cost of water as the objective of the uncertainty model for surface water and groundwater joint scheduling optimization for different planting structures. Finally, by calculating harmonious entropy, the optimal exploitation utilization interval of surface water and groundwater is determined for optimal cultivation in the Sanjiang Plain. The optimal matching of the planting structure under the economic system is suitable when the mining ratio of the surface is in 44.13%—45.45% and the exploitation utilization of groundwater is in 54.82%—66.86%, the optimal planting structure under the social system is suitable when surface water mining ratio is in 47.84%—48.04% and the groundwater exploitation threshold is in 67.07%—72.00%. This article optimizes the economic-social-ecological-water system, which is important for the development of a water- and food-conserving society and providing a more accurate management environment.

  2. Molecular Dynamics Simulations of Water Nanodroplets on Silica Surfaces

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard L.

    2009-01-01

    and DNA microarrays technologies.4,5,6,7,8 Although extensive experimental, theoretical and computational work has been devoted to study the nature of the interaction between silica and water,2,9-16 at the molecular level a complete understanding of silica-water systems has not been reached. Contact angle...... computations of water droplets on silica surfaces offers a useful fundamental and quantitative measurement in order to study chemical and physical properties of water-silica systems.3,16,17,18 For hydrophobic systems the static and dynamic properties of the fluid-solid interface are influenced by the presence...

  3. Impacts of thermal and chemical discharges to surface water

    International Nuclear Information System (INIS)

    Stober, Q.J.

    1974-01-01

    Various aspects of thermal and chemical discharges to surface water are outlined. The major impacts of nuclear power plants on aquatic resources are disruption during construction, intake of cooling water, discharge problems, and interactions with other water users. The following topics are included under the heading, assessment of aquatic ecology: identification of flora and fauna; abundance of aquatic organisms; species-environment relationships; and identification of pre-existing environmental stress. The following topics are included under the heading, environmental effects of plant operation: entrapment of fish by cooling water; passage of plankton through cooling system; discharge area and thermal plume; chemical effluents; and plant construction. (U.S.)

  4. Hydraulics and drones: observations of water level, bathymetry and water surface velocity from Unmanned Aerial Vehicles

    DEFF Research Database (Denmark)

    Bandini, Filippo

    -navigable rivers and overpass obstacles (e.g. river structures). Computer vision, autopilot system and beyond visual line-of-sight (BVLOS) flights will ensure the possibility to retrieve hyper-spatial observations of water depth, without requiring the operator to access the area. Surface water speed can......The planet faces several water-related threats, including water scarcity, floods, and pollution. Satellite and airborne sensing technology is rapidly evolving to improve the observation and prediction of surface water and thus prevent natural disasters. While technological developments require....... Although UAV-borne measurements of surface water speed have already been documented in the literature, a novel approach was developed to avoid GCPs. This research is the first demonstration that orthometric water level can be measured from UAVs with a radar system and a GNSS (Global Navigation Satellite...

  5. Surface water classification and monitoring using polarimetric synthetic aperture radar

    Science.gov (United States)

    Irwin, Katherine Elizabeth

    Surface water classification using synthetic aperture radar (SAR) is an established practice for monitoring flood hazards due to the high temporal and spatial resolution it provides. Surface water change is a dynamic process that varies both spatially and temporally, and can occur on various scales resulting in significant impacts on affected areas. Small-scale flooding hazards, caused by beaver dam failure, is an example of surface water change, which can impact nearby infrastructure and ecosystems. Assessing these hazards is essential to transportation and infrastructure maintenance. With current satellite missions operating in multiple polarizations, spatio-temporal resolutions, and frequencies, a comprehensive comparison between SAR products for surface water monitoring is necessary. In this thesis, surface water extent models derived from high resolution single-polarization TerraSAR-X (TSX) data, medium resolution dual-polarization TSX data and low resolution quad-polarization RADARSAT-2 (RS-2) data are compared. There exists a compromise between acquiring SAR data with a high resolution or high information content. Multi-polarization data provides additional phase and intensity information, which makes it possible to better classify areas of flooded vegetation and wetlands. These locations are often where fluctuations in surface water occur and are essential for understanding dynamic underlying processes. However, often multi-polarized data is acquired at a low resolution, which cannot image these zones effectively. High spatial resolution, single-polarization TSX data provides the best model of open water. However, these single-polarization observations have limited information content and are affected by shadow and layover errors. This often hinders the classification of other land cover types. The dual-polarization TSX data allows for the classification of flooded vegetation, but classification is less accurate compared to the quad-polarization RS-2 data

  6. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    Energy Technology Data Exchange (ETDEWEB)

    Coty, J

    2009-03-16

    This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site

  7. The significant surface-water connectivity of "geographically isolated wetlands"

    Science.gov (United States)

    Calhoun, Aram J.K.; Mushet, David M.; Alexander, Laurie C.; DeKeyser, Edward S.; Fowler, Laurie; Lane, Charles R.; Lang, Megan W.; Rains, Mark C.; Richter, Stephen; Walls, Susan

    2017-01-01

    We evaluated the current literature, coupled with our collective research expertise, on surface-water connectivity of wetlands considered to be “geographically isolated” (sensu Tiner Wetlands 23:494–516, 2003a) to critically assess the scientific foundation of grouping wetlands based on the singular condition of being surrounded by uplands. The most recent research on wetlands considered to be “geographically isolated” shows the difficulties in grouping an ecological resource that does not reliably indicate lack of surface water connectivity in order to meet legal, regulatory, or scientific needs. Additionally, the practice of identifying “geographically isolated wetlands” based on distance from a stream can result in gross overestimates of the number of wetlands lacking ecologically important surface-water connections. Our findings do not support use of the overly simplistic label of “geographically isolated wetlands”. Wetlands surrounded by uplands vary in function and surface-water connections based on wetland landscape setting, context, climate, and geographic region and should be evaluated as such. We found that the “geographically isolated” grouping does not reflect our understanding of the hydrologic variability of these wetlands and hence does not benefit conservation of the Nation’s diverse wetland resources. Therefore, we strongly discourage use of categorizations that provide overly simplistic views of surface-water connectivity of wetlands fully embedded in upland landscapes.

  8. Properties of water surface discharge at different pulse repetition rates

    International Nuclear Information System (INIS)

    Ruma,; Yoshihara, K.; Hosseini, S. H. R.; Sakugawa, T.; Akiyama, H.; Akiyama, M.; Lukeš, P.

    2014-01-01

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H 2 O 2 ) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H 2 O 2 and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  9. Protocol for quantitative tracing of surface water with synthetic DNA

    Science.gov (United States)

    Foppen, J. W.; Bogaard, T. A.

    2012-04-01

    , the field tests were performed with salt and deuterium as tracer. To study possible decay by sunlight and/or microbial activity for synthetic DNA, immediately in the field and for the duration of the entire experiment, we carried out batch experiments. All samples were stored in a 1.5 ml Eppendorf vial in a cool-box in dry ice (-80°C). Quantitative PCR on a Mini Opticon (Bio Rad, Hercules, CA, USA) was carried out to determine DNA concentrations in the samples. Results showed the importance of a strict protocol for working with ssDNA as a tracer for quantitative tracing, since ssDNA interacts with surface areas of glass and plastic, depending on water quality and ionic strength. Interaction with the sediment and decay due to sunlight and/or microbial activity was negligible in most cases. The ssDNA protocol was then tested in natural streams. Promising results were obtained using ssDNA as quantitative tracer. The breakthrough curves using ssDNA were similar to the ones of salt or deuterium. We will present the revised protocol to use ssDNA for multi-tracing experiments in natural streams and discuss the opportunities and limitations.

  10. Fluorometric determination of uranium in natural waters

    International Nuclear Information System (INIS)

    Hues, A.D.; Henicksman, A.L.; Ashley, W.H.; Romero, D.

    1977-03-01

    Duplicate 200-μl aliquots of the water samples, as received, are transferred by means of Eppendorf pipettors onto 0.4-g pellets of 2 percent LiF-98 percent NaF flux, contained in platinum dishes. The pellets are dried under heat lamps; then fused over special propane burners. The fused pellets are transferred to a Galvanek-Morrison fluorometer, where they are excited with ultraviolet radiation and the fluorescence is measured. The uranium is calculated by comparing the measured fluorescence with that of other pellets, carried through the same procedure, which contain aliquots of standard uranium solutions. The sensitivity of the method is about 0.2 ppB of uranium, and the precision is approximately 15 relative percent in the 0.2- to 10-ppB uranium concentration range

  11. Estimating the Determinants of Residential Water Demand in Italy

    OpenAIRE

    Giulia Romano; Nicola Salvati; Andrea Guerrini

    2014-01-01

    The aim of this study was to estimate the determinants of residential water demand for chief towns of every Italian province, in the period 2007–2009, using the linear mixed-effects model estimated with the restricted-maximum-likelihood method. Results confirmed that the applied tariff had a negative effect on residential water consumption and that it was a relevant driver of domestic water consumption. Moreover, income per capita had a positive effect on water consumption. Among measured cli...

  12. Water redistribution at the soil surface : ponding and surface runoff in flat areas

    NARCIS (Netherlands)

    Appels, W.M.

    2013-01-01

    In The Netherlands, one of the most important targets for the improvement of surface water quality as aimed for in the European Water Framework Directive, is the reduction of nutrient concentrations (both nitrogen and phosphorus). To identify the most suitable and effective measures for reducing the

  13. Foulant characteristics comparison in recycling cooling water system makeup by municipal reclaimed water and surface water in power plant.

    Science.gov (United States)

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water.

  14. Hydrologic Science and Satellite Measurements of Surface Water (Invited)

    Science.gov (United States)

    Alsdorf, D. E.; Mognard, N. M.; Lettenmaier, D. P.

    2010-12-01

    While significant advances continue to be made for satellite measurements of surface waters, important science and application opportunities remain. Examples include the following: (1) Our current methods of measuring floodwater dynamics are either sparsely distributed or temporally inadequate. As an example, flood depths are measured by using high water marks, which capture only the peak of the flood wave, not its temporal variability. (2) Discharge is well measured at individual points along stream networks using in-situ gauges, but these do not capture within-reach hydraulic variability such as the water surface slope changes on the rising and falling limbs of flood waves. (3) Just a 1.0 mm/day error in ET over the Congo Basin translates to a 35,000 m3/s discharge error. Knowing the discharge of the Congo River and its many tributaries should significantly improve our understanding of the water balance throughout the basin. The Congo is exemplary of many other basins around the globe. (4) Arctic hydrology is punctuated by millions of unmeasured lakes. Globally, there might be as many as 30 million lakes larger than a hectare. Storage changes in these lakes are nearly unknown, but in the Arctic such changes are likely an indication of global warming. (5) Well over 100 rivers cross international boundaries, yet the sharing of water data is poor. Overcoming this helps to better manage the entire river basin while also providing a better assessment of potential water related disasters. The Surface Water and Ocean Topography (SWOT, http://swot.jpl.nasa.gov/) mission is designed to meet these needs by providing global measurements of surface water hydrodynamics. SWOT will allow estimates of discharge in rivers wider than 100m (50m goal) and storage changes in water bodies larger than 250m by 250m (and likely as small as one hectare).

  15. Determination of forest road surface roughness by Kinect depth imaging

    Directory of Open Access Journals (Sweden)

    Francesco Marinello

    2017-12-01

    Full Text Available Roughness is a dynamic property of the gravel road surface that affects safety, ride comfort as well as vehicle tyre life and maintenance costs. A rapid survey of gravel road condition is fundamental for an effective maintenance planning and definition of the intervention priorities.Different non-contact techniques such as laser scanning, ultrasonic sensors and photogrammetry have recently been proposed to reconstruct three-dimensional topography of road surface and allow extraction of roughness metrics. The application of Microsoft Kinect™ depth camera is proposed and discussed here for collection of 3D data sets from gravel roads, to be implemented in order to allow quantification of surface roughness.The objectives are to: i verify the applicability of the Kinect sensor for characterization of different forest roads, ii identify the appropriateness and potential of different roughness parameters and iii analyse the correlation with vibrations recoded by 3-axis accelerometers installed on different vehicles. The test took advantage of the implementation of the Kinect depth camera for surface roughness determination of 4 different forest gravel roads and one well-maintained asphalt road as reference. Different vehicles (mountain bike, off-road motorcycle, ATV vehicle, 4WD car and compact crossover were included in the experiment in order to verify the vibration intensity when travelling on different road surface conditions. Correlations between the extracted roughness parameters and vibration levels of the tested vehicles were then verified. Coefficients of determination of between 0.76 and 0.97 were detected between average surface roughness and standard deviation of relative accelerations, with higher values in the case of lighter vehicles.

  16. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    Science.gov (United States)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  17. Wavefront modulation of water surface wave by a metasurface

    International Nuclear Information System (INIS)

    Sun Hai-Tao; Cheng Ying; Liu Xiao-Jun; Wang Jing-Shi

    2015-01-01

    We design a planar metasurface to modulate the wavefront of a water surface wave (WSW) on a deep sub-wavelength scale. The metasurface is composed of an array of coiling-up-space units with specially designed parameters, and can take on the work of steering the wavefront when it is pierced into water. Like their acoustic counterparts, the modulation of WSW is ascribed to the gradient phase shift of the coiling-up-space units, which can be perfectly tuned by changing the coiling plate length and channel number inside the units. According to the generalized Snell’s law, negative refraction and ‘driven’ surface mode of WSW are also demonstrated at certain incidences. Specially, the transmitted WSW could be efficiently guided out by linking a symmetrically-corrugated channel in ‘driven’ surface mode. This work may have potential applications in water wave energy extraction and coastal protection. (paper)

  18. Determination of 3D Equilibria from Flux Surface Knowledge Only

    International Nuclear Information System (INIS)

    Mynick, H.E.; Pomphrey, N.

    2001-01-01

    We show that the method of Christiansen and Taylor, from which complete tokamak equilibria can be determined given only knowledge of the shape of the flux surfaces, can be extended to 3-dimensional equilibria, such as those of stellarators. As for the tokamak case, the given geometric knowledge has a high degree of redundancy, so that the full equilibrium can be obtained using only a small portion of that information

  19. Behaviour of uranium series radionuclides in surface water (Crouzille, Limousin). Geochemical implications

    International Nuclear Information System (INIS)

    Moulin, J.

    2008-06-01

    Understanding natural radionuclides behaviour in surface water is a required step to achieve uranium mine rehabilitation and preserve water quality. The first objective of this thesis is to determine which are the radionuclides sources in a drinking water reservoir. The second objective is to improve the knowledge about the behaviour of uranium series radionuclides, especially actinium. The investigated site is a brook (Sagnes, Limousin, France) which floods a peat bog contaminated by a former uranium mine and which empties into the Crouzille lake. It allows studying radionuclides transport in surface water and radionuclides retention through organic substance or water reservoir. Radionuclides distribution in particulate, colloidal and dissolved phases is determined thanks to ultra-filtrations. Gamma spectrometry allows measuring almost all natural radionuclides with only two counting stages. However, low activities of 235 U series radionuclides impose the use of very low background well-type Ge detectors, such as those of the Underground Laboratory of Modane (France). Firstly, this study shows that no or few radionuclides are released by the Sagnes peat bog, although its radioactivity is important. Secondly, it provides details on the behaviour of uranium series radionuclides in surface water. More specifically, it provides the first indications of actinium solubility in surface water. Actinium's behaviour is very close to uranium's even if it is a little less soluble. (author)

  20. Modeling decadal timescale interactions between surface water and ground water in the central Everglades, Florida, USA

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krupa, Steven L.

    2006-04-01

    Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of 'interactive' ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d -1. 3H/ 3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d -1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to

  1. On the influence of the intermolecular potential on the wetting properties of water on silica surfaces

    Science.gov (United States)

    Pafong, E.; Geske, J.; Drossel, B.

    2016-09-01

    We study the wetting properties of water on silica surfaces using molecular dynamics (MD) simulations. To describe the intermolecular interaction between water and silica atoms, two types of interaction potential models are used: the standard BródkA and Zerda (BZ) model and the Gulmen and Thompson (GT) model. We perform an in-depth analysis of the influence of the choice of the potential on the arrangement of the water molecules in partially filled pores and on top of silica slabs. We find that at moderate pore filling ratios, the GT silica surface is completely wetted by water molecules, which agrees well with experimental findings, while the commonly used BZ surface is less hydrophilic and is only partially wetted. We interpret our simulation results using an analytical calculation of the phase diagram of water in partially filled pores. Moreover, an evaluation of the contact angle of the water droplet on top of the silica slab reveals that the interaction becomes more hydrophilic with increasing slab thickness and saturates around 2.5-3 nm, in agreement with the experimentally found value. Our analysis also shows that the hydroaffinity of the surface is mainly determined by the electrostatic interaction, but the van der Waals interaction nevertheless is strong enough that it can turn a hydrophobic surface into a hydrophilic surface.

  2. Molecular Dynamics Studies of Overbased Detergents on a Water Surface.

    Science.gov (United States)

    Bodnarchuk, M S; Dini, D; Heyes, D M; Breakspear, A; Chahine, S

    2017-07-25

    Molecular dynamics (MD) simulations are reported of model overbased detergent nanoparticles on a model water surface which mimic their behavior on a Langmuir trough or large water droplet in engine oil. The simulations predict that the structure of the nanoparticle on a water surface is different to when it is immersed in a bulk hydrophobic solvent. The surfactant tails are partly directed out of the water, while the carbonate core maximizes its extent of contact with the water. Umbrella sampling calculations of the potential of mean force between two particles showed that they are associated with varying degrees with a maximum binding free energy of ca. 10 k B T for the salicylate stabilized particle, ca. 8 k B T for a sulfurized alkyl phenate stabilized particle, and ca. 5 k B T for a sulfonate stabilized particle. The differences in the strength of attraction depend on the proximity of nearest approach and the energy penalty associated with the disruption of the hydration shell of water molecules around the calcium carbonate core when the two particles approach. This is greatest for the sulfonate particle, which partially loses the surfactant ions to the solution, and least for the salicylate, which forms the weakest water "cage". The particles are separated by a water hydration layer, even at the point of closest approach.

  3. Spring and surface water quality of the Cyprus ophiolites

    Directory of Open Access Journals (Sweden)

    C. Neal

    2002-01-01

    Full Text Available A survey of surface, spring and borehole waters associated with the ophiolite rocks of Cyprus shows five broad water types (1 Mg-HCO3, (2 Na-SO4-Cl-HCO3, (3 Na-Ca-Cl-SO4-OH-CO3, (4 Na-Cl-SO4 and (5 Ca-SO4. The waters represent a progression in chemical reactivity from surface waters that evolve within a groundwater setting due to hydrolysis of the basic/ultrabasic rock as modified by CO2-weathering. An increase in salinity is also observed which is due to mixing with a saline end-member (modified sea-water and dissolution of gypsum/anhydrite. In some cases, the waters have pH values greater than 11. Such high values are associated with low temperature serpentinisation reactions. The system is a net sink for CO2. This feature is related not only to the hydrolysis of the primary minerals in the rock, but also to CaCO3 or Ca-Mg-CO3 solubility controls. Under hyperalkaline conditions, virtually all the carbon dioxide is lost from the water due to the sufficiently high calcium levels and carbonate buffering is then insignificant. Calcium sulphate solubility controls may also be operative when calcium and sulphate concentrations are particularly high. Keywords: Cyprus, Troodos, ophiolite, serpentinisation, spring, stream, water quality, bromide, iodine, boron, trace elements, hyperalkaline.

  4. Modification of surface properties of LLDPE by water plasma discharge

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Hill, D.J.T.; Firas Rasoul; Whittaker, A.K.; Imelda Keen

    2007-01-01

    Linear low density polyethylene (LLDPE) surface was modified by water plasma treatment. The LLDPE surface was treated at 10 and 20 W discharge power at various exposure times. A laboratory scale Megatherm radio frequency (RF) plasma apparatus that operates at 27 MHz was used to generate the water plasmas. The changes in chemical structure of the LLDPE polymeric chain upon plasma treatment were characterized by FTIR and XPS techniques. The selectivity of trifluoroacetic anhydride (TFAA) toward hydroxyl groups is used to quantify the hydroxyl groups formed on the polymer surface upon plasma treatment. After exposition to the plasma discharge a decline in water contact angle were observed. FTIR and XPS measurements indicate an oxidation of degraded polymeric chains and creation of hydroxyl, carbonyl, ether, ester and carboxyl groups. Chemical derivatization with TFAA of water plasma treated polymer surfaces has shown that under the conditions employed, a very small (less than 5%) of the oxygen introduced by the water plasma treatment was present as hydroxyl group. (Author)

  5. Characteristics of pulse corona discharge over water surface

    Science.gov (United States)

    Fujii, Tomio; Arao, Yasushi; Rea, Massimo

    2008-12-01

    Production of ozone and OH radical is required to advance the plasma chemical reactions in the NOx removal processes for combustion gas treatment. The corona discharge to the water surface is expected to induce the good conditions for the proceeding of the NO oxidation and the NO2 dissolution removal into water. In order to get the fundamental data of the corona discharge over the water surface, the positive and negative V-I characteristics and the ozone production were measured with the multi needle and the saw-edge type of the discharge electrodes. The pulse corona characteristics were also measured with some different waveforms of the applied pulse voltage. The experiments were carried out under the atmospheric pressure and room temperature. Both the DC and the pulse corona to the water surface showed a stable and almost the same V-I characteristics as to plate electrodes though the surface of water was waved by corona wind. The positive streamer corona showed more ozone production than the negative one both in the DC and in the pulse corona.

  6. Characteristics of pulse corona discharge over water surface

    International Nuclear Information System (INIS)

    Fujii, Tomio; Arao, Yasushi; Rea, Massimo

    2008-01-01

    Production of ozone and OH radical is required to advance the plasma chemical reactions in the NOx removal processes for combustion gas treatment. The corona discharge to the water surface is expected to induce the good conditions for the proceeding of the NO oxidation and the NO 2 dissolution removal into water. In order to get the fundamental data of the corona discharge over the water surface, the positive and negative V-I characteristics and the ozone production were measured with the multi needle and the saw-edge type of the discharge electrodes. The pulse corona characteristics were also measured with some different waveforms of the applied pulse voltage. The experiments were carried out under the atmospheric pressure and room temperature. Both the DC and the pulse corona to the water surface showed a stable and almost the same V-I characteristics as to plate electrodes though the surface of water was waved by corona wind. The positive streamer corona showed more ozone production than the negative one both in the DC and in the pulse corona.

  7. The Effect of Water Repellent Surface Impregnation on Durability of Cement-Based Materials

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2017-01-01

    Full Text Available In many cases, service life of reinforced concrete structures is severely limited by chloride penetration until the steel reinforcement or by carbonation of the covercrete. Water repellent treatment on the surfaces of cement-based materials has often been considered to protect concrete from these deteriorations. In this paper, three types of water repellent agents have been applied on the surface of concrete specimens. Penetration profiles of silicon resin in treated concrete have been determined by FT-IR spectroscopy. Water capillary suction, chloride penetration, carbonation, and reinforcement corrosion in both surface impregnated and untreated specimens have been measured. Results indicate that surface impregnation reduced the coefficient of capillary suction of concrete substantially. An efficient chloride barrier can be established by deep impregnation. Water repellent surface impregnation by silanes also can make the process of carbonation action slow. In addition, it also has been concluded that surface impregnation can provide effective corrosion protection to reinforcing steel in concrete with migrating chloride. The improvement of durability and extension of service life for reinforced concrete structures, therefore, can be expected through the applications of appropriate water repellent surface impregnation.

  8. Preliminary study of the relationship between surface and bulk water temperatures at the Dresden cooling pond

    International Nuclear Information System (INIS)

    Wesely, M.L.; Hicks, B.B.; Hess, G.D.

    1975-01-01

    Successful application of bulk aerodynamic formulae to determine the vertical sensible and latent heat fluxes above a cooling lake requires accurate estimates of water surface temperature. Because of the heat loss at the surface and partial insulation by the poorly-mixed outer skin of water in contact with the air-water interface, the surface temperature is usually 0.1 to 2.0 C less than the temperature at a depth greater than 1 cm. For engineering applications requiring estimates of the total heat dissipation capacity of a particular cooling lake, the bulk temperature of the entire mixed layer of subsurface water is more important than the surface temperature. Therefore, in order to simulate the thermal performance of a cooling pond, both the surface temperature and the bulk temperature should be estimated. In the case of cooling ponds, the total heat transfer through the uppermost layer is extremely large and the water beneath the surface is strongly mixed by circulation currents within the pond. The purpose of this report is to describe the magnitude of the temperature difference across the surface skin at the Dresden nuclear power plant cooling pond and to relate this difference to variables used in modeling the thermal performance of cooling ponds

  9. Suitability of groundwater and surface water for drinking and ...

    African Journals Online (AJOL)

    Water quality for irrigation purpose were determined by sodium absorption ratio, soluble sodium percentage (SSP), magnesium adsorption ratio (MAR), Kelly's ratio (KR), permeability index (PI), residual sodium bicarbonate (RSC) to investigate an eventual ionic toxicity of water on soil and plants. In this study, HCO3- is ...

  10. On the determination of the mean excitation energy of water

    DEFF Research Database (Denmark)

    Sabin, John R.; Oddershede, Jens; Sauer, Stephan P. A.

    2013-01-01

    Water is a ubiquitous substance in nature, and thus the mean excitation energy of water is an important quantity for understanding and prediction of the details of many fast ion/molecule collision processes such as those involved in external beam radiotherapy of tumors. There are several methods...... for determining numerical values for a mean excitation energy for water, both theoretical and experimental. Here the factors affecting the determination of the value of the mean excitation energy of water, especially from experiment, are discussed....

  11. Surface water management at a mixed waste remediation site

    International Nuclear Information System (INIS)

    Schlotzhauer, D.S.; Warbritton, K.R.

    1991-01-01

    The Weldon Spring Remedial Action Project (WSSRAP) deals with chemical and radiological contaminants. MK-Ferguson Company is managing the project under contract with the US Department of Energy. Remedial activities include demolishing buildings, constructing material storage and staging areas, excavating and consolidating waste materials, and treating and disposing of the materials in a land disposal facility. Due to the excavation and construction required during remediation, a well-planned surface water management system is essential. Planning involves characterization of source areas and surface water transport mechanisms and identification of applicable regulations. System components include: erosion control sediment control, flow attenuation, and management of contaminated water. Combinations of these components may be utilized during actual construction and remediation to obtain optimum control. Monitoring is performed during implementation in order to assess the effectiveness of control measures. This management scheme provides for comprehensive management of surface water at this site by providing control and/or treatment to appropriate standards. Although some treatment methodologies for contaminated water are specific to site contaminants, this comprehensive program provides a management approach which is applicable to many remedial projects in order to minimize contaminant release and meet Clean Water Act requirements

  12. Estimating the Determinants of Residential Water Demand in Italy

    Directory of Open Access Journals (Sweden)

    Giulia Romano

    2014-09-01

    Full Text Available The aim of this study was to estimate the determinants of residential water demand for chief towns of every Italian province, in the period 2007–2009, using the linear mixed-effects model estimated with the restricted-maximum-likelihood method. Results confirmed that the applied tariff had a negative effect on residential water consumption and that it was a relevant driver of domestic water consumption. Moreover, income per capita had a positive effect on water consumption. Among measured climatic and geographical features, precipitation and altitude exerted a strongly significant negative effect on water consumption, while temperature did not influence water demand. Further, data show that small towns in terms of population served were characterized by lower levels of consumption. Water utilities ownership itself did not have a significant effect on water consumption but tariffs were significantly lower and residential water consumption was higher in towns where the water service was managed by publicly owned water utilities. However, further research is needed to gain a better understanding of the connection between ownership of water utilities and water prices and water consumption.

  13. Modeling Surface Water Flow in the Atchafalaya Basin

    Science.gov (United States)

    Liu, K.; Simard, M.

    2017-12-01

    While most of the Mississippi River Delta is sinking due to insufficient sediment supply and subsidence, the stable wetlands and the prograding delta systems in the Atchafalaya Basin provide a unique opportunity to study the constructive interactions between riverine and marine forcings and their impacts upon coastal morphology. To better understand the hydrodynamics in this region, we developed a numerical modeling system for the water flow through the river channel - deltas - wetlands networks in the Atchafalaya Basin. Determining spatially varying model parameters for a large area composed of such diverse land cover types poses a challenge to developing an accurate numerical model. For example, the bottom friction coefficient can not be measured directly and the available elevation maps for the wetlands in the basin are inaccurate. To overcome these obstacles, we developed the modeling system in three steps. Firstly, we modeled river bathymetry based on in situ sonar transects and developed a simplified 1D model for the Wax Lake Outlet using HEC-RAS. Secondly, we used a Bayesian approach to calibrate the model automatically and infer important unknown parameters such as riverbank elevation and bottom friction coefficient through Markov Chain Monte Carlo (MCMC) simulations. We also estimated the wetland elevation based on the distribution of different vegetation species in the basin. Thirdly, with the lessons learnt from the 1D model, we developed a depth-averaged 2D model for the whole Atchafalaya Basin using Delft3D. After calibrations, the model successfully reproduced the water levels measured at five gauges in the Wax Lake Outlet and the modeled water surface profile along the channel agreed reasonably well with our LIDAR measurements. In addition, the model predicted a one-hour delay in tidal phase from the Wax Lake Delta to the upstream gauge. In summary, this project presents a procedure to initialize hydrology model parameters that integrates field

  14. Water and nutrient budgets at field and regional scale : travel times of drainage water and nutrient loads to surface water

    NARCIS (Netherlands)

    Eertwegh, van den G.A.P.H.

    2002-01-01

    Keywords : water and nutrient budget, travel time of drainage water, dual-porosity concept, agricultural nutrient losses, loads to surface water, field-scale experiments, regional-scale

  15. The methods of cesium-137 determination in sea water

    International Nuclear Information System (INIS)

    Gedeonov, L.I.; Krylov, V.N.; Stepanov, A.V.

    1978-01-01

    New express procedures of Cs-137 determination in sea water using selective sorbents are described. One of them is based on the use of natural radioactive potassium-40 as internal standard. Another one allows to perform Cs-137 determination without use of any standards, by pumping a certain amount of water through several successive identical cells filled with sorbent. The positive feature of the procedures consists in that it is no longer necessary chemical treatment of samples in Cs-133 determination in the sorbent and sea water. The danger of polution of samples by alkali metals which can be introduced with reactive agents in the process of chemical treatment is reduced to minimum

  16. Experimental determinations of the performances of heat transfer surfaces

    International Nuclear Information System (INIS)

    Pirovano, Alain; Viannay, Stephane; Mazeas, C.Y.

    1974-01-01

    With the help of flow schemes and of assumptions on the heat transfer, it is possible, in some cases, to predict the thermal and aerodynamical performances of a new heat transfer surface with moderate accuracy. These estimates, valid for an approximate classification of a new surface among known surfaces, are not accurate enough to be taken as a basis for the design of heat exchangers. In the present state of knowledge, the performances of a new heat transfer surface can only be determined accurately with experimental measurements. Bertin and Co have at their disposal two air test rigs especially designed for this purpose. The first one, more directly concerned with the measurements on tube bundles with fluid flow perpendicular to the generatrices of the tubes, is a semi-closed loop equipped with a high-efficiency ejector which amplifies the air flow rate supplied by an external source and thus allows high values of Reynolds number to be reached. The second one is adapted to other types of surfaces: tubes with external flow parallel to the generatrices, tubes with sophisticated cross section and with internal flow, compact surfaces with finned plates, etc. Both test rigs, the relevant equipment, the methods of data acquisition and of test results analysis are described in this paper. During the 5 past years, 60 configurations were tested. It was possible to compare some of the test results with the results of measurements performed later, on entire heat exchangers working with numbers of tubes, fluids, and temperature levels different from those prevailing during the tests on the small scale mock-up; the agreement is quite good [fr

  17. Delay of turbulent by surface heating in water

    International Nuclear Information System (INIS)

    Arakeri, V.H.

    1980-01-01

    Boundary layer flow visualization studies in water on a 1.5 cal tangent ogive body with surface heating are reported. Existing laminar boundary layer separation was observed to be eliminated with sufficient surface heating. In addition, transition location was observed to be significantly delayed. With surface temperature difference of about 27 0 C no disturbances in the boundary layer could be detected up to (X/D) = 2.5 as compared to observed transition at about (X/D) = 1.32 under slightly heated conditions. Present observations are found to be in agreement with the theoretical computations of Wazzan et al. in a qualitative sense. (orig.)

  18. Nanofiltration in Transforming Surface Water into Healthy Water: Comparison with Reverse Osmosis

    Directory of Open Access Journals (Sweden)

    L. D. Naidu

    2015-01-01

    Full Text Available The natural surface water, especially available through rivers, is the main source of healthy water for the living beings throughout the world from ancient days as it consists of all essential minerals. With the advent of industrialization, gradually even the most prominent rivers have been polluted in all parts of the world. Although there are lots of technologies, nanofiltration (NF has been chosen to transform river water into healthy water due to its unique advantages of retaining optimum TDS (with essential minerals required for human body, consuming of lower energy, and no usage of any chemicals. The prominent parameters of surface water and macro/microminerals of treated water have been analyzed. It is shown that NF is better in producing healthy water with high flux by consuming low energy.

  19. Determination of Substances Content of Soil Surface Using Fast Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Elin Nuraini; Elisabeth; Sunardi

    2002-01-01

    Determination of substances content of soil surface using neutron activation analysis has been performed. The aim of this research is to determine whether there are any dangerous, hazardous and toxic substances that released from The Research and Development Center for Advanced Technology (RDCAT) as a government institution has possibility in releasing that substances to the environment by surface water, sewage or rain water that give any dangerous the environmental. The fast neutron activation analysis was used to analyze the type and concentration of substances qualitative and quantitatively. The quantitative analysis was performed using relative method. Samples were counted using NaI(TI) detector. The result showed that there are several substances such as Mn-55, Fe-56, P-31, Al-27. Zn,65 and Mg-24. And there are found any hazardous, dangerous and toxic substances in the samples that causing any danger to human and environment. (author)

  20. Arsenic, Fluoride and Vanadium in surface water (Chasicó Lake, Argentina

    Directory of Open Access Journals (Sweden)

    Maria laura ePuntoriero

    2014-06-01

    Full Text Available Chasicó Lake is the main water body in the southwest of the Chaco-Pampean plain. It shows some differences from the typical Pampean shallow lakes, such as high salinity and high arsenic and fluoride levels. The aim of this paper is to analyze the trace elements [arsenic (As, fluoride (F- and vanadium (V] present in Chasicó Lake. Surface and groundwater were sampled in dry and wet periods, during 2010 and 2011. Fluoride was determined with a selective electrode. As and V were determined by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES. Significant correlation in surface water was only found for As and F- (r=0.978, p<0.01. The As, F- and V concentration values were higher and more widely dispersed in surface water than in groundwater, as a consequence of evaporation. The fact that these elements do not correlate in surface water may also indicates that groundwater would not be the main source of origin of As, F- and V in surface water. The origin of these trace elements is from volcanic glass from Pampean loess. As, F- and V concentration were higher than in national and international guideline levels for the protection of aquatic biota. Hence, this issue is relevant since the silverside (Odontesthes bonariensis is the most important commercial species in Chasicó Lake. This fish is both consumed locally and exported to other South-American countries through commercial and sport fishing.

  1. The determination of specific surface of sodium polyuranates

    International Nuclear Information System (INIS)

    Bilgin, B.; Atun, G.

    2002-01-01

    Three different sodium polyuranates were prepared by titration of uranyl nitrate with a sodium hydroxide solution labeled with 22 Na as the radiotracer. Polyuranates whose composition was *Na 2 O.7,5UO 3 .11H 2 O (sample A), *Na 2 O.4,3 UO 3 .4,7H 2 O (sample B), and *Na 2 O.2UO 3 .4H 2 O (sample C) were precipitated at pH 5.6, 8.5 and 11.2, respectively. The specific surface areas of these samples were determined by the BET method using methylene blue (MB) as the adsorbate. The sodium polyuranate surfaces were saturated by sequential adsorption of MB. The adsorption data gave an S-shaped isotherm and were fitted to the BET equation. The specific surface areas calculated from the BET isotherm decreased in order A > B > C. The isotope and ion exchange reactions between the sodium polyuranates and Li + , Na + , K + , Rb + , Cs + , Ca 2+ , Sr 2+ , and Ba 2+ ions were compared before and after MB coverage. The results showed that the isotope and ion exchange fractions decrease on the covered surfaces indicating particle diffusion mechanism dominated exchange reactions

  2. Molecular Dynamics Simulations of Water Droplets On Hydrophilic Silica Surfaces

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard L.

    2009-01-01

    and DNA microarrays technologies.Although extensive experimental, theoretical and computational work has been devoted to study the nature of the interaction between silica and water, at the molecular level a complete understanding of silica-water systems has not been reached. Contact angle computations...... dynamics (MD) simulations of a hydrophilic air-water-silica system using the MD package FASTTUBE. We employ quantum chemistry calculation to obtain air-silica interaction parameters for the simulations. Our simulations are based in the following force fields: i) The silica-silica interaction is based...... of water droplets on silica surfaces offers a useful fundamental and quantitative measurement in order to study chemical and physical properties of water-silica systems. For hydrophobic systems the static and dynamic properties of the fluid-solid interface are influenced by the presence of air. Hence...

  3. Theoretical Study of Sodium-Water Surface Reaction Mechanism

    Science.gov (United States)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki; Hashimoto, Kenro

    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using the ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule on the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. It was found that the estimated rate constant of the former was much larger than the latter. The results are the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by Japan Atomic Energy Agency (JAEA) toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR).

  4. Theoretical study of sodium-water surface reaction mechanism

    International Nuclear Information System (INIS)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki; Hashimoto, Kenro

    2012-01-01

    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using the ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule on the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. It was found that the estimated rate constant of the former was much larger than the latter. The results are the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by Japan Atomic Energy Agency (JAEA) toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR). (author)

  5. Determinants of virtual water flows in the Mediterranean.

    Science.gov (United States)

    Fracasso, Andrea; Sartori, Martina; Schiavo, Stefano

    2016-02-01

    The aim of the paper is to investigate the main determinants of the bilateral virtual water (water used in the production of a commodity or service) flows associated with international trade in agricultural goods across the Mediterranean basin. We consider the bilateral gross flows of virtual water in the area and study what export-specific and import-specific factors are significantly associated with virtual water flows. We follow a sequential approach. Through a gravity model of trade, we obtain a "refined" version of the variable we aim to explain, one that is free of the amount of flows due to pair-specific factors affecting bilateral trade flows and that fully reflects the impact of country-specific determinants of virtual water trade. A number of country-specific potential explanatory variables, ranging from water endowments to trade barriers, from per capita GDP to irrigation prices, is presented and tested. To identify the variables that help to explain the bilateral flows of virtual water, we adopt a model selection procedure based on model averaging. Our findings confirm one of the main controversial results in the literature: larger water endowments do not necessarily lead to a larger 'export' of virtual water, as one could expect. We also find some evidence that higher water irrigation prices reduce (increase) virtual water 'exports' ('imports'). Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Impacts of transportation infrastructure on storm water and surfaces waters in Chittenden County, Vermont, USA.

    Science.gov (United States)

    2014-06-01

    Transportation infrastructure is a major source of stormwater runoff that can alter hydrology and : contribute significant loading of nutrients, sediment, and other pollutants to surface waters. These : increased loads can contribute to impairment of...

  7. Surface Water Data at Los Alamos National Laboratory 1998 Water Year

    International Nuclear Information System (INIS)

    Shaull, D.A.; Alexander, M.R.; Reynolds, R.P.; McLean, C.T.; Romero, R.P.

    1999-01-01

    The principal investigators collected and computed surface water discharge data from 19 stream-gaging stations that cover most of Los Alamos National Laboratory. Also included are discharge data from three springs that flow into Caiion de Vane

  8. Identifying potential surface water sampling sites for emerging chemical pollutants in Gauteng Province, South Africa

    OpenAIRE

    Petersen, F; Dabrowski, JM; Forbes, PBC

    2017-01-01

    Emerging chemical pollutants (ECPs) are defined as new chemicals which do not have a regulatory status, but which may have an adverse effect on human health and the environment. The occurrence and concentrations of ECPs in South African water bodies are largely unknown, so monitoring is required in order to determine the potential threat that these ECPs may pose. Relevant surface water sampling sites in the Gauteng Province of South Africa were identified utilising a geographic information sy...

  9. A preliminary study of the tropical water cycle and its sensitivity to surface warming

    Science.gov (United States)

    Lau, K. M.; Sui, C. H.; Tao, W. K.

    1993-01-01

    The Goddard Cumulus Ensemble Model (GCEM) has been used to demonstrate that cumulus-scale dynamics and microphysics play a major role in determining the vertical distribution of water vapor and clouds in the tropical atmosphere. The GCEM is described and is the basic structure of cumulus convection. The long-term equilibrium response to tropical convection to surface warming is examined. A picture of the water cycle within tropical cumulus clusters is developed.

  10. Water dissociation on Ni(100) and Ni(111): Effect of surface temperature on reactivity

    International Nuclear Information System (INIS)

    Seenivasan, H.; Tiwari, Ashwani K.

    2013-01-01

    Water adsorption and dissociation on Ni(100) and Ni(111) surfaces are studied using density functional theory calculations. Water adsorbs on top site on both the surfaces, while H and OH adsorb on four fold hollow and three fold hollow (fcc) sites on Ni(100) and Ni(111), respectively. Transition states (TS) on both surfaces are identified using climbing image-nudged elastic band method. It is found that the barrier to dissociation on Ni(100) surface is slightly lower than that on Ni(111) surface. Dissociation on both the surfaces is exothermic, while the exothermicity on Ni(100) is large. To study the effect of lattice motion on the energy barrier, TS calculations are performed for various values of Q (lattice atom coordinate along the surface normal) and the change in the barrier height and position is determined. Calculations show that the energy barrier to reaction decreases with increasing Q and increases with decreasing Q on both the surfaces. Dissociation probability values at different surface temperatures are computed using semi-classical approximation. Results show that the influence of surface temperature on dissociation probability on the Ni(100) is significantly larger compared to that of Ni(111). Moreover, on Ni(100), a dramatic shift in energy barrier to lower incident energy values is observed with increasing surface temperature, while the shift is smaller in the case of Ni(111)

  11. Solar radiation influence on the decomposition process of diclofenac in surface waters

    International Nuclear Information System (INIS)

    Bartels, Peter; Tuempling, Wolf von

    2007-01-01

    Diclofenac can be detected in surface water of many rivers with human impacts worldwide. The observed decrease of the diclofenac concentration in waters and the formation of its photochemical transformation products under the impact of natural irradiation during one to 16 days are explained in this article. In semi-natural laboratory tests and in a field experiment it could be shown, that sunlight stimulates the decomposition of diclofenac in surface waters. During one day intensive solar radiation in middle European summer diclofenac decomposes in the surface layer of the water (0 to 5 cm) up to 83%, determined in laboratory exposition experiments. After two weeks in a field experiment, the diclofenac was not detectable anymore in the water surface layer (limit of quantification: 5 ng/L). At a water depth of 50 cm, within two weeks 96% of the initial concentration was degraded, while in 100 cm depth 2/3 of the initial diclofenac concentration remained. With the decomposition, stable and meta-stable photolysis products were formed and observed by UV detection. Beyond that the chemical structure of these products were determined. Three transformation products, that were not described in the literature so far, were identified and quantified with GC-MS

  12. Water and oil wettability of anodized 6016 aluminum alloy surface

    Science.gov (United States)

    Rodrigues, S. P.; Alves, C. F. Almeida; Cavaleiro, A.; Carvalho, S.

    2017-11-01

    This paper reports on the control of wettability behaviour of a 6000 series aluminum (Al) alloy surface (Al6016-T4), which is widely used in the automotive and aerospace industries. In order to induce the surface micro-nanostructuring of the surface, a combination of prior mechanical polishing steps followed by anodization process with different conditions was used. The surface polishing with sandpaper grit size 1000 promoted aligned grooves on the surface leading to static water contact angle (WCA) of 91° and oil (α-bromonaphthalene) contact angle (OCA) of 32°, indicating a slightly hydrophobic and oleophilic character. H2SO4 and H3PO4 acid electrolytes were used to grow aluminum oxide layers (Al2O3) by anodization, working at 15 V/18° C and 100 V/0 °C, respectively, in one or two-steps configuration. Overall, the anodization results showed that the structured Al surfaces were hydrophilic and oleophilic-like with both WCA and OCA below 90°. The one-step configuration led to a dimple-shaped Al alloy surface with small diameter of around 31 nm, in case of H2SO4, and with larger diameters of around 223 nm in case of H3PO4. The larger dimples achieved with H3PO4 electrolyte allowed to reach a slight hydrophobic surface. The thicker porous Al oxide layers, produced by anodization in two-step configuration, revealed that the liquids can penetrate easily inside the non-ordered porous structures and, thus, the surface wettability tended to superhydrophilic and superoleophilic character (CA OCA. This inversion in favour of the hydrophilic-oleophobic surface behaviour is of great interest either for lubrication of mechanical components or in water-oil separation process.

  13. DETERMINATION OF WATER RESOURCES IN RIVERS IN THE BULGARIAN BASINS OF THE LOWER DANUBE

    Directory of Open Access Journals (Sweden)

    Plamen Iliev Ninov

    2017-04-01

    Full Text Available Object of the study is surface water bodies from category “rivers” according to Water Framework Directive 2000/60/ЕС. Surface water assessment is important for number of activities such as: water management in the country, making reports to international agencies, determining the change of the resources in the light of upcoming climate changes. The determination of water resources is based on information of hydrometric stations from the monitoring network system in the National Institute of Meteorology and Hydrology — Bulgarian Academy of Sciences (NIMH-BAS in which real ongoing and available water flows that are subject of management are registered. In the study a technology for surface water bodies in the Bulgarian basins of the lower Danube is applied which has been developed in the frame of cooperative project together with the Ministry of Environment and Water. This is absolutely true for the Bulgarian section of the Danube River basin which is expressed in big number and variety of hydrological homogeneous sections. The river flow is characterized with annual and inter-annual variability determined by climatic factors and anthropogenic influences. The main obtained results of the present hydrologic studies are the usage of transferred information from gauged to ungauged watersheds and the estimation of the surface water bodies’ resources using original regression relationships based on multiannual hydrological information from the NIMH-BAS monitoring network. The relationships delineate the hydrological homogeneous areas with similar conditions of flow formation. The estimated resources have significant usefulness for all State institutions managing the water in the Danube basin and have already been introduced in the operative and management practice.

  14. Biphilic Surfaces for Enhanced Water Collection from Humid Air

    Science.gov (United States)

    Benkoski, Jason; Gerasopoulos, Konstantinos; Luedeman, William

    Surface wettability plays an important role in water recovery, distillation, dehumidification, and heat transfer. The efficiency of each process depends on the rate of droplet nucleation, droplet growth, and mass transfer. Unfortunately, hydrophilic surfaces are good at nucleation but poor at shedding. Hydrophobic surfaces are the reverse. Many plants and animals overcome this tradeoff through biphilic surfaces with patterned wettability. For example, the Stenocara beetle uses hydrophilic patches on a superhydrophobic background to collect fog from air. Cribellate spiders similarly collect fog on their webs through periodic spindle-knot structures. In this study, we investigate the effects of wettability patterns on the rate of water collection from humid air. The steady state rate of water collection per unit area is measured as a function of undercooling, angle of inclination, water contact angle, hydrophilic patch size, patch spacing, area fraction, and patch height relative to the hydrophobic background. We then model each pattern by comparing the potential and kinetic energy of a droplet as it rolls downwards at a fixed angle. The results indicate that the design rules for collecting fog differ from those for condensation from humid air. The authors gratefully acknowledge the Office of Naval Research for financial support through Grant Number N00014-15-1-2107.

  15. Hydrobiological constraints of trace metals in surface water, coastal ...

    African Journals Online (AJOL)

    SERVER

    2007-10-18

    Oct 18, 2007 ... of Calabar River are presented in Tables 1, 2 and 3. Table 4, 5 and 6 present the correlation matrices for sediment, surface water and N. lotus samples respec- tively, showing values of Pearson's correlation coefficient. (p<0.05, n=4) for pairs of heavy metals at the four locations. The concentrations of As, Cd, ...

  16. Surface water risk assessment of pesticides in Ethiopia

    NARCIS (Netherlands)

    Teklu, B.M.; Adriaanse, P.I.; Horst, ter M.M.S.; Deneer, J.W.; Brink, van den P.J.

    2015-01-01

    Scenarios for future use in the pesticide registration procedure in Ethiopia were designed for 3 separate Ethiopian locations, which are aimed to be protective for the whole of Ethiopia. The scenarios estimate concentrations in surface water resulting from agricultural use of pesticides for a small

  17. Dissolved Carbon Dioxide in Tropical East Atlantic Surface Waters

    NARCIS (Netherlands)

    Bakker, D.C.E.; Baar, H.J.W. de; Jong, E. de

    1999-01-01

    Variability of dissolved inorganic carbon (DIC) and the fugacity of carbon dioxide (fCO2) is discussed for tropical East Atlantic surface waters in October–November 1993 and May–June 1994. High precipitation associated with the Intertropical Convergence Zone, river input and equatorial upwelling

  18. Shale gas development impacts on surface water quality in Pennsylvania

    Science.gov (United States)

    Olmstead, Sheila M.; Muehlenbachs, Lucija A.; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J.

    2013-01-01

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl−) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl− concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl− concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases. PMID:23479604

  19. Uranium in US surface, ground, and domestic waters

    International Nuclear Information System (INIS)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium concentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms

  20. Circulation of the surface waters in the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Varadachari, V.V.R.; Sharma, G.S.

    The circulation pattern of the surface waters in the North Indian Ocean for different months of the year is discussed. In order to arrive at a reliable and detailed picture of the circulation pattern, streamlines are drawn using the isogon technique...

  1. Uranium in US surface, ground, and domestic waters. Volume 2

    International Nuclear Information System (INIS)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms

  2. The interaction of water and hydrogen with nickel surfaces

    NARCIS (Netherlands)

    Shan, Junjun

    2009-01-01

    As nickel and platinum are in the same group of the periodic table, the Ni(111) and Pt(111) surfaces may be expected to show similar interaction with water and hydrogen. However in this thesis, we show these interactions for Ni(111) are quite different from those of Pt(111). Moreover, our results

  3. Uranium in US surface, ground, and domestic waters

    International Nuclear Information System (INIS)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters, comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium concentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms

  4. Metal concentration at surface water using multivariate analysis and ...

    African Journals Online (AJOL)

    Metal concentration at surface water using multivariate analysis and human health risk assessment. F Azaman, H Juahir, K Yunus, A Azid, S.I. Khalit, A.D. Mustafa, M.A. Amran, C.N.C. Hasnam, M.Z.A.Z. Abidin, M.A.M. Yusri ...

  5. Riparian shrub buffers reduce surface water pollutant loads

    Science.gov (United States)

    W. A. Geyer; C. Barden; K. Mankin; D. Devlin

    2003-01-01

    Surface water resources in Kansas often contain concentrations of pesticides, nutrients, and sediments that are of concern to local citizens. The United States Geological Survey reported in 1999 that 97 percent of streams and 82 percent of lakes in Kansas would not fully support all uses as designated by state statutes (U.S. Geological Survey 1999). Bacteria and...

  6. Surface water assessment on the influence of space distribution on ...

    African Journals Online (AJOL)

    In this work, the influence of space distribution on physico-chemical parameters of refinery effluent discharge has been studied, using treated effluent water discharged from the Port Harcourt Refinery Company (PHRC) into the Ekerekana Creek in Okrika as reference. Samples were collected at surface level from the ...

  7. Oxide/water interfaces: how the surface chemistry modifies interfacial water properties

    International Nuclear Information System (INIS)

    Gaigeot, Marie-Pierre; Sprik, Michiel; Sulpizi, Marialore

    2012-01-01

    The organization of water at the interface with silica and alumina oxides is analysed using density functional theory-based molecular dynamics simulation (DFT-MD). The interfacial hydrogen bonding is investigated in detail and related to the chemistry of the oxide surfaces by computing the surface charge density and acidity. We find that water molecules hydrogen-bonded to the surface have different orientations depending on the strength of the hydrogen bonds and use this observation to explain the features in the surface vibrational spectra measured by sum frequency generation spectroscopy. In particular, ‘ice-like’ and ‘liquid-like’ features in these spectra are interpreted as the result of hydrogen bonds of different strengths between surface silanols/aluminols and water. (paper)

  8. Novel determination of surface temperature of lithium hydride hydrolysis using DRIFT spectroscopy

    International Nuclear Information System (INIS)

    Awbery, Roy P.; Tsang, S.C.

    2008-01-01

    Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy has been used to show how increasing temperature causes the hydroxyl band of LiOH to shift linearly and reversibly towards lower wavenumbers. The band shift with temperature was used to determine the surface temperature of LiH when exposed to water vapour at 158, 317, 793 and >1900 Pa (5%, 10%, 25% and >60% relative humidity), the exothermic hydrolysis reaction resulting in surface temperature increases of up to 50 deg. C. The rate of surface heating was found to increase slightly with increasing water vapour exposures up to 793 Pa, demonstrating that the LiH hydrolysis reaction rate was dependent upon the partial pressure of water vapour. The growth of surface LiOH appeared to significantly slow down further reaction until the water vapour exposure was increased beyond 1900 Pa, when formation of hydrated LiOH occurred. The effect of temperature on detectors was also investigated showing that baselines shifted towards higher intensities with increasing temperature when measured with a DTGS detector and towards lower intensities with an MCT detector, over the temperature range 25-450 deg. C

  9. Structure determination by photoelectron diffraction of small molecules on surfaces

    International Nuclear Information System (INIS)

    Booth, N.A.

    1998-05-01

    The synchrotron radiation based technique of Photoelectron Diffraction (PhD) has been applied to three adsorption systems. Structure determinations, are presented for each system which involve the adsorption of small molecules on the low index {110} plane of single crystal Cu and Ni substrates. For the NH 3 -Cu(110) system PhD was successful in determining a N-Cu bondlength of 2.05 ± 0.03 A as well as values for the anisotropic vibrational amplitudes of the N and an expansion of the 1st to 2nd Cu substrate layer spacing from the bulk value of 0.08 ± 0.08 A. The most significant and surprising structural parameter determined for this system was that the N atom occupies an asymmetric adsorption site. Rather than being situated in the expected high symmetry atop site the N atom was found to be offset parallel to the surface by 0.37 ± 0.12 A in the [001] azimuth. In studying the glycine-Cu(110) system the adsorption structure of an amino-acid has been quantified. The local adsorption geometries of all the atoms involved in the molecule to surface bond have been determined. The glycine molecule is found to be bonded to the surface via both its amino and carboxylate functional groups. The molecule straddles two [11-bar0] rows of the Cu substrate. The two O atoms are found to be in identical sites both approximately atop Cu atoms on the [11-bar0] rows offset parallel to the surface by 0.80 ± 0.05 A in the [001] azimuth, the O-Cu bondlength was found to be 2.03 ± 0.05 A. The N atom was also found to adsorb in an approximately atop geometry but offset parallel to the surface by 0.24 ± 0.10A in the [11-bar0] direction, the N-Cu bondlength was found to be 2.05± 0.05 A. PhD was unsuccessful in determining the positions of the two C atoms that form a bridge between the two functional groups bonded to the surface due to difficulties in separating the two inequivalent contributions to the final intensity modulation function. For the CN-Ni(110) system both PhD and Near Edge

  10. Determination of heavy metals and genotoxicity of water from an ...

    African Journals Online (AJOL)

    Determination of heavy metals and genotoxicity of water from an artesian well ... do Amaral, Vanessa Marques de Oliveira Moraes, Luciana Pereira Silva ... environmental interest because it is the most important zinc producer district of Brazil.

  11. Determining water content and other impurities in Siparuna ...

    African Journals Online (AJOL)

    Aghomotsegin

    2016-03-30

    Mar 30, 2016 ... and thermodynamic parameters, became necessary. (Santos, 2004; Dantas, 2006). ... oil in 80 min distillation (after the first sign of boiling). The essential .... Khankari RK, Law D, Grant DJW (1992). Determination of water ...

  12. Assessing of landscape potential for water management regarding its surface water (using the example of the micro-region Minčol

    Directory of Open Access Journals (Sweden)

    Kunáková Lucia

    2016-06-01

    Full Text Available The presence of water is one of the decisive factors of landscape’s natural potential. Water affects landscape’s predisposition for agricultural production, water supply available to the wide population and industry (the most important is the yield of water resources. Ponds, lakes and other water areas are zones of recreation and relaxation. Near sources mineral water, several world-famous spas were build. Waterways are also used to generate electricity. Geothermal underground water represents a very significant landscape potential. Determining hydrological potential of the area is important for the regional development. This paper assesses the landscape potential for water management regarding its surface waters in the micro-region Minčol. The micro-region was divided by a square grid, and for each square, we determined the appropriateness of this potential based on score points. The determining evaluation criteria were static reserves of surface water, waterway ranking and annual average discharge. First, we determined the significance (value of individual criteria (classification characteristics, and then we calculated the values of individual classifiers, which were then multiplied by the value of the individual classifier intervals. The summary of points in each square belongs to a particular degree of suitability for water management based on surface waters. The potential was divided into five degrees (intervals: very unfavourable potential, unfavourable potential, moderately favourable potential, favourable potential and very favourable potential.

  13. Water Surface Overgrowing of the Tatra’s Lakes

    Directory of Open Access Journals (Sweden)

    Kapusta Juraj

    2018-03-01

    Full Text Available Tatra’s lakes are vulnerable ecosystems and an important element of the alpine landscape. Mainly some shallow lake basins succumb to intense detritus sedimentation, fine fractions of material from the catchment area or to the overgrowing of water level by vegetation. In this paper, changes and dynamics of the 12 Tatra’s lake shorelines that were selected based on the detailed mapping of their extent are pointed out. Changes were assessed by accurate comparisons of historical and current orthophoto maps from the years 1949, 1955 and 2015 – and therefore, based on the oldest and the latest relevant materials. Due to the overgrowing of lakes caused by vegetation, their water surface decreased from −0.9% up to −47.9%, during the examined period. Losses were caused by the overgrowing of open water surface by the communities of sedges and peat bogs. The most significant dynamics of the shorelines during the last decades were reached by those lakes, into which fine sediments were simultaneously deposited by means of mountain water coarse. These sediments made the marginal parts of the lake basins shallower and accelerated rapid expansion of vegetation to the detriment of the open water surface. The overgrowing of shallow moraine lakes lying in the vegetation zone is a significant phenomenon of the High Tatras alpine landscape. It leads to their gradual extinction, turn into peat bogs and wet alpine meadows.

  14. Investigation of the Effect of Water Removal from Wells Surrounding Parishan Lake on Groundwater and Surface Water Levels

    International Nuclear Information System (INIS)

    Shafiei, M.; Raini Sarjaz, M.; Fazloli, R.; Gholami Sefidkouhi, M. A.

    2017-01-01

    In recent decades the human impacts on global warming and, its consequences, climate change, stirred up earth ecosystems balance and has created many problems all over the world. Unauthorized underground water removal, especially in arid and semi-arid regions of Iran, along with recent decade drought occurrences significantly lowered underground and surface water levels. To investigate the impacts of water removal from surrounding wells in Parishan Lake water level, during 1996 to 2009 interval, 8 buffer layers surrounding the lake were mapped in ArcGIS 9.3 environment. Each buffer layer wells and their total annual discharges were determined. Using SPSS 16 software, the regression equations between wells water levels and water discharges were computed. By employing Thiessen function and creating Thiessen network (TIN) around observation wells, decline of groundwater levels was evaluated. Finally regression equations between wells discharges and groundwater level declines were created. The findings showed that there are highly significant correlations (p ≤ 0.01), in all buffer layers, between water levels and wells discharges. Investigation of the observation wells surrounding lake showed that severe groundwater level declines has been started since the beginning of the first decade of the 21st century. Using satellite images in ArcGIS 9.3 environment it was confirmed that lake’s area has been reduced significantly. In conclusion, it is obvious that human interferences on lake’s natural ecosystem by digging unauthorized wells and removing underground water more than annual recharges significantly impacted surface and groundwater levels.

  15. Determination of Phenols in Water Samples using a Supported ...

    African Journals Online (AJOL)

    The sample preparation method was tested for the determination of phenols in river water samples and landfill leachate. Concentrations of phenols in river water were found to be in the range 4.2 μg L–1 for 2-chlorophenol to 50 μg L–1 for 4-chlorophenol. In landfill leachate, 4-chlorophenol was detected at a concentration ...

  16. Determining pomegranate water and nitrogen requirements with drip irrigation

    Science.gov (United States)

    Despite being an ancient crop there is limited knowledge on the water and nitrogen (N) requirements of pomegranate. We conducted research at the University of California, Kearney Agricultural Research and Extension Center (KARE) to determine the water and nitrogen requirements of a developing pomegr...

  17. Determination of radium 226 and 228 in water

    International Nuclear Information System (INIS)

    Jeanmaire, L.; Willemot, J.M.; Verry, M.

    1989-01-01

    Usually, only radium 226 is measured in water since determination of radium 228 is not easy at the natural levels. A technique has therefore been developed to measure, at the same time and at low radioactivity levels, two radionuclides most often associated in water and with similar toxicity. Computer data processing brings significant improvements though calculation can be manually done [fr

  18. Surface water ponding on clayey soils managed by conventional and conservation tillage in boreal conditions

    Directory of Open Access Journals (Sweden)

    L. ALAKUKKU

    2008-12-01

    Full Text Available Surface water ponding and crop hampering due to soil wetness was monitored in order to evaluate the effects of conservation tillage practices and perennial grass cover on soil infiltrability for five years in situ in gently sloping clayey fields. Thirteen experimental areas, each having three experimental fields, were established in southern Finland. The fields belonged to: autumn mouldboard ploughing (AP, conservation tillage (CT and perennial grass in the crop rotation (PG. In the third year, direct drilled (DD fields were established in five areas. Excluding PG, mainly spring cereals were grown in the fields. Location and surface area of ponded water (in the spring and autumn as well as hampered crop growth (during June-July were determined in each field by using GPS devices and GIS programs. Surface water ponding or crop hampering occurred when the amount of rainfall was clearly greater than the long-term average. The mean of the relative area of the ponded surface water, indicating the risk of surface runoff, and hampered crop growth was larger in the CT fields than in the AP fields. The differences between means were, however, not statistically significant. Complementary soil physical measurements are required to investigate the reasons for the repeated surface water ponding.;

  19. Effect of traditional gold mining to surface water quality in Murung Raya District, Central Kalimantan Province

    Directory of Open Access Journals (Sweden)

    W.Wilopo

    2013-10-01

    Full Text Available There are many locations for traditional gold mining in Indonesia. One of these is in Murung Raya District, Central Kalimantan Province. Mining activities involving the application of traditional gold processing technology have a high potential to pollute the environment, especially surface water. Therefore, this study aims to determine the impact of gold mining and processing on surface water quality around the mine site. Based on the results of field surveys and laboratory analysis, our data shows that the concentration of mercury (Hg and Cyanide (CN has reached 0.3 mg/L and 1.9 mg/L, respectively, in surface water. These values exceed the drinking water quality standards of Indonesia and WHO. Many people who live in the mining area use surface water for daily purposes including drinking, cooking, bathing and washing. This scenario is very dangerous because the effect of surface water contamination on human health cannot be immediately recognized or diagnosed. In our opinion the dissemination of knowledge regarding the treatment of gold mining wastewater is urgently required so that the quality of wastewater can be improved before it is discharged into the environment

  20. Tritium in surface water of the Yenisei river Basin

    International Nuclear Information System (INIS)

    Bondareva, L.G.; Bolsunovsky, A.Ya.

    2005-01-01

    The paper reports an investigation of the tritium content in the surface waters of the Yenisei River basin near the Mining-and-Chemical Combine (MCC). In 2001-2003 the maximum tritium concentration in the Yenisei River did not exceed 4±1 Bq/L. It has been found that there are surface waters containing enhanced tritium, up to 168 Bq/L, as compared with the background values for the Yenisei River. There are two possible sources of tritium input. First, the last operating reactor of the MCC, which still uses the Yenisei water as coolant. Second, tritium may come from the deep aquifers at the Severny testing site. For the first time tritium has been found in two aquatic plant species of the Yenisei River with maximal tritium concentration 304 Bq/Kg wet weight. Concentration factors of tritium for aquatic plants are much higher than 1

  1. Membranes with Surface-Enhanced Antifouling Properties for Water Purification

    Science.gov (United States)

    Shahkaramipour, Nima; Tran, Thien N.; Ramanan, Sankara; Lin, Haiqing

    2017-01-01

    Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol), polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted. PMID:28273869

  2. Tritiated water vapor in the surface air at Tokyo

    International Nuclear Information System (INIS)

    Inoue, Hisayuki; Katsuragi, Yukio; Shigehara, Koji

    1984-01-01

    Tritium concentration in water vapor in the air near the surface and in the precipitation at Tokyo was measured during the period from 9 August to 20 November in 1974. From August to the middle of October, tritium mixing ratios in the surface air had relatively higher values except those in air masses which were associated with a typhoon. The mixing ratios of tritium in the air decreased abruptly at the middle of October, which indicates the decrease of tritium influx from aloft. These data exhibit the salient feature that variations in tritium concentration in TR are linear to the reciprocal of the content of water vapor during each period. Tritium concentrations in vapor and rain water collected simultaneously show nearly equal values. One of the reasons for the good correlation of tritium concentration between falling drops and ambient air is considered to be the result of the rapid isotopic exchange. (author)

  3. Water surface modeling from a single viewpoint video.

    Science.gov (United States)

    Li, Chuan; Pickup, David; Saunders, Thomas; Cosker, Darren; Marshall, David; Hall, Peter; Willis, Philip

    2013-07-01

    We introduce a video-based approach for producing water surface models. Recent advances in this field output high-quality results but require dedicated capturing devices and only work in limited conditions. In contrast, our method achieves a good tradeoff between the visual quality and the production cost: It automatically produces a visually plausible animation using a single viewpoint video as the input. Our approach is based on two discoveries: first, shape from shading (SFS) is adequate to capture the appearance and dynamic behavior of the example water; second, shallow water model can be used to estimate a velocity field that produces complex surface dynamics. We will provide qualitative evaluation of our method and demonstrate its good performance across a wide range of scenes.

  4. Channel Storage change: a new remote sensed surface water measurement

    Science.gov (United States)

    Coss, S. P.; Durand, M. T.; Yi, Y.; Guo, Q.; Shum, C. K.; Allen, G. H.; Pavelsky, T.

    2017-12-01

    Here we present river channel storage change (CSC) measurements for 17 major world rivers from 2002-2016. We combined interpolated daily 1 km resolution Global River Radar Altimeter Time Series (GRRATS) river surface elevation data with static widths from the global river Global River Widths from Landsat (GRWL) dataset, to generate preliminary channel storage measurements. CSC is a previously unmeasured component of the terrestrial water balance It is a fundamental Earth science quantity with global bearing on floodplains, ecology, and geochemistry. CSC calculations require only remote sensed data, making them an ideal tool for studying remote regions where hydrological data is not easily accessible. CSC is uniquely suited to determine the role of hydrologic and hydraulic controls in basins with strong seasonal cycles (freeze-up and break-up). The cumulative CSC anomaly can impart spatial details that discharge measurements cannot. With this new measurement, we may be able to determine critical hydrological and hydraulic controls on rapidly changing systems like Arctic rivers. Results for Mississippi River indicate that peak CSC anomaly was the highest in 2011 (12.6 km3) and minimum CSC anomaly was in 2012 (-12.2 km3). Peak CSC has most frequently occurs in May (5 years), but has come as late in the year as July, and as early as January. Results for the Yukon River indicate that peak CSC anomaly was the highest in 2013 (13.9 km3) and minimum CSC anomaly was in 2010 (-14.2 km3). Peak CSC has most frequently come in early to mid-June (4-18), but has occurred in May (19-31) four years in the study period (three of the last 6 years) and once on April 30th.

  5. Surface wastewater in Samara and their impact on water basins as water supply sources

    Science.gov (United States)

    Strelkov, Alexander; Shuvalov, Mikhail; Gridneva, Marina

    2017-10-01

    The paper gives an overview of surface wastewater outlets in Samara through the rainwater sewer system into the Saratov water reservoir and the Samara river. The rainwater sewer system in Samara is designed and executed according to a separate scheme, except for the old part of the city, where surface run-off is dumped into the sewer system through siphoned drain. The rainwater system disposes of surface, drainage, industrial clean-contamined waters, emergency and technology discharges from the city’s heat supply and water supply systems. The effluent discharge is carried out by means of separate wastewater outlets into ravines or directly into the Samara river and the Saratov water reservoir without cleaning. The effluent discharge is carried out through the rainwater sewer system with 17 wastewater outlets into the Saratov water reservoir. In the Samara river, surface runoff drainage and clean-contamined water of industrial enterprises is carried out through 14 wastewater outlets. This study emphasizes the demand to arrange effluent discharge and construction of sewage treatment plants to prevent contamination of water objects by surface run-off from residential areas and industrial territories.

  6. A Study on Water Surface Profiles of Rivers with Constriction

    Science.gov (United States)

    Qian, Chaochao; Yamada, Tadashi

    2013-04-01

    Water surface profile of rivers with constrictions is precious in both classic hydraulics and river management practice. This study was conducted to clarify the essences of the water surface profiles. 3 cases of experiments and 1D numerical calculations with different discharges were made in the study and analysis solutions of the non-linear basic equation of surface profile in varied flow without considering friction were derived. The manning's number was kept in the same in each case by using crosspiece roughness. We found a new type of water surface profile of varied flow from the results of 1D numerical calculation and that of experiments and named it as Mc curve because of its mild condition with constriction segment. This kind of curves appears as a nature phenomenon ubiquitously. The process of water surface forming is dynamic and bore occurs at the upper side of constriction during increasing discharge before the surface profile formed. As a theoretical work, 3 analysis solutions were derived included 2 physical-meaning solutions in the study by using Man-Machine system. One of the derived physical-meaning solutions was confirmed that it is validity by comparing to the results of 1D numerical calculation and that of experiments. The solution represents a flow profile from under critical condition at the upper side to super critical condition at the down side of constriction segment. The other derived physical-meaning solution represents a flow profile from super critical condition at the upper side to under critical condition at the down side of constriction segment. These two kinds of flow profiles exist in the nature but no theoretical solution can express the phenomenon. We find the depth distribution only concerned with unit width discharge distribution and critical depth under a constant discharge from the derived solutions. Therefor, the profile can be gained simply and precisely by using the theoretical solutions instead of numerical calculation even

  7. IMPROVING CYANOBACTERIA AND CYANOTOXIN MONITORING IN SURFACE WATERS FOR DRINKING WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-06-01

    Full Text Available Cyanobacteria in fresh water can cause serious threats to drinking water supplies. Managing cyanobacterial blooms particularly at small drinking water treatment plants is challenging. Because large amount of cyanobacteria may cause clogging in the treatment process and various cyanotoxins are hard to remove, while they may cause severe health problems. There is lack of instructions of what cyanobacteria/toxin amount should trigger what kind of actions for drinking water management except for Microcystins. This demands a Cyanobacteria Management Tool (CMT to help regulators/operators to improve cyanobacteria/cyanotoxin monitoring in surface waters for drinking water supply. This project proposes a CMT tool, including selecting proper indicators for quick cyanobacteria monitoring and verifying quick analysis methods for cyanobacteria and cyanotoxin. This tool is suggested for raw water management regarding cyanobacteria monitoring in lakes, especially in boreal forest climate. In addition, it applies to regions that apply international WHO standards for water management. In Swedish context, drinking water producers which use raw water from lakes that experience cyanobacterial blooms, need to create a monitoring routine for cyanobacteria/cyanotoxin and to monitor beyond such as Anatoxins, Cylindrospermopsins and Saxitoxins. Using the proposed CMT tool will increase water safety at surface water treatment plants substantially by introducing three alerting points for actions. CMT design for each local condition should integrate adaptive monitoring program.

  8. Roles of surface water areas for water and solute cycle in Hanoi city, Viet Nam

    Science.gov (United States)

    Hayashi, Takeshi; Kuroda, Keisuke; Do Thuan, An; Tran Thi Viet, Nga; Takizawa, Satoshi

    2013-04-01

    Hanoi city, the capital of Viet Nam, has developed beside the Red river. Recent rapid urbanization of this city has reduced a large number of natural water areas such as lakes, ponds and canals not only in the central area but the suburban area. Contrary, the urbanization has increased artificial water areas such as pond for fish cultivation and landscaping. On the other hand, the urbanization has induced the inflow of waste water from households and various kinds of factories to these water areas because of delay of sewerage system development. Inflow of the waste water has induced eutrophication and pollution of these water areas. Also, there is a possibility of groundwater pollution by infiltration of polluted surface water. However, the role of these water areas for water cycle and solute transport is not clarified. Therefore, this study focuses on the interaction between surface water areas and groundwater in Hanoi city to evaluate appropriate land development and groundwater resource management. We are carrying out three approaches: a) understanding of geochemical characteristics of surface water and groundwater, b) monitoring of water levels of pond and groundwater, c) sampling of soil and pond sediment. Correlation between d18O and dD of precipitation (after GNIP), the Red River (after GNIR) and the water samples of this study showed that the groundwater is composed of precipitation, the Red River and surface water that has evaporation process. Contribution of the surface water with evaporation process was widely found in the study area. As for groundwater monitoring, the Holocene aquifers at two sites were in unconfined condition in dry season and the groundwater levels in the aquifer continued to increase through rainy season. The results of isotopic analysis and groundwater level monitoring showed that the surface water areas are one of the major groundwater sources. On the other hand, concentrations of dissolved Arsenic (filtered by 0.45um) in the pore

  9. Hydrochemical characteristics of mine waters from abandoned mining sites in Serbia and their impact on surface water quality.

    Science.gov (United States)

    Atanacković, Nebojša; Dragišić, Veselin; Stojković, Jana; Papić, Petar; Zivanović, Vladimir

    2013-11-01

    Upon completion of exploration and extraction of mineral resources, many mining sites have been abandoned without previously putting environmental protection measures in place. As a consequence, mine waters originating from such sites are discharged freely into surface water. Regional scale analyses were conducted to determine the hydrochemical characteristics of mine waters from abandoned sites featuring metal (Cu, Pb-Zn, Au, Fe, Sb, Mo, Bi, Hg) deposits, non-metallic minerals (coal, Mg, F, B) and uranium. The study included 80 mine water samples from 59 abandoned mining sites. Their cation composition was dominated by Ca2+, while the most common anions were found to be SO4(2-) and HCO3-. Strong correlations were established between the pH level and metal (Fe, Mn, Zn, Cu) concentrations in the mine waters. Hierarchical cluster analysis was applied to parameters generally indicative of pollution, such as pH, TDS, SO4(2-), Fe total, and As total. Following this approach, mine water samples were grouped into three main clusters and six subclusters, depending on their potential environmental impact. Principal component analysis was used to group together variables that share the same variance. The extracted principal components indicated that sulfide oxidation and weathering of silicate and carbonate rocks were the primary processes, while pH buffering, adsorption and ion exchange were secondary drivers of the chemical composition of the analyzed mine waters. Surface waters, which received the mine waters, were examined. Analysis showed increases of sulfate and metal concentrations and general degradation of surface water quality.

  10. Quantum Chemical Study of Water Adsorption on the Surfaces of SrTiO3 Nanotubes.

    Science.gov (United States)

    Bandura, Andrei V; Kuruch, Dmitry D; Evarestov, Robert A

    2015-07-20

    We have studied the adsorption of water molecules on the inner and outer surfaces of nanotubes generated by rolling (001) layers of SrTiO3 cubic crystals. The stability and the atomic and electronic structures of the adsorbed layers are determined by using hybrid density functional theory. The absorption energy and the preferred adsorbate structure are essentially governed by the nature of the surface of the nanotube. Dissociative adsorption prevails on the outer nanotube surfaces. The stability of the adsorbed layers on the inner surfaces is related to the possibility of the formation of hydrogen bonds between water molecules and surface oxygen atoms, and depends on the surface curvature. The presence of water molecules on the inner surface of the nanotubes leads to an increase of the electronic band gap. Externally TiO2 -terminated nanotubes could be used for the photocatalytic decomposition of water by ultraviolet radiation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Coagulation effectiveness of graphene oxide for the removal of turbidity from raw surface water.

    Science.gov (United States)

    Aboubaraka, Abdelmeguid E; Aboelfetoh, Eman F; Ebeid, El-Zeiny M

    2017-08-01

    This study presents the performance of graphene oxide (GO) as a coagulant in turbidity removal from naturally and artificially turbid raw surface water. GO is considered an excellent alternative to alum, the more common coagulant used in water treatment processes, to reduce the environmental release of aluminum. Effects of GO dosage, pH, and temperature on its coagulation ability were studied to determine the ideal turbidity removal conditions. The turbidity removal was ≥95% for all levels of turbid raw surface water (20, 100, and 200 NTU) at optimum conditions. The role of alkalinity in inducing turbidity removal by GO coagulation was much more pronounced upon using raw surface water samples compared with that using artificially turbid deionized water samples. Moreover, GO demonstrated high-performance removal of biological contaminants such as algae, heterotrophic bacteria, and fecal coliform bacteria by 99.0%, 98.8% and 96.0%, respectively, at a dosage of 40 mg/L. Concerning the possible environmental release of GO into the treated water following filtration process, there was no residual GO in a wide range of pH values. The outcomes of the study highlight the excellent coagulation performance of GO for the removal of turbidity and biological contaminants from raw surface water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. An Assessment of Surface Water Detection Algorithms for the Tahoua Region, Niger

    Science.gov (United States)

    Herndon, K. E.; Muench, R.; Cherrington, E. A.; Griffin, R.

    2017-12-01

    The recent release of several global surface water datasets derived from remotely sensed data has allowed for unprecedented analysis of the earth's hydrologic processes at a global scale. However, some of these datasets fail to identify important sources of surface water, especially small ponds, in the Sahel, an arid region of Africa that forms a border zone between the Sahara Desert to the north, and the savannah to the south. These ponds may seem insignificant in the context of wider, global-scale hydrologic processes, but smaller sources of water are important for local and regional assessments. Particularly, these smaller water bodies are significant sources of hydration and irrigation for nomadic pastoralists and smallholder farmers throughout the Sahel. For this study, several methods of identifying surface water from Landsat 8 OLI and Sentinel 1 SAR data were compared to determine the most effective means of delineating these features in the Tahoua Region of Niger. The Modified Normalized Difference Water Index (MNDWI) had the best performance when validated against very high resolution World View 3 imagery, with an overall accuracy of 99.48%. This study reiterates the importance of region-specific algorithms and suggests that the MNDWI method may be the best for delineating surface water in the Sahelian ecozone, likely due to the nature of the exposed geology and lack of dense green vegetation.

  13. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2008

    Science.gov (United States)

    Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.A.

    2012-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area's water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2007 through September 2008. Major findings for this period include:

  14. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water

    DEFF Research Database (Denmark)

    Vang, Óluva Karin; Corfitzen, Charlotte B.; Smith, Christian

    2014-01-01

    in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more...

  15. Surface Water Data at Los Alamos National Laboratory 2006 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    R.P. Romero, D. Ortiz, G. Kuyumjian

    2007-08-01

    The principal investigators collected and computed surface water discharge data from 44 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data for 44 stations.

  16. Perfluoroalkyl substances in the Maltese Environment - (I) Surface water and rain water

    NARCIS (Netherlands)

    Sammut, G.; Sinagra, E.; Helmus, R.; de Voogt, P.

    2017-01-01

    The presence of perfluoroalkyl substances (PFASs) in rain water on the Maltese Islands is reported here for the first time and an extensive survey of these substances in surface water also reported. The Maltese archipelago lies at the centre of the Mediterranean Sea and consists of three main

  17. Water level observations from Unmanned Aerial Vehicles for improving estimates of surface water-groundwater interaction

    DEFF Research Database (Denmark)

    Bandini, Filippo; Butts, Michael; Vammen Jacobsen, Torsten

    2017-01-01

    spatial resolution; ii) spatially continuous profiles along or across the water body; iii) flexible timing of sampling. A semi-synthetic study was conducted to analyse the value of the new UAV-borne datatype for improving hydrological models, in particular estimates of GW (Groundwater)- SW (Surface Water...

  18. Multi-functional surfaces with controllable wettability and water adhesion

    Science.gov (United States)

    Anastasiadis, Spiros H.; Frysali, Melani A.; Kenanakis, George; Kaklamani, Georgia; Papoutsakis, Lampros

    The design of multifunctional surfaces based on biomimetic structures has gained the interest of the scientific community. Novel multifunctional surfaces have been developed, able to alter their wetting properties in response to temperature and pH as well as light illumination, by combining proper chemistry and surface micro/nano-structuring using ultrafast (femtosecond) laser irradiation. The combination of the hierarchical surface with a ZnO and/or a responsive polymer coating results in efficient photo-active properties as well as reversible superhydrophobic / superhydrophilic surfaces in response to external stimuli. These surfaces can be optimized to exhibit high or zero water adhesion and/or controllable directionality as well. Moreover, they can be seeded with human fibroblasts to examine the cellular response on both surface roughness and surface chemistry. Acknowledgements: This research has been co-financed by the General Secretariat for Research and Technology (''ARISTEIA II'' Action, SMART-SURF) and the European Union (NFFA Europe -Grant agreement No. 654360).

  19. Observation of dynamic water microadsorption on Au surface

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaokang, E-mail: xiaokang.huang@tqs.com; Gupta, Gaurav; Gao, Weixiang; Tran, Van; Nguyen, Bang; McCormick, Eric; Cui, Yongjie; Yang, Yinbao; Hall, Craig; Isom, Harold [TriQuint Semiconductor, Inc., 500 W Renner Road, Richardson, Texas 75080 (United States)

    2014-05-15

    Experimental and theoretical research on water wettability, adsorption, and condensation on solid surfaces has been ongoing for many decades because of the availability of new materials, new detection and measurement techniques, novel applications, and different scales of dimensions. Au is a metal of special interest because it is chemically inert, has a high surface energy, is highly conductive, and has a relatively high melting point. It has wide applications in semiconductor integrated circuitry, microelectromechanical systems, microfluidics, biochips, jewelry, coinage, and even dental restoration. Therefore, its surface condition, wettability, wear resistance, lubrication, and friction attract a lot of attention from both scientists and engineers. In this paper, the authors experimentally investigated Au{sub 2}O{sub 3} growth, wettability, roughness, and adsorption utilizing atomic force microscopy, scanning electron microscopy, reflectance spectrometry, and contact angle measurement. Samples were made using a GaAs substrate. Utilizing a super-hydrophilic Au surface and the proper surface conditions of the surrounding GaAs, dynamic microadsorption of water on the Au surface was observed in a clean room environment. The Au surface area can be as small as 12 μm{sup 2}. The adsorbed water was collected by the GaAs groove structure and then redistributed around the structure. A model was developed to qualitatively describe the dynamic microadsorption process. The effective adsorption rate was estimated by modeling and experimental data. Devices for moisture collection and a liquid channel can be made by properly arranging the wettabilities or contact angles of different materials. These novel devices will be very useful in microfluid applications or biochips.

  20. Movement of Irrigation Water in Soil from a Surface Emitter

    Directory of Open Access Journals (Sweden)

    Ibrahim Abbas Dawood

    2016-09-01

    Full Text Available rickle irrigation is one of the most conservative irrigation techniques since it implies supplying water directly on the soil through emitters. Emitters dissipate energy of water at the end of the trickle irrigation system and provide water at emission points. The area wetted by an emitter depends upon the discharge of emitter, soil texture, initial soil water content, and soil permeability. The objectives of this research were to predict water distribution profiles through different soils for different conditions and quantify the distribution profiles in terms of main characteristics of soil and emitter. The wetting patterns were simulated at the end of each hour for a total time of application of 12 hrs, emitter discharges of 0.5, 0.75, 1, 2, 3, 4, and 5 lph, and five initial volumetric soil water contents. Simulation of water flow from a single surface emitter was carried out by using the numerically-based software Hydrus-2D/3D, Version 2.04. Two approaches were used in developing formulas to predict the domains of the wetted pattern. In order to verify the results obtained by implementing the software Hydrus-2D/3D a field experiment was conducted to measure the wetted diameter and compare measured values with simulated ones. The results of the research showed that the developed formulas to express the wetted diameter and depth in terms of emitter discharge, time of application, and initial soil water content are very general and can be used with very good accuracy.

  1. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water.

    Science.gov (United States)

    Vang, Óluva K; Corfitzen, Charlotte B; Smith, Christian; Albrechtsen, Hans-Jørgen

    2014-11-01

    Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water. To improve the performance of the ATP assay in detecting microbial ingress in drinking water, different approaches were investigated, i.e. quantifying microbial ATP or applying reagents of different sensitivities to reduce measurement variations; however, none of these approaches contributed significantly in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements. The ability of the ATP assay to detect microbial ingress is influenced by both the ATP load from the contaminant itself and the ATP concentration in the specific drinking water. Consequently, a low ATP concentration of the specific drinking water facilitates a better detection of a potential contamination of the water supply with the ATP assay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Near-field Oblique Remote Sensing of Stream Water-surface Elevation, Slope, and Surface Velocity

    Science.gov (United States)

    Minear, J. T.; Kinzel, P. J.; Nelson, J. M.; McDonald, R.; Wright, S. A.

    2014-12-01

    A major challenge for estimating discharges during flood events or in steep channels is the difficulty and hazard inherent in obtaining in-stream measurements. One possible solution is to use near-field remote sensing to obtain simultaneous water-surface elevations, slope, and surface velocities. In this test case, we utilized Terrestrial Laser Scanning (TLS) to remotely measure water-surface elevations and slope in combination with surface velocities estimated from particle image velocimetry (PIV) obtained by video-camera and/or infrared camera. We tested this method at several sites in New Mexico and Colorado using independent validation data consisting of in-channel measurements from survey-grade GPS and Acoustic Doppler Current Profiler (ADCP) instruments. Preliminary results indicate that for relatively turbid or steep streams, TLS collects tens of thousands of water-surface elevations and slopes in minutes, much faster than conventional means and at relatively high precision, at least as good as continuous survey-grade GPS measurements. Estimated surface velocities from this technique are within 15% of measured velocity magnitudes and within 10 degrees from the measured velocity direction (using extrapolation from the shallowest bin of the ADCP measurements). Accurately aligning the PIV results into Cartesian coordinates appears to be one of the main sources of error, primarily due to the sensitivity at these shallow oblique look angles and the low numbers of stationary objects for rectification. Combining remotely-sensed water-surface elevations, slope, and surface velocities produces simultaneous velocity measurements from a large number of locations in the channel and is more spatially extensive than traditional velocity measurements. These factors make this technique useful for improving estimates of flow measurements during flood flows and in steep channels while also decreasing the difficulty and hazard associated with making measurements in these

  3. REMOVAL OF ORGANIC MATTER FROM SURFACE WATER USING COAGULANTS WITH VARIOUS BASICITY

    Directory of Open Access Journals (Sweden)

    Lidia Dąbrowska

    2016-07-01

    Full Text Available Humic substances are a natural admixture of surface water and determine the level of organic pollution of water and colour intensity. Application of coagulation process in surface water treatment allows for decrease turbidity and colour of water, as well as organic matter content. In Poland most drinking water treatment plants use aluminium sulphate as a coagulant. Research works on pre-hydrolysed coagulants, e.g. polyaluminium chlorides (general formula Aln(OHmCl3n-m are also carried out. The aim of this study was to evaluate the effectiveness of the coagulation process using polyaluminium chlorides with different basicity, in reducing the level of pollution of surface water with organic substances. Apart from the typical indicators used to evaluate the content of organic compounds, the potential for trihalomethanes formation THM-FP was also determined. The influence of the type of coagulant (low, medium, highly alkaline on the efficiency of organic compound removal, determined as total organic carbon TOC, oxidisability OXI, absorbance UV254, was stated. Under the conditions of the coagulation (pH 7.2-7.4, temperature of 19-21°C, the best results were obtained using highly alkaline polyaluminium chlorides PAX-XL19F, PAX-XL1905 and PAX-XL1910S, decrease in TOC and OXI by 43-46%, slightly worse - 40-41% using low alkaline PAX18. Using the medium alkaline coagulants PAX-XL61 and PAXX-XL69, 30-35% removal of organic matter was obtained. Despite various effects of dissolved organic carbon removal, depending on the used coagulant, THM-FP in purified water did not differ significantly and ranged from 10.0 to 10.9 mgCHCl3 m-3. It was by 37-42% lower than in surface water.

  4. Determining the surface roughness coefficient by 3D Scanner

    Directory of Open Access Journals (Sweden)

    Karmen Fifer Bizjak

    2010-12-01

    Full Text Available Currently, several test methods can be used in the laboratory to determine the roughness of rock joint surfaces.However, true roughness can be distorted and underestimated by the differences in the sampling interval of themeasurement methods. Thus, these measurement methods produce a dead zone and distorted roughness profiles.In this paper a new rock joint surface roughness measurement method is presented, with the use of a camera-typethree-dimensional (3D scanner as an alternative to current methods. For this study, the surfaces of ten samples oftuff were digitized by means of a 3D scanner, and the results were compared with the corresponding Rock JointCoefficient (JRC values. Up until now such 3D scanner have been mostly used in the automotive industry, whereastheir use for comparison with obtained JRC coefficient values in rock mechanics is presented here for the first time.The proposed new method is a faster, more precise and more accurate than other existing test methods, and is apromising technique for use in this area of study in the future.

  5. Characteristics of meter-scale surface electrical discharge propagating along water surface at atmospheric pressure

    Czech Academy of Sciences Publication Activity Database

    Hoffer, Petr; Sugiyama, Y.; Hosseini, S.H.R.; Akiyama, H.; Lukeš, Petr; Akiyama, M.

    2016-01-01

    Roč. 49, č. 41 (2016), č. článku 415202. ISSN 0022-3727 Institutional support: RVO:61389021 Keywords : water surface * spectroscopy * high-speed photography * pulsed plasma discharge * Atmospheric - pressure plasmas * electric discharges * liquids * water Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.588, year: 2016 http://iopscience.iop.org/article/10.1088/0022-3727/49/41/415202

  6. Characteristics of meter-scale surface electrical discharge propagating along water surface at atmospheric pressure

    Czech Academy of Sciences Publication Activity Database

    Hoffer, Petr; Sugiyama, Y.; Hosseini, S.H.R.; Akiyama, H.; Lukeš, Petr; Akiyama, M.

    2016-01-01

    Roč. 49, č. 41 (2016), č. článku 415202. ISSN 0022-3727 Institutional support: RVO:61389021 Keywords : water surface * spectroscopy * high-speed photography * pulsed plasma discharge * Atmospheric-pressure plasmas * electric discharges * liquids * water Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.588, year: 2016 http://iopscience.iop.org/article/10.1088/0022-3727/49/41/415202

  7. The Assessment of Instruments for Detecting Surface Water Spills Associated with Oil and Gas Operations

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Aubrey E. [West Virginia Univ., Morgantown, WV (United States); National Energy Technology Lab. (NETL), Morgantown, WV (United States); U.S. Bureau of Reclamation, Albuquerque, NM (United States); Hopkinson, Leslie [West Virginia Univ., Morgantown, WV (United States); Soeder, Daniel [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2016-12-02

    Surface water and groundwater risks associated with unconventional oil and gas development result from potential spills of the large volumes of chemicals stored on-site during drilling and hydraulic fracturing operations, and the return to the surface of significant quantities of saline water produced during oil or gas well production. To better identify and mitigate risks, watershed models and tools are needed to evaluate the dispersion of pollutants in possible spill scenarios. This information may be used to determine the placement of in-stream water-quality monitoring instruments and to develop early-warning systems and emergency plans. A chemical dispersion model has been used to estimate the contaminant signal for in-stream measurements. Spills associated with oil and gas operations were identified within the Susquehanna River Basin Commission’s Remote Water Quality Monitoring Network. The volume of some contaminants was found to be sufficient to affect the water quality of certain drainage areas. The most commonly spilled compounds and expected peak concentrations at monitoring stations were used in laboratory experiments to determine if a signal could be detected and positively identified using standard water-quality monitoring equipment. The results were compared to historical data and baseline observations of water quality parameters, and showed that the chemicals tested do commonly affect water quality parameters. This work is an effort to demonstrate that hydrologic and water quality models may be applied to improve the placement of in-stream water quality monitoring devices. This information may increase the capability of early-warning systems to alert community health and environmental agencies of surface water spills associated with unconventional oil and gas operations.

  8. Self-induced free surface oscillations caused by water jet

    International Nuclear Information System (INIS)

    Fukaya, M.; Madarame, H.; Okamoto, K.; Iida, M.; Someya, S.

    1995-01-01

    The interaction between the high speed flow and the free surfaces could induced surface oscillations. Recently, some kinds of self-induced free surface oscillations caused by water jet were discovered, e.g., a self-induced sloshing, 'Jet-Flutter' and a self-induced manometer oscillation. These oscillations have many different characteristics with each other. In this study, the similarities and differences of these oscillations are examined, and the geometrical effects on the phenomena are experimentally investigated. The self-induced sloshing and the Jet-Flutter have different dimensionless traveling times, which suggests a difference in the energy supply mechanism. When the distance between the inlet and the outlet is small in a vessel, the self-induced manometer oscillation could occur in the multi-free-surface system. (author)

  9. The Character of the Solar Wind, Surface Interactions, and Water

    Science.gov (United States)

    Farrell, William M.

    2011-01-01

    We discuss the key characteristics of the proton-rich solar wind and describe how it may interact with the lunar surface. We suggest that solar wind can be both a source and loss of water/OH related volatiles, and review models showing both possibilities. Energy from the Sun in the form of radiation and solar wind plasma are in constant interaction with the lunar surface. As such, there is a solar-lunar energy connection, where solar energy and matter are continually bombarding the lunar surface, acting at the largest scale to erode the surface at 0.2 Angstroms per year via ion sputtering [1]. Figure 1 illustrates this dynamically Sun-Moon system.

  10. Determination of malachite green and its leuco form in water

    Science.gov (United States)

    Allen, J.L.; Meinertz, J.R.; Gofus, J.E.

    1992-01-01

    Liquid chromatographic (lc) analysis can detect malachite green residues in water at less than 10 mu-g/l. Water samples were concentrated on disposable diol columns, eluted with 0.05m P-toluene-sulfonic acid in methanol, and determined by reversed-phase lc. When combined with a lead oxide postcolumn reactor, the lc method can simultaneously determine both leuco and chromatic forms of malachite green. Recoveries averaged 95.4% For the chromatic form and 57.3% For the leuco form of malachite green oxalate and leuco malachite green in spiked pond water samples. Recoveries of the carbinol form of malachite green (an equilibrium product of the dye in water) from spiked tap water samples averaged 98.6%. Recoveries of leuco malachite green were low and ph-dependent.

  11. Determination of Heavy Metal Levels in Various Industrial Waste Waters

    Directory of Open Access Journals (Sweden)

    Mustafa Şahin Dündar

    2012-06-01

    Full Text Available Important part of the environmetal pollution consists of waste water and water pollution. The water polluted by anthropogenical, industrial, and agricultural originated sources are defined as waste waters which are the main pollution sources for reservoirs, rivers, lakes, and seas. In this work, waste waters of leather, textile, automotive side, and metal plating industries were used to determine the levels of Cu, Zn, Cr, Pb and Ni by using Flame Atomic Absorption Spectrometer. As a result, highest mean levels of copper in supernatants of plating and textile industries were observed as 377,18 ng ml-1, respectively 103 ng ml-1 lead and 963,6 ng ml-1 nickel in plating industry, 1068,2 ng ml-1 zinc and 14557,1 ng ml-1 chromium in plating and leather industries were determined.

  12. RISK ASSESSMENT OF SURFACE WATERS ASSOCIATED WITH WATER CIRCULATION TECHNOLOGIES ON TROUT FARMS

    Directory of Open Access Journals (Sweden)

    Marcin Sidoruk

    2014-07-01

    Full Text Available Dynamic development of aquaculture has led to an increasing impact on the status of surface waters. Fish production generates wastes that, at high concentrations, may present a serious risk to the aquatic environment. Studies on the assessment of the impact of water management technologies in trout production on the quality of surface waters were conducted in 2011. Six farms were selected for the studies and were divided into two groups based on water management solutions (n = 3: farms with a flow through system (FTS and farms with a recirculation aquaculture system (RAS. On all farms, water measurement points were set and they depicted the quality of inflow water, the quality of water in ponds and the quality of outflow water. The studies did not demonstrate any impact of applied technology on electrolyte conductivity or calcium and magnesium concentrations in outflow water from a trout operation. In addition, it was found that the use of water for production purposes resulted in a slight increase in phosphorus and total nitrogen concentrations in waste waters.

  13. Trace-level mercury removal from surface water

    International Nuclear Information System (INIS)

    Klasson, K.T.; Bostick, D.T.

    1998-01-01

    Many sorbents have been developed for the removal of mercury and heavy metals from waters; however, most of the data published thus far do not address the removal of mercury to the target levels represented in this project. The application to which these sorbents are targeted for use is the removal of mercury from microgram-per-liter levels to low nanogram-per-liter levels. Sorbents with thiouronium, thiol, amine, sulfur, and proprietary functional groups were selected for these studies. Mercury was successfully removed from surface water via adsorption onto Ionac SR-4 and Mersorb resins to levels below the target goal of 12 ng/L in batch studies. A thiol-based resin performed the best, indicating that over 200,000 volumes of water could be treated with one volume of resin. The cost of the resin is approximately $0.24 per 1,000 gal of water

  14. Modelling of long term nitrogen retention in surface waters

    Science.gov (United States)

    Halbfaß, S.; Gebel, M.; Bürger, S.

    2010-12-01

    In order to derive measures to reduce nutrient loadings into waters in Saxony, we calculated nitrogen inputs with the model STOFFBILANZ on the regional scale. Thereby we have to compare our modelling results to measured loadings at the river basin outlets, considering long term nutrient retention in surface waters. The most important mechanism of nitrogen retention is the denitrification in the contact zone of water and sediment, being controlled by hydraulic and micro-biological processes. Retention capacity is derived on the basis of the nutrient spiralling concept, using water residence time (hydraulic aspect) and time-specific N-uptake by microorganisms (biological aspect). Short time related processes of mobilization and immobilization are neglected, because they are of minor importance for the derivation of measures on the regional scale.

  15. Quality-control design for surface-water sampling in the National Water-Quality Network

    Science.gov (United States)

    Riskin, Melissa L.; Reutter, David C.; Martin, Jeffrey D.; Mueller, David K.

    2018-04-10

    The data-quality objectives for samples collected at surface-water sites in the National Water-Quality Network include estimating the extent to which contamination, matrix effects, and measurement variability affect interpretation of environmental conditions. Quality-control samples provide insight into how well the samples collected at surface-water sites represent the true environmental conditions. Quality-control samples used in this program include field blanks, replicates, and field matrix spikes. This report describes the design for collection of these quality-control samples and the data management needed to properly identify these samples in the U.S. Geological Survey’s national database.

  16. Prediction of water droplet evaporation on zircaloy surface

    International Nuclear Information System (INIS)

    Lee, Chi Young; In, Wang Kee

    2014-01-01

    In the present experimental study, the prediction of water droplet evaporation on a zircaloy surface was investigated using various initial droplet sizes. To the best of our knowledge, this may be the first valuable effort for understanding the details of water droplet evaporation on a zircaloy surface. The initial contact diameters of the water droplets tested ranged from 1.76 to 3.41 mm. The behavior (i.e., time-dependent droplet volume, contact angle, droplet height, and contact diameter) and mode-transition time of the water droplet evaporation were strongly influenced by the initial droplet size. Using the normalized contact angle (θ*) and contact diameter (d*), the transitions between evaporation modes were successfully expressed by a single curve, and their criteria were proposed. To predict the temporal droplet volume change and evaporation rate, the range of θ* > 0.25 and d* > 0.9, which mostly covered the whole evaporation period and the initial contact diameter remained almost constant during evaporation, was targeted. In this range, the previous contact angle functions for the evaporation model underpredicted the experimental data. A new contact angle function of a zircaloy surface was empirically proposed, which represented the present experimental data within a reasonable degree of accuracy. (author)

  17. Linking land use with pesticides in Dutch surface waters.

    Science.gov (United States)

    Van't, Zelfde M T; Tamis, W L M; Vijver, M G; De Snoo, G R

    2012-01-01

    Compared with other European countries The Netherlands has a relatively high level of pesticide consumption, particularly in agriculture. Many of the compounds concerned end up in surface waters. Surface water quality is routinely monitored and numerous pesticides are found to be present in high concentrations, with various standards being regularly exceeded. Many standards-breaching pesticides exhibit regional patterns that can be traced back to land use. These patterns have been statistically analysed by correlating surface area per land use category with standards exceedance per pesticide, thereby identifying numerous significant correlations with respect to breaches of both the ecotoxicological standard (Maximum Tolerable Risk, MTR) and the drinking water standard. In the case of the MTR, greenhouse horticulture, floriculture and bulb-growing have the highest number as well as percentage of standard-breaching pesticides, despite these market segments being relatively small in terms of area cropped. Cereals, onions, vegetables, perennial border plants and pulses are also associated with many pesticides that exceed the drinking water standard. When a correction is made for cropped acreage, cereals and potatoes also prove to be a major contributor to monitoring sites where the MTR standard is exceeded. Over the period 1998-2006 the land-use categories with the most and highest percentage of standards-exceeding pesticides (greenhouse horticulture, bulb-growing and flower cultivation) showed an increase in the percentage of standards-exceeding compounds.

  18. Radioactivity in the Dutch surface waters after Chernobylsk

    International Nuclear Information System (INIS)

    Kroesbergen, J.; Ballegooijen, L. van; Uunk, E.J.B.

    1988-12-01

    A survey is given of the impact of the nuclear accident in Chernobylsk upon the Dutch surface waters. With this the measurements, which have been performed in the various compartments (water, suspended matter, bottom, biota) are presented. Since the investigation is still going, the period from May 1986 - December 1987 has been chosen. This period is long enough in order to obtain an impression of the long-term effects. In chapter 2 a description is given of the measuring program performed and the analyzing methods employed. In chapter 3 the activation measurements in the surface waters, the suspended matter and the bottom are considered. Also the contamination of biologic matter and the purification mud is discussed. Chapter 4 gives a survey of the amount of radionuclides, which have been accumulated in the Dutch surface waters as a result of the Chernobylsk accident. The investigation of the processes are discussed in chapter 5. Since the study of the effects of radionuclides in the aquatic environment is still going, only some aspects are treated. Chapter 6 gives a general discussion of the results. Also an estimation is presented towards the future development of the contamination of the aquatic environment. Finally in chapter 7 the most important conclusions are summarized. Also some recommendations are made with regard to future measurements to be taken. (author). 72 refs.; 36 figs.; 26 tabs

  19. Analysis of water microdroplet condensation on silicon surfaces

    Science.gov (United States)

    Honda, Takuya; Fujimoto, Kenya; Yoshimoto, Yuta; Mogi, Katsuo; Kinefuchi, Ikuya; Sugii, Yasuhiko; Takagi, Shu; Univ. of Tokyo Team; Tokyo Inst. of Tech. Team

    2016-11-01

    We observed the condensation process of water microdroplets on flat silicon (100) surfaces by means of the sequential visualization of the droplets using an environmental scanning electron microscope. As previously reported for nanostructured surfaces, the condensation process of water microdroplets on the flat silicon surfaces also exhibits two modes: the constant base (CB) area mode and the constant contact angle (CCA) mode. In the CB mode, the contact angle increases with time while the base diameter is constant. Subsequently, in the CCA mode, the base diameter increases with time while the contact angle remains constant. The dropwise condensation model regulated by subcooling temperature does not reproduce the experimental results. Because the subcooling temperature is not constant in the case of a slow condensation rate, this model is not applicable to the condensation of the long time scale ( several tens of minutes). The contact angle of water microdroplets ( several μm) tended to be smaller than the macro contact angle. Two hypotheses are proposed as the cause of small contact angles: electrowetting and the coalescence of sub- μm water droplets.

  20. Pesticide monitoring in surface water and groundwater using passive samplers

    Science.gov (United States)

    Kodes, V.; Grabic, R.

    2009-04-01

    Passive samplers as screening devices have been used within a czech national water quality monitoring network since 2002 (SPMD and DGT samplers for non polar substances and metals). The passive sampler monitoring of surface water was extended to polar substances, in 2005. Pesticide and pharmaceutical POCIS samplers have been exposed in surface water at 21 locations and analysed for polar pesticides, perfluorinated compounds, personal care products and pharmaceuticals. Pesticide POCIS samplers in groundwater were exposed at 5 locations and analysed for polar pesticides. The following active substances of plant protection products were analyzed in surface water and groundwater using LC/MS/MS: 2,4,5-T, 2,4-D, Acetochlor, Alachlor, Atrazine, Atrazine_desethyl, Azoxystrobin, Bentazone, Bromacil, Bromoxynil, Carbofuran, Clopyralid, Cyanazin, Desmetryn, Diazinon, Dicamba, Dichlobenil, Dichlorprop, Dimethoat, Diuron, Ethofumesate, Fenarimol, Fenhexamid, Fipronil, Fluazifop-p-butyl, Hexazinone, Chlorbromuron, Chlorotoluron, Imazethapyr, Isoproturon, Kresoxim-methyl, Linuron, MCPA, MCPP, Metalaxyl, Metamitron, Methabenzthiazuron, Methamidophos, Methidathion, Metobromuron, Metolachlor, Metoxuron, Metribuzin, Monolinuron, Nicosulfuron, Phorate, Phosalone, Phosphamidon, Prometryn, Propiconazole, Propyzamide, Pyridate, Rimsulfuron, Simazine, Tebuconazole, Terbuthylazine, Terbutryn, Thifensulfuron-methyl, Thiophanate-methyl and Tri-allate. The POCIS samplers performed very well being able to provide better picture than grab samples. The results show that polar pesticides and also perfluorinated compounds, personal care products and pharmaceuticals as well occur in hydrosphere of the Czech republic. Acknowledgment: Authors acknowledge the financial support of grant No. 2B06095 by the Ministry of Education, Youth and Sports.

  1. Determinants of tree water use across a floodplain in arid, subtropical northwest Australia

    Science.gov (United States)

    Grierson, Pauline; McLean, Elizabeth; Iles, Jordan; Skrzypek, Grzegorz; Brand, Melinda; O'Donnell, Alison; Siebers, Andre; Dogramaci, Shawan

    2017-04-01

    Riparian zones of ephemeral streams in hot arid regions are subject to unpredictable and generally short-lived flood periods. However, droughts tend to be longer and more severe than floods in their ecological impact as low water availability in surficial alluvium and on the floodplain results in hydrological stress. Resolving how riparian and floodplain vegetation respond to highly variable flow regimes remains a fundamental challenge for estimating water budgets in arid regions, particularly where water tables are subject to groundwater abstraction. Here, we investigated patterns of water use by a range of tree species (Eucalyptus camaldulensis, E. victrix, Acacia citrinoviridis, A. coriacea, Hakea lorea, Atalaya hemiglauca) across a floodplain in the Pilbara region of northwest Australia and assessed vegetation responsiveness to both temporal and spatial variation in water supply. We sought to disentangle the varying contributions of soil water, groundwater and surface water to tree water use to determine the ecological implications of changes in hydrologic connectivity resulting from both seasonal water deficits and anthropogenic management. Diurnal and seasonal dynamics of water use were assessed using sapflux measurements coupled with observations of changing source availability. Source utilization was examined using water stable isotope compositions of xylem, soil, rain, surface water and groundwater. Depending on distance from the stream channel and time since last rainfall, we found that small trees were primarily accessing shallow soil water of meteoric origin while larger eucalypts accessed water deeper in the profile (either stored soil water or groundwater), especially as surface soils dried out. However, tree species were highly variable in their diurnal patterns of water use,including some evidence of nocturnal sapflux in A. coriacea adjacent to streams. Sapflux rates also varied almost four-fold among species but generally declined with increasing

  2. The Association of Cryptosporidium parvum With Suspended Sediments: Implications for Transport in Surface Waters

    Science.gov (United States)

    Searcy, K. E.; Packman, A. I.; Atwill, E. R.; Harter, T.

    2003-12-01

    Understanding the transport and fate of microorganisms in surface waters is of vital concern in protecting the integrity and safety of municipal water supply systems. The human pathogen Cryptosporidium parvum is a particular public health interest, as it is ubiquitous in the surface waters of the United States, it can persist for long periods in the environment, and it is difficult to disinfect in water treatment plants. Due to its small size (5 um), low specific gravity (1.05 g/cm3), and negative surface charge, C. parvum oocysts are generally considered to move through watersheds from their source to drinking water reservoirs with little attenuation. However, the transport of the oocysts in surface waters may be mediated by interactions with suspended sediments. Batch experiments were conducted to determine the extent of C. parvum oocyst attachment to several inorganic and organic sediments under varying water chemical conditions, and settling column experiments were performed to demonstrate how these associations influence the effective settling velocity of C. parvum oocysts. Results from these experiments showed that C. parvum oocysts do associate with inorganic and organic sediments and often settle at the rate of the suspended sediment. The size and surface charge of the host suspended sediment influenced the extent of oocyst attachment as oocysts preferentially associated with particles greater than 3 um, and fewer oocysts associated with particles having a highly negative surface charge. Background water chemical conditions including ionic strength, ion composition, and pH did not have a significant effect on oocyst attachment to suspended sediments.

  3. Determination of the radioactive concentration of 137Cs in water

    International Nuclear Information System (INIS)

    1986-01-01

    The recently accepted standard method to determine the radioactive concentration of 137 Cs in water is based on the selective retention of cesium ions on ammonium-phosphorous-molybdate followed by the dissolution of the sorbent and the selective precipitation of cesium-hexa-chloro-platinate. The radioactive concentration is determined by the measurement of β disintegration rate of the preparate. (V.N.)

  4. Sensors and OBIA synergy for operational monitoring of surface water

    Science.gov (United States)

    Masson, Eric; Thenard, Lucas

    2010-05-01

    This contribution will focus on combining Object Based Image Analysis (i.e. OBIA with e-Cognition 8) and recent sensors (i.e. Spot 5 XS, Pan and ALOS Prism, Avnir2, Palsar) to address the technical feasibility for an operational monitoring of surface water. Three cases of river meandering (India), flood mapping (Nepal) and dam's seasonal water level monitoring (Morocco) using recent sensors will present various application of surface water monitoring. The operational aspect will be demonstrated either by sensor properties (i.e. spatial resolution and bandwidth), data acquisition properties (i.e. multi sensor, return period and near real-time acquisition) but also with OBIA algorithms (i.e. fusion of multi sensors / multi resolution data and batch processes). In the first case of river meandering (India) we will address multi sensor and multi date satellite acquisition to monitor the river bed mobility within a floodplain using an ALOS dataset. It will demonstrate the possibility of an operational monitoring system that helps the geomorphologist in the analysis of fluvial dynamic and sediment budget for high energy rivers. In the second case of flood mapping (Nepal) we will address near real time Palsar data acquisition at high spatial resolution to monitor and to map a flood extension. This ALOS sensor takes benefit both from SAR and L band properties (i.e. atmospheric transparency, day/night acquisition, low sensibility to surface wind). It's a real achievement compared to optical imagery or even other high resolution SAR properties (i.e. acquisition swath, bandwidth and data price). These advantages meet the operational needs set by crisis management of hydrological disasters but also for the implementation of flood risk management plans. The last case of dam surface water monitoring (Morocco) will address an important issue of water resource management in countries affected by water scarcity. In such countries water users have to cope with over exploitation

  5. Transitions for fipronil quant in surface water, Summary of Current Fipronil Water Data and Water Data for WWTPs

    Data.gov (United States)

    U.S. Environmental Protection Agency — Comparison of fipronil sources in North Carolina surface water and identification of a novel fipronil transformation product in recycled wastewater. This dataset is...

  6. Impact of water diversion on the hydrogeochemical characterization of surface water and groundwater in the Yellow River Delta

    International Nuclear Information System (INIS)

    Liu, Qiang; Li, Fadong; Zhang, Qiuying; Li, Jing; Zhang, Yan; Tu, Chun; Ouyang, Zhu

    2014-01-01

    Highlights: • We assess the response of different ecosystems to the water diversion. • We characterized the interaction between surface water and groundwater. • We use the Piper and HFE-D to illustrate the salinization process. - Abstract: The Yellow River Delta is undergoing severe ecosystem degradation through salinization caused mainly by seawater intrusion. The Yellow River diversion project, in operation since 2008, aims to mitigate a projected ecosystem disaster. We conducted field investigations across three ecosystems (Farmland, Wetland and Coast) in the delta to assess the effectiveness of the annual water pulse and determine the relationships between surface water and groundwater. The chemical characteristics of the groundwater in Farmland exclude the possibility of seawater intrusion. The Wetland is vulnerable to pollution by groundwater discharge from Farmland and to secondary salinization caused by rising water tables. The salinity values of groundwater at Coast sites likely reflect the presence of seawater trapped in the clay sediments, a premise corroborated through measurements of groundwater levels, stable isotopes and major ion signatures. Our δD–δ 18 O two-dimensional graphic plot demonstrated that groundwaters of Farmland and Wetland changed toward more depleted isotopic compositions following water diversion, but this was not the case in the Coast sites, where the water table varied little year-round. A hydrochemical facies evolution diagram (HFE-D) demonstrated that freshening is taking place in the largest portions of the aquifers and that, without sustained water diversion recharge, these underground water bodies may switch from freshening to salinization on a seasonal time scale. Thus, the qualities of waters in coastal aquifers in the Yellow River Delta are substantially influenced by the process of ecological water diversion, and also by land use practices and by the lithological properties of the drainage landscape

  7. Flame Spectrophotometric Determination of Strontium in Water and Biological Material

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, G

    1964-10-15

    A flame spectrophotometric method has been developed for the determination of strontium in biological material and water samples. Strontium is determined in the presence of calcium at a wavelength of 4607 A. The intensity of the strontium emission from the sample is increased if n-butanol is added to a solution of the sample in water. With a 6 vol% solution of n-butanol in water, an optimum intensity of 3.5 times that obtained with pure water solution is obtained. Anions and alkali metals which might interfere with the flame spectrophotometric determination are separated from the sample by a simple ion exchange operation. The method allows determination of strontium in solutions down to 0.1{mu}g/ml. In this case the standard deviation is 3.1 % and with a strontium concentration of 1 {mu}g/ml the deviation is 0.9 %. This method has been used for the determination of strontium in samples of varying composition such as bone, meat and skin from fishes, samples of human bones, shell-fish, milk, and water, in which case Sr quantities of 5{mu}g were determined with an analytical error of less than 5 % and Sr{sub q}uantities greater than 10 {mu}g with an error of less than 3 %.

  8. Flame Spectrophotometric Determination of Strontium in Water and Biological Material

    International Nuclear Information System (INIS)

    Joensson, G.

    1964-10-01

    A flame spectrophotometric method has been developed for the determination of strontium in biological material and water samples. Strontium is determined in the presence of calcium at a wavelength of 4607 A. The intensity of the strontium emission from the sample is increased if n-butanol is added to a solution of the sample in water. With a 6 vol% solution of n-butanol in water, an optimum intensity of 3.5 times that obtained with pure water solution is obtained. Anions and alkali metals which might interfere with the flame spectrophotometric determination are separated from the sample by a simple ion exchange operation. The method allows determination of strontium in solutions down to 0.1μg/ml. In this case the standard deviation is 3.1 % and with a strontium concentration of 1 μg/ml the deviation is 0.9 %. This method has been used for the determination of strontium in samples of varying composition such as bone, meat and skin from fishes, samples of human bones, shell-fish, milk, and water, in which case Sr quantities of 5μg were determined with an analytical error of less than 5 % and Sr q uantities greater than 10 μg with an error of less than 3 %

  9. Surface properties and water treatment capacity of surface engineered silica coated with 3-(2-aminoethyl) aminopropyltrimethoxysilane

    Energy Technology Data Exchange (ETDEWEB)

    Majewski, Peter, E-mail: peter.majewski@unisa.edu.au [School of Advanced Manufacturing and Mechanical Engineering, Mawson Institute, University of South Australia, Adelaide (Australia); Keegan, Alexandra [Microbiology Research, Australian Water Quality Centre, South Australian Water Corporation, Adelaide (Australia)

    2012-01-15

    This study's focus was on the water-based, one-pot preparation and characterisation of silica particles coated with 3-(2-aminoethyl)aminopropyltrimethoxysilane (Diamo) and the efficiency of the material in removing the pathogens Escherichia coli, Pseudomonas aeruginosa, Mycobacterium immunogenum, Vibrio cholerae, poliovirus, and Cryptosporidium parvum. The water-based processing resulted in Diamo coated silica particles with significantly increased positive surface charge as determined by zeta potential measurements. In addition, X-ray photoelectron spectrometry of pure and Diamo coated silica confirmed the presence of Diamo on the surface of the particles. Thermogravimetric measurements and chemical analysis of the silica indicated a surface concentration of amine groups of about 1 mmol/g{sub silica}. Water treatment tests with the pathogens showed that a dose of about 10 g appeared to be sufficient to remove pathogens from pure water samples which were spiked with pathogen concentrations between about 10{sup 2} and 10{sup 4} cfu/mL.

  10. Surface Water Quality Trends from EPA's LTM Network

    Science.gov (United States)

    Funk, C.; Lynch, J. A.

    2013-12-01

    Surface water chemistry provides direct indicators of the potential effects of anthropogenic impacts, such as acid deposition and climate change, on the overall health of aquatic ecosystems. Long-term surface water monitoring networks provide a host of environmental data that can be used, in conjunction with other networks, to assess how water bodies respond to stressors and if they are potentially at risk (e.g., receiving pollutant deposition beyond its critical load). Two EPA-administered monitoring programs provide information on the effects of acidic deposition on headwater aquatic systems: the Long Term Monitoring (LTM) program and the Temporally Integrated Monitoring of Ecosystems (TIME) program, designed to track the effectiveness of the 1990 Clean Air Act Amendments (CAAA) in reducing the acidity of surface waters in acid sensitive ecoregions of the Northeast and Mid-Atlantic. Here we present regional variability of long term trends in surface water quality in response to substantial reductions in atmospheric deposition. Water quality trends at acid sensitive LTM sites exhibit decreasing concentrations of sulfate at 100% of monitored sites in the Adirondack Mountains and New England, 80% of Northern Appalachian Plateau sites, and yet only 15% of sites in the Ridge and Blue Ridge Provinces over the 1990-2011 period of record. Across all regions, most LTM sites exhibited constant or only slightly declining nitrate concentrations over the same time period. Acid Neutralizing Capacity (ANC) levels improved at 68% and 45% of LTM sites in the Adirondacks and Northern Appalachian Plateau, respectively, but few sites showed increases in New England or the Ridge and Blue Ridge Provinces due to lagging improvements in base cation concentration. The ANC of northeastern TIME lakes was also evaluated from 1991 to 1994 and 2008 to 2011. The percentage of lakes with ANC values below 50 μeq/L, lakes of acute or elevated concern, dropped by about 7%, indicating improvement

  11. Incorporating human-water dynamics in a hyper-resolution land surface model

    Science.gov (United States)

    Vergopolan, N.; Chaney, N.; Wanders, N.; Sheffield, J.; Wood, E. F.

    2017-12-01

    The increasing demand for water, energy, and food is leading to unsustainable groundwater and surface water exploitation. As a result, the human interactions with the environment, through alteration of land and water resources dynamics, need to be reflected in hydrologic and land surface models (LSMs). Advancements in representing human-water dynamics still leave challenges related to the lack of water use data, water allocation algorithms, and modeling scales. This leads to an over-simplistic representation of human water use in large-scale models; this is in turn leads to an inability to capture extreme events signatures and to provide reliable information at stakeholder-level spatial scales. The emergence of hyper-resolution models allows one to address these challenges by simulating the hydrological processes and interactions with the human impacts at field scales. We integrated human-water dynamics into HydroBlocks - a hyper-resolution, field-scale resolving LSM. HydroBlocks explicitly solves the field-scale spatial heterogeneity of land surface processes through interacting hydrologic response units (HRUs); and its HRU-based model parallelization allows computationally efficient long-term simulations as well as ensemble predictions. The implemented human-water dynamics include groundwater and surface water abstraction to meet agricultural, domestic and industrial water demands. Furthermore, a supply-demand water allocation scheme based on relative costs helps to determine sectoral water use requirements and tradeoffs. A set of HydroBlocks simulations over the Midwest United States (daily, at 30-m spatial resolution for 30 years) are used to quantify the irrigation impacts on water availability. The model captures large reductions in total soil moisture and water table levels, as well as spatiotemporal changes in evapotranspiration and runoff peaks, with their intensity related to the adopted water management strategy. By incorporating human-water dynamics in

  12. Algae form brominated organic compounds in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Huetteroth, A; Putschew, A; Jekel, M [Tech. Univ. Berlin (Germany)

    2004-09-15

    Monitoring of organic halogen compounds, measured as adsorbable organic bromine (AOBr) revealed seasonal high concentrations of organic bromine compounds in a surface water (Lake Tegel, Berlin, Germany). Usually, in late summer, concentrations are up to five times higher than during the rest of the year. The AOBr of the lake inflows (throughout the year less then 6 {mu}g/L) were always lower then those in the lake, which indicates a production of AOBr in the lake. A correlation of the AOBr and chlorophyll-a concentration (1) in the lake provides first evidence for the influence of phototrophic organisms. The knowledge of the natural production of organohalogens is relatively recent. Up to now there are more then 3800 identified natural organohalogen compounds that have been detected in marine plants, animals, and bacteria and also in terrestrial plants, fungi, lichen, bacteria, insects, some higher animals, and humans. Halogenated organic compounds are commonly considered to be of anthropogenic origin; derived from e.g. pharmaceuticals, herbicides, fungicides, insecticides, flame retardants, intermediates in organic synthesis and solvents. Additionally they are also produced as by-products during industrial processes and by waste water and drinking water disinfection. Organohalogen compounds may be toxic, persistent and/or carcinogenic. In order to understand the source and environmental relevance of naturally produced organobromine compounds in surface waters, the mechanism of the formation was investigated using batch tests with lake water and algae cultures.

  13. The impact of land use on microbial surface water pollution.

    Science.gov (United States)

    Schreiber, Christiane; Rechenburg, Andrea; Rind, Esther; Kistemann, Thomas

    2015-03-01

    Our knowledge relating to water contamination from point and diffuse sources has increased in recent years and there have been many studies undertaken focusing on effluent from sewage plants or combined sewer overflows. However, there is still only a limited amount of microbial data on non-point sources leading to diffuse pollution of surface waters. In this study, the concentrations of several indicator micro-organisms and pathogens in the upper reaches of a river system were examined over a period of 16 months. In addition to bacteria, diffuse pollution caused by Giardia lamblia and Cryptosporidium spp. was analysed. A single land use type predestined to cause high concentrations of all microbial parameters could not be identified. The influence of different land use types varies between microbial species. The microbial concentration in river water cannot be explained by stable non-point effluent concentrations from different land use types. There is variation in the ranking of the potential of different land use types resulting in surface water contamination with regard to minimum, median and maximum effects. These differences between median and maximum impact indicate that small-scale events like spreading manure substantially influence the general contamination potential of a land use type and may cause increasing micro-organism concentrations in the river water by mobilisation during the next rainfall event. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. Studies on the treatment of surface water using rajma seeds

    Directory of Open Access Journals (Sweden)

    Merlin S. Babitha

    2018-03-01

    Full Text Available Indiscriminate disposal of wastewater with suspended solids have led to higher amount of pollution to the natural water bodies. Turbidity removal becomes an essential part in the water treatment when surface water is used for drinking purpose, this can be achieved by means of coagulation process. Coagulation process is the dosing of a coagulant in water, resulting in the destabilization of negatively charged particles. Commercial coagulants which were widely used can synthesize by-products in turn may pollute the environment and deteriorate the ecosystem at a slow rate. So, now-a-days natural coagulants are used as a potential substitute because it’s biodegradable, ecofriendly and non-toxic. In this study, the turbid surface water samples were treated using powdered seeds of Rajma (natural coagulant followed by variations in dosage, settling time and pH were also studied. From the results obtained, it was found that the Rajma seeds powder achieved 48.80% efficiency for 0.5 g/l of optimum dose at pH 6 for 20 min settling time respectively.

  15. Studies on the treatment of surface water using rajma seeds

    Science.gov (United States)

    Merlin, S. Babitha; Abirami, M.; Kumar, R. Suresh

    2018-03-01

    Indiscriminate disposal of wastewater with suspended solids have led to higher amount of pollution to the natural water bodies. Turbidity removal becomes an essential part in the water treatment when surface water is used for drinking purpose, this can be achieved by means of coagulation process. Coagulation process is the dosing of a coagulant in water, resulting in the destabilization of negatively charged particles. Commercial coagulants which were widely used can synthesize by-products in turn may pollute the environment and deteriorate the ecosystem at a slow rate. So, now-a-days natural coagulants are used as a potential substitute because it's biodegradable, ecofriendly and non-toxic. In this study, the turbid surface water samples were treated using powdered seeds of Rajma (natural coagulant) followed by variations in dosage, settling time and pH were also studied. From the results obtained, it was found that the Rajma seeds powder achieved 48.80% efficiency for 0.5 g/l of optimum dose at pH 6 for 20 min settling time respectively.

  16. Relation between ground water and surface water in the Hillsborough River basin, west-central Florida

    Science.gov (United States)

    Wolansky, R.M.; Thompson, T.H.

    1987-01-01

    The relation between groundwater and surface water in the Hillsborough River basin was defined through the use of: seismic-reflection profiling along selected reaches of the Hillsborough River, and evaluation of streamflow, rainfall, groundwater levels, water quality, and geologic data. Major municipal well fields in the basin are Morris Bridge and Cypress Creek where an averages of 15.3 and 30.0 million gal/day (mgd), respectively, were pumped in 1980. Mean annual rainfall for the study area is 53.7 inches. Average rainfall for 1980, determined from eight rainfall stations, was 49.7 inches. Evapotranspiration, corrected for the 5% of the basin that is standing water, was 35.7 in/year. The principal geohydrologic units in the basin are the surficial aquifer, the intermediate aquifer and confining beds, the Upper Floridan aquifer, the middle confining unit, and the Lower Floridan aquifer. Total pumpage of groundwater in 1980 was 98.18 mgd. The surficial aquifer and the intermediate aquifer are not used for major groundwater supply in the basin. Continuous marine seismic-reflection data collected along selected reaches of the Hillsborough River were interpreted to define the riverbed profile, the thickness of surficial deposits, and the top of persistent limestone. Major areas of groundwater discharge near the Hillsborough River and its tributaries are the wetlands adjacent to the river between the Zephyrhills gaging stations and Fletcher Avenue and the wetlands adjacent to Cypress Creek. An estimated 20 mgd seeps upward from the Upper Floridan aquifer within those wetland areas. The runoff/sq mi is greater at the Zephyrhills station than at Morris Bridge. However, results of groundwater flow models and potentiometric-surface maps indicate that groundwater is flowing upward along the Hillsborough River between the Zephyrhills gage and the Morris Bridge gage. This upward leakage is lost to evapotranspiration. An aquifer test conducted in 1978 at the Morris Bridge well

  17. Global analysis of urban surface water supply vulnerability

    International Nuclear Information System (INIS)

    Padowski, Julie C; Gorelick, Steven M

    2014-01-01

    This study presents a global analysis of urban water supply vulnerability in 71 surface-water supplied cities, with populations exceeding 750 000 and lacking source water diversity. Vulnerability represents the failure of an urban supply-basin to simultaneously meet demands from human, environmental and agricultural users. We assess a baseline (2010) condition and a future scenario (2040) that considers increased demand from urban population growth and projected agricultural demand. We do not account for climate change, which can potentially exacerbate or reduce urban supply vulnerability. In 2010, 35% of large cities are vulnerable as they compete with agricultural users. By 2040, without additional measures 45% of cities are vulnerable due to increased agricultural and urban demands. Of the vulnerable cities in 2040, the majority are river-supplied with mean flows so low (1200 liters per person per day, l/p/d) that the cities experience ‘chronic water scarcity’ (1370 l/p/d). Reservoirs supply the majority of cities facing individual future threats, revealing that constructed storage potentially provides tenuous water security. In 2040, of the 32 vulnerable cities, 14 would reduce their vulnerability via reallocating water by reducing environmental flows, and 16 would similarly benefit by transferring water from irrigated agriculture. Approximately half remain vulnerable under either potential remedy. (letter)

  18. Slowly biodegradable organic compounds impact the biostability of non-chlorinated drinking water produced from surface water.

    Science.gov (United States)

    Hijnen, W A M; Schurer, R; Bahlman, J A; Ketelaars, H A M; Italiaander, R; van der Wal, A; van der Wielen, P W J J

    2018-02-01

    It is possible to distribute drinking water without a disinfectant residual when the treated water is biologically stable. The objective of this study was to determine the impact of easily and slowly biodegradable compounds on the biostability of the drinking water at three full-scale production plants which use the same surface water, and on the regrowth conditions in the related distribution systems. Easily biodegradable compounds in the drinking water were determined with AOC-P17/Nox during 2012-2015. Slowly biodegradable organic compounds measured as particulate and/or high-molecular organic carbon (PHMOC), were monitored at the inlet and after the different treatment stages of the three treatments during the same period. The results show that PHMOC (300-470 μg C L -1 ) was approximately 10% of the TOC in the surface water and was removed to 50-100 μg C L -1 . The PHMOC in the water consisted of 40-60% of carbohydrates and 10% of proteins. A significant and strong positive correlation was observed for PHMOC concentrations and two recently introduced bioassay methods for slowly biodegradable compounds (AOC-A3 and biomass production potential, BPC 14 ). Moreover, these three parameters in the biological active carbon effluent (BACF) of the three plants showed a positive correlation with regrowth in the drinking water distribution system, which was assessed with Aeromonas, heterotrophic plate counts, coliforms and large invertebrates. In contrast, the AOC-P17/Nox concentrations did not correlate with these regrowth parameters. We therefore conclude that slowly biodegradable compounds in the treated water from these treatment plants seem to have a greater impact on regrowth in the distribution system than easily biodegradable compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Simulation of gas compressible flow by free surface water flow

    International Nuclear Information System (INIS)

    Altafini, C.R.; Silva Ferreira, R.T. da

    1981-01-01

    The analogy between the water flow with a free surface and the compressible fluid flow, commonly called hydraulic analogy, is analyzed and its limitations are identified. The water table is the equipment used for this simulation, which allows the quatitative analysis of subsonic and supersonic flow with a low cost apparatus. The hydraulic analogy is applied to subsonic flow around circular cylinders and supersonic flow around cones. The results are compared with available theoretical and experimental data and a good agreement is achieved. (Author) [pt

  20. Water condensation on ultrahydrophobic flexible micro pillar surface

    Science.gov (United States)

    Narhe, Ramchandra

    2016-05-01

    We investigated the growth dynamics of water drops in controlled condensation on ultrahydrophobic geometrically patterned polydimethylsiloxane (PDMS) cylindrical micro pillars. At the beginning, the condensed drops size is comparable to the pattern dimensions. The interesting phenomenon we observe is that, as the condensation progresses, water drops between the pillars become unstable and enforced to grow in the upward direction along the pillars surface. The capillary force of these drops is of the order of μ\\text{N} and acts on neighboring pillars. That results into bending of the pillars. Pillars bending enhances the condensation and favors the most energetically stable Wenzel state.